WorldWideScience

Sample records for power uprating costs

  1. On nuclear power plant uprating

    International Nuclear Information System (INIS)

    Ho, S. Allen; Bailey, James V.; Maginnis, Stephen T.

    2004-01-01

    Power uprating for commercial nuclear power plants has become increasingly attractive because of pragmatic reasons. It provides quick return on investment and competitive financial benefits, while involving low risks regarding plant safety and public objection. This paper briefly discussed nuclear plant uprating guidelines, scope for design basis analysis and engineering evaluation, and presented the Salem nuclear power plant uprating study for illustration purposes. A cost and benefit evaluation of the Salem power uprating was also included. (author)

  2. BWR power uprate

    International Nuclear Information System (INIS)

    Berry, K.K.

    2004-01-01

    This paper discusses the program developed by GE Nuclear Energy (GE) to increase the power output of Boiling Water Reactors (BWRs). For the implementation of power uprate, this unique approach reduces the cost, the uncertainty and the level of effort for both the utility and the licensing authority. (author)

  3. Current status of power uprates and safety issues

    International Nuclear Information System (INIS)

    Park, J. S.; Song, J. H.; Lee, S. H.

    2002-01-01

    The power uprates is the process for increasing the available rated power of commercial nuclear power reactor, utilizing thermal and design margin already secured at the stage of design, or by reducing measurement uncertainty of thermal power. Power uprates can be classified in three categories: (1) measurement uncertainty recapture power uprates, (2) stretch power uprates, and (3) extended power uprates. In the United states, Calvert Cliffs Unit 1 increased 5.5 percent of the rated power of reactor power by means of stretch power uprates for the first time in 1997, and 81 more nuclear power plants are in operation with the licensed rated power increase as of June 2002. The applications of power uprate amendment of 16 nuclear power plants are scheduled to be submitted by the year 2006. With the commercial operation of nuclear power plant started in 1978, Korea now has a total thermal power marking at 40,000 MWt. If the power uprates is approved, a considerable cost benefit is expected. Therefore, regulatory demand for power uprates from the utility is anticipated in near future. The power uprates is not simply to change the design but to get it through assessments and analyses of overall systems of nuclear power plant. For this reason, the aims of this research is to present the need of preliminary provisions of relevant regulations considering the reassessment of the components integrity, the performance of components/systems, the accident analysis, and the technical specifications against the coming regulatory demand

  4. Extended Power Up-rates

    International Nuclear Information System (INIS)

    Jon Ball

    2006-01-01

    Full text of publication follows: Nuclear energy is a reliable and cost-competitive global source of power. With rising oil and gas prices, nuclear continues to provide economic and environmental benefits. Extended Power Up-rate (EPU) provides a means for existing nuclear assets to generate increased power and substantially reduce electrical generation costs. GE Energy's Nuclear Business is the global leader in boiling water reactor (BWR) technology. The experience-base of plants that have successfully achieved EPU includes Spain, Switzerland, Sweden, Germany and the United States. The GE experience-base includes fourteen BWRs with over fifty-eight reactor-years of operating experience at EPU conditions. Other than the expected plant modifications needed to accommodate higher steam flows, flow-induced vibration (FIV) has been identified as the major area of concern when up-rating. Two plants have experienced damage to their steam dryers that has lead to an extensive program to improve the understanding of the effects of up-rates. This program includes extensive in-plant data collection, the development of a scale model test facility to study components susceptible to FIV and improvements in analytical techniques for evaluating loading on reactor internals. As global energy demands increase, oil and gas prices escalate, and environmental concerns over greenhouse effects challenge us to find environmentally friendly sources of energy, Nuclear is the most viable and economical source of power in the world. With a focused effort on plant reliability, existing plants can undergo Extended Power Up-rate, and continue to meet the ever-increasing energy demands in the world. (author)

  5. Advanced Power Ultra-Uprates of Existing Plants (APPU) Final Scientific/Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Rubiolo, Pablo R. [Westinghouse Electric Company LLC, Pittsburgh, PA (United States). Science and Technology Dept.; Conway, Lawarence E. [Westinghouse Electric Company LLC, Pittsburgh, PA (United States). Science and Technology Dept.; Oriani, Luca [Westinghouse Electric Company LLC, Pittsburgh, PA (United States). Science and Technology Dept.; Lahoda, Edward J. [Westinghouse Electric Company LLC, Pittsburgh, PA (United States). Science and Technology Dept.; DeSilva, Greg [Westinghouse Electric Company LLC, Pittsburgh, PA (United States). Science and Technology Dept.; Hu, Min H. [Westinghouse Electric Company LLC, Pittsburgh, PA (United States). Nuclear Services Division; Hartz, Josh [Westinghouse Electric Company LLC, Pittsburgh, PA (United States). Nuclear Services Division; Bachrach, Uriel [Westinghouse Electric Company LLC, Pittsburgh, PA (United States). Nuclear Services Division; Smith, Larry [Westinghouse Electric Company LLC, Pittsburgh, PA (United States). Nuclear Services Division; Dudek, Daniel F. [Westinghouse Electric Company LLC, Pittsburgh, PA (United States). Nuclear Services Division; Toman, Gary J. [Electric Power Research Inst. (EPRI), Palo Alto, CA (United States); Feng, Dandong [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Hejzlar, Pavel [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Kazimi, Mujid S. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2006-03-31

    This project assessed the feasibility of a Power Ultra-Uprate on an existing nuclear plant. The study determined the technical and design limitations of the current components, both inside and outside the containment. Based on the identified plant bottlenecks, the design changes for major pieces of equipment required to meet the Power Ultra-Uprate throughput were determined. Costs for modified pieces of equipment and for change-out and disposal of the replaced equipment were evaluated. These costs were then used to develop capital, fuel and operating and maintenance cost estimates for the Power Ultra-Uprate plant. The cost evaluation indicates that the largest cost components are the replacement of power (during the outage required for the uprate) and the new fuel loading. Based on these results, the study concluded that, for a standard 4-loop plant, the proposed Power Ultra-Uprate is technically feasible. However, the power uprate is likely to be more expensive than the cost (per Kw electric installed) of a new plant when large capacity uprates are considered (>25%). Nevertheless, the concept of the Power Ultra-Uprate may be an attractive option for specific nuclear power plants where a large margin exists in the steam and power conversion system or where medium power increases (~600 MWe) are needed. The results of the study suggest that development efforts on fuel technologies for current nuclear power plants should be oriented towards improving the fuel performance (fretting-wear, corrosion, uranium load, manufacturing, safety) required to achieve higher burnup rather focusing on potential increases in the fuel thermal output.

  6. Advanced Power Ultra-Uprates of Existing Plants (APPU) Final Scientific/Technical Report

    International Nuclear Information System (INIS)

    Rubiolo, Pablo R.; Conway, Lawarence E.; Oriani, Luca; Lahoda, Edward J.; DeSilva, Greg; Hu, Min H.; Hartz, Josh; Bachrach, Uriel; Smith, Larry; Dudek, Daniel F.; Toman, Gary J.; Feng, Dandong; Hejzlar, Pavel; Kazimi, Mujid S.

    2006-01-01

    This project assessed the feasibility of a Power Ultra-Uprate on an existing nuclear plant. The study determined the technical and design limitations of the current components, both inside and outside the containment. Based on the identified plant bottlenecks, the design changes for major pieces of equipment required to meet the Power Ultra-Uprate throughput were determined. Costs for modified pieces of equipment and for change-out and disposal of the replaced equipment were evaluated. These costs were then used to develop capital, fuel and operating and maintenance cost estimates for the Power Ultra-Uprate plant. The cost evaluation indicates that the largest cost components are the replacement of power (during the outage required for the uprate) and the new fuel loading. Based on these results, the study concluded that, for a ''standard'' 4-loop plant, the proposed Power Ultra-Uprate is technically feasible. However, the power uprate is likely to be more expensive than the cost (per Kw electric installed) of a new plant when large capacity uprates are considered (>25%). Nevertheless, the concept of the Power Ultra-Uprate may be an attractive option for specific nuclear power plants where a large margin exists in the steam and power conversion system or where medium power increases (∼600 MWe) are needed. The results of the study suggest that development efforts on fuel technologies for current nuclear power plants should be oriented towards improving the fuel performance (fretting-wear, corrosion, uranium load, manufacturing, safety) required to achieve higher burnup rather focusing on potential increases in the fuel thermal output

  7. Some power uprate issues in nuclear power plants

    International Nuclear Information System (INIS)

    Tipping, Philip

    2008-01-01

    Issues and themes concerned with nuclear power plant uprating are examined. Attention is brought to the fact that many candidate nuclear power plants for uprating have anyway been operated below their rated power for a significant part of their operating life. The key issues remain safety and reliability in operation at all times, irrespective of the nuclear power plant's chronological or design age or power rating. The effects of power uprates are discussed in terms of material aspects and expected demands on the systems, structures and components. The impact on operation and maintenance methods is indicated in terms of changes to the ageing surveillance programmes. Attention is brought to the necessity checking or revising operator actions after power up-rating has been implemented

  8. Impact of power uprate on environmental qualification of equipment in nuclear power plants

    International Nuclear Information System (INIS)

    Raheja, R.D.; Mohiuddin, A.; Alsammarae, A.

    1996-01-01

    Many nuclear power facilities are finding it economically beneficial to increase reactor output, from operating plants, by resorting to power uprates. A power uprate implies that a utility can increase the reactor output, or the megawatts generated, by increasing steam pressure without adding or changing any plant systems. This is perhaps one of the least expensive options for increasing the generating capacity of a power plant. However, a nuclear plant requires a comprehensive review of the plant systems, structures and components to assure their capability to withstand the resulting increased normal and accident plant conditions. A power uprate will typically result in a plant operating at higher than the originally designed environmental conditions. Safety related equipment in nuclear plants is presently qualified to the UFSAR Chapter 15 accident events and the resulting temperatures, pressures, radiation levels etc. These values will increase when the reactor is producing a higher MWe output. Components that are sensitive to the environment must be re-evaluated and assessed to determine their acceptability and operability under the revised environmental conditions. Most safety-related mechanical and electrical equipment will require an assessment from an environmental qualification standpoint. Utilities must perform this task in a systematic, auditable and cost effective manner to optimize their resources and minimize plant costs associated with modifications, replacements or equipment testing. This paper discusses various approaches and provides recommendations to achieve equipment qualification while satisfying the plant's objective of a power uprate

  9. Feasibility Study on Dual-Cooled Annular Fuel for OPR-1000 Power Uprate

    International Nuclear Information System (INIS)

    Chun, Tae Hyun; In, Wang Kee; Oh, Dong Suck

    2010-04-01

    A dual-cooled annular fuel (DCAF) is a highly promising concept as a high power density fuel for PWR power-uprate. The purpose of this study is to assess a feasibility of 120% core power for OPR-1000 with the DCAF. So the feasibility study were done through the code establishments for annular fuel analysis, evaluations of core physics, thermal-hydraulics and safety analyses at a 120% power with OPR-1000 and the preliminary economic benefits of 20% power-uprate. As results of the analyses, DCAF at 120% power showed sufficient margins available on DNB, PCT and fuel pellet temperature relative to the solid fuel at 100% power. However, judging from an anticipated wide range of the gap conductance variation in inner and outer clearances as fuel burn-up in the reactor core, irradiation behavior of DCAF has to be observed through research reactor test. On the other hand, the nuclear physics parameters like moderator temperature coefficient, power coefficient and so on comply with the technical specifications. An impact of 20% power-uprate on NSSS and BOP was also investigated, and accordingly some components and parts need to be changed were identified. Moreover, the economical benefits from the power-uprate was roughly estimated. It turned out that the power-uprating with DCAF could give an enormous profit even considering the expenses of components and parts to be replaced, additional fuel cycle cost and extended overhaul period

  10. Power uprates in nuclear power plants: international experiences and approaches for implementation

    International Nuclear Information System (INIS)

    Kang, Ki Sig

    2008-01-01

    The greater demand for electricity and the available capacity within safety margins in some operating NPPs are prompting nuclear utilities to request license modification to enable operation at a higher power level, beyond their original license provisions. Such plant modifications require an in-depth safety analysis to evaluate the possible safety impact. The analysis must consider the thermo hydraulic, radiological and structural aspects, and the plant behavior, while taking into account the capability of the structures, systems and components, and the reactor protection and safeguard systems set points. The purpose of this paper is to introduce international experiences and approaches for implementation of power uprates related to the reactor thermal power of nuclear power plants. The paper is intended to give the reader a general overview of the major processes, work products, issues, challenges, events, and experiences in the power uprates program. The process of increasing the licensed power level of a nuclear power plants is called a power uprate. One way of increasing the thermal output from a reactor is to increase the amount of fissile material in use. It is also possible to increase the core power by increasing the performance of the high power bundles. Safety margins can be maintained by either using fuels with a higher performance, or through the use of improved methods of analysis to demonstrate that the required margins are retained even at the higher power levels. The paper will review all types of power uprates, from small to large, and across various reactor types, including light and heavy water, pressurized, and boiling water reactors. Generally, however, the content of the report focuses on power uprates of the stretch and extended type. The International Atomic Energy Agency (IAEA) is developing a technical guideline on power uprates and side effects of power uprates in nuclear power plants

  11. Plant nominal power uprating offers attractive possibilities

    International Nuclear Information System (INIS)

    Bruyere, Michel

    2004-01-01

    Increasing the rated thermal power of an existing plant represents a particularly profitable way for a plant operator to increase electricity production. For PWR plants, a 5% increase in power can, in fact, generally be achieved without significantly modifying systems and equipments based upon the margin in the original design. Larger power increases can be achieved in the case of S.G. replacement. Based on recent analysis of a 3 loop PWR, 900 MWe, up to 12% power uprating is feasible with an appropriate replacement S.G. The general rule is to perform power uprating without significant increase of average primary temperature. This is mainly a result of consideration of S.G. tube corrosion, of fuel clad corrosion and of core safety margins (DNBR margins in particular). This paper will present a general overview of the analyses for large power uprating: program of work, main conclusions on the following items: 1. Safety demonstration (accident analysis, safeguard systems capacity verification, required protection setpoints modifications...) 2. Normal operation review (possible consequences of power uprating on the plant maneuverability and on the fuel management performances) 3. Systems and components mechanical integrity review and potential effect on the plant lifetime of the new operating conditions

  12. The use of BEACON monitoring in plant power uprates

    International Nuclear Information System (INIS)

    Miller, Wade

    2003-01-01

    BEACON is the core support software technology that provides Utilities with continuous 3-D core power distribution monitoring, operational analysis capability, and operations support capability. BEACON monitoring delivers quantifiable plant margins for both reload design and plant operations improvement. When linked to Plant Power Upratings, BEACON permits an improvement in fuel cycle economics through higher peaking factors, higher power levels and higher discharge burnups. Operational flexibility of Uprated Plants is enhanced through elimination of axial power shape and core power tilt specifications. Also, the number of flux maps for these plants is reduced and local power is monitored continuously, permitting faster power escalation. Integrated 3-D power distribution analysis capabilities provide core designers with historical margin data that permits a reduction in core follow requirements as well as reduced curve book data related scope. Examples of specific Uprated Plant applications will be discussed. In anticipation of future needs of Uprated Plants, plans to integrate the technology of BEACON with COLSS are being executed. Finally, the capability to monitor Crud Induced Power Shift (axial offset) is also planned for incorporation into BEACON in the near future and will be discussed

  13. Nuclear plant power up-rate study: feedwater heater evaluations

    International Nuclear Information System (INIS)

    Svensson, Eric; Catapano, Michael; Coakley, Michael; Thomas, Dan

    2014-01-01

    Given today's nuclear industry business climate, it has become common for Utility companies to consider increasing unit capacities through turbine replacement and power up-rates. An integral part of the studies conducted by many towards this end, involve the generation of a set of turbine cycle heat balances with predicted performance parameters for the up-rated condition. Once these tentative operating values are established, it becomes necessary to evaluate the suitability of the existing components within each system to ensure they are capable of continued safe and reliable operation. The ultimate cost for the up-rate, including the cost for any major required modifications or significant replacements is weighed against increased revenue generated from the up-rate over time. Exelon's Peach Bottom Atomic Power Station (PBAPS) is currently planning for an Extended Power up-rate (EPU) for both units. To ensure the existing Feedwater Heaters (FWH) could maintain the operating and transient response margins at the EPU condition, an engineering study was conducted. Powerfect Inc. in conjunction with SPX Heat Transfer LLC were contracted to provide engineering services to analyze the design, thermal performance, reliability and operating conditions at projected EPU conditions. Specifically, to address the following with regard to the station's Feedwater Heaters (FWHs): 1. Evaluate Drain Cooler (DC) Velocities - including zone inlet velocity, cross and window velocities and outlet velocities. 2. Evaluate Drain Cooler Zone Pressure Drop for effect on drain cooler margins to flashing. 3. Evaluate differential pressure allowable across the pass partition plate. 4. Evaluate Drain Cooler Tube Vibration Potential. 5. Perform detailed steam dome velocity calculations. The goal of the study was to identify the most susceptible areas within the heaters for problems and potential failures when operating at the higher duty of the EPU condition for the remaining life

  14. Upgrade of KNPEC no.2 Simulator for Kori Unit 3 Power Uprating

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jin-Hyuk; Lee, Seung-Ho [KEPRI, Daejeon (Korea, Republic of)

    2007-07-01

    Kori-Unit 3 and 4 is preparing the operation of the power-uprating (2900MWt), and therefore the Korea regulatory body(KINS) requested the operator training with the simulator reflecting the power-uprating. As a result of the intensive research and expertise of KEPRI on the simulators, KEPRI accomplished the upgrade project of KNPEC no.2 simulator for Kori-Unit 3 power-uprating. This project includes various high-tech methods incorporating - realtime neutronics model based on MASTER (Multi-purpose Analyzer for Static and Transient Effects of Reactors) code, best-estimate neutronics code by the KINS, (By using the RMASTER, the precision of the simulation of the neutron behaviors in the core is highly improved.) - betterment of the reactor coolant system and the balance-of-plant system - modification of the corresponding setpoints due to the power-uprating And the acceptance test procedure (ATP) was successfully carried out through the integration of system models and its performance tests. Through the success of this project, the operator training for the power uprating of the Kori-Unit 3 will be accomplished before its power operation and, after all, this simulator will contribute to the safe operation for the power-uprating of the Kori-Unit 3 and 4.

  15. The role of instrumentation and control systems in power uprating projects for nuclear power plants

    International Nuclear Information System (INIS)

    2008-01-01

    The IAEA's activities in nuclear power plant operating performance and life cycle management are aimed at increasing Member State capabilities in utilizing good engineering and management practices developed and transferred by the IAEA. In particular, the IAEA supports activities focusing on the improvement of nuclear power plant (NPP) performance, plant life management, training, power uprating, operational licence renewal, and the modernization of instrumentation and control (I and C) systems of NPPs in Member States. The subject of the I and C systems' role in power uprating projects in NPPs was suggested by the Technical Working Group on Nuclear Power Plant Control and Instrumentation in 2003. The subject was then approved by the IAEA and included in the programmes for 2004-2007. The increasing importance of power uprating projects can be attributed to the general worldwide tendency to the deregulation of the electricity market. The greater demand for electricity and the available capacity and safety margins, as well as the pressure from several operating NPPs resulted in requests for licence modification to enable operation at a higher power level, beyond the original licence provisions. A number of nuclear utilities have already gone through the uprating process for their nuclear reactors, and many more are planning to go through this modification process. In addition to mechanical and process equipment changes, parts of the electrical and I and C systems and components may also need to be altered to accommodate the new operating conditions and safety limits. This report addresses the role of I and C systems in NPP power uprating projects. The objective of the report is to provide guidance to utilities, safety analysts, regulators and others involved in the preparation, implementation and licensing of power uprating projects, with particular emphasis on the I and C aspects of these projects. As the average age of NPPs is increasing, it is becoming common for

  16. Predicted effect of power uprating on the water chemistry of commercial boiling water reactors

    International Nuclear Information System (INIS)

    Yeh, Tsung-Kuang; Wang, Mei-Ya; Chu, Charles F.; Chang Ching

    2009-01-01

    The approach of power uprating has been adopted by operators of light water reactors in the past few decades in order to increase the power generation efficiency of nuclear reactors. The power uprate strategy is apparently applicable to the three nuclear reactors in Taiwan as well. When choosing among the three types of power uprating, measurement uncertainty, stretch power uprating, and extended power uprating, a deliberate and thorough evaluation is required before a final decision and an optimal selection can be made. One practical way of increasing the reactor power is to deliberately adjust the fuel loading pattern and the control rod pattern and thus to avoid replacing the primary coolant pump with a new one of larger capacity. The power density of the reactor will increase with increasing power, but the mass flow rate in the primary coolant circuit (PCC) of a light water reactor will slightly increase (usually by less than 5 %) or even remain unchanged. Accordingly, an uprated power would induce higher neutron and gamma photon dose rates in the reactor coolant but have a minor or no effect on the mass flow rate of the primary coolant. The radiolysis product concentrations and the electrochemical corrosion potential (ECP) values differ largely in the PCC of a boiling water reactor (BWR). It is very difficult to measure the water chemistry data directly at various locations of an actual reactor. Thus the impact of power uprating on the water chemistry of a BWR operating under hydrogen water chemistry (HWC) can only be theoretically evaluated through computer modelling. In this study, the DEMACE computer code was modified to investigate the impact of power uprating on the water chemistry under a fixed mass flow rate in the primary coolant circuit of a BWR/6 type plant. Simulations were carried out for hydrogen concentrations in feedwater ranging from 0.0 to 2.0 mg . kg -1 and for power levels ranging from 100 % to 120 %. The responses of water chemistry and ECP

  17. Inquiry into the radiological consequences of power uprates at light-water reactors worldwide

    International Nuclear Information System (INIS)

    Bilic Zabric, Tea; Tomic, Bojan; Lundgren, Klas; Sjoeberg, Mats

    2007-05-01

    In Sweden, most of the nuclear power plants are planning power uprates within the next few years. The Dept. of Occupational and Medical Exposures at the Swedish Radiation Protection Agency, SSI, has initiated a research project to investigate the radiological implications of power uprates on light-water reactors throughout the world. The project was divided into three tasks: 1. A compilation of power uprates of light-water reactors worldwide. The compilation contains a technical description in brief of how the power uprates were carried out. 2. An analysis of the radiological consequences at four selected Nuclear Power Plants, which was the main objective of the inquiry. Affects on the radiological and chemical situation due to the changed situation were discussed. 3. Review of technical and organisational factors to be considered in uprate projects to keep exposures ALARA. The project was carried out, starting with the collecting of information on the implemented and planned uprates on reactors internationally. The information was catalogued in accordance with criteria focusing on radiological impact. A detailed analysis followed of four plants selected for uprates chosen according to established criteria, in line with the project requirements. The selected plants were Olkiluoto 1 and 2, Cofrentes, Asco and Tihange. The plants were selected with design and operation conditions close to the Swedish plants. All information was compiled to identify good and bad practices that are impacting on the occupational exposure. Important factors were discussed concerning BWRs and PWRs which affect radiation levels and occupational exposures in general, and especially at power uprates. Conclusions related to each task are in detail presented in a particular chapter of the report. Taking into account the whole project and its main objective the following conclusions are considered to be emphasized: Optimisation of the work processes to limit the duration of the time spent in

  18. Inquiry into the radiological consequences of power uprates at light-water reactors worldwide

    Energy Technology Data Exchange (ETDEWEB)

    Bilic Zabric, Tea; Tomic, Bojan; Lundgren, Klas; Sjoeberg, Mats

    2007-05-15

    In Sweden, most of the nuclear power plants are planning power uprates within the next few years. The Dept. of Occupational and Medical Exposures at the Swedish Radiation Protection Agency, SSI, has initiated a research project to investigate the radiological implications of power uprates on light-water reactors throughout the world. The project was divided into three tasks: 1. A compilation of power uprates of light-water reactors worldwide. The compilation contains a technical description in brief of how the power uprates were carried out. 2. An analysis of the radiological consequences at four selected Nuclear Power Plants, which was the main objective of the inquiry. Affects on the radiological and chemical situation due to the changed situation were discussed. 3. Review of technical and organisational factors to be considered in uprate projects to keep exposures ALARA. The project was carried out, starting with the collecting of information on the implemented and planned uprates on reactors internationally. The information was catalogued in accordance with criteria focusing on radiological impact. A detailed analysis followed of four plants selected for uprates chosen according to established criteria, in line with the project requirements. The selected plants were Olkiluoto 1 and 2, Cofrentes, Asco and Tihange. The plants were selected with design and operation conditions close to the Swedish plants. All information was compiled to identify good and bad practices that are impacting on the occupational exposure. Important factors were discussed concerning BWRs and PWRs which affect radiation levels and occupational exposures in general, and especially at power uprates. Conclusions related to each task are in detail presented in a particular chapter of the report. Taking into account the whole project and its main objective the following conclusions are considered to be emphasized: Optimisation of the work processes to limit the duration of the time spent in

  19. 77 FR 4585 - Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Power Uprates...

    Science.gov (United States)

    2012-01-30

    ... Subcommittee on Power Uprates; Notice of Meeting The ACRS Subcommittee on Power Uprates will hold a meeting on... Turkey Point, Units 3 and 4, extended power uprate application. The Subcommittee will hear presentations... possible, so that appropriate arrangements can be made. Thirty-five hard copies of each presentation or...

  20. 77 FR 28637 - Advisory Committee On Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Power Uprates...

    Science.gov (United States)

    2012-05-15

    ... Subcommittee on Power Uprates; Notice of Meeting The ACRS Subcommittee on Power Uprates will hold a meeting on...) associated with the Grand Gulf Nuclear Station Unit 1 extended power uprate application. The Subcommittee... made. Thirty-five hard copies of each presentation or handout should be provided to the DFO thirty...

  1. Key considerations and safety issues for the stretch power uprate at Chinshan Nuclear Power Station

    Energy Technology Data Exchange (ETDEWEB)

    Huang, P., E-mail: u808966@taipower.com.tw [Taiwan Power Company, Taipei, Taiwan (China)

    2014-07-01

    The Taiwan Power Company (TPC) has elected in recent years to implement the power uprate program as a key measure to improve the performance for TPC's nuclear power plants. The Measurement Uncertainty Recapture (MUR) power uprate for the TPC's three operating plants (reported in 16th PBNC) had been successfully implemented by July 2009. For the stretch power uprate (SPU) followed, the magnitude of uprate (~3%) is determined based on the available margins for original plant design, constant pressure approach (BWR) is adopted to simplify the evaluation, and major plant modifications are not considered. As the first application, the SPU safety analysis report (SAR) for the Chinshan plant was submitted to the ROCAEC in December 2010. A review task force was organized by the ROCAEC to perform a very thorough review. As the licensing bases are fully re-examined during the review process, many important issues have been identified and addressed. The key issues resolved include: conformance of SAR to ROCAEC's review guidance; re-examination of post-Fukushima comprehensive safety assessment; qualification of containment protective coatings; GL 96-06 (Assurance of Equipment Operability and Containment Integrity During DBA Conditions); credit for Containment Accident Pressure; issue for Annulus Pressurization Loads Evaluation. These issues required very extensive efforts to resolve. With the cooperative efforts by TPC and contractor (Institute of Nuclear Energy Research), however, all the issues were fully clarified and SAR was approved by ROCAEC on November 15, 2012. The first step SPU (2% OLTP) was successfully implemented in November 2012 at both units. (author)

  2. 75 FR 7634 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the Subcommittee on Power Uprates...

    Science.gov (United States)

    2010-02-22

    ... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the Subcommittee on Power Uprates; Notice of Meeting The ACRS Subcommittee on Power Uprates will hold a meeting on... arrangements can be made. Thirty-five hard copies of each presentation or handout should be provided to the DFO...

  3. 76 FR 32240 - Advisory Committee on Reactor Safeguards (ACRS) Meeting on the ACRS Subcommittee on Power Uprates

    Science.gov (United States)

    2011-06-03

    ... Subcommittee on Power Uprates Notice of Meeting The ACRS Subcommittee on Power Uprates will hold a meeting on... Expanded Operating Domains-Power Distribution Validation and Pin-by-Pin Gamma Scan). The Subcommittee will... hard copies of each presentation or handout should be provided to the DFO thirty minutes before the...

  4. 78 FR 70596 - Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Power Uprates...

    Science.gov (United States)

    2013-11-26

    ... Subcommittee on Power Uprates; Notice of Meeting The ACRS Subcommittee on Power Uprates will hold a meeting on... hold discussions with the licensee, (Northern States Power Company of Minnesota), the NRC staff, and... made. Thirty-five hard copies of each presentation or handout should be provided to the DFO thirty...

  5. Audit Calculations of ATWS for Ulchin Unit 1 and 2 Power Uprate

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jun Soo; Huh, Byung Gil; Choi, Yong Seog; Seul, Kwang Won [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2013-10-15

    In this study, the regulatory audit calculation for ATWS of Ulchin Unit 1 and 2 with 4.5% power uprate was performed to support the licensing review and to confirm the validity of licensee's calculation. In order to simulate the transient behavior of ATWS initiated by a loss of feed water, the systems of Ulchin Unit 1 and 2 was modeled with MARS-KS 1.3. In this study, the regulatory audit calculation of ATWS for Ulchin 1 and 2 with 4.5% power uprating and 99% MTC in the specific cycle designs was performed. It is conformed that the analysis results of ATWS for Ulchin 1 and 2 power uprate meets the RCS pressure acceptance criteria. An anticipated transient accompanied by a failure in the Reactor Trip System (RTS) to shut down the reactor is defined as an Anticipated Transient Without Scram (ATWS). Under certain postulated conditions, the ATWS could lead to Reactor Coolant system (RCS) pressure boundary fracture and/or core damage. For a conventional pressurized water reactor (PWR), the temperature corresponding to the NSSC notice No.2013.09(Performance Criteria for ECCS of the Pressurized Water Reactor Nuclear Power Plants), 1204 .deg. C and the pressure corresponding to the ASME Boiler and Pressure Vessel Code service level C stress, 221.5 bar is assumed to be an unacceptable plant condition against ATWS, above which the RCS pressure boundary could deform to the point of inoperability and the safe shutdown by injection of borated water could be challenged. Such potentially excessive RCS overpressure may occur in the ATWS initiated from a loss of heat sink. Currently, the modification of Ulchin 1 and 2 operating license for 4.5% power uprate is under review.

  6. Up-Rating - An Alternative Approach to Meeting Future Power Demands - Exploitation of Design Margins

    Energy Technology Data Exchange (ETDEWEB)

    Bruce, Barnaby; Schwarz, Thomas [AREVA NP GmbH, Freyeslebenstr. 1, 91058 Erlangen (Germany)

    2008-07-01

    Up-rating is a world-wide implemented approach that takes advantage of increased calculation and analytic abilities developed since commissioning and applies them to old plants. In doing so, what would possibly be considered today as over-engineered design margins are exploited and plant performance is improved, without necessarily involving extensive modifications or replacement of hardware. It is therefore a short-term alternative, compared to new plants, with little change in environmental ramifications for power production capacity gained. Up-rating is also more accepted by the wider community and licensing authorities, thus complimenting the building of new plants. The 10% thermal up-rating of the nuclear power plant at Almaraz, Spain, requires a comprehensive reanalysis of all power components. This paper focuses on those measures required to ensure the performance of the steam generators at increased load as an example of design margin exploitation in such crucial components. (authors)

  7. From initial application to routine operation: Reviewing the Applications for Power Uprates

    International Nuclear Information System (INIS)

    Garis, Ninos; Skaanberg, Lars

    2007-01-01

    Current plans for power uprates in Swedish nuclear power plants will lead to significant increases in seven units and a lesser increase in one unit. To date SKI has received six applications, and two more are due in 2007. A power uprate process is initiated by the application to the Government by a licensee for approval to increase the thermal output of a reactor unit. This request is addressed to the Government and is forwarded to SKI for a preliminary safety review. The result of the review is then provided by SKI as a basis for a governmental decision. Six applications have been taken through the first stage of the process; of these, three have received governmental approval and three are currently awaiting a decision. If the licensee's application is approved by the Government, deeper analyses and studies are required in order to modify the plant and update the safety analysis report and the associated technical specifications. SKI reviews this material on a continuous basis prior to test and routine operation at the increased power level. There are four stages that require attention and review by SKI; 1. Review of the application to the Government for approval to operate at increased power levels, and preparation of a suitable answer. 2. Review and approval of the preliminary safety analysis report (PSAR) 3. Review and approval of the application for testing at the higher power level 4. Review and approval of routine operation at the higher power level. A thorough description of the handling of a power uprate process can be found in the SKI PM (SKI-PM 04:11) that is available on the SKI website (in Swedish)

  8. Characteristic evaluations of BWR uprate method based on heat balance shift concept

    International Nuclear Information System (INIS)

    Kitou, Kazuaki; Aoyama, Motoo; Shiina, Kouji; Sasaki, Hiroshi; Yoshikawa, Kazuhiro

    2007-01-01

    Reactor power uprate of nuclear power plants is an efficient plant operating method. Most BWR plants need the exchange of high pressure turbines when plant thermal power increases over 5% because main steam flow rate exceeds the limitation of inlet steam flow rate of a high pressure turbine. Therefore, the new power uprate method named heat balance shift power uprate method has been developed. This method decreases feedwater temperature with increasing plant thermal power not to increase main steam flower rate. This study clarified that the heat balance shift method could increase plant electric power up to 2.8% compared with conventional power uprate method without the exchange of a high pressure turbine. (author)

  9. Implications of power uprates on safety margins of nuclear power plants. Report of a technical meeting

    International Nuclear Information System (INIS)

    2004-09-01

    The safety of nuclear power plants (NPPs) is based on the defence in depth concept, which relies on successive physical barriers (fuel matrix, cladding, primary system pressure boundary and containment) and other provisions to control radioactive materials and on multiple levels of protection against damage to these barriers. Deterministic safety analysis is an important tool for conforming the adequacy and efficiency of provisions within the defence in depth concept and is used to predict the response of an NPP in predetermined operational states. This type of safety analysis applies a specific set of rules and specific acceptance criteria. Deterministic analysis is typically focused on neutronic, thermohydraulic, radiological and structural aspects, which are often analysed with different computational tools. The advanced computational tools developed for deterministic safety analysis are used for better establishment and utilization of licensing margins or safety margins in consideration of analysis results. At the same time, the existence of such margins ensures that NPPs operate safely in all modes of operation and at all times. To properly assess and address the existing margins and to be able to take advantage of unnecessary conservatisms, state of the art analytical tools intended for safety assessment have been developed. Progress made in the development and application of modern codes for safety analysis and better understanding of phenomena involved in plant design and operation enable the analysts to determine safety margins in consideration of analysis results (licensing margins) with higher precision. There is a general tendency for utilities to take advantage of unnecessarily large conservatisms in safety analyses and to utilize them for reactor power uprates, better utilization of nuclear fuel, higher operational flexibility and for justification of lifetime extension. The present publication sets forth the results of a Technical Meeting on the

  10. Measurement uncertainty recapture (MUR) power uprates operation at Kuosheng Nuclear Power Station

    International Nuclear Information System (INIS)

    Chang Chinjang; Wang Tunglu; Lin Chihpao

    2009-01-01

    Measurement Uncertainty Recapture PowerUprates (MUR PU) are achieved through the use of state-of-the-art feedwater flow measurement devices, i.e., ultrasonic flow meters (UFMs), that reduce the degree of uncertainty associated with feedwater flow measurement and in turn provide for a more accurate calculation of thermal power. The Institute of Nuclear Energy Research (INER) teamed with Sargent and Lundy, LLC (S and L), Pacific Engineers and Constructors, Ltd (PECL), and AREVA to develop a program and plan for the Kuosheng Nuclear Power Station (KNPS) MUR PU Engineering Service Project and for the assistance to Kuosheng MUR PU operation. After regulator's approval of the licensing requests, KSNPS conducted the power ascension test and switchover to the new rated thermal power for Unit 2 and Unit 1 on 7/7/2007 and 11/30/2007, respectively. From then on, KNPS became the first nuclear power plant implementing MUR PU operation in Taiwan and in Asia. (author)

  11. Modernization and power uprate of the Laguna Verde Nuclear Power Plant (Mexico)

    International Nuclear Information System (INIS)

    Ruiz, L.; Merino, A.; Garcia-Serrano, J. L.

    2012-01-01

    The objective of this project is to perform the modifications on the thermal cycle of the plant required by an Extended Power Uprate, to achieve a safe and reliable operation of the plant at 120% of its original thermal power. The scope includes the design, engineering, training, supply of equipment, dismantling, installation, testing and commissioning. The duration of the project is 4,5 years (2007-2011), and all the modifications have been implemented in four outages, two per unit. The main modification carried out are the change of the condenser, moisture separator and main steam reheaters, the feedwater haters, the turbogenerator and its auxiliaries, transformers, isolated phase bus and main circuit breaker, etc. In this paper, the results obtained after all the modifications will be introduced. In addition, the most representative experience will be presented, as well as the lessons learned during the Project execution. (Author)

  12. Water chemistry experience following an extensive power up-rate in Oskarshamn 3 BWR

    International Nuclear Information System (INIS)

    Wegemar, Boerje; Nilsson, Jimmy; Lejon Johan; Bergfors, Asa; Arnberg, Bo

    2012-09-01

    The Swedish Oskarshamn 3 BWR plant, operated by OKG, was first connected to the grid in 1985. The plant has been power up-rated in two steps; from the original design, 3020 MWth, to 3300 MWth (109%, 1989) and recently to 3900 MWth (129%, 2009). Westinghouse Electric Sweden AB (former ASEA-Atom, OEM of the plant) was rewarded a major contract in the recently implemented up-rating project, the PULS project. The PULS project is quite unique since no operating experience has to date been reported from a similar major power up-rate in a BWR plant. Water chemistry experience from the first period of operation following the implementation of the PULS project is reported and discussed in the paper. Reported chemistry and radiochemistry measurements in feedwater (FW) and reactor water (RW) include corrosion products, activated corrosion products, dissolved oxygen and impurities like chloride, sulfate etc. Furthermore, a comparison of water quality prior to implementation of the PULS project is included. Several process systems have been modified, one of them being the condensate cleanup system (CCU), a Pre-coat filter system. The design criteria for the CCU system include the filter run-lengths, pressure drop before back-washing and requirements on water chemistry quality. The paper describes in some detail the CCU system modifications being implemented in order to fulfil the design criterion. CCU cleanup efficiency, operating temperature and influence of hydrogen peroxide on the CCU resin are all important issues being covered in the paper. As for the latter, it is well known that oxygen and hydrogen peroxide (from radiolysis in the core region) might cause partial deterioration of CCU standard cation resin resulting in increased RW sulfate concentrations. This aspect is covered in the paper as well. The reactor water cleanup system (RWCU) in Oskarshamn 3 consists of deep bed ion exchange filters (mixed bed filter). The purpose of RWCU is to maintain a low level of

  13. Fuel and Core Design Verification for Extended Power Up-rate in Ringhals Unit 3

    International Nuclear Information System (INIS)

    Gabrielsson, Petter; Stepniewski, Marek; Almberger, Jan

    2006-01-01

    Vattenfall's Westinghouse 3-loop PWR Ringhals 3 at the western coast of Sweden is scheduled for an extended power up-rate from 2783 to 3160 MWt in 2007, in the frame of the so called GREAT-project. The project will realize an up-rating initially planned and analysed back in 1995, but with a number of significant improvements outlined in this paper. For the licensing of the up-rated power level, a complete revision of the safety analyses, radiological analyses and systems verifications in FSAR is being performed by Westinghouse Electrics Belgium. The work is performed in close cooperation with Vattenfall in the areas of core calculations and input data. For more than a decade, Vattenfall has performed all core design and reload safety evaluations (RSE) for Ringhals, independent of fuel vendors and safety analysts. In GREAT all core parameters in the safety analysis checklist (SAC) used for the safety analyses are determined based upon a set of nine reference loading patterns designed by Vattenfall covering a wide range of fuel and core designs and extreme cycle-to-cycle variations. To facilitate the calculation of SAC parameters Westinghouse has provided a Reload Safety Evaluation Procedure report (RSEP) with detailed specifications for the calculation of all core parameters used in the analyses. The procedure has been automatized by Vattenfall in a set of scripts executing 3D core simulator calculations and extracting the key results. The same tools will be used in Vattenfall's future RSE for Ringhals 3. This approach is taken to obtain consistency between core designs and core calculations for the safety analyses and the cycle specific calculations, to minimize the risk for future violations of the safety analyses. (authors)

  14. Evaluation of Steam Generator Level behavior for Determination of Turbine Runback rate on COPs trip for Yonggwang 1 and 2 Power Uprating Units

    International Nuclear Information System (INIS)

    Lee, Kyung Jin; Hwang, Su Hyun; Yoo, Tae Geun; Chung, Soon Il; An, Byung Chang; Park, Jung Gu

    2010-01-01

    4.5% power uprate project has been progressing for the first time in Yonggwang 1 and 2(YGN1 and 2). Reviews for design change due to the power uprate were accomplished. Steam generator level behavior was one of the most important parameters because it could be cause of reactor trip or turbine trip. As the results of the reviews, YGN1 and 2 had to reassess it for change of turbine runback rate when turbine runback occurs due to the condensate operating pumps (COP) trip. This study has been carried out for evaluating the steam generator level behavior for determination of turbine runback rate on COPs trip for Yonggwang 1 and 2 Power Uprating Units. The steam generator water level evaluation program for YGN1 and 2 (SLEP-Y1) has been developed for it. The program includes models for the steam generator water level response. SLEP-Y1 is programmed with advanced continuous system simulation language (ACSL). The language has been used to simulate physical systems as a commercial tool used to evaluate system designs

  15. Renovation and uprating of seven hydropower plants in Java

    International Nuclear Information System (INIS)

    Nuessli, W.

    1991-01-01

    The Indonesian Power Authority is planning to renovate and uprate seven hydropower stations in Java to expand plant life expectancy, ensure operating safety and reliability, and increase power and generation within economical limits. The power plants were constructed in the early 1920s and extended between 1945 and 1950. Their capacities vary between 4 and 20 MW. For the renovation project, Colenco Power Consulting Ltd. is acting as a consultant to PLN. In February 1990, Colenco inspected all seven power plants. The results of the inspections served as the basis for the development of renovation plans for each of the seven hydropower plants. To determine the cost of the proposed renovation plans, appraisers had to determine a method for comparing the value of an existing plant to that of a renovated one. The two different evaluation methods used for these comparisons are the focus of this paper

  16. Uprated OMS engine status and future applications

    Science.gov (United States)

    Boyd, W. C.; Brasher, W. L.

    1986-01-01

    The baseline Orbital Maneuvering Engine (OME) of the Space Shuttle has the potential for significant performance uprating, leading to increased Shuttle performance capability. The approach to uprating that is being pursued at the NASA Lyndon B. Johnson Space Center is the use of a gas generator-driven turbopump to increase OME operating pressure. A higher pressure engine can have a greater nozzle expansion ratio in the same envelope and at the same thrust level, giving increased engine Isp. The results of trade studies and analyses that have led to the preferred uprated OME configuration are described. The significant accomplishments of a pre-development component demonstration program are also presented, including descriptions of test hardware and discussion of test results. It is shown that testing to date confirms the capability of the preferred uprated OME configuration to meet or exceed performance and life requirements. Potential future activities leading up to a full-scale development program are described, and the capability for the uprated OME to be used in future storable propellant upper stages is discussed.

  17. C.N. Cofrentes power up-rate up to 110 %. A challenge for cycle 14 core design

    International Nuclear Information System (INIS)

    Gomez Bernal, M.I.; Lopez Carbonell, M.T.; Garcia Delgado, L.

    2001-01-01

    C.N.Cofrentes is a GE design BWR reactor with 624 bundles in the core, a rated power of 2894 MWt and it is currently operating Cycle 13 at 104.2 % power. Commercial operation started in 1984 with 12-month cycles at rated power. Both cycle length and thermal power have been increased since then. Power has been up-rated in two steps, first at 102 % in Cycle 4 and later in Cycle 11 at 104.2%. Cycle length has been extended from the original 12-month to the currently 18-month cycles. Next cycle, Cycle 14, will be an 18-month cycle operating at 110 % power. This goal is a challenge for the in-house nuclear design team. Start up for Cycle 14 is planned for the first quarter of 2002. (author)

  18. Laguna Verde: a 120% extended power up-rate project developed by Iberdrola

    International Nuclear Information System (INIS)

    Merino Teillet, A.; Garcia-Serrano Tapia, J. L.; Ruiz Gutierrez, L.

    2010-01-01

    The experience which this document wants to present, describes the work being developed by IBERDROLA Ingenieria y Construccion, for the Laguna Verde plant in Mexico, owned by the Federal Electricity Commission (CFE). This generation plant consists of two light boiling water type units (BWR) design by General Electric in the 80's. The objective of this project is to perform the modifications on the thermal cycle of the plant required by an Extended Power Up-rate, to achieve a safe and reliable operation of the plant at 120% of its original thermal power, whilst upgrading and renovating plant equipment and installations to achieve a license renewal from 40 to 60 years of operation The consortium formed in 97% by IBERDROLA Ingenieria y Construccion SAU and in 3% by ALSTOM Mexicana, S.A. de CV, was awarded the contract in an international bid, competing against General Electric and Siemens. The project began in March 2007 and is scheduled to finalize in December 2010. At this point the work carried out include modifications of the main condenser replacement, moisture separator reheaters (MSR's) and feedwater heaters no. 5 and 6 in the two units, therefore having executed two out of four scheduled outages. The scope, development and organization of this project, whose basic elements include the design, engineering, training, supply of equipment, dismantling, installation, testing, commissioning, treatment and delivery of radioactive waste generated during the project implementation to CFE, is aimed to ensure a safe and reliable operation of the plant under the new conditions of increased thermal power of the reactor, with a thermal cycle optimized so that the gross power of the generator increase from the current 686.7 MWe to a value of 817.1 MWe in both units. An Extended Power Up-rate means an opportunity to modernize equipments, to improve maintenance, to get a better plant knowledge and to motivate the employees facing a challenging project. This project, being the

  19. The Modernization Program and Power Up-rate at NPP V2 Jaslovske Bohunice, Slovak Republic

    International Nuclear Information System (INIS)

    Reznik, Vladivoj; Krajmer, Imrich

    2010-01-01

    Slovenske Elektrarne, a.s. is a second largest utility company in the Central and Eastern Europe that owns an optimal production portfolio comprised of nuclear, thermal and hydroelectric power plants. There are two nuclear power plants Bohunice and Mochovce both operate with two units and another two units Mochovce 3 and 4 are currently under construction. Electricity at Nuclear power plant Bohunice V2 is generated by two 440 MW units that had gradually been connected to the power network over the period between 1984 and 1985. In the construction of the nuclear power plant V2 the concept of pressurized water reactors was adopted and the Soviet-era design WWER 440 used. The upgrading of Nuclear Power Plant Bohunice V2 is based on three main points: Modernization, Power up-rate, and Ageing monitoring program. The main targets of the modernization project were: Increasing of the Nuclear Safety and of the Nuclear operational reliability, and Seismic improvement. This modernization program is in full compliance with IAEA requirements and with the decisions from the Nuclear Regulatory Agency of the Slovak Republic (UJD) and achievement of the probabilistic safety criteria in accordance with IAEA recommendations. Except that is ensured a safe, reliable, economical and effective electricity and heat generation. Achieved results are based for further prolongation of the operation life time up to 60 years. (authors)

  20. Coupled RELAP5/PANTHER/COBRA steam line break accident analysis in support of licensing DOEL 2 power uprate and steam generator replacement

    International Nuclear Information System (INIS)

    Zhang, J.; Bosso, S.; Henno, X.; Ouliddren, K.; Schneidesch, C.R.; Hove, W. van

    2004-01-01

    The nuclear reactor accident analyses using best estimate codes provide a better understanding and more accurate modeling of the key physical phenomena, which allows a more realistic evaluation of the conservatism and margins in the final safety analysis report (FSAR) accident analysis. The use of the best estimate codes and methods is necessary to meet the increasing technical, licensing and regulatory requirements for major plant changes (e.g. steam generator replacement), power uprate, core design optimization (cycle extension), as well as Periodic Safety Review. Since 1992, Tractebel Engineering (TE) has developed and applied a deterministic bounding approach to FASR accident analysis using the best estimate system thermal hydraulic code RELAP5/MOD2.5 and the subchannel thermal hydraulic code COBRA-3C. This approach has been accepted by the Belgian Safety Authorities, and turned out to be cost effective for most of the non-LOCA transient analyses. Since this approach adapts a decoupled modeling of the core responses, the analysis results often involved too large un-quantified conservatisms, due to either simplistic approximations for asymmetric accidents with strong 3D core neutronics - plant thermal hydraulics interactions, or additional penalties introduced from 'incoherent' initial/boundary conditions for separate plant and core analyses. Therefore, an external dynamic coupling between the RELAP5/MOD2.5 code and the 3-D neutronic code PANTHER was implemented since 1997 via the transient analysis code linkage program TALINK. Furthermore, a static linkage between the PANTHER code and the COBRA-3C code was developed for on-line calculation of (Departure from Nucleate Boiling Ratio (DNBR). TE intends to use the coupled code package for licensing non-symmetric FSAR accident analysis. The TE coupled code package has been applied to develop a main steam line break (MSLB) accident analysis methodology [using the TE deterministic bounding approach. The methodology

  1. 76 FR 60938 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Power...

    Science.gov (United States)

    2011-09-30

    ... Subcommittee on Power Uprates; Notice of Meeting The ACRS Subcommittee on Power Uprates will hold a meeting on...) associated with the Nine Mile Point extended power uprate application. The [[Page 60939

  2. Piping hydrodynamic loads for a PWR power up-rate with steam generator replacement

    International Nuclear Information System (INIS)

    Julie M Jarvis; Allen T Vieira; James M Gilmer

    2005-01-01

    Full text of publication follows: Pipe break hydrodynamic loads are calculated for various systems in a PWR for a Power Up-rate (PUR) with a Steam Generator Replacement (SGR). PUR with SGR can change the system pressures, mass flowrates and pipe routing/configuration. These changes can alter the steam generator piping steam/water hammer loads. This paper discusses the need to benchmark against the original design basis, the use of different modeling techniques, and lessons learned. Benchmarking for licensing in the United States is vital in consideration of 10CFR50.59 and other licensing and safety issues. RELAP5 and its force post-processor R5FORCE are used to model the transient loads for various piping systems such as main feedwater and blowdown systems. Other modeling applications, including the Bechtel GAFT program, are used to evaluate loadings in the main steam piping. Forces are calculated for main steam turbine stop valve closure, feedwater pipe breaks and subsequent check valve slam, and blowdown isolation valve closure. These PUR/SGR forces are compared with the original design basis forces. Modeling techniques discussed include proper valve closure modeling, sonic velocity changes due to pipe material changes, and two phase flow effects. Lessons learned based on analyses done for several PWR PUR with SGR are presented. Lessons learned from these analyses include choosing the optimal replacement piping size and routing to improve system performance without resulting in excessive piping loads. (authors)

  3. 76 FR 7883 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Power...

    Science.gov (United States)

    2011-02-11

    ... Subcommittee on Power Uprates; Notice of Meeting The ACRS Subcommittee on Power Uprates will hold a meeting on... will review the staff's evaluation of the Point Beach Units 1 and 2 Extended Power Uprate application... can be made. Thirty five hard copies of each presentation or handout should be provided to the...

  4. Uprated OMS Engine Status-Sea Level Testing Results

    Science.gov (United States)

    Bertolino, J. D.; Boyd, W. C.

    1990-01-01

    The current Space Shuttle Orbital Maneuvering Engine (OME) is pressure fed, utilizing storable propellants. Performance uprating of this engine, through the use of a gas generator driven turbopump to increase operating pressure, is being pursued by the NASA Johnson Space Center (JSC). Component level design, fabrication, and test activities for this engine system have been on-going since 1984. More recently, a complete engine designated the Integrated Component Test Bed (ICTB), was tested at sea level conditions by Aerojet. A description of the test hardware and results of the sea level test program are presented. These results, which include the test condition operating envelope and projected performance at altitude conditions, confirm the capability of the selected Uprated OME (UOME) configuration to meet or exceed performance and operational requirements. Engine flexibility, demonstrated through testing at two different operational mixture ratios, along with a summary of projected Space Shuttle performance enhancements using the UOME, are discussed. Planned future activities, including ICTB tests at simulated altitude conditions, and recommendations for further engine development, are also discussed.

  5. Low Cost High Performance Generator Technology Program. Volume 2. Design study

    International Nuclear Information System (INIS)

    1975-06-01

    The systems studies directed towards up-rating the performance of an RTG using selenide thermoelectrics and a heat source with improved safety are reported. The resulting generator design, designated LCHPG, exhibits conversion efficiency of greater than 10 percent, a specific power of 3 W/lb., and a cost of $6,000/W(e). In the course of system analyses, the significant development activities required to achieve this performance by the 1980 time period are identified

  6. Modernization of turbines in nuclear power plants

    International Nuclear Information System (INIS)

    Harig, T.

    2005-01-01

    An ongoing goal in the power generation industry is to maximize the output of currently installed assets. This is most important at nuclear power plants due to the large capital investments that went into these plants and their base loaded service demands. Recent trends in the United States show a majority of nuclear plants are either obtaining, or are in the process of obtaining NRC approvals for operating license extensions and power uprates. This trend is evident in other countries as well. For example, all Swedish nuclear power plants are currently working on projects to extend their service life and maximize capacity through thermal uprate and turbine-generator upgrade with newest technology. The replacement of key components with improved ones is a means of optimizing the service life and availability of power plants. Economic advantages result from increased efficiency, higher output, shorter startup and shutdown times as well as reduced outage times and service costs. The rapid advances over recent years in the development of calculation programs enables adaptation of the latest blading technology to the special requirements imposed by steam turbine upgrading. This results in significant potential for generating additional output with the implementation of new technology, even without increased thermal power. In contrast to maintenance and investment in pure replacement or repair of a component with the primary goal of maintaining operability and reliability, the additional output gained by upgrading enables a return on investment to be reaped. (orig.)

  7. Three dimensional considerations in thermal-hydraulics of helical cruciform fuel rods for LWR power uprates

    Energy Technology Data Exchange (ETDEWEB)

    Shirvan, Koroush, E-mail: kshirvan@mit.edu; Kazimi, Mujid S.

    2014-04-01

    Highlights: • We benchmarked the 4 × 4 helical cruciform fuel (HCF) bundle pressure drop experimental data with CFD. • We also benchmarked the 4 × 4 HCF mixing experimental data with CFD. • We derived new friction factors for PWR and BWR designs at PWR and BWR operating conditions from CFD. • We showed the importance of modeling the 3D conduction in HCF in steady state and transient conditions. - Abstract: In order to increase the power density of current and new light water reactor designs, the helical cruciform fuel (HCF) rods have been proposed. The HCF rod is equivalent to a thin cylindrical rod, with 4 fuel containing vanes, wrapped around it. The HCF rods increase the surface area to volume ratio of the fuel and enhance the inter-subchannel mixing due to their helical shape. The rods do not need supporting grids, as they are packed to periodically contact their neighbors along the flow direction, enabling a higher power density in the core. The HCF rods were reported to have the potential to uprate existing PWRs by 45% and BWRs by 20%. In order to quantify the mixing behavior of the HCF rods based on their twist pitch, experiments were previously performed at atmospheric pressures with single phase water in a 4 by 4 HCF and cylindrical rod bundles. In this paper, the experimental results on pressure drop and mixing are benchmarked with computational fluid dynamic (CFD) using steady state the Reynolds average Navier–Stokes (RANS) turbulence model. The sensitivity of the CFD approach to computational domain, mesh size, mesh shape and RANS turbulence models are examined against the experimental conditions. Due to the refined radial velocity profile from the HCF rods twist, the turbulence models showed little sensitivity to the domain. Based on the CFD simulations, the total pressure drops under the PWR and BWR conditions are expected to be about 10% higher than the values previously reported solely from an empirical correlation based on the

  8. Steam separator uprating by elimination of capacity-limiting mechanisms

    International Nuclear Information System (INIS)

    Parkinson, J.R.; Pruster, W.P.; Kidwell, J.H.; Schneider, W.G.

    1985-01-01

    Advanced steam/water separation equipment for nuclear steam generator application is required for new equipment manufacture and also for retrofit. For new equipment applications, the desire for higher capacity is driven by competitiveness which requires maximum throughput in the most compact package. For retrofit applications, which have arisen due to the poor performance of some of the original equipment, the need is for high capacity separators which can fit into the existing pressure vessel envelope and not only correct the performance problem, but also allow for uprated plant output. This paper describes the development of such advanced steam separators

  9. Studi Pengaruh Pemasangan NGR 40 Ohm pada Uprating Transformator 2 GI Gianyar Terhadap Gangguan Hubung Singkat 1 Phasa Tanah

    Directory of Open Access Journals (Sweden)

    Arya Surya Darma

    2017-08-01

    Full Text Available Along with the development of ever-increasing burden on the GI Gianyar then the transformer unit 2 with a capacity of 30 MVA will be uprating with a capacity of 60 MVA transformer. To maintain the continuity and reliability of the flow of electrical power to the consumer , NGR (Neutral Grounding Resistance and relay SBEF is used as the safety equipment of the short circuit 1 phase to ground was not in to the neutral point of the transformer. Uprating of transformers that have been done changes on 1 phase fault current to ground when using a direct earthing systems with a value to become 1838.21 A. While the value of the short-circuit current 1 phase to ground after pairing NGR 40 Ohm value is fixed at 288.675 A, so that the current setting and time relay SBEF fixed at 90 A and 7.067 seconds. The analysis result from the effect of installation NGR and rele SBEF on the transformer 60 MVA against short circuit 1 phase to ground has the ability good protection for the value of the fault current is able to be reduced from 1838,21 A into 288.675 A after pairing NGR 40 Ohm and time is needed SBEF to handle distractions 7.067 seconds. Intisari- Seiring dengan perkembangan beban yang terus meningkat di GI Gianyar maka transformator unit 2 berkapasitas 30 MVA akan di lakukan uprating (penggantian dengan transformator berkapasitas 60 MVA. Untuk menjaga kontinyuitas dan keandalan aliran daya listrik sampai ke konsumen (beban, NGR (Neutral Grounding Resistance dan rele SBEF dipergunakan sebagai peralatan pengaman dari gangguan hubung singkat phasa tanah agar arus gangguan 1 phasa ke tanah tidak sampai mengalir ke titik netral transformator. Dari uprating transformator yang sudah di lakukan terjadi perubahan pada arus gangguan 1 phasa ke tanah jika menggunakan sistem pentanahan langsung (solid grounding menjadi 1838,21 A. Sedangkan nilai dari arus hubung singkat 1 phasa ke tanah setelah dipasangkan NGR 40 Ohm nilainya tetap sebesar 288,675 A

  10. Core design experience of WWER-440 reactors when they working on increased power level

    International Nuclear Information System (INIS)

    Adeev, V.; Panov, A.; Melenchuk, I.

    2015-01-01

    The Kola NPP continues commercial operation of 2nd generation fuel (FA-2) and trial operation of 3rd generation fuel (FA-3), which has a number of design features providing the best operational characteristics. This report gives the results of VVER-440 core operation with FA-2 and FA-3 with enrichment increased up to 4.87%, and at the power level uprated to 107% of nominal power level. Brief analysis of obtained data is carried out. Peculiarities and techniques of developing loading patterns with new types of nuclear fuel for operation at the uprated power level are reviewed. (authors)

  11. MIT research reactor. Power uprate and utilization

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Lin-Wen [Nuclear Reactor Laboratory, Massachusetts Inst. of Technology, Cambridge, MA (United States)

    2012-03-15

    The MIT Research Reactor (MITR) is a university research reactor located on MIT campus. and has a long history in supporting research and education. Recent accomplishments include a 20% power rate to 6 MW and expanding advanced materials fuel testing program. Another important ongoing initiative is the conversion to high density low enrichment uranium (LEU) monolithic U-Mo fuel, which will consist of a new fuel element design and power increase to 7 MW. (author)

  12. Cost of nuclear power generation judged by power rate

    International Nuclear Information System (INIS)

    Hirai, Takaharu

    1981-01-01

    According to estimation guidance, power rates in general are the proper cost plus the specific compensation and adjustment addition. However, the current system of power rates is of power-source development promotion type involving its tax. The structure of power rate determination must be restudied now especially in connection of nuclear power generation. The cost of nuclear power generation as viewed from power rate is discussed as follows: the fear of military application of power plants, rising plant construction costs, the loophole in fuel cost calculation, unreasonable unit power cost, depreciation and repair cost, business compensation, undue business compensation in nuclear power, the costs of nuclear waste management, doubt concerning nuclear power cost, personnel, pumping-up and power transmission costs in nuclear power, energy balance analysis, nuclear power viewed in entropy, the suppression of power consumption. (J.P.N.)

  13. Nuclear power costs

    International Nuclear Information System (INIS)

    1963-01-01

    A report prepared by the IAEA Secretariat and presented to the seventh session of the Agency's General Conference says that information on nuclear power costs is now rapidly moving from the domain of uncertain estimates to that of tested factual data. As more and more nuclear power stations are being built and put into operation, more information on the actual costs incurred is becoming available. This is the fourth report on nuclear power costs to be submitted to the IAEA General Conference. The report last year gave cost information on 38 nuclear power projects, 17 of which have already gone into operation. Certain significant changes in the data given last year are included-in the present report; besides, information is given on seven new plants. The report is divided into two parts, the first on recent developments and current trends in nuclear power costs and the second on the use of the cost data for economic comparisons. Both stress the fact that the margin of uncertainty in the basic data has lately been drastically reduced. At the same time, it is pointed out, some degree of uncertainty is inherent in the assumptions made in arriving at over-all generating cost figures, especially when - as is usually the case - a nuclear plant is part of an integrated power system

  14. Optimization of costs for the DOEL 3 steam generator replacement

    International Nuclear Information System (INIS)

    Leblois, C.

    1994-01-01

    Several aspects of steam generator replacement economics are discussed on the basis of the recent replacement carried out in the Doel 3 unit. The choice between repair of replacement policies, as well as the selection of the intervention date were based on a comparison of costs in which various possible scenarios were examined. The contractual approach for the different works to be performed was also an important point, as well as the project organization in which CAD played an important role. This organization allowed to optimize the outage duration and to realize numerous interventions in the reactor building in parallel with the replacement itself. A last aspect of the optimization of costs is the possibility to uprate the plant power. In the case of Doel 3, the plant restarted with a nominal power increased by 10%, of which 5,7% were possible by the increase of the SG heat transfer area. (Author) 6 refs

  15. Safety analysis program for steam generators replacement and power uprate at Tihange 2 nuclear power plant

    International Nuclear Information System (INIS)

    Delhaye, X.; Charlier, A.; Damas, Ph.; Druenne, H.; Mandy, C.; Parmentier, F.; Pirson, J.; Zhang, J.

    2002-01-01

    The Belgian Tihange 2 nuclear power plant went into commercial operation in 1983 producing a thermal power of 2785 MW. Since the commissioning of the plant the steam generators U-tubes have been affected by primary stress corrosion cracking. In order to avoid further degradation of the performance and an increase in repair costs, Electrabel, the owner of the plant, decided in 1997 to replace the 3 steam generators. This decision was supported by the feasibility study performed by Tractebel Energy Engineering which demonstrated that an increase of 10% of the initial power together with a fuel cycle length of 18 months was achieved. Tractebel Energy Engineering was entrusted by Electrabel as the owner's engineer to manage the project. This paper presents the role of Tractebel Energy Engineering in this project and the safety analysis program necessary to justify the new operation point and the fuel cycle extension to 18 months re-analysis of FSAR chapter 15 accidents and verification of the capacity of the safety and auxiliary systems. The FSAR chapter 15 accidents were reanalyzed jointly by Framatome and Tractebel Energy Engineering while the systems verifications were carried out by Tractebel Energy Engineering. (author)

  16. The costs of nuclear power

    International Nuclear Information System (INIS)

    Vestenhaug, O.; Sauar, T.O.; Nielsen, P.O.

    1979-01-01

    A study has been made by Scandpower A/S of the costs of nuclear power in Sweden. It is based on the known costs of existing Swedish nuclear power plants and forecasts of the expected costs of the Swedish nuclear power programme. special emphasis has been put on the fuel cycle costs and future costs of spent fuel processing, waste disposal and decommissioning. Costs are calculated in 1978 Swedish crowns, using the retail price index. An actual interest rate of 4% is used, with depreciation period of 25 years and a plant lifetime of 30 years. Power production costs are estimated to be about 7.7 oere/kWh in 1978, rising to 10.5 oere/kWh in 2000. The cost is distributed with one third each to capital costs, operating costs and fuel costs, the last rising to 40% of the total at the end of the century. The main single factor in future costs is the price of uranium. If desired, Sweden can probably be self-sufficient in uranium in 2000 at a lower cost than assumed here. National research costs which, in Scandpower's opinion, can be debited to the commercial nuclear power programme are about 0.3 oere/kWh. (JIW)

  17. Theoretical and Experimental Investigations of Highly Uprated Diesel Engine with Temperature Regulator of Supercharging Air

    Directory of Open Access Journals (Sweden)

    G. A. Vershina

    2005-01-01

    Full Text Available Mathematical model of a highly uprated diesel engine with turbo-supercharging and intercooler of supercharging air is given in die paper. Theoretical study based on the model has made it possible to design and test an intercooler with a temperature regulator of supercharging air. Test results prove efficiency of temperature regulation of supercharging air in operation of an engine at low loads with excess air factor more than 3.2.

  18. Power generation costs. Coal - nuclear power

    International Nuclear Information System (INIS)

    1979-01-01

    This supplement volume contains 17 separate chapters investigating the parameters which determine power generation costs on the basis of coal and nuclear power and a comparison of these. A detailed calculation model is given. The complex nature of this type of cost comparison is shown by a review of selected parameter constellation for coal-fired and nuclear power plants. The most favourable method of power generation can only be determined if all parameters are viewed together. One quite important parameter is the load factor, or rather the hours of operation. (UA) 891 UA/UA 892 AMO [de

  19. Plant capacity uprating problems and solutions

    International Nuclear Information System (INIS)

    Bruster, L.H.; Nicholson, J.M.

    1992-01-01

    The changing economics associated with electric power generation require producers and suppliers of electrical energy to adopt new strategies for production and pricing. New challenges face utility managers as they attempt to position themselves to be low-cost producers of electricity. Owner/operators of nuclear power plants have many strategies and tactics by which to establish or maintain their competitive positions as electric power producers. One simple approach is to increase plant output without investing significant capital in new facilities. This paper reports that this objective can be accomplished by extending the operation of nuclear plants into their stretch power rating, or to higher core power levels if system/component margins permit

  20. Thermal Analysis for Environmental Qualification of Kori Nuclear power plant unit 3 and 4

    International Nuclear Information System (INIS)

    Seo, Kwi Hyun; Byun, Choong Sup; Song, Dong Soo

    2006-01-01

    This paper shows the temperature profiles of safety related electrical equipment exposed to MSLB inside containment. It must be demonstrated that the LOCA qualification conditions exceed or are equivalent to the maximum calculated MSLB conditions. COPATTA as Bechtel's vendor code is used for the containment pressure and temperature prediction in power uprating project for Kori 3,4 and Yonggwang 1,2 nuclear power plants(NPPs). However, CONTEMPT-LT/028 is used for calculating the containment pressure and temperatures in equipment qualification project for the same NPPs. Power uprating code that is, COPATTA benchmarking study performed in six equipment at saturation temperature and surface temperature. Specially, thermal analysis carefully investigate that view point environmental qualification and NUREG- 0588 be mentioned in regard to safety-related heat sink it boundary condition or geometry information

  1. Thermal Analysis for Environmental Qualification of Kori Nuclear power plant unit 3 and 4

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Kwi Hyun [ENERGEO Inc., Sungnam (Korea, Republic of); Byun, Choong Sup; Song, Dong Soo [KEPRI, Taejon (Korea, Republic of)

    2006-07-01

    This paper shows the temperature profiles of safety related electrical equipment exposed to MSLB inside containment. It must be demonstrated that the LOCA qualification conditions exceed or are equivalent to the maximum calculated MSLB conditions. COPATTA as Bechtel's vendor code is used for the containment pressure and temperature prediction in power uprating project for Kori 3,4 and Yonggwang 1,2 nuclear power plants(NPPs). However, CONTEMPT-LT/028 is used for calculating the containment pressure and temperatures in equipment qualification project for the same NPPs. Power uprating code that is, COPATTA benchmarking study performed in six equipment at saturation temperature and surface temperature. Specially, thermal analysis carefully investigate that view point environmental qualification and NUREG- 0588 be mentioned in regard to safety-related heat sink it boundary condition or geometry information.

  2. 7 CFR 1710.303 - Power cost studies-power supply borrowers.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 11 2010-01-01 2010-01-01 false Power cost studies-power supply borrowers. 1710.303... AND GUARANTEES Long-Range Financial Forecasts § 1710.303 Power cost studies—power supply borrowers. (a... facilities shall be supported by a power cost study to demonstrate that the proposed generation and...

  3. Nuclear power generating costs

    International Nuclear Information System (INIS)

    Srinivasan, M.R.; Kati, S.L.; Raman, R.; Nanjundeswaran, K.; Nadkarny, G.V.; Verma, R.S.; Mahadeva Rao, K.V.

    1983-01-01

    Indian experience pertaining to investment and generation costs of nuclear power stations is reviewed. The causes of investment cost increases are analysed and the increases are apportioned to escalation, design improvements and safety related adders. The paper brings out the fact that PHWR investment costs in India compare favourably with those experienced in developed countries in spite of the fact that the programme and the unit size are relatively much smaller in India. It brings out that in India at current prices a nuclear power station located over 800 km from coal reserves and operating at 75% capacity factor is competitive with thermal power at 60% capacity factor. (author)

  4. Nuclear power generation cost methodology

    International Nuclear Information System (INIS)

    Delene, J.G.; Bowers, H.I.

    1980-08-01

    A simplified calculational procedure for the estimation of nuclear power generation cost is outlined. The report contains a discussion of the various components of power generation cost and basic equations for calculating that cost. An example calculation is given. The basis of the fixed-charge rate, the derivation of the levelized fuel cycle cost equation, and the heavy water charge rate are included as appendixes

  5. Maintenance cost models in deregulated power systems under opportunity costs

    International Nuclear Information System (INIS)

    Al-Arfaj, K.; Dahal, K.; Azaiez, M.N.

    2007-01-01

    In a centralized power system, the operator is responsible for scheduling maintenance. There are different types of maintenance, including corrective maintenance; predictive maintenance; preventive maintenance; and reliability-centred maintenance. The main cause of power failures is poor maintenance. As such, maintenance costs play a significant role in deregulated power systems. They include direct costs associated with material and labor costs as well as indirect costs associated with spare parts inventory, shipment, test equipment, indirect labor, opportunity costs and cost of failure. In maintenance scheduling and planning, the cost function is the only component of the objective function. This paper presented the results of a study in which different components of maintenance costs were modeled. The maintenance models were formulated as an optimization problem with single and multiple objectives and a set of constraints. The maintenance costs models could be used to schedule the maintenance activities of power generators more accurately and to identify the best maintenance strategies over a period of time as they consider failure and opportunity costs in a deregulated environment. 32 refs., 4 tabs., 4 figs

  6. COMPLETE WASTE MANAGEMENT DURING A POWER UPRATE OUTAGE

    International Nuclear Information System (INIS)

    Hammel, Lee; Dempsey, Scott

    2003-01-01

    This paper identifies the advantages of utilizing one vendor to complete the bulk packaging of radioactively contaminated large components and normal Dry Active Waste (DAW) and to provide private rail transportation to direct disposal. This paper will also show the methodologies utilized to achieve a safe, reliable, and cost effective solution while working during critical path evolutions routinely recognized in today's deregulated Utility market

  7. Drivers of imbalance cost of wind power

    DEFF Research Database (Denmark)

    Obersteiner, C.; Siewierski, T.; Andersen, Anders

    2010-01-01

    In Europe an increasing share of wind power is sold on the power market. Therefore more and more wind power generators become balancing responsible and face imbalance cost that reduce revenues from selling wind power. A comparison of literature illustrates that the imbalance cost of wind power...... varies in a wide range. To explain differences we indentify parameters influencing imbalance cost and compare them for case studies in Austria, Denmark and Poland. Besides the wind power forecast error also the correlation between imbalance and imbalance price influences imbalance cost significantly...... of imperfect forecast is better suited to reflect real cost incurred due to inaccurate wind power forecasts....

  8. LPGC, Levelized Steam Electric Power Generator Cost

    International Nuclear Information System (INIS)

    Coen, J.J.; Delene, J.G.

    1994-01-01

    1 - Description of program or function: LPGC is a set of nine microcomputer programs for estimating power generation costs for large steam-electric power plants. These programs permit rapid evaluation using various sets of economic and technical ground rules. The levelized power generation costs calculated may be used to compare the relative economics of nuclear and coal-fired plants based on life-cycle costs. Cost calculations include capital investment cost, operation and maintenance cost, fuel cycle cost, decommissioning cost, and total levelized power generation cost. These programs can be used for quick analyses of power generation costs using alternative economic parameters, such as interest rate, escalation rate, inflation rate, plant lead times, capacity factor, fuel prices, etc. The two major types of electric generating plants considered are pressurized-water reactor (PWR) and pulverized coal-fired plants. Data are also provided for the Large Scale Prototype Breeder (LSPB) type liquid metal reactor. Costs for plant having either one or two units may be obtained. 2 - Method of solution: LPGC consists of nine individual menu-driven programs controlled by a driver program, MAINPWR. The individual programs are PLANTCAP, for calculating capital investment costs; NUCLOM, for determining operation and maintenance (O and M) costs for nuclear plants; COALOM, for computing O and M costs for coal-fired plants; NFUEL, for calculating levelized fuel costs for nuclear plants; COALCOST, for determining levelized fuel costs for coal-fired plants; FCRATE, for computing the fixed charge rate on the capital investment; LEVEL, for calculating levelized power generation costs; CAPITAL, for determining capitalized cost from overnight cost; and MASSGEN, for generating, deleting, or changing fuel cycle mass balance data for use with NFUEL. LPGC has three modes of operation. In the first, each individual code can be executed independently to determine one aspect of the total

  9. Nuclear Power Plant Module, NPP-1: Nuclear Power Cost Analysis.

    Science.gov (United States)

    Whitelaw, Robert L.

    The purpose of the Nuclear Power Plant Modules, NPP-1, is to determine the total cost of electricity from a nuclear power plant in terms of all the components contributing to cost. The plan of analysis is in five parts: (1) general formulation of the cost equation; (2) capital cost and fixed charges thereon; (3) operational cost for labor,…

  10. Power feedback effects in the LEM code

    International Nuclear Information System (INIS)

    Kromar, M.

    1999-01-01

    The nodal diffusion code LEM has been extended with the power feedback option. Thermohydraulic and neutronic coupling is covered with the Reactivity Coefficient Method. Presented are results of the code testing. Verification is done on the typical non-uprated NPP Krsko reload cycles. Results show that the code fulfill objectives arising in the process of reactor core analysis.(author)

  11. Power plant asset market evaluations: Forecasting the costs of power production

    Energy Technology Data Exchange (ETDEWEB)

    Lefton, S A; Grunsrud, G P [Aptech Engineering Services, Inc., Sunnyvale, CA (United States)

    1999-12-31

    This presentation discusses the process of evaluating and valuing power plants for sale. It describes a method to forecast the future costs at a power plant using a portion of the past fixed costs, variable energy costs, and most importantly the variable cycling-related wear-and-tear costs. The presentation then discusses how to best determine market share, expected revenues, and then to forecast plant future costs based on future expected unit cycling operations. The presentation concludes with a section on recommendations to power plant buyers or sellers on how to manage the power plant asset and how to increase its market value. (orig.) 4 refs.

  12. Power plant asset market evaluations: Forecasting the costs of power production

    Energy Technology Data Exchange (ETDEWEB)

    Lefton, S.A.; Grunsrud, G.P. [Aptech Engineering Services, Inc., Sunnyvale, CA (United States)

    1998-12-31

    This presentation discusses the process of evaluating and valuing power plants for sale. It describes a method to forecast the future costs at a power plant using a portion of the past fixed costs, variable energy costs, and most importantly the variable cycling-related wear-and-tear costs. The presentation then discusses how to best determine market share, expected revenues, and then to forecast plant future costs based on future expected unit cycling operations. The presentation concludes with a section on recommendations to power plant buyers or sellers on how to manage the power plant asset and how to increase its market value. (orig.) 4 refs.

  13. Power plant asset market evaluations: Forecasting the costs of power production

    International Nuclear Information System (INIS)

    Lefton, S.A.; Grunsrud, G.P.

    1998-01-01

    This presentation discusses the process of evaluating and valuing power plants for sale. It describes a method to forecast the future costs at a power plant using a portion of the past fixed costs, variable energy costs, and most importantly the variable cycling-related wear-and-tear costs. The presentation then discusses how to best determine market share, expected revenues, and then to forecast plant future costs based on future expected unit cycling operations. The presentation concludes with a section on recommendations to power plant buyers or sellers on how to manage the power plant asset and how to increase its market value. (orig.) 4 refs

  14. Reference costs for power generation

    International Nuclear Information System (INIS)

    2003-12-01

    The first part of the 2003 study of reference costs for power generation has been completed. It was carried out by the General Directorate for Energy and Raw Materials (DGEMP) of the French Ministry of the Economy, Finance and Industry, with the collaboration of power-plant operators, construction firms and many other experts. A Review Committee of experts including economists (Forecasting Department, French Planning Office), qualified public figures, representatives of power-plant construction firms and operators, and non-governmental organization (NGO) experts, was consulted in the final phase. The study examines the costs of power generated by different methods (i.e. nuclear and fossil-fuel [gas-, coal-, and oil-fired] power plants) in the context of an industrial operation beginning in the year 2015. - The second part of the study relating to decentralized production methods (wind, photovoltaic, combined heat and power) is still in progress and will be presented at the beginning of next year. - 1. Study approach: The study is undertaken mainly from an investor's perspective and uses an 8% discount rate to evaluate the expenses and receipts from different years. In addition, the investment costs are considered explicitly in terms of interest during construction. - 2. Plant operating on a full-time basis (year-round): The following graph illustrates the main conclusions of the study for an effective operating period of 8000 hours. It can be seen that nuclear is more competitive than the other production methods for a year-round operation with an 8% discount rate applied to expenses. This competitiveness is even better if the costs related to greenhouse-gas (CO 2 ) emission are taken into account in estimating the MWh cost price. Integrating the costs resulting from CO 2 emissions by non-nuclear fuels (gas, coal), which will be compulsory as of 2004 with the transposition of European directives, increases the total cost per MWh of these power generation methods

  15. The costs of nuclear power in the Netherlands

    International Nuclear Information System (INIS)

    1978-01-01

    A study on the costs of nuclear power generation in the Netherlands is presented. Light water cooled reactors are chosen as nuclear power plants and no difference is made in calculating the costs between a PWR type reactor and a BWR type reactor. The power plants have an output of 1000 MWe. From each part of the whole fuel cycle the costs are determined, taking into account interest, investments, time of construction, labor costs, insurances etc. Also are determined from each part of the fuel cycle the energy costs; the costs per kWh. Finally a comparison is made in costs between a 1000 MWe power plant and a 600 MWe power plant

  16. Construction costs of nuclear power stations

    Energy Technology Data Exchange (ETDEWEB)

    Mandel, H

    1976-03-01

    It is assumed that the demand for electrical energy will continue to rise and that nuclear power will increasingly supply the base-load of electricity generation in the industrialized world. The author identifies areas where techniques and practices to control costs can be improved. Nuclear power offers an alternative to liquid and gaseous fossil fuels and contributes to a relative stability in the price of electric energy. Nuclear power plants can now generate power more cheaply than other thermal power plants down into the upper middle load sector, as indicated in calculations based on a construction time of six years for nuclear plants and four years for others. Special legal provisions, different conditions of financing and taxation, varying methods of power generation cost accounting, and the nonuniform layout of the plant in the various countries make it difficult to compare power generation costs. The author uses mostly experiences gained in the Federal Republic of Germany for some calculations for comparison; he cites lack of standardization and over-long licensing times as major factors in the recent rapid escalation of nuclear power costs and suggests that adoption of standard reactor designs, encouragement of a vigorous and competitive European nuclear industry, and streamlining of licensing procedures to improve the situation. (MCW)

  17. The true costs of nuclear power

    International Nuclear Information System (INIS)

    Wallner, A.; Mraz, G.

    2013-01-01

    Worldwide, many nuclear power plants will be reaching the end of their lifetimes over the next few years. States must therefore decide now on the direction they intend to steer their energy policies. Possible options are the construction of new nuclear power plants, extending the lifetime of existing ones, or changing direction towards a sustainable energy future. Arguments put forward by the nuclear power lobby in favour of new builds are, on the one hand, the claim that nuclear power is low in CO2 emissions,1and on the other, that it is low cost. This paper examines the second claim and identifies the “true costs of nuclear power”. This paper provides an overview for the general reader and presents the most important aspects of “costs of nuclear power”, as well as sound information to contribute to discussions of this complex issue. The first part of this paper focuses on the costs of nuclear new-build: Approximately two thirds of electricity generation costs consist of fixed costs, the largest part of which covers the construction of the nuclear power plant (NPP) itself, including the interest rates (capital costs). Consequently, construction costs are a crucial factor in the overall cost of nuclear power. The issue of nuclear new build is currently under discussion in many states in Europe which are considering replacing their aged nuclear power plant fleet, e.g. UK (Hinkley Point and further plans for new builds), Finland (Olkiluoto 3), France (Flamanville 3), the Czech Republic (Temelin 3/4), Slovakia (Mochovce 3/4) and Romania (Cernavoda 3/4). Those projects have one crucial point in common: problems with costs or financing. The Massachusetts Institute of Technology (MIT) has calculated that construction costs rose 15% per annum from 2003 to 2009; construction costs rose from 2,000 to 4,000 USD, amounting to total construction costs of US$ 4 billion for a 1,000 MW NPP. A current example of cost and construction time overrun is the Finnish reactor

  18. Operating experience with BWR nuclear power

    International Nuclear Information System (INIS)

    Bonsdorf, Magnus von.

    1986-01-01

    The two-unit nuclear power station in Olkiluoto on the western coast of Finland produces about 20 per cent of the electricity consumption of the country. The first unit, TVO-I was first connected to the national grid in September 1978 and TVO-II in February 1980. The original rated power output of each unit was 660 MWe, corresponding to the thermal power of 2000 MW from the reactor. Technical modifications allowed the power to be uprated by 8%. The operating statistics (load factors etc.) are given and the outage experience discussed. The radiological history shows very low radioactivity and dose levels have been maintained at the plant. (UK)

  19. Nuclear power costs in the UK

    Energy Technology Data Exchange (ETDEWEB)

    Sweet, C [Polytechnic of the South Bank, London (UK)

    1978-06-01

    An attempt is made to assess the available evidence on nuclear power costs, to evaluate the adequacy of published statistics, and to determine where the balance of advantage lies. The case rests on four factors - the load factor, calculations of fuel and capital costs, research and development costs, and most importantly, whether there is net benefit over costs. It is felt that if the flow of information concerning the difficult and confusing position in which the nuclear power industry finds itself could be increased then the quality of research in the field of costing nuclear programmes and evaluating their social overhead costs could be improved.

  20. Reliability-cost models for the power switching devices of wind power converters

    DEFF Research Database (Denmark)

    Ma, Ke; Blaabjerg, Frede

    2012-01-01

    In order to satisfy the growing reliability requirements for the wind power converters with more cost-effective solution, the target of this paper is to establish a new reliability-cost model which can connect the relationship between reliability performances and corresponding semiconductor cost...... temperature mean value Tm and fluctuation amplitude ΔTj of power devices, are presented. With the proposed reliability-cost model, it is possible to enable future reliability-oriented design of the power switching devices for wind power converters, and also an evaluation benchmark for different wind power...... for power switching devices. First the conduction loss, switching loss as well as thermal impedance models of power switching devices (IGBT module) are related to the semiconductor chip number information respectively. Afterwards simplified analytical solutions, which can directly extract the junction...

  1. Future perspective of cost for nuclear power generation

    International Nuclear Information System (INIS)

    Maeda, Ichiro

    1988-01-01

    The report presents and discussed results of evaluation of the cost for power generation in this and forthcoming years on the basis of an analysis of the current fuel prices and the economics of various power sources. Calculations show that nuclear power generation at present is inferior to coal-firing power generation in terms of required costs, but can become superior in the future due to an increased burn-up and reduced construction cost. Investigations are made of possible contributions of future technical improvements to reduction in the overall cost. Results suggest that nuclear power generation will be the most efficient among the various electric sources because of its technology-intensive feature. Development of improved light water reactors is of special importance to achieve a high burn-up and reduced construction costs. In general, the fixed cost accounts for a large part of the overall nuclear power generation cost, indicating that a reduction in construction cost can greatly increase the economic efficiency. Changes in the yen's exchange rate seem to have little effect on the economics of nuclear power generation, which represents another favorable aspect of this type of energy. (Nogami, K.)

  2. The hidden costs of nuclear power

    International Nuclear Information System (INIS)

    Keough, C.

    1981-01-01

    The two basic hidden costs of nuclear power are public money and public health. Nuclear power appears to be economical because many of the costs of producins electricity in these plants are paid by the federal government. So, like it or not, the citizens are footing the bill with their taxes. Design and development of plants have been paid for with public money, and disposal and cleanup costs will also be paid in this manner. The economic and health costs associated with nuclear accidents are staggering

  3. Public power costs less

    International Nuclear Information System (INIS)

    Moody, D.

    1993-01-01

    The reasons why residential customers of public power utilities paid less for power than private sector customers is discussed. Residential customers of investor-owned utilities (IOU's) paid average rates that were 28% above those paid by customers by possibly owned systems during 1990. The reasons for this disparity are that management costs faced by public power systems are below those of private power companies, indicating a greater efficiency of management among public power systems, and customer accounts expenses averaged $33.00 per customer for publicly owned electric utilities compared to $39.00 per customer for private utilities

  4. Modernization and power increase nuclear power plant Laguna Verde (Mexico)

    International Nuclear Information System (INIS)

    Garcia-Serrano, J. L.; Merino, A.; Ruiz Gutierrez, L.

    2011-01-01

    The objective of this project is to perform the modifications on the thermal cycle of the plant required by an Extended Power Uprate, to achieve a safe and reliable operation of the plant at 120% of its original thermal power. The scope includes the design, engineering training, supply of equipment, dismantling, installation, testing and commissioning. The duration of the project is 4 years (82007-2010), and all the modifications have been implemented in four outages, two per unit. The main modification carried out are the change of the condenser, moisture separator and main steam reheaters, the feedwater haters, the turbogenerator and its auxiliaries, transformers, isolated phase bus and main circuit breaker, etc. (Author)

  5. Simulation of the energy - environment economic system power generation costs in power-stations

    International Nuclear Information System (INIS)

    Weible, H.

    1978-09-01

    The costs of power generation are an important point in the electricity industry. The present report tries to supply a model representation for these problems. The costs of power generation for base load, average and peak load power stations are examined on the basis of fossil energy sources, nuclear power and water power. The methods of calculation where dynamic investment calculation processes are used, are given in the shape of formulae. From the point of view of long term prediction, power generation cost sensitivity studies are added to the technical, economic and energy-political uncertainties. The sensitivity of models for calculations is examined by deterministic and stochastic processes. In the base load and average region, power generation based on nuclear power and water power is economically more favourable than that from fossilfired power stations. Even including subsidies, this cost advantage is not in doubt. In the peak load region, pumped storage power stations are more economic than fossilfired power stations. (orig.) [de

  6. Nuclear power company activity based costing management analysis

    International Nuclear Information System (INIS)

    Xu Dan

    2012-01-01

    With Nuclear Energy Industry development, Nuclear Power Company has the continual promoting stress of inner management to the sustainable marketing operation development. In view of this, it is very imminence that Nuclear Power Company should promote the cost management levels and built the nuclear safety based lower cost competitive advantage. Activity based costing management (ABCM) transfer the cost management emphases from the 'product' to the 'activity' using the value chain analysis methods, cost driver analysis methods and so on. According to the analysis of the detail activities and the value chains, cancel the unnecessary activity, low down the resource consuming of the necessary activity, and manage the cost from the source, achieve the purpose of reducing cost, boosting efficiency and realizing the management value. It gets the conclusion from the detail analysis with the nuclear power company procedure and activity, and also with the selection to 'pieces analysis' of the important cost related project in the nuclear power company. The conclusion is that the activities of the nuclear power company has the obviously performance. It can use the management of ABC method. And with the management of the procedure and activity, it is helpful to realize the nuclear safety based low cost competitive advantage in the nuclear power company. (author)

  7. Simulations of the design basis accident at conditions of power increase and the o transient of MSIV at overpressure conditions of the Laguna Verde Power Station

    International Nuclear Information System (INIS)

    Araiza M, E.; Nunez C, A.

    2001-01-01

    This document presents the analysis of the simulation of the loss of coolant accident at uprate power conditions, that is 2027 MWt (105% of the current rated power of 1931MWt). This power was reached allowing an increase in the turbine steam flow rate without changing the steam dome pressure value at its rated conditions (1020 psiaJ. There are also presented the results of the simulation of the main steam isolation va/ve transient at overpressure conditions 1065 psia and 1067 MWt), for Laguna Verde Nuclear Power Station. Both simulations were performed with the best estimate computer code TRA C BF1. The results obtained in the loss of coolant accident show that the emergency core coolant systems can recover the water level in the core before fuel temperature increases excessively, and that the peak pressure reached in the drywell is always below its design pressure. Therefore it is concluded that the integrity of the containment is not challenged during a loss of coolant accident at uprate power conditions.The analysis of the main steam isolation valve transients at overpressure conditions, and the analysis of the particular cases of the failure of one to six safety relief valves to open, show that the vessel peak pressures are below the design pressure and have no significant effect on vessel integrity. (Author)

  8. Power plant cost estimates put to the test

    International Nuclear Information System (INIS)

    Crowley, J.H.

    1978-01-01

    The growth in standards for nuclear applications and the impact of these codes and standards on the cost of nuclear power plants is described. The preparation of cost estimates and reasons for apparent discrepancies are discussed. Consistent estimates of nuclear power plant costs have been prepared in the USA for over a decade. They show that the difference in capital costs between nuclear and coal fired plants is narrowing and that when total generating costs are calculated nuclear power is substantially cheaper. (UK)

  9. Feasibility Study of Power Uprate Using Ultrasonic Flow Meters in NPPs

    International Nuclear Information System (INIS)

    Kim, Tae Mi; Heo, Gyun Young

    2010-01-01

    Feedwater flowrate is an important input parameter in establishing the plant's operating power level. In Korean nuclear power plants, venturi flow meters have been used for measuring the feedwater flow of the secondary side. However, as time goes on, the fouling in venture meters could cause measurement uncertainties to grow and that could lead to operation at less than about 2% of the licensed thermal power limit. In order to resolve the problem, nuclear power plants in other countries use Ultrasonic Flow Meters (UFMs) which have relatively lower measurement uncertainty (about 0.5%) instead of venturi flow meters and have reduced the errors from the fouling in venturi-type flow meters. USA amended 10 CFR 50 Appendix K so that US nuclear power plants can use real value of Core Operating Limit Supervisory System (COLSS) uncertainty, which is currently fixed as 2%, by adopting the UFM. Korea also has been amended the law in order to get benefits from the technology. In this study, we are going to present the fundamental principles of UFMs and the advantages and disadvantages of its installation. Also, we inquire into the conventional uses of UFMs in the overseas sites and then check what is needed to consider for its domestic application

  10. Costs of electric power generation in different types of power plants

    International Nuclear Information System (INIS)

    Weible, H.

    1977-01-01

    In the framework of our study 'energy - environment - industry' we need among other things the costs of electric power generation. We register their structure in a sub-model. Recently there was disagreement on effective costs of electric power generation particularly when comparing fossil-fuel power plants to nuclear power plants. For this reason, expertises on the costs of electric power generation in nuclear and fossil-fuel power plants were ordered with the Energy-Economic Institute in Cologne as well as with the Battelle Institute in Frankfurt. In the framwork of our paper on the system 'energy - environment - industry' we do not want to give new data potentially required for our task, before the expertises will be finished. Therefore the results given in part III of this lecture are only meant as an example in order to show possible consequences of the cost programs set up, depending on initial data whose general recognition is to be aimed at. Furthermore, the theoretical approach to investment calculation has to win general recognition when recording calculation methods computer-compatibly. Any new formulations discussed in industrial management have not been taken into account. (orig.) [de

  11. An analysis of nuclear power plant operating costs

    International Nuclear Information System (INIS)

    1988-01-01

    This report presents the results of a statistical analysis of nonfuel operating costs for nuclear power plants. Most studies of the economic costs of nuclear power have focused on the rapid escalation in the cost of constructing a nuclear power plant. The present analysis found that there has also been substantial escalation in real (inflation-adjusted) nonfuel operating costs. It is important to determine the factors contributing to the escalation in operating costs, not only to understand what has occurred but also to gain insights about future trends in operating costs. There are two types of nonfuel operating costs. The first is routine operating and maintenance expenditures (O and M costs), and the second is large postoperational capital expenditures, or what is typically called ''capital additions.'' O and M costs consist mainly of expenditures on labor, and according to one recently completed study, the majoriy of employees at a nuclear power plant perform maintenance activities. It is generally thought that capital additions costs consist of large maintenance expenditures needed to keep the plants operational, and to make plant modifications (backfits) required by the Nuclear Regulatory Commission (NRC). Many discussions of nuclear power plant operating costs have not considered these capital additions costs, and a major finding of the present study is that these costs are substantial. The objective of this study was to determine why nonfuel operating costs have increased over the past decade. The statistical analysis examined a number of factors that have influenced the escalation in real nonfuel operating costs and these are discussed in this report. 4 figs, 19 tabs

  12. Current production costs in various power plant systems

    Energy Technology Data Exchange (ETDEWEB)

    Weible, H.

    1977-01-01

    The costs of producing electric power were evaluated for flowing water power plants, storage and pumped storage power plants, bituminous coal power plants, heating oil power plants (fired with heavy heating oil), natural gas-fired power plants, gas turbines, pressurized water reactors, and boiling water reactors. The calculational methods used for evaluating costs and the input data for methods used for the KOSKON and KOSKERN computer programs are described. It is emphasized that the calculations are examples to indicate the possible effects of the cost program and are only as valid as the input data. (JSR)

  13. Strategy and research needs for nuclear power plant development: plant modernization and possible new construction in Finland

    International Nuclear Information System (INIS)

    Mattila, Lasse; Vanttola, Timo

    2001-01-01

    The four NPP units in Finland have been in operation for about 20 years and have a very good operating record. In the mid-1990s, comprehensive modernization programmes were launched with operating licence extension and power uprating as major short-term goals. The licences were extended by 10-20 years, a total of 350 MW new capacity was obtained at a low cost, and PSAs indicate significant improvements in safety level. The current national energy strategy of 1997 and the political agenda of the new government formed in April 1999 keeps the option open for new nuclear power capacity. NPP unit of 1000-1600 MW, to be operational by 2010, was submitted to the government in November 2000. New nuclear power appears competitive in Finnish conditions, and it would be the most cost-effective way of meeting the Kyoto target for 2010. Nationally coordinated research and technology programmes have been established to support continued safety and performance improvements of the operating NPPs, particularly for life extension and severe accident management, and to advance preparedness for a new NPP unit. International collaboration, often within Euratom research programmes, is a key ingredient in the research approach

  14. The prospects for cost competitive solar PV power

    International Nuclear Information System (INIS)

    Reichelstein, Stefan; Yorston, Michael

    2013-01-01

    New solar Photovoltaic (PV) installations have grown globally at a rapid pace in recent years. We provide a comprehensive assessment of the cost competitiveness of this electric power source. Based on data available for the second half of 2011, we conclude that utility-scale PV installations are not yet cost competitive with fossil fuel power plants. In contrast, commercial-scale installations have already attained cost parity in the sense that the generating cost of power from solar PV is comparable to the retail electricity prices that commercial users pay, at least in certain parts of the U.S. This conclusion is shown to depend crucially on both the current federal tax subsidies for solar power and an ideal geographic location for the solar installation. Projecting recent industry trends into the future, we estimate that utility-scale solar PV facilities are on track to become cost competitive by the end of this decade. Furthermore, commercial-scale installations could reach “grid parity” in about ten years, if the current federal tax incentives for solar power were to expire at that point. - Highlights: ► Assessment of the cost competitiveness of new solar Photovoltaic (PV) installations. ► Utility-scale PV installations are not yet cost competitive with fossil fuel power plants. ► Commercial-scale installations have already attained cost parity in certain parts of the U.S. ► Utility-scale solar PV facilities are on track to become cost competitive by the end of this decade

  15. Insurance for replacement power costs

    International Nuclear Information System (INIS)

    Cleaver, A.

    1980-01-01

    Although careful consideration is given to insurance against physical damage to plant and equipment, little thought is given to the costs that will be incurred in replacing the power that is lost while a relatively efficient system is out of action. The results of an investigation carried out for a generating authority with an installed capacity of about 3000 MW is given. Replacement power costs for different cases of severity of damage range from Pound1.17m per month for damage to central services taking out all four units. (author)

  16. Cost escalation in nuclear power

    International Nuclear Information System (INIS)

    Montomery, W.D.; Quirk, J.P.

    1978-01-01

    This report is concerned with the escalation of capital costs of nuclear central station power plants between the early 1960s and the present. The report presents an historical overview of the development of the nuclear power industry and cost escalation in the industry, using existing data on orders and capital costs. New data are presented on regulatory delays in the licensing process, derived from a concurrent study being carried on in the Social Science group at Caltech. The conclusions of the study are that nuclear capital costs have escalated more rapidly than the GNP deflator or the construction industry price index. Prior to 1970, cost increases are related to bottleneck problems in the nuclear construction and supplying industries and the regulatory process; intervenors play only a minor role in cost escalation. After 1970, generic changes introduced into the licensing process by intervenors (including environmental impact reviews, antitrust reviews, more stringent safety standards) dominate the cost escalation picture, with bottlenecks of secondary importance. Recent increases in the time from application for a construction permit to commercial operation are related not only to intervenor actions, but also to suspensions, cancellations or postponements of construction by utilities due to unfavorable demand or financing conditions

  17. International cost relations in electric power generation

    International Nuclear Information System (INIS)

    Schmitt, D.; Duengen, H.; Wilhelm, M.

    1986-01-01

    In spite of the fact that analyses of the cost of electric power generation as the result of international comparative evaluations are indisputably relevant, problems pending in connection with the costs of representative power plant technologies are of the methodological bind. German authors have hitherto also been failing to clear up and consider all aspects connected with the problems of data acquisition and the adequate interpretation of results. The analysis presented by the paper abstracted therefore aims at the following: 1) Systematization of the different categories of cost relevant in connection with international comparative evaluation. Classification into different categories of decision making and development of standards meeting the requirements of international comparative evaluation. 2) Calculation of relevant average financial costs of Western German, America and French fossil-fuel and nuclear power plants by means of adequate calculation models, that is the assessment of costs with regard to countries and power plant technologies which are relevant to the Federal Republic of Germany. 3) Analysis of the resulting differences and determinantal interpretation. (orig./UA) [de

  18. Uncovering the Hidden Transaction Costs of Market Power

    DEFF Research Database (Denmark)

    Foss, Kirsten; Foss, Nicolai J.; Klein, Peter G.

    2018-01-01

    A central construct in competitive strategy research is market power, the ability to raise price above marginal cost. Positioning research focuses on attempts to build, protect, and exercise market power. However, this approach contains hidden assumptions about transaction costs. Parties made worse...... off by the exercise of market power can negotiate, bargain, form coalitions, and otherwise contract around the focal firm's attempts to appropriate monopoly profits—depending on transaction costs. We build on property rights economics to explain how transaction costs affect positioning and offer...

  19. An analysis of electric utility embedded power supply costs

    International Nuclear Information System (INIS)

    Kahal, M.; Brown, D.

    1998-01-01

    There is little doubt that for the vast majority of electric utilities the embedded costs of power supply exceed market prices, giving rise to the stranded cost problem. Beyond that simple generalization, there are a number of crucial questions, which this study attempts to answer. What are the regional patterns of embedded cost differences? To what extent is the cost problem attributable to nuclear power? How does the cost of purchased power compare to the cost of utility self-generation? What is the breakdown of utility embedded generation costs between operating costs - which are potentially avoidable--and ownership costs, which by definition are ''sunk'' and therefore not avoidable? How will embedded generation costs and market prices compare over time? These are the crucial questions for states as they address retail-restructuring proposal. This study presents an analysis of generation costs, which addresses these key questions. A computerized costing model was developed and applied using FERC Form 1 data for 1995. The model analyzed embedded power supply costs (i.e.; self-generation plus purchased power) for two groups of investor-owned utilities, 49 non-nuclear vs. 63 nuclear. These two subsamples represent substantially the entire US investor-owned electric utility industry. For each utility, embedded cost is estimated both at busbar and at meter

  20. Cost estimate guidelines for advanced nuclear power technologies

    International Nuclear Information System (INIS)

    Delene, J.G.; Hudson, C.R. II.

    1993-05-01

    Several advanced power plant concepts are currently under development. These include the Modular High Temperature Gas Cooled Reactors, the Advanced Liquid Metal Reactor and the Advanced Light Water Reactors. One measure of the attractiveness of a new concept is its cost. Invariably, the cost of a new type of power plant will be compared with other alternative forms of electrical generation. This report provides a common starting point, whereby the cost estimates for the various power plants to be considered are developed with common assumptions and ground rules. Comparisons can then be made on a consistent basis. This is the second update of these cost estimate guidelines. Changes have been made to make the guidelines more current (January 1, 1992) and in response to suggestions made as a result of the use of the previous report. The principal changes are that the reference site has been changed from a generic Northeast (Middletown) site to a more central site (EPRI's East/West Central site) and that reference bulk commodity prices and labor productivity rates have been added. This report is designed to provide a framework for the preparation and reporting of costs. The cost estimates will consist of the overnight construction cost, the total plant capital cost, the operation and maintenance costs, the fuel costs, decommissioning costs and the power production or busbar generation cost

  1. Estimating the costs of nuclear power: benchmarks and uncertainties

    International Nuclear Information System (INIS)

    Leveque, Francois

    2013-05-01

    The debate on this topic is fairly confusing. Some present electricity production using nuclear power as an affordable solution, others maintain it is too expensive. These widely divergent views prompt fears among consumers and voters that they are being manipulated: each side is just defending its own interests and the true cost of nuclear power is being concealed. Companies and non-government organizations certainly adopt whatever position suits them best. But at the same time, the notion of just one 'true' cost is misleading. As we shall see in this paper there is no such thing as the cost of nuclear power: we must reason in terms of costs and draw a distinction between a private cost and a social cost. The private cost is what an operator examines before deciding whether it is opportune to build a new nuclear power station. This cost varies between different investors, particularly as a function of their attitude to risks. On the other hand the social cost weighs on society, which may take into account the risk of proliferation, or the benefits of avoiding carbon-dioxide emissions, among others. The cost of actually building new plant differs from one country to the next. So deciding whether nuclear power is profitable or not, a benefit for society or not, does not involve determining the real cost, but rather compiling data, developing methods and formulating hypotheses. It is not as easy as inundating the general public with contradictory figures, but it is a more effective way of casting light on economic decisions by industry and government. Without evaluating the costs it is impossible to establish the cost price, required to compare electricity production using nuclear power and rival technologies. Would it be preferable to build a gas-powered plant, a nuclear reactor or a wind farm? Which technology yields the lowest cost per KWh? Under what conditions - financial terms, regulatory framework, carbon pricing - will private investors see an adequate return

  2. Total life cycle cost model for electric power stations

    International Nuclear Information System (INIS)

    Cardullo, M.W.

    1995-01-01

    The Total Life Cycle Cost (TLCC) model for electric power stations was developed to provide a technology screening model. The TLCC analysis involves normalizing cost estimates with respect to performance standards and financial assumptions and preparing a profile of all costs over the service life of the power station. These costs when levelized present a value in terms of a utility electricity rate. Comparison of cost and the pricing of the electricity for a utility shows if a valid project exists. Cost components include both internal and external costs. Internal costs are direct costs associated with the purchase, and operation of the power station and include initial capital costs, operating and maintenance costs. External costs result from societal and/or environmental impacts that are external to the marketplace and can include air quality impacts due to emissions, infrastructure costs, and other impacts. The cost stream is summed (current dollars) or discounted (constant dollars) to some base year to yield a overall TLCC of each power station technology on a common basis. While minimizing life cycle cost is an important consideration, it may not always be a preferred method for some utilities who may prefer minimizing capital costs. Such consideration does not always result in technology penetration in a marketplace such as the utility sector. Under various regulatory climates, the utility is likely to heavily weigh initial capital costs while giving limited consideration to other costs such as societal costs. Policy makers considering external costs, such as those resulting from environmental impacts, may reach significantly different conclusions about which technologies are most advantageous to society. The TLCC analysis model for power stations was developed to facilitate consideration of all perspectives

  3. Cost estimates for nuclear power in the UK

    International Nuclear Information System (INIS)

    Harris, Grant; Heptonstall, Phil; Gross, Robert; Handley, David

    2013-01-01

    Current UK Government support for nuclear power has in part been informed by cost estimates that suggest that electricity from new nuclear power stations will be competitive with alternative low carbon generation options. The evidence and analysis presented in this paper suggests that the capital cost estimates for nuclear power that are being used to inform these projections rely on costs escalating over the pre-construction and construction phase of the new build programme at a level significantly below those that have been experienced by past US and European programmes. This paper applies observed construction time and cost escalation rates to the published estimates of capital costs for new nuclear plant in the UK and calculates the potential impact on levelised cost per unit of electricity produced. The results suggest that levelised cost may turn out to be significantly higher than expected which in turn has important implications for policy, both in general terms of the potential costs to consumers and more specifically for negotiations around the level of policy support and contractual arrangements offered to individual projects through the proposed contract for difference strike price. -- Highlights: •Nuclear power projects costs can rise substantially during the construction period. •Pre-construction and construction time can be much longer than anticipated. •Adjusting estimates for observed experience increases levelised costs significantly. •Higher costs suggest that more policy support than envisaged may be required

  4. Lifetime extension of ageing nuclear power plants. Entering a new era of risk. Report comissionned by Greenpeace

    International Nuclear Information System (INIS)

    2014-03-01

    The abbreviated version of the Greenpeace report on the lifetime extension of aging nuclear power plants - entering a new era of risk - covers the following topics: age of the nuclear power plants in Europe, covered amounts of insurance in Europe in case of a nuclear accident, progress of the ageing of nuclear power plants, and the power up-rating of nuclear reactors. The economy of aged reactors is discussed in connection with the lifetime extension and the liabilities for the aging reactors.

  5. Costs of Decommissioning Nuclear Power Plants

    International Nuclear Information System (INIS)

    Neri, Emilio; French, Amanda; Urso, Maria Elena; Deffrennes, Marc; Rothwell, Geoffrey; ); Rehak, Ivan; Weber, Inge; ); Carroll, Simon; Daniska, Vladislav

    2016-01-01

    While refurbishments for the long-term operation of nuclear power plants and for the lifetime extension of such plants have been widely pursued in recent years, the number of plants to be decommissioned is nonetheless expected to increase in future, particularly in the United States and Europe. It is thus important to understand the costs of decommissioning so as to develop coherent and cost-effective strategies, realistic cost estimates based on decommissioning plans from the outset of operations and mechanisms to ensure that future decommissioning expenses can be adequately covered. This study presents the results of an NEA review of the costs of decommissioning nuclear power plants and of overall funding practices adopted across NEA member countries. The study is based on the results of this NEA questionnaire, on actual decommissioning costs or estimates, and on plans for the establishment and management of decommissioning funds. Case studies are included to provide insight into decommissioning practices in a number of countries. (authors)

  6. Comparative Life-Cycle Cost Analysis Of Solar Photovoltaic Power ...

    African Journals Online (AJOL)

    Comparative Life-Cycle Cost Analysis Of Solar Photovoltaic Power System And Diesel Generator System For Remote Residential Application In Nigeria. ... like capital cost, and diesel fuel costs are varied. The results show the photovoltaic system to be more cost-effective at low-power ranges of electrical energy supply.

  7. Major issues associated with nuclear power generation cost and their evaluation

    International Nuclear Information System (INIS)

    Matsuo, Yuji; Shimogori, Kei; Suzuki, Atsuhiko

    2015-01-01

    This paper discusses the evaluation of power generation cost that is an important item for energy policy planning. Especially with a focus on nuclear power generation cost, it reviews what will become a focal point on evaluating power generation cost at the present point after the estimates of the 'Investigation Committee on Costs' that was organized by the government have been issued, and what will be a major factor affecting future changes in costs. This paper firstly compared several estimation results on nuclear power generation cost, and extracted/arranged controversial points and unsolved points for discussing nuclear power generation cost. In evaluating nuclear power generation cost, the comparison of capital cost and other costs can give the understanding of what can be important issues. Then, as the main issues, this paper evaluated/discussed the construction cost, operation/maintenance cost, external cost, issue of discount rate, as well as power generation costs in foreign countries and the impact of fossil fuel prices. As other issues related to power generation cost evaluation, it took up expenses for decommissioning, disposal of high-level radioactive waste, and re-processing, outlined the evaluation results by the 'Investigation Committee on Costs,' and compared them with the evaluation examples in foreign countries. These costs do not account for a large share of the entire nuclear power generation costs. The most important point for considering future energy policy is the issue of discount rate, that is, the issue of fund-raising environment for entrepreneurs. This is the factor to greatly affect the economy of future nuclear power generation. (A.O.)

  8. PPICA, Power Plant Investment Cost Analysis

    International Nuclear Information System (INIS)

    Lefevre, J.C.

    2002-01-01

    1 - Description of program or function: This software package contains two modules: - CAPITAL1 calculates investment costs from overnight costs, based on the capital structure of the utility (debt/equity ratio), return and interest rates according to the type of securities involved, and a standard-shaped curve of capital outlays during construction of a power plant. - FCRATE1 calculates the year-by-year revenue requirements to cover the capital-related charges incurred by the new investment and their economic equivalent: the levelled fixed-charge rate and capital contribution to the levelled unit power generation cost per kWh. They are proposed as an alternative to the corresponding modules CAPITAL and FCRATE, included in the LPGC (Levelled Power Generation Cost) suite of codes developed by ORNL and US-DOE. They perform the same type of analysis and provide the same results. 2 - Methods: Results output from CAPITAL1, in terms of the initial investment at startup and the fraction thereof that is allowable for tax depreciation, can be transferred automatically as data input to FCRATE1. Other user-defined data are: the project life, the time horizon of the economic analysis (which does not necessarily coincide with the project life), the plant load factor (lifetime average), the tax rate applicable to utility's income, the tax depreciation scheme and the tax charge accounting method (normalised or flow- through). The results of CAPITAL1 and FCRATE1 are expressed both in current money and in constant money of a reference year. Inflation rate and escalation rate of construction expenditures during construction period, and of fixed charges during service life are defined by the user. The discount rate is set automatically by the programme, equal to the weighted average tax-adjusted cost of money. 3 - Restrictions on the complexity of the problem: CAPITAL1 and FCRATE1 are 'alternatives', not 'substitutes', to the corresponding programs CAPITAL and FCRATE of the LPGC

  9. Cost allocation. Combined heat and power production

    International Nuclear Information System (INIS)

    Sidzikauskas, V.

    2002-01-01

    The benefits of Combined Heat and Power (CHP) generation are discussed. The include improvement in energy intensity of 1% by 2010, 85-90% efficiency versus 40-50% of condensation power and others. Share of CHP electricity production in ERRA countries is presented.Solutions for a development CHP cost allocation are considered. Conclusion are presented for CHP production cost allocation. (R.P.)

  10. Cost estimation of thermal and nuclear power using annual securities report

    International Nuclear Information System (INIS)

    Matsuo, Yuji; Nagatomi, Yu; Murakami, Tomoko

    2011-01-01

    Cost estimation of generation cost derived from various power sources was widely conducted using model plant or annual securities report of electric utilities. Although annual securities report method was subjected to some limitation in methodology itself, useful information was obtained for cost comparison of thermal and nuclear power. Studies on generation cost evaluation of thermal and nuclear power based on this method during past five years showed that nuclear power cost was almost stable 7 Yen/kWh and thermal power cost was varying 9 - 12 Yen/kWh dependent on violent fluctuations of primary energy cost. Nuclear power was expected cost increase due to enhanced safety requirements or damage compensation of accidents as well as decommissioning and back-end cost, which were difficult to evaluate accurately with annual securities report. Further comprehensive and accurate cost estimation should be encouraged including these items. (T. Tanaka)

  11. The costs of wind power. Socio-economic costs of expansion of wind power; Vindkraftens pris. Samfundsoekonomiske omkostninger ved udbygning af vindkraft

    Energy Technology Data Exchange (ETDEWEB)

    Busk, R.; Larsen, Anderse; Skovsgaard Nielsen, L.; Nielsen, Uffe; Pade, L.L.; Mulvad Jeppesen, L. [Inst. for Miljoevurdering (Denmark); Munksgaard, J. [Amternes of Kommunernes Forskningsinst. (Denmark)

    2007-08-28

    This report was prepared in order to inform the basis for making energy policy decisions, particularly in with respect to Denmark's goals for renewable energy and wind power. The report estimates the socio-economic costs of expanding Danish wind power to a share of 30, 40 and 50%, respectively, of the electricity consumption by 2025. The report also analyses barriers to and instruments for the expansion of Danish wind power. The main analysis is a socio-economic cost analysis which includes, among other factors, costs of investments, infrastructure and tax distortion losses. (au)

  12. An opportunity for capacity up-rating of 1000 MW steam turbine plant in Kozloduy NPP

    International Nuclear Information System (INIS)

    Popov, D.

    2005-01-01

    In connection with earlier and forced decommissioning of the Kozloduy NPP units 1 - 4, an alternative has to be found in order to substitute these capacities. As a reasonable options, capacity up-rating of 1000 MW steam turbine plants without nuclear reactor thermal capacity increase, is investigated in the present study. The cooling water for these units is delivered by Danube river. The cooling water temperatures substantially decrease during the winter months. These changes create an opportunity for steam back end pressure reduction. It was found that when the cooling water temperature decreases from 15 0 C to 3 0 C, the steam back end pressure is on the decrease of from 3.92 kPa to 2.3 kPa. As a result capacity of the plant could be raised up to 50 MW without any substantial equipment and systems change

  13. Nuclear power production costs

    International Nuclear Information System (INIS)

    Erramuspe, H.J.

    1988-01-01

    The economic competitiveness of nuclear power in different highly developed countries is shown, by reviewing various international studies made on the subject. Generation costs (historical values) of Atucha I and Embalse Nuclear Power Plants, which are of the type used in those countries, are also included. The results of an international study on the economic aspects of the back end of the nuclear fuel cycle are also reviewed. This study shows its relatively low incidence in the generation costs. The conclusion is that if in Argentina the same principles of economic racionality were followed, nuclear energy would be economically competitive in the future, as it is today. This is of great importance in view of its almost unavoidable character of alternative source of energy, and specially since we have to expect an important growth in the consumption of electricity, due to its low share in the total consumption of energy, and the low energy consumption per capita in Argentina. (Author) [es

  14. Nuclear power plant decommissioning costs in perspective

    International Nuclear Information System (INIS)

    Rothwell, Geoffrey; Deffrennes, Marc; Weber, Inge

    2016-01-01

    At the international level, actual experience is limited in the completion of nuclear power plant decommissioning projects. Cost data for decommissioning projects are thus largely unavailable, with few examples of analyses or comparisons between estimates and actual costs at the project level. The Nuclear Energy Agency (NEA) initiated a project to address this knowledge gap and in early 2016 published the outcomes in the report on Costs of Decommissioning Nuclear Power Plants. The study reviews decommissioning costs and funding practices adopted by NEA member countries, based on the collection and analysis of survey data via a questionnaire. The work was carried out in co-operation with the International Atomic Energy Agency (IAEA) and the European Commission (EC). (authors)

  15. Fact sheet on nuclear power plant instrumentation and control technologies

    International Nuclear Information System (INIS)

    2006-01-01

    Nuclear power plants (NPPs) are facing challenges in several instrumentation and control (I and C) areas with ageing and obsolete components and equipment. With license renewals and power uprates, the long-term operation and maintenance of obsolete I and C systems may not be a cost-effective and reliable option. The effort needed to maintain or increase the reliability and useful life of existing I and C systems may be greater in the long run than modernizing I and C systems or replacing them completely with new digital systems. The increased functionality of the new I and C systems can also open up new possibilities to better support the operation and maintenance activities in the plant. The IAEA recognizes the importance of the profound role the I and C systems play in the reliable, safe, efficient, and cost-effective operations of NPPs by supporting the activities of the Department of Nuclear Energy's Technical Working Group on Nuclear Power Plant Control and Instrumentation (TWG-NPPCI). The group was established in March 1970. Its membership currently includes thirty Member States and three international organizations. The most recent meeting of the TWG-NPPCI was held in May 2005 in Vienna. The meeting report is available at http://www.iaea.org/OurWork/ST/NE/NENP/twg_nppc.html. The next meeting of the TWGNPPCI will be the 21st meeting of the advisory body, and it will be held in May 2007

  16. Reduction of capital costs of nuclear power plants

    International Nuclear Information System (INIS)

    2000-01-01

    The competitiveness of nuclear power plants depends largely on their capital costs represent some 60 per cent of their total generation costs. Reviewing and analysing ways and means to reduce capital costs of nuclear power plants are essential to enhance the economic viability of the nuclear option. The report is based upon cost information and data provided by experts from NEA Member countries. It investigates the efficiency of alternative methods for reducing capital costs of nuclear units. It will provide stakeholders from the industry and governmental agencies with relevant elements in support of policy making. (author)

  17. Power Recapture and Power Uprate in NPPS with Process Data Reconciliation in Accordance with VDI 2048

    International Nuclear Information System (INIS)

    Magnus Langenstein

    2006-01-01

    The determination of the thermal reactor power is traditionally done by establishing the heat balance for a boiling water reactor (BWR) at the interface of reactor control volume and heat cycle for a pressurized water reactor (PWR) at the interface of the steam generator control volume and turbine island on the secondary side The uncertainty of these traditional methods is not easy to determine and it can be in the range of several percent. Technical and legal regulations (e.g. 10CFR50) cover an estimated instrumentation error of up to 2% by increasing the design thermal reactor power for emergency analysis to 102% of the licensed thermal reactor power. Basically, the licensee has the duty to warrant at any time operation inside the analysed region for thermal reactor power. This is normally done by keeping the indicated reactor power at the licensed 100% value. A better way is to use a method which allows a continuous warranty evaluation. The quantification of the level of fulfillment of this warranty is only achievable by a method which is independent of single measurements accuracies results in a certified quality of single process values and for the total heat cycle analysis leads to complete results including 2-sigma deviation especially for thermal reactor power This method, which is called 'process data reconciliation based on VDI 2048 guideline', is presented here [1, 2]. The method allows to determine the true process parameters with a statistical probability of 95%, by considering closed material, mass- and energy balances following the Gaussian correction principle. The amount of redundant process information and complexity of the process improves the final results. This represents the most probable state of the process with minimized uncertainty according to VDI 2048. Hence, calibration and control of the thermal reactor power are possible with low effort but high accuracy and independent of single measurement accuracies. Furthermore, VDI 2048 describes

  18. Internalization of external costs for nuclear power in Romania

    International Nuclear Information System (INIS)

    Andrei, Veronica; Ghita, Sorin; Ionita, Gheorghe; Gheorghe-Sorescu, Antonius; Glodeanu, Florin

    2006-01-01

    A technology that competes against alternatives on a full cost basis is not sustainable - no matter how environmentally friendly is. Competitive performance, however, means more than lower costs. Additional factors as the following have to be considered as criteria ensuring a sustainable energy development: - environmentally compatibility - intergenerational compatibility - power demand compatibility - socio-political compatibility - geopolitical compatibility. Some factors are less difficult to express in al.) Recent Cold Fterms (e.g. the economic value of degraded public health) than others (e.g. the economic value of reliable supplies or lack of public acceptance) but their quantifications are fraught with uncertainty, vary greatly from location to location and cannot be generalized. Still, these factors often tilt the balance in favor or disfavor of a particular technology. From a public perspective, a set of costs called 'external costs' are important. By definition these costs are external to standard private sector cost accounting schemes. They are necessarily paid for, not as a cost of doing business, but by society. The concept of externalities has been referred to in the economic literature since early in the 20th century. In 1974, the Council of OECD recommended the application by governments of the 'Polluter Pays Principle', defined in the early 1970s as a means to allocate costs of pollution prevention and control measures to pollutants, and thereby to consumers of their products, rather than to society as a whole. The externality may be defined as 'a cost or benefit that is not included in the market price of a commodity because it is not included in the supply price or demand price. An externality is produced when the economic activity of one actor (or group of actors) has a positive or negative impact on the welfare function of another actor (or group of actors) and when the former fails to be fully compensated, or to fully compensate the latter

  19. POWERCO, Nuclear Power Plant Electricity Cost and Economics

    International Nuclear Information System (INIS)

    Tyson, Frank D.

    1982-01-01

    1 - Description of problem or function: POWERCO calculates the cost of electricity produced by nuclear power stations, assuming all cash expenses such as investment and fuel costs, operating expenses, and taxes are known. The power cost is held constant throughout the project life. 2 - Method of solution: The cost calculation is based on the requirement that income received must provide for recovery of investment, return on investment, and all operating expenses. Equations are developed to calculate true fixed charge rates and true average fuel working capital

  20. Capital cost: pressurized water reactor plant. Commerical electric power cost studies

    International Nuclear Information System (INIS)

    1977-06-01

    The investment cost study for the 1139-MW(e) pressurized water reactor (PWR) central station power plant consists of two volumes. This volume includes in addition to the foreword and summary, the plant description and the detailed cost estimate

  1. Regional comparison of nuclear and fossil electric power generation costs

    International Nuclear Information System (INIS)

    Bowers, H.I.

    1984-01-01

    Nuclear's main disadvantages are its high capital investment cost and uncertainty in schedule compared with alternatives. Nuclear plant costs continue to rise whereas coal plant investment costs are staying relative steady. Based on average experience, nuclear capital investment costs are nearly double those of coal-fired generation plants. The capital investment cost disadvantage of nuclear is balanced by its fuel cost advantages. New base load nuclear power plants were projected to be competitive with coal-fired plants in most regions of the country. Nuclear power costs wre projected to be significantly less (10% or more) than coal-fired power costs in the South Atlantic region. Coal-fired plants were projected to have a significant economic advantage over nuclear plants in the Central and North Central regions. In the remaining seven regions, the levelized cost of power from either option was projected to be within 10%. Uncertainties in future costs of materials, services, and financing affect the relative economics of the nuclear and coal options significantly. 10 figures

  2. Historical construction costs of global nuclear power reactors

    International Nuclear Information System (INIS)

    Lovering, Jessica R.; Yip, Arthur; Nordhaus, Ted

    2016-01-01

    The existing literature on the construction costs of nuclear power reactors has focused almost exclusively on trends in construction costs in only two countries, the United States and France, and during two decades, the 1970s and 1980s. These analyses, Koomey and Hultman (2007); Grubler (2010), and Escobar-Rangel and Lévêque (2015), study only 26% of reactors built globally between 1960 and 2010, providing an incomplete picture of the economic evolution of nuclear power construction. This study curates historical reactor-specific overnight construction cost (OCC) data that broaden the scope of study substantially, covering the full cost history for 349 reactors in the US, France, Canada, West Germany, Japan, India, and South Korea, encompassing 58% of all reactors built globally. We find that trends in costs have varied significantly in magnitude and in structure by era, country, and experience. In contrast to the rapid cost escalation that characterized nuclear construction in the United States, we find evidence of much milder cost escalation in many countries, including absolute cost declines in some countries and specific eras. Our new findings suggest that there is no inherent cost escalation trend associated with nuclear technology. - Highlights: •Comprehensive analysis of nuclear power construction cost experience. •Coverage for early and recent reactors in seven countries. •International comparisons and re-evaluation of learning. •Cost trends vary by country and era; some experience cost stability or decline.

  3. Danish Wind Power Export and Cost

    DEFF Research Database (Denmark)

    Lund, Henrik; Hvelplund, Frede; Alberg Østergaard, Poul

    In a normal wind year, Danish wind turbines generate the equivalent of approx. 20 percent of the Danish electricity demand. This paper argues that only approx. 1 percent of the wind power production is exported. The rest is used to meet domestic Danish electricity demands. The cost of wind power...... misleading. The cost of CO2 reduction by use of wind power in the period 2004-2008 was only 20 EUR/ton. Furthermore, the Danish wind turbines are not paid for by energy taxes. Danish wind turbines are given a subsidy via the electricity price which is paid by the electricity consumers. In the recent years...... is paid solely by the electricity consumers and the net influence on consumer prices was as low as 1-3 percent on average in the period 2004-2008. In 2008, the net influence even decreased the average consumer price, although only slightly. In Denmark, 20 percent wind power is integrated by using both...

  4. Estimating Power Outage Cost based on a Survey for Industrial Customers

    Science.gov (United States)

    Yoshida, Yoshikuni; Matsuhashi, Ryuji

    A survey was conducted on power outage cost for industrial customers. 5139 factories, which are designated energy management factories in Japan, answered their power consumption and the loss of production value due to the power outage in an hour in summer weekday. The median of unit cost of power outage of whole sectors is estimated as 672 yen/kWh. The sector of services for amusement and hobbies and the sector of manufacture of information and communication electronics equipment relatively have higher unit cost of power outage. Direct damage cost from power outage in whole sectors reaches 77 billion yen. Then utilizing input-output analysis, we estimated indirect damage cost that is caused by the repercussion of production halt. Indirect damage cost in whole sectors reaches 91 billion yen. The sector of wholesale and retail trade has the largest direct damage cost. The sector of manufacture of transportation equipment has the largest indirect damage cost.

  5. Power generation costs for alternate reactor fuel cycles

    International Nuclear Information System (INIS)

    Smolen, G.R.; Delene, J.G.

    1980-09-01

    The total electric generating costs at the power plant busbar are estimated for various nuclear reactor fuel cycles which may be considered for power generation in the future. The reactor systems include pressurized water reactors (PWR), heavy-water reactors (HWR), high-temperature gas cooled reactors (HTGR), liquid-metal fast breeder reactors (LMFBR), light-water pre-breeder and breeder reactors (LWPR, LWBR), and a fast mixed spectrum reactor (FMSR). Fuel cycles include once-through, uranium-only recycle, and full recycle of the uranium and plutonium in the spent fuel assemblies. The U 3 O 8 price for economic transition from once-through LWR fuel cycles to both PWR recycle and LMFBR systems is estimated. Electric power generation costs were determined both for a reference set of unit cost parameters and for a range of uncertainty in these parameters. In addition, cost sensitivity parameters are provided so that independent estimations can be made for alternate cost assumptions

  6. Estimation of environmental external costs between coal fired power plant and nuclear power plant

    International Nuclear Information System (INIS)

    Moon, G. H.; Kim, S. S.

    2000-01-01

    First of all, this study evaluated the impacts on the health and the environment of air pollutants emitted from coal power plant and nuclear power pant, two major electric power generating options in Korea. Then, the environmental external costs of those two options were estimated by transforming the health and environment impact into monetary values. To do this, AIRPACTS and Impacts of Atmospheric Release model developed by IAEA were used. The environmental external cost of Samcheonpo coal power plant was estimated about 25 times as much as that of Younggwang nuclear power plant. This result implies that nuclear power plant is a clean technology compared with coal power plant. This study suggests that the external cost should be reflected in the electric system expansion plan in order to allocate energy resources efficiently and to reduce economic impact stemming from the environmental regulation emerged recently on a global level

  7. Environmental cost/benefit analysis for fusion power plants

    International Nuclear Information System (INIS)

    Young, J.R.

    1976-11-01

    This document presents a cost/benefit analysis of use of fusion power plants early in the 21st century. The first section describes the general formulation of the analysis. Included are the selection of the alternatives to the fusion reactor, selection of the power system cases to be compared, and a general comparison of the environmental effects of the selected alternatives. The second section compares the cumulative environmental effects from 2010 to 2040 for the primary cases of the power system with and without fusion reactors. The third section briefly illustrates the potential economic benefits if fusion reactors produce electricity at a lower unit cost than LMFBRs can. The fourth section summarizes the cost/benefit analysis

  8. Operational costs induced by fluctuating wind power production in Germany and Scandinavia

    DEFF Research Database (Denmark)

    Meibom, Peter; Weber, C.; Barth, R.

    2009-01-01

    Adding wind power generation in a power system changes the operational patterns of the existing units due to the variability and partial predictability of wind power production. For large amounts of wind power production, the expectation is that the specific operational costs (fuel costs, start......-up costs, variable operation and maintenance costs, costs of consuming CO2 emission permits) of the other power plants will increase due to more operation time in part-load and more start-ups. The change in operational costs induced by the wind power production can only be calculated by comparing...... the operational costs in two power system configurations: with wind power production and with alternative wind production having properties such as conventional production, that is, being predictable and less variable. The choice of the characteristics of the alternative production is not straightforward...

  9. Nuclear power production: The financial costs. Background paper

    International Nuclear Information System (INIS)

    Berg, P.

    1993-11-01

    For many years, the Canadian nuclear industry has priced itself on its ability to provide safe, reliable and low-cost electricity to consumers. While nuclear power has indeed proved to be a relatively safe generator of electricity, its performance with respect to reliability and cost has declined noticeably in recent years. This paper documents the deteriorating cost performance of the industry, in comparison with that of its traditional competitor in power generation. It also breaks down the total costs into its component parts, assessing the key factors underlying the trends that are worsening the competitive position of the industry: a rise in initial capital costs, unanticipated technical difficulties resulting in additional capital costs, and the increasing operating expenses associated with poorer-than-expected reactor performance. (author). 8 refs., 2 tabs., 1 fig

  10. Cost-estimate guidelines for advanced nuclear power technologies

    International Nuclear Information System (INIS)

    Delene, J.G.; Hudson, C.R.

    1993-01-01

    Various advanced power plant concepts are currently under development. These include several advanced light water reactors as well as the modular high-temperature gas-cooled reactor and the advanced liquid-metal reactor. One measure-of the attractiveness of a new concept is cost. Invariably, the cost of a new type of power plant will be compared with other alternative forms of electric generation. In order to make reasonable comparative assessments of competing technologies, consistent ground rules and assumptions must be applied when developing cost estimates. This paper describes the cost-estimate guidelines developed by Oak Ridge National Laboratory for the U.S. Department of Energy (DOE) to be used in developing cost estimates for the advanced nuclear reactors and how these guidelines relate to the DOE cost verification process

  11. Operational costs induced by fluctuating wind power production in Germany and Scandinavia

    Energy Technology Data Exchange (ETDEWEB)

    Meibom, P. [Risoe National Lab., DTU, System Analysis Dept., Roskilde (Denmark); Weber, C. [Univ. Duisburg-Essen, Chai og Energy Management (Germany); Barth, R.; Brand, H. [Univ. of Stuttgart, Inst. of Energy Economics and the Rational Use of Energy (Germany)

    2007-05-15

    Adding wind power generation in a power system changes the operational patterns of the existing units due to the variability and unpredictability of wind power production. For large amounts of wind power production the expectation is that the operational costs of the other power plants will increase due to more operation time in part-load and more start-ups. The change in operational costs induced by the wind power production can only be calculated by comparing the operational costs in two power system configurations: with wind power production and with alternative production having properties like conventional production, i.e. being predictable and less variable. The choice of the characteristics of the alternative production is not straight forward and will therefore influence the operational costs induced by wind power production. This paper presents a method for calculating the change in operational costs due to wind power production using a stochastic optimization model covering the power systems in Germany and the Nordic countries. Two cases of alternative production are used to calculate the change in operational costs namely perfectly predictable wind power production enabling calculation of the costs connected to unpredictability, and constant wind power production enabling calculation of the operational costs connected to variability of wind power production. A 2010 case with three different wind power production penetration levels is analysed in the paper. (au)

  12. Thermal and nuclear power generation cost estimates using corporate financial statements

    International Nuclear Information System (INIS)

    Matsuo, Yuhji; Nagatomi, Yu; Murakami, Tomoko

    2012-01-01

    There are two generally accepted methods for estimating power generation costs: so-called 'model plant' method and the method using corporate financial statements. The method using corporate financial statements, though under some constraints, can provide useful information for comparing thermal and nuclear power generation costs. This study used this method for estimating thermal and nuclear power generation costs in Japan for the past five years, finding that the nuclear power generation cost remained stable at around 7 yen per kilowatt-hour (kWh) while the thermal power generation cost moved within a wide range of 9 to 12 yen/kWh in line with wild fluctuations in primary energy prices. The cost of nuclear power generation is expected to increase due to the enhancement of safety measures and accident damage compensation in the future, while there are reactor decommissioning, backend and many other costs that the financial statement-using approach cannot accurately estimate. In the future, efforts should be continued to comprehensively and accurately estimate total costs. (author)

  13. EFFICIENCY AND COST MODELLING OF THERMAL POWER PLANTS

    Directory of Open Access Journals (Sweden)

    Péter Bihari

    2010-01-01

    Full Text Available The proper characterization of energy suppliers is one of the most important components in the modelling of the supply/demand relations of the electricity market. Power generation capacity i. e. power plants constitute the supply side of the relation in the electricity market. The supply of power stations develops as the power stations attempt to achieve the greatest profit possible with the given prices and other limitations. The cost of operation and the cost of load increment are thus the most important characteristics of their behaviour on the market. In most electricity market models, however, it is not taken into account that the efficiency of a power station also depends on the level of the load, on the type and age of the power plant, and on environmental considerations. The trade in electricity on the free market cannot rely on models where these essential parameters are omitted. Such an incomplete model could lead to a situation where a particular power station would be run either only at its full capacity or else be entirely deactivated depending on the prices prevailing on the free market. The reality is rather that the marginal cost of power generation might also be described by a function using the efficiency function. The derived marginal cost function gives the supply curve of the power station. The load level dependent efficiency function can be used not only for market modelling, but also for determining the pollutant and CO2 emissions of the power station, as well as shedding light on the conditions for successfully entering the market. Based on the measurement data our paper presents mathematical models that might be used for the determination of the load dependent efficiency functions of coal, oil, or gas fuelled power stations (steam turbine, gas turbine, combined cycle and IC engine based combined heat and power stations. These efficiency functions could also contribute to modelling market conditions and determining the

  14. Life cycle cost analysis of wind power considering stochastic uncertainties

    International Nuclear Information System (INIS)

    Li, Chiao-Ting; Peng, Huei; Sun, Jing

    2014-01-01

    This paper presents a long-term cost analysis of wind power and compares its competitiveness to non-renewable generating technologies. The analysis considers several important attributes related to wind intermittency that are sometimes ignored in traditional generation planning or LCOE (levelized cost of energy) studies, including the need for more nameplate capacity due to intermittency, hourly fluctuations in wind outputs and cost for reserves. The competitiveness of wind power is assessed by evaluating four scenarios: 1) adding natural gas generating capacity to the power grid; 2) adding coal generating capacity to the power grid; 3) adding wind capacity to the power grid; and, 4) adding wind capacity and energy storage to the power grid where an energy storage device is used to cover wind intermittency. A case study in the state of Michigan is presented to demonstrate the use of the proposed methodology, in which a time horizon from 2010 to 2040 is considered. The results show that wind energy will still be more expensive than natural gas power plants in the next three decades, but will be cheaper than coal capacities if wind intermittency is mitigated. Furthermore, if the costs of carbon emissions and environmental externalities are considered, wind generation will be a competitive option for grid capacity expansion. - Highlights: • The competitiveness of wind power is analyzed via life cycle cost analysis. • Wind intermittency and reserve costs are explicitly considered in the analysis. • Results show that wind is still more expensive than natural gas power plants. • Wind can be cheaper than coal capacities if wind intermittency is mitigated. • Wind will be competitive if costs of carbon emissions are considered

  15. Nuclear power costs in the build, operate, transfer approach

    International Nuclear Information System (INIS)

    Aybers, M.N.; Sahin, B.

    1990-01-01

    The costs of nuclear power are discussed with special reference to the economic problems faced by developing countries, and the relative merit of a new accounting approach, viz., the build, operate, transfer contract model, which was proposed in Turkey for the Akkuyu nuclear power project, is illustrated. In this context, the general methodology of calculating nuclear power costs is summarized and a capital cost analysis for a 986 MW pressurized water reactor plant is given in terms of constant monetary units for the above contract model and the turnkey contract model. Adjustment of the costs taking into account regional conditions such as inflation and higher interest rates is also indicated. (orig.) [de

  16. Comparing costs of power and heat production by prospective and present sources

    International Nuclear Information System (INIS)

    Novak, S.

    1979-01-01

    Capital and running costs are compared of power and heat production from different sources. The lowest capital costs were found for coal-fired power plants followed by light water reactor power plants. The capital costs of other types of power plants, such as wind, geothermal, solar, thermonuclear power plants are significantly higher. The estimated specific cost for electric power production in 1985 for a nuclear power plant is lower than for a fossil-fuel power plant. It is estimated that in 1985 coal will be the cheapest heat source. (Ha)

  17. Reduction of capital costs of nuclear power plants. NEA-report

    International Nuclear Information System (INIS)

    2000-01-01

    Since the the mid-1980s, the declining real prices of fossil fuels and the significant improvements in thermal efficiencies of combined cycle power plants have eroded the economic competitiveness of nuclear power plants in most OECD countries. In order for nuclear power to remain a viable option for the next millennium, the cost of electricity from nuclear power plant must be greatly reduced to be competitive with alternative sources. Of the three major components of nuclear generation cost - capital, O and M and fuel - the capital cost component makes up approximately 60 per cent of the total. Therefore, identification of the means to reduce the capital costs of nuclear power plants is a high priority activity toward keeping nuclear power competitive. Among a number of capital cost reduction measures, the principal ones were agreed by the expert group as follows: Increased plant size, improved construction methods, reduced construction schedule, design improvement, improved procurement, organisation and contractual aspects, standardisation and construction in series, multiple unit construction, regulatory and policy reform. (orig.)

  18. Simulation of the steady state of the Laguna Verde Nuclear power station at full power (1931 MWt and 2027 Mwt) with the SCDAPSIM code

    International Nuclear Information System (INIS)

    Amador G, R.; Nunez C, A.; Mateos, E. del A.

    2001-01-01

    This document describes two models developed for the Laguna Verde Nuclear Power Station (LVNPP) using SCDAPSIM computer code. These models represent the LVNPP in normal operation with a nominal power of 1931 MWt and power uprate conditions of 2027 MWt. The steady states obtained by means of these models comply with the criteria established by the ANSI/ANS-3.5-1985 for nuclear power plant simulators. This criteria has been applied to the models of the LVNPP developed by CNSNS in want of some international accepted criteria for ''Best Estimation'' computer codes. These models will be the bases to carry out studies of validation of the own models as well as the analysis of diverse scenarios that evolve to a severe accident. (Author)

  19. Cost Savings of Nuclear Power with Total Fuel Reprocessing

    International Nuclear Information System (INIS)

    Solbrig, Charles W.; Benedict, Robert W.

    2006-01-01

    The cost of fast reactor (FR) generated electricity with pyro-processing is estimated in this article. It compares favorably with other forms of energy and is shown to be less than that produced by light water reactors (LWR's). FR's use all the energy in natural uranium whereas LWR's utilize only 0.7% of it. Because of high radioactivity, pyro-processing is not open to weapon material diversion. This technology is ready now. Nuclear power has the same advantage as coal power in that it is not dependent upon a scarce foreign fuel and has the significant additional advantage of not contributing to global warming or air pollution. A jump start on new nuclear plants could rapidly allow electric furnaces to replace home heating oil furnaces and utilize high capacity batteries for hybrid automobiles: both would reduce US reliance on oil. If these were fast reactors fueled by reprocessed fuel, the spent fuel storage problem could also be solved. Costs are derived from assumptions on the LWR's and FR's five cost components: 1) Capital costs: LWR plants cost $106/MWe. FR's cost 25% more. Forty year amortization is used. 2) The annual O and M costs for both plants are 9% of the Capital Costs. 3) LWR fuel costs about 0.0035 $/kWh. Producing FR fuel from spent fuel by pyro-processing must be done in highly shielded hot cells which is costly. However, the five foot thick concrete walls have the advantage of prohibiting diversion. LWR spent fuel must be used as feedstock for the FR initial core load and first two reloads so this FR fuel costs more than LWR fuel. FR fuel costs much less for subsequent core reloads ( 6 /MWe. The annual cost for a 40 year licensed plant would be 2.5 % of this or less if interest is taken into account. All plants will eventually have to replace those components which become radiation damaged. FR's should be designed to replace parts rather than decommission. The LWR costs are estimated to be 2.65 cents/kWh. FR costs are 2.99 cents/kWh for the first

  20. Reliability/Cost Evaluation on Power System connected with Wind Power for the Reserve Estimation

    DEFF Research Database (Denmark)

    Lee, Go-Eun; Cha, Seung-Tae; Shin, Je-Seok

    2012-01-01

    Wind power is ideally a renewable energy with no fuel cost, but has a risk to reduce reliability of the whole system because of uncertainty of the output. If the reserve of the system is increased, the reliability of the system may be improved. However, the cost would be increased. Therefore...... the reserve needs to be estimated considering the trade-off between reliability and economic aspects. This paper suggests a methodology to estimate the appropriate reserve, when wind power is connected to the power system. As a case study, when wind power is connected to power system of Korea, the effects...

  1. Cost analysis of light water reactor power plants

    International Nuclear Information System (INIS)

    Mooz, W.E.

    1978-06-01

    A statistical analysis is presented of the capital costs of light water reactor (LWR) electrical power plants. The objective is twofold: to determine what factors are statistically related to capital costs and to produce a methodology for estimating these costs. The analysis in the study is based on the time and cost data that are available on U.S. nuclear power plants. Out of a total of about 60 operating plants, useful capital-cost data were available on only 39 plants. In addition, construction-time data were available on about 65 plants, and data on completed construction permit applications were available for about 132 plants. The cost data were first systematically adjusted to constant dollars. Then multivariate regression analyses were performed by using independent variables consisting of various physical and locational characteristics of the plants. The dependent variables analyzed were the time required to obtain a construction permit, the construction time, and the capital cost

  2. Low-cost solar electric power

    CERN Document Server

    Fraas, Lewis M

    2014-01-01

    ?This book describes recent breakthroughs that promise major cost reductions in solar energy production in a clear and highly accessible manner. The author addresses the three key areas that have commonly resulted in criticism of solar energy in the past: cost, availability, and variability. Coverage includes cutting-edge information on recently developed 40? efficient solar cells, which can produce double the power of currently available commercial cells. The discussion also highlights the potentially transformative emergence of opportunities for integration of solar energy storage and natura

  3. Supply disruption cost for power network planning

    International Nuclear Information System (INIS)

    Kjoelle, G.H.

    1992-09-01

    A description is given of the method of approach to calculate the total annual socio-economic cost of power supply disruption and non-supplied energy, included the utilities' cost for planning. The total socio-economic supply disruption cost is the sum of the customers' disruption cost and the utilities' cost for failure and disruption. The mean weighted disruption cost for Norway for one hour disruption is NOK 19 per kWh. The customers' annual disruption cost is calculated with basis in the specific disruption cost referred to heavy load (January) and dimensioning maximum loads. The loads are reduced by factors taking into account the time variations of the failure frequency, duration, the loads and the disruption cost. 6 refs

  4. Understanding the cost of power interruptions to U.S. electricity consumers

    Energy Technology Data Exchange (ETDEWEB)

    LaCommare, Kristina Hamachi; Eto, Joseph H.

    2004-09-01

    The massive electric power blackout in the northeastern United States and Canada on August 14-15, 2003 resulted in the U.S. electricity system being called ''antiquated'' and catalyzed discussions about modernizing the grid. Industry sources suggested that investments of $50 to $100 billion would be needed. This report seeks to quantify an important piece of information that has been missing from these discussions: how much do power interruptions and fluctuations in power quality (power-quality events) cost U.S. electricity consumers? Accurately estimating this cost will help assess the potential benefits of investments in improving the reliability of the grid. We develop a comprehensive end-use framework for assessing the cost to U.S. electricity consumers of power interruptions and power-quality events (referred to collectively as ''reliability events''). The framework expresses these costs as a function of: (1) Number of customers by type in a region; (2) Frequency and type of reliability events experienced annually (including both power interruptions and power-quality events) by these customers; (3) Cost of reliability events; and (4) Vulnerability of customers to these events. The framework is designed so that its cost estimate can be improved as additional data become available. Using our framework, we estimate that the national cost of power interruptions is about $80 billion annually, based on the best information available in the public domain. However, there are large gaps in and significant uncertainties about the information currently available. Notably, we were not able to develop an estimate of power-quality events. Sensitivity analysis of some of these uncertainties suggests that the total annual cost could range from less than $30 billion to more than $130 billion. Because of this large range and the enormous cost of the decisions that may be based on this estimate, we encourage policy makers, regulators, and

  5. Trends in nuclear power costs in Sweden

    International Nuclear Information System (INIS)

    Vesterhaugh, O.; Blomsnes, B.

    1979-01-01

    At the request of the Swedish Ministry of Industry, a study of the costs of nuclear power in Sweden was performed early this year. The main purpose of the study was to determine the real and projected costs of electricity produced by nuclear stations. The basis for the calculations of the study was the currently planned Swedish nuclear power programme consisting of 11 reactors of which six are operating, two waiting for start-up permission and the remainder are under construction. All cost components, relevant to the commercial programme were covered, with particular emphasis on future costs for handling of spent fuel, waste disposal and plant decommissioning. A capital depreciation time of 25 years and a 4 per cent effective annual interest rate (ie interest after correction for inflation) were assumed in the calculations given in December 1978 currency. The main result of the study is the average cost per kWh for the reactors. The results are in close agreement with the cost estimate given by the Swedish Energy Commission and now that the nuclear plants produce electricity considerably cheaper than other plants with the exception of some hydroelectric ones. (author)

  6. A good advertisement for hydro power

    International Nuclear Information System (INIS)

    Wood, J.

    1999-01-01

    The generation of hydroelectric power in Iceland continues to be a thriving business. Between 1996 and 2000, Landsvirkjun will increase its supply to customers by 50%: the additional power will be used by the expanding energy-intensive heavy industries. Although prices for construction and operation of industrial plant in Iceland are not always the lowest, the quality is said to be exceptionally high and this attracts outside investors. Iceland continues to uprate old generating plant and build new. Through Landsvirkjun all of Iceland's electricity comes from renewable sources: diesel and gas appear to have little future in Iceland. Nevertheless, Landsvirkjun does not have a total monopoly: permits for new developments are issued to suitable applicants and competition is likely to increase. (UK)

  7. Nuclear power plant cost underestimation: mechanisms and corrections

    International Nuclear Information System (INIS)

    Meyer, M.B.

    1984-01-01

    Criticisms of inaccurate nuclear power plant cost estimates have commonly focused upon what factors have caused actual costs to increase and not upon the engineering cost estimate methodology itself. This article describes two major sources of cost underestimation and suggests corrections for each which can be applied while retaining the traditional engineering methodology in general

  8. DENINT power plant cost benefit analysis code: Analysis of methane fuelled power plant/district heating system

    International Nuclear Information System (INIS)

    Cincotti, V.; D'Andrea, A.

    1989-07-01

    The DENINT power plant cost benefit analysis code takes into consideration, not only power production costs at the generator terminals, but also, in the case of cogeneration, the costs of the fuel supply and heat and power distribution systems which depend greatly on the location of the plant. The code is able to allow comparisons of alternatives with varying annual operation hours, fuel cost increases, and different types of fossil fuels and production systems. For illustrative purposes, this paper examines two methane fired cogeneration plant/district heating alternatives

  9. Two wind power prognosis criteria and regulating power costs

    DEFF Research Database (Denmark)

    Nielsen, Claus S.; Ravn, Hans F.; Schaumburg-Müller, Camilla

    2003-01-01

    . Basically, the choice is between focusing on predicting the energy content of the wind and focusing on the cost of buying regulating power to compensate for the prognosis errors. It will be shown that it can be expected that the two power curves thus estimated will differ, and that therefore also the hourly......The objective of the present work is to investigate the consequences of the choice of criterion in short-term wind power prognosis. This is done by investigating the consequences of choice of objective function in relation to the estimation of the power curve that is applied in the prognoses...... wind power production predicted will differ. In turn this will influence the operation and economics of the system. The consequences of this are illustrated by application to the integration of wind power in the Danish parts of the Nordpool area, using recent data. Using a regression analysis...

  10. Solar power. [comparison of costs to wind, nuclear, coal, oil and gas

    Science.gov (United States)

    Walton, A. L.; Hall, Darwin C.

    1990-01-01

    This paper describes categories of solar technologies and identifies those that are economic. It compares the private costs of power from solar, wind, nuclear, coal, oil, and gas generators. In the southern United States, the private costs of building and generating electricity from new solar and wind power plants are less than the private cost of electricity from a new nuclear power plant. Solar power is more valuable than nuclear power since all solar power is available during peak and midpeak periods. Half of the power from nuclear generators is off-peak power and therefore is less valuable. Reliability is important in determining the value of wind and nuclear power. Damage from air pollution, when factored into the cost of power from fossil fuels, alters the cost comparison in favor of solar and wind power. Some policies are more effective at encouraging alternative energy technologies that pollute less and improve national security.

  11. The effect of costs on the future of nuclear power

    International Nuclear Information System (INIS)

    Walske, C.

    1984-01-01

    The author discusses the future of the nuclear power industry from an economics and cost-factor point of view, from the point of view of plant management, as it affects and requires personnel training, as R and D cost and competition is involved, as end-user cost is involved, and as efficiency and cost effectiveness of nuclear power fare in comparison with other sources of electrical energy

  12. Nuclear power costs in the UK, and reply by Sweet, C

    International Nuclear Information System (INIS)

    Hunt, H.

    1978-01-01

    The criticisms made by Sweet in his article 'Nuclear Power Costs in the UK' (Energy Policy; 6:107 (1978)) that assessments of nuclear power costs have been based on incorrect methods and assumptions are here answered. The particular points in the original analysis considered are; inflation, forecasts, load factors, generating costs, R and D costs, and benefits from a nuclear programme. It is stated that the published literature shows that nuclear power costs have for a long time been critically compared with the cost of alternatives, using well tried systems-analysis techniques and that the charge that 'mistaken' techniques have been employed is simply not sustained by the evidence. In reply Sweet objects that although his estimates have been criticised yet neither a direct rebuttal nor any alternative figures have been offered and significantly, his estimate that the official figures understate the true costs of nuclear power was not challenged. Particular aspects of the argument considered are; escalation of nuclear building costs, coal and nuclear generating costs, recovering R and D costs, and the 100 GW programme. (U.K.)

  13. Analysis of nuclear power plant construction costs

    International Nuclear Information System (INIS)

    1986-01-01

    The objective of this report is to present the results of a statistical analysis of nuclear power plant construction costs and lead-times (where lead-time is defined as the duration of the construction period), using a sample of units that entered construction during the 1966-1977 period. For more than a decade, analysts have been attempting to understand the reasons for the divergence between predicted and actual construction costs and lead-times. More importantly, it is rapidly being recognized that the future of the nuclear power industry rests precariously on an improvement in the cost and lead-time situation. Thus, it is important to study the historical information on completed plants, not only to understand what has occurred to also to improve the ability to evaluate the economics of future plants. This requires an examination of the factors that have affected both the realized costs and lead-times and the expectations about these factors that have been formed during the construction process. 5 figs., 22 tabs

  14. Analysis of nuclear power plant construction costs

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    The objective of this report is to present the results of a statistical analysis of nuclear power plant construction costs and lead-times (where lead-time is defined as the duration of the construction period), using a sample of units that entered construction during the 1966-1977 period. For more than a decade, analysts have been attempting to understand the reasons for the divergence between predicted and actual construction costs and lead-times. More importantly, it is rapidly being recognized that the future of the nuclear power industry rests precariously on an improvement in the cost and lead-time situation. Thus, it is important to study the historical information on completed plants, not only to understand what has occurred to also to improve the ability to evaluate the economics of future plants. This requires an examination of the factors that have affected both the realized costs and lead-times and the expectations about these factors that have been formed during the construction process. 5 figs., 22 tabs.

  15. Cost analysis of small hydroelectric power plants components and preliminary estimation of global cost

    International Nuclear Information System (INIS)

    Basta, C.; Olive, W.J.; Antunes, J.S.

    1990-01-01

    An analysis of cost for each components of Small Hydroelectric Power Plant, taking into account the real costs of these projects is shown. It also presents a global equation which allows a preliminary estimation of cost for each construction. (author)

  16. Cost structure of coal- and nuclear-fired electric power plants

    International Nuclear Information System (INIS)

    Helmuth, J.A.

    1981-01-01

    This dissertation investigates the cost structure of coal and nuclear electric power generation. The emphasis of the paper is to empirically estimate the direct costs of generating base-load electric power at the plant level. Empirically, the paper first investigates the relative comparative costs of nuclear and coal power generation, based on historical operating data. Consideration of the learning curve and other dynamic elements is incorporated in the analysis. The second empirical thrust is to inestigate economies of scale for both technologies. The results from the empirical studies give an indication as to the future and present cost viability of each technology. Implications toward energy policy are discussed

  17. Nuclear power generation costs in the United States of America

    International Nuclear Information System (INIS)

    Willis, W.F.

    1983-01-01

    Increasing world energy prices and shortages of fuel resources make the utilization of nuclear power extremely important. The United States nuclear power industry represents the largest body of nuclear power experience in the world. Analysis of the recent United States experience of substantial increases in the cost of nuclear power generation provides good insight into the interdependence of technological, financial, and institutional influences and their combined impact on the economic viability of nuclear power generation. The various factors influencing ultimate generation costs, including construction cost, fuel cost, regulatory reviews, and siting considerations are discussed, and their relative impacts are explored, including discussion of design complexity and related regulatory response. A closer look into the recent relatively high escalation of nuclear plant construction costs shows how differing economic conditions can affect the relative cost effectiveness of various methods of power generation. The vulnerability of capital-intensive, long-lead-time projects to changes in economic conditions and uncertainty in future power demands is discussed. Likewise, the pitfalls of new designs and increased sophistication are contrasted to the advantages which result from proven designs, reliable engineering, and shorter lead times. The value of reliable architect-engineers experienced in the design and construction of the plant is discussed. A discussion is presented of additional regulatory requirements stemming from public safety aspects of nuclear power. These include recognition of requirements for the very large effort for quality assurance of materials and workmanship during plant construction and operation. Likewise, a discussion is included of the demanding nature of operations, maintenance, and modification of plants during the operational phase because of the need for highly qualified operations and maintenance personnel and strict quality assurance

  18. The cost of electrolytic hydrogen from off-peak power

    International Nuclear Information System (INIS)

    Stucki, S.

    1991-01-01

    The cost of electrolytic hydrogen depends on the capacity factor of the plant and the cost of electricity. Both these parameters are correlated if off-peak power is to be used for hydrogen production. Based on assumptions regarding the correlation between the electricity price and the availability of electric power, optimizations were run using a simple cost model for the electrolysis plant. The current density at which the electrolysis plant would be run is taken as a variable for optimization as well as the annual time of availability of electric power. The results of the optimizations show for a number of hypothetical electrolyser types that the optimum operation time or electricity price do not depend much on the technology used. Production cost of electrolytic hydrogen can, however, be cut by 30% by using advanced electrolysis technology. (author)

  19. A BWR 24-month cycle analysis using multicycle techniques

    International Nuclear Information System (INIS)

    Hartley, K.D.

    1993-01-01

    Boiling water reactor (BWR) fuel cycle design analyses have become increasingly challenging in the past several years. As utilities continue to seek improved capacity factors, reduced power generation costs, and reduced outage costs, longer cycle lengths and fuel design optimization become important considerations. Accurate multicycle analysis techniques are necessary to determine the viability of fuel designs and cycle operating strategies to meet reactor operating requirements, e.g., meet thermal and reactivity margin constraints, while minimizing overall fuel cycle costs. Siemens Power Corporation (SPC), Nuclear Division, has successfully employed multi-cycle analysis techniques with realistic rodded cycle depletions to demonstrate equilibrium fuel cycle performance in 24-month cycles. Analyses have been performed by a BWR/5 reactor, at both rated and uprated power conditions

  20. Wind power costs expected to decrease due to technological progress

    International Nuclear Information System (INIS)

    Williams, Eric; Hittinger, Eric; Carvalho, Rexon; Williams, Ryan

    2017-01-01

    The potential for future cost reductions in wind power affects adoption and support policies. Prior analyses of cost reductions give inconsistent results. The learning rate, or fractional cost reduction per doubling of production, ranges from −3% to +33% depending on the study. This lack of consensus has, we believe, contributed to high variability in forecasts of future costs of wind power. We find that learning rate can be very sensitive to the starting and ending years of datasets and the geographical scope of the study. Based on a single factor experience curve that accounts for capacity factor gains, wind quality decline, and exogenous shifts in capital costs, we develop an improved model with reduced temporal variability. Using a global adoption model, the wind-learning rate is between 7.7% and 11%, with a preferred estimate of 9.8%. Using global scenarios for future wind deployment, this learning rate range implies that the cost of wind power will decline from 5.5 cents/kWh in 2015 to 4.1–4.5 cents/kWh in 2030, lower than a number of other forecasts. If attained, wind power may be the cheapest form of new electricity generation by 2030, suggesting that support and investment in wind should be maintained or expanded. - Highlights: • Expectations for cost reductions in wind power is important for policy. • Wind learning rates are sensitive to data time period and regional choice. • We develop improved wind cost model with much reduced variability. • New model gives global wind learning rates between 7.7%-11%.

  1. Nuclear power newsletter Vol. 2, no. 3

    International Nuclear Information System (INIS)

    2005-09-01

    The topics presented in this newsletter are: factors contributing to increased nuclear electricity production for the period 1990-2004 ; NPP operating performance and life cycle management; improving human performance quality and technical infrastructure; and technology development and applications for advanced reactors. Three factors contributing the electricity production increase are analysed and presented - growth due to new power plants building (36%); existing NPP uprating (7%); and energy availability improvements (57%). Trends of installed capacity and available production are given. The newsletter also presents technical issues that influence decisions on operation and nuclear power infrastructure and delayed NPPs. In the last article technology advances are presented in details for water cooled reactors, fast reactors and accelerator driven systems, gas cooled reactors and desalination plants

  2. Pressure and temperature analyses using GOTHIC for Mark I containment of the Chinshan Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yen-Shu, E-mail: yschen@iner.org.t [Nuclear Engineering Division, Institute of Nuclear Energy Research, 1000, Wenhua Rd., Jiaan Village, Longtan Township, Taoyuan County 32546, Taiwan (China); Yuann, Yng-Ruey; Dai, Liang-Che; Lin, Yon-Pon [Nuclear Engineering Division, Institute of Nuclear Energy Research, 1000, Wenhua Rd., Jiaan Village, Longtan Township, Taoyuan County 32546, Taiwan (China)

    2011-05-15

    Research highlights: The Chinshan Mark I containment pressure-temperature responses are analyzed. GOTHIC is used to calculate the containment responses under three pipe break events. This study is used to support the Chinshan Stretch Power Uprate (SPU) program. The calculated peak pressure and temperature are still below the design values. The Chinshan containment integrity can be maintained under SPU condition. - Abstract: Chinshan Nuclear Power Plant in Taiwan is a GE-designed twin-unit BWR/4 plant with original licensed thermal power (OLTP) of 1775 MWt for each unit. Recently, the Stretch Power Uprate (SPU) program for the Chinshan plant is being conducted to uprate the core thermal power to 1858 MWt (104.66% OLTP). In this study, the Chinshan Mark I containment pressure/temperature responses during LOCA at 105% OLTP (104.66% OLTP + 0.34% OLTP power uncertainty = 105% OLTP) are analyzed using the containment thermal-hydraulic program GOTHIC. Three kinds of LOCA (Loss of Coolant Accident) scenarios are investigated: Recirculation Line Break (RCLB), Main Steam Line Break (MSLB), and Feedwater Line Break (FWLB). In the short-term analyses, blowdown data generated by RELAP5 transient analyses are provided as boundary conditions to the GOTHIC containment model. The calculated peak drywell pressure and temperature in the RCLB event are 217.2 kPaG and 137.1 {sup o}C, respectively, which are close to the original FSAR results (219.2 kPaG and 138.4 {sup o}C). Additionally, the peak drywell temperature of 155.3 {sup o}C calculated by MSLB is presented in this study. To obtain the peak suppression pool temperature, a long-term RCLB analysis is performed using a simplified RPV (Reactor Pressure Vessel) volume to calculate blowdown flow rate. One RHR (Residual Heat Removal) heat exchanger is assumed to be inoperable for suppression pool cooling mode. The calculated peak suppression pool temperature is 93.2 {sup o}C, which is below the pool temperature used for evaluating the

  3. Pressure and temperature analyses using GOTHIC for Mark I containment of the Chinshan Nuclear Power Plant

    International Nuclear Information System (INIS)

    Chen, Yen-Shu; Yuann, Yng-Ruey; Dai, Liang-Che; Lin, Yon-Pon

    2011-01-01

    Research highlights: → The Chinshan Mark I containment pressure-temperature responses are analyzed. → GOTHIC is used to calculate the containment responses under three pipe break events. → This study is used to support the Chinshan Stretch Power Uprate (SPU) program. → The calculated peak pressure and temperature are still below the design values. → The Chinshan containment integrity can be maintained under SPU condition. - Abstract: Chinshan Nuclear Power Plant in Taiwan is a GE-designed twin-unit BWR/4 plant with original licensed thermal power (OLTP) of 1775 MWt for each unit. Recently, the Stretch Power Uprate (SPU) program for the Chinshan plant is being conducted to uprate the core thermal power to 1858 MWt (104.66% OLTP). In this study, the Chinshan Mark I containment pressure/temperature responses during LOCA at 105% OLTP (104.66% OLTP + 0.34% OLTP power uncertainty = 105% OLTP) are analyzed using the containment thermal-hydraulic program GOTHIC. Three kinds of LOCA (Loss of Coolant Accident) scenarios are investigated: Recirculation Line Break (RCLB), Main Steam Line Break (MSLB), and Feedwater Line Break (FWLB). In the short-term analyses, blowdown data generated by RELAP5 transient analyses are provided as boundary conditions to the GOTHIC containment model. The calculated peak drywell pressure and temperature in the RCLB event are 217.2 kPaG and 137.1 o C, respectively, which are close to the original FSAR results (219.2 kPaG and 138.4 o C). Additionally, the peak drywell temperature of 155.3 o C calculated by MSLB is presented in this study. To obtain the peak suppression pool temperature, a long-term RCLB analysis is performed using a simplified RPV (Reactor Pressure Vessel) volume to calculate blowdown flow rate. One RHR (Residual Heat Removal) heat exchanger is assumed to be inoperable for suppression pool cooling mode. The calculated peak suppression pool temperature is 93.2 o C, which is below the pool temperature used for evaluating the

  4. Modernization and power increase nuclear power plant Laguna Verde (Mexico); Modernizacion y aumento de potencia de la central nuclear Laguna Verde (Mexico)

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Serrano, J. L.; Merino, A.; Ruiz Gutierrez, L.

    2011-07-01

    The objective of this project is to perform the modifications on the thermal cycle of the plant required by an Extended Power Uprate, to achieve a safe and reliable operation of the plant at 120% of its original thermal power. The scope includes the design, engineering training, supply of equipment, dismantling, installation, testing and commissioning. The duration of the project is 4 years (82007-2010), and all the modifications have been implemented in four outages, two per unit. The main modification carried out are the change of the condenser, moisture separator and main steam reheaters, the feedwater haters, the turbogenerator and its auxiliaries, transformers, isolated phase bus and main circuit breaker, etc. (Author)

  5. Capital cost: pressurized water reactor plant. Commercial electric power cost studies

    Energy Technology Data Exchange (ETDEWEB)

    1977-06-01

    The investment cost study for the 1139 MW(e) pressurized water reactor (PWR) central station power plant consists of two volumes. This volume contains the drawings, equipment list and site description.

  6. Capital cost: pressurized water reactor plant. Commercial electric power cost studies

    International Nuclear Information System (INIS)

    1977-06-01

    The investment cost study for the 1139 MW(e) pressurized water reactor (PWR) central station power plant consists of two volumes. This volume contains the drawings, equipment list and site description

  7. US nuclear power plant operating cost and experience summaries

    International Nuclear Information System (INIS)

    Kohn, W.E.; Reid, R.L.; White, V.S.

    1998-02-01

    NUREG/CR-6577, U.S. Nuclear Power Plant Operating Cost and Experience Summaries, has been prepared to provide historical operating cost and experience information on U.S. commercial nuclear power plants. Cost incurred after initial construction are characterized as annual production costs, representing fuel and plant operating and maintenance expenses, and capital expenditures related to facility additions/modifications which are included in the plant capital asset base. As discussed in the report, annual data for these two cost categories were obtained from publicly available reports and must be accepted as having different degrees of accuracy and completeness. Treatment of inconclusive and incomplete data is discussed. As an aid to understanding the fluctuations in the cost histories, operating summaries for each nuclear unit are provided. The intent of these summaries is to identify important operating events; refueling, major maintenance, and other significant outages; operating milestones; and significant licensing or enforcement actions. Information used in the summaries is condensed from annual operating reports submitted by the licensees, plant histories contained in Nuclear Power Experience, trade press articles, and the Nuclear Regulatory Commission (NRC) web site (www.nrc.gov)

  8. US nuclear power plant operating cost and experience summaries

    Energy Technology Data Exchange (ETDEWEB)

    Kohn, W.E.; Reid, R.L.; White, V.S.

    1998-02-01

    NUREG/CR-6577, U.S. Nuclear Power Plant Operating Cost and Experience Summaries, has been prepared to provide historical operating cost and experience information on U.S. commercial nuclear power plants. Cost incurred after initial construction are characterized as annual production costs, representing fuel and plant operating and maintenance expenses, and capital expenditures related to facility additions/modifications which are included in the plant capital asset base. As discussed in the report, annual data for these two cost categories were obtained from publicly available reports and must be accepted as having different degrees of accuracy and completeness. Treatment of inconclusive and incomplete data is discussed. As an aid to understanding the fluctuations in the cost histories, operating summaries for each nuclear unit are provided. The intent of these summaries is to identify important operating events; refueling, major maintenance, and other significant outages; operating milestones; and significant licensing or enforcement actions. Information used in the summaries is condensed from annual operating reports submitted by the licensees, plant histories contained in Nuclear Power Experience, trade press articles, and the Nuclear Regulatory Commission (NRC) web site (www.nrc.gov).

  9. Survey on the cost of the photovoltaic power system; Taiyoko hatsuden cost chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Comparisons were made of the power generation cost in Indonesia and Thailand between the photovoltaic power system and other power systems. From the difference in technical standards with Japan, trially calculated were the amount of the potential introduction and the possibly reduced cost. In Indonesia, a plan has started for the introduction of a 50W system to 1 million houses in the unelecrified area, but the introduction has not been so promoted as planned. In Thailand, a plan is being carried out for the introduction of the battery charge station system, but the introduction has remained small-scaled. Comparisons were made among the solar home system in Indonesia, the battery charge station system in Thailand, the diesel engine power generation, and the grid connection with the existing power distribution system. The result concluded that the solar home system is low-priced though it depends on the distance from the existing distribution line and the power consumption amount. Moreover, it was found that the system would be more economical than in the case of Japan if obeying international standards for the photovoltaic power system. 6 refs., 15 figs., 56 tabs.

  10. The costs of completing unfinished US nuclear power plants

    International Nuclear Information System (INIS)

    Feldman, S.L.; Bernstein, M.A.; Noland, R.B.

    1988-01-01

    A cost benefit analysis is performed to assess the costs of completing unfinished nuclear power plants in four regions of the United States of America, (north-east, south-east, mid-west and west). The analysis is in five main sections: the projection of the cost to complete nuclear plants under construction, the forecast of future operations and maintenance costs, the forecast of price of fuels, the evaluation of future electricity demand and capacity growth, and calculation of the financial cost-benefit ratio based on the preceding figures. It was found that in the north-east, mid-west and west, because the demand for the power will not be made before the year 2000, finishing the units is not the least-cost supply option. Therefore, most of the units should not be finished unless over 90% completed already, in which case it may be cost-effective to finish them. (author)

  11. Safety and Radiation Protection at Swedish Nuclear Power Plants 2005

    International Nuclear Information System (INIS)

    2006-05-01

    carried out. Forsmarks Kraftgrupp AB (FKA) has applied for permission for power uprates at the Forsmark 1-3 reactors, OKG has applied for permission for power uprates at the Oskarshamn 3 reactor and RAB has applied for permission for power uprates at the Ringhals 1 and 3 reactors. SKI has reviewed the applications from OKG and RAB and has found that the necessary conditions exist for implementing the power uprates that have been requested. The Government has decided to grant permission for power uprates at Ringhals 1 and 3. SKI's regulations (SKIFS 2004:2) concerning the design and construction of nuclear reactors entered into force with certain transitional regulations on January 1, 2005. Through these regulations, SKI has developed and clarified the safety requirements for nuclear reactors. The transitional agreements mean that the licensees concerned must be given the necessary time to plan and implement the measures at the reactors that are necessary in order to comply with the regulations. The regulations mean that extensive measures need to be conducted at the reactors, especially the older reactors, in order to further improve safety to the modern level that the requirements entail. The safety improvement work will be conducted for a relatively long period of time. During the same period, power uprates are being planned at several reactors. During the year, SKI also decided on new regulations (SKIFS 2005:1) for the physical protection of nuclear facilities. These regulations will also have extensive consequences for the licensees, through more stringent regulations with respect to area protection, perimeter protection and access control. During the year, SKI continued to follow up and promote the further development of the licensees' internal audit functions, management systems and competence assurance processes. SKI notes that continued improvements have been implemented and that the independent audit functions have been reinforced among other things. Up

  12. Safety and Radiation Protection at Swedish Nuclear Power Plants 2005

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-05-15

    need to be carried out. Forsmarks Kraftgrupp AB (FKA) has applied for permission for power uprates at the Forsmark 1-3 reactors, OKG has applied for permission for power uprates at the Oskarshamn 3 reactor and RAB has applied for permission for power uprates at the Ringhals 1 and 3 reactors. SKI has reviewed the applications from OKG and RAB and has found that the necessary conditions exist for implementing the power uprates that have been requested. The Government has decided to grant permission for power uprates at Ringhals 1 and 3. SKI's regulations (SKIFS 2004:2) concerning the design and construction of nuclear reactors entered into force with certain transitional regulations on January 1, 2005. Through these regulations, SKI has developed and clarified the safety requirements for nuclear reactors. The transitional agreements mean that the licensees concerned must be given the necessary time to plan and implement the measures at the reactors that are necessary in order to comply with the regulations. The regulations mean that extensive measures need to be conducted at the reactors, especially the older reactors, in order to further improve safety to the modern level that the requirements entail. The safety improvement work will be conducted for a relatively long period of time. During the same period, power uprates are being planned at several reactors. During the year, SKI also decided on new regulations (SKIFS 2005:1) for the physical protection of nuclear facilities. These regulations will also have extensive consequences for the licensees, through more stringent regulations with respect to area protection, perimeter protection and access control. During the year, SKI continued to follow up and promote the further development of the licensees' internal audit functions, management systems and competence assurance processes. SKI notes that continued improvements have been implemented and that the independent audit functions have been reinforced among

  13. Estimation of small-scale hydroelectric power plant costs

    International Nuclear Information System (INIS)

    Santos, Afonso Henriques Moreira; Silva, Benedito Claudio da; Magalhaes, Ricardo Nogueira

    2010-01-01

    Changes in Brazilian energy scenario through last years such as increase of demand and search for clean and economically feasible renewable energy sources, has stimulated investors to small hydro power plants (SHP) sector. Such characteristics together with several economic incentives, legal and regulatory mechanisms also, have helped and stimulated building of new plants of this kind and have attracted a great number of investors to this sector. Study of costs analysis and feasibility of investments is a study which has been used since long time in SHP business market as several preliminary studies previous to civil project have significant costs which lead us to count with a feasibility analysis from the very beginning of studies, exactly what is suggested in the present methodology. Such feasibility analysis, in the common patterns where basic unit costs of each input remain outstanding, would be very complex due to great difficulty in obtaining information at initial phase of project. In this direction this study brings a contribution for investors as well as for designers of small hydro power plants since it outlines a link between physical and energetic characteristics of small hydro power plant in its total cost. Such link is based in available physical characteristics in initial phase of the project, making possible a previous comparison between arrangements of a central or even the comparison of return of investment between different plants. The resulting benefit being the possibility of choosing centrals with greater economic feasibility disregarding bad undertakings or arrangements with more expressive cost. Final result gives a better delay in return of investment, helps in power, arrangements more optimized and in saving time as well, reducing costs of undertakings. Due to large number of SHP arrangements, we chose for this study the most common in Brazil, plant of medium and large fall, shunting line balance chimney and low pressure conduit. (author)

  14. Costs of construction, operation and maintenance of nuclear power plants - determinant factors

    International Nuclear Information System (INIS)

    Silva, R.A. da

    1981-01-01

    A study about the construction costs of the Angra-1 nuclear power plant, including direct costs, equipment costs, installation and indirect costs such as: engineering, job-training and administration is presented. The operation and maintenance costs of the Angra-1 nuclear power plant and costs of energy generation are still studied. (E.G.) [pt

  15. Cost estimating relationships for nuclear power plant operationa and maintenance

    International Nuclear Information System (INIS)

    Bowers, H.I.; Fuller, L.C.; Myers, M.L.

    1987-11-01

    Revised cost estimating relationships for 1987 are presented for estimating annual nonfuel operation and maintenance (O and M) costs for light-water reactor (LWR) nuclear power plants, which update guidelines published previously in 1982. The purpose of these cost estimating relationships is for use in long range planning and evaluations of the economics of nuclear energy for electric power generation. A listing of a computer program, LWROM, implementing the cost estimating relationships and written in advanced BASIC for IBM personal computers, is included

  16. High cost of nuclear power plants

    International Nuclear Information System (INIS)

    Bassett, C.

    1978-01-01

    Retroactive safety standards were found to account for over half the costs of a nuclear power plant and point up the need for an effective cost-benefit analysis of changes made by the Nuclear Regulatory Commission after construction has started. The author compared the Davis-Besse Unit No. 1 construction-cost estimates with the final-cost increases during a rate-case investigation in Ohio. He presents data furnished for ten of the largest construction contracts to illustrate the cost increases involving fixed hardware and intensive labor. The situation was found to repeat with other utilities across the country even though safeguards against irresponsible low bidding were introduced. Low bidding was found to continue, encouraged by the need for retrofitting to meet regulation changes. The average cost per kilowatt of major light-water reactors is shown to have increased from $171 in 1970 to $555 in 1977, while construction duration increased from 43.4 to 95.6 months during the same period

  17. Light Water Reactor Sustainability Program: Analysis of Pressurized Water Reactor Station Blackout caused by external flooding using the RISMC toolkit

    International Nuclear Information System (INIS)

    2014-01-01

    The existing fleet of nuclear power plants is in the process of extending its lifetime and increasing the power generated from these plants via power uprates. In order to evaluate the impacts of these two factors on the safety of the plant, the Risk Informed Safety Margin Characterization project aims to provide insights to decision makers through a series of simulations of the plant dynamics for different initial conditions (e.g., probabilistic analysis and uncertainty quantification). This paper focuses on the impacts of power uprate on the safety margin of a boiling water reactor for a flooding induced station black-out event. Analysis is performed by using a combination of thermal-hydraulic codes and a stochastic analysis tool currently under development at the Idaho National Laboratory, i.e. RAVEN. We employed both classical statistical tools, i.e. Monte-Carlo, and more advanced machine learning based algorithms to perform uncertainty quantification in order to quantify changes in system performance and limitations as a consequence of power uprate. Results obtained give a detailed investigation of the issues associated with a plant power uprate including the effects of station black-out accident scenarios. We were able to quantify how the timing of specific events was impacted by a higher nominal reactor core power. Such safety insights can provide useful information to the decision makers to perform risk informed margins management.

  18. Capital investment costs of nuclear power plants

    International Nuclear Information System (INIS)

    Woite, G.

    1978-01-01

    The purpose of the article is to summarize capital cost experience and estimates in industrialized and developing Member States of the IAEA, and to provide some guidance for cost extrapolation. The relative merits of different types and sizes of nuclear and conventional power plants for an expanding electricity generation system are compared over an adequate planning period

  19. Reference costs of the electric power production

    International Nuclear Information System (INIS)

    2003-06-01

    This study periodically realized by the DGEMP aims to compare the competitiveness of the different channels of electric power production, for different utilization conditions. The first part ''reference costs of the 2003 electric power production'' examines the prices of the electric power produced by different channels in particular in the framework of the industrial implementing in 2015. The nuclear and thermal power plants are concerned. The second part is devoted to the decentralized production channels (wind energy, photovoltaic, cogeneration heat-electricity) is under construction and will be presented next year. (A.L.B.)

  20. A completely new design and regulatory process - A risk-based approach for new nuclear power plants. Annex 17

    International Nuclear Information System (INIS)

    Ritterbusch, S.E.

    2002-01-01

    In the de-regulated electric power market place that is developing in the USA, competition from alternative electric power sources has provided significant downward pressure on the costs of new construction projects. Studies by the Electric Power Research Institute have shown that, in the USA, the capital cost of new nuclear plants must be decreased by at least 35% to 40% relative to the cost of Advanced Light Water Reactors designed in the early 1990s in order to be competitive with capital costs of gas-fired electric power plants. The underlying reasons for the high capital costs estimated for some nuclear plants are (1) long construction times, (2) the high level of 'defense-in-depth' or safety margin, included throughout the design and licensing process, and (3) the use of out-dated design methods and information. Probabilistic Safety Assessments are being used to develop a more accurate assessment of real plant risk and to provide relief if it can be demonstrated that plant equipment is not providing a significant contribution to plant safety. Westinghouse addressed some of these cost drivers in the development of the AP-600 passive plant design. However, because of relatively inexpensive natural gas plant alternative, we need to reduce the costs even further. Therefore, the AP-600 design is now being up-rated to a 1000 MWe design, AP-1000. The development of AP1000 is described in another paper being presented at this meeting. Westinghouse is also managing a project, sponsored by the US Department of Energy, which is aimed at developing an all-new 'risk-based' approach to design and regulation. Methodologies being developed use risk-based information to the extent practical and 'defense-in-depth' only when necessary to address uncertainties in models and equipment performance. Early results, summarized in this paper, include (1) the initial framework for a new design and regulatory process and (2) a sample design analysis which shows that the Emergency Core

  1. Partial Discharge Monitoring in Power Transformers Using Low-Cost Piezoelectric Sensors.

    Science.gov (United States)

    Castro, Bruno; Clerice, Guilherme; Ramos, Caio; Andreoli, André; Baptista, Fabricio; Campos, Fernando; Ulson, José

    2016-08-10

    Power transformers are crucial in an electric power system. Failures in transformers can affect the quality and cause interruptions in the power supply. Partial discharges are a phenomenon that can cause failures in the transformers if not properly monitored. Typically, the monitoring requires high-cost corrective maintenance or even interruptions of the power system. Therefore, the development of online non-invasive monitoring systems to detect partial discharges in power transformers has great relevance since it can reduce significant maintenance costs. Although commercial acoustic emission sensors have been used to monitor partial discharges in power transformers, they still represent a significant cost. In order to overcome this drawback, this paper presents a study of the feasibility of low-cost piezoelectric sensors to identify partial discharges in mineral insulating oil of power transformers. The analysis of the feasibility of the proposed low-cost sensor is performed by its comparison with a commercial acoustic emission sensor commonly used to detect partial discharges. The comparison between the responses in the time and frequency domain of both sensors was carried out and the experimental results indicate that the proposed piezoelectric sensors have great potential in the detection of acoustic waves generated by partial discharges in insulation oil, contributing for the popularization of this noninvasive technique.

  2. Partial Discharge Monitoring in Power Transformers Using Low-Cost Piezoelectric Sensors

    Directory of Open Access Journals (Sweden)

    Bruno Castro

    2016-08-01

    Full Text Available Power transformers are crucial in an electric power system. Failures in transformers can affect the quality and cause interruptions in the power supply. Partial discharges are a phenomenon that can cause failures in the transformers if not properly monitored. Typically, the monitoring requires high-cost corrective maintenance or even interruptions of the power system. Therefore, the development of online non-invasive monitoring systems to detect partial discharges in power transformers has great relevance since it can reduce significant maintenance costs. Although commercial acoustic emission sensors have been used to monitor partial discharges in power transformers, they still represent a significant cost. In order to overcome this drawback, this paper presents a study of the feasibility of low-cost piezoelectric sensors to identify partial discharges in mineral insulating oil of power transformers. The analysis of the feasibility of the proposed low-cost sensor is performed by its comparison with a commercial acoustic emission sensor commonly used to detect partial discharges. The comparison between the responses in the time and frequency domain of both sensors was carried out and the experimental results indicate that the proposed piezoelectric sensors have great potential in the detection of acoustic waves generated by partial discharges in insulation oil, contributing for the popularization of this noninvasive technique.

  3. Review of nuclear power costs around the world

    International Nuclear Information System (INIS)

    Bennett, L.L.; Karousakis, P.M.; Moynet, G.

    1983-01-01

    This paper presents highlights of nuclear power costs around the world from studies carried out by the IAEA and by UNIPEDE. Emphasis is placed on trends within each country of key parameters which affect both investment costs and total power generation costs, including construction and project durations, size of units, regulatory environment, scope of project, fuel cycle costs and general economic conditions. A synthesis of these trends, taking into consideration both nuclear and coal-fired plant capital and fuel costs as they are estimated to evolve in the near and medium term, is presented in terms of nuclear-to-coal cost ratios for both plant investment costs and total generating costs. The plant investment costs are expressed as ''overnight'' or ''fore'' costs, in constant money, for plants expected to enter commercial operation in the early 1990s. Pertinent assumptions are based on conditions prevailing in the particular country under review. These studies indicate that in most countries nuclear plant investment costs are rising more rapidly than the costs for coal-fired plants. A major cause for the rapid rise in nuclear plant costs is the drastic lengthening of project duration in most countries. France, as a notable exception, has been able to maintain a stable and reasonably short project time. In spite of the rapidly escalating nuclear plant investment costs, nuclear electricity generation has an economic advantage over coal in Europe and Canada and is competitive with coal in the eastern and midwestern parts of the United States of America (USA). The availability of abundant, low-cost coal gives coal-fired generation an economic advantage in the western USA. (author)

  4. The full costs of thermal power production in Eastern Canada

    International Nuclear Information System (INIS)

    Venema, H.D.; Barg, S.

    2003-07-01

    This study examines the public health and global warming costs associated with generating electricity with fossil fuels such as coal, oil or natural gas. A Full Cost Accounting approach was used to determine the costs for Eastern Canada. The electricity sector is chosen because it is a large emitter of air pollutants and greenhouse gases. The sector it will undergo potentially significant structural changes as Canada complies with the Kyoto Protocol. Alternative investments in nonpolluting sources of electricity should include analysis of full costs. Two types of factors are evaluated in this study: the public health costs caused by emissions of sulphur and nitrogen oxides and volatile organic carbon (VOC) in Eastern Canada, and the marginal climate change damages caused by the emissions of greenhouse gasses (GHGs) in Eastern Canada. The major contribution of this study is the application of the impact-pathway approach to power sector emissions. Recent Canadian studies have reported either the pollutant emission rates for different power generation technologies and fuels, or the health costs of ambient air pollution not specifically attributable to the power sector. This study isolates the component of air pollution attributable to the power sector and analyses its geographic distribution. It was concluded that coal-fired generation should be closely monitored because the externalities burden is the same magnitude as the marginal production cost. 77 refs., 20 tabs., 21 figs

  5. Corruption Significantly Increases the Capital Cost of Power Plants in Developing Contexts

    Directory of Open Access Journals (Sweden)

    Kumar Biswajit Debnath

    2018-03-01

    Full Text Available Emerging economies with rapidly growing population and energy demand, own some of the most expensive power plants in the world. We hypothesized that corruption has a relationship with the capital cost of power plants in developing countries such as Bangladesh. For this study, we analyzed the capital cost of 61 operational and planned power plants in Bangladesh. Initial comparison study revealed that the mean capital cost of a power plant in Bangladesh is twice than that of the global average. Then, the statistical analysis revealed a significant correlation between corruption and the cost of power plants, indicating that higher corruption leads to greater capital cost. The high up-front cost can be a significant burden on the economy, at present and in the future, as most are financed through international loans with extended repayment terms. There is, therefore, an urgent need for the review of the procurement and due diligence process of establishing power plants, and for the implementation of a more transparent system to mitigate adverse effects of corruption on megaprojects.

  6. Cost estimate guidelines for advanced nuclear power technologies

    International Nuclear Information System (INIS)

    Hudson, C.R. II.

    1986-07-01

    To make comparative assessments of competing technologies, consistent ground rules must be applied when developing cost estimates. This document provides a uniform set of assumptions, ground rules, and requirements that can be used in developing cost estimates for advanced nuclear power technologies

  7. Cost estimate guidelines for advanced nuclear power technologies

    International Nuclear Information System (INIS)

    Hudson, C.R. II.

    1987-07-01

    To make comparative assessments of competing technologies, consistent ground rules must be applied when developing cost estimates. This document provides a uniform set of assumptions, ground rules, and requirements that can be used in developing cost estimates for advanced nuclear power technologies

  8. Cost-minimized combinations of wind power, solar power and electrochemical storage, powering the grid up to 99.9% of the time

    DEFF Research Database (Denmark)

    Budischak, Cory; Sewell, DeAnna; Thomson, Heather

    2013-01-01

    intermittent power, we seek combinations of diverse renewables at diverse sites, with storage, that are not intermittent and satisfy need a given fraction of hours. And 2) we seek minimal cost, calculating true cost of electricity without subsidies and with inclusion of external costs. Our model evaluated over...... renewable generation and the excess capacity together meet electric load with less storage, lowering total system cost. At 2030 technology costs and with excess electricity displacing natural gas, we find that the electric system can be powered 90%–99.9% of hours entirely on renewable electricity, at costs...

  9. Review on studies for external cost of nuclear power generation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Byung Heung [Korea National University of Transportation, Chungju (Korea, Republic of); Ko, Won Il [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-12-15

    External cost is cost imposed on a third party when producing or consuming a good or service. Since the 1990s, the external costs of nuclear powered electricity production have been studied. Costs are a very important factor in policy decision and the external cost is considered for cost comparison on electricity production. As for nuclear fuel cycle, a chosen technology will determine the external cost. However, there has been little research on this issue. For this study, methods for external cost on nuclear power production have been surveyed and analyzed to develop an approach for evaluating external cost on nuclear fuel cycles. Before the Fukushima accident, external cost research had focused on damage costs during normal operation of a fuel cycle. However, accident cost becomes a major concern after the accident. Various considerations for external cost including accident cost have been used to different studies, and different methods have been applied corresponding to the considerations. In this study, the results of the evaluation were compared and analyzed to identify methodological applicability to the external cost estimation with nuclear fuel cycles.

  10. Review on studies for external cost of nuclear power generation

    International Nuclear Information System (INIS)

    Park, Byung Heung; Ko, Won Il

    2015-01-01

    External cost is cost imposed on a third party when producing or consuming a good or service. Since the 1990s, the external costs of nuclear powered electricity production have been studied. Costs are a very important factor in policy decision and the external cost is considered for cost comparison on electricity production. As for nuclear fuel cycle, a chosen technology will determine the external cost. However, there has been little research on this issue. For this study, methods for external cost on nuclear power production have been surveyed and analyzed to develop an approach for evaluating external cost on nuclear fuel cycles. Before the Fukushima accident, external cost research had focused on damage costs during normal operation of a fuel cycle. However, accident cost becomes a major concern after the accident. Various considerations for external cost including accident cost have been used to different studies, and different methods have been applied corresponding to the considerations. In this study, the results of the evaluation were compared and analyzed to identify methodological applicability to the external cost estimation with nuclear fuel cycles

  11. Impact of Balance Of System (BOS) costs on photovoltaic power systems

    Science.gov (United States)

    Hein, G. F.; Cusick, J. P.; Poley, W. A.

    1978-01-01

    The Department of Energy has developed a program to effect a large reduction in the price of photovoltaic modules, with significant progress already achieved toward the 1986 goal of 50 cents/watt (1975 dollars). Remaining elements of a P/V power system (structure, battery storage, regulation, control, and wiring) are also significant cost items. The costs of these remaining elements are commonly referred to as Balance-of-System (BOS) costs. The BOS costs are less well defined and documented than module costs. The Lewis Research Center (LeRC) in 1976/77 and with two village power experiments that will be installed in 1978. The costs were divided into five categories and analyzed. A regression analysis was performed to determine correlations of BOS Costs per peak watt, with power size for these photovoltaic systems. The statistical relationship may be used for flat-plate, DC systems ranging from 100 to 4,000 peak watts. A survey of suppliers was conducted for comparison with the predicted BOS cost relationship.

  12. Estimating generation costs for wind power production in France

    International Nuclear Information System (INIS)

    Benazet, J.F.; Probert, E.J.

    1997-01-01

    Wind power is being exploited in several European countries as one of a possible number of sources of renewable energy. However, in France there is a heavy reliance on nuclear and hydro-electric power and the potential of wind power as part of the energy mix has been virtually ignored. One of the reasons advanced for the under utilisation of this technology is that it is financially unattractive. In this paper the contribution which wind power could potentially make to overall power production levels in France is examined. A cost estimate model is developed which derives electricity generation costs and determines realistic levels of production for the future. The model automatically determines the associated number of wind turbines required and the geographical areas in which they should be located. (author)

  13. Simulations of the design basis accident at conditions of power increase and the o transient of MSIV at overpressure conditions of the Laguna Verde Power Station; Simulaciones del accidente base de diseno a condiciones de aumento de potencia y del transitorio de cierre de MSIV a condiciones de sobrepresion de la Central Laguna Verde

    Energy Technology Data Exchange (ETDEWEB)

    Araiza M, E.; Nunez C, A. [Comision Nacional de Seguridad Nuclear y Salvaguardias, 03000 Mexico D.F. (Mexico)

    2001-07-01

    This document presents the analysis of the simulation of the loss of coolant accident at uprate power conditions, that is 2027 MWt (105% of the current rated power of 1931MWt). This power was reached allowing an increase in the turbine steam flow rate without changing the steam dome pressure value at its rated conditions (1020 psiaJ. There are also presented the results of the simulation of the main steam isolation va/ve transient at overpressure conditions 1065 psia and 1067 MWt), for Laguna Verde Nuclear Power Station. Both simulations were performed with the best estimate computer code TRA C BF1. The results obtained in the loss of coolant accident show that the emergency core coolant systems can recover the water level in the core before fuel temperature increases excessively, and that the peak pressure reached in the drywell is always below its design pressure. Therefore it is concluded that the integrity of the containment is not challenged during a loss of coolant accident at uprate power conditions.The analysis of the main steam isolation valve transients at overpressure conditions, and the analysis of the particular cases of the failure of one to six safety relief valves to open, show that the vessel peak pressures are below the design pressure and have no significant effect on vessel integrity. (Author)

  14. User instructions for levelized power generation cost codes using an IBM-type PC

    International Nuclear Information System (INIS)

    Coen, J.J.; Delene, J.G.

    1989-01-01

    Programs for the calculation of levelized power generation costs using an IBM or compatible PC are described. Cost calculations for nuclear plants and coal-fired plants include capital investment cost, operation and maintenance cost, fuel cycle cost, decommissioning cost, and total levelized power generation cost. 7 refs., 36 figs., 4 tabs

  15. Power plant removal costs

    International Nuclear Information System (INIS)

    Ferguson, J.S.

    1998-01-01

    The financial, regulatory and political significance of the estimated high removal costs of nuclear power plants has generated considerable interest in recent years, and the political significance has resulted in the Nuclear Regulatory Commission (NRC) eliminating the use of conventional depreciation accounting for the decontamination portion of the removal (decommissioning). While nuclear plant licensees are not precluded from utilizing conventional depreciation accounting for the demolition of non-radioactive structures and site restoration, state and federal utility regulators have not been favorably inclined to requests for this distinction. The realization that steam-generating units will be more expensive to remove, relative to their original cost, predates the realization that nuclear units will be expensive. However, the nuclear issues have overshadowed this realization, but are unlikely to continue to do so. Numerous utilities have prepared cost estimates for steam generating units, and this presentation discusses the implications of a number of such estimates that are a matter of public record. The estimates cover nearly 400 gas, oil, coal and lignite generating units. The earliest estimate was made in 1978, and for analysis purposes the author has segregated them between gas and oil units, and coal and lignite units

  16. Analysis of nuclear-power construction costs

    International Nuclear Information System (INIS)

    Jansma, G.L.; Borcherding, J.D.

    1988-01-01

    This paper discusses the use of regression analysis for estimating construction costs. The estimate is based on an historical data base and quantification of key factors considered external to project management. This technique is not intended as a replacement for detailed cost estimates but can provide information useful to the cost-estimating process and to top management interested in evaluating project management. The focus of this paper is the nuclear-power construction industry but the technique is applicable beyond this example. The approach and critical assumptions are also useful in a public-policy situation where utility commissions are evaluating construction in prudence reviews and making comparisons to other nuclear projects. 13 references, 2 figures

  17. Justification for an Increase in Authorized Operating Power at HFIR

    International Nuclear Information System (INIS)

    Primm, Trent; Ilas, Germina

    2011-01-01

    Using verified and validated reactor physics methods coupled to a currently accepted thermal hydraulic analysis methodology, onset of incipient boiling power agrees well with the currently-accepted safety basis value. The MCNP-based methodology is acceptable for scoping studies of LEU fuel conversion. A balance-of-plant assessment would have to be conducted to determine if the power up-rate to 100 MW could be supported for LEU fuel. While analyses performed 45 years ago have been shown to be in agreement with today s methods, there is an advantage to the current methodology in that people working at HFIR today can explain/justify/defend the safety analyses rather than relying solely on documentation.

  18. Heat exchanger inventory cost optimization for power cycles with one feedwater heater

    International Nuclear Information System (INIS)

    Qureshi, Bilal Ahmed; Antar, Mohamed A.; Zubair, Syed M.

    2014-01-01

    Highlights: • Cost optimization of heat exchanger inventory in power cycles is investigated. • Analysis for an endoreversible power cycle with an open feedwater heater is shown. • Different constraints on the power cycle are investigated. • The constant heat addition scenario resulted in the lowest value of the cost function. - Abstract: Cost optimization of heat exchanger inventory in power cycles with one open feedwater heater is undertaken. In this regard, thermoeconomic analysis for an endoreversible power cycle with an open feedwater heater is shown. The scenarios of constant heat rejection and addition rates, power as well as rate of heat transfer in the open feedwater heater are studied. All cost functions displayed minima with respect to the high-side absolute temperature ratio (θ 1 ). In this case, the effect of the Carnot temperature ratio (Φ 1 ), absolute temperature ratio (ξ) and the phase-change absolute temperature ratio for the feedwater heater (Φ 2 ) are qualitatively the same. Furthermore, the constant heat addition scenario resulted in the lowest value of the cost function. For variation of all cost functions, the smaller the value of the phase-change absolute temperature ratio for the feedwater heater (Φ 2 ), lower the cost at the minima. As feedwater heater to hot end unit cost ratio decreases, the minimum total conductance required increases

  19. AP1000: Meeting economic goals in a competitive world. Annex 7

    International Nuclear Information System (INIS)

    Davis, G.; Cummins, E.; Winters, J.

    2002-01-01

    In the U.S., conditions are becoming more favorable for considering the nuclear option again for new baseload generation. While oil and natural gas prices have risen, the cost of operating the existing fleet of nuclear plants has decreased. Furthermore, an advanced 1000 MWe nuclear plant that will be even more cost-competitive with fossil fuels and natural gas will be available by 2005. Westinghouse, in an effort to further improve on the AP600's cost competitiveness, has developed the AP1000, a two-loop, 1000 MWe, advanced pressurized water reactor (PWR) with passive safety features and extensive plant simplifications to enhance the construction, operation, and maintenance. Like the AP600, the AP1000 uses proven technology that builds on over 30 years of operating PWR experience. Westinghouse has completed design studies that demonstrate that it is feasible to increase the power output of the AP600 to at least 1000 MWe, maintaining its current design configuration and licensing basis. To maximize the cost savings, the AP1000 has been designed within the space constraints of the AP600, while retaining the credibility of proven components and substantial safety margins. The affect on the plant's overnight cost of the increased major components that is required to uprate the AP600 to 1000 MWe is small. This overall cost addition is on the order of 11 percent, while the overall power increase is almost 80 percent. This paper describes the changes made to uprate the AP600 and gives an overview of the plant design. (author)

  20. Steam generator replacement at Doel 3 NPP (Belgium)

    International Nuclear Information System (INIS)

    Danhier, B.

    1993-01-01

    The reasons are presented that led to the conclusion that the most cost-effective strategy for the Doel 3 unit was the immediate replacement of the SG. Discussed are the advantages and drawbacks of the replacement techniques, the so-called 2, 3 and 4 cuts methods. The advantages are emphasized of intensive use of computer aided engineering in this kind of backfitting. The methodology applied to combine a power uprating of 10% over the nominal power with the steam generator replacement is presented. (author) 1 fig

  1. FRESCO, a simplified code for cost analysis of fusion power plants

    International Nuclear Information System (INIS)

    Bustreo, C.; Casini, G.; Zollino, G.; Bolzonella, T.; Piovan, R.

    2013-01-01

    Highlights: • FRESCO is a code for rapid evaluation of the cost of electricity of a fusion power plant. • Parameters of the basic machine and unitary costs of components derived from ITER. • Power production components and plant power balance are extrapolated from PPCS. • A special effort is made in the investigation of the pulsed operation scenarios. • Technical and economical FRESCO results are compared with those of two PPCS models. -- Abstract: FRESCO (Fusion REactor Simplified COsts) is a code based on simplified models of physics, engineering and economical aspects of a TOKAMAK-like pulsed or steady-state fusion power plant. The experience coming from various aspects of ITER design, including selection of materials and operating scenarios, is exploited as much as possible. Energy production and plant power balance, including the recirculation requirements, are derived from two models of the PPCS European study, the helium cooled lithium/lead blanket model reactor (model AB) and the helium cooled ceramic one (model B). A detailed study of the availability of the power plant due, among others, to the replacement of plasma facing components, is also included in the code. The economics of the fusion power plant is evaluated through the levelized cost approach. Costs of the basic components are scaled from the corresponding values of the ITER project, the ARIES studies and SCAN model. The costs of plant auxiliaries, including those of the magnetic and electric systems, tritium plants, instrumentation, buildings and thermal energy storage if any, are recovered from ITER values and from those of other power plants. Finally, the PPCS models AB and B are simulated and the main results are reported in this paper

  2. Cost reduction potentials in the German market for balancing power

    International Nuclear Information System (INIS)

    Flinkerbusch, Kai; Heuterkes, Michael

    2010-01-01

    This article examines potential cost reductions in the market for balancing power by pooling all four German control areas. In a united control area both the procurement and the production of balancing power may be more efficient than in four separated control areas. Our data contain bids on energy procurement as well as balancing power flows in the period from December 2007 to November 2008. A reference scenario simulates the market results for secondary and tertiary balancing power. Subsequently, we simulate a united control area. We show that in the period under review the total costs of balancing power are reduced by 17%. (author)

  3. Summary of operating experience in Swiss nuclear power plants 1994

    International Nuclear Information System (INIS)

    1995-05-01

    In 1994 the Swiss nuclear power plants produced their highest-ever combined annual output. Their contribution to total electricity generation in the country was 36%. At Muehleberg the power uprate, undertaken in 1993, was effective for the first time for an entire year. The larger capacity of the new steam generators installed in 1993 in unit 1 of the Beznau NPP allows for an electric output of 103% of nominal power. The plant efficiency of the Goesgen and Leibstadt units was increased by replacing the low pressure turbines by the new ones with a modern design. The application for a power uprate of the Leibstadt reactor is still pending. For the first time in Switzerland, one of the reactor units, Beznau 2, operated on an extended cycle of one and a half years, with no refuelling outage in 1994. In spite of the replacements of two of its three low pressure turbines, Goesgen had the shortest refuelling shutdown since the start of commercial operation. The average number of reactor scrams at the Swiss plants remained stable, at less than one scram per reactor year. Re-inspection of crack indications detected in 1990 in the core shroud of the Muehleberg reactor revealed no significant changes. A crack indication was found in one of the other welds inspected. The Swiss government issued a limited operating licence for Beznau 2 for the next ten years, i.e. until the end of 2004. The only other unit with a limited operating licence (until 2003) is Muehleberg. The remaining three reactor units, have no time limits on their operating licences, in accordance with the Atomic Law. Goesgen is the first Swiss nuclear power plant having now produced more than 100 billion kWh. As from January 1, 1995, the nominal net power of the largest Swiss reactor unit, Leibstadt, has been fixed at 1030 MW; that of the Goesgen NPP has been increased by 25 MW to 965 MW. (author) figs., tabs

  4. Summary of operating experience in Swiss nuclear power plants 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    In 1994 the Swiss nuclear power plants produced their highest-ever combined annual output. Their contribution to total electricity generation in the country was 36%. At Muehleberg the power uprate, undertaken in 1993, was effective for the first time for an entire year. The larger capacity of the new steam generators installed in 1993 in unit 1 of the Beznau NPP allows for an electric output of 103% of nominal power. The plant efficiency of the Goesgen and Leibstadt units was increased by replacing the low pressure turbines by the new ones with a modern design. The application for a power uprate of the Leibstadt reactor is still pending. For the first time in Switzerland, one of the reactor units, Beznau 2, operated on an extended cycle of one and a half years, with no refuelling outage in 1994. In spite of the replacements of two of its three low pressure turbines, Goesgen had the shortest refuelling shutdown since the start of commercial operation. The average number of reactor scrams at the Swiss plants remained stable, at less than one scram per reactor year. Re-inspection of crack indications detected in 1990 in the core shroud of the Muehleberg reactor revealed no significant changes. A crack indication was found in one of the other welds inspected. The Swiss government issued a limited operating licence for Beznau 2 for the next ten years, i.e. until the end of 2004. The only other unit with a limited operating licence (until 2003) is Muehleberg. The remaining three reactor units, have no time limits on their operating licences, in accordance with the Atomic Law. Goesgen is the first Swiss nuclear power plant having now produced more than 100 billion kWh. As from January 1, 1995, the nominal net power of the largest Swiss reactor unit, Leibstadt, has been fixed at 1030 MW; that of the Goesgen NPP has been increased by 25 MW to 965 MW. (author) figs., tabs.

  5. PowerFilm PowerShade Fixed Site Solar System Cost Reduction Plan

    Science.gov (United States)

    2014-07-31

    system was designed which adds capability of grid tie connection to the standalone function. This battery operating system has built-in intelligence...goal concerning alternative conductive grid inks was to reduce the cost of the silver ink layer without a reduction in PV power with experimentation... system . To overcome this loss, a new BOS unit with higher power transfer efficiency has been developed. This system also has grid tie

  6. Power shopping - practical advice and cost-saving alternatives

    International Nuclear Information System (INIS)

    Anthofer, J.

    1999-01-01

    Encore Energy Solutions is a power consulting company which operates in California, Alberta and Ontario. The company manages electricity portfolios, sells risk management instruments and works with end users to lower power costs. It also helps utilities manage the evolution to a competitive energy market. In this presentation, a series of overhead viewgraphs were used to explain the roles of different players in Ontario's electric power industry, including generators, retailers, distributors, wholesale sellers, transmitters, wholesale consumers, independent market operators (IMOs), and consultants. The challenges facing municipal electric utilities regarding the wires business and retail services were also discussed. The trends in today's evolving power market were highlighted. These included price elasticity, load dispatch, granularity, long- and short-term volatility, gas prices, day/night spread, transmission tariffs, congestion and cost of capital. A graph depicting volatility term structures for electricity, natural gas and crude oil suggests that instantaneous volatility of power is almost infinite. Issues regarding risk management in terms of shareholder's portfolio values were also discussed. 17 figs

  7. Decommissioning nuclear power plants. Policies, strategies and costs

    International Nuclear Information System (INIS)

    2003-01-01

    The decommissioning of nuclear power plants is a topic of increasing interest to governments and the industry as many nuclear units approach retirement. It is important in this context to assess decommissioning costs and to ensure that adequate funds are set aside to meet future financial liabilities arising after nuclear power plants are shut down. Furthermore, understanding how national policies and industrial strategies affect those costs is essential for ensuring the overall economic effectiveness of the nuclear energy sector. This report, based upon data provided by 26 countries and analysed by government and industry experts, covers a variety of reactor types and sizes. The findings on decommissioning cost elements and driving factors in their variance will be of interest to analysts and policy makers in the nuclear energy field. (author)

  8. Cost estimate guidelines for advanced nuclear power technologies

    International Nuclear Information System (INIS)

    Delene, J.G.; Hudson, C.R. II.

    1990-03-01

    To make comparative assessments of competing technologies, consistent ground rules must be applied when developing cost estimates. This document provides a uniform set of assumptions, ground rules, and requirements that can be used in developing cost estimates for advanced nuclear power technologies. 10 refs., 8 figs., 32 tabs

  9. Marginal cost application in the power industry

    International Nuclear Information System (INIS)

    Twardy, L.; Rusak, H.

    1994-01-01

    Two kind of marginal costs, the short-run and the long-run, are defined. The former are applied in conditions when the load increase is not accompanied neither by the increase of the transmission capacity not the installed capacity while the latter assume new investments to expand the power system. The long-run marginal costs be used to forecast optimized development of the system. They contain two main components: the marginal costs of capacity and the marginal costs of energy. When the long-run marginal costs are calculated, each component is considered for particular voltage levels, seasons of the year, hours of the day - selected depending on the system reliability factor as well as on its load level. In the market economy countries the long-run marginal costs can be used for setting up the electric energy tariffs. (author). 7 refs, 11 figs

  10. User's manual for levelized power generation cost using a microcomputer

    International Nuclear Information System (INIS)

    Fuller, L.C.

    1984-08-01

    Microcomputer programs for the estimation of levelized electrical power generation costs are described. Procedures for light-water reactor plants and coal-fired plants include capital investment cost, operation and maintenance cost, fuel cycle cost, nuclear decommissioning cost, and levelized total generation cost. Programs are written in Pascal and are run on an Apple II Plus microcomputer

  11. A preliminary design and BOP cost analysis of M-C Power`s MCFC commerical unit

    Energy Technology Data Exchange (ETDEWEB)

    Chen, T.P. [Bechtel Corp, San Francisco, CA (United States)

    1996-12-31

    M-C Power Corporation plans to introduce its molten carbonate fuel cell (MCFC) market entry unit in the year 2000 for distributed and on-site power generation. Extensive efforts have been made to analyze the cell stack manufacturing costs. The major objective of this study is to conduct a detailed analysis of BOP costs based on an initial design of the market entry unit.

  12. Hidden costs of nuclear power

    International Nuclear Information System (INIS)

    England, R.W.

    1979-01-01

    Mr. England contends that these hidden costs add up to a figure much higher than those that appear in the electric utilities' profit and loss account - costs that are borne by Federal taxpayers, by nuclear industry workers, and by all those people who must share their environment with nuclear facilities. Costs he details are additional deaths and illnesses resulting from exposure to radiation, and the use of tax dollars to clean up the lethal garbage produced by those activities. He asserts that careless handling of uranium ore and mill tailings in past years has apparently resulted in serious public health problems in those mining communities. In another example, Mr. England states that the failure to isolate uranium tailings physically from their environment has probably contributed to an acute leukemia rate in Mesa County, Colorado. He mentions much of the technology development for power reactors being done by the Federal government, not by private reactor manufacturers - thus, again, hidden costs that do not show up in electric bills of customers. The back end of the nuclear fuel cycle as a place for Federally subsidized research and development is discussed briefly. 1 figure, 2 tables

  13. Imbalance costs in the Swedish system with large amounts of wind power

    Energy Technology Data Exchange (ETDEWEB)

    Carlsson, Fredrik; Neimane, Viktoria [Vattenfall Research and Development AB, Stockholm (Sweden)

    2009-07-01

    The well-known concerns about wind power are related to its intermittent nature and difficulty to make exact forecasts. The expected increase in balancing and reserve requirements due to wind power has been investigated in several studies. This paper takes the next step in studying integration of large amounts of wind power in Sweden. Several wind power producers' and corresponding balance providers' perspective is taken and their imbalance costs modeled. Larger producers having wind power spread over larger geographical areas will have lower relative costs than producers having their units concentrated within limited geographical area. Possibilities of the wind power producers to reduce the imbalance costs by acting on after sales market are exposed and compared. (orig.)

  14. Cost optimisation studies of high power accelerators

    Energy Technology Data Exchange (ETDEWEB)

    McAdams, R.; Nightingale, M.P.S.; Godden, D. [AEA Technology, Oxon (United Kingdom)] [and others

    1995-10-01

    Cost optimisation studies are carried out for an accelerator based neutron source consisting of a series of linear accelerators. The characteristics of the lowest cost design for a given beam current and energy machine such as power and length are found to depend on the lifetime envisaged for it. For a fixed neutron yield it is preferable to have a low current, high energy machine. The benefits of superconducting technology are also investigated. A Separated Orbit Cyclotron (SOC) has the potential to reduce capital and operating costs and intial estimates for the transverse and longitudinal current limits of such machines are made.

  15. Nuclear power and climate change: The cost of adaptation

    International Nuclear Information System (INIS)

    Pailiere, H.

    2012-01-01

    For more than a decade, the international community has been voicing concern over growing greenhouse gas (GHG) emissions, which are believed to be the largest contributor to global warming and more generally to climate change. According to the Intergovernmental Panel on Climate Change (IPCC), an increase in the frequency of heat waves and droughts is expected in many parts of the world, as is that of storms, flooding and cold episodes. The potential consequences of this projected climate change have prompted calls to reduce the use of fossil fuels and to promote low-carbon energy sources such as renewables and nuclear power. At the same time, there has also been growing concern that without a rapid decrease in GHG emissions, climate change could occur at such a scale that it will have a significant impact on major economic sectors including the power generation sector. Although the expanded use of renewables will reduce emissions from the power sector, it will also increase the dependence of distribution systems and electricity production on climatic conditions. Thermal power plants, such as fossil fuel and nuclear, will be affected primarily by the diminishing availability of water and the increasing likelihood of heat waves, which will have an impact on the cooling capabilities and power output of plants. In its 2012 edition of the World Energy Outlook, the IEA underlined the need to address an additional challenge, the water-energy nexus: water needs for energy production are set to grow at twice the rate of energy demands over the next decades. It has thus become clear that the availability of water for cooling will be an important criterion for assessing the viability of energy projects. Given the long operating life of nuclear reactors (60 years for Generation III designs), the possible impact of climate change on the operation and safety of nuclear power plants needs to be addressed at the design and siting stages in order to limit costly adaptation measures

  16. Regional projections of nuclear and fossil electric power generation costs

    International Nuclear Information System (INIS)

    Smolen, G.R.; Delene, J.G.; Fuller, L.C.; Bowers, H.I.

    1983-12-01

    The total busbar electric generating costs were estimated for locations in ten regions of the United States for base load nuclear and coal-fired power plants with a startup date of January 1995. A complete data set is supplied which specifies each parameter used to obtain the comparative results. When the comparison is based on reference cost parameters, nuclear- and coal-fired generation costs are found to be very close in most regions of the country. Nuclear power is favored in the South Atlantic region where coal must be transported over long distances, while coal-fired generation is favored in the Central and North Central regions where large reserves of cheaply mineable coal exist. The reference data set reflects recent electric utility construction experience. Significantly lower nuclear capital investment costs would result if regulatory reform and improved construction practices were instituted. The electric power generation costs for base load oil- and natural gas-fired plants were also estimated. These plants were found to be noncompetitive in all regions for those scenarios most likely to develop. Generation cost sensitivity to changes in various parameters was examined at a reference location. The sensitivity parameters included capital investment costs, lead times, capacity factors, costs of money, and coal and uranium prices. In addition to the levelized lifetime costs, year-by-year cash flows and revenue requirements are presented. The report concludes with an analysis of the economic merits of recycling spent fuel in light-water reactors

  17. Wind power planning: assessing long-term costs and benefits

    International Nuclear Information System (INIS)

    Kennedy, Scott

    2005-01-01

    In the following paper, a new and straightforward technique for estimating the social benefit of large-scale wind power production is presented. The social benefit is based upon wind power's energy and capacity services and the avoidance of environmental damages. The approach uses probabilistic load duration curves to account for the stochastic interaction between wind power availability, electricity demand, and conventional generator dispatch. The model is applied to potential offshore wind power development to the south of Long Island, NY. If natural gas combined cycle and integrated gasifier combined cycle (IGCC) are the alternative generation sources, wind power exhibits a negative social benefit due to its high capacity cost and the relatively low emissions of these advanced fossil-fuel technologies. Environmental benefits increase significantly if charges for CO 2 emissions are included. Results also reveal a diminishing social benefit as wind power penetration increases. The dependence of wind power benefits on CO 2 charges, and capital costs for wind turbines and IGCC plant is also discussed. The methodology is intended for use by energy planners in assessing the social benefit of future investments in wind power

  18. Electric plant cost and power production expenses 1991

    International Nuclear Information System (INIS)

    1993-01-01

    Electric Plant Cost and Power Production Expenses is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels (CNEAF); Energy Information Administration (EIA); US Department of Energy. This publication presents electric utility statistics on power production expenses and construction costs of electric generating plants. Data presented here are intended to provide information to the electric utility industry, educational institutions, Federal, State, and local governments, and the general public. These data are collected and published to fulfill data collection and dissemination responsibilities of the Energy Information Administration (EIA), as specified in the Federal Energy Administration Act (Public Law 93-275), as amended

  19. Electric plant cost and power production expenses 1990

    International Nuclear Information System (INIS)

    1992-06-01

    Electric Plant Cost and Power Production Expenses is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA); US Department of Energy. This publication presents electric utility statistics on power production expenses and construction costs of electric generating plants. Data presented here are intended to provide information to the electric utility industry, educational institutions, Federal, State, and local governments, and the general public. These data are collected and published to fulfill data collection and dissemination responsibilities of the Energy Information Administration (EIA), as specified in the Federal Energy Administration Act (Public Law 93-275), as amended

  20. Power generation scenarios for Nigeria: An environmental and cost assessment

    International Nuclear Information System (INIS)

    Gujba, H.; Mulugetta, Y.; Azapagic, A.

    2011-01-01

    Exploratory scenarios for the power sector in Nigeria are analysed in this paper using possible pathways within the Nigerian context and then compared against the Government's power expansion plan in the short to medium term. They include two fossil-fuel (FF and CCGT) and two sustainable-development-driven scenarios (SD1 and SD2). The results from the FF scenarios indicate this is the preferred outcome if the aim is to expand electricity access at the lowest capital costs. However, the annual costs and environmental impacts increase significantly as a consequence. The SD1 scenario, characterised by increased penetration of renewables, leads to a reduction of a wide range of environmental impacts while increasing the annual costs slightly. The SD2 scenario, also with an increased share of renewables, is preferred if the aim is to reduce GHG emissions; however, this comes at an increased annual cost. Both the SD1 and SD2 scenarios also show significant increases in the capital investment compared to the Government's plans. These results can be used to help inform future policy in the Nigerian electricity sector by showing explicitly the range of possible trade-offs between environmental impacts and economic costs both in the short and long terms. - Research Highlights: →The power sector in Nigeria is set to grow significantly in near future. →Power sector scenarios are constructed and studied using LCA and economic analysis methods and then compared against the Government's plans. →These include two fossil-fuel and two sustainable-development-driven scenarios. →The results explicitly show the trade-offs between environmental impacts and costs. →Following the fossil fuel paths will reduce capital costs but increase environmental impacts. The renewable energy paths will reduce some environmental impacts but increase the capital costs.

  1. Optimizing power plant cycling operations while reducing generating plant damage and costs

    Energy Technology Data Exchange (ETDEWEB)

    Lefton, S A; Besuner, P H; Grimsrud, P [Aptech Engineering Services, Inc., Sunnyvale, CA (United States); Bissel, A [Electric Supply Board, Dublin (Ireland)

    1999-12-31

    This presentation describes a method for analyzing, quantifying, and minimizing the total cost of fossil, combined cycle, and pumped hydro power plant cycling operation. The method has been developed, refined, and applied during engineering studies at some 160 units in the United States and 8 units at the Irish Electric Supply Board (ESB) generating system. The basic premise of these studies was that utilities are underestimating the cost of cycling operation. The studies showed that the cost of cycling conventional boiler/turbine fossil power plants can range from between $2,500 and $500,000 per start-stop cycle. It was found that utilities typically estimate these costs by factors of 3 to 30 below actual costs and, thus, often significantly underestimate their true cycling costs. Knowledge of the actual, or total, cost of cycling will reduce power production costs by enabling utilities to more accurately dispatch their units to manage unit life expectancies, maintenance strategies and reliability. Utility management responses to these costs are presented and utility cost savings have been demonstrated. (orig.) 7 refs.

  2. Optimizing power plant cycling operations while reducing generating plant damage and costs

    Energy Technology Data Exchange (ETDEWEB)

    Lefton, S.A.; Besuner, P.H.; Grimsrud, P. [Aptech Engineering Services, Inc., Sunnyvale, CA (United States); Bissel, A. [Electric Supply Board, Dublin (Ireland)

    1998-12-31

    This presentation describes a method for analyzing, quantifying, and minimizing the total cost of fossil, combined cycle, and pumped hydro power plant cycling operation. The method has been developed, refined, and applied during engineering studies at some 160 units in the United States and 8 units at the Irish Electric Supply Board (ESB) generating system. The basic premise of these studies was that utilities are underestimating the cost of cycling operation. The studies showed that the cost of cycling conventional boiler/turbine fossil power plants can range from between $2,500 and $500,000 per start-stop cycle. It was found that utilities typically estimate these costs by factors of 3 to 30 below actual costs and, thus, often significantly underestimate their true cycling costs. Knowledge of the actual, or total, cost of cycling will reduce power production costs by enabling utilities to more accurately dispatch their units to manage unit life expectancies, maintenance strategies and reliability. Utility management responses to these costs are presented and utility cost savings have been demonstrated. (orig.) 7 refs.

  3. User's manual for levelized power generation cost using an IBM PC

    International Nuclear Information System (INIS)

    Fuller, L.C.

    1985-06-01

    Programs for the estimation of levelized electric power generation costs using the BASIC interpreter on an IBM PC are described. Procedures for light-water reactor plants and coal-fired plants include capital investment cost, operation and maintenance cost, fuel cycle cost, nuclear decommissioning cost, and levelized total generation cost

  4. Flexible and Cost Efficient Power Consumption using Economic MPC

    DEFF Research Database (Denmark)

    Hovgaard, Tobias Gybel; Larsen, Lars F.S.; Jørgensen, John Bagterp

    2011-01-01

    the formulation of a new cost function for our proposed power management. Hereby the refrigeration system is enabled to contribute with ancillary services to the balancing power market. Since significant amounts of regulating power is needed for a higher penetration of intermittent renewable energy sources...... such as wind turbines this feature is in high demand in a future intelligent power grid (Smart Grid). Our perspective is seen from the refrigeration system but as it is demonstrated the involvement in the balancing market can be economically beneficial for the system itself while delivering crucial services...... that reduces operation costs by utilizing the thermal storage capabilities. In the study we specifically address advantages coming from daily variations in outdoor temperature and electricity prices but other aims such as peak load reduction are also considered. An important contribution of this paper is also...

  5. Too costly to matter: Economics of nuclear power for Saudi Arabia

    International Nuclear Information System (INIS)

    Ahmad, Ali; Ramana, M.V.

    2014-01-01

    Saudi Arabia has ambitious plans for nuclear power. Given this context, this paper examines the economics of nuclear power and compares it to two other sources of electricity, natural gas and solar energy. It calculates the costs of electricity generation, water desalination and the opportunity cost associated with forgone oil and gas revenues. A sensitivity analysis is included to account for variations in important parameters within the comparative cost analysis. Our results suggest that for a large range of parameters, the economics of nuclear power are not favorable in comparison with natural gas, even if the currently low domestic natural gas prices in Saudi Arabia were to rise substantially. Further, electricity from solar plants has the potential to be cheaper than nuclear power within the next decade if the rapid decline in solar energy costs in the last decade continue, i.e., before the first planned nuclear power plant would be completed. However, unless the price of oil drops substantially below current values, it would be more economically optimal to export the oil than using it for generating electricity. - Highlights: • Future projections show nuclear power is not cost effective for Saudi Arabia. • A combination of solar and natural gas could largely meet future electricity demand. • There are multiple, non-economic, motivations for Saudi Arabia's nuclear program. • Saudi Arabia would economically benefit by not using oil for electricity generation

  6. Resilient guaranteed cost control of a power system.

    Science.gov (United States)

    Soliman, Hisham M; Soliman, Mostafa H; Hassan, Mohammad F

    2014-05-01

    With the development of power system interconnection, the low-frequency oscillation is becoming more and more prominent which may cause system separation and loss of energy to consumers. This paper presents an innovative robust control for power systems in which the operating conditions are changing continuously due to load changes. However, practical implementation of robust control can be fragile due to controller inaccuracies (tolerance of resistors used with operational amplifiers). A new design of resilient (non-fragile) robust control is given that takes into consideration both model and controller uncertainties by an iterative solution of a set of linear matrix inequalities (LMI). Both uncertainties are cast into a norm-bounded structure. A sufficient condition is derived to achieve the desired settling time for damping power system oscillations in face of plant and controller uncertainties. Furthermore, an improved controller design, resilient guaranteed cost controller, is derived to achieve oscillations damping in a guaranteed cost manner. The effectiveness of the algorithm is shown for a single machine infinite bus system, and then, it is extended to multi-area power system.

  7. Evaluation of the Total Cost of Ownership of Fuel Cell-Powered Material Handling Equipment

    Energy Technology Data Exchange (ETDEWEB)

    Ramsden, T.

    2013-04-01

    This report discusses an analysis of the total cost of ownership of fuel cell-powered and traditional battery-powered material handling equipment (MHE, or more typically 'forklifts'). A number of fuel cell MHE deployments have received funding support from the federal government. Using data from these government co-funded deployments, DOE's National Renewable Energy Laboratory (NREL) has been evaluating the performance of fuel cells in material handling applications. NREL has assessed the total cost of ownership of fuel cell MHE and compared it to the cost of ownership of traditional battery-powered MHE. As part of its cost of ownership assessment, NREL looked at a range of costs associated with MHE operation, including the capital costs of battery and fuel cell systems, the cost of supporting infrastructure, maintenance costs, warehouse space costs, and labor costs. Considering all these costs, NREL found that fuel cell MHE can have a lower overall cost of ownership than comparable battery-powered MHE.

  8. Trends in nuclear power plant capital-investment cost estimates - 1976 to 1982

    International Nuclear Information System (INIS)

    Bowers, H.I.; Fuller, L.C.; Myers, M.L.

    1983-09-01

    This report describes trends in power plant capital investment cost estimates over the time period from 1976 to 1982. A review of economic parameters, inflation and escalation rates and cost of money, and a review of cost-size scaling relationships are included. Reference cost estimates are provided for light-water reactor and coal-fired electric power plants based on safety and environmental regulations in effect in January 1982. The sensitivity of the reference cost estimates to numerous economic parameters is analyzed

  9. Methodology for cost estimate in projects for nuclear power plants decommissioning

    International Nuclear Information System (INIS)

    Salij, L.M.

    2008-01-01

    The conceptual approaches to cost estimating of nuclear power plants units decommissioning projects were determined. The international experience and national legislative and regulatory basis were analyzed. The possible decommissioning project cost classification was given. It was shown the role of project costs of nuclear power plant units decommissioning as the most important criterion for the main project decisions. The technical and economic estimation of deductions to common-branch fund of decommissioning projects financing was substantiated

  10. Cost-effectiveness of power plants in Eastern Europe. An approach for estimating the cost-effectiveness of existing, retrofitted and new power plants

    International Nuclear Information System (INIS)

    Van Harmelen, T.

    1994-08-01

    In many Western European countries, power plants are replaced or retrofitted after 25 or 30 years; just continuing the operation of an old plant hardly occurs, in most cases because it is considered to be uneconomic. This implies that in many cases operating an old plant in the Western situation is more expensive than building a new one. In some cases, retrofitting the old plant is the least-cost option. In Eastern Europe very old (power) plants are kept in operation 'as long as possible'. Thirty to forty years is no exception. In the discussion on explanations of the different Eastern European practice, two arguments are often heard. The first argument concerns limited availability of financial resources in Eastern Europe as an explanation for the current lifetime extension of old, existing power plants. This argument is popular among Western European experts being their view or judgement of the situation. The second argument, advocated mostly by Eastern European experts, is that it is cheaper or more cost-effective to continue operating old, existing power plants instead of building new ones. This paper will shed some light on the validity of both arguments. First, a summary of national cost-effectiveness analysis such as applied by EFOM-ENV/GAMS will be given. Second, potential arguments pro and contra operating old plants will be summarized and discussed in terms of national cost-benefit analysis. Third, a set of modelling assumptions for appliance in EFOM-ENV/GAMS for the programme 'CO 2 reduction strategies for Eastern Europe' will be presented and discussed. Finally, some case results will be shown and preliminary conclusions will be drawn on the topic of lifetime extension of existing power plants. 2 figs., 2 tabs., 2 refs

  11. CO2 emission costs and Gas/Coal competition for power production

    International Nuclear Information System (INIS)

    Santi, Federico

    2005-01-01

    This paper demonstrates how a CO 2 emission reduction programme can change the competition between the two power production technologies which will probably dominate the future of the Italian power industry: the coal fired USC steam power plant and the natural gas fired CCGT power plant. An economic value of the CO 2 emission is calculated, in order to make the short-run-marginal-cost (or the long-run-marginal-cost). equal for both technologies, under a CO 2 emission trading scheme and following a single-plant specific CO 2 emission homogenizing approach [it

  12. Ancillary reactive power service allocation cost in deregulated markets: a methodology

    International Nuclear Information System (INIS)

    Hernandez, J. Horacio Tovar; Jimenez-Guzman, Miguel; Gutierrez-Alcaraz, Guillermo

    2005-01-01

    This paper presents a methodology to allocate reactive power costs in deregulated markets. Reactive power supply service is decomposed into voltage regulation and reactive power spinning reserve. The proposed methodology is based on sensitivities and the postage-stamp method in order to allocate the total costs service among all participants. With the purpose of achieving this goal, the system operator identifies voltage support and/or reactive power requirements, and looks out for suitable providers. One case study is presented here to illustrate the methodology over a simplified southeastern Mexican grid. (Author)

  13. Prediction of Decommissioning Cost for Kijang Research Reactor Using Power Data of DACCORD

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Yun Jeong; Jin, Hyung Gon; Park, Hee Seong; Park, Seung Kook [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    There are 3 types of cost estimate that can be used, and each have a different level of accuracy: (i) Order of magnitude estimate: One without detailed engineering data, where an estimate is prepared using scale-up or -down factors and approximate ratios. It is likely that the overall scope of the project has not been well defined. The level of accuracy expected is -30% to +50%. The cost plans to predict referring to abroad examples as decommissioning cost estimation has still not developed and been commercial method for Kijang research reactor. In Kijang research reactor case, overall scope of business isn't yet decided. Then it is supposed to estimate cost with type (i). The IAEA project, entitled 'DACCORD' (Data Analysis and Collection for Costing of Research Reactor Decommissioning) performs decommissioning costing after collecting and analyzing the information related to research reactors around the world for several years. Also decommissioning costing method development tends to increase in the each country. This paper aims to estimate preliminary decommissioning cost based on total decommissioning cost per thermal power rate of research reactor presented in DACCORD project' data which is collected by member state. In this paper, preliminary decommissioning cost is estimated based on total decommissioning cost per thermal power rate of research reactor presented in DACCORD data which is collected by member state. Although there exists a general tendency for costs to increase with increasing thermal power, the limited data available show that decommissioning costs at any given power level can vary widely, with increased variability at higher power levels. Variations in decommissioning cost for the research reactors of the same or similar thermal power are caused by differences in reactor types and design, decommissioning project scopes, country- specific unit workforce costs, and other reactor or project factors. An important factor for the

  14. Life-cycle cost assessment of seismically base-isolated structures in nuclear power plants

    International Nuclear Information System (INIS)

    Wang, Hao; Weng, Dagen; Lu, Xilin; Lu, Liang

    2013-01-01

    Highlights: • The life-cycle cost of seismic base-isolated nuclear power plants is modeled. • The change law of life-cycle cost with seismic fortification intensity is studied. • The initial cost of laminated lead rubber bearings can be expressed as the function of volume. • The initial cost of a damper can be expressed as the function of its maximum displacement and tonnage. • The use of base-isolation can greatly reduce the expected damage cost, which leads to the reduction of the life-cycle cost. -- Abstract: Evaluation of seismically base-isolated structural life-cycle cost is the key problem in performance based seismic design. A method is being introduced to address the life-cycle cost of base-isolated reinforced concrete structures in nuclear power plants. Each composition of life-cycle cost is analyzed including the initial construction cost, the isolators cost and the excepted damage cost over life-cycle of the structure. The concept of seismic intensity is being used to estimate the expected damage cost, greatly simplifying the calculation. Moreover, French Cruas nuclear power plant is employed as an example to assess its life-cycle cost, compared to the cost of non-isolated plant at the same time. The results show that the proposed method is efficient and the expected damage cost is enormously reduced because of the application of isolators, which leads to the reduction of the life-cycle cost of nuclear power plants

  15. Allocating nuclear power plant costs: an extension

    International Nuclear Information System (INIS)

    Bierman, H. Jr.

    1984-01-01

    The author modifies and extends the argument presented in the September 22, 1983 issue by Richard E. Nellis for using economic depreciation to allocate nuclear power plant costs. The two goals of his model are to charge constant real costs to consumers and to provide a fair return of .125 to investors in each period. The addition of other objectives requires further modification of the model since the schedule of revenues that are deemed to be optimum defines the depreciation schedule. 1 table

  16. Status report: Nuclear fuel operating experience in implementing the program for power generation increase at VVER NPPs of JSC concern Rosenergoatom

    International Nuclear Information System (INIS)

    Ryabinin, Y.

    2015-01-01

    The power uprate program of operating WWER-1000 plants was performed by Rosenergoatom using FA-2M and FAA-PLUS for 18-month fuel cycles. Their operation was justified at 104% of the rated power, and extension to 18-month fuel cycles was carried out at WWER-1000 units (except for Kalinin NPP-1). The analysis of actual performance data confirmed the efficiency of the actions implemented, and issues addressed related to the introduction of new fuel type, extended fuel cycles and spent nuclear fuel storage and removal

  17. CONCEPT-5 user's manual. [Power plant costs

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, C.R. II

    1979-01-01

    The CONCEPT computer code package was developed to provide conceptual capital cost estimates for nuclear-fueled and fossil-fired power plants. Cost estimates can be made as a function of plant type, size, location, and date of initial operation. The output includes a detailed breakdown of the estimate into direct and indirect costs similar to the accounting system described in document NUS--531. Cost models are currently provided in CONCEPT 5 for single- and multiunit pressurized-water reactors, boiling-water reactors, and cost-fired plants with and without flue gas desulfurization equipment.

  18. Virginia Power's vision of lower costs

    International Nuclear Information System (INIS)

    Anon.

    1997-01-01

    The top two positions in the 1996 annual league table of US nuclear production costs were taken by Surry at $11.45/MWh generated and North Anna at $12.64. Both are PWR plants operated by Virginia Power. This is part of a consistent pattern of good performance in recent years. In the late 1980s, however, the performance of these plants was very poor. The management changes which have brought about the transformation are examined. They include: setting goals; better teamwork; increased accountability of senior management for budgets; development and monitoring of performance indicators; running the nuclear division as a separate business; more effective maintenance and reduced outage costs. (UK)

  19. A Study on Cost Allocation in Nuclear Power Coupled with Desalination

    International Nuclear Information System (INIS)

    Lee, ManKi; Kim, SeungSu; Moon, KeeHwan; Lim, ChaeYoung

    2004-01-01

    As for a single-purpose desalination plant, there is no particular difficulty in computing the unit cost of the water, which is obtained by dividing the annual total costs by the output of fresh water. When it comes to a dual-purpose plant, cost allocation is needed between the two products. No cost allocation is needed in some cases where two alternatives producing the same water and electricity output are to be compared. In these cases, the consideration of the total cost is then sufficient. This study assumes MED (Multi-Effect Distillation) technology is adopted when nuclear power is coupled with desalination. The total production cost of the two commodities in dual-purpose plant can easily be obtained by using costing methods, if the necessary raw data are available. However, it is not easy to calculate a separate cost for each product, because high-pressure steam plant costs cannot be allocated to one or the other without adopting arbitrary methods. Investigation on power credit method is carried out focusing on the cost allocation of combined benefits due to dual production, electricity and water. The illustrative calculation is taken from Preliminary Economic Feasibility Study of Nuclear Desalination in Madura Island, Indonesia. The study is being performed by BATAN (National Nuclear Energy Agency), KAERI (Korean Atomic Energy Research Institute) and under support of the IAEA (International Atomic Energy Agency) started in the year 2002 in order to perform a preliminary economic feasibility in providing the Madurese with sufficient power and potable water for the public and to support industrialization and tourism in Madura Region. The SMART reactor coupled with MED is considered to be an option to produce electricity and potable water. This study indicates that the correct recognition of combined benefits attributable to dual production is important in carrying out economics of desalination coupled with nuclear power. (authors)

  20. The cost of spent fuel storage

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez S, J. R.; Palacios H, J. C.; Badillo, V.; Alonso, G., E-mail: ramon.ramirez@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2011-11-15

    Spent fuel is one of the most important issues in the nuclear industry, currently spent fuel management is been cause of great amount of research, investments, constructing repositories or constructing the necessary facilities to reprocess the fuel, and later to recycle the plutonium recovered in thermal reactors. What is the best solution?, or What is the best technology for an specific solution? Many countries have deferred the decision on selecting an option, while others works actively constructing repositories and others implementing the reprocessing facilities to recycle the plutonium obtained from nuclear spent fuel. In Mexico the nuclear power is limited to two reactors BWR type and medium size. So the nuclear spent fuel discharged has been accommodated at reactor's spent fuel pools. Originally these pools have enough capacity to accommodate spent fuel for the 40 years of designed plant operation. However currently, the plants are under a process for extended power up-rate to 20% of original power and also there are plans to extended operational life for 20 more years. Under these conditions there will not be enough room for spent fuel in the pools. (Author)

  1. A reply to “Historical construction costs of global nuclear power reactors”

    International Nuclear Information System (INIS)

    Koomey, Jonathan; Hultman, Nathan E.; Grubler, Arnulf

    2017-01-01

    present data on the overnight costs of more than half of nuclear reactors built worldwide since the beginning of the nuclear age. The authors claim that this consolidated data set offers more accurate insights than previous country-level assessments. Unfortunately, the authors make analytical choices that mask nuclear power's real construction costs, cherry pick data, and include misleading data on early experimental and demonstration reactors. For those reasons, serious students of such issues should look elsewhere for guidance about understanding the true costs of nuclear power. - Highlights: • claim to accurately assess nuclear plant costs over time. • The authors err by relying on overnight costs, which exclude interest. • The authors cherry pick data (e.g, ignoring problems with French nuclear data). • The article's cherry picked data don’t even support the article's own conclusions. • Lovering et al. is not a reliable source for costs of nuclear power.

  2. Costs related to radioactive residues from nuclear power

    International Nuclear Information System (INIS)

    1988-06-01

    The nuclear power enterprises are responsible for proper actions for safe handling and final storage of spent nuclear fuel and radioactive waste from Swedish nuclear power facilities. The most important actions are to plan, build and operate necessary plants and systems. The nuclear power enterprises have designated Swedish Nuclear Fuel and Waste Management Co., (SKB), to perform these tasks. In this report calculations concerning costs to carry out these tasks are presented. The calculations are based upon a plan prepared by SKB. The plan is described in the report. As final storage of the long lived and highly radioactive waste is planned to take place in the 21st century continuing research and development may indicate new methods which may affect system design as well as costs in a simplifying way. Plants and systems already operational are: Transport systems for radioactive waste products; A central temporary storage for spent nuclear fuel, 'CLAB'; A final storage for radioactive waste from operating nuclear facilities, 'SFR 1'. (L.F.)

  3. Cost Study for Manufacturing of Solid Oxide Fuel Cell Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Weimar, Mark R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Chick, Lawrence A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gotthold, David W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Whyatt, Greg A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-09-30

    Solid oxide fuel cell (SOFC) power systems can be designed to produce electricity from fossil fuels at extremely high net efficiencies, approaching 70%. However, in order to penetrate commercial markets to an extent that significantly impacts world fuel consumption, their cost will need to be competitive with alternative generating systems, such as gas turbines. This report discusses a cost model developed at PNNL to estimate the manufacturing cost of SOFC power systems sized for ground-based distributed generation. The power system design was developed at PNNL in a study on the feasibility of using SOFC power systems on more electric aircraft to replace the main engine-mounted electrical generators [Whyatt and Chick, 2012]. We chose to study that design because the projected efficiency was high (70%) and the generating capacity was suitable for ground-based distributed generation (270 kW).

  4. The exogenous factors affecting the cost efficiency of power generation

    International Nuclear Information System (INIS)

    Chang, D.-S.; Chen, Y.-T.; Chen, W.-D.

    2009-01-01

    This paper employs a stochastic frontier analysis (SFA) to examine cost efficiency and scale economies in Taiwan Power Company (TPC) by using the panel data covering the period of 1995-2006. In most previous studies, the efficiency estimated by the Panel Data without testing the endogeneity may bring about a biased estimator resulting from the correlation between input and individual effect. A Hausman test is conducted in this paper to examine the endogeneity of input variables and thus an appropriate model is selected based on the test result. This study finds that the power generation executes an increasing return to scale across all the power plants based on the pooled data. We also use installed capacity, service years of the power plant, and type of fuel as explanatory variable for accounting for the estimated cost efficiency of each plant by a logistic regression model to examine the factor affecting the individual efficiency estimates. The results demonstrate that the variable of installed capacity keeps a positive relationship with cost efficiency while the factor of working years has a negative relationship.

  5. Transportation cost of nuclear off-peak power for hydrogen production based on water electrolysis

    International Nuclear Information System (INIS)

    Shimizu, Saburo; Ueno, Shuichi

    2004-01-01

    The paper describes transportation cost of the nuclear off-peak power for a hydrogen production based on water electrolysis in Japan. The power could be obtainable by substituting hydropower and/or fossil fueled power supplying peak and middle demands with nuclear power. The transportation cost of the off-peak power was evaluated to be 1.42 yen/kWh when an electrolyser receives the off-peak power from a 6kV distribution wire. Marked reduction of the cost was caused by the increase of the capacity factor. (author)

  6. Capital cost models for geothermal power plants and fluid transmission systems. [GEOCOST

    Energy Technology Data Exchange (ETDEWEB)

    Schulte, S.C.

    1977-09-01

    The GEOCOST computer program is a simulation model for evaluating the economics of developing geothermal resources. The model was found to be both an accurate predictor of geothermal power production facility costs and a valid designer of such facilities. GEOCOST first designs a facility using thermodynamic optimization routines and then estimates costs for the selected design using cost models. Costs generated in this manner appear to correspond closely with detailed cost estimates made by industry planning groups. Through the use of this model, geothermal power production costs can be rapidly and accurately estimated for many alternative sites making the evaluation process much simpler yet more meaningful.

  7. Costs for frequency reserve and regulation power options in Iceland

    International Nuclear Information System (INIS)

    2005-01-01

    The price for ancillary services that ensures an efficient use of resources is equal to the marginal costs of providing these services. In an expanding hydro power system there are two optimal designs for expansion; one design is optimal when ancillary services are not to be provided and another design is optimal when these services are to be provided. The right price for ancillary services cover the net difference in costs between the two designs. The difference in design in an expanding system is specific for that particular system and hence no general number can be specified. In an expanding hydro power system, the efficient price typically covers parts of the marginal investment costs for excess capacity in turbine and generator, but no investment costs for waterways and reservoirs

  8. Electric utility power plant construction costs, 1st Edition

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    New UDI report combines historical construction costs for more than 1,000 coal, oil, gas, nuclear and geothermal units that have entered commercial operation since 1966 and projected power plant construction costs for about 400 utility-owned generating units scheduled to enter commercial operation during the next 20 years. Key design characteristics and equipment suppliers, A/E, constructor and original installed cost data. Direct construction costs without AFUDC are provided where known. Historical construction cost data are also provided for about 130 utility-owned hydroelectric, gas turbine, combined-cycle and diesel units (these data are generally for units entering service after 1980)

  9. To the calculation of reduced cost capital component for power objects

    International Nuclear Information System (INIS)

    Andryushchenko, A.I.; Larin, E.A.

    1990-01-01

    The method for calculating capitalized cost component enabling comparison of alternative arrangement variants of power plant, is suggested. It is shown that in order to realize the technical-economical estimates in power industry for determination of capitalized cost component it is necessary to take into account capital construction expenditures as well as deductions for the plant dismountling and elimination of potential accidents

  10. Power generation choices: costs, risks and externalities

    International Nuclear Information System (INIS)

    1994-01-01

    This document from OECD deals with the choices between the different means of producing electricity: supply and demand trends, power generation choices, management of development and technologies, environmental impacts and costs around energy sources. Separate abstracts were prepared for all the papers of this volume. (TEC)

  11. The future of nuclear power in France. An analysis of the costs of phasing-out

    International Nuclear Information System (INIS)

    Malischek, Raimund; Trueby, Johannes

    2014-01-01

    Nuclear power is an important pillar in electricity generation in France. However, France's nuclear power plant fleet is ageing, and the possibility of reducing its share in power generation or even a complete phaseout has been increasingly discussed. Our research therefore focuses on three questions: First, what are the costs of phasing-out nuclear power in France under different scenarios? Second, who has to bear these costs, i.e., how much of the costs will be passed on to the rest of the European power system? And third, what effect does the uncertainty regarding future nuclear policy in France have on system costs? Applying a stochastic optimization model for the European electricity system, we show that additional system costs in France of a nuclear phase-out amount up to 76 billion EURO 2010 . Additional costs are mostly borne by the French power system. Surprisingly, we find that the costs of uncertainty are rather limited. Based on our results, we conclude that a commitment regarding nuclear policy reform is only mildly beneficial in terms of system costs.

  12. Guidelines for estimating nuclear power plant decommissioning costs

    International Nuclear Information System (INIS)

    LaGuardia, T.S.; Williams, D.H.

    1989-01-01

    The objectives of the study were: (1) To develop guidelines to facilitate estimating the cost of nuclear power plant decommissioning alternatives on a plant-specific basis and to facilitate comparing estimates made by others. The guidelines are expressed in a form that could be readily adapted by technical specialists from individual utilities or by other uses. (2) To enhance the industry's credibility with decision-makes at the state and federal levels during rate/regulatory processes involving decommissioning costs. This is accomplished by providing a detailed, systematic breakdown of how decommissioning cost estimates are prepared. (3) To increase the validity, realism, and accuracy of site-specific decommissioning cost estimates. This is accomplished by pulling together the experiences and practices of several nuclear utilities and consultants in conducting past decommissioning cost estimates

  13. Cost-related model for transit rates in electric power distribution networks

    International Nuclear Information System (INIS)

    Collstrand, F.

    1994-02-01

    The planned deregulation of the swedish electrical power market will require a new structure of the electrical energy rates. In this report different models of transit rates are studied. The report includes studies of literature and a proposal to a rate structure and is made specifically for Malmoe Energi AB. The differences between various methods of calculating the transfer cost are illustrated. Further, the build-up of the tariff structure and its base elements are discussed. The costs are divided on different categories of costumers and shows the cost for each customer. The new regulations should apply simultaneously to all networks, independent of the voltage level. The transit cost should be based on a number of basic elements: capital cost, operation and maintenance, losses, measuring and administration. Capital cost and operation and maintenance should be charged as power fees, the loss cost as an energy fee and the measuring and administration cost as a fixed fee. The customer bill should be split into two parts, one for the transit cost and one for the energy usage. 15 refs., 37 tabs., 6 figs

  14. Evaluation of depreciation costs in replacement investments of nuclear power plants

    International Nuclear Information System (INIS)

    Nakada, Shoji; Takashima, Ryuta; Nagano, Koji; Kimura, Hiroshi; Madarame, Haruki

    2010-01-01

    Replacement of nuclear power plants has the possibility of affecting the management of electric power suppliers. Therefore, in the nuclear policy, a depreciation method as an equalization method, which means that part of the investment cost is accumulated as an allowance, and after the start of operation, the depreciation cost in the replacement project is equalized, has been introduced in Japan. In this paper, we evaluate the replacement of nuclear power plants by taking into account the uncertainty of operating costs and the depreciation cost in order to examine the effect of the depreciation method on the decision criteria of the replacement.We found that the equalization method is elective for inducing the acceleration of the replacement. Furthermore, we show the relationship between the uncertainty and the depreciation method. It turns out that as uncertainty increases, the difference in investment threshold between the equalization method and the existing depreciation method decreases, and that in option value increases. (author)

  15. The Economics of Nuclear Power: Is Nuclear Power a Cost-Effective Way to Tackle Climate Change

    International Nuclear Information System (INIS)

    Thomas, S.

    2009-01-01

    The role nuclear power can play in combating climate change is limited by the fact that nuclear can have little role in the transport sector, one of the two major emitters of greenhouse gases. However, nuclear power is often portrayed as the most important potential measure to reduce emissions in the other major emitter of greenhouse gases, the power generation sector. For nearly a decade, there has been talk of a 'nuclear renaissance'. Under this, a new generation of nuclear power plants, so called generation III+ designs, would revitalize ordering in markets, especially Europe and North America, that had seen no orders since the 1980s or earlier. This renaissance and the potential role of nuclear power in combating climate change raise a number of issues, including: 1) Is nuclear power the most cost-effective way to replace fossil fuel power generation? 2) Can the issues that nuclear power brings with it, including environmental impact, safety, waste disposal and weapons proliferation be dealt with effectively enough that they will not be a barrier to the use of nuclear power? 3) Are uranium resources sufficient to allow deployment of nuclear power on the scale necessary to have a significant impact on greenhouse gas emissions with existing technologies or would unproven and even more controversial technologies that use natural uranium more sparingly, such as fast reactors, be required? This paper focuses on the first question and in particular, it examines whether economic factors are behind the failure of the long-forecast 'nuclear renaissance' to materialize in Europe and North America. It examines factors such as the construction cost escalation, difficulties of finance and the cost of capital, the financial crisis of 2008/09, the delays in getting regulatory approval for the new designs, and skills and equipment shortages. It concludes that the main factors behind the delays in new orders are: 1) Poor construction experience with the only two new orders

  16. Electricity cost effects of expanding wind power and integrating energy sectors

    DEFF Research Database (Denmark)

    Rodriguez, Victor Adrian Maxwell; Sperling, Karl; Hvelplund, Frede Kloster

    2015-01-01

    Recently, questions have arisen in Denmark as to how and why public funding should be allocated to wind power producers. This is, among other reasons, due to pressure from industrial electricity consumers who want their overall energy costs lowered. Utilising existing wind power subsidies across...... conditions which could allow wind power producers to reduce their reliance on subsidies. It is found that the strategy may be effective in lowering the overall energy costs of electricity consumers. Further, it is found possible to scale up this strategy and realise benefits on a national scale....

  17. Dynamic cost control information system for nuclear power plant construction

    International Nuclear Information System (INIS)

    Wang Yongqing; Liu Wei

    1998-01-01

    The authors first introduce the cost control functions of some overseas popular project management software at present and the specific ways of cost control of nuclear power plant construction in China. Then the authors stress the necessity of cost and schedule control integration and present the concept of dynamic cost control, the design scheme of dynamic cost control information system and the data structure modeling. Based on the above, the authors can develop the system which has the functions of dynamic estimate, cash flow management and cost optimization for nuclear engineering

  18. Influence of the cost development in power station construction and operation on power station planning with special regard to the effects on electricity supply

    International Nuclear Information System (INIS)

    Krieb, K.H.; Frenzel, P.; Vogel, J.

    1974-01-01

    A survey on the present structure of thermal power facilities in the FRG is followed by a discussion of the development of power plant costs in the last few years. Also mentioned are the findings of studies of costs as a function of the power station size and the effects of the overall cost increase on the power generation costs of the last few years. Finally, a model conception for the development of power stations is presented which makes predictions about the future size of power stations and their constructional parts. (UA/AK) [de

  19. The costs of power outages: A case study from Cyprus

    International Nuclear Information System (INIS)

    Zachariadis, Theodoros; Poullikkas, Andreas

    2012-01-01

    We study the costs of electricity disruptions in Cyprus, which suffered severe power shortages in summer 2011 after an explosion that destroyed 60% of its power generating capacity. We employ both economic and engineering approaches to assess these costs. Among other calculations, we provide estimates of the value of lost load by economic sector and the hourly value of electricity by season and type of day. The results of two economic methods employed to assess welfare losses differ largely, indicating that the assessment of outage costs is associated with many uncertainties. Our calculations show that the emergency actions taken by national energy authorities in response to that accident, though not necessarily optimal, have generally been appropriate and in line with international best practices: the additional costs incurred due to these measures are lower than the economic losses avoided thanks to these actions. Preferential treatment of specific consumer types in the case of repeated power outages remains an open policy question. - Highlights: ► We evaluate the response of energy authorities to a sudden electricity crisis. ► We combine two top-down economic methods and a bottom-up engineering approach. ► We estimate the value of lost electricity by hour, day type and season. ► The response of energy authorities turned out to be effective. ► Costs of emergency actions were lower than the economic losses avoided.

  20. Technology and costs for dismantling a Swedish nuclear power plant

    International Nuclear Information System (INIS)

    1979-10-01

    Various estimates concerning the costs of decommissioning a redundant nuclear power reactor to the green fields state are given in the literature. The purpose of this study is to provide background material for the Swedish nuclear power utilities to estimate the costs and time required to dismantle an ASEA-ATOM Boiling Water Reactor. The units Oskarshamn II and Barsebeck 1, both with an installed capacity of approximately 600 MW, serve as reference plants. The time of operation before final shutdown is assumed to be 40 years. Dismantling operations are initiated one year after shutdown. When the dismantling of the plant is finished, the site is to be released for unrestricted use. The costs for dismantling and subsequent final disposal of the radioactive waste are estimated at approximately SEK 500 million (approximately US dollars 120 million) in terms of 1979 prices. The sum includes 25% contingency. The dismantling cost is equivalent to 10-15% of the installation cost of an equivalent new nuclear power plant. The exact percentage is dependent on the interest rate during the construction period. It is shown in the study that a total dismantling can be accomplished in less than five years. This report is a compilation of studies performed by ASEA-ATOM and VBB based on premises given by KBS. The reports from these studies are presented in appendices. (Auth.)

  1. Molten Salt Power Tower Cost Model for the System Advisor Model (SAM)

    Energy Technology Data Exchange (ETDEWEB)

    Turchi, C. S.; Heath, G. A.

    2013-02-01

    This report describes a component-based cost model developed for molten-salt power tower solar power plants. The cost model was developed by the National Renewable Energy Laboratory (NREL), using data from several prior studies, including a contracted analysis from WorleyParsons Group, which is included herein as an Appendix. The WorleyParsons' analysis also estimated material composition and mass for the plant to facilitate a life cycle analysis of the molten salt power tower technology. Details of the life cycle assessment have been published elsewhere. The cost model provides a reference plant that interfaces with NREL's System Advisor Model or SAM. The reference plant assumes a nominal 100-MWe (net) power tower running with a nitrate salt heat transfer fluid (HTF). Thermal energy storage is provided by direct storage of the HTF in a two-tank system. The design assumes dry-cooling. The model includes a spreadsheet that interfaces with SAM via the Excel Exchange option in SAM. The spreadsheet allows users to estimate the costs of different-size plants and to take into account changes in commodity prices. This report and the accompanying Excel spreadsheet can be downloaded at https://sam.nrel.gov/cost.

  2. Lifetime-management and lifetime-extension at PAKS nuclear power plant

    International Nuclear Information System (INIS)

    Katona, Tamas; Ratkai, Sandor; Janosi, Agnes Biro

    2002-01-01

    Paks Nuclear Power Plant provides 38-40% of domestic generation at lowest price. It has an important energy-policy role in Hungary. NPP Paks shall be a decisive and perspectively permanent element of the domestic electricity generation during the next two decades, which shall be ensured by plant safe operation, the lifetime extension and power uprating. Paks Nuclear Power Plant investigated the nuclear power plant's lifetime extension possibilities and alternatives, as well as technical and business feasibility of such alternatives. The feasibility study is based on the evaluation of a representative set of systems, structures and components, operational, test, in-service inspection and maintenance practice, experience and findings of the Periodic Safety Review. The most important results of this study showing the feasibility of 20 years lifetime extension is summarised in the paper. It was found that there are no technical or safety issues or limits, which may inhibit the operation of the Nuclear Power Plant Paks up to 50 years. In case of most systems and equipment the recent monitoring, maintenance and regular reconstruction practice of the NPP Paks allows the lifetime extension without outstanding cost. Replacement or reconstruction of a few equipment and systems requires significant investment costs. Material of reactor vessels of VVER/213 incorporated at Paks, compared to vessels of the similar units, is less sensitive to the embrittlement. At units 3-4 reactor vessels do not require any measure, consequently, any additional cost, even in case of a lifetime of 50 years. At unit 2 to extend the lifetime of the reactor vessel, only heating-up of emergency core cooling tanks is needed in order to decrease thermal stress levels caused by pressure thermal shock (PST) transients. For this purpose cost-effective technical solutions are available. At unit 1, beside the heating-up of the emergency core cooling tanks annealing of the welded joint No. 5/6 close to the

  3. Distribution of costs induced by the integration of RES-E power

    International Nuclear Information System (INIS)

    Barth, Ruediger; Weber, Christoph; Swider, Derk J.

    2008-01-01

    This article focuses on the distribution of costs induced by the integration of electricity generation from renewable energy sources (RES-E). The treatment to distribute these costs on different market actors is crucial for its development. For this purpose, individual actors of electricity markets and several cost categories are identified. According to the defined cost structure, possible treatments to distribute the individual cost categories on different relevant actors are described. Finally, an evaluation of the cost distribution treatments based on an economic analysis is given. Economic efficiency recommends that clearly attributable (shallow) grid connection as well as (deep) grid costs are charged to the corresponding RES-E producer and that the RES-E producers are also charged the regulating power costs. However, deep grid integration costs should be updated to reflect evolving scarcities. Also regulating power costs should reflect actual scarcity and thus be symmetric and based on real-time prices, taking into account the overall system imbalance. Moreover, the time span between the closure of the spot market and actual delivery should be chosen as short as possible to enable accurate RES-E production forecasts

  4. Probabilistic cost estimating of nuclear power plant construction projects

    International Nuclear Information System (INIS)

    Finch, W.C.; Perry, L.W.; Postula, F.D.

    1978-01-01

    This paper shows how to identify and isolate cost accounts by developing probability trees down to component levels as justified by value and cost uncertainty. Examples are given of the procedure for assessing uncertainty in all areas contributing to cost: design, factory equipment pricing, and field labor and materials. The method of combining these individual uncertainties is presented so that the cost risk can be developed for components, systems and the total plant construction project. Formats which enable management to use the probabilistic cost estimate information for business planning and risk control are illustrated. Topics considered include code estimate performance, cost allocation, uncertainty encoding, probabilistic cost distributions, and interpretation. Effective cost control of nuclear power plant construction projects requires insight into areas of greatest cost uncertainty and a knowledge of the factors which can cause costs to vary from the single value estimates. It is concluded that probabilistic cost estimating can provide the necessary assessment of uncertainties both as to the cause and the consequences

  5. The future of nuclear power in France: an analysis of the costs of phasing-out

    International Nuclear Information System (INIS)

    Malischek, Raimund; Trüby, Johannes

    2016-01-01

    Nuclear power is an important pillar in electricity generation in France. However, the French nuclear power plant fleet is ageing, and the possibility of reducing the technology's share in power generation or even a complete phase-out has been increasingly discussed. This paper focuses on three inter-related questions: First, what are the costs of phasing-out nuclear power in France? Second, who has to bear these costs, i.e., how much of the costs will be passed on to the rest of the European power system? And third, what effect does the uncertainty regarding future nuclear policy in France have on system costs? Applying a stochastic optimization model for the European electricity system, the analysis showed that additional system costs in France of a nuclear phase-out amount up to 76 billion €_2_0_1_0. Additional costs are mostly borne by the French power system. Surprisingly, the analysis found that the costs of uncertainty are rather limited. Based on the results, it can be concluded that a commitment regarding nuclear policy reform is only mildly beneficial in terms of system cost savings. - Highlights: • Analysis of different nuclear policy and phase-out scenarios in France. • Nuclear policy uncertainty in France is treated using stochastic programming. • Costs of a nuclear phase-out in France are significant, amounting up to 76 bill €. • Costs of a phase-out are hardly passed on to the rest of the European power system. • Costs of uncertainty are low, implying little benefit of nuclear policy commitment.

  6. Market power and state costs of HIV/AIDS drugs.

    Science.gov (United States)

    Leibowitz, Arleen A; Sood, Neeraj

    2007-03-01

    We examine whether U.S. states can use their market power to reduce the costs of supplying prescription drugs to uninsured and underinsured persons with HIV through a public program, the AIDS Drug Assistance Program (ADAP). Among states that purchase drugs from manufacturers and distribute them directly to clients, those that purchase a greater volume pay lower average costs per prescription. Among states depending on retail pharmacies to distribute drugs and then claiming rebates from manufacturers, those that contract with smaller numbers of pharmacy networks have lower average costs. Average costs per prescription do not differ between the two purchase methods.

  7. Offshore wind energy storage concept for cost-of-rated-power savings

    International Nuclear Information System (INIS)

    Qin, Chao; Saunders, Gordon; Loth, Eric

    2017-01-01

    Highlights: •Investigated CAES + HPT system concept for offshore wind energy; •Validated cost model for offshore wind farm including CAPEX and OPEX items; •Quantified cost-of-rated-power savings associated with CAES + HPT concept; •Estimated savings of 21.6% with CAES + HPT for a sample $2.92 billion project. -- Abstract: The size and number of off-shore wind turbines over the next decade is expected to rapidly increase due to the high wind energy potential and the ability of such farms to provide utility-scale energy. In this future, inexpensive and efficient on-site wind energy storage can be critical to address short-time (hourly) mismatches between wind supply and energy demand. This study investigates a compressed air energy storage (CAES) and hydraulic power transmission (HPT) system concept. To assess cost impact, the NREL Cost and Scaling Model was modified to improve accuracy and robustness for offshore wind farms with large turbines. Special attention was paid to the support structure, installation, electrical interface and connections, land leasing, and operations and maintenance cost items as well as specific increased/reduced costs reductions associated with CAES + HPT systems. This cost model was validated and applied to a sample $2.92 billion project Virginia Offshore case It was found that adaption of CAES + HPT can lead to a substantial savings of 21.6% of this 20-year lifetime cost by dramatically reducing capital and operating cost of the generator and power transmission components. However, there are several additional variables that can impact the off-shore energy policy and planning for this new CAES + HPT concept. Furthermore, these cost-savings are only first-order estimates based on linear mass-cost relationships, and thus detailed engineering and economic analysis are recommended.

  8. Management information system for cost-schedule integration control for nuclear power projects

    International Nuclear Information System (INIS)

    Liu Wei; Wang Yongqing; Tian Li

    2001-01-01

    Based on the project management experience abroad and at home, a cost-schedule integration control model was developed to improve nuclear power project management. The model integrates cost data with the scheduling data by unity coding to efficiently implement cost-schedule integration control on line. The software system architecture and database is designed and implemented. The system functions include estimating and forecasting dynamically cash flow, scheduling and evaluating deviation from the cost-schedule plan, etc. The research and development of the system should improve the architecture of computer integrated management information systems for nuclear power projects in China

  9. The Potential for Low-Cost Concentrating Solar Power Systems

    International Nuclear Information System (INIS)

    Price, Henry W.; Carpenter, Stephen

    1999-01-01

    Concern over the possibility of global climate change as a result of anthropogenic greenhouse gas buildup in the atmosphere is resulting in increased interest in renewable energy technologies. The World Bank recently sponsored a study to determine whether solar thermal power plants can achieve cost parity with conventional power plants. The paper reviews the conclusions of that study

  10. U.S. Nuclear Power Plant Operating Cost and Experience Summaries

    International Nuclear Information System (INIS)

    Reid, RL

    2003-01-01

    The ''U.S. Nuclear Power Plant Operating Cost and Experience Summaries'' (NUREG/CR-6577, Supp. 2) report has been prepared to provide historical operating cost and experience information on U.S. commercial nuclear power plants during 2000-2001. Costs incurred after initial construction are characterized as annual production costs, which represent fuel and plant operating and maintenance expenses, and capital expenditures related to facility additions/modifications, which are included in the plant capital asset base. As discussed in the report, annual data for these two cost categories were obtained from publicly available reports and must be accepted as having different degrees of accuracy and completeness. Treatment of inconclusive and incomplete data is discussed. As an aid to understanding the fluctuations in the cost histories, operations summaries for each nuclear unit are provided. The intent of these summaries is to identify important operating events; refueling, major maintenance, and other significant outages; operating milestones; and significant licensing or enforcement actions. Information used in the summaries is condensed from operating reports submitted by the licensees, the Nuclear Regulatory Commission (NRC) database for enforcement actions, and outage reports

  11. Cost for the radioactive wastes from nuclear power

    International Nuclear Information System (INIS)

    1989-06-01

    The future cost for handling, storing and disposing of radioactive wastes from the Swedish nuclear power plants are calculated in this report. The following plants and systems are already operating: - Transportsystem for radioactive wastes. - A control spent fuel intermediate storage plant. - A repository for low and medium level wastes. These are planned: - A treatment plant for used fuels. A repository for high-level wastes and repository for decommissioning wastes. The costs include Rand D and decommissioning. Total future costs from 1990 are estimated to be 43 billion SEK (6,5 billion dollars), during 60 years. Up to 1990 7,4 billion SEK (1,1 billion dollars) have been spent. (L.E.)

  12. Effects of internalising external production costs in a North European power market

    International Nuclear Information System (INIS)

    Munksgaard, J.; Ramskov, J.

    2002-01-01

    The aim of integrating national power markets is to improve the overall efficiency thereby making a potential for reducing electricity prices. However, efficiency is not necessarily improved if external environmental protection costs are neglected. In this paper, we analyse the effects of regulating an integrated power market by using environmental producer taxes based on external production costs. The analysis is based on an empirical equilibrium model for the North European power market. The results show that internalising costs will increase electricity producer prices by 40-50% in the period from 1995 to 2020. Further, demand for electricity will be reduced by 10%. We conclude, however, that in order to achieve the national Kyoto targets of reducing CO 2 emissions, further regulation is needed, such as national CO 2 taxes or cost efficient mechanisms like tradeable permits and joint implementation. (author)

  13. Evaluation of acoustic resonance at branch section in main steam line. Part 1. Effects of steam wetness on acoustic resonance

    International Nuclear Information System (INIS)

    Uchiyama, Yuta; Morita, Ryo

    2011-01-01

    The power uprating of the nuclear power plant (NPP) is conducted in United States, EU countries and so on, and also is planned in Japan. However, the degradation phenomena such as flow-induced vibration and wall thinning may increase or expose in the power uprate condition. In U.S. NPP, the dryer had been damaged by high cycle fatigue due to acoustic-induced vibration under a 17% extended power uprating (EPU) condition. This is caused by acoustic resonance at the stub pipes of safety relief valves (SRVs) in the main steam lines (MSL). Increased velocity by uprating excites the pressure fluctuations and makes large amplitude resonance. To evaluate the acoustic resonance at the stub pipes of SRVs in actual BWR, it is necessary to clarify the acoustic characteristics in steam flow. Although there are several previous studies about acoustic resonance, most of them are not steam flow but air flow. Therefore in this study, to investigate the acoustic characteristics in steam flow, we conducted steam flow experiments in each dry and wet steam conditions, and also nearly saturated condition. We measured pressure fluctuation at the top of the single stub pipe and in main steam piping. As a result, acoustic resonance in dry steam flow could be evaluated as same as that in air flow. It is clarified that resonance amplitude of fluctuating pressure at the top of the stub pipe in wet steam was reduced to one-tenth compared with that in dry. (author)

  14. Cost estimation of a standalone photovoltaic power system in remote areas of Sarawak, Malaysia

    International Nuclear Information System (INIS)

    Jakhrani, A.Q.; Othman, A.K.; Rigit, A.R.H.; Samo, S.R.

    2012-01-01

    This paper aims to estimate the anticipated costs incurred from a standalone solar photovoltaic power system for the supply of electricity to the rural community in Sarawak, Malaysia. The life cycle cost analysis with net present value technique was employed for the evaluation of cost system. It was found that purchasing of solar photovoltaic components and the system installation cost will contribute 63% of the total investment and future anticipated costs will add to the remaining. Recurring cost will make 25% and components replacements 75% of future anticipated costs. It was discovered that the power generated from the solar photovoltaic system would be 38 times more expensive than electricity produced from the conventional sources. However, its installation in remote areas could be favourable where the grid-connected power supply is not accessible. (author)

  15. Evaluation of actual costs of power sources and effects on balance sheets of electric utilities

    International Nuclear Information System (INIS)

    Matsuo, Yuji; Yamaguchi, Yuji; Murakami, Tomoko

    2013-01-01

    After the Fukushima nuclear accident, almost all nuclear power stations continued to stop operation and sharp increase of purchase costs of fossil fuels forced some electric utilities to suffer a deficit. This article presented quantitative analysis of effects of present state on power costs and balance sheets of electric utilities. Levelized costs of electricity increased from 8.6 ¥/kWh (2010) to 11.6 ¥/kWh (2011) and 12.6 ¥/kWh (2012). Total power costs increased from 7.5 Trillion¥(2010) to 9.5 Trillion¥(2011). Due to increase of cost of fossil fuel compensated for nuclear power, electric utilities suffered a net loss of 0.8 Trillion¥ and decreased surplus to 2.5 Trillion¥ in 2011. Net loss of 1.3 Trillion¥ and surplus of 1.2 Trillion¥ was estimated for 2012. This state was beyond the limit of utilities' efforts to reduce costs and uncertain share of power sources became a great risk. Future share of power sources should be judged appropriately from various standpoints (costs, stable supply, energy security and national economic growth) and early public dissemination of new philosophy on share of power sources was highly required. (T. Tanaka)

  16. Integrated approach to optimize operation and maintenance costs for operating nuclear power plants

    International Nuclear Information System (INIS)

    2006-06-01

    In the context of increasingly open electricity markets and the 'unbundling' of generating companies from former utility monopolies, an area of major concern is the economic performance of the existing fleet of nuclear power plants. Nuclear power, inevitably, must compete directly with other electricity generation sources. Coping with this competitive pressure is a challenge that the nuclear industry should meet if the nuclear option is to remain a viable one. This competitive environment has significant implications for nuclear plant operations, including, among others, the need for the more cost effective management of plant activities, and the greater use of analytical tools to balance the costs and benefits of proposed activities, in order to optimize operation and maintenance costs, and thus insure the economic competitiveness of existing nuclear power plants. In the framework of the activities on Nuclear Economic Performance Information System (NEPIS), the IAEA embarked in developing guidance on optimization of operation and maintenance costs for nuclear power plants. The report was prepared building on the fundamental that optimization of operation and maintenance costs of a nuclear power plant is a key component of a broader integrated business strategic planning process, having as overall result achievement of organization's business objectives. It provides advice on optimization of O and M costs in the framework of strategic business planning, with additional details on operational planning and controlling. This TECDOC was elaborated in 2004-2005 in the framework of the IAEA's programme on Nuclear Power Plant Operating Performance and Life Cycle Management, with the support of two consultants meetings and one technical meeting and based on contributions provided by participants. It can serve as a useful reference for the management and operation staff within utilities, nuclear power plant operators and regulators and other organizations involved in

  17. Impacts on irrigated agriculture of changes in electricity costs resulting from Western Area Power Administration's power marketing alternatives

    International Nuclear Information System (INIS)

    Edwards, B.K.; Flaim, S.J.; Howitt, R.E.; Palmer, S.C.

    1995-03-01

    Irrigation is a major factor in the growth of US agricultural productivity, especially in western states, which account for more than 85% of the nation's irrigated acreage. In some of these states, almost all cropland is irrigated, and nearly 50% of the irrigation is done with electrically powered pumps. Therefore, even small increases in the cost of electricity could have a disproportionate impact on irrigated agriculture. This technical memorandum examines the impacts that could result from proposed changes in the power marketing programs of the Western Area Power Administration's Salt Lake City Area Office. The changes could increase the cost of power to all Western customers, including rural municipalities and irrigation districts that rely on inexpensive federal power to pump water. The impacts are assessed by translating changes in Western's wholesale power rate into changes in the cost of pumping water as an input for agricultural production. Farmers can adapt to higher electricity prices in many ways, such as (1) using different pumping fuels, (2) adding workers and increasing management to irrigate more efficiently, and (3) growing more drought-tolerant crops. This study projects several responses, including using less groundwater and planting fewer waterintensive crops. The study finds that when dependence on Western's power is high, the cost of power can have a major effect on energy use, agricultural practices, and the distribution of planted acreage. The biggest percentage changes in farm income would occur (1) in Nevada and Utah (however, all projected changes are less than 2% of the baseline) and (2) under the marketing alternatives that represent the lowest capacity and energy offer considered in Western's Electric Power Marketing Environmental Impact Statement. The aggregate impact on farm incomes and the value of total farm production would be much smaller than that suggested by the changes in water use and planted acreage

  18. User manual for PACTOLUS: a code for computing power costs.

    Energy Technology Data Exchange (ETDEWEB)

    Huber, H.D.; Bloomster, C.H.

    1979-02-01

    PACTOLUS is a computer code for calculating the cost of generating electricity. Through appropriate definition of the input data, PACTOLUS can calculate the cost of generating electricity from a wide variety of power plants, including nuclear, fossil, geothermal, solar, and other types of advanced energy systems. The purpose of PACTOLUS is to develop cash flows and calculate the unit busbar power cost (mills/kWh) over the entire life of a power plant. The cash flow information is calculated by two principal models: the Fuel Model and the Discounted Cash Flow Model. The Fuel Model is an engineering cost model which calculates the cash flow for the fuel cycle costs over the project lifetime based on input data defining the fuel material requirements, the unit costs of fuel materials and processes, the process lead and lag times, and the schedule of the capacity factor for the plant. For nuclear plants, the Fuel Model calculates the cash flow for the entire nuclear fuel cycle. For fossil plants, the Fuel Model calculates the cash flow for the fossil fuel purchases. The Discounted Cash Flow Model combines the fuel costs generated by the Fuel Model with input data on the capital costs, capital structure, licensing time, construction time, rates of return on capital, tax rates, operating costs, and depreciation method of the plant to calculate the cash flow for the entire lifetime of the project. The financial and tax structure for both investor-owned utilities and municipal utilities can be simulated through varying the rates of return on equity and debt, the debt-equity ratios, and tax rates. The Discounted Cash Flow Model uses the principal that the present worth of the revenues will be equal to the present worth of the expenses including the return on investment over the economic life of the project. This manual explains how to prepare the input data, execute cases, and interpret the output results. (RWR)

  19. User manual for PACTOLUS: a code for computing power costs

    International Nuclear Information System (INIS)

    Huber, H.D.; Bloomster, C.H.

    1979-02-01

    PACTOLUS is a computer code for calculating the cost of generating electricity. Through appropriate definition of the input data, PACTOLUS can calculate the cost of generating electricity from a wide variety of power plants, including nuclear, fossil, geothermal, solar, and other types of advanced energy systems. The purpose of PACTOLUS is to develop cash flows and calculate the unit busbar power cost (mills/kWh) over the entire life of a power plant. The cash flow information is calculated by two principal models: the Fuel Model and the Discounted Cash Flow Model. The Fuel Model is an engineering cost model which calculates the cash flow for the fuel cycle costs over the project lifetime based on input data defining the fuel material requirements, the unit costs of fuel materials and processes, the process lead and lag times, and the schedule of the capacity factor for the plant. For nuclear plants, the Fuel Model calculates the cash flow for the entire nuclear fuel cycle. For fossil plants, the Fuel Model calculates the cash flow for the fossil fuel purchases. The Discounted Cash Flow Model combines the fuel costs generated by the Fuel Model with input data on the capital costs, capital structure, licensing time, construction time, rates of return on capital, tax rates, operating costs, and depreciation method of the plant to calculate the cash flow for the entire lifetime of the project. The financial and tax structure for both investor-owned utilities and municipal utilities can be simulated through varying the rates of return on equity and debt, the debt-equity ratios, and tax rates. The Discounted Cash Flow Model uses the principal that the present worth of the revenues will be equal to the present worth of the expenses including the return on investment over the economic life of the project. This manual explains how to prepare the input data, execute cases, and interpret the output results with the updated version of PACTOLUS. 11 figures, 2 tables

  20. Transmission cost allocation based on power flow tracing considering reliability benefit

    International Nuclear Information System (INIS)

    Leepreechanon, N.; Singharerg, S.; Padungwech, W.; Nakawiro, W.; Eua-Arporn, B.; David, A.K.

    2007-01-01

    Power transmission networks must be able to accommodate the continuously growing demand for reliable and economical electricity. This paper presented a method to allocate transmission use and reliability cost to both generators and end-consumers. Although transmission cost allocation methods change depending on the local context of the electric power industry, there is a common principle that transmission line capacity should be properly allocated to accommodate actual power delivery with an adequate reliability margin. The method proposed in this paper allocates transmission embedded cost to both generators and loads in an equitable manner, incorporating probability indices to allocate transmission reliability margin among users in both supply and demand sides. The application of the proposed method was illustrated using Bialek's tracing method on a multiple-circuit, six-bus transmission system. Probabilistic indices known as the transmission internal reliability margin (TIRM) and transmission external reliability margin (TERM) decomposed from the transmission reliability margin (TRM) were introduced, making true cost of using overall transmission facilities. 6 refs., 11 tabs., 5 figs

  1. Financialization across the Pacific: Manufacturing cost ratios, supply chains and power

    OpenAIRE

    Froud, Julie; Johal, Sukhdev; Leaver, Adam; Williams, Karel

    2014-01-01

    This article argues that thirty years ago favourable cost conditions helped build productive power in Asia, whereas now US financial power drives and benefits from low labour costs in China, using the very different supply chain positions of Apple Inc. and Foxconn International Holdings (FIH) as examples. In the first section, the authors bring together the literatures on financialization and global supply chains to contextualise the pressures and outcomes discussed. A temporal dimension is a...

  2. Cost/benefit assessment in electric power systems

    International Nuclear Information System (INIS)

    Oteng-Adjei, J.

    1990-01-01

    The basic function of a modern power system is to satisfy the system load requirements as economically as possible and with a reasonable assurance of continuity and quality. The question of what is reasonable can be examined in terms of the costs and the worth to the consumer associated with providing an adequate supply. The process of preparing reliability worth estimates based on customer cost-of-interruption data is presented. These data can be derived for a particular utility service area and are used to determine appropriate customer damage functions. These indicators can be used with the basic loss of energy expectation (LOEE) index to obtain a factor that can be utilized to relate the customer losses to the worth of electric service reliability. This factor is designated as the interrupted energy assessment rate (IEAR). The developed IEAR values can be utilized in both generating capacity and composite generation and transmission system assessment. Methods for using these estimates in power system optimization at the planning stages are described and examples are used to illustrate the procedures. 106 refs., 77 figs., 64 tabs

  3. Development of the fuel-cycle costs in nuclear power stations with light-water reactors

    International Nuclear Information System (INIS)

    Brosch, R.; Moraw, G.; Musil, G.; Schneeberger, M.

    1976-01-01

    The authors investigate the fuel-cycle costs in nuclear power stations with light-water reactors in the Federal Republic of Germany in the years 1966 to 1976. They determine the effect of the price development for the individual components of the nuclear fuel cycle on the fuel-cycle costs averaged over the whole power station life. Here account is taken also of inflation rates and the change in the DM/US $ parity. In addition they give the percentage apportionment of the fuel-cycle costs. The authors show that real fuel-cycle costs for nuclear power stations with light-water reactors in the Federal Republic of Germany have risen by 11% between 1966 and 1976. This contradicts the often repeated reproach that fuel costs in nuclear power stations are rising very steeply and are no longer competitive. (orig.) [de

  4. Introduction to the methods of estimating nuclear power generating costs

    Energy Technology Data Exchange (ETDEWEB)

    1961-11-01

    The present report prepared by the Agency with the guidance and assistance of a panel of experts from Member States, the names of whom will be found at the end of this report, represents the first step in the methods of cost evaluation. The main objectives of the report are: (1) The preparation of a full list of the cost items likely to be encountered so that the preliminary estimates for a given nuclear power system can be relied upon in deciding on its economic merits. (2) A survey of the methods currently used for the estimation of the generating costs of the power produced by a nuclear station. The survey is intended for a wide audience ranging from engineers to public officials with an interest in the prospects of nuclear power. An attempt has therefore been made to refrain from detailed technical discussions in order to make the presentation easily understandable to readers with only a very general knowledge of the principles of nuclear engineering. 3 figs, tabs.

  5. Introduction to the methods of estimating nuclear power generating costs

    International Nuclear Information System (INIS)

    1961-01-01

    The present report prepared by the Agency with the guidance and assistance of a panel of experts from Member States, the names of whom will be found at the end of this report, represents the first step in the methods of cost evaluation. The main objectives of the report are: (1) The preparation of a full list of the cost items likely to be encountered so that the preliminary estimates for a given nuclear power system can be relied upon in deciding on its economic merits. (2) A survey of the methods currently used for the estimation of the generating costs of the power produced by a nuclear station. The survey is intended for a wide audience ranging from engineers to public officials with an interest in the prospects of nuclear power. An attempt has therefore been made to refrain from detailed technical discussions in order to make the presentation easily understandable to readers with only a very general knowledge of the principles of nuclear engineering. 3 figs, tabs

  6. A Deterministic and Probabilistic Cost Estimate for Nuclear Power Plants

    International Nuclear Information System (INIS)

    Ha, Gag Kyeon; Kwon, Jong Jooh

    2005-01-01

    There are many cost estimate methodologies for some future projects. Revenue Requirement Method (RRM), Cost/Benefit Ratio method, Return on Investment, Pay Back Period Method. etc. This paper uses the RRM method which is the amount of revenue that must be collected from customers to compensate a utility for all expenditures associated with implementing an alternative decision involving money. This RRM can be combined with a random sampling statistical simulation computer program to calculated the Probability Distribution Functions(PDF) of the cost elements for generating cost. EPRI developed this combined statistical techniques into RRM, named Statistical Revenue Requirement Method(SRRM). The statistical technique is a random sampling statistical simulation. The simulation tool is usually Monte Carlo sampling, Latin Latin Hypercube sampling, etc. SRRM is used to estimating for future power plants, apartments, hospital, marketing, etc. In this paper, RRM calculation and SRRM simulation have been practiced for PWR1400MWe nuclear power plants

  7. Technology and costs for decommissioning the Swedish nuclear power plants

    International Nuclear Information System (INIS)

    1986-05-01

    The study shows that, from the viewpoint of radiological safety, a nuclear power plant can be dismantled immediately after it has been shut down and the fuel has been removed, which is estimated to take about one year. Most of the equipment that will be used in decommissioning is already available and is used routinely in maintenance and rebuilding work at the nuclear power plants. Special equipment need only be developed for dismantlement of the reactor vessel and for demolishing of heavy concrete structures. The dismantling of a nuclear power plant can be accomplished in about five years, with an average labour force of about 200 men. The maximum labour force required for Ringhals 1 has been estimated at about 500 men during the first years, when active systems are being dismantled in a number of fronts in the plant. During the last years when the buildings are being demolished, approximately 50 men are required. In order to limit the labour requirement and the dose burden to the personnel, the material is taken out in as large pieces as possible. The cost of decommissioning a boiling water reactor (BWR) of the size of Ringhals 1 has been estimated to be about MSEK 540 in January 1986 prices, and for a pressurized water reactor (PWR, Ringhals 2) about MSEK 460. The cost for the other Swedish nuclear power plants lie in the range of MSEK 410-760. These are the direct cost for the decommissioning work, to which must be added the costs of transportation and disposal of the decommissioning waste, about 100 000 m/sup3/. These costs have been estimated to be about MSEK 600 for the 12 Swedish reactors. (author)

  8. Impact of environmental cost on economics of thermal power plant. Paper no. IGEC-1-007

    International Nuclear Information System (INIS)

    Chandra, H.; Kaushik, S.C.; Chandra, A.

    2005-01-01

    Cost analysis per unit of power generation have been performed for coal based thermal power plant situated in Dadri (UP) for Indian and imported coal from Australia and America. In our study it has been found that it is better to use imported coal in Indian thermal power plants with advantages like low environmental, investment and total cost per unit of power generation. The effect of percent excess air and plant load factor on total cost per unit of power generation is also analyzed. (author)

  9. Reference costs for power generation; Couts de reference de la production electrique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-12-01

    The first part of the 2003 study of reference costs for power generation has been completed. It was carried out by the General Directorate for Energy and Raw Materials (DGEMP) of the French Ministry of the Economy, Finance and Industry, with the collaboration of power-plant operators, construction firms and many other experts. A Review Committee of experts including economists (Forecasting Department, French Planning Office), qualified public figures, representatives of power-plant construction firms and operators, and non-governmental organization (NGO) experts, was consulted in the final phase. The study examines the costs of power generated by different methods (i.e. nuclear and fossil-fuel [gas-, coal-, and oil-fired] power plants) in the context of an industrial operation beginning in the year 2015. - The second part of the study relating to decentralized production methods (wind, photovoltaic, combined heat and power) is still in progress and will be presented at the beginning of next year. - 1. Study approach: The study is undertaken mainly from an investor's perspective and uses an 8% discount rate to evaluate the expenses and receipts from different years. In addition, the investment costs are considered explicitly in terms of interest during construction. - 2. Plant operating on a full-time basis (year-round): The following graph illustrates the main conclusions of the study for an effective operating period of 8000 hours. It can be seen that nuclear is more competitive than the other production methods for a year-round operation with an 8% discount rate applied to expenses. This competitiveness is even better if the costs related to greenhouse-gas (CO{sub 2}) emission are taken into account in estimating the MWh cost price. Integrating the costs resulting from CO{sub 2} emissions by non-nuclear fuels (gas, coal), which will be compulsory as of 2004 with the transposition of European directives, increases the total cost per MWh of these power generation

  10. Reference costs for power generation; Couts de reference de la production electrique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-12-01

    The first part of the 2003 study of reference costs for power generation has been completed. It was carried out by the General Directorate for Energy and Raw Materials (DGEMP) of the French Ministry of the Economy, Finance and Industry, with the collaboration of power-plant operators, construction firms and many other experts. A Review Committee of experts including economists (Forecasting Department, French Planning Office), qualified public figures, representatives of power-plant construction firms and operators, and non-governmental organization (NGO) experts, was consulted in the final phase. The study examines the costs of power generated by different methods (i.e. nuclear and fossil-fuel [gas-, coal-, and oil-fired] power plants) in the context of an industrial operation beginning in the year 2015. - The second part of the study relating to decentralized production methods (wind, photovoltaic, combined heat and power) is still in progress and will be presented at the beginning of next year. - 1. Study approach: The study is undertaken mainly from an investor's perspective and uses an 8% discount rate to evaluate the expenses and receipts from different years. In addition, the investment costs are considered explicitly in terms of interest during construction. - 2. Plant operating on a full-time basis (year-round): The following graph illustrates the main conclusions of the study for an effective operating period of 8000 hours. It can be seen that nuclear is more competitive than the other production methods for a year-round operation with an 8% discount rate applied to expenses. This competitiveness is even better if the costs related to greenhouse-gas (CO{sub 2}) emission are taken into account in estimating the MWh cost price. Integrating the costs resulting from CO{sub 2} emissions by non-nuclear fuels (gas, coal), which will be compulsory as of 2004 with the transposition of European directives, increases the total cost per MWh of these power

  11. Danish wind power export and cost

    Energy Technology Data Exchange (ETDEWEB)

    Lund, H.; Hvelplund, F.; Alberg OEstergaard, P. (and others)

    2010-02-15

    In a normal wind year, Danish wind turbines generate the equivalent of approx. 20 percent of the Danish electricity demand. This paper argues that only approx. 1 percent of the wind power production is exported. The rest is used to meet domestic Danish electricity demands. The cost of wind power is paid solely by the electricity consumers and the net influence on consumer prices was as low as 1-3 percent on average in the period 2004-2008. In 2008, the net influence even decreased the average consumer price, although only slightly. In Denmark, 20 percent wind power is integrated by using both local resources and international market mechanisms. This is done in a way which makes it possible for our neighbouring countries to follow a similar path. Moreover, Denmark has a strategy to raise this share to 50 percent and the necessary measures are in the process of being implemented. Recently, a study made by the Danish think tank CEPOS claimed the opposite, i.e. that most of the Danish wind power has been exported in recent years. However, this claim is based on an incorrect interpretation of statistics and a lack of understanding of how the international electricity markets operate. Consequently, the results of the CEPOS study are in general not correct. Moreover, the CEPOS study claims that using wind turbines in Denmark is a very expensive way of reducing CO{sub 2} emissions and that this is the reason for the high energy taxes for private consumers in Denmark. These claims are also misleading. The cost of CO{sub 2} reduction by use of wind power in the period 2004-2008 was only 20 EUR/ton. Furthermore, the Danish wind turbines are not paid for by energy taxes. Danish wind turbines are given a subsidy via the electricity price which is paid by the electricity consumers. In the recent years of 2004-2008, such subsidy has increased consumer prices by 0.54 EURO/kWh on average. On the other hand, however, the same electricity consumers also benefitted from the wind

  12. Preliminary benefit-cost analysis of the Fast Flux Test Facility (FFTF) power addition

    International Nuclear Information System (INIS)

    Callaway, J.M.; Lezberg, A.J.; Scott, M.J.; Tawil, J.J.

    1984-07-01

    The primary objective of this report is to conduct a preliminary benefit-cost study for the proposed power addition to FFTF to determine whether the project is cost-effective. If the project is authorized, construction will begin in 1986 and end in 1991. Full power operation is scheduled to begin in 1991 and a project life of 20 years is assumed. The undiscounted cost during the construction period of the FFTF power addition is estimated to be approximately $117 million over the construction period (1984 dollars). An additional $3 million is estimated as the opportunity cost - or value of these resources in their most favorable alternative use - of surplus FFTF equipment and unused CRBR equipment, including materials for steam generator fabrication. The annual operating and maintenance cost of the project is estimated to be about $2.1 million in 1984 dollars. 20 references

  13. Load control services in the management of power system security costs

    International Nuclear Information System (INIS)

    Jayantilal, A.; Strbac, G.

    1999-01-01

    The new climate of deregulation in the electricity industry is creating a need for a more transparent cost structure and within this framework the cost of system security has been a subject of considerable interest. Traditionally power system security has been supplied by out-of-merit generation, in the short term, and transmission reinforcement, in the long term. This paper presents a method of analysing the role of load-demand in the management of power system security costs by utilising load control services (LCS). It also proposes a competitive market to enable bidding from various participants within the electricity industry to supply system security. (author)

  14. Sizing Combined Heat and Power Units and Domestic Building Energy Cost Optimisation

    Directory of Open Access Journals (Sweden)

    Dongmin Yu

    2017-06-01

    Full Text Available Many combined heat and power (CHP units have been installed in domestic buildings to increase energy efficiency and reduce energy costs. However, inappropriate sizing of a CHP may actually increase energy costs and reduce energy efficiency. Moreover, the high manufacturing cost of batteries makes batteries less affordable. Therefore, this paper will attempt to size the capacity of CHP and optimise daily energy costs for a domestic building with only CHP installed. In this paper, electricity and heat loads are firstly used as sizing criteria in finding the best capacities of different types of CHP with the help of the maximum rectangle (MR method. Subsequently, the genetic algorithm (GA will be used to optimise the daily energy costs of the different cases. Then, heat and electricity loads are jointly considered for sizing different types of CHP and for optimising the daily energy costs through the GA method. The optimisation results show that the GA sizing method gives a higher average daily energy cost saving, which is 13% reduction compared to a building without installing CHP. However, to achieve this, there will be about 3% energy efficiency reduction and 7% input power to rated power ratio reduction compared to using the MR method and heat demand in sizing CHP.

  15. Technology and costs for decommissioning of Swedish nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-06-01

    The decommissioning study for the Swedish nuclear power plants has been carried out during 1992 to 1994 and the work has been led by a steering group consisting of people from the nuclear utilities and SKB. The study has been focused on two reference plants, Oskarshamn 3 and Ringhals 2. Oskarshamn 3 is a boiling water reactor (BWR) and Ringhals 2 is a pressurized water reactor (PWR). Subsequently, the result from these plants have been translated to the other Swedish plants. The study gives an account of the procedures, costs, waste quantities and occupational doses associated with decommissioning of the Swedish nuclear power plants. Dismantling is assumed to start immediately after removal of the spent fuel. No attempts at optimization, in terms of technology or costs, have been made. The nuclear power plant site is restored after decommissioning so that it can be released for use without restriction for other industrial activities. The study shows that a reactor can be dismantled in about five years, with an average labour force of about 150 persons. The maximum labour force required for Oskarshamn 3 has been estimated to about 300 persons. This peak load occurred the first years but is reduced to about 50 persons during the demolishing of the buildings. The cost of decommissioning Oskarshamn 3 has been estimated to be about MSEK 940 in January 1994 prices. The decommissioning of Ringhals 2 has been estimated to be MSEK 640. The costs for the other Swedish nuclear power plants lie in the range MSEK 590-960. 17 refs, 21 figs, 15 tabs.

  16. Technology and costs for decommissioning of Swedish nuclear power plants

    International Nuclear Information System (INIS)

    1994-06-01

    The decommissioning study for the Swedish nuclear power plants has been carried out during 1992 to 1994 and the work has been led by a steering group consisting of people from the nuclear utilities and SKB. The study has been focused on two reference plants, Oskarshamn 3 and Ringhals 2. Oskarshamn 3 is a boiling water reactor (BWR) and Ringhals 2 is a pressurized water reactor (PWR). Subsequently, the result from these plants have been translated to the other Swedish plants. The study gives an account of the procedures, costs, waste quantities and occupational doses associated with decommissioning of the Swedish nuclear power plants. Dismantling is assumed to start immediately after removal of the spent fuel. No attempts at optimization, in terms of technology or costs, have been made. The nuclear power plant site is restored after decommissioning so that it can be released for use without restriction for other industrial activities. The study shows that a reactor can be dismantled in about five years, with an average labour force of about 150 persons. The maximum labour force required for Oskarshamn 3 has been estimated to about 300 persons. This peak load occurred the first years but is reduced to about 50 persons during the demolishing of the buildings. The cost of decommissioning Oskarshamn 3 has been estimated to be about MSEK 940 in January 1994 prices. The decommissioning of Ringhals 2 has been estimated to be MSEK 640. The costs for the other Swedish nuclear power plants lie in the range MSEK 590-960. 17 refs, 21 figs, 15 tabs

  17. Costs of solar and wind power variability for reducing CO2 emissions.

    Science.gov (United States)

    Lueken, Colleen; Cohen, Gilbert E; Apt, Jay

    2012-09-04

    We compare the power output from a year of electricity generation data from one solar thermal plant, two solar photovoltaic (PV) arrays, and twenty Electric Reliability Council of Texas (ERCOT) wind farms. The analysis shows that solar PV electricity generation is approximately one hundred times more variable at frequencies on the order of 10(-3) Hz than solar thermal electricity generation, and the variability of wind generation lies between that of solar PV and solar thermal. We calculate the cost of variability of the different solar power sources and wind by using the costs of ancillary services and the energy required to compensate for its variability and intermittency, and the cost of variability per unit of displaced CO(2) emissions. We show the costs of variability are highly dependent on both technology type and capacity factor. California emissions data were used to calculate the cost of variability per unit of displaced CO(2) emissions. Variability cost is greatest for solar PV generation at $8-11 per MWh. The cost of variability for solar thermal generation is $5 per MWh, while that of wind generation in ERCOT was found to be on average $4 per MWh. Variability adds ~$15/tonne CO(2) to the cost of abatement for solar thermal power, $25 for wind, and $33-$40 for PV.

  18. Study of the environmental costs to nuclear power plants using the SIMPACTS program

    Energy Technology Data Exchange (ETDEWEB)

    Menzel, Francine; Sabundjian, Gaiane; Mutarelli, Rita de Cassia, E-mail: fmenzel@ipen.b, E-mail: gdjian@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    The nuclear energy presents advantages in comparison with other kinds of energy sources, when their externalities are evaluated. Externality is a term that represents the side effects of production of goods or services on other people not directly involved in the activity. The externalities can be identified and related to the term environmental cost. The environmental cost is a externality that somehow affects the environment, converted into economic terms, to then be compared with other costs of an action or enterprise. The environmental cost can be calculated through programs for that purpose, however for the nuclear area is the most used SIMPACTS, developed by the International Atomic Energy Agency (IAEA). The motivation for this work arose from the need to have a complete assessment of environmental costs from nuclear power reactors, although it is known that this kind of form of energy generation show an advantage over others with regard to externalities. This work is the first step in implementing the program SIMPACTS in plant Angra 2 in order to calculate the environmental cost of their operation. The objective is to develop a methodology for calculating environmental cost for nuclear power reactors. SIMPACTS program will be used to identify the advantages and disadvantages of a cost analysis of environmental and perform the calculation of environmental costs for Angra 2, with the aim of minimizing the environmental impacts of its operation. From an extensive literature search, is presented in this paper the methodology for calculating the environmental cost of the program SIMPACTS and some results of calculations with the environmental cost in international power reactors other power generation plants. (author)

  19. Study of the environmental costs to nuclear power plants using the SIMPACTS program

    International Nuclear Information System (INIS)

    Menzel, Francine; Sabundjian, Gaiane; Mutarelli, Rita de Cassia

    2011-01-01

    The nuclear energy presents advantages in comparison with other kinds of energy sources, when their externalities are evaluated. Externality is a term that represents the side effects of production of goods or services on other people not directly involved in the activity. The externalities can be identified and related to the term environmental cost. The environmental cost is a externality that somehow affects the environment, converted into economic terms, to then be compared with other costs of an action or enterprise. The environmental cost can be calculated through programs for that purpose, however for the nuclear area is the most used SIMPACTS, developed by the International Atomic Energy Agency (IAEA). The motivation for this work arose from the need to have a complete assessment of environmental costs from nuclear power reactors, although it is known that this kind of form of energy generation show an advantage over others with regard to externalities. This work is the first step in implementing the program SIMPACTS in plant Angra 2 in order to calculate the environmental cost of their operation. The objective is to develop a methodology for calculating environmental cost for nuclear power reactors. SIMPACTS program will be used to identify the advantages and disadvantages of a cost analysis of environmental and perform the calculation of environmental costs for Angra 2, with the aim of minimizing the environmental impacts of its operation. From an extensive literature search, is presented in this paper the methodology for calculating the environmental cost of the program SIMPACTS and some results of calculations with the environmental cost in international power reactors other power generation plants. (author)

  20. Simulation of the steady state of the Laguna Verde Nuclear power station at full power (1931 MWt and 2027 Mwt) with the SCDAPSIM code; Simulacion del estado estacionario de la Central Nucleoelectrica de Laguna Verde a plena potencia (1931 MWt y 2027 MWt) con el codigo SCDAPSIM

    Energy Technology Data Exchange (ETDEWEB)

    Amador G, R.; Nunez C, A.; Mateos, E. del A. [Comision Nacional de Seguridad Nuclear y Salvaguardias, Mexico D.F. (Mexico)

    2001-07-01

    This document describes two models developed for the Laguna Verde Nuclear Power Station (LVNPP) using SCDAPSIM computer code. These models represent the LVNPP in normal operation with a nominal power of 1931 MWt and power uprate conditions of 2027 MWt. The steady states obtained by means of these models comply with the criteria established by the ANSI/ANS-3.5-1985 for nuclear power plant simulators. This criteria has been applied to the models of the LVNPP developed by CNSNS in want of some international accepted criteria for ''Best Estimation'' computer codes. These models will be the bases to carry out studies of validation of the own models as well as the analysis of diverse scenarios that evolve to a severe accident. (Author)

  1. Dynamic modeling and simulation of power transformer maintenance costs

    Directory of Open Access Journals (Sweden)

    Ristić Olga

    2016-01-01

    Full Text Available The paper presents the dynamic model of maintenance costs of the power transformer functional components. Reliability is modeled combining the exponential and Weibull's distribution. The simulation was performed with the aim of corrective maintenance and installation of the continuous monitoring system of the most critical components. Simulation Dynamic System (SDS method and VENSIM PLE software was used to simulate the cost. In this way, significant savings in maintenance costs will be achieved with a small initial investment. [Projekat Ministarstva nauke Republike Srbije, br. III 41025 i br. OI 171007

  2. Attribution mechanisms for ancillary service costs induced by variability in power delivery

    DEFF Research Database (Denmark)

    Bona, Francesca; Gast, Nicolas; Le Boudec, Jean-Yves

    2017-01-01

    The increased penetration of renewable energy sources in existing power systems has led to necessary developments in electricity market mechanisms. Most importantly, renewable energy generation is increasingly made accountable for deviations between scheduled and actual energy generation. However......, there is no mechanism to enforce accountability for the additional costs induced by power fluctuations. These costs are socialized and eventually supported by electricity customers. We propose some metrics for assessing the contribution of all market participants to power regulation needs, as well as an attribution...

  3. Cogeneration Power Plants: a Proposed Methodology for Unitary Production Cost

    International Nuclear Information System (INIS)

    Metalli, E.

    2009-01-01

    A new methodology to evaluate unitary energetic production costs in the cogeneration power plants is proposed. This methodology exploits the energy conversion factors fixed by Italian Regulatory Authority for Electricity and Gas. So it allows to settle such unitary costs univocally for a given plant, without assigning them a priori subjective values when there are two or more energy productions at the same time. Moreover the proposed methodology always ensures positive values for these costs, complying with the total generation cost balance equation. [it

  4. Cost optimization of the dimensions of the antennas of a solar power satellite system

    Energy Technology Data Exchange (ETDEWEB)

    Vasilev, A.V.; Klassen, V.I.; Laskin, N.N.; Tobolev, A.K.

    1983-05-01

    The problem of the cost optimization of the dimensions of the antennas of a solar power satellite system is formulated. The optimization problem is twofold: (1) for a given power delivered to the microwave transmitting antenna (TA), to determine the dimensions Lt (the characteristic dimension of the TA) and Lr (the characteristic dimension of the rectenna) which minimize the unit-power cost function for a given amplitude-phase distribution in the aperture of the TA, and (2) for a power delivered to the TA which is proportional to the aperture area, to determine the dimensions Lt and Lr which minimize the unit-power cost function for a given amplitude-phase distribution in the aperture of the TA. Two possible variants of the solution of this problem are considered: (1) the case of a linear antenna (the two-dimensional problem), and (2) the case of square apertures (the three-dimensional problem). A specific example of optimization is considered, where the cost of the TA is $1000/sq m and the cost of the rectenna is $12/sq m. 11 references.

  5. Cost for the radioactive wastes from nuclear power

    International Nuclear Information System (INIS)

    1992-06-01

    The future cost for handling, storing and disposing of radioactive wastes from the Swedish nuclear power plants are calculated in this report. The following plants and systems are already operating: * Transport system for radioactive wastes, * A control spent fuel intermediate storage plant, * A repository for low and medium level wastes. These are planned: * A treatment plant for used fuels, * A repository for high-level wastes, and * Repository for decommissioning wastes. The costs include R and D and decommissioning. Total future costs from 1993 are estimated to be 46.4 billion SEK (8.3 billion USD), during 60 years. Up to 1992 8.7 billion SEK (1.6 billion USD) have been spent

  6. Computation of spot prices and congestion costs in large interconnected power systems

    International Nuclear Information System (INIS)

    Mukerji, R.; Jordan, G.A.; Clayton, R.; Haringa, G.E.

    1995-01-01

    Foremost among the new paradigms for the US utility industry is the ''poolco'' concept proposed by Prof. William W. Hogan of Harvard University. This concept uses a central pool or power exchange in which physical power is traded based on spot prices or market clearing prices. The rapid and accurate calculation of these ''spot'' prices and associated congestion costs for large interconnected power systems is the central tenet upon which the poolco concept is based. The market clearing price would be the same throughout the system if there were no system losses and transmission limitations did not exist. System losses cause small differences in market clearing prices as the cost of supplying a MW at various load buses includes the cost of losses. Transmission limits may cause large differences in market clearing prices between regions as low cost generation is blocked by the transmission constraints from serving certain loads. In models currently in use in the electric power industry spot price calculations range from ''bubble diagram'' type contract path models to full electrical representation such as GE-MAPS. The modeling aspects of the full electrical representation are included in the Appendix. The problem with the bubble diagram representation is that these models are liable to produce unacceptably large errors in the calculation of spot prices and congestion costs. The subtleties of the calculation of spot prices and congestion costs are illustrated in this paper

  7. ORCOST-2, PWR, BWR, HTGR, Fossil Fuel Power Plant Cost and Economics

    International Nuclear Information System (INIS)

    Fuller, L.C.; Myers, M.L.

    1975-01-01

    1 - Description of problem or function: ORCOST2 estimates the cost of electrical energy production from single-unit steam-electric power plants. Capital costs and operating and maintenance costs are calculated using base cost models which are included in the program for each of the following types of plants: PWR, BWR, HTGR, coal, oil, and gas. The user may select one of several input/output options for calculation of capital cost, operating and maintenance cost, levelized energy costs, fixed charge rate, annual cash flows, cumulative cash flows, and cumulative discounted cash flows. Options include the input of capital cost and/or fixed charge rate to override the normal calculations. Transmission and distribution costs are not included. Fuel costs must be input by the user. 2 - Method of solution: The code follows the guidelines of AEC Report NUS-531. A base capital-cost model and a base operating- and maintenance-cost model are selected and adjusted for desired size, location, date, etc. Costs are discounted to the year of first commercial operation and levelized to provide annual cost of electric power generation. 3 - Restrictions on the complexity of the problem: The capital cost models are of doubtful validity outside the 500 to 1500 MW(e) range

  8. Maximum power point tracking: a cost saving necessity in solar energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Enslin, J H.R. [Stellenbosch Univ. (South Africa). Dept. of Electrical and Electronic Engineering

    1992-12-01

    A well engineered renewable remote energy system, utilizing the principal of Maximum Power Point Tracking (MPPT) can improve cost effectiveness, has a higher reliability and can improve the quality of life in remote areas. A high-efficient power electronic converter, for converting the output voltage of a solar panel, or wind generator, to the required DC battery bus voltage has been realized. The converter is controlled to track the maximum power point of the input source under varying input and output parameters. Maximum power point tracking for relative small systems is achieved by maximization of the output current in a battery charging regulator, using an optimized hill-climbing, inexpensive microprocessor based algorithm. Through practical field measurements it is shown that a minimum input source saving of between 15 and 25% on 3-5 kWh/day systems can easily be achieved. A total cost saving of at least 10-15% on the capital cost of these systems are achievable for relative small rating Remote Area Power Supply (RAPS) systems. The advantages at large temperature variations and high power rated systems are much higher. Other advantages include optimal sizing and system monitor and control. (author).

  9. The renaissance of nuclear power. Causes and challenges

    Energy Technology Data Exchange (ETDEWEB)

    Hillriches, Christian [AREVA NP GmbH, Erlangen (Germany)

    2008-07-01

    An increase in the use of nuclear energy for power generation is predicted worldwide. Confirmation of this trend can already be found today in extensions to nuclear power plant operating licenses and projects for nuclear plant upgrading and uprating. Numerous countries have decided to build new nuclear power plants or are planning to do so, even countries that have not used nuclear energy in the past. The reasons for this global renaissance include a growing demand for electric power all over the world, awareness that our fossil resources are limited, the desire by many countries to reduce their dependence on energy imports, and the drive to combat climate change. The nuclear industry is rising to this challenge by offering advanced reactors of the 3rd generation, by consolidating and restructuring manufacturing capacities, by building up staffing levels and investing in production facilities and the fuel cycle. Standardizing technology, progressively harmonizing safety requirements across national borders and setting up long-term cooperation agreements between vendors and plant operators are options that can help turn the global renaissance of nuclear power into a sustainable success. (orig.)

  10. Wind power: cost effective generation for the 1990s

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, T [Vestas Wind Systems A/S (Denmark)

    1989-01-01

    Wind power plants have been installed all over the world, notably in California and Denmark. Commercially available wind turbines today are rated from 50 KW to 1 MW with emphasis on the 1 MW range. As the fuel is ''free'' generating costs are identical to the capital, operation and maintenance costs of the plant. An estimate of the unit price of wind power generated electricity in Denmark is comparable to that generated by a coal fired plant. The main environmental impacts of a wind farm are considered. These are visual impact, noise emission, use of (agricultural) space and the impact on wildlife, mainly birds. Finally the installation of a wind farm and its connection to the grid are described. (3 figures, 1 table). (UK)

  11. Development of an HTS hydroelectric power generator for the hirschaid power station

    Energy Technology Data Exchange (ETDEWEB)

    Fair, Ruben; Lewis, Clive; Eugene, Joseph; Ingles, Martin, E-mail: ruben.fair@converteam.co [Advanced Technology Group, Converteam, Rugby, CV21 1BD (United Kingdom)

    2010-06-01

    This paper describes the development and manufacture of a 1.7MW, 5.25kV, 28pole, 214rpm hydroelectric power generator consisting of superconducting HTS field coils and a conventional stator. The generator is to be installed at a hydro power station in Hirschaid, Germany and is intended to be a technology demonstrator for the practical application of superconducting technology for sustainable and renewable power generation. The generator is intended to replace and uprate an existing conventional generator and will be connected directly to the German grid. The HTS field winding uses Bi-2223 tape conductor cooled to about 30K using high pressure helium gas which is transferred from static cryocoolers to the rotor via a bespoke rotating coupling. The coils are insulated with multi-layer insulation and positioned over laminated iron rotor poles which are at room temperature. The rotor is enclosed within a vacuum chamber and the complete assembly rotates at 214rpm. The challenges have been significant but have allowed Converteam to develop key technology building blocks which can be applied to future HTS related projects. The design challenges, electromagnetic, mechanical and thermal tests and results are presented and discussed together with applied solutions.

  12. Decommissioning of Swedish nuclear power reactors. Technology and costs

    International Nuclear Information System (INIS)

    1994-06-01

    The main topics discussed are planning, technology and costs of decommissioning nuclear power reactors. Oskarshamn-3 (BWR) and Ringhals-4 (PWR) have been used as reference reactors. 29 refs, figs, tabs

  13. Study on the impact of the engineering energy gain and the FPC mass power density on the generation cost of fusion power plant

    International Nuclear Information System (INIS)

    Huang Desuo; Wu Yican

    2004-01-01

    The impact of the engineering energy gain and the fusion-power-core (FPC) mass power density (MPD) on the generation cost of fusion power plant are analyzed based on the economic elasticity approach in this paper. From the functions describing the relationship of the generation cost with the engineering energy gain and the MPD, the elasticity coefficients of the generation cost with the engineering energy gain and the MPD have been derived respectively to analyze their sensitivity to the generation cost and the MPD to the generation cost decreases with increasing the engineering energy gain or the MPD. (authors)

  14. Insurance cost of Swedish nuclear power plants

    International Nuclear Information System (INIS)

    Kaellstrand, Aasa.

    1992-01-01

    What happens if a reactor accident occurs? Can victims of a nuclear accident be compensated for losses? The rights of a victim of a nuclear accident to be compensated for losses are governed by international conventions. These conventions make the licensee of a nuclear plant strictly liable. However, the maximum amount of compensation is limited. In Sweden the total liability of the plant-owner is maximized to 1.2 million Swedish Crowns, that is 0.02 oere/kWh. After the accidents of Harrisburg (1979) and Chernobyl (1986), it has become clear that the amounts of the various conventions are not at all sufficient to cover the damages caused by such an accident. In spite of these facts, there are a large number of reliable sources, who think that the insurance costs are negligible in the cost of production. A cost-benefit analysis based on a study performed by Ottinger et al. in 'Environmental costs of electricity' is therefore adopted to derive the costs of the external effects of nuclear plant operation and from releases to the environment during operation. The environmental externality costs of Swedish nuclear power plant operations are in this report estimated to 18.3 oere/kWh. This figure can be compared to the insurance cost, which for the present is 0.02 oere/kWh. The 'real' insurance cost including the external effects is calculated to approximately 1.12 billion Swedish Crowns] That is 900 times larger than the insurance premium, which the licensee of a nuclear plant faces] (au)

  15. CO2 cost pass-through and windfall profits in the power sector

    International Nuclear Information System (INIS)

    Sijm, Jos; Neuhoff, Karsten; Yihsu Chen

    2006-01-01

    In order to cover their CO 2 emissions, power companies receive most of the required EU ETS allowances for free. In line with economic theory, these companies pass on the costs of these allowances in the price of electricity. This article analyses the implications of the EU ETS for the power sector, notably the impact of free allocation of CO 2 emission allowances on the price of electricity and the profitability of power generation. As well as some theoretical reflections, the article presents empirical and model estimates of CO 2 cost pass-through for Germany and The Netherlands, indicating that pass-through rates vary between 60 and 100% of CO 2 costs, depending on the carbon intensity of the marginal production unit and various other market- or technology-specific factors. As a result, power companies realize substantial windfall profits, as indicated by the empirical and model estimates presented in the article. (Author)

  16. Nuclear and coal-fired power plant capital costs 1978 -June 1981

    International Nuclear Information System (INIS)

    Harbour, R.T.

    1981-07-01

    This bibliography covers 16 papers dealing with the economics of power generation - mainly comparisons between the capital costs of nuclear and coal fired plants. Some of the papers additionally discuss fuel, operating and maintenance costs, and performance. (U.K.)

  17. Measurement on the effect of sound wave in upper plenum of boiling water reactor

    International Nuclear Information System (INIS)

    Kumagai, Kosuke; Someya, Satoshi; Okamoto, Koji

    2009-01-01

    In recent years, the power uprate of Boiling Water Reactors have been conducted at several existing power plants as a way to improve plant economy. In one of the power uprated plants (117.8% uprates) in the United States, the steam dryer breakages due to fatigue fracture occurred. It is conceivable that the increased steam flow passing through the branches caused a self-induced vibration with the propagation of sound wave into the steam-dome. The resonance among the structure, flow and the pressure fluctuation resulted in the breakages. To understand the basic mechanism of the resonance, previous researches were done by a point measurement of the pressure and by a phase averaged measurement of the flow, while it was difficult to detect the interaction among them by the conventional method. In this study, Dynamic Particle Image Velocimetry (PIV) System was applied to investigate the effect of sound on natural convection and forced convection. Especially, when the phases of acoustic sources were different, various acoustic wave effects were checked. (author)

  18. International status and prospects of nuclear power

    International Nuclear Information System (INIS)

    2008-12-01

    Nuclear power plants are primarily used for electricity production. Currently, 439 reactors are operating in 30 countries and are contributing approximately 14% to global electricity generation. The share of nuclear in global electricity generation has declined slightly in recent years. However, the total amount of nuclear electricity generation is increasing as plant availability, power uprating, and new plants offset the loss from older plants that are being shut down. Due to the economic benefits of continuing operation of a plant after the capital cost has been repaid, and with careful plant life management assessments, a number of reactors have had their operating licences extended for an additional 20 years. Light water reactors (LWRs) are by far the most prevalent reactors in use today, followed by pressurized heavy water reactors, gas cooled reactors and, currently, two fast reactors. The safety and reliability of nuclear facilities have been steadily improving. Strong networks among countries with operating nuclear power plants have enabled operators to learn from each other and to address common issues. Ongoing efforts have continuously strengthened safety culture and regulatory oversight. The current available supply of uranium meets the demand. Current enrichment and fuel fabrication capacities are adequate to meet the expected demand for the next decade. There is also substantial experience in the storage and reprocessing of spent fuel and the treatment of high level waste. Existing reprocessing capacity is adequate to meet present demand. Most spent fuel continues, however, to be stored awaiting a decision on future policy, i.e. whether to reprocess and recycle it or to dispose of it as waste. To date, no ultimate disposal facilities are available. Only a few countries currently use civil nuclear energy for purposes other than electricity production - mainly for seawater desalination and district heating - and even then only to a limited extent

  19. Estimating the cost of delaying a nuclear power plant: methodology and application

    International Nuclear Information System (INIS)

    Hill, L.J.; Tepel, R.C.; Van Dyke, J.W.

    1985-01-01

    This paper presents an analysis of an actual 24-month nuclear power plant licensing delay under alternate assumptions about regulatory practice, sources of replacement power, and the cost of the plant. The analysis focuses on both the delay period and periods subsequent to the delay. The methodology utilized to simulate the impacts involved the recursive interaction of a generation-costing program to estimate fuel-replacement costs and a financial regulatory model to concomitantly determine the impact on the utility, its ratepayers, and security issues. The results indicate that a licensing delay has an adverse impact on the utility's internal generation of funds and financial indicators used to evaluate financial soundness. The direction of impact on electricity rates is contingent on the source of fuel used for replacement power. 5 references, 5 tables

  20. Cost-optimal power system extension under flow-based market coupling

    Energy Technology Data Exchange (ETDEWEB)

    Hagspiel, Simeon; Jaegemann, Cosima; Lindenberger, Dietmar [Koeln Univ. (Germany). Energiewirtschaftliches Inst.; Brown, Tom; Cherevatskiy, Stanislav; Troester, Eckehard [Energynautics GmbH, Langen (Germany)

    2013-05-15

    Electricity market models, implemented as dynamic programming problems, have been applied widely to identify possible pathways towards a cost-optimal and low carbon electricity system. However, the joint optimization of generation and transmission remains challenging, mainly due to the fact that different characteristics and rules apply to commercial and physical exchanges of electricity in meshed networks. This paper presents a methodology that allows to optimize power generation and transmission infrastructures jointly through an iterative approach based on power transfer distribution factors (PTDFs). As PTDFs are linear representations of the physical load flow equations, they can be implemented in a linear programming environment suitable for large scale problems. The algorithm iteratively updates PTDFs when grid infrastructures are modified due to cost-optimal extension and thus yields an optimal solution with a consistent representation of physical load flows. The method is first demonstrated on a simplified three-node model where it is found to be robust and convergent. It is then applied to the European power system in order to find its cost-optimal development under the prescription of strongly decreasing CO{sub 2} emissions until 2050.

  1. Forecasting Canadian nuclear power station construction costs

    International Nuclear Information System (INIS)

    Keng, C.W.K.

    1985-01-01

    Because of the huge volume of capital required to construct a modern electric power generating station, investment decisions have to be made with as complete an understanding of the consequences of the decision as possible. This understanding must be provided by the evaluation of future situations. A key consideration in an evaluation is the financial component. This paper attempts to use an econometric method to forecast the construction costs escalation of a standard Canadian nuclear generating station (NGS). A brief review of the history of Canadian nuclear electric power is provided. The major components of the construction costs of a Canadian NGS are studied and summarized. A database is built and indexes are prepared. Based on these indexes, an econometric forecasting model is constructed using an apparently new econometric methodology of forecasting modelling. Forecasts for a period of 40 years are generated and applications (such as alternative scenario forecasts and range forecasts) to uncertainty assessment and/or decision-making are demonstrated. The indexes, the model, and the forecasts and their applications, to the best of the author's knowledge, are the first for Canadian NGS constructions. (author)

  2. The long-term power purchase: Recovery of capacity costs

    International Nuclear Information System (INIS)

    Cross, P.S.

    1990-01-01

    As electric utilities increase their reliance on the long-term power purchase as an alternative to utility-owned generation, the appropriate rate treatment of the costs established in the purchase agreement assumes growing importance. In the November 9, 1989, issue, the authors examined the recent trend among state regulators to treat the long-term purchase in a manner similar to the addition by a utility of a new plant, including a full-scale prudence review. This installment will review recent rulings on the related issue of rate recovery of long-term capacity costs through the fuel cost adjustment clause

  3. The real costs of nuclear power in the UK

    International Nuclear Information System (INIS)

    Jeffery, J.W.

    1980-01-01

    The UK Central Electricity Generating Board (CEGB) has recently published figures which appear to show that nuclear generated electricity is 20% cheaper than electricity from coal stations. It is argued here that these figures cannot be used to make a case for nuclear power since they are based on an accounting convention which fails to give due consideration to inflation. In effect the convention used assumes that capital costs are paid in depreciated currency and become an artificially small part of total operating costs. By suitably adjusting the CEGB figures the author aims to provide a more realistic comparison of generating costs. (author)

  4. The high intensity solar cell: Key to low cost photovoltaic power

    Science.gov (United States)

    Sater, B. L.; Goradia, C.

    1975-01-01

    The design considerations and performance characteristics of the 'high intensity' (HI) solar cell are presented. A high intensity solar system was analyzed to determine its cost effectiveness and to assess the benefits of further improving HI cell efficiency. It is shown that residential sized systems can be produced at less than $1000/kW peak electric power. Due to their superior high intensity performance characteristics compared to the conventional and VMJ cells, HI cells and light concentrators may be the key to low cost photovoltaic power.

  5. Future trends in nuclear fuels

    International Nuclear Information System (INIS)

    Guitierrez, J.E.

    2006-01-01

    This series of transparencies presents: the fuel management cycle and key areas (security of supplies, strategies and core management, reliability, spent fuel management), the world nuclear generating capacity, concentrate capacity, enrichment capacity, and manufacturing capacity forecasts, the fuel cycle strategies and core management (longer cycles, higher burnups, power up-rates, higher enrichments), the Spanish nuclear generation cost, the fuel reliability (no defects, robust designs, operational margins, integrated fuel and core design), spent fuel storage (design and safety criteria, fuel performance and integrity). (J.S.)

  6. Commerical electric power cost studies. Capital cost addendum multi-unit coal and nuclear stations

    International Nuclear Information System (INIS)

    1977-09-01

    This report is the culmination of a study performed to develop designs and associated capital cost estimates for multi-unit nuclear and coal commercial electric power stations, and to determine the distribution of these costs among the individual units. This report addresses six different types of 2400 MWe (nominal) multi-unit stations as follows: Two Unit PWR Station-1139 MWe Each, Two Unit BWR Station-1190 MWe Each, Two Unit High Sulfur Coal-Fired Station-1232 MWe Each, Two Unit Low Sulfur Coal-Fired Station-1243 MWe Each, Three Unit High Sulfur Coal-Fired Station-794 MWe Each, Three Unit Low Sulfur Coal-Fired Station-801 MWe Each. Recent capital cost studies performed for ERDA/NRC of single unit nuclear and coal stations are used as the basis for developing the designs and costs of the multi-unit stations. This report includes the major study groundrules, a summary of single and multi-unit stations total base cost estimates, details of cost estimates at the three digit account level and plot plan drawings for each multi-unit station identified

  7. Low Cost, Low Power, High Sensitivity Magnetometer

    Science.gov (United States)

    2008-12-01

    which are used to measure the small magnetic signals from brain. Other types of vector magnetometers are fluxgate , coil based, and magnetoresistance...concentrator with the magnetometer currently used in Army multimodal sensor systems, the Brown fluxgate . One sees the MEMS fluxgate magnetometer is...Guedes, A.; et al., 2008: Hybrid - LOW COST, LOW POWER, HIGH SENSITIVITY MAGNETOMETER A.S. Edelstein*, James E. Burnette, Greg A. Fischer, M.G

  8. Handbook for quick cost estimates. A method for developing quick approximate estimates of costs for generic actions for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Ball, J.R.

    1986-04-01

    This document is a supplement to a ''Handbook for Cost Estimating'' (NUREG/CR-3971) and provides specific guidance for developing ''quick'' approximate estimates of the cost of implementing generic regulatory requirements for nuclear power plants. A method is presented for relating the known construction costs for new nuclear power plants (as contained in the Energy Economic Data Base) to the cost of performing similar work, on a back-fit basis, at existing plants. Cost factors are presented to account for variations in such important cost areas as construction labor productivity, engineering and quality assurance, replacement energy, reworking of existing features, and regional variations in the cost of materials and labor. Other cost categories addressed in this handbook include those for changes in plant operating personnel and plant documents, licensee costs, NRC costs, and costs for other government agencies. Data sheets, worksheets, and appropriate cost algorithms are included to guide the user through preparation of rough estimates. A sample estimate is prepared using the method and the estimating tools provided.

  9. Handbook for quick cost estimates. A method for developing quick approximate estimates of costs for generic actions for nuclear power plants

    International Nuclear Information System (INIS)

    Ball, J.R.

    1986-04-01

    This document is a supplement to a ''Handbook for Cost Estimating'' (NUREG/CR-3971) and provides specific guidance for developing ''quick'' approximate estimates of the cost of implementing generic regulatory requirements for nuclear power plants. A method is presented for relating the known construction costs for new nuclear power plants (as contained in the Energy Economic Data Base) to the cost of performing similar work, on a back-fit basis, at existing plants. Cost factors are presented to account for variations in such important cost areas as construction labor productivity, engineering and quality assurance, replacement energy, reworking of existing features, and regional variations in the cost of materials and labor. Other cost categories addressed in this handbook include those for changes in plant operating personnel and plant documents, licensee costs, NRC costs, and costs for other government agencies. Data sheets, worksheets, and appropriate cost algorithms are included to guide the user through preparation of rough estimates. A sample estimate is prepared using the method and the estimating tools provided

  10. Comparison of electricity production costs of nuclear and coal-fired power plants

    International Nuclear Information System (INIS)

    Peltzer, M.

    1980-01-01

    Electricity production costs of nuclear and coal-fired power plants their structure and future development are calculated and compared. Assumed beginning of operation is in the mid-1980. The technical and economical data are based on a nuclear power unit of 1 300 MW and on a coal-fired twin plant of 2 x 750 MW. The study describes and discusses the calculational method and the results. The costs for the electricity generation show an economic advantage for nuclear power. A sensitivity analysis shows that these results are valid also for changed input parameters. (orig.) [de

  11. Manual of phosphoric acid fuel cell power plant cost model and computer program

    Science.gov (United States)

    Lu, C. Y.; Alkasab, K. A.

    1984-01-01

    Cost analysis of phosphoric acid fuel cell power plant includes two parts: a method for estimation of system capital costs, and an economic analysis which determines the levelized annual cost of operating the system used in the capital cost estimation. A FORTRAN computer has been developed for this cost analysis.

  12. Marginal CO2 cost pass-through under imperfect competition in power markets

    International Nuclear Information System (INIS)

    Chernyavs'ka, Liliya; Gulli, Francesco

    2008-01-01

    In line with economic theory, carbon ETS determines a rise in marginal cost equal to the carbon opportunity cost regardless of whether carbon allowances are allocated free of charge or not. This paper aims at evaluating to what extent firms in imperfectly competitive markets will pass-through into electricity prices the increase in cost. By using the load duration curve approach and the dominant firm with competitive fringe model, we show that the result is ambiguous. The increase in price can be either lower or higher than the marginal CO 2 cost, depending on several structural factors: the degree of market concentration, the available capacity (whether there is excess capacity or not), the power plant mix in the market and the power demand level (peak vs. off-peak hours). The empirical analysis of the Italian context (an emblematic case of imperfectly competitive market), which can be split into four sub-markets with different structural features, provides a contribution supporting the model predictions. Market power, therefore, would determine a significant deviation from the 'full pass-through' rule but we cannot know the sign of this deviation, a priori, i.e. without before taking carefully into account the structural features of the power market. (author)

  13. The cost of operating with failed fuel at Virginia power

    International Nuclear Information System (INIS)

    Ford, C.A.

    1988-01-01

    Virginia Power has completed a study of the costs incurred due to fuel failures in its pressurized water reactors. This study was prompted by histories of high primary coolant activity and subsequent fuel inspections at the North Anna and Surry power stations. The study included an evaluation of the total costs of fuel failures as well as an evaluation of the economics of postirradiation fuel inspections. The major costs of fuel failures included personnel radiation exposure, permanently discharged failed fuel, radwaste generation, increased labor requirements, containment entry delays due to airborne radioactivity, and ramp rate restrictions. Although fuel failures affect a utility in several other areas, the items evaluated in the study were thought to be the most significant of the costs. The study indicated that performing a postirradiation failed fuel examination can be economically justified at tramp-corrected 131 I levels of > 0.015 μCi/g. The savings to the utility can be on the order of several million dollars. Additionally, the cost penalty of performing a fuel inspection at lower iodine levels is generally in the range of $200,000. This economic penalty is expected to be outweighed by the intangible benefits of operating with a defect-free core

  14. Nuclear power programmes in developing countries: Costs and financing

    International Nuclear Information System (INIS)

    Charpentier, J.P.; Bennett, L.L.

    1985-01-01

    This article refers to a seminar (organized by the IAEA) on Costs and Financing of Nuclear Power Programmes in Developing Countries held in Vienna from 9-12 September 1985. Its main objective was to promote a dialogue among the various parties involved in the domain of nuclear power financing, i.e. buyers, suppliers and financing organizations. At the meeting the Agency presented information showing that nuclear power plants are an economic means of generating electricity. In relation hereto the article deals with such topics as performance records, economic records, projected nuclear plant additions, financing constraints, current debt problems and new working relationships

  15. BEST-4, Fuel Cycle and Cost Optimization for Discrete Power Levels

    International Nuclear Information System (INIS)

    1973-01-01

    1 - Nature of physical problem solved: Determination of optimal power strategy for a fuel cycle, for discrete power levels and n temporal stages, taking into account replacement energy costs and de-rating. 2 - Method of solution: Dynamic programming. 3 - Restrictions on the complexity of the problem: Restrictions may arise from number of power levels and temporal stages, due to machine limitations

  16. Evaluation of the electric power production cost growth due to decommissioning of nuclear power plants

    International Nuclear Information System (INIS)

    Basso, G.

    1982-01-01

    The increase of production cost for electric power generated by nuclear plants, due to their decommissioning and the end of operating life, is analysed in respect to (a) waiting time from indefinite shut-down date to the start of dismantlement, (b) financing method, (c) interest and inflation rates. The analysis shows that the additional cost is always small for those solutions which have higher probability to be adopted

  17. Costs of magnets for large fusion power reactors: Phase I, cost of superconductors for dc magnets

    International Nuclear Information System (INIS)

    Powell, J.R.

    1972-01-01

    Projections are made for dc magnet conductor costs for large fusion power reactors. A mature fusion economy is assumed sometime after 2000 A. D. in which approximately 90,000 MW(e) of fusion reactors are constructed/year. State of the art critical current vs. field characteristics for superconductors are used in these projections. Present processing techniques are used as a basis for the design of large plants sized to produce approximately one-half of the conductor needed for the fusion magnets. Multifilamentary Nb-Ti, Pb-Bi in glass fiber, GE Nb 3 Sn tape, Linde plasma sprayed Nb 3 Sn tape, and V 3 Ga tape superconductors are investigated, together with high purity aluminum cryoconductor. Conductor costs include processing costs [capital (equipment plus buildings), labor, and operating] and materials costs. Conductor costs are compared for two sets of material costs: current (1971 A. D.) costs, and projected (after 2000 A. D.) costs. (U.S.)

  18. Marginal costs of water savings from cooling system retrofits: a case study for Texas power plants

    Science.gov (United States)

    Loew, Aviva; Jaramillo, Paulina; Zhai, Haibo

    2016-10-01

    The water demands of power plant cooling systems may strain water supply and make power generation vulnerable to water scarcity. Cooling systems range in their rates of water use, capital investment, and annual costs. Using Texas as a case study, we examined the cost of retrofitting existing coal and natural gas combined-cycle (NGCC) power plants with alternative cooling systems, either wet recirculating towers or air-cooled condensers for dry cooling. We applied a power plant assessment tool to model existing power plants in terms of their key plant attributes and site-specific meteorological conditions and then estimated operation characteristics of retrofitted plants and retrofit costs. We determined the anticipated annual reductions in water withdrawals and the cost-per-gallon of water saved by retrofits in both deterministic and probabilistic forms. The results demonstrate that replacing once-through cooling at coal-fired power plants with wet recirculating towers has the lowest cost per reduced water withdrawals, on average. The average marginal cost of water withdrawal savings for dry-cooling retrofits at coal-fired plants is approximately 0.68 cents per gallon, while the marginal recirculating retrofit cost is 0.008 cents per gallon. For NGCC plants, the average marginal costs of water withdrawal savings for dry-cooling and recirculating towers are 1.78 and 0.037 cents per gallon, respectively.

  19. Decommissioning of nuclear power plants: policies, strategies and costs

    International Nuclear Information System (INIS)

    Lund, I.

    2004-01-01

    As many nuclear power plants will reach the end of their lifetime during the next 20 years or so, decommissioning is an increasingly important topic for governments, regulators and industries. From a governmental viewpoint, particularly in a deregulated market, one essential aspect is to ensure that money for the decommissioning of nuclear installations will be available at the time it is needed, and that no 'stranded' liabilities will be left to be financed by the taxpayers rather than by the electricity consumers. For this reason, there is governmental interest in understanding decommissioning costs, and in periodically reviewing decommissioning cost estimates from nuclear installation owners. Robust cost estimates are key elements in designing and implementing a coherent and comprehensive national decommissioning policy including the legal and regulatory bases for the collection, saving and use of decommissioning funds. From the industry viewpoint, it is essential to assess and monitor decommissioning costs in order to develop a coherent decommissioning strategy that reflects national policy and assures worker and public safety, whilst also being cost effective. For these reasons, nuclear power plant owners are interested in understanding decommissioning costs as best as possible and in identifying major cost drivers, whether they be policy, strategy or 'physical' in nature. National policy considerations will guide the development of national regulations that are relevant for decommissioning activities. Following these policies and regulations, industrial managers responsible for decommissioning activities will develop strategies which best suit their needs, while appropriately meeting all government requirements. Decommissioning costs will be determined by technical and economic conditions, as well as by the strategy adopted. Against this backdrop, the study analyses the relationships among decommissioning policy as developed by governments, decommissioning

  20. Cost and Benefit Analysis of VSC-HVDC Schemes for Offshore Wind Power Transmission

    Institute of Scientific and Technical Information of China (English)

    Sheng WANG; Chunmei FENG; An WEN; Jun LIANG

    2013-01-01

    Due to low load factors of wind power generation,it is possible to reduce transmission capacity to minimize the cost of transmission system construction.Two VSC-HVDC schemes for offshore wind farm,called the point to point (PTP) and DC mesh connections are compared in terms of the utilization of transmission system and its cost.A Weibull distribution is used for estimating offshore wind power generation,besides,the cross correlation between wind farms is considered.The wind energy curtailment is analyzed using the capacity output possibility table (COPT).The system power losses,costs of transmission investment and wind energy curtailment are also computed.A statistic model for the wind generation and transmission is built and simulated in MATLAB to validate the study.It is concluded that a DC mesh transmission can reduce the energy curtailment and power losses.Further benefit is achievable as the wind cross correlation between wind farms decreases.

  1. Medium-term marginal costs in competitive generation power markets

    International Nuclear Information System (INIS)

    Reneses, J.; Centeno, E.; Barquin, J.

    2004-01-01

    The meaning and significance of medium-term marginal costs for a generation company in a competitive power market in analysed. A methodology to compute and decompose medium-term generation marginal costs in a competitive environment is proposed. The methodology is based on a market equilibrium model. The aim is to provide a useful tool for generation companies so that they can manage their resources in an optimal way, helping them with their operation, decision-making processes, asset valuations or contract assessments. (author)

  2. 18 CFR 35.14 - Fuel cost and purchased economic power adjustment clauses.

    Science.gov (United States)

    2010-04-01

    ... economic power adjustment clauses. 35.14 Section 35.14 Conservation of Power and Water Resources FEDERAL... SCHEDULES AND TARIFFS Other Filing Requirements § 35.14 Fuel cost and purchased economic power adjustment clauses. (a) Fuel adjustment clauses (fuel clause) which are not in conformity with the principles set out...

  3. Probabilistic life-cycle cost analysis for renewable and non-renewable power plants

    International Nuclear Information System (INIS)

    Cartelle Barros, Juan José; Lara Coira, Manuel; Cruz López, María Pilar de la; Caño Gochi, Alfredo del

    2016-01-01

    Two probabilistic models are presented to assess the costs of power plants. One of them uses requirement trees, value functions and the analytic hierarchy process. It is also based on Monte Carlo simulation. The second one is a mathematical model for calculating the levelised cost of electricity (LCOE) based on discounted cash flow techniques, and combined with Monte Carlo simulation. The results obtained with both models are compared and discussed. On the one hand, the LCOE model provides the most reliable results. These results reinforce the idea that conventional or coal, lignite, oil, natural gas and nuclear power plants are still the most competitive options, with the LCOE falling in a range of around 25 to 200 €/MWh and mean values approaching 70 €/MWh. Generally, renewable power plants obtained the worst results, with a LCOE varying from around 30 to more than 450 €/MWh. Nevertheless, this study demonstrates that renewable alternatives can compete with their conventional counterparts under certain conditions. - Highlights: • Two probabilistic models are presented to assess the costs of power plants. • Conventional power plants are still the most competitive options. • Renewable energies can compete with their conventional counterparts under certain conditions. • The model aids the decision making process in the energy policy field.

  4. Electric Power Interruption Cost Estimates for Individual Industries, Sectors, and U.S. Economy

    Energy Technology Data Exchange (ETDEWEB)

    Balducci, Patrick J.; Roop, Joseph M.; Schienbein, Lawrence A.; DeSteese, John G.; Weimar, Mark R.

    2002-02-27

    During the last 20 years, utilities and researchers have begun to understand the value in the collection and analysis of interruption cost data. The continued investigation of the monetary impact of power outages will facilitate the advancement of the analytical methods used to measure the costs and benefits from the perspective of the energy consumer. More in-depth analysis may be warranted because of the privatization and deregulation of power utilities, price instability in certain regions of the U.S. and the continued evolution of alternative auxiliary power systems.

  5. Parametric cost analysis of a HYLIFE-II power plant

    International Nuclear Information System (INIS)

    Bieri, R.L.

    1991-01-01

    The SAFIRE (Systems Analysis for ICF Reactor Economics) code was adapted to model a power plant using a HYLIFE-2 reactor chamber. The code was then used to examine the dependence of the plant capital costs and the busbar cost of electricity (COE) on a variety of design parameters (type of driver, chamber repetition rate, and net electric power). The results show the most attractive operating space for each set of driver/target assumptions and quantify the benefits of improvements in key design parameters. The base-case plant was a 1000-MW(e) plant containing a reactor vessel driven by an induction linac heavy-ion accelerator, run at 8 Hz with a driver energy of 6.73 MJ and a target yield of 350 MJ. The total direct cost for this plant was $2.6 billion. (All costs in this paper are given in equivalent 1988 dollars.) The COE was 8.5 cents/(kWh). The COE and total capital costs for a 1000-MW(e) base plant are nearly independent of the chosen combination of repetition rate and driver energy for a driver operating between 4 and 10 Hz. For comparison, the COE for a coal or future fission plant would be 4.5--5.5 cents/(kWh). The COE for a 1000-MW(e) plant could be reduced to 7.5 cents/(kWh) by using advanced targets and could be cut to 6.5 cents/(kWh) with conventional targets, if the driver cost could be cut in half. There is a large economy of scale with heavy-ion-driven inertial confinement fusion (ICF) plants. A 2000-MW(e) plant with a heavy-ion driver and a HYLIFE-2 chamber would have a COE of only 5.8 cents/(kWh)

  6. Power-to-heat in adiabatic compressed air energy storage power plants for cost reduction and increased flexibility

    Science.gov (United States)

    Dreißigacker, Volker

    2018-04-01

    The development of new technologies for large-scale electricity storage is a key element in future flexible electricity transmission systems. Electricity storage in adiabatic compressed air energy storage (A-CAES) power plants offers the prospect of making a substantial contribution to reach this goal. This concept allows efficient, local zero-emission electricity storage on the basis of compressed air in underground caverns. The compression and expansion of air in turbomachinery help to balance power generation peaks that are not demand-driven on the one hand and consumption-induced load peaks on the other. For further improvements in cost efficiencies and flexibility, system modifications are necessary. Therefore, a novel concept regarding the integration of an electrical heating component is investigated. This modification allows increased power plant flexibilities and decreasing component sizes due to the generated high temperature heat with simultaneously decreasing total round trip efficiencies. For an exemplarily A-CAES case simulation studies regarding the electrical heating power and thermal energy storage sizes were conducted to identify the potentials in cost reduction of the central power plant components and the loss in round trip efficiency.

  7. Sizing Combined Heat and Power Units and Domestic Building Energy Cost Optimisation

    OpenAIRE

    Dongmin Yu; Yuanzhu Meng; Gangui Yan; Gang Mu; Dezhi Li; Simon Le Blond

    2017-01-01

    Many combined heat and power (CHP) units have been installed in domestic buildings to increase energy efficiency and reduce energy costs. However, inappropriate sizing of a CHP may actually increase energy costs and reduce energy efficiency. Moreover, the high manufacturing cost of batteries makes batteries less affordable. Therefore, this paper will attempt to size the capacity of CHP and optimise daily energy costs for a domestic building with only CHP installed. In this paper, electricity ...

  8. The costs of power interruptions in Germany. An assessment in the light of the Energiewende

    Energy Technology Data Exchange (ETDEWEB)

    Growitsch, Christian; Malischek, Raimund; Nick, Sebastian; Wetzel, Heike

    2013-04-15

    The German Energiewende's potential effects on the reliability of electricity supply as well as the corresponding economic consequences have recently entered both the political and scientific debate. However, empirical evidence of power outage costs in Germany is rather scarce. Following a macroeconomic approach, we analyse the economic costs imposed by potential power interruptions in Germany. Investigating a rich data set on industry and households we estimate both Values of Lost Load (VoLLs) and associated costs of power interruptions for different German regions and sectors and every hour of the year. This disaggregated approach allows for conclusions for optimal load shedding in case of technical necessity and the economic efficiency of measures to improve security of supply. We find that interruption costs vary significantly over time, between sectors and regions. Peaking on midday of a Monday in December at 750 Mio Euro per hour, the average of total national outage costs amount to approximately 430 Mio Euro per hour. The industrial sectors facing the highest outage costs are the machinery and transport equipment sectors. Their aggregated hourly outage costs average out at approximately 20 Mio Euro. Our results emphasize the prominent regional aspect of the German Energiewende as the regions with the highest estimated cost of interruptions in South and West Germany coincide with the areas which face nuclear power plant shut downs in the near future.

  9. Wind Power: How Much, How Soon, and At What Cost?

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, Ryan H; Hand, Maureen

    2010-01-01

    The global wind power market has been growing at a phenomenal pace, driven by favorable policies towards renewable energy and the improving economics of wind projects. On a going forward basis, utility-scale wind power offers the potential for significant reductions in the carbon footprint of the electricity sector. Specifically, the global wind resource is vast and, though accessing this potential is not costless or lacking in barriers, wind power can be developed at scale in the near to medium term at what promises to be an acceptable cost.

  10. Economic Evaluation of Decommissioning Cost of Nuclear Power Plant in the National Electricity Plan in Korea

    International Nuclear Information System (INIS)

    Lee, Man Ki; Nam, Ji Hee

    2008-01-01

    Decommissioning cost of a nuclear power plant includes the costs related with dismantling a nuclear power plant, disposal of a spent fuel and of a low/medium radioactive waste. The decommissioning cost is different from the other expenditures in that it is occurred after the reactor finishes its commercial operation. In this respect, the electricity act was enforced to secure provisions for decommissioning a nuclear power plant during its commercial operation. The purpose of this study is to provide economic evaluation and economic cost for a decommissioning when the cost of a decommissioning is provided as one of input to the national electricity plan. Therefore, this study does not deal with whether the estimated amount of a decommissioning cost is just or not. This study focuses how to transfer the estimated decommissioning cost given in the electricity act to the economic cost, which can be used in the national electricity plan

  11. The transaction costs driving captive power generation: Evidence from India

    International Nuclear Information System (INIS)

    Ghosh, Ranjan; Kathuria, Vinish

    2014-01-01

    The 2003 Indian Electricity Act incentivizes captive power production through open access in an attempt to harness all sources of generation. Yet, we observe that only some firms self-generate while others do not. In this paper we give a transaction cost explanation for such divergent behavior. Using a primary survey of 107 firms from India, we construct a distinct variable to measure the transaction-specificity of electricity use. The ‘make or buy’ decision is then econometrically tested using probit model. Results are highly responsive to transaction-specificity and the likelihood of captive power generation is positively related to it. At the industrial level, this explains why food and chemical firms are more likely to make their own electricity. Since the burden of poor grid supply is highest on smaller sized and high transaction-specific firms, the grid access policies need to account for firm-level characteristics if government wants to incentivize captive power generation. - Highlights: • We analyze why some firms opt for captive power generation while others do not. • We examine the role of transaction costs in this decision making using probit model. • Unique data from a primary survey of manufacturing firms in Andhra Pradesh, India. • Transaction-specificity significantly determines who installs captive power plant (CPP). • Firm-level characteristics crucial in policies incentivizing captive generation

  12. Comparison of seating, powered characteristics and functions and costs of electrically powered wheelchairs in a general population of users.

    Science.gov (United States)

    Dolan, Michael John; Bolton, Megan Jennifer; Henderson, Graham Iain

    2017-10-26

    To profile and compare the seating and powered characteristics and functions of electrically powered wheelchairs (EPWs) in a general user population including equipment costs. Case notes of adult EPW users of a regional NHS service were reviewed retrospectively. Seating equipment complexity and type were categorized using the Edinburgh classification. Powered characteristics and functions, including control device type, were recorded. 482 cases were included; 53.9% female; mean duration EPW use 8.1 years (SD 7.4); rear wheel drive 88.0%; hand joystick 94.8%. Seating complexity: low 73.2%, medium 18.0%, high 8.7%. Most prevalent diagnoses: multiple sclerosis (MS) 25.3%, cerebral palsy (CP) 18.7%, muscular dystrophy (8.5%). Compared to CP users, MS users were significantly older at first use, less experienced, more likely to have mid-wheel drive and less complex seating. Additional costs for muscular dystrophy and spinal cord injury users were 3-4 times stroke users. This is the first large study of a general EPW user population using a seating classification. Significant differences were found between diagnostic groups; nevertheless, there was also high diversity within each group. The differences in provision and the equipment costs across diagnostic groups can be used to improve service planning. Implications for Rehabilitation At a service planning level, knowledge of a population's diagnostic group and age distribution can be used to inform decisions about the number of required EPWs and equipment costs. At a user level, purchasing decisions about powered characteristics and functions of EPWs and specialised seating equipment need to be taken on a case by case basis because of the diversity of users' needs within diagnostic groups. The additional equipment costs for SCI and MD users are several times those of stroke users and add between 60 and 70% of the cost of basic provision.

  13. Cost competitiveness of a solar cell array power source for ATS-6 educational TV terminal

    Science.gov (United States)

    Masters, R. M.

    1975-01-01

    A cost comparison is made between a terrestrial solar cell array power system and a variety of other power sources for the ATS-6 Satellite Instructional Television Experiment (SITE) TV terminals in India. The solar array system was sized for a typical Indian location, Lahore. Based on present capital and fuel costs, the solar cell array power system is a close competitor to the least expensive alternate power system. A feasibility demonstration of a terrestrial solar cell array system powering an ATS-6 receiver terminal at Cleveland, Ohio is described.

  14. Quantifying the social costs of nuclear energy: Perceived risk of accident at nuclear power plants

    International Nuclear Information System (INIS)

    Huhtala, Anni; Remes, Piia

    2017-01-01

    The preferences expressed in voting on nuclear reactor licenses and the risk perceptions of citizens provide insights into social costs of nuclear power and decision making in energy policy. We show analytically that these costs consist of disutility caused by unnecessary anxiety - due to misperceived risks relating to existing reactors - and where licenses for new nuclear reactors are not granted, delayed or totally lost energy production. Empirical evidence is derived from Finnish surveys eliciting explicitly the importance of risk perceptions on preferences regarding nuclear power and its environmental and economic impacts. We show that the estimated marginal impact of a high perceived risk of nuclear accident is statistically significant and that such a perception considerably decreases the probability of a person supporting nuclear power. This result holds across a number of robustness checks including an instrumental variable estimation and a model validation by observed voting behavior of the members of Parliament. The public's risk perceptions translate into a significant social cost, and are likely to affect the revenues, costs and financing conditions in the nuclear power sector in the future. - Highlights: • Survey on preferences regarding nuclear power and its environmental and economic impacts utilized. • A high perceived risk of nuclear accident decreases support for nuclear power. • The public's risk perceptions translate into a significant social cost.

  15. Nuclear power costs. Ninety-Fifth Congress. Second session. House report No. 95-1090

    International Nuclear Information System (INIS)

    1978-01-01

    Contrary to widespread belief, nuclear power is no longer a cheap energy source. In fact, when the still unknown costs of radioactive waste and spent nuclear fuel management, decommissioning and perpetual care are finally included in the rate base, nuclear power may prove to be much more expensive than conventional energy sources such as coal, and may well not be economically competitive with safe, renewable resource energy alternatives such as solar power. Nuclear power is the only energy technology which has a major capitalization cost at the outset of the fuel cycle and at the end of the fuel cycle. As the cost of nuclear energy continues to climb, and as a solution to the problems of radioactive waste management continues to elude government and industry, States such as California are rejecting the increased use of nuclear power and favoring the greater use of renewable energy technologies. These developments and others discussed in this report raise major questions for Federal decisionmakers about how best to cope with the Nation's energy crisis in the years ahead. Practical recommendations aimed at greater economy, efficiency, and effectiveness in government actions are proposed

  16. The socio-economic costs of the planned development of wind power energy

    International Nuclear Information System (INIS)

    Bentzen, J.

    1992-01-01

    The socio-economic consequences of the Danish government's planned further development of wind power energy are discussed in detail. It is claimed that, currently, electricity produced by wind turbines is more expensive than that produced by power stations, if the relative environmental effects are not taken into consideration. It is expected that technological development will contribute to cost reduction by the year 2010 so that electricity produced by wind turbines will be competitive, but until then costs of wind power energy will be high and it is reckoned that losses will be in the range of 5-6 billion Danish crowns, minus 2.5 billion saved by lack of CO 2 emission. The socio-economic factors regarding windmills of various sizes (150 kW and 225 kW) are calculated and the planned development of wind power until 2010 is explained. The socio-economic costs of the development programme under various conditions, including the calculation of the saved emissions of carbon dioxide, are discussed. The author states that, in the light of these arguments, he is not in agreement with the governmental plan for the development of wind-turbine produced electricity. It is suggested that this plan could be postponed until such time as wind-power produced electricity should be more competitive in price, and that it should not be pursued during a period of economic recession. (AB)

  17. How many Enrons? Mark-ups in the stated capital cost of independent power producers' (IPPs') power projects in developing countries

    International Nuclear Information System (INIS)

    Phadke, Amol

    2009-01-01

    I analyze the determinants of the stated capital cost of IPPs' power projects which significantly influences their price of power. I show that IPPs face a strong incentive to overstate their capital cost and argue that effective competition or regulatory scrutiny will limit the extent of the same. I analyze the stated capital costs of combined cycle gas turbine (CCGT) IPP projects in eight developing countries which became operational during 1990-2006 and find that the stated capital cost of projects selected without competitive bidding is 44-56% higher than those selected with competitive bidding, even after controlling for the effect of cost differences among projects. The extent to which the stated capital costs of projects selected without competitive bidding are higher compared those selected with competitive bidding, is a lower bound on the extent to which they are overstated. My results indicate the drawbacks associated with a policy of promoting private sector participation without an adequate focus on improving competition or regulation. (author)

  18. Cost analysis of teg-powered and solar-powered cathodic protection system for a-50 km long buried natural gas pipeline located in Sindh, Pakistan

    International Nuclear Information System (INIS)

    Shahid, M.; Inam, F.; Farooq, M.; Khan, F.N.

    2005-01-01

    Corrosion leaks are of significant concern to oil and gas industry and is considered to be the largest controllable factor in pipeline safety. Cathodic Protection (CP) is a well-established method for preventing corrosion of metallic materials. Electrical power is required and it is usually difficult and expensive to install conventional power lines in remote areas for readily available power supply. Oil/gas organizations make use of thermo-electric generators (TEG), which is relatively expensive in terms of running expenditures. Utilization of renewable energies is now being widely explored due to potential danger of running out of natural resources and dates back mid of 20th century [I]. However, use of solar powered CP system for oil/gas pipelines hasn't been encouraged much in Pakistan, probably due to lack of understanding. A project was undertaken for designing a solar powered CP system for a 52.4 km buried gas pipeline located at Sui/Sara gas fields (Latitude 27.5) of Tullow Pakistan (Dev.) Ltd. in Dharki, Sindh, Pakistan. After detailed analysis of soil condition, electrochemical testing, local climatic variation and cost analysis, it has been revealed that use of solar power is quite feasible for the above-mentioned pipeline section. Cost analysis and comparison have also favored this system since the maintenance cost of the solar-powered system is much less compared to TEG system. Installation cost of the solar system is about 1.57 times the cost of TEG; however, the maintenance cost is only -20% of that for TEG system. The higher installation cost has been estimated to be recoverable in less than one year of service. (author)

  19. Two views of the comparative escalation of nuclear and coal-fired power plant costs

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    Doan L. Phung critiques Charles Komanoff's 1981 book Power Plant Cost Escalation, which compares new nuclear plant costs unfavorably with those of new coal plants because of the increase in capital costs. Phung blames prophets of doom who ignore the escalating costs throughout the economy and now focus their anti-nuclear attacks in economic terms. Proposals by Alvin Weinberg and others to concentrate on reactor-safety improvements are used to conclude that these efforts will further expand the capital costs of nuclear plants and make them noncompetitive. Phung questions whether Komanoff's modeling considers enough of the political, regulatory, and technological factors to determine future costs. Komanoff replies by explaining his method of analysis and denying a bias against nuclear power. A postscript by Phung reiterates his criticism of simplistic calculations and extrapolations. 17 references

  20. Optimal Power Cost Management Using Stored Energy in Data Centers

    OpenAIRE

    Urgaonkar, Rahul; Urgaonkar, Bhuvan; Neely, Michael J.; Sivasubramaniam, Anand

    2011-01-01

    Since the electricity bill of a data center constitutes a significant portion of its overall operational costs, reducing this has become important. We investigate cost reduction opportunities that arise by the use of uninterrupted power supply (UPS) units as energy storage devices. This represents a deviation from the usual use of these devices as mere transitional fail-over mechanisms between utility and captive sources such as diesel generators. We consider the problem of opportunistically ...

  1. Estimation, comparison, and evaluation of advanced fission power reactor generation costs

    International Nuclear Information System (INIS)

    Waddell, J.D.

    1977-01-01

    The study compares the high-temperature gas-cooled reactor (HTGR), the gas-cooled fast reactor (GCFR), the molten-salt breeder reactor (MSBR), the light water breeder reactor (LWBR), and the heavy water reactor (HWR) with proposed light water reactors (LWR) and liquid-metal fast breeder reactors (LMFBR). The relative electrical generation costs, including the effects of the introduction of advanced reactor fuel cycles into the U.S. nuclear power economy, were projected through the year 2030. The study utilized the NEEDS computer code which is a simulation of the U.S. nuclear power economy. The future potential electrical generation costs and cumulative consumption of uranium ore were developed using characterizations of the advanced systems. The reactor-fuel cycle characterizations were developed from literature reviews and personal discussions with the proponents of the various systems. The study developed a ranking of the concepts based on generation costs and uranium consumption

  2. Handbook for cost estimating. A method for developing estimates of costs for generic actions for nuclear power plants

    International Nuclear Information System (INIS)

    Ball, J.R.; Cohen, S.; Ziegler, E.Z.

    1984-10-01

    This document provides overall guidance to assist the NRC in preparing the types of cost estimates required by the Regulatory Analysis Guidelines and to assist in the assignment of priorities in resolving generic safety issues. The Handbook presents an overall cost model that allows the cost analyst to develop a chronological series of activities needed to implement a specific regulatory requirement throughout all applicable commercial LWR power plants and to identify the significant cost elements for each activity. References to available cost data are provided along with rules of thumb and cost factors to assist in evaluating each cost element. A suitable code-of-accounts data base is presented to assist in organizing and aggregating costs. Rudimentary cost analysis methods are described to allow the analyst to produce a constant-dollar, lifetime cost for the requirement. A step-by-step example cost estimate is included to demonstrate the overall use of the Handbook

  3. Research on instability design method without occurring boiling transition for hyper ABWR plants of extended core power density

    International Nuclear Information System (INIS)

    Okamoto, T.; Hotta, A.; Ama, T.

    2008-01-01

    The hyper ABWR (Advanced Boiling Water Reactor) project aims to develop an advanced BWR concept that is competitive in the global market with both highly economic and safety features. Expecting plant construction within the coming ten years, a research program for substantiating the basic design of a high core power density ABWR was conducted. By inheriting the conventional ABWR design, it is possible to reduce construction costs. In order to achieve the rated core power of over 1650MWe which is almost equivalent to that of the EPR (European Pressurized Water Reactor), the core power density of ABWR will be up-rated by at least 25%. Three key subjects linked to this target were recognized. They are, (1) fuel design applicable to the high power density core, (2) improvement of the evaluation method for the coupled neutronic and thermal-hydraulic instability under a wider power-flow operating range, and (3) improvement of the steam separator performance under high quality conditions. In this paper, the second subject has been focused on. In the second subject, the uncertainty approach was introduced in the instability analysis where the best-estimate plant simulator was combined with a direct prediction of boiling transition by the sub-channel code. By employing the CSAU like method, a safety evaluation system that enables to include influences of uncertainties has been developed. Based on the correlation between the time margin for reaching the boiling transition under power oscillations and the decay ratio in the power-flow operation map, an automatic power oscillation suppressing system was designed. The set-point for activating suppression mechanisms (i.e. scram or SRI) could be determined based on this correlation. It was proposed that the present conservative acceptance criterion of the deterministic decay ratio can be replaced with a more rational one of the time margin with including uncertainties. (author)

  4. Basic factors to forecast maintenance cost and failure processes for nuclear power plants

    International Nuclear Information System (INIS)

    Popova, Elmira; Yu, Wei; Kee, Ernie; Sun, Alice; Richards, Drew; Grantom, Rick

    2006-01-01

    Two types of maintenance interventions are usually administered at nuclear power plants: planned and corrective. The cost incurred includes the labor (manpower) cost, cost for new parts, or emergency order of expensive items. At the plant management level there is a budgeted amount of money to be spent every year for such operations. It is very important to have a good forecast for this cost since unexpected events can trigger it to a very high level. In this research we present a statistical factor model to forecast the maintenance cost for the incoming month. One of the factors is the expected number of unplanned (due to failure) maintenance interventions. We introduce a Bayesian model for the failure rate of the equipment, which is input to the cost forecasting model. The importance of equipment reliability and prediction in the commercial nuclear power plant is presented along with applicable governmental and industry organization requirements. A detailed statistical analysis is performed on a set of maintenance cost and failure data gathered at the South Texas Project Nuclear Operating Company (STPNOC) in Bay City, Texas, USA

  5. Costs of producing electricity from nuclear, coal-fired and oil-fired power stations

    International Nuclear Information System (INIS)

    1980-07-01

    The Board publishes generation costs per kW h incurred at recently commissioned power stations so that the costs and performance of nuclear and conventional stations of roughly the same date of construction can be compared. The term 'conventional power station' is used to describe coal-fired and oil-fired steam power stations. The Board has now decided: (A) to supplement the past method of calculating costs at main stations commissioned between 1965 and 1977 by giving the associated figures for interest during construction, for research, and for training; (B) to give similar figures for the contemporary stations Hinkley Point B and the first half of Drax, (C) to provide estimates of generating costs of stations under construction; (D) to set out explicitly the relationship of this method of calculation to that employed in taking investment decisions on future stations. In this way the figures for stations in commission and under construction are arrived at more in line with the general principles of evaluating investment proposals. The present document provides this information. (author)

  6. Trends in Japan's power generation costs after the Fukushima Daiichi Nuclear Power Plant accident and their influence on finance of electric utilities

    International Nuclear Information System (INIS)

    Matsuo, Yuhji; Yamaguchi, Yuhji; Murakami, Tomoko

    2013-01-01

    Following the Fukushima Daiichi nuclear power plant accident, the nuclear reactors that were suspended for periodic inspections after the Fukushima accident were not permitted to resume operation, and nuclear power generation in Japan continued to decline. In this article, the authors quantitatively evaluated the effects on power generation costs of Japan's situation, using electric utilities financial reports up to FY 2011. We also analyzed the profitability of the Japanese electric industry, using the financial statements included in the reports, and quantitatively evaluated the effects of changes in power generation costs. The total cost of power generation has increased from 7.5 trillion yen in FY 2010 before the Fukushima accident to 9.6 trillion yen in FY 2011 and to 10.6 trillion yen in FY 2012. In particular, the fuel cost for thermal power generation rose sharply from 3.7 trillion yen in FY 2010 to 6.1 trillion yen in FY 2011 and 7.3 trillion yen in FY 2012, almost doubling in the two years from FY 2010 to 2012. The unit cost of power generation rose sharply from 8.6 yen/kWh in FY 2010 to 11.8 yen/kWh in FY 2011 and 13.5 yen/kWh in FY 2012. The unit cost is expected to rise even further in FY 2013 due to the weak yen. As the result not only Tokyo Electric Power Company, but also the other general electric utilities registered huge net losses. Their retained earnings (total of eight utilities) dropped by 2 trillion yen between FY 2010 and 2012. With increased thermal power generation, the risk of rising costs associated with changes in primary energy prices and exchange rates has increased drastically. For the stability of the electricity industry and the development of the Japanese economy, the government should clearly formulate a basic policy regarding the composition of power sources, and an effective plan both at home and abroad, and should develop a system that will be also to handle sudden changes in the composition of power sources. (author)

  7. ICC Experiment Performance Improvement through Advanced Feedback Controllers for High-Power Low-Cost Switching Power Amplifiers

    International Nuclear Information System (INIS)

    Nelson, Brian A.

    2006-01-01

    Limited resources force most smaller fusion energy research experiments to have little or no feedback control of their operational parameters, preventing achievement of their full operational potential. Recent breakthroughs in high-power switching technologies have greatly reduced feedback-controlled power supply costs, primarily those classified as switching power amplifiers. However, inexpensive and flexible controllers for these power supplies have not been developed. A uClinux-based micro-controller (Analog Devices Blackfin BF537) was identified as having the capabilities to form the base of a digital control system for switching power amplifiers. A control algorithm was created, and a Linux character device driver was written to realize the algorithm. The software and algorithm were successfully tested on a switching power amplifier and magnetic field coil using University of Washington (subcontractor) resources

  8. ORSIM, Nuclear Fuel, Fossil Fuel Hydroelectric Power Plant Cost and Economics

    International Nuclear Information System (INIS)

    Prince, B.E.; Turnage, J.C.

    1984-01-01

    1 - Description of problem or function: ORSIM is an electric power generating system integration model which simulates the multi-year operation of a mixed power system consisting of fossil, nuclear, hydroelectric, and pumped-storage units. For any specified refueling schedule for nuclear units and future load forecast, the model determines a plan of operation for the system which attempts to minimize the total discounted operating cost over a specified study period. The analysis considers the effects of forced outages, spinning reserve operating constraints, and scheduled introduction and retirement of generating stations. The model determines a maintenance schedule for the non-nuclear stations (nuclear stations are maintained during refueling outages) and the optimum allocation of energy-fixed nuclear and hydroelectric resources. It calculates the expected energy generated by each station in the system, by period over the planning horizon, based on input or calculated incremental operating cost. It also calculates the expected loss-of- load probability and un-served energy demand for each period in the planning horizon. An optimum operating plan, designed to minimize the discounted total production cost, is then calculated, as are the costs of operating each station in the system and the discounted total production cost for the derived plan of operation. 2 - Method of solution: ORSIM searches for a particular mode of operation which, over a multi-year planning horizon, will minimize the total system operating cost of a particular electric power generation system discounted to the beginning of the planning horizon. It does this by: (a) calculating the planned maintenance outages for all units; (b) estimating the incremental discounted cost of energy produced by each station in the system for every subinterval of the planning horizon; (c) utilizing the incremental discounted costs of energy generation to calculate, via probabilistic simulation, the economic optimum

  9. Derating design for optimizing reliability and cost with an application to liquid rocket engines

    International Nuclear Information System (INIS)

    Kim, Kyungmee O.; Roh, Taeseong; Lee, Jae-Woo; Zuo, Ming J.

    2016-01-01

    Derating is the operation of an item at a stress that is lower than its rated design value. Previous research has indicated that reliability can be increased from operational derating. In order to derate an item in field operation, however, an engineer must rate the design of the item at a stress level higher than the operational stress level, which increases the item's nominal failure rate and development costs. At present, there is no model available to quantify the cost and reliability that considers the design uprating as well as the operational derating. In this paper, we establish the reliability expression in terms of the derating level assuming that the nominal failure rate is constant with time for a fixed rated design value. The total development cost is expressed in terms of the rated design value and the number of tests necessary to demonstrate the reliability requirement. The properties of the optimal derating level are explained for maximizing the reliability or for minimizing the cost. As an example, the proposed model is applied to the design of liquid rocket engines. - Highlights: • Modeled the effect of derating design on the reliability and the development cost. • Discovered that derating design may reduce the cost of reliability demonstration test. • Optimized the derating design parameter for reliability maximization or cost minimization.

  10. Methods of projecting operations and maintenance costs for nuclear power plants

    International Nuclear Information System (INIS)

    1995-01-01

    Operations and maintenance cost (OMC) had increased its relative importance to the total generation cost for future nuclear power stations, according to the latest update of the OECD Nuclear Energy Agency (NEA) study on Projected Costs of Generating Electricity (EGC studies). OMC is some 20 to 30% of total generation cost for future nuclear power stations in most NEA member countries. However, nuclear OMC that countries projected in the latest EGC study are spread over a wide range, from 5 to 16 US mills/kWh. In order to understand better the reasons for this wide diversity in nuclear OMC projections, the NEA set up an Expert Group. The focus of this study was on projected OMC that were reported in the past EGC studies, but the Group studied actual OMC experienced from existing units, because knowledge or experience concerning actual OMC certainly influences the choice of assumptions or calculation procedure for estimating OMC for future plants. Cost informations from 14 NEA countries have been analysed on the basis of a standardized framework of detailed components of OMC costs. The rationale for different OMC cost projections reported in previous NEA studies on generation cost is discussed and suggestions are made for future studies on both generation cost and OMC cost. Despite the methodological approach and the reduced extent of differences when excluding exceptional figures, it was not possible fully to clarify the origins and to understand the remaining differences in OMC figures. Several countries which have a long and a good experience of operating nuclear units did not provide sufficient detailed data or did not provide any quantitative data at all. (J.S.). 14 refs., 5 figs., 19 tabs., 4 annexes

  11. Nuclear power investment and generating costs from a utility point of view

    International Nuclear Information System (INIS)

    Roth, B.F.

    1975-01-01

    Nuclear power stations presently in operation in the Federal Republic of Germany have electricity generating costs between 3.5 Pf/kWh and 4.5 Pf/kWh. The higher electricity generating costs are due mainly to the increased expenditure required for the protection of plants against airplane crashes, earthquakes and sabotage, and to the higher costs of the entire fuel cycle. (orig./RW) [de

  12. Revisiting the cost escalation curse of nuclear power. New lessons from the French experience

    International Nuclear Information System (INIS)

    Escobar Rangel, Lina; Leveque, Francois

    2012-01-01

    Since the first wave of nuclear reactors in 1970 to the construction of Generation III+ reactors in Finland and France in 2005 and 2007 respectively, nuclear power seems to be doomed to a cost escalation curse. In this paper we reexamine this issue for the French nuclear power fleet. Using the construction costs from the Cour des Comptes report, that was publicly available in 2012, we found that previous studies overestimated the cost escalation. Although, it is undeniable that the scale-up ended up in more costly reactors, we found evidence of a learning curve within the same size and type of reactors. This result confirms that standardization is a good direction to look, in order to overcome the cost escalation curse. (authors)

  13. Cost and performance analysis of concentrating solar power systems with integrated latent thermal energy storage

    International Nuclear Information System (INIS)

    Nithyanandam, K.; Pitchumani, R.

    2014-01-01

    Integrating TES (thermal energy storage) in a CSP (concentrating solar power) plant allows for continuous operation even during times when solar irradiation is not available, thus providing a reliable output to the grid. In the present study, the cost and performance models of an EPCM-TES (encapsulated phase change material thermal energy storage) system and HP-TES (latent thermal storage system with embedded heat pipes) are integrated with a CSP power tower system model utilizing Rankine and s-CO 2 (supercritical carbon-dioxide) power conversion cycles, to investigate the dynamic TES-integrated plant performance. The influence of design parameters of the storage system on the performance of a 200 MW e capacity power tower CSP plant is studied to establish design envelopes that satisfy the U.S. Department of Energy SunShot Initiative requirements, which include a round-trip annualized exergetic efficiency greater than 95%, storage cost less than $15/kWh t and LCE (levelized cost of electricity) less than 6 ¢/kWh. From the design windows, optimum designs of the storage system based on minimum LCE, maximum exergetic efficiency, and maximum capacity factor are reported and compared with the results of two-tank molten salt storage system. Overall, the study presents the first effort to construct and analyze LTES (latent thermal energy storage) integrated CSP plant performance that can help assess the impact, cost and performance of LTES systems on power generation from molten salt power tower CSP plant. - Highlights: • Presents technoeconomic analysis of thermal energy storage integrated concentrating solar power plants. • Presents a comparison of different storage options. • Presents optimum design of thermal energy storage system for steam Rankine and supercritical carbon dioxide cycles. • Presents designs for maximizing exergetic efficiency while minimizing storage cost and levelized cost of energy

  14. Are Public-Private Partnerships an Appropriate Governance Structure for Power Plants? A Transaction Cost Analysis

    Science.gov (United States)

    Ho, S. Ping; Hsu, Yaowen

    2015-04-01

    In order to meet the requirements of the rapid economic growth, many countries demand an increasing number of power plants to meet the increasing electricity usage. Since high capital requirements of power plants present a big issue for these countries, PPPs have been considered an alternative to provide power plant infrastructure. In particular, in emerging or developing countries, PPPs may be the fastest way to provide the infrastructure needed. However, while PPPs are a promising alternative to providing various types of infrastructure, many failed power plant PPP projects have made it evident that PPPs, under certain situations, can be very costly or even a wrong choice of governance structure. While the higher efficiency due to better pooling of resources is greatly emphasized in Public-Private Partnerships (PPPs), the embedded transaction inefficiencies are often understated or even ignored. Through the lens of Transaction Cost Economics (TCE), this paper aims to answer why and when PPPs may become a costly governance structure for power plants. Specifically, we develop a TCE-based theory of PPPs as a governance structure. This theory suggests that three major opportunism problems embedded in infrastructure PPPs are possible to cause substantial transaction costs and render PPPs a costly governance structure. The three main opportunism problems are principal-principal problem, firm's hold-up problem, and government-led hold-up problem. Moreover, project and institutional characteristics that may lead to opportunism problems are identified. Based on these characteristics, an opportunism-focused transaction cost analysis (OTCA) for PPPs as a governance structure is proposed to supplement the current practice of PPP feasibility analysis. As a part of theory development, a case study of PPP power plants is performed to evaluate the proposed theory and to illustrate how the proposed OTCA can be applied in practice. Policies and administration strategies for power

  15. Replacement power costs due to nuclear-plant outages: a higher standard of care

    International Nuclear Information System (INIS)

    Gransee, M.F.

    1982-01-01

    This article examines recent state public utility commission cases that deal with the high costs of replacement power that utilities must purchase after a nuclear power plant outage. Although most commissions have approved such expenses, it may be that there is a trend toward splitting the costs of such expenses between ratepayer and stockholder. Commissions are demanding a management prudence test to determine the cause of the outage and whether it meets the reasonable man standard before allowing these costs to be passed along to ratepayers. Unless the standard is applied with flexibility, however, utility companies could invoke the defenses covering traditional common law negligence

  16. Costs of decommissioning nuclear power plants as reported to the public to date

    International Nuclear Information System (INIS)

    Strasma, J.D.

    1982-01-01

    This paper attempts to determine what information has been available to the public, in the United States, concerning the cost of decommissioning nuclear power plants. The search was conducted in the Television News Index and Abstracts, in the annual indexes to The Reader's Digest, and in two computer-based bibliographic retrieval systems, Lockheed's DIALOG Magazine Index and the New York Times Information Bank. Fewer than ten articles appeared in widely read places, with none at all in the Reader's Digest and none on the evening TV news, from 1974 to date. The cost of decommissioning nuclear power plants was reported in various ways, with a wide range of estimates and relatively little actual experience. Costs were given in dollars of different years, in percentages of construction costs, in cost per KWH as per month to the consumer, etc., making the range of reported costs seem even wider than it really was. It is not surprising that the public fears that decommissioning costs will be alarmingly high. The public debate on energy policy might be more rational with better information on decommissioning costs. 16 references

  17. Production costs: U.S. hydroelectric power plants, 4th Edition

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    The book provides 1991 operation and maintenance expenses for over 800 conventional and pumped-storage hydroelectric power plants. Report shows operator and plant name, plant year-in-service, installed capacity, 1991 net generation, O ampersand M expenses, total production costs and current plant capitalization. Fifty eight percent of the utility-owned hydroelectric plants in the US are covered by this report. Data diskette provides additional capital and production cost accounts and number of employees for each plant

  18. Network cost in transmission and distribution of electric power

    International Nuclear Information System (INIS)

    Lindahl, A.; Naeslund, B.; Oettinger-Biberg, C.; Olander, H.; Wuolikainen, T.; Fritz, P.

    1994-01-01

    This report is divided in two parts, where part 1 treats the charges on the regional nets with special emphasis on the net owners tariffs on a deregulated market. Part 2 describes the development of the network costs in electric power distribution for the period 1991-1993. 11 figs, 33 tabs

  19. Technology, safety and costs of decommissioning a reference boiling water reactor power station: Comparison of two decommissioning cost estimates developed for the same commercial nuclear reactor power station

    International Nuclear Information System (INIS)

    Konzek, G.J.; Smith, R.I.

    1990-12-01

    This study presents the results of a comparison of a previous decommissioning cost study by Pacific Northwest Laboratory (PNL) and a recent decommissioning cost study of TLG Engineering, Inc., for the same commercial nuclear power reactor station. The purpose of this comparative analysis on the same plant is to determine the reasons why subsequent estimates for similar plants by others were significantly higher in cost and external occupational radiation exposure (ORE) than the PNL study. The primary purpose of the original study by PNL (NUREG/CR-0672) was to provide information on the available technology, the safety considerations, and the probable costs and ORE for the decommissioning of a large boiling water reactor (BWR) power station at the end of its operating life. This information was intended for use as background data and bases in the modification of existing regulations and in the development of new regulations pertaining to decommissioning activities. It was also intended for use by utilities in planning for the decommissioning of their nuclear power stations. The TLG study, initiated in 1987 and completed in 1989, was for the same plant, Washington Public Supply System's Unit 2 (WNP-2), that PNL used as its reference plant in its 1980 decommissioning study. Areas of agreement and disagreement are identified, and reasons for the areas of disagreement are discussed. 31 refs., 3 figs., 22 tabs

  20. Can hybrid solar-fossil power plants mitigate CO2 at lower cost than PV or CSP?

    Science.gov (United States)

    Moore, Jared; Apt, Jay

    2013-03-19

    Fifteen of the United States and several nations require a portion of their electricity come from solar energy. We perform an engineering-economic analysis of hybridizing concentrating solar thermal power with fossil fuel in an Integrated Solar Combined Cycle (ISCC) generator. We construct a thermodynamic model of an ISCC plant in order to examine how much solar and fossil electricity is produced and how such a power plant would operate, given hourly solar resource data and hourly electricity prices. We find that the solar portion of an ISCC power plant has a lower levelized cost of electricity than stand-alone solar power plants given strong solar resource in the US southwest and market conditions that allow the capacity factor of the solar portion of the power plant to be above 21%. From a local government perspective, current federal subsidies distort the levelized cost of electricity such that photovoltaic electricity is slightly less expensive than the solar electricity produced by the ISCC. However, if the cost of variability and additional transmission lines needed for stand-alone solar power plants are taken into account, the solar portion of an ISCC power plant may be more cost-effective.

  1. A Cost to Benefit Analysis of a Next Generation Electric Power Distribution System

    Science.gov (United States)

    Raman, Apurva

    This thesis provides a cost to benefit analysis of the proposed next generation of distribution systems- the Future Renewable Electric Energy Distribution Management (FREEDM) system. With the increasing penetration of renewable energy sources onto the grid, it becomes necessary to have an infrastructure that allows for easy integration of these resources coupled with features like enhanced reliability of the system and fast protection from faults. The Solid State Transformer (SST) and the Fault Isolation Device (FID) make for the core of the FREEDM system and have huge investment costs. Some key features of the FREEDM system include improved power flow control, compact design and unity power factor operation. Customers may observe a reduction in the electricity bill by a certain fraction for using renewable sources of generation. There is also a possibility of huge subsidies given to encourage use of renewable energy. This thesis is an attempt to quantify the benefits offered by the FREEDM system in monetary terms and to calculate the time in years required to gain a return on investments made. The elevated cost of FIDs needs to be justified by the advantages they offer. The result of different rates of interest and how they influence the payback period is also studied. The payback periods calculated are observed for viability. A comparison is made between the active power losses on a certain distribution feeder that makes use of distribution level magnetic transformers versus one that makes use of SSTs. The reduction in the annual active power losses in the case of the feeder using SSTs is translated onto annual savings in terms of cost when compared to the conventional case with magnetic transformers. Since the FREEDM system encourages operation at unity power factor, the need for installing capacitor banks for improving the power factor is eliminated and this reflects in savings in terms of cost. The FREEDM system offers enhanced reliability when compared to a

  2. Nuclear energy cost data base: A reference data base for nuclear and coal-fired powerplant power generation cost analysis

    International Nuclear Information System (INIS)

    1988-09-01

    A reference data base and standard methodology are needed for performing comparative nuclear and fossil power generation cost analyses for the Department of Energy, Office of Nuclear Energy. This report contains such a methodology together with reference assumptions and data to be used with the methodology. It is intended to provide basic guidelines or a starting point for analyses and to serve as a focal point in establishing parameters and methods to be used in economic comparisons of nuclear systems with alternatives. The data base is applicable for economic comparisons of new base load light-water reactors on a once-through cycle, and high- and low-sulfur coal-fired plants, and oil- and natural gas-fired electric generating plants coming on line around the turn of the century. In addition to current generation light-water reactors and fossil fuel-fired plants, preliminary cost information is also presented on improved and advanced light-water reactors, liquid metal reactor plants and fuel cycle facilities. This report includes an updated data base containing proposed technical and economic assumptions to be used in analyses, discussions of a recommended methodology to be used in calculating power generation costs, a sample calculation for illustrative and benchmark purposes and projected power generation costs for fission and coal-fired alternatives. Effects of the 1986 Tax Reform Act are included. 126 refs., 17 figs., 47 tabs

  3. Future wind power forecast errors, need for regulating power, and costs in the Swedish system

    Energy Technology Data Exchange (ETDEWEB)

    Carlsson, Fredrik [Vattenfall Research and Development AB, Stockholm (Sweden). Power Technology

    2011-07-01

    Wind power is one of the renewable energy sources in the electricity system that grows most rapid in Sweden. There are however two market challenges that need to be addressed with a higher proportion of wind power - that is variability and predictability. Predictability is important since the spot market Nord Pool Spot requires forecasts of production 12 - 36 hours ahead. The forecast errors must be regulated with regulating power, which is expensive for the actors causing the forecast errors. This paper has investigated a number of scenarios with 10 - 55 TWh of wind power installed in the Swedish system. The focus has been on a base scenario with 10 TWh new wind power consisting of 3,5 GW new wind power and 1,5 GW already installed power, which gives 5 GW. The results show that the costs for the forecast errors will increase as more intermittent production is installed. However, the increase can be limited by for instance trading on intraday market or increase quality of forecasts. (orig.)

  4. Cost-Effectiveness of Emission Reduction for the Indonesian Coal-Fired Power Plants

    NARCIS (Netherlands)

    Handayani, Kamia; Krozer, Yoram

    2014-01-01

    This paper presents the result of research on the cost-effectiveness of emission reduction in the selected coal-fired power plants (CFPPs) in Indonesia. The background of this research is the trend of more stringent environmental regulation regarding air emission from coal-fired power plants (CFPPs)

  5. Single-Phase Hybrid Switched Reluctance Motor for Low-Power Low-Cost Applications

    DEFF Research Database (Denmark)

    Lu, Kaiyuan; Rasmussen, Peter Omand; Jakobsen, Uffe

    2011-01-01

    This paper presents a new single-phase, Hybrid Switched Reluctance (HSR) motor for low-cost, low-power, pump or fan drive systems. Its single-phase configuration allows use of a simple converter to reduce the system cost. Cheap ferrite magnets are used and arranged in a special flux concentration...... manner to increase effectively the torque density and efficiency of this machine. The efficiency of this machine is comparable to the efficiency of a traditional permanent magnet machine in the similar power range. The cogging torque, due to the existence of the permanent magnetic field, is beneficially...

  6. Transmission pricing and stranded costs in the electric power industry

    International Nuclear Information System (INIS)

    Baumol, W.J.; Sidak, J.G.

    1995-09-01

    Stranded costs are those costs that electric utilities are currently permitted to recover through their rates but whose recovery may be impeded or prevented by the advent of competition in the industry. Estimates of these costs run from the tens to the hundreds of billions of dollars. Should regulators permit utilities to recover stranded costs while they take steps to promote competition in the electric power industry. William Baumol and J. Gregory Sidak argue that answer to that question should be yes.The authors show that a transmission price, the price for sending electricity over the transmission grid, can be determined in a manner that is compatible with economic efficiency and clearly neutral in its effects upon all competitors in electricity generation. A correctly constructed regime of transmission pricing may in fact achieve the efficiency and equity goals that justify the recovery of stranded costs

  7. Admissibility of building cost subsidy in the power grid above the low voltage level

    International Nuclear Information System (INIS)

    Foerster, Sven

    2015-01-01

    Electricity networks are essential to the provision of electrical power to businesses and individuals. In particular for manufacturing businesses a connection to the grid above the low-voltage level is often useful. Network operators demand a subsidy for the new connection and for the change to a higher network level under the auspices of construction cost. The power network market above the low-voltage level is a natural monopoly. This leaves consumers looking for a connection to the power grid with no possibility to select among different network operators. Construction cost subsidies are not regulated by law above the low voltage level. The lack of legal regulation and the natural monopoly above the low-voltage level affect the balance of power between network operators and system users. The lawfulness of the construction cost subsidies, the prerequisites for their demand and a review of the calculation models (Leistungspreismodell, 2-Ebenen-Modell) as well as a proposal for a reform of this system form the subject of this work.

  8. Low-Cost Superconducting Wire for Wind Generators: High Performance, Low Cost Superconducting Wires and Coils for High Power Wind Generators

    Energy Technology Data Exchange (ETDEWEB)

    None

    2012-01-01

    REACT Project: The University of Houston will develop a low-cost, high-current superconducting wire that could be used in high-power wind generators. Superconducting wire currently transports 600 times more electric current than a similarly sized copper wire, but is significantly more expensive. The University of Houston’s innovation is based on engineering nanoscale defects in the superconducting film. This could quadruple the current relative to today’s superconducting wires, supporting the same amount of current using 25% of the material. This would make wind generators lighter, more powerful and more efficient. The design could result in a several-fold reduction in wire costs and enable their commercial viability of high-power wind generators for use in offshore applications.

  9. Estimation of small-scale hydroelectric power plant costs; Estimacao de custos de PCH

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Afonso Henriques Moreira [MS Consultoria Ltda, Itajuba, MG (Brazil); Universidade Federal de Itajuba (UNIFEI), MG (Brazil); Silva, Benedito Claudio da [IX Consultoria e Representacoes Ltda, Itajuba, MG (Brazil); Universidade Federal de Itajuba (UNIFEI), MG (Brazil); Magalhaes, Ricardo Nogueira [IX Consultoria e Representacoes Ltda, Itajuba, MG (Brazil)

    2010-07-01

    Changes in Brazilian energy scenario through last years such as increase of demand and search for clean and economically feasible renewable energy sources, has stimulated investors to small hydro power plants (SHP) sector. Such characteristics together with several economic incentives, legal and regulatory mechanisms also, have helped and stimulated building of new plants of this kind and have attracted a great number of investors to this sector. Study of costs analysis and feasibility of investments is a study which has been used since long time in SHP business market as several preliminary studies previous to civil project have significant costs which lead us to count with a feasibility analysis from the very beginning of studies, exactly what is suggested in the present methodology. Such feasibility analysis, in the common patterns where basic unit costs of each input remain outstanding, would be very complex due to great difficulty in obtaining information at initial phase of project. In this direction this study brings a contribution for investors as well as for designers of small hydro power plants since it outlines a link between physical and energetic characteristics of small hydro power plant in its total cost. Such link is based in available physical characteristics in initial phase of the project, making possible a previous comparison between arrangements of a central or even the comparison of return of investment between different plants. The resulting benefit being the possibility of choosing centrals with greater economic feasibility disregarding bad undertakings or arrangements with more expressive cost. Final result gives a better delay in return of investment, helps in power, arrangements more optimized and in saving time as well, reducing costs of undertakings. Due to large number of SHP arrangements, we chose for this study the most common in Brazil, plant of medium and large fall, shunting line balance chimney and low pressure conduit. (author)

  10. Production costs: U.S. gas turbine ampersand combined-cycle power plants

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This fourth edition of UDI's gas turbine O ampersand M cost report gives 1991 operation and maintenance expenses for over 450 US gas turbine power plants. Modeled on UDI's popular series of O ampersand M cost reports for US steam-electric plants, this report shows operator and plant name, plant year-in-service, installed capacity, 1991 net generation, total fuel expenses, total non-fuel O ampersand M expenses, total production costs, and current plant capitalization. Coverage includes over 90 percent of the utility-owned gas/combustion turbine and combined-cycle plants installed in the country

  11. Cost-benefit analyses for the development of magma power

    International Nuclear Information System (INIS)

    Haraden, John

    1992-01-01

    Magma power is the potential generation of electricity from shallow magma bodies in the crust of the Earth. Considerable uncertainty still surrounds the development of magma power, but most of that uncertainty may be eliminated by drilling the first deep magma well. The uncertainty presents no serious impediments to the private drilling of the well. For reasons unrelated to the uncertainty, there may be no private drilling and there may be justification for public drilling. In this paper, we present cost-benefit analyses for private and public drilling of the well. Both analyses indicate there is incentive for drilling. (Author)

  12. Reversing nuclear power cost trends

    International Nuclear Information System (INIS)

    Corey, G.R.; Peoples, D.L.

    1988-01-01

    Nuclear power production expenses rose steadily during the 5-year period 1979 through 1984 at rates ranging from 15 to 25% per year for nonfuel expenses. During that period, fuel costs rose about 14% per year. Experience of the past few years demonstrates that significant economies-of-scale do exist in plant operation and maintenance. A regional operating company could exploit such economies-of-scale and would also be expected to attract and retain a more-experienced and stable staff. Over the years, that combination should significantly improve plant operating performance and safety. The net effect would be a combination of reduced operating expenses; improved availability; higher capacity factors; and, possibly, lower heat rates. In an era of increasing competition within energy business, all options should be considered carefully. Bold innovation will be the key to a nuclear future. 5 references, 8 figures

  13. 75 FR 5315 - Boulder Canyon Project-Rate Order No. WAPA-150

    Science.gov (United States)

    2010-02-02

    ..., and uprating program payments. The total costs are offset by the projected revenue from water sales, visitor center, water pump energy sales, facilities use charges, regulation, reactive supply and voltage...

  14. Canadian nuclear power plant construction cost forecast and analysis

    International Nuclear Information System (INIS)

    Keng, C.W.K.

    1985-01-01

    Because of the huge volume of capital required to construct a modern electric power generating station, investment decisions have to be made with as complete an understanding of the consequence of the decision as possible. This understanding must be provided by the evaluation of the situation to take place in the future. This paper attempts to use an econometric method to forecast the construction costs escalation of a standard Canadian nuclear generating station (NGS). A review of the history of Canadian nuclear electric power is provided. The major components of the construction costs of a Canadian NGS are studied and summarized. A data base is built and indexes are prepared. Based on these indexes an econometric forecasting model is constructed using an apparently new econometric methodology of forecasting modelling. Forecasts for a period of forty years are generated and applications of alternative scenario forecasts and range forecasts to uncertainty assessment are demonstrated. The indexes, the model, and the forecasts and their applications, to the best of the author's knowledge, are the very first ever done for Canadian NGS constructions

  15. The Solar Umbrella: A Low-cost Demonstration of Scalable Space Based Solar Power

    Science.gov (United States)

    Contreras, Michael T.; Trease, Brian P.; Sherwood, Brent

    2013-01-01

    Within the past decade, the Space Solar Power (SSP) community has seen an influx of stakeholders willing to entertain the SSP prospect of potentially boundless, base-load solar energy. Interested parties affiliated with the Department of Defense (DoD), the private sector, and various international entities have all agreed that while the benefits of SSP are tremendous and potentially profitable, the risk associated with developing an efficient end to end SSP harvesting system is still very high. In an effort to reduce the implementation risk for future SSP architectures, this study proposes a system level design that is both low-cost and seeks to demonstrate the furthest transmission of wireless power to date. The overall concept is presented and each subsystem is explained in detail with best estimates of current implementable technologies. Basic cost models were constructed based on input from JPL subject matter experts and assume that the technology demonstration would be carried out by a federally funded entity. The main thrust of the architecture is to demonstrate that a usable amount of solar power can be safely and reliably transmitted from space to the Earth's surface; however, maximum power scalability limits and their cost implications are discussed.

  16. Cycling of conventional power plants: Technical limits and actual costs

    International Nuclear Information System (INIS)

    Van den Bergh, Kenneth; Delarue, Erik

    2015-01-01

    Highlights: • Literature reports a wide range of cycling parameters (technical and cost-related). • The impact of different cycling parameters is assessed. • The German 2013 system is studied as a case study. • Even for stringent parameters, the dynamic limit of the portfolio is not reached. • Cycling costs can be reduced with 40% when taken into account in the scheduling. - Abstract: Cycling of conventional generation units is an important source of operational flexibility in the electricity generation system. Cycling is changing the power output of conventional units by means of ramping and switching (starting up and shutting down). In the literature, a wide range of technical and cost-related cycling parameters can be found. Different studies allocate different cycling parameters to similar generation units. This paper assesses the impact of different cycling parameters allocated to a conventional generation portfolio. Both the technical limitations of power plants and all costs related to cycling are considered. The results presented in this paper follow from a unit commitment model, used for a case study based on the German 2013 system. The conventional generation portfolio has to deliver different residual load time series, corresponding to different levels of renewables penetration. The study shows, under the assumptions made, that although the dynamic limits of some units are reached, the limits of the conventional generation portfolio as a whole are not reached, even if stringent dynamic parameters are assigned to the generation portfolio and a highly variable residual load is imposed to the system. The study shows also the importance of including full cycling costs in the unit commitment scheduling. The cycling cost can be reduced by up to 40% when fully taken into account

  17. Probabilistic Analysis of Electrical Energy Costs: Comparing Production Costs for Gas, Coal and Nuclear Power Plants. Annex III

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-12-15

    The increase in electricity demand is linked to the development of the economy and living standards in each country. This is especially true in those developing countries in which electricity consumption is far below the average of industrialized countries. To satisfy the increased demand for electricity, it is necessary to build new electrical power plants that could, in an optimum way, meet the imposed acceptability criteria. The main criteria are the potential to supply the required energy and to supply it with minimum or, at least, acceptable costs and environmental impacts, to satisfy the licensing requirements and be acceptable to the public. The main competitors for electricity production in the next few decades are fossil fuel power plants (coal and gas) and nuclear power plants. Power plants making use of renewables (solar, wind, biomass) are also important, but due to limited energy supply potential and high costs, can only be a supplement to the main generating units. Large hydropower plants would be competitive under the condition that suitable sites for the construction of such plants exist. Unfortunately, both in Croatia and in the rest of central Europe, such sites are scarce.

  18. HYLIFE-II power conversion system design and cost study

    International Nuclear Information System (INIS)

    Hoffman, M.A.

    1990-09-01

    The power conversion system for the HYLIFE-2 fusion power plant has been defined to include the IHX's (intermediate heat exchangers) and everything that support the exchange of energy from the reactor. It is referred to simply as the BOP (balance of plant) in the rest of this report. The above is a convenient division between the reactor equipment and the rest of the fusion power plant since the BOP design and cost then depend only on the specification of the thermal power to the IHX's and the temperature of the primary Flibe coolant into and out of the IHX's, and is almost independent of the details of the reactor design. The main efforts during the first year have been on the definition and thermal-hydraulics of the IHX's, the steam generators and the steam power plant, leading to the definition of a reference BOP with the molten salt, Flibe, as the primary coolant. A summary of the key results in each of these areas is given in this report

  19. Historical Mass, Power, Schedule, and Cost Growth for NASA Spacecraft

    Science.gov (United States)

    Hayhurst, Marc R.; Bitten, Robert E.; Shinn, Stephen A.; Judnick, Daniel C.; Hallgrimson, Ingrid E.; Youngs, Megan A.

    2016-01-01

    Although spacecraft developers have been moving towards standardized product lines as the aerospace industry has matured, NASA's continual need to push the cutting edge of science to accomplish unique, challenging missions can still lead to spacecraft resource growth over time. This paper assesses historical mass, power, cost, and schedule growth for multiple NASA spacecraft from the last twenty years and compares to industry reserve guidelines to understand where the guidelines may fall short. Growth is assessed from project start to launch, from the time of the preliminary design review (PDR) to launch and from the time of the critical design review (CDR) to launch. Data is also assessed not just at the spacecraft bus level, but also at the subsystem level wherever possible, to help obtain further insight into possible drivers of growth. Potential recommendations to minimize spacecraft mass, power, cost, and schedule growth for future missions are also discussed.

  20. External costs of material recycling strategies for fusion power plants

    International Nuclear Information System (INIS)

    Hallberg, B.; Aquilonius, K.; Lechon, Y.; Cabal, H.; Saez, R.M.; Schneider, T.; Lepicard, S.; Ward, D.; Hamacher, T.; Korhonen, R.

    2003-01-01

    This paper is based on studies performed within the framework of the project Socio-Economic Research on Fusion (SERF3). Several fusion power plant designs (SEAFP Models 1-6) were compared focusing on part of the plant's life cycle: environmental impact of recycling the materials. Recycling was considered for materials replaced during normal operation, as well as materials from decommissioning of the plant. Environmental impact was assessed and expressed as external cost normalised with the total electrical energy output during plant operation. The methodology used for this study has been developed by the Commission of the European Union within the frame of the ExternE project. External costs for recycling, normalised with the energy production during plant operation, are very low compared with those for other energy sources. Results indicate that a high degree of recycling is preferable, at least when considering external costs, because external costs of manufacturing of new materials and disposal costs are higher

  1. Cost related sensitivity analysis for optimal operation of a grid-parallel PEM fuel cell power plant

    Science.gov (United States)

    El-Sharkh, M. Y.; Tanrioven, M.; Rahman, A.; Alam, M. S.

    Fuel cell power plants (FCPP) as a combined source of heat, power and hydrogen (CHP&H) can be considered as a potential option to supply both thermal and electrical loads. Hydrogen produced from the FCPP can be stored for future use of the FCPP or can be sold for profit. In such a system, tariff rates for purchasing or selling electricity, the fuel cost for the FCPP/thermal load, and hydrogen selling price are the main factors that affect the operational strategy. This paper presents a hybrid evolutionary programming and Hill-Climbing based approach to evaluate the impact of change of the above mentioned cost parameters on the optimal operational strategy of the FCPP. The optimal operational strategy of the FCPP for different tariffs is achieved through the estimation of the following: hourly generated power, the amount of thermal power recovered, power trade with the local grid, and the quantity of hydrogen that can be produced. Results show the importance of optimizing system cost parameters in order to minimize overall operating cost.

  2. Nonfuel OandM costs for laser and heavy-ion fusion power plants

    International Nuclear Information System (INIS)

    Pendergrass, J.H.

    1986-01-01

    Very simple nonfuel operating and maintenance (OandM) cost models have been used in many inertial confinement fusion (ICF) commercial applications studies. Often, ICF OandM costs have been accounted for by adding a small fraction of plant initial capital cost to other annual power production costs. Lack of definition of ICF technology and/or perceptions that OandM costs would be small relative to capital-related costs are some reasons for such simple treatments. This approach does not permit rational treatment of potentially significant differences in OandM costs for ICF plants with different driver, reactor, target, etc., technologies or rational comparisons with conventional technologies. Improved understanding of ICF makes more accurate estimates for some OandM costs appear feasible. More detailed OandM cost models, even if of modest accuracy in some areas, are useful for comparisons

  3. Effects of design on cost of flat-plate solar photovoltaic arrays for terrestrial central station power applications

    Science.gov (United States)

    Tsou, P.; Stolte, W.

    1978-01-01

    The paper examines the impact of module and array designs on the balance-of-plant costs for flat-plate terrestrial central station power applications. Consideration is given to the following types of arrays: horizontal, tandem, augmented, tilt adjusted, and E-W tracking. The life-cycle cost of a 20-year plant life serves as the costing criteria for making design and cost tradeoffs. A tailored code of accounts is developed for determining consistent photovoltaic power plant costs and providing credible photovoltaic system cost baselines for flat-plate module and array designs by costing several varying array design approaches.

  4. Techno-Economic Feasibility of Highly Efficient Cost-Effective Thermoelectric-SOFC Hybrid Power Generation Systems

    Energy Technology Data Exchange (ETDEWEB)

    Jifeng Zhang; Jean Yamanis

    2007-09-30

    Solid oxide fuel cell (SOFC) systems have the potential to generate exhaust gas streams of high temperature, ranging from 400 to 800 C. These high temperature gas streams can be used for additional power generation with bottoming cycle technologies to achieve higher system power efficiency. One of the potential candidate bottoming cycles is power generation by means of thermoelectric (TE) devices, which have the inherent advantages of low noise, low maintenance and long life. This study was to analyze the feasibility of combining coal gas based SOFC and TE through system performance and cost techno-economic modeling in the context of multi-MW power plants, with 200 kW SOFC-TE module as building blocks. System and component concepts were generated for combining SOFC and TE covering electro-thermo-chemical system integration, power conditioning system (PCS) and component designs. SOFC cost and performance models previously developed at United Technologies Research Center were modified and used in overall system analysis. The TE model was validated and provided by BSST. The optimum system in terms of energy conversion efficiency was found to be a pressurized SOFC-TE, with system efficiency of 65.3% and cost of $390/kW of manufacturing cost. The pressurization ratio was approximately 4 and the assumed ZT of the TE was 2.5. System and component specifications were generated based on the modeling study. The major technology and cost barriers for maturing the system include pressurized SOFC stack using coal gas, the high temperature recycle blowers, and system control design. Finally, a 4-step development roadmap is proposed for future technology development, the first step being a 1 kW proof-of-concept demonstration unit.

  5. Externality costs of the coal-fuel cycle: The case of Kusile Power Station

    Directory of Open Access Journals (Sweden)

    Nonophile P. Nkambule

    2017-09-01

    Full Text Available Coal-based electricity is an integral part of daily life in South Africa and globally. However, the use of coal for electricity generation carries a heavy cost for social and ecological systems that goes far beyond the price we pay for electricity. We developed a model based on a system dynamics approach for understanding the measurable and quantifiable coal-fuel cycle burdens and externality costs, over the lifespan of a supercritical coal-fired power station that is fitted with a flue-gas desulfurisation device (i.e. Kusile Power Station. The total coal-fuel cycle externality cost on both the environment and humans over Kusile's lifespan was estimated at ZAR1 449.9 billion to ZAR3 279 billion or 91c/kWh to 205c/kWh sent out (baseline: ZAR2 172.7 billion or 136c/kWh. Accounting for the life-cycle burdens and damages of coal-derived electricity conservatively, doubles to quadruples the price of electricity, making renewable energy sources such as wind and solar attractive alternatives. Significance: The use of coal for electricity generation carries a heavy cost for social and ecological systems that goes far beyond the price we pay for electricity. The estimation of social costs is particularly important to the electric sector because of non-differentiation of electricity prices produced from a variety of sources with potentially very dissimilar environmental and human health costs. Because all electricity generation technologies are associated with undesirable side effects in their fuelcycle and lifespan, comprehensive comparative analyses of life-cycle costs of all power generation technologies is indispensable to guide the development of future energy policies in South Africa.

  6. Cost and performance of fossil fuel power plants with CO2 capture and storage

    International Nuclear Information System (INIS)

    Rubin, Edward S.; Chen, Chao; Rao, Anand B.

    2007-01-01

    CO 2 capture and storage (CCS) is receiving considerable attention as a potential greenhouse gas (GHG) mitigation option for fossil fuel power plants. Cost and performance estimates for CCS are critical factors in energy and policy analysis. CCS cost studies necessarily employ a host of technical and economic assumptions that can dramatically affect results. Thus, particular studies often are of limited value to analysts, researchers, and industry personnel seeking results for alternative cases. In this paper, we use a generalized modeling tool to estimate and compare the emissions, efficiency, resource requirements and current costs of fossil fuel power plants with CCS on a systematic basis. This plant-level analysis explores a broader range of key assumptions than found in recent studies we reviewed for three major plant types: pulverized coal (PC) plants, natural gas combined cycle (NGCC) plants, and integrated gasification combined cycle (IGCC) systems using coal. In particular, we examine the effects of recent increases in capital costs and natural gas prices, as well as effects of differential plant utilization rates, IGCC financing and operating assumptions, variations in plant size, and differences in fuel quality, including bituminous, sub-bituminous and lignite coals. Our results show higher power plant and CCS costs than prior studies as a consequence of recent escalations in capital and operating costs. The broader range of cases also reveals differences not previously reported in the relative costs of PC, NGCC and IGCC plants with and without CCS. While CCS can significantly reduce power plant emissions of CO 2 (typically by 85-90%), the impacts of CCS energy requirements on plant-level resource requirements and multi-media environmental emissions also are found to be significant, with increases of approximately 15-30% for current CCS systems. To characterize such impacts, an alternative definition of the 'energy penalty' is proposed in lieu of the

  7. Design and Study of a Low-Cost Laboratory Model Digital Wind Power Meter

    Science.gov (United States)

    Radhakrishnan, Rugmini; Karthika, S.

    2010-01-01

    A vane-type low-cost laboratory model anemometer cum power meter is designed and constructed for measuring low wind energy created from accelerating fluids. The constructed anemometer is a device which records the electrical power obtained by the conversion of wind power using a wind sensor coupled to a DC motor. It is designed for its…

  8. Increasing coal-fired power generation efficiency to reduce electric cost and environmental emissions

    International Nuclear Information System (INIS)

    Torrens, I.M.; Stenzel, W.C.

    1997-01-01

    New generating capacity required globally between 1993 and 2010 is estimated to be around 1500 GW, of which some two-thirds will be outside the OECD, and some 40 % in the Asian non-OECD countries. Coal is likely to account for a substantial fraction of this new generation. Today's state-of-the-art supercritical coal-fired power plant has a conversion efficiency of some 42-45 %. The capital cost increase associated with the supercritical or ultra-supercritical pulverized coal power plant compared to a conventional subcritical plant is small to negligible. The increased efficiency associated with the supercritical plant leads to an actual reduction in the total cost of electricity generated in cents/kWh, relative to a conventional plant. Despite this, the power sector continues to build subcritical plants and has no near term plans to increase the efficiency of power plants in the projects it is developing. Advanced clean coal technologies such as integrated gasification combined cycle and pressurized fluidized bed combustion will be selected for independent power projects only in very specific circumstances. Advanced clean coal plants can be operated reliably and with superior performance, and specifically that their present estimated capital costs can be reduced substantially to a point where they are competitive with state-of-the-art pulverized coal technologies. (R.P.)

  9. Improving Power System Modeling. A Tool to Link Capacity Expansion and Production Cost Models

    Energy Technology Data Exchange (ETDEWEB)

    Diakov, Victor [National Renewable Energy Lab. (NREL), Golden, CO (United States); Cole, Wesley [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sullivan, Patrick [National Renewable Energy Lab. (NREL), Golden, CO (United States); Brinkman, Gregory [National Renewable Energy Lab. (NREL), Golden, CO (United States); Margolis, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-11-01

    Capacity expansion models (CEM) provide a high-level long-term view at the prospects of the evolving power system. In simulating the possibilities of long-term capacity expansion, it is important to maintain the viability of power system operation in the short-term (daily, hourly and sub-hourly) scales. Production-cost models (PCM) simulate routine power system operation on these shorter time scales using detailed load, transmission and generation fleet data by minimizing production costs and following reliability requirements. When based on CEM 'predictions' about generating unit retirements and buildup, PCM provide more detailed simulation for the short-term system operation and, consequently, may confirm the validity of capacity expansion predictions. Further, production cost model simulations of a system that is based on capacity expansion model solution are 'evolutionary' sound: the generator mix is the result of logical sequence of unit retirement and buildup resulting from policy and incentives. The above has motivated us to bridge CEM with PCM by building a capacity expansion - to - production cost model Linking Tool (CEPCoLT). The Linking Tool is built to onset capacity expansion model prescriptions onto production cost model inputs. NREL's ReEDS and Energy Examplar's PLEXOS are the capacity expansion and the production cost models, respectively. Via the Linking Tool, PLEXOS provides details of operation for the regionally-defined ReEDS scenarios.

  10. Multiarea Transmission Cost Allocation in Large Power Systems Using the Nodal Pricing Control Approach

    Directory of Open Access Journals (Sweden)

    M. Ghayeni

    2010-12-01

    Full Text Available This paper proposes an algorithm for transmission cost allocation (TCA in a large power system based on nodal pricing approach using the multi-area scheme. The nodal pricing approach is introduced to allocate the transmission costs by the control of nodal prices in a single area network. As the number of equations is dependent on the number of buses and generators, this method will be very time consuming for large power systems. To solve this problem, the present paper proposes a new algorithm based on multi-area approach for regulating the nodal prices, so that the simulation time is greatly reduced and therefore the TCA problem with nodal pricing approach will be applicable for large power systems. In addition, in this method the transmission costs are allocated to users more equitable. Since the higher transmission costs in an area having a higher reliability are paid only by users of that area in contrast with the single area method, in which these costs are allocated to all users regardless of their locations. The proposed method is implemented on the IEEE 118 bus test system which comprises three areas. Results show that with application of multi-area approach, the simulation time is greatly reduced and the transmission costs are also allocated to users with less variation in new nodal prices with respect to the single area approach.

  11. Application of the discounted value flows method in production cost calculations for Czechoslovak nuclear power plants

    International Nuclear Information System (INIS)

    Majer, P.

    1990-01-01

    The fundamentals are outlined of the discounted value flows method, which is used in industrial countries for calculating the specific electricity production costs. Actual calculations were performed for the first two units of the Temelin nuclear power plant. All costs associated with the construction, operation and decommissioning of this nuclear power plant were taken into account. With a high degree of certainty, the specific production costs of the Temelin nuclear power plant will lie within the range of 0.32 to 0.36 CSK/kWh. Nearly all results of the sensitivity analysis performed for the possible changes in the input values fall within this range. An increase in the interest rate to above 8% is an exception; this, however, can be regarded as rather improbable on a long-term basis. Sensitivity analysis gave evidence that the results of the electricity production cost calculations for the Temelin nuclear power plant can be considered sufficiently stable. (Z.M.). 7 figs., 2 tabs., 14 refs

  12. Cost of unserved power in Karnataka, India

    International Nuclear Information System (INIS)

    Bose, Ranjan Kumar; Shukla, Megha; Srivastava, Leena; Yaron, Gil

    2006-01-01

    This paper proposes an empirical analysis concerning the cost of unserved energy (CUE) or value of lost load in agriculture and industrial sectors and provides insights that can provide useful inputs in designing effective policies for the power sector. About 500 manufacturing units and 900 farmers were surveyed in the south Indian state of Karnataka using a two-stage random sampling to provide interval estimates of CUE for the industrial and agricultural consumers. The results from the survey help in providing guidance on consumer perceptions and their willingness to pay different or higher tariffs. The estimated economic loss due to power outage in the agriculture sector varies from 1.9% to 3.6% of total State Domestic Product (SDP), i.e., Rs 950 billion at 1999/2000 prices, while in industry, the economic loss varies between 0.04% and 0.17% of total SDP depending upon the size of industry during the study period in 1999

  13. Cost-Benefit Analysis for the Concentrated Solar Power in China

    Directory of Open Access Journals (Sweden)

    Shuxia Yang

    2018-01-01

    Full Text Available In 2016, the first batch of concentrated solar power (CSP demonstration projects of China was formally approved. Due to the important impact of the cost-benefit on the investment decisions and policy-making, this paper adopted the static payback period (SP, net present value (NPV, net present value rate (NPVR, and internal rate of return (IRR to analyze and discuss the cost-benefit of CSP demonstration plants. The results showed the following. (1 The SP of CSP systems is relatively longer, due to high initial investment; but the cost-benefit of CSP demonstration plants as a whole is better, because of good expected incomes. (2 Vast majority of CSP projects could gain excess returns, on the basis of meeting the profitability required by the benchmark yield of 10%. (3 The cost-benefit of solar tower CSP technology (IRR of 12.33% is better than that of parabolic trough CSP technology (IRR of 11.72% and linear Fresnel CSP technology (IRR of 11.43%. (4 The annual electricity production and initial costs have significant impacts on the cost-benefit of CSP systems; the effects of operation and maintenance costs and loan interest rate on the cost-benefit of CSP systems are relatively smaller but cannot be ignored.

  14. Monetization of External Costs Using Lifecycle Analysis—A Comparative Case Study of Coal-Fired and Biomass Power Plants in Northeast China

    Directory of Open Access Journals (Sweden)

    Lingling Wang

    2015-02-01

    Full Text Available In this study, the structures of external costs are built in line with coal-fired and biomass power plant life cycle activities in Northeast China. The external cost of coal-fired and biomass power plants was compared, using the lifecycle approach. In addition, the external costs of a biomass power plant are calculated for each stage for comparison with those of a coal-fired power plant. The results highlight that the external costs of a coal-fired plant are 0.072 US $/kWh, which are much higher than that of a biomass power plant, 0.00012 US$/kWh. The external cost of coal-fired power generation is as much as 90% of the current price of electricity generated by coal, while the external cost of a biomass power plant is 1/1000 of the current price of electricity generated by biomass. In addition, for a biomass power plant, the external cost associated with SO2, NOX, and PM2.5 are particularly lower than those of a coal-fired power plant. The prospect of establishing precise estimations for external cost mechanisms and sustainable energy policies is discussed to show a possible direction for future energy schemes in China. The paper has significant value for supporting the biomass power industry and taxing or regulating coal-fired power industry to optimize the energy structure in China.

  15. Reliability and cost evaluation of small isolated power systems containing photovoltaic and wind energy

    Science.gov (United States)

    Karki, Rajesh

    Renewable energy application in electric power systems is growing rapidly worldwide due to enhanced public concerns for adverse environmental impacts and escalation in energy costs associated with the use of conventional energy sources. Photovoltaics and wind energy sources are being increasingly recognized as cost effective generation sources. A comprehensive evaluation of reliability and cost is required to analyze the actual benefits of utilizing these energy sources. The reliability aspects of utilizing renewable energy sources have largely been ignored in the past due the relatively insignificant contribution of these sources in major power systems, and consequently due to the lack of appropriate techniques. Renewable energy sources have the potential to play a significant role in the electrical energy requirements of small isolated power systems which are primarily supplied by costly diesel fuel. A relatively high renewable energy penetration can significantly reduce the system fuel costs but can also have considerable impact on the system reliability. Small isolated systems routinely plan their generating facilities using deterministic adequacy methods that cannot incorporate the highly erratic behavior of renewable energy sources. The utilization of a single probabilistic risk index has not been generally accepted in small isolated system evaluation despite its utilization in most large power utilities. Deterministic and probabilistic techniques are combined in this thesis using a system well-being approach to provide useful adequacy indices for small isolated systems that include renewable energy. This thesis presents an evaluation model for small isolated systems containing renewable energy sources by integrating simulation models that generate appropriate atmospheric data, evaluate chronological renewable power outputs and combine total available energy and load to provide useful system indices. A software tool SIPSREL+ has been developed which generates

  16. Cost-Effectiveness Comparison of Coupler Designs of Wireless Power Transfer for Electric Vehicle Dynamic Charging

    Directory of Open Access Journals (Sweden)

    Weitong Chen

    2016-11-01

    Full Text Available This paper presents a cost-effectiveness comparison of coupler designs for wireless power transfer (WPT, meant for electric vehicle (EV dynamic charging. The design comparison of three common types of couplers is first based on the raw material cost, output power, transfer efficiency, tolerance of horizontal offset, and flux density. Then, the optimal cost-effectiveness combination is selected for EV dynamic charging. The corresponding performances of the proposed charging system are compared and analyzed by both simulation and experimentation. The results verify the validity of the proposed dynamic charging system for EVs.

  17. Costs of Reducing Greenhouse Gas Emissions: A Case Study of India’s Power Generation Sector

    OpenAIRE

    Manish Gupta

    2006-01-01

    If India were to participate in any international effort towards mitigating CO2 emissions, the power sector which is one of the largest emitters of CO2 in the country would be required to play a major role. In this context the study estimates the marginal abatement costs, which correspond to the costs incurred by the power plants to reduce one unit of CO2 from the current level. The study uses an output distance function approach and its duality with the revenue function to derive these costs...

  18. Cost determination of the electro-mechanical equipment of a small hydro-power plant

    Energy Technology Data Exchange (ETDEWEB)

    Ogayar, B.; Vidal, P.G. [Grupo de Investigacion IDEA, Escuela Politecnica Superior, University of Jaen, Campus de Las Lagunillas, s/n. 23071-Jaen (Spain)

    2009-01-15

    One of the most important elements on the recovery of a small hydro-power plant is the electro-mechanical equipment (turbine-alternator), since the cost of the equipment means a high percentage of the total budget of the plant. The present paper intends to develop a series of equations which determine its cost from basic parameters such as power and net head. These calculations are focused at a level of previous study, so it will be necessary to carry out the engineering project and request a budget to companies specialized on the construction of electro-mechanical equipment to know its cost more accurately. Although there is a great diversity in the typology of turbines and alternators, data from manufacturers which cover all the considered range have been used. The above equations have been developed for the most common of turbines: Pelton, Francis, Kaplan and semiKaplan for a power range below 2 MW. The obtained equations have been validated with data from real installations which have been subject to analysis by engineering companies working on the assembly and design of small plants. (author)

  19. CONCEPT-5, Cost and Economics Analysis for Nuclear Fuel or Fossil Fuel Power Plant

    International Nuclear Information System (INIS)

    Bowers, H.I.; Gratteau, J.E.; Zielsinki, T.J.

    1992-01-01

    1 - Description of problem or function: The CONCEPT computer code system was developed to provide conceptual capital cost estimates for nuclear and coal-fired power plants. Cost estimates can be made as a function of plant type, size, location, and date of initial operation. The output includes a detailed breakdown of the estimate into direct and indirect costs similar to the accounting system described in document NUS-531. Cost models are provided in CONCEPT5, the fifth generation in the development of the CONCEPT package, for single-unit coal-fired plants, pressurized-water reactors, boiling- water reactors, liquid-metal-cooled reactors, and multi-unit coal- fired plants based on today's average or best operating experience. Costs may be obtained for any of twenty U.S. cities, a hypothetical Middletown site, and two Canadian cities. CONCEPT5 models are updated models of those available in CONCEPT3 and, in addition, this edition contains historical factory equipment cost data for the generation of cost indices and escalation rates; indirect costs are calculated as a function of unit size rather than a function of direct costs; and an indirect cost account for owner's costs and an improved time-dependent escalation feature are included. The CONCEPT3 models and cost data are outdated; the package is being retained in the library since it is the only UNIVAC1108 machine version of CONCEPT available and could prove helpful in converting the latest IBM release. 2 - Method of solution: CONCEPT is based on the premise that any central station power plant involves approximately the same major cost components regardless of location or date of initial operation. The program has detailed cost models for each plant type at a reference condition. Through use of size, time, and location- dependent cost adjustments, a reference cost model is modified to produce a specific capital cost estimate. CONCEPT is supported by two auxiliary programs--CONTAC, which generates and maintains

  20. A societal cost-of-illness study of hemodialysis in Lebanon.

    Science.gov (United States)

    Rizk, Rana; Hiligsmann, Mickaël; Karavetian, Mirey; Salameh, Pascale; Evers, Silvia M A A

    2016-12-01

    Renal failure is a growing public health problem, and is mainly treated by hemodialysis. This study aims to estimate the societal costs of hemodialysis in Lebanon. This was a quantitative, cross-sectional cost-of-illness study conducted alongside the Nutrition Education for Management of Osteodystrophy trial. Costs were assessed with a prevalence-based, bottom-up approach, for the period of June-December 2011. The data of 114 patients recruited from six hospital-based units were collected through a questionnaire measuring healthcare costs, costs to patients and family, and costs in other sectors. Recall data were used for the base-case analysis. Sensitivity analyses employing various sources of resources use and costs were performed. Costs were uprated to 2015US$. Multiple linear regression was conducted to explore the predictors of societal costs. The mean 6-month societal costs were estimated at $9,258.39. The larger part was attributable to healthcare costs (91.7%), while costs to patient and family and costs in other sectors poorly contributed to the total costs (4.2% and 4.1%, respectively). In general, results were robust to sensitivity analyses. Using the maximum value for hospitalization resulted in the biggest difference (+15.5% of the base-case result). Female gender, being widowed/divorced, having hypertension comorbidity, and higher weekly time on dialysis were significantly associated with greater societal costs. Information regarding resource consumption and cost were not readily available. Rather, they were obtained from a variety of sources, with each having its own strengths and limitations. Hemodialysis represents a high societal burden in Lebanon. Using extrapolation, its total annual cost for the Lebanese society is estimated at $61,105,374 and the mean total annual cost ($18,516.7) is 43.70% higher than the gross domestic product per capita forecast for 2015. Measures to reduce the economic burden of hemodialysis should be taken, by promoting

  1. South Korean energy scenarios show how nuclear power can reduce future energy and environmental costs

    International Nuclear Information System (INIS)

    Hong, Sanghyun; Bradshaw, Corey J.A.; Brook, Barry W.

    2014-01-01

    South Korea is an important case study for understanding the future role of nuclear power in countries with on-going economic growth, and limited renewable energy resources. We compared quantitatively the sustainability of two ‘future-mapping’ exercises (the ‘Governmental’ scenario, which relies on fossil fuels, and the Greenpeace scenario, which emphasises renewable energy and excludes nuclear power). The comparison was based on a range of environmental and technological perspectives, and contrasted against two additional nuclear scenarios that instead envisage a dominant role for nuclear energy. Sustainability metrics included energy costs, external costs (greenhouse-gas emissions, air pollutants, land transformation, water consumption and discharge, and safety) and additional costs. The nuclear-centred scenarios yielded the lowest total cost per unit of final energy consumption by 2050 ($14.37 GJ −1 ), whereas the Greenpeace scenario has the highest ($25.36 GJ −1 ). We used probabilistic simulations based on multi-factor distributional sampling of impact and cost metrics to estimate the overlapping likelihoods among scenarios to understand the effect of parameter uncertainty on the integrated recommendations. Our simulation modelling implies that, despite inherent uncertainties, pursuing a large-scale expansion of nuclear-power capacity offers the most sustainable pathway for South Korea, and that adopting a nuclear-free pathway will be more costly and produce more greenhouse-gas emissions. - Highlights: • Nuclear power has a key role to play in mitigating greenhouse-gas emissions. • The Greenpeace scenario has higher total external cost than the nuclear scenarios. • The nuclear-centred scenarios offer the most sustainable option for South Korea. • The similar conclusions are likely to apply to other Asian countries

  2. Making concentrated solar power competitive with coal: The costs of a European feed-in tariff

    International Nuclear Information System (INIS)

    Williges, Keith; Lilliestam, Johan; Patt, Anthony

    2010-01-01

    The European Union has yet to determine how exactly to reach its greenhouse gas emissions targets for the future. One potential answer involves large-scale development of concentrated solar power (CSP) in the North African region, transmitting the power to Europe. CSP is a relatively young and little utilized technology and is expensive when compared to other methods of generation. Feasibility studies have shown it is possible to generate enough power from CSP plants in Africa to spearhead the EUs climate goals. However, the costs of such a project are less well known. Currently, CSP must compete with low cost coal-fired electricity plants, severely hindering development. We examine the possible investment costs required for North African CSP levelized electricity cost to equal those of coal-fired plants and the potential subsidy costs needed to encourage growth until the technologies reach price parity. We also examine the sensitivity of investment and subsidies to changes in key factors. We find that estimates of subsidy amounts are reasonable for the EU and that sensitivity to such factors as perceived risk and learning rates would enable policy-makers to positively influence the cost of subsidies and time required for CSP to be competitive with coal.

  3. High-resolution modeling of the western North American power system demonstrates low-cost and low-carbon futures

    International Nuclear Information System (INIS)

    Nelson, James; Johnston, Josiah; Mileva, Ana; Fripp, Matthias; Hoffman, Ian; Petros-Good, Autumn; Blanco, Christian; Kammen, Daniel M.

    2012-01-01

    Decarbonizing electricity production is central to reducing greenhouse gas emissions. Exploiting intermittent renewable energy resources demands power system planning models with high temporal and spatial resolution. We use a mixed-integer linear programming model – SWITCH – to analyze least-cost generation, storage, and transmission capacity expansion for western North America under various policy and cost scenarios. Current renewable portfolio standards are shown to be insufficient to meet emission reduction targets by 2030 without new policy. With stronger carbon policy consistent with a 450 ppm climate stabilization scenario, power sector emissions can be reduced to 54% of 1990 levels by 2030 using different portfolios of existing generation technologies. Under a range of resource cost scenarios, most coal power plants would be replaced by solar, wind, gas, and/or nuclear generation, with intermittent renewable sources providing at least 17% and as much as 29% of total power by 2030. The carbon price to induce these deep carbon emission reductions is high, but, assuming carbon price revenues are reinvested in the power sector, the cost of power is found to increase by at most 20% relative to business-as-usual projections. - Highlights: ► Intermittent generation necessitates high-resolution electric power system models. ► We apply the SWITCH planning model to the western North American grid. ► We explore carbon policy and resource cost scenarios through 2030. ► As the carbon price rises, coal generation is replaced with solar, wind, gas and/or nuclear generation ► A 450 ppm climate stabilization target can be met at a 20% or lower cost increase.

  4. Procedure for estimating nonfuel operation and maintenance costs for large steam-electric power plants

    International Nuclear Information System (INIS)

    Myers, M.L.; Fuller, L.C.

    1979-01-01

    Revised guidelines are presented for estimating annual nonfuel operation and maintenance costs for large steam-electric power plants, specifically light-water-reactor plants and coal-fired plants. Previous guidelines were published in October 1975 in ERDA 76-37, a Procedure for Estimating Nonfuel Operating and Maintenance Costs for Large Steam-Electric Power Plants. Estimates for coal-fired plants include the option of limestone slurry scrubbing for flue gas desulfurization. A computer program, OMCOST, is also presented which covers all plant options

  5. Assessment of levelized cost of electricity for a 10-MW solar chimney power plant in Yinchuan China

    International Nuclear Information System (INIS)

    Guo, Penghua; Zhai, Yaxin; Xu, Xinhai; Li, Jingyin

    2017-01-01

    Highlights: • An unsteady model is proposed for annual power generation prediction of SCPPs. • LCOE of a 10-MW SCPP in China is estimated through a cost benefit analysis. • Cost advantage and concessional loan under conditions in China are considered. • SCPP is proven to be economically feasible under favorable conditions in China. - Abstract: Solar chimney power plant (SCPP) is a promising renewable energy technology that needs policy support and market cultivation at the early stage of its development. An accurate prediction of the levelized cost of electricity (LCOE) can be used as basis for crafting effective support policies. This study presents an unsteady theoretical model that considers hourly meteorological data and soil heat storage in estimating the annual power generation of an SCPP. A cost benefit model is adopted to calculate the LCOE of a 10-MW SCPP in Yinchuan, a representative geographical location in the Northwestern region of China. By considering the cost advantage of China, the concessional loan, as well as the low operation and maintenance cost, the LCOE of the SCPP is estimated to be 0.4178 Yuan/kWh, which can compete with those of wind power and solar PV in China. This work lays a good foundation for the accurate prediction of power generation and provides a reference for the Chinese government in crafting effective support policies for SCPPs.

  6. A Total Cost of Ownership Model for Low Temperature PEM Fuel Cells in Combined Heat and Power and Backup Power Applications

    Energy Technology Data Exchange (ETDEWEB)

    University of California, Berkeley; Wei, Max; Lipman, Timothy; Mayyas, Ahmad; Chien, Joshua; Chan, Shuk Han; Gosselin, David; Breunig, Hanna; Stadler, Michael; McKone, Thomas; Beattie, Paul; Chong, Patricia; Colella, Whitney; James, Brian

    2014-06-23

    A total cost of ownership model is described for low temperature proton exchange membrane stationary fuel cell systems for combined heat and power (CHP) applications from 1-250kW and backup power applications from 1-50kW. System designs and functional specifications for these two applications were developed across the range of system power levels. Bottom-up cost estimates were made for balance of plant costs, and detailed direct cost estimates for key fuel cell stack components were derived using design-for-manufacturing-and-assembly techniques. The development of high throughput, automated processes achieving high yield are projected to reduce the cost for fuel cell stacks to the $300/kW level at an annual production volume of 100 MW. Several promising combinations of building types and geographical location in the U.S. were identified for installation of fuel cell CHP systems based on the LBNL modelling tool DER CAM. Life-cycle modelling and externality assessment were done for hotels and hospitals. Reduced electricity demand charges, heating credits and carbon credits can reduce the effective cost of electricity ($/kWhe) by 26-44percent in locations such as Minneapolis, where high carbon intensity electricity from the grid is displaces by a fuel cell system operating on reformate fuel. This project extends the scope of existing cost studies to include externalities and ancillary financial benefits and thus provides a more comprehensive picture of fuel cell system benefits, consistent with a policy and incentive environment that increasingly values these ancillary benefits. The project provides a critical, new modelling capacity and should aid a broad range of policy makers in assessing the integrated costs and benefits of fuel cell systems versus other distributed generation technologies.

  7. Cost reduction potentials of offshore wind power in Germany

    International Nuclear Information System (INIS)

    Hobohm, Jens; Krampe, Leonard; Peter, Frank

    2014-01-01

    Offshore wind power is a major hope for the German energy turnaround. However, it will only be possible to tap its cost reduction potentials if industry, the political leadership and the administrative authorities join forces to create the necessary preconditions. An important requirement for this capital-intensive technology are stable legal and political framework conditions. A recent study on the future shows what needs to be done.

  8. Cost effective decommissioning and dismantling of nuclear power plants

    International Nuclear Information System (INIS)

    Wasinger, Karl

    2012-01-01

    As for any large and complex project, the basis for cost effective decommissioning and dismantling of nuclear power plants is established with the development of the project. Just as its construction, dismantling of a nuclear power plant is similarly demanding. Daily changing situations due to the progress of construction - in the present case progress of dismantling - result in significant logistical challenges for project managers and site supervisors. This will be aggravated by the fact that a considerable amount of the removed parts are contaminated or even activated. Hence, not only occupational health, safety and environmental protection is to be assured, employees, public and environment are to be adequately protected against the adverse effect of radioactive radiation as well. Work progress and not least expenses involved with the undertaking depend on adherence to the planned course of actions. Probably the most frequent cause of deviation from originally planned durations and costs of a project are disruptions in the flow of work. For being enabled to counteract in a timely and efficient manner, all required activities are to be comprehensively captured with the initial planning. The effect initial activities may have on subsequent works until completion must particularly be investigated. This is the more important the larger and more complex the project actually are. Comprehensive knowledge of all the matters which may affect the progress of the works is required in order to set up a suitable work break-down structure; such work break-down structure being indispensable for successful control and monitoring of the project. In building the related organizational structure of the project, all such stakeholders not being direct part of the project team but which may potentially affect the progress of the project are to be considered as well. Cost effective and lost time injury free dismantling of decommissioned nuclear power plants is based on implementing

  9. Development of a Cost-Effective Solar/Diesel Independent Power Plant for a Remote Station

    Directory of Open Access Journals (Sweden)

    Okeolu Samuel Omogoye

    2015-01-01

    Full Text Available The paper discusses the design, simulation, and optimization of a solar/diesel hybrid power supply system for a remote station. The design involves determination of the station total energy demand as well as obtaining the station solar radiation data. This information was used to size the components of the hybrid power supply system (HPSS and to determine its configuration. Specifically, an appropriate software package, HOMER, was used to determine the number of solar panels, deep-cycle batteries, and rating of the inverter that comprise the solar section of the HPSS. A suitable diesel generator was also selected for the HPSS after careful technical and cost analysis of those available in the market. The designed system was simulated using the HOMER software package and the simulation results were used to carry out the optimization of the system. The final design adequately meets the station energy requirement. Based on a life expectancy of twenty-five years, a cost-benefit analysis of the HPSS was carried out. This analysis shows that the HPSS has a lower cost as compared to a conventional diesel generator power supply, thus recommending the HPSS as a more cost-effective solution for this application.

  10. Accounting and cost control of a nuclear power station

    International Nuclear Information System (INIS)

    Dangelmaier, P.

    1977-01-01

    1) chart or classification of accounts, 2) all plant expenses, 3) cost control, 4) storage of spare parts and supplies, 5) control of applicable dose rate, 6) charges for insurance. The accuracy of accounting and cost control is a primary thing for the efficiency in a nuclear power station. The much more important factor is the availability. It is necessary to save costs by a more effective storage or a more detailed and automatic process of single jobs in the workshop. But a very definite experience made in Obrigheim is the fact that not only commercial people know which financial loss will occur if the plant is out of operation one hour. This knowledge is also important for the technical people and for the workers in the workshops. The technical responsibility and the security in operation of the plant and the commercial understanding for the risk of non-availability do not exclude each other. (HP) [de

  11. Cost structure analysis of commercial nuclear power plants in Japan based on corporate financial statements of electric utility companies

    International Nuclear Information System (INIS)

    Kunitake, Norifumi; Nagano, Koji; Suzuki, Tatsujiro

    1998-01-01

    In this paper, we analyze past and current cost structure of commercial nuclear power plants in Japan based on annual corporate financial statements published by the Japanese electric utility companies, instead of employing the conventional methodology of evaluating the generation cost for a newly constructed model plant. The result of our study on existing commercial nuclear plants reveals the increasing significance of O and M and fuel cycle costs in total generation cost. Thus, it is suggested that electric power companies should take more efforts to reduce these costs in order to maintain the competitiveness of nuclear power in Japan. (author)

  12. Optimum sample size allocation to minimize cost or maximize power for the two-sample trimmed mean test.

    Science.gov (United States)

    Guo, Jiin-Huarng; Luh, Wei-Ming

    2009-05-01

    When planning a study, sample size determination is one of the most important tasks facing the researcher. The size will depend on the purpose of the study, the cost limitations, and the nature of the data. By specifying the standard deviation ratio and/or the sample size ratio, the present study considers the problem of heterogeneous variances and non-normality for Yuen's two-group test and develops sample size formulas to minimize the total cost or maximize the power of the test. For a given power, the sample size allocation ratio can be manipulated so that the proposed formulas can minimize the total cost, the total sample size, or the sum of total sample size and total cost. On the other hand, for a given total cost, the optimum sample size allocation ratio can maximize the statistical power of the test. After the sample size is determined, the present simulation applies Yuen's test to the sample generated, and then the procedure is validated in terms of Type I errors and power. Simulation results show that the proposed formulas can control Type I errors and achieve the desired power under the various conditions specified. Finally, the implications for determining sample sizes in experimental studies and future research are discussed.

  13. Peak capacity analysis of coal power in China based on full-life cycle cost model optimization

    Science.gov (United States)

    Yan, Xiaoqing; Zhang, Jinfang; Huang, Xinting

    2018-02-01

    13th five-year and the next period are critical for the energy and power reform of China. In order to ease the excessive power supply, policies have been introduced by National Energy Board especially toward coal power capacity control. Therefore the rational construction scale and scientific development timing for coal power are of great importance and paid more and more attentions. In this study, the comprehensive influence of coal power reduction policies is analyzed from diverse point of views. Full-life cycle cost model of coal power is established to fully reflect the external and internal cost. Then this model is introduced in an improved power planning optimization theory. The power planning and diverse scenarios production simulation shows that, in order to meet the power, electricity and peak balance of power system, China’s coal power peak capacity is within 1.15 ∼ 1.2 billion kilowatts before or after 2025. The research result is expected to be helpful to the power industry in 14th and 15th five-year periods, promoting the efficiency and safety of power system.

  14. Supercritical Carbon Dioxide Power Generation System Definition: Concept Definition and Capital Cost Estimate

    Energy Technology Data Exchange (ETDEWEB)

    Stoddard, Larry [Black & Veatch, Kansas City, MO (United States); Galluzzo, Geoff [Black & Veatch, Kansas City, MO (United States); Andrew, Daniel [Black & Veatch, Kansas City, MO (United States); Adams, Shannon [Black & Veatch, Kansas City, MO (United States)

    2016-06-30

    The Department of Energy’s (DOE’s) Office of Renewable Power (ORP) has been tasked to provide effective program management and strategic direction for all of the DOE’s Energy Efficiency & Renewable Energy’s (EERE’s) renewable power programs. The ORP’s efforts to accomplish this mission are aligned with national energy policies, DOE strategic planning, EERE’s strategic planning, Congressional appropriation, and stakeholder advice. ORP is supported by three renewable energy offices, of which one is the Solar Energy Technology Office (SETO) whose SunShot Initiative has a mission to accelerate research, development and large scale deployment of solar technologies in the United States. SETO has a goal of reducing the cost of Concentrating Solar Power (CSP) by 75 percent of 2010 costs by 2020 to reach parity with base-load energy rates, and 30 percent further reductions by 2030. The SunShot Initiative is promoting the implementation of high temperature CSP with thermal energy storage allowing generation during high demand hours. The SunShot Initiative has funded significant research and development work on component testing, with attention to high temperature molten salts, heliostats, receiver designs, and high efficiency high temperature supercritical CO2 (sCO2) cycles. DOE retained Black & Veatch to support SETO’s SunShot Initiative for CSP solar power tower technology in the following areas: 1. Concept definition, including costs and schedule, of a flexible test facility to be used to test and prove components in part to support financing. 2. Concept definition, including costs and schedule, of an integrated high temperature molten salt (MS) facility with thermal energy storage and with a supercritical CO2 cycle generating approximately 10MWe. 3. Concept definition, including costs and schedule, of an integrated high temperature falling particle facility with thermal energy storage and with a supercritical CO2 cycle

  15. Effect of heliostat size on the levelized cost of electricity for power towers

    Science.gov (United States)

    Pidaparthi, Arvind; Hoffmann, Jaap

    2017-06-01

    The objective of this study is to investigate the effects of heliostat size on the levelized cost of electricity (LCOE) for power tower plants. These effects are analyzed in a power tower with a net capacity of 100 MWe, 8 hours of thermal energy storage and a solar multiple of 1.8 in Upington, South Africa. A large, medium and a small size heliostat with a total area of 115.56 m2, 43.3 m2 and 15.67 m2 respectively are considered for comparison. A radial-staggered pattern and an external cylindrical receiver are considered for the heliostat field layouts. The optical performance of the optimized heliostat field layouts has been evaluated by the Hermite (analytical) method using SolarPILOT, a tool used for the generation and optimization of the heliostat field layout. The heliostat cost per unit is calculated separately for the three different heliostat sizes and the effects due to size scaling, learning curve benefits and the price index is included. The annual operation and maintenance (O&M) costs are estimated separately for the three heliostat fields, where the number of personnel required in the field is determined by the number of heliostats in the field. The LCOE values are used as a figure of merit to compare the different heliostat sizes. The results, which include the economic and the optical performance along with the annual O&M costs, indicate that lowest LCOE values are achieved by the medium size heliostat with an area of 43.3 m2 for this configuration. This study will help power tower developers determine the optimal heliostat size for power tower plants currently in the development stage.

  16. Trend analysis of troubles caused by thermal-hydraulic phenomena at nuclear power plants

    International Nuclear Information System (INIS)

    Komatsu, Teruo

    2010-01-01

    The Institute of Nuclear Safety System (INSS) is promoting researches to improve the safety and reliability of nuclear power plants. In the present study, our attention was focused on troubles attributed to thermal-hydraulic phenomena in particular, trend analysis were carried out to learn lessons from these troubles and to prevent their recurrence. Through our survey, we found the following two points. First, many thermal-hydraulics related troubles can be attributed to design faults, since we found some events in foreign countries took place after inadequate facility renovation. To ensure appropriate design verification, it is important to take account of state-of-the-art science and technology and at the same time to pay attention to the compatibility with the initial design concept. Second point, thermal-hydraulic related troubles are common and recurrent to nuclear power plants worldwide. Japanese utilities are planning to introduce some of overseas experiences to their plants, such as power uprate and renovations of aged facilities. It is important to learn lessons from experiences paying close attention continuously to overseas trouble events, including thermal-hydraulics related events, and to use them to improve safety and reliability of nuclear power plants. (author)

  17. Cost drivers for the assessment of nuclear power plant life extension

    International Nuclear Information System (INIS)

    2002-09-01

    In the period of the nineteen-sixties to eighties, nuclear power had rapidly expanded in many countries of the world. The nuclear power plants built in this period, will reach the end of their planned life in the near future. Statistics drawn from IAEA's Power Reactor Information System (PRIS) indicate that, by the end of 2001, there were 175 nuclear power units (NPPs) with about 122 GWe of net electrical capacity, having 21 to 45 years of operation. This represents about 34% of the total installed nuclear capacity in the world. Since these plants were initially designed for 30-40 years of operation, utilities operating such NPPs will now have to consider whether they will shutdown, decommission, and replace the plants reaching the end of their planned life, or refurbish the plants and extend their original design life. This decision is quite complex, involving a number of political, technical and economic issues. Finally, the utilities involved should manage their assets in a manner that is as close as practicable to the best possible economic optimum scenario. Well before the end of the plant life, NPP operators must evaluate the technical and economic feasibility for PLEX options, seek and obtain regulatory approvals, and implement PLEX schemes that are justified. Often they also have to substantiate the planned life extension, including the economic viability to the relevant governmental bodies, as well as to assure the general public acceptance. Economic feasibility analysis requires cost data that are not readily available. A recent IAEA review of published information on costs of PLEX revealed the scarcity of published information, while the estimated costs of NPP decommissioning are widely available. This is due in part to the reluctance by NPP operators to divulge the cost data that are considered commercial/confidential, as more plant operators are being privatised, and in part to the absence of a common framework and methodology to account for the

  18. Electric power transport costs - methodologies analysis; Custos de transporte de energia eletrica: analise de metodologias

    Energy Technology Data Exchange (ETDEWEB)

    Takahata, Dario

    1997-07-01

    The dissertation presents the aspects related to the restructuring of power systems in terms of international experiences, and the possible implications for the definition of the new power system in Brazil. The experience shows that the reform in various countries has started from the sector deverticalization, together with the transmissions open access scheme. The retrospect of researched countries indicates that the transmissions remuneration is based on a methodology that recovers the operative cost of transmission transactions, along with an additional amount that take into account the cost of the existing transmission system. The following countries have been analyzed: Chile, Norway, England and Argentina. This work also shows the current situation in Brazil, as in terms of tariffs, as regarding the power system organizational structure, as well as a preliminary proposal conceived by SINTREL (National System of Electrical Energy Transmission) to evaluate the transmission transaction cost. This dissertation ended with comments and conclusions, depicting a future program which might be followed, considering the aspects quoted above and the peculiarities of brazilian power system. (author)

  19. Development of a Cost Effective Power Generation System: An Overview

    Directory of Open Access Journals (Sweden)

    Shiv Prakash Bihari

    2016-03-01

    Full Text Available This paper presents an overview on development of cost effective power generation system and motivates for development of a model for hybrid system with wind to investigate the combined operation of wind with different sources to cater to wind’s stochastic nature for imbalance minimization and optimal operation. Development of model for trading power in competitive electricity market and development of strategies for trading in electricity markets (wind energy and reserves markets to investigate the effects of real time pricing tariffs on electricity market operation has been illustrated in this paper. Dynamic modelling related studies to investigate the wind generator’s kinetic energy for primary frequency support using simulink and simulation studies on doubly fed induction generator to study its capability during small disturbances / fluctuations on power system have been described.

  20. SunShot solar power reduces costs and uncertainty in future low-carbon electricity systems.

    Science.gov (United States)

    Mileva, Ana; Nelson, James H; Johnston, Josiah; Kammen, Daniel M

    2013-08-20

    The United States Department of Energy's SunShot Initiative has set cost-reduction targets of $1/watt for central-station solar technologies. We use SWITCH, a high-resolution electricity system planning model, to study the implications of achieving these targets for technology deployment and electricity costs in western North America, focusing on scenarios limiting carbon emissions to 80% below 1990 levels by 2050. We find that achieving the SunShot target for solar photovoltaics would allow this technology to provide more than a third of electric power in the region, displacing natural gas in the medium term and reducing the need for nuclear and carbon capture and sequestration (CCS) technologies, which face technological and cost uncertainties, by 2050. We demonstrate that a diverse portfolio of technological options can help integrate high levels of solar generation successfully and cost-effectively. The deployment of GW-scale storage plays a central role in facilitating solar deployment and the availability of flexible loads could increase the solar penetration level further. In the scenarios investigated, achieving the SunShot target can substantially mitigate the cost of implementing a carbon cap, decreasing power costs by up to 14% and saving up to $20 billion ($2010) annually by 2050 relative to scenarios with Reference solar costs.

  1. Cost-effectiveness analysis of risk reduction at nuclear power plants

    International Nuclear Information System (INIS)

    Lochard, J.; Maccia, C.; Pages, P.

    1985-01-01

    Cost-effectiveness analysis of risk reduction is now widely accepted as a rational analytical framework to consistently address the resource allocation problem underlying any risk management process. This paper presents how this technique can be usefully applied to complex systems such as the management of radioactive releases from nuclear power plants into the environment. (orig.) [de

  2. Cost Optimal Design of a Single-Phase Dry Power Transformer

    Directory of Open Access Journals (Sweden)

    Raju Basak

    2015-08-01

    Full Text Available The Dry type transformers are preferred to their oil-immersed counterparts for various reasons, particularly because their operation is hazardless. The application of dry transformers was limited to small ratings in the earlier days. But now these are being used for considerably higher ratings.  Therefore, their cost-optimal design has gained importance. This paper deals with the design procedure for achieving cost optimal design of a dry type single-phase power transformer of small rating, subject to usual design constraints on efficiency and voltage regulation. The selling cost for the transformer has been taken as the objective function. Only two key variables have been chosen, the turns/volt and the height: width ratio of window, which affects the cost function to high degrees. Other variables have been chosen on the basis of designers’ experience. Copper has been used as conductor material and CRGOS as core material to achieve higher efficiency, lower running cost and compact design. The electrical and magnetic loadings have been kept at their maximum values without violating the design constraints. The optimal solution has been obtained by the method of exhaustive search using nested loops.

  3. Advanced steam power plant concepts with optimized life-cycle costs: A new approach for maximum customer benefit

    Energy Technology Data Exchange (ETDEWEB)

    Seiter, C.

    1998-07-01

    The use of coal power generation applications is currently enjoying a renaissance. New highly efficient and cost-effective plant concepts together with environmental protection technologies are the main factors in this development. In addition, coal is available on the world market at attractive prices and in many places it is more readily available than gas. At the economical leading edge, standard power plant concepts have been developed to meet the requirements of emerging power markets. These concepts incorporate the high technological state-of-the-art and are designed to achieve lowest life-cycle costs. Low capital cost, fuel costs and operating costs in combination with shortest lead times are the main assets that make these plants attractive especially for IPPs and Developers. Other aspects of these comprehensive concepts include turnkey construction and the willingness to participate in BOO/BOT projects. One of the various examples of such a concept, the 2 x 610-MW Paiton Private Power Project Phase II in Indonesia, is described in this paper. At the technological leading edge, Siemens has always made a major contribution and was pacemaker for new developments in steam power plant technology. Modern coal-fired steam power plants use computer-optimized process and plant design as well as advanced materials, and achieve efficiencies exceeding 45%. One excellent example of this high technology is the world's largest lignite-fired steam power plant Schwarze Pumpe in Germany, which is equipped with two 800 MW Siemens steam turbine generators with supercritical steam parameters. The world's largest 50-Hz single-shaft turbine generator with supercritical steam parameters rated at 1025 MW for the Niederaussem lignite-fired steam power plant in Germany is a further example of the sophisticated Siemens steam turbine technology and sets a new benchmark in this field.

  4. Dynamic PIV measurement of the effect of sound waves in the upper plenum of the boiling water reactor

    International Nuclear Information System (INIS)

    Kumagai, Kosuke; Someya, Satoshi; Okamoto, Koji

    2008-01-01

    In recent years, power uprating of boiling power reactors has been conducted at several existing power plants in order to improve plant economy. In one power uprated plant (117.8% uprate) in the United States, steam dryer breakages due to fatigue fracture occurred. It is conceivable that the increased steam flow passing through the branches caused a self-induced vibration with the propagation of sound waves into the steam-dome. The resonance among the structure, the flow, and the pressure fluctuation resulted in the breakages. In order to clarify the basic mechanism of the resonance, previous studies were performed by conducting a point measurement of the pressure and a phase averaged measurement of the flow, although detecting the interaction among the structure, the flow, and the pressure fluctuation by the conventional method was difficult. In a preliminary study, a dynamic Particle Image Velocimetry (PIV) system was used to investigate the effect of sound on the flow. A dynamic PIV system is the newest entrant to the field of fluid flow measurement. Its paramount advantage is the instantaneous global evaluation of conditions over a plane extended across the entire velocity field. Using the dynamic PIV system, the influence of sound waves on the flow field was measured. As a result, when two speakers were placed diagonally and sound waves were presented in the same phase, vertical motion was strongly observed compared to horizontal motion. (author)

  5. Internalisation of external cost in the power generation sector: Analysis with Global Multi-regional MARKAL model

    International Nuclear Information System (INIS)

    Rafaj, Peter; Kypreos, Socrates

    2007-01-01

    The Global MARKAL-Model (GMM), a multi-regional 'bottom-up' partial equilibrium model of the global energy system with endogenous technological learning, is used to address impacts of internalisation of external costs from power production. This modelling approach imposes additional charges on electricity generation, which reflect the costs of environmental and health damages from local pollutants (SO 2 , NO x ) and climate change, wastes, occupational health, risk of accidents, noise and other burdens. Technologies allowing abatement of pollutants emitted from power plants are rapidly introduced into the energy system, for example, desulphurisation, NO x removal, and CO 2 scrubbers. The modelling results indicate substantial changes in the electricity production system in favour of natural gas combined cycle, nuclear power and renewables induced by internalisation of external costs and also efficiency loss due to the use of scrubbers. Structural changes and fuel switching in the electricity sector result in significant reduction of emissions of both local pollution and CO 2 over the modelled time period. Strong decarbonisation impact of internalising local externalities suggests that ancillary benefits can be expected from policies directly addressing other issues then CO 2 mitigation. Finally, the detailed analysis of the total generation cost of different technologies points out that inclusion of external cost in the price of electricity increases competitiveness of non-fossil generation sources and fossil power plants with emission control

  6. Technology, safety and costs of decommissioning a Reference Boiling Water Reactor Power Station. Main report. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Oak, H.D.; Holter, G.M.; Kennedy, W.E. Jr.; Konzek, G.J.

    1980-06-01

    Technology, safety and cost information is given for the conceptual decommissioning of a large (1100MWe) boiling water reactor (BWR) power station. Three approaches to decommissioning, immediate dismantlement, safe storage with deferred dismantlement and entombment, were studied to obtain comparisons between costs, occupational radiation doses, potential dose to the public and other safety impacts. It also shows the sensitivity of decommissioning safety and costs to the power rating of a BWR in the range of 200 to 1100 MWe.

  7. Effect of construction time, interest rate, and inflation on the capital cost of nuclear power plants

    International Nuclear Information System (INIS)

    Abel, P.S.; Greybeck, E.M.; Omberg, R.P.

    1981-09-01

    Cost estimates for nuclear power plants currently under construction are on the order of four billion dollars. It will be shown, in this paper, that this is a direct consequence of relatively high inflation rates and relatively long construction times. If either inflation rates or construction times, or a combination thereof, should decrease significantly, cost estimates for nuclear power plants could return to approximately two billion dollars

  8. Validation of generic cost estimates for construction-related activities at nuclear power plants: Final report

    International Nuclear Information System (INIS)

    Simion, G.; Sciacca, F.; Claiborne, E.; Watlington, B.; Riordan, B.; McLaughlin, M.

    1988-05-01

    This report represents a validation study of the cost methodologies and quantitative factors derived in Labor Productivity Adjustment Factors and Generic Methodology for Estimating the Labor Cost Associated with the Removal of Hardware, Materials, and Structures From Nuclear Power Plants. This cost methodology was developed to support NRC analysts in determining generic estimates of removal, installation, and total labor costs for construction-related activities at nuclear generating stations. In addition to the validation discussion, this report reviews the generic cost analysis methodology employed. It also discusses each of the individual cost factors used in estimating the costs of physical modifications at nuclear power plants. The generic estimating approach presented uses the /open quotes/greenfield/close quotes/ or new plant construction installation costs compiled in the Energy Economic Data Base (EEDB) as a baseline. These baseline costs are then adjusted to account for labor productivity, radiation fields, learning curve effects, and impacts on ancillary systems or components. For comparisons of estimated vs actual labor costs, approximately four dozen actual cost data points (as reported by 14 nuclear utilities) were obtained. Detailed background information was collected on each individual data point to give the best understanding possible so that the labor productivity factors, removal factors, etc., could judiciously be chosen. This study concludes that cost estimates that are typically within 40% of the actual values can be generated by prudently using the methodologies and cost factors investigated herein

  9. Cost effective snubber reduction program for nuclear power plants

    International Nuclear Information System (INIS)

    Adams, T.M.; Antaki, G.A.; Chang, K.C.

    1985-01-01

    Due to the stringent seismic requirements imposed on nuclear power plants, piping engineers have resorted to the extensive use of snubbers to support nuclear piping systems. The advantage of snubbers is that they provide dynamic restraint while allowing free thermal growth of the pipe. Unfortunately, as more plants go into operation, utilities have to face the costs of strict in-service inspection requirements and risks of unscheduled or extended plant outages associated with snubber failures. The snubber inspection requirements, defined in plant Technical Specifications, require periodic visual inspections of all snubbers and functional tests of a percentage of the plant snubbers, during refueling outages. For a typical 1000 Mw unit this represents from 50 to several hundred snubbers to be functionally tested at each refueling outage. Should failures occur during testing, the sample size must be further increased. Very quickly the costs and risks of extended shutdowns have led the industry to consider, and in many cases implement, snubber reduction programs. At the same time several changes in seismic design criteria have greatly facilitated the reduction of snubbers, making snubber elimination economically and technically attractive. In this paper we examine the costs and benefits of snubber reduction programs and propose a method for evaluating their cost benefits

  10. Stated preferences based estimation of power interruption costs in private households: An example from Germany

    International Nuclear Information System (INIS)

    Praktiknjo, Aaron J.

    2014-01-01

    Concerns regarding supply security are increasingly raised in reaction to the transition of the German energy system toward a renewable and nuclear-free system called “Energiewende”. The goal of this work is to contribute to a measurability of supply security by quantifying the consequences of power interruptions monetarily. The focus lies within the investigation of power interruption costs in private households. An online survey with 859 participants in 2011 is used to gather the necessary data. Based on this data, a two-staged bottom-up regression model was estimated to describe interruption costs for durations of 15 min, 1 h, 4 h, 1 day and 4 days. Finally, micro-data from 55,000 households were used to perform Monte Carlo simulations to increase the representativeness of the estimations. The frequency distributions of the estimated interruption costs indicate potentials for load-shedding measures. Such measures could be an economically viable contribution to a successful integration of large shares of renewable fluctuating generation like wind or solar power. - Highlights: • Power interruption costs have been analyzed for private households in Germany. • Five different interruption durations have been analyzed. • An online survey, a regression and a bottom-up simulation model has been used. • The results indicate interesting potentials for demand response measures. • Such measures might contribute to the integration of large shares of renewables

  11. Experimental study of acoustic vibration in BWRs

    International Nuclear Information System (INIS)

    Kumagai, Kosuke; Someya, Satoshi; Okamoto, Koji

    2009-01-01

    In recent years, the power uprate of Boiling Water Reactors have been conducted at several existing power plants as a way to improve plant economy. In one of the power uprated plants (117.8% uprates) in the United States, the steam dryer breakages due to fatigue fracture occurred. It is conceivable that the increased steam flow passing through the branches caused a self-induced vibration with the propagation of sound wave into the steam-dome. The resonance among the structure, flow and the pressure fluctuation resulted in the breakages. To understand the basic mechanism of the resonance, previous researches were done by a point measurement of the pressure and by a phase averaged measurement of the flow, while it was difficult to detect the interaction among them by the conventional method. In this study, Dynamic Particle Image Velocimetry (PIV) System was applied to investigate the effect of sound on natural convection and forced convection. Dynamic PIV system is the newest entrant to the field of fluid flow measurement. Its paramount advantage is the instantaneous global evaluation of conditions over plane extended across the whole velocity field. Also, to evaluate the coupling between the acoustic wave and structure (simulated as tuning fork vibrator in this experiment), in the resonance frequency of tuning fork vibrator, fluid behavior and the motion of tuning fork vibrator are measured simultaneously. (author)

  12. A cost-benefit analysis of power generation from commercial reinforced concrete solar chimney power plant

    International Nuclear Information System (INIS)

    Li, Weibing; Wei, Ping; Zhou, Xinping

    2014-01-01

    Highlights: • We develop an economic model different from related models. • We evaluate the initial investment cost of a plant built in northwest China. • We analyze the cost and benefit of a plant built in northwest China. • By the sensitivity analysis, we examine the sensitivity of TNPV to many parameters. - Abstract: This paper develops a model different from existing models to analyze the cost and benefit of a reinforced concrete solar chimney power plant (RCSCPP) built in northwest China. Based on the model and some assumptions for values of parameters, this work calculates total net present value (TNPV) and the minimum electricity price in each phase by dividing the whole service period into four phases. The results show that the minimum electricity price in the first phase is higher than the current market price of electricity, but the minimum prices in the other phases are far less than the current market price. The analysis indicates that huge advantages of the RCSCPP over coal-fired power plants can be embodied in phases 2–4. In addition, the sensitivity analysis performed in this paper discovers TNPV is very sensitive to changes in the solar electricity price and inflation rate, but responds only slightly to changes in carbon credits price, income tax rate and interest rate of loans. Our analysis predicts that RCSCPPs have very good application prospect. To encourage the development of RCSCPPs, the government should provide subsidy by setting higher electricity price in the first phase, then lower electricity price in the other phases

  13. Minimizing Wind Power Producer's Balancing Costs Using Electrochemical Energy Storage: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Miettinen, J.; Tikka, V.; Lassila, J.; Partanen, J.; Hodge, B. M.

    2014-08-01

    This paper examines how electrochemical energy storage can be used to decrease the balancing costs of a wind power producer in the Nordic market. Because electrochemical energy storage is developing in both technological and financial terms, a sensitivity analysis was carried out for the most important variables in the wind-storage hybrid system. The system was studied from a wind power producer's point of view. The main result is that there are no technical limitations to using storage for reducing the balancing costs. However, in terms of economic feasibility, installing hybrid wind-storage systems such as the one studied in this paper faces challenges in both the short and long terms.

  14. Estimation of the Levelised Electricity Generation Cost for a PWR-Power Plant and Preliminary Evaluation of National Participation

    International Nuclear Information System (INIS)

    Saba, G; Hainoun, A

    2008-01-01

    This work deals with the detailed economic evaluation of the Levelised discounted electricity generation costs (LDEGC) for a nuclear power plant with pressurized water reactor (PWR). The total generation costs are splited in base construction costs, supplementary costs, owner's costs, financial costs, fuel cycle costs and operation and maintenance costs. The evaluation covers also the sensitivity of the estimated energy unit cost to various factors (real annual discount rate, escalation rate, interest rate, load factor, ..) including the role of national participation, that depends upon the development of national infrastructure. For performing this study the IAEA's program package for economic bid evaluation (Bideval-3) has been employed. The program is designed to assist the user in the economic evaluation of bids for nuclear power plant (NPP). It follows the recommended method of determining the present worth value of all costs components for generated electricity unit. The performed study aims at developing national expertise in the field of bid evaluation for electric power plants with main emphasis on NPP. Additional goal is to convoying the technical and economic development of NPP technology that can help in supporting the decision maker with adequate information related to the future development of energy supply system and measures required for ensuring national energy supply security. (author)

  15. Reduction of wind powered generator cost by use of a one bladed rotor

    Energy Technology Data Exchange (ETDEWEB)

    Pruyn, R R; Wiesner, W; Ljungstroem, O [ed.

    1976-01-01

    Cost analysis supported by preliminary design studies of one and two bladed wind powered generator units shows that a 30% reduction in acquisition cost can be achieved with a one bladed design. Designs studied were sized for an output power of 1000 kilowatts. The one bladed design has the potential for reducing acquisition cost to $680 per available kilowatt if the unit is located in a region with mean surface winds of 15 mph. Vibratory loads of the one bladed design are significant and will require considerable design attention. The one per rev Coriolis torque caused by blade flapping is the most significant problem. The major source of blade flapping will be the velocity gradient of the ground boundary layer. A torsional vibration isolating coupling may be required in the generator drive to reduce the loads due to this vibratory torque. An inclined flapping hinge also is desirable to cause pitch-flap coupling that will suppress blade flap motions.

  16. Nuclear Energy Cost Data Base: A reference data base for nuclear and coal-fired powerplant power generation cost analysis

    International Nuclear Information System (INIS)

    Delene, J.G.; Bowers, H.I.

    1986-12-01

    A reference data base and standard methodology are needed for performing comparative nuclear and fossil power generation cost analyses for the Department of Energy, Office of Nuclear Energy. This report contains such a methodology together with reference assumptions and data to be used with the methodology. It is intended to provide basic guidelines or a starting point for analyses and to serve as a focal point in establishing parameters and methods to be used in economic comparisons of nuclear systems with alternatives. The data base is applicable for economic comparisons of new base load light-water reactors on either the current once-through cycle or self-generated recycle, high- and low-sulfur coal-fired plants, and oil- and natural gas-fired electric generating plants coming on line around the turn of the century. In additions to light-water reactors and fossil fuel-fired plants, preliminary cost information is also presented on liquid metal reactor plants. This report includes a data base containing proposed technical and economic assumptions to be used in analyses, discussions of recommended methodology to be used in calculating power generation costs, and a sample calculation for illustrative benchmark purposes

  17. Nuclear Energy Cost Data Base: a reference data base for nuclear and coal-fired powerplant power generation cost analysis

    International Nuclear Information System (INIS)

    1985-06-01

    A reference data base and standard methodology are needed for performing comparative nuclear and fossil power generation cost analyses for the Department of Energy, Office of Nuclear Energy. This report contains such a methodology together with reference assumptions and data to be used with the methodology. It is intended to provide basic guidelines or a starting point for analyses and to serve as a focal point in establishing parameters and methods to be used in economic comparisons of nuclear systems with alternatives. The data base is applicable for economic comparisons of new base load light-water reactors on either the current once-through cycle or self-generated recycle, high- and low-sulfur coal-fired plants, and oil- and natural gas-fired electric generating plants coming on line in the last decade of this century. In addition to light-water reactors and fossil fuel-fired plants, preliminary cost information is also presented on liquid metal reactor plants. This report includes a data base containing proposed technical and economic assumptions to be used in analyses, discussions of a recommended methodology to be used in calculating power generation costs, and a sample calculation for illustrative and benchmark purposes

  18. Full environmental life cycle cost analysis of concentrating solar power technology: contribution of externalities to overall energy costs

    NARCIS (Netherlands)

    Corona, B.; Cerrajero, E.; San Miguel, G.

    2016-01-01

    The aim of this work is to investigate the use of Full Environmental Life Cycle Costing (FeLCC) methodology to evaluate the economic performance of a 50 MW parabolic trough Concentrated Solar Power (CSP) plant operating in hybrid mode with different natural gas inputs (between 0% and 30%). The

  19. Cost evaluation of I and C upgrade approach in nuclear power plants

    International Nuclear Information System (INIS)

    Kang, Hyun-Tae; Lee, Jae-Ki

    2013-01-01

    Highlights: • Cost evaluation process for I and C system upgrade is built. • 4 cost factors affecting I and C system upgrade are described. • Additional cost incurred by a phased upgrade is calculated. • Cost for system upgrade between upgrade implementations is compared. - Abstract: Utilities have recently been debating the respective pros and cons of implementation of a multi-phase upgrade during several normal outages versus a single major upgrade implementation during a prolonged outage. We have studied these approaches and have been developing the basic design of nuclear power plants (NPPs) instrumentation and control (I and C) upgrade since early 2008. As part of this study, analyses of the NPPs I and C systems were conducted and the need for upgrading the systems was raised. One of the primary concerns regarding the system upgrade is a cost-benefit implementation, which will influence the upgrade approach. From this viewpoint, the I and C upgrade must consider economic factors such as I and C vendor cost, architecture engineering cost, installation cost, utility cost, and other transition costs such as training and procedure development. This paper presents a comparison study of economical aspects including cost evaluation between the aforementioned upgrade implementations and suggests a solution for I and C upgrade approach

  20. Power plant allocation in East Kalimantan considering total cost and emissions

    Science.gov (United States)

    Muslimin; Utomo, D. S.

    2018-04-01

    The fulfillment of electricity need in East Kalimantan is the responsibility of State Electricity Company/Perusahaan Listrik Negara (PLN). But PLN faces constraints in the lack of generating capacity it has. So the allocation of power loads in East Kalimantan has its own challenges. Additional power supplies from other parties are required. In this study, there are four scenarios tested to meet the electricity needs in East Kalimantan with the goal of minimizing costs and emissions. The first scenario is only by using PLN power plant. The second scenario is by combining PLN + Independent Power Producer (IPP) power plants. The third scenario is by using PLN + Rented power plants. The fourth scenario is by using PLN + Excess capacity generation. Numerical experiment using nonlinear programming is conducted with the help of the solver. The result shows that in the peak load condition, the best combination is scenario 2 (PLN + IPP). While at the lowest load condition, the cheapest scenario is PLN + IPP while the lowest emission is PLN + Rent.

  1. Understanding coal quality and its relationship to power plant performance and costs

    Energy Technology Data Exchange (ETDEWEB)

    Jennison, K.D.; Stallard, G.S. [Black & Veatch International, Overland Park, KS (United States)

    1995-12-01

    The availability of reliable, reasonably priced energy is a necessary cornerstone for established and emerging economies. In addition to addressing coal quality issues strictly at a plant level, it is now prudent to consider long-term performance and economics of particular fuel sources to be selected in the light of system economics and reliability. In order to evaluate coal quality issues in a more comprehensive manner, it is important to develop both an approach and a set of tools which can support the various phases of the planning/analysis processes. The processes must consider the following: (1) Cost/availability of other potential coal supplies, including {open_quotes}raw{close_quotes} domestic sources, {open_quotes}cleaned {close_quotes} domestic sources, and other internationally marketed coals. (2) Power plant performance issues as function of plant design and fuel properties. (3) System expansion plans, candidate technologies, and associated capital and operating costs. (4) Projected load demand, for system and for individual units within the system. (5) Legislative issues such as environmental pressures, power purchase agreements, etc. which could alter the solution. (6) Economics of potential plans/strategies based on overall cost-effectiveness of the utility system, not just individual units. (7) Anticipated unit configuration, including addition of environmental control equipment or other repowering options. The Coal Quality Impact Model (CQIM{trademark}) is a PC-based computer program capable of predicting coal-related cost and performance impacts at electric power generating sites. The CQIM was developed for EPRI by Black & Veatch and represents over a decade of effort geared toward developing an extensible state-of-the-art coal quality assessment tool. This paper will introduce CQIM, its capabilities, and its application to Eastern European coal quality assessment needs.

  2. Short-term strategies for Dutch wind power producers to reduce imbalance costs

    International Nuclear Information System (INIS)

    Chaves-Ávila, José Pablo; Hakvoort, Rudi A.; Ramos, Andrés

    2013-01-01

    The paper assesses bidding strategies for a wind power producer in the Netherlands. To this end, a three-stage stochastic optimization framework is used, maximizing wind power producer's profit using the day-ahead and cross-border intraday market, taking into account available interconnection capacity. Results show that the wind power producer can increase its profits by trading on the intraday market and – under certain imbalance prices – by intentionally creating imbalances. It has been considered uncertainties about prices, power forecast and interconnection capacity at the day-ahead and intraday timeframes. - Highlights: ► A cross-border bidding strategy model for wind power producers has been developed. ► The model was applied to a real case study of a Dutch offshore wind power producer. ► Under certain imbalance prices, it is not profitable to deliver all possible power. ► Intraday markets give the possibility to reduce imbalance costs. ► Integration of intraday markets will increase liquidity.

  3. Pengembangan Metode Risk-Cost Benefit Analysis Sebagai Alat Evaluasi Proyek Kerjasama Pemerintah dan Swasta (Studi Kasus : Proyek Penyediaan Air Minum di Wilayah X

    Directory of Open Access Journals (Sweden)

    Isma Nur Sabrina

    2012-09-01

    Full Text Available Infrastruktur merupakan kebutuhan paling penting dalam mendukung kegiatan ekonomi suatu negara. PDAM Wilayah X merupakan perusahaan daerah pemasok kebutuhan air minum di wilayah Wilayah X. Salah satu cara untuk membantu meningkatkan pasokan air adalah dengan menambah instalasi, namun untuk melakukan penambahan instalasi dibutuhkan biaya yang besar. Alternatif tindakan yang dapat dipilih ialah dengan melakukan kerjasama pemerintah dan swasta. Bentuk kerjasama yang digunakan dalam proyek KPS PDAM Wilayah X adalah Rehabilitation Uprating Operate Transfer (RUOT. Penerapan RUOT dalam proyek KPS penyediaan air minum akan banyak memunculkan risiko, karena banyak pihak yang terlibat dalam kerjasama, dimana kepentingan masing-masing pihak ini berbeda. Risiko ini nantinya akan mempengaruhi keberlangsungan proyek baik secara finansial maupun ekonomis. Dalam penelitian ini,dilakukan evaluasi secara finansial dengan metode Risk-Cost Benefit Analysis. Tahapan yang akan dilakukan dalam penelitian ini adalah menentukan faktor risiko kritis, menentukan bentuk pengaruh terhadap komponen arus kas, mengidentifikasi cost benefit secara finansial, menentukan fungsi distribusi probabilitas komponen cost dan benefit, serta menghitung nilai FNPV dan FIRR proyek dengan melakukan simulasi monte carlo.

  4. Impacts of Variable Renewable Energy on Bulk Power System Assets, Pricing, and Costs

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, Ryan H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mills, Andrew [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Seel, Joachim [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Levin, Todd [Argonne National Lab. (ANL), Argonne, IL (United States); Botterud, Audun [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-11-29

    We synthesize available literature, data, and analysis on the degree to which growth in variable renewable energy (VRE) has impacted to date or might in the future impact bulk power system assets, pricing, and costs. We do not analyze impacts on specific power plants, instead focusing on national and regional system-level trends. The issues addressed are highly context dependent—affected by the underlying generation mix of the system, the amount of wind and solar penetration, and the design and structure of the bulk power system in each region. Moreover, analyzing the impacts of VRE on the bulk power system is a complex area of research and there is much more to be done to increase understanding of how VRE impacts the dynamics of current and future electricity markets. While more analysis is warranted, including additional location-specific assessments, several high-level findings emerge from this synthesis: -VRE Is Already Impacting the Bulk Power Market -VRE Impacts on Average Wholesale Prices Have Been Modest -VRE Impacts on Power Plant Retirements Have So Far Been Limited -VRE Impacts on the Bulk Power Market will Grow with Penetration -The ’System Value’ of VRE will Decline with Penetration -Power System Flexibility Can Reduce the Rate of VRE Value Decline All generation types are unique in some respect—bringing benefits and challenges to the power system—and wholesale markets, industry investments, and operational procedures have evolved over time to manage the characteristics of a changing generation fleet. With increased VRE penetrations, power system planners, operators, regulators, and policymakers will continue to be challenged to develop methods to smoothly and cost-effectively manage the reliable integration of these new and growing sources of electricity supply.

  5. Minimizing the Levelized Cost of Energy in Single-Phase Photovoltaic Systems with an Absolute Active Power Control

    DEFF Research Database (Denmark)

    Yang, Yongheng; Koutroulis, Eftichios; Sangwongwanich, Ariya

    2015-01-01

    . An increase of the inverter lifetime and a reduction of the energy yield can alter the cost of energy, demanding an optimization of the power limitation. Therefore, aiming at minimizing the Levelized Cost of Energy (LCOE), the power limit is optimized for the AAPC strategy in this paper. The optimization...... control strategy, the Absolute Active Power Control (AAPC) can effectively solve the overloading issues by limiting the maximum possible PV power to a certain level (i.e., the power limitation), and also benefit the inverter reliability. However, its feasibility is challenged by the energy loss......, compared to the conventional PV inverter operating only in the maximum power point tracking mode. In the presented case study, the minimum of LCOE is achieved for the system when the power limit is optimized to a certain level of the designed maximum feed-in power (i.e., 3 kW). In addition, the proposed...

  6. Analysis of Rod Withdrawal at Power (RWAP) Accident using ATHLET Mod 2.2 Cycle A and RELAP5/mod 3.3 Codes

    International Nuclear Information System (INIS)

    Bencik, V.; Cavlina, N.; Grgic, D.

    2012-01-01

    The system code ATHLET is being developed at Gesellschaft fuer Anlagen-und Reaktorsicherheit (GRS) in Germany. In 1996, the NPP Krsko (NEK) input deck for ATHLET Mod 1.1 Cycle C has been developed at Faculty of Electrical Engineering (FER), University of Zagreb. The input deck was tested by analyzing the realistic plant event 'Main Steam Isolation Valve Closure' and the results were assessed against the measured data. The input deck was established before plant modernization that took place in 2000 and included the power uprate and SG replacement. The released ATHLET version (Mod 2.2 Cycle A) is now being available at FER Zagreb. Accordingly, the NEK input deck for ATHLET Mod 2.2 Cycle A has been developed. A completely new input deck has been created taking into account the large number of changes due to power uprate and SG replacement as well as taking advantage of developmental work on NEK data base performed at FER. The new NEK input deck for ATHLET code has been tested by analyzing the Rod Withdrawal Power (RWAP) accident and the results were assessed against the analysis performed by RELAP5/mod 3.3 code. The RWAP accident can be either Departure from Nucleate Boiling (DNB) ratio or overpower limiting accident depending on initial power and reactivity insertion rate. Since the automatic rod control system is assumed unavailable, the only negative reactivity is due to Doppler and moderator feedback. Consequently, the nuclear power and the transferred heat in the steam generators (SGs) increase. Since the steam flow to the turbine and the extracted power from the SGs remain constant, the SG secondary pressure and the temperatures on the primary side increase. Unless terminated by manual or automatic action, the power mismatch between primary and secondary side and the resultant coolant temperature rise could eventually result in DNB ratio and/or fuel centreline melt. In order to avoid core damage, the reactor protection system is designed to automatically

  7. Public synthesis of the reference costs study of the electric power production

    International Nuclear Information System (INIS)

    2008-01-01

    Every 3 or 5 years, the DGEC published the reference costs study of the electric power production which evaluates, in a theoretical framework, the total cost of an electrical MWh, from different production ways. These studies bring information for the definition of the energy policy and the elaboration of the investments program. because of the great competition of the market, it was decided not to publish the absolute value of the hypothesis and the results but under indexed form. (A.L.B.)

  8. LIFE Cost of Electricity, Capital and Operating Costs

    International Nuclear Information System (INIS)

    Anklam, T.

    2011-01-01

    Successful commercialization of fusion energy requires economic viability as well as technical and scientific feasibility. To assess economic viability, we have conducted a pre-conceptual level evaluation of LIFE economics. Unit costs are estimated from a combination of bottom-up costs estimates, working with representative vendors, and scaled results from previous studies of fission and fusion plants. An integrated process model of a LIFE power plant was developed to integrate and optimize unit costs and calculate top level metrics such as cost of electricity and power plant capital cost. The scope of this activity was the entire power plant site. Separately, a development program to deliver the required specialized equipment has been assembled. Results show that LIFE power plant cost of electricity and plant capital cost compare favorably to estimates for new-build LWR's, coal and gas - particularly if indicative costs of carbon capture and sequestration are accounted for.

  9. Comparing the Cost of Protecting Selected Lightweight Block Ciphers against Differential Power Analysis in Low-Cost FPGAs

    Directory of Open Access Journals (Sweden)

    William Diehl

    2018-04-01

    Full Text Available Lightweight block ciphers are an important topic in the Internet of Things (IoT since they provide moderate security while requiring fewer resources than the Advanced Encryption Standard (AES. Ongoing cryptographic contests and standardization efforts evaluate lightweight block ciphers on their resistance to power analysis side channel attack (SCA, and the ability to apply countermeasures. While some ciphers have been individually evaluated, a large-scale comparison of resistance to side channel attack and the formulation of absolute and relative costs of implementing countermeasures is difficult, since researchers typically use varied architectures, optimization strategies, technologies, and evaluation techniques. In this research, we leverage the Test Vector Leakage Assessment (TVLA methodology and the FOBOS SCA framework to compare FPGA implementations of AES, SIMON, SPECK, PRESENT, LED, and TWINE, using a choice of architecture targeted to optimize throughput-to-area (TP/A ratio and suitable for introducing countermeasures to Differential Power Analysis (DPA. We then apply an equivalent level of protection to the above ciphers using 3-share threshold implementations (TI and verify the improved resistance to DPA. We find that SIMON has the highest absolute TP/A ratio of protected versions, as well as the lowest relative cost of protection in terms of TP/A ratio. Additionally, PRESENT uses the least energy per bit (E/bit of all protected implementations, while AES has the lowest relative cost of protection in terms of increased E/bit.

  10. Government observations on the fourth report from the Committee (Session 1989-90) on the cost of nuclear power

    International Nuclear Information System (INIS)

    1990-01-01

    This report consists of the government's response to the Energy Committee's conclusions about the cost of nuclear power generation in the United Kingdom and the practicalities involved in the possible privatisation of the nuclear power industry. The report was published on 5th December 1990. The report covers the process of privatisation criticisms of Kleinwort Benson, arrangements accounting for and calculating costs of nuclear power and the risks associated with nuclear generating capacity, the Fossil Fuel Levy, some issues particular to Scotland and Sizewell B power station. (author)

  11. Cost-effective design of ringwall storage hybrid power plants: A real options analysis

    International Nuclear Information System (INIS)

    Weibel, Sebastian; Madlener, Reinhard

    2015-01-01

    Highlights: • Economic viability, optimal size, and siting of a hybrid ringwall hydro power plant. • Real options analysis for optimal investment timing and stochastic storage volumes. • Stochastic PV and solar power production affects optimal size of the storage device. • Monte Carlo simulation is used for wind/solar power, el. price, and investment cost. • Numerical computations for two different hybrid ringwall storage plant scenarios. - Abstract: We study the economic viability and optimal sizing and siting of a hybrid plant that combines a ringwall hydro storage system with wind and solar power plants (ringwall storage hybrid power plant, RSHPP). A real options model is introduced to analyze the economics of an onshore RSHPP, and in particular of the varying storage volume in light of the stochastic character of wind and solar power, as well as the optimal investment timing under uncertainty. In fact, many uncertainties arise in such a project. Energy production is determined by the stochastic character of wind and solar power, and affects the optimal size of the storage device. Monte Carlo simulation is performed to analyze the following sources of uncertainty: (i) wind intensity and solar irradiation; (ii) future electricity price; and (iii) investment costs. The results yield the optimal size of the storage device; the energy market on which the operator should sell the electricity generated; numerical examples for two different RSHPP scenarios; and a real options model for analyzing the opportunity to defer the project investment and thus to exploit the value of waiting

  12. Dynamic evaluation of the levelized cost of wind power generation

    International Nuclear Information System (INIS)

    Díaz, Guzmán; Gómez-Aleixandre, Javier; Coto, José

    2015-01-01

    Highlights: • Conventional levelized cost of energy is static and does not consider flexibility. • This paper defines a dynamic version by means of stochastic programming. • A penalty for early exercising is proposed to differentiate static and dynamic. • Results show the effects of feed-in tariff support in low wind sites. • Policy implications are derived on the basis of the static and dynamic measures. - Abstract: This paper discusses an alternative computation method of the levelized cost of energy of distributed wind power generators. Unlike in the conventional procedures, it includes time of commencement as an optimization variable. For that purpose, a methodology from Longstaff and Schwartz’s dynamic program for pricing financial American options is derived, which provides the ability to find the optimum time and value while coping with uncertainty revenues from energy sales and variable capital costs. The results obtained from the analysis of wind records of 50 sites entail that the conventional levelized cost of energy can be broken down into an optimum, minimum (time-dependent) value and a penalty for early exercising, which can be employed to define investment strategies and support policies

  13. A geographically resolved method to estimate levelized power plant costs with environmental externalities

    International Nuclear Information System (INIS)

    Rhodes, Joshua D.; King, Carey; Gulen, Gürcan; Olmstead, Sheila M.; Dyer, James S.; Hebner, Robert E.; Beach, Fred C.; Edgar, Thomas F.; Webber, Michael E.

    2017-01-01

    In this analysis we developed and applied a geographically-resolved method to calculate the Levelized Cost of Electricity (LCOE) of new power plants on a county-by-county basis while including estimates of some environmental externalities. We calculated the LCOE for each county of the contiguous United States for 12 power plant technologies. The minimum LCOE option for each county varies based on local conditions, capital and fuel costs, environmental externalities, and resource availability. We considered ten scenarios that vary input assumptions. We present the results in a map format to facilitate comparisons by fuel, technology, and location. For our reference analysis, which includes a cost of $62/tCO_2 for CO_2 emissions natural gas combined cycle, wind, and nuclear are most often the lowest-LCOE option. While the average cost increases when internalizing the environmental externalities (carbon and air pollutants) is small for some technologies, the local cost differences are as high as $0.62/kWh for coal (under our reference analysis). These results display format, and online tools could serve as an educational tool for stakeholders when considering which technologies might or might not be a good fit for a given locality subject to system integration considerations. - Highlights: • We propose a method to add externalities to LCOE. • We present the least cost technology for every county in the US. • The cheapest technology depends on many characteristics of that locale. • We present online tools for users to change our assumptions. • Our tools are useful in discussing the impact of policy on the cost of electricity.

  14. Economic costs of electrical system instability and power outages caused by snakes on the Island of Guam

    Science.gov (United States)

    Fritts, T.H.

    2002-01-01

    The Brown Tree Snake, Boiga irregularis, is an introduced species on Guam where it causes frequent electrical power outages. The snake's high abundance, its propensity for climbing, and use of disturbed habitats all contribute to interruption of Guam's electrical service and the activities that depend on electrical power. Snakes have caused more than 1600 power outages in the 20-yr period of 1978–1997 and most recently nearly 200 outages per year. Single outages spanning the entire island and lasting 8 or more hours are estimated to cost in excess of $3,000,000 in lost productivity, but the costs of outages that involve only parts of the island or those of shorter durations are more difficult to quantify. Costs to the island's economy have exceeded $4.5 M $4.5M"> per year over a 7-yr period without considering repair costs, damage to electrical equipment, and lost revenues. Snakes pose the greatest problem on high voltage transmission lines, on transformers, and inside electrical substations.

  15. A new method for distribution of consumed heat in a fuel and costs in power and heating plants

    Energy Technology Data Exchange (ETDEWEB)

    Kadrnozka, J [Technical Univ., Brno (Czech Republic)

    1993-09-01

    There is described a new method for distribution of consumed heat in a fuel and costs in the power and heating plants, which is based on the relatively the same proportion of advantages followed from combine generation of electricity and heat on electricity and heat. The method is physically substantiated, it is very universal and it is applied for new types of power and heating plants and for distribution of investment costs and other costs. (orig./GL)

  16. Reducing the metabolic cost of walking with an ankle exoskeleton: interaction between actuation timing and power.

    Science.gov (United States)

    Galle, Samuel; Malcolm, Philippe; Collins, Steven Hartley; De Clercq, Dirk

    2017-04-27

    Powered ankle-foot exoskeletons can reduce the metabolic cost of human walking to below normal levels, but optimal assistance properties remain unclear. The purpose of this study was to test the effects of different assistance timing and power characteristics in an experiment with a tethered ankle-foot exoskeleton. Ten healthy female subjects walked on a treadmill with bilateral ankle-foot exoskeletons in 10 different assistance conditions. Artificial pneumatic muscles assisted plantarflexion during ankle push-off using one of four actuation onset timings (36, 42, 48 and 54% of the stride) and three power levels (average positive exoskeleton power over a stride, summed for both legs, of 0.2, 0.4 and 0.5 W∙kg -1 ). We compared metabolic rate, kinematics and electromyography (EMG) between conditions. Optimal assistance was achieved with an onset of 42% stride and average power of 0.4 W∙kg -1 , leading to 21% reduction in metabolic cost compared to walking with the exoskeleton deactivated and 12% reduction compared to normal walking without the exoskeleton. With suboptimal timing or power, the exoskeleton still reduced metabolic cost, but substantially less so. The relationship between timing, power and metabolic rate was well-characterized by a two-dimensional quadratic function. The assistive mechanisms leading to these improvements included reducing muscular activity in the ankle plantarflexors and assisting leg swing initiation. These results emphasize the importance of optimizing exoskeleton actuation properties when assisting or augmenting human locomotion. Our optimal assistance onset timing and average power levels could be used for other exoskeletons to improve assistance and resulting benefits.

  17. Impact of digital information and control system platform selection on nuclear power generating plant operating costs

    International Nuclear Information System (INIS)

    Bogard, T.; Radomski, S.; Sterdis, B.; Marta, H.; Bond, V.; Richardson, J.; Ramon, G.; Edvinsson, H.

    1998-01-01

    Information is presented on the benefits of a well-planned information and control systems (I and CS) replacement approach for aging nuclear power generating plants' I and CS. Replacement of an aging I and CS is accompanied by increases in plant profitability. Implementing a structured I and CS replacement with current technology allows improved plant electrical production in parallel with reduced I and CS operations and maintenance cost. Qualitative, quantitative, and enterprise management methods for cost benefit justification are shown to justify a comprehensive approach to I and CS replacement. In addition to the advantages of standard I and CS technologies, examples of new I and CS technologies are shown to add substantial cost benefit justification for I and CS replacements. Focus is upon I and CS replacements at nuclear power plants, however the information is applicable to other types of power generating facilities. (author)

  18. Projected costs of generating electricity from power stations for commissioning in the period 1995-2000

    International Nuclear Information System (INIS)

    1989-01-01

    The study reviews the projected electricity generation costs for the base load power generation options expected to be available in the medium term, using an agreed common economic methodology. Cost projections were obtained for nuclear and fossil fuelled plants that could in principle be commissioned in the mid-1990s, or shortly thereafter, although not all countries plan to commission plants at that time. The major changes in expectations compared with earlier studies, apart from those associated with changed perceptions of fossil fuel prices, include significantly lower nuclear investment costs for the United States, associated with an improved design and the expectation of achieving shorter construction periods than projected in the 1985 study, and generally lower nuclear fuel costs. Some countries project higher operation and maintenance costs for either coal-fired or nuclear plant or both. In the case of coal-fired plants these may be associated with the extra costs of operating desulphurisation equipment. The most marked change in nuclear operating and maintenance costs has taken place in the United States, where these costs are now expected to be twice as large as the projected nuclear fuel costs. There remain major differences in investment cost expectations between countries. The reasons for these differences have been examined in previous studies. They arise from differences in factor costs, regulatory approach, design and siting, and exchange rates which do not adequately reflect the differences in the capital investment costs between countries. In brief, most OECD countries continue to expect nuclear power to have a lower levelised generating cost than coal-fired generation when using their own technical and economic assumptions

  19. MOCA: A Low-Power, Low-Cost Motion Capture System Based on Integrated Accelerometers

    Directory of Open Access Journals (Sweden)

    Elisabetta Farella

    2007-01-01

    Full Text Available Human-computer interaction (HCI and virtual reality applications pose the challenge of enabling real-time interfaces for natural interaction. Gesture recognition based on body-mounted accelerometers has been proposed as a viable solution to translate patterns of movements that are associated with user commands, thus substituting point-and-click methods or other cumbersome input devices. On the other hand, cost and power constraints make the implementation of a natural and efficient interface suitable for consumer applications a critical task. Even though several gesture recognition solutions exist, their use in HCI context has been poorly characterized. For this reason, in this paper, we consider a low-cost/low-power wearable motion tracking system based on integrated accelerometers called motion capture with accelerometers (MOCA that we evaluated for navigation in virtual spaces. Recognition is based on a geometric algorithm that enables efficient and robust detection of rotational movements. Our objective is to demonstrate that such a low-cost and a low-power implementation is suitable for HCI applications. To this purpose, we characterized the system from both a quantitative point of view and a qualitative point of view. First, we performed static and dynamic assessment of movement recognition accuracy. Second, we evaluated the effectiveness of user experience using a 3D game application as a test bed.

  20. Renewable energy finance and project ownership. The impact of alternative development structures on the cost of wind power

    International Nuclear Information System (INIS)

    Wiser, R.H.

    1997-01-01

    This paper uses traditional financial cash flow techniques to examine the impact of different ownership and financing structures on the cost of renewable energy, specifically wind power. Most large, non-hydroelectric, renewable energy projects are developed, owned and financed by private non-utility generators. Recently, however, US utilities have begun to consider owning and financing their own wind power facilities rather than purchasing power from independent renewable energy suppliers. Utilities in other countries have also expressed interest in direct renewable energy investments. A primary justification for utility ownership of wind turbine power plants is that utility self-financing and ownership is cheaper than purchasing wind energy from non-utility renewable energy suppliers. The results presented in this paper support that justification, although some of the estimated cost savings associated with utility ownership are a result of suboptimal utility analysis procedures and implicit risk shifting. Financing terms and variables are shown to significantly impact wind power costs. (author)

  1. Comparing carbon capture and storage (CCS) with concentrating solar power (CSP): Potentials, costs, risks, and barriers

    International Nuclear Information System (INIS)

    Lilliestam, Johan; Bielicki, Jeffrey M.; Patt, Anthony G.

    2012-01-01

    Coal power coupled with Carbon [Dioxide] Capture and Storage (CCS), and Concentrating Solar Power (CSP) technologies are often included in the portfolio of climate change mitigation options intended to decarbonize electricity systems. Both of these technologies can provide baseload electricity, are in early stages of maturity, and have benefits, costs, and obstacles. We compare and contrast CCS applied to coal-fired power plants with CSP. At present, both technologies are more expensive than existing electricity-generating options, but costs should decrease with large-scale deployment, especially in the case of CSP. For CCS, technological challenges still remain, storage risks must be clarified, and regulatory and legal uncertainties remain. For CSP, current challenges include electricity transmission and business models for a rapid and extensive expansion of high-voltage transmission lines. The need for international cooperation may impede CSP expansion in Europe. Highlights: ► Both technologies could provide low-carbon base load power. ► Both technologies require new networks, for either CO 2 or power transmission. ► CSP is closer to being a viable technology ready for pervasive diffusion. ► The costs associated with market saturation would be lower for CSP. ► The regulatory changes required for CSP diffusion are somewhat greater than for CCS.

  2. Cost-Effectiveness Analysis of a PVGS on the Electrical Power Supply of a Small Island

    Directory of Open Access Journals (Sweden)

    Cheng-Ting Hsu

    2014-01-01

    Full Text Available This paper presents a feasibility study of a large simulated stadium-scale photovoltaic generation system (PVGS on a small island. Both the PVGS contribution to the energy demand on the island and its financial analysis were analysed in this study. The maximum allowable PVGS installation capacity is obtained by executing load flow analysis without violating the voltage magnitude and voltage variation ratio limits. However, the estimated power generation of PVGS is applied to know its impact on the power system according to the hourly solar irradiation and temperature. After that, the cost-benefit analysis of payback years (PBY and net present value (NPV method is derived considering the cash flow from utilities annual fuel and loss saving, the operation and maintenance (O&M cost, and the capital investment cost. The power network in Kiribati (PUB DNST is selected for study in this paper. The simulation results are very valuable and can be applied to the other small islands for reducing the usage of fossil fuel and greenhouse gas emissions.

  3. A 3D paper-based enzymatic fuel cell for self-powered, low-cost glucose monitoring.

    Science.gov (United States)

    Fischer, Christopher; Fraiwan, Arwa; Choi, Seokheun

    2016-05-15

    In this work, we demonstrate a novel low-cost, self-powered paper-based biosensor for glucose monitoring. The device operating mechanism is based on a glucose/oxygen enzymatic fuel cell using an electrochemical energy conversion as a transducing element for glucose monitoring. The self-powered glucose biosensor features (i) a 3D origami paper-based structure for easy system integration onto paper, (ii) an air-cathode on paper for low-cost production and easy operation, and (iii) a screen printed chitosan/glucose oxidase anode for stable current generation as an analytical signal for glucose monitoring. The sensor showed a linear range of output current at 1-5mM glucose (R(2)=0.996) with a sensitivity of 0.02 µA mM(-1). The advantages offered by such a device, including a low cost, lack of external power sources/sophisticated external transducers, and the capacity to rapidly generate reliable results, are well suited for the clinical and social settings of the developing world. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. New technologies for lower-cost design and construction of new nuclear power plants. Annex 20

    International Nuclear Information System (INIS)

    Ritterbusch, S.E.; Bryan, R.E.; Harmon, D.L.

    2002-01-01

    Electric Power Research Institute studies indicate that in order to be competitive with gas-fired electric power plant capital costs, new nuclear plant capital cost in the USA must be decreased by at least 35% to 40% relative to costs of some Advanced Light Water Reactors designed in the early 1990s. To address this need, the U. S. Department of Energy is sponsoring three separate projects under its Nuclear Energy Research Initiative. These projects are the Risk-Informed Assessment of Regulatory and Design Requirements for Future Nuclear Power Plants, the Smart Equipment Nuclear Power Plant Program, and the Design, Procure, Construct, Install and Test Program. The goal of the Design-Construction program is reduction of the complete nuclear plant design-procure-construct-install-test cycle schedule and cost. A 3D plant model was combined with a construction schedule to produce a 4D visualization of plant construction, which was then used to analyze plant construction methods. Insights include the need for concurrent engineering, a plant-wide central database, and use of the World-Wide WEB. The goal of Smart Equipment program is to design, develop, and evaluate the methods for implementing smart equipment and predictive maintenance technology. 'Smart' equipment means components and systems that are instrumented and monitored to detect incipient failures in order to improve their reliability. The resulting smart equipment methods will be combined with a more risk-informed regulatory approach to allow plant designers to (1) simplify designs without compromising overall reliability and safety and (2) maintain more reliable plants at lower cost. Initial results show that rotating equipment such as charging pumps would benefit most from smart instrumentation and that the technique of Bayesian Belief Networks would be most appropriate for providing input to a health monitoring system. (author)

  5. The RISMC approach to perform advanced PRA analyses - 15332

    International Nuclear Information System (INIS)

    Mandelli, D.; Smith, C.; Riley, T.; Nielsen, J.; Alfonsi, A.; Rabiti, C.; Cogliati, J.

    2015-01-01

    The existing fleet of nuclear power plants is in the process of extending its lifetime and increasing the power generated from these plants via power up-rates. In order to evaluate the impact of these two factors on the safety of the plant, the RISMC (Risk Informed Safety Margin Characterization) Pathway aims to develop simulation-based tools and methods to assess risks for existing nuclear power plants in order to optimize safety. This pathway, by developing new methods, is extending the state-of-the-practice methods that have been traditionally based on logic structures such as Event-Trees and Fault-Trees. These static types of models mimic system response in an inductive and deductive way respectively, yet are restrictive in the ways they can represent spatial and temporal constructs. RISMC analyses are performed by using a combination of thermal-hydraulic codes and a stochastic analysis tool (RAVEN)currently under development at the Idaho National Laboratory. This paper presents a case study in order to show the capabilities of the RISMC methodology to assess impact of power up-rate of a boiling water reactor system during a station blackout accident scenario. We employ the system simulator code, RELAP5-3D, coupled with RAVEN which perform the stochastic analysis. Our analysis is in fact performed by: 1) sampling values of a set of parameters from the uncertainty space of interest, 2) simulating the system behavior for that specific set of parameter values and 3) analyzing the set of simulation runs. Results obtained give a detailed investigation of the issues associated with a plant power up-rate including the effects of station blackout accident scenarios. We are able to quantify how the timing of specific events was impacted by a higher nominal reactor core power. Such safety insights can provide useful information to the decision makers to perform risk informed margins management

  6. Least cost planning within the service concept of power supply companies

    International Nuclear Information System (INIS)

    Lueschen, H.; Sonntag, J.; Werner, R.

    1995-01-01

    In discussing the implementation of energy service concepts, German power supply companies are gradually adopting categories originating from the USA, namely integrated resources planning (IRP), least cost planning (LCP), and demand-side management (DSM). While the activities of German power supply companies are more encompassing than those of their US counterparts in the traditional features of DSM such as load management, information, and consulting, further-going measures such as direct investment and financial incentive programmes for exploiting energy-saving potentials play a less important role and are controversial in the energy-political debate. The article presents the concept of power supply companies for implementing IRP/LCP and makes a concrete assessment of the worth and efficiency of consulting compared with the newer type of financial incentive programmes. (orig.) [de

  7. Advanced launch system (ALS) - Electrical actuation and power systems improve operability and cost picture

    Science.gov (United States)

    Sundberg, Gale R.

    1990-01-01

    To obtain the Advanced Launch System (ALS) primary goals of reduced costs and improved operability, there must be significant reductions in the launch operations and servicing requirements relative to current vehicle designs and practices. One of the primary methods for achieving these goals is by using vehicle electrrical power system and controls for all aviation and avionics requirements. A brief status review of the ALS and its associated Advanced Development Program is presented to demonstrate maturation of those technologies that will help meet the overall operability and cost goals. The electric power and actuation systems are highlighted as a sdpecific technology ready not only to meet the stringent ALS goals (cryogenic field valves and thrust vector controls with peak power demands to 75 hp), but also those of other launch vehicles, military ans civilian aircraft, lunar/Martian vehicles, and a multitude of comercial applications.

  8. Advanced Launch System (ALS): Electrical actuation and power systems improve operability and cost picture

    Science.gov (United States)

    Sundberg, Gale R.

    1990-01-01

    To obtain the Advanced Launch System (ALS)