Power Law Distributions in Two Community Currencies
Kichiji, N.; Nishibe, M.
2007-07-01
The purpose of this paper is to highlight certain newly discovered social phenomena that accord with Zipf's law, in addition to the famous natural and social phenomena including word frequencies, earthquake magnitude, city size, income1 etc. that are already known to follow it. These phenomena have recently been discovered within the transaction amount (payments or receipts) distributions within two different Community Currencies (CC) that had been initiated as social experiments. One is a local CC circulating in a specific geographical area, such as a town. The other is a virtual CC used among members who belong to a certain community of interest (COI) on the Internet. We conducted two empirical studies to estimate the economic vitalization effects they had on their respective local economies. The results we found were that the amount of transactions (payments and receipts) of the two CCs was distributed according to a power-law distribution with a unity rank exponent. In addition, we found differences between the two CCs with regard to the shapes of their distribution over a low-transaction range. The result may originate from the difference in methods of issuing CCs or in the magnitudes of the minimum-value unit; however, this result calls for further investigation.
Power laws in citation distributions: evidence from Scopus.
Brzezinski, Michal
Modeling distributions of citations to scientific papers is crucial for understanding how science develops. However, there is a considerable empirical controversy on which statistical model fits the citation distributions best. This paper is concerned with rigorous empirical detection of power-law behaviour in the distribution of citations received by the most highly cited scientific papers. We have used a large, novel data set on citations to scientific papers published between 1998 and 2002 drawn from Scopus. The power-law model is compared with a number of alternative models using a likelihood ratio test. We have found that the power-law hypothesis is rejected for around half of the Scopus fields of science. For these fields of science, the Yule, power-law with exponential cut-off and log-normal distributions seem to fit the data better than the pure power-law model. On the other hand, when the power-law hypothesis is not rejected, it is usually empirically indistinguishable from most of the alternative models. The pure power-law model seems to be the best model only for the most highly cited papers in "Physics and Astronomy". Overall, our results seem to support theories implying that the most highly cited scientific papers follow the Yule, power-law with exponential cut-off or log-normal distribution. Our findings suggest also that power laws in citation distributions, when present, account only for a very small fraction of the published papers (less than 1 % for most of science fields) and that the power-law scaling parameter (exponent) is substantially higher (from around 3.2 to around 4.7) than found in the older literature.
Econophysical anchoring of unimodal power-law distributions
International Nuclear Information System (INIS)
Eliazar, Iddo I; Cohen, Morrel H
2013-01-01
The sciences are abundant with size distributions whose densities have a unimodal shape and power-law tails both at zero and at infinity. The quintessential examples of such unimodal and power-law (UPL) distributions are the sizes of income and wealth in human societies. While the tails of UPL distributions are precisely quantified by their corresponding power-law exponents, their bulks are only qualitatively characterized as unimodal. Consequently, different statistical models of UPL distributions exist, the most popular considering lognormal bulks. In this paper we present a general econophysical framework for UPL distributions termed ‘the anchoring method’. This method: (i) universally approximates UPL distributions via three ‘anchors’ set at zero, at infinity, and at an intermediate point between zero and infinity (e.g. the mode); (ii) is highly versatile and broadly applicable; (iii) encompasses the existing statistical models of UPL distributions as special cases; (iv) facilitates the introduction of new statistical models of UPL distributions and (v) yields a socioeconophysical analysis of UPL distributions. (paper)
Power-law citation distributions are not scale-free.
Golosovsky, Michael
2017-09-01
We analyze time evolution of statistical distributions of citations to scientific papers published in the same year. While these distributions seem to follow the power-law dependence we find that they are nonstationary and the exponent of the power-law fit decreases with time and does not come to saturation. We attribute the nonstationarity of citation distributions to different longevity of the low-cited and highly cited papers. By measuring citation trajectories of papers we found that citation careers of the low-cited papers come to saturation after 10-15 years while those of the highly cited papers continue to increase indefinitely: The papers that exceed some citation threshold become runaways. Thus, we show that although citation distribution can look as a power-law dependence, it is not scale free and there is a hidden dynamic scale associated with the onset of runaways. We compare our measurements to our recently developed model of citation dynamics based on copying-redirection-triadic closure and find explanations to our empirical observations.
Power law distributions of patents as indicators of innovation.
Directory of Open Access Journals (Sweden)
Dion R J O'Neale
Full Text Available The total number of patents produced by a country (or the number of patents produced per capita is often used as an indicator for innovation. Here we present evidence that the distribution of patents amongst applicants within many countries is well-described by power laws with exponents that vary between 1.66 (Japan and 2.37 (Poland. We suggest that this exponent is a useful new metric for studying innovation. Using simulations based on simple preferential attachment-type rules that generate power laws, we find we can explain some of the variation in exponents between countries, with countries that have larger numbers of patents per applicant generally exhibiting smaller exponents in both the simulated and actual data. Similarly we find that the exponents for most countries are inversely correlated with other indicators of innovation, such as research and development intensity or the ubiquity of export baskets. This suggests that in more advanced economies, which tend to have smaller values of the exponent, a greater proportion of the total number of patents are filed by large companies than in less advanced countries.
The p-sphere and the geometric substratum of power-law probability distributions
International Nuclear Information System (INIS)
Vignat, C.; Plastino, A.
2005-01-01
Links between power law probability distributions and marginal distributions of uniform laws on p-spheres in R n show that a mathematical derivation of the Boltzmann-Gibbs distribution necessarily passes through power law ones. Results are also given that link parameters p and n to the value of the non-extensivity parameter q that characterizes these power laws in the context of non-extensive statistics
Power law olivine crystal size distributions in lithospheric mantle xenoliths
Armienti, P.; Tarquini, S.
2002-12-01
Olivine crystal size distributions (CSDs) have been measured in three suites of spinel- and garnet-bearing harzburgites and lherzolites found as xenoliths in alkaline basalts from Canary Islands, Africa; Victoria Land, Antarctica; and Pali Aike, South America. The xenoliths derive from lithospheric mantle, from depths ranging from 80 to 20 km. Their textures vary from coarse to porphyroclastic and mosaic-porphyroclastic up to cataclastic. Data have been collected by processing digital images acquired optically from standard petrographic thin sections. The acquisition method is based on a high-resolution colour scanner that allows image capturing of a whole thin section. Image processing was performed using the VISILOG 5.2 package, resolving crystals larger than about 150 μm and applying stereological corrections based on the Schwartz-Saltykov algorithm. Taking account of truncation effects due to resolution limits and thin section size, all samples show scale invariance of crystal size distributions over almost three orders of magnitude (0.2-25 mm). Power law relations show fractal dimensions varying between 2.4 and 3.8, a range of values observed for distributions of fragment sizes in a variety of other geological contexts. A fragmentation model can reproduce the fractal dimensions around 2.6, which correspond to well-equilibrated granoblastic textures. Fractal dimensions >3 are typical of porphyroclastic and cataclastic samples. Slight bends in some linear arrays suggest selective tectonic crushing of crystals with size larger than 1 mm. The scale invariance shown by lithospheric mantle xenoliths in a variety of tectonic settings forms distant geographic regions, which indicate that this is a common characteristic of the upper mantle and should be taken into account in rheological models and evaluation of metasomatic models.
Power-law and exponential rank distributions: A panoramic Gibbsian perspective
International Nuclear Information System (INIS)
Eliazar, Iddo
2015-01-01
Rank distributions are collections of positive sizes ordered either increasingly or decreasingly. Many decreasing rank distributions, formed by the collective collaboration of human actions, follow an inverse power-law relation between ranks and sizes. This remarkable empirical fact is termed Zipf’s law, and one of its quintessential manifestations is the demography of human settlements — which exhibits a harmonic relation between ranks and sizes. In this paper we present a comprehensive statistical-physics analysis of rank distributions, establish that power-law and exponential rank distributions stand out as optimal in various entropy-based senses, and unveil the special role of the harmonic relation between ranks and sizes. Our results extend the contemporary entropy-maximization view of Zipf’s law to a broader, panoramic, Gibbsian perspective of increasing and decreasing power-law and exponential rank distributions — of which Zipf’s law is one out of four pillars
Power-law and exponential rank distributions: A panoramic Gibbsian perspective
Energy Technology Data Exchange (ETDEWEB)
Eliazar, Iddo, E-mail: eliazar@post.tau.ac.il
2015-04-15
Rank distributions are collections of positive sizes ordered either increasingly or decreasingly. Many decreasing rank distributions, formed by the collective collaboration of human actions, follow an inverse power-law relation between ranks and sizes. This remarkable empirical fact is termed Zipf’s law, and one of its quintessential manifestations is the demography of human settlements — which exhibits a harmonic relation between ranks and sizes. In this paper we present a comprehensive statistical-physics analysis of rank distributions, establish that power-law and exponential rank distributions stand out as optimal in various entropy-based senses, and unveil the special role of the harmonic relation between ranks and sizes. Our results extend the contemporary entropy-maximization view of Zipf’s law to a broader, panoramic, Gibbsian perspective of increasing and decreasing power-law and exponential rank distributions — of which Zipf’s law is one out of four pillars.
Do wealth distributions follow power laws? Evidence from ‘rich lists’
Brzezinski, Michal
2014-07-01
We use data on the wealth of the richest persons taken from the 'rich lists' provided by business magazines like Forbes to verify if the upper tails of wealth distributions follow, as often claimed, a power-law behaviour. The data sets used cover the world's richest persons over 1996-2012, the richest Americans over 1988-2012, the richest Chinese over 2006-2012, and the richest Russians over 2004-2011. Using a recently introduced comprehensive empirical methodology for detecting power laws, which allows for testing the goodness of fit as well as for comparing the power-law model with rival distributions, we find that a power-law model is consistent with data only in 35% of the analysed data sets. Moreover, even if wealth data are consistent with the power-law model, they are usually also consistent with some rivals like the log-normal or stretched exponential distributions.
Transport coefficients in Lorentz plasmas with the power-law kappa-distribution
International Nuclear Information System (INIS)
Jiulin, Du
2013-01-01
Transport coefficients in Lorentz plasma with the power-law κ-distribution are studied by means of using the transport equation and macroscopic laws of Lorentz plasma without magnetic field. Expressions of electric conductivity, thermoelectric coefficient, and thermal conductivity for the power-law κ-distribution are accurately derived. It is shown that these transport coefficients are significantly modified by the κ-parameter, and in the limit of the parameter κ→∞ they are reduced to the standard forms for a Maxwellian distribution
The origin of power-law distributions in self-organized criticality
International Nuclear Information System (INIS)
Yang, C B
2004-01-01
The origin of power-law distributions in self-organized criticality is investigated by treating the variation of the number of active sites in the system as a stochastic process. An avalanche is then regarded as a first-return random-walk process in a one-dimensional lattice. Power-law distributions of the lifetime and spatial size are found when the random walk is unbiased with equal probability to move in opposite directions. This shows that power-law distributions in self-organized criticality may be caused by the balance of competitive interactions. At the mean time, the mean spatial size for avalanches with the same lifetime is found to increase in a power law with the lifetime. (letter to the editor)
Power Law Distributions in the Experiment for Adjustment of the Ion Source of the NBI System
International Nuclear Information System (INIS)
Han Xiaopu; Hu Chundong
2005-01-01
The experiential adjustment process in an experiment on the ion source of the neutral beam injector system for the HT-7 Tokamak is reported in this paper. With regard to the data obtained in the same condition, in arranging the arc current intensities of every shot with a decay rank, the distributions of the arc current intensity correspond to the power laws, and the distribution obtained in the condition with the cryo-pump corresponds to the double Pareto distribution. Using the similar study method, the distributions of the arc duration are close to the power laws too. These power law distributions are formed rather naturally instead of being the results of purposeful seeking
Non-thermal Power-Law Distributions in Solar and Space Plasmas
Oka, M.; Battaglia, M.; Birn, J.; Chaston, C. C.; Effenberger, F.; Eriksson, E.; Fletcher, L.; Hatch, S.; Imada, S.; Khotyaintsev, Y. V.; Kuhar, M.; Livadiotis, G.; Miyoshi, Y.; Retino, A.
2017-12-01
Particles are accelerated to very high, non-thermal energies in solar and space plasma environments. While energy spectra of accelerated particles often exhibit a power-law and are characterized by the power-law index δ, it remains unclear how particles are accelerated to high energies and how δ is determined. Here, we review previous observations of the power-law index δ in a variety of different plasma environments with a particular focus on sub-relativistic electrons. It appears that in regions more closely related to magnetic reconnection (such as the "above-the-looptop" solar hard X-ray source and the plasma sheet in Earth's magnetotail), the spectra are typically soft (δ> 4). This is in contrast to the typically hard spectra (δuniform in the plasma sheet, while power-law distributions still exist even in quiet times. The role of magnetotail reconnection in the electron power-law formation could therefore be confounded with these background conditions. Because different regions have been studied with different instrumentations and methodologies, we point out a need for more systematic and coordinated studies of power-law distributions for a better understanding of possible scaling laws in particle acceleration as well as their universality.
On Origin of Power-Law Distributions in Self-Organized Criticality from Random Walk Treatment
International Nuclear Information System (INIS)
Cao Xiaofeng; Deng Zongwei; Yang Chunbin
2008-01-01
The origin of power-law distributions in self-organized criticality is investigated by treating the variation of the number of active sites in the system as a stochastic process. An avalanche is then regarded as a first-return random walk process in a one-dimensional lattice. We assume that the variation of the number of active sites has three possibilities in each update: to increase by 1 with probability f 1 , to decrease by 1 with probability f 2 , or remain unchanged with probability 1-f 1 -f 2 . This mimics the dynamics in the system. Power-law distributions of the lifetime are found when the random walk is unbiased with equal probability to move in opposite directions. This shows that power-law distributions in self-organized criticality may be caused by the balance of competitive interactions.
Power-law distributions for a trapped ion interacting with a classical buffer gas.
DeVoe, Ralph G
2009-02-13
Classical collisions with an ideal gas generate non-Maxwellian distribution functions for a single ion in a radio frequency ion trap. The distributions have power-law tails whose exponent depends on the ratio of buffer gas to ion mass. This provides a statistical explanation for the previously observed transition from cooling to heating. Monte Carlo results approximate a Tsallis distribution over a wide range of parameters and have ab initio agreement with experiment.
The rate coefficients of unimolecular reactions in the systems with power-law distributions
Yin, Cangtao; Guo, Ran; Du, Jiulin
2014-08-01
The rate coefficient formulae of unimolecular reactions are generalized to the systems with the power-law distributions based on nonextensive statistics, and the power-law rate coefficients are derived in the high and low pressure limits, respectively. The numerical analyses are made of the rate coefficients as functions of the ν-parameter, the threshold energy, the temperature and the number of degrees of freedom. We show that the new rate coefficients depend strongly on the ν-parameter different from one (thus from a Boltzmann-Gibbs distribution). Two unimolecular reactions, CH3CO→CH3+CO and CH3NC→CH3CN, are taken as application examples to calculate their power-law rate coefficients, which obtained with the ν-parameters slightly different from one can be exactly in agreement with all the experimental studies on these two reactions in the given temperature ranges.
A Dual Power Law Distribution for the Stellar Initial Mass Function
Hoffmann, Karl Heinz; Essex, Christopher; Basu, Shantanu; Prehl, Janett
2018-05-01
We introduce a new dual power law (DPL) probability distribution function for the mass distribution of stellar and substellar objects at birth, otherwise known as the initial mass function (IMF). The model contains both deterministic and stochastic elements, and provides a unified framework within which to view the formation of brown dwarfs and stars resulting from an accretion process that starts from extremely low mass seeds. It does not depend upon a top down scenario of collapsing (Jeans) masses or an initial lognormal or otherwise IMF-like distribution of seed masses. Like the modified lognormal power law (MLP) distribution, the DPL distribution has a power law at the high mass end, as a result of exponential growth of mass coupled with equally likely stopping of accretion at any time interval. Unlike the MLP, a power law decay also appears at the low mass end of the IMF. This feature is closely connected to the accretion stopping probability rising from an initially low value up to a high value. This might be associated with physical effects of ejections sometimes (i.e., rarely) stopping accretion at early times followed by outflow driven accretion stopping at later times, with the transition happening at a critical time (therefore mass). Comparing the DPL to empirical data, the critical mass is close to the substellar mass limit, suggesting that the onset of nuclear fusion plays an important role in the subsequent accretion history of a young stellar object.
Power law of distribution of emergency situations on main gas pipeline
Voronin, K. S.; Akulov, K. A.
2018-05-01
The article presents the results of the analysis of emergency situations on a main gas pipeline. A power law of distribution of emergency situations is revealed. The possibility of conducting further scientific research to ensure the predictability of emergency situations on pipelines is justified.
Using Power-Law Degree Distribution to Accelerate PageRank
Directory of Open Access Journals (Sweden)
Zhaoyan Jin
2012-12-01
Full Text Available The PageRank vector of a network is very important, for it can reflect the importance of a Web page in the World Wide Web, or of a people in a social network. However, with the growth of the World Wide Web and social networks, it needs more and more time to compute the PageRank vector of a network. In many real-world applications, the degree and PageRank distributions of these complex networks conform to the Power-Law distribution. This paper utilizes the degree distribution of a network to initialize its PageRank vector, and presents a Power-Law degree distribution accelerating algorithm of PageRank computation. Experiments on four real-world datasets show that the proposed algorithm converges more quickly than the original PageRank algorithm.
Zhao, Kai; Musolesi, Mirco; Hui, Pan; Rao, Weixiong; Tarkoma, Sasu
2015-03-01
Human mobility has been empirically observed to exhibit Lévy flight characteristics and behaviour with power-law distributed jump size. The fundamental mechanisms behind this behaviour has not yet been fully explained. In this paper, we propose to explain the Lévy walk behaviour observed in human mobility patterns by decomposing them into different classes according to the different transportation modes, such as Walk/Run, Bike, Train/Subway or Car/Taxi/Bus. Our analysis is based on two real-life GPS datasets containing approximately 10 and 20 million GPS samples with transportation mode information. We show that human mobility can be modelled as a mixture of different transportation modes, and that these single movement patterns can be approximated by a lognormal distribution rather than a power-law distribution. Then, we demonstrate that the mixture of the decomposed lognormal flight distributions associated with each modality is a power-law distribution, providing an explanation to the emergence of Lévy Walk patterns that characterize human mobility patterns.
The relationship between randomness and power-law distributed move lengths in random walk algorithms
Sakiyama, Tomoko; Gunji, Yukio-Pegio
2014-05-01
Recently, we proposed a new random walk algorithm, termed the REV algorithm, in which the agent alters the directional rule that governs it using the most recent four random numbers. Here, we examined how a non-bounded number, i.e., "randomness" regarding move direction, was important for optimal searching and power-law distributed step lengths in rule change. We proposed two algorithms: the REV and REV-bounded algorithms. In the REV algorithm, one of the four random numbers used to change the rule is non-bounded. In contrast, all four random numbers in the REV-bounded algorithm are bounded. We showed that the REV algorithm exhibited more consistent power-law distributed step lengths and flexible searching behavior.
The quick convolution of galaxy profiles, with application to power-law intensity distributions
International Nuclear Information System (INIS)
Bailey, M.E.; Sparks, W.B.
1983-01-01
The two-dimensional convolution of a circularly symmetric galaxy model with a Gaussian point-spread function of dispersion σ reduces to a single integral. This is solved analytically for models with power-law intensity distributions and results are given which relate the apparent core radius to σ and the power-law index k. The convolution integral is also simplified for the case of a point-spread function corresponding to a circular aperture. Models of galactic nuclei with stellar density cusps can only be distinguished from alternatives with small core radii if both the brightness and seeing profiles are measured accurately. The results are applied to data on the light distribution at the Galactic Centre. (author)
van Mierlo, Trevor; Hyatt, Douglas; Ching, Andrew T
2015-06-25
Social networks are common in digital health. A new stream of research is beginning to investigate the mechanisms of digital health social networks (DHSNs), how they are structured, how they function, and how their growth can be nurtured and managed. DHSNs increase in value when additional content is added, and the structure of networks may resemble the characteristics of power laws. Power laws are contrary to traditional Gaussian averages in that they demonstrate correlated phenomena. The objective of this study is to investigate whether the distribution frequency in four DHSNs can be characterized as following a power law. A second objective is to describe the method used to determine the comparison. Data from four DHSNs—Alcohol Help Center (AHC), Depression Center (DC), Panic Center (PC), and Stop Smoking Center (SSC)—were compared to power law distributions. To assist future researchers and managers, the 5-step methodology used to analyze and compare datasets is described. All four DHSNs were found to have right-skewed distributions, indicating the data were not normally distributed. When power trend lines were added to each frequency distribution, R(2) values indicated that, to a very high degree, the variance in post frequencies can be explained by actor rank (AHC .962, DC .975, PC .969, SSC .95). Spearman correlations provided further indication of the strength and statistical significance of the relationship (AHC .987. DC .967, PC .983, SSC .993, Ppower distributions across multiple DHSNs, each addressing a unique condition. Results indicate that despite vast differences in theme, content, and length of existence, DHSNs follow properties of power laws. The structure of DHSNs is important as it gives insight to researchers and managers into the nature and mechanisms of network functionality. The 5-step process undertaken to compare actor contribution patterns can be replicated in networks that are managed by other organizations, and we conjecture that
Hoogenboom, J.P.; Hoogenboom, Jacob; van Dijk, E.M.H.P.; Hernando Campos, J.; van Hulst, N.F.; Garcia Parajo, M.F.
2005-01-01
We exploit the strong excitonic coupling in a superradiant trimer molecule to distinguish between long-lived collective dark states and photobleaching events. The population and depopulation kinetics of the dark states in a single molecule follow power-law statistics over 5 orders of magnitude in time. This result is consistent with the formation of a radical unit via electron tunneling to a time-varying distribution of trapping sites in the surrounding polymer matrix. We furthermore demonstr...
A theory of power-law distributions in financial market fluctuations.
Gabaix, Xavier; Gopikrishnan, Parameswaran; Plerou, Vasiliki; Stanley, H Eugene
2003-05-15
Insights into the dynamics of a complex system are often gained by focusing on large fluctuations. For the financial system, huge databases now exist that facilitate the analysis of large fluctuations and the characterization of their statistical behaviour. Power laws appear to describe histograms of relevant financial fluctuations, such as fluctuations in stock price, trading volume and the number of trades. Surprisingly, the exponents that characterize these power laws are similar for different types and sizes of markets, for different market trends and even for different countries--suggesting that a generic theoretical basis may underlie these phenomena. Here we propose a model, based on a plausible set of assumptions, which provides an explanation for these empirical power laws. Our model is based on the hypothesis that large movements in stock market activity arise from the trades of large participants. Starting from an empirical characterization of the size distribution of those large market participants (mutual funds), we show that the power laws observed in financial data arise when the trading behaviour is performed in an optimal way. Our model additionally explains certain striking empirical regularities that describe the relationship between large fluctuations in prices, trading volume and the number of trades.
Dust-acoustic waves and stability in the permeating dusty plasma. II. Power-law distributions
International Nuclear Information System (INIS)
Gong Jingyu; Du Jiulin; Liu Zhipeng
2012-01-01
The dust-acoustic waves and the stability theory for the permeating dusty plasma with power-law distributions are studied by using nonextensive q-statistics. In two limiting physical cases, when the thermal velocity of the flowing dusty plasma is much larger than, and much smaller than the phase velocity of the waves, we derived the dust-acoustic wave frequency, the instability growth rate, and the instability critical flowing velocity. As compared with the formulae obtained in part I [Gong et al., Phys. Plasmas 19, 043704 (2012)], all formulae of the present cases and the resulting plasma characteristics are q-dependent, and the power-law distribution of each plasma component of the permeating dusty plasma has a different q-parameter and thus has a different nonextensive effect. Further, we make numerical analyses of an example that a cometary plasma tail is passing through the interplanetary space dusty plasma and we show that these power-law distributions have significant effects on the plasma characteristics of this kind of plasma environment.
Accuracy analysis of measurements on a stable power-law distributed series of events
International Nuclear Information System (INIS)
Matthews, J O; Hopcraft, K I; Jakeman, E; Siviour, G B
2006-01-01
We investigate how finite measurement time limits the accuracy with which the parameters of a stably distributed random series of events can be determined. The model process is generated by timing the emigration of individuals from a population that is subject to deaths and a particular choice of multiple immigration events. This leads to a scale-free discrete random process where customary measures, such as mean value and variance, do not exist. However, converting the number of events occurring in fixed time intervals to a 1-bit 'clipped' process allows the construction of well-behaved statistics that still retain vestiges of the original power-law and fluctuation properties. These statistics include the clipped mean and correlation function, from measurements of which both the power-law index of the distribution of events and the time constant of its fluctuations can be deduced. We report here a theoretical analysis of the accuracy of measurements of the mean of the clipped process. This indicates that, for a fixed experiment time, the error on measurements of the sample mean is minimized by an optimum choice of the number of samples. It is shown furthermore that this choice is sensitive to the power-law index and that the approach to Poisson statistics is dominated by rare events or 'outliers'. Our results are supported by numerical simulation
The mean first passage time in an energy-diffusion controlled regime with power-law distributions
International Nuclear Information System (INIS)
Zhou, Yanjun; Du, Jiulin
2013-01-01
Based on the mean first passage time (MFPT) theory, we derive an expression of the MFPT in an energy-diffusion controlled regime with a power-law distribution. We discuss the finite barrier effect (i.e. the thermal energy k B T is not small with respect to the potential barrier E b ) and compare it with Kramers’ infinite barrier result both in a power-law distribution and in a Maxwell–Boltzmann distribution. It is shown that the MFPT with a power-law distribution extends Kramers’ low-damping result to a relatively low barrier. We pay attention to the energy-diffusion controlled regime, which is of great interest in the context of Josephson junctions, and study how the power-law parameter κ affects the current distribution function in experiments with Josephson junctions. (paper)
Transition from Exponential to Power Law Income Distributions in a Chaotic Market
Pellicer-Lostao, Carmen; Lopez-Ruiz, Ricardo
Economy is demanding new models, able to understand and predict the evolution of markets. To this respect, Econophysics offers models of markets as complex systems, that try to comprehend macro-, system-wide states of the economy from the interaction of many agents at micro-level. One of these models is the gas-like model for trading markets. This tries to predict money distributions in closed economies and quite simply, obtains the ones observed in real economies. However, it reveals technical hitches to explain the power law distribution, observed in individuals with high incomes. In this work, nonlinear dynamics is introduced in the gas-like model in an effort to overcomes these flaws. A particular chaotic dynamics is used to break the pairing symmetry of agents (i, j) ⇔ (j, i). The results demonstrate that a "chaotic gas-like model" can reproduce the Exponential and Power law distributions observed in real economies. Moreover, it controls the transition between them. This may give some insight of the micro-level causes that originate unfair distributions of money in a global society. Ultimately, the chaotic model makes obvious the inherent instability of asymmetric scenarios, where sinks of wealth appear and doom the market to extreme inequality.
Undersampling power-law size distributions: effect on the assessment of extreme natural hazards
Geist, Eric L.; Parsons, Thomas E.
2014-01-01
The effect of undersampling on estimating the size of extreme natural hazards from historical data is examined. Tests using synthetic catalogs indicate that the tail of an empirical size distribution sampled from a pure Pareto probability distribution can range from having one-to-several unusually large events to appearing depleted, relative to the parent distribution. Both of these effects are artifacts caused by limited catalog length. It is more difficult to diagnose the artificially depleted empirical distributions, since one expects that a pure Pareto distribution is physically limited in some way. Using maximum likelihood methods and the method of moments, we estimate the power-law exponent and the corner size parameter of tapered Pareto distributions for several natural hazard examples: tsunamis, floods, and earthquakes. Each of these examples has varying catalog lengths and measurement thresholds, relative to the largest event sizes. In many cases where there are only several orders of magnitude between the measurement threshold and the largest events, joint two-parameter estimation techniques are necessary to account for estimation dependence between the power-law scaling exponent and the corner size parameter. Results indicate that whereas the corner size parameter of a tapered Pareto distribution can be estimated, its upper confidence bound cannot be determined and the estimate itself is often unstable with time. Correspondingly, one cannot statistically reject a pure Pareto null hypothesis using natural hazard catalog data. Although physical limits to the hazard source size and by attenuation mechanisms from source to site constrain the maximum hazard size, historical data alone often cannot reliably determine the corner size parameter. Probabilistic assessments incorporating theoretical constraints on source size and propagation effects are preferred over deterministic assessments of extreme natural hazards based on historic data.
Relaxation of the distribution function tails for gases with power-law interaction potentials
International Nuclear Information System (INIS)
Potapenko, I.F.; Bobylev, A.V.; de Azevedo, C.A.; de Assis, A.S.
1997-01-01
The relaxation of rarefied gases of particles with the power-law interaction potentials U=α/r s , where 1≤s<4, is considered. The formation and evolution of the distribution function tails are investigated on the basis of the one-dimensional kinetic Landau endash Fokker-Planck equation. For long times, the constructed asymptotic solutions have a propagating-wave appearance in the high velocity region. The analytical solutions are expressed explicitly in terms of the error function. The analytical consideration is accomplished by numerical calculations. The obtained analytical results are in a good agreement with the numerical simulation results. copyright 1997 The American Physical Society
Directory of Open Access Journals (Sweden)
Yan Zhang
2011-01-01
Full Text Available The problem of steady, laminar, thermal Marangoni convection flow of non-Newtonian power law fluid along a horizontal surface with variable surface temperature is studied. The partial differential equations are transformed into ordinary differential equations by using a suitable similarity transformation and analytical approximate solutions are obtained by an efficient transformation, asymptotic expansion and Padé approximants technique. The effects of power law index and Marangoni number on velocity and temperature profiles are examined and discussed.
Seasonal evolution of the Arctic marginal ice zone and its power-law obeying floe size distribution
Zhang, J.; Stern, H. L., III; Schweiger, A. J. B.; Steele, M.; Hwang, P. B.
2017-12-01
A thickness, floe size, and enthalpy distribution (TFED) sea ice model, implemented numerically into the Pan-arctic Ice-Ocean Modeling and Assimilation System (PIOMAS), is used to investigate the seasonal evolution of the Arctic marginal ice zone (MIZ) and its floe size distribution. The TFED sea ice model, by coupling the Zhang et al. [2015] sea ice floe size distribution (FSD) theory with the Thorndike et al. [1975] ice thickness distribution (ITD) theory, simulates 12-category FSD and ITD explicitly and jointly. A range of ice thickness and floe size observations were used for model calibration and validation. The model creates FSDs that generally obey a power law or upper truncated power law, as observed by satellites and aerial surveys. In this study, we will examine the role of ice fragmentation and lateral melting in altering FSDs in the Arctic MIZ. We will also investigate how changes in FSD impact the seasonal evolution of the MIZ by modifying the thermodynamic processes.
Power Laws are Disguised Boltzmann Laws
Richmond, Peter; Solomon, Sorin
Using a previously introduced model on generalized Lotka-Volterra dynamics together with some recent results for the solution of generalized Langevin equations, we derive analytically the equilibrium mean field solution for the probability distribution of wealth and show that it has two characteristic regimes. For large values of wealth, it takes the form of a Pareto style power law. For small values of wealth, wGeneralized Lotka-Volterra type of stochastic dynamics. The power law that arises in the distribution function is identified with new additional logarithmic terms in the familiar Boltzmann distribution function for the system. These are a direct consequence of the multiplicative stochastic dynamics and are absent for the usual additive stochastic processes.
Distributed power-law seismicity changes and crustal deformation in the SW Hellenic ARC
Directory of Open Access Journals (Sweden)
A. Tzanis
2003-01-01
Full Text Available A region of definite accelerating seismic release rates has been identified at the SW Hellenic Arc and Trench system, of Peloponnesus, and to the south-west of the island of Kythera (Greece. The identification was made after detailed, parametric time-to-failure modelling on a 0.1° square grid over the area 20° E – 27° E and 34° N–38° N. The observations are strongly suggestive of terminal-stage critical point behaviour (critical exponent of the order of 0.25, leading to a large earthquake with magnitude 7.1 ± 0.4, to occur at time 2003.6 ± 0.6. In addition to the region of accelerating seismic release rates, an adjacent region of decelerating seismicity was also observed. The acceleration/deceleration pattern appears in such a well structured and organised manner, which is strongly suggestive of a causal relationship. An explanation may be that the observed characteristics of distributed power-law seismicity changes may be produced by stress transfer from a fault, to a region already subjected to stress inhomogeneities, i.e. a region defined by the stress field required to rupture a fault with a specified size, orientation and rake. Around a fault that is going to rupture, there are bright spots (regions of increasing stress and stress shadows (regions relaxing stress; whereas acceleration may be observed in bright spots, deceleration may be expected in the shadows. We concluded that the observed seismic release patterns can possibly be explained with a family of NE-SW oriented, left-lateral, strike-slip to oblique-slip faults, located to the SW of Kythera and Antikythera and capable of producing earthquakes with magnitudes MS ~ 7. Time-to-failure modelling and empirical analysis of earthquakes in the stress bright spots yield a critical exponent of the order 0.25 as expected from theory, and a predicted magnitude and critical time perfectly consistent with the figures given above. Although we have determined an approximate location
Maximal planar networks with large clustering coefficient and power-law degree distribution
International Nuclear Information System (INIS)
Zhou Tao; Yan Gang; Wang Binghong
2005-01-01
In this article, we propose a simple rule that generates scale-free networks with very large clustering coefficient and very small average distance. These networks are called random Apollonian networks (RANs) as they can be considered as a variation of Apollonian networks. We obtain the analytic results of power-law exponent γ=3 and clustering coefficient C=(46/3)-36 ln (3/2)≅0.74, which agree with the simulation results very well. We prove that the increasing tendency of average distance of RANs is a little slower than the logarithm of the number of nodes in RANs. Since most real-life networks are both scale-free and small-world networks, RANs may perform well in mimicking the reality. The RANs possess hierarchical structure as C(k)∼k -1 that are in accord with the observations of many real-life networks. In addition, we prove that RANs are maximal planar networks, which are of particular practicability for layout of printed circuits and so on. The percolation and epidemic spreading process are also studied and the comparisons between RANs and Barabasi-Albert (BA) as well as Newman-Watts (NW) networks are shown. We find that, when the network order N (the total number of nodes) is relatively small (as N∼10 4 ), the performance of RANs under intentional attack is not sensitive to N, while that of BA networks is much affected by N. And the diseases spread slower in RANs than BA networks in the early stage of the suseptible-infected process, indicating that the large clustering coefficient may slow the spreading velocity, especially in the outbreaks
Directory of Open Access Journals (Sweden)
Yasuhiro Tsubo
Full Text Available The brain is considered to use a relatively small amount of energy for its efficient information processing. Under a severe restriction on the energy consumption, the maximization of mutual information (MMI, which is adequate for designing artificial processing machines, may not suit for the brain. The MMI attempts to send information as accurate as possible and this usually requires a sufficient energy supply for establishing clearly discretized communication bands. Here, we derive an alternative hypothesis for neural code from the neuronal activities recorded juxtacellularly in the sensorimotor cortex of behaving rats. Our hypothesis states that in vivo cortical neurons maximize the entropy of neuronal firing under two constraints, one limiting the energy consumption (as assumed previously and one restricting the uncertainty in output spike sequences at given firing rate. Thus, the conditional maximization of firing-rate entropy (CMFE solves a tradeoff between the energy cost and noise in neuronal response. In short, the CMFE sends a rich variety of information through broader communication bands (i.e., widely distributed firing rates at the cost of accuracy. We demonstrate that the CMFE is reflected in the long-tailed, typically power law, distributions of inter-spike intervals obtained for the majority of recorded neurons. In other words, the power-law tails are more consistent with the CMFE rather than the MMI. Thus, we propose the mathematical principle by which cortical neurons may represent information about synaptic input into their output spike trains.
Directory of Open Access Journals (Sweden)
Noa Slater
2015-04-01
Full Text Available Measures of allele and haplotype diversity, which are fundamental properties in population genetics, often follow heavy tailed distributions. These measures are of particular interest in the field of hematopoietic stem cell transplant (HSCT. Donor/Recipient suitability for HSCT is determined by Human Leukocyte Antigen (HLA similarity. Match predictions rely upon a precise description of HLA diversity, yet classical estimates are inaccurate given the heavy-tailed nature of the distribution. This directly affects HSCT matching and diversity measures in broader fields such as species richness. We, therefore, have developed a power-law based estimator to measure allele and haplotype diversity that accommodates heavy tails using the concepts of regular variation and occupancy distributions. Application of our estimator to 6.59 million donors in the Be The Match Registry revealed that haplotypes follow a heavy tail distribution across all ethnicities: for example, 44.65% of the European American haplotypes are represented by only 1 individual. Indeed, our discovery rate of all U.S. European American haplotypes is estimated at 23.45% based upon sampling 3.97% of the population, leaving a large number of unobserved haplotypes. Population coverage, however, is much higher at 99.4% given that 90% of European Americans carry one of the 4.5% most frequent haplotypes. Alleles were found to be less diverse suggesting the current registry represents most alleles in the population. Thus, for HSCT registries, haplotype discovery will remain high with continued recruitment to a very deep level of sampling, but population coverage will not. Finally, we compared the convergence of our power-law versus classical diversity estimators such as Capture recapture, Chao, ACE and Jackknife methods. When fit to the haplotype data, our estimator displayed favorable properties in terms of convergence (with respect to sampling depth and accuracy (with respect to diversity
Awazu, Akinori; Tanabe, Takahiro; Kamitani, Mari; Tezuka, Ayumi; Nagano, Atsushi J
2018-05-29
Gene expression levels exhibit stochastic variations among genetically identical organisms under the same environmental conditions. In many recent transcriptome analyses based on RNA sequencing (RNA-seq), variations in gene expression levels among replicates were assumed to follow a negative binomial distribution, although the physiological basis of this assumption remains unclear. In this study, RNA-seq data were obtained from Arabidopsis thaliana under eight conditions (21-27 replicates), and the characteristics of gene-dependent empirical probability density function (ePDF) profiles of gene expression levels were analyzed. For A. thaliana and Saccharomyces cerevisiae, various types of ePDF of gene expression levels were obtained that were classified as Gaussian, power law-like containing a long tail, or intermediate. These ePDF profiles were well fitted with a Gauss-power mixing distribution function derived from a simple model of a stochastic transcriptional network containing a feedback loop. The fitting function suggested that gene expression levels with long-tailed ePDFs would be strongly influenced by feedback regulation. Furthermore, the features of gene expression levels are correlated with their functions, with the levels of essential genes tending to follow a Gaussian-like ePDF while those of genes encoding nucleic acid-binding proteins and transcription factors exhibit long-tailed ePDF.
Nezhadhaghighi, Mohsen Ghasemi
2017-08-01
Here, we present results of numerical simulations and the scaling characteristics of one-dimensional random fluctuations with heavy-tailed probability distribution functions. Assuming that the distribution function of the random fluctuations obeys Lévy statistics with a power-law scaling exponent, we investigate the fractional diffusion equation in the presence of μ-stable Lévy noise. We study the scaling properties of the global width and two-point correlation functions and then compare the analytical and numerical results for the growth exponent β and the roughness exponent α. We also investigate the fractional Fokker-Planck equation for heavy-tailed random fluctuations. We show that the fractional diffusion processes in the presence of μ-stable Lévy noise display special scaling properties in the probability distribution function (PDF). Finally, we numerically study the scaling properties of the heavy-tailed random fluctuations by using the diffusion entropy analysis. This method is based on the evaluation of the Shannon entropy of the PDF generated by the random fluctuations, rather than on the measurement of the global width of the process. We apply the diffusion entropy analysis to extract the growth exponent β and to confirm the validity of our numerical analysis.
Nezhadhaghighi, Mohsen Ghasemi
2017-08-01
Here, we present results of numerical simulations and the scaling characteristics of one-dimensional random fluctuations with heavy-tailed probability distribution functions. Assuming that the distribution function of the random fluctuations obeys Lévy statistics with a power-law scaling exponent, we investigate the fractional diffusion equation in the presence of μ -stable Lévy noise. We study the scaling properties of the global width and two-point correlation functions and then compare the analytical and numerical results for the growth exponent β and the roughness exponent α . We also investigate the fractional Fokker-Planck equation for heavy-tailed random fluctuations. We show that the fractional diffusion processes in the presence of μ -stable Lévy noise display special scaling properties in the probability distribution function (PDF). Finally, we numerically study the scaling properties of the heavy-tailed random fluctuations by using the diffusion entropy analysis. This method is based on the evaluation of the Shannon entropy of the PDF generated by the random fluctuations, rather than on the measurement of the global width of the process. We apply the diffusion entropy analysis to extract the growth exponent β and to confirm the validity of our numerical analysis.
Magnetic Pumping as a Source of Particle Heating and Power-law Distributions in the Solar Wind
Lichko, E.; Egedal, J.; Daughton, W.; Kasper, J.
2017-12-01
Based on the rate of expansion of the solar wind, the plasma should cool rapidly as a function of distance to the Sun. Observations show this is not the case. In this work, a magnetic pumping model is developed as a possible explanation for the heating and the generation of power-law distribution functions observed in the solar wind plasma. Most previous studies in this area focus on the role that the dissipation of turbulent energy on microscopic kinetic scales plays in the overall heating of the plasma. However, with magnetic pumping, particles are energized by the largest-scale turbulent fluctuations, thus bypassing the energy cascade. In contrast to other models, we include the pressure anisotropy term, providing a channel for the large-scale fluctuations to heat the plasma directly. A complete set of coupled differential equations describing the evolution, and energization, of the distribution function are derived, as well as an approximate closed-form solution. Numerical simulations using the VPIC kinetic code are applied to verify the model’s analytical predictions. The results of the model for realistic solar wind scenario are computed, where thermal streaming of particles are important for generating a phase shift between the magnetic perturbations and the pressure anisotropy. In turn, averaged over a pump cycle, the phase shift permits mechanical work to be converted directly to heat in the plasma. The results of this scenario show that magnetic pumping may account for a significant portion of the solar wind energization.
Effects of monomer shape on the formation of aggregates from a power law monomer distribution
International Nuclear Information System (INIS)
Perry, J; Kimery, J; Matthews, L S; Hyde, T W
2013-01-01
The coagulation of dust aggregates is an important process in many physical systems such as the Earth's upper atmosphere, comet tails and protoplanetary discs. Numerical models which study the aggregation in these systems typically involve spherical monomers. There is evidence, however, via the polarization of sunlight in the interstellar medium, as well as optical and LIDAR observations of high-altitude particles in Earth's atmosphere (70–100 km), which indicate that dust monomers may not necessarily be spherical. This study investigates the influence of different ellipsoidal monomer shapes on the morphology of aggregates given various distributions of monomer sizes. Populations of aggregates are grown from a single monomer using a combination of ballistic particle–cluster aggregation and ballistic cluster–cluster aggregation regimes incorporating the rotation of monomers and aggregates. The resulting structures of the aggregates are then compared via the compactness factor, geometric cross-section and friction time. (paper)
Zipf's law, power laws and maximum entropy
International Nuclear Information System (INIS)
Visser, Matt
2013-01-01
Zipf's law, and power laws in general, have attracted and continue to attract considerable attention in a wide variety of disciplines—from astronomy to demographics to software structure to economics to linguistics to zoology, and even warfare. A recent model of random group formation (RGF) attempts a general explanation of such phenomena based on Jaynes' notion of maximum entropy applied to a particular choice of cost function. In the present paper I argue that the specific cost function used in the RGF model is in fact unnecessarily complicated, and that power laws can be obtained in a much simpler way by applying maximum entropy ideas directly to the Shannon entropy subject only to a single constraint: that the average of the logarithm of the observable quantity is specified. (paper)
Wong, Wing-Cheong; Ng, Hong-Kiat; Tantoso, Erwin; Soong, Richie; Eisenhaber, Frank
2018-02-12
Though earlier works on modelling transcript abundance from vertebrates to lower eukaroytes have specifically singled out the Zip's law, the observed distributions often deviate from a single power-law slope. In hindsight, while power-laws of critical phenomena are derived asymptotically under the conditions of infinite observations, real world observations are finite where the finite-size effects will set in to force a power-law distribution into an exponential decay and consequently, manifests as a curvature (i.e., varying exponent values) in a log-log plot. If transcript abundance is truly power-law distributed, the varying exponent signifies changing mathematical moments (e.g., mean, variance) and creates heteroskedasticity which compromises statistical rigor in analysis. The impact of this deviation from the asymptotic power-law on sequencing count data has never truly been examined and quantified. The anecdotal description of transcript abundance being almost Zipf's law-like distributed can be conceptualized as the imperfect mathematical rendition of the Pareto power-law distribution when subjected to the finite-size effects in the real world; This is regardless of the advancement in sequencing technology since sampling is finite in practice. Our conceptualization agrees well with our empirical analysis of two modern day NGS (Next-generation sequencing) datasets: an in-house generated dilution miRNA study of two gastric cancer cell lines (NUGC3 and AGS) and a publicly available spike-in miRNA data; Firstly, the finite-size effects causes the deviations of sequencing count data from Zipf's law and issues of reproducibility in sequencing experiments. Secondly, it manifests as heteroskedasticity among experimental replicates to bring about statistical woes. Surprisingly, a straightforward power-law correction that restores the distribution distortion to a single exponent value can dramatically reduce data heteroskedasticity to invoke an instant increase in
DEFF Research Database (Denmark)
Moreno, Y.; Vázquez-Prada, M.; Pacheco, A.F.
2003-01-01
to the heterogeneity of the system. In one regime, a characteristic event is observed while for the second regime a power-law spectrum of avalanches is obtained reminiscent of self-organized criticality. We find that both regimes are different when predicting large avalanches and that, in the second regime...
International Nuclear Information System (INIS)
Naumis, G G; Cocho, G
2007-01-01
Although power laws have been used to fit rank distributions in many different contexts, they usually fail at the tail. Here we show that many different data in rank laws, like in granular materials, codons, author impact in scientific journals, etc are very well fitted by a β-like function ({a, b} distribution). Since this distribution is indeed ubiquitous, it is reasonable to associate it with some kind of general mechanism. In particular, we have found that the macrostates of the product of discrete probability distributions imply stretched exponential-like frequency-rank functions, which qualitatively and quantitatively can be fitted with the {a,b} distribution in the limit of many random variables. We show this by transforming the problem into an algebraic one: finding the rank of successive products of a given set of numbers
Power laws from linear neuronal cable theory
DEFF Research Database (Denmark)
Pettersen, Klas H; Lindén, Henrik Anders; Tetzlaff, Tom
2014-01-01
suggested to be at the root of this phenomenon, we here demonstrate a possible origin of such power laws in the biophysical properties of single neurons described by the standard cable equation. Taking advantage of the analytical tractability of the so called ball and stick neuron model, we derive general...... are homogeneously distributed across the neural membranes and themselves exhibit pink ([Formula: see text]) noise distributions. While the PSD noise spectra at low frequencies may be dominated by synaptic noise, our findings suggest that the high-frequency power laws may originate in noise from intrinsic ion...
Directory of Open Access Journals (Sweden)
Scholkmann F.
2016-01-01
Full Text Available The recent (14 th July 2015 flyby of NASA’s New Horizons spacecraft of the dwarf planet Pluto resulted in the first high-resolution images of the geological surface- features of Pluto. Since previous studies showed that the impact crater size-frequency distribution (SFD of different celestial objects of our solar system follows power-laws, the aim of the present analysis was to determine, for the first time, the power-law scaling behavior for Pluto’s crater SFD based on the first images available in mid-September 2015. The analysis was based on a high-resolution image covering parts of Pluto’s re- gions Sputnik Planum , Al-Idrisi Montes and Voyager Terra . 83 impact craters could be identified in these regions and their diameter ( D was determined. The analysis re- vealed that the crater diameter SFD shows a statistically significant power-law scaling ( α = 2.4926±0.3309 in the interval of D values ranging from 3.75±1.14 km to the largest determined D value in this data set of 37.77 km. The value obtained for the scaling coefficient α is similar to the coefficient determined for the power-law scaling of the crater SFDs from the other celestial objects in our solar system. Further analysis of Pluto’s crater SFD is warranted as soon as new images are received from the spacecraft.
Power laws in Ising nanostripes
International Nuclear Information System (INIS)
Drzewinski, A.; Sznajd, J.; Szota, K.
2005-01-01
The results of high accuracy density-matrix renormalization-group calculations for infinite Ising stripes of finite widths 100 ≤ L ≤ 400 are presented. It is shown that in the presence of the small external magnetic field the infinite system critical power laws can be observed for L of order hundreds nm. The single power law describes the field dependence of the magnetization or the longitudinal correlation length only on the infinite system critical isotherm independently of the value of L. The approximate power law which describes how the magnetization varies with a distance from the infinite system critical point for several directions in the plane (temperature, external field) is also studied. (author)
International Nuclear Information System (INIS)
Durand, O.; Soulard, L.
2013-01-01
Large scale molecular dynamics (MD) simulations are performed to study and to model the ejecta production from the dynamic fragmentation of shock-loaded metals under melt conditions. A generic 3D crystal in contact with vacuum containing about 10 8 atoms and with a sinusoidal free surface roughness is shock loaded so as to undergo a solid-liquid phase change on shock. The reflection of the shock wave at the interface metal/vacuum gives rise to the ejection of 2D jets/sheets of atoms (Richtmyer-Meshkov instabilities in the continuum limit), which develop and break up, forming ejecta (fragments) of different volumes (or mass). The fragmentation process is investigated by analyzing the evolution of the resulting volume distribution of the ejecta as a function of time. Two metals are studied (Cu and Sn) and the amplitude of the roughness is varied. The simulations show that the associated distributions exhibit a generic behavior with the sum of two distinct terms of varying weight, following the expansion rate of the jets: in the small size limit, the distribution obeys a power law dependence with an exponent equal to 1.15 ± 0.08; and in the large size limit, it obeys an exponential form. These two components are interpreted, with the help of additional simple simulations, as the signature of two different basic mechanisms of fragmentation. The power law dependence results from the fragmentation of a 2D network of ligaments arranged following a fractal (scale free) geometry and generated when the sheets of liquid metal expand and tear. The exponential distribution results from a 1D Poisson fragmentation process of the largest ligaments previously generated. Unlike the power law distribution, it is governed by a characteristic length scale, which may be provided by energy balance principle
Energy Technology Data Exchange (ETDEWEB)
Durand, O.; Soulard, L. [CEA, DAM, DIF, F-91297 Arpajon (France)
2013-11-21
Large scale molecular dynamics (MD) simulations are performed to study and to model the ejecta production from the dynamic fragmentation of shock-loaded metals under melt conditions. A generic 3D crystal in contact with vacuum containing about 10{sup 8} atoms and with a sinusoidal free surface roughness is shock loaded so as to undergo a solid-liquid phase change on shock. The reflection of the shock wave at the interface metal/vacuum gives rise to the ejection of 2D jets/sheets of atoms (Richtmyer-Meshkov instabilities in the continuum limit), which develop and break up, forming ejecta (fragments) of different volumes (or mass). The fragmentation process is investigated by analyzing the evolution of the resulting volume distribution of the ejecta as a function of time. Two metals are studied (Cu and Sn) and the amplitude of the roughness is varied. The simulations show that the associated distributions exhibit a generic behavior with the sum of two distinct terms of varying weight, following the expansion rate of the jets: in the small size limit, the distribution obeys a power law dependence with an exponent equal to 1.15 ± 0.08; and in the large size limit, it obeys an exponential form. These two components are interpreted, with the help of additional simple simulations, as the signature of two different basic mechanisms of fragmentation. The power law dependence results from the fragmentation of a 2D network of ligaments arranged following a fractal (scale free) geometry and generated when the sheets of liquid metal expand and tear. The exponential distribution results from a 1D Poisson fragmentation process of the largest ligaments previously generated. Unlike the power law distribution, it is governed by a characteristic length scale, which may be provided by energy balance principle.
Power law analysis of the human microbiome.
Ma, Zhanshan Sam
2015-11-01
Taylor's (1961, Nature, 189:732) power law, a power function (V = am(b) ) describing the scaling relationship between the mean and variance of population abundances of organisms, has been found to govern the population abundance distributions of single species in both space and time in macroecology. It is regarded as one of few generalities in ecology, and its parameter b has been widely applied to characterize spatial aggregation (i.e. heterogeneity) and temporal stability of single-species populations. Here, we test its applicability to bacterial populations in the human microbiome using extensive data sets generated by the US-NIH Human Microbiome Project (HMP). We further propose extending Taylor's power law from the population to the community level, and accordingly introduce four types of power-law extensions (PLEs): type I PLE for community spatial aggregation (heterogeneity), type II PLE for community temporal aggregation (stability), type III PLE for mixed-species population spatial aggregation (heterogeneity) and type IV PLE for mixed-species population temporal aggregation (stability). Our results show that fittings to the four PLEs with HMP data were statistically extremely significant and their parameters are ecologically sound, hence confirming the validity of the power law at both the population and community levels. These findings not only provide a powerful tool to characterize the aggregations of population and community in both time and space, offering important insights into community heterogeneity in space and/or stability in time, but also underscore the three general properties of power laws (scale invariance, no average and universality) and their specific manifestations in our four PLEs. © 2015 John Wiley & Sons Ltd.
Reactor power distribution monitor
International Nuclear Information System (INIS)
Hoizumi, Atsushi.
1986-01-01
Purpose: To grasp the margin for the limit value of the power distribution peaking factor inside the reactor under operation by using the reactor power distribution monitor. Constitution: The monitor is composed of the 'constant' file, (to store in-reactor power distributions obtained from analysis), TIP and thermocouple, lateral output distribution calibrating apparatus, axial output distribution synthesizer and peaking factor synthesizer. The lateral output distribution calibrating apparatus is used to make calibration by comparing the power distribution obtained from the thermocouples to the power distribution obtained from the TIP, and then to provide the power distribution lateral peaking factors. The axial output distribution synthesizer provides the power distribution axial peaking factors in accordance with the signals from the out-pile neutron flux detector. These axial and lateral power peaking factors are synthesized with high precision in the three-dimensional format and can be monitored at any time. (Kamimura, M.)
Variational principle for the Pareto power law.
Chakraborti, Anirban; Patriarca, Marco
2009-11-27
A mechanism is proposed for the appearance of power-law distributions in various complex systems. It is shown that in a conservative mechanical system composed of subsystems with different numbers of degrees of freedom a robust power-law tail can appear in the equilibrium distribution of energy as a result of certain superpositions of the canonical equilibrium energy densities of the subsystems. The derivation only uses a variational principle based on the Boltzmann entropy, without assumptions outside the framework of canonical equilibrium statistical mechanics. Two examples are discussed, free diffusion on a complex network and a kinetic model of wealth exchange. The mechanism is illustrated in the general case through an exactly solvable mechanical model of a dimensionally heterogeneous system.
Models of fragmentation with composite power laws
Tavassoli, Z.; Rodgers, G. J.
1999-06-01
Some models for binary fragmentation are introduced in which a time dependent transition size produces two regions of fragment sizes above and below the transition size. In the first model we assume a fixed rate of fragmentation for the largest fragment and two different rates of fragmentation in the two regions of sizes above and below the transition size. The model is solved exactly in the long time limit to reveal stable time-invariant solutions for the fragment size and mass distributions. These solutions exhibit composite power law behaviours; power laws with two different exponents for fragments in smaller and larger regions. A special case of the model with no fragmentation in the smaller size region is also examined. Another model is also introduced which have three regions of fragment sizes with different rates of fragmentation. The similarities between the stable distributions in our models and composite power law distributions from experimental work on shock fragmentation of long thin glass rods and thick clay plates are discussed.
Soriano-Hernández, P.; del Castillo-Mussot, M.; Campirán-Chávez, I.; Montemayor-Aldrete, J. A.
2017-04-01
Forbes Magazine published its list of leading or strongest publicly-traded two thousand companies in the world (G-2000) based on four independent metrics: sales or revenues, profits, assets and market value. Every one of these wealth metrics yields particular information on the corporate size or wealth size of each firm. The G-2000 cumulative probability wealth distribution per employee (per capita) for all four metrics exhibits a two-class structure: quasi-exponential in the lower part, and a Pareto power-law in the higher part. These two-class structure per capita distributions are qualitatively similar to income and wealth distributions in many countries of the world, but the fraction of firms per employee within the high-class Pareto is about 49% in sales per employee, and 33% after averaging on the four metrics, whereas in countries the fraction of rich agents in the Pareto zone is less than 10%. The quasi-exponential zone can be adjusted by Gamma or Log-normal distributions. On the other hand, Forbes classifies the G-2000 firms in 82 different industries or economic activities. Within each industry, the wealth distribution per employee also follows a two-class structure, but when the aggregate wealth of firms in each industry for the four metrics is divided by the total number of employees in that industry, then the 82 points of the aggregate wealth distribution by industry per employee can be well adjusted by quasi-exponential curves for the four metrics.
Selvam, A. M.
2017-01-01
Dynamical systems in nature exhibit self-similar fractal space-time fluctuations on all scales indicating long-range correlations and, therefore, the statistical normal distribution with implicit assumption of independence, fixed mean and standard deviation cannot be used for description and quantification of fractal data sets. The author has developed a general systems theory based on classical statistical physics for fractal fluctuations which predicts the following. (1) The fractal fluctuations signify an underlying eddy continuum, the larger eddies being the integrated mean of enclosed smaller-scale fluctuations. (2) The probability distribution of eddy amplitudes and the variance (square of eddy amplitude) spectrum of fractal fluctuations follow the universal Boltzmann inverse power law expressed as a function of the golden mean. (3) Fractal fluctuations are signatures of quantum-like chaos since the additive amplitudes of eddies when squared represent probability densities analogous to the sub-atomic dynamics of quantum systems such as the photon or electron. (4) The model predicted distribution is very close to statistical normal distribution for moderate events within two standard deviations from the mean but exhibits a fat long tail that are associated with hazardous extreme events. Continuous periodogram power spectral analyses of available GHCN annual total rainfall time series for the period 1900-2008 for Indian and USA stations show that the power spectra and the corresponding probability distributions follow model predicted universal inverse power law form signifying an eddy continuum structure underlying the observed inter-annual variability of rainfall. On a global scale, man-made greenhouse gas related atmospheric warming would result in intensification of natural climate variability, seen immediately in high frequency fluctuations such as QBO and ENSO and even shorter timescales. Model concepts and results of analyses are discussed with reference
Teixeira, Sebastião Braz
2006-06-01
The coast of the Central Algarve, Portugal, is dominated by sea-cliffs, cut on Miocene calcarenites; here, the main coastal geologic hazards result from the conflict between human occupation and sea-cliff recession. The evolution of this rocky coast occurs through an intermittent and discontinuous series of slope mass movements, along a 46 km cliff front. For the last 30 years, the increase of tourism occupation has amplified the risks to both people and buildings. In the last decade we have seen several accidents caused by cliff failure, which killed or wounded people and destroyed several buildings. The definition of buffer zones limited by hazard lines parallel to the cliff edge, where land use is restricted, is a widely used and effective preventive measure for mitigating risk. Rocky coasts typically show a slow cliff evolution. The process of gathering statistically significant field inventories of mass movements is, thus, very long. Although mass movement catalogues provide fundamental information on sea cliff evolution patterns and are an outstanding tool in hazard assessment, published data sets are still rare. In this work, we use two inventories of mass movement width, recorded on sea cliffs cut on Miocene calcarenites: a nine year long continuous field inventory (1995-2004) with 140 recorded events, and a 44 year long catalogue based on comparative analysis of aerial photographs (1947-1991), that includes 177 events. The cumulative frequency-width distributions of both data sets fit, above a critical width value corresponding to the threshold of full completeness of the inventories, to power-law distributions. The knowledge of the limits of the catalogues enabled the construction of a 53 year long record inventory over the range of mean width ⩾3 m ( n=167 events) and maximum width ⩾4 m ( n=155 events). The data assembled corresponds to a partial series and was converted to a return period-size distribution. Both return period-width distributions
Hyman, J.; Aldrich, G. A.; Viswanathan, H. S.; Makedonska, N.; Karra, S.
2016-12-01
We characterize how different fracture size-transmissivity relationships influence flow and transport simulations through sparse three-dimensional discrete fracture networks. Although it is generally accepted that there is a positive correlation between a fracture's size and its transmissivity/aperture, the functional form of that relationship remains a matter of debate. Relationships that assume perfect correlation, semi-correlation, and non-correlation between the two have been proposed. To study the impact that adopting one of these relationships has on transport properties, we generate multiple sparse fracture networks composed of circular fractures whose radii follow a truncated power law distribution. The distribution of transmissivities are selected so that the mean transmissivity of the fracture networks are the same and the distributions of aperture and transmissivity in models that include a stochastic term are also the same.We observe that adopting a correlation between a fracture size and its transmissivity leads to earlier breakthrough times and higher effective permeability when compared to networks where no correlation is used. While fracture network geometry plays the principal role in determining where transport occurs within the network, the relationship between size and transmissivity controls the flow speed. These observations indicate DFN modelers should be aware that breakthrough times and effective permeabilities can be strongly influenced by such a relationship in addition to fracture and network statistics.
Stochastic model of Zipf's law and the universality of the power-law exponent.
Yamamoto, Ken
2014-04-01
We propose a stochastic model of Zipf's law, namely a power-law relation between rank and size, and clarify as to why a specific value of its power-law exponent is quite universal. We focus on the successive total of a multiplicative stochastic process. By employing properties of a well-known stochastic process, we concisely show that the successive total follows a stationary power-law distribution, which is directly related to Zipf's law. The formula of the power-law exponent is also derived. Finally, we conclude that the universality of the rank-size exponent is brought about by symmetry between an increase and a decrease in the random growth rate.
Wu, Wentao
2012-01-01
The objective of this thesis is two-fold: (1) to investigate the degree distribution property of community-based social networks (CSNs) and (2) to provide solutions to a pertinent problem, the Key Player Problem. In the first part of this thesis, we consider a growing community-based network in which the ability of nodes competing for links to new…
Directory of Open Access Journals (Sweden)
H. Leijnse
2010-07-01
Full Text Available It has recently been shown that at high rainfall intensities, small raindrops may fall with much larger velocities than would be expected from their diameters. These were argued to be fragments of recently broken-up larger drops. In this paper we quantify the effect of this phenomenon on raindrop size distribution measurements from a Joss-Waldvogel disdrometer, a 2-D Video Distrometer, and a vertically-pointing Doppler radar. Probability distributions of fall velocities have been parameterized, where the parameters are functions of both rainfall intensity and drop size. These parameterizations have been used to correct Joss-Waldvogel disdrometer measurements for this phenomenon. The effect of these corrections on fitted scaled drop size distributions are apparent but not major. Fitted gamma distributions for three different types of rainfall have been used to simulate drop size measurements. The effect of the high-velocity small drops is shown to be minor. Especially for the purpose of remote sensing of rainfall using radar, microwave links, or optical links, the errors caused by using the slightly different retrieval relations will be masked completely by other error sources.
Quantum dissipation from power-law memory
International Nuclear Information System (INIS)
Tarasov, Vasily E.
2012-01-01
A new quantum dissipation model based on memory mechanism is suggested. Dynamics of open and closed quantum systems with power-law memory is considered. The processes with power-law memory are described by using integration and differentiation of non-integer orders, by methods of fractional calculus. An example of quantum oscillator with linear friction and power-law memory is considered. - Highlights: ► A new quantum dissipation model based on memory mechanism is suggested. ► The generalization of Lindblad equation is considered. ► An exact solution of generalized Lindblad equation for quantum oscillator with linear friction and power-law memory is derived.
EARLY AFTERGLOWS OF GAMMA-RAY BURSTS IN A STRATIFIED MEDIUM WITH A POWER-LAW DENSITY DISTRIBUTION
International Nuclear Information System (INIS)
Yi, Shuang-Xi; Dai, Zi-Gao; Wu, Xue-Feng
2013-01-01
A long-duration gamma-ray burst (GRB) has been widely thought to arise from the collapse of a massive star, and it has been suggested that its ambient medium is a homogenous interstellar medium (ISM) or a stellar wind. There are two shocks when an ultra-relativistic fireball that has been ejected during the prompt gamma-ray emission phase sweeps up the circumburst medium: a reverse shock that propagates into the fireball, and a forward shock that propagates into the ambient medium. In this paper, we investigate the temporal evolution of the dynamics and emission of these two shocks in an environment with a general density distribution of n∝R –k (where R is the radius) by considering thick-shell and thin-shell cases. A GRB afterglow with one smooth onset peak at early times is understood to result from such external shocks. Thus, we can determine the medium density distribution by fitting the onset peak appearing in the light curve of an early optical afterglow. We apply our model to 19 GRBs and find that their k values are in the range of 0.4-1.4, with a typical value of k ∼ 1, implying that this environment is neither a homogenous ISM with k = 0 nor a typical stellar wind with k = 2. This shows that the progenitors of these GRBs might have undergone a new mass-loss evolution
Power law scaling for rotational energy transfer
International Nuclear Information System (INIS)
Pritchard, D.E.; Smith, N.; Driver, R.D.; Brunner, T.A.
1979-01-01
We have applied a new scaling law to several sets of rotational energy transfer cross sections. The new law asserts that the square of the T-matrix depends on the amount of energy transferred as a power law. Two different kinds of angular momentum statistics are assumed, one corresponding to m/sub j/ being conserved and the other corresponding to m/sub j/ being completely randomized. Numerical fits are presented which demonstrate that the data follow the power law better than the widely used exponential gap law
Fehr, Ralph
2016-01-01
In this fully updated version of Industrial Power Distribution, the author addresses key areas of electric power distribution from an end-user perspective for both electrical engineers, as well as students who are training for a career in the electrical power engineering field. Industrial Power Distribution, Second Edition, begins by describing how industrial facilities are supplied from utility sources, which is supported with background information on the components of AC power, voltage drop calculations, and the sizing of conductors and transformers. Important concepts and discussions are featured throughout the book including those for sequence networks, ladder logic, motor application, fault calculations, and transformer connections. The book concludes with an introduction to power quality, how it affects industrial power systems, and an expansion of the concept of power factor, including a distortion term made necessary by the existence of harmonic.
Automated image enhancement using power law transformations
Indian Academy of Sciences (India)
We propose a scheme for automating power law transformations which are used for image enhancement. The scheme we propose does not require the user to choose the exponent in the power law transformation. This method works well for images having poor contrast, especially to those images in which the peaks ...
Power laws and fragility in flow networks.
Shore, Jesse; Chu, Catherine J; Bianchi, Matt T
2013-01-01
What makes economic and ecological networks so unlike other highly skewed networks in their tendency toward turbulence and collapse? Here, we explore the consequences of a defining feature of these networks: their nodes are tied together by flow. We show that flow networks tend to the power law degree distribution (PLDD) due to a self-reinforcing process involving position within the global network structure, and thus present the first random graph model for PLDDs that does not depend on a rich-get-richer function of nodal degree. We also show that in contrast to non-flow networks, PLDD flow networks are dramatically more vulnerable to catastrophic failure than non-PLDD flow networks, a finding with potential explanatory power in our age of resource- and financial-interdependence and turbulence.
Electric power distribution handbook
Short, Thomas Allen
2014-01-01
Of the ""big three"" components of electrical infrastructure, distribution typically gets the least attention. In fact, a thorough, up-to-date treatment of the subject hasn't been published in years, yet deregulation and technical changes have increased the need for better information. Filling this void, the Electric Power Distribution Handbook delivers comprehensive, cutting-edge coverage of the electrical aspects of power distribution systems. The first few chapters of this pragmatic guidebook focus on equipment-oriented information and applications such as choosing transformer connections,
Power series like relation of power law and coupled creep ...
African Journals Online (AJOL)
When a solid deforms at high temperature its microstructure may in some sense be altered- holes and cracks may nucleate and grow inside the solid by various mechanism controlled by diffusion and by power law creep or by a combination of these mechanisms. Considering a coupled diffusion power law creep mechanism ...
Power distribution arrangement
DEFF Research Database (Denmark)
2010-01-01
An arrangement and a method for distributing power supplied by a power source to two or more of loads (e.g., electrical vehicular systems) is disclosed, where a representation of the power taken by a particular one of the loads from the source is measured. The measured representation of the amount...... of power taken from the source by the particular one of the loads is compared to a threshold to provide an overload signal in the event the representation exceeds the threshold. Control signals dependant on the occurring of the overload signal are provided such that the control signal decreases the output...... power of the power circuit in case the overload signal occurs...
Pedersen, J
1999-01-01
The power distribution for the LHC machine and its experiments will be realised making extensive use of the existing infrastructure for the LEP. The overall power requirement is approximately the same, about 125 MW. The load distribution will however change. The even points will loose in importance and the points 1 and 5 will, due to the installation of ATLAS and CMS, gain. A thorough reorganisation of the 18 kV distribution will thus be necessary. Due to the important cryogenic installations required for the LHC, the 3.3 kV distribution system, supplying mainly cryogenic compressors, will be extended with a number of new substations. The important number of new surface buildings, underground caverns and other underground structures all will receive general service installations: Lighting and power. The new injection tunnels will require complete installations: A.C. supplies for the power converters and for general service, and D.C. cabling for the magnets of the beam line. Special safe power installations ar...
Power-law Exponent in Multiplicative Langevin Equation with Temporally Correlated Noise
Morita, Satoru
2018-05-01
Power-law distributions are ubiquitous in nature. Random multiplicative processes are a basic model for the generation of power-law distributions. For discrete-time systems, the power-law exponent is known to decrease as the autocorrelation time of the multiplier increases. However, for continuous-time systems, it is not yet clear how the temporal correlation affects the power-law behavior. Herein, we analytically investigated a multiplicative Langevin equation with colored noise. We show that the power-law exponent depends on the details of the multiplicative noise, in contrast to the case of discrete-time systems.
Directory of Open Access Journals (Sweden)
V. A. Gorelov
2016-01-01
Full Text Available Effective delivery of indivisible bulky and heavy loads whose weight can reach hundreds tons is of particular importance for development of various sectors of economy and support of defense capability. Special road trains provide open road transportation and off-road haulage of this kind of goods, but in difficult traffic environment their using capabilities are significantly restricted by a lack of the road-ability. For a road train to reach the better road-ability is possible by increasing the number of drive wheels. This can be achieved through the use of an activetrailer as its part. The effectiveness of using this drive may be estimated through comparison of the road train road-ability with the turned on and turned off passive and active semitrailer in different road environment. A mathematical model of the dynamics of the two-link semitrailer truck was created to solve the problem of comparing dynamic characteristics of the road trains with the passive and active semitrailer. The developed mathematical model of the four-axle tractor and three-axle semitrailer was implemented in the MATLAB® Simulink. It was revealed that in some traffic environments it is advisable to disable the semitrailer drive. A drive control algorithm of semitrailer wheels based on the analysis of the forces in the coupling device was proposed. Data from the sensors installed in the pin of the coupling device serve as a primary source of information for the control system. Test runs enabled us to define control limits for the drive control system. The article considers three cases to use the power of traction motors of the semitrailer in a predetermined range. A number of numerical experiments have been conducted to define dynamic qualities of the road trains in different cases of using semitrailer power. The analysis of results allowed us to draw conclusion that using a system of the semitrailer drive to be connected enables increasing efficiency of the road train
Reactor power distribution monitor
International Nuclear Information System (INIS)
Sekimizu, Koichi
1980-01-01
Purpose: To improve the performance and secure the safety of a nuclear reactor by rapidly computing and display the power density in the nuclear reactor by using a plurality of processors. Constitution: Plant data for a nuclear reactor containing the measured values from a local power monitor LPRM are sent and recorded in a magnetic disc. They are also sent to a core performance computer in which burn-up degree distribution and the like are computed, and the results are sent and recorded in the magnetic disc. A central processors loads programs to each of the processors and applies data recorded in the magnetic disc to each of the processors. Each of the processors computes the corresponding power distribution in four fuel assemblies surrounding the LPRM string by the above information. The central processor compiles the computation results and displays them on a display. In this way, power distribution in the fuel assemblies can rapidly be computed to thereby secure the improvement of the performance and safety of the reactor. (Seki, T.)
Practical scaling law for photoelectron angular distributions
International Nuclear Information System (INIS)
Guo Dongsheng; Zhang Jingtao; Xu Zhizhan; Li Xiaofeng; Fu Panming; Freeman, R.R.
2003-01-01
A practical scaling law that predicts photoelectron angular distributions (PADs) is derived using angular distribution formulas which explicitly contain spontaneous emission. The scaling law is used to analyze recent PAD measurements in above-threshold ionization, and to predict results of future experiments. Our theoretical and numerical studies show that, in the non-relativistic regime and long-wavelength approximation, the shapes of PADs are determined by only three dimensionless numbers: (1) u p ≡U p /(ℎ/2π)ω, the ponderomotive number (ponderomotive energy in units of laser photon energy); (2) ε b ≡E b /(ℎ/2π)ω, the binding number (atomic binding energy in units of the laser photon energy); (3) j, the absorbed-photon number. The scaling law is shown to be useful in predictions of results from strong-field Kapitza-Dirac effect measurements; specifically, the application of this scaling law to recently reported Kapitza-Dirac diffraction is discussed. Possible experimental tests to verify the scaling law are suggested
International Nuclear Information System (INIS)
Jantzen, R.T.
1988-01-01
The choice of time function for cosmological solutions of gravitational field equations is related to the action of the group of independent scale transformations of the unit of length along orthogonal spatial directions. This is accomplished by the introduction of lapse functions which depend explicitly on the spatial metric in an appropriately defined power-law fashion. The resulting power-law-lapse time gauges are the key to producing nearly all exact solutions of the class of models for which the field equations reduce to ordinary differential equations
Simple model for the power-law blinking of single semiconductor nanocrystals
Verberk, Rogier; Oijen, Antoine M. van; Orrit, Michel
2002-01-01
We assign the blinking of nanocrystals to electron tunneling towards a uniform spatial distribution of traps. This naturally explains the power-law distribution of off times, and the power-law correlation function we measured on uncapped CdS dots. Capped dots, on the other hand, present extended on
Unobserved heterogeneity in the power law nonhomogeneous Poisson process
International Nuclear Information System (INIS)
Asfaw, Zeytu Gashaw; Lindqvist, Bo Henry
2015-01-01
A study of possible consequences of heterogeneity in the failure intensity of repairable systems is presented. The basic model studied is the nonhomogeneous Poisson process with power law intensity function. When several similar systems are under observation, the assumption that the corresponding processes are independent and identically distributed is often questionable. In practice there may be an unobserved heterogeneity among the systems. The heterogeneity is modeled by introduction of unobserved gamma distributed frailties. The relevant likelihood function is derived, and maximum likelihood estimation is illustrated. In a simulation study we then compare results when using a power law model without taking into account heterogeneity, with the corresponding results obtained when the heterogeneity is accounted for. A motivating data example is also given. - Highlights: • Consequences of overlooking heterogeneity in similar repairable systems are studied. • Likelihood functions are established for power law NHPP w/ and w/o heterogeneity. • ML estimators for parameters of power law NHPP with heterogeneity are derived. • A simulation study shows the effects of heterogeneity and its ignorance in models
Instabilities in power law gradient hardening materials
DEFF Research Database (Denmark)
Niordson, Christian Frithiof; Tvergaard, Viggo
2005-01-01
Tension and compression instabilities are investigated for specimens with dimensions in the micron range. A finite strain generalization of a higher order strain gradient plasticity theory is implemented in a finite element scheme capable of modeling power law hardening materials. Effects...... of gradient hardening are found to delay the onset of localization under plane strain tension, and significantly reduce strain gradients in the localized zone. For plane strain compression gradient hardening is found to increase the load-carrying capacity significantly....
Kant on causal laws and powers.
Henschen, Tobias
2014-12-01
The aim of the paper is threefold. Its first aim is to defend Eric Watkins's claim that for Kant, a cause is not an event but a causal power: a power that is borne by a substance, and that, when active, brings about its effect, i.e. a change of the states of another substance, by generating a continuous flow of intermediate states of that substance. The second aim of the paper is to argue against Watkins that the Kantian concept of causal power is not the pre-critical concept of real ground but the category of causality, and that Kant holds with Hume that causal laws cannot be inferred non-inductively (that he accordingly has no intention to show in the Second analogy or elsewhere that events fall under causal laws). The third aim of the paper is to compare the Kantian position on causality with central tenets of contemporary powers ontology: it argues that unlike the variants endorsed by contemporary powers theorists, the Kantian variants of these tenets are resistant to objections that neo-Humeans raise to these tenets.
Power-law connections: From Zipf to Heaps and beyond
International Nuclear Information System (INIS)
Eliazar, Iddo I.; Cohen, Morrel H.
2013-01-01
In this paper we explore the asymptotic statistics of a general model of rank distributions in the large-ensemble limit; the construction of the general model is motivated by recent empirical studies of rank distributions. Applying Lorenzian, oligarchic, and Heapsian asymptotic analyses we establish a comprehensive set of closed-form results linking together rank distributions, probability distributions, oligarchy sizes, and innovation rates. In particular, the general results reveal the fundamental underlying connections between Zipf’s law, Pareto’s law, and Heaps’ law—three elemental empirical power-laws that are ubiquitously observed in the sciences. -- Highlights: ► The large-ensemble asymptotic statistics of rank distributions are explored. ► Lorenzian, oligarchic, and Heapsian asymptotic analyses are applied. ► Associated oligarchy sizes and induced innovation rates are analyzed. ► General elemental statistical connections are established. ► The underlying connections between Zipf’s, Pareto’s and Heaps’ laws are unveiled
SSP Power Management and Distribution
Lynch, Thomas H.; Roth, A. (Technical Monitor)
2000-01-01
Space Solar Power is a NASA program sponsored by Marshall Space Flight Center. The Paper presented here represents the architectural study of a large power management and distribution (PMAD) system. The PMAD supplies power to a microwave array for power beaming to an earth rectenna (Rectifier Antenna). The power is in the GW level.
Financial power laws: Empirical evidence, models, and mechanisms
International Nuclear Information System (INIS)
Lux, Thomas; Alfarano, Simone
2016-01-01
Financial markets (share markets, foreign exchange markets and others) are all characterized by a number of universal power laws. The most prominent example is the ubiquitous finding of a robust, approximately cubic power law characterizing the distribution of large returns. A similarly robust feature is long-range dependence in volatility (i.e., hyperbolic decline of its autocorrelation function). The recent literature adds temporal scaling of trading volume and multi-scaling of higher moments of returns. Increasing awareness of these properties has recently spurred attempts at theoretical explanations of the emergence of these key characteristics form the market process. In principle, different types of dynamic processes could be responsible for these power-laws. Examples to be found in the economics literature include multiplicative stochastic processes as well as dynamic processes with multiple equilibria. Though both types of dynamics are characterized by intermittent behavior which occasionally generates large bursts of activity, they can be based on fundamentally different perceptions of the trading process. The present paper reviews both the analytical background of the power laws emerging from the above data generating mechanisms as well as pertinent models proposed in the economics literature.
Mass distribution law of systems of protocluster fragments
Energy Technology Data Exchange (ETDEWEB)
Ferraioli, F; Virgopia, N [Rome Univ. (Italy). Ist. di Matematica
1979-02-01
Starting from the hypothesis of coalescence through inelastic collisions of small fast moving interstellar gas clouds, an attempt has been made to study the evolutionary mass distribution of a system of fragments simulating a protocluster. The assumption of a mass spectrum with a continuous injection of newly formed entities into the primeval system, and the condition of gravitational reduction of the impact cross-section, have been considered. Comparisons of numerical experiments with the mass spectrum in some well-known young galactic clusters, confirm the mass distribution power-law already obtained by other authors. The empirical Schmidt's law concerning the rate of star formation is also confirmed. The hypothesis of the universal validity of the luminosity function, should not be 'a priori' rejected.
Distributed Power Flow Controller
Yuan, Z.
2010-01-01
In modern power systems, there is a great demand to control the power flow actively. Power flow controlling devices (PFCDs) are required for such purpose, because the power flow over the lines is the nature result of the impedance of each line. Due to the control capabilities of different types of
Power laws in the information production process Lotkaian informetrics
Egghe, Leo
2005-01-01
Explains many informetric regularities, only based on a decreasing power law as size-frequency function, that is Lotka''s law. This book revives the historical formulation of Alfred Lotka and shows the power of this power law, both in classical aspects of informetrics as well as in applications such as social networks and others.
Poissonian renormalizations, exponentials, and power laws
Eliazar, Iddo
2013-05-01
This paper presents a comprehensive “renormalization study” of Poisson processes governed by exponential and power-law intensities. These Poisson processes are of fundamental importance, as they constitute the very bedrock of the universal extreme-value laws of Gumbel, Fréchet, and Weibull. Applying the method of Poissonian renormalization we analyze the emergence of these Poisson processes, unveil their intrinsic dynamical structures, determine their domains of attraction, and characterize their structural phase transitions. These structural phase transitions are shown to be governed by uniform and harmonic intensities, to have universal domains of attraction, to uniquely display intrinsic invariance, and to be intimately connected to “white noise” and to “1/f noise.” Thus, we establish a Poissonian explanation to the omnipresence of white and 1/f noises.
Poissonian renormalizations, exponentials, and power laws.
Eliazar, Iddo
2013-05-01
This paper presents a comprehensive "renormalization study" of Poisson processes governed by exponential and power-law intensities. These Poisson processes are of fundamental importance, as they constitute the very bedrock of the universal extreme-value laws of Gumbel, Fréchet, and Weibull. Applying the method of Poissonian renormalization we analyze the emergence of these Poisson processes, unveil their intrinsic dynamical structures, determine their domains of attraction, and characterize their structural phase transitions. These structural phase transitions are shown to be governed by uniform and harmonic intensities, to have universal domains of attraction, to uniquely display intrinsic invariance, and to be intimately connected to "white noise" and to "1/f noise." Thus, we establish a Poissonian explanation to the omnipresence of white and 1/f noises.
Power law load dependence of atomic friction
Fusco, C.; Fasolino, A.
2004-01-01
We present a theoretical study of the dynamics of a tip scanning a graphite surface as a function of the applied load. From the analysis of the lateral forces, we extract the friction force and the corrugation of the effective tip-surface interaction potential. We find both the friction force and potential amplitude to have a power-law dependence on applied load with exponent similar to1.6. We interpret these results as characteristic of sharp undeformable tips in contrast to the case of macr...
Classical orbits in power-law potentials
International Nuclear Information System (INIS)
Grant, A.K.; Rosner, J.L.
1994-01-01
The motion of bodies in power-law potentials of the form V(r)=λr α has been of interest ever since the time of Newton and Hooke. Aspects of the relation between powers α and bar α, where (α+2)(bar α+2)=4, are derived for classical motion and the relation to the quantum-mechanical problem is given. An improvement on a previous expression for the WKB quantization condition for nonzero orbital angular momenta is obtained. Relations with previous treatments, such as those of Newton, Bertrand, Bohlin, Faure, and Arnold, are noted, and a brief survey of the literature on the problem over more than three centuries is given
Power-law Statistics of Driven Reconnection in the Magnetically Closed Corona
Knizhnik, K. J.; Uritsky, V. M.; Klimchuk, J. A.; DeVore, C. R.
2018-01-01
Numerous observations have revealed that power-law distributions are ubiquitous in energetic solar processes. Hard X-rays, soft X-rays, extreme ultraviolet radiation, and radio waves all display power-law frequency distributions. Since magnetic reconnection is the driving mechanism for many energetic solar phenomena, it is likely that reconnection events themselves display such power-law distributions. In this work, we perform numerical simulations of the solar corona driven by simple convective motions at the photospheric level. Using temperature changes, current distributions, and Poynting fluxes as proxies for heating, we demonstrate that energetic events occurring in our simulation display power-law frequency distributions, with slopes in good agreement with observations. We suggest that the braiding-associated reconnection in the corona can be understood in terms of a self-organized criticality model driven by convective rotational motions similar to those observed at the photosphere.
Power-Law Statistics of Driven Reconnection in the Magnetically Closed Corona
Klimchuk, J. A.; DeVore, C. R.; Knizhnik, K. J.; Uritskiy, V. M.
2018-01-01
Numerous observations have revealed that power-law distributions are ubiquitous in energetic solar processes. Hard X-rays, soft X-rays, extreme ultraviolet radiation, and radio waves all display power-law frequency distributions. Since magnetic reconnection is the driving mechanism for many energetic solar phenomena, it is likely that reconnection events themselves display such power-law distributions. In this work, we perform numerical simulations of the solar corona driven by simple convective motions at the photospheric level. Using temperature changes, current distributions, and Poynting fluxes as proxies for heating, we demonstrate that energetic events occurring in our simulation display power-law frequency distributions, with slopes in good agreement with observations. We suggest that the braiding-associated reconnection in the corona can be understood in terms of a self-organized criticality model driven by convective rotational motions similar to those observed at the photosphere.
Power Laws, Scale-Free Networks and Genome Biology
Koonin, Eugene V; Karev, Georgy P
2006-01-01
Power Laws, Scale-free Networks and Genome Biology deals with crucial aspects of the theoretical foundations of systems biology, namely power law distributions and scale-free networks which have emerged as the hallmarks of biological organization in the post-genomic era. The chapters in the book not only describe the interesting mathematical properties of biological networks but moves beyond phenomenology, toward models of evolution capable of explaining the emergence of these features. The collection of chapters, contributed by both physicists and biologists, strives to address the problems in this field in a rigorous but not excessively mathematical manner and to represent different viewpoints, which is crucial in this emerging discipline. Each chapter includes, in addition to technical descriptions of properties of biological networks and evolutionary models, a more general and accessible introduction to the respective problems. Most chapters emphasize the potential of theoretical systems biology for disco...
The new law on radiation and nuclear power
International Nuclear Information System (INIS)
Niittylae, A.
1990-01-01
The Law on Nuclear Energy, which entered into force in 1988, controls the use of nuclear power. The new Law on Radiation is under consideration in the Parliament. The internationally approved main principles on radiation protection are the basis of the law. In the article, these principles and the contents of the law are described
Mobile user forecast and power-law acceleration invariance of scale-free networks
International Nuclear Information System (INIS)
Guo Jin-Li; Guo Zhao-Hua; Liu Xue-Jiao
2011-01-01
This paper studies and predicts the number growth of China's mobile users by using the power-law regression. We find that the number growth of the mobile users follows a power law. Motivated by the data on the evolution of the mobile users, we consider scenarios of self-organization of accelerating growth networks into scale-free structures and propose a directed network model, in which the nodes grow following a power-law acceleration. The expressions for the transient and the stationary average degree distributions are obtained by using the Poisson process. This result shows that the model generates appropriate power-law connectivity distributions. Therefore, we find a power-law acceleration invariance of the scale-free networks. The numerical simulations of the models agree with the analytical results well. (interdisciplinary physics and related areas of science and technology)
Power Aware Distributed Systems
National Research Council Canada - National Science Library
Schott, Brian
2004-01-01
The goal of PADS was to study power aware management techniques for wireless unattended ground sensor applications to extend their operational lifetime and overall capabilities in this battery-constrained environment...
Method of forecasting power distribution
International Nuclear Information System (INIS)
Kaneto, Kunikazu.
1981-01-01
Purpose: To obtain forecasting results at high accuracy by reflecting the signals from neutron detectors disposed in the reactor core on the forecasting results. Method: An on-line computer transfers, to a simulator, those process data such as temperature and flow rate for coolants in each of the sections and various measuring signals such as control rod positions from the nuclear reactor. The simulator calculates the present power distribution before the control operation. The signals from the neutron detectors at each of the positions in the reactor core are estimated from the power distribution and errors are determined based on the estimated values and the measured values to determine the smooth error distribution in the axial direction. Then, input conditions at the time to be forecast are set by a data setter. The simulator calculates the forecast power distribution after the control operation based on the set conditions. The forecast power distribution is corrected using the error distribution. (Yoshino, Y.)
Reactive Power from Distributed Energy
Energy Technology Data Exchange (ETDEWEB)
Kueck, John; Kirby, Brendan; Rizy, Tom; Li, Fangxing; Fall, Ndeye
2006-12-15
Distributed energy is an attractive option for solving reactive power and distribution system voltage problems because of its proximity to load. But the cost of retrofitting DE devices to absorb or produce reactive power needs to be reduced. There also needs to be a market mechanism in place for ISOs, RTOs, and transmission operators to procure reactive power from the customer side of the meter where DE usually resides. (author)
Reactive Power from Distributed Energy
International Nuclear Information System (INIS)
Kueck, John; Kirby, Brendan; Rizy, Tom; Li, Fangxing; Fall, Ndeye
2006-01-01
Distributed energy is an attractive option for solving reactive power and distribution system voltage problems because of its proximity to load. But the cost of retrofitting DE devices to absorb or produce reactive power needs to be reduced. There also needs to be a market mechanism in place for ISOs, RTOs, and transmission operators to procure reactive power from the customer side of the meter where DE usually resides. (author)
Indian English Evolution and Focusing Visible Through Power Laws
Directory of Open Access Journals (Sweden)
Vineeta Chand
2017-11-01
Full Text Available New dialect emergence and focusing in language contact settings is difficult to capture and date in terms of global structural dialect stabilization. This paper explores whether diachronic power law frequency distributions can provide evidence of dialect evolution and new dialect focusing, by considering the quantitative frequency characteristics of three diachronic Indian English (IE corpora (1970s–2008. The results demonstrate that IE consistently follows power law frequency distributions and the corpora are each best fit by Mandelbrot’s Law. Diachronic changes in the constants are interpreted as evidence of lexical and syntactic collocational focusing within the process of new dialect formation. Evidence of new dialect focusing is also visible through apparent time comparison of spoken and written data. Age and gender-separated sub-corpora of the most recent corpus show minimal deviation, providing apparent time evidence for emerging IE dialect stability. From these findings, we extend the interpretation of diachronic changes in the β coefficient—as indicative of changes in the degree of synthetic/analytic structure—so that β is also sensitive to grammaticalization and changes in collocational patterns.
Fractional power-law spatial dispersion in electrodynamics
International Nuclear Information System (INIS)
Tarasov, Vasily E.; Trujillo, Juan J.
2013-01-01
Electric fields in non-local media with power-law spatial dispersion are discussed. Equations involving a fractional Laplacian in the Riesz form that describe the electric fields in such non-local media are studied. The generalizations of Coulomb’s law and Debye’s screening for power-law non-local media are characterized. We consider simple models with anomalous behavior of plasma-like media with power-law spatial dispersions. The suggested fractional differential models for these plasma-like media are discussed to describe non-local properties of power-law type. -- Highlights: •Plasma-like non-local media with power-law spatial dispersion. •Fractional differential equations for electric fields in the media. •The generalizations of Coulomb’s law and Debye’s screening for the media
Blinking in quantum dots: The origin of the grey state and power law statistics
Ye, Mao; Searson, Peter C.
2011-09-01
Quantum dot (QD) blinking is characterized by switching between an “on” state and an “off” state, and a power-law distribution of on and off times with exponents from 1.0 to 2.0. The origin of blinking behavior in QDs, however, has remained a mystery. Here we describe an energy-band model for QDs that captures the full range of blinking behavior reported in the literature and provides new insight into features such as the gray state, the power-law distribution of on and off times, and the power-law exponents.
Stable power laws in variable economies; Lotka-Volterra implies Pareto-Zipf
Solomon, S.; Richmond, P.
2002-05-01
In recent years we have found that logistic systems of the Generalized Lotka-Volterra type (GLV) describing statistical systems of auto-catalytic elements posses power law distributions of the Pareto-Zipf type. In particular, when applied to economic systems, GLV leads to power laws in the relative individual wealth distribution and in market returns. These power laws and their exponent α are invariant to arbitrary variations in the total wealth of the system and to other endogenously and exogenously induced variations.
A common mode of origin of power laws in models of market and earthquake
Bhattacharyya, Pratip; Chatterjee, Arnab; Chakrabarti, Bikas K.
2007-07-01
We show that there is a common mode of origin for the power laws observed in two different models: (i) the Pareto law for the distribution of money among the agents with random-saving propensities in an ideal gas-like market model and (ii) the Gutenberg-Richter law for the distribution of overlaps in a fractal-overlap model for earthquakes. We find that the power laws appear as the asymptotic forms of ever-widening log-normal distributions for the agents’ money and the overlap magnitude, respectively. The identification of the generic origin of the power laws helps in better understanding and in developing generalized views of phenomena in such diverse areas as economics and geophysics.
Empirical tests of Zipf's law mechanism in open source Linux distribution.
Maillart, T; Sornette, D; Spaeth, S; von Krogh, G
2008-11-21
Zipf's power law is a ubiquitous empirical regularity found in many systems, thought to result from proportional growth. Here, we establish empirically the usually assumed ingredients of stochastic growth models that have been previously conjectured to be at the origin of Zipf's law. We use exceptionally detailed data on the evolution of open source software projects in Linux distributions, which offer a remarkable example of a growing complex self-organizing adaptive system, exhibiting Zipf's law over four full decades.
Dense power-law networks and simplicial complexes
Courtney, Owen T.; Bianconi, Ginestra
2018-05-01
There is increasing evidence that dense networks occur in on-line social networks, recommendation networks and in the brain. In addition to being dense, these networks are often also scale-free, i.e., their degree distributions follow P (k ) ∝k-γ with γ ∈(1 ,2 ] . Models of growing networks have been successfully employed to produce scale-free networks using preferential attachment, however these models can only produce sparse networks as the numbers of links and nodes being added at each time step is constant. Here we present a modeling framework which produces networks that are both dense and scale-free. The mechanism by which the networks grow in this model is based on the Pitman-Yor process. Variations on the model are able to produce undirected scale-free networks with exponent γ =2 or directed networks with power-law out-degree distribution with tunable exponent γ ∈(1 ,2 ) . We also extend the model to that of directed two-dimensional simplicial complexes. Simplicial complexes are generalization of networks that can encode the many body interactions between the parts of a complex system and as such are becoming increasingly popular to characterize different data sets ranging from social interacting systems to the brain. Our model produces dense directed simplicial complexes with power-law distribution of the generalized out-degrees of the nodes.
Disobeying Power Laws: Perils for Theory and Method
Directory of Open Access Journals (Sweden)
G. Christopher Crawford
2012-08-01
Full Text Available The “norm of normality” is a myth that organization design scholars should believe only at their peril. In contrast to the normal (bell-shaped distribution with independent observations and linear relationships assumed by Gaussian statistics, research shows that nearly every input and outcome in organizational domains is power-law (Pareto distributed. These highly skewed distributions exhibit unstable means, unlimited variance, underlying interdependence, and extreme outcomes that disproportionally influence the entire system, making Gaussian methods and assumptions largely invalid. By developing more focused research designs and using methods that assume interdependence and potentially nonlinear relationships, organization design scholars can develop theories that more closely depict empirical reality and provide more useful insights to practitioners and other stakeholders.
Authority, Power and Distributed Leadership
Woods, Philip A.
2016-01-01
A much greater understanding is needed of power in the practice of distributed leadership. This article explores how the concept of social authority might be helpful in achieving this. It suggests that the practice of distributed leadership is characterized by multiple authorities which are constructed in the interactions between people. Rather…
Helmholtz solitons in power-law optical materials
International Nuclear Information System (INIS)
Christian, J. M.; McDonald, G. S.; Potton, R. J.; Chamorro-Posada, P.
2007-01-01
A nonlinear Helmholtz equation for optical materials with regimes of power-law type of nonlinearity is proposed. This model captures the evolution of broad beams at any angle with respect to the reference direction in a wide range of media, including some semiconductors, doped glasses, and liquid crystals. Exact analytical soliton solutions are presented for a generic nonlinearity, within which known Kerr solitons comprise a subset. Three general conservation laws are also reported. Analysis and numerical simulations examine the stability of the Helmholtz power-law solitons. A propagation feature, associated with spatial solitons in power-law media, constituting a class of oscillatory solution, is identified
Why Does Zipf's Law Break Down in Rank-Size Distribution of Cities?
Kuninaka, Hiroto; Matsushita, Mitsugu
2008-01-01
We study rank-size distribution of cities in Japan on the basis of data analysis. From the census data after World War II, we find that the rank-size distribution of cities is composed of two parts, each of which has independent power exponent. In addition, the power exponent of the head part of the distribution changes in time and Zipf's law holds only in a restricted period. We show that Zipf's law broke down due to both of Showa and Heisei great mergers and recovered due to population grow...
Visiting Power Laws in Cyber-Physical Networking Systems
Directory of Open Access Journals (Sweden)
Ming Li
2012-01-01
Full Text Available Cyber-physical networking systems (CPNSs are made up of various physical systems that are heterogeneous in nature. Therefore, exploring universalities in CPNSs for either data or systems is desired in its fundamental theory. This paper is in the aspect of data, aiming at addressing that power laws may yet be a universality of data in CPNSs. The contributions of this paper are in triple folds. First, we provide a short tutorial about power laws. Then, we address the power laws related to some physical systems. Finally, we discuss that power-law-type data may be governed by stochastically differential equations of fractional order. As a side product, we present the point of view that the upper bound of data flow at large-time scaling and the small one also follows power laws.
Resurrecting power law inflation in the light of Planck results
International Nuclear Information System (INIS)
Unnikrishnan, Sanil; Sahni, Varun
2013-01-01
It is well known that a canonical scalar field with an exponential potential can drive power law inflation (PLI). However, the tensor-to-scalar ratio in such models turns out to be larger than the stringent limit set by recent Planck results. We propose a new model of power law inflation for which the scalar spectra index, the tensor-to-scalar ratio and the non-gaussianity parameter f NL equil are in excellent agreement with Planck results. Inflation, in this model, is driven by a non-canonical scalar field with an inverse power law potential. The Lagrangian for our model is structurally similar to that of a canonical scalar field and has a power law form for the kinetic term. A simple extension of our model resolves the graceful exit problem which usually afflicts models of power law inflation
Isomorphs in the phase diagram of a model liquid without inverse power law repulsion
DEFF Research Database (Denmark)
Veldhorst, Arnold Adriaan; Bøhling, Lasse; Dyre, J. C.
2012-01-01
scattering function are calculated. The results are shown to reflect a hidden scale invariance; despite its exponential repulsion the Buckingham potential is well approximated by an inverse power-law plus a linear term in the region of the first peak of the radial distribution function. As a consequence...... the dynamics of the viscous Buckingham liquid is mimicked by a corresponding model with purely repulsive inverse-power-law interactions. The results presented here closely resemble earlier results for Lennard-Jones type liquids, demonstrating that the existence of strong correlations and isomorphs does...... not depend critically on the mathematical form of the repulsion being an inverse power law....
Exploring the effect of power law social popularity on language evolution.
Gong, Tao; Shuai, Lan
2014-01-01
We evaluate the effect of a power-law-distributed social popularity on the origin and change of language, based on three artificial life models meticulously tracing the evolution of linguistic conventions including lexical items, categories, and simple syntax. A cross-model analysis reveals an optimal social popularity, in which the λ value of the power law distribution is around 1.0. Under this scaling, linguistic conventions can efficiently emerge and widely diffuse among individuals, thus maintaining a useful level of mutual understandability even in a big population. From an evolutionary perspective, we regard this social optimality as a tradeoff among social scaling, mutual understandability, and population growth. Empirical evidence confirms that such optimal power laws exist in many large-scale social systems that are constructed primarily via language-related interactions. This study contributes to the empirical explorations and theoretical discussions of the evolutionary relations between ubiquitous power laws in social systems and relevant individual behaviors.
Tunable power law in the desynchronization events of coupled chaotic electronic circuits
International Nuclear Information System (INIS)
Oliveira, Gilson F. de; Lorenzo, Orlando di; Chevrollier, Martine; Passerat de Silans, Thierry; Oriá, Marcos; Souza Cavalcante, Hugo L. D. de
2014-01-01
We study the statistics of the amplitude of the synchronization error in chaotic electronic circuits coupled through linear feedback. Depending on the coupling strength, our system exhibits three qualitatively different regimes of synchronization: weak coupling yields independent oscillations; moderate to strong coupling produces a regime of intermittent synchronization known as attractor bubbling; and stronger coupling produces complete synchronization. In the regime of moderate coupling, the probability distribution for the sizes of desynchronization events follows a power law, with an exponent that can be adjusted by changing the coupling strength. Such power-law distributions are interesting, as they appear in many complex systems. However, most of the systems with such a behavior have a fixed value for the exponent of the power law, while here we present an example of a system where the exponent of the power law is easily tuned in real time
Powerful subjects of tax law enforcement
Directory of Open Access Journals (Sweden)
Igor Dementyev
2017-01-01
Full Text Available УДК 342.6The subject. Competence of government bodies and their officials in the sphere of application of the tax law is considered in the article.The purpose of research is to determine the ratio of tax enforcement and application of the tax law, as well as the relationship between the concepts “party of tax enforcement” and “participant of tax legal relations”.Main results and scope of their application. The circle of participants of tax legal relations is broader than the circle of parties of tax law enforcement. The participants of tax legal relations are simultaneously the subjects of tax law, because they realize their tax status when enter into the tax relationships. The tax and customs authorities are the undoubted parties of the tax law enforcement.Although the financial authorities at all levels of government are not mentioned by article 9 of the Tax Code of the Russian Federation as participants of tax relations, they are parties of tax enforcement, because they make the agreement for deferment or installment payment of regional and local taxes.Scope of application. Clarification of participants of tax legal relations and determination of their mutual responsibility is essential to effective law enforcement.Conclusion. It was concluded that the scope tax law enforcement is tax proceedings, not administrative proceedings, civil (arbitration proceedings or enforcement proceedings.The application of the tax law is carried out not only in the form of tax relations, but also in relations of other branches of law.
Power Generation and Distribution via Distributed Coordination Control
Kim, Byeong-Yeon; Oh, Kwang-Kyo; Ahn, Hyo-Sung
2014-01-01
This paper presents power coordination, power generation, and power flow control schemes for supply-demand balance in distributed grid networks. Consensus schemes using only local information are employed to generate power coordination, power generation and power flow control signals. For the supply-demand balance, it is required to determine the amount of power needed at each distributed power node. Also due to the different power generation capacities of each power node, coordination of pow...
The speed-curvature power law of movements: a reappraisal.
Zago, Myrka; Matic, Adam; Flash, Tamar; Gomez-Marin, Alex; Lacquaniti, Francesco
2018-01-01
Several types of curvilinear movements obey approximately the so called 2/3 power law, according to which the angular speed varies proportionally to the 2/3 power of the curvature. The origin of the law is debated but it is generally thought to depend on physiological mechanisms. However, a recent paper (Marken and Shaffer, Exp Brain Res 88:685-690, 2017) claims that this power law is simply a statistical artifact, being a mathematical consequence of the way speed and curvature are calculated. Here we reject this hypothesis by showing that the speed-curvature power law of biological movements is non-trivial. First, we confirm that the power exponent varies with the shape of human drawing movements and with environmental factors. Second, we report experimental data from Drosophila larvae demonstrating that the power law does not depend on how curvature is calculated. Third, we prove that the law can be violated by means of several mathematical and physical examples. Finally, we discuss biological constraints that may underlie speed-curvature power laws discovered in empirical studies.
Electronic Power Transformer for Power Distribution Networks
Directory of Open Access Journals (Sweden)
Ermuraсhi Iu.V.
2017-12-01
Full Text Available Reducing losses in electricity distribution networks is a current technical problem. This issue also has social and environmental aspects. As a promising solution one can examine the direct distribution from the medium voltage power network using new equipment based on the use of power electronics. The aim of the paper is to propose and argue an innovative technical solution for the realization of the Solid State Transformer (SST in order to decrease the number of energy transformation stages compared to the known solutions, simplifying the topology of the functional scheme with the reduction of production costs and the loss of energy in transformers used in electrical distribution networks. It is proposed the solution of simplifying the topology of the AC/AC electronic transformer by reducing the number of passive electronic components (resistors, inductors, capacitors and active (transistors. The inverter of the SST transformer ensures the switching mode of the transistors, using for this purpose the inductance of the magnetic leakage flux of the high frequency transformer. The robustness of the laboratory sample of the SST 10 / 0.22 kV transformer with the power of 20 kW was manufactured and tested. Testing of the laboratory sample confirmed the functionality of the proposed scheme and the possibility of switching of the transistors to at zero current (ZCS mode with the reduction of the energy losses. In the proposed converter a single high-frequency transformer with a simplified construction with two windings is used, which reduces its mass and the cost of making the transformer. The reduction in the manufacturing cost of the converter is also due to the decrease in the number of links between the functional elements.
Power-law and runaway growth in conserved aggregation systems
International Nuclear Information System (INIS)
Yamamoto, Hiroshi; Ohtsuki, Toshiya; Fujihara, Akihiro; Tanimoto, Satoshi
2006-01-01
The z-transform technique is used to analyze the Smoluchowski coagulation equation for conserved aggregation systems. A universal power law with the exponent -5/2 appears when a total 'mass' has a certain critical value. Below the threshold, ordinary scaling relations hold and the system exhibits a behavior like usual critical phenomena. Above the threshold, in contrast, the excess amount of mass coagulates into a runaway member, and remaining members follow the power law. Here the runaway growth coexists with the power law. It is argued that these behaviors are observed universally in conserved aggregation processes
Statistical interpretation of transient current power-law decay in colloidal quantum dot arrays
Energy Technology Data Exchange (ETDEWEB)
Sibatov, R T, E-mail: ren_sib@bk.ru [Ulyanovsk State University, 432000, 42 Leo Tolstoy Street, Ulyanovsk (Russian Federation)
2011-08-01
A new statistical model of the charge transport in colloidal quantum dot arrays is proposed. It takes into account Coulomb blockade forbidding multiple occupancy of nanocrystals and the influence of energetic disorder of interdot space. The model explains power-law current transients and the presence of the memory effect. The fractional differential analogue of the Ohm law is found phenomenologically for nanocrystal arrays. The model combines ideas that were considered as conflicting by other authors: the Scher-Montroll idea about the power-law distribution of waiting times in localized states for disordered semiconductors is applied taking into account Coulomb blockade; Novikov's condition about the asymptotic power-law distribution of time intervals between successful current pulses in conduction channels is fulfilled; and the carrier injection blocking predicted by Ginger and Greenham (2000 J. Appl. Phys. 87 1361) takes place.
Statistical interpretation of transient current power-law decay in colloidal quantum dot arrays
International Nuclear Information System (INIS)
Sibatov, R T
2011-01-01
A new statistical model of the charge transport in colloidal quantum dot arrays is proposed. It takes into account Coulomb blockade forbidding multiple occupancy of nanocrystals and the influence of energetic disorder of interdot space. The model explains power-law current transients and the presence of the memory effect. The fractional differential analogue of the Ohm law is found phenomenologically for nanocrystal arrays. The model combines ideas that were considered as conflicting by other authors: the Scher-Montroll idea about the power-law distribution of waiting times in localized states for disordered semiconductors is applied taking into account Coulomb blockade; Novikov's condition about the asymptotic power-law distribution of time intervals between successful current pulses in conduction channels is fulfilled; and the carrier injection blocking predicted by Ginger and Greenham (2000 J. Appl. Phys. 87 1361) takes place.
Extraction of the power law exponent for 1 GeV/nucleon Au + C projectile multifragmentation
International Nuclear Information System (INIS)
Gilkes, M.L.; Elliott, J.B.; Huager, A.; Hirsch, A.S.; Hjort, E.
1993-01-01
Using moments of the measured charge distribution in exclusive gold multifragmentation events, we present a preliminary determination of the power law exponent τ. For a system undergoing a phase transition near the critical point, τ governs the cluster size distribution and is expected on rather general grounds to lie in the range 2 < τ < 3
Powerful subjects of tax law enforcement
Igor Dementyev
2017-01-01
УДК 342.6The subject. Competence of government bodies and their officials in the sphere of application of the tax law is considered in the article.The purpose of research is to determine the ratio of tax enforcement and application of the tax law, as well as the relationship between the concepts “party of tax enforcement” and “participant of tax legal relations”.Main results and scope of their application. The circle of participants of tax legal relations is broader than the circle of parties...
Power laws for gravity and topography of Solar System bodies
Ermakov, A.; Park, R. S.; Bills, B. G.
2017-12-01
When a spacecraft visits a planetary body, it is useful to be able to predict its gravitational and topographic properties. This knowledge is important for determining the level of perturbations in spacecraft's motion as well as for planning the observation campaign. It has been known for the Earth that the power spectrum of gravity follows a power law, also known as the Kaula rule (Kaula, 1963; Rapp, 1989). A similar rule was derived for topography (Vening-Meinesz, 1951). The goal of this paper is to generalize the power law that can characterize the gravity and topography power spectra for bodies across a wide range of size. We have analyzed shape power spectra of the bodies that have either global shape and gravity field measured. These bodies span across five orders of magnitude in their radii and surface gravities and include terrestrial planets, icy moons and minor bodies. We have found that despite having different internal structure, composition and mechanical properties, the topography power spectrum of these bodies' shapes can be modeled with a similar power law rescaled by the surface gravity. Having empirically found a power law for topography, we can map it to a gravity power law. Special care should be taken for low-degree harmonic coefficients due to potential isostatic compensation. For minor bodies, uniform density can be assumed. The gravity coefficients are a linear function of the shape coefficients for close-to-spherical bodoes. In this case, the power law for gravity will be steeper than the power law of topography due to the factor (2n+1) in the gravity expansion (e.g. Eq. 10 in Wieczorek & Phillips, 1998). Higher powers of topography must be retained for irregularly shaped bodies, which breaks the linearity. Therefore, we propose the following procedure to derive an a priori constraint for gravity. First, a surface gravity needs to be determined assuming typical density for the relevant class of bodies. Second, the scaling coefficient of the
Preinflationary dynamics in loop quantum cosmology: Power-law potentials
Shahalam, M.; Sharma, Manabendra; Wu, Qiang; Wang, Anzhong
2017-12-01
In this paper, we study the preinflationary dynamics for the power-law potential [V (ϕ )∝ϕn] with n consideration and compare our results with the ones obtained previously for different potentials.
Power-law to Power-law Mapping of Blazar Spectra from Intergalactic Absorption
International Nuclear Information System (INIS)
Stecker, F W; Scully, S T
2007-01-01
We have derived a useful analytic approximation for determining the effect of intergalactic absorption on the γ-ray spectra of TeV blazars the energy range 0.2 TeV γ γ ) is approximately logarithmic. The effect of this energy dependence is to steepen intrinsic source spectra such that a source with an approximate power-law spectral index Γ s is converted to one with an observed spectral index Γ o ≅ Γ s + ΔΓ(z) where ΔΓ(z) is a linear function of z in the redshift range 0.05-0.4. We apply this approximation to the spectra of 7 TeV blazars
Power law scaling in synchronization of brain signals depends on cognitive load
Directory of Open Access Journals (Sweden)
Jose Luis ePerez Velazquez
2014-05-01
Full Text Available As it has several features that optimize information processing, it has been proposed that criticality governs the dynamics of nervous system activity. Indications of such dynamics have been reported for a variety of in vitro and in vivo recordings, ranging from in vitro slice electrophysiology to human functional magnetic resonance imaging. However, there still remains considerable debate as to whether the brain actually operates close to criticality or in another governing state such as stochastic or oscillatory dynamics. A tool used to investigate the criticality of nervous system data is the inspection of power-law distributions. Although the findings are controversial, such power-law scaling has been found in different types of recordings. Here, we studied whether there is a power law scaling in the distribution of the phase synchronization derived from magnetoencephalographic recordings during executive function tasks performed by children with and without autism. Characterizing the brain dynamics that is different between autistic and non-autistic individuals is important in order to find differences that could either aid diagnosis or provide insights as to possible therapeutic interventions in autism. We report in this study that power law scaling in the distributions of a phase synchrony index is not very common and its frequency of occurrence is similar in the control and the autism group. In addition, power law scaling tends to diminish with increased cognitive load (difficulty or engagement in the task. There were indications of changes in the probability distribution functions for the phase synchrony that were associated with a transition from power law scaling to lack of power law (or vice versa, which suggests the presence of phenomenological bifurcations in brain dynamics associated with cognitive load. Hence, brain dynamics may fluctuate between criticality and other regimes depending upon context and behaviours.
Spreading dynamics of power-law fluid droplets
International Nuclear Information System (INIS)
Liang Zhanpeng; Peng Xiaofeng; Wang Xiaodong; Lee, D-J; Su Ay
2009-01-01
This paper aims at providing a summary of the theoretical models available for non-Newtonian fluid spreading dynamics. Experimental findings and model predictions for a Newtonian fluid spreading test are briefly reviewed. Then how the complete wetting and partial wetting power-law fluids spread over a solid substrate is examined. The possible extension of Newtonian fluid models to power-law fluids is also discussed.
Testing power-law cross-correlations: Rescaled covariance test
Czech Academy of Sciences Publication Activity Database
Krištoufek, Ladislav
2013-01-01
Roč. 86, č. 10 (2013), 418-1-418-15 ISSN 1434-6028 R&D Projects: GA ČR GA402/09/0965 Institutional support: RVO:67985556 Keywords : power-law cross-correlations * testing * long-term memory Subject RIV: AH - Economics Impact factor: 1.463, year: 2013 http://library.utia.cas.cz/separaty/2013/E/kristoufek-testing power-law cross-correlations rescaled covariance test.pdf
Stretched exponentials and power laws in granular avalanching
Head, D. A.; Rodgers, G. J.
1999-02-01
We introduce a model for granular surface flow which exhibits both stretched exponential and power law avalanching over its parameter range. Two modes of transport are incorporated, a rolling layer consisting of individual particles and the overdamped, sliding motion of particle clusters. The crossover in behaviour observed in experiments on piles of rice is attributed to a change in the dominant mode of transport. We predict that power law avalanching will be observed whenever surface flow is dominated by clustered motion.
On the universality of power laws for tokamak plasma predictions
Garcia, J.; Cambon, D.; Contributors, JET
2018-02-01
Significant deviations from well established power laws for the thermal energy confinement time, obtained from extensive databases analysis as the IPB98(y,2), have been recently reported in dedicated power scans. In order to illuminate the adequacy, validity and universality of power laws as tools for predicting plasma performance, a simplified analysis has been carried out in the framework of a minimal modeling for heat transport which is, however, able to account for the interplay between turbulence and collinear effects with the input power known to play a role in experiments with significant deviations from such power laws. Whereas at low powers, the usual scaling laws are recovered with little influence of other plasma parameters, resulting in a robust power low exponent, at high power it is shown how the exponents obtained are extremely sensitive to the heating deposition, the q-profile or even the sampling or the number of points considered due to highly non-linear behavior of the heat transport. In particular circumstances, even a minimum of the thermal energy confinement time with the input power can be obtained, which means that the approach of the energy confinement time as a power law might be intrinsically invalid. Therefore plasma predictions with a power law approximation with a constant exponent obtained from a regression of a broad range of powers and other plasma parameters which can non-linearly affect and suppress heat transport, can lead to misleading results suggesting that this approach should be taken cautiously and its results continuously compared with modeling which can properly capture the underline physics, as gyrokinetic simulations.
Power-law relaxation in human violent conflicts
Picoli, Sergio; Antonio, Fernando J.; Itami, Andreia S.; Mendes, Renio S.
2017-08-01
We study relaxation patterns of violent conflicts after bursts of activity. Data were obtained from available catalogs on the conflicts in Iraq, Afghanistan and Northern Ireland. We find several examples in each catalog for which the observed relaxation curves can be well described by an asymptotic power-law decay (the analog of the Omori's law in geophysics). The power-law exponents are robust, nearly independent of the conflict. We also discuss the exogenous or endogenous nature of the shocks. Our results suggest that violent conflicts share with earthquakes and other natural and social phenomena a common feature in the dynamics of aftershocks.
Inertia effects in the laminar radial flow of a power law fluid with an electromagnetic field
International Nuclear Information System (INIS)
Chen, C.-K.; Chen, K.-H.; Wu, C.-Y.
1984-01-01
An approximate study of the pressure distribution for the radial flow of a non-newtonian (power law) fluid between two parallel disks in the presence of an axial electrical field is obtained by using the momentum and energy integral methods. For a non-newtonian fluid it is shown that the inertia effect must be considered to be significant for the pressure distribution, especially for the power law fluids with n >= 1. Furthermore, it is seen that the inertia effect will also lower the load capacity of the disks. (Auth.)
Human learning: Power laws or multiple characteristic time scales?
Directory of Open Access Journals (Sweden)
Gottfried Mayer-Kress
2006-09-01
Full Text Available The central proposal of A. Newell and Rosenbloom (1981 was that the power law is the ubiquitous law of learning. This proposition is discussed in the context of the key factors that led to the acceptance of the power law as the function of learning. We then outline the principles of an epigenetic landscape framework for considering the role of the characteristic time scales of learning and an approach to system identification of the processes of performance dynamics. In this view, the change of performance over time is the product of a superposition of characteristic exponential time scales that reflect the influence of different processes. This theoretical approach can reproduce the traditional power law of practice within the experimental resolution of performance data sets - but we hypothesize that this function may prove to be a special and perhaps idealized case of learning.
Newton's second law and the multiplication of distributions
Sarrico, C. O. R.; Paiva, A.
2018-01-01
Newton's second law is applied to study the motion of a particle subjected to a time dependent impulsive force containing a Dirac delta distribution. Within this setting, we prove that this problem can be rigorously solved neither by limit processes nor by using the theory of distributions (limited to the classical Schwartz products). However, using a distributional multiplication, not defined by a limit process, a rigorous solution emerges.
Predicting the long tail of book sales: Unearthing the power-law exponent
Fenner, Trevor; Levene, Mark; Loizou, George
2010-06-01
The concept of the long tail has recently been used to explain the phenomenon in e-commerce where the total volume of sales of the items in the tail is comparable to that of the most popular items. In the case of online book sales, the proportion of tail sales has been estimated using regression techniques on the assumption that the data obeys a power-law distribution. Here we propose a different technique for estimation based on a generative model of book sales that results in an asymptotic power-law distribution of sales, but which does not suffer from the problems related to power-law regression techniques. We show that the proportion of tail sales predicted is very sensitive to the estimated power-law exponent. In particular, if we assume that the power-law exponent of the cumulative distribution is closer to 1.1 rather than to 1.2 (estimates published in 2003, calculated using regression by two groups of researchers), then our computations suggest that the tail sales of Amazon.com, rather than being 40% as estimated by Brynjolfsson, Hu and Smith in 2003, are actually closer to 20%, the proportion estimated by its CEO.
Reactive power supply by distributed generators
Braun, M.
2008-01-01
Distributed reactive power supply is necessary in distribution networks for an optimized network operation. This paper presents first the reactive power supply capabilities of generators connected to the distribution network (distributed generators). In a second step an approach is proposed of determining the energy losses resulting from reactive power supply by distributed generators. The costs for compensating these losses represent the operational costs of reactive power supply. These cost...
Regulatory Powers in Public Procurement Law of Peruvian Administrative Agencies
Directory of Open Access Journals (Sweden)
Juan Carlos Morón Urbina
2017-12-01
Full Text Available Peruvian law has explicitly recognized regulatory powers to administrative agencies, which allows them to have a preponderant role in the production of rules in public procurement. Although these delegations of legislative authority are positively defined, distortions in the system of legal sources arise when agencies exceed delegated powers or when measures issued by administrative entities are mistaken for regulations. This paper aims to identify regulatory powers of Peruvian administrative agencies, as well as the regulatory measures they issue, and their relation with other sources of law.
The Forbes 400, the Pareto power-law and efficient markets
Klass, O. S.; Biham, O.; Levy, M.; Malcai, O.; Solomon, S.
2007-01-01
Statistical regularities at the top end of the wealth distribution in the United States are examined using the Forbes 400 lists of richest Americans, published between 1988 and 2003. It is found that the wealths are distributed according to a power-law (Pareto) distribution. This result is explained using a simple stochastic model of multiple investors that incorporates the efficient market hypothesis as well as the multiplicative nature of financial market fluctuations.
Scaling laws for fractional Brownian motion with power-law clock
International Nuclear Information System (INIS)
O'Malley, Daniel; Cushman, John H; Johnson, Graham
2011-01-01
We study the mean first passage time (MFPT) for fractional Brownian motion (fBm) in a finite interval with absorbing boundaries at each end. Analytical arguments are used to suggest a simple scaling law for the MFPT and numerical experiments are performed to verify its accuracy. The same approach is used to derive a scaling law for fBm with a power-law clock (fBm-plc). The MFPT scaling laws are employed to develop scaling laws for the finite-size Lyapunov exponent (FSLE) of fBm and fBm-plc. We apply these results to diffusion of a large polymer in a region with absorbing boundaries. (letter)
Power-law creep behavior of a semiflexible chain.
Majumdar, Arnab; Suki, Béla; Rosenblatt, Noah; Alencar, Adriano M; Stamenović, Dimitrije
2008-10-01
Rheological properties of adherent cells are essential for their physiological functions, and microrheological measurements on living cells have shown that their viscoelastic responses follow a weak power law over a wide range of time scales. This power law is also influenced by mechanical prestress borne by the cytoskeleton, suggesting that cytoskeletal prestress determines the cell's viscoelasticity, but the biophysical origins of this behavior are largely unknown. We have recently developed a stochastic two-dimensional model of an elastically joined chain that links the power-law rheology to the prestress. Here we use a similar approach to study the creep response of a prestressed three-dimensional elastically jointed chain as a viscoelastic model of semiflexible polymers that comprise the prestressed cytoskeletal lattice. Using a Monte Carlo based algorithm, we show that numerical simulations of the chain's creep behavior closely correspond to the behavior observed experimentally in living cells. The power-law creep behavior results from a finite-speed propagation of free energy from the chain's end points toward the center of the chain in response to an externally applied stretching force. The property that links the power law to the prestress is the chain's stiffening with increasing prestress, which originates from entropic and enthalpic contributions. These results indicate that the essential features of cellular rheology can be explained by the viscoelastic behaviors of individual semiflexible polymers of the cytoskeleton.
Reciprocity and the Emergence of Power Laws in Social Networks
Schnegg, Michael
Research in network science has shown that many naturally occurring and technologically constructed networks are scale free, that means a power law degree distribution emerges from a growth model in which each new node attaches to the existing network with a probability proportional to its number of links (= degree). Little is known about whether the same principles of local attachment and global properties apply to societies as well. Empirical evidence from six ethnographic case studies shows that complex social networks have significantly lower scaling exponents γ ~ 1 than have been assumed in the past. Apparently humans do not only look for the most prominent players to play with. Moreover cooperation in humans is characterized through reciprocity, the tendency to give to those from whom one has received in the past. Both variables — reciprocity and the scaling exponent — are negatively correlated (r = -0.767, sig = 0.075). If we include this effect in simulations of growing networks, degree distributions emerge that are much closer to those empirically observed. While the proportion of nodes with small degrees decreases drastically as we introduce reciprocity, the scaling exponent is more robust and changes only when a relatively large proportion of attachment decisions follow this rule. If social networks are less scale free than previously assumed this has far reaching implications for policy makers, public health programs and marketing alike.
Mutually cooperative epidemics on power-law networks
Cui, Peng-Bi; Colaiori, Francesca; Castellano, Claudio
2017-08-01
The spread of an infectious disease can, in some cases, promote the propagation of other pathogens favoring violent outbreaks, which cause a discontinuous transition to an endemic state. The topology of the contact network plays a crucial role in these cooperative dynamics. We consider a susceptible-infected-removed-type model with two mutually cooperative pathogens: An individual already infected with one disease has an increased probability of getting infected by the other. We present a heterogeneous mean-field theoretical approach to the coinfection dynamics on generic uncorrelated power-law degree-distributed networks and validate its results by means of numerical simulations. We show that, when the second moment of the degree distribution is finite, the epidemic transition is continuous for low cooperativity, while it is discontinuous when cooperativity is sufficiently high. For scale-free networks, i.e., topologies with diverging second moment, the transition is instead always continuous. In this way we clarify the effect of heterogeneity and system size on the nature of the transition, and we validate the physical interpretation about the origin of the discontinuity.
Energy Technology Data Exchange (ETDEWEB)
Korobitsyn, B.; Manzhurov, I.; Sergeev, A.; Subbotina, I. [Institute of Industrial Ecology, Ural Branch of Russian Academy of Sciences, Yekaterinburg (Russian Federation)
2012-07-01
In September 1957, a chemical explosion occurred in one of the Mayak facility's nuclear waste storage tank, spreading 740 PBq of radiation over a 23,000-km{sup 2} area. To determine a present contamination of the territory of Kamensk region of Sverdlovsk Oblast, soil samples at 315 locations were collected and analyzed in the course of the field campaign of 1993 and 1994. It was found that a distribution of Sr-90 activity in soil samples is a distribution with 'heavy tail'. Analysis of a histogram representing its frequency distribution and plotting this histogram on doubly logarithmic axes allows to conjecture that this distribution follows the power low. Testing of the power-low hypothesis provided objective evidence that the power-low is a reasonable description of the data. In this case a conclusion follows that radioactive contamination levels of the territory are not well characterized by their averages. (author)
Power-law thermal model for blackbody sources
International Nuclear Information System (INIS)
Del Grande, N.K.
1979-01-01
The spectral radiant emittance W/sub E/ from a blackbody at a temperature kT for photons at energies E above the spectral peak (2.82144 kT) varies as (kT)/sup E/kT/. This power-law temperature dependence, an approximation of Planck's radiation law, may have applications for measuring the emissivity of sources emitting in the soft x-ray region
Sharing Powers Within Exclusive Competences: Rethinking EU Antitrust Law Enforcement
Van Cleynenbreugel, Pieter
2016-01-01
Although the establishment of competition rules forms part of the EU’s exclusive competences, the application and enforcement of those rules has always been shared consistently between the EU and its Member States.The sharing of enforcement powers is conceptualised traditionally as a delegation of the exercise of exclusively conferred competences. The Court of Justice of the European Union’s case law in the context of EU antitrust law enforcement nevertheless raises profound questions as to t...
Iranian nuclear power and international law
International Nuclear Information System (INIS)
Aivo, G.
2006-01-01
Does the Iranian programme violate the Non-Proliferation Treaty (NPT)? Iran is a signatory to the NPT and whilst certainly within its rights in developing civil nuclear energy, this is not so for the development of nuclear weapons in order to become a regional power which Iran is already not far from becoming. In the face of diverging opinions among the major interested parties (including the UN, United States, EU, Russia and China), how might this crisis be resolved? (author)
Proposed law concerning the phase-out of nuclear power
International Nuclear Information System (INIS)
1997-01-01
This Government bill that will be presented to the Swedish Parliament, gives the Government the right to revoke the licence of operating a nuclear power plant at a certain time. The operator is given the right to a financial compensation when the licence is revoked, in line with the rules in the expropriation laws. Safety aspects of operation of nuclear installations are not regulated in this law, i.e. the law can not be used when the operating licence is revoked due to safety reasons
Students' Development of Structure Sense for the Distributive Law
Schüler-Meyer, Alexander
2017-01-01
After being introduced to the distributive law in meaningful contexts, students need to extend its scope of application to unfamiliar expressions. In this article, a process model for the development of structure sense is developed. Building on this model, this article reports on a design research project in which exercise tasks support students…
Exponential and power laws in public procurement markets
Czech Academy of Sciences Publication Activity Database
Krištoufek, Ladislav; Skuhrovec, J.
2012-01-01
Roč. 99, č. 2 (2012), 28005-1-28005-6 ISSN 0295-5075 R&D Projects: GA ČR GA402/09/0965 Grant - others:GA UK(CZ) 118310; SVV(CZ) 265 504; GA TA ČR(CZ) TD010133 Institutional support: RVO:67985556 Keywords : Public procurement * Scaling * Power law Subject RIV: AH - Economics Impact factor: 2.260, year: 2012 http://library.utia.cas.cz/separaty/2012/E/kristoufek-exponential and power laws in public procurement markets.pdf
Relation of the second law of thermodynamics to the power conversion of energy fluctuations
International Nuclear Information System (INIS)
Yater, J.C.
1979-01-01
The relation of the second law of thermodynamics to the power conversion of fluctuation energy is analyzed using the master equation of the model for the conversion circuit. The performance equation for independent particles shows that the power-conversion performance is given by the second law both for classical and quantum-effect diodes. The relation of the second law to power-conversion models based on the theoretical and experimental results for diode performance for interacting particles exhibiting many-body, multiparticle, or other anomalous and excess-current effects is examined. The performance equations are derived from the master equation for models for interacting particles to determine the conditions required by the second law for power conversion. These conditions are given in terms of the distribution throughout the power-conversion circuit for all the parameters that determine the particle and multiparticle barrier-crossing probability such as the effective mass and spectral density functions. Circuits for spectroscopic measurements for power-conversion circuits with interacting particles are noted. Using selected experimental values for the diode nonlinearity factors in these circuits, open circuit voltages are computed that are not predicted by the second law of thermodynamics
An explanation for the universal 3.5 power-law observed in currency markets
Directory of Open Access Journals (Sweden)
Nicholas A. Johnson
Full Text Available We present a mathematical theory to explain a recent empirical finding in the Physics literature (Zhao et al., 2013 in which the distributions of waiting-times between discrete events were found to exhibit power-law tails with an apparent universal exponent: α∼3.5. This new theory provides the first ever qualitative and quantitative explanation of Zhao et al.’s surprising finding. It also provides a mechanistic description of the origin of the observed universality, assigning its cause to the emergence of dynamical feedback processes between evolving clusters of like-minded agents. Keywords: Complex systems, Econophysics, Collective, Power law
Power Quality in DC Power Distribution Systems and Microgrids
Directory of Open Access Journals (Sweden)
Stephen Whaite
2015-05-01
Full Text Available This review paper discusses power quality considerations for direct current (DC electric power distribution systems, particularly DC microgrids. First, four selected sample DC architectures are discussed to provide motivation for the consideration of power quality in DC systems. Second, a brief overview of power quality challenges in conventional alternating current (AC distribution systems is given to establish the field of power quality. Finally, a survey of literature addressing power quality issues in DC systems is presented, and necessary power quality considerations in DC distribution system design and operation are discussed.
Power distribution monitor in a nuclear reactor
International Nuclear Information System (INIS)
Uematsu, Hitoshi
1983-01-01
Purpose: To enable accurate monitoring for the reactor power distribution within a short time in a case where abnormality occurs in in-core neutron monitors or in a case where the reactor core state changes after the calibration for the neutron monitors. Constitution: The power distribution monitor comprises a power distribution calculator adapted to be inputted counted values from a reactor core present state data instruments and calculate the neutron flux distribution in the reactor core and the power distribution based on previously incorporated physical models, an RCF calculator adapted to be inputted with the counted values from the in-core neutron monitors and the neutron flux distribution and the power distribution calculated in the power distribution calculator and compensate the counted errors included in the counted values form the in-core neutron monitors and the calculation errors included in the power distribution calculated in the power distribution calculator to thereby calculate the power distribution within the reactor core, and an input/output device for the input of the data required for said power distribution calculator and the display for the calculation result calculated in the RCF calculator. (Ikeda, J.)
Power distribution forecasting device for reactors
International Nuclear Information System (INIS)
Tsukii, Makoto
1981-01-01
Purpose: To save expensive calculations on the forecasting of reactor power distribution. Constitution: Core status (CSD) such as entire coolant flow rate, pressures in the reactor, temperatures at the outlet and inlet and positions for control rods are inputted into a power distribution calculation device to calculate the power distribution based on physical models intermittently. Further, present power distribution is calculated based on in-core neutron flux measured values and CSD in a process control computer. Further, the ratio of the calculation results of the latter to those of the former is calculated, stored and inputted into a correction device to correct the forecast power distribution obtained by the power distribution calculation device. This enables to forecast the power distribution with excellent responsivity in the reactor site. (Furukawa, Y.)
Simultaneous distribution of AC and DC power
Polese, Luigi Gentile
2015-09-15
A system and method for the transport and distribution of both AC (alternating current) power and DC (direct current) power over wiring infrastructure normally used for distributing AC power only, for example, residential and/or commercial buildings' electrical wires is disclosed and taught. The system and method permits the combining of AC and DC power sources and the simultaneous distribution of the resulting power over the same wiring. At the utilization site a complementary device permits the separation of the DC power from the AC power and their reconstruction, for use in conventional AC-only and DC-only devices.
Pascal (Yang Hui) triangles and power laws in the logistic map
International Nuclear Information System (INIS)
Velarde, Carlos; Robledo, Alberto
2015-01-01
We point out the joint occurrence of Pascal triangle patterns and power-law scaling in the standard logistic map, or more generally, in unimodal maps. It is known that these features are present in its two types of bifurcation cascades: period and chaotic-band doubling of attractors. Approximate Pascal triangles are exhibited by the sets of lengths of supercycle diameters and by the sets of widths of opening bands. Additionally, power-law scaling manifests along periodic attractor supercycle positions and chaotic band splitting points. Consequently, the attractor at the mutual accumulation point of the doubling cascades, the onset of chaos, displays both Gaussian and power-law distributions. Their combined existence implies both ordinary and exceptional statistical-mechanical descriptions of dynamical properties. (paper)
Power law for the duration of recession and prosperity in Latin American countries
Redelico, Francisco O.; Proto, Araceli N.; Ausloos, Marcel
2008-11-01
Ormerod and Mounfield [P. Ormerod, C. Mounfield, Power law distribution of duration and magnitude of recessions in capitalist economies: Breakdown of scaling, Physica A 293 (2001) 573] and Ausloos et al. [M. Ausloos, J. Mikiewicz, M. Sanglier, The durations of recession and prosperity: Does their distribution follow a power or an exponential law? Physica A 339 (2004) 548] have independently analyzed the duration of recessions for developed countries through the evolution of the GDP in different time windows. It was found that there is a power law governing the duration distribution. We have analyzed data collected from 19 Latin American countries in order to observe whether such results are valid or not for developing countries. The case of prosperity years is also discussed. We observe that the power law of recession time intervals, see Ref. [1], is valid for Latin American countries as well. Thus an interesting point is discovered: the same scaling time is found in the case of recessions for the three data sets (ca. 1 year), and this could represent a universal feature. Other time scale parameters differ significantly from each other.
Constraints on cosmological parameters in power-law cosmology
International Nuclear Information System (INIS)
Rani, Sarita; Singh, J.K.; Altaibayeva, A.; Myrzakulov, R.; Shahalam, M.
2015-01-01
In this paper, we examine observational constraints on the power law cosmology; essentially dependent on two parameters H 0 (Hubble constant) and q (deceleration parameter). We investigate the constraints on these parameters using the latest 28 points of H(z) data and 580 points of Union2.1 compilation data and, compare the results with the results of ΛCDM . We also forecast constraints using a simulated data set for the future JDEM, supernovae survey. Our studies give better insight into power law cosmology than the earlier done analysis by Kumar [arXiv:1109.6924] indicating it tuning well with Union2.1 compilation data but not with H(z) data. However, the constraints obtained on i.e. H 0 average and q average using the simulated data set for the future JDEM, supernovae survey are found to be inconsistent with the values obtained from the H(z) and Union2.1 compilation data. We also perform the statefinder analysis and find that the power-law cosmological models approach the standard ΛCDM model as q → −1. Finally, we observe that although the power law cosmology explains several prominent features of evolution of the Universe, it fails in details
Extremal dependencies and rank correlations in power law networks
Volkovich, Y.; Litvak, Nelli; Zwart, B.; Jie, Z.
2009-01-01
We analyze dependencies in complex networks characterized by power laws (Web sample, Wikipedia sample and a preferential attachment graph) using statistical techniques from the extreme value theory and the theory of multivariate regular variation. To the best of our knowledge, this is the first
Cluster tails for critical power-law inhomogeneous random graphs
van der Hofstad, R.; Kliem, S.; van Leeuwaarden, J.S.H.
2018-01-01
Recently, the scaling limit of cluster sizes for critical inhomogeneous random graphs of rank-1 type having finite variance but infinite third moment degrees was obtained in Bhamidi et al. (Ann Probab 40:2299–2361, 2012). It was proved that when the degrees obey a power law with exponent τ∈ (3 , 4)
Uncertainty Evaluation for SMART Synthesized Power Distribution
International Nuclear Information System (INIS)
Cho, J. Y.; Song, J. S.; Lee, C. C.; Park, S. Y.; Kim, K. Y.; Lee, K. H.
2010-07-01
This report performs the uncertainty analysis for the SMART synthesis power distribution generated by a SSUN (SMART core SUpporting system coupled by Nuclear design code) code. SSUN runs coupled with the MASTER neutronics code and generates the core 3-D synthesis power distribution by using DPCM3D. The MASTER code plays a role to provide the DPCM3D constants to the SSUN code for the current core states. The uncertainties evaluated in this report are the form of 95%/95% probability/confidence one-sided tolerance limits and can be used in conjunction with Technical Specification limits on these quantities to establish appropriate LCO (Limiting Conditions of Operation) and LSSS (Limiting Safety System Settings) limits. This report is applicable to SMART nuclear reactor using fixed rhodium detector systems. The unknown true power distribution should be given for the uncertainty evaluation of the synthesis power distribution. This report produces virtual distributions for the true power distribution by imposing the CASMO-3/MASTER uncertainty to the MASTER power distribution. Detector signals are generated from these virtual distribution and the DPCM3D constants are from the MASTER power distribution. The SSUN code synthesizes the core 3-D power distribution by using these detector signals and the DPCM3D constants. The following summarizes the uncertainty evaluation procedure for the synthesis power distribution. (1) Generation of 3-D power distribution by MASTER -> Determination of the DPCM3D constants. (2) Generation of virtual power distribution (assumed to be true power distribution) -> Generation of detector signals. (3) Generation of synthesis power distribution. (4) Uncertainty evaluation for the synthesis power distribution. Chi-Square normality test rejects the hypothesis of normal distribution for the synthesis power error distribution. Therefore, the KRUSKAL WALLIS test and the non-parametric statistics are used for data pooling and the tolerance limits. The
The distance-decay function of geographical gravity model: Power law or exponential law?
International Nuclear Information System (INIS)
Chen, Yanguang
2015-01-01
Highlights: •The distance-decay exponent of the gravity model is a fractal dimension. •Entropy maximization accounts for the gravity model based on power law decay. •Allometric scaling relations relate gravity models with spatial interaction models. •The four-parameter gravity models have dual mathematical expressions. •The inverse power law is the most probable distance-decay function. -- Abstract: The distance-decay function of the geographical gravity model is originally an inverse power law, which suggests a scaling process in spatial interaction. However, the distance exponent of the model cannot be reasonably explained with the ideas from Euclidean geometry. This results in a dimension dilemma in geographical analysis. Consequently, a negative exponential function was used to replace the inverse power function to serve for a distance-decay function. But a new puzzle arose that the exponential-based gravity model goes against the first law of geography. This paper is devoted for solving these kinds of problems by mathematical reasoning and empirical analysis. New findings are as follows. First, the distance exponent of the gravity model is demonstrated to be a fractal dimension using the geometric measure relation. Second, the similarities and differences between the gravity models and spatial interaction models are revealed using allometric relations. Third, a four-parameter gravity model possesses a symmetrical expression, and we need dual gravity models to describe spatial flows. The observational data of China's cities and regions (29 elements indicative of 841 data points) in 2010 are employed to verify the theoretical inferences. A conclusion can be reached that the geographical gravity model based on power-law decay is more suitable for analyzing large, complex, and scale-free regional and urban systems. This study lends further support to the suggestion that the underlying rationale of fractal structure is entropy maximization. Moreover
Dual plane problems for creeping flow of power-law incompressible medium
Directory of Open Access Journals (Sweden)
Dmitriy S. Petukhov
2016-09-01
Full Text Available In this paper, we consider the class of solutions for a creeping plane flow of incompressible medium with power-law rheology, which are written in the form of the product of arbitrary power of the radial coordinate by arbitrary function of the angular coordinate of the polar coordinate system covering the plane. This class of solutions represents the asymptotics of fields in the vicinity of singular points in the domain occupied by the examined medium. We have ascertained the duality of two problems for a plane with wedge-shaped notch, at which boundaries in one of the problems the vector components of the surface force vanish, while in the other—the vanishing components are the vector components of velocity, We have investigated the asymptotics and eigensolutions of the dual nonlinear eigenvalue problems in relation to the rheological exponent and opening angle of the notch for the branch associated with the eigenvalue of the Hutchinson–Rice–Rosengren problem learned from the problem of stress distribution over a notched plane for a power law medium. In the context of the dual problem we have determined the velocity distribution in the flow of power-law medium at the vertex of a rigid wedge, We have also found another two eigenvalues, one of which was determined by V. V. Sokolovsky for the problem of power-law fluid flow in a convergent channel.
Alternative derivations of the statistical mechanical distribution laws.
Wall, F T
1971-08-01
A new approach is presented for the derivation of statistical mechanical distribution laws. The derivations are accomplished by minimizing the Helmholtz free energy under constant temperature and volume, instead of maximizing the entropy under constant energy and volume. An alternative method involves stipulating equality of chemical potential, or equality of activity, for particles in different energy levels. This approach leads to a general statement of distribution laws applicable to all systems for which thermodynamic probabilities can be written. The methods also avoid use of the calculus of variations, Lagrangian multipliers, and Stirling's approximation for the factorial. The results are applied specifically to Boltzmann, Fermi-Dirac, and Bose-Einstein statistics. The special significance of chemical potential and activity is discussed for microscopic systems.
The speed-curvature power law in Drosophila larval locomotion.
Zago, Myrka; Lacquaniti, Francesco; Gomez-Marin, Alex
2016-10-01
We report the discovery that the locomotor trajectories of Drosophila larvae follow the power-law relationship between speed and curvature previously found in the movements of human and non-human primates. Using high-resolution behavioural tracking in controlled but naturalistic sensory environments, we tested the law in maggots tracing different trajectory types, from reaching-like movements to scribbles. For most but not all flies, we found that the law holds robustly, with an exponent close to three-quarters rather than to the usual two-thirds found in almost all human situations, suggesting dynamic effects adding on purely kinematic constraints. There are different hypotheses for the origin of the law in primates, one invoking cortical computations, another viscoelastic muscle properties coupled with central pattern generators. Our findings are consistent with the latter view and demonstrate that the law is possible in animals with nervous systems orders of magnitude simpler than in primates. Scaling laws might exist because natural selection favours processes that remain behaviourally efficient across a wide range of neural and body architectures in distantly related species. © 2016 The Authors.
On the power law of passive scalars in turbulence
Gotoh, Toshiyuki; Watanabe, Takeshi
2015-11-01
It has long been considered that the moments of the scalar increment with separation distance r obey power law with scaling exponents in the inertial convective range and the exponents are insensitive to variation of pumping of scalar fluctuations at large scales, thus the scaling exponents are universal. We examine the scaling behavior of the moments of increments of passive scalars 1 and 2 by using DNS up to the grid points of 40963. They are simultaneously convected by the same isotropic steady turbulence atRλ = 805 , but excited by two different methods. Scalar 1 is excited by the random scalar injection which is isotropic, Gaussian and white in time at law wavenumber band, while Scalar 2 is excited by the uniform mean scalar gradient. It is found that the local scaling exponents of the scalar 1 has a logarithmic correction, meaning that the moments of the scalar 1 do not obey simple power law. On the other hand, the moments of the scalar 2 is found to obey the well developed power law with exponents consistent with those in the literature. Physical reasons for the difference are explored. Grants-in-Aid for Scientific Research 15H02218 and 26420106, NIFS14KNSS050, HPCI project hp150088 and hp140024, JHPCN project jh150012.
“Slimming” of power-law tails by increasing market returns
Sornette, D.
2002-06-01
We introduce a simple generalization of rational bubble models which removes the fundamental problem discovered by Lux and Sornette (J. Money, Credit and Banking, preprint at http://xxx.lanl.gov/abs/cond-mat/9910141) that the distribution of returns is a power law with exponent discount rate rδ, the distribution of returns of the observable price, sum of the bubble component and of the fundamental price, exhibits an intermediate tail with an exponent which can be larger than 1. This regime r> rδ corresponds to a generalization of the rational bubble model in which the fundamental price is no more given by the discounted value of future dividends. We explain how this is possible. Our model predicts that, the higher is the market remuneration r above the discount rate, the larger is the power-law exponent and thus the thinner is the tail of the distribution of price returns.
Monitoring device for the reactor power distribution
International Nuclear Information System (INIS)
Uematsu, Hitoshi; Tsuiki, Makoto
1982-01-01
Purpose: To enable accurate monitoring for the power distribution in a short time, as well as independent detection for in-core neutron flux detectors in abnormal operation due to failures or like other causes to thereby surely provide reliable substitute values. Constitution: Counted values are inputted from a reactor core present status data detector by a power distribution calculation device to calculate the in-core neutron flux density and the power distribution based on previously stored physical models. While on the other hand, counted value from the in-core neutron detectors and the neutron flux distribution and the power distribution calculated from the power distribution calculation device are inputted from a BCF calculation device to compensate the counting errors incorporated in the counted value from the in-core neutron flux detectors and the calculation errors incorporated in the power distribution calculated in the power distribution calculation device respectively and thereby calculate the power distribution in the reactor core. Further, necessary data are inputted to the power distribution calculation device by an input/output device and the results calculated in the BCF calculation device are displayed. (Aizawa, K.)
Power-law ansatz in complex systems: Excessive loss of information
Tsai, Sun-Ting; Chang, Chin-De; Chang, Ching-Hao; Tsai, Meng-Xue; Hsu, Nan-Jung; Hong, Tzay-Ming
2015-12-01
The ubiquity of power-law relations in empirical data displays physicists' love of simple laws and uncovering common causes among seemingly unrelated phenomena. However, many reported power laws lack statistical support and mechanistic backings, not to mention discrepancies with real data are often explained away as corrections due to finite size or other variables. We propose a simple experiment and rigorous statistical procedures to look into these issues. Making use of the fact that the occurrence rate and pulse intensity of crumple sound obey a power law with an exponent that varies with material, we simulate a complex system with two driving mechanisms by crumpling two different sheets together. The probability function of the crumple sound is found to transit from two power-law terms to a bona fide power law as compaction increases. In addition to showing the vicinity of these two distributions in the phase space, this observation nicely demonstrates the effect of interactions to bring about a subtle change in macroscopic behavior and more information may be retrieved if the data are subject to sorting. Our analyses are based on the Akaike information criterion that is a direct measurement of information loss and emphasizes the need to strike a balance between model simplicity and goodness of fit. As a show of force, the Akaike information criterion also found the Gutenberg-Richter law for earthquakes and the scale-free model for a brain functional network, a two-dimensional sandpile, and solar flare intensity to suffer an excessive loss of information. They resemble more the crumpled-together ball at low compactions in that there appear to be two driving mechanisms that take turns occurring.
Power-law ansatz in complex systems: Excessive loss of information.
Tsai, Sun-Ting; Chang, Chin-De; Chang, Ching-Hao; Tsai, Meng-Xue; Hsu, Nan-Jung; Hong, Tzay-Ming
2015-12-01
The ubiquity of power-law relations in empirical data displays physicists' love of simple laws and uncovering common causes among seemingly unrelated phenomena. However, many reported power laws lack statistical support and mechanistic backings, not to mention discrepancies with real data are often explained away as corrections due to finite size or other variables. We propose a simple experiment and rigorous statistical procedures to look into these issues. Making use of the fact that the occurrence rate and pulse intensity of crumple sound obey a power law with an exponent that varies with material, we simulate a complex system with two driving mechanisms by crumpling two different sheets together. The probability function of the crumple sound is found to transit from two power-law terms to a bona fide power law as compaction increases. In addition to showing the vicinity of these two distributions in the phase space, this observation nicely demonstrates the effect of interactions to bring about a subtle change in macroscopic behavior and more information may be retrieved if the data are subject to sorting. Our analyses are based on the Akaike information criterion that is a direct measurement of information loss and emphasizes the need to strike a balance between model simplicity and goodness of fit. As a show of force, the Akaike information criterion also found the Gutenberg-Richter law for earthquakes and the scale-free model for a brain functional network, a two-dimensional sandpile, and solar flare intensity to suffer an excessive loss of information. They resemble more the crumpled-together ball at low compactions in that there appear to be two driving mechanisms that take turns occurring.
Prevention of damage and 'residual risk' in nuclear power laws
International Nuclear Information System (INIS)
Greipl, C.
1992-01-01
The concept of prevention of damage within the framework of nuclear power laws includes averting danger for the protection of third parties and preventing risks for the partial protection of third parties with the proviso that still a desire to use the concept 'residual risk' in addition, it should be limited, on the grounds of what can be reasonably expected, to those risks which cannot be reduced any further by the government, i.e. to risks which the public in general and third parties ('actually') must accept. In the future, questions regarding safety systems should be taken into account exclusively withing the context of 'what is necessary for protection against damage in keeping with the latest developments in science and technology' and not at the discretion of the law in denying permission according to Article 7 Paragraph 2 Atomic Energy Law. (orig.) [de
Economic assessment group on power transmission and distribution networks tariffs
International Nuclear Information System (INIS)
2000-06-01
Facing the new law on the electric power market liberalization, the french government created an experts group to analyze solutions and assessment methods of the electrical networks costs and tariffs and to control their efficiency. This report presents the analysis and the conclusions of the group. It concerns the three main subjects: the regulation context, the tariffing of the electric power transmission and distribution (the cost and efficiency of the various options) and the tariffing of the electric power supply to the eligible consumers. The authors provide a guideline for a tariffing policy. (A.L.B.)
A study on the sensitivity depletion laws for rhodium self-powered neutron detectors
International Nuclear Information System (INIS)
Kim, Gil Gon
1999-02-01
The rhodium self-powered neutron detectors (SPND) in a reactor core provide the operator with the on-line 3-dimensional nuclear power distribution. The signal produced by rhodium SPND is interpreted into the local neutron flux by using a sensitivity depletion law and the local neutron flux is interpreted into the local power by using a power conversion factor. This work on the sensitivity depletion laws for rhodium self-powered neutron detectors (SPND) is performed to improve the uncertainty of the sensitivity depletion law used in ABB-CE reactors employing a rhodium SPND and to develop a calculational tool for providing the sensitivity depletion laws to interpret the signal of the newly designed rhodium SPND into the local neutron flux. The calculational tools for a time dependent neutron flux distribution in the rhodium emitter during depletion and for a time dependent beta escape probability that a beta generated in the emitter is escaped into the collector were developed. Due to the cost, the exposure to the radiation, and the longer fuel cycle, there is a strong incentive that the loading density of an in-core instrumentation is reduced and the lifetime of the detector is lengthened. These objectives can be achieved by reducing the uncertainty which is amplified as it depletes. The calculational tools above provide the sensitivity depletion law and show the reduction of the uncertainty to about 1 % in interpreting the signal into the local neutron flux compared to the method employed by ABB-CE. The reduction in the uncertainty of 1 % in interpreting the signal into the local neutron flux is equivalent to the reduction in the uncertainty of 1 % or more in interpreting the signal into the local power and to the extension of the lifetime of rhodium SPND to about 10 % as reported by ABB-CE
Observational constraints on phantom power-law cosmology
International Nuclear Information System (INIS)
Kaeonikhom, Chakkrit; Gumjudpai, Burin; Saridakis, Emmanuel N.
2011-01-01
We investigate phantom cosmology in which the scale factor is a power law, and we use cosmological observations from Cosmic Microwave Background (CMB), Baryon Acoustic Oscillations (BAO) and observational Hubble data, in order to impose complete constraints on the model parameters. We find that the power-law exponent is β∼-6.51 -0.25 +0.24 , while the Big Rip is realized at t s ∼104.5 -2.0 +1.9 Gyr, in 1σ confidence level. Providing late-time asymptotic expressions, we find that the dark-energy equation-of-state parameter at the Big Rip remains finite and equal to w DE ∼-1.153, with the dark-energy density and pressure diverging. Finally, we reconstruct the phantom potential.
Dynamic intersectoral models with power-law memory
Tarasova, Valentina V.; Tarasov, Vasily E.
2018-01-01
Intersectoral dynamic models with power-law memory are proposed. The equations of open and closed intersectoral models, in which the memory effects are described by the Caputo derivatives of non-integer orders, are derived. We suggest solutions of these equations, which have the form of linear combinations of the Mittag-Leffler functions and which are characterized by different effective growth rates. Examples of intersectoral dynamics with power-law memory are suggested for two sectoral cases. We formulate two principles of intersectoral dynamics with memory: the principle of changing of technological growth rates and the principle of domination change. It has been shown that in the input-output economic dynamics the effects of fading memory can change the economic growth rate and dominant behavior of economic sectors.
COSMOLOGY OF CHAMELEONS WITH POWER-LAW COUPLINGS
International Nuclear Information System (INIS)
Mota, David F.; Winther, Hans A.
2011-01-01
In chameleon field theories, a scalar field can couple to matter with gravitational strength and still evade local gravity constraints due to a combination of self-interactions and the couplings to matter. Originally, these theories were proposed with a constant coupling to matter; however, the chameleon mechanism also extends to the case where the coupling becomes field dependent. We study the cosmology of chameleon models with power-law couplings and power-law potentials. It is found that these generalized chameleons, when viable, have a background expansion very close to ΛCDM, but can in some special cases enhance the growth of the linear perturbations at low redshifts. For the models we consider, it is found that this region of the parameter space is ruled out by local gravity constraints. Imposing a coupling to dark matter only, the local constraints are avoided, and it is possible to have observable signatures on the linear matter perturbations.
On heat transfer of weakly compressible power-law flows
Directory of Open Access Journals (Sweden)
Li Botong
2017-01-01
Full Text Available This paper completes a numerical research on steady momentum and heat transfer in power-law fluids in a channel. Weakly compressible laminar fluids are studied with no slip at the walls and uniform wall temperatures. The full governing equations are solved by continuous finite element method. Three thermal conductivity models are adopted in this paper, that is, constant thermal conductivity model, thermal conductivity varying as a function of temperature gradient, and a modified temperature-gradient-dependent thermal conductivity model. The results are compared with each other and the physical characteristics for values of parameters are also discussed in details. It is shown that the velocity curve from the solution becomes straight at higher power-law index. The effects of Reynolds numbers on the dilatant fluid and the pseudo-plastic look similar to each other and their trends can be easily predicted. Furthermore, for different models, the temperature curves also present pseudo-plastic and dilatant properties.
Dynamics of a map with a power-law tail
International Nuclear Information System (INIS)
Botella-Soler, V; Ros, J; Oteo, J A
2009-01-01
We analyze a one-dimensional piecewise continuous discrete model proposed originally in studies on population ecology. The map is composed of a linear part and a power-law decreasing piece, and has three parameters. The system presents both regular and chaotic behavior. We study numerically and, in part, analytically different bifurcation structures. Particularly interesting is the description of the abrupt order-to-chaos transition mediated by an attractor made of an infinite number of limit cycles with only a finite number of different periods. It is shown that the power-law piece in the map is at the origin of this type of bifurcation. The system exhibits interior crises and crisis-induced intermittency.
Mobile Centers For Secondary Power Distribution
Mears, Robert L.
1990-01-01
Concept for distribution of 60-Hz ac power in large building devoted to assembly and testing of equipment improves safety, reduces number of outlets and lengthy cables, and readily accommodates frequent changes in operations and configuration. Power from floor recess fed via unobtrusive cable to portable power management center. A cart containing variety of outlets and circuit breakers, wheeled to convenient location near equipment to be assembled or tested. Power distribution system presents larger range of operational configurations than fixed location. Meets tighter standards to feed computers and delicate instruments. Industrial-grade power suitable for power tools and other hardware. Three-phase and single-phase outlets available from each.
New power economy law for electricity and gas
International Nuclear Information System (INIS)
Heller, W.
2004-01-01
Since August 4, 2003, the so-called Directives on Speeding up Common Regulations for the Single Market for Electricity and Common Regulations for the Single Market for Gas have been in force (Official Journal of the European Communities L 176/37). These Directives must be translated into national law by July 1, 2004. The national legislative process in Germany for a Power Economy Act adapted accordingly is presented and evaluated. (orig.)
Power-law cross-correlations estimation under heavy tails
Czech Academy of Sciences Publication Activity Database
Krištoufek, Ladislav
2016-01-01
Roč. 40, č. 1 (2016), s. 163-172 ISSN 1007-5704 R&D Projects: GA ČR(CZ) GP14-11402P Institutional support: RVO:67985556 Keywords : Power-law cross-correlations * Heavy tails * Monte Carlo study Subject RIV: AH - Economics Impact factor: 2.784, year: 2016 http://library.utia.cas.cz/separaty/2016/E/kristoufek-0472030.pdf
The Power Laws of Violence against Women: Rescaling Research and Policies
Kappler, Karolin E.; Kaltenbrunner, Andreas
2012-01-01
Background Violence against Women –despite its perpetuation over centuries and its omnipresence at all social levels– entered into social consciousness and the general agenda of Social Sciences only recently, mainly thanks to feminist research, campaigns, and general social awareness. The present article analyzes in a secondary analysis of German prevalence data on Violence against Women, whether the frequency and severity of Violence against Women can be described with power laws. Principal Findings Although the investigated distributions all resemble power-law distributions, a rigorous statistical analysis accepts this hypothesis at a significance level of 0.1 only for 1 of 5 cases of the tested frequency distributions and with some restrictions for the severity of physical violence. Lowering the significance level to 0.01 leads to the acceptance of the power-law hypothesis in 2 of the 5 tested frequency distributions and as well for the severity of domestic violence. The rejections might be mainly due to the noise in the data, with biases caused by self-reporting, errors through rounding, desirability response bias, and selection bias. Conclusion Future victimological surveys should be designed explicitly to avoid these deficiencies in the data to be able to clearly answer the question whether Violence against Women follows a power-law pattern. This finding would not only have statistical implications for the processing and presentation of the data, but also groundbreaking consequences on the general understanding of Violence against Women and policy modeling, as the skewed nature of the underlying distributions makes evident that Violence against Women is a highly disparate and unequal social problem. This opens new questions for interdisciplinary research, regarding the interplay between environmental, experimental, and social factors on victimization. PMID:22768348
Distributed power generation using microturbines
CSIR Research Space (South Africa)
Szewczuk, S
2008-11-01
Full Text Available At present, the bulk of the world is electricity is generated in central power stations. This approach, one of `economy of size generates electricity in large power stations and delivers it to load centres via an extensive network of transmission...
Power laws and elastic nonlinearity in materials with complex microstructure
Energy Technology Data Exchange (ETDEWEB)
Scalerandi, M., E-mail: marco.scalerandi@infm.polito.it
2016-01-28
Nonlinear ultrasonic methods have been widely used to characterize the microstructure of damaged solids and consolidated granular media. Besides distinguishing between materials exhibiting classical nonlinear behaviors from those exhibiting hysteresis, it could be of importance the discrimination between ultrasonic indications from different physical sources (scatterers). Elastic hysteresis could indeed be due to dislocations, grain boundaries, stick-slip at interfaces, etc. Analyzing data obtained on various concrete samples, we show that the power law behavior of the nonlinear indicator vs. the energy of excitation could be used to classify different microscopic features. In particular, the power law exponent ranges between 1 and 3, depending on the nature of nonlinearity. We also provide a theoretical interpretation of the collected data using models for clapping and hysteretic nonlinearities. - Highlights: • Several materials exhibit a nontrivial nonlinear elastic behavior which can be ascribed to different physical sources. • The quantitative nonlinear response is dependent on the type of microstructure present in the material. • A nonlinear indicator could be defined which depends on the excitation energy of the sample. • Assuming a power law dependence, the exponent depends on the microstructure of the material and could evolve in time. • Experimental results on concrete are discussed and a theoretical description is proposed.
Characterizing and predicting the robustness of power-law networks
International Nuclear Information System (INIS)
LaRocca, Sarah; Guikema, Seth D.
2015-01-01
Power-law networks such as the Internet, terrorist cells, species relationships, and cellular metabolic interactions are susceptible to node failures, yet maintaining network connectivity is essential for network functionality. Disconnection of the network leads to fragmentation and, in some cases, collapse of the underlying system. However, the influences of the topology of networks on their ability to withstand node failures are poorly understood. Based on a study of the response of 2000 randomly-generated power-law networks to node failures, we find that networks with higher nodal degree and clustering coefficient, lower betweenness centrality, and lower variability in path length and clustering coefficient maintain their cohesion better during such events. We also find that network robustness, i.e., the ability to withstand node failures, can be accurately predicted a priori for power-law networks across many fields. These results provide a basis for designing new, more robust networks, improving the robustness of existing networks such as the Internet and cellular metabolic pathways, and efficiently degrading networks such as terrorist cells. - Highlights: • Examine relationship between network topology and robustness to failures. • Relationship is statistically significant for scale-free networks. • Use statistical models to estimate robustness to failures for real-world networks
The Transient Elliptic Flow of Power-Law Fluid in Fractal Porous Media
Institute of Scientific and Technical Information of China (English)
宋付权; 刘慈群
2002-01-01
The steady oil production and pressure distribution formulae of vertically fractured well for power-law non-Newtonian fluid were derived on the basis of the elliptic flow model in fractal reservoirs. The corresponding transient flow in fractal reservoirs was studied by numerical differentiation method: the influence of fractal index to transient pressure of vertically fractured well was analyzed. Finally the approximate analytical solution of transient flow was given by average mass conservation law. The study shows that using elliptic flow method to analyze the flow of vertically fractured well is a simple method.
Focus-based filtering + clustering technique for power-law networks with small world phenomenon
Boutin, François; Thièvre, Jérôme; Hascoët, Mountaz
2006-01-01
Realistic interaction networks usually present two main properties: a power-law degree distribution and a small world behavior. Few nodes are linked to many nodes and adjacent nodes are likely to share common neighbors. Moreover, graph structure usually presents a dense core that is difficult to explore with classical filtering and clustering techniques. In this paper, we propose a new filtering technique accounting for a user-focus. This technique extracts a tree-like graph with also power-law degree distribution and small world behavior. Resulting structure is easily drawn with classical force-directed drawing algorithms. It is also quickly clustered and displayed into a multi-level silhouette tree (MuSi-Tree) from any user-focus. We built a new graph filtering + clustering + drawing API and report a case study.
Experimental investigation on the spray characteristics of power-law fluid in a swirl injector
Energy Technology Data Exchange (ETDEWEB)
Bai, Fuqiang; Chen, Shixing; Guo, Jinpeng; Jiao, Kui; Du, Qing [State Key Laboratory of Engines, Tianjin University, Tianjin, 300072 (China); Chang, Qing, E-mail: duqing@tju.edu.cn [Wuxi Fuel Injection Equipment Research Institute, China FAW CO., Wuxi, 214063 (China)
2017-06-15
High-speed photography and 3D phase Doppler methods are used to obtain the swirl jet images, 3D velocities and size distribution of different droplets (including deionized water and two kinds of power-law fluid). For the power-law fluids, a short circular jet is formed after the nozzle exit at low pressure. Along the X direction, the distributions of axial velocity w and Sauter mean diameter (SMD) are symmetrical and increase from the center to both sides. The effect of injection pressure on the radial velocity u is not obvious. Along the Z axis, the absolute value of 3D velocities decreases to some extent with droplets moving downstream. The SMD decreases apparently with the increment of the distance along the Z axis at 1.0 MPa. (paper)
RELIABILITY ANALYSIS OF POWER DISTRIBUTION SYSTEMS
Directory of Open Access Journals (Sweden)
Popescu V.S.
2012-04-01
Full Text Available Power distribution systems are basic parts of power systems and reliability of these systems at present is a key issue for power engineering development and requires special attention. Operation of distribution systems is accompanied by a number of factors that produce random data a large number of unplanned interruptions. Research has shown that the predominant factors that have a significant influence on the reliability of distribution systems are: weather conditions (39.7%, defects in equipment(25% and unknown random factors (20.1%. In the article is studied the influence of random behavior and are presented estimations of reliability of predominantly rural electrical distribution systems.
Distributed systems for protecting nuclear power stations
International Nuclear Information System (INIS)
Jover, P.
1980-05-01
The advantages of distributed control systems for the control of nuclear power stations are obviously of great interest. Some years ago, EPRI, (Electric Power Research Institute) showed that multiplexing the signals is technically feasible, that it enables the availability specifications to be met and costs to be reduced. Since then, many distributed control systems have been proposed by the manufacturers. This note offers some comments on the application of the distribution concept to protection systems -what should be distributed- and ends with a brief description of a protection system based on microprocessors for the pressurized power stations now being built in France [fr
Converters for Distributed Power Generation Systems
DEFF Research Database (Denmark)
Blaabjerg, Frede; Yang, Yongheng
2015-01-01
Power electronics technology has become the enabling technology for the integration of distributed power generation systems (DPGS) such as offshore wind turbine power systems and commercial photovoltaic power plants. Depending on the applications, a vast array of DPGS-based power converter...... topologies has been developed and more are coming into the market in order to achieve an efficient and reliable power conversion from the renewables. In addition, stringent demands from both the distribution system operators and the consumers have been imposed on the renewable-based DPGS. This article...... presents an overview of the power converters for the DPGS, mainly based on wind turbine systems and photovoltaic systems, covering a wide range of applications. Moreover, the modulation schemes and interfacing power filters for the power converters are also exemplified. Finally, the general control...
Power-law versus exponential relaxation of {sup 29}Si nucleus spins in Si:B crystals
Energy Technology Data Exchange (ETDEWEB)
Koplak, O.V. [Institute of Problems of Chemical Physics, 142432 Chernogolovka, Moscow (Russian Federation); Taras Shevchenko Kiev National University and National Academy of Sciences, 01033 Kiev (Ukraine); Talantsev, A.D., E-mail: adt@icp.ac.ru [Institute of Problems of Chemical Physics, 142432 Chernogolovka, Moscow (Russian Federation); Morgunov, R.B. [Institute of Problems of Chemical Physics, 142432 Chernogolovka, Moscow (Russian Federation); Sholokhov Moscow State University for the Humanities, 109240 Moscow (Russian Federation)
2016-02-15
The Si:B micro-crystals enriched with {sup 29}Si isotope have been studied by high resolution nuclear magnetic resonance (NMR) in the 300–800 K temperature range. The recovery of nuclear magnetization saturated by radiofrequency impulses follows pure power-law kinetics at 300 K, while admixture of exponential relaxation takes place at 500 K. The power-law relaxation corresponds to direct electron–nuclear relaxation due to the inhomogeneous distribution of paramagnetic centers, while exponential kinetics corresponds to the nuclear spin diffusion mechanism. The inhomogeneous distribution of deformation defects is a most probable reason of the power-law kinetics of nuclear spin relaxation. - Highlights: • {sup 29}Si nuclear magnetization relaxation follows mixed power-exponential law. • Power-law corresponds to direct electron–nuclear relaxation. • Admixture of exponential relaxation corresponds to the nuclear spin diffusion. • Inhomogeneously distributed deformation defects are responsible for power low. • Homogeneously distributed Boron acceptors are responsible for exponential part.
2010-07-01
..., the judge (or the Board) will decide the case or make other disposition of it. (10) To make and file... 29 Labor 2 2010-07-01 2010-07-01 false Duties and powers of administrative law judges; stipulations of cases to administrative law judges or to the Board; assignment and powers of settlement judges...
System for forecasting a reactor power distribution
International Nuclear Information System (INIS)
Motoda, Hiroshi; Nishizawa, Yasuo.
1976-01-01
Purpose: To dispense with frequent running of detector in a BWR type reactor and permit calculation of the prevailing value and forecast value of power distribution in a specified region in an on-line basis. Constitution: The prevailing power distribution P sub(OZ) (where Z indicates a position in the axial direction) at a given position is estimated by prevailing power distribution estimating means, and the average prevailing power distribution Q sub(OZ) in the core is estimated while making correction of a primary neutron distribution model by core average characteristic measuring means. Then, the estimated core average power distribution Q sub(Z) after alteration of the core flow rate or alteration of Xe concentration is estimated by core average power distribution estimating means. At this time, a forecast power distribution P sub(Z) in a specified region after alteration of the flow rate or alteration of the Xe concentration is calculated on the basis of a relation P sub(Z) = (Q sub(Z)/Q sub(OZ)) by using P sub(OZ), Q sub(OZ) and Q sub(Z). The above calculations are carried out in a short period of time by using a process computer. (Ikeda, J.)
Regularized lattice Boltzmann model for immiscible two-phase flows with power-law rheology
Ba, Yan; Wang, Ningning; Liu, Haihu; Li, Qiang; He, Guoqiang
2018-03-01
In this work, a regularized lattice Boltzmann color-gradient model is developed for the simulation of immiscible two-phase flows with power-law rheology. This model is as simple as the Bhatnagar-Gross-Krook (BGK) color-gradient model except that an additional regularization step is introduced prior to the collision step. In the regularization step, the pseudo-inverse method is adopted as an alternative solution for the nonequilibrium part of the total distribution function, and it can be easily extended to other discrete velocity models no matter whether a forcing term is considered or not. The obtained expressions for the nonequilibrium part are merely related to macroscopic variables and velocity gradients that can be evaluated locally. Several numerical examples, including the single-phase and two-phase layered power-law fluid flows between two parallel plates, and the droplet deformation and breakup in a simple shear flow, are conducted to test the capability and accuracy of the proposed color-gradient model. Results show that the present model is more stable and accurate than the BGK color-gradient model for power-law fluids with a wide range of power-law indices. Compared to its multiple-relaxation-time counterpart, the present model can increase the computing efficiency by around 15%, while keeping the same accuracy and stability. Also, the present model is found to be capable of reasonably predicting the critical capillary number of droplet breakup.
The Dynamics of Power laws: Fitness and Aging in Preferential Attachment Trees
Garavaglia, Alessandro; van der Hofstad, Remco; Woeginger, Gerhard
2017-09-01
Continuous-time branching processes describe the evolution of a population whose individuals generate a random number of children according to a birth process. Such branching processes can be used to understand preferential attachment models in which the birth rates are linear functions. We are motivated by citation networks, where power-law citation counts are observed as well as aging in the citation patterns. To model this, we introduce fitness and age-dependence in these birth processes. The multiplicative fitness moderates the rate at which children are born, while the aging is integrable, so that individuals receives a finite number of children in their lifetime. We show the existence of a limiting degree distribution for such processes. In the preferential attachment case, where fitness and aging are absent, this limiting degree distribution is known to have power-law tails. We show that the limiting degree distribution has exponential tails for bounded fitnesses in the presence of integrable aging, while the power-law tail is restored when integrable aging is combined with fitness with unbounded support with at most exponential tails. In the absence of integrable aging, such processes are explosive.
Electric power distribution. Elektrische Energieverteilung
Energy Technology Data Exchange (ETDEWEB)
Fricke, H; Frohne, H; Vaske, P
1982-01-01
The first chapter on electric power supply networks discusses transmitting media, their characteristic values, and the dimensioning of electric lines and networks; cables are given particular attention. High-voltage d.c. transmission and reactive power compensation are discussed. The next chapter describes the calculation of short-circuits and earth leakages for various neutral circuits on the basis of symmetric components. The newly introduced mesh current method for complex calculation of electric networks makes use of the potential of pocket computers. Chapter 3 discusses protective devices, i.e. earth systems and electronic protection. The next two chapters describe switch gear and power plants, including recent technical changes. The final chapter, which discusses the electric power industry, has been rewritten and extended. Methods of calculation, e.g. annual cost and cash value, are applied to transmitting media and plants. There is an extensive appendix with characteristic values of cables and overhead lines, graphical symbols, distinguishing signs of wiring diagrams, a bibliography of books, DIN standards, VDE specifications, and formulas.
Control of renewable distributed power plants
Bullich Massagué, Eduard
2015-01-01
The main objective of this master thesis is to design a power plant controller for a photo- voltaic (PV) power plant. In a first stage, the current situation of the status of the electrical grid is analysed. The electrical network structure is moving from a conventional system (with centralized power generation, unidirectional power ows, easy control) to a smart grid system consisting on distributed generation, renewable energies, smart and complex control architecture and ...
Emergence of power-law in a market with mixed models
Ali Saif, M.; Gade, Prashant M.
2007-10-01
We investigate the problem of wealth distribution from the viewpoint of asset exchange. Robust nature of Pareto's law across economies, ideologies and nations suggests that this could be an outcome of trading strategies. However, the simple asset exchange models fail to reproduce this feature. A Yardsale (YS) model in which amount put on the bet is a fraction of minimum of the two players leads to condensation of wealth in hands of some agent while theft and fraud (TF) model in which the amount to be exchanged is a fraction of loser's wealth leads to an exponential distribution of wealth. We show that if we allow few agents to follow a different model than others, i.e., there are some agents following TF model while rest follow YS model, it leads to distribution with power-law tails. Similar effect is observed when one carries out transactions for a fraction of one's wealth using TF model and for the rest YS model is used. We also observe a power-law tail in wealth distribution if we allow the agents to follow either of the models with some probability.
In core system mapping reactor power distribution
International Nuclear Information System (INIS)
Yoriyaz, H.; Moreira, J.M.L.
1989-01-01
Based on the signals of SPND'S (Self Powered Neutron Detectors) distributed inside of a core, the spatial power distribution is obtained using the MAP program, developed in this work. The methodology applied in MAP program uses a least mean square technique to calculate expansion coefficients that depend on the SPND'S signals. The final power or neutron flux distribution is obtained by a combination of certains functions or expansion modes that are provided from diffusion calculation with the CITATION code. The MAP program is written in PASCAL language and will be used in IEA-R1 reactor for assisting its operation. (author) [pt
Sachs, M. K.; Yoder, M. R.; Turcotte, D. L.; Rundle, J. B.; Malamud, B. D.
2012-05-01
Extreme events that change global society have been characterized as black swans. The frequency-size distributions of many natural phenomena are often well approximated by power-law (fractal) distributions. An important question is whether the probability of extreme events can be estimated by extrapolating the power-law distributions. Events that exceed these extrapolations have been characterized as dragon-kings. In this paper we consider extreme events for earthquakes, volcanic eruptions, wildfires, landslides and floods. We also consider the extreme event behavior of three models that exhibit self-organized criticality (SOC): the slider-block, forest-fire, and sand-pile models. Since extrapolations using power-laws are widely used in probabilistic hazard assessment, the occurrence of dragon-king events have important practical implications.
Power-law photoluminescence decay in indirect gap quantum dots
Czech Academy of Sciences Publication Activity Database
Menšík, Miroslav; Král, Karel
2013-01-01
Roč. 111, November (2013), s. 170-174 ISSN 0167-9317 R&D Projects: GA MŠk(CZ) OC10007; GA MŠk LH12186; GA MŠk LH12236; GA ČR(CZ) GAP205/10/2280 Institutional support: RVO:61389013 ; RVO:68378271 Keywords : quantum dots * indirect gap transition * power-law photoluminescence decay Subject RIV: BM - Solid Matter Physics ; Magnetism; BE - Theoretical Physics (FZU-D) Impact factor: 1.338, year: 2013
The future of distributed power in Alberta
International Nuclear Information System (INIS)
Bobenic, J.
2002-01-01
Maxim Power Corporation is a provider of distributed energy and environmental solutions with a total of 55 MW of installed generating capacity in Canada, Europe and Asia, with 35 MW in Alberta. The 8 MW Taber facility in southern Alberta was described. Maxim operates 25 other small scale power generation stations (1 MW units) across 4 sites in southern Alberta. All the sites are interconnected at 25 kV and are eligible for distribution credits. The 3 MW EVI facility which utilizes solution gas was also described in the PowerPoint presentation. Maxim operates an additional 3 projects totaling 10 MW. The paper made reference to issues regarding market attributes for distributed power, policy framework and the transition to a competitive power market in Alberta. The chronology of events in Alberta's power market from August 2000 to June 2001 was outlined. The impacts of deregulation on distributed power include: (1) artificially low price environment from market intervention, (2) high efficiency cogeneration opportunities have been eliminated, (3) business failures and reduced investment, and (4) private investment not afforded the same alternative cost recovery mechanisms as the Alberta balancing pool. The presentation concluded with a report card for Alberta's deregulation, giving a grade F for both present and future opportunities for distributed power in Alberta. 2 figs
Custom power - the utility solution to distribution power quality
Energy Technology Data Exchange (ETDEWEB)
Woodley, N H [Westinghouse Electric Corp., Pittsburgh, PA (United States)
1997-04-01
The design of custom power products for electric power distribution system was discussed. Problems with power quality that result in loss of production to critical processes are costly and create a problem for the customer as well as the electric utility. Westinghouse has developed power quality improvement equipment for customers and utilities, using new technologies based on power electronics concepts. The Distribution Static Compensator (DSTATCOM) is a fast response, solid-state power controller that provides flexible voltage control for improving power quality at the point of connection to the utility`s 4.16 to 69 kV distribution feeder. STATCOM is a larger version of the DSTATCOM that can be used to solve voltage flicker problems caused by electric arc furnaces. Westinghouse has also developed a Dynamic Voltage Restorer (DVR) which protects a critical customer plant load from power system voltage disturbances. Solid-State Breakers (SSB) have also been developed which offer a solution to many of the distribution system problems that result in voltage sags, swells, and power outages. 6 refs., 8 figs.
Law concerning water and nuclear power station licensing
International Nuclear Information System (INIS)
Anon.
1985-01-01
The competent water authority, within the purview of the legal provisions concerning water is entitled to define a maximum of radioactive contamination of cooling water taken from and re-fed into the Rhine river, and is entitled to make such limit form part of the permit granted to a nuclear power station (here: Biblis B reactor). This right is not overruled by sections 45, 46 of the Rad. Protection Ordinance which determine dose limits (among others also for radioactivity released through waste water), and which state the competent licensing authority under atomic energy law to be entitled to set higher or lower limits by discretion. The provisions of sections 45 ff Rad. Prot. Ordinance are to be interpreted to mean that since the competent authority in accordance with section 46, sub-sections (2) and (5) Rad. Prot. Ordinance is given the right to define maximum acceptable radioactivity release through water discharge, it many also define the lowest limit of contamination and is hence entitled to declare discharged cooling water not to fall under atomic energy law, but rather under the law relating to water management. (orig.) [de
Power distribution: conductors in aluminium
International Nuclear Information System (INIS)
Schmid, R.
2007-01-01
This article takes a look at the use of aluminium conductors in medium and low-voltage cables. The author discusses how the increasing price of copper has led to the increasing use of aluminium as a material for the production of the conductors used in medium and low-voltage power cables. Aid is provided that is to help purchasers make the correct decisions when buying medium and low-voltage cables. The current market situation is examined and the appropriate norms are looked at. Technical data and economic aspects are discussed, both for medium and low-voltage applications. The electrical characteristics of the type of cable to be used are examined and discussed
Distributed power quality improvement in residential microgrids
DEFF Research Database (Denmark)
Naderi Zarnaghi, Yahya; Hosseini, Seyed Hossein; Ghassem Zadeh, Saeid
2017-01-01
The importance of power quality issue on micro grids and also the changing nature of power system distortions will lead the future power systems to use distributed power quality improvement (DPQI) devices. One possible choice of these DPQIs are multifunctional DGs that could compensate some...... harmonics in the location of generation and prevent the harmonics to enter main power grid. In this paper a control method based on virtual harmonic impedance is presented for these multifunctional DGs and the effect of the location of these DGs on compensation procedure is studied with simulating...
Power law deformation of Wishart–Laguerre ensembles of random matrices
International Nuclear Information System (INIS)
Akemann, Gernot; Vivo, Pierpaolo
2008-01-01
We introduce a one-parameter deformation of the Wishart–Laguerre or chiral ensembles of positive definite random matrices with Dyson index β = 1,2 and 4. Our generalized model has a fat-tailed distribution while preserving the invariance under orthogonal, unitary or symplectic transformations. The spectral properties are derived analytically for finite matrix size N × M for all three values of β, in terms of the orthogonal polynomials of the standard Wishart–Laguerre ensembles. For large N in a certain double-scaling limit we obtain a generalized Marčenko–Pastur distribution on the macroscopic scale, and a generalized Bessel law at the hard edge which is shown to be universal. Both macroscopic and microscopic correlations exhibit power law tails, where the microscopic limit depends on β and the difference M−N. In the limit where our parameter governing the power law goes to infinity we recover the correlations of the Wishart–Laguerre ensembles. To illustrate these findings, the generalized Marčenko–Pastur distribution is shown to be in very good agreement with empirical data from financial covariance matrices
Power Electronics Control of Wind Energy in Distributed Power System
DEFF Research Database (Denmark)
Iov, Florin; Ciobotaru, Mihai; Blaabjerg, Frede
2008-01-01
is to change the electrical power production sources from the conventional, fossil (and short term) based energy sources to renewable energy resources. The other is to use high efficient power electronics in power generation, power transmission/distribution and end-user application. This paper discuss the most...... emerging renewable energy sources, wind energy, which by means of power electronics are changing from being a minor energy source to be acting as an important power source in the energy system. Power electronics is the enabling technology and the presentation will cover the development in wind turbine...... technology from kW to MW, discuss which power electronic solutions are most feasible and used today....
Wind Power in Electrical Distribution Systems
DEFF Research Database (Denmark)
Chen, Zhe
2013-01-01
Recent years, wind power is experiencing a rapid growth, large number of wind turbines/wind farms have been installed and connected to power systems. In addition to the large centralised wind farms connected to transmission grids, many distributed wind turbines and wind farms are operated as dist...
Wide-band segmented power distribution networks
Tereshchenko, O.V.; Buesink, Frederik Johannes Karel; Leferink, Frank Bernardus Johannes
2013-01-01
This paper discusses a novel design of Power Distribution Network (PDN). By physical structuring of the power plane into repetitive symmetrical and asymmetrical segments of varying size, suppression of the propagation of unwanted noise throughout the PDN over a wide frequency range is achieved.
Cathode power distribution system and method of using the same for power distribution
Williamson, Mark A; Wiedmeyer, Stanley G; Koehl, Eugene R; Bailey, James L; Willit, James L; Barnes, Laurel A; Blaskovitz, Robert J
2014-11-11
Embodiments include a cathode power distribution system and/or method of using the same for power distribution. The cathode power distribution system includes a plurality of cathode assemblies. Each cathode assembly of the plurality of cathode assemblies includes a plurality of cathode rods. The system also includes a plurality of bus bars configured to distribute current to each of the plurality of cathode assemblies. The plurality of bus bars include a first bus bar configured to distribute the current to first ends of the plurality of cathode assemblies and a second bus bar configured to distribute the current to second ends of the plurality of cathode assemblies.
Second-order small-disturbance solutions for hypersonic flow over power-law bodies
Townsend, J. C.
1975-01-01
Similarity solutions were found which give the adiabatic flow of an ideal gas about two-dimensional and axisymmetric power-law bodies at infinite Mach number to second order in the body slenderness parameter. The flow variables were expressed as a sum of zero-order and perturbation similarity functions for which the axial variations in the flow equations separated out. The resulting similarity equations were integrated numerically. The solutions, which are universal functions, are presented in graphic and tabular form. To avoid a singularity in the calculations, the results are limited to body power-law exponents greater than about 0.85 for the two-dimensional case and 0.75 for the axisymmetric case. Because of the entropy layer induced by the nose bluntness (for power-law bodies other than cones and wedges), only the pressure function is valid at the body surface. The similarity results give excellent agreement with the exact solutions for inviscid flow over wedges and cones having half-angles up to about 20 deg. They give good agreement with experimental shock-wave shapes and surface-pressure distributions for 3/4-power axisymmetric bodies, considering that Mach number and boundary-layer displacement effects are not included in the theory.
Power-Law Template for IR Point Source Clustering
Addison, Graeme E.; Dunkley, Joanna; Hajian, Amir; Viero, Marco; Bond, J. Richard; Das, Sudeep; Devlin, Mark; Halpern, Mark; Hincks, Adam; Hlozek, Renee;
2011-01-01
We perform a combined fit to angular power spectra of unresolved infrared (IR) point sources from the Planck satellite (at 217,353,545 and 857 GHz, over angular scales 100 clustered power over the range of angular scales and frequencies considered is well fit by a simple power law of the form C_l\\propto I(sup -n) with n = 1.25 +/- 0.06. While the IR sources are understood to lie at a range of redshifts, with a variety of dust properties, we find that the frequency dependence of the clustering power can be described by the square of a modified blackbody, nu(sup beta) B(nu,T_eff), with a single emissivity index beta = 2.20 +/- 0.07 and effective temperature T_eff= 9.7 K. Our predictions for the clustering amplitude are consistent with existing ACT and South Pole Telescope results at around 150 and 220 GHz, as is our prediction for the effective dust spectral index, which we find to be alpha_150-220 = 3.68 +/- 0.07 between 150 and 220 GHz. Our constraints on the clustering shape and frequency dependence can be used to model the IR clustering as a contaminant in Cosmic Microwave Background anisotropy measurements. The combined Planck and BLAST data also rule out a linear bias clustering model.
Power-Law Template for Infrared Point-Source Clustering
Addison, Graeme E; Dunkley, Joanna; Hajian, Amir; Viero, Marco; Bond, J. Richard; Das, Sudeep; Devlin, Mark J.; Halpern, Mark; Hincks, Adam D; Hlozek, Renee;
2012-01-01
We perform a combined fit to angular power spectra of unresolved infrared (IR) point sources from the Planck satellite (at 217, 353, 545, and 857 GHz, over angular scales 100 approx clustered power over the range of angular scales and frequencies considered is well fitted by a simple power law of the form C(sup clust)(sub l) varies as l (sub -n) with n = 1.25 +/- 0.06. While the IR sources are understood to lie at a range of redshifts, with a variety of dust properties, we find that the frequency dependence of the clustering power can be described by the square of a modified blackbody, ?(sup Beta)B(?, T(sub eff) ), with a single emissivity index Beta = 2.20 +/- 0.07 and effective temperature T(sub eff) = 9.7 K. Our predictions for the clustering amplitude are consistent with existing ACT and South Pole Telescope results at around 150 and 220 GHz, as is our prediction for the effective dust spectral index, which we find to be alpha(sub 150-220) = 3.68 +/- 0.07 between 150 and 220 GHz. Our constraints on the clustering shape and frequency dependence can be used to model the IR clustering as a contaminant in cosmic microwave background anisotropy measurements. The combined Planck and BLAST data also rule out a linear bias clustering model.
Power-law versus log-law in wall-bounded turbulence: A large-eddy simulation perspective
Cheng, W.; Samtaney, Ravi
2014-01-01
The debate whether the mean streamwise velocity in wall-bounded turbulent flows obeys a log-law or a power-law scaling originated over two decades ago, and continues to ferment in recent years. As experiments and direct numerical simulation can
SNS AC Power Distribution and Reliability of AC Power Supply
Holik, Paul S
2005-01-01
The SNS Project has 45MW of installed power. A design description under the Construction Design and Maintenance (CDM) with regard to regulations (OSHA, NFPA, NEC), reliability issues and maintenance of the AC power distribution system are herewith presented. The SNS Project has 45MW of installed power. The Accelerator Systems are Front End (FE)and LINAC KLYSTRON Building (LK), Central Helium Liquefier (CHL), High Energy Beam Transport (HEBT), Accumulator Ring and Ring to Target Beam Transport (RTBT) Support Buildings have 30MW installed power. FELK has 16MW installed, majority of which is klystron and magnet power supply system. CHL, supporting the super conducting portion of the accelerator has 7MW installed power and the RING Systems (HEBT, RING and RTBT) have also 7MW installed power.*
Power distribution monitor for nuclear reactor
International Nuclear Information System (INIS)
Nishizawa, Yasuo; Kiguchi, Takashi.
1974-01-01
Object: To compare the measured local power region monitor (LPRM) index with the result of a primary calculation to correct the threshold condition for the primary calculation thereby to rapidly grasp and monitor the existing power distribution. Structure: The index of an LPRM disposed in a nuclear reactor is processed in a data processor to remove therefrom a noise, and transmitted to a threshold condition processor to be stored therein. The LPRM index measured by the threshold condition processor is compared with the calculated LPRM value transmitted from the primary processor, whereby the threshold condition is corrected and transmitted to the primary processor. After the completion of calculation, the traversing incore probe (TIP) indexing value is converted to a thermal output distribution or a linear output density distribution and transmitted to an output indicator or an output typewriter. The operator may monitor the existing power distribution by monitoring the output indicator. (Kamimura, M.)
Residual distribution for general time-dependent conservation laws
International Nuclear Information System (INIS)
Ricchiuto, Mario; Csik, Arpad; Deconinck, Herman
2005-01-01
We consider the second-order accurate numerical solution of general time-dependent hyperbolic conservation laws over unstructured grids in the framework of the Residual Distribution method. In order to achieve full conservation of the linear, monotone and first-order space-time schemes of (Csik et al., 2003) and (Abgrall et al., 2000), we extend the conservative residual distribution (CRD) formulation of (Csik et al., 2002) to prismatic space-time elements. We then study the design of second-order accurate and monotone schemes via the nonlinear mapping of the local residuals of linear monotone schemes. We derive sufficient and necessary conditions for the well-posedness of the mapping. We prove that the schemes obtained with the CRD formulation satisfy these conditions by construction. Thus the nonlinear schemes proposed in this paper are always well defined. The performance of the linear and nonlinear schemes are evaluated on a series of test problems involving the solution of the Euler equations and of a two-phase flow model. We consider the resolution of strong shocks and complex interacting flow structures. The results demonstrate the robustness, accuracy and non-oscillatory character of the proposed schemes. d schemes
Grid-connected distributed solar power systems
Moyle, R.; Chernoff, H.; Schweizer, T.
This paper discusses some important, though often ignored, technical and economic issues of distributed solar power systems: protection of the utility system and nonsolar customers requires suitable interfaced equipment. Purchase criteria must mirror reality; most analyses use life-cycle costing with low discount rates - most buyers use short payback periods. Distributing, installing, and marketing small, distributed solar systems is more costly than most analyses estimate. Results show that certain local conditions and uncommon purchase considerations can combine to make small, distributed solar power attractive, but lower interconnect costs (per kW), lower marketing and product distribution costs, and more favorable purchase criteria make large, centralized solar energy more attractive. Specifically, the value of dispersed solar systems to investors and utilities can be higher than $2000/kw. However, typical residential owners place a value of well under $1000 on the installed system.
Kumar, Jagadish; Ananthakrishna, G
2018-01-01
Scale-invariant power-law distributions for acoustic emission signals are ubiquitous in several plastically deforming materials. However, power-law distributions for acoustic emission energies are reported in distinctly different plastically deforming situations such as hcp and fcc single and polycrystalline samples exhibiting smooth stress-strain curves and in dilute metallic alloys exhibiting discontinuous flow. This is surprising since the underlying dislocation mechanisms in these two types of deformations are very different. So far, there have been no models that predict the power-law statistics for discontinuous flow. Furthermore, the statistics of the acoustic emission signals in jerky flow is even more complex, requiring multifractal measures for a proper characterization. There has been no model that explains the complex statistics either. Here we address the problem of statistical characterization of the acoustic emission signals associated with the three types of the Portevin-Le Chatelier bands. Following our recently proposed general framework for calculating acoustic emission, we set up a wave equation for the elastic degrees of freedom with a plastic strain rate as a source term. The energy dissipated during acoustic emission is represented by the Rayleigh-dissipation function. Using the plastic strain rate obtained from the Ananthakrishna model for the Portevin-Le Chatelier effect, we compute the acoustic emission signals associated with the three Portevin-Le Chatelier bands and the Lüders-like band. The so-calculated acoustic emission signals are used for further statistical characterization. Our results show that the model predicts power-law statistics for all the acoustic emission signals associated with the three types of Portevin-Le Chatelier bands with the exponent values increasing with increasing strain rate. The calculated multifractal spectra corresponding to the acoustic emission signals associated with the three band types have a maximum
European contract law and the capabilities approach: on distributive responsibility for contract law
Tjon Soei Len, L.; Weidtmann, N.; Hölzchen, Y.M.; Hawa, B.
2012-01-01
This paper argues that the normative requirements of Nussbaum’s capabilities approach extend to contract law (and private law more broadly). Contract law is part of a society’s basic structure, i.e. the responsibility bearing structure that is to secure and enhance individuals’ basic capabilities.
Malevergne, Yannick; Pisarenko, Vladilen; Sornette, Didier
2011-03-01
Fat-tail distributions of sizes abound in natural, physical, economic, and social systems. The lognormal and the power laws have historically competed for recognition with sometimes closely related generating processes and hard-to-distinguish tail properties. This state-of-affair is illustrated with the debate between Eeckhout [Amer. Econ. Rev. 94, 1429 (2004)] and Levy [Amer. Econ. Rev. 99, 1672 (2009)] on the validity of Zipf's law for US city sizes. By using a uniformly most powerful unbiased (UMPU) test between the lognormal and the power-laws, we show that conclusive results can be achieved to end this debate. We advocate the UMPU test as a systematic tool to address similar controversies in the literature of many disciplines involving power laws, scaling, "fat" or "heavy" tails. In order to demonstrate that our procedure works for data sets other than the US city size distribution, we also briefly present the results obtained for the power-law tail of the distribution of personal identity (ID) losses, which constitute one of the major emergent risks at the interface between cyberspace and reality.
Shintani, Masaru; Umeno, Ken
2018-04-01
The power law is present ubiquitously in nature and in our societies. Therefore, it is important to investigate the characteristics of power laws in the current era of big data. In this paper we prove that the superposition of non-identical stochastic processes with power laws converges in density to a unique stable distribution. This property can be used to explain the universality of stable laws that the sums of the logarithmic returns of non-identical stock price fluctuations follow stable distributions.
Power-law versus log-law in wall-bounded turbulence: A large-eddy simulation perspective
Cheng, W.; Samtaney, R.
2014-01-01
The debate whether the mean streamwise velocity in wall-bounded turbulent flows obeys a log-law or a power-law scaling originated over two decades ago, and continues to ferment in recent years. As experiments and direct numerical simulation can not provide sufficient clues, in this study we present an insight into this debate from a large-eddy simulation (LES) viewpoint. The LES organically combines state-of-the-art models (the stretched-vortex model and inflow rescaling method) with a virtual-wall model derived under different scaling law assumptions (the log-law or the power-law by George and Castillo ["Zero-pressure-gradient turbulent boundary layer," Appl. Mech. Rev. 50, 689 (1997)]). Comparison of LES results for Reθ ranging from 105 to 1011 for zero-pressure-gradient turbulent boundary layer flows are carried out for the mean streamwise velocity, its gradient and its scaled gradient. Our results provide strong evidence that for both sets of modeling assumption (log law or power law), the turbulence gravitates naturally towards the log-law scaling at extremely large Reynolds numbers.
Power-law versus log-law in wall-bounded turbulence: A large-eddy simulation perspective
Cheng, W.
2014-01-29
The debate whether the mean streamwise velocity in wall-bounded turbulent flows obeys a log-law or a power-law scaling originated over two decades ago, and continues to ferment in recent years. As experiments and direct numerical simulation can not provide sufficient clues, in this study we present an insight into this debate from a large-eddy simulation (LES) viewpoint. The LES organically combines state-of-the-art models (the stretched-vortex model and inflow rescaling method) with a virtual-wall model derived under different scaling law assumptions (the log-law or the power-law by George and Castillo [“Zero-pressure-gradient turbulent boundary layer,” Appl. Mech. Rev.50, 689 (1997)]). Comparison of LES results for Re θ ranging from 105 to 1011 for zero-pressure-gradient turbulent boundary layer flows are carried out for the mean streamwise velocity, its gradient and its scaled gradient. Our results provide strong evidence that for both sets of modeling assumption (log law or power law), the turbulence gravitates naturally towards the log-law scaling at extremely large Reynolds numbers.
Aydiner, Ekrem; Cherstvy, Andrey G.; Metzler, Ralf
2018-01-01
We study by Monte Carlo simulations a kinetic exchange trading model for both fixed and distributed saving propensities of the agents and rationalize the person and wealth distributions. We show that the newly introduced wealth distribution - that may be more amenable in certain situations - features a different power-law exponent, particularly for distributed saving propensities of the agents. For open agent-based systems, we analyze the person and wealth distributions and find that the presence of trap agents alters their amplitude, leaving however the scaling exponents nearly unaffected. For an open system, we show that the total wealth - for different trap agent densities and saving propensities of the agents - decreases in time according to the classical Kohlrausch-Williams-Watts stretched exponential law. Interestingly, this decay does not depend on the trap agent density, but rather on saving propensities. The system relaxation for fixed and distributed saving schemes are found to be different.
Brook, Martin; Hebblewhite, Bruce; Mitra, Rudrajit
2016-04-01
Sierra Madre and the Bowen Basin span similar ranges, indicating that the factor of increase in frequency (F) for a doubling of aperture size (A) shows similar relationships and variability from both sites. Despite their limitations, we conclude that fracture aperture-frequency power-law relationships are valid and, when interpreted carefully, provide a useful basis for comparing rock fracture distributions across different sites.
Deviations from uniform power law scaling in nonstationary time series
Viswanathan, G. M.; Peng, C. K.; Stanley, H. E.; Goldberger, A. L.
1997-01-01
A classic problem in physics is the analysis of highly nonstationary time series that typically exhibit long-range correlations. Here we test the hypothesis that the scaling properties of the dynamics of healthy physiological systems are more stable than those of pathological systems by studying beat-to-beat fluctuations in the human heart rate. We develop techniques based on the Fano factor and Allan factor functions, as well as on detrended fluctuation analysis, for quantifying deviations from uniform power-law scaling in nonstationary time series. By analyzing extremely long data sets of up to N = 10(5) beats for 11 healthy subjects, we find that the fluctuations in the heart rate scale approximately uniformly over several temporal orders of magnitude. By contrast, we find that in data sets of comparable length for 14 subjects with heart disease, the fluctuations grow erratically, indicating a loss of scaling stability.
Backreaction of Cosmological Fluctuations during Power-Law Inflation
International Nuclear Information System (INIS)
Marozzi, G.
2007-01-01
We study the renormalized energy-momentum tensor of cosmological scalar fluctuations during the slow-rollover regime for power-law inflation and find that it is characterized by a negative energy density at the leading order, with the same time behavior as the background energy. The average expansion rate appears decreased by the backreaction of the effective energy of cosmological fluctuations, but this value is comparable with the energy of the background only if inflation starts at a Planckian energy. We also find that, for this particular model, the first- and second-order inflaton fluctuations are decoupled and satisfy the same equation of motion. To conclude, the fourth-order adiabatic expansion for the inflaton scalar field is evaluated for a general potential V(φ)
Floquet states of a kicked particle in a singular potential: Exponential and power-law profiles
Paul, Sanku; Santhanam, M. S.
2018-03-01
It is well known that, in the chaotic regime, all the Floquet states of kicked rotor system display an exponential profile resulting from dynamical localization. If the kicked rotor is placed in an additional stationary infinite potential well, its Floquet states display power-law profile. It has also been suggested in general that the Floquet states of periodically kicked systems with singularities in the potential would have power-law profile. In this work, we study the Floquet states of a kicked particle in finite potential barrier. By varying the height of finite potential barrier, the nature of transition in the Floquet state from exponential to power-law decay profile is studied. We map this system to a tight-binding model and show that the nature of decay profile depends on energy band spanned by the Floquet states (in unperturbed basis) relative to the potential height. This property can also be inferred from the statistics of Floquet eigenvalues and eigenvectors. This leads to an unusual scenario in which the level spacing distribution, as a window in to the spectral correlations, is not a unique characteristic for the entire system.
Power distribution studies for CMS forward tracker
International Nuclear Information System (INIS)
Todri, A.; Turqueti, M.; Rivera, R.; Kwan, S.
2009-01-01
The Electronic Systems Engineering Department of the Computing Division at the Fermi National Accelerator Laboratory is carrying out R and D investigations for the upgrade of the power distribution system of the Compact Muon Solenoid (CMS) Pixel Tracker at the Large Hadron Collider (LHC). Among the goals of this effort is that of analyzing the feasibility of alternative powering schemes for the forward tracker, including DC to DC voltage conversion techniques using commercially available and custom switching regulator circuits. Tests of these approaches are performed using the PSI46 pixel readout chip currently in use at the CMS Tracker. Performance measures of the detector electronics will include pixel noise and threshold dispersion results. Issues related to susceptibility to switching noise will be studied and presented. In this paper, we describe the current power distribution network of the CMS Tracker, study the implications of the proposed upgrade with DC-DC converters powering scheme and perform noise susceptibility analysis.
Distributed generation and centralized power system in Thailand
DEFF Research Database (Denmark)
Sukkumnoed, Decharut
2004-01-01
The paper examines and discusses conflicts between the development of distributed power and centralized power system.......The paper examines and discusses conflicts between the development of distributed power and centralized power system....
Power operation, measurement and methods of calculation of power distribution
International Nuclear Information System (INIS)
Lindahl, S.O.; Bernander, O.; Olsson, S.
1982-01-01
During the initial fuel loading of a BWR core, extensive checks and measurements of the fuel are performed. The measurements are designed to verify that the reactor can always be safely operated in compliance with the regulatory constraints. The power distribution within the reactor core is evaluated by means of instrumentation and elaborate computer calculations. The power distribution forms the basis for the evaluation of thermal limits. The behaviour of the reactor during the ordinary modes of operation as well as during transients shall be well understood and such that the integrity of the fuel and the reactor systems is always well preserved. (author)
Reliability assessment of distribution power systems including distributed generations
International Nuclear Information System (INIS)
Megdiche, M.
2004-12-01
Nowadays, power systems have reached a good level of reliability. Nevertheless, considering the modifications induced by the connections of small independent producers to distribution networks, there's a need to assess the reliability of these new systems. Distribution networks present several functional characteristics, highlighted by the qualitative study of the failures, as dispersed loads at several places, variable topology and some electrotechnical phenomena which must be taken into account to model the events that can occur. The adopted reliability calculations method is Monte Carlo simulations, the probabilistic method most powerful and most flexible to model complex operating of the distribution system. We devoted a first part on the case of a 20 kV feeder to which a cogeneration unit is connected. The method was applied to a software of stochastic Petri nets simulations. Then a second part related to the study of a low voltage power system supplied by dispersed generations. Here, the complexity of the events required to code the method in an environment of programming allowing the use of power system calculations (load flow, short-circuit, load shedding, management of units powers) in order to analyse the system state for each new event. (author)
Mülken, O.; Borrmann, P.; Harting, J.D.R.; Stamerjohanns, H.
2001-01-01
We present a detailed description of a classification scheme for phase transitions in finite systems based on the distribution of Fisher zeros of the canonical partition function in the complex temperature plane. We apply this scheme to finite Bose systems in power-law traps within a semi-analytic
Reactor power distribution pattern judging device
International Nuclear Information System (INIS)
Ikehara, Tadashi.
1992-01-01
The judging device of the present invention comprises a power distribution readout system for intaking a power value from a fuel segment, a neural network having an experience learning function for receiving a power distribution value as an input variant, mapping it into a desirable property and self-organizing the map, and a learning date base storing a plurality of learnt samples. The read power distribution is classified depending on the similarity thereof with any one of representative learnt power distribution, and the corresponding state of the reactor core is outputted as a result of the judgement. When an error is found in the classified judging operation, erroneous cases are additionally learnt by using the experience and learning function, thereby improving the accuracy of the reactor core characteristic estimation operation. Since the device is mainly based on the neural network having a self-learning function and a pattern classification and judging function, a judging device having a human's intuitive pattern recognition performance and a pattern experience and learning performance is obtainable, thereby enabling to judge the state of the reactor core accurately. (N.H.)
Microwave power divider with arbitrary distribution ratio
International Nuclear Information System (INIS)
Gu Pengda; Geng Zheqiao; Cui Yanyan; Syratchev, I.
2004-01-01
As is well known, the EM field of TE11 mode at the wall of the circular waveguide changes as sine (or cosine) function azimuthally. So when we attach two perpendicular waveguides to the wall of the circular waveguide and rotate them around the axis of the waveguide, authors can distribute the input power between the two waveguides with arbitrary distribution proportion. The authors have designed a new power divider following this idea. The 3D electromagnetic simulation software HFSS is used in the design. And a new type circular TE11 mode launcher is developed. (author)
POWER-LAW TEMPLATE FOR INFRARED POINT-SOURCE CLUSTERING
Energy Technology Data Exchange (ETDEWEB)
Addison, Graeme E.; Dunkley, Joanna [Sub-department of Astrophysics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom); Hajian, Amir; Das, Sudeep; Hincks, Adam D.; Page, Lyman A.; Staggs, Suzanne T. [Joseph Henry Laboratories of Physics, Jadwin Hall, Princeton University, Princeton, NJ 08544 (United States); Viero, Marco [Department of Astronomy, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Bond, J. Richard [Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, ON M5S 3H8 (Canada); Devlin, Mark J.; Reese, Erik D. [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Halpern, Mark; Scott, Douglas [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z4 (Canada); Hlozek, Renee; Marriage, Tobias A.; Spergel, David N. [Department of Astrophysical Sciences, Peyton Hall, Princeton University, Princeton, NJ 08544 (United States); Moodley, Kavilan [Astrophysics and Cosmology Research Unit, School of Mathematical Sciences, University of KwaZulu-Natal, Durban 4041 (South Africa); Wollack, Edward [NASA/Goddard Space Flight Center, Code 665, Greenbelt, MD 20771 (United States)
2012-06-20
We perform a combined fit to angular power spectra of unresolved infrared (IR) point sources from the Planck satellite (at 217, 353, 545, and 857 GHz, over angular scales 100 {approx}< l {approx}< 2200), the Balloon-borne Large-Aperture Submillimeter Telescope (BLAST; 250, 350, and 500 {mu}m; 1000 {approx}< l {approx}< 9000), and from correlating BLAST and Atacama Cosmology Telescope (ACT; 148 and 218 GHz) maps. We find that the clustered power over the range of angular scales and frequencies considered is well fitted by a simple power law of the form C{sup clust}{sub l}{proportional_to}l{sup -n} with n = 1.25 {+-} 0.06. While the IR sources are understood to lie at a range of redshifts, with a variety of dust properties, we find that the frequency dependence of the clustering power can be described by the square of a modified blackbody, {nu}{sup {beta}} B({nu}, T{sub eff}), with a single emissivity index {beta} = 2.20 {+-} 0.07 and effective temperature T{sub eff} = 9.7 K. Our predictions for the clustering amplitude are consistent with existing ACT and South Pole Telescope results at around 150 and 220 GHz, as is our prediction for the effective dust spectral index, which we find to be {alpha}{sub 150-220} = 3.68 {+-} 0.07 between 150 and 220 GHz. Our constraints on the clustering shape and frequency dependence can be used to model the IR clustering as a contaminant in cosmic microwave background anisotropy measurements. The combined Planck and BLAST data also rule out a linear bias clustering model.
Inverter design for high frequency power distribution
King, R. J.
1985-01-01
A class of simple resonantly commutated inverters are investigated for use in a high power (100 KW - 1000 KW) high frequency (10 KHz - 20 KHz) AC power distribution system. The Mapham inverter is found to provide a unique combination of large thyristor turn-off angle and good utilization factor, much better than an alternate 'current-fed' inverter. The effects of loading the Mapham inverter entirely with rectifier loads are investigated by simulation and with an experimental 3 KW 20 KHz inverter. This inverter is found to be well suited to a power system with heavy rectifier loading.
One loop back reaction on power law inflation
International Nuclear Information System (INIS)
Abramo, L.R.; Woodard, R.P.
1999-01-01
We consider quantum-mechanical corrections to a homogeneous, isotropic, and spatially flat geometry whose scale factor expands classically as a general power of the comoving time. The effects of both gravitons and the scalar inflaton are computed at one loop using the manifestly causal formalism of Schwinger [J. Math. Phys. 2, 407 (1961); Particles, Sources and Fields (Addison, Wesley, Reading, MA, 1970)] with the Feynman rules recently developed by Iliopoulos et al. [Nucl. Phys. B 534, 419 (1998)]. We find no significant effect, in marked contrast to the result obtained by Mukhanov and co-workers [Phys. Rev. Lett. 78, 1624 (1998); Phys. Rev. D 56, 3248 (1997)] for chaotic inflation based on a quadratic potential. By applying the canonical technique of Mukhanov and co-workers to the exponential potentials of power law inflation, we show that the two methods produce the same results, within the approximations employed, for these backgrounds. We therefore conclude that the shape of the inflaton potential can have an enormous impact on the one loop back reaction. copyright 1999 The American Physical Society
Quantum healing of classical singularities in power-law spacetimes
Energy Technology Data Exchange (ETDEWEB)
Helliwell, T M [Department of Physics, Harvey Mudd College, Claremont, CA 91711 (United States); Konkowski, D A [Department of Mathematics, US Naval Academy, Annapolis, MD 21402 (United States)
2007-07-07
We study a broad class of spacetimes whose metric coefficients reduce to powers of a radius r in the limit of small r. Among these four-parameter 'power-law' metrics, we identify those parameters for which the spacetimes have classical singularities as r {yields} 0. We show that a large set of such classically-singular spacetimes is nevertheless non-singular quantum mechanically, in that the Hamiltonian operator is essentially self-adjoint, so that the evolution of quantum wave packets lacks the ambiguity associated with scattering off singularities. Using these metrics, the broadest class yet studied to compare classical with quantum singularities, we explore the physical reasons why some that are singular classically are 'healed' quantum mechanically, while others are not. We show that most (but not all) of the remaining quantum-mechanically singular spacetimes can be excluded if either the weak energy condition or the dominant energy condition is invoked, and we briefly discuss the effect of this work on the strong cosmic censorship conjecture.
Power quality in electric distribution systems
International Nuclear Information System (INIS)
Mohamed, A.A.S.
2005-01-01
the power quality of the electric system is defined by the constant values of the voltage and frequency, the good value of the power factor close to unity, and balanced three phase voltages and currents. capacitors are widely installed in distribution systems for reactive power compensation to achieve power and energy loss reduction, voltage regulation and system capacity release. the extent of these benefits depends greatly on low the capacitors are placed on the system . the problem of how to place capacitors on the system such that these benefits are achieved and / or maximized against the cost associated with the capacitor placement is termed the general capacitor placement problem.the presented mathematical model has been developed to determine the size, number, and location of fixed capacitor banks that will maximize the saving derived from reduction in peak power and energy loss, and that will minimize the capital and installation costs of capacitors
Birth and death of protein domains: A simple model of evolution explains power law behavior
Directory of Open Access Journals (Sweden)
Berezovskaya Faina S
2002-10-01
Full Text Available Abstract Background Power distributions appear in numerous biological, physical and other contexts, which appear to be fundamentally different. In biology, power laws have been claimed to describe the distributions of the connections of enzymes and metabolites in metabolic networks, the number of interactions partners of a given protein, the number of members in paralogous families, and other quantities. In network analysis, power laws imply evolution of the network with preferential attachment, i.e. a greater likelihood of nodes being added to pre-existing hubs. Exploration of different types of evolutionary models in an attempt to determine which of them lead to power law distributions has the potential of revealing non-trivial aspects of genome evolution. Results A simple model of evolution of the domain composition of proteomes was developed, with the following elementary processes: i domain birth (duplication with divergence, ii death (inactivation and/or deletion, and iii innovation (emergence from non-coding or non-globular sequences or acquisition via horizontal gene transfer. This formalism can be described as a birth, death and innovation model (BDIM. The formulas for equilibrium frequencies of domain families of different size and the total number of families at equilibrium are derived for a general BDIM. All asymptotics of equilibrium frequencies of domain families possible for the given type of models are found and their appearance depending on model parameters is investigated. It is proved that the power law asymptotics appears if, and only if, the model is balanced, i.e. domain duplication and deletion rates are asymptotically equal up to the second order. It is further proved that any power asymptotic with the degree not equal to -1 can appear only if the hypothesis of independence of the duplication/deletion rates on the size of a domain family is rejected. Specific cases of BDIMs, namely simple, linear, polynomial and rational
Truncation of power law behavior in 'scale-free' network models due to information filtering
International Nuclear Information System (INIS)
Mossa, Stefano; Barthelemy, Marc; Eugene Stanley, H.; Nunes Amaral, Luis A.
2002-01-01
We formulate a general model for the growth of scale-free networks under filtering information conditions--that is, when the nodes can process information about only a subset of the existing nodes in the network. We find that the distribution of the number of incoming links to a node follows a universal scaling form, i.e., that it decays as a power law with an exponential truncation controlled not only by the system size but also by a feature not previously considered, the subset of the network 'accessible' to the node. We test our model with empirical data for the World Wide Web and find agreement
Intelligent distributed control for nuclear power plants
International Nuclear Information System (INIS)
Klevans, E.H.
1991-01-01
In September of 1989 work began on the DOE University Program grant DE-FG07-89ER12889. The grant provides support for a three year project to develop and demonstrate Intelligent Distributed Control (IDC) for Nuclear Power Plants. The body of this First Annual Technical Progress report summarizes the first year tasks while the appendices provide detailed information presented at conference meetings. One major addendum report, authored by M.A. Schultz, describes the ultimate goals and projected structure of an automatic distributed control system for EBR-2. The remaining tasks of the project develop specific implementations of various components required to demonstrate the intelligent distributed control concept
The US business cycle: power law scaling for interacting units with complex internal structure
Ormerod, Paul
2002-11-01
In the social sciences, there is increasing evidence of the existence of power law distributions. The distribution of recessions in capitalist economies has recently been shown to follow such a distribution. The preferred explanation for this is self-organised criticality. Gene Stanley and colleagues propose an alternative, namely that power law scaling can arise from the interplay between random multiplicative growth and the complex structure of the units composing the system. This paper offers a parsimonious model of the US business cycle based on similar principles. The business cycle, along with long-term growth, is one of the two features which distinguishes capitalism from all previously existing societies. Yet, economics lacks a satisfactory theory of the cycle. The source of cycles is posited in economic theory to be a series of random shocks which are external to the system. In this model, the cycle is an internal feature of the system, arising from the level of industrial concentration of the agents and the interactions between them. The model-in contrast to existing economic theories of the cycle-accounts for the key features of output growth in the US business cycle in the 20th century.
Breaking the power law: Multiscale simulations of self-ion irradiated tungsten
Jin, Miaomiao; Permann, Cody; Short, Michael P.
2018-06-01
The initial stage of radiation defect creation has often been shown to follow a power law distribution at short time scales, recently so with tungsten, following many self-organizing patterns found in nature. The evolution of this damage, however, is dominated by interactions between defect clusters, as the coalescence of smaller defects into clusters depends on the balance between transport, absorption, and emission to/from existing clusters. The long-time evolution of radiation-induced defects in tungsten is studied with cluster dynamics parameterized with lower length scale simulations, and is shown to deviate from a power law size distribution. The effects of parameters such as dose rate and total dose, as parameters affecting the strength of the driving force for defect evolution, are also analyzed. Excellent agreement is achieved with regards to an experimentally measured defect size distribution at 30 K. This study provides another satisfactory explanation for experimental observations in addition to that of primary radiation damage, which should be reconciled with additional validation data.
Universal correlations and power-law tails in financial covariance matrices
Akemann, G.; Fischmann, J.; Vivo, P.
2010-07-01
We investigate whether quantities such as the global spectral density or individual eigenvalues of financial covariance matrices can be best modelled by standard random matrix theory or rather by its generalisations displaying power-law tails. In order to generate individual eigenvalue distributions a chopping procedure is devised, which produces a statistical ensemble of asset-price covariances from a single instance of financial data sets. Local results for the smallest eigenvalue and individual spacings are very stable upon reshuffling the time windows and assets. They are in good agreement with the universal Tracy-Widom distribution and Wigner surmise, respectively. This suggests a strong degree of robustness especially in the low-lying sector of the spectra, most relevant for portfolio selections. Conversely, the global spectral density of a single covariance matrix as well as the average over all unfolded nearest-neighbour spacing distributions deviate from standard Gaussian random matrix predictions. The data are in fair agreement with a recently introduced generalised random matrix model, with correlations showing a power-law decay.
Desplentere, Frederik; Six, Wim; Bonte, Hilde; Debrabandere, Eric
2013-04-01
In predictive engineering for polymer processes, the proper prediction of material microstructure from known processing conditions and constituent material properties is a critical step forward properly predicting bulk properties in the finished composite. Operating within the context of long-fiber thermoplastics (LFT, length > 15mm) this investigation concentrates on the influence of the power law index on the final fiber length distribution within the injection molded part. To realize this, the Autodesk Simulation Moldflow Insight Scandium 2013 software has been used. In this software, a fiber breakage algorithm is available from this release on. Using virtual material data with realistic viscosity levels allows to separate the influence of the power law index on the fiber breakage from the other material and process parameters. Applying standard settings for the fiber breakage parameters results in an obvious influence on the fiber length distribution through the thickness of the part and also as function of position in the part. Finally, the influence of the shear rate constant within the fiber breakage model has been investigated illustrating the possibility to fit the virtual fiber length distribution to the possible experimentally available data.
Power laws and self-organized criticality in theory and nature
Energy Technology Data Exchange (ETDEWEB)
Marković, Dimitrije, E-mail: markovic@cbs.mpg.de [Institute for Theoretical Physics, Goethe University Frankfurt (Germany); Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig (Germany); Biomagnetic Center, Hans Berger Clinic for Neurology, University Hospital Jena, Jena (Germany); Gros, Claudius, E-mail: gros@itp.uni-frankfurt.de [Institute for Theoretical Physics, Goethe University Frankfurt (Germany)
2014-03-01
Power laws and distributions with heavy tails are common features of many complex systems. Examples are the distribution of earthquake magnitudes, solar flare intensities and the sizes of neuronal avalanches. Previously, researchers surmised that a single general concept may act as an underlying generative mechanism, with the theory of self organized criticality being a weighty contender. The power-law scaling observed in the primary statistical analysis is an important, but by far not the only feature characterizing experimental data. The scaling function, the distribution of energy fluctuations, the distribution of inter-event waiting times, and other higher order spatial and temporal correlations, have seen increased consideration over the last years. Leading to realization that basic models, like the original sandpile model, are often insufficient to adequately describe the complexity of real-world systems with power-law distribution. Consequently, a substantial amount of effort has gone into developing new and extended models and, hitherto, three classes of models have emerged. The first line of models is based on a separation between the time scales of an external drive and an internal dissipation, and includes the original sandpile model and its extensions, like the dissipative earthquake model. Within this approach the steady state is close to criticality in terms of an absorbing phase transition. The second line of models is based on external drives and internal dynamics competing on similar time scales and includes the coherent noise model, which has a non-critical steady state characterized by heavy-tailed distributions. The third line of models proposes a non-critical self-organizing state, being guided by an optimization principle, such as the concept of highly optimized tolerance. We present a comparative overview regarding distinct modeling approaches together with a discussion of their potential relevance as underlying generative models for real
Power laws and self-organized criticality in theory and nature
International Nuclear Information System (INIS)
Marković, Dimitrije; Gros, Claudius
2014-01-01
Power laws and distributions with heavy tails are common features of many complex systems. Examples are the distribution of earthquake magnitudes, solar flare intensities and the sizes of neuronal avalanches. Previously, researchers surmised that a single general concept may act as an underlying generative mechanism, with the theory of self organized criticality being a weighty contender. The power-law scaling observed in the primary statistical analysis is an important, but by far not the only feature characterizing experimental data. The scaling function, the distribution of energy fluctuations, the distribution of inter-event waiting times, and other higher order spatial and temporal correlations, have seen increased consideration over the last years. Leading to realization that basic models, like the original sandpile model, are often insufficient to adequately describe the complexity of real-world systems with power-law distribution. Consequently, a substantial amount of effort has gone into developing new and extended models and, hitherto, three classes of models have emerged. The first line of models is based on a separation between the time scales of an external drive and an internal dissipation, and includes the original sandpile model and its extensions, like the dissipative earthquake model. Within this approach the steady state is close to criticality in terms of an absorbing phase transition. The second line of models is based on external drives and internal dynamics competing on similar time scales and includes the coherent noise model, which has a non-critical steady state characterized by heavy-tailed distributions. The third line of models proposes a non-critical self-organizing state, being guided by an optimization principle, such as the concept of highly optimized tolerance. We present a comparative overview regarding distinct modeling approaches together with a discussion of their potential relevance as underlying generative models for real
Method of estimating the reactor power distribution
International Nuclear Information System (INIS)
Mitsuta, Toru; Fukuzaki, Takaharu; Doi, Kazuyori; Kiguchi, Takashi.
1984-01-01
Purpose: To improve the calculation accuracy for the power distribution thereby improve the reliability of power distribution monitor. Constitution: In detector containing strings disposed within a reactor core, movable type neutron flux monitors are provided in addition to position fixed type neutron monitors conventionally disposed so far. Upon periodical monitoring, a power distribution X1 is calculated from a physical reactor core model. Then, a higher power position X2 is detected by position detectors and value X2 is sent to a neutron flux monitor driving device to displace the movable type monitors to a higher power position in each of the strings. After displacement, the value X1 is amended by an amending device using measured values from the movable type and fixed type monitors and the amended value is sent to a reactor core monitor device. Upon failure of the fixed type monitors, the position is sent to the monitor driving device and the movable monitors are displaced to that position for measurement. (Sekiya, K.)
Featuring Control Power: Corporate Law and Economics Revisited
A.M. Pacces (Alessio)
2008-01-01
textabstractThis dissertation reappraises the existing framework for economic analysis of corporate law. The standard approach to the legal foundations of corporate governance is based on the ‘law matters’ thesis, according to which corporate law promotes separation of ownership and control by
International Nuclear Information System (INIS)
Playe, D.
1999-01-01
The French government will adopt with some reticence the new organization of the electric power market as decided by the European parliament. The French transposition of the European legislative text will be discussed at the French national assembly only in February 1999 and voted only in the second semester. This paper summarizes the main points of the project of law passed in December 9, 1998 and tries to explain the stakes of the new regulatory context for Electricite de France (EdF): creation of a regulation commission, accounting dissociation between production, transport and distribution, the eligible customers, the tariffs of electricity transport, the disagreement between the government and the electric equipment professionals with respect to EdF's position, the social aspects, and the construction of direct power lines in complement of public networks. An interview of G. Poullain, head of the national council of the electric equipment (CNEE), about the future development of EdF is given in inset. (J.S.)
Disk-galaxy density distribution from orbital speeds using Newton's law, version 1.1
Nicholson, Kenneth F.
2000-01-01
Given the dimensions(including thickness) of an axisymmetric galaxy, Newton's law is used in integral form to find the density distributions required to match a wide range of orbital speed profiles. Newton's law is not modified and no dark-matter halos are required. The speed distributions can have extreme shapes if they are reasonably smooth. Several examples are given.
International Nuclear Information System (INIS)
Bokhari A H; Zaman F D; Fakhar K; Kara A H
2011-01-01
First, we studied the invariance properties of the Kadomstev—Petviashvili equation with power law nonlinearity. Then, we determined the complete class of conservation laws and stated the corresponding conserved densities which are useful in finding the conserved quantities of the equation. The point symmetry generators were also used to reduce the equation to an exact solution and to verify the invariance properties of the conserved flows. (general)
Improvement of power quality using distributed generation
Energy Technology Data Exchange (ETDEWEB)
Moreno-Munoz, A.; Lopez-Rodriguez, M.A.; Flores-Arias, J.M.; Bellido-Outerino, F.J. [Universidad de Cordoba, Departamento A.C., Electronica y T.E., Escuela Politecnica Superior, Campus de Rabanales, E-14071 Cordoba (Spain); de-la-Rosa, J.J.G. [Universidad de Cadiz, Area de Electronica, Dpto. ISA, TE y Electronica, Escuela Politecnica Superior Avda, Ramon Puyol, S/N, E-11202-Algeciras-Cadiz (Spain); Ruiz-de-Adana, M. [Universidad de Cordoba, Departamento de Quimica Fisica y Termodinamica Aplicada, Campus de Rabanales, E-14071 Cordoba (Spain)
2010-12-15
This paper addresses how Distributed Generation (DG), particularly when configured in Combined Heat and Power (CHP) mode, can become a powerful reliability solution in highlight automated factories, especially when integrated with complimentary Power Quality (PQ) measures. The paper presents results from the PQ audit conducted at a highly automated plant over last year. It was found that the main problems for the equipment installed were voltage sags. Among all categories of electrical disturbances, the voltage sag (dip) and momentary interruption are the nemeses of the automated industrial process. The paper analyzes the capabilities of modern electronic power supplies and the convenience of embedded solution. Finally it is addressed the role of the DG/CHP on the reliability of digital factories. (author)
Statistical tests for power-law cross-correlated processes
Podobnik, Boris; Jiang, Zhi-Qiang; Zhou, Wei-Xing; Stanley, H. Eugene
2011-12-01
For stationary time series, the cross-covariance and the cross-correlation as functions of time lag n serve to quantify the similarity of two time series. The latter measure is also used to assess whether the cross-correlations are statistically significant. For nonstationary time series, the analogous measures are detrended cross-correlations analysis (DCCA) and the recently proposed detrended cross-correlation coefficient, ρDCCA(T,n), where T is the total length of the time series and n the window size. For ρDCCA(T,n), we numerically calculated the Cauchy inequality -1≤ρDCCA(T,n)≤1. Here we derive -1≤ρDCCA(T,n)≤1 for a standard variance-covariance approach and for a detrending approach. For overlapping windows, we find the range of ρDCCA within which the cross-correlations become statistically significant. For overlapping windows we numerically determine—and for nonoverlapping windows we derive—that the standard deviation of ρDCCA(T,n) tends with increasing T to 1/T. Using ρDCCA(T,n) we show that the Chinese financial market's tendency to follow the U.S. market is extremely weak. We also propose an additional statistical test that can be used to quantify the existence of cross-correlations between two power-law correlated time series.
Cluster Tails for Critical Power-Law Inhomogeneous Random Graphs
van der Hofstad, Remco; Kliem, Sandra; van Leeuwaarden, Johan S. H.
2018-04-01
Recently, the scaling limit of cluster sizes for critical inhomogeneous random graphs of rank-1 type having finite variance but infinite third moment degrees was obtained in Bhamidi et al. (Ann Probab 40:2299-2361, 2012). It was proved that when the degrees obey a power law with exponent τ \\in (3,4), the sequence of clusters ordered in decreasing size and multiplied through by n^{-(τ -2)/(τ -1)} converges as n→ ∞ to a sequence of decreasing non-degenerate random variables. Here, we study the tails of the limit of the rescaled largest cluster, i.e., the probability that the scaling limit of the largest cluster takes a large value u, as a function of u. This extends a related result of Pittel (J Combin Theory Ser B 82(2):237-269, 2001) for the Erdős-Rényi random graph to the setting of rank-1 inhomogeneous random graphs with infinite third moment degrees. We make use of delicate large deviations and weak convergence arguments.
Power-law forgetting in synapses with metaplasticity
International Nuclear Information System (INIS)
Mehta, A; Luck, J M
2011-01-01
The idea of using metaplastic synapses to incorporate the separate storage of long- and short-term memories via an array of hidden states was put forward in the cascade model of Fusi et al. In this paper, we devise and investigate two models of a metaplastic synapse based on these general principles. The main difference between the two models lies in their available mechanisms of decay, when a contrarian event occurs after the build-up of a long-term memory. In one case, this leads to the conversion of the long-term memory to a short-term memory of the opposite kind, while in the other, a long-term memory of the opposite kind may be generated as a result. Appropriately enough, the response of both models to short-term events is not affected by this difference in architecture. On the contrary, the transient response of both models, after long-term memories have been created by the passage of sustained signals, is rather different. The asymptotic behaviour of both models is, however, characterised by power-law forgetting with the same universal exponent
Second Law Of Thermodynamics Analysis Of Triple Cycle Power Plant
Directory of Open Access Journals (Sweden)
Matheus M. Dwinanto
2012-11-01
Full Text Available Triple cycle power plant with methane as a fuel has been analyzed on the basis of second law of thermodynamics.In this model, ideal Brayton cycle is selected as a topping cycle as it gives higher efficiency at lower pressure ratio comparedintercooler and reheat cycle. In trilple cycle the bottoming cycles are steam Rankine and organic Rankine cycle. Ammoniahas suitable working properties like critical temperature, boiling temperature, etc. Steam cycle consists of a deaerator andreheater. The bottoming ammonia cycle is a ideal Rankine cycle. Single pressure heat recovery steam and ammoniagenerators are selected for simplification of the analysis. The effects of pressure ratio and maximum temperature which aretaken as important parameters regarding the triple cycle are discussed on performance and exergetic losses. On the otherhand, the efficiency of the triple cycle can be raised, especially in the application of recovering low enthalpy content wasteheat. Therefore, by properly combining with a steam Rankine cycle, the ammonia Rankine cycle is expected to efficientlyutilize residual yet available energy to an optimal extent. The arrangement of multiple cycles is compared with combinedcycle having the same sink conditions. The parallel type of arrangement of bottoming cycle is selected due to increasedperformance.
Consistency relation in power law G-inflation
International Nuclear Information System (INIS)
Unnikrishnan, Sanil; Shankaranarayanan, S.
2014-01-01
In the standard inflationary scenario based on a minimally coupled scalar field, canonical or non-canonical, the subluminal propagation of speed of scalar perturbations ensures the following consistency relation: r ≤ −8n T , where r is the tensor-to-scalar-ratio and n T is the spectral index for tensor perturbations. However, recently, it has been demonstrated that this consistency relation could be violated in Galilean inflation models even in the absence of superluminal propagation of scalar perturbations. It is therefore interesting to investigate whether the subluminal propagation of scalar field perturbations impose any bound on the ratio r/|n T | in G-inflation models. In this paper, we derive the consistency relation for a class of G-inflation models that lead to power law inflation. Within these class of models, it turns out that one can have r > −8n T or r ≤ −8n T depending on the model parameters. However, the subluminal propagation of speed of scalar field perturbations, as required by causality, restricts r ≤ −(32/3) n T
Intelligent distributed control for nuclear power plants
International Nuclear Information System (INIS)
Klevans, E.H.
1992-01-01
This project was initiated in September 1989 as a three year project to develop and demonstrate Intelligent Distributed Control (IDC) for Nuclear Power Plants. The body of this Third Annual Technical Progress report summarizes the period from September 1991 to October 1992. There were two primary goals of this research project. The first goal was to combine diagnostics and control to achieve a highly automated power plant as described by M.A. Schultz. His philosophy, is to improve public perception of the safety of nuclear power plants by incorporating a high degree of automation where a greatly simplified operator control console minimizes the possibility of human error in power plant operations. To achieve this goal, a hierarchically distributed control system with automated responses to plant upset conditions was pursued in this research. The second goal was to apply this research to develop a prototype demonstration on an actual power plant system, the EBR-2 stem plant. Emphasized in this Third Annual Technical Progress Report is the continuing development of the in-plant intelligent control demonstration for the final project milestone and includes: simulation validation and the initial approach to experiment formulation
Intelligent distributed control for nuclear power plants
International Nuclear Information System (INIS)
Klevans, E.H.; Edwards, R.M.; Ray, A.; Lee, K.Y.; Garcia, H.E.: Chavez, C.M.; Turso, J.A.; BenAbdennour, A.
1991-01-01
In September of 1989 work began on the DOE University Program grant DE-FG07-89ER12889. The grant provides support for a three year project to develop and demonstrate Intelligent Distributed Control (IDC) for Nuclear Power Plants. The body of this Second Annual Technical Progress report covers the period from September 1990 to September 1991. It summarizes the second year accomplishments while the appendices provide detailed information presented at conference meetings. These are two primary goals of this research. The first is to combine diagnostics and control to achieve a highly automated power plant as described by M.A. Schultz, a project consultant during the first year of the project. This philosophy, as presented in the first annual technical progress report, is to improve public perception of the safety of nuclear power plants by incorporating a high degree automation where greatly simplified operator control console minimizes the possibility of human error in power plant operations. A hierarchically distributed control system with automated responses to plant upset conditions is the focus of our research to achieve this goal. The second goal is to apply this research to develop a prototype demonstration on an actual power plant system, the EBR-II steam plant
Optimal power flow for distribution networks with distributed generation
Directory of Open Access Journals (Sweden)
Radosavljević Jordan
2015-01-01
Full Text Available This paper presents a genetic algorithm (GA based approach for the solution of the optimal power flow (OPF in distribution networks with distributed generation (DG units, including fuel cells, micro turbines, diesel generators, photovoltaic systems and wind turbines. The OPF is formulated as a nonlinear multi-objective optimization problem with equality and inequality constraints. Due to the stochastic nature of energy produced from renewable sources, i.e. wind turbines and photovoltaic systems, as well as load uncertainties, a probabilisticalgorithm is introduced in the OPF analysis. The Weibull and normal distributions are employed to model the input random variables, namely the wind speed, solar irradiance and load power. The 2m+1 point estimate method and the Gram Charlier expansion theory are used to obtain the statistical moments and the probability density functions (PDFs of the OPF results. The proposed approach is examined and tested on a modified IEEE 34 node test feeder with integrated five different DG units. The obtained results prove the efficiency of the proposed approach to solve both deterministic and probabilistic OPF problems for different forms of the multi-objective function. As such, it can serve as a useful decision-making supporting tool for distribution network operators. [Projekat Ministarstva nauke Republike Srbije, br. TR33046
Distributed Power-Generation Systems and Protection
DEFF Research Database (Denmark)
Blaabjerg, Frede; Yang, Yongheng; Yang, Dongsheng
2017-01-01
the challenging issues and, more importantly, to leverage the energy generation, stringent demands from both utility operators and consumers have been imposed on the DPGS. Furthermore, as the core of energy conversion, numerous power electronic converters employing advanced control techniques have been developed...... for the DPGS to consolidate the integration. In light of the above, this paper reviews the power-conversion and control technologies used for DPGSs. The impacts of the DPGS on the distributed grid are also examined, and more importantly, strategies for enhancing the connection and protection of the DPGS...
Distributed Wireless Power Transfer With Energy Feedback
Lee, Seunghyun; Zhang, Rui
2017-04-01
Energy beamforming (EB) is a key technique for achieving efficient radio-frequency (RF) transmission enabled wireless energy transfer (WET). By optimally designing the waveforms from multiple energy transmitters (ETs) over the wireless channels, they can be constructively combined at the energy receiver (ER) to achieve an EB gain that scales with the number of ETs. However, the optimal design of EB waveforms requires accurate channel state information (CSI) at the ETs, which is challenging to obtain practically, especially in a distributed system with ETs at separate locations. In this paper, we study practical and efficient channel training methods to achieve optimal EB in a distributed WET system. We propose two protocols with and without centralized coordination, respectively, where distributed ETs either sequentially or in parallel adapt their transmit phases based on a low-complexity energy feedback from the ER. The energy feedback only depends on the received power level at the ER, where each feedback indicates one particular transmit phase that results in the maximum harvested power over a set of previously used phases. Simulation results show that the two proposed training protocols converge very fast in practical WET systems even with a large number of distributed ETs, while the protocol with sequential ET phase adaptation is also analytically shown to converge to the optimal EB design with perfect CSI by increasing the training time. Numerical results are also provided to evaluate the performance of the proposed distributed EB and training designs as compared to other benchmark schemes.
The operation of nuclear power plants in the conflict between administrative law and criminal law
International Nuclear Information System (INIS)
Stubbe, C.
1989-01-01
The conflicting interests of administrative law and criminal law give rise to a number of burdensome conditions to be met by the operators of nuclear plants. Of course, it is one of the peculiarities of criminal law that nobody can decide for himself whether he wants to become involved in it. There is probably no other choice than meeting, with a good blend of composure and cleverness, the criteria now surrounding the operation of a nuclear facility. (orig.) [de
Želi, Velibor; Zorica, Dušan
2018-02-01
Generalization of the heat conduction equation is obtained by considering the system of equations consisting of the energy balance equation and fractional-order constitutive heat conduction law, assumed in the form of the distributed-order Cattaneo type. The Cauchy problem for system of energy balance equation and constitutive heat conduction law is treated analytically through Fourier and Laplace integral transform methods, as well as numerically by the method of finite differences through Adams-Bashforth and Grünwald-Letnikov schemes for approximation derivatives in temporal domain and leap frog scheme for spatial derivatives. Numerical examples, showing time evolution of temperature and heat flux spatial profiles, demonstrate applicability and good agreement of both methods in cases of multi-term and power-type distributed-order heat conduction laws.
The Normalising Power of Marriage Law: An Irish Genealogy, 1945 – 2010
McGowan, Deirdre
2015-01-01
Marriage law is often conceptualised as an instrument of power that illegitimately imposes the will of the State on its citizens. Paradoxically, marriage law is also offered as a route to liberation. In this thesis, I question the efficacy of this type of analysis by investigating the actual power effects of marriage law. Using Michel Foucault’s concepts of bio-power and government, and his genealogical approach to history, I identify the role played by marriage law in governing the social do...
Energy Technology Data Exchange (ETDEWEB)
Wang, Z. [State Power Corporation (China). Dept. of Science, Technology and Environment
2001-07-01
The newly revised and enlarged main contents of China's Law of Prevention and Control of Atmospheric Pollution, which came into force on 1 September 2000, are described. The macro impacts of the law on the power industry development are analyzed mainly in respect to power demand and readjustment of power structure and layout, clean production and pollution control level, scientific management of environmental protection, in accordance with law as well as changes of construction and operation costs. Several questions worthy to be noted in course of implementation of the new law are enumerated. 1 tab.
Decentralised electrical distribution network in power plants
International Nuclear Information System (INIS)
Mannila, P.; Lehtonen, M.
2000-02-01
A centralised network is a dominating network solution in today's power plants. In this study a centralised and a decentralised network were designed in order to compare them economically and technically. The emphasis of this study was on economical aspects, but also the most important technical aspects were included. The decentralised network requires less space and less cabling since there is no switchgear building and distribution transformers are placed close to the consumption in the field of a power plant. MV-motors and distribution transformers build up a ring. Less cabling and an absent switchgear building cause considerable savings. Component costs of both of the networks were estimated by using data from fulfilled power plant projects and turned out to be smaller for the decentralised network. Simulations for the decentralised network were done in order to find a way to carry out earth fault protection and location. It was found out that in high resistance earthed system the fault distance can be estimated by a relatively simple method. The decentralised network uses a field bus, which offers many new features to the automation system of a power plant. Diversified information can be collected from the protection devices in order to schedule only the needed maintenance duties at the right time. Through the field bus it is also possible to control remotely a power plant. The decentralised network is built up from ready-to-install modules. These modules are tested by the module manufacturer decreasing the need for field testing dramatically. The work contribution needed in the electrification and the management of a power plant project reduces also due the modules. During the lifetime of a power plant, maintenance is easier and more economical. (orig.)
Mathematical modeling for laminar flow of power law fluid in porous media
Energy Technology Data Exchange (ETDEWEB)
Silva, Renato A.; Mesquita, Maximilian S. [Universidade Federal do Espirito Santo (UFES), Sao Mateus, ES (Brazil). Centro Universitario Norte do Espirito Santo. Dept. de Engenharias e Computacao
2010-07-01
In this paper, the macroscopic equations for laminar power-law fluid flow is obtained for a porous medium starting from traditional equations (Navier-Stokes). Then, the volume averaging is applied in traditional transport equations with the power-law fluid model. This procedure leads to macroscopic transport equations set for non-Newtonian fluid. (author)
Uniformity measure for power-law mass spectrum in nuclear fragmentation
International Nuclear Information System (INIS)
Wislicki, W.
1992-11-01
Description is given in terms of the Renyi entropy and the uniformity for the canonical ensemble, the grand canonical ensemble and the power-law probability measures. The study is presented of the power-law spectra of cluster masses observed in nuclear interactions in the vicinity of the liquid-gas transition point. 6 figs., 1 tab., 15 refs. (author)
Major dealers' expert power in distribution channels
Richard Chinomona; Marius Pretorius
2011-01-01
The importance of major dealers' expertise in distribution channels and effects on exchange relations is widely acknowledged by many SMEs in Africa and yet there seem to be a paucity of research on this matter. To address this dearth, the current study attempts to examine the relationship between major dealers' expert power and SME manufacturers' channel cooperation and the mediating influence of their trust, relationship commitment and satisfaction. The conceptualized model and five hypothes...
Adaptive intelligent power systems: Active distribution networks
International Nuclear Information System (INIS)
McDonald, Jim
2008-01-01
Electricity networks are extensive and well established. They form a key part of the infrastructure that supports industrialised society. These networks are moving from a period of stability to a time of potentially major transition, driven by a need for old equipment to be replaced, by government policy commitments to cleaner and renewable sources of electricity generation, and by change in the power industry. This paper looks at moves towards active distribution networks. The novel transmission and distribution systems of the future will challenge today's system designs. They will cope with variable voltages and frequencies, and will offer more flexible, sustainable options. Intelligent power networks will need innovation in several key areas of information technology. Active control of flexible, large-scale electrical power systems is required. Protection and control systems will have to react to faults and unusual transient behaviour and ensure recovery after such events. Real-time network simulation and performance analysis will be needed to provide decision support for system operators, and the inputs to energy and distribution management systems. Advanced sensors and measurement will be used to achieve higher degrees of network automation and better system control, while pervasive communications will allow networks to be reconfigured by intelligent systems
Complexity of Resilient Power Distribution Networks
International Nuclear Information System (INIS)
May, Michael
2008-01-01
Power Systems in general and specifically the problems of communication, control, and coordination in human supervisory control of electric power transmission and distribution networks constitute a good case study for resilience engineering. Because of the high cost and high impact on society of transmission disturbances and blackouts and the vulnerability of power networks to terrorist attacks, Transmission Systems Operators (TSOs) are already focusing on organizational structures, procedures, and technical innovations that could improve the flexibility and robustness of power Systems and achieve the overall goal of providing secure power supply. For a number of reasons however the complexity of power Systems is increasing and new problems arise for human supervisory control and the ability of these Systems to implement fast recovery from disturbances. Around the world power Systems are currently being restructured to adapt to regional electricity markets and secure the availability, resilience and sustainability of electric power generation, transmission and distribution. This demands a reconsideration of the available decision support, the activity of human supervisory control of the highly automated processes involved and the procedures regulating it, as well as the role of the TSOs and the regional, national and international organizations set up to manage their activity. Unfortunately we can expect that human supervisory control of power Systems will become more complex in the near future for a number of reasons. The European Union for the Co-ordination of Transmission of Electricity (UCTE) has remarked that although the interconnected Systems of power transmission networks has been developed over the years with the main goal of providing secure power supply through common use of reserve capacities and the optimization of the use of energy resources, today's market dynamics imposing a high level of cross-border exchanges is 'out of the scope of the
On the structure and phase transitions of power-law Poissonian ensembles
Eliazar, Iddo; Oshanin, Gleb
2012-10-01
Power-law Poissonian ensembles are Poisson processes that are defined on the positive half-line, and that are governed by power-law intensities. Power-law Poissonian ensembles are stochastic objects of fundamental significance; they uniquely display an array of fractal features and they uniquely generate a span of important applications. In this paper we apply three different methods—oligarchic analysis, Lorenzian analysis and heterogeneity analysis—to explore power-law Poissonian ensembles. The amalgamation of these analyses, combined with the topology of power-law Poissonian ensembles, establishes a detailed and multi-faceted picture of the statistical structure and the statistical phase transitions of these elemental ensembles.
Medical inspection according to the new nuclear power law
International Nuclear Information System (INIS)
Ligteringen, J.
1982-01-01
Industrial medicine is an underdeveloped discipline in the Netherlands. The author surveys the discrepancies between the laws regulating health protection by medical inspection, reporting and evaluation, and the laws concerning these points when work with radioactive materials or apparatuses producing ionising radiations is involved. Points to be cleared up are presented. (Auth.)
Electrical power systems for distributed generation
Energy Technology Data Exchange (ETDEWEB)
Robertson, T.A.; Huval, S.J. [Stewart & Stevenson Services, Inc., Houston, TX (United States)
1996-12-31
{open_quotes}Distributed Generation{close_quotes} has become the {open_quotes}buzz{close_quotes} word of an electric utility industry facing deregulation. Many industrial facilities utilize equipment in distributed installations to serve the needs of a thermal host through the capture of exhaust energy in a heat recovery steam generator. The electrical power generated is then sold as a {open_quotes}side benefit{close_quotes} to the cost-effective supply of high quality thermal energy. Distributed generation is desirable for many different reasons, each with unique characteristics of the product. Many years of experience in the distributed generation market has helped Stewart & Stevenson to define a range of product features that are crucial to most any application. The following paper will highlight a few of these applications. The paper will also examine the range of products currently available and in development. Finally, we will survey the additional services offered by Stewart & Stevenson to meet the needs of a rapidly changing power generation industry.
International Nuclear Information System (INIS)
Rahman, M.S.; Mahmud, M.A.; Oo, A.M.T.; Pota, H.R.; Hossain, M.J.
2016-01-01
Highlights: • A coordinated multi-agent system is proposed for reactive power management. • A linear quadratic regulator with a proportional integral controller is designed. • Proposed multi-agent scheme provides accurate estimation and control of the system. • Voltage stability is improved with proper power management for different scenarios. • Results obtained from the proposed scheme is compared to the traditional approach. - Abstract: In this paper, a new agent-based distributed reactive power management scheme is proposed to improve the voltage stability of energy distribution systems with distributed generation units. Three types of agents – distribution system agent, estimator agent, and control agent are developed within the multi-agent framework. The agents simultaneously coordinated their activities through the online information and energy flow. The overall achievement of the proposed scheme depends on the coordination between two tasks – (i) estimation of reactive power using voltage variation formula and (ii) necessary control actions to provide the estimated reactive power to the distribution networks through the distributed static synchronous compensators. A linear quadratic regulator with a proportional integrator is designed for the control agent in order to control the reactive component of the current and the DC voltage of the compensators. The performance of the proposed scheme is tested on a 10-bus power distribution network under various scenarios. The effectiveness is validated by comparing the proposed approach to the conventional proportional integral control approach. It is found that, the agent-based scheme provides excellent robust performance under various operating conditions of the power distribution network.
Empirical Scaling Laws of Neutral Beam Injection Power in HL-2A Tokamak
International Nuclear Information System (INIS)
Cao Jian-Yong; Wei Hui-Ling; Liu He; Yang Xian-Fu; Zou Gui-Qing; Yu Li-Ming; Li Qing; Luo Cui-Wen; Pan Yu-Dong; Jiang Shao-Feng; Lei Guang-Jiu; Li Bo; Rao Jun; Duan Xu-Ru
2015-01-01
We present an experimental method to obtain neutral beam injection (NBI) power scaling laws with operating parameters of the NBI system on HL-2A, including the beam divergence angle, the beam power transmission efficiency, the neutralization efficiency and so on. With the empirical scaling laws, the estimating power can be obtained in every shot of experiment on time, therefore the important parameters such as the energy confinement time can be obtained precisely. The simulation results by the tokamak simulation code (TSC) show that the evolution of the plasma parameters is in good agreement with the experimental results by using the NBI power from the empirical scaling law. (paper)
Distributed power generation: A case study of small scale PV power plant in Greece
Energy Technology Data Exchange (ETDEWEB)
Bakos, G.C. [Democritus University of Thrace, Department of Electrical and Computer Engineering, Laboratory of Energy Economics, 67 100 Xanthi (Greece)
2009-09-15
In recent years, energy systems have been undergoing a development trend characterised by privatisation of the most important energy sectors (electricity and natural gas) that has turned former monopolies into free-market competitors. Furthermore, community awareness of environmental impact caused by large conventional power plants is growing, together with a greater interest in distributed-generation (DG) technologies based upon renewable energy sources (RES) and cogeneration. In this context, renewable energy technologies are emerging as potentially strong competitors for more widespread use. Despite the remarkable progress attained over the past decades, RES have not yet been fully integrated into the power sector. Some RES-technologies have already achieved a significant market share. The industry is now quite mature, although far from having developed its global potential. This paper deals with the current status of DG in Greece and the presentation of a 60 kWp PV power station, developed under Law 3468/06 ''Production of Electricity from Renewable Energy Sources, High Efficiency Cogeneration of Heat and Power and Other De{nu}ices''. This application is the first DG installation with fixed PV modules implemented in the country after the approval of Law 3468/06. Cash flow economic analysis of the developed DG installation is performed and the experiences related to the potential of DG in Greek electricity market is presented and discussed. (author)
Distributed power generation: A case study of small scale PV power plant in Greece
International Nuclear Information System (INIS)
Bakos, G.C.
2009-01-01
In recent years, energy systems have been undergoing a development trend characterised by privatisation of the most important energy sectors (electricity and natural gas) that has turned former monopolies into free-market competitors. Furthermore, community awareness of environmental impact caused by large conventional power plants is growing, together with a greater interest in distributed-generation (DG) technologies based upon renewable energy sources (RES) and cogeneration. In this context, renewable energy technologies are emerging as potentially strong competitors for more widespread use. Despite the remarkable progress attained over the past decades, RES have not yet been fully integrated into the power sector. Some RES-technologies have already achieved a significant market share. The industry is now quite mature, although far from having developed its global potential. This paper deals with the current status of DG in Greece and the presentation of a 60 kWp PV power station, developed under Law 3468/06 ''Production of Electricity from Renewable Energy Sources, High Efficiency Cogeneration of Heat and Power and Other Deνices''. This application is the first DG installation with fixed PV modules implemented in the country after the approval of Law 3468/06. Cash flow economic analysis of the developed DG installation is performed and the experiences related to the potential of DG in Greek electricity market is presented and discussed. (author)
ON POTENTIAL REPRESENTATIONS OF THE DISTRIBUTION LAW OF RARE STRONGEST EARTHQUAKES
Directory of Open Access Journals (Sweden)
M. V. Rodkin
2014-01-01
'bend-down' is described by the finite distribution law, i.e. the bend-down occurs more efficiently than it is envisaged in the commonly used model developed by Y. Kagan (which treats the bend-dawn as an exponential decay law. However, despite the finiteness of the distribution law, density of magnitudes decline quite slowly in the area close to the maximum possible Мmах event as (Мmах – Mn, where n varies in the range between 4 and 6 in the majority of cases. As a result Мmах value can be estimated only with a large error. In rare cases, if the space-and-time area under study contains higher number of strongest earthquakes, the empirical distribution law becomes close to the exponential law; in this case n value is quite high, and Мmах values becomes unstable and tend to infinite growth.In our study, the distribution law of strongest earthquakes was investigated by the methods based on the extreme values theory (world data and several regional catalogues were examined, and the results of calculation do not reveal cases of occurrence of characteristic events. However, such a seismic regime was revealed in a number of cases from paleoseismicity data and from some instrumental regional catalogues. Conditions providing for the occurrence of characteristic earthquakes are studied here using the multiplicative cascade model. According to [Rodkin, 2011], this model provides the simulation of all known regularities of seismic regime, such as a decrease in b-value in the vicinity of strong earthquakes, development of aftershock power cascade, and existence of seismic cycle and foreshock activity. This article considers an extension of the cascade model by adding of non-linear members in the kinetic cascade equation in order to describe effects of the 'bend-down' of the earthquake recurrence curve and the characteristic earthquakes occurrence. It is shown that in terms of the multiplicative cascade model, the occurrence of characteristic earthquakes is connected
On-line calculation of 3-D power distribution
International Nuclear Information System (INIS)
Park, Y. H.; In, W. K.; Park, J. R.; Lee, C. C.; Auh, G. S.
1996-01-01
The 3-D power distribution synthesis scheme was implemented in Totally Integrated Core Operation Monitoring System (TICOMS), which is under development as the next generation core monitoring system. The on-line 3-D core power distribution obtained from the measured fixed incore detector readings is used to construct the hot pin power as well as the core average axial power distribution. The core average axial power distribution and the hot pin power of TICOMS were compared with those of the current digital on-line core monitoring system, COLSS, which construct the core average axial power distribution and the pseudo hot pin power. The comparison shows that TICOMS results in the slightly more accurate core average axial power distribution and the less conservative hot pin power. Therefore, these results increased the core operating margins. In addition, the on-line 3-D power distribution is expected to be very useful for the core operation in the future
Derivation of the Second Law of Thermodynamics from Boltzmann's Distribution Law.
Nelson, P. G.
1988-01-01
Shows how the thermodynamic condition for equilibrium in an isolated system can be derived by the application of Boltzmann's law to a simple physical system. States that this derivation could be included in an introductory course on chemical equilibrium to help prepare students for a statistical mechanical treatment presented in the curriculum.…
Power-law modulation of the scalar power spectrum from a heavy field with a monomial potential
Huang, Qing-Guo; Pi, Shi
2018-04-01
The effects of heavy fields modulate the scalar power spectrum during inflation. We analytically calculate the modulations of the scalar power spectrum from a heavy field with a separable monomial potential, i.e. V(phi)~ phin. In general the modulation is characterized by a power-law oscillation which is reduced to the logarithmic oscillation in the case of n=2.
Network integration of distributed power generation
Dondi, Peter; Bayoumi, Deia; Haederli, Christoph; Julian, Danny; Suter, Marco
The world-wide move to deregulation of the electricity and other energy markets, concerns about the environment, and advances in renewable and high efficiency technologies has led to major emphasis being placed on the use of small power generation units in a variety of forms. The paper reviews the position of distributed generation (DG, as these small units are called in comparison with central power plants) with respect to the installation and interconnection of such units with the classical grid infrastructure. In particular, the status of technical standards both in Europe and USA, possible ways to improve the interconnection situation, and also the need for decisions that provide a satisfactory position for the network operator (who remains responsible for the grid, its operation, maintenance and investment plans) are addressed.
Major dealers' expert power in distribution channels
Directory of Open Access Journals (Sweden)
Richard Chinomona
2011-06-01
Full Text Available The importance of major dealers’ expertise in distribution channels and effects on exchange relations is widely acknowledged by many SMEs in Africa and yet there seem to be a paucity of research on this matter. To address this dearth, the current study attempts to examine the impact of major dealers’ expert power on SME manufacturers’ channel cooperation and the mediating influence of their trust, relationship commitment and satisfaction. The conceptualized model and five hypotheses are empirically validated using a sample of 452 manufacturing SMEs in Zimbabwe. The findings indicate that major dealers’ expert power may influence SME manufacturers’ trust, relationship commitment, relationship satisfaction and channel cooperation in a significant way. Managerial implications of the research findings are provided.
Disk-galaxy density distribution from orbital speeds using Newton's law
Nicholson, Kenneth F.
2000-01-01
Given the dimensions (including thickness) of an axisymmetric galaxy, Newton's law is used in integral form to find the density distributions required to match a wide range of orbital speed profiles. Newton's law is not modified and no dark matter halos are required. The speed distributiions can have extreme shapes if they are reasonably smooth. Several examples are given.
Structure Learning in Power Distribution Networks
Energy Technology Data Exchange (ETDEWEB)
Deka, Deepjyoti [Univ. of Texas, Austin, TX (United States); Chertkov, Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Backhaus, Scott N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2015-01-13
Traditionally power distribution networks are either not observable or only partially observable. This complicates development and implementation of new smart grid technologies, such as these related to demand response, outage detection and management, and improved load-monitoring. Here, inspired by proliferation of the metering technology, we discuss statistical estimation problems in structurally loopy but operationally radial distribution grids consisting in learning operational layout of the network from measurements, e.g. voltage data, which are either already available or can be made available with a relatively minor investment. Our newly suggested algorithms apply to a wide range of realistic scenarios. The algorithms are also computationally efficient – polynomial in time – which is proven theoretically and illustrated computationally on a number of test cases. The technique developed can be applied to detect line failures in real time as well as to understand the scope of possible adversarial attacks on the grid.
Distributed power generation using biogas fuelled microturbines
Energy Technology Data Exchange (ETDEWEB)
Pointon, K.; Langan, M.
2002-07-01
This research sought to analyse the market for small scale biogas fuelled distributed power generation, to demonstrate the concept of a biogas fuelled microturbine using the Capstone microturbine in conjunction with an anaerobic digester, and undertake a technico-economic evaluation of the biogas fuelled microturbine concept. Details are given of the experimental trials using continuous and batch digesters, and feedstocks ranging from cow and pig slurries to vegetable wastes and municipal solid waste. The yields of methane are discussed along with the successful operation of the microturbine with biogas fuels, and anaerobic digestion projects.
Distributed power generation using biogas fuelled microturbines
International Nuclear Information System (INIS)
Pointon, K.; Langan, M.
2002-01-01
This research sought to analyse the market for small scale biogas fuelled distributed power generation, to demonstrate the concept of a biogas fuelled microturbine using the Capstone microturbine in conjunction with an anaerobic digester, and undertake a technico-economic evaluation of the biogas fuelled microturbine concept. Details are given of the experimental trials using continuous and batch digesters, and feedstocks ranging from cow and pig slurries to vegetable wastes and municipal solid waste. The yields of methane are discussed along with the successful operation of the microturbine with biogas fuels, and anaerobic digestion projects
Simple inflationary quintessential model. II. Power law potentials
de Haro, Jaume; Amorós, Jaume; Pan, Supriya
2016-09-01
The present work is a sequel of our previous work [Phys. Rev. D 93, 084018 (2016)] which depicted a simple version of an inflationary quintessential model whose inflationary stage was described by a Higgs-type potential and the quintessential phase was responsible due to an exponential potential. Additionally, the model predicted a nonsingular universe in past which was geodesically past incomplete. Further, it was also found that the model is in agreement with the Planck 2013 data when running is allowed. But, this model provides a theoretical value of the running which is far smaller than the central value of the best fit in ns , r , αs≡d ns/d l n k parameter space where ns, r , αs respectively denote the spectral index, tensor-to-scalar ratio and the running of the spectral index associated with any inflationary model, and consequently to analyze the viability of the model one has to focus in the two-dimensional marginalized confidence level in the allowed domain of the plane (ns,r ) without taking into account the running. Unfortunately, such analysis shows that this model does not pass this test. However, in this sequel we propose a family of models runs by a single parameter α ∈[0 ,1 ] which proposes another "inflationary quintessential model" where the inflation and the quintessence regimes are respectively described by a power law potential and a cosmological constant. The model is also nonsingular although geodesically past incomplete as in the cited model. Moreover, the present one is found to be more simple compared to the previous model and it is in excellent agreement with the observational data. In fact, we note that, unlike the previous model, a large number of the models of this family with α ∈[0 ,1/2 ) match with both Planck 2013 and Planck 2015 data without allowing the running. Thus, the properties in the current family of models compared to its past companion justify its need for a better cosmological model with the successive
Energy consumption reduction in existing HVAC-R systems via a power law controlling kit
International Nuclear Information System (INIS)
Pinnola, C.F.; Vargas, J.V.C.; Buiar, C.L.; Ordonez, J.C.
2015-01-01
This paper presents an alternative solution for reducing energy consumption in heating, ventilation, air conditioning and refrigeration (HVAC-R) systems. For that, an existing typical commercial refrigeration system was equipped with a novel control system based on a power law, using a frequency inverter and a programmable logic controller (PLC). Hence, it was possible to compare the operation and energy consumption of the system with the power law control and with the on-off system, quantifying the obtained gains. The experimental unit consisted of a cooling chamber, an enclosing chamber (antechamber), and a vapor compression refrigeration system, i.e., an example of a practical commercial cooling system. A set of graphs shows the experimental measurements performed with the two systems. In this way, the measured temperatures in some selected points of the two systems, as well as the consumption in kWh for a period of 6 h and 10 min were compared in the tests. The main conclusions of this work are: i) The system operating with the power law control with respect to the conventional on-off control, showed energy consumption savings of up to 31% in a test period of 6 h and 10 min, and ii) The system compressor cycling frequency in the system operating with the power law control is smaller than with the traditional on-off system. Therefore, the study shows that the developed power law control kit has potential to be installed in any existing system with immediate significant energy savings with no need for HVAC-R hardware changes. - Highlights: • An energy consumption reduction strategy for HVAC-R systems is presented. • Power law and on-off control actions are experimentally compared. • Energy savings of 31% were obtained with power law control. • Compressor cycling frequency is smaller with power law control. • Power law control kit has potential to be installed in any existing system
Discovery of Power-Law Growth in the Self-Renewal of Heterogeneous Glioma Stem Cell Populations.
Directory of Open Access Journals (Sweden)
Michiya Sugimori
Full Text Available Accumulating evidence indicates that cancer stem cells (CSCs drive tumorigenesis. This suggests that CSCs should make ideal therapeutic targets. However, because CSC populations in tumors appear heterogeneous, it remains unclear how CSCs might be effectively targeted. To investigate the mechanisms by which CSC populations maintain heterogeneity during self-renewal, we established a glioma sphere (GS forming model, to generate a population in which glioma stem cells (GSCs become enriched. We hypothesized, based on the clonal evolution concept, that with each passage in culture, heterogeneous clonal sublines of GSs are generated that progressively show increased proliferative ability.To test this hypothesis, we determined whether, with each passage, glioma neurosphere culture generated from four different glioma cell lines become progressively proliferative (i.e., enriched in large spheres. Rather than monitoring self-renewal, we measured heterogeneity based on neurosphere clone sizes (#cells/clone. Log-log plots of distributions of clone sizes yielded a good fit (r>0.90 to a straight line (log(% total clones = k*log(#cells/clone indicating that the system follows a power-law (y = xk with a specific degree exponent (k = -1.42. Repeated passaging of the total GS population showed that the same power-law was maintained over six passages (CV = -1.01 to -1.17. Surprisingly, passage of either isolated small or large subclones generated fully heterogeneous populations that retained the original power-law-dependent heterogeneity. The anti-GSC agent Temozolomide, which is well known as a standard therapy for glioblastoma multiforme (GBM, suppressed the self-renewal of clones, but it never disrupted the power-law behavior of a GS population.Although the data above did not support the stated hypothesis, they did strongly suggest a novel mechanism that underlies CSC heterogeneity. They indicate that power-law growth governs the self-renewal of heterogeneous
Divinskiy, M. L.; Kolchinskiy, I. G.
1974-01-01
The distribution of deviations from mean star trail directions was studied on the basis of 105 star trails. It was found that about 93% of the trails yield a distribution in agreement with the normal law. About 4% of the star trails agree with the Charlier distribution.
Electric power transmission and distribution in Germany - an NTPA success
International Nuclear Information System (INIS)
Staschus, K.
2002-01-01
The German Energy Law of April 1998 opened 100 percent of the German electricity market to competition without any transition phase. Over four years later, the degree of market opening is still ahead of that in many other European countries. Transition phases elsewhere have been dominated by the need to develop detailed rules not only for the functioning of the power markets - e.g. in power exchanges - but also for the transmission and distribution system operators and for the data exchange between market participants. Especially the data exchange needs for the handling of household customers switching suppliers has been a challenge in all the countries that have opened the household customer market. But also the network access fees on both transmission and distribution level are still being debated in many countries. The German governments have so far chosen to let the network operators develop the access rules, pricing rules and data exchange standards in intense - and intensely observed - negotiations with the network users. Important outcomes of such negotiations include the well-known A ssociations' Agreements , GridCode, DistributionCode, MeteringCode as well as the government's Best Practice Recommendations on data exchange standards for the switching between suppliers. One important advantage of this negotiation-based rather than regulatory approach is its speed and flexibility. For example, the Associations' Agreement on network access fees is now valid in its third version, and each successive version included important learning from the experience of both network operators and network users with the previous agreement. This paper will summarise the legal framework of the liberalised power market in Germany and focus on the current state of pricing rules in the Associations' Agreement, of well advanced comparisons run by VDN, of the network access fees of hundreds of distribution system operators including specific data on structural differences of their
Seepage Characteristics Study on Power-Law Fluid in Fractal Porous Media
Directory of Open Access Journals (Sweden)
Meijuan Yun
2014-01-01
Full Text Available We present fractal models for the flow rate, velocity, effective viscosity, apparent viscosity, and effective permeability for power-law fluid based on the fractal properties of porous media. The proposed expressions realize the quantitative description to the relation between the properties of the power-law fluid and the parameters of the microstructure of the porous media. The model predictions are compared with related data and good agreement between them is found. The analytical expressions will contribute to the revealing of physical principles for the power-law fluid flow in porous media.
Power Laws in Stochastic Processes for Social Phenomena: An Introductory Review
Kumamoto, Shin-Ichiro; Kamihigashi, Takashi
2018-03-01
Many phenomena with power laws have been observed in various fields of the natural and social sciences, and these power laws are often interpreted as the macro behaviors of systems that consist of micro units. In this paper, we review some basic mathematical mechanisms that are known to generate power laws. In particular, we focus on stochastic processes including the Yule process and the Simon process as well as some recent models. The main purpose of this paper is to explain the mathematical details of their mechanisms in a self-contained manner.
Farrand, Benjamin
2014-01-01
In this book, Benjamin Farrand employs an interdisciplinary approach that combines legal analysis with political theory to explore the development of copyright law in the EU. Farrand utilises Foucault's concept of Networks of Power and Culpepper's Quiet Politics to assess the adoption and enforcement of copyright law in the EU, including the role of industry representative, cross-border licensing, and judicial approaches to territorial restrictions. Focusing in particular on legislative initiatives concerning copyright, digital music and the internet, Networks of Power in Digital Copyright Law and Policy: Political Salience, Expertise and the Legislative Process demonstrates the connection between copyright law and complex network relationships. This book presents an original socio-political theoretical framework for assessing developments in copyright law that will interest researchers and post-graduate students of law and politics, as well as those more particularly concerned with political theory, EU and c...
Power-law and intermediate inflationary models in f(T)-gravity
Energy Technology Data Exchange (ETDEWEB)
Rezazadeh, K. [Department of Physics, University of Kurdistan,Pasdaran St., Sanandaj (Iran, Islamic Republic of); Abdolmaleki, A. [Research Institute for Astronomy Astrophysics of Maragha (RIAAM),P.O. Box 55134-441, Maragha (Iran, Islamic Republic of); Karami, K. [Department of Physics, University of Kurdistan,Pasdaran St., Sanandaj (Iran, Islamic Republic of)
2016-01-21
We study inflation in the framework of f(T)-gravity in the presence of a canonical scalar field. After reviewing the basic equations governing the background cosmology in f(T)-gravity, we turn to study the cosmological perturbations and obtain the evolutionary equations for the scalar and tensor perturbations. Solving those equations, we find the power spectra for the scalar and tensor perturbations. Then, we consider a power-law f(T) function and investigate the inflationary models with the power-law and intermediate scale factors. We see that in contrast with the standard inflationary scenario based on the Einstein gravity, the power-law and intermediate inflationary models in f(T)-gravity can be compatible with the observational results of Planck 2015 at 68% CL. We find that in our f(T) setting, the potentials responsible for the both power-law and intermediate inflationary models have the power-law form V(ϕ)∝ϕ{sup m} but the power m is different for them. Therefore, we can refine some of power-law inflationary potentials in the framework of f(T)-gravity while they are disfavored by the observational data in the standard inflationary scenario. Interestingly enough, is that the self-interacting quartic potential V(ϕ)∝ϕ{sup 4} which has special reheating properties, can be consistent with the Planck 2015 data in our f(T) scenario while it is ruled out in the standard inflationary scenario.
Power-law and intermediate inflationary models in f(T)-gravity
International Nuclear Information System (INIS)
Rezazadeh, K.; Abdolmaleki, A.; Karami, K.
2016-01-01
We study inflation in the framework of f(T)-gravity in the presence of a canonical scalar field. After reviewing the basic equations governing the background cosmology in f(T)-gravity, we turn to study the cosmological perturbations and obtain the evolutionary equations for the scalar and tensor perturbations. Solving those equations, we find the power spectra for the scalar and tensor perturbations. Then, we consider a power-law f(T) function and investigate the inflationary models with the power-law and intermediate scale factors. We see that in contrast with the standard inflationary scenario based on the Einstein gravity, the power-law and intermediate inflationary models in f(T)-gravity can be compatible with the observational results of Planck 2015 at 68% CL. We find that in our f(T) setting, the potentials responsible for the both power-law and intermediate inflationary models have the power-law form V(ϕ)∝ϕ m but the power m is different for them. Therefore, we can refine some of power-law inflationary potentials in the framework of f(T)-gravity while they are disfavored by the observational data in the standard inflationary scenario. Interestingly enough, is that the self-interacting quartic potential V(ϕ)∝ϕ 4 which has special reheating properties, can be consistent with the Planck 2015 data in our f(T) scenario while it is ruled out in the standard inflationary scenario.
Conservation laws and mass distribution in the planet formation process
International Nuclear Information System (INIS)
Farinella, P.; Paolicchi, P.
1977-01-01
Within the framework of the nebular theory of the origin of the solar system, conservation laws are applied to the condensation of a ring-shaped cloud of orbiting particles. The final configuration is assumed to be a point-like planet in a circular orbit around the Sun. On this ground, it is possible to relate the masses of the planets with the interplanetary distances. This relation is confirmed satisfactorily by the observed masses and orbital radii of several planets and satellites of the solar system. (Auth.)
Zipf's law and city size distribution: A survey of the literature and future research agenda
Arshad, Sidra; Hu, Shougeng; Ashraf, Badar Nadeem
2018-02-01
This study provides a systematic review of the existing literature on Zipf's law for city size distribution. Existing empirical evidence suggests that Zipf's law is not always observable even for the upper-tail cities of a territory. However, the controversy with empirical findings arises due to sample selection biases, methodological weaknesses and data limitations. The hypothesis of Zipf's law is more likely to be rejected for the entire city size distribution and, in such case, alternative distributions have been suggested. On the contrary, the hypothesis is more likely to be accepted if better empirical methods are employed and cities are properly defined. The debate is still far from to be conclusive. In addition, we identify four emerging areas in Zipf's law and city size distribution research including the size distribution of lower-tail cities, the size distribution of cities in sub-national regions, the alternative forms of Zipf's law, and the relationship between Zipf's law and the coherence property of the urban system.
Test report light duty utility arm power distribution system (PDS)
International Nuclear Information System (INIS)
Clark, D.A.
1996-01-01
The Light Duty Utility Arm (LDUA) Power Distribution System has completed vendor and post-delivery acceptance testing. The Power Distribution System has been found to be acceptable and is now ready for integration with the overall LDUA system
Intelligent distributed control for nuclear power plants
International Nuclear Information System (INIS)
Klevans, E.H.
1993-01-01
This project was initiated in September 1989 as a three year project to develop and demonstrate Intelligent Distributed Control (IDC) for Nuclear Power Plants. There were two primary goals of this research project. The first goal was to combine diagnostics and control to achieve a highly automated power plant as described by M.A. Schultz. The second goal was to apply this research to develop a prototype demonstration on an actual power plant system, the EBR-2 steam plant. Described in this Final (Third Annual) Technical Progress Report is the accomplishment of the project's final milestone, an in-plant intelligent control experiment conducted on April 1, 1993. The development of the experiment included: simulation validation, experiment formulation and final programming, procedure development and approval, and experimental results. Other third year developments summarized in this report are: (1) a theoretical foundation for Reconfigurable Hybrid Supervisory Control, (2) a steam plant diagnostic system, (3) control console design tools and (4) other advanced and intelligent control
Congress's Contempt Power: Law, History, Practice, and Procedure
National Research Council Canada - National Science Library
Rosenberg, Morton; Tatelman, Todd B
2007-01-01
...), and/or to remove the obstruction (civil contempt). Although arguably any action that directly obstructs the effort of Congress to exercise its constitutional powers may constitute a contempt, in the last 70 years the contempt power...
Evaluation of 'period-generated' control laws for the time-optimal control of reactor power
International Nuclear Information System (INIS)
Bernard, J.A.
1988-01-01
Time-Optimal control of neutronic power has recently been achieved by developing control laws that determine the actuator mechanism velocity necessary to produce a specified reactor period. These laws are designated as the 'MIT-SNL Period-Generated Minimum Time Control Laws'. Relative to time-optimal response, they function by altering the rate of change of reactivity so that the instantaneous period is stepped from infinity to its minimum allowed value, held at that value until the desired power level is attained, and then stepped back to infinity. The results of a systematic evaluation of these laws are presented. The behavior of each term in the control laws is shown and the capability of these laws to control properly the reactor power is demonstrated. Factors affecting the implementation of these laws, such as the prompt neutron lifetime and the differential reactivity worth of the actuators, are discussed. Finally, the results of an experimental study in which these laws were used to adjust the power of the 5 MWt MIT Research Reactor are shown. The information presented should be of interest to those designing high performance control systems for test, spacecraft, or, in certain instances, commercial reactors
Mapping the Power of Law Professors: The Role of Scientific and Social Capital
Bühlmann, Felix; Benz, Pierre; Mach, André; Rossier, Thierry
2017-01-01
As a scientific discipline and profession, law has been for centuries at the heart of social and political power of many Western societies. Professors of law, as influential representatives of the profession, are important powerbrokers between academia, politics and the corporate world. Their influence is based on scientific reputation,…
Converging cylindrical magnetohydrodynamic shock collapse onto a power-law-varying line current
Mostert, W.; Pullin, D. I.; Samtaney, Ravi; Wheatley, V.
2016-01-01
We investigate the convergence behaviour of a cylindrical, fast magnetohydrodynamic (MHD) shock wave in a neutrally ionized gas collapsing onto an axial line current that generates a power law in time, azimuthal magnetic field. The analysis is done
Ionic fluids with r-6 pair interactions have power-law electrostatic screening
International Nuclear Information System (INIS)
Kjellander, Roland; Forsberg, Bjoern
2005-01-01
The decay behaviour of radial distribution functions for large distances r is investigated for classical Coulomb fluids where the ions interact with an r -6 potential (e.g. a dispersion interaction) in addition to the Coulombic and the short-range repulsive potentials (e.g. a hard core). The pair distributions and the density-density (NN), charge-density (QN) and charge-charge (QQ) correlation functions are investigated analytically and by Monte Carlo simulations. It is found that the NN correlation function ultimately decays like r -6 for large r, just as it does for fluids of electroneutral particles interacting with an r -6 potential. The prefactor is proportional to the squared compressibility in both cases. The QN correlations decay in general like r -8 and the QQ correlations like r -10 in the ionic fluid. The average charge density around an ion decays generally like r -8 and the average electrostatic potential like r -6 . This behaviour is in stark contrast to the decay behaviour for classical Coulomb fluids in the absence of the r -6 potential, where all these functions decay exponentially for large r. The power-law decays are, however, the same as for quantum Coulomb fluids. This indicates that the inclusion of the dispersion interaction as an effective r -6 interaction potential in classical systems yields the same decay behaviour for the pair correlations as in quantum ionic systems. An exceptional case is the completely symmetric binary electrolyte for which only the NN correlation has a power-law decay but not the QQ correlations. These features are shown by an analysis of the bridge function
Transitory provisions on public gas distribution in the light of the Marzano law
International Nuclear Information System (INIS)
Vedaschi, Arianna
2005-01-01
The article begins by describing community law on public gas distribution service, then it examines legislative decree 164/2000( also called Letta Decree), which implements directive no. 98/30/CE. This directive reforms the gas sector and in particular it reforms the way gas is distributed. Art. 14 of the Letta Decree states that the distribution of natural gas shall be a public service, contractors shall be selected through a public tender and contracts shall be stipulate for a maximum of 12 years. Thus it is evident that the new model is radically different from the previous one. Before, the service was provided by the local authorities (either directly or through a long-term lease); now the new model aims at liberalizing the market by out sourcing gas distribution. Out sourcing is carried out through a public tender and for short periods of time. In order to allow a gradual transition from the old model to the new one, the Letta Decree provides for a transitory period articulated in various phases. This has the aim of guaranteeing a balance between the interest of local authorities, on one hand and the firms that distributed gas before the reform came into effect, on the other. The first part of the article focuses on interpretative problems that arose after law no. 239/2004 (so called Marzano law) was passed. In the second half it compares the different judicial interpretations concerning: a) duration of the transitory period; b) possibility of increasing duration as provided for by art. 15, par.7 of legislative decree 164/2000; c) efficacy of the abrogation of art. 15, par.8 of legislative decree 164/2000 and finally d) whether advanced redemption of the gas distribution service is still possible. With regards to the transitory period, the article compares judgement no. 111/2005 by the Administrative Tribunal of Lombardia, with judgement no. 6187/2005 delivered by the Sixth Section of the State Council. It then argues that the prohibition of concentration has
International Nuclear Information System (INIS)
1980-01-01
This rule is established under the provisions of the law for the redevelopment of the surrounding areas of power generating facilities. Persons who install power generating facilities under the law include general electric power enterprises and wholesale electric power enterprises defined under the electric enterprises act and the Power Reactor and Nuclear Fuel Development Corporation. The scale of these facilities defined under the law is 350,000 kilo-watts output for atomic and thermal power generating facilities, 10,000 kilo-watts output for the facilities utilizing geothermal energy, 100,000 kilo-watts output for facilities whose main fuel is coal, and 1,000 kilo-watts output for hydraulic power generating facilities, etc. The facilities closely related to atomic power generation include the reprocessing and examination facilities of fuel materials spent in atomic power reactors, the reactors installed by the Japan Atomic Energy Research Institute for studying on the safety of atomic power reactors, the experimental fast reactors and the uranium enrichment facilities established by the Power Reactor and Nuclear Fuel Development Corporation. The public facilities in this rule are those for communication, sport and recreation, environment hygiene, education and culture, medicine, social welfare, fire fighting, etc. Governors of prefectures who intend to get approval under the law shall file redevelopment plans to the competent minister through the Minister of the International Trade and Industry. (Okada, K.)
Stability of the laws for the distribution of the cumulative failures in railway transport
Kirill VOYNOV
2008-01-01
There are very many different laws of distribution (for example), bellshaped (Gaussian) distribution, lognormal, Weibull distribution, exponential, uniform, Poisson’s, Student’s distributions and so on, which help to describe the real picture of failures with elements in various mechanical systems, in locomotives and carriages, too. To diminish the possibility of getting the rough error in the output of maths data treatment the new method is demonstrated in this article. The task is solved bo...
Around power law for PageRank components in Buckley-Osthus model of web graph
Gasnikov, Alexander; Zhukovskii, Maxim; Kim, Sergey; Noskov, Fedor; Plaunov, Stepan; Smirnov, Daniil
2017-01-01
In the paper we investigate power law for PageRank components for the Buckley-Osthus model for web graph. We compare different numerical methods for PageRank calculation. With the best method we do a lot of numerical experiments. These experiments confirm the hypothesis about power law. At the end we discuss real model of web-ranking based on the classical PageRank approach.
Deformation of a Capsule in a Power-Law Shear Flow
Directory of Open Access Journals (Sweden)
Fang-Bao Tian
2016-01-01
Full Text Available An immersed boundary-lattice Boltzmann method is developed for fluid-structure interactions involving non-Newtonian fluids (e.g., power-law fluid. In this method, the flexible structure (e.g., capsule dynamics and the fluid dynamics are coupled by using the immersed boundary method. The incompressible viscous power-law fluid motion is obtained by solving the lattice Boltzmann equation. The non-Newtonian rheology is achieved by using a shear rate-dependant relaxation time in the lattice Boltzmann method. The non-Newtonian flow solver is then validated by considering a power-law flow in a straight channel which is one of the benchmark problems to validate an in-house solver. The numerical results present a good agreement with the analytical solutions for various values of power-law index. Finally, we apply this method to study the deformation of a capsule in a power-law shear flow by varying the Reynolds number from 0.025 to 0.1, dimensionless shear rate from 0.004 to 0.1, and power-law index from 0.2 to 1.8. It is found that the deformation of the capsule increases with the power-law index for different Reynolds numbers and nondimensional shear rates. In addition, the Reynolds number does not have significant effect on the capsule deformation in the flow regime considered. Moreover, the power-law index effect is stronger for larger dimensionless shear rate compared to smaller values.
Power-law behaviour evaluation from foreign exchange market data using a wavelet transform method
Wei, H. L.; Billings, S. A.
2009-09-01
Numerous studies in the literature have shown that the dynamics of many time series including observations in foreign exchange markets exhibit scaling behaviours. A simple new statistical approach, derived from the concept of the continuous wavelet transform correlation function (WTCF), is proposed for the evaluation of power-law properties from observed data. The new method reveals that foreign exchange rates obey power-laws and thus belong to the class of self-similarity processes.
Power-law behaviour evaluation from foreign exchange market data using a wavelet transform method
Energy Technology Data Exchange (ETDEWEB)
Wei, H.L., E-mail: w.hualiang@sheffield.ac.u [Department of Automatic Control and Systems Engineering, the University of Sheffield, Mappin Street, Sheffield, S1 3JD (United Kingdom); Billings, S.A., E-mail: s.billings@sheffield.ac.u [Department of Automatic Control and Systems Engineering, the University of Sheffield, Mappin Street, Sheffield, S1 3JD (United Kingdom)
2009-09-07
Numerous studies in the literature have shown that the dynamics of many time series including observations in foreign exchange markets exhibit scaling behaviours. A simple new statistical approach, derived from the concept of the continuous wavelet transform correlation function (WTCF), is proposed for the evaluation of power-law properties from observed data. The new method reveals that foreign exchange rates obey power-laws and thus belong to the class of self-similarity processes.
Mixed-correlated ARFIMA processes for power-law cross-correlations
Czech Academy of Sciences Publication Activity Database
Krištoufek, Ladislav
2013-01-01
Roč. 392, č. 24 (2013), s. 6484-6493 ISSN 0378-4371 R&D Projects: GA ČR GA402/09/0965 Institutional support: RVO:67985556 Keywords : power-law cross-correlations * long - term memory * econophysics Subject RIV: AH - Economics Impact factor: 1.722, year: 2013 http://library.utia.cas.cz/separaty/2013/E/kristoufek-mixed-correlated arfima processes for power-law cross-correlations.pdf
Fractal approach towards power-law coherency to measure cross-correlations between time series
Czech Academy of Sciences Publication Activity Database
Krištoufek, Ladislav
2017-01-01
Roč. 50, č. 1 (2017), s. 193-200 ISSN 1007-5704 R&D Projects: GA ČR(CZ) GP14-11402P Institutional support: RVO:67985556 Keywords : power- law coherency * power- law cross-correlations * correlations Subject RIV: AH - Economics OBOR OECD: Applied Economics, Econometrics Impact factor: 2.784, year: 2016 http://library.utia.cas.cz/separaty/2017/E/kristoufek-0473066.pdf
Electrohydrodynamic stability of two stratified power law liquid in couette flow
International Nuclear Information System (INIS)
Eldabe, N.T.
1988-01-01
Consideration is given to the stability of the flow of two power law liquids under the influence of normal electric field between two infinite parallel planes when one of the planes moves with constant velocity in its own plane. It is found that the electric fields have a dramatic effect and can be chosen to stabilize or destabilize the flow. The effects of the power law parameters on the problem are examinated
Power-law behaviour evaluation from foreign exchange market data using a wavelet transform method
International Nuclear Information System (INIS)
Wei, H.L.; Billings, S.A.
2009-01-01
Numerous studies in the literature have shown that the dynamics of many time series including observations in foreign exchange markets exhibit scaling behaviours. A simple new statistical approach, derived from the concept of the continuous wavelet transform correlation function (WTCF), is proposed for the evaluation of power-law properties from observed data. The new method reveals that foreign exchange rates obey power-laws and thus belong to the class of self-similarity processes.
Networked and Distributed Control Method with Optimal Power Dispatch for Islanded Microgrids
DEFF Research Database (Denmark)
Li, Qiang; Peng, Congbo; Chen, Minyou
2017-01-01
of controllable agents. The distributed control laws derived from the first subgraph guarantee the supply-demand balance, while further control laws from the second subgraph reassign the outputs of controllable distributed generators, which ensure active and reactive power are dispatched optimally. However...... according to our proposition. Finally, the method is evaluated over seven cases via simulation. The results show that the system performs as desired, even if environmental conditions and load demand fluctuate significantly. In summary, the method can rapidly respond to fluctuations resulting in optimal...
Conservation law for distributed entanglement of formation and quantum discord
International Nuclear Information System (INIS)
Fanchini, Felipe F.; Cornelio, Marcio F.; Oliveira, Marcos C. de; Caldeira, Amir O.
2011-01-01
We present a direct relation, based upon a monogamic principle, between entanglement of formation (EOF) and quantum discord (QD), showing how they are distributed in an arbitrary tripartite pure system. By extending it to a paradigmatic situation of a bipartite system coupled to an environment, we demonstrate that the EOF and the QD obey conservation relation. By means of this relation we show that in the deterministic quantum computer with one pure qubit the protocol has the ability to rearrange the EOF and the QD, which implies that quantum computation can be understood on a different basis as a coherent dynamics where quantum correlations are distributed between the qubits of the computer. Furthermore, for a tripartite mixed state we show that the balance between distributed EOF and QD results in a stronger version of the strong subadditivity of entropy.
Galileo spacecraft power management and distribution system
International Nuclear Information System (INIS)
Detwiler, R.C.; Smith, R.L.
1990-01-01
It has been twelve years since two Voyager spacecraft began the direct route to the outer planets. In October 1989 a single Galileo spacecraft started the return to Jupiter. Conceived as a simple Voyager look-alike, the Galileo power management and distribution (PMAD) system has undergone many iterations in configuration. Major changes to the PMAD resulted from dual spun slip ring limitations, variations in launch vehicle thrust capabilities, and launch delays. Lack of an adequate launch vehicle for an interplanetary mission of Galileo's size has resulted in an extremely long flight duration. A Venus-Earth-Earth Gravity Assist (VEEGA) tour, vital to attain the required energy, results in a 6 year trip to Jupiter and its moons. This paper provides a description of the Galileo PMAD and documents the design drivers that established the final as-built hardware
Superconducting power distribution structure for integrated circuits
International Nuclear Information System (INIS)
Ruby, R.C.
1991-01-01
This patent describes a superconducting power distribution structure for an integrated circuit. It comprises a first superconducting capacitor plate; a second superconducting capacitor plate provided with electrical isolation means within the second capacitor plate; dielectric means separating the first capacitor plate from the second capacitor plate; first via means coupled at a first end to the first capacitor plate and extending through the dielectric and the electrical isolation means of the second capacitor plate; first contact means coupled to a second end of the first via means; and second contact means coupled to the second capacitor plate such that the first contact means and the second contact means are accessible from the same side of the second capacitor plate
Schneider, Elizabeth M.
2010-01-01
I am pleased to be part of this symposium to celebrate the life and work of Peter Bachrach. Although my focus is the relevance of Peter's ideas of power to law, I want to begin with some personal comments as well as raise some final thoughts, drawing on others' contributions. Like so many of Peter's other students, I adored him. Peter's joy in…
Network-state modulation of power-law frequency-scaling in visual cortical neurons.
El Boustani, Sami; Marre, Olivier; Béhuret, Sébastien; Baudot, Pierre; Yger, Pierre; Bal, Thierry; Destexhe, Alain; Frégnac, Yves
2009-09-01
Various types of neural-based signals, such as EEG, local field potentials and intracellular synaptic potentials, integrate multiple sources of activity distributed across large assemblies. They have in common a power-law frequency-scaling structure at high frequencies, but it is still unclear whether this scaling property is dominated by intrinsic neuronal properties or by network activity. The latter case is particularly interesting because if frequency-scaling reflects the network state it could be used to characterize the functional impact of the connectivity. In intracellularly recorded neurons of cat primary visual cortex in vivo, the power spectral density of V(m) activity displays a power-law structure at high frequencies with a fractional scaling exponent. We show that this exponent is not constant, but depends on the visual statistics used to drive the network. To investigate the determinants of this frequency-scaling, we considered a generic recurrent model of cortex receiving a retinotopically organized external input. Similarly to the in vivo case, our in computo simulations show that the scaling exponent reflects the correlation level imposed in the input. This systematic dependence was also replicated at the single cell level, by controlling independently, in a parametric way, the strength and the temporal decay of the pairwise correlation between presynaptic inputs. This last model was implemented in vitro by imposing the correlation control in artificial presynaptic spike trains through dynamic-clamp techniques. These in vitro manipulations induced a modulation of the scaling exponent, similar to that observed in vivo and predicted in computo. We conclude that the frequency-scaling exponent of the V(m) reflects stimulus-driven correlations in the cortical network activity. Therefore, we propose that the scaling exponent could be used to read-out the "effective" connectivity responsible for the dynamical signature of the population signals measured
Network-state modulation of power-law frequency-scaling in visual cortical neurons.
Directory of Open Access Journals (Sweden)
Sami El Boustani
2009-09-01
Full Text Available Various types of neural-based signals, such as EEG, local field potentials and intracellular synaptic potentials, integrate multiple sources of activity distributed across large assemblies. They have in common a power-law frequency-scaling structure at high frequencies, but it is still unclear whether this scaling property is dominated by intrinsic neuronal properties or by network activity. The latter case is particularly interesting because if frequency-scaling reflects the network state it could be used to characterize the functional impact of the connectivity. In intracellularly recorded neurons of cat primary visual cortex in vivo, the power spectral density of V(m activity displays a power-law structure at high frequencies with a fractional scaling exponent. We show that this exponent is not constant, but depends on the visual statistics used to drive the network. To investigate the determinants of this frequency-scaling, we considered a generic recurrent model of cortex receiving a retinotopically organized external input. Similarly to the in vivo case, our in computo simulations show that the scaling exponent reflects the correlation level imposed in the input. This systematic dependence was also replicated at the single cell level, by controlling independently, in a parametric way, the strength and the temporal decay of the pairwise correlation between presynaptic inputs. This last model was implemented in vitro by imposing the correlation control in artificial presynaptic spike trains through dynamic-clamp techniques. These in vitro manipulations induced a modulation of the scaling exponent, similar to that observed in vivo and predicted in computo. We conclude that the frequency-scaling exponent of the V(m reflects stimulus-driven correlations in the cortical network activity. Therefore, we propose that the scaling exponent could be used to read-out the "effective" connectivity responsible for the dynamical signature of the population
Evapotranspiration Power Law in Self-Organized and Human-Managed Ecosystems
Zeng, R.; Cai, X.
2017-12-01
Natural systems display a profound degree of self-organization, often apparent even to the untrained eye. However, in this age of increased coupling among human and natural systems, it is unclear to what degree natural organization principles continue to govern human-managed landscapes. Here we present an emerging characteristic of terrestrial evapotranspiration (ET), one of the key components of the water cycle and energy budget, adhered to by both naturally organized and intensively managed landscapes. We find that ET variance and ET mean for ecosystems throughout the world with diverse climate conditions, vegetation structures, and land covers and land uses organize themselves according to a specific power law curve. From multi-source observations, the ET power law curve stands true through varying spatial scales, from field to region. Moreover, a phenomenon of similar ecosystems gravitating toward particular segments of the power law curve, suggests that the feature of self-optimization of ecosystems establishes the ET power law together with climatic conditions. Perhaps surprisingly, we find that landscapes persistently follow the power law curve even upon human-induced transition from rain-fed to irrigated agriculture in the American High Plains and from wetland to agricultural land in American Midwest. As such, the ET power law can be an informative tool for predicting consequences of anthropogenic disturbances to the hydrologic cycle and understanding constraints to sustainable land use.
On the dynamics of the power law inflation due to an exponential potential
International Nuclear Information System (INIS)
Yokohama, Jun'ichi; Maeda, Kei-ichi; Tokyo Univ.
1988-01-01
The power law inflationary universe model induced by a scalar field with an exponential potential is studied. A dissipation term due to particle creation is introduced in the inflation's classical equation of motion. It is shown that the power index of the inflation increases prominently with an adequate viscosity. Consequently, even in theories with a rather steep exponential such as some supergravity or superstring models, it turns out that a 'realistic' power law inflation (with a power index p> or approx.10) is possible. (orig.)
Universal power law of the gravity wave manifestation in the AIM CIPS polar mesospheric cloud images
Rong, Pingping; Yue, Jia; Russell, James M., III; Siskind, David E.; Randall, Cora E.
2018-01-01
We aim to extract a universal law that governs the gravity wave manifestation in polar mesospheric clouds (PMCs). Gravity wave morphology and the clarity level of display vary throughout the wave population manifested by the PMC albedo data. Higher clarity refers to more distinct exhibition of the features, which often correspond to larger variances and a better-organized nature. A gravity wave tracking algorithm based on the continuous Morlet wavelet transform is applied to the PMC albedo data at 83 km altitude taken by the Aeronomy of Ice in the Mesosphere (AIM) Cloud Imaging and Particle Size (CIPS) instrument to obtain a large ensemble of the gravity wave detections. The horizontal wavelengths in the range of ˜ 20-60 km are the focus of the study. It shows that the albedo (wave) power statistically increases as the background gets brighter. We resample the wave detections to conform to a normal distribution to examine the wave morphology and display clarity beyond the cloud brightness impact. Sample cases are selected at the two tails and the peak of the normal distribution to represent the full set of wave detections. For these cases the albedo power spectra follow exponential decay toward smaller scales. The high-albedo-power category has the most rapid decay (i.e., exponent = -3.2) and corresponds to the most distinct wave display. The wave display becomes increasingly blurrier for the medium- and low-power categories, which hold the monotonically decreasing spectral exponents of -2.9 and -2.5, respectively. The majority of waves are straight waves whose clarity levels can collapse between the different brightness levels, but in the brighter background the wave signatures seem to exhibit mildly turbulent-like behavior.
Problems and legislative remedies of the parallel law systems in Japan for nuclear power reactors
International Nuclear Information System (INIS)
Irie, Kazutomo
2011-01-01
There are two established laws governing nuclear power reactors in Japan. One is the Electricity Utilities Industry Law, which regulates the nuclear power reactors, and the other is the so-called 'Reactor Regulation Law', which dually regulates the reactors in some phases. When a graded approach on the regulation of nuclear reactors was adopted, it extended over these two laws and was legislatively imperfect. Such imperfection created problems from the beginning. Also, the original regulatory structures presented by these laws had become obscure during the operation process of the graded regulation. The situation becomes further complicated by the revision of these laws in recent years. It appears that the trait of the regulatory procedural structure of the Electricity Utilities Industry Law has been weakened. As there is a pressing need to review the entire regulatory structure and to propose a unified regulatory system by combining these laws, this paper examines the merits and demerits of combining these laws under a unified regulation. (author)
Menzerath-Altmann law for distinct word distribution analysis in a large text
Eroglu, Sertac
2013-06-01
The empirical law uncovered by Menzerath and formulated by Altmann, known as the Menzerath-Altmann law (henceforth the MA law), reveals the statistical distribution behavior of human language in various organizational levels. Building on previous studies relating organizational regularities in a language, we propose that the distribution of distinct (or different) words in a large text can effectively be described by the MA law. The validity of the proposition is demonstrated by examining two text corpora written in different languages not belonging to the same language family (English and Turkish). The results show not only that distinct word distribution behavior can accurately be predicted by the MA law, but that this result appears to be language-independent. This result is important not only for quantitative linguistic studies, but also may have significance for other naturally occurring organizations that display analogous organizational behavior. We also deliberately demonstrate that the MA law is a special case of the probability function of the generalized gamma distribution.
Energy Technology Data Exchange (ETDEWEB)
Herrmann, B.J.; Schweers, E.
2007-07-01
The book under consideration is an actual collection of important laws and regulations according to the amended power economy law. It is the 7th edition and contains components of the European and national cartel law. Furthermore, the power economy law, the regulations of mains access, and the regulations of mains fee are revised editorial. The book consist of four main chapters: (a) General energy law; (b) Bylaws to energy economical laws; (c) Law of privileged energy supports; (d) cartel law.
Scaling-law for the energy dependence of anatomic power spectrum in dedicated breast CT
Energy Technology Data Exchange (ETDEWEB)
Vedantham, Srinivasan; Shi, Linxi; Glick, Stephen J.; Karellas, Andrew [Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655 (United States)
2013-01-15
Purpose: To determine the x-ray photon energy dependence of the anatomic power spectrum of the breast when imaged with dedicated breast computed tomography (CT). Methods: A theoretical framework for scaling the empirically determined anatomic power spectrum at one x-ray photon energy to that at any given x-ray photon energy when imaged with dedicated breast CT was developed. Theory predicted that when the anatomic power spectrum is fitted with a power curve of the form k f{sup -{beta}}, where k and {beta} are fit coefficients and f is spatial frequency, the exponent {beta} would be independent of x-ray photon energy (E), and the amplitude k scales with the square of the difference in energy-dependent linear attenuation coefficients of fibroglandular and adipose tissues. Twenty mastectomy specimens based numerical phantoms that were previously imaged with a benchtop flat-panel cone-beam CT system were converted to 3D distribution of glandular weight fraction (f{sub g}) and were used to verify the theoretical findings. The 3D power spectrum was computed in terms of f{sub g} and after converting to linear attenuation coefficients at monoenergetic x-ray photon energies of 20-80 keV in 5 keV intervals. The 1D power spectra along the axes were extracted and fitted with a power curve of the form k f{sup -{beta}}. The energy dependence of k and {beta} were analyzed. Results: For the 20 mastectomy specimen based numerical phantoms used in the study, the exponent {beta} was found to be in the range of 2.34-2.42, depending on the axis of measurement. Numerical simulations agreed with the theoretical predictions that for a power-law anatomic spectrum of the form k f{sup -{beta}}, {beta} was independent of E and k(E) =k{sub 1}[{mu}{sub g}(E) -{mu}{sub a}(E)]{sup 2}, where k{sub 1} is a constant, and {mu}{sub g}(E) and {mu}{sub a}(E) represent the energy-dependent linear attenuation coefficients of fibroglandular and adipose tissues, respectively. Conclusions: Numerical
An improved AVC strategy applied in distributed wind power system
Zhao, Y. N.; Liu, Q. H.; Song, S. Y.; Mao, W.
2016-08-01
Traditional AVC strategy is mainly used in wind farm and only concerns about grid connection point, which is not suitable for distributed wind power system. Therefore, this paper comes up with an improved AVC strategy applied in distributed wind power system. The strategy takes all nodes of distribution network into consideration and chooses the node having the most serious voltage deviation as control point to calculate the reactive power reference. In addition, distribution principles can be divided into two conditions: when wind generators access to network on single node, the reactive power reference is distributed according to reactive power capacity; when wind generators access to network on multi-node, the reference is distributed according to sensitivity. Simulation results show the correctness and reliability of the strategy. Compared with traditional control strategy, the strategy described in this paper can make full use of generators reactive power output ability according to the distribution network voltage condition and improve the distribution network voltage level effectively.
DISTRIBUTED ELECTRICAL POWER PRODUCTION SYSTEM AND METHOD OF CONTROL THEREOF
DEFF Research Database (Denmark)
2010-01-01
The present invention relates to a distributed electrical power production system wherein two or more electrical power units comprise respective sets of power supply attributes. Each set of power supply attributes is associated with a dynamic operating state of a particular electrical power unit....
Earthquake cycle simulations with rate-and-state friction and power-law viscoelasticity
Allison, Kali L.; Dunham, Eric M.
2018-05-01
We simulate earthquake cycles with rate-and-state fault friction and off-fault power-law viscoelasticity for the classic 2D antiplane shear problem of a vertical, strike-slip plate boundary fault. We investigate the interaction between fault slip and bulk viscous flow with experimentally-based flow laws for quartz-diorite and olivine for the crust and mantle, respectively. Simulations using three linear geotherms (dT/dz = 20, 25, and 30 K/km) produce different deformation styles at depth, ranging from significant interseismic fault creep to purely bulk viscous flow. However, they have almost identical earthquake recurrence interval, nucleation depth, and down-dip coseismic slip limit. Despite these similarities, variations in the predicted surface deformation might permit discrimination of the deformation mechanism using geodetic observations. Additionally, in the 25 and 30 K/km simulations, the crust drags the mantle; the 20 K/km simulation also predicts this, except within 10 km of the fault where the reverse occurs. However, basal tractions play a minor role in the overall force balance of the lithosphere, at least for the flow laws used in our study. Therefore, the depth-integrated stress on the fault is balanced primarily by shear stress on vertical, fault-parallel planes. Because strain rates are higher directly below the fault than far from it, stresses are also higher. Thus, the upper crust far from the fault bears a substantial part of the tectonic load, resulting in unrealistically high stresses. In the real Earth, this might lead to distributed plastic deformation or formation of subparallel faults. Alternatively, fault pore pressures in excess of hydrostatic and/or weakening mechanisms such as grain size reduction and thermo-mechanical coupling could lower the strength of the ductile fault root in the lower crust and, concomitantly, off-fault upper crustal stresses.
Stochastic dominance for law invariant preferences: The happy story of elliptical distributions
Matteo Del Vigna
2012-01-01
We study the connections between stochastic dominance and law invariant preferences. Whenever the functional that represents preferences depends only on the law of the random variable, we shall look for conditions that imply a ranking of distributions. In analogy with the Expected Utility paradigm, we prove that functional dominance leads to first order stochastic dominance. We analyze in details the case of Dual Theory of Choice and Cumulative Prospect Theory, including all its distinctive f...
The interrupted power law and the size of shadow banking.
Fiaschi, Davide; Kondor, Imre; Marsili, Matteo; Volpati, Valerio
2014-01-01
Using public data (Forbes Global 2000) we show that the asset sizes for the largest global firms follow a Pareto distribution in an intermediate range, that is "interrupted" by a sharp cut-off in its upper tail, where it is totally dominated by financial firms. This flattening of the distribution contrasts with a large body of empirical literature which finds a Pareto distribution for firm sizes both across countries and over time. Pareto distributions are generally traced back to a mechanism of proportional random growth, based on a regime of constant returns to scale. This makes our findings of an "interrupted" Pareto distribution all the more puzzling, because we provide evidence that financial firms in our sample should operate in such a regime. We claim that the missing mass from the upper tail of the asset size distribution is a consequence of shadow banking activity and that it provides an (upper) estimate of the size of the shadow banking system. This estimate-which we propose as a shadow banking index-compares well with estimates of the Financial Stability Board until 2009, but it shows a sharper rise in shadow banking activity after 2010. Finally, we propose a proportional random growth model that reproduces the observed distribution, thereby providing a quantitative estimate of the intensity of shadow banking activity.
Iwamatsu, Masao
2017-07-01
The spreading of a cap-shaped spherical droplet of non-Newtonian power-law liquids, both shear-thickening and shear-thinning liquids, that completely wet a spherical substrate is theoretically investigated in the capillary-controlled spreading regime. The crater-shaped droplet model with the wedge-shaped meniscus near the three-phase contact line is used to calculate the viscous dissipation near the contact line. Then the energy balance approach is adopted to derive the equation that governs the evolution of the contact line. The time evolution of the dynamic contact angle θ of a droplet obeys a power law θ∼t^{-α} with the spreading exponent α, which is different from Tanner's law for Newtonian liquids and those for non-Newtonian liquids on a flat substrate. Furthermore, the line-tension dominated spreading, which could be realized on a spherical substrate for late-stage of spreading when the contact angle becomes low and the curvature of the contact line becomes large, is also investigated.
Practical experience with second law power plant monitoring
International Nuclear Information System (INIS)
Lang, F.D.; Horn, K.F.
1992-01-01
This article discusses the use of an ultimate performance monitoring technique derived from Second Law concepts. Other techniques and their methods have been reported. If electricity is to be produced with the minimum of unproductive consumption of fuel - then fundamental thermodynamic losses must be understood on a system bases. Such understanding cuts across vendor curves, plant design, fuels, etc. Thermal losses in a nuclear unit are comparable at a prime facia level to losses at any other thermal system. They are what we must minimize in the production of electricity, no manner the method of that production. The Second Law offers the only foundation for the study of such losses, and thus affords the bases for a true and ultimate indicator of system performance. From such a foundation, a parameter is needed to tell us specifically what components are thermodynamically responsible for fuel consumption given either their direct creation of electricity or their contribution to thermodynamic losses. The Fuel Consumption Index, discussed in this article, is this parameter. It can be used for thermodynamic system design, monitoring, diagnosing problems, and economic dispatching. It tells us why fuel is being consumed; consumed by a nuclear plant, trash burner, a 40 year-old fossil plant, etc
Marshall, Najja; Timme, Nicholas M; Bennett, Nicholas; Ripp, Monica; Lautzenhiser, Edward; Beggs, John M
2016-01-01
Neural systems include interactions that occur across many scales. Two divergent methods for characterizing such interactions have drawn on the physical analysis of critical phenomena and the mathematical study of information. Inferring criticality in neural systems has traditionally rested on fitting power laws to the property distributions of "neural avalanches" (contiguous bursts of activity), but the fractal nature of avalanche shapes has recently emerged as another signature of criticality. On the other hand, neural complexity, an information theoretic measure, has been used to capture the interplay between the functional localization of brain regions and their integration for higher cognitive functions. Unfortunately, treatments of all three methods-power-law fitting, avalanche shape collapse, and neural complexity-have suffered from shortcomings. Empirical data often contain biases that introduce deviations from true power law in the tail and head of the distribution, but deviations in the tail have often been unconsidered; avalanche shape collapse has required manual parameter tuning; and the estimation of neural complexity has relied on small data sets or statistical assumptions for the sake of computational efficiency. In this paper we present technical advancements in the analysis of criticality and complexity in neural systems. We use maximum-likelihood estimation to automatically fit power laws with left and right cutoffs, present the first automated shape collapse algorithm, and describe new techniques to account for large numbers of neural variables and small data sets in the calculation of neural complexity. In order to facilitate future research in criticality and complexity, we have made the software utilized in this analysis freely available online in the MATLAB NCC (Neural Complexity and Criticality) Toolbox.
Pareto law and Pareto index in the income distribution of Japanese companies
Ishikawa, Atushi
2004-01-01
In order to study the phenomenon in detail that income distribution follows Pareto law, we analyze the database of high income companies in Japan. We find a quantitative relation between the average capital of the companies and the Pareto index. The larger the average capital becomes, the smaller the Pareto index becomes. From this relation, we can possibly explain that the Pareto index of company income distribution hardly changes, while the Pareto index of personal income distribution chang...
Energy law. The legal boundary conditions of power supply. 2. rev. ed.
International Nuclear Information System (INIS)
Stuhlmacher, Gerd; Stappert, Holger; Jansen, Guido
2015-01-01
Now appearing in its second edition, this book presents a comprehensive overview of the legal framework governing the energy sector. It provides readily understandable coverage, across the relevant subfields of law, of the legal regulations applicable to any manner of activity in the energy sector along with a wealth of practical advice on the interpretation and application of legal provisions. The content has been thoroughly revised, updated to reflect the current status of legislation and supplemented with numerous chapters. The 2014 amendment of the Renewable Energy Law (EEG) and its practical impact have also been taken into account. The following topics are covered amongst others: unbundling of network operation; connection and access to networks and metering; network charges and incentive regulation; easement contracts; energy supply and basic services; energy and electricity taxes; cartel law, law on operating aids, procurement law; energy trade OTC and at exchanges; energy trade surveillance law; fuel production and fracking; conventional and nuclear power production; renewable energy production (including offshore production); energy storage and power-to-gas; transmission line construction; climate protection (including the 2014 EEG, emission trade and the Law on the Promotion of Renewable Energy in the Heat Sector); cogeneration law, district heating and contracting; and investment protection.
determination of the power law exponent for southern highlands
African Journals Online (AJOL)
Mgina
site located in the southern highland zone of Tanzania, was established using wind speeds measured at heights ... distribution, turbulence and wind gusts at the ... mathematical models, which normally .... other locations that have similar wind.
Wireless powering for low-power distributed sensors
Directory of Open Access Journals (Sweden)
Popović Zoya B.
2006-01-01
Full Text Available In this paper, an overview of the field of wireless powering is presented with an emphasis on low-power applications. Several rectenna elements and arrays are discussed in more detail: (1 a 10-GHz array for powering sensors in aircraft wings; (2 a single antenna in the 2.4-GHz ISM band for low-power assisted-living sensors; and (3 a broadband array for power harvesting in the 2-18GHz frequency range.
The power of law : Spinoza’s contribution to legal theory
Gribnau, J.L.M.
1995-01-01
Spinoza’s legal theoretical ideas are based on psychological and sociological regularities in human behaviour of knowledge. His naturalistic and descriptive approach of the relationship between law and power shows that the exercise of state power on that basis - within the constitutional constraints
Judicial law-making: Unlocking the creative powers of judges in ...
African Journals Online (AJOL)
... the creative powers of judges in terms of Section 39(2) of the constitution. ... that judges do indeed have a law-making function in the process of interpretation. ... The article examines the extent to which the judiciary can use this power in a ...
Huang, Y.; Song, Q. W.; Tan, B. L.
2018-04-01
It is first proposed a theoretical scaling law respectively for the coronal magnetic field strength B and electron power-law index δ versus frequency and coronal height in solar microwave burst sources. Based on the non-thermal gyro-synchrotron radiation model (Ramaty in Astrophys. J. 158:753, 1969), B and δ are uniquely solved by the observable optically-thin spectral index and turnover (peak) frequency, the other parameters (plasma density, temperature, view angle, low and high energy cutoffs, etc.) are relatively insensitive to the calculations, thus taken as some typical values. Both of B and δ increase with increasing of radio frequency but with decreasing of coronal height above photosphere, and well satisfy a square or cubic logarithmic fitting.
Yang, Shan; Tong, Xiangqian
2016-01-01
Power flow calculation and short circuit calculation are the basis of theoretical research for distribution network with inverter based distributed generation. The similarity of equivalent model for inverter based distributed generation during normal and fault conditions of distribution network and the differences between power flow and short circuit calculation are analyzed in this paper. Then an integrated power flow and short circuit calculation method for distribution network with inverte...
Distributed optimal coordination for distributed energy resources in power systems
DEFF Research Database (Denmark)
Wu, Di; Yang, Tao; Stoorvogel, A.
2017-01-01
Driven by smart grid technologies, distributed energy resources (DERs) have been rapidly developing in recent years for improving reliability and efficiency of distribution systems. Emerging DERs require effective and efficient coordination in order to reap their potential benefits. In this paper......, we consider an optimal DER coordination problem over multiple time periods subject to constraints at both system and device levels. Fully distributed algorithms are proposed to dynamically and automatically coordinate distributed generators with multiple/single storages. With the proposed algorithms...
Stability of the laws for the distribution of the cumulative failures in railway transport
Directory of Open Access Journals (Sweden)
Kirill VOYNOV
2008-01-01
Full Text Available There are very many different laws of distribution (for example, bellshaped (Gaussian distribution, lognormal, Weibull distribution, exponential, uniform, Poisson’s, Student’s distributions and so on, which help to describe the real picture of failures with elements in various mechanical systems, in locomotives and carriages, too. To diminish the possibility of getting the rough error in the output of maths data treatment the new method is demonstrated in this article. The task is solved both to the discrete, and to the continuous distributions.
Directory of Open Access Journals (Sweden)
Aude Merlin
2009-03-01
Full Text Available PIPSS.ORG – You worked as a lawyer on the Budanov case, and you created the Rule of Law Institute. How long since this institute was created?Stanislav Markelov: About two years.PIPSS.ORG – Who is the founder of the institute?Stanislav Markelov: I am.PIPSS.ORG – In which regions of Russia is this institute active? How many regions have branches? Stanislav Markelov: If I’m not mistaken, there are branches in 22 regions of Russia, and in other CIS countries: Belarus and Ukraine.PIPSS.ORG – What ...
Effects of Transverse Power Distribution on Fuel Temperature
International Nuclear Information System (INIS)
Jo, Daeseong; Park, Jonghark; Seo, Chul Gyo; Chae, Heetaek
2014-01-01
In the present study, transverse power distributions with segments of 4 and 18 are evaluated. Based on the power distribution, the fuel temperatures are evaluated with a consideration of lateral heat conduction. In the present study, the effect of the transverse power distribution on the fuel temperature is investigated. The transverse power distributions with variation of fuel segment number are evaluated. The maximum power peaking with 12 segments is higher than that with 4 segments. Based on the calculation, 6-order polynomial is generated to express the transverse power distributions. The maximum power peaking factor increases with segments. The averaged power peaking is 2.10, and the maximum power peaking with 18 segments is 2.80. With the uniform power distribution, the maximum fuel temperature is found in the middle of the fuel. As the power near the side ends of the fuel increases, the maximum fuel temperature is found near the side ends. However, the maximum fuel temperature is not found where the maximum transverse power is. This is because the high power locally released from the edge of the fuel is laterally conducted to the cladding. As a result of the present study, it can be concluded that the effect of the high power peaking at the edge of the fuel on the fuel outer wall temperature is not significant
Constraints on the tensor-to-scalar ratio for non-power-law models
International Nuclear Information System (INIS)
Vázquez, J. Alberto; Bridges, M.; Ma, Yin-Zhe; Hobson, M.P.
2013-01-01
Recent cosmological observations hint at a deviation from the simple power-law form of the primordial spectrum of curvature perturbations. In this paper we show that in the presence of a tensor component, a turn-over in the initial spectrum is preferred by current observations, and hence non-power-law models ought to be considered. For instance, for a power-law parameterisation with both a tensor component and running parameter, current data show a preference for a negative running at more than 2.5σ C.L. As a consequence of this deviation from a power-law, constraints on the tensor-to-scalar ratio r are slightly broader. We also present constraints on the inflationary parameters for a model-independent reconstruction and the Lasenby and Doran (LD) model. In particular, the constraints on the tensor-to-scalar ratio from the LD model are: r LD = 0.11±0.024. In addition to current data, we show expected constraints from Planck-like and CMB-Pol sensitivity experiments by using Markov-Chain-Monte-Carlo sampling chains. For all the models, we have included the Bayesian Evidence to perform a model selection analysis. The Bayes factor, using current observations, shows a strong preference for the LD model over the standard power-law parameterisation, and provides an insight into the accuracy of differentiating models through future surveys
Problems of cartel law in license contracts within the power economy
International Nuclear Information System (INIS)
Hueffer, U.
1992-01-01
First the licence contract is presented as a particularly important instrument of the power economy. In a second step a link is established with cartel law; that is, the special status of the power economy under cartel law and the significance of the licence contract within this context are illuminated. On this basis then, a very controversial complex of problems is entered into: the assessment of so-called expiration clauses in licence contracts, i.e. the legal situation upon expiration of a licence contract. It turns out that qualms about the time value being the takeover price have no legal basis. The fact that they were expressed at all is due to the lack of a synopsis of the relevant subareas of commercial law. Scientific purposes require a synopsis of the commercial law concerned rather than an argument in which each party splits off single aspects of the issue. (orig./HSCH) [de
Active Power Filter DC Bus Voltage Piecewise Reaching Law Variable Structure Control
Liu, Baolian; Ding, Zujun; Zhao, Huanyu; Jin, Defei
2014-01-01
The DC bus voltage stability control is one key technology to ensure that Active Power Filter (APF) operates stably. The external disturbances such as power grid and load fluctuation and the system parameters changing may affect the stability of APF DC bus voltage and the normal operation of APF. The mathematical model of DC bus voltage is established according to power balance principle and a DC bus voltage piecewise reaching law variable structure control algorithm is proposed to solve the ...
The future of power transmission and distribution in India
International Nuclear Information System (INIS)
Parakh, S.C.
1995-01-01
India's growing economy requires considerable investment in the power sector. Though rapid strides have been made, the power sector has been unable to supply quality power and demand is continuously outstripping supply. The future of power transmission and distribution in India is discussed. 2 tabs
Distributed energy store powered railguns for hypervelocity launch
Maas, Brian L.; Bauer, David P.; Marshall, Richard A.
1993-01-01
Highly distributed power supplies are proposed as a basis for current difficulties with hypervelocity railgun power-supply compactness. This distributed power supply configuration reduces rail-to-rail voltage behind the main armature, thereby reducing the tendency for secondary armature current formation; secondary current elimination is essential for achieving the efficiencies associated with muzzle velocity above 6 km/sec. Attention is given to analytical and experimental results for two distributed energy storage schemes.
Research on intelligent power distribution system for spacecraft
Xia, Xiaodong; Wu, Jianju
2017-10-01
The power distribution system (PDS) mainly realizes the power distribution and management of the electrical load of the whole spacecraft, which is directly related to the success or failure of the mission, and hence is an important part of the spacecraft. In order to improve the reliability and intelligent degree of the PDS, and considering the function and composition of spacecraft power distribution system, this paper systematically expounds the design principle and method of the intelligent power distribution system based on SSPC, and provides the analysis and verification of the test data additionally.
Optimization of the cooling power distribution in a superconducting linac
International Nuclear Information System (INIS)
Wendl, C.M.; Noe, J.W.
1996-01-01
The benefits of setting the resonators in a superconducting heavy-ion linac to a certain optimum distribution of cooling power have been evaluated in terms of the total acceleration such a distribution may produce, compared to a distribution in which each resonator dissipates power equally. The optimum power distribution can be expressed in closed form in certain simplified cases, but the general case is solved by equalizing the 'marginal power cost' of the resonators by iteration in a computer simulation. For the Stony Brook linac an additional possible acceleration of several percent is thus predicted for typical beams. (author)
Method of controlling power distribution in FBR type reactors
International Nuclear Information System (INIS)
Sawada, Shusaku; Kaneto, Kunikazu.
1982-01-01
Purpose: To attain the power distribution flattening with ease by obtaining a radial power distribution substantially in a constant configuration not depending on the burn-up cycle. Method: As the fuel burning proceeds, the radial power distribution is effected by the accumulation of fission products in the inner blancket fuel assemblies which varies the effect thereof as the neutron absorbing substances. Taking notice of the above fact, the power distribution is controlled in a heterogeneous FBR type reactor by varying the core residence period of the inner blancket assemblies in accordance with the charging density of the inner blancket assemblies in the reactor core. (Kawakami, Y.)
Tippett, Michael K; Cohen, Joel E
2016-02-29
Tornadoes cause loss of life and damage to property each year in the United States and around the world. The largest impacts come from 'outbreaks' consisting of multiple tornadoes closely spaced in time. Here we find an upward trend in the annual mean number of tornadoes per US tornado outbreak for the period 1954-2014. Moreover, the variance of this quantity is increasing more than four times as fast as the mean. The mean and variance of the number of tornadoes per outbreak vary according to Taylor's power law of fluctuation scaling (TL), with parameters that are consistent with multiplicative growth. Tornado-related atmospheric proxies show similar power-law scaling and multiplicative growth. Path-length-integrated tornado outbreak intensity also follows TL, but with parameters consistent with sampling variability. The observed TL power-law scaling of outbreak severity means that extreme outbreaks are more frequent than would be expected if mean and variance were independent or linearly related.
Phase diagram of power law and Lennard-Jones systems: Crystal phases
International Nuclear Information System (INIS)
Travesset, Alex
2014-01-01
An extensive characterization of the low temperature phase diagram of particles interacting with power law or Lennard-Jones potentials is provided from Lattice Dynamical Theory. For power law systems, only two lattice structures are stable for certain values of the exponent (or softness) (A15, body centered cube (bcc)) and two more (face centered cubic (fcc), hexagonal close packed (hcp)) are always stable. Among them, only the fcc and bcc are equilibrium states. For Lennard-Jones systems, the equilibrium states are either hcp or fcc, with a coexistence curve in pressure and temperature that shows reentrant behavior. The hcp solid never coexists with the liquid. In all cases analyzed, for both power law and Lennard-Jones potentials, the fcc crystal has higher entropy than the hcp. The role of anharmonic terms is thoroughly analyzed and a general thermodynamic integration to account for them is proposed
Two-phase flow in porous media: power-law scaling of effective permeability
Energy Technology Data Exchange (ETDEWEB)
Groeva, Morten; Hansen, Alex, E-mail: Morten.Grova@ntnu.no, E-mail: Alex.Hansen@ntnu.no [Department of Physics, NTNU, NO-7491 Trondheim (Norway)
2011-09-15
A recent experiment has reported power-law scaling of effective permeability of two-phase flow with respect to capillary number for a two-dimensional model porous medium. In this paper, we consider the simultaneous flow of two phases through a porous medium under steady-state conditions, fixed total flow-rate and saturation, using a two-dimensional network simulator. We obtain power-law exponents for the scaling of effective permeability with respect to capillary number. The simulations are performed both for viscosity matched fluids and for a high viscosity ratio resembling that of air and water. Good power-law behaviour is found for both cases. Different exponents are found, depending on saturation.
Energy Technology Data Exchange (ETDEWEB)
NONE
2001-07-01
This document presents the decree concerning the information confidentiality held by the public networks of transportation or electric power distribution, taking into account for the application of the 16 and 20 sections of the law number 2000-108 of the 20 february 2000 related to the modernization and the development of the electrical utilities and a comment of this decree by J. Syrota. (A.L.B.)
Non-power law behavior of the radial profile of phase-space density of halos
International Nuclear Information System (INIS)
Popolo, A. Del
2011-01-01
We study the pseudo phase-space density, ρ(r)/σ 3 (r), of ΛCDM dark matter halos with and without baryons (baryons+DM, and pure DM), by using the model introduced in Del Popolo (2009), which takes into account the effect of dynamical friction, ordered and random angular momentum, baryons adiabatic contraction and dark matter baryons interplay. We examine the radial dependence of ρ(r)/σ 3 (r) over 9 orders of magnitude in radius for structures on galactic and cluster of galaxies scales. We find that ρ(r)/σ 3 (r) is approximately a power-law only in the range of halo radius resolved by current simulations (down to 0.1% of the virial radius) while it has a non-power law behavior below the quoted scale, with inner profiles changing with mass. The non-power-law behavior is more evident for halos constituted both of dark matter and baryons while halos constituted just of dark matter and with angular momentum chosen to reproduce a Navarro-Frenk-White (NFW) density profile, are characterized by an approximately power-law behavior. The results of the present paper lead to conclude that density profiles of the NFW type are compatible with a power-law behavior of ρ(r)/σ 3 (r), while those flattening to the halo center, like those found in Del Popolo (2009) or the Einasto profile, or the Burkert profile, cannot produce radial profile of the pseudo-phase-space density that are power-laws at all radii. The results argue against universality of the pseudo phase-space density and as a consequence argue against universality of density profiles constituted by dark matter and baryons as also discussed in Del Popolo (2009)
New power distribution challenges at the local scale
International Nuclear Information System (INIS)
Delage, Marion; Cadoux, Florent; Petit, Marc
2016-01-01
Distribution grids are facing the connection of both more and more variable distributed generation sources and new loads such as electric vehicles. Then distribution grid operators evolve to distribution system operators (DSOs) with new flexibilities (power control of distributed energy sources) to complete their traditional planning and operation tools. In the future, additional distributed resources could be used, such as demand response and storage. DSOs are becoming actors of a global electrical system where power balancing must be ensured at the European level with local constraints (congestion and voltage), and with power flows from transmission to distribution grids but also inside the distribution grid or from distribution to transmission. Sensors and data availability are key issues to enable these transformations. This paper defines some general concerns and present European issues with illustrations from the French electrical system. (authors)
The Circulation Distribution on the Lifting Line for a Given Extracted Power
Directory of Open Access Journals (Sweden)
Ali Helali
2012-01-01
Full Text Available Presently, there exist few numerical methods which treat the inverse problem for the determination of the geometry of wind turbine blades. In this work, authors intend to solve the inverse optimum project for horizontal axis wind turbine in which the selection of the circulation distribution is obtained by resolving two variational problems: the first consists in sorting the circulation distribution on the lifting line, which, for a given power extracted by the wind turbine, minimizes the loses due to the induced velocity. In the second, the optimal circulation distribution is selected such that the kinetic energy of the wind downstream of the rotor disc is minimum, when the energy extracted by the wind turbine for one rotating period is imposed. A code has been developed which incorporates the real pitch of the helicoidal vortex wake. Very promising results have been obtained: the circulation distribution for a given extracted power and the chord lengths distribution law along the blade span.
Negative binomial multiplicity distributions, a new empirical law for high energy collisions
International Nuclear Information System (INIS)
Van Hove, L.; Giovannini, A.
1987-01-01
For a variety of high energy hadron production reactions, recent experiments have confirmed the findings of the UA5 Collaboration that charged particle multiplicities in central (pseudo) rapidity intervals and in full phase space obey negative binomial (NB) distributions. The authors discuss the meaning of this new empirical law on the basis of new data and they show that they support the interpretation of the NB distributions in terms of a cascading mechanism of hardron production
From conservation laws to port-Hamiltonian representations of distributed-parameter systems
Maschke, B.M.; van der Schaft, Arjan; Piztek, P.
Abstract: In this paper it is shown how the port-Hamiltonian formulation of distributed-parameter systems is closely related to the general thermodynamic framework of systems of conservation laws and closure equations. The situation turns out to be similar to the lumped-parameter case where the
ESEARCH OF THE LAW OF DISTRIBUTION OF THE RANDOM VARIABLE OF THE COMPRESSION
Directory of Open Access Journals (Sweden)
I. Sarayeva
2011-01-01
Full Text Available At research of diagnosing the process of modern automobile engines by means of methods of mathematical statistics the experimental data of the random variable of compression are analysed and it is proved that the random variable of compression has the form of the normal law of distribution.
Determining Rheological Parameters of Generalized Yield-Power-Law Fluid Model
Directory of Open Access Journals (Sweden)
Stryczek Stanislaw
2004-09-01
Full Text Available The principles of determining rheological parameters of drilling muds described by a generalized yield-power-law are presented in the paper. Functions between tangent stresses and shear rate are given. The conditions of laboratory measurements of rheological parameters of generalized yield-power-law fluids are described and necessary mathematical relations for rheological model parameters given. With the block diagrams, the methodics of numerical solution of these relations has been presented. Rheological parameters of an exemplary drilling mud have been calculated with the use of this numerical program.
Power-law Decay and the Ergodic-Nonergodic Transition in Simple Fluids
Spyridis, Paul; Mazenko, Gene F.
2013-01-01
It is well known that mode coupling theory (MCT) leads to a two step power-law time decay in dense simple fluids. We show that much of the mathematical machinery used in the MCT analysis can be taken over to the analysis of the systematic theory developed in the Fundamental Theory of Statistical Particle Dynamics (arXiv:0905.4904). We show how the power-law exponents can be computed in the second-order approximation where we treat hard-sphere fluids with statics described by the Percus-Yevick...
Numerical simulation of heat transfer in power law fluid flow through a stenosed artery
Talib, Amira Husni; Abdullah, Ilyani
2017-11-01
A numerical study of heat transfer in a power law fluid is investigated in this paper. The blood flow is treated as power law fluid with a presence of cosine shaped stenosis. This study reveals the effect of stenosis on the heat transfer and velocity of blood flowing in the constricted artery. The governing and energy equations are formulated in a cylindrical coordinate system. Hence, the set of equations and boundary conditions are solved numerically by Marker and Cell (MAC) method. The graphical result shows the profile of blood temperature is increased while the blood velocity is decreased at the critical height of stenosis.
Numerical Modeling of the Flow of a Power Law Ceramic Slurry in the Tape Casting Process
DEFF Research Database (Denmark)
Jabbari, Masoud; Hattel, Jesper Henri
2012-01-01
Multilayer ceramics and their application have increased recently. One of the most common ways used to produce these products is tape casting. In this process the wet tape thickness is one of the most determining parameters affecting the final properties of the product and it is therefore of great...... interest to be able to control it. In the present work the flow of La0.85Sr0.15MnO3 (LSM) material in the doctor blade region is modelled numerically with ANSYS Fluent in combination with an Ostwald power law constitutive equation. Based on rheometer experiments the constants in the Ostwald power law...
Distributed control of deregulated electrical power networks
Hermans, R.M.
2012-01-01
A prerequisite for reliable operation of electrical power networks is that supply and demand are balanced at all time, as efficient ways for storing large amounts of electrical energy are scarce. Balancing is challenging, however, due to the power system's dimensions and complexity, the low
Kim, JongChun; Paik, Kyungrock
2015-04-01
Channel geometry and hydraulic characteristics of a given river network, i.e., spatio-temporal variability of width, depth, and velocity, can be described as power functional relationships of flow discharge, named 'hydraulic geometry' (Leopold and Maddock, 1953). Many studies have focused on the implication of this power-law itself, i.e., self-similarity, and accordingly its exponents. Coefficients of the power functional relationships, on the contrary, have received little attention. They are often regarded as empirical constants, determined by 'best fitting' to the power-law without significant scientific implications. Here, we investigate and claim that power-law coefficients of hydraulic geometry relationships carry vital information of a given river system. We approach the given problem on the basis of 'basin hydraulic geometry' formulation (Stall and Fok, 1968) which decomposes power-law coefficients into more elementary constants. The linkage between classical power-law relationship (Leopold and Maddock, 1953) and the basin hydraulic geometry is provided by Paik and Kumar (2004). On the basis of this earlier study, it can be shown that coefficients and exponents of power-law hydraulic geometry are interrelated. In this sense, we argue that more elementary constants that constitute both exponents and coefficients carry important messages. In this presentation, we will demonstrate how these elementary constants vary over a wide range of catchments provided from Stall and Fok (1968) and Stall and Yang (1970). Findings of this study can provide new insights on fundamental understanding about hydraulic geometry relationships. Further, we expect that this understanding can help interpretation of hydraulic geometry relationship in the context of flood propagation through a river system as well. Keywords: Hydraulic geometry; Power-law; River network References Leopold, L. B., & Maddock, T. J. (1953). The hydraulic geometry of stream channels and some physiographic
Thermostatistical properties of q-deformed bosons trapped in a D-dimensional power-law potential
International Nuclear Information System (INIS)
Su Guozhen; Chen Jincan; Chen Lixuan
2003-01-01
The thermostatistical properties of an ideal gas of q-deformed bosons trapped in a D-dimensional power-law potential are studied, based on the q-deformed Bose-Einstein distribution. The effects of q-deformation on the properties of the system are discussed. It is shown that q-deformed bosons (q ≠ 1) possess many different characteristics from those of ordinary bosons, which include the condition that Bose-Einstein condensation (BEC) occurs, the critical temperature and the continuity of heat capacity
Distributed routing algorithms to manage power flow in agent-based active distribution network
Nguyen, H.P.; Kling, W.L.; Georgiadis, G.; Papatriantafilou, M.; Anh-Tuan, L.; Bertling, L.
2010-01-01
The current transition from passive to active electric distribution networks comes with problems and challenges on bi-directional power flow in the network and the uncertainty in the forecast of power generation from grid-connected renewable and distributed energy sources. The power flow management
International Nuclear Information System (INIS)
Feng Guolin; Zhang Daquan; Gong Zhiqiang; Zhi Rong
2008-01-01
Precipitation sequence is a typical nonlinear and chaotic observational series, and studies on precipitation forecasts are restricted to the use of traditional linear statistical methods, especially when analysing the regional characteristics of precipitation. In the context of 20 stations' daily precipitation series (from 1956 to 2000) in South China (SC) and North China (NC), we divide each precipitation series into many self-stationary segments by using the heuristic segmentation algorithm (briefly BG algorithm). For each station's precipitation series, we calculate the exponent of power-law tail (EPT) of the cumulative probability distribution of segments with a length larger than l for precipitation and temperature series. Our results show that the power-law decay of the cumulative probability distribution of stationary segments might be a common attribution for precipitation and other nonstationary time series; the EPT somewhat indicates the precipitation duration and its spatial distribution that might be different from area to area. The EPT in NC is larger than in SC; Meanwhile, EPT might be another effective way to study the abrupt changes in nonlinear and nonstationary time series. (geophysics, astronomy and astrophysics)
International Nuclear Information System (INIS)
Wen, Huiqing; Su, Bin
2016-01-01
Highlights: • Four operating modes of Dual-Phase-Shift control for Dual Active Bridge converter are presented. • Effects of “minor parameters” such as the deadtime and power device voltage drops are analyzed. • Accurate power flow models with Dual-Phase-Shift control are developed and verified with experimental results. • Optimal operating mode is determined with respect to the efficiency improvement. • Measured efficiency of the Dual Active Bridge converter is improved up to 14%. - Abstract: Due to the intermittent nature of the renewable energy sources including photovoltaic and wind energy, the energy storage systems are essential to stabilize dc bus voltage. Considering the discharge depth of super-capacitors and energy-storage batteries, the bidirectional isolated power interface will operate for a wide range of voltage and power. This study focuses on in-depth analysis of the dual-active-bridge dc–dc converter that is controlled by the dual-phase-shift scheme to improve the conversion efficiency in distributed power system. The power flow of each operating mode with dual-phase-shift control is characterized based on a detailed analysis of the effects of “minor parameters”, including the deadtime and power device voltage drops. The complete output power plane of the dual-active-bridge converter with dual-phase-shift control is obtained and compared with experimental results. The optimal operating mode is determined according to the practical output power range and the power flow characteristics. Experimental evaluation shows the effectiveness of the proposed power flow model with dual-phase-shift control and significant efficiency improvement using the optimal mode of dual-phase-shift compared with the conventional phase shift control.
Distribution of phthalate esters in underground water from power ...
African Journals Online (AJOL)
This study investigates the distribution of phthalateacid esters (PAEs) in groundwater from some power stations in Delta State. Groundwater samples were collected from eight power transmission and distribution stations. Concentrations (μg/L) of six phthalate acid esters compounds in the groundwater ranged from ...
The future for distributed power in Asia
International Nuclear Information System (INIS)
Kanwarpal, Vishvjeet
2000-01-01
The substantial potential market opportunities for on-site tailor-made cogeneration units in Asia generally is discussed. The article also looks at India, Australia, Japan and Indonesia in particular. The article is presented under the sub-headings of (i) Asian power and IPP developments; (ii) captive capacity and rationale; (iii) Asian captive capacity; (iv) captive power plants; (v) key drivers of CPPs in Asia; (vi) cogeneration plants; (vii) cogeneration application industries; (viii) biomass power for Asia (ix) key hurdles in cogeneration development; (x) future potential of cogeneration and (xi) country snapshots
Complex motion of a vehicle through a series of signals controlled by power-law phase
Nagatani, Takashi
2017-07-01
We study the dynamic motion of a vehicle moving through the series of traffic signals controlled by the position-dependent phase of power law. All signals are controlled by both cycle time and position-dependent phase. The dynamic model of the vehicular motion is described in terms of the nonlinear map. The vehicular motion varies in a complex manner by varying cycle time for various values of the power of the position-dependent phase. The vehicle displays the periodic motion with a long cycle for the integer power of the phase, while the vehicular motion exhibits the very complex behavior for the non-integer power of the phase.
Power Politics and the Rule of Law in Post-Dayton Bosnia
Directory of Open Access Journals (Sweden)
Timothy Donais
2013-06-01
Full Text Available Over the past two decades, therule of law has emerged as a key priority within contemporary peacebuildingefforts. Drawing on examples from post-Dayton Bosnia, this article examines theimpact of rule of law reform efforts on broader patterns of power and politicalauthority in peacebuilding contexts. It suggests that in the case of Bosnia,the use of rule of law strategies to restructure political life has largelyfailed. Thus, despite some notable achievements on the rule of law front, thecore dynamics of Bosnia’s political conflict remain intact, and country’s peaceprocess is as fragile as ever. The article concludes by noting that charting acourse between accepting the political status quo and fundamentallytransforming it requires more nuanced approaches that advance the rule of laweven while accepting its limits as an instrument of deep politicaltransformation.
Facts controllers in power transmission and distribution
Padiyar, KR
2007-01-01
About the Book: The emerging technology of Flexible AC Transmission System (FACTS) enables planning and operation of power systems at minimum costs, without compromising security. This is based on modern high power electronic systems that provide fast controllability to ensure ''flexible'' operation under changing system conditions. This book presents a comprehensive treatment of the subject by discussing the operating principles, mathematical models, control design and issues that affect the applications. The concepts are explained often with illustrative examples and case studies. In partic
Benford's law and the FSD distribution of economic behavioral micro data
Villas-Boas, Sofia B.; Fu, Qiuzi; Judge, George
2017-11-01
In this paper, we focus on the first significant digit (FSD) distribution of European micro income data and use information theoretic-entropy based methods to investigate the degree to which Benford's FSD law is consistent with the nature of these economic behavioral systems. We demonstrate that Benford's law is not an empirical phenomenon that occurs only in important distributions in physical statistics, but that it also arises in self-organizing dynamic economic behavioral systems. The empirical likelihood member of the minimum divergence-entropy family, is used to recover country based income FSD probability density functions and to demonstrate the implications of using a Benford prior reference distribution in economic behavioral system information recovery.
Inverter power module with distributed support for direct substrate cooling
Miller, David Harold [San Pedro, CA; Korich, Mark D [Chino Hills, CA; Ward, Terence G [Redondo Beach, CA; Mann, Brooks S [Redondo Beach, CA
2012-08-21
Systems and/or methods are provided for an inverter power module with distributed support for direct substrate cooling. An inverter module comprises a power electronic substrate. A first support frame is adapted to house the power electronic substrate and has a first region adapted to allow direct cooling of the power electronic substrate. A gasket is interposed between the power electronic substrate and the first support frame. The gasket is configured to provide a seal between the first region and the power electronic substrate. A second support frame is adapted to house the power electronic substrate and joined to the first support frame to form the seal.
SUBSTANTIAL EXCEPTIONS AND (DELIMITATIONS OF THE POWERS OF THE JUDGES ON CIVIL PROCEDURAL LAW
Directory of Open Access Journals (Sweden)
Igor Raatz
2017-08-01
Full Text Available This essay aims to unveil the role of the substantial exceptions on delimiting the powers of the judges on civil procedural law, especially regarding the ex officio judicial activity. This way, under a phenomenological method and based on a vision of guarantee of rights on procedural law, the article offers a brief explanation of the question concerning the content of the object under litigation and its role of (delimiting the powers of the judges. The work hypothesis is the addition of the substantial exceptions among the content of the object under litigation, along with the claim itself and the cause of action. The results lie on the premise that, by the substantial exceptions, the defendant extends the object under litigation – which is formed dynamically on civil procedure. The conclusion points towards the idea that the substantial exceptions act in a way of limiting the ex officio judicial activity on civil procedural law
Power distribution effects on boiling water reactor stability
International Nuclear Information System (INIS)
Damiano, B.; March-Leuba, J.
1989-01-01
The work presented in this paper deals with the effects of spatial power distributions on the stability of boiling water reactors (BWRs). It is shown that a conservative power distribution exists for which the stability is minimal. These results are relevant because they imply that bounding stability calculations are possible and, thus, a worst-possible scenario may be defined for a particular BWR geometry. These bounding calculations may, then, be used to determine the maximum expected limit-cycle peak powers
Adjustment to subtle time constraints and power law learning in rapid serial visual presentation
Directory of Open Access Journals (Sweden)
Jacqueline Chakyung Shin
2015-11-01
Full Text Available We investigated whether attention could be modulated through the implicit learning of temporal information in a rapid serial visual presentation (RSVP task. Participants identified two target letters among numeral distractors. The stimulus-onset asynchrony immediately following the first target (SOA1 varied at three levels (70, 98, and 126 ms randomly between trials or fixed within blocks of trials. Practice over three consecutive days resulted in a continuous improvement in the identification rate for both targets and attenuation of the attentional blink (AB, a decrement in target (T2 identification when presented 200-400 ms after another target (T1. Blocked SOA1s led to a faster rate of improvement in RSVP performance and more target order reversals relative to random SOA1s, suggesting that the implicit learning of SOA1 positively affected performance. The results also reveal power law learning curves for individual target identification as well as the reduction in the AB decrement. These learning curves reflect the spontaneous emergence of skill through subtle attentional modulations rather than general attentional distribution. Together, the results indicate that implicit temporal learning could improve high level and rapid cognitive processing and highlights the sensitivity and adaptability of the attentional system to subtle constraints in stimulus timing.
TS Seminar: Overview of Fermilab’s Power Distribution System
CERN. Geneva
2006-01-01
A 27.5 km2 (6800 acre) site is powered by two 345 kV, two 34.5 kV, one 12.4 kV and five 7.2 kV lines. The talk gives an overview of Fermilab’s power distribution system with emphasis on accelerator power. The accelerator power distribution system provides 13.8 kV power to all accelerators and conventional loads. Design criteria, design features and operational experience are given.Organiser(s): F. Rodriguez-Mateos & Emmanuel Tsesmelis
Grid Monitoring and Advanced Control of Distributed Power Generation Systems
DEFF Research Database (Denmark)
Timbus, Adrian Vasile
. As an example, the latest published grid codes stress the ability of distributed generators, especially wind turbines, to stay connected during short grid disturbances and in addition to provide active/reactive power control at the point of common coupling. Based on the above facts, the need for improving...... reported in some countries creating concerns about power system stability. This leads to a continuous evolution of grid interconnection requirements towards a better controllability of generated power and an enhanced contribution of distributed power generation systems to power system stability...... and adding more features to the control of distributed power generation systems (DPGS) arises. As a consequence, this thesis focuses on grid monitoring methods and possible approaches in control in order to obtain a more reliable and exible power generation system during normal and faulty grid conditions...
Simulation of Distributed PV Power Output in Oahu Hawaii
Energy Technology Data Exchange (ETDEWEB)
Lave, Matthew Samuel [Sandia National Lab. (SNL-CA), Livermore, CA (United States)
2016-08-01
Distributed solar photovoltaic (PV) power generation in Oahu has grown rapidly since 2008. For applications such as determining the value of energy storage, it is important to have PV power output timeseries. Since these timeseries of not typically measured, here we produce simulated distributed PV power output for Oahu. Simulated power output is based on (a) satellite-derived solar irradiance, (b) PV permit data by neighborhood, and (c) population data by census block. Permit and population data was used to model locations of distributed PV, and irradiance data was then used to simulate power output. PV power output simulations are presented by sub-neighborhood polygons, neighborhoods, and for the whole island of Oahu. Summary plots of annual PV energy and a sample week timeseries of power output are shown, and a the files containing the entire timeseries are described.
Directory of Open Access Journals (Sweden)
Kalaba Dragan V.
2014-01-01
Full Text Available The main subject of this paper is the representation of the probabilistic technique for thermal power system reliability assessment. Exploitation research of the reliability of the fossil fuel power plant system has defined the function, or the probabilistic law, according to which the random variable behaves (occurrence of complete unplanned standstill. Based on these data, and by applying the reliability theory to this particular system, using simple and complex Weibull distribution, a hypothesis has been confirmed that the distribution of the observed random variable fully describes the behaviour of such a system in terms of reliability. Establishing a comprehensive insight in the field of probabilistic power system reliability assessment technique could serve as an input for further research and development in the area of power system planning and operation.
International Nuclear Information System (INIS)
Jing Yipeng.
1989-08-01
We study the three-point correlation functions ρ(r, u, v) of clusters in the two types of explosion models by numerical simulations. The clusters are identified as the ''knots'' where three shells intersect. The shells are assumed to have the constant radii (the constant models) or have the power law radius distributions (the power law models). In both kinds of models, we find that ρ can be approximately expressed by the scaling form: ρ = Q(ξ 1 ξ 2 + ξ 2 ξ 3 + ξ 3 ξ 1 ), and Q is about 1, which are consistent with the observations. More detailed studies of r-, u- and v-dependences of Q show that Q remains constant in the constant models. In the power-law models, Q is independent of the shape parameters u and v, while it has some moderate r-dependences (variations with r about a factor of 1 or 2). (author). 27 refs, 9 figs
DEFF Research Database (Denmark)
Jørgensen, Bent; Demétrio, Clarice G. B.; Kristensen, Erik
2011-01-01
Estimation of Taylor’s power law for species abundance data may be performed by linear regression of the log empirical variances on the log means, but this method suffers from a problem of bias for sparse data. We show that the bias may be reduced by using a bias-corrected Pearson estimating...
MHD free convection flow of a non-Newtonian power-law fluid over ...
African Journals Online (AJOL)
... flow have been presented for various parameters such as Prandtl number, flow behavior index (n), porous plate parameter and magnetic parameter. The local Nusselt number and skin friction coefficient is also presented graphically. Keywords: Magnetohydrodynamic flow; free convection flow; Non-Newtonian power-law
Mathematical analysis of the global dynamics of a power law model ...
African Journals Online (AJOL)
We analyze a mathematical power law model that describes HIV infection of CD4+ T cells. We report that the number of critical points depends on , where is a positive integer. We show that for any positive integer the infection – free equilibrium is asymptotically stable if the reproduction number R0 1.
Influence of power-law index on an unsteady exothermic reaction ...
African Journals Online (AJOL)
This study presents the solution of an unsteady Arrhenius exothermic reaction where we reduced the exponential term to a power-law approximation. A numerical solution of the problem is obtained using shooting technique with second order Runge-Kuta scheme. It is shown that the temperature of the reactant depends on ...
Non-coulombic effective power-law potential for the heavy quarkoniums
Energy Technology Data Exchange (ETDEWEB)
Barik, N; Jena, S N [Utkal Univ., Bhubaneswar (India). Dept. of Physics
1980-12-01
An effective power-law potential of the form V(r) = 6.08 r/sup 0/sup(.)/sup 106/ - 6.41 is found to describe satisfactorily the gross features of the mass spectra and the leptonic width ratios of the cc and bb systems in a flavour-independent manner.
A non-coulombic effective power-law potential for the heavy quarkoniums
International Nuclear Information System (INIS)
Barik, N.; Jena, S.N.
1980-01-01
An effective power-law potential of the form V(r) = 6.08 r 0 sup(.) 106 - 6.41 is found to describe satisfactorily the gross features of the mass spectra and the leptonic width ratios of the cc and bb systems in a flavour-independent manner. (orig.)
Legality, separation of powers, stability of electoral law: The impact of new voting technologies
Driza Maurer, Ardita
2016-01-01
Legality, separation of powers and stability of electoral law are some of the principles of the European constitutional heritage. They should be respected and implemented throughout the electoral process, including when new voting technologies are used. This paper discusses e-voting specific implementations of the principles or challenges to it. Ongoing and proposed improvements in legislation or practice are pinpointed.
Fall Velocities of Hydrometeors in the Atmosphere: Refinements to a Continuous Analytical Power Law.
Khvorostyanov, Vitaly I.; Curry, Judith A.
2005-12-01
This paper extends the previous research of the authors on the unified representation of fall velocities for both liquid and crystalline particles as a power law over the entire size range of hydrometeors observed in the atmosphere. The power-law coefficients are determined as continuous analytical functions of the Best or Reynolds number or of the particle size. Here, analytical expressions are formulated for the turbulent corrections to the Reynolds number and to the power-law coefficients that describe the continuous transition from the laminar to the turbulent flow around a falling particle. A simple analytical expression is found for the correction of fall velocities for temperature and pressure. These expressions and the resulting fall velocities are compared with observations and other calculations for a range of ice crystal habits and sizes. This approach provides a continuous analytical power-law description of the terminal velocities of liquid and crystalline hydrometeors with sufficiently high accuracy and can be directly used in bin-resolving models or incorporated into parameterizations for cloud- and large-scale models and remote sensing techniques.
Graph Structure in Three National Academic Webs: Power Laws with Anomalies.
Thelwall, Mike; Wilkinson, David
2003-01-01
Explains how the Web can be modeled as a mathematical graph and analyzes the graph structures of three national university publicly indexable Web sites from Australia, New Zealand, and the United Kingdom. Topics include commercial search engines and academic Web link research; method-analysis environment and data sets; and power laws. (LRW)
Power laws reveal phase transitions in landscape controls of fire regimes
Donald McKenzie; Maureen C. Kennedy
2012-01-01
Understanding the environmental controls on historical wildfires, and how they changed across spatial scales, is difficult because there are no surviving explicit records of either weather or vegetation (fuels). Here we show how power laws associated with fire-event time series arise in limited domains of parameters that represent critical transitions in the controls...
Axial annular flow of power-law fluids - applicability of the limiting cases
Czech Academy of Sciences Publication Activity Database
Filip, Petr; David, Jiří
2007-01-01
Roč. 52, č. 4 (2007), s. 365-371 ISSN 0001-7043 R&D Projects: GA ČR GA103/06/1033 Institutional research plan: CEZ:AV0Z20600510 Keywords : Concentric annuli * Poiseuile flow * annular flow * power- law fluids * flow rate * pressure drop Subject RIV: BK - Fluid Dynamics
Finite sample properties of power-law cross-correlations estimators
Czech Academy of Sciences Publication Activity Database
Krištoufek, Ladislav
2015-01-01
Roč. 419, č. 1 (2015), s. 513-525 ISSN 0378-4371 R&D Projects: GA ČR(CZ) GP14-11402P Keywords : power-law cross-correlations * long - term memory * econophysics Subject RIV: AH - Economics Impact factor: 1.785, year: 2015 http://library.utia.cas.cz/separaty/2014/E/kristoufek-0433530.pdf
Directory of Open Access Journals (Sweden)
Pablo D. Mininni
2012-01-01
Full Text Available In the context of tackling the ill-posed inverse problem of motion estimation from image sequences, we propose to introduce prior knowledge on flow regularity given by turbulence statistical models. Prior regularity is formalised using turbulence power laws describing statistically self-similar structure of motion increments across scales. The motion estimation method minimises the error of an image observation model while constraining second-order structure function to behave as a power law within a prescribed range. Thanks to a Bayesian modelling framework, the motion estimation method is able to jointly infer the most likely power law directly from image data. The method is assessed on velocity fields of 2-D or quasi-2-D flows. Estimation accuracy is first evaluated on a synthetic image sequence of homogeneous and isotropic 2-D turbulence. Results obtained with the approach based on physics of fluids outperform state-of-the-art. Then, the method analyses atmospheric turbulence using a real meteorological image sequence. Selecting the most likely power law model enables the recovery of physical quantities, which are of major interest for turbulence atmospheric characterisation. In particular, from meteorological images we are able to estimate energy and enstrophy fluxes of turbulent cascades, which are in agreement with previous in situ measurements.
Power-law cosmic expansion in f(R) gravity models
International Nuclear Information System (INIS)
Goheer, Naureen; Larena, Julien; Dunsby, Peter K. S.
2009-01-01
We show that within the class of f(R) gravity theories, Friedmann-Lemaitre-Robertson-Walker power-law perfect fluid solutions only exist for R n gravity. This significantly restricts the set of exact cosmological solutions which have similar properties to what is found in standard general relativity.
Analytical Solution of Unsteady Gravity Flows of A Power-Law Fluid ...
African Journals Online (AJOL)
We present an analytical study of unsteady non-linear rheological effects of a power-law fluid under gravity. The fluid flows through a porous medium. The governing equations are derived and similarity solutions are determined. The results show the existence of traveling waves. It is assumed that the viscosity is temperature ...
Asymptotic expansion of unsteady gravity flow of a power-law fluid ...
African Journals Online (AJOL)
We present a paper on the asymptotic expansion of unsteady non-linear rheological effects of a power-law fluid under gravity. The fluid flows through a porous medium. The asymptotic expansion is employed to obtain solution of the nonlinear problem. The results show the existence of traveling waves. It is assumed that the ...
Quantum dots with indirect band gap: power-law photoluminescence decay
Czech Academy of Sciences Publication Activity Database
Král, Karel; Menšík, Miroslav
2014-01-01
Roč. 11, č. 5 (2014), s. 507-512 ISSN 1708-5284 R&D Projects: GA MŠk LH12236; GA MŠk LH12186 Institutional support: RVO:68378271 ; RVO:61389013 Keywords : photoluminescence * quantum dots * electron-phonon interaction * inter-valley deformation potential interaction * power-law decay Subject RIV: BM - Solid Matter Physics ; Magnetism
Unconfined Unsteady Laminar Flow of a Power-Law Fluid across a Square Cylinder
Directory of Open Access Journals (Sweden)
Asterios Pantokratoras
2016-11-01
Full Text Available The flow of a non-Newtonian, power-law fluid, directed normally to a horizontal cylinder with square cross-section (two-dimensional flow is considered in the present paper. The problem is investigated numerically with a very large calculation domain in order that the flow could be considered unconfined. The investigation covers the power-law index from 0.1 up to 2 and the Reynolds number ranges from 60 to 160. Over this range of Reynolds numbers the flow is unsteady. It is found that the drag coefficient and the Strouhal number are higher in a confined flow compared to those of an unconfined flow. In addition some flow characteristics are lost in a confined flow. Complete results for the drag coefficient and Strouhal number in the entire shear-thinning and shear-thickening region have been produced. In shear-thinning fluids chaotic structures exist which diminish at higher values of power-law index. This study represents the first investigation of unsteady, non-Newtonian power-law flow past a square cylinder in an unconfined field.
THE FUNDAMENTAL SOLUTIONS FOR MULTI-TERM MODIFIED POWER LAW WAVE EQUATIONS IN A FINITE DOMAIN
Jiang, H.; Liu, F.; Meerschaert, M. M.; McGough, R. J.
2013-01-01
Fractional partial differential equations with more than one fractional derivative term in time, such as the Szabo wave equation, or the power law wave equation, describe important physical phenomena. However, studies of these multi-term time-space or time fractional wave equations are still under development.
THE FUNDAMENTAL SOLUTIONS FOR MULTI-TERM MODIFIED POWER LAW WAVE EQUATIONS IN A FINITE DOMAIN.
Jiang, H; Liu, F; Meerschaert, M M; McGough, R J
2013-01-01
Fractional partial differential equations with more than one fractional derivative term in time, such as the Szabo wave equation, or the power law wave equation, describe important physical phenomena. However, studies of these multi-term time-space or time fractional wave equations are still under development. In this paper, multi-term modified power law wave equations in a finite domain are considered. The multi-term time fractional derivatives are defined in the Caputo sense, whose orders belong to the intervals (1, 2], [2, 3), [2, 4) or (0, n ) ( n > 2), respectively. Analytical solutions of the multi-term modified power law wave equations are derived. These new techniques are based on Luchko's Theorem, a spectral representation of the Laplacian operator, a method of separating variables and fractional derivative techniques. Then these general methods are applied to the special cases of the Szabo wave equation and the power law wave equation. These methods and techniques can also be extended to other kinds of the multi-term time-space fractional models including fractional Laplacian.
Flow of power-law fluids in fixed beds of cylinders or spheres
Singh, John P.; Padhy, Sourav; Shaqfeh, Eric S. G.; Koch, Donald L.
2012-01-01
is influenced by the Newtonian fluid stress and a body force representing the linear drag on the surrounding particles. We consider a similar analysis for a power-law fluid where the stress τ is related to the rate of strain e by τ = 2m en-1e, where m and n
International Nuclear Information System (INIS)
1979-01-01
The order is defined under the law for arrangement of surrounding areas of power generating facilities. Establishers of power generating facilities shall be hereunder general electric enterprisers, wholesale electric enterprisers and the Power Reactor and Nuclear Fuel Development Corporation. The scale of power generating facilities provided by the order is 350,000 kilo-watts for atomic and steam power generation and 5,000 kilo-watts for hydroelectric power. Equipment closely related to atomic power generation shall include facilities for reprocessing and examination of nuclear fuel materials spent for power generating reactors, reactors used for research of the safety of power generating reactors, experimental fast breeding reactors and experimental uranium enrichment facilities. Requisites for the extent of industrial accumulation are that the area belongs to those self-governing bodies whose industrial accumulation is more than the 8th degree. Public facilities specified are those for communication, sports or recreation, environmental hygiene, education and culture, medicine, social welfare, fire fighting and heat supplying, etc. Governors of the prefectures shall file arrangement programs to the Minister in charge through the Minister of International Trade and Industry to get the permission stipulated by the law. Subsidies shall not be paid to those enterprises which are executed by the government or a part of the expenses is born or supported by it. (Okada, K.)
International Nuclear Information System (INIS)
Courteix, S.
1992-01-01
The number of nuclear-powered satellites rises constantly and, recalling the fear generated by the crash of the Cosmos 954 satellite, the author points out that radioactive debris falling on earth could represent as great a hazard as accidental releases of radioactive material from land-based nuclear installations. Such satellites, therefore, can be governed by both space law and nuclear law. On the basis of international conventions applicable in the two fields and also with reference to the Law of the Sea and environmental law, the article analyses preventive and radiation protection measures as well as emergency plans and also raises the problem of liability and compensation for damage. (NEA)
Directory of Open Access Journals (Sweden)
Mario Faliva
2017-03-01
Full Text Available The paper devises a family of leptokurtic bell-shaped distributions which is based on the hyperbolic secant raised to a positive power, and bridges the Laplace and Gaussian laws on asymptotic arguments. Moment and cumulant generating functions are then derived and represented in terms of polygamma functions. The behaviour of shape parameters, namely kurtosis and entropy, is investigated. In addition, Gram–Charlier-type (GCT expansions, based on the aforementioned distributions and their orthogonal polynomials, are specified, and an operational criterion is provided to meet modelling requirements in a possibly severe kurtosis and skewness environment. The role played by entropy within the kurtosis ranges of GCT expansions is also examined.
A generalized power-law scaling law for a two-phase imbibition in a porous medium
El-Amin, Mohamed
2013-11-01
Dimensionless time is a universal parameter that may be used to predict real field behavior from scaled laboratory experiments in relation to imbibition processes in porous media. Researchers work to nondimensionalize the time has been through the use of parameters that are inherited to the properties of the moving fluids and the porous matrix, which may be applicable to spontaneous imbibition. However, in forced imbibition, the dynamics of the process depends, in addition, on injection velocity. Therefore, we propose the use of scaling velocity in the form of a combination of two velocities, the first of which (the characteristic velocity) is defined by the fluid and the porous medium parameters and the second is the injection velocity, which is a characteristic of the process. A power-law formula is suggested for the scaling velocity such that it may be used as a parameter to nondimensionalize time. This may reduce the complexities in characterizing two-phase imbibition through porous media and works well in both the cases of spontaneous and forced imbibition. The proposed scaling-law is tested against some oil recovery experimental data from the literature. In addition, the governing partial differential equations are nondimensionalized so that the governing dimensionless groups are manifested. An example of a one-dimensional countercurrent imbibition is considered numerically. The calculations are carried out for a wide range of Ca and Da to illustrate their influences on water saturation as well as relative water/oil permeabilities. © 2013 Elsevier B.V.
A generalized power-law scaling law for a two-phase imbibition in a porous medium
El-Amin, Mohamed; Salama, Amgad; Sun, Shuyu
2013-01-01
Dimensionless time is a universal parameter that may be used to predict real field behavior from scaled laboratory experiments in relation to imbibition processes in porous media. Researchers work to nondimensionalize the time has been through the use of parameters that are inherited to the properties of the moving fluids and the porous matrix, which may be applicable to spontaneous imbibition. However, in forced imbibition, the dynamics of the process depends, in addition, on injection velocity. Therefore, we propose the use of scaling velocity in the form of a combination of two velocities, the first of which (the characteristic velocity) is defined by the fluid and the porous medium parameters and the second is the injection velocity, which is a characteristic of the process. A power-law formula is suggested for the scaling velocity such that it may be used as a parameter to nondimensionalize time. This may reduce the complexities in characterizing two-phase imbibition through porous media and works well in both the cases of spontaneous and forced imbibition. The proposed scaling-law is tested against some oil recovery experimental data from the literature. In addition, the governing partial differential equations are nondimensionalized so that the governing dimensionless groups are manifested. An example of a one-dimensional countercurrent imbibition is considered numerically. The calculations are carried out for a wide range of Ca and Da to illustrate their influences on water saturation as well as relative water/oil permeabilities. © 2013 Elsevier B.V.
Parallel and distributed processing: applications to power systems
Energy Technology Data Exchange (ETDEWEB)
Wu, Felix; Murphy, Liam [California Univ., Berkeley, CA (United States). Dept. of Electrical Engineering and Computer Sciences
1994-12-31
Applications of parallel and distributed processing to power systems problems are still in the early stages. Rapid progress in computing and communications promises a revolutionary increase in the capacity of distributed processing systems. In this paper, the state-of-the art in distributed processing technology and applications is reviewed and future trends are discussed. (author) 14 refs.,1 tab.
Flow of power-law fluids in fixed beds of cylinders or spheres
Singh, John P.
2012-10-29
An ensemble average of the equations of motion for a Newtonian fluid over particle configurations in a dilute fixed bed of spheres or cylinders yields Brinkman\\'s equations of motion, where the disturbance velocity produced by a test particle is influenced by the Newtonian fluid stress and a body force representing the linear drag on the surrounding particles. We consider a similar analysis for a power-law fluid where the stress τ is related to the rate of strain e by τ = 2m en-1e, where m and n are constants. In this case, the ensemble-averaged momentum equation includes a body force resulting from the nonlinear drag exerted on the surrounding particles, a power-law stress associated with the disturbance velocity of the test particle, and a stress term that is linear with respect to the test particle\\'s disturbance velocity. The latter term results from the interaction of the test particle\\'s velocity disturbance with the random straining motions produced by the neighbouring particles and is important only in shear-thickening fluids where the velocity disturbances of the particles are long-ranged. The solutions to these equations using scaling analyses for dilute beds and numerical simulations using the finite element method are presented. We show that the drag force acting on a particle in a fixed bed can be written as a function of a particle-concentration-dependent length scale at which the fluid velocity disturbance produced by a particle is modified by hydrodynamic interactions with its neighbours. This is also true of the drag on a particle in a periodic array where the length scale is the lattice spacing. The effects of particle interactions on the drag in dilute arrays (periodic or random) of cylinders and spheres in shear-thickening fluids is dramatic, where it arrests the algebraic growth of the disturbance velocity with radial position when n≥ 1 for cylinders and n≥ 2 for spheres. For concentrated random arrays of particles, we adopt an
PLNoise: a package for exact numerical simulation of power-law noises
Milotti, Edoardo
2006-08-01
Many simulations of stochastic processes require colored noises: here I describe a small program library that generates samples with a tunable power-law spectral density: the algorithm can be modified to generate more general colored noises, and is exact for all time steps, even when they are unevenly spaced (as may often happen in the case of astronomical data, see e.g. [N.R. Lomb, Astrophys. Space Sci. 39 (1976) 447]. The method is exact in the sense that it reproduces a process that is theoretically guaranteed to produce a range-limited power-law spectrum 1/f with -1uk/summaries/ADXV_v1_0.html Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions: none Programming language used: ANSI C Computer: Any computer with an ANSI C compiler: the package has been tested with gcc version 3.2.3 on Red Hat Linux 3.2.3-52 and gcc version 4.0.0 and 4.0.1 on Apple Mac OS X-10.4 Operating system: All operating systems capable of running an ANSI C compiler No. of lines in distributed program, including test data, etc.:6238 No. of bytes in distributed program, including test data, etc.:52 387 Distribution format:tar.gz RAM: The code of the test program is very compact (about 50 Kbytes), but the program works with list management and allocates memory dynamically; in a typical run (like the one discussed in Section 4 in the long write-up) with average list length 2ṡ10, the RAM taken by the list is 200 Kbytes. External routines: The package needs external routines to generate uniform and exponential deviates. The implementation described here uses the random number generation library ranlib freely available from Netlib [B.W. Brown, J. Lovato, K. Russell, ranlib, available from Netlib, http://www.netlib.org/random/index.html, select the C version ranlib.c], but it has also been successfully tested with the random number routines in Numerical Recipes [W.H. Press, S.A. Teulkolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes
Comparing Different Fault Identification Algorithms in Distributed Power System
Alkaabi, Salim
A power system is a huge complex system that delivers the electrical power from the generation units to the consumers. As the demand for electrical power increases, distributed power generation was introduced to the power system. Faults may occur in the power system at any time in different locations. These faults cause a huge damage to the system as they might lead to full failure of the power system. Using distributed generation in the power system made it even harder to identify the location of the faults in the system. The main objective of this work is to test the different fault location identification algorithms while tested on a power system with the different amount of power injected using distributed generators. As faults may lead the system to full failure, this is an important area for research. In this thesis different fault location identification algorithms have been tested and compared while the different amount of power is injected from distributed generators. The algorithms were tested on IEEE 34 node test feeder using MATLAB and the results were compared to find when these algorithms might fail and the reliability of these methods.
Revision of by-laws about effluents of EdF's nuclear power plants
International Nuclear Information System (INIS)
2002-01-01
In France, in application of the clean water law from January 3, 1992 and since the decree 95-540 from May 4, 1995, each basic nuclear facility receives a single permission which covers both its water takes and its radioactive and non-radioactive effluents. This decree, initially dedicated to new facilities has been enlarged to all existing installations for which the prefectorial by-laws have reached their date-line. Thus, up to now, five inter-ministerial by-laws have renewed the permissions of water takes and effluents evacuation of the power plants of Saint-Laurent-des-Eaux (Loir-et-Cher), Flamanville (Manche), Paluel (Seine-Maritime), Belleville (Cher) and Saint-Alban (Isere). These by-laws foresee an important abatement of the effluents and concern more particularly the tritium, 14 C, the iodine isotopes and also some other non-radioactive chemical compounds. This document is a compilation of all revised by-laws about effluents and concerning the nuclear power plants listed above. (J.S.)
International Nuclear Information System (INIS)
1977-01-01
The Order is based on the prescriptions of the Law for the Arrangement of Surrounding Areas of Power Generating Facilities. Those establishing power generating facilities are general and wholesale electric enterprisers provided for by the Electricity Enterprises Act as well as the Power Reactor and Nuclear Fuel Development Corporation. The generating capacity is specified as 350,000 kilowatts for nuclear and steam power generating facilities, 150,000 kilowatts for those set up by the Corporation, 100,000 kilowatts for those using coal as main fuel, and 10,000 kilowatts for water power generation and geothermal plants. The facilities closely connected to nuclear power generation include the reprocessing facilities and test and examination facilities for nuclear fuel materials used for power-generating nuclear reactors, reactors used for the research on the safety of power generating reactors, and experimental reactors for fast breeder reactors. The public facilities consist of communication facilities, and the facilities for sports and recreations, environmental hygiene, education and culture, medicine, social welfare, fire fighting, etc. Prefectural governors ought to file the arrangement plans to the competent minister through the Minister of International Trade and Industry to get the permission prescribed by the Law. The subsidy is not granted to the expenses of the enterprises undertaken by the nation or those enterprises, a part of the expenses of which is borne or subsidized by the nation. (Okada, K.)
Linear Power-Flow Models in Multiphase Distribution Networks: Preprint
Energy Technology Data Exchange (ETDEWEB)
Bernstein, Andrey; Dall' Anese, Emiliano
2017-05-26
This paper considers multiphase unbalanced distribution systems and develops approximate power-flow models where bus-voltages, line-currents, and powers at the point of common coupling are linearly related to the nodal net power injections. The linearization approach is grounded on a fixed-point interpretation of the AC power-flow equations, and it is applicable to distribution systems featuring (i) wye connections; (ii) ungrounded delta connections; (iii) a combination of wye-connected and delta-connected sources/loads; and, (iv) a combination of line-to-line and line-to-grounded-neutral devices at the secondary of distribution transformers. The proposed linear models can facilitate the development of computationally-affordable optimization and control applications -- from advanced distribution management systems settings to online and distributed optimization routines. Performance of the proposed models is evaluated on different test feeders.
The electric power engineering handbook electric power generation, transmission, and distribution
Grigsby, Leonard L
2012-01-01
Featuring contributions from worldwide leaders in the field, the carefully crafted Electric Power Generation, Transmission, and Distribution, Third Edition (part of the five-volume set, The Electric Power Engineering Handbook) provides convenient access to detailed information on a diverse array of power engineering topics. Updates to nearly every chapter keep this book at the forefront of developments in modern power systems, reflecting international standards, practices, and technologies. Topics covered include: * Electric Power Generation: Nonconventional Methods * Electric Power Generation
Performance parameters of electric power distribution
International Nuclear Information System (INIS)
Schilling, M.Th.; Lima, J.W.M.
1992-01-01
The aspects referring to the evaluation of distribution system reliability are presented: consumers, companies and regulator institutes. The different strategies for fixing of probabilistic criterions of performance are mentioned, including the economic valorization of continuity restriction of electric supply. (C.G.C.)
Optimal Output of Distributed Generation Based On Complex Power Increment
Wu, D.; Bao, H.
2017-12-01
In order to meet the growing demand for electricity and improve the cleanliness of power generation, new energy generation, represented by wind power generation, photovoltaic power generation, etc has been widely used. The new energy power generation access to distribution network in the form of distributed generation, consumed by local load. However, with the increase of the scale of distribution generation access to the network, the optimization of its power output is becoming more and more prominent, which needs further study. Classical optimization methods often use extended sensitivity method to obtain the relationship between different power generators, but ignore the coupling parameter between nodes makes the results are not accurate; heuristic algorithm also has defects such as slow calculation speed, uncertain outcomes. This article proposes a method called complex power increment, the essence of this method is the analysis of the power grid under steady power flow. After analyzing the results we can obtain the complex scaling function equation between the power supplies, the coefficient of the equation is based on the impedance parameter of the network, so the description of the relation of variables to the coefficients is more precise Thus, the method can accurately describe the power increment relationship, and can obtain the power optimization scheme more accurately and quickly than the extended sensitivity method and heuristic method.
Tachyon with an inverse power-law potential in a braneworld cosmology
Bilić, Neven; Domazet, Silvije; Djordjevic, Goran S.
2017-08-01
We study a tachyon cosmological model based on the dynamics of a 3-brane in the bulk of the second Randall-Sundrum model extended to more general warp functions. A well known prototype of such a generalization is the bulk with a selfinteracting scalar field. As a consequence of a generalized bulk geometry the cosmology on the observer brane is modified by the scale dependent four-dimensional gravitational constant. In particular, we study a power law warp factor which generates an inverse power-law potential V\\propto \\varphi-n of the tachyon field φ. We find a critical power n cr that divides two subclasses with distinct asymptotic behaviors: a dust universe for n>n_cr and a quasi de Sitter universe for 0.
Scaling-Laws of Flow Entropy with Topological Metrics of Water Distribution Networks
Directory of Open Access Journals (Sweden)
Giovanni Francesco Santonastaso
2018-01-01
Full Text Available Robustness of water distribution networks is related to their connectivity and topological structure, which also affect their reliability. Flow entropy, based on Shannon’s informational entropy, has been proposed as a measure of network redundancy and adopted as a proxy of reliability in optimal network design procedures. In this paper, the scaling properties of flow entropy of water distribution networks with their size and other topological metrics are studied. To such aim, flow entropy, maximum flow entropy, link density and average path length have been evaluated for a set of 22 networks, both real and synthetic, with different size and topology. The obtained results led to identify suitable scaling laws of flow entropy and maximum flow entropy with water distribution network size, in the form of power–laws. The obtained relationships allow comparing the flow entropy of water distribution networks with different size, and provide an easy tool to define the maximum achievable entropy of a specific water distribution network. An example of application of the obtained relationships to the design of a water distribution network is provided, showing how, with a constrained multi-objective optimization procedure, a tradeoff between network cost and robustness is easily identified.
The Inverse System Method Applied to the Derivation of Power System Non—linear Control Laws
Institute of Scientific and Technical Information of China (English)
DonghaiLI; XuezhiJIANG; 等
1997-01-01
The differential geometric method has been applied to a series of power system non-linear control problems effectively.However a set of differential equations must be solved for obtaining the required diffeomorphic transformation.Therefore the derivation of control laws is very complicated.In fact because of the specificity of power system models the required diffeomorphic transformation may be obtained directly,so it is unnecessary to solve a set of differential equations.In addition inverse system method is equivalent to differential geometric method in reality and not limited to affine nonlinear systems,Its physical meaning is able to be viewed directly and its deduction needs only algebraic operation and derivation,so control laws can be obtained easily and the application to engineering is very convenient.Authors of this paper take steam valving control of power system as a typical case to be studied.It is demonstrated that the control law deduced by inverse system method is just the same as one by differential geometric method.The conclusion will simplify the control law derivations of steam valving,excitation,converter and static var compensator by differential geometric method and may be suited to similar control problems in other areas.
Analysis of diodes used as precision power detectors above the square law region
DEFF Research Database (Denmark)
Guldbrandsen, Tom
1990-01-01
The deviation from square law found in diode power detectors at moderate power levels has been modeled for a general system consisting of a number of diode detectors connected to a common arbitrary linear passive network, containing an approximately sinusoidal source. This situation covers the case...... if an extra-set of measurements is made in situ. For precision measurements the maximum power level can be increased by about 10 dB. The dynamic range can thus be increased sufficiently to enable fast measurements to be made with an accuracy of 10-3 dB...
The United Kingdom Law on the authorisation of nuclear power stations
International Nuclear Information System (INIS)
Savinson, R.
1977-01-01
This paper explains the requirements of the law of the United Kingdom as to the authorisations needed to construct and operate nuclear power plants in Great Britain. For simplicity, the texts referred to apply to England and Wales, Scottish law differing in detail but not in principle. Implementation of this legal system is studied in particular from the viewpoint of the Central Electricity Generating Board (CEGB) which is at present the body exclusively responsible for generating and supplying electricity in England and Wales. (NEA) [fr
Benchmark calculations of power distribution within assemblies
International Nuclear Information System (INIS)
Cavarec, C.; Perron, J.F.; Verwaerde, D.; West, J.P.
1994-09-01
The main objective of this Benchmark is to compare different techniques for fine flux prediction based upon coarse mesh diffusion or transport calculations. We proposed 5 ''core'' configurations including different assembly types (17 x 17 pins, ''uranium'', ''absorber'' or ''MOX'' assemblies), with different boundary conditions. The specification required results in terms of reactivity, pin by pin fluxes and production rate distributions. The proposal for these Benchmark calculations was made by J.C. LEFEBVRE, J. MONDOT, J.P. WEST and the specification (with nuclear data, assembly types, core configurations for 2D geometry and results presentation) was distributed to correspondents of the OECD Nuclear Energy Agency. 11 countries and 19 companies answered the exercise proposed by this Benchmark. Heterogeneous calculations and homogeneous calculations were made. Various methods were used to produce the results: diffusion (finite differences, nodal...), transport (P ij , S n , Monte Carlo). This report presents an analysis and intercomparisons of all the results received
Distributed power sources for Mars colonization
International Nuclear Information System (INIS)
Miley, George H.; Shaban, Yasser
2003-01-01
One of the fundamental needs for Mars colonization is an abundant source of energy. The total energy system will probably use a mixture of sources based on solar energy, fuel cells, and nuclear energy. Here we concentrate on the possibility of developing a distributed system employing several unique new types of nuclear energy sources, specifically small fusion devices using inertial electrostatic confinement and portable 'battery type' proton reaction cells
Future view of electric power supply techniques. Distribution techniques
Energy Technology Data Exchange (ETDEWEB)
Ito, Toshio
1988-06-20
Present situations surrounding the power distribution are described, and the problems and future trend of the power distribution are reviewed. It is described for the situations that the gravity of a power demand is transfering from industrial use to home use and the dependence on electrical energy is increasing. It is pointed out for the features that the distribution system exists on not only supply side but also customer side, the system is complicated and two-dimentional, and there is a tremendous amount of facility. High voltage, high frequency and automatic distribution, and the distributed power sources such as fuel cells are described in terms of the problems to ensure the power supply. The protection and decreasing of service interruptions, the protection of harmonic wave, and long-life equipments are described in terms of the problems to ensure the power quality. As for the problems to ensure a comfortable life and space, the communication system using the distribution system for a customer service or automatic operation in a house, and the enviromental harmony by a small facility or underground distribution are described. (1 tab)
Description of a 20 Kilohertz power distribution system
Hansen, I. G.
1986-01-01
A single phase, 440 VRMS, 20 kHz power distribution system with a regulated sinusoidal wave form is discussed. A single phase power system minimizes the wiring, sensing, and control complexities required in a multi-sourced redundantly distributed power system. The single phase addresses only the distribution link; mulitphase lower frequency inputs and outputs accommodation techniques are described. While the 440 V operating potential was initially selected for aircraft operating below 50,000 ft, this potential also appears suitable for space power systems. This voltage choice recognizes a reasonable upper limit for semiconductor ratings, yet will direct synthesis of 220 V, 3 power. A 20 kHz operating frequency was selected to be above the range of audibility, minimize the weight of reactive components, yet allow the construction of single power stages of 25 to 30 kW. The regulated sinusoidal distribution system has several advantages. With a regulated voltage, most ac/dc conversions involve rather simple transformer rectifier applications. A sinusoidal distribution system, when used in conjunction with zero crossing switching, represents a minimal source of EMI. The present state of 20 kHz power technology includes computer controls of voltage and/or frequency, low inductance cable, current limiting circuit protection, bi-directional power flow, and motor/generator operating using standard induction machines. A status update and description of each of these items and their significance is presented.
Calculated CIM Power Distributions for Coil Design
International Nuclear Information System (INIS)
Hardy, B.J.
1999-01-01
Excessive bed expansion and material expulsion have occurred during experiments with the 3-inch diameter Cylindrical Induction Melter (CIM). Both events were attributed in part to the high power density in the bottom of the melter and the correspondingly high temperatures there. It is believed that the high temperatures resulted in the generation of gasses at the bottom of the bed which could not escape. The gasses released during heating and the response of the bed to gas evolution depend upon the composition of the bed
Low Power Computing in Distributed Systems
2006-04-01
performance applications. It has been adopted in embedded systems such as the Stargate from Crossbow [15] and the PASTA 4 0 0.1 0.2 0.3 0.4 (A) flo at...current consumption of the Stargate board is measured by an Agilent digital multimeter 34401A. The digital multimeter is connected with the PC for data...floating point operation vs. integer operation Power supply Digital multimeter Stargate board with Xscale processor 5 2.2 Library math function vs
International Nuclear Information System (INIS)
Fujiwara, J.
1984-01-01
This contribution characterises Japanese legislation on power generation and supply, goes into detail with regard to the current Atomic Energy Law within the framework of the overall legal concept governing power supply, and presents an outlook on future developments. A table summarizes the main problems in this field. (orig./HSCH) [de
Nonlinear quenches of power-law confining traps in quantum critical systems
International Nuclear Information System (INIS)
Collura, Mario; Karevski, Dragi
2011-01-01
We describe the coherent quantum evolution of a quantum many-body system with a time-dependent power-law confining potential. The amplitude of the inhomogeneous potential is driven in time along a nonlinear ramp which crosses a critical point. Using Kibble-Zurek-like scaling arguments we derive general scaling laws for the density of excitations and energy excess generated during the nonlinear sweep of the confining potential. It is shown that, with respect to the sweeping rate, the densities follow algebraic laws with exponents that depend on the space-time properties of the potential and on the scaling dimensions of the densities. We support our scaling predictions with both analytical and numerical results on the Ising quantum chain with an inhomogeneous transverse field varying in time.
Varvarigou, Vasileia; Farioli, Andrea; Korre, Maria; Sato, Sho; Dahabreh, Issa J; Kales, Stefanos N
2014-11-18
To assess the association between risk of sudden cardiac death and stressful law enforcement duties compared with routine/non-emergency duties. Case distribution study (case series with survey information on referent exposures). United States law enforcement. Summaries of deaths of over 4500 US police officers provided by the National Law Enforcement Officers Memorial Fund and the Officer Down Memorial Page from 1984 to 2010. Observed and expected sudden cardiac death counts and relative risks for sudden cardiac death events during specific strenuous duties versus routine/non-emergency activities. Independent estimates of the proportion of time that police officers spend across various law enforcement duties obtained from surveys of police chiefs and front line officers. Impact of varying exposure assessments, covariates, and missing cases in sensitivity and stability analyses. 441 sudden cardiac deaths were observed during the study period. Sudden cardiac death was associated with restraints/altercations (25%, n=108), physical training (20%, n=88), pursuits of suspects (12%, n=53), medical/rescue operations (8%, n=34), routine duties (23%, n=101), and other activities (11%, n=57). Compared with routine/non-emergency activities, the risk of sudden cardiac death was 34-69 times higher during restraints/altercations, 32-51 times higher during pursuits, 20-23 times higher during physical training, and 6-9 times higher during medical/rescue operations. Results were robust to all sensitivity and stability analyses. Stressful law enforcement duties are associated with a risk of sudden cardiac death that is markedly higher than the risk during routine/non-emergency duties. Restraints/altercations and pursuits are associated with the greatest risk. Our findings have public health implications and suggest that primary and secondary cardiovascular prevention efforts are needed among law enforcement officers. © Varvarigou et al 2014.
User-friendly Tool for Power Flow Analysis and Distributed ...
African Journals Online (AJOL)
Akorede
AKOREDE et al: TOOL FOR POWER FLOW ANALYSIS AND DISTRIBUTED GENERATION OPTIMISATION. 23 ... greenhouse gas emissions and the current deregulation of electric energy ..... Visual composition and temporal behaviour of GUI.
Modeling and optimization of an electric power distribution network ...
African Journals Online (AJOL)
Modeling and optimization of an electric power distribution network planning system using ... of the network was modelled with non-linear mathematical expressions. ... given feasible locations, re-conductoring of existing feeders in the network, ...
Short circuit protection for a power distribution system
Owen, J. R., III
1969-01-01
Sensing circuit detects when the output from a matrix is present and when it should be present. The circuit provides short circuit protection for a power distribution system where the selection of the driven load is accomplished by digital logic.
Recent publications on environmental law
International Nuclear Information System (INIS)
Lohse, S.
1991-01-01
The bibliography contains references to publications covering the following subject fields: General environmental law; environmental law in relation to constitutional law, administrative law, procedural law, revenue law, criminal law, private law, industrial law; law of regional development; nature conservation law; law on water protection; waste management law; law on protection against harmful effects on the environment; atomic energy law and radiation protection law; law of the power industry and the mining industry; laws and regulations on hazardous material and environmental hygiene. (orig.) [de
Orbits in elementary, power-law galaxy bars - 1. Occurrence and role of single loops
Struck, Curtis
2018-05-01
Orbits in galaxy bars are generally complex, but simple closed loop orbits play an important role in our conceptual understanding of bars. Such orbits are found in some well-studied potentials, provide a simple model of the bar in themselves, and may generate complex orbit families. The precessing, power ellipse (p-ellipse) orbit approximation provides accurate analytic orbit fits in symmetric galaxy potentials. It remains useful for finding and fitting simple loop orbits in the frame of a rotating bar with bar-like and symmetric power-law potentials. Second-order perturbation theory yields two or fewer simple loop solutions in these potentials. Numerical integrations in the parameter space neighbourhood of perturbation solutions reveal zero or one actual loops in a range of such potentials with rising rotation curves. These loops are embedded in a small parameter region of similar, but librating orbits, which have a subharmonic frequency superimposed on the basic loop. These loops and their librating companions support annular bars. Solid bars can be produced in more complex potentials, as shown by an example with power-law indices varying with radius. The power-law potentials can be viewed as the elementary constituents of more complex potentials. Numerical integrations also reveal interesting classes of orbits with multiple loops. In two-dimensional, self-gravitating bars, with power-law potentials, single-loop orbits are very rare. This result suggests that gas bars or oval distortions are unlikely to be long-lived, and that complex orbits or three-dimensional structure must support self-gravitating stellar bars.
New version of PLNoise: a package for exact numerical simulation of power-law noises
Milotti, Edoardo
2007-08-01
In a recent paper I have introduced a package for the exact simulation of power-law noises and other colored noises [E. Milotti, Comput. Phys. Comm. 175 (2006) 212]: in particular, the algorithm generates 1/f noises with 0law spectrum for any arbitrary sequence of sampling intervals, i.e. the sampling times may be unevenly spaced. Program summaryTitle of program: PLNoise Catalogue identifier:ADXV_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADXV_v2_0.html Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Programming language used: ANSI C Computer: Any computer with an ANSI C compiler: the package has been tested with gcc version 3.2.3 on Red Hat Linux 3.2.3-52 and gcc version 4.0.0 and 4.0.1 on Apple Mac OS X-10.4 Operating system: All operating systems capable of running an ANSI C compiler RAM: The code of the test program is very compact (about 60 Kbytes), but the program works with list management and allocates memory dynamically; in a typical run with average list length 2ṡ10, the RAM taken by the list is 200 Kbytes External routines: The package needs external routines to generate uniform and exponential deviates. The implementation described here uses the random number generation library ranlib freely available from Netlib [B.W. Brown, J. Lovato, K. Russell: ranlib, available from Netlib, http://www.netlib.org/random/index.html, select the C version ranlib.c], but it has also been successfully tested with the random number routines in Numerical Recipes [W.H. Press, S.A. Teulkolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes in C: The Art of Scientific Computing, second ed., Cambridge Univ. Press., Cambridge, 1992, pp. 274-290]. Notice that ranlib requires a pair of routines from the linear algebra package LINPACK, and that the distribution of ranlib includes the C source of these routines, in case LINPACK is not
Communication Systems and Study Method for Active Distribution Power systems
DEFF Research Database (Denmark)
Wei, Mu; Chen, Zhe
Due to the involvement and evolvement of communication technologies in contemporary power systems, the applications of modern communication technologies in distribution power system are becoming increasingly important. In this paper, the International Organization for Standardization (ISO......) reference seven-layer model of communication systems, and the main communication technologies and protocols on each corresponding layer are introduced. Some newly developed communication techniques, like Ethernet, are discussed with reference to the possible applications in distributed power system....... The suitability of the communication technology to the distribution power system with active renewable energy based generation units is discussed. Subsequently the typical possible communication systems are studied by simulation. In this paper, a novel method of integrating communication system impact into power...
The distribution of wind power forecast errors from operational systems
Energy Technology Data Exchange (ETDEWEB)
Hodge, Bri-Mathias; Ela, Erik; Milligan, Michael
2011-07-01
Wind power forecasting is one important tool in the integration of large amounts of renewable generation into the electricity system. Wind power forecasts from operational systems are not perfect, and thus, an understanding of the forecast error distributions can be important in system operations. In this work, we examine the errors from operational wind power forecasting systems, both for a single wind plant and for an entire interconnection. The resulting error distributions are compared with the normal distribution and the distribution obtained from the persistence forecasting model at multiple timescales. A model distribution is fit to the operational system forecast errors and the potential impact on system operations highlighted through the generation of forecast confidence intervals. (orig.)
A Multi-Functional Power Electronic Converter in Distributed Generation Power Systems
DEFF Research Database (Denmark)
Chen, Zhe; Blaabjerg, Frede; Pedersen, John Kim
2005-01-01
of the converter interfacing a wind power generation unit is also given. The power electronic interface performs the optimal operation in the wind turbine system to extract the maximum wind power, while it also plays a key role in a hybrid compensation system that consists of the active power electronic converter......This paper presents a power electronic converter which is used as an interface for a distributed generation unit/energy storage device, and also functioned as an active power compensator in a hybrid compensation system. The operation and control of the converter have been described. An example...... and passive filters connected to each distorting load or distributed generation (DG) unit. The passive filters are distributely located to remove major harmonics and provide reactive power compensation. The active power electronic filter corrects the system unbalance, removes the remaining harmonic components...
Impact Study on Power Factor of Electrical Load in Power Distribution System
International Nuclear Information System (INIS)
Syirrazie Che Soh; Harzawardi Hasim; Ahmad Asraf, A.S.
2014-01-01
Low Power Factor of electrical loads cause high current is drawn from power supply. The impact of this circumstance is influenced by impedance of electrical load. Therefore, the key consideration of this study is how impedance of electrical loads influence power factor of electrical loads, and then power distribution as the whole. This study is important to evaluate the right action to mitigate low power factor effectively for electrical energy efficiency purpose. (author)
Need for consent of a law extending the operating life of nuclear power plants
International Nuclear Information System (INIS)
Degenhart, Christoph
2010-01-01
The article deals with the question whether a law extending nuclear power plant life beyond the residual periods of time laid down in the law of April 22, 2002 requires consent of the Federal Council. The Atomic Energy Act needed the consent of the Federal Council pursuant to Article 87c, Basic Law, as its Section 24 determines that central functions of licensing and supervision be exercised by the federal states on behalf of the Federal Government. This has not changed after the current version of the norm. Increasing the residual quotas of electricity by amending Annex 3 of Sec.7, Para.1a, Atomic Energy Act, per se does not require consent. This is a substantive provision. Sec.24, Atomic Energy Act, does not need to be amended. The Federal Council, which consented to the original legislation, thus does not bear continued responsibility for the law. Every law must be treated as a separate entity in terms of legislative method. The Federal Council, with its first consent to the piece of legislation, ''approves'' this systemic shift. Renewed consent is required only in case of another systemic shift. This is the case when the provision about administrative responsibility takes on a very different meaning and impact no longer supported by the earlier consent. According to decisions by the Federal Constitutional Court, this expressly applies also to administration by commission. What is required is a comparison of administrative duties before and after entry into force of the amending law; mere quantitative shifts of administrative burdens do not cause a systemic shift. Whether the inclusion of backfitting obligations would be associated with regulations in administrative procedures has not been decided. In its ruling of May 4, 2010, the Federal Constitutional Court confirms that these do not require consent within the framework of Art.85 Para.1, Basic Law. (orig.)
Directory of Open Access Journals (Sweden)
Shan Yang
2016-01-01
Full Text Available Power flow calculation and short circuit calculation are the basis of theoretical research for distribution network with inverter based distributed generation. The similarity of equivalent model for inverter based distributed generation during normal and fault conditions of distribution network and the differences between power flow and short circuit calculation are analyzed in this paper. Then an integrated power flow and short circuit calculation method for distribution network with inverter based distributed generation is proposed. The proposed method let the inverter based distributed generation be equivalent to Iθ bus, which makes it suitable to calculate the power flow of distribution network with a current limited inverter based distributed generation. And the low voltage ride through capability of inverter based distributed generation can be considered as well in this paper. Finally, some tests of power flow and short circuit current calculation are performed on a 33-bus distribution network. The calculated results from the proposed method in this paper are contrasted with those by the traditional method and the simulation method, whose results have verified the effectiveness of the integrated method suggested in this paper.
Grounding, Shielding and Power Distribution for the LHCb Silicon Tracking
Bauer, C; Frei, R; Straumann, U; Vázquez, P; Vollhardt, A
2005-01-01
This note lists the relevant items for power and grounding, it explains the sensitive detector input signal circuits and describes the grounding, power distribution and line filtering measures applied to each of the electrical units of the LHCb silicon tracking system. This note deals with both silicon sub-projects, the Inner Tracker (IT) and the Trigger Tracker (TT).
Guo, Fan; Li, Hui; Daughton, William; Liu, Yi-Hsin
2014-10-10
Using fully kinetic simulations, we demonstrate that magnetic reconnection in relativistic plasmas is highly efficient at accelerating particles through a first-order Fermi process resulting from the curvature drift of particles in the direction of the electric field induced by the relativistic flows. This mechanism gives rise to the formation of hard power-law spectra in parameter regimes where the energy density in the reconnecting field exceeds the rest mass energy density σ ≡ B(2)/(4πnm(e)c(2))>1 and when the system size is sufficiently large. In the limit σ ≫ 1, the spectral index approaches p = 1 and most of the available energy is converted into nonthermal particles. A simple analytic model is proposed which explains these key features and predicts a general condition under which hard power-law spectra will be generated from magnetic reconnection.
Numerical simulation of nanofluids based on power-law fluids with flow and heat transfer
Li, Lin; Jiang, Yongyue; Chen, Aixin
2017-04-01
In this paper, we investigate the heat transfer of nanofluids based on power-law fluids and movement of nanoparticles with the effect of thermophoresis in a rotating circular groove. The velocity of circular groove rotating is a constant and the temperature on the wall is kept to be zero all the time which is different from the temperature of nanofluids in the initial time. The effects of thermophoresis and Brownian diffusion are considered in temperature and concentration equations, and it is assumed that the thermal conductivity of nanofluids is a function of concentration of nanoparticles. Based on numerical results, it can be found that nanofluids improve the process of heat transfer than base fluids in a rotating circular groove. The enhancement of heat transfer increases as the power law index of base fluids decreases.
How Power-Laws Re-Write The Rules Of Cyber Warfare
Directory of Open Access Journals (Sweden)
David L. Bibighaus
2015-12-01
Full Text Available All warfare contains and element of randomness. This article will argue that, the kind uncertainty encountered in cyber warfare (Power-Law randomness is fundamentally different from the uncertainty the military has evolved to deal with in the physical world (Gaussian-Randomness. The article will explain the difference between these two kinds of randomness, and how cyber weapons appear to operate under Power-Law randomness. It then will show how in cyberspace, key aspects of strategic thought are based on a flaws assumption of randomness. Finally, this article shall argue that if the American military is going to be effective in cyberspace, it must re-examine the way the military assumes risk, recruits is forces, plans for war and maintains the peace.
Flows of Newtonian and Power-Law Fluids in Symmetrically Corrugated Cappilary Fissures and Tubes
Walicka, A.
2018-02-01
In this paper, an analytical method for deriving the relationships between the pressure drop and the volumetric flow rate in laminar flow regimes of Newtonian and power-law fluids through symmetrically corrugated capillary fissures and tubes is presented. This method, which is general with regard to fluid and capillary shape, can also be used as a foundation for different fluids, fissures and tubes. It can also be a good base for numerical integration when analytical expressions are hard to obtain due to mathematical complexities. Five converging-diverging or diverging-converging geometrics, viz. wedge and cone, parabolic, hyperbolic, hyperbolic cosine and cosine curve, are used as examples to illustrate the application of this method. For the wedge and cone geometry the present results for the power-law fluid were compared with the results obtained by another method; this comparison indicates a good compatibility between both the results.
Anisotropic power-law inflation for a conformal-violating Maxwell model
Do, Tuan Q.; Kao, W. F.
2018-05-01
A set of power-law solutions of a conformal-violating Maxwell model with a non-standard scalar-vector coupling will be shown in this paper. In particular, we are interested in a coupling term of the form X^{2n} F^{μ ν }F_{μ ν } with X denoting the kinetic term of the scalar field. Stability analysis indicates that the new set of anisotropic power-law solutions is unstable during the inflationary phase. The result is consistent with the cosmic no-hair conjecture. We show, however, that a set of stable slowly expanding solutions does exist for a small range of parameters λ and n. Hence a small anisotropy can survive during the slowly expanding phase.
Flows of Newtonian and Power-Law Fluids in Symmetrically Corrugated Cappilary Fissures and Tubes
Directory of Open Access Journals (Sweden)
Walicka A.
2018-02-01
Full Text Available In this paper, an analytical method for deriving the relationships between the pressure drop and the volumetric flow rate in laminar flow regimes of Newtonian and power-law fluids through symmetrically corrugated capillary fissures and tubes is presented. This method, which is general with regard to fluid and capillary shape, can also be used as a foundation for different fluids, fissures and tubes. It can also be a good base for numerical integration when analytical expressions are hard to obtain due to mathematical complexities. Five converging-diverging or diverging-converging geometrics, viz. wedge and cone, parabolic, hyperbolic, hyperbolic cosine and cosine curve, are used as examples to illustrate the application of this method. For the wedge and cone geometry the present results for the power-law fluid were compared with the results obtained by another method; this comparison indicates a good compatibility between both the results.
Power law-based local search in spider monkey optimisation for lower order system modelling
Sharma, Ajay; Sharma, Harish; Bhargava, Annapurna; Sharma, Nirmala
2017-01-01
The nature-inspired algorithms (NIAs) have shown efficiency to solve many complex real-world optimisation problems. The efficiency of NIAs is measured by their ability to find adequate results within a reasonable amount of time, rather than an ability to guarantee the optimal solution. This paper presents a solution for lower order system modelling using spider monkey optimisation (SMO) algorithm to obtain a better approximation for lower order systems and reflects almost original higher order system's characteristics. Further, a local search strategy, namely, power law-based local search is incorporated with SMO. The proposed strategy is named as power law-based local search in SMO (PLSMO). The efficiency, accuracy and reliability of the proposed algorithm is tested over 20 well-known benchmark functions. Then, the PLSMO algorithm is applied to solve the lower order system modelling problem.
Hypersonic aerodynamic characteristics of a family of power-law, wing body configurations
Townsend, J. C.
1973-01-01
The configurations analyzed are half-axisymmetric, power-law bodies surmounted by thin, flat wings. The wing planform matches the body shock-wave shape. Analytic solutions of the hypersonic small disturbance equations form a basis for calculating the longitudinal aerodynamic characteristics. Boundary-layer displacement effects on the body and the wing upper surface are approximated. Skin friction is estimated by using compressible, laminar boundary-layer solutions. Good agreement was obtained with available experimental data for which the basic theoretical assumptions were satisfied. The method is used to estimate the effects of power-law, fineness ratio, and Mach number variations at full-scale conditions. The computer program is included.
Sliding friction in the hydrodynamic lubrication regime for a power-law fluid
International Nuclear Information System (INIS)
Warren, P B
2017-01-01
A scaling analysis is undertaken for the load balance in sliding friction in the hydrodynamic lubrication regime, with a particular emphasis on power-law shear-thinning typical of a structured liquid. It is argued that the shear-thinning regime is mechanically unstable if the power-law index n < 1/2, where n is the exponent that relates the shear stress to the shear rate. Consequently the Stribeck (friction) curve should be discontinuous, with possible hysteresis. Further analysis suggests that normal stress and flow transience (stress overshoot) do not destroy this basic picture, although they may provide stabilising mechanisms at higher shear rates. Extensional viscosity is also expected to be insignificant unless the Trouton ratio is large. A possible application to shear thickening in non-Brownian particulate suspensions is indicated. (paper)
Non-Gaussian power grid frequency fluctuations characterized by Lévy-stable laws and superstatistics
Schäfer, Benjamin; Beck, Christian; Aihara, Kazuyuki; Witthaut, Dirk; Timme, Marc
2018-02-01
Multiple types of fluctuations impact the collective dynamics of power grids and thus challenge their robust operation. Fluctuations result from processes as different as dynamically changing demands, energy trading and an increasing share of renewable power feed-in. Here we analyse principles underlying the dynamics and statistics of power grid frequency fluctuations. Considering frequency time series for a range of power grids, including grids in North America, Japan and Europe, we find a strong deviation from Gaussianity best described as Lévy-stable and q-Gaussian distributions. We present a coarse framework to analytically characterize the impact of arbitrary noise distributions, as well as a superstatistical approach that systematically interprets heavy tails and skewed distributions. We identify energy trading as a substantial contribution to today's frequency fluctuations and effective damping of the grid as a controlling factor enabling reduction of fluctuation risks, with enhanced effects for small power grids.
Evaluation of electric power distribution systems: period 1984/89
International Nuclear Information System (INIS)
Britto Filho, W.A. de; Pinto, V.G.
1992-01-01
The historical evolution of electric power distribution systems in Brazil, during 1984 to 1989 is described, showing the consumer market with the physical expansion of Distribution Networks and the results of quality from the services made by the companies to their clients. (C.G.C.)
Deviations from the Gutenberg–Richter law on account of a random distribution of block sizes
Energy Technology Data Exchange (ETDEWEB)
Sibiryakov, B. P., E-mail: sibiryakovbp@ipgg.sbras.ru [Trofimuk Institute of Oil and Gas Geology and Geophysics SB RAS, Novosibirsk, 630090 (Russian Federation); Novosibirsk State University, Novosibirsk, 630090 (Russian Federation)
2015-10-27
This paper studies properties of a continuum with structure. The characteristic size of the structure governs the fact that difference relations are nonautomatically transformed into differential ones. It is impossible to consider an infinitesimal volume of a body, to which the major conservation laws could be applied, because the minimum representative volume of the body must contain at least a few elementary microstructures. The corresponding equations of motion are equations of infinite order, solutions of which include, along with usual sound waves, unusual waves with abnormally low velocities without a lower limit. It is shown that in such media weak perturbations can increase or decrease outside the limits. The number of complex roots of the corresponding dispersion equation, which can be interpreted as the number of unstable solutions, depends on the specific surface of cracks and is an almost linear dependence on a logarithmic scale, as in the seismological Gutenberg–Richter law. If the distance between one pore (crack) to another one is a random value with some distribution, we must write another dispersion equation and examine different scenarios depending on the statistical characteristics of the random distribution. In this case, there are sufficient deviations from the Gutenberg–Richter law and this theoretical result corresponds to some field and laboratory observations.
International Nuclear Information System (INIS)
Cupin, N.
2000-01-01
Discussion about control of Croatian Power system in the view of forthcoming free electricity market did not included do far distribution level. With this article we would like to clarify the role of distribution control centers pointing out importance of Zagreb Distribution control center, with controls one third of Croatian (HEP) consumption. (author)
Morren, J.; Haan, de S.W.H.
2008-01-01
An increasing number of distributed generation units (DG units) are connected to the distribution network. These generators affect the operation and coordination of the distribution network protection. The influence from DG units that are coupled to the network with a power electronic converter
Scattering at low energies by potentials containing power-law corrections to the Coulomb interaction
International Nuclear Information System (INIS)
Kuitsinskii, A.A.
1986-01-01
The low-energy asymptotic behavior is found for the phase shifts and scattering amplitudes in the case of central potentials which decrease at infinity as n/r+ar /sup -a/,a 1. In problems of atomic and nuclear physics one is generally interested in collisions of clusters consisting of several charged particles. The effective interaction potential of such clusters contains long-range power law corrections to the Coulomb interaction that is presented
Laboratory constraints on chameleon dark energy and power-law fields
Steffen, Jason H.; Upadhye, Amol; Baumbaugh, Al; Chou, Aaron S.; Mazur, Peter O.; Tomlin, Ray; Weltman, Amanda; Wester, William
2010-01-01
We report results from the GammeV Chameleon Afterglow Search---a search for chameleon particles created via photon/chameleon oscillations within a magnetic field. This experiment is sensitive to a wide class of chameleon power-law models and dark energy models not previously explored. These results exclude five orders of magnitude in the coupling of chameleons to photons covering a range of four orders of magnitude in chameleon effective mass and, for individual chameleon models, exclude betw...
Laboratory Constraints on Chameleon Dark Energy and Power-Law Fields
International Nuclear Information System (INIS)
Steffen, J. H.; Baumbaugh, A.; Chou, A. S.; Mazur, P. O.; Tomlin, R.; Wester, W.; Upadhye, A.; Weltman, A.
2010-01-01
We report results from a search for chameleon particles created via photon-chameleon oscillations within a magnetic field. This experiment is sensitive to a wide class of unexplored chameleon power-law and dark energy models. These results exclude 5 orders of magnitude in the coupling of chameleons to photons covering a range of 4 orders of magnitude in chameleon effective mass and, for individual models, exclude between 4 and 12 orders of magnitude in chameleon couplings to matter.
Strange, charmed and b-flavoured mesons in an effective power-law potential
International Nuclear Information System (INIS)
Barik, N.; Jena, S.N.
1981-01-01
We have shown that an effective non-coulombic power-law potenial, generating spin-dependence through scaler and vector exchanges in almost equal proportions along with zero quark-anomalous moment, which was found successful in earlier works for the fine-hyperfine splittings of heavy mesons like psi and T, can also describe very satisfactorily the S-wave hyperfine levels, M1-transition rates and electromagnetic mass difference of the strange, charmed and b-flavoured mesons. (orig.)
Fine-hyperfine splittings of quarkonium levels in an effective power-law potential
Energy Technology Data Exchange (ETDEWEB)
Barik, N; Jena, S N [Utkal Univ., Bhubaneswar (India). Dept. of Physics
1980-12-01
We have shown that an effective non-coulombic power-law potential generating spin dependence through scalar and vector exchanges in almost equal proportions along with a very small or zero quark anomalous moment can describe very satisfactorily the up-to-date data on the fine-hyperfine levels and the leptonic width ratios of the vector mesons in the cc and bb families in a flavour independent manner.
Fine-hyperfine splittings of quarkonium levels in an effective power-law potential
International Nuclear Information System (INIS)
Barik, N.; Jena, S.N.
1980-01-01
We have shown that an effective non-coulombic power-law potential generating spin dependence through scalar and vector exchanges in almost equal proportions along with a very small or zero quark anomalous moment can describe very satisfactorily the up-to-date data on the fine-hyperfine levels and the leptonic width ratios of the vector mesons in the cc and bb families in a flavour independent manner. (orig.)
Strange, charmed and b-flavoured mesons in an effective power-law potential
Energy Technology Data Exchange (ETDEWEB)
Barik, N; Jena, S N [Utkal Univ., Bhubaneswar (India). Dept. of Physics
1981-05-14
We have shown that an effective non-coulombic power-law potenial, generating spin-dependence through scaler and vector exchanges in almost equal proportions along with zero quark-anomalous moment, which was found successful in earlier works for the fine-hyperfine splittings of heavy mesons like psi and T, can also describe very satisfactorily the S-wave hyperfine levels, M1-transition rates and electromagnetic mass difference of the strange, charmed and b-flavoured mesons.
Power-law approach to modeling biological systems. II. Application to ethanol production
Energy Technology Data Exchange (ETDEWEB)
Voit, E O; Savageau, M A
1982-01-01
The use of the power-law formalism is illustrated by modeling yeast ethanol production in batch culture at high cell densities. Parameter values are estimated from experimental data. The results suggest that ethanol killing of viable cells and lysis of nonviable cells are major determinants of system behavior, whereas catabolism of ethanol and inhibition of cell growth by ethanol appear to be insignificant under these experimental conditions.
Chassin, David P [Pasco, WA; Donnelly, Matthew K [Kennewick, WA; Dagle, Jeffery E [Richland, WA
2011-12-06
Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices are described. In one aspect, an electrical power distribution control method includes providing electrical energy from an electrical power distribution system, applying the electrical energy to a load, providing a plurality of different values for a threshold at a plurality of moments in time and corresponding to an electrical characteristic of the electrical energy, and adjusting an amount of the electrical energy applied to the load responsive to an electrical characteristic of the electrical energy triggering one of the values of the threshold at the respective moment in time.
The Newcomb-Benford law in its relation to some common distributions.
Formann, Anton K
2010-05-07
An often reported, but nevertheless persistently striking observation, formalized as the Newcomb-Benford law (NBL), is that the frequencies with which the leading digits of numbers occur in a large variety of data are far away from being uniform. Most spectacular seems to be the fact that in many data the leading digit 1 occurs in nearly one third of all cases. Explanations for this uneven distribution of the leading digits were, among others, scale- and base-invariance. Little attention, however, found the interrelation between the distribution of the significant digits and the distribution of the observed variable. It is shown here by simulation that long right-tailed distributions of a random variable are compatible with the NBL, and that for distributions of the ratio of two random variables the fit generally improves. Distributions not putting most mass on small values of the random variable (e.g. symmetric distributions) fail to fit. Hence, the validity of the NBL needs the predominance of small values and, when thinking of real-world data, a majority of small entities. Analyses of data on stock prices, the areas and numbers of inhabitants of countries, and the starting page numbers of papers from a bibliography sustain this conclusion. In all, these findings may help to understand the mechanisms behind the NBL and the conditions needed for its validity. That this law is not only of scientific interest per se, but that, in addition, it has also substantial implications can be seen from those fields where it was suggested to be put into practice. These fields reach from the detection of irregularities in data (e.g. economic fraud) to optimizing the architecture of computers regarding number representation, storage, and round-off errors.
The Newcomb-Benford law in its relation to some common distributions.
Directory of Open Access Journals (Sweden)
Anton K Formann
Full Text Available An often reported, but nevertheless persistently striking observation, formalized as the Newcomb-Benford law (NBL, is that the frequencies with which the leading digits of numbers occur in a large variety of data are far away from being uniform. Most spectacular seems to be the fact that in many data the leading digit 1 occurs in nearly one third of all cases. Explanations for this uneven distribution of the leading digits were, among others, scale- and base-invariance. Little attention, however, found the interrelation between the distribution of the significant digits and the distribution of the observed variable. It is shown here by simulation that long right-tailed distributions of a random variable are compatible with the NBL, and that for distributions of the ratio of two random variables the fit generally improves. Distributions not putting most mass on small values of the random variable (e.g. symmetric distributions fail to fit. Hence, the validity of the NBL needs the predominance of small values and, when thinking of real-world data, a majority of small entities. Analyses of data on stock prices, the areas and numbers of inhabitants of countries, and the starting page numbers of papers from a bibliography sustain this conclusion. In all, these findings may help to understand the mechanisms behind the NBL and the conditions needed for its validity. That this law is not only of scientific interest per se, but that, in addition, it has also substantial implications can be seen from those fields where it was suggested to be put into practice. These fields reach from the detection of irregularities in data (e.g. economic fraud to optimizing the architecture of computers regarding number representation, storage, and round-off errors.
Power corrections and renormalons in Transverse Momentum Distributions
Energy Technology Data Exchange (ETDEWEB)
Scimemi, Ignazio [Departamento de Física Teórica II, Universidad Complutense de Madrid,Ciudad Universitaria, 28040 Madrid (Spain); Vladimirov, Alexey [Institut für Theoretische Physik, Universität Regensburg,D-93040 Regensburg (Germany)
2017-03-01
We study the power corrections to Transverse Momentum Distributions (TMDs) by analyzing renormalon divergences of the perturbative series. The renormalon divergences arise independently in two constituents of TMDs: the rapidity evolution kernel and the small-b matching coefficient. The renormalon contributions (and consequently power corrections and non-perturbative corrections to the related cross sections) have a non-trivial dependence on the Bjorken variable and the transverse distance. We discuss the consistency requirements for power corrections for TMDs and suggest inputs for the TMD phenomenology in accordance with this study. Both unpolarized quark TMD parton distribution function and fragmentation function are considered.
Tippett, Michael K.; Cohen, Joel E.
2016-01-01
Tornadoes cause loss of life and damage to property each year in the United States and around the world. The largest impacts come from ‘outbreaks' consisting of multiple tornadoes closely spaced in time. Here we find an upward trend in the annual mean number of tornadoes per US tornado outbreak for the period 1954–2014. Moreover, the variance of this quantity is increasing more than four times as fast as the mean. The mean and variance of the number of tornadoes per outbreak vary according to Taylor's power law of fluctuation scaling (TL), with parameters that are consistent with multiplicative growth. Tornado-related atmospheric proxies show similar power-law scaling and multiplicative growth. Path-length-integrated tornado outbreak intensity also follows TL, but with parameters consistent with sampling variability. The observed TL power-law scaling of outbreak severity means that extreme outbreaks are more frequent than would be expected if mean and variance were independent or linearly related. PMID:26923210
Evidence for intermittency and a truncated power law from highly resolved aphid movement data.
Mashanova, Alla; Oliver, Tom H; Jansen, Vincent A A
2010-01-06
Power laws are increasingly used to describe animal movement. Despite this, the use of power laws has been criticized on both empirical and theoretical grounds, and alternative models based on extensions of conventional random walk theory (Brownian motion) have been suggested. In this paper, we analyse a large volume of data of aphid walking behaviour (65,068 data points), which provides a highly resolved dataset to investigate the pattern of movement. We show that aphid movement is intermittent--with alternations of a slow movement with frequent change of direction and a fast, relatively directed movement--and that the fast movement consists of two phases--a strongly directed phase that gradually changes into an uncorrelated random walk. By measuring the mean-squared displacement and the duration of non-stop movement episodes we found that both spatial and temporal aspects of aphid movement are best described using a truncated power law approach. We suggest that the observed spatial pattern arises from the duration of non-stop movement phases rather than from correlations in turning angles. We discuss the implications of these findings for interpreting movement data, such as distinguishing between movement and non-movement, and the effect of the range of data used in the analysis on the conclusions.
Chahtour, C.; Ben Hamed, H.; Beji, H.; Guizani, A.; Alimi, W.
2018-01-01
We investigate how an external imposed magnetic field affects thermal instability in a horizontal shallow porous cavity saturated by a non-Newtonian power-law liquid. The magnetic field is assumed to be constant and parallel to the gravity. A uniform heat flux is applied to the horizontal walls of the layer while the vertical walls are adiabatic. We use linear stability analysis to find expressions for the critical Rayleigh number as a function of the power-law index and the intensity of the magnetic field. We use nonlinear parallel flow theory to find some explicit solutions of the problem, and we use finite difference numerical simulations to solve the full nonlinear equations. We show how the presence of magnetic field alters the known hydrodynamical result of Newtonian flows and power-law flows and how it causes the presence of subcritical finite amplitude convection for both pseudoplastic and dilatant fluids. We also show that in the limit of very strong magnetic field, the dissipation of energy by Joule effect dominates the dissipation of energy by shear stress and gives to the liquid an inviscid character.
Power-law behavior in complex organizational communication networks during crisis
Uddin, Shahadat; Murshed, Shahriar Tanvir Hasan; Hossain, Liaquat
2011-08-01
Communication networks can be described as patterns of contacts which are created due to the flow of messages and information shared among participating actors. Contemporary organizations are now commonly viewed as dynamic systems of adaptation and evolution containing several parts, which interact with one another both in internal and in external environment. Although there is limited consensus among researchers on the precise definition of organizational crisis, there is evidence of shared meaning: crisis produces individual crisis, crisis can be associated with positive or negative conditions, crises can be situations having been precipitated quickly or suddenly or situations that have developed over time and are predictable etc. In this research, we study the power-law behavior of an organizational email communication network during crisis from complexity perspective. Power law simply describes that, the probability that a randomly selected node has k links (i.e. degree k) follows P(k)∼k, where γ is the degree exponent. We used social network analysis tools and techniques to analyze the email communication dataset. We tested two propositions: (1) as organization goes through crisis, a few actors, who are prominent or more active, will become central, and (2) the daily communication network as well as the actors in the communication network exhibit power-law behavior. Our preliminary results support these two propositions. The outcome of this study may provide significant advancement in exploring organizational communication network behavior during crisis.