WorldWideScience

Sample records for potentially toxic element

  1. Downward Movement of Potentially Toxic Elements in Biosolids Amended Soils

    Directory of Open Access Journals (Sweden)

    Silvana Irene Torri

    2012-01-01

    Full Text Available Potentially toxic elements (PTEs in soils are mainly associated with the solid phase, bound to the surface of solid components, or precipitated as minerals. For most PTEs, only a small portion is dissolved in the soil solution. However, there is an interest in following the fate of mobile PTEs in the environment, for a growing amount of evidence indicates that downward movement of PTEs may occur in biosolids amended soils, leading to groundwater contamination. Therefore, it is crucial to understand the factors that control the release of these elements after land application of biosolids, in order to overcome problems related to downward movement of PTEs in the soil profile.

  2. Toxic Elements

    DEFF Research Database (Denmark)

    Hajeb, Parvaneh; Shakibazadeh, Shahram; Sloth, Jens Jørgen

    2016-01-01

    Food is considered the main source of toxic element (arsenic, cadmium, lead, and mercury) exposure to humans, and they can cause major public health effects. In this chapter, we discuss the most important sources for toxic element in food and the foodstuffs which are significant contributors to h...

  3. Arsenic: A Review of the Element's Toxicity, Plant Interactions, and Potential Methods of Remediation.

    Science.gov (United States)

    Hettick, Bryan E; Cañas-Carrell, Jaclyn E; French, Amanda D; Klein, David M

    2015-08-19

    Arsenic is a naturally occurring element with a long history of toxicity. Sites of contamination are found worldwide as a result of both natural processes and anthropogenic activities. The broad scope of arsenic toxicity to humans and its unique interaction with the environment have led to extensive research into its physicochemical properties and toxic behavior in biological systems. The purpose of this review is to compile the results of recent studies concerning the metalloid and consider the chemical and physical properties of arsenic in the broad context of human toxicity and phytoremediation. Areas of focus include arsenic's mechanisms of human toxicity, interaction with plant systems, potential methods of remediation, and protocols for the determination of metals in experimentation. This assessment of the literature indicates that controlling contamination of water sources and plants through effective remediation and management is essential to successfully addressing the problems of arsenic toxicity and contamination.

  4. Speciation and mobility of potentially toxic elements in municipal solid waste incineration bottom ash

    NARCIS (Netherlands)

    Schollbach, K.; Alam, Q.; Florea, M.V.A.; Brouwers, H.J.H.

    2017-01-01

    Bottom ash (BA) is the main residue from municipal solid waste incineration (MSWI), which can have some applications in construction materials, but is mostly landfilled in many countries. The main problem is the high concentration of potentially toxic elements (PTEs), particularly in the fine

  5. Bioaccumulation of potentially toxic trace elements in benthic organisms of Admiralty Bay (King George Island, Antarctica)

    International Nuclear Information System (INIS)

    Majer, Alessandra Pereira; Petti, Mônica Angélica Varella; Corbisier, Thais Navajas; Ribeiro, Andreza Portella; Theophilo, Carolina Yume Sawamura; Ferreira, Paulo Alves de Lima; Figueira, Rubens Cesar Lopes

    2014-01-01

    Highlights: • Toxic metals were released in the 2012 fire in the Brazilian base at Admiralty Bay. • Potentially toxic metals were measured in eight Antarctic benthos species. • The bioaccumulation of As, Cd and Pb was verified in the studied species. • The biomagnification of Cd is suggested for the studied Antarctic food web. - Abstract: Data about the concentration, accumulation and transfer of potentially toxic elements in Antarctic marine food webs are essential for understanding the impacts of these elements, and for monitoring the pollution contribution of scientific stations, mainly in Admiralty Bay due to the 2012 fire in the Brazilian scientific station. Accordingly, the concentration of As, Cd, Cu, Ni, Pb and Zn was measured in eight benthic species collected in the 2005/2006 austral summer and the relationship between concentration and trophic position (indicated by δ 15 N values) was tested. A wide variation in metal content was observed depending on the species and the element. In the studied trophic positions, it was observed bioaccumulation for As, Cd and Pb, which are toxic elements with no biological function. In addition, Cd showed a positive relationship between concentration and trophic level suggesting the possible biomagnification of this element

  6. Distribution of potentially toxic elements in urban soils of Bratislava; Distribucia potencialne toxickych prvkov v urbannych podach Bratislavy

    Energy Technology Data Exchange (ETDEWEB)

    Lahka, L.; Tatarkova, V.; Toth, R. [Univerzita Komenskeho, Prirodovedecka fakulta, Katedra geochemie, 84215 Bratislava (Slovakia)

    2013-04-16

    Potentially toxic elements naturally occur in soils, but their contents are increased in urban environment due to anthropogenic activities. The main sources of urban soil contamination with potentially toxic elements are chemical, energetic, building and blowing industry, engineering, traffic and municipal waste incineration plants. Contaminated urban soils can pose significant risks to human health trough dust inhalation, soil ingestion, and dermal contact. The primary objectives of the present study were: to assess concentrations of potentially toxic elements in soils of nursery schools, to investigate relationships between potentially toxic elements and physicochemical properties of soils, to identify the main possible sources. (authors)

  7. Dietary exposure to essential and potentially toxic elements for the population of Hanoi, Vietnam

    DEFF Research Database (Denmark)

    Marcussen, H.; Jensen, Bodil Hamborg; Petersen, Annette

    2013-01-01

    Knowledge of the dietary intake of essential and toxic elements in fast-developing Southeast Asian countries such as Vietnam is limited. Iron and Zn deficiency in Asia is a well-known problem and is partly due to rice constituting a major part of the diet. Dietary habits are changing...... and there is a need to build more knowledge so that authorities can give dietary recommendations. The aim of this study was to determine the total dietary intake of essential and potentially toxic elements and to assess the nutritional quality and food safety risks of the average Hanoi diet. 22 foods or food groups...... were identified and 14 samples of each food group were collected from markets and/or supermarkets in the period 2007-2009. Water spinach, water dropwort, watercress, water mimosa and pond fish are typically produced in wastewater-fed systems. Therefore, these samples were collected both at markets...

  8. Pollution Assessment of Toxic and Potentially Toxic Elements in Agricultural Soils of the City Addis Ababa, Ethiopia.

    Science.gov (United States)

    Aschale, Minbale; Sileshi, Yilma; Kelly-Quinn, Mary; Hailu, Dereje

    2017-02-01

    Due to the significantly fast urban expansion and increased industrial activities, the soils in the farms in Addis Ababa are contaminated by some toxic and potentially toxic elements (As, V, Cr, Fe, Co, Ni, Cu, B, Ba, Sr, Zn, Mn, Pb and Cd) in varying degrees. The mean concentrations of Cr, Ni, As and B in most of the soil farms were found to be higher than the maximum recommended limits. The mean concentrations of Cd, Cu, Pb, Co, Ni and Mn were found to be higher than the background soil concentrations given for uncontaminated soils. Multivariate analyses coupled with correlation analysis were used to identify possible sources. The geo-accumulation index values for Cr, Mn and Pb indicated that the farm soils were unpolluted to moderately polluted as a result of anthropogenic activities. A comprehensive environmental management strategy should be formulated by the government to measure further pollution of the farmland soil.

  9. Plant-soil distribution of potentially toxic elements in response to elevated atmospheric CO2.

    Science.gov (United States)

    Duval, Benjamin D; Dijkstra, Paul; Natali, Susan M; Megonigal, J Patrick; Ketterer, Michael E; Drake, Bert G; Lerdau, Manuel T; Gordon, Gwyneth; Anbar, Ariel D; Hungate, Bruce A

    2011-04-01

    The distribution of contaminant elements within ecosystems is an environmental concern because of these elements' potential toxicity to animals and plants and their ability to hinder microbial ecosystem services. As with nutrients, contaminants are cycled within and through ecosystems. Elevated atmospheric CO2 generally increases plant productivity and alters nutrient element cycling, but whether CO2 causes similar effects on the cycling of contaminant elements is unknown. Here we show that 11 years of experimental CO2 enrichment in a sandy soil with low organic matter content causes plants to accumulate contaminants in plant biomass, with declines in the extractable contaminant element pools in surface soils. These results indicate that CO2 alters the distribution of contaminant elements in ecosystems, with plant element accumulation and declining soil availability both likely explained by the CO2 stimulation of plant biomass. Our results highlight the interdependence of element cycles and the importance of taking a broad view of the periodic table when the effects of global environmental change on ecosystem biogeochemistry are considered.

  10. Arabidopsis and the Genetic Potential for the Phytoremediation of Toxic Elemental and Organic Pollutants

    Science.gov (United States)

    Cobbett, Christopher S.; Meagher, Richard B.

    2002-01-01

    In a process called phytoremediation, plants can be used to extract, detoxify, and/or sequester toxic pollutants from soil, water, and air. Phytoremediation may become an essential tool in cleaning the environment and reducing human and animal exposure to potential carcinogens and other toxins. Arabidopsis has provided useful information about the genetic, physiological, and biochemical mechanisms behind phytoremediation, and it is an excellent model genetic organism to test foreign gene expression. This review focuses on Arabidopsis studies concerning: 1) the remediation of elemental pollutants; 2) the remediation of organic pollutants; and 3) the phytoremediation genome. Elemental pollutants include heavy metals and metalloids (e.g., mercury, lead, cadmium, arsenic) that are immutable. The general goal of phytoremediation is to extract, detoxify, and hyperaccumulate elemental pollutants in above-ground plant tissues for later harvest. A few dozen Arabidopsis genes and proteins that play direct roles in the remediation of elemental pollutants are discussed. Organic pollutants include toxic chemicals such as benzene, benzo(a)pyrene, polychlorinated biphenyls, trichloroethylene, trinitrotoluene, and dichlorodiphenyltrichloroethane. Phytoremediation of organic pollutants is focused on their complete mineralization to harmless products, however, less is known about the potential of plants to act on complex organic chemicals. A preliminary survey of the Arabidopsis genome suggests that as many as 700 genes encode proteins that have the capacity to act directly on environmental pollutants or could be modified to do so. The potential of the phytoremediation proteome to be used to reduce human exposure to toxic pollutants appears to be enormous and untapped. PMID:22303204

  11. Potentially toxic elements in foodcrops: Triticum aestivum L., Zea mays L.

    Science.gov (United States)

    Bini, Claudio; Fontana, Silvia; Squizzato, Stefania; Minello, Fabiola; Fornasier, Flavio; Wahsha, Mohammad

    2013-04-01

    Soil is the basis of the ecosystems and of our system of food production. Crops can uptake heavy metals and potentially toxic elements from the soil and store them in the roots or translocate them to the aerial parts. Excessive content of these elements in edible parts can produce toxic effects and, through the food chain and food consumption, result in a potential hazard for human health. In this study soils and plants (spring wheat, Triticum aestivum L. and maize, Zea mays L.) from a tannery district in North-East Italy were analyzed to determine pedological characters, soil microbial indicators and the content of some major and micro-nutrients and potentially toxic elements (Al, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Ni, P, Pb, S, Zn, V). The soils of the area are moderately polluted; Cr is the most important inorganic contaminant, followed by Ni, Cu and V. Factor analysis evidenced that the contaminants are in part anthropogenic and in part geogenic. Major anthropogenic origin was detected for Cr, Ni (from industrial activities), Zn, Cu, Cd (from agriculture practices). Biological Absorption Coefficient (BAC) from soil to plant roots and Translocation factor (TF) within the plant were calculated; major nutrients (K, P, S) and some micronutrients (Cu, Zn, Mg, Mn) are easily absorbed and translocated, whilst other nutrients (Ca, Fe) and potentially toxic elements or micronutrients (Al, Cd, Cr, Ni, Pb, V) are not accumulated in the seeds of the two considered species. However, the two edible species proved differently able to absorb and translocate elements, and this suggests to consider separately every species as potential PHEs transporter to the food chain and to humans. Cr concentrations in seeds and other aerial parts (stem and leaves) of the examined plants are higher than the values found for the same species and for other cereals grown on unpolluted soils. Comparing the Cr levels in edible parts with recommended dietary intake, besides other possible Cr sources

  12. Preliminary Assessment of Health Risks of Potentially Toxic Elements in Settled Dust over Beijing Urban Area

    Directory of Open Access Journals (Sweden)

    Dejun Wan

    2016-05-01

    Full Text Available To examine levels, health risks, sources, and spatial distributions of potentially toxic elements in settled dust over Beijing urban area, 62 samples were collected mostly from residential building outdoor surfaces, and their <63 μm fractions were measured for 12 potentially toxic elements. The results show that V, Cr, Mn, Co, Ni, and Ba in dust are from predominantly natural sources, whereas Cu, Zn, As, Cd, Sb, and Pb mostly originate from anthropogenic sources. Exposure to these elements in dust has significant non-cancer risks to children but insignificant to adults. Cancer risks of Cr, Co, Ni, As, and Cd via inhalation and dermal contact are below the threshold of 10−6–10−4 but As via dust ingestion shows a tolerable risk. The non-cancer risks to children are contributed mainly (75% by As, Pb, and Sb, and dominantly (92% via dust ingestion, with relatively higher risks mainly occurring in the eastern and northeastern Beijing urban areas. Although Cd, Zn, and Cu in dust are heavily affected by anthropogenic sources, their health risks are insignificant. Source appointments suggest that coal burning emissions, the dominant source of As, are likely the largest contributors to the health risk, and traffic-related and industrial emissions are also important because they contribute most of the Pb and Sb in dust.

  13. Elemental Composition of Two Rice Cultivars under Potentially Toxic an Aquept and Aquent

    Directory of Open Access Journals (Sweden)

    Adesola Olutayo OLALEYE

    2009-12-01

    Full Text Available Iron toxicity is a major nutrient disorder affecting rice production of wetland rice in the irrigated and rainfed ecosystem in West Africa sub-region. Little attention has been paid to evaluating nutrient contents of rice cultivars grown on such soils and their relationship to the iron toxicity scores, grain yield and dry matter yields. A pot experiment was conducted on two potentially Fe-toxic soils (Aeric Fluvaquent and Aeric Tropaquept. The experiment was a 2 x 2 x 4 factorial experiment with three replicates in arranged in a randomized fashion. The factors were two soil types, two rice cultivars (ITA 212 and tolerant (Suakoko 8 and four Fe 2+ levels (control, 1000, 3000 and 4000 mg L-1. The result showed that for both susceptible cultivar (ITA 212 and the relatively tolerant (Suakoko 8 cultivar, little or no differences were observed in their elemental composition with regards to micro and macro-nutrients. For the susceptible cultivar, results showed that none of the tissue nutrients significantly relates to iron toxicity scores (ITS, grain yield and dry matter yield on both soil types. However, for the tolerant cultivar, ITS was observed to be significantly related to tissue K and P contents on the two soil types respectively. Tissue Ca and Mg were observed to be significantly related to the dry matter yield (DMY on Aeric Tropquept. It could be concluded that for these rice cultivars grown on two potentially Fe-toxic soils, different tissue nutrients may trigger the manifestation of bronzing or yellowing symptoms of rice cultivars.

  14. Potentially toxic elements and rare earth elements in plants from the lake Kalimantsi bank (NE Republic of Macedonia)

    International Nuclear Information System (INIS)

    Vrhovnik, Petra; Doloenets, Matej

    2017-01-01

    Potentially toxic elements (PTE) and rare earth elements (REE) are often increased in the environment, especially nearby active or abandoned mines . While NE Macedonia is very rich with metal ore bodies also elevated pollution is expected in the surrounding ecosystems. NE part of the country is also very important agricultural area where several food crops are being produced and consequently water from local lakes and rivers is being used for irrigation. In present paper we have focused on different plant species growing on the Lake Kalimantsi bank. All plant species were analyzed for PTE and REE. Results revealed that the PTE s (Cr, Cu, Pb, Zn, Ni, As and Cd) in the studied plant species show great enhancement in all samples and also exceed the recommended and allowable limits. Meanwhile REE s reflect a very similar range among all samples. Generally, all REE s were in the safe range, according to currently known regulations. (author)

  15. The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements

    International Nuclear Information System (INIS)

    Gonzalez-Chavez, M.C.; Carrillo-Gonzalez, R.; Wright, S.F.; Nichols, K.A.

    2004-01-01

    Naturally occurring soil organic compounds stabilize potentially toxic elements (PTEs) such as Cu, Cd, Pb, and Mn. The hypothesis of this work was that an insoluble glycoprotein, glomalin, produced in copious amounts on hyphae of arbuscular mycorrhizal fungi (AMF) sequesters PTEs. Glomalin can be extracted from laboratory cultures of AMF and from soils. Three different experiments were conducted. Experiment 1 showed that glomalin extracted from two polluted soils contained 1.6-4.3 mg Cu, 0.02-0.08 mg Cd, and 0.62-1.12 mg Pb/g glomalin. Experiment 2 showed that glomalin from hyphae of an isolate of Gigaspora rosea sequestered up to 28 mg Cu/g in vitro. Experiment 3 tested in vivo differences in Cu sequestration by Cu-tolerant and non-tolerant isolates of Glomus mosseae colonizing sorghum. Plants were fed with nutrient solution containing 0.5, 10 or 20 μM of Cu. Although no differences between isolates were detected, mean values for the 20 μM Cu level were 1.6, 0.4, and 0.3 mg Cu/g for glomalin extracted from hyphae, from sand after removal of hyphae and from hyphae attached to roots, respectively. Glomalin should be considered for biostabilization leading to remediation of polluted soils. - Glomalin may be useful in remediation of toxic elements in soils

  16. The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Chavez, M.C.; Carrillo-Gonzalez, R.; Wright, S.F.; Nichols, K.A

    2004-08-01

    Naturally occurring soil organic compounds stabilize potentially toxic elements (PTEs) such as Cu, Cd, Pb, and Mn. The hypothesis of this work was that an insoluble glycoprotein, glomalin, produced in copious amounts on hyphae of arbuscular mycorrhizal fungi (AMF) sequesters PTEs. Glomalin can be extracted from laboratory cultures of AMF and from soils. Three different experiments were conducted. Experiment 1 showed that glomalin extracted from two polluted soils contained 1.6-4.3 mg Cu, 0.02-0.08 mg Cd, and 0.62-1.12 mg Pb/g glomalin. Experiment 2 showed that glomalin from hyphae of an isolate of Gigaspora rosea sequestered up to 28 mg Cu/g in vitro. Experiment 3 tested in vivo differences in Cu sequestration by Cu-tolerant and non-tolerant isolates of Glomus mosseae colonizing sorghum. Plants were fed with nutrient solution containing 0.5, 10 or 20 {mu}M of Cu. Although no differences between isolates were detected, mean values for the 20 {mu}M Cu level were 1.6, 0.4, and 0.3 mg Cu/g for glomalin extracted from hyphae, from sand after removal of hyphae and from hyphae attached to roots, respectively. Glomalin should be considered for biostabilization leading to remediation of polluted soils. - Glomalin may be useful in remediation of toxic elements in soils.

  17. Biosorption: An Interplay between Marine Algae and Potentially Toxic Elements-A Review.

    Science.gov (United States)

    Bilal, Muhammad; Rasheed, Tahir; Sosa-Hernández, Juan Eduardo; Raza, Ali; Nabeel, Faran; Iqbal, Hafiz M N

    2018-02-19

    In recent decades, environmental pollution has emerged as a core issue, around the globe, rendering it of fundamental concern to eco-toxicologists, environmental biologists, eco-chemists, pathologists, and researchers from other fields. The dissolution of polluting agents is a leading cause of environmental pollution of all key spheres including the hydrosphere, lithosphere, and biosphere, among others. The widespread occurrence of various pollutants including toxic heavy metals and other emerging hazardous contaminants is a serious concern. With increasing scientific knowledge, socioeconomic awareness, human health problems, and ecological apprehensions, people are more concerned about adverse health outcomes. Against this background, several removal methods have been proposed and implemented with the aim of addressing environmental pollution and sustainable and eco-friendly development. Among them, the biosorption of pollutants using naturally inspired sources, e.g., marine algae, has considerable advantages. In the past few years, marine algae have been extensively studied due to their natural origin, overall cost-effective ratio, and effectiveness against a broader pollutant range; thus, they are considered a potential alternative to the conventional methods used for environmental decontamination. Herein, an effort has been made to highlight the importance of marine algae as naturally inspired biosorbents and their role in biosorption. Biosorption mechanisms and factors affecting biosorption activities are also discussed in this review. The utilization of marine algae as a biosorbent for the removal of numerous potentially toxic elements has also been reviewed.

  18. Phytoextraction of potentially toxic elements by Indian mustard, rapeseed, and sunflower from a contaminated riparian soil.

    Science.gov (United States)

    Shaheen, Sabry M; Rinklebe, Jörg

    2015-12-01

    The objective of this study was to quantify the phytoextraction of the potentially toxic elements Al, As, Cd, Co, Cr, Cu, Mo, Ni, Pb, Se, V, and Zn by Indian mustard, rapeseed, and sunflower from a contaminated riparian soil. To achieve this goal, a greenhouse pot experiment was established using a highly contaminated grassland soil collected at the Wupper River (Germany). The impact of ethylene-diamine-tetra-acetic acid (EDTA), humate (HK), and phosphate potassium (PK) on the mobility and uptake of the elements by rapeseed also was investigated. Indian mustard showed the highest efficiency for phytoextraction of Al, Cr, Mo, Se, and V; sunflower for Cd, Ni, Pb, and Zn, and rapeseed for Cu. The bioconcentration ratios were higher than 1 for the elements (except As and Cu), indicating the suitability of the studied plants for phytoextraction. Application of EDTA to the soil increased significantly the solubility of Cd, Co, Cr, Ni, and Pb and decreased the solubility of Al, As, Se, V, and Mo. Humate potassium decreased significantly the concentrations of Al and As in rapeseed but increased the concentrations of Cu, Se, and Zn. We may conclude that HK can be used for immobilization of Al and As, while it can be used for enhancing the phytoextraction of Cu, Se, and Zn by rapeseed. Phosphate potassium immobilized Al, Cd, Pb, and Zn, but enhanced phytoextraction of As, Cr, Mo, and Se by rapeseed.

  19. Interaction of arbuscular mycorrhizal symbionts with arsenic and other potentially toxic elements

    International Nuclear Information System (INIS)

    Khairuddin Abdul Rahim

    2000-01-01

    The response of arbuscular mycorrhizal (AM) symbionts to arsenic, and arsenic interactions with phosphorus and potentially toxic elements (PTEs) in soils from a former arsenic mine, the Devon Great Consols, were investigated. The objective was to determine whether AM associations ameliorate arsenic toxicity in Plantago lanceolata and Agrostis capillaris, plants commonly found at abandoned mines. An exploratory investigation indicated the richness in biodiversity of AMF that colonised plants growing at the site. Arsenic was found at high concentrations and was strongly associated with copper and iron. P. lanceolata was always colonised by AMF, while colonisation of A. capillaris was variable. There was no evidence in the field of soil pH or PTEs influencing AMF colonisation and spore density. There was no strong correlation between arsenic content in plant and available arsenic, obtained through various extraction methods. Spore germination and infectivity in the mine soils were strongly influenced by the AMF genotype and to a lesser extent by the soil environment. P. lanceolata and A. capillaris root growth was inhibited at arsenic concentrations of ≥50 μg g -1 in agar. Bioavailability experiments using mine soils and Terra-Green TM (calcined attapulgite) spiked with sodium arsenate gave no evidence that AMF-colonised plants translocated less arsenic to the shoots. Plants accumulated more arsenic in their roots than in their shoots, whether they were colonised by AMF or not. The A. capillaris genotype used in the present study translocated less of both arsenic and phosphorus to its shoots than P. lanceolata. High available phosphorus in Terra-Green TM protected plants against arsenic toxicity, at -1 As. There was evidence for inhibition by arsenic in AMF colonisation of roots. For quantifying AMF extra radical hyphae contribution to arsenic transportation from growth medium to plant using a compartmented pot system, the use of low phosphorus medium and a longer

  20. Potentially toxic elements (PTEs) in soils from the surroundings of the Trans-Amazonian Highway, Brazil.

    Science.gov (United States)

    de Souza, Edna Santos; Fernandes, Antonio Rodrigues; de Souza Braz, Anderson Martins; Sabino, Lorena Lira Leite; Alleoni, Luís Reynaldo Ferracciú

    2015-01-01

    The Trans-Amazonian Highway (TAH) is located in the northern region of Brazil, comprising a border region where agricultural, mining, and logging activities are the main activities responsible for fostering economic development, in addition to large hydroelectric plants. Such activities lead to environmental contamination by potentially toxic elements (PTEs). Environmental monitoring is only possible through the determination of element contents under natural conditions. Many extraction methods have been proposed to determine PTEs' bioavailability in the soil; however, there is no consensus about which extractor is most suitable. In this study, we determined the contents of PTEs in soils in the surroundings of TAH after mineral extraction with diethylenetriaminepentaacetic acid-triethanolamine (DTPA-TEA), Mehlich I, and Mehlich III solutions. Soil samples were collected in areas of natural vegetation in the vicinity of TAH in the state of Pará, Brazil. Chemical attributes and particle size were determined, besides concentrations of Fe, Al, Mn, and Ti by sulfuric acid digestion, Si after alkaline solution attack, and poorly crystalline Fe, Al, and "free" Fe oxides. Mehlich III solution extracted greater contents from Fe, Al, and Pb as compared to Mehlich I and DTPA-TEA and similar contents from Cd, Mn, Zn, and Cu. Significant correlations were found between concentrations of PTEs and the contents of Fe and Mn oxides as well as organic carbon and soil cation exchange capacity. Contents of Cu, Mn, Fe, and Zn by the three methods were positively correlated.

  1. Occurrence and risk assessment of potentially toxic elements and typical organic pollutants in contaminated rural soils.

    Science.gov (United States)

    Xu, Yongfeng; Dai, Shixiang; Meng, Ke; Wang, Yuting; Ren, Wenjie; Zhao, Ling; Christie, Peter; Teng, Ying

    2018-07-15

    The residual levels and risk assessment of several potentially toxic elements (PTEs), phthalate esters (PAEs) and polycyclic aromatic hydrocarbons (PAHs) in rural soils near different types of pollution sources in Tianjin, China, were studied. The soils were found to be polluted to different extents with PTEs, PAEs and PAHs from different pollution sources. The soil concentrations of chromium (Cr), nickel (Ni), di-n-butyl phthalate (DnBP), acenaphthylene (Any) and acenaphthene (Ane) were higher than their corresponding regulatory reference limits. The health risk assessment model used to calculate human exposure indicates that both non-carcinogenic and carcinogenic risks from selected pollutants were generally acceptable or close to acceptable. Different types of pollution sources and soil physicochemical properties substantially affected the soil residual concentrations of and risks from these pollutants. PTEs in soils collected from agricultural lands around industrial and residential areas and organic pollutants (PAEs and PAHs) in soils collected from agricultural areas around livestock breeding were higher than those from other types of pollution sources and merit long-term monitoring. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Environmental contextualisation of potential toxic elements and polycyclic aromatic hydrocarbons in biochar

    International Nuclear Information System (INIS)

    Freddo, Alessia; Cai Chao; Reid, Brian J.

    2012-01-01

    Nine dissimilar biochars, produced from varying feedstock at different pyrolysis temperatures, are appraised with respect to concentrations of potentially toxic elements, specifically, metals, metalloids and polycyclic aromatic hydrocarbons (PAHs). Concentrations of the metals and metalloids varied with the following ranges (mg kg −1 ): 0.02–0.94, Cd; 0.12–6.48, Cr; 0.04–13.2, Cu; 0.1–1.37, Ni; 0.06–3.87, Pb; 0.94–207, Zn and 0.03–0.27, As. Σ 16 PAH concentrations (16 Environmental Protection Agency (EPA) PAHs) range between 0.08 mg kg −1 to 8.7 mg kg −1 . Subsequent comparison with background soil concentrations, concentration applied to the regulation of composted materials (Publicly Available Specification (PAS 100)) and European Union (EU) regulations relating to the application of sewage sludge to agricultural land suggest low risk associated with the concentrations of PTEs observed in biochar. Collectively, results suggest that environmental impacts attributable to metals, metalloids and PAHs associated with biochar following its application to soil are likely to be minimal. - Highlights: ► Concentrations of PTEs varied with feedstock and temperature of production. ► Of the PTEs Zn (0.94–207 mg kg −1 ) was of most priority. ► PTE levels did not infringe guidance values for compost or sewage sludge. ► Biochar ( −1 ) is unlikely to make any real difference to PTE concentrations in soil. - Environmental impacts attributable to metals, metalloids and PAHs associated with biochar following its application to soil are likely to be minimal.

  3. Comparison of the common spatial interpolation methods used to analyze potentially toxic elements surrounding mining regions.

    Science.gov (United States)

    Ding, Qian; Wang, Yong; Zhuang, Dafang

    2018-04-15

    The appropriate spatial interpolation methods must be selected to analyze the spatial distributions of Potentially Toxic Elements (PTEs), which is a precondition for evaluating PTE pollution. The accuracy and effect of different spatial interpolation methods, which include inverse distance weighting interpolation (IDW) (power = 1, 2, 3), radial basis function interpolation (RBF) (basis function: thin-plate spline (TPS), spline with tension (ST), completely regularized spline (CRS), multiquadric (MQ) and inverse multiquadric (IMQ)) and ordinary kriging interpolation (OK) (semivariogram model: spherical, exponential, gaussian and linear), were compared using 166 unevenly distributed soil PTE samples (As, Pb, Cu and Zn) in the Suxian District, Chenzhou City, Hunan Province as the study subject. The reasons for the accuracy differences of the interpolation methods and the uncertainties of the interpolation results are discussed, then several suggestions for improving the interpolation accuracy are proposed, and the direction of pollution control is determined. The results of this study are as follows: (i) RBF-ST and OK (exponential) are the optimal interpolation methods for As and Cu, and the optimal interpolation method for Pb and Zn is RBF-IMQ. (ii) The interpolation uncertainty is positively correlated with the PTE concentration, and higher uncertainties are primarily distributed around mines, which is related to the strong spatial variability of PTE concentrations caused by human interference. (iii) The interpolation accuracy can be improved by increasing the sample size around the mines, introducing auxiliary variables in the case of incomplete sampling and adopting the partition prediction method. (iv) It is necessary to strengthen the prevention and control of As and Pb pollution, particularly in the central and northern areas. The results of this study can provide an effective reference for the optimization of interpolation methods and parameters for

  4. Arabidopsis and the Genetic Potential for the Phytoremediation of Toxic Elemental and Organic Pollutants

    OpenAIRE

    Cobbett, Christopher S.; Meagher, Richard B.

    2002-01-01

    In a process called phytoremediation, plants can be used to extract, detoxify, and/or sequester toxic pollutants from soil, water, and air. Phytoremediation may become an essential tool in cleaning the environment and reducing human and animal exposure to potential carcinogens and other toxins. Arabidopsis has provided useful information about the genetic, physiological, and biochemical mechanisms behind phytoremediation, and it is an excellent model genetic organism to test foreign gene expr...

  5. Objective Assessment of an Ionic Foot bath (Ion Cleanse): Testing Its Ability to Remove Potentially Toxic Elements from the Body

    International Nuclear Information System (INIS)

    Kennedy, D.A.; Cooley, K.; Seely, D.; Kennedy, D.A.; Cooley, K.; Einarson, Th.R.; Seely, D.

    2012-01-01

    Ionic foot baths are often used in holistic health centres and spas to aid in detoxification; however, claims that these machines eliminate toxins from the body have not been rigorously evaluated. In this proof-of-principle study, we sought to measure the release of potentially toxic elements from ionic foot baths into distilled and tap water with and without feet. Water samples were collected and analyzed following 30-minute ionic foot bath sessions without feet using both distilled (n=1) and tap water (n=6) and following four ionic foot baths using tap water (once/week for 4 weeks) in six healthy participants. Urine collection samples were analyzed at four points during the study. Hair samples were analyzed for element concentrations at baseline and study conclusion. Contrary to claims made for the machine, there does not appear to be any specific induction of toxic element release through the feet when running the machine according to specifications

  6. Objective Assessment of an Ionic Footbath (IonCleanse: Testing Its Ability to Remove Potentially Toxic Elements from the Body

    Directory of Open Access Journals (Sweden)

    Deborah A. Kennedy

    2012-01-01

    Full Text Available Ionic footbaths are often used in holistic health centres and spas to aid in detoxification; however, claims that these machines eliminate toxins from the body have not been rigorously evaluated. In this proof-of-principle study, we sought to measure the release of potentially toxic elements from ionic footbaths into distilled and tap water with and without feet. Water samples were collected and analyzed following 30-minute ionic footbath sessions without feet using both distilled (n=1 and tap water (n=6 and following four ionic footbaths using tap water (once/week for 4 weeks in six healthy participants. Urine collection samples were analyzed at four points during the study. Hair samples were analyzed for element concentrations at baseline and study conclusion. Contrary to claims made for the machine, there does not appear to be any specific induction of toxic element release through the feet when running the machine according to specifications.

  7. Potentially Toxic Elements and Health Risk Assessment in Farmland Systems around High-Concentrated Arsenic Coal Mining in Xingren, China

    Directory of Open Access Journals (Sweden)

    Ying-ju Li

    2018-01-01

    Full Text Available The health risk of potentially toxic elements (PTEs via contamination of the food chain has attracted widespread concern. The aim of this study is to evaluate the effects of PTEs in environment and human body (fingernail, hair, and blood of people living in agricultural soil near arsenic coal mining areas in Xingren County (Guizhou, southwest China. 89 crop samples which included vegetables, rice, maize, and coix seed and their corresponding soils and 17 local surface water and biological tissue samples (41 × 3 in near arsenic coal mining areas were collected, and the concentrations of potentially toxic elements (As, Cd, Cu, Cr, and Pb in all the samples were determined. The health risk assessment methods developed by the United States Environmental Protection Agency were employed to explore the potential health hazards of PTEs in soils growing crops. Results showed that 4 toxic elements, Cd, Cu, As, and Cr, were found to have different degrees of contamination in soils in the studied area. The total concentration of toxic elements (As, Cr, Cu, and Pb in fingernail, hair, and blood samples were 90.50, 69.31, and 6.90 mg·kg−1, respectively. Fingernail samples from females were more likely to show exposure to trace metals compared to males. As the age of the subject increased, the concentration of As also increased in all three biological samples. The risk assessment for the mean hazard index value from the consumption of local food crops was 14.81, indicating that consumers may experience adverse, noncarcinogenic health effects. The estimated mean total cancer risk value of was 5.3 × 10−3, which was approximately 10 to 1000 times higher than the acceptable range of 10−6–10−4, indicating serious carcinogenic risks for local people consuming crops from the area. This study provides evidence that local residents in this study area may be at a high risk of disease caused from toxic element exposure.

  8. Detection and Identification of potentially toxic elements in urban soil using in situ spectroscopy

    Science.gov (United States)

    Brook, Anna; Kopel, Daniella; Wittenberg, Lea

    2017-04-01

    Anthropogenic urban soils are the foundation of the urban green infrastructure, the green net quality is as good as each of its patches. In early days of pedology urban soil has been recognized with respect to contamination and the risks for human health but in study performed since the 70s, the importance of urban soil for the urban ecology became increasingly significant. Urban soils are highly disturbed land that was created by the process of urbanization. The dominant agent in the creation of urban soils is human activity which modifies the natural soil through mixing, filling or by contamination of land surfaces so as to create a layer of urban soil which can be more than 50 cm thick. The objective of this study is to determine the extent to which field spectroscopy methods can be used to extend the knowledge of toxic elements in urban soils. The majority of the studies on urban soils concentrate on identifying and mapping of known pollution mostly certain heavy metals, we are focusing on almost non disturbed soils where no direct disturbance occurred but the urban matrix inflicted on it. The elements in those soils where an-knowns features. In this study a top-down analysis is applied for detecting the presence of minerals, organic matter and pollutants in mixed soil samples. Results of the proposed top-down unmixing method suggest that the analysis is made very fast due to the simplified hierarchy which avoids the high-learning curve associated with unmixing algorithms showed that the most abundant components were coarse organic matter 12% followed by concrete dust, plastic crumbs, other man made materials, clay and other minerals. The results of the soils pH, measured electrometrically and the particle size distribution, measured by Laser diffraction, indicate there is no big different between the samples particle size distribution and the pH values of the samples but they are not significantly different from the expected, except for the OM percentage which

  9. Long-term use of biosolids as organic fertilizers in agricultural soils: potentially toxic elements occurrence and mobility.

    Science.gov (United States)

    Marguí, E; Iglesias, M; Camps, F; Sala, L; Hidalgo, M

    2016-03-01

    The presence of potentially toxic elements (PTEs) may hinder a more widespread application of biosolids in agriculture. At present, the European Directive 86/278/CEE limit the total concentrations of seven metals (Cu, Cr, Ni, Pb, Zn, Cd and Hg) in agricultural soils and in sewage sludges used as fertilizers but it has not taken into consideration the potential impacts of other emerging micropollutants that may be present in the biosolids as well as their mobility. The aim of this study was to evaluate the accumulation and mobility of 13 elements (including regulated metals and other inorganic species) in agricultural soils repeatedly amended with biosolids for 15 years. Firstly, three digestions programs using different acid mixtures were tested to evaluate the most accurate and efficient method for analysis of soil and sludge. Results demonstrated that sewage sludge application increased concentrations of Pb and Hg in soil, but values did not exceed the quality standard established by legislation. In addition, other elements (As, Co, Sb, Ag, Se and Mn) that at present are not regulated by the Spanish and European directives were identified in the sewage sludge, and significant differences were found between Ag content in soils amended with biosolids in comparison with control soils. This fact can be related to the increasing use of silver nanoparticles in consumer products due to their antibacterial properties. Results from the leaching tests show up that, in general, the mobility degree for both regulated and non-regulated elements in soils amended with biosolids was quite low (<10 %).

  10. Risk assessment of potentially toxic elements in agricultural soils and maize tissues from selected districts in Tanzania

    International Nuclear Information System (INIS)

    Marwa, Ernest M.M.; Meharg, Andrew A.; Rice, Clive M.

    2012-01-01

    A field survey was conducted to investigate the contamination of potentially toxic elements (PTEs) arsenic (As), lead (Pb), chromium (Cr), and nickel (Ni) in Tanzanian agricultural soils and to evaluate their uptake and translocation in maize as proxy to the safety of maize used for human and animal consumption. Soils and maize tissues were sampled from 40 farms in Tanzania and analyzed using inductively coupled plasma-mass spectrometry in the United Kingdom. The results showed high levels of PTEs in both soils and maize tissues above the recommended limits. Nickel levels of up to 34.4 and 56.9 mg kg −1 respectively were found in some maize shoots and grains from several districts. Also, high Pb levels >0.2 mg kg −1 were found in some grains. The grains and shoots with high levels of Ni and Pb are unfit for human and animal consumption. Concentrations of individual elements in maize tissues and soils did not correlate and showed differences in uptake and translocation. However, Ni showed a more efficient transfer from soils to shoots than As, Pb and Cr. Transfer of Cr and Ni from shoots to grains was higher than other elements, implying that whatever amount is assimilated in maize shoots is efficiently mobilized and transferred to grains. Thus, the study recommended to the public to stop consuming and feeding their animals maize with high levels of PTEs for their safety. - Highlights: ► High Ni and Pb levels above the allowable limits were found in maize grains. ► Also maize shoots unfit for animal use were found with high Ni concentrations. ► Mining activities were among the sources of soil contamination. ► The public advised to stop consuming maize with potentially toxic elements.

  11. The effect of potentially toxic elements and sewage sludge on the activity of regulatory enzyme glutamate kinase

    Czech Academy of Sciences Publication Activity Database

    Pavlíková, D.; Pavlík, Milan; Staszková, L.; Tlustoš, P.; Száková, J.; Balík, J.

    2007-01-01

    Roč. 53, č. 5 (2007), s. 201-206 ISSN 1214-1178 Institutional research plan: CEZ:AV0Z50380511 Keywords : Proline regulation * toxic elements * plant stress metabolism * chronic stress Subject RIV: ED - Physiology

  12. The water-soluble fraction of potentially toxic elements in contaminated soils: relationships between ecotoxicity, solubility and geochemical reactivity.

    Science.gov (United States)

    Rocha, L; Rodrigues, S M; Lopes, I; Soares, A M V M; Duarte, A C; Pereira, E

    2011-09-01

    To better understand the impacts posed by soil contamination to aquatic ecosystems it is crucial to characterise the links between ecotoxicity, chemical availability and geochemical reactivity of potentially toxic elements (PTE's) in soils. We evaluated the adverse effects of water extracts obtained from soils contaminated by chemical industry and mining, using a test battery including organisms from different trophic levels (bacteria, algae and daphnids). These tests provided a quick assessment of the ecotoxicity of soils with respect to possible adverse effects on aquatic organisms although the ecotoxicological responses could be related to the solubility of PTE's only to a limited extent. The analysis of results of bioassays together with the chemical characterisation of water extracts provided additional relevant insight into the role of conductivity, pH, Al, Fe, and Mn of soil extracts on toxicity to organisms. Furthermore, an important conclusion of this study was that the toxicity of extracts to the aquatic organisms could also be related to the soil properties (pH, Org C and Fe(ox)) and to the reactivity of PTE's in soils which in fact control the soluble fraction of the contaminants. The combined assessment of ecotoxicity in water fractions, solubility and geochemical reactivity of PTE's in soils provided a more comprehensive understanding of the bioavailability of inorganic contaminants than ecotoxicological or chemical studies alone and can therefore be most useful for environmental risks assessment of contaminated soils. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Arsenic, Chromium, and Other Potentially Toxic Elements in the Rocks and Sediments of Oropos-Kalamos Basin, Attica, Greece

    Directory of Open Access Journals (Sweden)

    D. Alexakis

    2014-01-01

    Full Text Available Rocks and sediments are non-anthropogenic sources of elements contamination. In this study, a series of potentially toxic elements were quantified in rocks and sediments of the Oropos-Kalamos basin. Only As, Hg, Pb, and Sb contents, in all the examined rocks and sediments, were higher than the levels given in international literature. Concentration of the elements As, Cr, Hg, Mo, Ni, and U is highly elevated in the lignite compared to crustal element averages. The enrichment of Cr and Ni in the lignite can be attributed to the known ultramafic rock masses surrounding the basin, while enrichment of As, Hg, Mo, Sb, and U is associated with the past geothermal activity of the Upper Miocene (about 15 million years ago. Nickel and Cr were transported into the lignite deposition basin by rivers and streams draining ultramafic rock bodies. The results of this study imply the natural source of Cr3+ and Cr6+ contamination of the Oropos-Kalamos groundwater, since high Cr contents were also recorded in the lignite (212.3 mg kg−1, chromiferous iron ore occurrences (256.6 mg kg−1, and alluvial deposits (212.5 mg kg−1, indicating Cr leaching and transportation to the depositional basin dating from the Upper Miocene age.

  14. Determination of nutrients and potentially toxic elements in Jatropha curcas seeds, oil and biodiesel using inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Maciel, P.B.; Barros de, L.L.S.; Duarte, E.C.M.; Harder, M.N.C.; Abreu, Jr.C.H.; Villanueva, F.C.A.

    2013-01-01

    Biodiesel is a renewable and biodegradable fuel that can be used in diesel engines as a replacement for fossil diesel. A suitable alternative is to produce it from Jatropha curcas, which has high quality oil concentration. Nevertheless, the presence of particular chemical elements above certain limits can affect the product quality, leading to vehicle engine problems and acting as air pollution source. The objective of this work is to develop a method for the simultaneous determination of B, Na, Mg, P, S, K, Ca, Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd, Ba, and Pb in J. curcas seeds, oil and biodiesel using the inductively coupled plasma mass spectrometry (ICP-MS) technique. This material was evaluated because has been successfully employed in India for biodiesel production as well as in other places where there is an incentive to family farming, without affect the food chain. The oil was obtained from seeds via mechanical extraction and the biodiesel was achieved by oil transesterification. After optimization of the microwave digestion method for the different sample types, the samples were analyzed by ICP-MS. The certified reference material NIST SRM 1515 (apple leaves) and the recovery tests were carried out to ensure the accuracy of the proposed method, which made possible the quantification of several nutrients and potentially toxic elements in J. curcas seeds, oil and biodiesel, especially Na, K, Ca, Mg, P and S in biodiesel which are mandatory analyzed by Petroleum, Natural Gas and Biofuel National Agency (ANP). This work highlights the findings of the first study of potentially toxic and nutrient elements in the production chain steps seed-oil-biodiesel from J. curcas. (author)

  15. Determination of phytoextraction potential of plant species for toxic elements in soils of abandoned sulphide-mining areas

    International Nuclear Information System (INIS)

    Freitas, M.C.; Anawar, H.M.; Dionisio, I.; Dung, H.M.; Canha, N.; Bettencourt, A.; Capelo, S.; Henriques, F.; Pinto-Gomes, C.J.

    2009-01-01

    This study has determined contamination levels in soils and plants from the Sao Domingos mining area, Portugal, by k 0 -INAA. Total concentrations of As, Sb, Cr, Hg, Cu, Zn and Fe in soils were very high, exceeding the maximum limits in Portuguese legislation. Concentrations of toxic elements like As, Sb and Zn were highest in roots of Erica andevalensis, Juncus acutus, Agrostis castellana and Nicotiana glauca. Additionally, As, Br, Cr, Fe, Sb and Zn in all organs of most plants were above toxicity levels. Those species that accumulated relatively high concentrations of toxic elements in roots (and tops) may be cultivated for phytostabilisation of similar areas. (author)

  16. Controlled burn and immediate mobilization of potentially toxic elements in soil, from a legacy mine site in Central Victoria, Australia.

    Science.gov (United States)

    Abraham, Joji; Dowling, Kim; Florentine, Singarayer

    2018-03-01

    Conducting controlled burns in fire prone areas is an efficient and economic method for forest management, and provides relief from the incidence of high severity wild fires and the consequent damage to human property and ecosystems. However, similar to wild fires, controlled burns also affect many of the physical and biogeochemical properties of the forest soil and may facilitate remobilization of potentially toxic elements (PTEs) sequestered in vegetation and soil organic matter. The objective of the current study is to investigate the mobilization of PTEs, in Central Victorian forest soils in Australia after a controlled burn. Surface soil samples were collected two days before and after the controlled burn to determine the concentration of PTEs and to examine the physicochemical properties. Results show that As, Cd, Mn, Ni and Zn concentrations increased 1.1, 1.6, 1.7, 1.1 and 1.9 times respectively in the post-burn environment, whereas the concentrations of Hg, Cr and Pb decreased to 0.7, 0.9 and 0.9 times respectively, highlighting considerable PTE mobility during and after a controlled burn. Whilst these results do not identify very strong correlations between physicochemical properties of soil and PTEs in the pre- and post-burn environments, PTEs themselves demonstrated very strong and significant correlations. The mobilization of As, Hg and other toxic elements raise potential health concerns as the number of controlled burns are projected to increase in response to climate change. Due to this increased level of PTE release and remobilization, the use of any kinds of controlled burn must be carefully considered before being used as a forest management strategy in mining-affected landscapes which include areas with high PTE concentrations. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Phytoextraction of potentially toxic elements by six tree species growing on hazardous mining sludge.

    Science.gov (United States)

    Mleczek, Mirosław; Goliński, Piotr; Krzesłowska, Magdalena; Gąsecka, Monika; Magdziak, Zuzanna; Rutkowski, Paweł; Budzyńska, Sylwia; Waliszewska, Bogusława; Kozubik, Tomisław; Karolewski, Zbigniew; Niedzielski, Przemysław

    2017-10-01

    The aim of the study was to compare the phytoextraction abilities of six tree species (Acer platanoides L., Acer pseudoplatanus L., Betula pendula Roth, Quercus robur L., Tilia cordata Miller, Ulmus laevis Pall.), cultivated on mining sludge contaminated with arsenic (As), cadmium (Cd), copper (Cu), lead (Pb), thallium (Tl), and zinc (Zn). All six tree species were able to survive on such an unpromising substrate. However, A. platanoides and T. cordata seedlings grown on the polluted substrate showed significantly lower biomass than control plants (55.5 and 45.6%, respectively). As, Cd, Cu, Pb, and Tl predominantly accumulated in the roots of all the analyzed tree species with the following highest contents: 1616, 268, 2432, 547, and 856 mg kg -1 , respectively. Zn was predominantly localized in shoots with the highest content of 5801 and 5732 mg kg -1 for U. laevis and A. platanoides, respectively. A. platanoides was the most effective in Zn phytoextaction, with a bioconcentration factor (BCF) of 8.99 and a translocation factor (TF) of 1.5. Furthermore, with the exception of A. pseudoplatanus, the analyzed tree species showed a BCF > 1 for Tl, with the highest value for A. platanoides (1.41). However, the TF for this metal was lower than 1 in all the analyzed tree species. A. platanoides showed the highest BCF and a low TF and could, therefore, be a promising species for Tl phytostabilization. In the case of the other analyzed tree species, their potential for effective phytoextraction was markedly lower. Further studies on the use of A. platanoides in phytoremediation would be worth conducting.

  18. Harmful potential toxic elements in greenhouse soils under long-term cultivation in Almería (Spain)

    Science.gov (United States)

    Joaquin Ramos-Miras, Jose; Rodríguez Martín, Jose Antonio; Boluda, Rafael; Bech, Jaume; Gil, Carlos

    2014-05-01

    Heavy metals (HM) are considered highly significant environmental contaminants and are the object of many scientific research works into the soil environment. Activities like agriculture or industry can increase the concentration of these contaminants in soils and waters, which can affect the food chain. Intensification of certain agricultural practices, constant and excessive use of fertilizers and phytosanitary products, and using machinery, increase the HM content in agricultural soils. Many studies have dealt with HM accumulation over time. Despite these works, the influence of long periods of time on these contents, the dynamics and evolution of these elements in agricultural soils, especially soils used for intensive farming purposes under greenhouse conditions, remain unknown to a certain extent. The western Almería region (Spain) is a very important area from both the socio-economic and agricultural viewpoints. A common practice in greenhouse agriculture is the addition of agrochemicals to soils and crops to improve nutrient supply or crop protection and disease control. Such intense agricultural activity has a strong impact, which may have negative repercussions on both these greenhouse soils and the environment. A research has been carried out to determine the total and available levels of six harmful potentially toxic elements (Cd, Cu, Pb, Ni, Zn and Co), and to assess long-term variations in the greenhouse soils of western Almeria. The results indicate that managing soils in the greenhouse preparation stage determines major changes in total and available HM contents. Furthermore, Cd, Cu and Pb enrichment in soil was observed depending on the element and years of growth.

  19. Prediction of the bioavailability of potentially toxic elements in freshwaters. Comparison between speciation models and passive samplers.

    Science.gov (United States)

    Sierra, Jordi; Roig, Neus; Giménez Papiol, Gemma; Pérez-Gallego, Elena; Schuhmacher, Marta

    2017-12-15

    The aim of this work is to predict the bioavailability of the Potentially Toxic Elements (PTEs) Cd, Pb, Hg, Ni, Cu, Zn, As, Cr and Se in 6 sites within the Ebro River basin. In situ Diffusive gradient in thin-films (DGTs) and classical sampling have been used and compared. The potentially bioavailable fractions of each PTE was estimated by modelling their chemical speciation using three programs (WHAM 7.0, Visual MINTEQ 3.1 and Bio-met), following the suggestions published in recent European regulations. Results of the equilibrium-based models WHAM 7.0 and Visual MINTEQ 3.1 indicate that As, Cd, Ni, Se and Zn, predominate as free metals ions or forming inorganic soluble complexes. Copper, Pb and Hg bioavailability is conditioned by their affinity to dissolved humic substances. According to Visual MINTEQ 3.1, Cr is subjected to redox reactions, being Cr (VI) present (at low concentrations) in the studied rivers. According to Bio-met model, the bioavailability of Cu and Zn is highly influenced by soluble organic matter and water hardness, respectively. For most PTEs, the bioavailability estimated by deploying DGTs in river waters tends to be slightly lower than the estimation obtained with speciation models, since in real conditions more environmental factors take place comparing to the finite number of parameters considered in models. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Vertical distribution of potentially toxic elements in sediments impacted by intertidal geothermal hot springs (Bahia Concepcion, Gulf of California)

    Science.gov (United States)

    Leal-Acosta, M. L.; Shumilin, E.

    2016-12-01

    The intertidal geothermal hot springs (GHS) in Bahia Concepcion, Gulf of California are the source of potentially toxic elements to the adjacent marine environment surrounded by mangroves trees. The anoxic sediments enriched in organic carbon accumulate As, Hg and other heavy metals that can be bioavailable for the biota. To know the vertical distribution of these elements the geochemistry of a short sediment core was carried out. It was collected in June, 2010 in the mangrove area near to GHS (1 m) during a low tide, pushing manually a polypropylene tube into the sediments. The extracted sediment core was cut with plastic knife on 1 cm thick sub-samples, stored in plastic bags and transported on ice to the laboratory. The major and trace elements contents were determinate by ICP-MS after total digestion with stronger acids (HClO4-HNO3-HCl-HF). Certificate reference materials were used for the quality control of the method obtaining good recoveries for most of the elements (80-105%). The sediment core had high maximum contents of CaCO3 (70%) and total organic carbon (12%). The concentration of Hg along the core ranges from 650 to 74300 mg kg-1 and had more than three orders of magnitude above the reference values of 40 mg kg-1 for the Upper Continental Crust (UCC)1. In contrast, As ranges from 12 to 258 mg kg-1 resulting in more than one order of magnitude respect to UCC1 (1.7 mg kg-1). Similar pattern result for Mn, Cu, Pb, and Zn with the maximum values of 3200 mg kg-1, 42 mg kg-1, 12.4 mg kg-1, 71 mg kg-1 respectively that coincide with the maximum for As at the same core depth (4 cm). The Ca, Li, Co, Sb, U, and Mg also show high contents in comparison with the UCC1reference values. The maximum contents of Mo and Cd coincide with maximum concentration of sulfur (2%) at 6 to 8 cm. The enrichment factor calculated using Al as normalizing element showed Cd (7-280), As (26-329) and Hg (23-1196) as highly enriched mainly in the first centimeters of the sediment core

  1. A comparison of methods used to calculate normal background concentrations of potentially toxic elements for urban soil

    Energy Technology Data Exchange (ETDEWEB)

    Rothwell, Katherine A., E-mail: k.rothwell@ncl.ac.uk; Cooke, Martin P., E-mail: martin.cooke@ncl.ac.uk

    2015-11-01

    To meet the requirements of regulation and to provide realistic remedial targets there is a need for the background concentration of potentially toxic elements (PTEs) in soils to be considered when assessing contaminated land. In England, normal background concentrations (NBCs) have been published for several priority contaminants for a number of spatial domains however updated regulatory guidance places the responsibility on Local Authorities to set NBCs for their jurisdiction. Due to the unique geochemical nature of urban areas, Local Authorities need to define NBC values specific to their area, which the national data is unable to provide. This study aims to calculate NBC levels for Gateshead, an urban Metropolitan Borough in the North East of England, using freely available data. The ‘median + 2MAD’, boxplot upper whisker and English NBC (according to the method adopted by the British Geological Survey) methods were compared for test PTEs lead, arsenic and cadmium. Due to the lack of systematically collected data for Gateshead in the national soil chemistry database, the use of site investigation (SI) data collected during the planning process was investigated. 12,087 SI soil chemistry data points were incorporated into a database and 27 comparison samples were taken from undisturbed locations across Gateshead. The SI data gave high resolution coverage of the area and Mann–Whitney tests confirmed statistical similarity for the undisturbed comparison samples and the SI data. SI data was successfully used to calculate NBCs for Gateshead and the median + 2MAD method was selected as most appropriate by the Local Authority according to the precautionary principle as it consistently provided the most conservative NBC values. The use of this data set provides a freely available, high resolution source of data that can be used for a range of environmental applications. - Highlights: • The use of site investigation data is proposed for land contamination studies

  2. Biochars mitigate greenhouse gas emissions and bioaccumulation of potentially toxic elements and arsenic speciation in Phaseolus vulgaris L.

    Science.gov (United States)

    Ibrahim, Muhammad; Li, Gang; Khan, Sardar; Chi, Qiaoqiao; Xu, Yaoyang; Zhu, Yongguan

    2017-08-01

    Anthropogenic and natural activities can lead to increased greenhouse gas emissions and discharge of potentially toxic elements (PTEs) into soil environment. Biochar amendment to soils is a cost-effective technology and sustainable approach used to mitigate greenhouse gas emissions, improve phytoremediation, and minimize the health risks associated with consumption of PTE-contaminated vegetables. Greenhouse pot experiments were conducted to investigate the effects of peanut shell biochar (PNB) and sewage sludge biochar (SSB) on greenhouse gas (GHG) emissions, plant growth, PTE bioaccumulation, and arsenic (As) speciation in bean plants. Results indicated that amendments of PNB and SSB increased plant biomass production by increasing soil fertility and reducing bioavailability of PTEs. Addition of biochars also increased soil pH, total nitrogen (TN), total carbon (TC), dissolved organic carbon (DOC), and ammonium-nitrogen (NH 4 -N) but decreased available concentrations of PTEs such as cadmium (Cd), lead (Pb), and As. The concentration of nitrate-nitrogen (NO 3 - -N) was also decreased in biochar-amended soils. In addition, PNB and SSB amendments significantly (P Greenhouse gases such as carbon dioxide (CO 2 ) and methane (CH 4 ) emissions were significantly (P greenhouse gas emissions and PTE bioaccumulation as well as arsenic speciation in P. vulgaris L.

  3. Effects of biochar and the earthworm Eisenia fetida on the bioavailability of polycyclic aromatic hydrocarbons and potentially toxic elements

    International Nuclear Information System (INIS)

    Gomez-Eyles, Jose L.; Sizmur, Tom; Collins, Chris D.; Hodson, Mark E.

    2011-01-01

    Polycyclic aromatic hydrocarbons (PAHs) and potentially toxic elements (PTEs) were monitored over 56 days in calcareous contaminated-soil amended with either or both biochar and Eisenia fetida. Biochar reduced total (449 to 306 mg kg -1 ) and bioavailable (cyclodextrin extractable) (276 to 182 mg kg -1 ) PAHs, PAH concentrations in E. fetida (up to 45%) but also earthworm weight. Earthworms increased PAH bioavailability by >40%. Combined treatment results were similar to the biochar-only treatment. Earthworms increased water soluble Co (3.4 to 29.2 mg kg -1 ), Cu (60.0 to 120.1 mg kg -1 ) and Ni (31.7 to 83.0 mg kg -1 ) but not As, Cd, Pb or Zn; biochar reduced water soluble Cu (60 to 37 mg kg -1 ). Combined treatment results were similar to the biochar-only treatment but gave a greater reduction in As and Cd mobility. Biochar has contaminated land remediation potential, but its long-term impact on contaminants and soil biota needs to be assessed. - Research highlights: → Biochar reduced total and bioavailable PAH concentrations. → Biochar was less effective at immobilising PTEs, due to its low cation exchange capacity. → E. fetida increased PAH bioavailability and PTE mobility. → When used in combination biochar reduced the concentration of PTEs mobilised by E. fetida. → Biochar had a negative effect on E. fetida in terms of weight loss. - Biochar decreased PAH biovailability but was less effective at reducing PTE mobility, whilst E. fetida increased both PAH and PTE bioavailability.

  4. Effects of biochar and the earthworm Eisenia fetida on the bioavailability of polycyclic aromatic hydrocarbons and potentially toxic elements

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Eyles, Jose L., E-mail: j.l.gomezeyles@reading.ac.u [University of Reading, School of Human and Environmental Sciences, Soil Research Centre, Reading, RG6 6DW Berkshire (United Kingdom); Sizmur, Tom; Collins, Chris D.; Hodson, Mark E. [University of Reading, School of Human and Environmental Sciences, Soil Research Centre, Reading, RG6 6DW Berkshire (United Kingdom)

    2011-02-15

    Polycyclic aromatic hydrocarbons (PAHs) and potentially toxic elements (PTEs) were monitored over 56 days in calcareous contaminated-soil amended with either or both biochar and Eisenia fetida. Biochar reduced total (449 to 306 mg kg{sup -1}) and bioavailable (cyclodextrin extractable) (276 to 182 mg kg{sup -1}) PAHs, PAH concentrations in E. fetida (up to 45%) but also earthworm weight. Earthworms increased PAH bioavailability by >40%. Combined treatment results were similar to the biochar-only treatment. Earthworms increased water soluble Co (3.4 to 29.2 mg kg{sup -1}), Cu (60.0 to 120.1 mg kg{sup -1}) and Ni (31.7 to 83.0 mg kg{sup -1}) but not As, Cd, Pb or Zn; biochar reduced water soluble Cu (60 to 37 mg kg{sup -1}). Combined treatment results were similar to the biochar-only treatment but gave a greater reduction in As and Cd mobility. Biochar has contaminated land remediation potential, but its long-term impact on contaminants and soil biota needs to be assessed. - Research highlights: Biochar reduced total and bioavailable PAH concentrations. Biochar was less effective at immobilising PTEs, due to its low cation exchange capacity. E. fetida increased PAH bioavailability and PTE mobility. When used in combination biochar reduced the concentration of PTEs mobilised by E. fetida. Biochar had a negative effect on E. fetida in terms of weight loss. - Biochar decreased PAH biovailability but was less effective at reducing PTE mobility, whilst E. fetida increased both PAH and PTE bioavailability.

  5. Bio- and toxic elements in edible wild mushrooms from two regions of potentially different environmental conditions in eastern Poland.

    Science.gov (United States)

    Brzezicha-Cirocka, Justyna; Mędyk, Małgorzata; Falandysz, Jerzy; Szefer, Piotr

    2016-11-01

    In the present study, the composition of bio-elements (K, Na, Mg, Ca, Fe, Cu, Zn) and toxic elements (Ag, Cd) in seven edible mushrooms from the rural and woodland region of Morąg (north-eastern Poland) and the rural and industrial region of the Tarnobrzeska Upland (south-eastern Poland) were investigated using a validated method. The species examined were Boletus edulis, Cantharellus cibarius, Leccinum aurantiacum, Leccinum versipelle, Lycoperdon perlatum, Suillus luteus, and Xerocomus subtomentosus. Final determination was carried out by flame atomic absorption spectroscopy (FAAS) after microwave-assisted decomposition of sample matrices with solutions of concentrated nitric acid in the pressurized polytetrafluoroethylene vessels. The contents of the alkali elements and alkali earth elements were determined in the species surveyed. The alkali elements, earth alkali elements, and transition metals (Ag, Cu, Zn, Fe, and Mn) were at typical concentrations as was determined for the same or similar species elsewhere in Poland and Europe. The results may suggest a lack of local and regional emissions of those metallic elements from industrialization of some sites in the Tarnobrzeska Plain. Cadmium was at elevated concentrations in L. versipelle from the Tarnobrzeska Plain but the reason-pollution or geogenic source-was unknown, while it was at typical concentrations in other species.

  6. Multi-Target Risk Assessment of Potentially Toxic Elements in Farmland Soil Based on the Environment-Ecological-Health Effect.

    Science.gov (United States)

    Wang, Zhongyang; Meng, Bo; Zhang, Wei; Bai, Jinheng; Ma, Yingxin; Liu, Mingda

    2018-05-28

    There are potential impacts of Potentially Toxic Elements (PTEs) (e.g., Cd, Cr, Ni, Cu, As, Zn, Hg, and Pb) in soil from the perspective of the ecological environment and human health, and assessing the pollution and risk level of soil will play an important role in formulating policies for soil pollution control. Lingyuan, in the west of Liaoning Province, China, is a typical low-relief terrain of a hilly area. The object of study in this research is the topsoil of farmland in this area, of which 71 soil samples are collected. In this study, research methods, such as the Nemerow Index, Potential Ecological Hazard Index, Ecological Risk Quotient, Environmental Exposure Hazard Analysis, Positive Matrix Factorization Model, and Land Statistical Analysis, are used for systematical assessment of the pollution scale, pollution level, and source of PTEs, as well as the ecological environmental risks and health risks in the study area. The main conclusions are: The average contents of As, Cd, Cr, Cu, Hg, Zn, Ni, and Pb of the soil are 5.32 mg/kg, 0.31 mg/kg, 50.44 mg/kg, 47.05 mg/kg, 0.03 mg/kg, 79.36 mg/kg, 26.01 mg/kg, and 35.65 mg/kg, respectively. The contents of Cd, Cu, Zn, and Pb exceed the background value of local soil; Cd content of some study plots exceeds the National Soil Environmental Quality Standard Value (0.6 mg/kg), and the exceeding standard rate of study plots is 5.63%; the comprehensive potential ecological hazard assessment in the study area indicates that the PTEs are at a slight ecological risk; probabilistic hazard quotient assessment indicates that the influence of PTEs on species caused by Cu is at a slight level ( p = 10.93%), and Zn, Pb, and Cd are at an acceptable level. For the ecological process, Zn is at a medium level ( p = 25.78%), Cu is at a slight level (19.77%), and the influence of Cd and Pb are acceptable; human health hazard assessment states that the Non-carcinogenic comprehensive health hazard index HI = 0.16 natural source are 13

  7. Uptake and accumulation of potentially toxic elements in colonized plant species around the world's largest antimony mine area, China.

    Science.gov (United States)

    Long, Jiumei; Tan, Di; Deng, Sihan; Lei, Ming

    2018-04-11

    To provide information on reclamation of multi-heavy metal polluted soils with conception of phytostabilization, a field survey on the uptake and accumulation of potentially toxic elements such as antimony (Sb), arsenic (As), lead (Pb), cadmium (Cd), copper (Cu), and zinc (Zn) in colonized plant species around the world's largest antimony mine area, China, was conducted. Samples including leaves and shoots (including roots and stems) of colonized plants as well as rhizospheric soils were collected from eight sampling zones in the studied area. The results showed that the contents of Cu, Zn, and Pb in rhizospheric soils below plants were comparable to the corresponding background values of Hunan province, otherwise Sb, Cd, and As contents were extremely high (17-106, 17-87, and 3-7 times of the corresponding background values). The highest concentration of Sb was found in Aster subulatus (410 mg kg -1 ); Cd, As, and Zn were in Herba bidentis bipinnatae (10.9, 264, and 265 mg kg -1 , respectively); and Cu was in Artemisia lavandulaefolia (27.1 mg kg -1 ). It also exhibited that all the contents of As in leaves were several times of those in shoots of plants, Cd and other heavy metals showed in a similar pattern in several studied species, implying that the uptake route of these heavy metals via foliar might contribute to the accumulation. With high bioconcentration factors of heavy metals (more than 1, except for Zn), together with the growth abundance, Herba bidentis bipinnatae was considered as the most suitable colonized species for phytostabilization of the multi-heavy metal pollution in soils on this antimony mine area.

  8. Sustainable Soil Washing: Shredded Card Filtration of Potentially Toxic Elements after Leaching from Soil Using Organic Acid Solutions

    Science.gov (United States)

    Ash, Christopher; Drábek, Ondřej; Tejnecký, Václav; Jehlička, Jan; Michon, Ninon; Borůvka, Luboš

    2016-01-01

    Shredded card (SC) was assessed for use as a sorbent of potentially toxic elements (PTE) carried from contaminated soil in various leachates (oxalic acid, formic acid, CaCl2, water). We further assessed SC for retention of PTE, using acidified water (pH 3.4). Vertical columns and a peristaltic pump were used to leach PTE from soils (O and A/B horizons) before passing through SC. Sorption onto SC was studied by comparing leachates, and by monitoring total PTE contents on SC before and after leaching. SC buffers against acidic soil conditions that promote metals solubility; considerable increases in solution pH (+4.49) were observed. Greatest differences in solution PTE content after leaching with/without SC occurred for Pb. In oxalic acid, As, Cd, Pb showed a high level of sorption (25, 15, and 58x more of the respective PTE in leachates without SC). In formic acid, Pb sorption was highly efficient (219x more Pb in leachate without SC). In water, only Pb showed high sorption (191x more Pb in leachate without SC). In desorption experiments, release of PTE from SC varied according to the source of PTE (organic/mineral soil), and type of solvent used. Arsenic was the PTE most readily leached in desorption experiments. Low As sorption from water was followed by fast release (70% As released from SC). A high rate of Cd sorption from organic acid solutions was followed by strong retention (~12% Cd desorption). SC also retained Pb after sorption from water, with subsequent losses of ≤8.5% of total bound Pb. The proposed use of this material is for the filtration of PTE from extract solution following soil washing. Low-molecular-mass organic acids offer a less destructive, biodegradable alternative to strong inorganic acids for soil washing. PMID:26900684

  9. Sustainable Soil Washing: Shredded Card Filtration of Potentially Toxic Elements after Leaching from Soil Using Organic Acid Solutions.

    Directory of Open Access Journals (Sweden)

    Christopher Ash

    Full Text Available Shredded card (SC was assessed for use as a sorbent of potentially toxic elements (PTE carried from contaminated soil in various leachates (oxalic acid, formic acid, CaCl2, water. We further assessed SC for retention of PTE, using acidified water (pH 3.4. Vertical columns and a peristaltic pump were used to leach PTE from soils (O and A/B horizons before passing through SC. Sorption onto SC was studied by comparing leachates, and by monitoring total PTE contents on SC before and after leaching. SC buffers against acidic soil conditions that promote metals solubility; considerable increases in solution pH (+4.49 were observed. Greatest differences in solution PTE content after leaching with/without SC occurred for Pb. In oxalic acid, As, Cd, Pb showed a high level of sorption (25, 15, and 58x more of the respective PTE in leachates without SC. In formic acid, Pb sorption was highly efficient (219x more Pb in leachate without SC. In water, only Pb showed high sorption (191x more Pb in leachate without SC. In desorption experiments, release of PTE from SC varied according to the source of PTE (organic/mineral soil, and type of solvent used. Arsenic was the PTE most readily leached in desorption experiments. Low As sorption from water was followed by fast release (70% As released from SC. A high rate of Cd sorption from organic acid solutions was followed by strong retention (~12% Cd desorption. SC also retained Pb after sorption from water, with subsequent losses of ≤8.5% of total bound Pb. The proposed use of this material is for the filtration of PTE from extract solution following soil washing. Low-molecular-mass organic acids offer a less destructive, biodegradable alternative to strong inorganic acids for soil washing.

  10. Rice is a potential dietary source of not only arsenic but also other toxic elements like lead and chromium

    Directory of Open Access Journals (Sweden)

    Amjad M. Shraim

    2017-05-01

    Full Text Available Rice is a staple food and a good source of nutrition for half of the earth’s population including Middle Eastern countries. However, rice may accumulate hazardous levels of toxic elements. In KSA, rice is imported from many countries; some of which suffer from arsenic contamination in their groundwater and soil. Despite the large daily consumption of rice in KSA, no investigations on the contamination of rice sold there are published so far. Additionally, reports on the contamination of rice with other toxic elements are rare in the literature. To investigate this issue, a total of 84 rice samples were collected from local markets in Almadinah Almunawarah, KSA (n = 70 and Brisbane, Australia (n = 12 and analyzed for arsenic and other elements by ICP-MS. The mean concentrations (mg kg−1 for the KSA samples with concentrations >LOQ were 0.136 for As (range 0.026–0.464, n = 70; Cd: 0.017 (0.003–0.046, n = 64; Pb: 0.029 (0.003–0.218, n = 40; Ni: 0.064 (0.042–0.086, n = 5; Mg: 157 (51.8–777, n = 70; Mn: 4.28 (0.960–10.9, n = 70; Fe: 7.07 (1.9–55.1, n = 70; Zn: 6.19 (1.15–13.5, n = 70; Cu 1.28 (0.508–2.41, n = 70; Se 0.202 (0.007–0.574, n = 70; Cr: 0.057 (0.010–0.184, n = 19; and Co: 0.012 (0.001–0.116, n = 56. Several samples were found to contain at least one element in excess of the Chinese MCL (0.2 mg kg−1for Cd, Cr, Pb, and iAs each. A large variation in element concentration was observed for samples of different origins. In comparison, the American rice accumulated the highest arsenic concentration (mean 0.257 mg kg−1 followed by the Thai rice (mean 0.200 mg kg−1, the Pakistani rice (mean 0.147 mg kg−1, the Indian rice (mean 0.103 mg kg−1, and finally the Egyptian rice (mean 0.097 mg kg−1. Additionally, 3 individual samples from Surinam, Australia, and France contained arsenic concentrations (mg kg−1 of 0.290, 0.188, and 0.183. The findings of this investigation

  11. POTENTIALLY TOXIC ELEMENT CYCLES AND CHARACTERIZATION OF MULTIPLE SOURCES IN THE IRRIGATION DITCHES FROM THE RAVENNA COASTAL PLAIN THROUGH TRACE ELEMENTS AND ISOTOPE GEOCHEMISTRY

    Directory of Open Access Journals (Sweden)

    Livia Vittori Antisari

    2010-04-01

    Full Text Available While monitoring the physico-chemical characteristics, trace elements and O-H-Sr-B isotopic data were obtained in superficial waters from a number of irrigations canals and ditches in the Ravenna coastal plain, in order to highlight the cycling of potentially toxic elements and the different sources of the solutes. Surveys were conducted during March and July 2008, and considered as representative of the waters in winter and summer, respectively. In summer, the water mass balance in the network is mostly controlled by the ingression of freshwaters from the Canale Emiliano Romagnolo (CER. The O-H isotopic data indicated that, in winter, waters are primarily recharged from Apennine catchments and undergo evaporation to different extents.The boron isotopic signature indicates the important role played by the marine component. A major seawater contribution was evidenced in canals close to the coastline; however, the process controlling the origin of dissolved boron is not solely related to direct mixing with sea water but comprises an additional source probably related to water-soil exchanges and boron of marine origin leaching, owing to the prolonged exposure of alluvial sediments to sea water. An additional boron contribution from the agricultural practice was is also evidenced. Calculation based on the conservative behaviour of chloride ions indicated that in canals and ditches not directly connected with the sea up to the 80% of the Sr budget did not originate from seawater, indicating a source from Al-silicate minerals and supporting the hypothesis of significant soil-water interactions and chemical exchanges.The positive correlation between pH and dissolved oxygen in winter waters is likely to reflect CO2 consumption during algal photosynthesis, favouring the in-situ generation of colloidal particles due to the oxidative precipitation of ferric iron oxy-hydroxides and probably small carbonate particles able to adsorb trace metals on their

  12. Toxic potential of palytoxin.

    Science.gov (United States)

    Patocka, Jiří; Gupta, Ramesh C; Wu, Qing-hua; Kuca, Kamil

    2015-10-01

    This review briefly describes the origin, chemistry, molecular mechanism of action, pharmacology, toxicology, and ecotoxicology of palytoxin and its analogues. Palytoxin and its analogues are produced by marine dinoflagellates. Palytoxin is also produced by Zoanthids (i.e. Palythoa), and Cyanobacteria (Trichodesmium). Palytoxin is a very large, non-proteinaceous molecule with a complex chemical structure having both lipophilic and hydrophilic moieties. Palytoxin is one of the most potent marine toxins with an LD50 of 150 ng/kg body weight in mice exposed intravenously. Pharmacological and electrophysiological studies have demonstrated that palytoxin acts as a hemolysin and alters the function of excitable cells through multiple mechanisms of action. Palytoxin selectively binds to Na(+)/K(+)-ATPase with a Kd of 20 pM and transforms the pump into a channel permeable to monovalent cations with a single-channel conductance of 10 pS. This mechanism of action could have multiple effects on cells. Evaluation of palytoxin toxicity using various animal models revealed that palytoxin is an extremely potent neurotoxin following an intravenous, intraperitoneal, intramuscular, subcutaneous or intratracheal route of exposure. Palytoxin also causes non-lethal, yet serious toxic effects following dermal or ocular exposure. Most incidents of palytoxin poisoning have manifested after oral intake of contaminated seafood. Poisonings in humans have also been noted after inhalation, cutaneous/systemic exposures with direct contact of aerosolized seawater during Ostreopsis blooms and/or through maintaining aquaria containing Cnidarian zoanthids. Palytoxin has a strong potential for toxicity in humans and animals, and currently this toxin is of great concern worldwide.

  13. Risk assessment of potentially toxic element pollution in soils and rice (Oryza sativa) in a typical area of the Yangtze River Delta

    International Nuclear Information System (INIS)

    Hang Xiaoshuai; Wang Huoyan; Zhou Jianmin; Ma Chengling; Du Changwen; Chen Xiaoqin

    2009-01-01

    Soil pollution with potentially toxic elements (PTEs) resulting from rapid industrial development has caused major concerns. Selected PTEs and their accumulation and distribution in soils and rice (Oryza sativa) collected from Changshu, east China, were analyzed to evaluate the potential health risk to the local population. The soils were primarily contaminated with Hg, followed by Cu, Cd, Pb, and Zn. The concentrations of Pb, Hg, and Cd of 46, 32, and 1 rice samples exceeded their national maximum allowable levels in foods, respectively. Spatial distributions of total Cr, Cu, Pb, Zn, and Cd in soils shared similar geographical trends. The risk assessment of PTEs through rice consumption suggests that the concentrations of Cu, Pb, and Cd in some rice samples exceed their reference oral dose for adults and children. In general, there was no target hazard quotient value of any individual element that was greater than 1, but hazard index values for adults and children were 1.726 and 1.523, respectively. - Industrial development has led to increased risk from potentially toxic elements in soils and rice.

  14. Potentially toxic elements in soil of the Khyber Pakhtunkhwa province and Tribal areas, Pakistan: evaluation for human and ecological risk assessment.

    Science.gov (United States)

    Saddique, Umar; Muhammad, Said; Tariq, Mohsin; Zhang, Hua; Arif, Mohammad; Jadoon, Ishtiaq A K; Khattak, Nimat Ullah

    2018-03-22

    Potentially toxic elements (PTEs) contaminations in the soil ecosystem are considered as extremely hazardous due to toxicity, persistence and bioaccumulative nature. Therefore, this study was aimed to summarize the results of published PTEs in soil of Khyber Pakhtunkhwa and Tribal areas, Pakistan. Results were evaluated for the pollution quantification factors, including contamination factor (CF), pollution load index (PLI), ecological risk index (ERI) and human health risk assessment. The highest CF (797) and PLI (7.35) values were observed for Fe and ERI (857) values for Cd. Soil PTEs concentrations were used to calculate the human exposure for the risk assessment, including chronic or non-carcinogenic risks such as the hazard quotient (HQ) and carcinogenic or cancer risk (CR). The values of HQ were > 1 for the Cd, Co and Cr in Khyber Pakhtunkhwa and Tribal areas. Tribal areas showed higher values of ERI, HQ, and CR as compared to the Khyber Pakhtunkhwa that were attributed to the mining activities, weathering and erosion of mafic and ultramafic bedrocks hosting ophiolites. This study strongly recommends that best control measures need to be taken for soil PTEs with the intent to alleviate any continuing potential threat to the human health, property and environment, which otherwise could enter ecosystem and ultimately the living beings. Further studies are recommended to combat the soil PTEs concentrations and toxicity in the Tribal areas for a best picture of understanding the element effects on human, and environment can be achieved that will lead to a sustainable ecological harmony.

  15. Determination of toxic elements in Malaysian foodstuffs

    International Nuclear Information System (INIS)

    Hamzah, Z.; Wood, A.K.H.; Mahmood, C.S.; Hamzah, S.

    1988-01-01

    This project is concentrating on the analysis of toxic elements content in seafoods including fishes, mussel, squid and prawn. Samples were collected from various places throughout Malay Peninsular. Samples were prepared according to RCA research protocol - nuclear techniques for toxic element in foodstuffs. Techniques used for elemental analysis were neutron activation analysis (instrumental and radiochemical) and anodic stripping voltametry. (author). 9 refs, 9 tabs

  16. Bioavailability and soil-to-plant transfer factors as indicators of potentially toxic element contamination in agricultural soils

    International Nuclear Information System (INIS)

    Adamo, Paola; Iavazzo, Pietro; Albanese, Stefano; Agrelli, Diana; De Vivo, Benedetto; Lima, Annamaria

    2014-01-01

    Soil pollution in agricultural lands poses a serious threat to food safety, and suggests the need for consolidated methods providing advisory indications for soil management and crop production. In this work, the three-step extraction procedure developed by the EU Measurement and Testing Programme and two soil-to-plant transfer factors (relative to total and bioavailable concentration of elements in soil) were applied on polluted agricultural soils from southern Italy to obtain information on the retention mechanisms of metals in soils and on their level of translocation to edible vegetables. The study was carried out in the Sarno river plain of Campania, an area affected by severe environmental degradation potentially impacting the health of those consuming locally produced vegetables. Soil samples were collected in 36 locations along the two main rivers flowing into the plain. In 11 sites, lettuce plants were collected at the normal stage of consumption. According to Italian environmental law governing residential soils, and on the basis of soil background reference values for the study area, we found diffuse pollution by Be, Sn and Tl, of geogenic origin, Cr and Cu from anthropogenic sources such as tanneries and intensive agriculture, and more limited pollution by Pb, Zn and V. It was found that metals polluting soils as a result of human activities were mainly associated to residual, oxidizable and reducible phases, relatively immobile and only potentially bioavailable to plants. By contrast, the essential elements Zn and Cu showed a tendency to become more readily mobile and bioavailable as their total content in soil increased and were more easily transported to the edible parts of lettuce than other pollutants. According to our results, current soil pollution in the studied area does not affect the proportion of metals taken up by lettuce plants and there is a limited health risk incurred. - Highlights: • Soil pollution in an intensively farmed area of

  17. Bioavailability and soil-to-plant transfer factors as indicators of potentially toxic element contamination in agricultural soils

    Energy Technology Data Exchange (ETDEWEB)

    Adamo, Paola, E-mail: paola.adamo@unina.it [Dipartimento di Agraria, Università di Napoli Federico II, via Università 100, 80055 Portici (Italy); Iavazzo, Pietro [Dipartimento di Agraria, Università di Napoli Federico II, via Università 100, 80055 Portici (Italy); Albanese, Stefano [Dipartimento di Scienze della Terra, dell' Ambiente e delle Risorse, Università di Napoli Federico II, Via Mezzocannone 8, 80134 Napoli (Italy); Agrelli, Diana [Dipartimento di Agraria, Università di Napoli Federico II, via Università 100, 80055 Portici (Italy); De Vivo, Benedetto; Lima, Annamaria [Dipartimento di Scienze della Terra, dell' Ambiente e delle Risorse, Università di Napoli Federico II, Via Mezzocannone 8, 80134 Napoli (Italy)

    2014-12-01

    Soil pollution in agricultural lands poses a serious threat to food safety, and suggests the need for consolidated methods providing advisory indications for soil management and crop production. In this work, the three-step extraction procedure developed by the EU Measurement and Testing Programme and two soil-to-plant transfer factors (relative to total and bioavailable concentration of elements in soil) were applied on polluted agricultural soils from southern Italy to obtain information on the retention mechanisms of metals in soils and on their level of translocation to edible vegetables. The study was carried out in the Sarno river plain of Campania, an area affected by severe environmental degradation potentially impacting the health of those consuming locally produced vegetables. Soil samples were collected in 36 locations along the two main rivers flowing into the plain. In 11 sites, lettuce plants were collected at the normal stage of consumption. According to Italian environmental law governing residential soils, and on the basis of soil background reference values for the study area, we found diffuse pollution by Be, Sn and Tl, of geogenic origin, Cr and Cu from anthropogenic sources such as tanneries and intensive agriculture, and more limited pollution by Pb, Zn and V. It was found that metals polluting soils as a result of human activities were mainly associated to residual, oxidizable and reducible phases, relatively immobile and only potentially bioavailable to plants. By contrast, the essential elements Zn and Cu showed a tendency to become more readily mobile and bioavailable as their total content in soil increased and were more easily transported to the edible parts of lettuce than other pollutants. According to our results, current soil pollution in the studied area does not affect the proportion of metals taken up by lettuce plants and there is a limited health risk incurred. - Highlights: • Soil pollution in an intensively farmed area of

  18. Geogenically vs. anthropogenic pollution of river sediments by potentially toxic trace elements on model locations; Geogenne vs. antropogenne znecistenie riecnych sedimentov potencialne toxickymi stopovymi prvkami na modelovych lokalitach

    Energy Technology Data Exchange (ETDEWEB)

    Pazicka, A. [Univerzita Komenskeho, Prirodovedecka fakulta, Katedra geochemie, 84215 Bratislava (Slovakia); Michnova, J. [Univerzita Komenskeho, Prirodovedecka fakulta, Katedra loziskovej geologie, 84215 Bratislava (Slovakia)

    2013-04-16

    Rtg diffraction analysis was used to evaluate the stream sediments mineralogical composition of Maly Dunaj, Nitra and Hron rivers. Identified minerals in the sediment samples, in addition with chemical analysis of selected elements (As, Sb, Hg, Cu, Pb), helped to determine the origin (geogenic vs. anthropogenic) of these potentially toxic trace elements. The results show that Maly Dunaj sediments are mostly loaded with anthropogenic contamination (agriculture, industry). Heavy minerals identified in Nitra sediments suggest natural higher concentrations of Cu, Pb and Fe. On the other hand As and Hg contamination is caused by human activities. The main sources are the coal ash impoundments in Zemianske Kostolany and Chalmova (for As) and Novacke chemicke zavody a.s. (for Hg). Stream sediments of Hron river are mostly influneced by the geology of the catchment area (Sb - As deposits in Nizke Tatry, volcanics). (authors)

  19. Bioavailability and risk assessment of potentially toxic elements in garden edible vegetables and soils around a highly contaminated former mining area in Germany.

    Science.gov (United States)

    Antoniadis, Vasileios; Shaheen, Sabry M; Boersch, Judith; Frohne, Tina; Du Laing, Gijs; Rinklebe, Jörg

    2017-01-15

    Although soil contamination by potentially toxic elements (PTEs) in Europe has a history of many centuries, related problems are often considered as having been dealt with due to the enforcement of tight legislations. However, there are many unsolved issues. We aimed to assess PTE levels in highly contaminated soils and in garden edible vegetables using human health risk indices in order to evaluate the availability and mobilization of arsenic (As), copper (Cu), manganese (Mn), mercury (Hg), lead (Pb), and zinc (Zn). In four gardens in Germany, situated on, or in the vicinity of, a mine dump area, we planted beans (Phaseolus vulgaris ssp. nanus), carrots (Daucus sativus) and lettuce (Lactuca sativa ssp. capitata). We examined soil-to-plant mobilization of elements using transfer coefficient (TC), as well as soil contamination using contamination factor (CF), enrichment factor (EF), and bioaccumulation index (I geo ). In addition, we tested two human health risk assessment indices: Soil-induced hazard quotient (HQ S ) (representing the "direct soil ingestion" pathway), and vegetable-induced hazard quotient (HQ V ) (representing the "vegetable intake" pathway). The studied elements were highly elevated in the soils. The values in garden 2 were especially high (e.g., Pb: 13789.0 and Hg: 36.8 mg kg -1 ) and largely exceeded the reported regulation limits of 50 (for As), 40 (Cu), 400 (Pb), 150 (Zn), and 5 (Hg) mg kg -1 . Similarly, element concentrations were very high in the grown vegetables. The indices of CF, EF and I geo were enhanced even to levels that are rarely reported in the literature. Specifically, garden 2 indicated severe contamination due to multi-element deposition. The contribution of each PTE to the total of measured HQ S revealed that Pb was the single most important element causing health risk (contributing up to 77% to total HQ S ). Lead also posed the highest risk concerning vegetable consumption, contributing up to 77% to total HQ V . The

  20. Geostatistical validation and cross-validation of magnetometric measurements of soil pollution with Potentially Toxic Elements in problematic areas

    Science.gov (United States)

    Fabijańczyk, Piotr; Zawadzki, Jarosław

    2016-04-01

    Field magnetometry is fast method that was previously effectively used to assess the potential soil pollution. One of the most popular devices that are used to measure the soil magnetic susceptibility on the soil surface is a MS2D Bartington. Single reading using MS2D device of soil magnetic susceptibility is low time-consuming but often characterized by considerable errors related to the instrument or environmental and lithogenic factors. In this connection, measured values of soil magnetic susceptibility have to be usually validated using more precise, but also much more expensive, chemical measurements. The goal of this study was to analyze validation methods of magnetometric measurements using chemical analyses of a concentration of elements in soil. Additionally, validation of surface measurements of soil magnetic susceptibility was performed using selected parameters of a distribution of magnetic susceptibility in a soil profile. Validation was performed using selected geostatistical measures of cross-correlation. The geostatistical approach was compared with validation performed using the classic statistics. Measurements were performed at selected areas located in the Upper Silesian Industrial Area in Poland, and in the selected parts of Norway. In these areas soil magnetic susceptibility was measured on the soil surface using a MS2D Bartington device and in the soil profile using MS2C Bartington device. Additionally, soil samples were taken in order to perform chemical measurements. Acknowledgment The research leading to these results has received funding from the Polish-Norwegian Research Programme operated by the National Centre for Research and Development under the Norwegian Financial Mechanism 2009-2014 in the frame of Project IMPACT - Contract No Pol-Nor/199338/45/2013.

  1. Bioavailability of potentially toxic elements in soil-grapevine (leaf, skin, pulp and seed) system and environmental and health risk assessment.

    Science.gov (United States)

    Milićević, Tijana; Urošević, Mira Aničić; Relić, Dubravka; Vuković, Gordana; Škrivanj, Sandra; Popović, Aleksandar

    2018-06-01

    Monitoring of potentially toxic elements in agricultural soil represents the first measure of caution regarding food safety, while research into element bioavailability should be a step forward in understanding the element transportation chain. This study was conducted in the grapevine growing area ("Oplenac Wine Route") for investigating element bioavailability in the soil-grapevine system accompanied by an assessment of the ecological implications and human health risk. Single extraction procedures (CH 3 COOH, Na 2 EDTA, CaCl 2 , NH 4 NO 3 and deionised H 2 O) and digestion were performed to estimate the bioavailability of 22 elements (Al, As, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Na, Ni, Pb, Sb, Sr, V and Zn) from the topsoil (0-30 cm) and subsoil (30-60 cm) to the grapevine parts (leaf, skin, pulp and seed) and wine. The extractants were effective comparing to the pseudo-total concentrations in following order Na 2 EDTA ˃ CH 3 COOH ˃ NH 4 NO 3  ˃ CaCl 2 , H 2 O 2 h and 16 h. The most suitable extractants for assessing the bioavailability of the elements from the soil to the grapevine parts were CaCl 2 , NH 4 NO 3 and Na 2 EDTA, but deionised H 2 O could be suitable, as well. The results showed that Ba was the most bioavailable element in the soil-grapevine system. Contamination factor implied a moderate contamination (1  1), the influence of atmospheric deposition on the aerial grapevine parts (leaves and grape skin) was observed. Nevertheless, low adverse health risk effects (HI wine consumers. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Assessment of soil and groundwater contamination by potentially toxic and trace elements in an impounded vehicle scrapyard: Case study: Ribeirão Pires, SP, Brazil

    International Nuclear Information System (INIS)

    Lange, Camila Neves

    2018-01-01

    Impounded vehicle scrapyard (IVS) overcrowding is currently a subject of concern in Brazilian scenario. The aim of this study was to assess the total levels of potentially toxic elements (PTEs) and trace elements (TE) in soil and groundwater in an IVS located in the city of Ribeirão Pires. In order to achieve this objective, topsoil, three soil cores and groundwater of three monitoring wells were analyzed. It was verified that the area is mainly affected by three factors: (1) a landfill layer with construction waste; (2) an oily residue from past industrial activities in the area; (3) vehicles parked on topsoil. For the evaluation of the results, statistical techniques, such as multivariate analysis, calculation of pollution, ecological and human health risk index were used. Mass fractions of all PTEs, except Co, Cu, Mo and Zn, were higher than reference values. Hot spots were observed for most elements suggesting vehicular source. The Geoaccumulation Index showed minimal to moderate pollution in soil for most elements, except for As and Ba, which showed higher accumulation than other elements. The enrichment factor pointed to a significant enrichment of As and Pb. Arsenic content in soil may pose a moderate to high potential ecological risk. The results of PTEs and as statistical approaches indicated that As, Ce, Co, Cu, Mn, Nb, Ni, Pb and Zn are mainly from anthropogenic sources. The content of most PTEs in topsoil does not pose a potential human health risk, except Cr content. Groundwater levels for most PTEs were below the drinking water recommendation limits, except Mn and Fe content. (author)

  3. Investigating a probable relationship between microplastics and potentially toxic elements in fish muscles from northeast of Persian Gulf.

    Science.gov (United States)

    Akhbarizadeh, Razegheh; Moore, Farid; Keshavarzi, Behnam

    2018-01-01

    Although weekly consumption of fish is recommended, the presence of contaminants in seafood has raised many concerns regarding the benefits of fish intake. In the present study microplastics (MPs) and metals' concentration in muscles of both benthic and pelagic fish species from northeast of Persian Gulf were investigated and the risk/benefit of their consumption was assessed. The results demonstrated that MPs and Hg in all species and Se in benthic species increase with size, while relationship between other metals, and fish size is not consistent. Consumption of a meal ration of 300 and relationship between MPs and metals in fish muscles were positive for A. djedaba, and negative for E. coioides. Considering the chemical toxicity of MPs and metals, and their good linear relationships in some species, consumption of high doses of the studied fish may pose a health threat to the consumers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Contents and risks of potentially toxic elements in wastewater-fed food production systems in Southeast Asia

    DEFF Research Database (Denmark)

    Marcussen, Helle

    , fish, soil and sediment from wastewater-fed production systems in Hanoi and Phnom Penh. Another aim was to assess the food safety risks of water spinach and fish with respect to PTEs. The third aim was to assess PTE retention capacity of river sediment in Hanoi and the governing retention mechanisms...... the concentration range observed for water spinach grown at agricultural soil not exposed to wastewater in Malaysia. Water spinach grown at sites of high and low wastewater exposure did not show a significantly higher accumulation of PTEs compared to sites without wastewater exposure. In Phnom Penh, water spinach...... than 11% of the tolerable intake for each element. The PTE content of water spinach in Hanoi and Cheung Ek Lake in Phnom Penh constituted low food safety risks for consumers. Arsenic, Cd and Pb concentrations in muscle, skin and liver of fish grown in wastewater-fed systems in Hanoi and Phnom were low...

  5. Concentrations of potentially toxic elements in soils and vegetables from the macroregion of São Paulo, Brazil: availability for plant uptake.

    Science.gov (United States)

    dos Santos-Araujo, Sabrina Novaes; Alleoni, Luís Reynaldo Ferracciú

    2016-02-01

    The occurrence and accumulation of heavy metals or so-called potentially toxic elements (PTEs) in soils and plants have driven long-standing concerns about the adverse effects such metals have on the environment and human health. Furthermore, contaminated food products are known to be a leading source of exposure to heavy metals for the general population. It is crucial to accurately assess the concentrations of metals in crops and the bioavailable contents of these elements in the soil. The state of São Paulo is the largest consumer market of horticultural products in Brazil with production focused essentially on urban and industrial areas, which greatly increases the degree of exposure to contaminants. The objective of the authors in this study was to evaluate the soil-plant relationships between concentrations of Cd, Cu, Ni, Pb and Zn in vegetable and garden soils in the state of São Paulo, Brazil. To accomplish this, 200 soil (0-20 cm) and plant samples were collected from 25 species in the production areas. With the exception of Cd, there was positive correlation between pseudototals (USEPA 3051a) and bioavailable contents (extracted with DTPA) of heavy metals. However, the Cd and Pb contents in plants were not significantly correlated with any of the variables studied. All random forest and tree models proved to be good predictors of results generated from a regression model and provided useful information including covariates that were important for specifically forecasting Zn concentration in plants.

  6. Fractionation of potentially toxic elements in urban soils from five European cities by means of a harmonised sequential extraction procedure

    International Nuclear Information System (INIS)

    Davidson, Christine M.; Urquhart, Graham J.; Ajmone-Marsan, Franco; Biasioli, Mattia; Costa Duarte, Armando da; Diaz-Barrientos, Encarnacion; Grcman, Helena; Hossack, Iain; Hursthouse, Andrew S.; Madrid, Luis; Rodrigues, Sonia; Zupan, Marko

    2006-01-01

    The revised (four-step) BCR sequential extraction procedure has been applied to fractionate the chromium, copper, iron, manganese, nickel, lead and zinc contents in urban soil samples from public-access areas in five European cities. A preliminary inter-laboratory comparison was conducted and showed that data obtained by different laboratories participating in the study were sufficiently harmonious for comparisons to be made between cities and land types (e.g. parks, roadside, riverbanks, etc.). Analyte recoveries by sequential extraction, with respect to direct aqua regia digestion, were generally acceptable (100 ± 15%). Iron, nickel and, at most sites, chromium were found mainly in association with the residual phase of the soil matrix. Copper was present in the reducible, oxidisable and residual fractions, whilst zinc was found in all four sequential extracts. Manganese was strongly associated with reducible material as, in some cities, was lead. This is of concern because high lead concentrations were present in some soils (>500 mg kg -1 ) and the potential exists for remobilisation under reducing conditions. As would be expected, extractable metal contents were generally highest in older, more heavily industrialised cities. Copper, lead and zinc showed marked (and often correlated) variations in concentrations between sites within the same city whereas manganese and, especially, iron, did not. No overall relationships were, however, found between analyte concentrations and land use, nor between analyte partitioning and land use

  7. Environmental Risk Assessment Based on High-Resolution Spatial Maps of Potentially Toxic Elements Sampled on Stream Sediments of Santiago, Cape Verde

    Directory of Open Access Journals (Sweden)

    Marina M. S. Cabral Pinto

    2014-10-01

    Full Text Available Geochemical mapping is the base knowledge to identify the regions of the planet with critical contents of potentially toxic elements from either natural or anthropogenic sources. Sediments, soils and waters are the vehicles which link the inorganic environment to life through the supply of essential macro and micro nutrients. The chemical composition of surface geological materials may cause metabolic changes which may favor the occurrence of endemic diseases in humans. In order to better understand the relationships between environmental geochemistry and public health, we present environmental risk maps of some harmful elements (As, Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, V, and Zn in the stream sediments of Santiago, Cape Verde, identifying the potentially harmful areas in this island. The Estimated Background Values (EBV of Cd, Co, Cr, Ni and V were found to be above the Canadian guidelines for any type of use of stream sediments and also above the target values of the Dutch and United States guidelines. The Probably Effect Concentrations (PEC, above which harmful effects are likely in sediment dwelling organisms, were found for Cr and Ni. Some associations between the geological formations of the island and the composition of stream sediments were identified and confirmed by descriptive statistics and by Principal Component Analysis (PCA. The EBV spatial distribution of the metals and the results of PCA allowed us to establish relationships between the EBV maps and the geological formations. The first two PCA modes indicate that heavy metals in Santiago stream sediments are mainly originated from weathering of underlying bedrocks. The first metal association (Co, V, Cr, and Mn; first PCA mode consists of elements enriched in basic rocks and compatible elements. The second association of variables (Zn and Cd as opposed to Ni; second PCA mode appears to be strongly controlled by the composition of alkaline volcanic rocks and pyroclastic rocks. So, the

  8. Biological toxicity of lanthanide elements on algae.

    Science.gov (United States)

    Tai, Peidong; Zhao, Qing; Su, Dan; Li, Peijun; Stagnitti, Frank

    2010-08-01

    The biological toxicity of lanthanides on marine monocellular algae was investigated. The specific objective of this research was to establish the relationship between the abundance in the seawater of lanthanides and their biological toxicities on marine monocellular algae. The results showed that all single lanthanides had similar toxic effects on Skeletonema costatum. High concentrations of lanthanides (29.04+/-0.61 micromol L(-1)) resulted in 50% reduction in growth of algae compared to the controls (0 micromol L(-1)) after 96 h (96 h-EC50). The biological toxicity of 13 lanthanides on marine monocellular algae was unrelated with the abundance of different lanthanide elements in nature, and the "Harkins rule" was not appropriate for the lanthanides. A mixed solution that contained equivalent concentrations of each lanthanide element had the same inhibition effect on algae cells as each individual lanthanide element at the same total concentration. This phenomenon is unique compared to the groups of other elements in the periodic table. Hence, we speculate that the monocellular organisms might not be able to sufficiently differentiate between the almost chemically identical lanthanide elements. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  9. Risk Assessment of Potentially Toxic Elements (PTEs Pollution at a Rural Industrial Wasteland in an Abandoned Metallurgy Factory in North China

    Directory of Open Access Journals (Sweden)

    Zheng Sun

    2018-01-01

    Full Text Available The potential toxic elements (PTEs pollution problems in many rural industrial wastelands have been observed to be conspicuous. Therefore, 40 top soil samples were collected from the wasteland of a typical rural metallurgy factory in Baoding, China. The total concentrations of six key PTEs were measured. The soil properties and speciation of the PTEs were also identified. Extremely high concentrations of As, Cd, Pb, and Zn were observed in the surface soils. Using the PTEs concentration in the top soils of the rural industrial wasteland, the following indices of pollution were calculated: the pollution load index (PLI, the geo-accumulation Index (Igeo, the risk assessment code (RAC, and the health risk assessment (HRA. The analysis of the PLI and Igeo indicated that site #1 was relatively clean, while sites #2 and #3 were heavily polluted. The results of the RAC showed that PTEs in top soils at sites #2 and #3 were significantly increased (p <  0.05 for Cd and Zn. The HRA indicated that both As and Pb presented non-carcinogenic risks to children and adults at sites #2 and #3. Our findings can be a reference for risk prevention of industrially abandoned land in rural China.

  10. Risk Assessment of Potentially Toxic Elements (PTEs) Pollution at a Rural Industrial Wasteland in an Abandoned Metallurgy Factory in North China.

    Science.gov (United States)

    Sun, Zheng; Chen, Jiajun

    2018-01-06

    The potential toxic elements (PTEs) pollution problems in many rural industrial wastelands have been observed to be conspicuous. Therefore, 40 top soil samples were collected from the wasteland of a typical rural metallurgy factory in Baoding, China. The total concentrations of six key PTEs were measured. The soil properties and speciation of the PTEs were also identified. Extremely high concentrations of As, Cd, Pb, and Zn were observed in the surface soils. Using the PTEs concentration in the top soils of the rural industrial wasteland, the following indices of pollution were calculated: the pollution load index (PLI), the geo-accumulation Index (I geo ), the risk assessment code (RAC), and the health risk assessment (HRA). The analysis of the PLI and I geo indicated that site #1 was relatively clean, while sites #2 and #3 were heavily polluted. The results of the RAC showed that PTEs in top soils at sites #2 and #3 were significantly increased ( p <  0.05) for Cd and Zn. The HRA indicated that both As and Pb presented non-carcinogenic risks to children and adults at sites #2 and #3. Our findings can be a reference for risk prevention of industrially abandoned land in rural China.

  11. Distribution of potentially toxic elements (PTEs) in tailings, soils, and plants around Gol-E-Gohar iron mine, a case study in Iran.

    Science.gov (United States)

    Soltani, Naghmeh; Keshavarzi, Behnam; Moore, Farid; Sorooshian, Armin; Ahmadi, Mohamad Reza

    2017-08-01

    This study investigated the concentration of potentially toxic elements (PTEs) including Al, As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Pb, Sb, V, and Zn in 102 soils (in the Near and Far areas of the mine), 7 tailings, and 60 plant samples (shoots and roots of Artemisia sieberi and Zygophylum species) collected at the Gol-E-Gohar iron ore mine in Iran. The elemental concentrations in tailings and soil samples (in Near and Far areas) varied between 7.4 and 35.8 mg kg -1 for As (with a mean of 25.39 mg kg -1 for tailings), 7.9 and 261.5 mg kg -1 (mean 189.83 mg kg -1 for tailings) for Co, 17.7 and 885.03 mg kg -1 (mean 472.77 mg kg -1 for tailings) for Cu, 12,500 and 400,000 mg kg -1 (mean 120,642.86 mg kg -1 for tailings) for Fe, and 28.1 and 278.1 mg kg -1 (mean 150.29 mg kg -1 for tailings) for Ni. A number of physicochemical parameters and pollution index for soils were determined around the mine. Sequential extractions of tailings and soil samples indicated that Fe, Cr, and Co were the least mobile and that Mn, Zn, Cu, and As were potentially available for plants uptake. Similar to soil, the concentration of Al, As, Co, Cr, Cu, Fe, Mn, Mo, Ni, and Zn in plant samples decreased with the distance from the mining/processing areas. Data on plants showed that metal concentrations in shoots usually exceeded those in roots and varied significantly between the two investigated species (Artemisia sieberi > Zygophylum). All the reported results suggest that the soil and plants near the iron ore mine are contaminated with PTEs and that they can be potentially dispersed in the environment via aerosol transport and deposition.

  12. Source apportionment and health risk assessment of potentially toxic elements in road dust from urban industrial areas of Ahvaz megacity, Iran.

    Science.gov (United States)

    Najmeddin, Ali; Keshavarzi, Behnam; Moore, Farid; Lahijanzadeh, Ahmadreza

    2017-10-28

    This study investigates the occurrence and spatial distribution of potentially toxic elements (PTEs) (Hg, Cd, Cu, Mo, Pb, Zn, Ni, Co, Cr, Al, Fe, Mn, V and Sb) in 67 road dust samples collected from urban industrial areas in Ahvaz megacity, southwest of Iran. Geochemical methods, multivariate statistics, geostatistics and health risk assessment model were adopted to study the spatial pollution pattern and to identify the priority pollutants, regions of concern and sources of the studied PTEs. Also, receptor positive matrix factorization model was employed to assess pollution sources. Compared to the local background, the median enrichment factor values revealed the following order: Sb > Pb > Hg > Zn > Cu > V > Fe > Mo > Cd > Mn > Cr ≈ Co ≈ Al ≈ Ni. Statistical results show that a significant difference exists between concentrations of Mo, Cu, Pb, Zn, Fe, Sb, V and Hg in different regions (univariate analysis, Kruskal-Wallis test p matrix factorization model revealed that traffic-related emissions (43.5%) and steel industries (26.4%) were first two sources of PTEs in road dust, followed by natural sources (22.6%) and pipe and oil processing companies (7.5%). The arithmetic mean of pollution load index (PLI) values for high traffic sector (1.92) is greater than industrial (1.80) and residential areas (1.25). Also, the results show that ecological risk values for Hg and Pb in 41.8 and 9% of total dust samples are higher than 80, indicating their considerable or higher potential ecological risk. The health risk assessment model showed that ingestion of dust particles contributed more than 83% of the overall non-carcinogenic risk. For both residential and industrial scenarios, Hg and Pb had the highest risk values, whereas Mo has the lowest value.

  13. Long-term variations of the riverine input of potentially toxic dissolved elements and the impacts on their distribution in Jiaozhou Bay, China.

    Science.gov (United States)

    Wang, Changyou; Guo, Jinqiang; Liang, Shengkang; Wang, Yunfei; Yang, Yanqun; Wang, Xiulin

    2018-03-01

    The concentrations of the potentially toxic dissolved elements (PTEs) As, Hg, Cr, Pb, Cd, and Cu in the main rivers into Jiaozhou Bay (JZB) during 1981-2006 were measured, and the impact of the fluvial PTE fluxes on their distributions in the bay was investigated. The overall average concentration in the rivers into JZB ranged from 8.8 to 39.6 μg L -1 for As, 10.1 to 632.6 ng L -1 for Hg, 4.1 to 3003.6 μg L -1 for Cr, 8.5 to 141.9 μg L -1 for Pb, 1.1 to 34.2 μg L -1 for Cd, and 13.2 to 1042.8 μg L -1 for Cu. The interannual average concentration variations of the PTEs in these rivers were enormous, with maximum differences of 41-21,680 times, while their relative seasonal changes were far smaller with maximum differences of 3-12 times. The total annual fluvial fluxes for As, Hg, and Cr into JZB exhibited the inverse "U" pattern, while those for Pb and Cd showed the "N" pattern. As a whole, the total annual Cu flux presented a growing tendency from 1998 to 2006. In general, the changing trends of the PTE concentrations in JZB were similar to those of their annual fluxes from the rivers, indicating a great impact of their fluvial fluxes on their distributions in JZB. The annual concentration of Cd in the bay almost remained constant and differed from the fluvial flux of Cd. The diversified pattern of the environmental Kuznets curve (EKC) represented China's approach to industrialization as "improving while developing."

  14. Data sheets on selected toxic elements

    International Nuclear Information System (INIS)

    Jaworski, J.F.

    1982-01-01

    The chemical elements considered in this volume have been identified as toxic to animal and vegetable life forms; however, these elements have not been studied as intensely as lead, mercury, cadmium, etc. Since, in most cases, existing data are insufficient to permit discussion and comparisons of relative quality, it was decided to present what quantitative data there are in as concise a manner as possible. The resulting data sheets present what is considered to be the best available information on the environmental levels, emissions and toxicology of these elements and some of their compounds. Reference is made to the article or review in which the datum appears and which may contain any discussion of the datum and the methods whereby it was obtained. Elements considered in this volume are antimony, barium, beryllium, bismuth, boron, cesium, gallium, germanium, indium, molybdenum, silver, tellurium, thallium, tin, uranium and zirconium

  15. Vitamin D, Essential Minerals, and Toxic Elements: Exploring Interactions between Nutrients and Toxicants in Clinical Medicine

    Science.gov (United States)

    Schwalfenberg, Gerry K.; Genuis, Stephen J.

    2015-01-01

    In clinical medicine, increasing attention is being directed towards the important areas of nutritional biochemistry and toxicant bioaccumulation as they relate to human health and chronic disease. Optimal nutritional status, including healthy levels of vitamin D and essential minerals, is requisite for proper physiological function; conversely, accrual of toxic elements has the potential to impair normal physiology. It is evident that vitamin D intake can facilitate the absorption and assimilation of essential inorganic elements (such as calcium, magnesium, copper, zinc, iron, and selenium) but also the uptake of toxic elements (such as lead, arsenic, aluminum, cobalt, and strontium). Furthermore, sufficiency of essential minerals appears to resist the uptake of toxic metals. This paper explores the literature to determine a suitable clinical approach with regard to vitamin D and essential mineral intake to achieve optimal biological function and to avoid harm in order to prevent and overcome illness. It appears preferable to secure essential mineral status in conjunction with adequate vitamin D, as intake of vitamin D in the absence of mineral sufficiency may result in facilitation of toxic element absorption with potential adverse clinical outcomes. PMID:26347061

  16. Phytoremediation of soils contaminated with toxic elements and radionuclides

    International Nuclear Information System (INIS)

    Cornish, J.E.; Goldberg, W.C.; Levine, R.S.; Benemann, J.R.

    1995-01-01

    At many US Department of Energy (US DOE) facilities and other sites, surface soils over relatively large areas are contaminated with heavy metals, radionuclides, and other toxic elements, often at only a relatively small factor above regulatory action levels. Cleanup of such sites presents major challenges, because currently available soil remediation technologies can be very expensive. In response, the US DOE's Office of Technology Development, through the Western Environmental Technology Office, is sponsoring research in the area of phytoremediation. Phytoremediation is an emerging technology that uses higher plants to transfer toxic elements and radionuclides from surface soils into aboveground biomass. Some plants, termed hyperaccumulators, take up toxic elements in substantial amounts, resulting in concentrations in aboveground biomass over 100 times those observed with conventional plants. After growth, the plant biomass is harvested, and the toxic elements are concentrated and reclaimed or disposed of. As growing, harvesting, and processing plant biomass is relatively inexpensive, phytoremediation can be a low-cost technology for remediation of extensive areas having lightly to moderately contaminated soils. This paper reviews the potential of hyper- and moderate accumulator plants in soil remediation, provides some comparative cost estimates, and outlines ongoing work initiated by the US DOE

  17. Leaching of lava and tephra from the Oldoinyo Lengai volcano (Tanzania): Remobilization of fluorine and other potentially toxic elements into surface waters of the Gregory Rift

    Science.gov (United States)

    Bosshard-Stadlin, Sonja A.; Mattsson, Hannes B.; Stewart, Carol; Reusser, Eric

    2017-02-01

    Volcanic ash leachate studies have been conducted on various volcanoes on Earth, but few have been done on African volcanoes until now. Tephra emissions may affect the environment and the health of people living in this area, and therefore we conducted a first tephra (ash and lapilli sized) leachate study on the Oldoinyo Lengai volcano, situated in northern Tanzania. The recent explosive eruption in 2007-2008 provided us with fresh samples from the first three weeks of the eruption which were used for this study. In addition, we also used a natrocarbonatitic sample from the activity prior to the explosive eruption, as the major activity at Oldoinyo Lengai is natrocarbonatitic. To compare the leaching process affecting the natrocarbonatitic lavas and the tephras from Oldoinyo Lengai, the 2006 natrocarbonatitic lava flow was resampled 5 years after the emplacement and compared to the initial, unaltered composition. Special interest was given to the element fluorine (F), since it is potentially toxic to both humans and animals. A daily intake of fluoride (F-) in drinking water of > 1.5 mg/l can lead to dental fluorosis, and higher concentrations lead to skeletal fluorosis. For this reason, a guideline value for fluoride in drinking water was set by the WHO (2011) to 1.5 mg/l. However, surface waters and groundwaters in the Gregory Rift have elevated fluoride levels of up to 9.12 mg/l, and as a consequence, an interim guideline value for Tanzania has been set at 8 mg/l. The total concentration of fluorine in the samples from the natrocarbonatitic lava flow is high (3.2 wt%), whereas we observed a significant decrease of the fluorine concentration (between 1.7 and 0.5 wt%) in the samples collected three days and three weeks after the onset of the explosive 2007-08 eruption. However, the total amount of water-extractable fluoride is lower in the natrocarbonatitic lavas (319 mg/l) than in the nephelinitic tephra (573-895 mg/l). This is due to the solubility of the

  18. Toxic trace elements in Chilean seafoods

    International Nuclear Information System (INIS)

    De Gregori, I.; Delgado, D.; Pinochet, H.; Gras, N.; Thieck, M.; Munoz, L.; Bruhn, C.; Navarrete, G.

    1992-01-01

    Chile is a well known producer and exporter of shell fish. These seafoods, like other specimens of marine origin, are susceptible to environmental and other contaminations like trace elements, including toxicants. Therefore adequate analytical quality assurance is mandatory before accepting analytical results. In this context, use of at least 2 independent methods of determination and validation with certified reference materials (CRM) provides acceptable criteria for judging the reliability of the data. This paper describes sample treatments and analytical procedures for Cd, Cu and Hg determinations in mollusc samples. Three independent analytical techniques, namely differential pulse anodic stripping voltammetry, neutron activation analysis and atomic absorption spectrometry, were used. CRM standards of the IAEA, NIST and BCR were analyzed to evaluate quality assurance. Following the quality control phase, the concentrations of cadmium, copper, and mercury in fresh and canned mollusc samples Tagelus dombeii and Semelle solida (Navajuelas and Almejas chilenas respectively) from different locations were determined. (author). 32 refs.; 4 figs.; 7 tabs

  19. Essential and toxic elements in seaweeds for human consumption.

    Science.gov (United States)

    Desideri, D; Cantaluppi, C; Ceccotto, F; Meli, M A; Roselli, C; Feduzi, L

    2016-01-01

    Essential elements (K, Ca, P, S, Cl, Mn, Fe, Cu, Zn, Ni, Br, and I) and nonessential or toxic elements (Al, Ti, Si, Rb, Sr, As, Cd, Sn, and Pb) were determined by energy-dispersive polarized x-ray fluorescence spectrometry in 14 seaweeds purchased in local specialty stores in Italy and consumed by humans. The differences in elements between the algae species reached up to 2-4 orders of magnitude. Lithothamnium calcareum showed the highest levels of Ca, Al, Si, Fe, and Ti. Palmaria palmata showed the highest concentrations of K, Rb, and Cl. The highest content of S was in Chondrus crispus. Laminaria digitata contained the highest concentrations of total As, Cd, Sn, Br, and I. The highest concentration of Zn was in Chlorella pyrenoidosa. Ulva lactuca displayed the highest levels of Cu, Ni, Mn, and Pb. Iodine levels ranged from 3.4 in Chlorella pyrenoidosa to 7316 mg/kg(dry) in Laminaria digitata. The nutrimental importance of essential elements was assessed using nutritional requirements. The results showed that the consumption of algae might serve as an important source of the essential elements. Health risk due to the toxic elements present in seaweed was estimated using risk estimators. Total As, Cd, and Pb concentrations ranged from <1 to 67.6, to 7.2 and to 6.7 mg/kg(dry) respectively; therefore, their contribution to total elemental intake does not appear to pose any threat to the consumers, but the concentrations of these elements should be controlled to protect the consumer against potential adverse health risks.

  20. Phytoremediation of Toxic Elemental and Organic Pollutants

    International Nuclear Information System (INIS)

    Meagher, Richard B.

    2000-01-01

    Phytoremediation is the use of plants to extract, sequester, and/or detoxify pollutants. Phytoremediation is widely viewed as the ecologically responsible alternative to the environmentally destructive physical remediation methods currently practiced. Plants have many endogenous genetic, biochemical, and physiological properties that make them ideal agents for soil and water remediation. Significant progress has been made in recent years in developing native or genetically modified plants for the remediation of environmental contaminants. Because elements are immutable, phytoremediation strategies for radionuclide and heavy metal pollutants focus on hyperaccumulation above-ground. In contrast, organic pollutants can potentially be completely mineralized by plants

  1. Determination of toxic and essential elements in seafood

    International Nuclear Information System (INIS)

    Surtipanti, S.; Suwirma, S.; Yumiarti, S.; Yune Mellawati, T.

    1990-01-01

    Indonesia has only a list of the maximum permissible concentration of toxic elements in water stated in a national legislation. Therefore, it is important to study the toxic elements content in fish and shellfish, because these marine organisms are good biological indicators. The interesting elements to be analyzed are toxic elements, i.e. As, Cd, Cr, Hg, Pb, Sb and Se, and essential elements, i.e., Zn and Cu. As, Cr, Hg, Sb, Se and Zn can be determined by Neutron Activation Analysis (NAA), while Cd, Cu and Pb by Atomic Absorption Spectrometry (AAS). The determination of such elements in foodstuff i.e. rice, corn, green pea, wheat, vegetables, fruits, tea and coffee have been done previously. The major purpose of this work is to know whether the concentration of toxic elements in marine organisms is approaching or exceeding the maximum permissible concentration as stated by International legislation. 7 refs, 5 tabs

  2. Toxic Elements in Food: Occurrence, Binding, and Reduction Approaches

    DEFF Research Database (Denmark)

    Hajeb, P.; Sloth, Jens Jørgen; Shakibazadeh, Sh

    2014-01-01

    Toxic elements such as mercury, arsenic, cadmium, and lead, sometimes called heavy metals, can diminish mental and central nervous system function; elicit damage to blood composition as well as the kidneys, lungs, and liver; and reduce energy levels. Food is considered one of the main routes...... of their entry into the human body. Numerous studies have been performed to examine the effects of common food processing procedures on the levels of toxic elements in food. While some studies have reported negative effects of processing, several have shown that processing practices may have a positive effect...... on the reduction of toxic elements in foodstuffs. A number of studies have also introduced protocols and suggested chemical agents that reduce the amount of toxic elements in the final food products. In this review, the reported methods employed for the reduction of toxic elements are discussed with particular...

  3. Dietary intake and health effects of selected toxic elements

    OpenAIRE

    Silva, André Luiz Oliveira da; Barrocas, Paulo R.G.; Jacob, Silvana do Couto; Moreira, Josino Costa

    2005-01-01

    Anthropogenic activities have being contributing to the spread of toxic chemicals into the environment, including several toxic metals and metalloids, increasing the levels of human exposure to many of them. Contaminated food is an important route of human exposure and may represent a serious threat to human health. This mini review covers the health effects caused by toxic metals, especially Cd, Hg, Pb and As, the most relevant toxic elements from a human health point of view. As atividad...

  4. Toxic and trace elements in foodstuffs in Japan

    International Nuclear Information System (INIS)

    Muramatsu, Y.; Sumiya, M.; Ohmomo, Y.

    1988-01-01

    From the viewpoint of environmental safety assessment it is important to have information on the levels of toxic and trace elements in foodstuffs. It is also essential to develop suitable analytical methods for these elements in order to obtain accurate analytical data. In this paper, two analytical methods were used, inductively-coupled plasma atomic emission spectrometry (ICP-AES) and neutron activation analysis (NAA), for analysing toxic and trace elements in several food samples. 3 tabs

  5. assessment of toxic elements in selected nigeria broiler feeds using

    African Journals Online (AJOL)

    User

    2015-12-02

    Dec 2, 2015 ... toxic elements Mn, Cr, Zn, Fe, Co, Sr, La, Sm, Th and Se in some selected ... However, the results shows the Fe concentration in sample B ..... activation analysis” Applied Radiation and ... Neutron Activation Analysis of Soil.

  6. Towards bio monitoring of toxic (lead) and essential elements in ...

    African Journals Online (AJOL)

    Towards bio monitoring of toxic (lead) and essential elements in whole blood from ... Objectives: Minerals such as zinc, copper, selenium, calcium, and magnesium are essential for normal human development ... One study on the interaction of.

  7. Quantification of potentially toxic elements in sewage and sludge from treatment plants in the cities of Campinas and Jaguariuna using synchrotron radiation total reflection X-ray fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Luciana Carla Ferreira de; Canteras, Felippe Benavente; Moreira, Silvana, E-mail: silvana@fec.unicamp.br, E-mail: felippe.canteras@gmail.com, E-mail: lucarla24@gmail.com [Universidade Estadual de Campinas (UNICAMP), Campinas, SP (Brazil). Inst. Politecnico. Dept. de Saneamento e Ambiente

    2013-07-01

    The rapid urban and industrial development in last decades has brought as one of the consequences, changes in the environment. The lack of planning of city growth is, today, one of the major causes of water pollution including residential, industrial, agricultural, and hospital waste. The metals contamination is a major problem, causing serious changes to the environment, causing harm to human health. The sludge generated at sewage treatment plants, is an important source of nutrients and organic matter, and therefore it can also be reused mainly for agricultural use, since contaminants are removed. The cities of Campinas and Jaguariuna are inserted in the Campinas Metropolitan Region (CMR), one of the most dynamic regions in the Brazilian economy. Therefore, to study the anthropogenic influences of the cities, evaluated the quality of raw and treated effluent and the sludge generated in sewage treatment plants, especially with regard to heavy metals. Measurements of metals were performed by Synchrotron Radiation Total Reflection X-ray Fluorescence. For treated effluent data were compared to CONAMA 357 law and Cr, Mn, Fe, Ni, Cu, Zn, Ba and Pb showed concentrations in according with the law. To reuse in agriculture the contents were compared to the limits defined by CETESB and some elements had concentrations above to the permitted preventing its reuse. For sludge, Cr, Ni, Cu, Zn, Ba and Pb, in the two treatment plants studied, the concentrations were lower than the maximum permissible values established by CONAMA 375 law allowing the sludge application sludge on agricultural land. (author)

  8. Quantification of potentially toxic elements in sewage and sludge from treatment plants in the cities of Campinas and Jaguariuna using synchrotron radiation total reflection X-ray fluorescence

    International Nuclear Information System (INIS)

    Souza, Luciana Carla Ferreira de; Canteras, Felippe Benavente; Moreira, Silvana

    2013-01-01

    The rapid urban and industrial development in last decades has brought as one of the consequences, changes in the environment. The lack of planning of city growth is, today, one of the major causes of water pollution including residential, industrial, agricultural, and hospital waste. The metals contamination is a major problem, causing serious changes to the environment, causing harm to human health. The sludge generated at sewage treatment plants, is an important source of nutrients and organic matter, and therefore it can also be reused mainly for agricultural use, since contaminants are removed. The cities of Campinas and Jaguariuna are inserted in the Campinas Metropolitan Region (CMR), one of the most dynamic regions in the Brazilian economy. Therefore, to study the anthropogenic influences of the cities, evaluated the quality of raw and treated effluent and the sludge generated in sewage treatment plants, especially with regard to heavy metals. Measurements of metals were performed by Synchrotron Radiation Total Reflection X-ray Fluorescence. For treated effluent data were compared to CONAMA 357 law and Cr, Mn, Fe, Ni, Cu, Zn, Ba and Pb showed concentrations in according with the law. To reuse in agriculture the contents were compared to the limits defined by CETESB and some elements had concentrations above to the permitted preventing its reuse. For sludge, Cr, Ni, Cu, Zn, Ba and Pb, in the two treatment plants studied, the concentrations were lower than the maximum permissible values established by CONAMA 375 law allowing the sludge application sludge on agricultural land. (author)

  9. Uranium and other heavy toxic elements distribution in the drinking water samples of SW-Punjab, India - a potentially dangerous trend

    International Nuclear Information System (INIS)

    Bajwa, B.S.

    2015-01-01

    In the present investigations, Laser Fluorimetry technique has been used for the microanalysis of uranium content in drinking water samples collected from different sources like the hand pumps, tube wells of various depths from wide range of locations in the four districts of SW-Punjab, India. The purpose of this study was to investigate the uranium concentration levels of ground water being used for drinking purposes and to determine its health effects, if any, to the local population of this region. Corresponding radiological and chemical risks have also been calculated for the uranium concentrations in ground water samples. Some other heavy elements have also been analysed using the Atomic Absorption Spectrometry. In this region, uranium concentration in 498 drinking water samples has been found to vary between 0.5-579 μgl -1 with an average of 73.5 μgl -1 , Data analysis revealed that 338 of 498 samples had uranium concentration higher than recommended safe limit of 30 μgl -1 (WHO, 2011) while 216 samples exceeded the threshold of 60 μgl -1 recommended by AERB, DAE, India, 2004. Overall data analysis reveals that, 68% of the collected samples have uranium concentration higher than safe limit of 30 μgl -1 (WHO, 2011) while 43% samples exceed the threshold of 60μgl -1 recommended by AERB, DAE, India, 2004. Higher concentrations observed in ground water samples of SW-Punjab might be due to leaching of uranium from adjoining/basement granite rich rock formations. The anthropogenic activities, urbanization and wide spread use of pesticides/fertilizers which is responsible for increase in the TDS/salinity of the region might be another cause. But, overall it seems that the plausible source of high uranium observed in this region may be of geogenic in nature. (author)

  10. Toxic Potential of Carcinogenic Polycyclic Aromatic Hydrocarbons ...

    African Journals Online (AJOL)

    Toxic Potential of Carcinogenic Polycyclic Aromatic Hydrocarbons (cPAHs) and Heavy Metal in Crude Oil from Gokana Area, Rivers State, Nigeria. ... Considerable caution should be applied in exploration, exposure and distribution of the crude oil through protected and well maintained pipelines to avoid the possible ...

  11. Toxic Potential of Carcinogenic Polycyclic Aromatic Hydrocarbons ...

    African Journals Online (AJOL)

    DR. GODSON

    the levels of PAHs and cPAHs in crude oil samples from Gokana area and using the data to determine the ... Exploration and production activities of petroleum in ... discharges of crude oil to the environment which ... equivalent concentration of cPAHs in the soil around ... in the crude oil and establish its potential toxicity risk.

  12. Biological reference materials and analysis of toxic elements

    Energy Technology Data Exchange (ETDEWEB)

    Subramanian, R; Sukumar, A

    1988-12-01

    Biological monitoring of toxic metal pollution in the environment requires quality control analysis with use of standard reference materials. A variety of biological tissues are increasingly used for analysis of element bioaccumulation, but the available Certified Reference Materials (CRMs) are insufficient. An attempt is made to review the studies made using biological reference materials for animal and human tissues. The need to have inter-laboratory studies and CRM in the field of biological monitoring of toxic metals is also discussed.

  13. A study on toxic and essential elements in wheat grain from the Republic of Kazakhstan.

    Science.gov (United States)

    Tattibayeva, Damira; Nebot, Carolina; Miranda, Jose M; Abuova, Altynai B; Baibatyrov, Torebek A; Kizatova, Maigul Z; Cepeda, Alberto; Franco, Carlos M

    2016-03-01

    Little information is currently available about the content of different elements in wheat samples from the Republic of Kazakhstan. The concentrations of toxic (As, Cd, Cr, Hg, Pb, and U) and essential (Co, Cu, Fe, Mn, Ni, Se, and Zn) elements in 117 sampled wheat grains from the Republic of Kazakhstan were measured. The results indicated that the mean and maximum concentrations of most investigated elements (As, Cd, Co, Cr, Mn, Se, Pb, and U) were higher in samples collected from southern Kazakhstan. The mean and maximum concentrations of toxic elements such as As, Cd, Hg, and Pb did not exceed levels specified by European, FAO, or Kazakh legislation, although the hazard quotient (HQ) values for Co, Cu, Mn, and Zn were higher than 1 and the hazard index (HI) was higher than 1 for samples collected from all areas of Kazakhstan. This indicates that there should be concern about the potential hazards of the combination of toxic elements in Kazakh wheat.

  14. Potential enzyme toxicity of oxytetracycline to catalase

    International Nuclear Information System (INIS)

    Chi Zhenxing; Liu Rutao; Zhang Hao

    2010-01-01

    Oxytetracycline (OTC) is a kind of widely used veterinary drugs. The residue of OTC in the environment is potentially harmful. In the present work, the non-covalent toxic interaction of OTC with catalase was investigated by the fluorescence spectroscopy, UV-vis absorption and circular dichroism (CD) spectroscopy at physiological pH 7.4. OTC can interact with catalase to form a complex mainly by van der Waals' interactions and hydrogen bonds with one binding site. The association constants K were determined to be K 293K = 7.09 x 10 4 L mol -1 and K 311K = 3.31 x 10 4 L mol -1 . The thermodynamic parameters (ΔH o , ΔG o and ΔS o ) of the interaction were calculated. Based on the Foerster theory of non-radiative energy transfer, the distance between bound OTC and the tryptophan residues of catalase was determined to be 6.48 nm. The binding of OTC can result in change of the micro-environment of the tryptophan residues and the secondary structure of catalase. The activity of catalase was also inhibited for the bound OTC. This work establishes a new strategy to probe the enzyme toxicity of veterinary drug residues and is helpful for clarifying the molecular toxic mechanism of OTC in vivo. The established strategy can be used to investigate the potential enzyme toxicity of other small organic pollutants and drugs.

  15. Toxic element contamination of natural health products and pharmaceutical preparations.

    Directory of Open Access Journals (Sweden)

    Stephen J Genuis

    Full Text Available BACKGROUND: Concern has recently emerged regarding the safety of natural health products (NHPs-therapies that are increasingly recommended by various health providers, including conventional physicians. Recognizing that most individuals in the Western world now consume vitamins and many take herbal agents, this study endeavored to determine levels of toxic element contamination within a range of NHPs. METHODS: Toxic element testing was performed on 121 NHPs (including Ayurvedic, traditional Chinese, and various marine-source products as well as 49 routinely prescribed pharmaceutical preparations. Testing was also performed on several batches of one prenatal supplement, with multiple samples tested within each batch. Results were compared to existing toxicant regulatory limits. RESULTS: Toxic element contamination was found in many supplements and pharmaceuticals; levels exceeding established limits were only found in a small percentage of the NHPs tested and none of the drugs tested. Some NHPs demonstrated contamination levels above preferred daily endpoints for mercury, cadmium, lead, arsenic or aluminum. NHPs manufactured in China generally had higher levels of mercury and aluminum. CONCLUSIONS: Exposure to toxic elements is occurring regularly as a result of some contaminated NHPs. Best practices for quality control-developed and implemented by the NHP industry with government oversight-is recommended to guard the safety of unsuspecting consumers.

  16. Essential and toxic trace elements in the chinese medicine

    International Nuclear Information System (INIS)

    Wang, C.F.; Jenq Yann Yang; Ming-Jenq Duo; Chang, E.E.

    1996-01-01

    The concentration of certain toxic and essential elements in various raw materials of Chinese herbs and 'scientific Chinese medicine' were determined by atomic absorption spectrometry (AAS) and instrumental neutron activation analysis (INAA). Correlation of these elements as they exist in the raw materials and in the prescription of medicine were investigated and the approximate intake of elements by patients were estimated. Values of elements determined both by AAS and INAA presented excellent agreement. The ranges of elemental concentrations were found to vary from 10 4 to 10 -1 mg/kg in different kinds of herbs. All herbs exhibit extraordinary enrichment capabilities from the environment for elements such as Mn, Zn, Ca, K, Mg, Cd, Cu, Pb and As. Higher contents of Cd, Pb and As in herbs may be attributed to the uptake of these elements from polluted soil due to industrial and anthropogenic activities. It was found that commercial scientific Chinese medicine, SCDBT, contains more elemental concentrations than that of herbs used in the prescription, which may indicate that possible contamination could be caused by unknown ingredients added in the process. A much higher toxic elemental content, such as Pb, Cd and As, has been found in CFH and the daily intake of these elements by the patient will exceed the PTDI values. (author)

  17. Interaction of engineered nanoparticles with toxic and essential elements

    International Nuclear Information System (INIS)

    Shumakova, A A; Gmoshinski, I V; Khotimchenko, S A; Trushina, E N

    2015-01-01

    Interaction of engineered nanoparticles with toxic and essential trace elements must be taken into consideration when estimating risks of NPs presented in the natural environment. The purpose of this work was to study the possible influence of silica, titanium dioxide (rutile) and fullerenol NPs on the toxicity of cadmium and to research the status of some trace elements and related indices of immune function in experiments on laboratory animals. Young male Wistar rats received cadmium salt (1 mg/kg b.w. Cd) orally for 28 days separately or in conjunction with the said kinds of NPs in different doses. A number of effects was observed as a result of combined action of Cd together with NPs, increase in bioaccumulation of this toxic trace element in the liver was most evident. The observed effects didn't show simple dose- dependence in respect to nanomaterials that should be taken into consideration when assessing the possible risks of joint action of nanoparticles and toxic elements existing in the environment in extremely low doses. Violation of microelement homeostasis caused by the combined action of Cd and NPs can have various adverse effects, such as inhibition of T-cell immunity induced by co-administration of Cd with rutile NPs. (paper)

  18. Interaction of engineered nanoparticles with toxic and essential elements

    Science.gov (United States)

    Shumakova, A. A.; Gmoshinski, I. V.; Khotimchenko, S. A.; Trushina, E. N.

    2015-11-01

    Interaction of engineered nanoparticles with toxic and essential trace elements must be taken into consideration when estimating risks of NPs presented in the natural environment. The purpose of this work was to study the possible influence of silica, titanium dioxide (rutile) and fullerenol NPs on the toxicity of cadmium and to research the status of some trace elements and related indices of immune function in experiments on laboratory animals. Young male Wistar rats received cadmium salt (1 mg/kg b.w. Cd) orally for 28 days separately or in conjunction with the said kinds of NPs in different doses. A number of effects was observed as a result of combined action of Cd together with NPs, increase in bioaccumulation of this toxic trace element in the liver was most evident. The observed effects didn't show simple dose- dependence in respect to nanomaterials that should be taken into consideration when assessing the possible risks of joint action of nanoparticles and toxic elements existing in the environment in extremely low doses. Violation of microelement homeostasis caused by the combined action of Cd and NPs can have various adverse effects, such as inhibition of T-cell immunity induced by co-administration of Cd with rutile NPs.

  19. Analysis of Essential and Toxic Elements in Jujube Fruits Collected ...

    African Journals Online (AJOL)

    Purpose: To develop a simple and precise method for the determination of the levels of both essential and toxic elements in jujube collected from different locations in China. Methods: Dried jujube fruits collected were digested by optimized microwave procedure. Inductively coupled plasma atomic emission spectrometry ...

  20. Assessment of the Essential and Toxic Elements in Complementary ...

    African Journals Online (AJOL)

    In this study, the commonly used complementary foods (Unga wa Lishe) for children 0-5 years in Tanzania were analyze for essential and toxic elements in order to assess their nutritional levels. 60 samples were purchased from shops in Dar es Salaam, Moshi and Arusha regions and analyzed using Energy Dispersive ...

  1. Potential enzyme toxicity of oxytetracycline to catalase

    Energy Technology Data Exchange (ETDEWEB)

    Zhenxing, Chi; Rutao, Liu; Zhang Hao, E-mail: Trutaoliu@sdu.edu.cn [School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment and Health, Shandong Province, 27 Shanda South Road, Jinan 250100 (China)

    2010-10-15

    Oxytetracycline (OTC) is a kind of widely used veterinary drugs. The residue of OTC in the environment is potentially harmful. In the present work, the non-covalent toxic interaction of OTC with catalase was investigated by the fluorescence spectroscopy, UV-vis absorption and circular dichroism (CD) spectroscopy at physiological pH 7.4. OTC can interact with catalase to form a complex mainly by van der Waals' interactions and hydrogen bonds with one binding site. The association constants K were determined to be K{sub 293K} = 7.09 x 10{sup 4} L mol{sup -1} and K{sub 311K} = 3.31 x 10{sup 4} L mol{sup -1}. The thermodynamic parameters ({Delta}H{sup o}, {Delta}G{sup o} and {Delta}S{sup o}) of the interaction were calculated. Based on the Foerster theory of non-radiative energy transfer, the distance between bound OTC and the tryptophan residues of catalase was determined to be 6.48 nm. The binding of OTC can result in change of the micro-environment of the tryptophan residues and the secondary structure of catalase. The activity of catalase was also inhibited for the bound OTC. This work establishes a new strategy to probe the enzyme toxicity of veterinary drug residues and is helpful for clarifying the molecular toxic mechanism of OTC in vivo. The established strategy can be used to investigate the potential enzyme toxicity of other small organic pollutants and drugs.

  2. Determination of toxic trace elements in body fluid reference samples

    International Nuclear Information System (INIS)

    Gills, T.E.; McClendon, L.T.; Maienthal, E.J.; Becker, D.A.; Durst, R.A.; LaFleur, P.D.

    1974-01-01

    The measurement of elemental concentration in body fluids has been widely used to give indication of exposures to certain toxic materials and/or a measure of body burden. To understand fully the toxicological effect of these trace elements on our physiological system, meaningful analytical data are required along with accurate standards or reference samples. The National Bureau of Standards has prepared for the National Institute for Occupational Safety and Health (NIOSH) a number of reference samples containing selected toxic trace elements in body fluids. The reference samples produced include mercury in urine at three concentration levels, five elements (Se, Cu, As, Ni and Cr) in freeze-dried urine at two levels, fluorine in freeze-dried urine at two levels and lead in blood at two concentration levels. These reference samples have been found to be extremely useful for the evaluation of field and laboratory analytical methods for the analysis of toxic trace elements. In particular the use of at least two calibration points (i.e., ''normal'' and ''elevated'' levels) for a given matrix provides a more positive calibration for most analytical techniques over the range of interest for occupational toxicological levels of exposure. (U.S.)

  3. Mobilisation of toxic elements in the human respiratory system

    International Nuclear Information System (INIS)

    Pinheiro, T.; Alves, L.C.; Palhano, M.J.; Bugalho de Almeida, A.

    2001-01-01

    The fate of respired particles in the respiratory system is inferred through the chemical characterisation of individual particles at the tracheal and bronchial mucosas, and the accumulation of toxic elements in lung alveoli and lymph nodes. The particles and tissue elemental distributions were identified and characterised using micro-PIXE elemental mapping of thin frozen sections using the ITN Nuclear Microprobe facility. Significant particle deposits are found at the distal respiratory tract. Al, Si, Ti, V, Cr, Fe, Ni, Cu and Zn are elements detected at these accumulation areas. The elemental distributions in the different cellular environments of lymph nodes vary. The major compartments for Al, Si, Ti, Fe and Cr are the phagocytic cells and capsule of lymph nodes, while V and Ni are in the cortex and paracortex medullar areas which retain more than 70% of these two elements, suggesting high solubility of the latter in the cellular milieu. The elemental mobilisation from particles or deposits to surrounding tissues at the respiratory ducts evidences patterns of diffusion and removal that are different than those for elements in the respiratory tract. Mobilisation of elements such as V, Cr and Ni is more relevant at alveoli areas where gaseous exchange takes place. The apparent high solubility of V and Ni in the respiratory tract tissue points towards a deviation of the lymphatic system filtering efficiency for these elements when compared to others

  4. Determination and evaluation of toxic elements in Chinese foodstuffs

    International Nuclear Information System (INIS)

    Sun Laiyan; Lu Fengying; Zhou Wenping; Zhen Houxi; Su Rongwei; Liao Qingshang; Li Xuezeng; Wang Huaihui

    1988-01-01

    The concentrations of toxic elements As, Br, Cr, Cu, Pb, Se and Zn in various foodstuffs collected in Beijing, Shanghai, Xian and Wuhan were determined using neutron activation analysis (NAA) and atomic absorption spectrometry (AAS) methods were obtained with high or medium precision. According to the average daily intake of various foods, the daily intake of these toxic elements were estimated for each person in the four cities. They (in microgram) were 42.6, 166.3, 1738, 106.8, 7939, 1145 and 67.1 respectively for As, Cr, Cu, Se, Zn, Br and Pb in Beijing, 52.2, 167, 1213, 91.5, 6026, 519 and 89.9 in Shanghai, 46.2, 184, 1782, 119.2, 8729, 1132 and 133.4 in Xian, and 63.2, 142.1, 1556, 76.9, 7882, 528 and 73.7 in Wuhan. (author). 2 refs, 12 tabs

  5. Determination of toxic elements in foodstuffs in Vietnam

    International Nuclear Information System (INIS)

    Nguyen Van Minh; Le Thi Ngoc Trinh; Nguyen Giang; Le Tat Mua; Nguyen Mong Sinh

    2006-01-01

    The studying samples of this work have been collected from different areas of Vietnam including industrial areas in HCM city, Dongnai, Vungtau and non-industrial area, Dalat city. The concentrations of the toxic elements as: As, Hg, Cr, Co, Fe, Cu, Cd, Se, As, Zn, Pb in many foodstuff samples together with intercomparison sample which have been distributed by National Food Administration (Sweden) were analyzed by Instrumental Neutron Activation Analysis (INAA), Radiochemical Neutron Activation Analysis (RNAA); Atomic Absorption Spectrophotometer (AAS) and Anodic Stripping Voltammeter (ASV). The obtained results shown that the concentration of toxic elements in the collected samples from selected industrial areas of Vietnam are lower than the maximum permissible concentrations. (author)

  6. STUDIES OF CHOSEN TOXIC ELEMENTS CONCENTRATION IN MULTIFLOWER BEE HONEY

    Directory of Open Access Journals (Sweden)

    Ewa Popiela

    2011-04-01

    Full Text Available 72 544x376 Normal 0 21 false false false  The aim of the study was to determine the bioaccumulation level of chosen toxic elements (Zn, Cu, Pb, As and Cd in multiflower honey collected from Brzeg area. Biological material (honey was mineralized using the microwave technique at an elevated pressure in the microprocessor station of pressure in the type Mars 5. Quantitative analysis of elements (As, Cd, Cu, Pb and Zn was performed by plasma spectrometry method using a Varian ICP-AES apparatus. The presence of toxic elements was determined in examined biological materials. The elements fallowed the fallowing decreasing order with respect to their content of honey: Zn>Cu>Pb>As>Cd. The average concentrations of studied elements observed in multi-flower honey were as follows: 6.24 mg.kg-1 of zinc, 2.75 mg.kg-1 of copper, 0.53, 0.071, 0.042 mg.kg-1of lead, arsenic and cadmium, respectively. Lead was the most problematic in bee honey because its average content exceeded the maximum acceptable concentration. Additionally, this metal concentration was 60% higher in studied samples than allowable standard of lead content.doi:10.5219/134 

  7. Essential and toxic elements in meat of wild birds.

    Science.gov (United States)

    Roselli, Carla; Desideri, Donatella; Meli, Maria Assunta; Fagiolino, Ivan; Feduzi, Laura

    2016-01-01

    Essential and toxic elements were determined by inductively coupled plasma-atomic emission spectrometry (ICP-AES), mass spectrometry (MS), and atomic absorption (AS) in meat of 14 migratory birds originating from central and northern Europe to provide baseline data regarding game meat consumed in central Italy. In all samples analyzed, cobalt (Co) and chromium (Cr) (total) levels were meat. These findings indicate that elevated Pb concentrations in game ingested by humans may be a cause for concern.

  8. Co-ordinated research programme on nuclear techniques for toxic elements in foodstuffs

    International Nuclear Information System (INIS)

    1988-01-01

    The purpose of this Co-ordinated Research Programme (CRP) is to obtain comparative data on the existing elemental concentrations of potentially toxic elements in foodstuffs in various countries. This study is also intended to provide information on the dietary intakes of toxic elements as a means to detect potential health hazards to the population groups concerned. This study has important economic implications since trade in foodstuffs is dependent on compliance with regulations pertaining to maximum permissible concentrations. An important supplementary purpose of the programme is to help establish analytical expertise for work of this kind in individual countries, allowing such laboratories to offer analytical quality control services. The programme has centred its objective on the determination of important toxic elements such as As, Cd, Cr, Hg, Pb and Se, in addition to Cu, Sb and Zn, which are also potentially toxic but are generally of minor importance from the point of view of public health. The matrices of interest are foodstuffs which comprise together more than 50% of the average daily intake. Drinking water is also of high importance and should be analysed as well. Refs, figs and tabs

  9. Toxic element composition of multani mitti clay for nutritional safety

    International Nuclear Information System (INIS)

    Waheed, S.; Faiz, Y.; Rahman, S.; Siddique, N.

    2013-01-01

    Geophagy of multani mitti (MM) clay is very common in central Pakistan especially amongst women. It was therefore mandatory to establish baseline levels of toxic elements in this clay for its safe dietary consumption by consumers of different genders, age groups and physical states. Instrumental neutron activation analysis and atomic absorption spectrometry techniques were used to determine the nutritional safety of MM clay for oral intake. All quantified toxic elements were detected at trace levels with composition in the descending order; Pb > Br > As > Sb > Hg > Cd. Comparison of these elements in MM clay with other clays shows that As, Cd, and Pb, are lowest in MM clay while its Br and Hg contents are high. Highest weekly dietary intakes of As, Br, Cd, Hg, and Sb were found to be 18, 0.05, 1.6, 9.2 and 1.1 % of the respective recommended provisional tolerable weekly intakes. The findings of this study show that As, Br, Cd, Hg and Sb in MM clay are well below the tolerance levels. However its Pb concentration is very high and may pose health concerns. The data presented in this study can be used as national base level guideline for geophagy of MM clay by men, women (normal, pregnant and lactating) and children. (author)

  10. Contamination of potentially toxic elements in streams and water sediments in the area of abandoned Pb-Zn-Cu deposits (Hrubý Jesenník, Czech Republic)

    Science.gov (United States)

    Lichnovský, J.; Kupka, J.; Štěrbová, V.; Andráš, P.; Midula, P.

    2017-10-01

    The deposits, located in Nová Ves and Zlaté Hory were well known and important sources of metal ore in Jesenniky region in the past. Especially the one in Nová Ves, which is recently the most important hydrothermal deposit of venous type in the whole area. The mining activity, aimed on lead and zinc minerals was practically permanent here from the middle-age to 1959. On the other hand, the site in Zlaté Hory is the most important ore deposit in Czech Silesia. The non-venous types of polymetallic, copper and gold deposits, evolved in the complex of metamorphic devon rocks are located on south and south-west directions of the area. Long and permanent mining industry caused remarkable changes in the local environment, creating mine heaps and depressions. The probability, that dump material contains potentially toxic substances that could be possibly leaked into surrounded environment is high. This contribution presents the part of complex study results, aimed on evaluating of potential environmental impacts in above mentioned locations. It aims on contamination, caused by potentially toxic heavy metals (Pb, Zn, Cu, Ni, Fe, Mn, Co, Cd, Cr and As) at the sites, exposed to mining activity in the past. The study focus on the contamination of these sites and evaluate them as potential risk for surrounded environment.

  11. Natural radionuclides and toxic elements in transboundary rivers of Kazakhstan.

    Science.gov (United States)

    Solodukhin, V; Poznyak, V; Kabirova, G; Stepanov, V; Ryazanova, L; Lennik, S; Liventsova, A; Bychenko, A; Zheltov, D

    2015-06-01

    The paper reports on the study of radionuclide and elemental composition of water, bottom sediment and soil samples collected at the border areas of the following transboundary rivers in Kazakhstan: Chagan, Ural, Ilek, Tobol, Ayat, Irtysh, Emel, Ili, Tekes, Shu, Karabalta, Talas and Syrdarya. The employed analyses include the following methods: instrumental gamma-ray spectrometry, radiochemical analysis, neutron activation analysis, XRF and the inductively coupled plasma mass spectrometry (ICP-MS). Evidence of water environment contamination with radionuclides and toxic elements has been revealed in many of the studied rivers both in Kazakhstan and in adjacent countries. Transboundary transfer of the contaminants is most likely related to local industry (uranium mining and processing) and the presence of radioactive substances in the river basins. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Potential hazard by toxic substances in foods. Environmental protection

    Energy Technology Data Exchange (ETDEWEB)

    Unterhalt, B

    1974-01-01

    This paper reviews various toxic substances found in foods. These toxic substances include not only natural occurring toxins but also bacterial food poisons, pesticide residues, heavy metals, and food additives. The potential hazard of each toxic substance is discussed. 74 references.

  13. Levels of macroelements and toxic elements in herbal teas

    Directory of Open Access Journals (Sweden)

    Mihaljev Željko A.

    2015-01-01

    Full Text Available A total of 14 diverse herbal teas were examined, including: yarrow, basil, St.John’s wort, peppermint, horsetail, nettle, thyme, corn silk, hibiscus, marshmallow, chamomile, rosehip, heather and wild mint. The samples were prepared using the method of microwave digestion, and measurements were performed by the use of inductively coupled plasma mass spectrometry (Cd, Hg, Pb, As, Sb; atomic absorption spectrometry (Mg; emission flame photometry (Ca, K, Na and spectrophotometry (P. Intervals of variation (mg/kg for macroelements were: Ca (2738-35399; P (1545-6264; Mg (1647-7816; Na (293-10629 and K (9683-33985, and for toxic elements: Cd (0.014-0.645; Hg (<0.001- 0.017; Pb (0.064-1.340; As (0.030-0.544 and Sb (0.004-0.068. In the three samples (yarrow and two St.John’s wort samples measured cadmium concentration was higher than the maximum level for dried herbs, recommended by WHO. Ward's hierarchical clustering method was performed with the aim of grouping herbal teas by the amount of toxic elements. [Projekat Ministarstva nauke Republike Srbije, br. TR31071

  14. Equilibrium leaching of toxic elements from cement stabilized soil.

    Science.gov (United States)

    Voglar, Grega E; Leštan, Domen

    2013-02-15

    The toxicity characteristics leaching procedure (TCLP) is commonly used to assess the efficiency of solidification/stabilization (S/S) of pollutants in wastes, despite recent objections to this method. In this study, formulations of 7, 10, 15 and 20% (w/w) of calcium aluminate cement (CAC) and sulfate resistant Portland cement (SRC) were used for S/S of soil from brownfield contaminated with 43,149, 10,115, 7631, 6130, 90, 82 mg kg(-1) of Zn, Pb, Cu, As, Cd and Ni, respectively. CAC produced S/S soil monoliths of higher mechanical strength (up to 7.65 N mm(-2)). Mass-transfer analysis indicated surface wash-off as a mechanism of toxic elements release, and equilibrium leaching as a crucial parameter of S/S efficiency assessment. In the expected range of field soil pH after S/S (pH 7-9), the TCLP gave markedly different results than the multi-point pH equilibrium leaching method (using nine targeted pH values): up to 2953-, 94-, 483-, 1.3-, 27- and 1.5-times more Zn, Pb, Cu, As, Cd and Ni, respectively, was determined in the TCLP leachate. S/S with CAC reduced leachability of toxic elements more effectively than SRC. Our results indicate that, under given field conditions, the TCLP significantly underrates the efficiency of S/S of contaminated soil with cementitious binders. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Estimating children's exposure to toxic elements in contaminated toys and children's jewelry via saliva mobilization.

    Science.gov (United States)

    Guney, Mert; Nguyen, Alain; Zagury, Gerald J

    2014-09-19

    Children's potential for exposure to potentially toxic elements in contaminated jewelry and toys via mouth contact has not yet been fully evaluated. Various toys and jewelry (metallic toys and jewelry [MJ], plastic toys, toys with paint or coating, and brittle/pliable toys; n = 32) were tested using the saliva extraction (mouthing) compartment of the DIN and RIVM bioaccessibility protocols to assess As, Ba, Cd, Cr, Cu, Mn, Ni, Pb, Sb, and Se mobilization via saliva. Total concentrations of As, Cd, Cu, Ni, Pb, and Sb were found elevated in analyzed samples. Four metals were mobilized to saliva from 16 MJ in significant quantities (>1 μg for highly toxic Cd and Pb, >10 μg for Cu and Ni). Bioaccessible concentrations and hazard index values for Cd exceeded limit values, for young children between 6 mo- and 3 yr-old and according to both protocols. Total and bioaccessible metal concentrations were different and not always correlated, encouraging the use of bioaccessibility for more accurate hazard assessments. Bioaccessibility increased with increasing extraction time. Overall, the risk from exposure to toxic elements via mouthing was high only for Cd and for MJ. Further research on children's exposure to toxic elements following ingestion of toy or jewelry material is recommended.

  16. Mobilisation of toxic trace elements under various beach nourishments

    International Nuclear Information System (INIS)

    Pit, Iris R.; Dekker, Stefan C.; Kanters, Tobias J.; Wassen, Martin J.; Griffioen, Jasper

    2017-01-01

    To enhance protection and maintain wide beaches for recreation, beaches are replenished with sand: so-called beach nourishments. We compared four sites: two traditional beach nourishments, a mega beach nourishment and a reference without beach nourishment. Two sites contain calcareous-rich sand, whereas the other two sites have calcareous-poor sand. We aimed to understand hydrogeochemical processes to indicate factors critical for the mobility of trace elements at nourishments. We therefore analysed the chemical characteristics of sediment and pore water to ascertain the main drivers that mobilise toxic trace elements. With Dutch Quality Standards for soil and groundwater, the characteristics of sediment and pore water were compared to Target Values (the values at which there is a sustainable soil quality) and Intervention Values (the threshold above which the soil's functions are at risk). The pore water characteristics revealed that Target Values were regularly exceeded, especially for the nourishment sites and mainly for Mo (78%), Ni (24%), Cr (55%), and As (21%); Intervention Values for shallow groundwater were occasionally exceeded for As (2%), Cr (2%) and Zn (2%). The sediment characteristics did not exceed the Target Values and showed that trace elements were mainly present in the fine fraction of <150 μm. The oxidation of sulphide minerals such as pyrite resulted into the elevated concentration for all nourishment sites, especially when an unsaturated zone was present and influence of rainwater was apparent. To prevent trace metal mobility at a mega beach nourishment it is important to retain seawater influences and limit oxidation processes. In this respect, a shoreface nourishment is recommended rather than a mega beach nourishment with a thick unsaturated zone. Consequently, we conclude that whether a site is carbonate-rich or carbonate-poor is unimportant, as the influence of seawater will prevent decalcification, creating a low risk of

  17. Toxic elements in sediment from two water bodies near Brazilian Multipurpose Reactor: RMB installation area

    International Nuclear Information System (INIS)

    Silva, Tatiane B.S.C. da; Stellato, Thamiris B.; Monteiro, Lucilena R.; Marques, Joyce R.; Faustino, Mainara G.; Santos, Camila F.R.T.T.; Oliveira, Cintia C. de; Miranda, Gabrielle S.; Pires, Maria Aparecida F.; Cotrim, Marycel E.B.

    2017-01-01

    Aquatic ecosystems are directly affected by contaminants, such as, toxic elements that do not remain in sediment in a insoluble form. Anthropogenic and natural actions influence sediment dynamics that could lead to a potential contaminant accumulation. Therefore, to evaluate possible environmental impacts is,in many cases, mandatory. Environmental impact assessment studies are a licensing tool that seeks to control degradation activities, taking into account the legal and regulatory provisions and technical standards applicable to the case. The present study aims to evaluate the sediment quality in the area of influence of the Brazilian Multipurpose Nuclear Reactor (RMB) to be installed in the contiguous area of the Experimental Center of Aramar of the Technological Center of the Navy in São Paulo (CTMSP), located in the city of Iperó - SP. The potentially toxic elements As, Cd and Hg were analyzed by Graphite Furnace Atomic Absorption Spectrometry (GFAAS) and Cr, Cu, Ni and Zn by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). Results were compared with Canadian Council of Ministers of the Environment (CCME) guideline values (TEL and PEL) and the maximum permitted values of Resolution 454/12. These toxic elements (As, Cd, Hg, Cr, Cu, Ni and Zn) were found below maximum allowed concentrations from national and international legislation. This study provides support for RMB post-completion evaluations, in order to prevent these elements to exceed tolerated levels, ensuring ecological, social and economic values. (author)

  18. Toxic elements in sediment from two water bodies near Brazilian Multipurpose Reactor: RMB installation area

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Tatiane B.S.C. da; Stellato, Thamiris B.; Monteiro, Lucilena R.; Marques, Joyce R.; Faustino, Mainara G.; Santos, Camila F.R.T.T.; Oliveira, Cintia C. de; Miranda, Gabrielle S.; Pires, Maria Aparecida F.; Cotrim, Marycel E.B., E-mail: tatianebscs@live.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2017-07-01

    Aquatic ecosystems are directly affected by contaminants, such as, toxic elements that do not remain in sediment in a insoluble form. Anthropogenic and natural actions influence sediment dynamics that could lead to a potential contaminant accumulation. Therefore, to evaluate possible environmental impacts is,in many cases, mandatory. Environmental impact assessment studies are a licensing tool that seeks to control degradation activities, taking into account the legal and regulatory provisions and technical standards applicable to the case. The present study aims to evaluate the sediment quality in the area of influence of the Brazilian Multipurpose Nuclear Reactor (RMB) to be installed in the contiguous area of the Experimental Center of Aramar of the Technological Center of the Navy in São Paulo (CTMSP), located in the city of Iperó - SP. The potentially toxic elements As, Cd and Hg were analyzed by Graphite Furnace Atomic Absorption Spectrometry (GFAAS) and Cr, Cu, Ni and Zn by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). Results were compared with Canadian Council of Ministers of the Environment (CCME) guideline values (TEL and PEL) and the maximum permitted values of Resolution 454/12. These toxic elements (As, Cd, Hg, Cr, Cu, Ni and Zn) were found below maximum allowed concentrations from national and international legislation. This study provides support for RMB post-completion evaluations, in order to prevent these elements to exceed tolerated levels, ensuring ecological, social and economic values. (author)

  19. Trace and toxic elements in foodstuffs in Japan

    International Nuclear Information System (INIS)

    Muramatsu, Y.; Sumiya, M.; Yanagisawa, K.; Ohmomo, Y.

    1994-01-01

    Concentrations of trace elements in several foodstuffs collected in Japan were analyzed by neutron activation analysis (NAA), inductively-coupled plasma atomic emission spectrometry (ICP-AES) and anodic striping voltametry (ASV). The elements analyzed were as follows: Zn, Se, As, Hg, Cs, Cr, Co, Fe, Rb, Br and K by NAA; Mn, Ba, Sr, Mg, Ca, P, K, Zn, Cu and Fe by ICP-AES; and Pb, Cd, Cu and Zn by ASV. Because of the high consumption of rice in Japan, the focus of analysis was on this foodstuff. Concentrations of K, Mg, Mn, P and Zn in different polished rice samples were similar, whereas those of Br, Co, Cs, Rb and Se varied. Levels of toxic elements in polished rice were generally lower than those in other foodstuffs. The highest concentrations of As, Hg, Se and Zn were found in marine products, i.e.. Hijiki-algae (As: 59 mg/kg, dry), tuna (Hg: 1.1 mg/kg, dry), bonito (Se: 4.5 mg/kg, dry) and oysters (Zn: 350 mg/kg, dry). Dietary intakes of As, Ca, Cd, Cu, Fe, Hg, K, Mg, Mn, P, Pb, Se and Zn by Japanese were estimated by using these analytical results and published food consumption data in Japan. We have also identified the major sources of the elements in dietary intakes as follows: (a) about 90% of the As was derived from marine products (fish and seaweed); (b) about 70% of the Hg was derived from fish; (c) about 40-60% of the Cd and the Mn and 20-40% of the Zn, Cu and Mg was derived from rice; (d) selenium was mostly derived from fish, meat and eggs; (e) more than 20% of the Ca was derived from milk and milk products; (f) elements such as Fe, K, P and Pb was derived from different sorts of foodstuffs. (author). 7 refs, 1 fig., 7 tabs

  20. Pesticide Toxicity Index: a tool for assessing potential toxicity of pesticide mixtures to freshwater aquatic organisms

    Science.gov (United States)

    Nowell, Lisa H.; Norman, Julia E.; Moran, Patrick W.; Martin, Jeffrey D.; Stone, Wesley W.

    2014-01-01

    Pesticide mixtures are common in streams with agricultural or urban influence in the watershed. The Pesticide Toxicity Index (PTI) is a screening tool to assess potential aquatic toxicity of complex pesticide mixtures by combining measures of pesticide exposure and acute toxicity in an additive toxic-unit model. The PTI is determined separately for fish, cladocerans, and benthic invertebrates. This study expands the number of pesticides and degradates included in previous editions of the PTI from 124 to 492 pesticides and degradates, and includes two types of PTI for use in different applications, depending on study objectives. The Median-PTI was calculated from median toxicity values for individual pesticides, so is robust to outliers and is appropriate for comparing relative potential toxicity among samples, sites, or pesticides. The Sensitive-PTI uses the 5th percentile of available toxicity values, so is a more sensitive screening-level indicator of potential toxicity. PTI predictions of toxicity in environmental samples were tested using data aggregated from published field studies that measured pesticide concentrations and toxicity to Ceriodaphnia dubia in ambient stream water. C. dubia survival was reduced to ≤ 50% of controls in 44% of samples with Median-PTI values of 0.1–1, and to 0% in 96% of samples with Median-PTI values > 1. The PTI is a relative, but quantitative, indicator of potential toxicity that can be used to evaluate relationships between pesticide exposure and biological condition.

  1. Biochar application to hardrock mine tailings: Soil quality, microbial activity, and toxic element sorption

    Science.gov (United States)

    Kelly, Charlene N.; Peltz, Christopher D.; Stanton, Mark R.; Rutherford, David W.; Rostad, Colleen E.

    2014-01-01

    Waste rock piles from historic mining activities remain unvegetated as a result of metal toxicity and high acidity. Biochar has been proposed as a low-cost remediation strategy to increase soil pH and reduce leaching of toxic elements, and improve plant establishment. In this laboratory column study, biochar made from beetle-killed pine wood was assessed for utility as a soil amendment by mixing soil material from two mine sites collected near Silverton, Colorado, USA with four application rates of biochar (0%, 10%, 20%, 30% vol:vol). Columns were leached seven times over 65 days and leachate pH and concentration of toxic elements and base cations were measured at each leaching. Nutrient availability and soil physical and biological parameters were determined following the incubation period. We investigated the hypotheses that biochar incorporation into acidic mine materials will (1) reduce toxic element concentrations in leaching solution, (2) improve soil parameters (i.e. increase nutrient and water holding capacity and pH, and decrease compaction), and (3) increase microbial populations and activity. Biochar directly increased soil pH (from 3.33 to 3.63 and from 4.07 to 4.77 in the two materials) and organic matter content, and decreased bulk density and extractable salt content in both mine materials, and increased nitrate availability in one material. No changes in microbial population or activity were detected in either mine material upon biochar application. In leachate solution, biochar increased base cations from both materials and reduced the concentrations of Al, Cd, Cu, Pb, and Zn in leachate solution from one material. However, in the material with greater toxic element content, biochar did not reduce concentrations of any measured dissolved toxic elements in leachate and resulted in a potentially detrimental release of Cd and Zn into solution at concentrations above that of the pure mine material. The length of time of effectiveness and specific

  2. Determination of toxic elements in tobacco products by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Ahmad, S.; Chaudhry, M.S.; Qureshi, I.H.

    1979-01-01

    The concentration of 15 elements in various brands of cigarette tobacco and cigarette wrapping paper were determined using instrumental neutron activation analysis. The paper of some of the brands contains higher concentrations of toxic elements than the tobacco. The cigarette filter and the ash were also analyzed to determine the adsorption of toxic elements on the filter and their transference in smoke. The toxic effects of some of the elements have been briefly discussed. (author)

  3. Effects of biochar addition on toxic element concentrations in plants

    DEFF Research Database (Denmark)

    Peng, Xin; Deng, Yinger; Peng, Yan

    2018-01-01

    Consuming food contaminated by toxic elements (TEs) could pose a substantial risk to human health. Recently, biochar has been extensively studied as an effective soil ameliorant in situ because of its ability to suppress the phytoavailability of TEs. However, despite the research interest......, the effects of biochar applications to soil on different TE concentrations in different plant parts remain unclear. Here, we synthesize 1813 individual observations data collected from 97 articles to evaluate the effects of biochar addition on TE concentrations in plant parts. We found that (1) the experiment...... type, biochar feedstock and pyrolysis temperature all significantly decreased the TE concentration in plant parts; (2) the responses of Cd and Pb concentrations in edible and indirectly edible plant parts were significantly more sensitive to the effect of biochar than the Zn, Ni, Mn, Cr, Co and Cu...

  4. Mobilisation of toxic trace elements under various beach nourishments.

    Science.gov (United States)

    Pit, Iris R; Dekker, Stefan C; Kanters, Tobias J; Wassen, Martin J; Griffioen, Jasper

    2017-12-01

    To enhance protection and maintain wide beaches for recreation, beaches are replenished with sand: so-called beach nourishments. We compared four sites: two traditional beach nourishments, a mega beach nourishment and a reference without beach nourishment. Two sites contain calcareous-rich sand, whereas the other two sites have calcareous-poor sand. We aimed to understand hydrogeochemical processes to indicate factors critical for the mobility of trace elements at nourishments. We therefore analysed the chemical characteristics of sediment and pore water to ascertain the main drivers that mobilise toxic trace elements. With Dutch Quality Standards for soil and groundwater, the characteristics of sediment and pore water were compared to Target Values (the values at which there is a sustainable soil quality) and Intervention Values (the threshold above which the soil's functions are at risk). The pore water characteristics revealed that Target Values were regularly exceeded, especially for the nourishment sites and mainly for Mo (78%), Ni (24%), Cr (55%), and As (21%); Intervention Values for shallow groundwater were occasionally exceeded for As (2%), Cr (2%) and Zn (2%). The sediment characteristics did not exceed the Target Values and showed that trace elements were mainly present in the fine fraction of <150 μm. The oxidation of sulphide minerals such as pyrite resulted into the elevated concentration for all nourishment sites, especially when an unsaturated zone was present and influence of rainwater was apparent. To prevent trace metal mobility at a mega beach nourishment it is important to retain seawater influences and limit oxidation processes. In this respect, a shoreface nourishment is recommended rather than a mega beach nourishment with a thick unsaturated zone. Consequently, we conclude that whether a site is carbonate-rich or carbonate-poor is unimportant, as the influence of seawater will prevent decalcification, creating a low risk of mobilisation

  5. Active prey selection in two pelagic copepods feeding on potentially toxic and non-toxic dinoflagellates

    DEFF Research Database (Denmark)

    Schultz, Mette; Kiørboe, Thomas

    2009-01-01

    Grazing on two red tide dinoflagellates, the potentially toxic Karenia mikimotoi and the non-toxic Gyrodinium instriatum, was examined in two species of marine copepods, Pseudocalanus elongatus and Temora longicornis. Both copepods cleared K. mikimotoi at rates that were a little lower but compar......Grazing on two red tide dinoflagellates, the potentially toxic Karenia mikimotoi and the non-toxic Gyrodinium instriatum, was examined in two species of marine copepods, Pseudocalanus elongatus and Temora longicornis. Both copepods cleared K. mikimotoi at rates that were a little lower...

  6. Potential fluoride toxicity from oral medicaments: A review

    Directory of Open Access Journals (Sweden)

    Rizwan Ullah

    2017-08-01

    Full Text Available The beneficial effects of fluoride on human oral health are well studied. There are numerous studies demonstrating that a small amount of fluoride delivered to the oral cavity decreases the prevalence of dental decay and results in stronger teeth and bones. However, ingestion of fluoride more than the recommended limit leads to toxicity and adverse effects. In order to update our understanding of fluoride and its potential toxicity, we have described the mechanisms of fluoride metabolism, toxic effects, and management of fluoride toxicity. The main aim of this review is to highlight the potential adverse effects of fluoride overdose and poorly understood toxicity. In addition, the related clinical significance of fluoride overdose and toxicity has been discussed.

  7. Potential fluoride toxicity from oral medicaments: A review.

    Science.gov (United States)

    Ullah, Rizwan; Zafar, Muhammad Sohail; Shahani, Nazish

    2017-08-01

    The beneficial effects of fluoride on human oral health are well studied. There are numerous studies demonstrating that a small amount of fluoride delivered to the oral cavity decreases the prevalence of dental decay and results in stronger teeth and bones. However, ingestion of fluoride more than the recommended limit leads to toxicity and adverse effects. In order to update our understanding of fluoride and its potential toxicity, we have described the mechanisms of fluoride metabolism, toxic effects, and management of fluoride toxicity. The main aim of this review is to highlight the potential adverse effects of fluoride overdose and poorly understood toxicity. In addition, the related clinical significance of fluoride overdose and toxicity has been discussed.

  8. Co-ordinated research programme on nuclear techniques for toxic elements in foodstuffs

    International Nuclear Information System (INIS)

    1990-01-01

    This Co-ordinated Research Programme (CRP) was started by the Agency in 1985, within the framework of the Regional Cooperative Agreement for Research, Development and Training Related to Nuclear Science and Technology in the Asia and Pacific Region (RCA). Its main purpose has been to obtain comparative data on existing elemental concentrations of potentially toxic elements in foodstuffs in various Asian countries. The elements to be studied include the potentially most toxic trace elements (As, Cd, Hg, Pb, Se) as well as others of relevance to national monitoring programmes, such as Br, Cr, Cu, Fe, I, Mn, Sb, Tl, and Zn. An important supplementary purpose of the programme is to help establish analytical expertise for work of this kind in the individual countries. Scientists from several RCA Member States have participated in it, namely from Australia, Bangladesh, China, India, Indonesia, Japan, Malaysia, Pakistan, Thailand, and also from institutes in several countries outside the region, i.e., Argentina, Brazil, Jamaica and The Netherlands. This report summarizes the discussions that took place during the third and final Research Co-ordination Meeting (RCM) for the programme from 20-24 November 1989, in Jakarta, Indonesia. This document includes the progress reports presented by the participants as well as discussions and conclusions drawn from the meeting

  9. Occurrence and mobility of toxic elements in coals from endemic fluorosis areas in the Three Gorges Region, SW China.

    Science.gov (United States)

    Xiong, Yan; Xiao, Tangfu; Liu, Yizhang; Zhu, Jianming; Ning, Zengping; Xiao, Qingxiang

    2017-10-01

    Fluorine (F) is a topic of great interest in coal-combustion related endemic fluorosis areas. However, little extent research exists regarding the environmental geochemistry of toxic elements that are enriched in coals and coal wastes in traditional endemic fluorosis areas, particularly focusing on their occurrences and mobilities during the weathering-leaching processes of coals and coal wastes in the surface environment. This paper addressed the issue of toxic elements in coals and coal wastes in the Three Gorges Region, Southwest (SW) China, where endemic fluorosis has historically prevailed, and investigated the distribution, occurrence, mobility features, and associated potential health risks. For this purpose, a modified experiment combined with long-term humidity cell test and column leaching trial was applied to elucidate the mobility of toxic elements in coals and coal wastes. In addition, sequential chemical extraction (SCE) was used to ascertain the modes of occurrence of toxic elements. The results demonstrated that the contents of toxic elements in the study area followed the order: stone coals > gangues > coal balls > coals. Furthermore, modes of occurrence of toxic elements were obviously different in coals and coal wastes. For example, cadmium (Cd) was mainly associated with monosulfide fraction in coals, molybdenum (Mo) and arsenic (As) were mainly associated with carbonate and silicate in coal gangues and stone coals, chromium (Cr) mainly existed in silicate and insoluble matter in coal gangues and coal balls, thallium (Tl) mainly occurred in organic matter in stone coals and sulfide in coals, and the occurrence of antimony (Sb) varied with different kinds of samples. Moreover, a large amount of toxic elements released to the leachates during the weathering and leaching process, which might pollute the environment and threaten human health. Based on the geo-accumulation index (I geo ), single factor index (P i ) and Nemerow index (P N ), soils i n

  10. Historical Fluxes of Toxic Trace Elements and Associated Implications in the Salton Sea Basin

    Science.gov (United States)

    Odigie, K. O.; Hardisty, D. S.; Geraci, J. B.; Lyons, T. W.

    2017-12-01

    The Salton Sea is a polymictic, hypersaline lake that is predominantly sustained by wastewater and agricultural runoff from Mexico and the United States. It is a terminal lake that acts as a net sink for toxicants, which in addition to nutrients and increasing salinity, have dramatically transformed the lake over the past century. However, the impacts of these changes on the cycling and bio-accessibility of toxic elements and compounds and their associated human and environmental health implications are not well understood. This project aims to measure and model the fluxes of toxic elements, including selenium, lead, and mercury, in the lake over temporal and spatial scales by using geochemical data from the analysis of sediment cores, a pervasive salt crust, and the water column. The project also aims to elucidate the bio-accessibility and depositional environments of these elements. Preliminary results highlight two different oxygen concentration regimes in the lake: an increasingly anoxic condition in the bottom of the northern lobe and a seasonally variable oxygen deficiency in the bottom of the southern lobe. The deteriorating conditions at the lake could be exacerbated by a receding shoreline, which has already exposed several square kilometres of lake bed and is expected to continue as future inflows are diverted under the Quantification Settlement Agreement. Continued water conservation by Imperial Valley farmers and the increasing reuse of reclaimed water by Mexico are also expected to contribute to reduced inflows to the lake. Therefore, improved understanding of the cycling of toxic elements and their potential remobilization, including via wind entrainment (dust) associated with lake desiccation, will be valuable in protecting human and environmental health within the Salton Sea basin.

  11. The Potential Impacts on Aquatic Ecosystems from the Release of Trace Elements in Geothermal Fluids

    Energy Technology Data Exchange (ETDEWEB)

    Cushman, R.M.

    2000-03-14

    Geothermal energy will likely constitute an increasing percentage of our nation's future energy ''mix,'' both for electrical and nonelectrical uses. Associated with the exploitation of geothermal resources is the handling and disposal of fluids which contain a wide variety of potentially toxic trace elements. We present analyses of 14 trace elements found in hydrothermal fluids from various geothermal reservoirs in the western United States. The concentrations of these elements vary over orders of magnitude between reservoirs. Potential impacts are conservatively assessed on the basis of (1) toxicity to freshwater biota, and (2) bioaccumulation in food fish to the point where consumption might be hazardous to human health. Trace element concentrations generally range from benign levels to levels which might prove toxic to freshwater biota and contaminate food fisheries. We stress the need for site-specific analyses and careful handling of geothermal fluids in order to minimize potential impacts.

  12. radiochemical studies on the binding of humic materials with toxic elements and compounds

    International Nuclear Information System (INIS)

    Afifi, D.M.I.

    2001-01-01

    industrial nations produce several billion tons of waste every year . this figure will increase as both population and industrial growth increase. there are many kinds of waste, including refinery waste, which consists of hydrocarbons, heavy metals, metal catalysts and caustic solution; dredge spoils, some of which are highly polluted and cntains substances potentially hazardous to human health or the marine ecosystem; chemical waste such as insecticides, pesticides, other complex chemicals and heavy metals; radioactive waste and agricultural waste, anmd most of them are extremely hazardous and harmful to the marine ecosystem and its inhabitants.the aim of this thesis is to study the binding of humic materials with toxic elements and compounds

  13. Evaluation of potential toxicity from mercury in ayurvedic preparations

    International Nuclear Information System (INIS)

    Subramanian, Suresh; Maral, Anand; Mukherjee, Archana; Patankar, A.V.; Sarma, H.D.; Pillai, M.R.A.; Venkatesh, Meera

    2003-01-01

    Kajjali - which is a defined combination of purified elemental mercury and sulphur is used in Ayurvedic prescriptions. Kajjali is claimed to accelerate the therapeutic effects of various medicinal components. The exact role of Kajjali in this process is not as yet ascertained. Ayurveda literature claims that toxic effects of mercury are neutralised in the presence of sulphur. Mercury is known for its toxicity especially with respect to the nervous system and the amount of mercury used in the preparation of Kajjali is quite high. Hence, to study the pharmaco-kinetics of the preparation, bio-distribution studies using 203 Hg as a tracer in Kajjali were carried out in Wistar rats. (author)

  14. Determination of the Mineral Composition and Toxic Element Contents of Propolis by Near Infrared Spectroscopy

    Directory of Open Access Journals (Sweden)

    M. Inmaculada González-Martín

    2015-11-01

    Full Text Available The potential of near infrared spectroscopy (NIR with remote reflectance fiber-optic probes for determining the mineral composition of propolis was evaluated. This technology allows direct measurements without prior sample treatment. Ninety one samples of propolis were collected in Chile (Bio-Bio region and Spain (Castilla-León and Galicia regions. The minerals measured were aluminum, calcium, iron, potassium, magnesium, phosphorus, and some potentially toxic trace elements such as zinc, chromium, nickel, copper and lead. The modified partial least squares (MPLS regression method was used to develop the NIR calibration model. The determination coefficient (R2 and root mean square error of prediction (RMSEP obtained for aluminum (0.79, 53, calcium (0.83, 94, iron (0.69, 134 potassium (0.95, 117, magnesium (0.70, 99, phosphorus (0.94, 24 zinc (0.87, 10 chromium (0.48, 0.6 nickel (0.52, 0.7 copper (0.64, 0.9 and lead (0.70, 2 in ppm. The results demonstrated that the capacity for prediction can be considered good for wide ranges of potassium, phosphorus and zinc concentrations, and acceptable for aluminum, calcium, magnesium, iron and lead. This indicated that the NIR method is comparable to chemical methods. The method is of interest in the rapid prediction of potentially toxic elements in propolis before consumption.

  15. Potential fluoride toxicity from oral medicaments: A review

    OpenAIRE

    Rizwan Ullah; Muhammad Sohail Zafar; Nazish Shahani

    2017-01-01

    The beneficial effects of fluoride on human oral health are well studied. There are numerous studies demonstrating that a small amount of fluoride delivered to the oral cavity decreases the prevalence of dental decay and results in stronger teeth and bones. However, ingestion of fluoride more than the recommended limit leads to toxicity and adverse effects. In order to update our understanding of fluoride and its potential toxicity, we have described the mechanisms of fluoride metabolism, tox...

  16. Evaluation of an approach for the characterization of reactive and available pools of 20 potentially toxic elements in soils: part II--solid-solution partition relationships and ion activity in soil solutions.

    Science.gov (United States)

    Rodrigues, S M; Henriques, B; Ferreira da Silva, E; Pereira, M E; Duarte, A C; Groenenberg, J E; Römkens, P F A M

    2010-12-01

    To assess environmental risks related to contaminants in soil it is essential to predict the available pool of inorganic contaminants at regional scales, accounting for differences between soils from variable geologic and climatic origins. An approach composed of a well-accepted soil extraction procedure (0.01 M CaCl(2)) and empirical Freundlich-type models in combination with mechanistically based models which to date have been used only in temperate regions was applied to 136 soils from a South European area and evaluated for its possible general use in risk assessment. Empirical models based on reactive element pools and soil properties (pH, organic carbon, clay, total Al, Fe and Mn) provided good estimations of available concentrations for a broad range of contaminants including As, Ba, Cd, Co, Cu, Hg, Mo, Ni, Pb, Sb, Se and Zn (r(2): 0.46-0.89). The variation of the pools of total Al in soils expressed the sorptive capacity of aluminosilicates and Al oxides at the surfaces and edges of clay minerals better than the actual variability of clay contents. The approach has led to recommendations for further research with particular emphasis on the impact of clay on the solubility of As and Sb, on the mechanisms controlling Cr and U availability and on differences in binding properties of soil organic matter from different climatic regions. This study showed that such approach may be included with a good degree of certainty for first step risk assessment procedures to identify potential risk areas for leaching and uptake of inorganic contaminants in different environmental settings. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Acute aquatic toxicity and biodegradation potential of biodiesel fuels

    International Nuclear Information System (INIS)

    Haws, R.A.; Zhang, X.; Marshall, E.A.; Reese, D.L.; Peterson, C.L.; Moeller, G.

    1995-01-01

    Recent studies on the biodegradation potential and aquatic toxicity of biodiesel fuels are reviewed. Biodegradation data were obtained using the shaker flask method observing the appearance of CO 2 and by observing the disappearance of test substance with gas chromatography. Additional BOD 5 and COD data were obtained. The results indicate the ready biodegradability of biodiesel fuels as well as the enhanced co-metabolic biodegradation of biodiesel and petroleum diesel fuel mixtures. The study examined reference diesel, neat soy oil, neat rape oil, and the methyl and ethyl esters of these vegetable oils as well as various fuel blends. Acute toxicity tests on biodiesel fuels and blends were performed using Oncorhynchus mykiss (Rainbow Trout) in a static non-renewal system and in a proportional dilution flow replacement system. The study is intended to develop data on the acute aquatic toxicity of biodiesel fuels and blends under US EPA Good Laboratory Practice Standards. The test procedure is designed from the guidelines outlined in Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms and the Fish Acute Aquatic Toxicity Test guideline used to develop aquatic toxicity data for substances subject to environmental effects test regulations under TSCA. The acute aquatic toxicity is estimated by an LC50, a lethal concentration effecting mortality in 50% of the test population

  18. Validating potential toxicity assays to assess petroleum hydrocarbon toxicity in polar soil.

    Science.gov (United States)

    Harvey, Alexis Nadine; Snape, Ian; Siciliano, Steven Douglas

    2012-02-01

    Potential microbial activities are commonly used to assess soil toxicity of petroleum hydrocarbons (PHC) and are assumed to be a surrogate for microbial activity within the soil ecosystem. However, this assumption needs to be evaluated for frozen soil, in which microbial activity is limited by liquid water (θ(liquid)). Influence of θ(liquid) on in situ toxicity was evaluated and compared to the toxicity endpoints of potential microbial activities using soil from an aged diesel fuel spill at Casey Station, East Antarctica. To determine in situ toxicity, gross mineralization and nitrification rates were determined by the stable isotope dilution technique. Petroleum hydrocarbon-contaminated soil (0-8,000 mg kg(-1)), packed at bulk densities of 1.4, 1.7, and 2.0 g cm(-3) to manipulate liquid water content, was incubated at -5°C for one, two, and three months. Although θ(liquid) did not have a significant effect on gross mineralization or nitrification, gross nitrification was sensitive to PHC contamination, with toxicity decreasing over time. In contrast, gross mineralization was not sensitive to PHC contamination. Toxic response of gross nitrification was comparable to potential nitrification activity (PNA) with similar EC25 (effective concentration causing a 25% effect in the test population) values determined by both measurement endpoints (400 mg kg(-1) for gross nitrification compared to 200 mg kg(-1) for PNA), indicating that potential microbial activity assays are good surrogates for in situ toxicity of PHC contamination in polar regions. Copyright © 2011 SETAC.

  19. Application of neutron activation analysis technique to the determination of toxic elements in Pakistani foodstuffs

    International Nuclear Information System (INIS)

    Qureshi, I.H.; Mannan, A.; Zaidi, J.H.; Arif, M.; Khalid, N.

    1988-01-01

    In view of well defined physiochemical roles of essential elements and adverse effects of toxic elements, it is important to obtain fundamental data on trace element nutrition, inadequacy, imbalances and toxicity. In order to achieve these objectives, a research project was initiated in 1985 with the collaboration of the IAEA. Three representative diet samples of the inhabitants of Rawalpindi/Islamabad areas were prepared according to the family income and food habits. Twenty one elements were analysed by NAA and AAS. The dietary intake values were estimated and compared with the suggested daily requirement or tolerance limits. In general, it has been observed that the diets are an adequate source of nutrient elements. The toxic element levels are well below the tolerance limits. (author). 20 refs, 4 figs, 7 tabs

  20. Nuclear techniques for toxic elements in foodstuffs. Report on an IAEA co-ordinated research programme

    International Nuclear Information System (INIS)

    1994-01-01

    The document includes 10 final reports on the IAEA Co-ordinated Research Programme on Nuclear Techniques for Toxic Elements in Foodstuffs. A separate abstract was prepared for each report. Refs, figs and tabs

  1. INAA and ETAAS of toxic element content of fruits harvested and consumed in Pakistan

    International Nuclear Information System (INIS)

    Waheed, S.; Siddique, N.; Rahman, A.; Zaidi, J.H.; Ahmad, S.

    2004-01-01

    Instrumental neutron activation analysis (INAA) and electro-thermal atomic absorption spectrometry (ETAAS) were employed to determine the toxic elements in fourteen fruits harvested in Pakistan. As, Br, Hg, Sb and Se were determined using INAA. Cadmium and Pb were determined using ETAAS. The intake levels of all toxic elements have been calculated. The data show that dates supply the maximum amount of most of the toxic elements. Peels of apple and pear have also been investigated and were found to contain higher concentration of toxic elements than their edible parts. The reliability of the techniques has been established by the use of standard reference materials. This study shows that all investigated fruits cultivated and consumed in Pakistan are safe for human consumption. (author)

  2. Nuclear techniques for toxic elements in foodstuffs. Report on an IAEA co-ordinated research programme

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The document includes 10 final reports on the IAEA Co-ordinated Research Programme on Nuclear Techniques for Toxic Elements in Foodstuffs. A separate abstract was prepared for each report. Refs, figs and tabs.

  3. Determination of toxic elements in tobacco by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Yaprak, G.; Cam, N.F.

    1998-01-01

    The concentration of toxic elements in the tobacco of six different brands of domestic and two brands of imported cigarettes heavily smoked in Turkey were determined using instrumental neutron activation analysis (INAA)

  4. Environmental toxicity and radioactivity assessment of a titanium-processing residue with potential for environmental use.

    Science.gov (United States)

    Wendling, Laura A; Binet, Monique T; Yuan, Zheng; Gissi, Francesca; Koppel, Darren J; Adams, Merrin S

    2013-07-01

    Thorough examination of the physicochemical characteristics of a Ti-processing residue was undertaken, including mineralogical, geochemical, and radiochemical characterization, and an investigation of the environmental toxicity of soft-water leachate generated from the residue. Concentrations of most metals measured in the leachate were low; thus, the residue is unlikely to leach high levels of potentially toxic elements on exposure to low-ionic strength natural waters. Relative to stringent ecosystem health-based guidelines, only chromium concentrations in the leachate exceeded guideline concentrations for 95% species protection; however, sulfate was present at concentrations known to cause toxicity. It is likely that the high concentration of calcium and extreme water hardness of the leachate reduced the bioavailability of some elements. Geochemical modeling of the leachate indicated that calcium and sulfate concentrations were largely controlled by gypsum mineral dissolution. The leachate was not toxic to the microalga Chlorella sp., the cladoceran Ceriodaphnia dubia, or the estuarine bacterium Vibrio fischeri. The Ti-processing residue exhibited an absorbed dose rate of 186 nGy/h, equivalent to an annual dose of 1.63 mGy and an annual effective dose of 0.326 mGy. In summary, the results indicate that the Ti-processing residue examined is suitable for productive use as an environmental amendment following 10 to 100 times dilution to ameliorate potential toxic effects due to chromium or sulfate. Copyright © 2013 SETAC.

  5. Towards bio monitoring of toxic (lead) and essential elements in ...

    African Journals Online (AJOL)

    The degree of lead intoxication in all the children studied was low; The established reference intervals for Cu, Zn, Ca and Mg provide an important guidance for the reasonable supplementation of essential elements during different age groups. Keywords: prenatal biomonitoring, copper, zinc, calcium, magnesium, iron, lead ...

  6. Determination of essential and toxic elements in commercially available fruit juices

    International Nuclear Information System (INIS)

    Yawar, W.; Rahman, S.

    1997-01-01

    A study has been carried out for the determination of Cr, Pb, Fe in different varieties of commercially available packed fruit juices like apple, mango orange and mixed flavour by using flame and electrothermal atomic absorption spectrophotometric technique. These juices are available at a reasonable price and are commonly used by public. Like many other articles the baseline levels of essential and toxic elements in Pakistani fruit juices are generally not available. It was, therefore, considered to monitor the levels of essential as well toxic elements in the juices. Hence a variety of juices was collected from local market and measurements of the above mentioned elements were made. (author)

  7. Study on essential and toxic elements intake from drinking of Chinese tea

    International Nuclear Information System (INIS)

    Hai-Qing Zhang; Bang-Fa Ni; Wei-Zhi Tian; Gui-Ying Zhang; Dong-Hui Huang; Cun-Xiong Liu; Cai-Jin Xiao; Hong-Chao Sun; Chang-Jun Zhao

    2011-01-01

    Twenty different brands of Chinese tea were analyzed for multiple trace elements, including some essential and toxic elements, by neutron activation analysis (NAA). A comparison among tea brands from China, India, US and other countries was made for the ranges and averages of concentrations for Na, K, Mn, Cu, and Br. It has been observed that the trace element contents in tea leaves are largely dependent upon the soil and the environment where the tea grows. Chinese tea is rich in Mn and Cu comparing with those of other counties surveyed, but is indigent in Na. The transference ratio for each element determined (i.e., the fraction of an element in tea leave transferred into solution when tea is leached by percolation) is also reported. Adult daily intakes of some essential and toxic elements from tea drinking were also estimated. (author)

  8. Determination of essential and toxic elements in clay soil commonly consumed by pregnant women in Tanzania

    International Nuclear Information System (INIS)

    Mwalongo, D.; Mohammed, N.K.

    2013-01-01

    A habit of eating clay soil especially among pregnant women is a common practice in Tanzania. This practice known as geophagy might introduce toxic elements in the consumer's body to endanger the health of the mother and her child. Therefore it is very important to have information on the elemental composition of the eaten soil so as to assess the safety nature of the habit. In this study 100 samples of clay soil, which were reported to be originating from five regions in Tanzania and are consumed by pregnant women were analyzed to determine their levels of essential and toxic elements. The analysis was carried out using energy dispersive X-ray fluorescent technique (EDXRF) of Tanzania Atomic Energy Commission, Arusha. Essential elements Fe, Zn, Cu, Se and Mn and toxic elements As, Pb, Co, Ni, U and Th were detected in concentrations above WHO permissible limits in some of the samples. The results from this study show that the habit of eating soil is exposing the pregnant mothers and their children to metal toxicity which is detrimental to their health. Hence, further actions should be taken to discourage the habit of eating soil at all levels. - Highlights: • We assessed exposure of heavy metals to pregnant mothers who consume geophagic soil. • We analyzed 100 samples of soil originated in Tanzania. • The technique used was energy dispersive X-ray fluorescent. • Essential and toxic elements were detected in concentrations above WHO limits. • Hence, geophagy is exposing pregnant mothers and their children to metal toxicity

  9. Determination of Toxic Elements in Cigarettes Smoke, Using Neutron Activation Method

    International Nuclear Information System (INIS)

    Mellawati, J; Chichester D

    1996-01-01

    The purpose of the experiments was to get information of the toxic elements content in cigarettes smoke which could be used to estimate the cigarettes smoke contribution in air pollution. The sample were cigarette smoke from the mixture of 7 popular brand cigarettes collected by The Centre Cigarettes Research, University of kentucky, USA. Neutron activation was done in the Hoger Onderwijs Reactor, IRI Delft Netherlands, using thermal neutron flux 4.8 x 10 16n cm-2 second-1 for 4 hours. Result of the analysis showed that the cigarettes smoke contained Cd, As, Sb, and Br which are toxic elements

  10. Levels of toxic elements in soils of abandoned waste dump site ...

    African Journals Online (AJOL)

    Of all the five toxic elements studied, the highest mean concentration (mg/kg) of 133.74±10.60 was recorded for Pb followed by Cr (22.27±3.03), Ni (8.14±0.33) and As (5.97±0.32) in the soils while the least mean concentration of 1.64±0.11 was recorded for Cd. The toxic elements were examined for dependency upon some ...

  11. Determination of toxic elements in foodstuffs from local market in Jakarta

    International Nuclear Information System (INIS)

    Surtipanti Sadjirun; Suwirma Safri; Endang Rosadi; Yumiarti; Yune Mellawati; Saifudin Simon; Minarni Ak

    1988-01-01

    The main foodstuffs of Indonesian people are, rice, bean, corn, wheat, vegetables, fruits, meat, fish, milk, tea, and coffee. The problem of the control of toxic elements in foodstuffs have not been carried out such as many countries, so there is no established maximum permissible concentration in the Indonesian national legislation, and that is why Indonesia participates in the Co-ordinated Research Program organized by the International Atomic Energy Agency. This program will allow exchange of experience among the participants, especially in the determination of low level toxic elements in foodstuffs using nuclear techniques. 6 refs, 9 tabs

  12. Determination of toxic and essential element concentrations in foodstuffs from local market

    International Nuclear Information System (INIS)

    Surtipanti; Suwirma; Yumiarti; June, M.; Syaifudin, S.

    1989-01-01

    Determination of toxic and essential elements concentrations in foodstuffs from local market in Jakarta. Concentration of toxic essential elements, such as, As, Hg, Cr, Pb, Cu, and Zn, in rice, corn bean, small green peas, wheat, vegetables, fruits, tea and coffee, have been determined. As, Hg, Sb, Cr, Se, and Zn, were determined using neutron activation analysis, after being irradiated at TRIGA-MARK II reactor, while Pb and Cu were determined using atomic absorption spectrophotometer. The results obtained were lower than the maximum permissible concentration allowed. (author). 8 refs

  13. Oral bioaccessibility of toxic and essential elements in raw and cooked commercial seafood species available in European markets

    DEFF Research Database (Denmark)

    Alves, Ricardo N.; Maulvault, Ana L.; Barbosa, Vera L.

    2017-01-01

    The oral bioaccessibility of several essential and toxic elements was investigated in raw and cooked commercially available seafood species from European markets. Bioaccessibility varied between seafood species and elements. Methylmercury bioaccessibility varied between 10 (octopus) and 60...... % (monkfish). Arsenic (> 64%) was the toxic element showing the highest bioaccessibility. Concerning essential elements bioaccessibility in raw seafood, selenium (73 %) and iodine (71 %) revealed the highest percentages. The bioaccessibility of elements in steamed products increased or decreased according...

  14. Determination of essential and toxic elements in clay soil commonly consumed by pregnant women in Tanzania

    Science.gov (United States)

    Mwalongo, D.; Mohammed, N. K.

    2013-10-01

    A habit of eating clay soil especially among pregnant women is a common practice in Tanzania. This practice known as geophagy might introduce toxic elements in the consumer's body to endanger the health of the mother and her child. Therefore it is very important to have information on the elemental composition of the eaten soil so as to assess the safety nature of the habit. In this study 100 samples of clay soil, which were reported to be originating from five regions in Tanzania and are consumed by pregnant women were analyzed to determine their levels of essential and toxic elements. The analysis was carried out using energy dispersive X-ray fluorescent technique (EDXRF) of Tanzania Atomic Energy Commission, Arusha. Essential elements Fe, Zn, Cu, Se and Mn and toxic elements As, Pb, Co, Ni, U and Th were detected in concentrations above WHO permissible limits in some of the samples. The results from this study show that the habit of eating soil is exposing the pregnant mothers and their children to metal toxicity which is detrimental to their health. Hence, further actions should be taken to discourage the habit of eating soil at all levels.

  15. Toxic elements and associations with hematology, plasma biochemistry, and protein electrophoresis in nesting loggerhead sea turtles (Caretta caretta) from Casey Key, Florida.

    Science.gov (United States)

    Perrault, Justin R; Stacy, Nicole I; Lehner, Andreas F; Poor, Savannah K; Buchweitz, John P; Walsh, Catherine J

    2017-12-01

    Toxic elements (arsenic, cadmium, lead, mercury, selenium, thallium) are a group of contaminants that are known to elicit developmental, reproductive, general health, and immune system effects in reptiles, even at low concentrations. Reptiles, including marine turtles, are susceptible to accumulation of toxic elements due to their long life span, low metabolic rate, and highly efficient conversion of prey into biomass. The objectives of this study were to (1) document concentrations of arsenic, cadmium, lead, mercury, selenium, and thallium in whole blood and keratin from nesting loggerhead sea turtles (Caretta caretta) from Casey Key, Florida and document correlations thereof and (2) correlate whole blood toxic element concentrations to various hematological and plasma biochemistry analytes. Baselines for various hematological and plasma analytes and toxic elements in whole blood and keratin (i.e., scute) in nesting loggerheads are documented. Various correlations between the toxic elements and hematological and plasma biochemistry analytes were identified; however, the most intriguing were negative correlations between arsenic, cadmium, lead, and selenium with and α- and γ-globulins. Although various extrinsic and intrinsic variables such as dietary and feeding changes in nesting loggerheads need to be considered, this finding may suggest a link to altered humoral immunity. This study documents a suite of health variables of nesting loggerheads in correlation to contaminants and identifies the potential of toxic elements to impact the overall health of nesting turtles, thus presenting important implications for the conservation and management of this species. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Potentials and limitations of hazard indices for the determination of risk potentials of disposed toxic wastes

    International Nuclear Information System (INIS)

    Kirchner, Gerald

    1989-01-01

    Hazard indices are often used for the determination of risk potentials arising from the geological disposal of toxic wastes. They are based on simplified models for the calculation of potential health effects caused by the wastes. The attractiveness of hazard indices lies in their simplicity which nevertheless results in reliable data on necessary isolation times and the most toxic nuclides of a waste. They also make possible comparisons of the potential risks of different wastes. After a discussion of the processes that control the behavior of toxic wastes in the environment after a failure of the geological barriers, a new hazard index is presented. Originally developed for nuclear wastes, it is the first which involves the joint consideration of the composition of a waste, the probability for transport of waste nuclides to man, their toxicity, and the time-dependent changes of the risk potentials which are caused by radioactive buildup and decay processes after the waste has entered the biosphere. The new hazard index makes possible the calculation of risk potentials at a given time of release and time period of concern thereafter. Sample calculations for different nuclear wastes show the importance of the model improvements on resulting time-dependent risk potentials. Applicability of the new hazard index to non-nuclear wastes is described. Potentials and limitations of comparative risk assessments using hazard indices are discussed. (author)

  17. Leaching of the potentially toxic pollutants from composites based on waste raw material

    Directory of Open Access Journals (Sweden)

    Terzić Anja

    2012-01-01

    Full Text Available The disposal of the fly ash generated in coal based power-plants may pose a significant risk to the environment due to the possible leaching of hazardous pollutants, such as toxic metals. Also, there is a risk of leaching even when fly ash is built-in the construction composites. Fly ashes from various landfills were applied in several composite samples (mortar, concrete and brick without any physical or thermal pre-treatment. The leachability of the potentially toxic pollutants from the fly ash based products was investigated. The leaching behavior and potential environmental impact of the 11 potentially hazardous elements was tracked: Pb, Cd, Zn, Cu, Ni, Cr, Hg, As, Ba, Sb and Se. A detailed study of physico-chemical characteristics of the fly ash, with accent on trace elements and the chemical composition investigation is included. Physico/chemical properties of fly ash were investigated by means of X-ray fluorescence, differential thermal analysis and X-ray diffraction methods. Scanning electron microscope was used in microstructural analysis. The results show that most of the elements are more easily leachable from the fly ash in comparison with the fly ash based composites. The leaching of investigated pollutants is within allowed range thus investigated fly ashes can be reused in construction materials production.

  18. Toxic Elements in Different Medicinal Plants and the Impact on Human Health.

    Science.gov (United States)

    Brima, Eid I

    2017-10-11

    Local medicinal plants from Madina, Saudi Arabia, are used to cure various diseases. However, some can cause adverse health effects. Five different medicinal plants were collected in the city of Madina: mahareeb ( Cymbopogon ), sheeh ( Artemisia ), harjal ( Cynanchum argel delile ), nabipoot ( Equisetum ), and kafmariam ( Vitex agnus-castus ). In total, four toxic elements including Al, Pb, As, and Cd were analyzed using inductively coupled plasma mass spectrometry (ICP-MS). The range of recoveries fell between 86.1 and 90.6% for all measured elements. Al levels were the highest of any of the studied elements in all plant samples, with Cymbopogon showing the highest levels. The range of concentrations of Al was 156-1609 mg/kg. Cd appeared at the lowest levels in all plants samples, with Vitex agnus-castus containing this element at the highest levels. Cd concentrations were in the range of 0.01-0.10 mg/kg. A washing process lowered the toxic elements in all plants; average % recoveries were Al (47.32%), As (59.1%), Cd (62.03%), and Pb (32.40%). The calculated human health risk assessment in one dose for toxic elements in all plants was as follows: Al (1.33 × 10 -3 -5.57 × 10 -2 mg/kg.bw), Pb (0-8.86 × 10 -5 mg/kg.bw), As (3.43 × 10 -7 -1.33 × 10 -5 mg/kg.bw), and Cd (0-3.14 × 10 -6 mg/kg.bw). Medicinal plants are a source of exposure to toxic elements. However, none of the plants in this study exceeded the daily guideline set by the WHO for any element based on conventional use by the local population. We may cautiously conclude that these medicinal plants pose no risk to users based on conventional use.

  19. Toxic Elements in Different Medicinal Plants and the Impact on Human Health

    Science.gov (United States)

    Brima, Eid I.

    2017-01-01

    Local medicinal plants from Madina, Saudi Arabia, are used to cure various diseases. However, some can cause adverse health effects. Five different medicinal plants were collected in the city of Madina: mahareeb (Cymbopogon), sheeh (Artemisia), harjal (Cynanchum argel delile), nabipoot (Equisetum), and kafmariam (Vitex agnus-castus). In total, four toxic elements including Al, Pb, As, and Cd were analyzed using inductively coupled plasma mass spectrometry (ICP-MS). The range of recoveries fell between 86.1 and 90.6% for all measured elements. Al levels were the highest of any of the studied elements in all plant samples, with Cymbopogon showing the highest levels. The range of concentrations of Al was 156–1609 mg/kg. Cd appeared at the lowest levels in all plants samples, with Vitex agnus-castus containing this element at the highest levels. Cd concentrations were in the range of 0.01–0.10 mg/kg. A washing process lowered the toxic elements in all plants; average % recoveries were Al (47.32%), As (59.1%), Cd (62.03%), and Pb (32.40%). The calculated human health risk assessment in one dose for toxic elements in all plants was as follows: Al (1.33 × 10−3–5.57 × 10−2 mg/kg.bw), Pb (0–8.86 × 10−5 mg/kg.bw), As (3.43 × 10−7–1.33 × 10−5 mg/kg.bw), and Cd (0–3.14 × 10−6 mg/kg.bw). Medicinal plants are a source of exposure to toxic elements. However, none of the plants in this study exceeded the daily guideline set by the WHO for any element based on conventional use by the local population. We may cautiously conclude that these medicinal plants pose no risk to users based on conventional use. PMID:29019913

  20. Toxic Elements in Different Medicinal Plants and the Impact on Human Health

    Directory of Open Access Journals (Sweden)

    Eid I. Brima

    2017-10-01

    Full Text Available Local medicinal plants from Madina, Saudi Arabia, are used to cure various diseases. However, some can cause adverse health effects. Five different medicinal plants were collected in the city of Madina: mahareeb (Cymbopogon, sheeh (Artemisia, harjal (Cynanchum argel delile, nabipoot (Equisetum, and kafmariam (Vitex agnus-castus. In total, four toxic elements including Al, Pb, As, and Cd were analyzed using inductively coupled plasma mass spectrometry (ICP-MS. The range of recoveries fell between 86.1% and 90.6% for all measured elements. Al levels were the highest of any of the studied elements in all plant samples, with Cymbopogon showing the highest levels. The range of concentrations of Al was 156–1609 mg/kg. Cd appeared at the lowest levels in all plants samples, with Vitex agnus-castus containing this element at the highest levels. Cd concentrations were in the range of 0.01–0.10 mg/kg. A washing process lowered the toxic elements in all plants; average % recoveries were Al (47.32%, As (59.1%, Cd (62.03%, and Pb (32.40%. The calculated human health risk assessment in one dose for toxic elements in all plants was as follows: Al (1.33 × 10−3–5.57 × 10−2 mg/kg.bw, Pb (0–8.86 × 10−5 mg/kg.bw, As (3.43 × 10−7–1.33 × 10−5 mg/kg.bw, and Cd (0–3.14 × 10−6 mg/kg.bw. Medicinal plants are a source of exposure to toxic elements. However, none of the plants in this study exceeded the daily guideline set by the WHO for any element based on conventional use by the local population. We may cautiously conclude that these medicinal plants pose no risk to users based on conventional use.

  1. Studies of toxic elements in Bibiani mining area using neutron activation analysis

    International Nuclear Information System (INIS)

    Quarshie, E.

    2008-06-01

    The concentrations of the toxic elements As, Cd, Cr and Hg and the potentially toxic and essential elements Al, Br, Ca, Cl, Cu, K, La, Mg, Mn, Na, Sb, Ti, V and Zn in water, soil, tailings, plantain and cassava samples collected from the Bibiani mining area have been measured using instrumental neutron activation analysis (INAA) and preconcentration neutron activation analysis (PNAA). The PNAA method developed involving the use of dithizone as a chelating agent was able to conveniently and efficiently measure concentrations as low as 0.004 mg/kg of Cd in the plantain sample coded HP and 0.002 mg/kg of Hg in the cassava sample coded BSC. INAA could not conveniently measure the concentrations of Cd and Hg in the above samples. All samples were irradiated with thermal neutrons using the Ghana Research Reactor - 1 (GHARR-l) facility. The pH and Eh of the water, soil and tailings were also measured as well as the moisture content of the soil, tailings, plantain and the cassava samples. The pH values of the water samples were in the range 3.9 - 5.93. All these values were below the lower limit of the range 6.5 - 8.5, the WHO pH range for good quality drinking water, indicating pollution. Varying concentrations of the elements AI, As, Br, Ca, Cd, CI, Cr, Cu, Hg, K, La, Mg, Mn, Na, Sb, Ti, V and Zn were measured in the various samples. The concentrations of As measured were in the ranges, 0.04 - 6.08 mg/L in the water samples, 4.6 xl 0-5 - 0.35 % in the soil and tailings and 0.17 - 0.39 mg/kg in the plantain and cassava. The concentrations of cadmium were in the ranges, 0.35 - 2.80 mg/L in water, 0.69 - 4.15 mg/kg in the soil and tailings and 0.04 - 0.21mg/kg in the plantain and cassava. Mercury was in the ranges, 0.34 - 4.93 mg/L in the water, 0.01 - 0.06 mg/kg in the soil and tailings and 0.01 - 0.59 mg/kg in the plantain and cassava. Chromium was 19 - 87 mg/kg in the tailings. In most of the water samples the concentrations of the toxic elements As, Cd and Hg were above

  2. Screen-Printed Electrodes Modified with "Green" Metals for Electrochemical Stripping Analysis of Toxic Elements.

    Science.gov (United States)

    Economou, Anastasios

    2018-03-29

    This work reviews the field of screen-printed electrodes (SPEs) modified with "green" metals for electrochemical stripping analysis of toxic elements. Electrochemical stripping analysis has been established as a useful trace analysis technique offering many advantages compared to competing optical techniques. Although mercury has been the preferred electrode material for stripping analysis, the toxicity of mercury and the associated legal requirements in its use and disposal have prompted research towards the development of "green" metals as alternative electrode materials. When combined with the screen-printing technology, such environment-friendly metals can lead to disposable sensors for trace metal analysis with excellent operational characteristics. This review focuses on SPEs modified with Au, Bi, Sb, and Sn for stripping analysis of toxic elements. Different modification approaches (electroplating, bulk modification, use of metal precursors, microengineering techniques) are considered and representative applications are described. A developing related field, namely biosensing based on stripping analysis of metallic nanoprobe labels, is also briefly mentioned.

  3. Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION

    Directory of Open Access Journals (Sweden)

    Neenu Singh

    2010-09-01

    Full Text Available Superparamagnetic iron oxide nanoparticles (SPION are being widely used for various biomedical applications, for example, magnetic resonance imaging, targeted delivery of drugs or genes, and in hyperthermia. Although, the potential benefits of SPION are considerable, there is a distinct need to identify any potential cellular damage associated with these nanoparticles. Besides focussing on cytotoxicity, the most commonly used determinant of toxicity as a result of exposure to SPION, this review also mentions the importance of studying the subtle cellular alterations in the form of DNA damage and oxidative stress. We review current studies and discuss how SPION, with or without different surface coating, may cause cellular perturbations including modulation of actin cytoskeleton, alteration in gene expression profiles, disturbance in iron homeostasis and altered cellular responses such as activation of signalling pathways and impairment of cell cycle regulation. The importance of protein–SPION interaction and various safety considerations relating to SPION exposure are also addressed.

  4. Laser-induced breakdown spectroscopy and chemometrics for classification of toys relying on toxic elements

    International Nuclear Information System (INIS)

    Godoi, Quienly; Leme, Flavio O.; Trevizan, Lilian C.; Pereira Filho, Edenir R.; Rufini, Iolanda A.; Santos, Dario; Krug, Francisco J.

    2011-01-01

    Quality control of toys for avoiding children exposure to potentially toxic elements is of utmost relevance and it is a common requirement in national and/or international norms for health and safety reasons. Laser-induced breakdown spectroscopy (LIBS) was recently evaluated at authors' laboratory for direct analysis of plastic toys and one of the main difficulties for the determination of Cd, Cr and Pb was the variety of mixtures and types of polymers. As most norms rely on migration (lixiviation) protocols, chemometric classification models from LIBS spectra were tested for sampling toys that present potential risk of Cd, Cr and Pb contamination. The classification models were generated from the emission spectra of 51 polymeric toys and by using Partial Least Squares - Discriminant Analysis (PLS-DA), Soft Independent Modeling of Class Analogy (SIMCA) and K-Nearest Neighbor (KNN). The classification models and validations were carried out with 40 and 11 test samples, respectively. Best results were obtained when KNN was used, with corrected predictions varying from 95% for Cd to 100% for Cr and Pb.

  5. Analysis of toxic elements and macro-micro nutrients in food stuff by using neutron activation analysis

    International Nuclear Information System (INIS)

    Rina Mulyaningsih, Th.; Istanto; Saeful Yusuf; Siti Suprapti

    2010-01-01

    Determination of toxic elements and macro-micro nutrient in food stuff by neutron activation analysis (NAA) has been done. The kinds of samples are vegetables, legume, mace and flavor, flour, fish and flesh. Samples had been collected from market in Serpong. Analysis of the samples show macro nutrients with concentration >1000 mg/kg, as K, Ca, Mg, Na, and Cl; micronutrients with concentration 10 - 100 mg/kg: Fe, Mn, Zn, Se, Br, Rb, and La; and toxic elements with concentration below 5 mg/kg as Co, Sb, Hg, As and Cr. As concentration in fish and rice and Hg concentration in fish and red chili is exceed from government permission value. Zinc concentration in some kind of samples is more than permission value, but it should be considered because of its average daily intake is lower then recommended value 15 mg/day. The Zn deficiencies can disturb growth and metabolism. Al concentration in samples is high enough 10 – 500 mg/kg; it must be take into account serious attention because of its toxicity. Evaluation of these elements is compared to sufficiency value of daily requirement RDA (Recommended Daily Acceptable). In this study was discussed potential hazards for human while its deficiencies or excessive intake. (author)

  6. Oral bioaccessibility of toxic and essential elements in raw and cooked commercial seafood species available in European markets

    NARCIS (Netherlands)

    Alves, Ricardo N.; Maulvault, Ana L.; Barbosa, Vera L.; Fernandez-Tejedor, Margarita; Tediosi, Alice; Kotterman, Michiel; Heuvel, van den Fredericus H.M.; Robbens, Johan; Fernandes, José O.; Romme Rasmussen, Rie; Sloth, Jens J.; Marques, António

    2017-01-01

    The oral bioaccessibility of several essential and toxic elements was investigated in raw and cooked commercially available seafood species from European markets. Bioaccessibility varied between seafood species and elements. Methylmercury bioaccessibility varied between 10 (octopus) and 60%

  7. Toxic element profiles in selected medicinal plants growing on serpentines in Bulgaria.

    Science.gov (United States)

    Pavlova, Dolja; Karadjova, Irina

    2013-12-01

    Populations of medicinal plants growing on serpentines and their respective soils were analyzed for Fe, Ni, Mn, Cr, Co, Cd, Cu, Zn, and Pb using inductively coupled plasma atomic emission spectrometry. Aqua regia extraction and 0.43 M acetic acid extraction were used for the quantification of pseudototal and bioavailable fractions, respectively, of elements in soil and nitric acid digestion for determination of total element content in plants. Screening was performed to (1) document levels of toxic metals in herbs extensively used in preparation of products and standardized extracts, (2) compare accumulation abilities of ferns and seed plants, and (3) estimate correlations between metal content in plants and their soils. The toxic element content of plants varied from site to site on a large scale. The concentrations of Fe and Ni were elevated while those of Cu, Zn, and Pb were close to average values usually found in plants. The highest concentrations for almost all elements were measured in both Teucrium species. Specific differences in metal accumulation between ferns and seed plants were not recorded. The investigated species are not hyperaccumulators but can accumulate toxic elements, in some cases exceeding permissible levels proposed by the World Health Organization and European Pharmacopoeia. The harvesting of medicinal plants from serpentines could be hazardous to humans.

  8. Study of radon, thoron and toxic elements in some textile dyes

    International Nuclear Information System (INIS)

    Abel-Ghany, H.A.

    2013-01-01

    Elemental analysis of textile dyes may provide valuable information concerning the content and concentrations of element, especially the toxic ones. Such information monitors the safety of handling and using these dyes in textile industry. In addition to the safety of wearing of clothes stained with these dyes. In the present work, the specific activity of both radon and thoron were measured in nine textile dyes by using alpha emitters registration which are emitted from radon and thoron gases in CR-39 nuclear track detectors. Unexpectedly, the results obtained reports a high concentration of both radon and thoron gases in some samples (samples D5 and D9). Also the concentration of toxic elements (Cu, Pb, Zn, Mn, Cd and Cr) in textile dyes were determined by flame and graphite furnace atomic absorption spectrometry. (author)

  9. Activation analysis of toxic elements in meat and farinaceous foodstuffs of the Republic of Argentina

    International Nuclear Information System (INIS)

    Resnizky, S.M.; Bertini, L.M.; Moreno, M.A.; Cohen, I.M.; Videtti Piedracoba, N. de; Pla, R.R.; Gomez, C.D.

    1994-01-01

    As a result of the industrial and agrochemical developments, there has been an increase of the environmental pollution. Foodstuffs are one of the ways of incorporating some heavy metals or other contaminants into the human body. So, it is important to know the amount of these elements in the food consumed by the population. Our project on determination of toxic elements in meat and farinaceous food largely consumed in our country, was carried out by neutron activation analysis. Different kinds of flours and noodles were analyzed as farinaceous, and hamburgers and sausages as manufactured meat products. Specific separation methods were developed by radiochemical neutron activation analysis for As, Sb, Se, Hg and Cd. All these separations were based on precipitation or coprecipitation of the elements as sulphides. Other elements such as Fe, Br, Co, Zn, Rb, and also Se, were analyzed using instrumental neutron activation analysis. Using daily intake of analyzed foodstuffs from consumption tables and their average elemental composition, an intake of the studied elements was calculated. The values obtained for toxic elements were lower than the maximum permissible levels in Argentina. The results of this project could serve as a basis of a wider study including more foodstuffs as raw meat and will be used by other research groups. (author). 8 refs, 3 figs, 4 tabs

  10. Determination of essential and toxic elements in tobacco samples from Mexican cigarettes by TXRF

    International Nuclear Information System (INIS)

    Martinez, T.; Lartigue, J.; Cabrera, L.; Avila-Perez, P.; Zarazua, G.; Tejeda, S.

    2005-01-01

    Cigarette smoking and tobacco chewing account together for a large number of deaths every day. Numerous studies have identified an important number of inorganic toxic elements along with organic carcinogen and radioactive elements in tobacco. It has been long suspected that, apart from organic and radioactive carcinogens, some inorganic elements may also be the cause of tobacco toxicity, altering the metabolism thus provoking the growth of tumors. In this work we have analyzed 9 different brands of cigarettes sold in the Mexican Market. Macerated tobacco samples after dried, were weighted, placed into the microwave vessel and digested in a mixture of suprapure nitric and hydrochloric acids. The vessel was then sealed and placed into the microwave digestor for dissolution and digestion following the ramp of temperature and pressure. When digestion was completed, the vessels are removed from the digestor, allowed to cool, and transferred to volumetric flaks where they were taken to a volume with de-ionized water. Aliquots of the digestate were analyzed in a Total X-ray Fluorescence Spectrometer Model TX-2000. At the same time and in the same way were treated a NIST 1573 standard of tomato leaves and a blank, the former to chek the elemental recovery and the latter to correct elemental concentration of samples. Results show the presence of some toxic elements such as Pb, Cr, Ni as well as essential elements such as K, Ca, etc. Results were compared with available data on some foreing brands tobacco; the probable reason for the diference in the contents of some of the elements found in Mexican brands are discussed.

  11. A question about the potential cardiac toxicity of escitalopram.

    Science.gov (United States)

    Howland, Robert H

    2012-04-01

    Previous reviews have focused on the potential cardiac toxicity of the racemic drug citalopram (Celexa(®)). Evaluating the safety of escitalopram (Lexapro(®)) is an important issue to consider, since it is the S-enantiomer of citalopram. Escitalopram has a small effect on the QTc interval. A prolonged QTc was seen in 2% to 14% of escitalopram overdose cases, without serious cardiac sequelae. The QTc prolongation effect of citalopram in beagle dogs has been attributed to the minor metabolite racemic didemethylcitalopram (DDCT). Whether the escitalopram minor metabolite S-DDCT has this effect is not known. Concentrations of S-DDCT are lower than DDCT, but for a broad range of doses of escitalopram and citalopram, the S-DDCT and DDCT concentrations are well below the QTc prolonging concentrations reported in dogs. There is no strong evidence from human and animal studies that the cardiac safety of escitalopram is significantly superior to that of citalopram. Copyright 2012, SLACK Incorporated.

  12. INAA and AAS of different products from sugar cane industry in Pakistan. Toxic trace elements for nutritional safety

    International Nuclear Information System (INIS)

    Waheed, S.; Rahman, S.; Gill, K.P.

    2009-01-01

    Instrumental neutron activation analysis (INAA) have been used to determine As, Br, Hg, Sb and Se in combination with atomic absorption spectrometry (AAS) as a complementary technique for the quantification of Cd and Pb in jaggery, brown sugar, white sugar and molasses. All sugar cane products were collected from the local sugar cane industry of Pakistan. The highest concentration of these potentially toxic elements was quantified in molasses; however, molasses together with jaggery, brown sugar and white sugar contains trace amounts of all of these elements. Due to very low concentration of Cd it could only be detected in molasses. To evaluate the percentage contribution of these elements in the sugar cane products to the weekly recommended values, intakes on weekly consumption of 100 g of each item have also been calculated which follow the pattern Br>Se>Pb>Hg>As>Sb. The elevated Br contents may be attributed to the use of Br-containing chemicals for fumigation; however, these contents are well within the tolerance levels. The estimated weekly intake of all toxic elements is very low indicating that sugar cane products can be safely ingested as part of the diets. (author)

  13. Application of neutron activation analysis to the detrmination of toxic elements in Australian foodstuffs

    International Nuclear Information System (INIS)

    Fardy, J.J.; McOrist, G.D.; Farrar, Y.J.; Gorman, T.F.; Bowles, C.H.; Tan Mingguang

    1988-01-01

    Recent measurements in our laboratory have indicated that the average selenium content in the plasma of Australians is 0.09 mg L -1 which is significantly lower than that found in the inhabitants of most other Western countries with the exception of New Zealand. Research aimed at explaining these low levels had begun when an invitation was received from the IAEA to join a Coordinated Research Programme on Nuclear Techniques for Toxic Elements in Foodstuffs. The investigation was widened, therefore, to include other toxic elements, arsenic, mercury, zinc and antimony and the suite of trace elements determined by neutron activation analysis (NAA) techniques. To complete the survey of toxic elements, the lead and cadmium of the chosen foodstuffs are being analysed by anodic stripping voltammetry (ASV) and soon will be examined by inductively coupled plasma mass spectrometry (ICPMS). Drinking water from a number of locations were sampled in cleaned, screw-top polystyrene containers, frozen and stored in a freezer until ready for analysis. 7 refs, 4 figs, 4 tabs

  14. Analysis of toxical element in the whitening cream cosmetic samples using neutron activation analysis (NAA)

    International Nuclear Information System (INIS)

    Th Rina M; Sunarko

    2007-01-01

    Neutron activation analysis has been done to analyze of toxical elements that is not allowed in the whitening cream cosmetic. These samples have been randomly selected from the cosmetic market. The samples were irradiated at thermal neutron flux of 10"1"33n.cm"-"2s"-"1 in the irradiation facility of rabbit system in the RSG-GAS reactor Serpong. Counting of irradiated samples have been done by a high resolution HPGe detector couple to multichannel analyzer. Data have been analyzed by GENIE 2000. The sample have been qualitatively determined up to 19 elements. These elements are: As, Br, Ce, Co, Cr, Cs, Eu, Fe, Hg, K, La, Na, Rb, Sb, Se, Sc, Rb, Th, IV, and Zn. The result of qualitative analysis showed that the toxical elements present in the samples are Hg, As, Cr and Sb with the following concentration ranges in μg/g 25.2-65.1, 1.0-6.3, 30.5-89.1 and 2.9-5.3, respectively and these element not allowed in the whitening cream cosmetic. Besides that, the others elements have been detected in the samples are Br, Fe, Zn, Sc and Co, with concentration ranges, 13.1-36.4, 65.6-159.3, 0.79-77.1, 0.5-19.5, and 6.8-31.7 μg/g, respectively, in the sample whitening cream cosmetic. (author)

  15. Determination of trace and toxic elements in marine sediments collected from the strait of Malacca, Malaysia

    International Nuclear Information System (INIS)

    Wee Boon Siong; Abdul Khalik Hj. Wood

    2007-01-01

    The Strait of Malacca has been a major route for international trade with heavy traffic of large vessels navigating through the narrow waterway everyday. Beside, the Strait of Malacca has some natural ecosystem which requires proper protection from human activities. Therefore, the Malaysian government has initiated a project to monitor the pollution level at the Strait of Malacca. As a result, sampling expeditions had been conducted to collect marine samples to be analyzed for trace and toxic elements as well as organic pollutions and radionuclides. The focus of this report is to determine trace and toxic element concentration in surface sediment samples collected from 18 sampling locations at the Strait of Malacca was reported. (author)

  16. Cadmium Toxicity Affects Phytochemicals and Nutrient Elements Composition of Lettuce (Lactuca sativa L.

    Directory of Open Access Journals (Sweden)

    Sani Ahmad Jibril

    2017-01-01

    Full Text Available Lettuce varieties Bombilasta BBL and Italian 167 were treated with different concentrations of cadmium (0, 3, 6, 9, and 12 mg/L in a nutrient film technique (NFT system to study its toxicity on phytochemicals and nutrient elements. Antioxidants analysis which employed DPPH and FRAP, flavonoids, phenolic, vitamin C, malondialdehyde (MDA, and proline indicated significant effects of Cd treatment on the varieties tested. Different concentration levels of Cd lead to positive interactions in FRAP, phenolic, and MDA but no significant effect in flavonoids, vitamin C, and proline. Contents of macro- and microelements in the varieties were significantly affected with increase in the toxicity levels of Cd in all nutrient elements tested with interactions exhibited for iron, manganese, and zinc.

  17. Potential energy landscapes of elemental and heterogeneous chalcogen clusters

    International Nuclear Information System (INIS)

    Mauro, John C.; Loucks, Roger J.; Balakrishnan, Jitendra; Varshneya, Arun K.

    2006-01-01

    We describe the potential energy landscapes of elemental S 8 , Se 8 , and Te 8 clusters using disconnectivity graphs. Inherent structures include both ring and chain configurations, with rings especially dominant in Se 8 . We also map the potential energy landscapes of heterogeneous Se n (S,Te) 8-n clusters, which offer insights into the structure of heterogeneous chalcogen glasses

  18. Cadmium Toxicity Affects Phytochemicals and Nutrient Elements Composition of Lettuce (Lactuca sativa L.)

    OpenAIRE

    Jibril, Sani Ahmad; Hassan, Siti Aishah; Ishak, Che Fauziah; Megat Wahab, Puteri Edaroyati

    2017-01-01

    Lettuce varieties Bombilasta BBL and Italian 167 were treated with different concentrations of cadmium (0, 3, 6, 9, and 12 mg/L) in a nutrient film technique (NFT) system to study its toxicity on phytochemicals and nutrient elements. Antioxidants analysis which employed DPPH and FRAP, flavonoids, phenolic, vitamin C, malondialdehyde (MDA), and proline indicated significant effects of Cd treatment on the varieties tested. Different concentration levels of Cd lead to positive interactions in FR...

  19. ELEMENTAL ANALYSIS OF RESPIRABLE TIRE PARTICLES AND ASSESSMENT OF CARDIO-PULMONARY TOXICITY IN RATS

    Science.gov (United States)

    Elemental Analysis of Respirable Tire Particles and Assessment of Cardio-pulmonary Toxicity in RatsR.R. Gottipolu, PhD1, E. Landa, PhD2, J.K. McGee, MS1, M.C. Schladweiler, BS1, J.G. Wallenborn, MS3, A.D. Ledbetter, BS1, J.E. Richards, MS1 and U.P. Kodavanti, PhD1. 1NHEER...

  20. Contamination and ecological risk assessment of toxic trace elements in the Xi River, an urban river of Shenyang city, China.

    Science.gov (United States)

    Lin, Chunye; He, Mengchang; Liu, Xitao; Guo, Wei; Liu, Shaoqing

    2013-05-01

    The objectives of this study were to assess the enrichment, contamination, and ecological risk posed by toxic trace elements in the sediments of the Xi River in the industrialized city of Shenyang, China. Surface sediment and sediment core were collected; analyzed for toxic trace elements; and assessed with an index of geoaccumulation (Igeo), enrichment factor (EF) value, potential ecological risk factor (Er), ecological risk index (RI), and probable effect concentration quotient (PECQ). Elemental concentrations (milligram per kilogram) were 8.5-637.9 for As, 6.5-103.9 for Cd, 12.2-21.9 for Co, 90.6-516.0 for Cr, 258.1-1,791.5 for Cu, 2.6-19.0 for Hg, 70.5-174.5 for Ni, 126.9-1,405.8 for Pb, 3.7-260.0 for Sb, 38.4-100.4 for V, and 503-4,929 for Zn. The Igeo, EF, Er, and PECQ indices showed that the contamination of Cd and Hg was more serious than that of As, Cr, Cu, Ni, Pb, Sb, and Zn, whereas the presence of Co and V might be primarily from natural sources. The Igeo index for Cr and Ni might underestimate the degree of contamination, potentially as a result of high concentrations of these elements in the shale. The RI index was higher than 600, indicating a notably high ecological risk of sediment for the river. The average PECQ for As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn ranged from 1.4 to 4.1 for surface sediment and from 5.2 to 9.6 in the sediment cores, indicating a high potential for an adverse biological effect. It was concluded that the sediment in the Xi River was severely contaminated and should be remediated as a hazardous material.

  1. Monitoring of toxic elements present in sludge of industrial waste using CF-LIBS.

    Science.gov (United States)

    Kumar, Rohit; Rai, Awadhesh K; Alamelu, Devanathan; Aggarwal, Suresh K

    2013-01-01

    Industrial waste is one of the main causes of environmental pollution. Laser-induced breakdown spectroscopy (LIBS) was applied to detect the toxic metals in the sludge of industrial waste water. Sludge on filter paper was obtained after filtering the collected waste water samples from different sections of a water treatment plant situated in an industrial area of Kanpur City. The LIBS spectra of the sludge samples were recorded in the spectral range of 200 to 500 nm by focusing the laser light on sludge. Calibration-free laser-induced breakdown spectroscopy (CF-LIBS) technique was used for the quantitative measurement of toxic elements such as Cr and Pb present in the sample. We also used the traditional calibration curve approach to quantify these elements. The results obtained from CF-LIBS are in good agreement with the results from the calibration curve approach. Thus, our results demonstrate that CF-LIBS is an appropriate technique for quantitative analysis where reference/standard samples are not available to make the calibration curve. The results of the present experiment are alarming to the people living nearby areas of industrial activities, as the concentrations of toxic elements are quite high compared to the admissible limits of these substances.

  2. Assessing potential dietary toxicity of heavy metals in selected vegetables and food crops.

    Science.gov (United States)

    Islam, Ejaz ul; Yang, Xiao-e; He, Zhen-li; Mahmood, Qaisar

    2007-01-01

    Heavy metals, such as cadmium, copper, lead, chromium and mercury, are important environmental pollutants, particularly in areas with high anthropogenic pressure. Their presence in the atmosphere, soil and water, even in traces can cause serious problems to all organisms, and heavy metal bioaccumulation in the food chain especially can be highly dangerous to human health. Heavy metals enter the human body mainly through two routes namely: inhalation and ingestion, ingestion being the main route of exposure to these elements in human population. Heavy metals intake by human populations through food chain has been reported in many countries. Soil threshold for heavy metal toxicity is an important factor affecting soil environmental capacity of heavy metal and determines heavy metal cumulative loading limits. For soil-plant system, heavy metal toxicity threshold is the highest permissible content in the soil (total or bioavailable concentration) that does not pose any phytotoxic effects or heavy metals in the edible parts of the crops does not exceed food hygiene standards. Factors affecting the thresholds of dietary toxicity of heavy metal in soil-crop system include: soil type which includes soil pH, organic matter content, clay mineral and other soil chemical and biochemical properties; and crop species or cultivars regulated by genetic basis for heavy metal transport and accumulation in plants. In addition, the interactions of soil-plant root-microbes play important roles in regulating heavy metal movement from soil to the edible parts of crops. Agronomic practices such as fertilizer and water managements as well as crop rotation system can affect bioavailability and crop accumulation of heavy metals, thus influencing the thresholds for assessing dietary toxicity of heavy metals in the food chain. This paper reviews the phytotoxic effects and bioaccumulation of heavy metals in vegetables and food crops and assesses soil heavy metal thresholds for potential dietary

  3. Study of element uptake in plants from the soil to assess environmental contamination by toxic elements

    CERN Document Server

    En, Z; Tsipin, V V; Tillaev, T; Jumaniyazova, G I

    2003-01-01

    Uptake of various elements by plants through the root system from the soil was studied. Vegetation experiments with cotton and white beet were carried out in the control and test fields. The test fields were enriched with phyto-bacterial strains capable of dissolving insoluble phosphate compounds. Analytical work involved analysis of blank, control and test soil samples and analysis of plants sampled in different growing periods: periods of first sprouts, florescence and ripening of the plants. Multielement analyses of soil and plant samples were carried out by instrumental neutron activation techniques using our WWR-SM research reactor. Results of the measurements have shown that macro- and microelement composition of the analyzed soil samples were consistent to clark contents except for copper. Our experiments have resulted that the concentration levels of copper in the soils were within 300-450 mg/kg, and its average concentration in cotton leaves was about similar to 35 mg/kg while in beet leaves it reach...

  4. Potentially toxic metals in rivers upstream of Pantanal Norte

    Directory of Open Access Journals (Sweden)

    Geizibel Campos de Magalhães

    2016-11-01

    Full Text Available Cuiabá (CBA and São Lourenço (SL rivers are considered strategic once they integrate regions, which are economically, socially and environmentally relevant for Brazil and the world. However, several activities developed in their watersheds may represent sources of metals and be a threat to the environmental quality. Thus, in this study we evaluated the spatial and temporal variability of potentially toxic metals in water and sediment and the relationship of their concentration with water quality parameters. Surface water samples were collected monthly in 15 points and bottom sediment in nine points distributed throughout both rivers from August 2012 to July 2013. Cr, Cu, Fe, Mn, Pb and Zn were determined in water by inducted coupled plasma optical emission spectrometry and in sediment by flame atomic absorption spectrometry. Fe, Mn, Pb and Cr had high concentrations in water and sediment but only Pb and Cr represent environmental risk. Fe and Mn were in higher concentrations in at the upper points of SL River and Cu and Pb in the urban area of both rivers. Temporally, the metal concentrations were associated with precipitation variation. The observed correlations amongst metal concentrations indicate common sources. Thus, the metals occurrence and concentrations in water and sediment of both rivers showed a natural contribution, as a reflex of soil type associated to the region's precipitation regimen as well as the anthropic contribution due to agricultural and cattle breeding activities, and disposal of untreated urban effluents.

  5. Oral bioaccessibility of toxic and essential elements in raw and cooked commercial seafood species available in European markets

    KAUST Repository

    Alves, Ricardo N.; Maulvault, Ana L.; Barbosa, Vera L.; Fernandez-Tejedor, Margarita; Tediosi, Alice; Kotterman, Michiel; van den Heuvel, Fredericus H.M.; Robbens, Johan; Fernandes, José O.; Romme Rasmussen, Rie; Sloth, Jens J.; Marques, Antó nio

    2017-01-01

    The oral bioaccessibility of several essential and toxic elements was investigated in raw and cooked commercially available seafood species from European markets. Bioaccessibility varied between seafood species and elements. Methylmercury bioaccessibility varied between 10 (octopus) and 60% (monkfish). Arsenic (>64%) was the toxic element showing the highest bioaccessibility. Concerning essential elements bioaccessibility in raw seafood, selenium (73%) and iodine (71%) revealed the highest percentages. The bioaccessibility of elements in steamed products increased or decreased according to species. For example, methylmercury bioaccessibility decreased significantly after steaming in all species, while zinc bioaccessibility increased in fish (tuna and plaice) but decreased in molluscs (mussel and octopus).Together with human exposure assessment and risk characterization, this study could contribute to the establishment of new maximum permissible concentrations for toxic elements in seafood by the European food safety authorities, as well as recommended intakes for essential elements.

  6. Oral bioaccessibility of toxic and essential elements in raw and cooked commercial seafood species available in European markets

    KAUST Repository

    Alves, Ricardo N.

    2017-11-17

    The oral bioaccessibility of several essential and toxic elements was investigated in raw and cooked commercially available seafood species from European markets. Bioaccessibility varied between seafood species and elements. Methylmercury bioaccessibility varied between 10 (octopus) and 60% (monkfish). Arsenic (>64%) was the toxic element showing the highest bioaccessibility. Concerning essential elements bioaccessibility in raw seafood, selenium (73%) and iodine (71%) revealed the highest percentages. The bioaccessibility of elements in steamed products increased or decreased according to species. For example, methylmercury bioaccessibility decreased significantly after steaming in all species, while zinc bioaccessibility increased in fish (tuna and plaice) but decreased in molluscs (mussel and octopus).Together with human exposure assessment and risk characterization, this study could contribute to the establishment of new maximum permissible concentrations for toxic elements in seafood by the European food safety authorities, as well as recommended intakes for essential elements.

  7. Assessment of soil and groundwater contamination by potentially toxic and trace elements in an impounded vehicle scrapyard: Case study: Ribeirão Pires, SP, Brazil; Avaliação da contaminação de solos e água subterrânea por elementos potencialmente tóxicos e traços em um patio de recolhimento de veículos: estudo de caso: Ribeirão Pires, SP

    Energy Technology Data Exchange (ETDEWEB)

    Lange, Camila Neves

    2018-04-01

    Impounded vehicle scrapyard (IVS) overcrowding is currently a subject of concern in Brazilian scenario. The aim of this study was to assess the total levels of potentially toxic elements (PTEs) and trace elements (TE) in soil and groundwater in an IVS located in the city of Ribeirão Pires. In order to achieve this objective, topsoil, three soil cores and groundwater of three monitoring wells were analyzed. It was verified that the area is mainly affected by three factors: (1) a landfill layer with construction waste; (2) an oily residue from past industrial activities in the area; (3) vehicles parked on topsoil. For the evaluation of the results, statistical techniques, such as multivariate analysis, calculation of pollution, ecological and human health risk index were used. Mass fractions of all PTEs, except Co, Cu, Mo and Zn, were higher than reference values. Hot spots were observed for most elements suggesting vehicular source. The Geoaccumulation Index showed minimal to moderate pollution in soil for most elements, except for As and Ba, which showed higher accumulation than other elements. The enrichment factor pointed to a significant enrichment of As and Pb. Arsenic content in soil may pose a moderate to high potential ecological risk. The results of PTEs and as statistical approaches indicated that As, Ce, Co, Cu, Mn, Nb, Ni, Pb and Zn are mainly from anthropogenic sources. The content of most PTEs in topsoil does not pose a potential human health risk, except Cr content. Groundwater levels for most PTEs were below the drinking water recommendation limits, except Mn and Fe content. (author)

  8. Mechanisms behind pH changes by plant roots and shoots caused by elevated concentration of toxic elements

    OpenAIRE

    Javed, Muhammad Tariq

    2011-01-01

    Toxic elements are present in polluted water from mines, industrial outlets, storm water etc. Wetland plants take up toxic elements and increase the pH of the medium. In this thesis was investigated how the shoots of submerged plants and roots of emergent plants affected the pH of the surrounding water in the presence of free toxic ions. The aim was to clarify the mechanisms by which these plants change the surrounding water pH in the presence of toxic ions. The influence of Elodea canadensis...

  9. Depth Profiling (ICP-MS Study of Toxic Metal Buildup in Concrete Matrices: Potential Environmental Impact

    Directory of Open Access Journals (Sweden)

    Ghada Bassioni

    2010-10-01

    Full Text Available This paper explores the potential of concrete material to accumulate toxic trace elements using ablative laser technology (ICP-MS. Concrete existing in offshore structures submerged in seawater acts as a sink for hazardous metals, which could be gradually released into the ocean creating pollution and anoxic conditions for marine life. Ablative laser technology is a valuable tool for depth profiling concrete to evaluate the distribution of toxic metals and locate internal areas where such metals accumulate. Upon rapid degradation of concrete these “hotspots” could be suddenly released, thus posing a distinct threat to aquatic life. Our work simulated offshore drilling conditions by immersing concrete blocks in seawater and investigating accumulated toxic trace metals (As, Be, Cd, Hg, Os, Pb in cored samples by laser ablation. The experimental results showed distinct inhomogeneity in metal distribution. The data suggest that conditions within the concrete structure are favorable for random metal accumulation at certain points. The exact mechanism for this behavior is not clear at this stage and has considerable scope for extended research including modeling and remedial studies.

  10. In vivo detection of the toxic heavy elements, lead and cadmium

    International Nuclear Information System (INIS)

    Thomas, B.J.; Thomas, B.W.; Davey, J.F.; Baddeley, H.; Summers, V.; Craswell, P.

    1986-01-01

    Portable systems for the in vivo measurement of the toxic heavy elements, cadmium and lead are described. The cadmium concentration in either the liver or left kidney is determined using a technique of thermal neutron capture gamma-ray analysis. X-ray fluorescence analysis is used to measure lead within the bone of the second phalanx of the index finger. Each of the measurements is used as an index of long term exposure to the element and applied to screening of exposed industrial workers. The results of these industrial health applications are presented. Clinical application of the measurements to the study of the involvement of these elements in renal disease is described in brief. (author)

  11. Determination of trace and toxic elements in Koran rice CRM by INAA, ICP and AAS

    International Nuclear Information System (INIS)

    Yong Sam Chung; Young Ju Chung; Kyung Haeng Cho; Joung Hae Lee

    1997-01-01

    Trace and toxic elements in Certified Reference Material (CRM) made of Korean rice at the Korea Research Institute of Standards and Science have been analyzed by Instrumental Neutron Activation Analysis (INAA). Data intercomparison from the measurement with those of Atomic Absorption Spectrometry (AAS) and Induced Coupled Plasma Spectrometry (ICPS) has been studied. The powdered samples were sterilized at 1.5 x 10 6 rad in the bottles using a 60 Co source after sieving and spiking to specific elements such as As, Cd, Cr, Cu and Hg and then the homogeneity of samples was assessed. Rice flour (SRM 1568a) and standard solutions made by the National Institute of Standards Technology (NIST) were used to construct the calibration curves for the INAA and the chemical methods, respectively. The uncertainties and concentration of constituent elements were determined and the possibility of their use for analytical quality control was considered. (author)

  12. TOWARDS FOOD SAFETY. POTENTIALLY HARMFUL ELEMENTS (PHEs FLUXES FROM SOIL TO FOOD CROPS

    Directory of Open Access Journals (Sweden)

    Claudio Bini

    2013-09-01

    Full Text Available Soil is the basis of the ecosystems and of our system of food production. Crops can uptake heavy metals and potentially toxic elements from the soil and store them in the roots or translocate them to the aerial parts. Excessive content of these elements in edible parts can produce toxic effects and, through the food chain and food consumption, result in a potential hazard for human health. In this study soils and plants (spring wheat, Triticum aestivum L. and maize, Zea mays L. from a tannery district in North-East Italy were analyzed to determine the content of some major and micro-nutrients and potentially toxic elements (Al, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Ni, P, Pb, S, Zn, V. The soils of the area are moderately polluted; Cr is the most important inorganic contaminant, followed by Ni, Cu and V. Factor analysis evidenced that the contaminants are in part anthropogenic and in part geogenic. Major anthropogenic origin was detected for Cr, Ni (from industrial activities, Zn, Cu, Cd (from agriculture practices. Biological Absorption Coefficient (BAC from soil to plant roots and Translocation factor (TF within the plant were calculated; major nutrients (K, P, S and some micronutrients (Cu, Zn, Mg, Mn are easily absorbed and translocated, whilst other nutrients (Ca, Fe and potentially toxic elements or micronutrients (Al, Cd, Cr, Ni, Pb, V are not accumulated in the seeds of the two considered plants. However, the two edible species proved differently able to absorb and translocate elements, and this suggests to consider separately every species as potential PHEs transporter to the food chain and to humans. Cr concentrations in seeds and other aerial parts (stem and leaves of the examined plants are higher than the values found for the same species and for other cereals grown on unpolluted soils. Comparing the Cr levels in edible parts with recommended dietary intake, besides other possible Cr sources (dust ingestion, water, there seems to be no

  13. Prompt gamma neutron activation analysis of toxic elements in radioactive waste packages

    Energy Technology Data Exchange (ETDEWEB)

    Ma, J.-L. [CEA, DEN, Cadarache, Nuclear Measurement Laboratory, F-13108 St Paul-lez-Durance (France); Carasco, C., E-mail: cedric.carasco@cea.fr [CEA, DEN, Cadarache, Nuclear Measurement Laboratory, F-13108 St Paul-lez-Durance (France); Perot, B. [CEA, DEN, Cadarache, Nuclear Measurement Laboratory, F-13108 St Paul-lez-Durance (France); Mauerhofer, E.; Kettler, J.; Havenith, A. [Institute of Energy and Climate Research - Nuclear Waste Management and Reactor Safety, Forschungszentrum Juelich GmbH (Germany)

    2012-07-15

    The French Alternative Energies and Atomic Energy Commission (CEA) and National Radioactive Waste Management Agency (ANDRA) are conducting an R and D program to improve the characterization of long-lived and medium activity (LL-MA) radioactive waste packages. In particular, the amount of toxic elements present in radioactive waste packages must be assessed before they can be accepted in repository facilities in order to avoid pollution of underground water reserves. To this aim, the Nuclear Measurement Laboratory of CEA-Cadarache has started to study the performances of Prompt Gamma Neutron Activation Analysis (PGNAA) for elements showing large capture cross sections such as mercury, cadmium, boron, and chromium. This paper reports a comparison between Monte Carlo calculations performed with the MCNPX computer code using the ENDF/B-VII.0 library and experimental gamma rays measured in the REGAIN PGNAA cell with small samples of nickel, lead, cadmium, arsenic, antimony, chromium, magnesium, zinc, boron, and lithium to verify the validity of a numerical model and gamma-ray production data. The measurement of a {approx}20 kg test sample of concrete containing toxic elements has also been performed, in collaboration with Forschungszentrum Juelich, to validate the model in view of future performance studies for dense and large LL-MA waste packages. - Highlights: Black-Right-Pointing-Pointer Comparison between measurements and MCNP calculation has been performed for a PGNAA system. Black-Right-Pointing-Pointer The system aims at controlling the amount of toxic elements in nuclear waste. Black-Right-Pointing-Pointer Simple samples and a concrete cylinder in which impurities have been added are used. Black-Right-Pointing-Pointer Calculations agree within a factor 2 with measurements. Black-Right-Pointing-Pointer The system can be improved with a better neutron flux monitoring and the use of boron-free graphite.

  14. Elemental analysis of essential and toxic content in tea and its infusion used by neutron activation

    International Nuclear Information System (INIS)

    Th-Rina Mulyaningsih

    2011-01-01

    Concentration of metal elements K, Ca, Mn, Mg, Fe, Na, Zn, Rb, Br, Cr, Cs, La,Sc and Co from 14 samples of green and black tea with aroma of jasmine, vanilla, roselle flower and tea infusion have been determined by means of neutron activation analysis. The Samples were chosen from the domestic product and were collected from Supermarket in Serpong region. Neutron irradiation of the samples was carried out in the Irradiation Facility of the RSG-GAS reactor at thermal neutron flux in the order of 1,013ncm -2 s -1 .The working procedures follow the Standard Operating Procedures of FNCA. As of the quality control the reference material of SRM-NIST 1573a Tomato leaves and NIST 1,547 Peach leaves have been applied. The analysis results show that concentration of the elements variate depending on the sort of tea.Concentration of Ca, K, Mg dan Mn have a rather high value namely >100 mg/kg. Concentration of Ca and K have values in a range of 1,135.36 - 9,123.21 and 1,064.41-2,473.12 mg/kg as well as Mg of 2,725.6 - 5,528.5; and Mn of 95.38 - 815.48 mg/kg.Concentration of Na, Fe, Co, La, Cr, Br, Sc, Cs, Rb and Zn <100 mg/kg. Most elements in these tea were released into the infusions at different percentages in a range of 27.89 - 68.94% depending on the sort of the tea. There were not detected toxic elements Hg, Cd and As except Cr with low concentration. Therefore tea drinks are adequately good enough as essential elements source and content no toxic elements. (author)

  15. The use of sugar and alcohol industry waste in the adsorption of potentially toxic metals.

    Science.gov (United States)

    Santos, Oseas Silva; Mendonça, André Gustavo Ribeiro; Santos, Josué Carinhanha Caldas; Silva, Amanda Paulina Bezerra; Costa, Silvanio Silverio Lopes; Oliveira, Luciana Camargo; Carmo, Janaina Braga; Botero, Wander Gustavo

    2016-01-01

    One of the waste products of the industrial process of the sugar and alcohol agribusiness is filter cake (FC). This waste product has high levels of organic matter, mainly proteins and lipids, and is rich in calcium, nitrogen, potassium and phosphorous. In this work we characterized samples of FC from sugar and alcohol industries located in sugarcane-producing regions in Brazil and assessed the adsorption of potentially toxic metals (Cu(II), Cd(II), Pb(II), Ni(II) and Cr(III)) by this waste in mono- and multi-elemental systems, seeking to use FC as an adsorbent in contaminated environments. The characterization of FCs showed significant differences between the samples and the adsorption studies showed retention of over 90% of potentially toxic metals. In a competitive environment (multi-metallic solution), the FC was effective in adsorbing all metals except lead, but less effective compared to the mono-metallic solution. These results show the potential for use of this residue as an adsorbent in contaminated environments.

  16. Toxic trace element content of local fruits using instrumental neutron activation analysis (INAA)

    International Nuclear Information System (INIS)

    Siddique, N.; Ahmed, S.; Rahman, A; Waheed, S.; Chaudhary, M.M.; Qureshi, I.H.

    1997-01-01

    An important route of entry of environmental contaminants into the human system is through food intake. To study the effect of environmental pollution on the food chain, base line levels of toxic element content of commonly available food articles must be established. This study was undertaken to determine the toxic meal content of Pakistani fruits. The techniques of instrumental Neutron Activation Analysis (INAA) and Atomic Absorption Spectrometry (AAS) were employed for this purpose. Fourteen fruits apple, apricot, banana, data guava, kino, mango, melon, orange, peach, pear, plum, pomegranate and watermelon, as well as, the peels of apple and pear have been investigated and the results are discussed in this paper. The results were found to lie within 95 % confidence limit using Student's t test. Hg, As and Sb were detected, using INAA, in pear, pomegranate and water melon in low amounts (ppb levels) but were not detected in orange, plum and melon. Lesser amounts of toxic elements were detected in the peels of pear and high amounts were detected in apple peel as compared to the edible part of the fruit. Cadmium and lead were determined using Graphite Furnace atomic absorption Spectrometry. Cadmium was found to lie in the range of 18-42 ppb, in most fruits, whereas the amount of lead varied between 39-128 ppb. Lead was below detection limit in melon, guava, mango, and peach contained the highest amount of As, Cd, Hg and Pb. (author)

  17. The Benefits and Risks of Consuming Brewed Tea: Beware of Toxic Element Contamination

    Directory of Open Access Journals (Sweden)

    Gerry Schwalfenberg

    2013-01-01

    Full Text Available Background. Increasing concern is evident about contamination of foodstuffs and natural health products. Methods. Common off-the-shelf varieties of black, green, white, and oolong teas sold in tea bags were used for analysis in this study. Toxic element testing was performed on 30 different teas by analyzing (i tea leaves, (ii tea steeped for 3-4 minutes, and (iii tea steeped for 15–17 minutes. Results were compared to existing preferred endpoints. Results. All brewed teas contained lead with 73% of teas brewed for 3 minutes and 83% brewed for 15 minutes having lead levels considered unsafe for consumption during pregnancy and lactation. Aluminum levels were above recommended guidelines in 20% of brewed teas. No mercury was found at detectable levels in any brewed tea samples. Teas contained several beneficial elements such as magnesium, calcium, potassium, and phosphorus. Of trace minerals, only manganese levels were found to be excessive in some black teas. Conclusions. Toxic contamination by heavy metals was found in most of the teas sampled. Some tea samples are considered unsafe. There are no existing guidelines for routine testing or reporting of toxicant levels in “naturally” occurring products. Public health warnings or industry regulation might be indicated to protect consumer safety.

  18. Strategies for the engineered phytoremediation of toxic element pollution: mercury and arsenic.

    Science.gov (United States)

    Meagher, Richard B; Heaton, Andrew C P

    2005-12-01

    Plants have many natural properties that make them ideally suited to clean up polluted soil, water, and air, in a process called phytoremediation. We are in the early stages of testing genetic engineering-based phytoremediation strategies for elemental pollutants like mercury and arsenic using the model plant Arabidopsis. The long-term goal is to develop and test vigorous, field-adapted plant species that can prevent elemental pollutants from entering the food-chain by extracting them to aboveground tissues, where they can be managed. To achieve this goal for arsenic and mercury, and pave the way for the remediation of other challenging elemental pollutants like lead or radionucleides, research and development on native hyperaccumulators and engineered model plants needs to proceed in at least eight focus areas: (1) Plant tolerance to toxic elementals is essential if plant roots are to penetrate and extract pollutants efficiently from heterogeneous contaminated soils. Only the roots of mercury- and arsenic-tolerant plants efficiently contact substrates heavily contaminated with these elements. (2) Plants alter their rhizosphere by secreting various enzymes and small molecules, and by adjusting pH in order to enhance extraction of both essential nutrients and toxic elements. Acidification favors greater mobility and uptake of mercury and arsenic. (3) Short distance transport systems for nutrients in roots and root hairs requires numerous endogenous transporters. It is likely that root plasma membrane transporters for iron, copper, zinc, and phosphate take up ionic mercuric ions and arsenate. (4) The electrochemical state and chemical speciation of elemental pollutants can enhance their mobility from roots up to shoots. Initial data suggest that elemental and ionic mercury and the oxyanion arsenate will be the most mobile species of these two toxic elements. (5) The long-distance transport of nutrients requires efficient xylem loading in roots, movement through the

  19. Clinical Aspects of Trace Elements: Zinc in Human Nutrition – Zinc Deficiency and Toxicity

    Directory of Open Access Journals (Sweden)

    Michelle M Pluhator

    1996-01-01

    Full Text Available Available evidence suggests that trace elements, such as zinc, once thought to have no nutritional relevance, are possibly deficient in large sections of the human population. Conditioned deficiencies have been reported to result from malabsorption syndromes, acrodermatitis enteropathica, alcoholism, gastrointestinal disease, thermal injury, chronic diseases (eg, diabetes, sickle cell anemia, and in total parenteral nutrition therapy. Awareness that patients with these problems are at risk has led health professionals to focus increasingly on the importance of zinc therapy in the prevention and treatment of deficiency. More recently zinc toxicity and its role in human nutrition and well-being have come under investigation. Reports have focused on the role of zinc toxicity in causes of copper deficiency, changes in the immune system and alterations in blood lipids. As the numerous challenges presented by the study of zinc in human nutrition are met, more appropriate recommendations for dietary and therapeutic zinc intake are being made.

  20. Development of a database: DACTARI for a radio-toxic element ranking methodology

    International Nuclear Information System (INIS)

    Ansoborlo, E.; Santucci, C.; Grouiller, J.P.; Boucher, L.; Fluery-Herard, A.; Menetrier, F.; Comte, A.; Cook, E.; Moulin, V.

    2007-01-01

    Dosimetric impact studies aim at evaluating potential radiological effects of chronic or acute releases from nuclear facilities. A methodology for ranking radionuclides (RN) in terms of their health-related impact on the human population was first developed at CEA with specific criteria for each RN that could be applied to a variety of situations. It is based, in particular, on applying physico-chemical criteria to the complete RN inventory (present in the release or in the source term) and on applying norms related to radiation protection and chemical toxicology. The initial step consisted in identifying and collecting data necessary to apply the methodology, with reference to a previous database of long-lived radionuclides (LLRN, with half-lives ranging from 30 to 10 14 y) containing 95 radionuclides. The initial results have allowed us to identify missing data and revealed the need to complete the study for both toxic and radio-toxic aspects. This led us to the next step, developing a specific database, Database for Chemical Toxicity and Radiotoxicity Assessment of RadIonuclides (DACTARI), to collect data on chemical toxicity and radiotoxicity, including acute or chronic toxicity, the chemical form of the compounds, the contamination route (ingestion, inhalation), lethal doses, target organs, intestinal and maternal-foetal transfer, drinking water guidelines and the mutagenic and carcinogenic properties. (authors)

  1. Bio- and toxic elements in mushrooms from the city of Umeå and outskirts, Sweden.

    Science.gov (United States)

    Mędyk, Małgorzata; Grembecka, Małgorzata; Brzezicha-Cirocka, Justyna; Falandysz, Jerzy

    2017-08-03

    Edible mushrooms (Albatrellus ovinus, Boletus edulis, Clitocybe odora, Gomphidius glutinosus, Leccinum scabrum, Leccinum versipelle, Lycoperdon perlatum, Suillus bovinus, Suillus luteus, and Xerocomus subtomentosus) collected from unpolluted areas of the city of Umeå and its outskirts in the northern part of Sweden were examined for contents of toxic metallic elements (Cd, Pb, and Ag) and essential macro- and microelements (K, Na, Ca, Mg, Cu, Fe, Mn, and Zn) using a validated method and a final measurement by flame atomic absorption spectroscopy (F-AAS). The median values of the toxic metallic element concentrations (in mg kg -1 dry biomass, db) ranged from: 0.12-3.9, 0.46-5.1, and 0.91-6.2 for Ag, Cd and Pb, respectively. For the essential metallic elements, the median values of concentrations ranged from: 24000-58000, 15-2000, 59-610, 520-1900, 2.0-97, 16-150, 15-120, and 4.3-26 mg kg -1 db for K, Na, Ca, Mg, Cu, Zn, Fe, and Mn, respectively. The baseline concentrations of the metallic elements determined in mushrooms were mainly affected by the fungal species. The assessed probable maximal dietary intake of Cd (0.002 mg kg -1 body mass) solely from a mushroom meal was only slightly below a revised value of the tolerable weekly intake for this element, while for Pb (0.003 mg kg -1 body mass) it was tenfold below the provisionally tolerable weekly intake.

  2. Trace element toxicity in VA mycorrhizal cucumber grown on weathered coal fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Dosskey, M.G.; Adriano, D.C. (University of Georgia, Aiken, SC (United States). Savannah River Ecology Lab.)

    1993-11-01

    Mycorrhizal colonization is widely recognized as enhancing plant growth on severely disturbed sites. A greenhouse pot experiment was conducted to determine if inoculation with vesicular-arbuscular mycorrhizal (VAM) fungi will enhance vegetation establishment on abandoned coal fly ash basinss, Spores of Glomus intraradices (Schenck and Smith) and Glomus etunicatum (Becker and Gerdemann) were added to weathered precipitator ash (EC-0.91 dSm[sup -1], pH 5.0) and to a pasteurized soils of the same pH (Grossarenic Paleudult, 92% sand, 1% organic matter). Some soil and ash were left unamended as non-mycorrhizal controls. Cucumber (Cucumis sativus L. cv. Poinsette 76) seeds were sown, watered regularly, and fertilized periodically with macronutrient solution. By 8 weeks all ash-grown plants exhibited smaller leaves with leaf margin curl and necrosis, and plant biomass was significantly less (0.75x) than soil-grown plants. Based on analysis of 18 elements in plant tissues, toxicity to B, Mn, or Zn could have caused growth suppression, confirming trace element problems for plant growth on fly ash. For plants grown on fly ash, G. etunicatum was the only fungus that colonized roots (20% of root length reduced from 67% on soil) and it suppressed plant growth to 0.80 x that of uninoculated ash-grown plants. Correspondingly, shoot Zn concentration in G. etunicatum-inoculated plants was 3.5 x higher than in uninoculated plants and at generally toxic levels (273 mg kg[sup -1]). Glomus etunicatum had no other significant effects on elemental concentrations. These results indicate that VAM colonization in acid, weathered fly ash suppressed plant growth by facilitating uptake of Zn to toxic levels, and implies a limitation to successful use of VAM for vegetation establishment on abandoned coal fly ash basins.

  3. Biosorption: An Interplay between Marine Algae and Potentially Toxic Elements—A Review

    Science.gov (United States)

    Bilal, Muhammad; Rasheed, Tahir; Raza, Ali; Nabeel, Faran

    2018-01-01

    In recent decades, environmental pollution has emerged as a core issue, around the globe, rendering it of fundamental concern to eco-toxicologists, environmental biologists, eco-chemists, pathologists, and researchers from other fields. The dissolution of polluting agents is a leading cause of environmental pollution of all key spheres including the hydrosphere, lithosphere, and biosphere, among others. The widespread occurrence of various pollutants including toxic heavy metals and other emerging hazardous contaminants is a serious concern. With increasing scientific knowledge, socioeconomic awareness, human health problems, and ecological apprehensions, people are more concerned about adverse health outcomes. Against this background, several removal methods have been proposed and implemented with the aim of addressing environmental pollution and sustainable and eco-friendly development. Among them, the biosorption of pollutants using naturally inspired sources, e.g., marine algae, has considerable advantages. In the past few years, marine algae have been extensively studied due to their natural origin, overall cost-effective ratio, and effectiveness against a broader pollutant range; thus, they are considered a potential alternative to the conventional methods used for environmental decontamination. Herein, an effort has been made to highlight the importance of marine algae as naturally inspired biosorbents and their role in biosorption. Biosorption mechanisms and factors affecting biosorption activities are also discussed in this review. The utilization of marine algae as a biosorbent for the removal of numerous potentially toxic elements has also been reviewed. PMID:29463058

  4. Biosorption: An Interplay between Marine Algae and Potentially Toxic Elements—A Review

    Directory of Open Access Journals (Sweden)

    Muhammad Bilal

    2018-02-01

    Full Text Available In recent decades, environmental pollution has emerged as a core issue, around the globe, rendering it of fundamental concern to eco-toxicologists, environmental biologists, eco-chemists, pathologists, and researchers from other fields. The dissolution of polluting agents is a leading cause of environmental pollution of all key spheres including the hydrosphere, lithosphere, and biosphere, among others. The widespread occurrence of various pollutants including toxic heavy metals and other emerging hazardous contaminants is a serious concern. With increasing scientific knowledge, socioeconomic awareness, human health problems, and ecological apprehensions, people are more concerned about adverse health outcomes. Against this background, several removal methods have been proposed and implemented with the aim of addressing environmental pollution and sustainable and eco-friendly development. Among them, the biosorption of pollutants using naturally inspired sources, e.g., marine algae, has considerable advantages. In the past few years, marine algae have been extensively studied due to their natural origin, overall cost-effective ratio, and effectiveness against a broader pollutant range; thus, they are considered a potential alternative to the conventional methods used for environmental decontamination. Herein, an effort has been made to highlight the importance of marine algae as naturally inspired biosorbents and their role in biosorption. Biosorption mechanisms and factors affecting biosorption activities are also discussed in this review. The utilization of marine algae as a biosorbent for the removal of numerous potentially toxic elements has also been reviewed.

  5. Determination of toxic and essential elements in foodstuffs from local market in Jakarta

    International Nuclear Information System (INIS)

    Sadjirun, S.

    1994-01-01

    This report presents data on toxic and essential elements such as As, Cd, Cr, Cu, Hg, Pb, Sb, Se, and Zn in rice, corn, bean, wheat, small green pea, vegetables, fruits, tea, coffee, sea foods, meat, chicken, intestines and associated organs, and eggs as consumed in Jakarta. As, Hg, Sb, Cr, Se, and Zn were determined using instrumental neutron activation analysis (INAA) after being irradiated at TRIGA MARK II reactor, while Cd, Cu, and Pb were determined using atomic absorption spectrometry (AAS). The results obtained were lower than the maximum permissible concentrations allowed. (author). 6 refs, 9 tabs

  6. Analysis of toxic trace elements in sea food samples by neutron activation

    International Nuclear Information System (INIS)

    Sarmani, S.; Majid, A.A.; Wood, A.K.; Hamzah, Z.

    1993-01-01

    The contents of toxic and essential trace element were analysed such as As, Hg, Se and Zn by neutron activation analysis in coastal fishes consumed by the general population of Malaysia. The mean values of the elements analysed expressed in mg/kg fresh weight ranged 1.42-5.61, 0.06-0.42, 4.2-20.6, 0.41-1.28 for As, Hg, Zn and Se, respectively. The maximum permissible limit for As in food was set at 1.0 mg/kg under the Malaysian Food Regulations. The results showed that consumption of coastal fishes is not permitted under the regulations, while the levels of Hg, Se and Zn were within the permissible limits. The daily dietary intake of As and Hg at 400 μg and 30 μg respectively are still within the tolerance levels. (author) 9 refs.; 2 tabs

  7. Environmentally induced epigenetic toxicity: potential public health concerns.

    Science.gov (United States)

    Marczylo, Emma L; Jacobs, Miriam N; Gant, Timothy W

    2016-09-01

    Throughout our lives, epigenetic processes shape our development and enable us to adapt to a constantly changing environment. Identifying and understanding environmentally induced epigenetic change(s) that may lead to adverse outcomes is vital for protecting public health. This review, therefore, examines the present understanding of epigenetic mechanisms involved in the mammalian life cycle, evaluates the current evidence for environmentally induced epigenetic toxicity in human cohorts and rodent models and highlights the research considerations and implications of this emerging knowledge for public health and regulatory toxicology. Many hundreds of studies have investigated such toxicity, yet relatively few have demonstrated a mechanistic association among specific environmental exposures, epigenetic changes and adverse health outcomes in human epidemiological cohorts and/or rodent models. While this small body of evidence is largely composed of exploratory in vivo high-dose range studies, it does set a precedent for the existence of environmentally induced epigenetic toxicity. Consequently, there is worldwide recognition of this phenomenon, and discussion on how to both guide further scientific research towards a greater mechanistic understanding of environmentally induced epigenetic toxicity in humans, and translate relevant research outcomes into appropriate regulatory policies for effective public health protection.

  8. Diversity and dynamics of potentially toxic cyanobacteria and their ...

    African Journals Online (AJOL)

    Bloom–forming freshwater cyanobacteria pose human and livestock health problems due to their ability to produce toxins and other bioactive compounds. Some non-toxic cyanobacteria accumulate as buoyant surface dwelling scums and thick mats which affect the benthic fauna by degrading aquatic habitats and giving ...

  9. POTENTIAL PATHOPHYSIOLOGICAL MECHANISMS OF ULTRAFINE PARTICLE TOXIC EFFECTS IN HUMANS

    Directory of Open Access Journals (Sweden)

    JASMINA JOVIĆ-STOŠIĆ

    2008-03-01

    Full Text Available Epidemiological and clinical studies suggested the association of the particulate matter ambient air pollution and the increased morbidity and mortality, mainly from respiratory and cardiovascular diseases. The size of particles has great influence on their toxicity, because it determines the site in the respiratory tract where they deposit. The most well established theory explaining the mechanisms behind the increased toxicity of ultrafine particles (UFP, < 0.1 µm is that it has to do with the increased surface area and/or the combination with the increased number of particles. Biological effects of UFP are also determined by their shape and chemical composition, so it is not possible to estimate their toxicity in a general way. General hypothesis suggested that exposure to inhaled particles induces pulmonary alveolar inflammation as a basic pathophysiological event, triggering release of various proinflammatory cytokines. Chronic inflammation is a very important underlying mechanism in the genesis of atherosclerosis and cardiovascular diseases. UFP can freely move through the circulation, but their effects on the secondary organs are not known yet, so more studies on recognizing toxicological endpoints of UFP are needed. Determination of UFP toxicity and the estimation of their internal and biologically active dose are necessary for the evidence based conclusions connecting air pollution by UFP and human diseases.

  10. Percentage of toxic trace elements; Pb, Cr and Cd in certain plastic toys, Isfahan City

    Directory of Open Access Journals (Sweden)

    F Kavehzadeh

    2006-04-01

    Full Text Available Introduction: Recent investigations have detected the presence of significant levels of heavy metals (chromium, lead and cadmium in toys and other PVC products manufactured for children. In some countries, addition of compounds containing toxic metals to toys are limited or prohibited. Methods: To evaluate the safety of some of the plastic toys in the city of Isfahan with respect to toxic trace metals, pb, cr and cd, 75 samples of three types of toys were collected from the toy shop’s and were digested with acid with the two methods ISIRI and ASTM. The heavy metals were determined using atomic absorption spectrophotometer. Variance analysis and T-test were used for data analysis. Results: The result of the study showed that the products tested contained lead, chromium and cadmium and the highest and lowest concentration were related to Pb and Cd, respectively. The statistical analysis of the samples showed that there are no significant differences between ASTM and ISIRI digestion methods. The study revealed that none of the heavy metals in the toy samples exceeded the recommended standard levels. Highest average concentration of Pb and Cd were related to toys with green color and the highest Cr concentration was related to yellow toys in this study. Conclusion: Extensive studies are required to evaluate the quality of the toys being used by children and the toxic trace elements should be eliminated from the plastic materials used for making toys.

  11. Comparative study of the nutritional composition and toxic elements of farmed and wild Chanodichthys mongolicus

    Science.gov (United States)

    Jiang, Haifeng; Cheng, Xiaofei; Geng, Longwu; Tang, Shizhan; Tong, Guangxiang; Xu, Wei

    2017-07-01

    Information of the difference in quality between farmed and wild fish is central to better ensuring fish products produced in aquaculture meet regulatory and consumer requirements. Proximate composition, amino acid and fatty acid profiles, and toxic elements contents of farmed and wild Chanodichthys mongolicus were established and compared. Significantly higher crude protein content while lower moisture content in farmed fish compared to wild fish were observed ( Pacids (TAA), total essential amino acids (TEAA), total non-essential amino acids (TNEAA) and total delicious amino acids (TDAA) in farmed fish were all significantly higher than those in the wild equivalent ( Pacid profiles in both farmed and wild C. mongolicus were dominated by monounsaturated fatty acid (MUFA), with farmed fish contained much more MUFA content compared to wild counterpart ( Pacid (PUFA) including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) than farmed fish ( Pacid (C18:2n6) were the predominant PUFA in wild and farmed C. mongolicus, respectively. Moreover, farmed fish displayed an overall lower toxic element levels (As, Cd, Pb and Hg) in comparison with wild fish, and both were far lower than the established limit standard. In conclusion, our results suggest that the nutritional quality of farmed C. mongolicus was inferior to their wild counterpart with respect to fatty acids nutrition, and therefore further studies should focus on the improving C. mongolicus diet in order to enhance the overall nutritional composition.

  12. Determination of selected toxic elements in leaves of White Hawthorn grown in a remote area

    Directory of Open Access Journals (Sweden)

    Zeiner M.

    2013-04-01

    Full Text Available One important plant of the Rosaceae family which is commonly used as phytopharmaceutical in Europe and North America is Hawthorn (Crataegus monogyna. The fruits, the leaves together with their extracts are applied in patients suffering mild cardiac disorders or nervosity. Since the leaves as well as the berries act as diuretics a sufficient micronutrient supply has to be guaranteed. On the other the quantities of toxic elements present in the plant parts should be at levels without harmful effects on human health. For this purpose Hawthorn leaves and flowers were collected in a remote area in 2011 and 2012 and analysed for their elemental composition. The metals uptaken from the soil were supposed to be in a similar range, thus the impact of airborne contamination by heavy metal translocation could be studied. The elements investigated were Ba, Cd, Co, Cr, Cu, Mn, Ni, Pb, Sr, and Zn. After harvesting the samples were dried, homogenized, digested and then analysed by ICP-AES. The contents of all elements are in the μg/g range. In the samples of 2012 higher concentrations were found for Co, Cu, Mn, Ni, and Zn, lower concentrations were registered for Ba, Pb, and Sr. The amounts of Cd and Cr were statistically insignificantly lower in 2012 than 2011.

  13. Mercury and Air Toxic Element Impacts of Coal Combustion By-Product Disposal and Utilizaton

    Energy Technology Data Exchange (ETDEWEB)

    David Hassett; Loreal Heebink; Debra Pflughoeft-Hassett; Tera Buckley; Erick Zacher; Mei Xin; Mae Sexauer Gustin; Rob Jung

    2007-03-31

    The University of North Dakota Energy & Environmental Research Center (EERC) conducted a multiyear study to evaluate the impact of mercury and other air toxic elements (ATEs) on the management of coal combustion by-products (CCBs). The ATEs evaluated in this project were arsenic, cadmium, chromium, lead, nickel, and selenium. The study included laboratory tasks to develop measurement techniques for mercury and ATE releases, sample characterization, and release experiments. A field task was also performed to measure mercury releases at a field site. Samples of fly ash and flue gas desulfurization (FGD) materials were collected preferentially from full-scale coal-fired power plants operating both without and with mercury control technologies in place. In some cases, samples from pilot- and bench-scale emission control tests were included in the laboratory studies. Several sets of 'paired' baseline and test fly ash and FGD materials collected during full-scale mercury emission control tests were also included in laboratory evaluations. Samples from mercury emission control tests all contained activated carbon (AC) and some also incorporated a sorbent-enhancing agent (EA). Laboratory release experiments focused on measuring releases of mercury under conditions designed to simulate CCB exposure to water, ambient-temperature air, elevated temperatures, and microbes in both wet and dry conditions. Results of laboratory evaluations indicated that: (1) Mercury and sometimes selenium are collected with AC used for mercury emission control and, therefore, present at higher concentrations than samples collected without mercury emission controls present. (2) Mercury is stable on CCBs collected from systems both without and with mercury emission controls present under most conditions tested, with the exception of vapor-phase releases of mercury exposed to elevated temperatures. (3) The presence of carbon either from added AC or from unburned coal can result in mercury

  14. Measurement of the first ionization potential of lawrencium, element 103.

    Science.gov (United States)

    Sato, T K; Asai, M; Borschevsky, A; Stora, T; Sato, N; Kaneya, Y; Tsukada, K; Düllmann, Ch E; Eberhardt, K; Eliav, E; Ichikawa, S; Kaldor, U; Kratz, J V; Miyashita, S; Nagame, Y; Ooe, K; Osa, A; Renisch, D; Runke, J; Schädel, M; Thörle-Pospiech, P; Toyoshima, A; Trautmann, N

    2015-04-09

    The chemical properties of an element are primarily governed by the configuration of electrons in the valence shell. Relativistic effects influence the electronic structure of heavy elements in the sixth row of the periodic table, and these effects increase dramatically in the seventh row--including the actinides--even affecting ground-state configurations. Atomic s and p1/2 orbitals are stabilized by relativistic effects, whereas p3/2, d and f orbitals are destabilized, so that ground-state configurations of heavy elements may differ from those of lighter elements in the same group. The first ionization potential (IP1) is a measure of the energy required to remove one valence electron from a neutral atom, and is an atomic property that reflects the outermost electronic configuration. Precise and accurate experimental determination of IP1 gives information on the binding energy of valence electrons, and also, therefore, on the degree of relativistic stabilization. However, such measurements are hampered by the difficulty in obtaining the heaviest elements on scales of more than one atom at a time. Here we report that the experimentally obtained IP1 of the heaviest actinide, lawrencium (Lr, atomic number 103), is 4.96(+0.08)(-0.07) electronvolts. The IP1 of Lr was measured with (256)Lr (half-life 27 seconds) using an efficient surface ion-source and a radioisotope detection system coupled to a mass separator. The measured IP1 is in excellent agreement with the value of 4.963(15) electronvolts predicted here by state-of-the-art relativistic calculations. The present work provides a reliable benchmark for theoretical calculations and also opens the way for IP1 measurements of superheavy elements (that is, transactinides) on an atom-at-a-time scale.

  15. Chemical mixtures in untreated water from public-supply wells in the U.S. - Occurrence, composition, and potential toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Toccalino, Patricia L., E-mail: ptocca@usgs.gov [U.S. Geological Survey (USGS), 6000 J Street, Placer Hall, Sacramento, California 95819 (United States); Norman, Julia E., E-mail: jnorman@usgs.gov [USGS, 2130 SW 5th Avenue, Portland, Oregon 97201 (United States); Scott, Jonathon C., E-mail: jon@usgs.gov [USGS, 202 NW 66th Street, Oklahoma City, Oklahoma 73116 (United States)

    2012-08-01

    Chemical mixtures are prevalent in groundwater used for public water supply, but little is known about their potential health effects. As part of a large-scale ambient groundwater study, we evaluated chemical mixtures across multiple chemical classes, and included more chemical contaminants than in previous studies of mixtures in public-supply wells. We (1) assessed the occurrence of chemical mixtures in untreated source-water samples from public-supply wells, (2) determined the composition of the most frequently occurring mixtures, and (3) characterized the potential toxicity of mixtures using a new screening approach. The U.S. Geological Survey collected one untreated water sample from each of 383 public wells distributed across 35 states, and analyzed the samples for as many as 91 chemical contaminants. Concentrations of mixture components were compared to individual human-health benchmarks; the potential toxicity of mixtures was characterized by addition of benchmark-normalized component concentrations. Most samples (84%) contained mixtures of two or more contaminants, each at concentrations greater than one-tenth of individual benchmarks. The chemical mixtures that most frequently occurred and had the greatest potential toxicity primarily were composed of trace elements (including arsenic, strontium, or uranium), radon, or nitrate. Herbicides, disinfection by-products, and solvents were the most common organic contaminants in mixtures. The sum of benchmark-normalized concentrations was greater than 1 for 58% of samples, suggesting that there could be potential for mixtures toxicity in more than half of the public-well samples. Our findings can be used to help set priorities for groundwater monitoring and suggest future research directions for drinking-water treatment studies and for toxicity assessments of chemical mixtures in water resources. - Highlights: Black-Right-Pointing-Pointer We assessed mixtures in untreated groundwater samples from public

  16. Toxicity of 35 trace elements in coal to freshwater biota: a data base with automated retrieval capabilities. [313 references

    Energy Technology Data Exchange (ETDEWEB)

    Cushman, R. M.; Hildebrand, S. G.; Strand, R. H.; Anderson, R. M.

    1977-06-01

    Data are tabulated on the toxicity to freshwater biota of 35 trace elements with the potential for release to the environment from coal conversion effluents. The entire data base is presented on a microfiche appended to the document, in the interest of portability and accessibility. The data were gathered from a variety of research papers, compendia, and reviews. Details of water chemistry and test conditions are presented when available from the documents consulted. The data base may be used by referring directly to the tabulated data as they appear on the microfiche, or, with appropriate computer facilities, by manipulation (sorting, subsetting, or merging) of the data to meet the particular needs of the investigator. The data may be used as they appear in the data base, or the data base may be used to index the cited original papers.

  17. First ionization potential of the heaviest actinide lawrencium, element 103

    Directory of Open Access Journals (Sweden)

    Sato Tetsuya K.

    2016-01-01

    Full Text Available The first ionization potential (IP1 of element 103, lawrencium (Lr, has been successfully determined for the first time by using a newly developed method based on a surface ionization process. The measured IP1 value is 4.9630.080.07 eV. This value is the smallest among those of actinide elements and is in excellent agreement with the value of 4.963(15 eV predicted by state-of-the-art relativistic calculations also performed in this work. Our results strongly support that the Lr atom has an electronic configuration of [Rn]7s25f147p11/2, which is influenced by strong relativistic effects. The present work provides a reliable benchmark for theoretical calculations and also opens the way for studies on atomic properties of heavy elements with atomic number Z > 100. Moreover, the present achievement has triggered a controversy on the position of lutetium (Lu and Lr in the Periodic Table of Elements.

  18. Measurement of the first ionization potential of lawrencium (element 103)

    CERN Document Server

    Sato, T K; Borschevsky, A; Stora, T; Sato, N; Kaneya, Y; Tsukada, K; Düllmann, Ch E; Eberhardt, K; Eliav, E; Ichikawa, S; Kaldor, U; Kratz, J V; Miyashita, S; Nagame, Y; Ooe, K; Osa, A; Renisch, D; Runke, J; Schädel, M; Thörle-Pospiech, P; Toyoshima, A; Trautmann, N

    2015-01-01

    The chemical properties of an element are primarily governed by the configuration of electrons in the valence shell. Relativistic effects influence the electronic structure of heavy elements in the sixth row of the periodic table, and these effects increase dramatically in the seventh row—including the actinides—even affecting ground-state configurations. Atomic s and p1/2 orbitals are stabilized by relativistic effects, whereas p3/2, d and f orbitals are destabilized, so that ground-state configurations of heavy elements may differ from those of lighter elements in the same group. The first ionization potential (IP1) is a measure of the energy required to remove one valence electron from a neutral atom, and is an atomic property that reflects the outermost electronic configuration. Precise and accurate experimental determination of IP1 gives information on the binding energy of valence electrons, and also, therefore, on the degree of relativistic stabilization. However, such measurements are hampered by ...

  19. Identification of Potential Wild Herbal as parts of Landscape Elements

    Science.gov (United States)

    Sulistyantara, Bambang; Mentari, Nio

    2017-10-01

    Many landscape plants can grow on their own without cultivated by humans. They are type of plants that can be found anywhere, so they can be categorized as wild plants. The economic value of wild plants are easy to obtain and their maintenance costs are low. Because wild plants not widely known even a just a few of people that aware of their existence, it is necessary to do a study to learn the potential of the wild plants to be used as an element of landscape. This research aims to identify the species that have potential to be used in landscape design, to describe the benefits of the their implementation as a landscape element, and to recommend the wild plants that have functional value and visual. This research used a scoring method based on the functional and visual criteria, and questionnaires were conducted to 50 students of Landscape Architecture IPB who have completed Landscape Plants courses. Based on the research, there are 150 species of wild plants that found in the study site, and 60 of them are recommended as landscape elements. Then all of the species were arranged as a recommendations book so they can be used as alternative landscape plants.

  20. Comparative study of essential and toxic trace elements in chewing tobacco and pan masalas by INAA and AAS

    International Nuclear Information System (INIS)

    Paul Choudhury, R.; Garg, A.N.; Nair, A.G.C.; Reddy, A.V.R.

    2005-01-01

    Concentrations of about 25 elements were measured in 10 samples of chewing tobacco and 5 of pan masalas by INAA and AAS. Reference Materials (RMs) were analysed for quality assurance and data validation. It is observed that besides many essential elements (Fe, Cu, Zn, P, Ca, Mg), several toxic elements such as As, Sb, Hg, Ni and Pb are also present in significant amounts and are likely to be swallowed along with saliva while chewing. (author)

  1. Tracing toxic elements sources using lead isotopes: An example from the San Antonio–El Triunfo mining district, Baja California Sur, México

    International Nuclear Information System (INIS)

    Gutiérrez-Caminero, Leopoldo; Weber, Bodo; Wurl, Jobst; Carrera-Muñoz, Mariela

    2015-01-01

    Highlights: • Provenance of toxic elements is investigated in a basin close to the mining district. • Stable lead isotope analyses assist to distinguish between sources of toxic elements. • Two major sources are identified: mine tailings and fault bounded mineralization. • There is evidence in the detritus of a different natural lead component. • An additional anthropogenic lead input is detectable from the soluble phases. - Abstract: Pollution of sediments and water bodies with toxic elements around the San Antonio–El Triunfo mining district, Baja California Sur, México is probably sourced from the tailings of abandoned mines that are hosted in mineralized Cretaceous granitoids. However, there is evidence to suggest local hot springs related to recent faults may be an additional source for contamination in the area. In this study, lead isotope signatures are applied to draw conclusions with regard to potential sources of toxic elements. Lead isotope ratios were analyzed from sulfides and scoria from the abandoned mines, fluvial sediments, and igneous rocks with secondary disseminated mineralization. To differentiate between superposed secondary and residual primary lead, leaching experiments were performed, and both leachate and residues were analyzed separately. Most of the residues from sediment samples have lead isotope ratios similar to those from the sulfides and scoria of the mining district, indicating that most of the lead in the detritus is related to the mineralized plutons. However, there is evidence of an additional detrital component. Lead isotope ratios from the leachates indicate a different source for the superimposed lead that is best explained by the contamination with the average Mexican industrial lead. Secondary disseminated mineralization that is related to younger, deep structures (hot springs) has different lead isotope ratios compared to massive vein sulfides and accounts for a significant amount in areas with high

  2. k0-INAA measurement of levels of toxic elements in oil sludge and their leachability

    International Nuclear Information System (INIS)

    Syazwani Mohd Fadzil; Kok Siong Khoo; Sukiman Sarmani; Majid, A.A.; Ainon Hamzah

    2011-01-01

    Development of the petroleum industry has resulted in increasing production of oil sludge, the disposal of which risks introducing hazardous elements into the environment. In the frames of these studies the presence of the toxic metals arsenic, chromium and zinc in oil sludge and the leachability of those toxins. Samples were obtained from a refinery plant in Sg Udang, Melaka and from the Miri Crude Oil Terminal, Sarawak, both in Malaysia. k 0 -Instrumental Neutron Activation Analysis was used to measure mass fractions of elements. The samples were packed and irradiated in a TRIGA Mark II reactor. Mass fraction of arsenic in the oil sludge samples were found to be higher than the EPA pollutant mass fraction limit; mass fractions of chromium and zinc were below of this limit. Samples were also tested for leachability, which was found to be contributed to by controlled diffusion. Slow leachability of arsenic was found to be higher than the EPA limit in these oil sludge samples, influenced by such factors as redox condition. It was found however, that the most leachable of these elements in all samples from both sites was zinc, followed by arsenic and chromium, indicating that zinc may present a more serious threat of environmental contamination than the other two. (author)

  3. Characterization of Morus species in respect to micro, macro, and toxic elements

    Directory of Open Access Journals (Sweden)

    Radojković Marija M.

    2014-01-01

    Full Text Available This study examines the mineral composition of the extracts of the fruits, leaves and roots of white mulberry (Morus alba L. and black mulberry (Morus nigra L. grown in Serbia. All extract samples of white and black mulberry were analyzed for the content of micro (B, Co, Cr, Cu, Fe, Li, Mn, Ni, Se, Sr, Zn, macro (Ca, Mg, Na, and toxic metals (Al, As, Cd, Hg, Pb by inductively coupled plasma optical emission spectrometry (ICP-OES. The study revealed that parts of the plant had statistically significant impact on the levels of the examined elements among the two Morus species. All extracts contained high amounts of Ca, Mg, Na, B, Cu, Fe, Mn and Zn. The studies showed that in the most of extracts dominant macro element was Mg (591- 1942 μg/g of dry extract, while dominant microelements were Zn, B, Cu in all extracts, except for the black mulberry leaves, whose extract was most abundant in Fe (143 μg/g of dry extract. The highest content of micro and macro elements was detected in the extract of black mulberry leaves. This work contributes to the knowledge of the nutritional properties of Morus species. The obtained results may be useful in the evaluation of new dietary and food products.[ Projekat Ministarstva nauke Republike Srbije, br. TR 31013

  4. Potential synergy between two renal toxicants: DTPA and uranium

    International Nuclear Information System (INIS)

    Muller, D.; Houpert, P.; Henge Napoli, M.H.; Paquet, F.; Muller, D.; Henge Napoli, M.H.; Metivier, H.

    2006-01-01

    At present, the most appropriate therapeutic approach to treat an accidental contamination with plutonium and uranium oxide mixture (MOX) is administration of diethylene-triamine-penta-acetate acid (DTPA) in order to accelerate plutonium excretion. As uranium and DTPA are both nephro-toxic compounds, the administration of DTPA after a contamination containing uranium could enhance the nephro-toxic effects of uranium. The aim of the present work was to study in vitro on a kidney proximal tubule cell line (LLC-PK 1 ) the cytotoxicity induced by increasing concentrations of uranium in presence of 3 different chemical forms of DTPA. The results showed that the DTPA used alone induced no cytotoxicity at the concentration used here (420 μM). However, this concentration of DTPA increased the cytotoxicity induced by uranium. This increase was maximal for uranium concentrations close to the lethal concentration for 50% of the cells and reached 37, 31 and 28% for anhydrous DTPA, Na 3 CaDTPA and Na 3 ZnDTPA, respectively. These results suggest that administration of DTPA could enhance the nephrotoxicity induced by uranium. (authors)

  5. Nanoparticles: Their potential toxicity, waste and environmental management

    International Nuclear Information System (INIS)

    Bystrzejewska-Piotrowska, Grazyna; Golimowski, Jerzy; Urban, Pawel L.

    2009-01-01

    This literature review discusses specific issues related to handling of waste containing nanomaterials. The aims are (1) to highlight problems related to uncontrolled release of nanoparticles to the environment through waste disposal, and (2) to introduce the topics of nanowaste and nanotoxicology to the waste management community. Many nanoparticles used by industry contain heavy metals, thus toxicity and bioaccumulation of heavy metals contained in nanoparticles may become important environmental issues. Although bioavailability of heavy metals contained in nanoparticles can be lower than those present in soluble form, the toxicity resulting from their intrinsic nature (e.g. their size, shape or density) may be significant. An approach to the treatment of nanowaste requires understanding of all its properties - not only chemical, but also physical and biological. Progress in nanowaste management also requires studies of the environmental impact of the new materials. The authors believe Amara's law is applicable to the impact of nanotechnologies, and society might overestimate the short-term effects of these technologies, while underestimating the long-term effects. It is necessary to have basic information from companies about the level and nature of nanomaterials produced or emitted and about the expectation of the life cycle time of nanoproducts as a basis to estimate the level of nanowaste in the future. Without knowing how companies plan to use and store recycled and nonrecycled nanomaterials, development of regulations is difficult. Tagging of nanoproducts is proposed as a means to facilitate separation and recovery of nanomaterials.

  6. Toxicity potentials from waste cellular phones, and a waste management policy integrating consumer, corporate, and government responsibilities

    International Nuclear Information System (INIS)

    Lim, Seong-Rin; Schoenung, Julie M.

    2010-01-01

    Cellular phones have high environmental impact potentials because of their heavy metal content and current consumer attitudes toward purchasing new phones with higher functionality and neglecting to return waste phones into proper take-back systems. This study evaluates human health and ecological toxicity potentials from waste cellular phones; highlights consumer, corporate, and government responsibilities for effective waste management; and identifies key elements needed for an effective waste management strategy. The toxicity potentials are evaluated by using heavy metal content, respective characterization factors, and a pathway and impact model for heavy metals that considers end-of-life disposal in landfills or by incineration. Cancer potentials derive primarily from Pb and As; non-cancer potentials primarily from Cu and Pb; and ecotoxicity potentials primarily from Cu and Hg. These results are not completely in agreement with previous work in which leachability thresholds were the metric used to establish priority, thereby indicating the need for multiple or revised metrics. The triple bottom line of consumer, corporate, and government responsibilities is emphasized in terms of consumer attitudes, design for environment (DfE), and establishment and implementation of waste management systems including recycling streams, respectively. The key strategic elements for effective waste management include environmental taxation and a deposit-refund system to motivate consumer responsibility, which is linked and integrated with corporate and government responsibilities. The results of this study can contribute to DfE and waste management policy for cellular phones.

  7. Toxicity potentials from waste cellular phones, and a waste management policy integrating consumer, corporate, and government responsibilities.

    Science.gov (United States)

    Lim, Seong-Rin; Schoenung, Julie M

    2010-01-01

    Cellular phones have high environmental impact potentials because of their heavy metal content and current consumer attitudes toward purchasing new phones with higher functionality and neglecting to return waste phones into proper take-back systems. This study evaluates human health and ecological toxicity potentials from waste cellular phones; highlights consumer, corporate, and government responsibilities for effective waste management; and identifies key elements needed for an effective waste management strategy. The toxicity potentials are evaluated by using heavy metal content, respective characterization factors, and a pathway and impact model for heavy metals that considers end-of-life disposal in landfills or by incineration. Cancer potentials derive primarily from Pb and As; non-cancer potentials primarily from Cu and Pb; and ecotoxicity potentials primarily from Cu and Hg. These results are not completely in agreement with previous work in which leachability thresholds were the metric used to establish priority, thereby indicating the need for multiple or revised metrics. The triple bottom line of consumer, corporate, and government responsibilities is emphasized in terms of consumer attitudes, design for environment (DfE), and establishment and implementation of waste management systems including recycling streams, respectively. The key strategic elements for effective waste management include environmental taxation and a deposit-refund system to motivate consumer responsibility, which is linked and integrated with corporate and government responsibilities. The results of this study can contribute to DfE and waste management policy for cellular phones. 2010 Elsevier Ltd. All rights reserved.

  8. Potential carcinogenicity predicted by computational toxicity evaluation of thiophosphate pesticides using QSTR/QSCarciAR model.

    Science.gov (United States)

    Petrescu, Alina-Maria; Ilia, Gheorghe

    2017-07-01

    This study presents in silico prediction of toxic activities and carcinogenicity, represented by the potential carcinogenicity DSSTox/DBS, based on vector regression with a new Kernel activity, and correlating the predicted toxicity values through a QSAR model, namely: QSTR/QSCarciAR (quantitative structure toxicity relationship/quantitative structure carcinogenicity-activity relationship) described by 2D, 3D descriptors and biological descriptors. The results showed a connection between carcinogenicity (compared to the structure of a compound) and toxicity, as a basis for future studies on this subject, but each prediction is based on structurally similar compounds and the reactivation of the substructures of these compounds.

  9. Environmental impact of toxic elements in red mud studied by fractionation and speciation procedures.

    Science.gov (United States)

    Milačič, Radmila; Zuliani, Tea; Ščančar, Janez

    2012-06-01

    Aluminum (Al) is mostly produced from bauxite ore, which contains up to 70% of Al(2)O(3) (alumina). Before alumina is refined to aluminum metal, it is purified by hot alkaline extraction. As a waste by-product red mud is formed. Due to its high alkalinity and large quantities, it represents a severe disposal problem. In Kidričevo (Slovenia), red mud was washed with water before disposal, and after drying, covered with soil. In Ajka (Hungary), the red mud slurry was collected directly in a containment structure, which burst caused a major accident in October 2010. In the present work the environmental impact of toxic elements in red mud from Kidričevo and Ajka were evaluated by applying a sequential extraction procedure and speciation analysis. The predominant red mud fraction was the insoluble residue; nevertheless, environmental concern was focused on the highly mobile water-soluble fraction of Al and Cr. Al in the water-soluble Ajka mud fraction was present exclusively in form of toxic [Al(OH)(4)](-), while Cr existed in its toxic hexavalent form. Comparative assessment to red mud from Kidričevo (Slovenia) with a lower alkalinity (pH 9) with that from Ajka demonstrated significantly lower Al solubility and the presence of only trace amounts of Cr(VI), confirming that disposal of neutralized mud is environmentally much more acceptable and carries a smaller risk of ecological accidents. Since during the Ajka accident huge amounts of biologically available Al and moderate Cr(VI) concentrations were released into the terrestrial and aquatic environments, monitoring of Al and Cr(VI) set free during remedial actions at the contaminated site is essential. Particular care should be taken to minimize the risk of release of soluble Al species and Cr(VI) into water supplies and surface waters. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Analysis of the Toxic Element Concentrations in the Mesozoic Siliceous Rocks in Terms of the Raw Material Importance

    Science.gov (United States)

    Pękala, Agnieszka

    2017-10-01

    As part of an integrated system of environmental protection at every stage of the product life cycle such as: raw material extraction, its transportation and processing as well the subsequent use and development is required to carry out actions towards reducing or completely eliminating products that contain harmful substances to the environment. The purpose of the presented paper is an analysis of the toxic element concentrations in the extracted siliceous minerals at the initial stage of the raw material recognition. The research material is constituted by rocks collected from the Mesozoic bedrock from the Bełchatów lignite deposit. A group of the studied rocks is represented by diatomites, gaizes, opoka-rocks and light opoka-rocks, enriched with minerals from the group of SiO2. Most of the recognized petrographic sediments have a real possibility of potential applications in the building material industry, but it needs to carry out a detailed and thorough research. The studies of the chemical composition were determined by atomic absorption spectroscopy (AAS) using Philips PU 9100Xi Camera SX-100 spectrometer and an atomic emission spectroscopy with inductively coupled plasma (ICP AES) using PLASMA 40 spectrometer. There were carried out a chemical analyses and determined the content of some toxic elements: Pb, Cr, Cd, Ni, Zn, Cu, Co, As, Sr, Ba, Zr. in the studied sedimentary rocks. The analysis of the results draws attention to the high content of cadmium in the case of the studied sediments. The concentration of this element in the described rocks is an average of 0.22 mg/kg -the diatomites, 0.05 mg/kg -the gaizes, 0.4 mg/kg -the opoka-rocks, 2.23 mg/kg -the light opoka-rocks. It was moreover registered varied concentration of arsenic in diatomites, that is formed in the range of 0.05 - 9.6 mg/kg, an average of 6.3 mg/kg. The content of the other designated elements with toxic properties in the analysed groups of rocks does not exceed the limit values. An

  11. Chemical mixtures in untreated water from public-supply wells in the U.S.--occurrence, composition, and potential toxicity.

    Science.gov (United States)

    Toccalino, Patricia L; Norman, Julia E; Scott, Jonathon C

    2012-08-01

    Chemical mixtures are prevalent in groundwater used for public water supply, but little is known about their potential health effects. As part of a large-scale ambient groundwater study, we evaluated chemical mixtures across multiple chemical classes, and included more chemical contaminants than in previous studies of mixtures in public-supply wells. We (1) assessed the occurrence of chemical mixtures in untreated source-water samples from public-supply wells, (2) determined the composition of the most frequently occurring mixtures, and (3) characterized the potential toxicity of mixtures using a new screening approach. The U.S. Geological Survey collected one untreated water sample from each of 383 public wells distributed across 35 states, and analyzed the samples for as many as 91 chemical contaminants. Concentrations of mixture components were compared to individual human-health benchmarks; the potential toxicity of mixtures was characterized by addition of benchmark-normalized component concentrations. Most samples (84%) contained mixtures of two or more contaminants, each at concentrations greater than one-tenth of individual benchmarks. The chemical mixtures that most frequently occurred and had the greatest potential toxicity primarily were composed of trace elements (including arsenic, strontium, or uranium), radon, or nitrate. Herbicides, disinfection by-products, and solvents were the most common organic contaminants in mixtures. The sum of benchmark-normalized concentrations was greater than 1 for 58% of samples, suggesting that there could be potential for mixtures toxicity in more than half of the public-well samples. Our findings can be used to help set priorities for groundwater monitoring and suggest future research directions for drinking-water treatment studies and for toxicity assessments of chemical mixtures in water resources. Published by Elsevier B.V.

  12. In which regions is breast-feeding safer from the impact of toxic elements from the environment?

    OpenAIRE

    Cinar, Nursan; Ozdemir, Sami; Yucel, Oya; Ucar, Fatma

    2011-01-01

    Owing to its unique nutritional and immunological characteristics, breast milk is the most important food source for infants. But, children are at greater risk for exposure to environmental toxicants from breast milk. The aim of this study was to evaluate the influence of environmental pollution on essential and toxic element contents of breast milk and determine the risky locations in our population. This study was conducted on women who were breastfeeding (n=90). Milk samples were collected...

  13. Screen-Printed Electrodes Modified with “Green” Metals for Electrochemical Stripping Analysis of Toxic Elements

    OpenAIRE

    Anastasios Economou

    2018-01-01

    This work reviews the field of screen-printed electrodes (SPEs) modified with “green” metals for electrochemical stripping analysis of toxic elements. Electrochemical stripping analysis has been established as a useful trace analysis technique offering many advantages compared to competing optical techniques. Although mercury has been the preferred electrode material for stripping analysis, the toxicity of mercury and the associated legal requirements in its use and disposal have ...

  14. Potential for photoenhanced toxicity of spilled oil in Prince William Sound and Gulf of Alaska Waters

    International Nuclear Information System (INIS)

    Barron, M.G.; Ka'aihue, L.

    2001-01-01

    Photoenhanced toxicity is the increase in the toxicity of a chemical in the presence of ultraviolet light (UV) compared to a standard laboratory test conducted with fluorescent lighting (minimal UV). Oil products, weathered oil, and specific polycyclic aromatic compounds present in oil are 2 to greater than 1000 times more toxic in the presence of UV. The photoenhanced toxicity of oil to fish and aquatic invertebrates appears to occur through a process of photosensitization, rather than photomodification of the aqueous phase oil. In photosensitization, the bioaccumulated chemical transfers light energy to other molecules causing toxicity through tissue damage rather than a narcosis mechanism. The available evidence indicates that phototoxic components of oil are specific 3-5 ring polycyclic aromatic hydrocarbons (PAHs) and heterocycles. Determinants of photoenhanced toxicity include the extent of oil bioaccumulation in aquatic organisms and the spectra and intensity of UV exposure. No studies have specifically investigated the photoenhanced toxicity of spilled oil in Alaska waters. Although there are substantial uncertainties, the results of this evaluation indicate there is potential for photoenhanced toxicity of spilled oil in Prince William Sound and the Gulf of Alaska. The potential hazard of photoenhanced toxicity may be greatest for embryo and larval stages of aquatic organisms that are relatively translucent to UV and inhabit the photic zone of the water column and intertidal areas. Photoenhanced toxicity should be considered in oil spill response because the spatial and temporal extent of injury to aquatic organisms may be underestimated if based on standard laboratory bioassays and existing toxicity databases. Additionally, the choice of counter measures and oil removal operations may influence the degree of photoenhanced toxicity. (author)

  15. Potential roles for transposable elements in creating imprinted expression.

    Science.gov (United States)

    Anderson, Sarah N; Springer, Nathan M

    2018-04-01

    Changes in gene expression can have profound effects on phenotype. Nature has provided many complex patterns of gene regulation such as imprinting. Imprinted genes exhibit differences in the expression of the maternal and paternal alleles, even though they reside in the same nucleus with access to the same trans-acting factors. Significant attention has been focused on the potential reasons that imprinted expression could be beneficial and stabilized by selection. However, less attention has focused on understanding how imprinted expression might arise or decay. We discuss the evidence for frequent turnover of imprinted expression based on evolutionary analyses in plants and the potential role for transposable elements (TEs) in creating imprinted expression patterns. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. The Impact of a Nickel-Copper Smelter on Concentrations of Toxic Elements in Local Wild Food from the Norwegian, Finnish, and Russian Border Regions.

    Science.gov (United States)

    Hansen, Martine D; Nøst, Therese H; Heimstad, Eldbjørg S; Evenset, Anita; Dudarev, Alexey A; Rautio, Arja; Myllynen, Päivi; Dushkina, Eugenia V; Jagodic, Marta; Christensen, Guttorm N; Anda, Erik E; Brustad, Magritt; Sandanger, Torkjel M

    2017-06-28

    Toxic elements emitted from the Pechenganickel complex on the Kola Peninsula have caused concern about potential effects on local wild food in the border regions between Norway, Finland and Russia. The aim of this study was to assess Ni, Cu, Co, As, Pb, Cd, and Hg concentrations in local wild foods from these border regions. During 2013-2014, we collected samples of different berry, mushroom, fish, and game species from sites at varying distances from the Ni-Cu smelter in all three border regions. Our results indicate that the Ni-Cu smelter is the main source of Ni, Co, and As in local wild foods, whereas the sources of Pb and Cd are more complex. We observed no consistent trends for Cu, one of the main toxic elements emitted by the Ni-Cu smelter; nor did we find any trend for Hg in wild food. Concentrations of all investigated toxic elements were highest in mushrooms, except for Hg, which was highest in fish. EU maximum levels of Pb, Cd, and Hg were exceeded in some samples, but most had levels considered safe for human consumption. No international thresholds exist for the other elements under study.

  17. Assessment of sediments from Tiete River - toxicity and trace elements - from Salesopolis to Suzano counties, Sao Paulo, Brazil

    International Nuclear Information System (INIS)

    Alegre, Gabriel F.; Borrely, Sueli; Nascimento, Thuany M.; Favaro, Deborah I.T.

    2009-01-01

    In the present study, sediment samples from the Tiete River were evaluated for toxicity and trace metals (5 sampling sites). The studied region includes Salesopolis to Suzano and surroundings, a highly industrialized area. The study involved toxicity evaluation (sediment, elutriate and pore-water) and the distribution of some major, trace and rare earth elements on sediments. Multielemental analysis was carried out by instrumental neutron activation analysis (INAA) and total mercury by cold vapor atomic absorption technique (CV AAS). The concentration values obtained for the metals As, Cr, Hg and Zn in the sediment samples were compared to the Canadian Council of Minister of the Environment (CCME) oriented values (TEL and PEL). Regarding toxicity, whole sediments and elutriate fractions were evaluated using chronic assays for Ceriodaphnia dubia, while the pore water was carried out for Vibrio fischeri toxicity assays. These assays followed Brazilian Standardized Methods (ABNT). Whole sediments and elutriate evidenced negative biological effects, even at Salesopolis county, the control site (less impacted area). The worst effects were obtained at Mogi das Cruzes and Suzano counties (sampling stations 3 and 4). The elutriate fractions collected at the same stations showed acute toxicity in two of three samples (C. dubia). When pore water was evaluated, a toxicity gradient which increased as the river flowed through Mogi das Cruzes county was obtained. Regarding toxic metal contents in the sediment samples points 3 and 4 exceeded the TEL oriented values for As, Cr, Hg and Zn and point 4 also exceeded the PEL values for all these elements. (author)

  18. Essential and toxic elements in foods of dietary intake from Shah Alam, Selangor

    International Nuclear Information System (INIS)

    Suziana Ismail; Zaini Hamzah; Abdul Khalik Wood

    2005-01-01

    There is growing concern all over the world on health-related problems due to the foods consumed by the people. One of the area is the human exposure to metals (essential as well as toxic) which can be studied using a various techniques. Variety of daily food samples collected from various food outlets in a different area were studied. The selected foods were collected from various restaurant and food stalls around Shah Alam, Selangor. The chosen sets, including breakfast, lunch and dinner, were blended together, dried, and analyzed for its elemental contents using neutron activation analysis (NAA technique. The results show a variation of elemental contents in relation to the type of foods studied. The Na ranges from 0.91 to 4.1%, K ranges from 1.65% to 3.35%, Ca ranges from 1.03 to 21.39 ppm, Zn ranges from 11.32 to 18.49 ppm, Co ranges from 0.10 to 0.19 ppm, Mn ranges from 0.12 to 0.55 ppm, Cr ranges from 0.52 to 1.06 ppm and As ranges from 0.25 to 0.92 ppm. (Author)

  19. Potential Occupational Risks Associated with Pulmonary Toxicity of Carbon Nanotubes.

    Science.gov (United States)

    Manke, Amruta; Luanpitpong, Sudjit; Rojanasakul, Yon

    Given their remarkable properties, carbon nanotubes (CNTs) have made their way through various industrial and medicinal applications and the overall production of CNTs is expected to grow rapidly in the next few years, thus requiring an additional recruitment of workers. However, their unique applications and desirable properties are fraught with concerns regarding occupational exposure. The concern about worker exposure to CNTs arises from the results of recent animal studies. Short-term and sub-chronic exposure studies in rodents have shown consistent adverse health effects such as pulmonary inflammation, granulomas, fibrosis, genotoxicity and mesothelioma after inhalation or instillation of several types of CNTs. Furthermore, physicochemical properties of CNTs such as dispersion, functionalization and particle size can significantly affect their pulmonary toxicity. Risk estimates from animal studies necessitate implementation of protective measures to limit worker exposure to CNTs. Information on workplace exposure is very limited, however, studies have reported that CNTs can be aerosolized and attain respirable airborne levels during synthesis and processing activities in the workplace. Quantitative risk assessments from sub-chronic animal studies recommend the health-based need to reduce exposures below the recommended exposure limit of 1 µg/m 3 . Practice of prevention measures including the use of engineering controls, personal protective equipment, health surveillance program, safe handling and use, as well as worker training can significantly minimize worker exposure and improve worker health and safety.

  20. Association between essential trace and toxic elements in scalp hair samples of smokers rheumatoid arthritis subjects

    Energy Technology Data Exchange (ETDEWEB)

    Afridi, Hassan Imran, E-mail: hassanimranafridi@yahoo.com [Mechanical and Manufacturing Engineering, Dublin City University, Dublin, Ireland. (Ireland); National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro (Pakistan); Kazi, Tasneem Gul, E-mail: tgkazi@yahoo.com [National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro (Pakistan); Brabazon, Dermot, E-mail: dermot.brabazon@dcu.ie [Mechanical and Manufacturing Engineering, Dublin City University, Dublin, Ireland. (Ireland); Naher, Sumsun, E-mail: sumsun.naher@dcu.ie [Mechanical and Manufacturing Engineering, Dublin City University, Dublin, Ireland. (Ireland)

    2011-12-15

    The incidence of rheumatoid arthritis (RA) has been increased among people who possess habit of tobacco smoking. In the present study, zinc (Zn), copper (Cu), manganese (Mn), lead (Pb) and cadmium (Cd) were determined in scalp hair samples of smokers and nonsmokers RA patients, residents of Dublin, Ireland. For comparison purposes scalp hair samples of age and sex matched healthy smokers and nonsmokers were also analyzed. The concentrations of understudied elements were measured by inductive coupled plasma atomic emission spectrophotometer, prior to microwave assisted acid digestion. The validity and accuracy of methodology was checked using certified reference material (NCS ZC 81002b) and by the conventional wet acid digestion method on the same certified reference material and on real samples. The mean hair Zn, Cu and Mn contents were significantly lower in smokers and nonsmokers RA patients as compared to healthy individuals (p = 0.01-0.001). Whereas the concentrations of Cd and Pb were significantly higher in scalp hair samples of RA patients of both group (p < 0.001). The referent smokers have high level of Cd and Pb in their scalp hair samples as compared to those had not smoking tobacco (p < 0.01). The ratio of Cd and Pb to Zn, Cu and Mn in scalp hair samples was also calculated. The Cd/Zn ratio was higher in smoker RA patients with related to nonsmoker RA and referents. This study is compelling evidence in support of positive associations between toxic elements, cigarette smoking, deficiency of essential trace elements and risk of arthritis.

  1. Association between essential trace and toxic elements in scalp hair samples of smokers rheumatoid arthritis subjects

    International Nuclear Information System (INIS)

    Afridi, Hassan Imran; Kazi, Tasneem Gul; Brabazon, Dermot; Naher, Sumsun

    2011-01-01

    The incidence of rheumatoid arthritis (RA) has been increased among people who possess habit of tobacco smoking. In the present study, zinc (Zn), copper (Cu), manganese (Mn), lead (Pb) and cadmium (Cd) were determined in scalp hair samples of smokers and nonsmokers RA patients, residents of Dublin, Ireland. For comparison purposes scalp hair samples of age and sex matched healthy smokers and nonsmokers were also analyzed. The concentrations of understudied elements were measured by inductive coupled plasma atomic emission spectrophotometer, prior to microwave assisted acid digestion. The validity and accuracy of methodology was checked using certified reference material (NCS ZC 81002b) and by the conventional wet acid digestion method on the same certified reference material and on real samples. The mean hair Zn, Cu and Mn contents were significantly lower in smokers and nonsmokers RA patients as compared to healthy individuals (p = 0.01–0.001). Whereas the concentrations of Cd and Pb were significantly higher in scalp hair samples of RA patients of both group (p < 0.001). The referent smokers have high level of Cd and Pb in their scalp hair samples as compared to those had not smoking tobacco (p < 0.01). The ratio of Cd and Pb to Zn, Cu and Mn in scalp hair samples was also calculated. The Cd/Zn ratio was higher in smoker RA patients with related to nonsmoker RA and referents. This study is compelling evidence in support of positive associations between toxic elements, cigarette smoking, deficiency of essential trace elements and risk of arthritis.

  2. Determination of toxic elements (mercury, cadmium, lead, tin and arsenic) in fish and shellfish samples. Risk assessment for the consumers.

    Science.gov (United States)

    Olmedo, P; Pla, A; Hernández, A F; Barbier, F; Ayouni, L; Gil, F

    2013-09-01

    Although fish intake has potential health benefits, the presence of metal contamination in seafood has raised public health concerns. In this study, levels of mercury, cadmium, lead, tin and arsenic have been determined in fresh, canned and frozen fish and shellfish products and compared with the maximum levels currently in force. In a further step, potential human health risks for the consumers were assessed. A total of 485 samples of the 43 most frequently consumed fish and shellfish species in Andalusia (Southern Spain) were analyzed for their toxic elements content. High mercury concentrations were found in some predatory species (blue shark, cat shark, swordfish and tuna), although they were below the regulatory maximum levels. In the case of cadmium, bivalve mollusks such as canned clams and mussels presented higher concentrations than fish, but almost none of the samples analyzed exceeded the maximum levels. Lead concentrations were almost negligible with the exception of frozen common sole, which showed median levels above the legal limit. Tin levels in canned products were far below the maximum regulatory limit, indicating that no significant tin was transferred from the can. Arsenic concentrations were higher in crustaceans such as fresh and frozen shrimps. The risk assessment performed indicated that fish and shellfish products were safe for the average consumer, although a potential risk cannot be dismissed for regular or excessive consumers of particular fish species, such as tuna, swordfish, blue shark and cat shark (for mercury) and common sole (for lead). Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. [Research progress on potential liver toxic components in traditional Chinese medicine].

    Science.gov (United States)

    Wu, Hao; Zhong, Rong-Ling; Xia, Zhi; Huang, Hou-Cai; Zhong, Qing-Xiang; Feng, Liang; Song, Jie; Jia, Xiao-Bin

    2016-09-01

    In recent years, the proportion of traditional Chinese medicine in scientific research and its clinical use increased gradually. The research result also becomes more and more valuable, but in the process of using traditional Chinese medicine, it also needs to pay more attention. With the gradual deepening of the toxicity of traditional Chinese medicine, some traditional Chinese medicines have also been found to have the potential toxicity, with the exception of some traditional toxicity Chinese medicine. Traditional Chinese medicine in the growth, processing, processing, transportation and other aspects of pollution or deterioration will also cause the side effects to the body. Clinical practice should be based on the theory of traditional Chinese medicine to guide rational drug use and follow the symptomatic medication, the principle of proper compatibility. The constitution of the patients are different, except for a few varieties of traditional Chinese medicines are natural herbs with hepatotoxicity, liver toxicity of most of the traditional Chinese medicine has idiosyncratic features. The liver plays an important role in drug metabolism. It is easy to be damaged by drugs. Therefore, the study of traditional Chinese medicine potential liver toxicity and its toxic components has become one of the basic areas of traditional Chinese medicine research. Based on the review of the literatures, this paper summarizes the clinical classification of liver toxicity, the pathogenesis of target cell injury, and systematically summarizes the mechanism of liver toxicity and toxic mechanism of traditional Chinese medicine. This paper provided ideas for the study of potential liver toxicity of traditional Chinese medicine and protection for clinical safety of traditional Chinese medicine. Copyright© by the Chinese Pharmaceutical Association.

  4. Assessment of toxic and endocrine potential of substances migrating from selected toys and baby products.

    Science.gov (United States)

    Szczepańska, Natalia; Namieśnik, Jacek; Kudłak, Błażej

    2016-12-01

    Analysis of literature data shows that there is limited information about the harmful biological effects of mixture of compounds from the EDC group that are released from the surface of toys and objects intended for children and infants. One of the tools that can be used to obtain such information is appropriate bioanalytical tests. The aim of this research involved determining whether tests that use living organisms as an active element (Vibrio fischeri-Microtox®, Heterocypris incongruens-Ostrocodtoxkit F™ and the XenoScreen YES/YAS™ test of oestrogenic/androgenic activity) can be a tool for estimating the combined toxic effects induced by xenobiotics released from objects intended for children. To reproduce the conditions to which objects are exposed during their use, liquids with a composition corresponding to that of human bodily fluids (artificial sweat and saliva) were used. This research focused on the main parameters influencing the intensification of the migration process (temperature, contact time and composition of the extraction mixture). The studies aimed to estimate the endocrine potential of the extracts showed that compounds released from the surface of studied objects exhibit antagonistic androgenic activity. While on the basis of the results of Microtox® test, one can state that the largest quantity of toxic compounds are released in the first 2 h of using the object. The FTIR spectra analyses confirmed that no degradation of polymeric material took place. On the basis of the results obtained, it was unanimously concluded that contact of the object with bodily fluids may result in the release of a large number of xenobiotics, which has disadvantageous effects on the metabolic processes of the indicator organisms.

  5. Determination of essential and toxic elements in commercial baby foods by instrumental neutron activation analysis and atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Vallinoto, Priscila

    2013-01-01

    The World Health Organization recommends that infants should be breast fed exclusively for at least six months after birth. After this period, it is recommended to start introducing complementary foods, in order to meet the child's nutritional, mineral and energy needs. Commercial food products for infants form an important part of the diet for many babies. Thus, it is very important that such food contains sufficient amounts of minerals. Inadequate complementary feeding is a major cause of high rates of infant malnutrition in developing countries. In this study, essential elements: Ca, Cl, Co, Cr, Fe, K, Mg, Mn, Na, Se and Zn and toxic elements: As, Cd, Hg levels were determined in twenty seven different commercial infant food product samples by Instrumental Neutron Activation Analysis (INAA) and Atomic Absorption Spectrometry (AAS). In order to validate both methodologies the reference material: INCT MPH-2 Mixed Polish Herbs and NIST - SRM 1577b Bovine Liver by INAA and NIST - SRM 1548th Typical Diet and NIST - SRM 1547 Peach Leaves by AAS were analyzed. The twenty seven baby food samples were acquired from Sao Paulo city supermarkets and stores. Essential and toxic elements were determined. Most of the essential element concentrations obtained were lower than the World Health Organization requirements, while concentrations of toxic elements were below the tolerable upper limit. These low essential element concentrations in these samples indicate that infants should not be fed only with commercial complementary foods. (author)

  6. Potential air toxics hot spots in truck terminals and cabs.

    Science.gov (United States)

    Smith, Thomas J; Davis, Mary E; Hart, Jaime E; Blicharz, Andrew; Laden, Francine; Garshick, Eric

    2012-12-01

    Hot spots are areas where concentrations of one or more air toxics--organic vapors or particulate matter (PM)--are expected to be elevated. The U.S. Environmental Protection Agency's (EPA*) screening values for air toxics were used in our definition of hot spots. According to the EPA, a screening value "is used to indicate a concentration of a chemical in the air to which a person could be continually exposed for a lifetime ... and which would be unlikely to result in a deleterious effect (either cancer or noncancer health effects)" (U.S. EPA 2006). Our characterization of volatile organic compounds (VOCs; namely 18 hydrocarbons, methyl tert-butyl ether [MTBE], acetone, and aldehydes) was added onto our ongoing National Cancer Institute-funded study of lung cancer and particulate pollutant concentrations (PM with an aerodynamic diameter highways. In Phase 1 of our study, 15 truck terminals across the United States were each visited for five consecutive days. During these site visits, sorbent tubes were used to collect 12-hour integrated samples of hydrocarbons and aldehydes from upwind and downwind fence-line locations as well as inside truck cabs. Meteorologic data and extensive site information were collected with each sample. In Phase 2, repeat visits to six terminals were conducted to test the stability of concentrations across time and judge the representativeness of our previous measurements. During the repeat site visits, the sampling procedure was expanded to include real-time sampling for total hydrocarbon (HC) and PM2.5 at the terminal upwind and downwind sites and inside the truck cabs, two additional monitors in the yard for four-quadrant sampling to better characterize the influence of wind, and indoor sampling in the loading dock and mechanic shop work areas. Mean and median concentrations of VOCs across the sampling locations in and around the truck terminals showed significant variability in the upwind concentrations as well as in the intensity of

  7. Triorganotin as a compound with potential reproductive toxicity in mammals

    Directory of Open Access Journals (Sweden)

    V.S. Delgado Filho

    2011-09-01

    Full Text Available Organotin compounds are typical environmental contaminants and suspected endocrine-disrupting substances, which cause irreversible sexual abnormality in female mollusks, called "imposex". However, little is known about the capability of triorganotin compounds, such as tributyltin and triphenyltin, to cause disorders in the sexual development and reproductive functions of mammals, including humans and rodents. Moreover, these compounds can act as potential competitive inhibitors of aromatase enzyme and other steroidogenic enzymes, affecting the reproductive capacity of male and female mammals. In this review, we discuss the cellular, biochemical, and molecular mechanisms by which triorganotin compounds induce adverse effects in the mammalian reproductive function.

  8. Integrating the fish embryo toxicity test as triad element for sediment toxicity assessment based on the water framework directive approach

    Energy Technology Data Exchange (ETDEWEB)

    Bartzke, Mariana [Dept. Aquatic Ecotoxicology, Goethe Univ. Frankfurt am Main (Germany); Gobio GmbH, Aarbergen/Kettenbach (Germany); Dept. Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research, UFZ, Leipzig (Germany); Delov, Vera [Dept. Aquatic Ecotoxicology, Goethe Univ. Frankfurt am Main (Germany); Gobio GmbH, Aarbergen/Kettenbach (Germany); Ecotoxicology, Fraunhofer Inst. for Molecular Biology and Applied Ecology IME, Aachen (Germany); Stahlschmidt-Allner, Petra; Allner, Bernhard [Gobio GmbH, Aarbergen/Kettenbach (Germany); Oehlmann, Joerg [Dept. Aquatic Ecotoxicology, Goethe Univ. Frankfurt am Main (Germany)

    2010-04-15

    Purpose: The objective of this study was to complement analyses according to the European Union Water Framework Directive (WFD) with a sediment toxicity analysis as part of an integrated river assessment. To this end, Hessian water courses were analyzed using the sediment quality triad concept according to Chapman with chemical analyses, in situ effect evaluations, and ecotoxicological assessments. For the ecotoxicological assessment (fish embryo toxicity test with Danio rerio), a new evaluation scheme was developed, the fish teratogenicity index (FTI), that allows for a classification of sediments into ecological quality classes compliant to the WFD. Materials and methods sediment and macrozoobenthos samples were taken from tributaries of the rivers Fulda and Lahn. Sediments were characterized regarding particle size, carbon, heavy metals, and polyaromatic hydrocarbon content. Macroinvertebrate samples were taken via multi-habitat sampling. The fish embryo toxicity test with D. rerio was conducted as a contact assay on the basis of DIN 38415-6. Results and discussion The integrated assessment indicated a significant influence of heavy metals and carbon content on macroinvertebrate communities. The bioaccessibility of sediment pollutants were clearly demonstrated by the FTI, which showed a wide range of adverse effects. A significant linear relationship between metals and the FTI was detected. However, there was no statistically significant evidence that macroinvertebrate communities were affected by the hydromorphological quality clements at the sampling sites. Conclusions The new scheme for the assessment of fish embryo toxicity test was successfully applied. The results suggest that sediment compounds impact macroinvertebrate communities and early development of fish. It demonstrates that the quality of sediments should be evaluated on a routine basis as part of an integrated river assessment. (orig.)

  9. Chemical warfare agent and biological toxin-induced pulmonary toxicity: could stem cells provide potential therapies?

    Science.gov (United States)

    Angelini, Daniel J; Dorsey, Russell M; Willis, Kristen L; Hong, Charles; Moyer, Robert A; Oyler, Jonathan; Jensen, Neil S; Salem, Harry

    2013-01-01

    Chemical warfare agents (CWAs) as well as biological toxins present a significant inhalation injury risk to both deployed warfighters and civilian targets of terrorist attacks. Inhalation of many CWAs and biological toxins can induce severe pulmonary toxicity leading to the development of acute lung injury (ALI) as well as acute respiratory distress syndrome (ARDS). The therapeutic options currently used to treat these conditions are very limited and mortality rates remain high. Recent evidence suggests that human stem cells may provide significant therapeutic options for ALI and ARDS in the near future. The threat posed by CWAs and biological toxins for both civilian populations and military personnel is growing, thus understanding the mechanisms of toxicity and potential therapies is critical. This review will outline the pulmonary toxic effects of some of the most common CWAs and biological toxins as well as the potential role of stem cells in treating these types of toxic lung injuries.

  10. Continental shelves as potential resource of rare earth elements.

    Science.gov (United States)

    Pourret, Olivier; Tuduri, Johann

    2017-07-19

    The results of this study allow the reassessment of the rare earth elements (REE) external cycle. Indeed, the river input to the oceans has relatively flat REE patterns without cerium (Ce) anomalies, whereas oceanic REE patterns exhibit strong negative Ce anomalies and heavy REE enrichment. Indeed, the processes at the origin of seawater REE patterns are commonly thought to occur within the ocean masses themselves. However, the results from the present study illustrate that seawater-like REE patterns already occur in the truly dissolved pool of river input. This leads us to favor a partial or complete removal of the colloidal REE pool during estuarine mixing by coagulation, as previously shown for dissolved humic acids and iron. In this latter case, REE fractionation occurs because colloidal and truly dissolved pools have different REE patterns. Thus, the REE patterns of seawater could be the combination of both intra-oceanic and riverine processes. In this study, we show that the Atlantic continental shelves could be considered potential REE traps, suggesting further that shelf sediments could potentially become a resource for REE, similar to metalliferous deep sea sediments.

  11. Investigation on the toxic potential of Tribulus terrestris in vitro.

    Science.gov (United States)

    Abudayyak, M; Jannuzzi, A T; Özhan, G; Alpertunga, B

    2015-04-01

    Tribulus terrestris L. (Zygophyllaceae) has been commonly used to energize, vitalize, and improve sexual function and physical performance in men. This study investigates the potential cytotoxic and genotoxic, and endocrine disrupting activities of T. terrestris in vitro. The whole T. terrestris plant was extracted with water, methanol, and chloroform. The genotoxic potential of T. terrestris extracts at 3-2400 µg/mL was assessed by Comet assay in a rat kidney cell line (NRK-52E) and by Ames assay in Salmonella typhimurium TA98 and TA100 strains. Endocrine disrupting effects of the extracts at concentrations of 0.22-25 000 µg/mL were assessed by YES/YAS assay in Saccharomyces cerevisiae. Cytotoxic activity of the extracts was determined by the MTT test in NRK-52E cells. The different exposure times were used for four tests (3-48 h). The methanol extract of T. terrestris IC50 value was 160 µg/mL. The other extracts did not show cytotoxic effects. In the Comet and Ames genotoxicity assays, none of the extracts possessed genotoxic activities at concentrations of 0-2400 µg/mL. Only the water extract of T. terrestris induced frame shift mutations after metabolic activation. The water extract also showed estrogenic activity by YES/YAS assay in S. cerevisiae at concentrations ≥27 µg/mL (≥2.6-fold), while the other T. terrestris extracts had anti-estrogenic properties. Tribulus terrestris had estrogenic and genotoxic activities. The study was useful in determining its toxicological effects and the precautions regarding consumption.

  12. Radionuclides and toxic elements transfer from the princess dump to water in Roodepoort, South Africa.

    Science.gov (United States)

    Dlamini, S G; Mathuthu, M M; Tshivhase, V M

    2016-03-01

    High concentrations of radionuclides and toxic elements in gold mine tailings facilities present a health hazard to the environment and people living near that area. Soil and water samples from selected areas around the Princess Mine dump were collected. Soil sampling was done on the surface (15 cm) and also 100 cm below the surface. Water samples were taken from near the dump, mid-stream and the flowing part of the stream (drainage pipe) passing through Roodepoort from the mine dump. Soil samples were analyzed by gamma-ray spectroscopy using a HPGe detector to determine the activity concentrations of (238)U, (232)Th and (4) (​40)K from the activities of the daughter nuclides in the respective decay chains. The average activity concentrations for uranium and thorium in soil were calculated to be 129 ± 36.1 Bq/kg and 18.1 ± 4.01 Bq/kg, respectively. Water samples were analyzed using Inductively Coupled Plasma Mass Spectrometer. Transfer factors for uranium and thorium from soil to water (at point A closest to dump) were calculated to be 0.494 and 0.039, respectively. At point Z2, which is furthest from the dump, they were calculated to be 0.121 and 0.004, respectively. These transfer factors indicate that there is less translocation of the radionuclides as the water flows. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Measurement of toxic elements in infant food supplements marketed in Iran (short comunication

    Directory of Open Access Journals (Sweden)

    M. A. Mehrnia

    2017-02-01

    Full Text Available Due to similarities with breast-feeding, baby food is used as a partial replacement for babies between 6 to 12 months of age. In this study, five samples of famous infant food supplement consisting of three types from Ghoncheh company (rice with milk, wheat with milk, almond porridge and two types from Nestle company (wheat and milk, and banana and wheat with milk were prepared. Samples were digested with nitric acid and the concentrations of cadmium, lead, manganese, molybdenum and nickel were analyzed. In addition, the estimated daily intake (EDI index for all samples was calculated and compared with tolerable daily intake (TDI index. The minimum and maximum concentration of cadmium was found in the sample with rice + milk formula (40.3 µg/kg and infant food supplements containing wheat + milk (58.0 µgr/kg, respectively. The amount of cadmium, lead, manganese, molybdenum and nickel were estimated in the range of 40.3-58.0 ppb, 31.85 ppb, 2.3-4.9 ppm, 417.9-518.8 ppb and 4479.1-6415.0 ppb, respectively. In was concluded that the amount of toxic elements in infant foods marketed in Iran were found below the maximum limit.

  14. Comparison of sample preparation methods for the determination of essential and toxic elements in important indigenous medicinal plant Aloe barbadensis

    International Nuclear Information System (INIS)

    Sahito, S.R.; Kazi, T.G.; Kazi, G.H.; Jakhrani, M.A.; Wattoo, M.H.S.

    2002-01-01

    The role of elements particularly traces elements in health and disease is now well established. In this paper we investigate the presence of various elements in very important herb Aloe barbadensis, it is commonly used in different ailments especially of elementary tract. We used four extraction methods for the determination of total elements in Aloe barbadensis. The procedure, which is found to be more efficient and decompose the biological material, is nitric acid and 30% hydrogen peroxide as compared to other method. The sample of plants was collected from surrounding of Hyderabad; Sindh University and vouches specimens were prepared following the standard herbarium techniques. Fifteen essential, trace and toxic elements such as Zn, Cr, K, Mg, Ca, Na, Fe, Pb, Al, Ba, Mn, Co, Ni and Cd were determined in plant and in its decoction. Using Flame Atomic Absorption Spectrophotometer Hitachi Model 180-50. It is noted that, level of essential elements was found high as compare to the level of toxic elements. (author)

  15. Field Validation of Toxicity Tests to Evaluate the Potential for Beneficial Use of Produced Water

    Energy Technology Data Exchange (ETDEWEB)

    Joseph Bidwell; Jonathan Fisher; Naomi Cooper

    2008-03-31

    This study investigated potential biological effects of produced water contamination derived from occasional surface overflow and possible subsurface intrusion at an oil production site along the shore of Skiatook Lake, Oklahoma. We monitored basic chemistry and acute toxicity to a suite of standard aquatic test species (fathead minnow-Pimephales promelas, Daphnia pulex, Daphnia magna, and Ceriodaphnia dubia) in produced water and in samples taken from shallow groundwater wells on the site. Toxicity identification evaluations and ion toxicity modeling were used to identify toxic constituents in the samples. Lake sediment at the oil production site and at a reference site were also analyzed for brine intrusion chemically and by testing sediment toxicity using the benthic invertebrates, Chironomus dilutus, and Hyallela azteca. Sediment quality was also assessed with in situ survival and growth studies with H. azteca and the Asian clam, Corbicula fluminea, and by benthic macroinvertebrate community sampling. The produced water was acutely toxic to the aquatic test organisms at concentrations ranging from 1% to 10% of the whole produced water sample. Toxicity identification evaluation and ion toxicity modeling indicated major ion salts and hydrocarbons were the primary mixture toxicants. The standardized test species used in the laboratory bioassays exhibited differences in sensitivity to these two general classes of contaminants, which underscores the importance of using multiple species when evaluating produced water toxicity. Toxicity of groundwater was greater in samples from wells near a produced water injection well and an evaporation pond. Principle component analyses (PCA) of chemical data derived from the groundwater wells indicated dilution by lake water and possible biogeochemical reactions as factors that ameliorated groundwater toxicity. Elevated concentrations of major ions were found in pore water from lake sediments, but toxicity from these ions was

  16. Predicting competitive adsorption behavior of major toxic anionic elements onto activated alumina: A speciation-based approach

    International Nuclear Information System (INIS)

    Su Tingzhi; Guan Xiaohong; Tang Yulin; Gu Guowei; Wang Jianmin

    2010-01-01

    Toxic anionic elements such as arsenic, selenium, and vanadium often co-exist in groundwater. These elements may impact each other when adsorption methods are used to remove them. In this study, we investigated the competitive adsorption behavior of As(V), Se(IV), and V(V) onto activated alumina under different pH and surface loading conditions. Results indicated that these anionic elements interfered with each other during adsorption. A speciation-based model was developed to quantify the competitive adsorption behavior of these elements. This model could predict the adsorption data well over the pH range of 1.5-12 for various surface loading conditions, using the same set of adsorption constants obtained from single-sorbate systems. This model has great implications in accurately predicting the field capacity of activated alumina under various local water quality conditions when multiple competitive anionic elements are present.

  17. Probing nanomechanical interaction at the interface between biological membrane and potentially toxic chemical.

    Science.gov (United States)

    Lim, Chanoong; Park, Sohee; Park, Jinwoo; Ko, Jina; Lee, Dong Woog; Hwang, Dong Soo

    2018-04-12

    Various xenobiotics interact with biological membranes, and precise evaluations of the molecular interactions between them are essential to foresee the toxicity and bioavailability of existing or newly synthesized molecules. In this study, surface forces apparatus (SFA) measurement and Langmuir trough based tensiometry are performed to reveal nanomechanical interaction mechanisms between potential toxicants and biological membranes for ex vivo toxicity evaluation. As a toxicant, polyhexamethylene guanidine (PHMG) was selected because PHMG containing humidifier disinfectant and Vodka caused lots of victims in both S. Korea and Russia, respectively, due to the lack of holistic toxicity evaluation of PHMG. Here, we measured strong attraction (Wad ∼4.2 mJ/m 2 ) between PHMG and head group of biological membranes while no detectable adhesion force between the head group and control molecules was measured. Moreover, significant changes in π-A isotherm of 1,2-Dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) monolayers were measured upon PHMG adsorption. These results indicate PHMG strongly binds to hydrophilic group of lipid membranes and alters the structural and phase behavior of them. More importantly, complementary utilization of SFA and Langmuir trough techniques are found to be useful to predict the potential toxicity of a chemical by evaluating the molecular interaction with biological membranes, the primary protective barrier for living organisms. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Phytoextraction of toxic trace elements by Sorghum bicolor inoculated with Streptomyces pactum (Act12) in contaminated soils.

    Science.gov (United States)

    Ali, Amjad; Guo, Di; Mahar, Amanullah; Wang, Ping; Ma, Fang; Shen, Feng; Li, Ronghua; Zhang, Zengqiang

    2017-05-01

    The increasing industrial, mining and agricultural activities have intensified the release of potential toxic trace elements (PTEs), which are of great concern to human health and environment. The alarming increase in PTEs concentration, stress the need for biotechnological remediation approaches. In order to assist phytoextraction of PTEs, different combinations of Streptomyces pactum (Act12) with biochar were applied to mining and industrial polluted soils of Shaanxi and Hunan Provinces of China, respectively. Act12 affected soil physico-chemical properties in both soils. Bioavailable Zn and Pb increased due to microbial activities, while Cd decreased by adsorption on biochar surface. Phytoextraction of Zn and Pb occurred in TG and CZ soil, while Cd uptake decreased in iron rich CZ soil by conflicting effect of siderophores. Cd in sorghum shoot was below detection level, but uptake increased in the roots due to minimum available fraction in TG soil. Biochar reduced the shoot and root uptake of Cd. Sorghum shoot, root dry weight and chlorophyll significantly increased after Act12 and biochar application. β-glucosidase, alkaline phosphatase and urease activities were significantly enhanced by Act12. Antioxidant enzymatic activities (POD, PAL and PPO) and lipid peroxidation (MDA) were decreased after the application of Act12 and biochar by reduced PTEs stress. Act12 and biochar can be used for different crops to enumerate the transfer rate of PTEs into the food chain. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Mobility and Attenuation Dynamics of Potentially Toxic Chemical Species at an Abandoned Copper Mine Tailings Dump

    Directory of Open Access Journals (Sweden)

    Wilson Mugera Gitari

    2018-02-01

    Full Text Available Large volumes of disposed mine tailings abound in several regions of South Africa, as a consequence of unregulated, unsustainable long years of mining activities. Tailings dumps occupy a large volume of valuable land, and present a potential risk for aquatic systems, through leaching of potentially toxic chemical species. This paper reports on the evaluation of the geochemical processes controlling the mobility of potentially toxic chemical species within the tailings profile, and their potential risk with regard to surface and groundwater systems. Combination of X-ray fluorescence (XRF, X-ray diffraction (XRD, and scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS techniques, show that the tailing profiles are uniform, weakly altered, and vary slightly with depth in both physical and geochemical properties, as well as mineralogical composition. Mineralogical analysis showed the following order of abundance: quartz > epidote > chlorite > muscovite > calcite > hematite within the tailings profiles. The neutralization of the dominant alumino-silicate minerals and the absence of sulfidic minerals, have produced medium alkaline pH conditions (7.97–8.37 at all depths and low concentrations of dissolved Cu (20.21–47.9 µg/L, Zn (0.88–1.80 µg/L, Pb (0.27–0.34 µg/L, and SO42− (15.71–55.94 mg/L in the tailings profile leachates. The relative percentage leach for the potentially toxic chemical species was low in the aqueous phase (Ni 0.081%, Cu 0.006%, and Zn 0.05%. This indicates that the transport load of potentially toxic chemical species from tailings to the aqueous phase is very low. The precipitation of secondary hematite has an important known ability to trap and attenuate the mobility of potentially toxic chemical species (Cu, Zn, and Pb by adsorption on the surface area. Geochemical modelling MINTEQA2 showed that the tailings leachates were below saturation regarding oxyhydroxide minerals, but oversaturated with Cu

  20. Chemical Compounds Toxic to Invertebrates Isolated from Marine Cyanobacteria of Potential Relevance to the Agricultural Industry

    Science.gov (United States)

    Essack, Magbubah; Alzubaidy, Hanin S.; Bajic, Vladimir B.; Archer, John A. C.

    2014-01-01

    In spite of advances in invertebrate pest management, the agricultural industry is suffering from impeded pest control exacerbated by global climate changes that have altered rain patterns to favour opportunistic breeding. Thus, novel naturally derived chemical compounds toxic to both terrestrial and aquatic invertebrates are of interest, as potential pesticides. In this regard, marine cyanobacterium-derived metabolites that are toxic to both terrestrial and aquatic invertebrates continue to be a promising, but neglected, source of potential pesticides. A PubMed query combined with hand-curation of the information from retrieved articles allowed for the identification of 36 cyanobacteria-derived chemical compounds experimentally confirmed as being toxic to invertebrates. These compounds are discussed in this review. PMID:25356733

  1. Chemical Compounds Toxic to Invertebrates Isolated from Marine Cyanobacteria of Potential Relevance to the Agricultural Industry

    KAUST Repository

    Essack, Magbubah

    2014-10-29

    In spite of advances in invertebrate pest management, the agricultural industry is suffering from impeded pest control exacerbated by global climate changes that have altered rain patterns to favour opportunistic breeding. Thus, novel naturally derived chemical compounds toxic to both terrestrial and aquatic invertebrates are of interest, as potential pesticides. In this regard, marine cyanobacterium-derived metabolites that are toxic to both terrestrial and aquatic invertebrates continue to be a promising, but neglected, source of potential pesticides. A PubMed query combined with hand-curation of the information from retrieved articles allowed for the identification of 36 cyanobacteria-derived chemical compounds experimentally confirmed as being toxic to invertebrates. These compounds are discussed in this review.

  2. Chemical Compounds Toxic to Invertebrates Isolated from Marine Cyanobacteria of Potential Relevance to the Agricultural Industry

    KAUST Repository

    Essack, Magbubah; Alzubaidy, Hanin S.; Bajic, Vladimir B.; Archer, John A.C.

    2014-01-01

    In spite of advances in invertebrate pest management, the agricultural industry is suffering from impeded pest control exacerbated by global climate changes that have altered rain patterns to favour opportunistic breeding. Thus, novel naturally derived chemical compounds toxic to both terrestrial and aquatic invertebrates are of interest, as potential pesticides. In this regard, marine cyanobacterium-derived metabolites that are toxic to both terrestrial and aquatic invertebrates continue to be a promising, but neglected, source of potential pesticides. A PubMed query combined with hand-curation of the information from retrieved articles allowed for the identification of 36 cyanobacteria-derived chemical compounds experimentally confirmed as being toxic to invertebrates. These compounds are discussed in this review.

  3. Contents of toxic elements in biological environment of pregnant women of all reproductive age give birth first time

    Directory of Open Access Journals (Sweden)

    Markevych V.V.

    2016-09-01

    Full Text Available Purpose — to investigate the toxic contents of microelements in serum and erythrocytes of pregnant women in the early, middle and old reproductive age in the case of the first delivery. Patients and methods. The study was conducted in the third trimester of pregnancy on 36.08±0.59 weeks of gestation. Reproductive age of pregnant women was 16.33±0.21, 24.67±0.37 and 36.14±0.77 years respectively. The content of toxic ME (chromium, nickel, lead and cobalt in the biological substrates was determined by atomic absorption spectrophotometer C — 115 MI. Results. We found that pregnant women regardless of reproductive age who gave birth for the first time had high level of nickel both in serum and in red blood cells. With the growth of reproductive age we saw accumulation of toxic chromium in serum. Much less content of cadmium in red blood cells and possibly other tissues in pregnant women of older reproductive age apparently linked to the more conscious and responsible attitude to their health condition, the process of pregnancy and a healthy lifestyle and above except the main source of cadmium — smoking. The lowest content of lead in red blood cells is determined in the women of middle reproductive age. At the same time serum and erythrocytic content of lead in any group was not higher its level in healthy pregnant women. Conclusion. Nowadays very actual is researching of placenta as a body that provides trace element balance in system «mother—placenta—fetus». To determine the role of placenta in protecting the fetus from exposure of toxic elements reasonable is investigation of their content in the placenta and its functions — barrier penetration, depositing of essential and toxic elements.

  4. In which regions is breast-feeding safer from the impact of toxic elements from the environment?

    Science.gov (United States)

    Cinar, Nursan; Ozdemir, Sami; Yucel, Oya; Ucar, Fatma

    2011-11-01

    Owing to its unique nutritional and immunological characteristics, breast milk is the most important food source for infants. But, children are at greater risk for exposure to environmental toxicants from breast milk. The aim of this study was to evaluate the influence of environmental pollution on essential and toxic element contents of breast milk and determine the risky locations in our population. This study was conducted on women who were breastfeeding (n=90). Milk samples were collected at three locations in Marmara region, Turkey: highly industrialized region highly affected by pollution, urbanized region moderately and rural area that is affected little. Breast milk samples (5 mL) were collected at approximately one month postpartum (mature milk). The concentrations of cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), iron (Fe), manganese (Mn), nickel (Ni), lead (Pb) and zinc (Zn) in milk samples were compared to the milk samples coming from different locations.Lead, cadmium, nickel, chromium, iron and manganese levels in the breast milk are highest and engrossing especially in rural areas compared to the other regions but cobalt, copper, zinc levels are highest in highly industrial areas. The levels of essential and toxic elements in breast milk can vary in different regions. The levels presented in our study are above some countries' data albeit not at toxic levels. Because of global effects, environmental pollution is not the problem for industrializing regions only. Rural area also may not be safe for breastfeed babies.

  5. In which regions is breast-feeding safer from the impact of toxic elements from the environment?

    Directory of Open Access Journals (Sweden)

    Nursan Cinar

    2011-11-01

    Full Text Available Owing to its unique nutritional and immunological characteristics, breast milk is the most important food source for infants. But, children are at greater risk for exposure to environmental toxicants from breast milk. The aim of this study was to evaluate the influence of environmental pollution on essential and toxic element contents of breast milk and determine the risky locations in our population. This study was conducted on women who were breastfeeding (n=90. Milk samples were collected at three locations in Marmara region, Turkey: highly industrialized region highly affected by pollution, urbanized region moderately and rural area that is affected little. Breast milk samples (5 mL were collected at approximately one month postpartum (mature milk. The concentrations of cadmium (Cd, cobalt (Co, chromium (Cr, copper (Cu, iron (Fe, manganese (Mn, nickel (Ni, lead (Pb and zinc (Zn in milk samples were compared to the milk samples coming from different locations. Lead, cadmium, nickel, chromium, iron and manganese levels in the breast milk are highest and engrossing especially in rural areas compared to the other regions but cobalt, copper, zinc levels are highest in highly industrial areas. The levels of essential and toxic elements in breast milk can vary in different regions. The levels presented in our study are above some countries’ data albeit not at toxic levels. Because of global effects, environmental pollution is not the problem for industrializing regions only. Rural area also may not be safe for breastfeed babies.

  6. Contents evaluation of some essential and toxic elements in children and elders diet by neutron activation analysis

    International Nuclear Information System (INIS)

    Maihara, Vera Akiko

    1996-01-01

    Essential and toxic elements in the 19 diet samples from pre-school children and 23 diet samples from elderly people, have been determined by neutron activation analysis. The diet samples were collected by duplicate portion method. A radiochemical separation procedure was developed and applied for determining Cd, Co, Cr, Fe, Mo, Sb, U, Th, W and Zn, based on retention of these elements in a Chelex-100 resin. In the case of As and Se, the procedure was based on retention in inorganic exchanger TDO (tin dioxide). The contents of proteins, lipids and carbohydrates were also analysed. The results have been presented and discussed

  7. Safety Evaluation of Potential Toxic Metals Exposure from Street Foods Consumed in Mid-West Nigeria

    Directory of Open Access Journals (Sweden)

    O. C. Ekhator

    2017-01-01

    Full Text Available Objective. Street-vended foods offer numerous advantages to food security; nevertheless, the safety of street food should be considered. This study has investigated the level of potential toxic metal (Pb, Cd, Hg, Sb, Mn, and Al contamination among street-vended foods in Benin City and Umunede. Methods. Twenty street food samples were purchased from vendors at bus stops. Metals were analyzed with atomic absorption spectrophotometry. The methods developed by the US EPA were employed to evaluate the potential health risk of toxic metals. Results. The concentrations of the toxic metals in mg/kg were in the range of Pb (0.014–1.37, Cd (0.00–0.00017, Hg (0.00–0.00014, Sb (0.00–0.021, Mn (0.00–0.012, and Al (0.00–0.22. All the toxic metals except Pb were below permissible limit set by WHO, EU, and USEPA. The daily intake, hazard quotient, and hazard index of all toxic metals except for Pb in some street foods were below the tolerable daily intake and threshold value of 1, indicating an insignificant health risk. Total cancer risk was within the priority risk level of 1.0E-04 but higher than the acceptable risk level of 1E-06. Conclusion. Consumption of some of these street foods is of public health concern.

  8. SMOG-CHAMBER TOXICOLOGY BETTER ESTIMATES THE TRUE TOXIC POTENTIAL OF ATMOSPHERIC MIXTURES

    Science.gov (United States)

    The chemistry of hazardous air pollutants (HAPs) have been studied for many years, yet little is known about how these chemicals, once interacted with urban atmospheres, affect healthy and susceptible individuals. The toxic potential of these very reactive compounds once they int...

  9. Acute embryo toxicity and teratogenicity of three potential biofuels also used as flavor or solvent

    Energy Technology Data Exchange (ETDEWEB)

    Bluhm, Kerstin; Seiler, Thomas-Benjamin [RWTH Aachen University, Institute for Environmental Research, Worringerweg 1, 52074 Aachen (Germany); Anders, Nico [RWTH Aachen University, Aachener Verfahrenstechnik — Enzyme Process Technology, Worringerweg 1, 52074 Aachen (Germany); Klankermayer, Jürgen [RWTH Aachen University, Institut für Technische und Makromolekulare Chemie, Worringerweg 1, 52074 Aachen (Germany); Schaeffer, Andreas [RWTH Aachen University, Institute for Environmental Research, Worringerweg 1, 52074 Aachen (Germany); Chongqing University, College of Resources and Environmental Science, Chongqing 400715 (China); Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing 210093 (China); Hollert, Henner, E-mail: Henner.Hollert@bio5.rwth-aachen.de [RWTH Aachen University, Institute for Environmental Research, Worringerweg 1, 52074 Aachen (Germany); Chongqing University, College of Resources and Environmental Science, Chongqing 400715 (China); Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing 210093 (China); Tongji University, College of Environmental Science and Engineering and State Key Laboratory of Pollution Control and Resource Reuse, Shanghai 200092 (China)

    2016-10-01

    The demand for biofuels increases due to concerns regarding greenhouse gas emissions and depletion of fossil oil reserves. Many substances identified as potential biofuels are solvents or already used as flavors or fragrances. Although humans and the environment may be readily exposed little is known regarding their (eco)toxicological effects. In this study, the three potential biofuels ethyl levulinate (EL), 2-methyltetrahydrofuran (2-MTHF) and 2-methylfuran (2-MF) were investigated for their acute embryo toxicity and teratogenicity using the fish embryo toxicity (FET) test to identify unknown hazard potentials and to allow focusing further research on substances with low toxic potentials. In addition, two fossil fuels (diesel and gasoline) and an established biofuel (rapeseed oil methyl ester) were investigated as references. The FET test is widely accepted and used in (eco)toxicology. It was performed using the zebrafish Danio rerio, a model organism useful for the prediction of human teratogenicity. Testing revealed a higher acute toxicity for EL (LC{sub 50}: 83 mg/L) compared to 2-MTHF (LC{sub 50}: 2980 mg/L), 2-MF (LC{sub 50}: 405 mg/L) and water accommodated fractions of the reference fuels including gasoline (LC{sub 50}: 244 mg DOC/L). In addition, EL caused a statistically significant effect on head development resulting in elevated head lengths in zebrafish embryos. Results for EL reduce its likelihood of use as a biofuel since other substances with a lower toxic potential are available. The FET test applied at an early stage of development might be a useful tool to avoid further time and money requiring steps regarding research on unfavorable biofuels. - Highlights: • The demand for biofuels increases but their (eco)toxicological effects are unknown. • Acute fish embryo toxicity and teratogenicity of potential biofuels were evaluated. • Ethyl levulinate induced a higher acute toxicity compared to WAFs of gasoline. • Ethyl levulinate caused

  10. Toxic elements as biomarkers for breast cancer: a meta-analysis study

    Directory of Open Access Journals (Sweden)

    Jouybari L

    2018-01-01

    groups led to the conclusion that there was a significant difference in Cd and Ni statuses between healthy and BC patients; the standard mean difference was 2.65 (95% CI: 1.57–3.73; P=0.000 and 2.06 (95% CI: 1.20–3.32; P=0.000, respectively. Whereas, there was no significant statistical difference in As status between healthy subjects and BC patients; the standard mean difference between them being 0.52 (95% CI: –0.12–1.16; P=0.114.Conclusion: The present study indicates that there is a direct and positive association between Cd and Ni concentrations and BC risk. It is a warning to health care providers and policy makers to find viable solutions and take requisite measures to reduce BC risk in the society. Keywords: malignancy, breast cancer, arsenic, cadmium, nickel, meta-analysis, toxic element

  11. Determination of toxic elements in beauty creams by X-ray spectrometric techniques (2001-2002)

    International Nuclear Information System (INIS)

    War-War-Myo-Aung

    2002-01-01

    This paper is carried out to examine the contents of toxic heavy metals in various kinds of beauty creams by using Energy Dispersive X-ray Fluorescence Technique (EDXRF). By applying EDXRF system, it si found that most of the beauty creams contained titanium and zinc, and some of the beauty creams contained lead, bismuth, iron and mercury. Among the heavy toxic metals, mercury is the most harmful to human's health. (author)

  12. Comparative toxicities of selected rare earth elements: Sea urchin embryogenesis and fertilization damage with redox and cytogenetic effects

    Energy Technology Data Exchange (ETDEWEB)

    Pagano, Giovanni, E-mail: gbpagano@tin.it [“Federico II” University of Naples, Environmental Hygiene, I-80126 Naples (Italy); Guida, Marco; Siciliano, Antonietta [“Federico II” University of Naples, Environmental Hygiene, I-80126 Naples (Italy); Oral, Rahime [Ege University, Faculty of Fisheries, TR-35100 Bornova, İzmir (Turkey); Koçbaş, Fatma [Celal Bayar University, Faculty of Arts and Sciences, Department of Biology, TR-45140 Yunusemre, Manisa (Turkey); Palumbo, Anna; Castellano, Immacolata; Migliaccio, Oriana [Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples (Italy); Thomas, Philippe J. [Environment Canada, Science & Technology Branch, National Wildlife Research Center – Carleton University, Ottawa, Ontario, Canada K1A 0H3 (Canada); Trifuoggi, Marco [“Federico II” University of Naples, Department of Chemical Sciences, I-80126 Naples (Italy)

    2016-05-15

    Background: Broad-ranging adverse effects are known for rare earth elements (REE), yet only a few studies tested the toxicity of several REE, prompting studies focusing on multi-parameter REE toxicity. Methods: Trichloride salts of Y, La, Ce, Nd, Sm, Eu and Gd were tested in Paracentrotus lividus sea urchin embryos and sperm for: (1) developmental defects in either REE-exposed larvae or in the offspring of REE-exposed sperm; (2) fertilization success; (3) mitotic anomalies in REE-exposed embryos and in the offspring of REE-exposed sperm, and (4) reactive oxygen species (ROS) formation, and malondialdehyde (MDA) and nitric oxide (NO) levels. Results: REEs affected P. lividus larvae with concentration-related increase in developmental defects, 10{sup −6} to 10{sup −4} M, ranking as: Gd(III)>Y(III)>La(III)>Nd(III)≅Eu(III)>Ce(III)≅Sm(III). Nominal concentrations of REE salts were confirmed by inductively coupled plasma mass spectrometry (ICP-MS). Significant increases in MDA levels, ROS formation, and NO levels were found in REE-exposed embryos. Sperm exposure to REEs (10{sup −5} to 10{sup −4} M) resulted in concentration-related decrease in fertilization success along with increase in offspring damage. Decreased mitotic activity and increased aberration rates were detected in REE-exposed embryos and in the offspring of REE-exposed sperm. Conclusion: REE-associated toxicity affecting embryogenesis, fertilization, cytogenetic and redox endpoints showed different activities of tested REEs. Damage to early life stages, along with redox and cytogenetic anomalies should be the focus of future REE toxicity studies. - Highlights: • Seven rare earth elements exerted different effects on sea urchin early life stages. • Embryo-, spermio- and mitotoxicity, and oxidative/ nitrosative stress were found. • Nominal vs. analytical REE concentrations were checked. • Comparative toxicities were evaluated for the different REE.

  13. Comparative toxicities of selected rare earth elements: Sea urchin embryogenesis and fertilization damage with redox and cytogenetic effects

    International Nuclear Information System (INIS)

    Pagano, Giovanni; Guida, Marco; Siciliano, Antonietta; Oral, Rahime; Koçbaş, Fatma; Palumbo, Anna; Castellano, Immacolata; Migliaccio, Oriana; Thomas, Philippe J.; Trifuoggi, Marco

    2016-01-01

    Background: Broad-ranging adverse effects are known for rare earth elements (REE), yet only a few studies tested the toxicity of several REE, prompting studies focusing on multi-parameter REE toxicity. Methods: Trichloride salts of Y, La, Ce, Nd, Sm, Eu and Gd were tested in Paracentrotus lividus sea urchin embryos and sperm for: (1) developmental defects in either REE-exposed larvae or in the offspring of REE-exposed sperm; (2) fertilization success; (3) mitotic anomalies in REE-exposed embryos and in the offspring of REE-exposed sperm, and (4) reactive oxygen species (ROS) formation, and malondialdehyde (MDA) and nitric oxide (NO) levels. Results: REEs affected P. lividus larvae with concentration-related increase in developmental defects, 10 −6 to 10 −4 M, ranking as: Gd(III)>Y(III)>La(III)>Nd(III)≅Eu(III)>Ce(III)≅Sm(III). Nominal concentrations of REE salts were confirmed by inductively coupled plasma mass spectrometry (ICP-MS). Significant increases in MDA levels, ROS formation, and NO levels were found in REE-exposed embryos. Sperm exposure to REEs (10 −5 to 10 −4 M) resulted in concentration-related decrease in fertilization success along with increase in offspring damage. Decreased mitotic activity and increased aberration rates were detected in REE-exposed embryos and in the offspring of REE-exposed sperm. Conclusion: REE-associated toxicity affecting embryogenesis, fertilization, cytogenetic and redox endpoints showed different activities of tested REEs. Damage to early life stages, along with redox and cytogenetic anomalies should be the focus of future REE toxicity studies. - Highlights: • Seven rare earth elements exerted different effects on sea urchin early life stages. • Embryo-, spermio- and mitotoxicity, and oxidative/ nitrosative stress were found. • Nominal vs. analytical REE concentrations were checked. • Comparative toxicities were evaluated for the different REE.

  14. Investigation of the potential influence of production treatment chemicals on produced water toxicity

    International Nuclear Information System (INIS)

    Stine, E.R.; Gala, W.R.; Henry, L.R.

    1993-01-01

    Production treatment chemicals represent a diverse collection of chemical classes, added at various points from the wellhead to the final flotation cell, to prevent operational upsets and enhance the separation of oil from water. Information in the literature indicates that while many treatment chemicals are thought to partition into oil and not into the produced water, there are cases where a sufficiently water soluble treatment chemical is added at high enough concentrations to suggest that the treatment chemical may add to the aquatic toxicity of the produced water. A study was conducted to evaluate the potential effect of production treatment chemicals on the toxicity of produced waters using the US EPA Seven-day Mysidopsis bahia Survival, Growth and Fecundity Test. Samples of produced water were collected and tested for toxicity from three platforms under normal operating conditions, followed by repeated sampling and testing after a 72-hour period in which treatment chemical usage was discontinued, to the degree possible. Significant reductions in produced water toxicity were observed for two of the three platforms tested following either cessation of treatment chemical usage, or by comparing the toxicity of samples collected upstream and downstream of the point of treatment chemical addition

  15. Glyphosate: environmental contamination, toxicity and potential risks to human health via food contamination.

    Science.gov (United States)

    Bai, Shahla Hosseini; Ogbourne, Steven M

    2016-10-01

    Glyphosate has been the most widely used herbicide during the past three decades. The US Environmental Protection Agency (EPA) classifies glyphosate as 'practically non-toxic and not an irritant' under the acute toxicity classification system. This classification is based primarily on toxicity data and due to its unique mode of action via a biochemical pathway that only exists in a small number of organisms that utilise the shikimic acid pathway to produce amino acids, most of which are green plants. This classification is supported by the majority of scientific literature on the toxic effects of glyphosate. However, in 2005, the Food and Agriculture Organisation (FAO) reported that glyphosate and its major metabolite, aminomethylphosphonic acid (AMPA), are of potential toxicological concern, mainly as a result of accumulation of residues in the food chain. The FAO further states that the dietary risk of glyphosate and AMPA is unlikely if the maximum daily intake of 1 mg kg(-1) body weight (bw) is not exceeded. Research has now established that glyphosate can persist in the environment, and therefore, assessments of the health risks associated with glyphosate are more complicated than suggested by acute toxicity data that relate primarily to accidental high-rate exposure. We have used recent literature to assess the possible risks associated with the presence of glyphosate residues in food and the environment.

  16. Identifying Toxic Impacts of Metals Potentially Released during Deep-Sea Mining—A Synthesis of the Challenges to Quantifying Risk

    Directory of Open Access Journals (Sweden)

    Chris Hauton

    2017-11-01

    Full Text Available In January 2017, the International Seabed Authority released a discussion paper on the development of Environmental Regulations for deep-sea mining (DSM within the Area Beyond National Jurisdiction (the “Area”. With the release of this paper, the prospect for commercial mining in the Area within the next decade has become very real. Moreover, within nations' Exclusive Economic Zones, the exploitation of deep-sea mineral ore resources could take place on very much shorter time scales and, indeed, may have already started. However, potentially toxic metal mixtures may be released at sea during different stages of the mining process and in different physical phases (dissolved or particulate. As toxicants, metals can disrupt organism physiology and performance, and therefore may impact whole populations, leading to ecosystem scale effects. A challenge to the prediction of toxicity is that deep-sea ore deposits include complex mixtures of minerals, including potentially toxic metals such as copper, cadmium, zinc, and lead, as well as rare earth elements. Whereas the individual toxicity of some of these dissolved metals has been established in laboratory studies, the complex and variable mineral composition of seabed resources makes the a priori prediction of the toxic risk of DSM extremely challenging. Furthermore, although extensive data quantify the toxicity of metals in solution in shallow-water organisms, these may not be representative of the toxicity in deep-sea organisms, which may differ biochemically and physiologically and which will experience those toxicants under conditions of low temperature, high hydrostatic pressure, and potentially altered pH. In this synthesis, we present a summation of recent advances in our understanding of the potential toxic impacts of metal exposure to deep-sea meio- to megafauna at low temperature and high pressure, and consider the limitation of deriving lethal limits based on the paradigm of exposure to

  17. Application of PIXE, NAA and other techniques to the determination of toxic elements in Bangladesh foodstuffs and drinking waters

    International Nuclear Information System (INIS)

    Tarafdar, S.A.; Khan, A.H.

    1988-01-01

    The main objective of the food monitoring programme is to study the applicability of PIXE, XRF, NAA and other related methods to toxic and essential trace elements analyses in foodstuffs and drinking water under the coordinated research programme of the IAEA and to collect baseline data on the status of such elements in foodstuffs and drinking water. The commonly consumed representative foodstuffs selected for Bangladesh are: rice, wheat, green vegetables, fish, milk and egg. In the previous year, only food items were studied but in this report drinking water is also included. The elements required by the project protocol are Cu, Cr, Fe, As, Se, Sb, Cd, Pb and Hg. In this report, the results obtained during the last contract period are presented with a plan for future work. 4 refs, 2 tabs

  18. Application of photon activation analysis to the determination of the distribution of toxic elements in soil of a sewage farm

    International Nuclear Information System (INIS)

    Segebade, C.; Schmitt, B.F.; Fusban, H.U.; Kuehl, M.

    1984-01-01

    Bore-cores, taken from waste water charged and closely neighbouring virgin soil regions within the sewage farm in Berlin-Karolinenhoehe were investigated. The distributions of numerous elements along the bore-core length (or soil depth, respectively) were analysed with particular emphasis laid upon toxic components. As many as 27 elements were analysed. By comparison of the concentration profiles the significant partition of anthropogenic pollutants becomes obvious. Instrumental photon activation analysis using an electron accelerator - being a multielement technique - has proven to be a suitable tool for the given analytical task. With this method, elements can be analysed which are not or not readily determinable with other comparable instrumental techniques (thermal neutron activation analysis in particular), e.g. Ni, Tl and Pb. (orig.) [de

  19. Arbuscular mycorrhizal fungal inoculation protects Miscanthus × giganteus against trace element toxicity in a highly metal-contaminated site.

    Science.gov (United States)

    Firmin, Stéphane; Labidi, Sonia; Fontaine, Joël; Laruelle, Frédéric; Tisserant, Benoit; Nsanganwimana, Florian; Pourrut, Bertrand; Dalpé, Yolande; Grandmougin, Anne; Douay, Francis; Shirali, Pirouz; Verdin, Anthony; Lounès-Hadj Sahraoui, Anissa

    2015-09-15

    Arbuscular mycorrhizal fungus (AMF)-assisted phytoremediation could constitute an ecological and economic method in polluted soil rehabilitation programs. The aim of this work was to characterize the trace element (TE) phytoremediation potential of mycorrhizal Miscanthus × giganteus. To understand the mechanisms involved in arbuscular mycorrhizal symbiosis tolerance to TE toxicity, the fatty acid compositions and several stress oxidative biomarkers were compared in the roots and leaves of Miscanthus × giganteus cultivated under field conditions in either TE-contaminated or control soils. TEs were accumulated in greater amounts in roots, but the leaves were the organ most affected by TE contamination and were characterized by a strong decrease in fatty acid contents. TE-induced oxidative stress in leaves was confirmed by an increase in the lipid peroxidation biomarker malondialdehyde (MDA). TE contamination decreased the GSSG/GSH ratio in the leaves of exposed plants, while peroxidase (PO) and superoxide dismutase (SOD) activities were increased in leaves and in whole plants, respectively. AMF inoculation also increased root colonization in the presence of TE contamination. The mycorrhizal colonization determined a decrease in SOD activity in the whole plant and PO activities in leaves and induced a significant increase in the fatty acid content in leaves and a decrease in MDA formation in whole plants. These results suggested that mycorrhization is able to confer protection against oxidative stress induced by soil pollution. Our findings suggest that mycorrhizal inoculation could be used as a bioaugmentation technique, facilitating Miscanthus cultivation on highly TE-contaminated soil. Copyright © 2015. Published by Elsevier B.V.

  20. Potential for acid emissions affecting trace element nutrition of livestock

    International Nuclear Information System (INIS)

    Smart, M.E.

    1992-01-01

    The role of sour gas emissions in trace element nutrition of livestock is discussed. Trace mineral nutrition and the evaluation of factors affecting it is very complex. Some trace minerals are antagonistic to each other, for example a dietary sulfur content of greater than 0.4% will suppress the availability of copper to ruminants. Dietary plants, age, pregnancy, and disease can all alter trace element concentrations. Species and breed of animal play a significant role in copper metabolism. Clinical signs associated with copper and zinc deficiency are discussed. These symptoms include lameness, lack of hair pigmentation, infertility, and scouring. Some of these symptoms may be caused by excess molybdenum. Clinical features associated with zinc deficiency include parakeratosis and inflammation of the skin. 4 figs., 1 tab

  1. Evaluation of the attenuating properties of selected Greek clays for toxic inorganic elements in landfill sites.

    Science.gov (United States)

    Mimides, T; Perraki, T

    2000-05-15

    Heavy metal attenuation properties of selected clay material collected from miscellaneous Greek sites is investigated and tested in the laboratory for their suitability, either as liners in hydrologically unsafe sites or as earth covers for sanitary landfill sites. Eleven potentially hazardous elements (As, Be, Cd, Cr, Cu, Hg, Ni, Pb, Se, V, and Zn) generated by a co-disposal landfill leachate have been considered. Experimental column and static equilibrium methods for the determination of dispersion and adsorption are described. Molecular diffusion dominates the migration phenomena with a velocity range between 1.3 x 10(-5) and 3.5 x 10(-4) cm/s throughout the experiments. A simple way to evaluate dispersion coefficients from breakthrough curves gave values of between 3.90 x 10(-6) and 3.5 x 10(-4) cm2/s, with a mean value of 1.5 x 10(-5). Static adsorption equilibrium studies supported by column runs showed that Freundlich (F = kCn) isotherms express in a better way the assimilative capacities of the tested clays, with k and n values ranging from 0.06 to 1.99 and 0.55 to 1.48 correspondingly. Mathematical models involving non-linear parabolic equations are involved. The experimental data, together with finite difference techniques and some physical clay characteristics, produced trilinear textural diagrams and predictive flow transport convection-dispersion breakthrough curves for a quick estimation of the attenuating properties of clays for heavy metals.

  2. Antioxidant response elements: Discovery, classes, regulation and potential applications

    Directory of Open Access Journals (Sweden)

    Azhwar Raghunath

    2018-07-01

    Full Text Available Exposure to antioxidants and xenobiotics triggers the expression of a myriad of genes encoding antioxidant proteins, detoxifying enzymes, and xenobiotic transporters to offer protection against oxidative stress. This articulated universal mechanism is regulated through the cis-acting elements in an array of Nrf2 target genes called antioxidant response elements (AREs, which play a critical role in redox homeostasis. Though the Keap1/Nrf2/ARE system involves many players, AREs hold the key in transcriptional regulation of cytoprotective genes. ARE-mediated reporter constructs have been widely used, including xenobiotics profiling and Nrf2 activator screening. The complexity of AREs is brought by the presence of other regulatory elements within the AREs. The diversity in the ARE sequences not only bring regulatory selectivity of diverse transcription factors, but also confer functional complexity in the Keap1/Nrf2/ARE pathway. The different transcription factors either homodimerize or heterodimerize to bind the AREs. Depending on the nature of partners, they may activate or suppress the transcription. Attention is required for deeper mechanistic understanding of ARE-mediated gene regulation. The computational methods of identification and analysis of AREs are still in their infancy. Investigations are required to know whether epigenetics mechanism plays a role in the regulation of genes mediated through AREs. The polymorphisms in the AREs leading to oxidative stress related diseases are warranted. A thorough understanding of AREs will pave the way for the development of therapeutic agents against cancer, neurodegenerative, cardiovascular, metabolic and other diseases with oxidative stress. Keywords: Antioxidant response elements, Antioxidant genes, ARE-reporter constructs, ARE SNPs, Keap1/Nrf2/ARE pathway, Oxidative stress

  3. Screen-Printed Electrodes Modified with “Green” Metals for Electrochemical Stripping Analysis of Toxic Elements

    Directory of Open Access Journals (Sweden)

    Anastasios Economou

    2018-03-01

    Full Text Available This work reviews the field of screen-printed electrodes (SPEs modified with “green” metals for electrochemical stripping analysis of toxic elements. Electrochemical stripping analysis has been established as a useful trace analysis technique offering many advantages compared to competing optical techniques. Although mercury has been the preferred electrode material for stripping analysis, the toxicity of mercury and the associated legal requirements in its use and disposal have prompted research towards the development of “green” metals as alternative electrode materials. When combined with the screen-printing technology, such environment-friendly metals can lead to disposable sensors for trace metal analysis with excellent operational characteristics. This review focuses on SPEs modified with Au, Bi, Sb, and Sn for stripping analysis of toxic elements. Different modification approaches (electroplating, bulk modification, use of metal precursors, microengineering techniques are considered and representative applications are described. A developing related field, namely biosensing based on stripping analysis of metallic nanoprobe labels, is also briefly mentioned.

  4. Moving toward a precise nutrition: preferential loading of seeds with essential nutrients over non-essential toxic elements.

    Directory of Open Access Journals (Sweden)

    Mather A. Khan

    2014-02-01

    Full Text Available Plants and seeds are the main source of essential nutrients for humans and livestock. Many advances have recently been made in understanding the molecular mechanisms by which plants take up and accumulate micronutrients such as iron, zinc, copper and manganese. Some of these mechanisms however, also facilitate the accumulation of non-essential toxic elements such as cadmium (Cd and arsenic (As. In humans, Cd and As intake has been associated with multiple disorders including kidney failure, diabetes, cancer and mental health issues. Recent studies have shown that some transporters can discriminate between essential metals and non-essential elements. Furthermore, sequestration of non-essential elements in roots has been described in several plant species as a key process limiting the translocation of non-essential elements to aboveground edible tissues, including seeds. Increasing the concentration of bioavailable micronutrients (biofortification in grains while lowering the accumulation of non-essential elements will likely require the concerted action of several transporters. This review discusses the most recent advances on mineral nutrition that could be used to preferentially enrich seeds with micronutrients and also illustrates how precision breeding and transport engineering could be used to enhance the nutritional value of crops by re-routing essential and non-essential elements to separate sink tissues (roots and seeds.

  5. Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi

    International Nuclear Information System (INIS)

    Wadt, W.R.; Hay, P.J.

    1985-01-01

    A consistent set of ab initio effective core potentials (ECP) has been generated for the main group elements from Na to Bi using the procedure originally developed by Kahn. The ECP's are derived from all-electron numerical Hartree--Fock atomic wave functions and fit to analytical representations for use in molecular calculations. For Rb to Bi the ECP's are generated from the relativistic Hartree--Fock atomic wave functions of Cowan which incorporate the Darwin and mass--velocity terms. Energy-optimized valence basis sets of (3s3p) primitive Gaussians are presented for use with the ECP's. Comparisons between all-electron and valence-electron ECP calculations are presented for NaF, NaCl, Cl 2 , Cl 2 - , Br 2 , Br 2 - , and Xe 2 + . The results show that the average errors introduced by the ECP's are generally only a few percent

  6. Analysis of arab ore phosphate, for macro, micro and toxic elements using INAA method

    International Nuclear Information System (INIS)

    El-Ghawi, U.M.; Abugassa, I.O.; Alfakhri, S.M.

    2003-01-01

    Natural phosphates are used on large scale in the fertilizer industry and large quantities of phosphates are processed each year all over the world from fertilizer production. At present world usage of rock phosphates is approximately 90 million tons per annum. Because natural phosphates are a source of some valuable elements besides phosphorus used in fertilizers production, the objective of this paper is to check the level of radioactive elements of uranium and thorium, and the stable environmental pollutants like As and Cr in natural arab phosphate. In addition, rare earth elements (REEs) and other elements like (Fe, K, Mn, Na and Ti) were determined

  7. Toxic elements and speciation in seafood samples from different contaminated sites in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Maulvault, Ana Luísa, E-mail: aluisa@ipma.pt [Division of Aquaculture and Upgrading (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, I.P.), Avenida de Brasília, 1449-006 Lisbon (Portugal); Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Rua das Bragas, 289, 4050-123 Porto (Portugal); MARE – Marine and Environmental Sciences Centre, Faculty of Sciences, University of Lisbon (FCUL), Campo Grande, 1749-016 Lisboa (Portugal); Anacleto, Patrícia [Division of Aquaculture and Upgrading (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, I.P.), Avenida de Brasília, 1449-006 Lisbon (Portugal); Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Rua das Bragas, 289, 4050-123 Porto (Portugal); MARE – Marine and Environmental Sciences Centre, Faculty of Sciences, University of Lisbon (FCUL), Campo Grande, 1749-016 Lisboa (Portugal); Barbosa, Vera [Division of Aquaculture and Upgrading (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, I.P.), Avenida de Brasília, 1449-006 Lisbon (Portugal); Sloth, Jens J.; Rasmussen, Rie Romme [National Food Institute, Technical University of Denmark, Mørkhøj Bygade 19, DK-2860 Søborg (Denmark); Tediosi, Alice [Aeiforia Srl, 29027 Gariga di Podenzano (PC) (Italy); Fernandez-Tejedor, Margarita [Marine Monitoring, Institute of Agriculture and Food Research & Technology (IRTA), Sant Carles de la Ràpita, Tarragona (Spain); Heuvel, Fredericus H.M. van den [Hortimare, Projects and Consultancy, J. Duikerweg 12B, 1703 DH Heerhugowaard, The Netherlands (Netherlands); and others

    2015-11-15

    The presence of cadmium (Cd), lead (Pb), mercury (THg), methylmercury (MeHg), arsenic (TAs), inorganic arsenic (iAs), cobalt (Co), copper (Cu), zinc (Zn), nickel (Ni), chromium (Cr) and iron (Fe) was investigated in seafood collected from European marine ecosystems subjected to strong anthropogenic pressure, i.e. hotspot areas. Different species (Mytilus galloprovincialis, n=50; Chamelea gallina, n=50; Liza aurata, n=25; Platichthys flesus, n=25; Laminaria digitata, n=15; and Saccharina latissima, n=15) sampled in Tagus estuary, Po delta, Ebro delta, western Scheldt, and in the vicinities of a fish farm area (Solund, Norway), between September and December 2013, were selected to assess metal contamination and potential risks to seafood consumers, as well as to determine the suitability of ecologically distinct organisms as bioindicators in environmental monitoring studies. Species exhibited different elemental profiles, likely as a result of their ecological strategies, metabolism and levels in the environment (i.e. seawater and sediments). Higher levels of Cd (0.15–0.94 mg kg{sup −1}), Pb (0.37−0.89 mg kg{sup −1}), Co (0.48–1.1 mg kg{sup −1}), Cu (4.8–8.4 mg kg{sup −1}), Zn (75–153 mg kg{sup −1}), Cr (1.0–4.5 mg kg{sup −1}) and Fe (283–930 mg kg{sup −1}) were detected in bivalve species, particularly in M. galloprovincialis from Ebro and Po deltas, whereas the highest content of Hg was found in P. flesus (0.86 mg kg{sup −1}). In fish species, most Hg was organic (MeHg; from 69 to 79%), whereas lower proportions of MeHg were encountered in bivalve species (between 20 and 43%). The highest levels of As were found in macroalgae species L. digitata and S. latissima (41 mg kg{sup −1} and 43 mg kg{sup −1}, respectively), with iAs accounting almost 50% of the total As content in L. digitata but not with S. latissima nor in the remaining seafood samples. This work highlights that the selection of the most appropriate bioindicator species

  8. Toxic elements and speciation in seafood samples from different contaminated sites in Europe.

    Science.gov (United States)

    Maulvault, Ana Luísa; Anacleto, Patrícia; Barbosa, Vera; Sloth, Jens J; Rasmussen, Rie Romme; Tediosi, Alice; Fernandez-Tejedor, Margarita; van den Heuvel, Fredericus H M; Kotterman, Michiel; Marques, António

    2015-11-01

    The presence of cadmium (Cd), lead (Pb), mercury (THg), methylmercury (MeHg), arsenic (TAs), inorganic arsenic (iAs), cobalt (Co), copper (Cu), zinc (Zn), nickel (Ni), chromium (Cr) and iron (Fe) was investigated in seafood collected from European marine ecosystems subjected to strong anthropogenic pressure, i.e. hotspot areas. Different species (Mytilus galloprovincialis, n=50; Chamelea gallina, n=50; Liza aurata, n=25; Platichthys flesus, n=25; Laminaria digitata, n=15; and Saccharina latissima, n=15) sampled in Tagus estuary, Po delta, Ebro delta, western Scheldt, and in the vicinities of a fish farm area (Solund, Norway), between September and December 2013, were selected to assess metal contamination and potential risks to seafood consumers, as well as to determine the suitability of ecologically distinct organisms as bioindicators in environmental monitoring studies. Species exhibited different elemental profiles, likely as a result of their ecological strategies, metabolism and levels in the environment (i.e. seawater and sediments). Higher levels of Cd (0.15-0.94 mg kg(-1)), Pb (0.37-0.89 mg kg(-1)), Co (0.48-1.1 mg kg(-1)), Cu (4.8-8.4 mg kg(-1)), Zn (75-153 mg kg(-1)), Cr (1.0-4.5 mg kg(-1)) and Fe (283-930 mg kg(-1)) were detected in bivalve species, particularly in M. galloprovincialis from Ebro and Po deltas, whereas the highest content of Hg was found in P. flesus (0.86 mg kg(-1)). In fish species, most Hg was organic (MeHg; from 69 to 79%), whereas lower proportions of MeHg were encountered in bivalve species (between 20 and 43%). The highest levels of As were found in macroalgae species L. digitata and S. latissima (41 mg kg(-1) and 43 mg kg(-1), respectively), with iAs accounting almost 50% of the total As content in L. digitata but not with S. latissima nor in the remaining seafood samples. This work highlights that the selection of the most appropriate bioindicator species is a fundamental step in environmental monitoring of each contaminant

  9. Toxic elements and speciation in seafood samples from different contaminated sites in Europe

    International Nuclear Information System (INIS)

    Maulvault, Ana Luísa; Anacleto, Patrícia; Barbosa, Vera; Sloth, Jens J.; Rasmussen, Rie Romme; Tediosi, Alice; Fernandez-Tejedor, Margarita; Heuvel, Fredericus H.M. van den

    2015-01-01

    The presence of cadmium (Cd), lead (Pb), mercury (THg), methylmercury (MeHg), arsenic (TAs), inorganic arsenic (iAs), cobalt (Co), copper (Cu), zinc (Zn), nickel (Ni), chromium (Cr) and iron (Fe) was investigated in seafood collected from European marine ecosystems subjected to strong anthropogenic pressure, i.e. hotspot areas. Different species (Mytilus galloprovincialis, n=50; Chamelea gallina, n=50; Liza aurata, n=25; Platichthys flesus, n=25; Laminaria digitata, n=15; and Saccharina latissima, n=15) sampled in Tagus estuary, Po delta, Ebro delta, western Scheldt, and in the vicinities of a fish farm area (Solund, Norway), between September and December 2013, were selected to assess metal contamination and potential risks to seafood consumers, as well as to determine the suitability of ecologically distinct organisms as bioindicators in environmental monitoring studies. Species exhibited different elemental profiles, likely as a result of their ecological strategies, metabolism and levels in the environment (i.e. seawater and sediments). Higher levels of Cd (0.15–0.94 mg kg −1 ), Pb (0.37−0.89 mg kg −1 ), Co (0.48–1.1 mg kg −1 ), Cu (4.8–8.4 mg kg −1 ), Zn (75–153 mg kg −1 ), Cr (1.0–4.5 mg kg −1 ) and Fe (283–930 mg kg −1 ) were detected in bivalve species, particularly in M. galloprovincialis from Ebro and Po deltas, whereas the highest content of Hg was found in P. flesus (0.86 mg kg −1 ). In fish species, most Hg was organic (MeHg; from 69 to 79%), whereas lower proportions of MeHg were encountered in bivalve species (between 20 and 43%). The highest levels of As were found in macroalgae species L. digitata and S. latissima (41 mg kg −1 and 43 mg kg −1 , respectively), with iAs accounting almost 50% of the total As content in L. digitata but not with S. latissima nor in the remaining seafood samples. This work highlights that the selection of the most appropriate bioindicator species is a fundamental step in environmental

  10. Antioxidant response elements: Discovery, classes, regulation and potential applications.

    Science.gov (United States)

    Raghunath, Azhwar; Sundarraj, Kiruthika; Nagarajan, Raju; Arfuso, Frank; Bian, Jinsong; Kumar, Alan P; Sethi, Gautam; Perumal, Ekambaram

    2018-07-01

    Exposure to antioxidants and xenobiotics triggers the expression of a myriad of genes encoding antioxidant proteins, detoxifying enzymes, and xenobiotic transporters to offer protection against oxidative stress. This articulated universal mechanism is regulated through the cis-acting elements in an array of Nrf2 target genes called antioxidant response elements (AREs), which play a critical role in redox homeostasis. Though the Keap1/Nrf2/ARE system involves many players, AREs hold the key in transcriptional regulation of cytoprotective genes. ARE-mediated reporter constructs have been widely used, including xenobiotics profiling and Nrf2 activator screening. The complexity of AREs is brought by the presence of other regulatory elements within the AREs. The diversity in the ARE sequences not only bring regulatory selectivity of diverse transcription factors, but also confer functional complexity in the Keap1/Nrf2/ARE pathway. The different transcription factors either homodimerize or heterodimerize to bind the AREs. Depending on the nature of partners, they may activate or suppress the transcription. Attention is required for deeper mechanistic understanding of ARE-mediated gene regulation. The computational methods of identification and analysis of AREs are still in their infancy. Investigations are required to know whether epigenetics mechanism plays a role in the regulation of genes mediated through AREs. The polymorphisms in the AREs leading to oxidative stress related diseases are warranted. A thorough understanding of AREs will pave the way for the development of therapeutic agents against cancer, neurodegenerative, cardiovascular, metabolic and other diseases with oxidative stress. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Normalization as an element of competitiveness and export potential

    International Nuclear Information System (INIS)

    Brito Marquina, A.

    2015-01-01

    The Spanish technical standards catalogue contains over 31.000 standards, half a million pages, most of them in Spanish. Virtually every sector finds in technical standards the good practice accepted by the market, for many elements relevant for competitiveness. They are internationally accepted documents that facilitate access to markets, provide quality and safety assurance, and meet legal obligations in a global environment. This is one of the main contributions of the Spanish Association for Standardization and Certification, an organization founded in 1986 when the standardization activity moved from the public sector to a non-profit entity, in which the private sector could drive and support this activity. (Author)

  12. Comparative analysis of toxic elements in snuff by analytical techniques of X-ray fluorescence

    International Nuclear Information System (INIS)

    Mendoza, Mario; Olivera, Paula

    2013-01-01

    Six samples of different commercial brands of cigarettes expended in the Peruvian market have been analyzed along with two IAEA certified reference material using the technique of X-ray fluorescence energy dispersive. The results obtained in the study showed the presence of toxic metals such as Cr, Mn, Fe, Cu and Zn.

  13. Potential risks of metal toxicity in contaminated sediments of Deule river in Northern France

    International Nuclear Information System (INIS)

    Lourino-Cabana, Beatriz; Lesven, Ludovic; Charriau, Adeline; Billon, Gabriel; Ouddane, Baghdad; Boughriet, Abdel

    2011-01-01

    Research highlights: → A historical environmental pollution is evidenced with reference to background levels. → Sedimentary trace metals partitioning is examined under undisturbed conditions. → Anoxia and diagenetic processes induce geochemical and mineralogical variabilities. → Do metals present in particles and pore waters exhibit a potential toxicity risk? → Behaviour of binding fractions contributes to trace metals scavenging. - Abstract: The aim of this paper was to evaluate the potential sediment cumulative damage and toxicity due to metal contamination in a polluted zone of Deule river (in northern France) from nearby two smelters. Metal-enrichment factors and geoaccumulation indices measured with sediment depth revealed that - compared to background levels either in local reference soils or in world rivers sediments/suspended particulate matter - Cd contributed to the highest pollution levels, followed by Zn, Pb and to a much lesser extent Cu and Ni. A comparison of the vertical distribution of AVS (acid volatile sulfides), SEM (simultaneously extracted metals), TMC (total metal concentrations), TOC (total organic carbon) and interstitial water-metal concentrations in the sediment allowed us to highlight the extent of toxicity caused by Cd, Pb, Zn, Ni and Cu and to raise the possibility of their association with certain geochemical phases. To assess the actual environmental impacts of these metals in Deule river, numerical sediment quality guidelines were further used in the present work. Sedimentary Pb, Zn, and Cd contents largely exceeded PEC (probable effect concentration) values reported as consensus-based sediment quality guidelines for freshwater ecosystems. As for risks of toxicity from pore waters, metal concentrations reached their maxima at the surficial layers of the sediment (1-3 cm) and IWCTU (Interstitial Water Criteria Toxicity Unit) observed for Pb and to a lesser extent Cd, violated the corresponding water quality data recommended

  14. Addressing Geographic Variability in the Comparative Toxicity Potential of Copper and Nickel in Soils

    DEFF Research Database (Denmark)

    Owsianiak, Mikolaj; Rosenbaum, Ralph K.; Huijbregts, Mark A. J.

    2013-01-01

    Comparative toxicity potentials (CTP), in life cycle impact assessment also known as characterization factors (CF), of copper (Cu) and nickel (Ni) were calculated for a global set of 760 soils. An accessibility factor (ACF) that takes into account the role of the reactive, solid-phase metal pool...... findings stress the importance of dealing with geographic variability in the calculation of CTPs for terrestrial ecotoxicity of metals....

  15. A Systematic Review on Exposure to Toxic and Essential Elements through Black Tea Consumption in Iran: Could It be a Major Risk for Human Health?

    Directory of Open Access Journals (Sweden)

    Elahe Rezaee

    2014-01-01

    Conclusions: The hazard of excessive element intake through black tea consumption should be considered as negligible in Iran. However, related risk for manganese appeared to be more than toxic metals.

  16. Inorganic nanomaterials in the aquatic environment: behavior, toxicity, and interaction with environmental elements

    Directory of Open Access Journals (Sweden)

    Krzyżewska Iwona

    2016-03-01

    Full Text Available The aim of this paper is to present characteristics, toxicity and environmental behavior of nanoparticles (NPs (silver, copper, gold, zinc oxide, titanium dioxide, iron oxide that most frequently occur in consumer products. In addition, NPs are addressed as the new aquatic environmental pollutant of the 21st century. NPs are adsorbed onto particles in the aquatic systems (clay minerals, fulvic and humic acids, or they can adsorb environmental pollutants (heavy metal ions, organic compounds. Nanosilver (nAg is released from consumer products into the aquatic environment. It can threaten aquatic organisms with high toxicity. Interestingly, copper nanoparticles (Cu-NPs demonstrate higher toxicity to bacteria and aquatic microorganisms than those of nanosilver nAg. Their small size and reactivity can cause penetration into the tissues and interfere with the metabolic systems of living organisms and bacterial biogeochemical cycles. The behavior of NPs is not fully recognized. Nevertheless, it is known that NPs can agglomerate, bind with ions (chlorides, sulphates, phosphates or organic compounds. They can also be bound or immobilized by slurry. The NPs behavior depends on process conditions, i.e. pH, ionic strength, temperature and presence of other chemical compounds. It is unknown how NPs behave in the aquatic environment. Therefore, the research on this problem should be carried out under different process conditions. As for the toxicity, it is important to understand where the differences in the research results come from. As NPs have an impact on not only aquatic organisms but also human health and life, it is necessary to recognize their toxic doses and know standards/regulations that determine the permissible concentrations of NPs in the environment.

  17. Triphenyl phosphate-induced developmental toxicity in zebrafish: Potential role of the retinoic acid receptor

    Energy Technology Data Exchange (ETDEWEB)

    Isales, Gregory M.; Hipszer, Rachel A.; Raftery, Tara D. [Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC (United States); Chen, Albert; Stapleton, Heather M. [Division of Environmental Sciences and Policy, Nicholas School of the Environment, Duke University, Durham, NC (United States); Volz, David C., E-mail: volz@mailbox.sc.edu [Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC (United States)

    2015-04-15

    Highlights: • Triphenyl phosphate-induced toxicity in zebrafish embryos is enhanced in the presence of a retinoic acid receptor antagonist. • Triphenyl phosphate uptake or metabolism within zebrafish embryos is not altered in the presence of a retinoic acid receptor antagonist. • Triphenyl phosphate decreases expression of cytochrome P450 26a1 in zebrafish embryos. • Triphenyl phosphate inhibits retinoic acid-induced activation of human retinoic acid receptors. - Abstract: Using zebrafish as a model, we previously reported that developmental exposure to triphenyl phosphate (TPP) – a high-production volume organophosphate-based flame retardant – results in dioxin-like cardiac looping impairments that are independent of the aryl hydrocarbon receptor. Using a pharmacologic approach, the objective of this study was to investigate the potential role of retinoic acid receptor (RAR) – a nuclear receptor that regulates vertebrate heart morphogenesis – in mediating TPP-induced developmental toxicity in zebrafish. We first revealed that static exposure of zebrafish from 5–72 h post-fertilization (hpf) to TPP in the presence of non-toxic concentrations of an RAR antagonist (BMS493) significantly enhanced TPP-induced toxicity (relative to TPP alone), even though identical non-toxic BMS493 concentrations mitigated retinoic acid (RA)-induced toxicity. BMS493-mediated enhancement of TPP toxicity was not a result of differential TPP uptake or metabolism, as internal embryonic doses of TPP and diphenyl phosphate (DPP) – a primary TPP metabolite – were not different in the presence or absence of BMS493. Using real-time PCR, we then quantified the relative change in expression of cytochrome P450 26a1 (cyp26a1) – a major target gene for RA-induced RAR activation in zebrafish – and found that RA and TPP exposure resulted in a ∼5-fold increase and decrease in cyp26a1 expression, respectively, relative to vehicle-exposed embryos. To address whether TPP may

  18. Phytochemical constituents, antioxidant activity and toxicity potential of Phlomis olivieri Benth.

    Directory of Open Access Journals (Sweden)

    M.R. Delnavazi

    2016-04-01

    Full Text Available Background and objectives: Phlomis olivieri Benth. (Lamiaceae is a medicinal plant widely distributed in Iran. In the present study, we have investigated the phytochemical constituents, antioxidant activity and general toxicity potential of the aerial parts of this species. Methods: Silica gel (normal and reversed phases and Sephadex LH-20 column chromatographies were used for isolation of compounds from methanol-soluble portion (MSP of the total extract obtained from P. olivieri aerial parts. The structures of isolated compounds were elucidated using 1H-NMR, 13C-NMR and UV spectral analyses. Antioxidant activity and general toxicity potential of MSP were also evaluated in DPPH free radical-scavenging assay and brine shrimp lethality test (BSLT, respectively. Results: One caffeoylquinic acid derivative, chlorogenic acid (1, one iridoid glycoside, ipolamiide (2, two phenylethanoid glycosides, phlinoside C (3 and verbascoside (5, along with two flavonoids, isoquercetin (4 and naringenin (6 were isolated and identified from MSP. The MSP exhibited considerable antioxidant activity in DPPH method (IC50; 50.4 ± 4.6 µg/mL, compared to BHT (IC50; 18.7 ± 2.1 µg/mL, without any toxic effect in BSLT at the highest tested dose (1000 µg/mL. Conclusion: the results of the present study introduce P. olivieri as a medicinal plant with valuable biological and pharmacological potentials.

  19. Toxic trace element assessment for soils/sediments deposited during Hurricanes Katrina and Rita from southern Louisiana, USA: a sequential extraction analysis.

    Science.gov (United States)

    Shi, Honglan; Witt, Emitt C; Shu, Shi; Su, Tingzhi; Wang, Jianmin; Adams, Craig

    2010-07-01

    Analysis of soil/sediment samples collected in the southern Louisiana, USA, region three weeks after Hurricanes Katrina and Rita passed was performed using sequential extraction procedures to determine the origin, mode of occurrence, biological availability, mobilization, and transport of trace elements in the environment. Five fractions: exchangeable, bound to carbonates, bound to iron (Fe)-manganese (Mn) oxides, bound to organic matter, and residual, were subsequently extracted. The toxic trace elements Pb, As, V, Cr, Cu, and Cd were analyzed in each fraction, together with Fe in 51 soil/sediment samples. Results indicated that Pb and As were at relatively high concentrations in many of the soil/sediment samples. Because the forms in which Pb and As are present tend to be highly mobile under naturally occurring environmental conditions, these two compounds pose an increased health concern.Vanadium and Cr were mostly associated with the crystal line nonmobile residual fraction. A large portion of the Cu was associated with organic matter and residual fraction. Cadmium concentrations were low in all soil/sediment samples analyzed and most of this element tended to be associated with the mobile fractions. An average of 21% of the Fe was found in the Fe-Mn oxide fraction, indicating that a substantial part of the Fe was in an oxidized form. The significance of the overall finding of the present study indicated that the high concentrations and high availabilities of the potentially toxic trace elements As and Pb may impact the environment and human health in southern Louisiana and, in particular, the New Orleans area. Copyright (c) 2010 SETAC.

  20. Potential Use of Chemoprotectants against the Toxic Effects of Cyanotoxins: A Review.

    Science.gov (United States)

    Guzmán-Guillén, Remedios; Puerto, María; Gutiérrez-Praena, Daniel; Prieto, Ana I; Pichardo, Silvia; Jos, Ángeles; Campos, Alexandre; Vasconcelos, Vitor; Cameán, Ana M

    2017-05-23

    Cyanobacterial toxins, particularly microcystins (MCs) and cylindrospermopsin (CYN), are responsible for toxic effects in humans and wildlife. In order to counteract or prevent their toxicity, various strategies have been followed, such as the potential application of chemoprotectants. A review of the main substances evaluated for this aim, as well as the doses and their influence on cyanotoxin-induced toxicity, has been performed. A search of the literature shows that research on MCs is much more abundant than research on CYN. Among chemoprotectants, antioxidant compounds are the most extensively studied, probably because it is well known that oxidative stress is one of the toxic mechanisms common to both toxins. In this group, vitamin E seems to have the strongest protectant effect for both cyanotoxins. Transport inhibitors have also been studied in the case of MCs, as CYN cellular uptake is not yet fully elucidated. Further research is needed because systematic studies are lacking. Moreover, more realistic exposure scenarios, including cyanotoxin mixtures and the concomitant use of chemoprotectants, should be considered.

  1. Potentially toxic concentrations of synthetic pyrethroids associated with low density residential land use

    Directory of Open Access Journals (Sweden)

    Stephen Marshall

    2016-11-01

    Full Text Available Trace organic compounds associated with human activity are now ubiquitous in the environment. As the population becomes more urbanised and the use of pesticides and person care products continues to increase, urban waterways are likely to receive higher loads of trace organic contaminants with unknown ecological consequences. To establish the extent of trace organic contamination in urban runoff, concentrations of emerging chemicals of concern were determined in sediments from 99 urban wetlands in and around Melbourne, Australia between February and April, 2015. As a preliminary estimation of potential risks to aquatic biota, we compared measured concentrations with thresholds for acute and chronic toxicity, and modelled toxic units as a function of demographic and land use trends. The synthetic pyrethroid insecticide bifenthrin was common and widespread, and frequently occurred at concentrations likely to cause toxicity to aquatic life. Personal care products DEET and triclosan were common and widely distributed, while the herbicides diuron and prometryn, and the fungicides pyrimethanil and trifloxystrobin occurred less frequently. Toxic unit modelling using random forests found complex and unexpected associations between urban land uses and trace organic concentrations. Synthetic pyrethroid insecticides were identified as emerging compounds of concern, particularly bifenthrin. In contrast with previous surveys, the highest bifenthrin concentrations were associated with lower housing and population density, implicating low-density residential land use in bifenthrin contamination. We discuss the implications for pesticide regulation and urban wetland management in a global context.

  2. Study on the Potential Toxicity of a Thymoquinone-Rich Fraction Nanoemulsion in Sprague Dawley Tats

    Directory of Open Access Journals (Sweden)

    Maznah Ismail

    2013-06-01

    Full Text Available Toxicological studies constitute an essential part of the effort in developing an herbal medicine into a drug product. A newly developed thymoquinone-rich fraction nanoemulsion (TQRFNE has been prepared using a high pressure homogenizer. The purpose of this study was to investigate the potential acute toxicity of this nanoemulsion in Sprague Dawley rats. The acute toxicity studies were conducted as per the OECD guidelines 425, allowing for the use of test dose limit of 20 mL TQRFNE (containing 44.5 mg TQ/kg. TQRFNE and distilled water (DW as a control were administered orally to both sexes of rats on Day 0 and observed for 14 days. All the animals appeared normal, and healthy throughout the study. There was no observed mortality or any signs of toxicity during the experimental period. The effects of the TQRFNE and DW groups on general behavior, body weight, food and water consumption, relative organ weight, hematology, histopathology, and clinical biochemistry were measured. All the parameters measured were unaffected as compared to the control (DW group. The administration of 20 mL TQRFNE /kg was not toxic after an acute exposure.

  3. An assessment of the potential toxicity of runoff from an urban roadscape during rain events.

    Science.gov (United States)

    Waara, Sylvia; Färm, Carina

    2008-05-01

    The potential negative impact of urban storm water on aquatic freshwater ecosystems has been demonstrated in various studies with different types of biological methods. There are a number of factors that influence the amount and bioavailability of contaminants in storm water even if it is derived from an area with a fairly homogenous land use such as a roadscape where a variation in toxicity during rain events might be expected. There are only a few previous investigations on the toxicity of highway runoff and they have not explored these issues extensively. The main objective of this study is therefore to characterize the potential toxicity of highway runoff during several rain events before it enters a detention pond in Västerås, Sweden, using laboratory bioassays with test organisms representing various functional groups in an aquatic ecosystem. The results are to be used for developing a monitoring program, including biological methods. The storm water was sampled before the entrance to a detention pond, which receives run-off from a highway with approximately 20,000 vehicles a day. The drainage area, including the roadscape and vegetated areas, is 4.3 ha in size. Samples for toxicity tests were taken with an automatic sampler or manually during storm events. In total, the potential toxicity of 65 samples representing 15 different storm events was determined. The toxicity was assessed with 4 different test organisms; Vibrio fischeri using the Microtox comparison test, Daphnia magna using Daphtoxkit-F agna, Thamnocephalus platyurus using the ThamnotoxkitF and Lemna minor, duckweed using SS 028313. Of the 65 samples, 58 samples were tested with DaphniatoxkitF agna, 57 samples with the Microtox comparison test, 48 samples with ThamnotoxkitF and 20 samples with Lemna minor, duckweed. None of the storm water samples were toxic. No toxicity was detected with the Lemna minor test, but in 5 of the 23 samples tested in comparison to the control a growth stimulation of

  4. The contents of fifteen essential trace and toxic elements in some green tea samples and in their infusions

    International Nuclear Information System (INIS)

    Sahito, S.R.; Kazi, T.G.; Kazi, G.H.; Jakharani, M.A.; Shar, Q.G.; Shaikh, S.

    2005-01-01

    The content of fifteen elements i.e. Ca, Mg, Na, K, Fe, Mn, Zn, Co, Cu, Cr, Ni, Pd, Cd, Ba and Al were determined for 30 sample from three types of green tea samples using flame atomic absorption spectroscopy. The samples were purchased from authentic tea dealer in Peshawar imported from India, China and Kenya. However, some samples were taken which were locally produced in Pakistan with branded packing and without package. The NBS tea leaves. The wet digestion and infusion procedure reference material was also analyzed simultaneously with tea samples. The wet digestion and infusion procedures were employed for determination of total elements and aqueous extracted elements respectively. It was found that, considerable amount of essential and trace elements are present in total in tea infusion. The levels of toxic metals are low but level of aluminum is high in both forms. The results obtained from this analysis have shown good accuracy and reproducibility. The relative error and relative standard deviation were less than 10% for most of the elements analyzed. (author)

  5. Analysis of toxic elements in two pigeonpea (Cajanus cajan (L.) Millsp) cultivars, in fertilized soils, by neutron activation

    International Nuclear Information System (INIS)

    Piasentin, Ricardo M.; Armelin, Maria Jose A.; Primavesi, Odo

    2000-01-01

    Samples of whole leaves, from thirty-six plants belonging to two pigeonpea cultivars were analysed by Instrumental Neutron Activation Analysis. Each plant was cultivated under either single dose or double one of some mineral fertilizers, such as, B, Co, Cu, Fe, Mn, Mo, V and Zn, individually, to the soil; besides limestone and phosphorus. The aim of this paper is to evaluate the contribution of these treatments to the increase in the concentrations of As, Sb, Th and U, since these elements can be toxic to plants and animals. (author)

  6. Study of the influencing factors of the blood levels of toxic elements in Africans from 16 countries

    International Nuclear Information System (INIS)

    Henríquez-Hernández, Luis Alberto; Luzardo, Octavio P.; Boada, Luis D.; Carranza, Cristina; Pérez Arellano, José Luis; González-Antuña, Ana; Almeida-González, Maira; Barry-Rodríguez, Carlos; Zumbado, Manuel; Camacho, María

    2017-01-01

    Africa's economy is growing faster than any other continent and it has been estimated that the middle class in Africa now exceeds 350 million people. This has meant a parallel increase in the importation of consumer goods and in the implementation of communication and information technologies (ICT), but also in the generation of large quantities of e-waste. However, inadequate infrastructure development remains a major constraint to the continent's economic growth and these highly toxic residues are not always adequately managed. Few studies have been conducted to date assessing the possible association between socioeconomic development factors, including e-waste generation, and blood levels of inorganic elements in African population. To disclose the role of geographical, anthropogenic, and socioeconomic development determinants on the blood levels of Ag, Al, As, Be, Cd, Co, Cr, Hg, Ni, Pb, Sb, and V —all of them frequently found in e-waste—, an immigrant population-based study was made including a total of 245 subjects from 16 countries recently arrived to the Canary Islands (Spain). Women presented higher levels of blood elements than men, and Northern Africans (Moroccans) were the most contaminated. People from low-income countries exhibited significantly lower blood levels of inorganic elements than those from middle-income countries. We found a significant association between the use of motor vehicles and the implementation of information and communication technologies (ICT) and the level of contamination. Immigrants from the countries with a high volume of imports of second-hand electronic equipment, telephone and internet use had higher levels of inorganic elements. In general terms, the higher level of economic development the higher the blood levels of inorganic pollutants, suggesting that the economic development of Africa, in parallel to e-waste generation and the existence of informal recycling sites, have directly affected the level of

  7. Hazard identification of contaminated sites. Ranking potential toxicity of organic sediment extracts in crustacean and fish

    Energy Technology Data Exchange (ETDEWEB)

    Karlsson, J.; Sundberg, H.; Aakerman, G.; Grunder, K.; Eklund, B.; Breitholtz, M. [Dept. of Applied Environmental Science (ITM), Stockholm Univ. (Sweden)

    2008-09-15

    Background, aim, and scope: It is well known that contaminated sediments represent a potential long-term source of pollutants to the aquatic environment. To protect human and ecosystem health, it is becoming common to remediate contaminated sites. However, the great cost associated with, e.g., dredging in combination with the large numbers of contaminated sites makes it crucial to pinpoint those sites that are in greatest need of remediation. In most European countries, this prioritization process has almost exclusively been based on chemical analyses of known substances; only seldom toxicity data has been considered. The main objective of the current study was therefore to develop a tool for hazard identification of sediment by ranking potential toxicity of organic sediment extracts in a crustacean and a fish. A secondary objective was to investigate the difference in potential toxicity between compounds with different polarities. Materials and methods Early life stages of the crustacean Nitocra spinipes and the fish Oncorhynchus mykiss, which represent organisms from different trophic levels (primary and secondary consumer) and with different routes of exposure (i.e. ingestion through food, diffusive uptake, and maternal transfer), were exposed to hexane and acetone fractions (semi-polar compounds) of sediment from five locations, ranging from heavily to low contaminated. Preliminary tests showed that the extracts were non-bioavailable to the crustacean when exposed via water, and the extracts were therefore loaded on silica gel. Rainbow trout embryos were exposed using nano-injection technique. Results and discussion Clear concentration-response relationships of both mortality and larval development were observed in all tests with N. spinipes. Also for rainbow trout, the observed effects (e.g., abnormality, hemorrhage, asymmetric yolk sac) followed a dose-related pattern. Interestingly, our results indicate that some of the locations contained toxic semi

  8. Air toxics and the 1990 Clean Air Act: Managing trace element emissions

    International Nuclear Information System (INIS)

    Chow, W.; Levin, L.; Miller, M.J.

    1992-01-01

    The US Environmental Protection Agency (EPA) has historically regulated air toxics (hazardous air pollutants) under Section 112 of the Clean Air Act. To date, EPA has established emission standards for 8 hazardous air pollutants (arsenic, asbestos, benzene, beryllium, mercury, radionuclides, coke oven emissions and vinyl chloride). The US electric utility industry was not determined to be a source category requiring regulation for any of the eight chemicals. Of the eight, radionuclides were the last species for which EPA established hazardous emissions standards. In this instance, EPA determined that the risks associated with electric utility fossil fuel power plant emissions were sufficiently low that they should not be regulated. However, the 1990 Clean Air Act Amendments require a new evaluation of the electric utility industry emissions of hazardous air pollutants. This paper summarizes the key features of the air toxics provisions of the Clean Air Act Amendments, describes EPRI's activities on the subject, and provides some preliminary insights from EPRI's research to date

  9. On the use of hair analysis to assess the influence of exposure to some toxic elements

    International Nuclear Information System (INIS)

    Vis, R.D.

    1993-01-01

    The micro PIXE technique is an analytical method capable to measure trace element concentration distribution at ppm concentration level and at μm scale. This method opens the possibility to measure radial and longitudinal element distribution across and along hair samples. The incorporation of Cd and Pb in rat hair has been studied using two different analytical techniques, namely micro PIXE to measure the radial distribution of these elements across the hair root and in a section cut at 3 mm distance from the root, and synchrotron radiation X-ray fluorescence (SXRF) to measure the distribution of these elements over different protein fractions prepared by other CRP participant. Hair samples from 12 persons were also analyzed with micro PIXE. Inter element effects were observed in this case, especially the negative correlation between Cu and Zn. Also the data indicate correlations between Zn concentration in hair and bone (positive) and hair and liver (negative). Cu shows the same behaviour. A large number of hair and whole blood samples from a group of school children was also analyzed. In this data set, it was observed that Pb concentration affects other elements. It turned out that Ca and Zn concentrations in hair were lower, while Cu values were higher in the samples with high Pb values. (author). 8 refs, 2 figs, 1 tab

  10. The use of inductively coupled plasma mass spectrometry (ICP-MS) for the determination of toxic and essential elements in different types of food samples

    Science.gov (United States)

    Voica, C.; Dehelean, A.; Kovacs, M. H.

    2012-02-01

    Food is the primary source of essential elements for humans and it is an important source of exposure to toxic elements. In this context, levels of essential and toxic elements must be determined routinely in consumed food products. The content of trace elements (As, Pb, Cu, Cd, Zn, Sn, Hg) in different types of food samples (e.g. rice, bread, sugar, cheese, milk, butter, wheat, coffee, chocolate, biscuits pasta, etc.) was determined, using inductively coupled plasma mass spectrometry (ICP-MS). Trace element contents in some foods were higher than maximum permissible levels of toxic metals in human food (Cd in bread, Zn in cheese, Cu in coffee, Hg in carrots and peppers).

  11. Chemical mixtures in untreated water from public-supply wells in the U.S. — Occurrence, composition, and potential toxicity

    International Nuclear Information System (INIS)

    Toccalino, Patricia L.; Norman, Julia E.; Scott, Jonathon C.

    2012-01-01

    Chemical mixtures are prevalent in groundwater used for public water supply, but little is known about their potential health effects. As part of a large-scale ambient groundwater study, we evaluated chemical mixtures across multiple chemical classes, and included more chemical contaminants than in previous studies of mixtures in public-supply wells. We (1) assessed the occurrence of chemical mixtures in untreated source-water samples from public-supply wells, (2) determined the composition of the most frequently occurring mixtures, and (3) characterized the potential toxicity of mixtures using a new screening approach. The U.S. Geological Survey collected one untreated water sample from each of 383 public wells distributed across 35 states, and analyzed the samples for as many as 91 chemical contaminants. Concentrations of mixture components were compared to individual human-health benchmarks; the potential toxicity of mixtures was characterized by addition of benchmark-normalized component concentrations. Most samples (84%) contained mixtures of two or more contaminants, each at concentrations greater than one-tenth of individual benchmarks. The chemical mixtures that most frequently occurred and had the greatest potential toxicity primarily were composed of trace elements (including arsenic, strontium, or uranium), radon, or nitrate. Herbicides, disinfection by-products, and solvents were the most common organic contaminants in mixtures. The sum of benchmark-normalized concentrations was greater than 1 for 58% of samples, suggesting that there could be potential for mixtures toxicity in more than half of the public-well samples. Our findings can be used to help set priorities for groundwater monitoring and suggest future research directions for drinking-water treatment studies and for toxicity assessments of chemical mixtures in water resources. - Highlights: ► We assessed mixtures in untreated groundwater samples from public-supply wells. ► A screening

  12. Influence of potentially confounding factors on sea urchin porewater toxicity tests

    Science.gov (United States)

    Carr, R.S.; Biedenbach, J.M.; Nipper, M.

    2006-01-01

    The influence of potentially confounding factors has been identified as a concern for interpreting sea urchin porewater toxicity test data. The results from >40 sediment-quality assessment surveys using early-life stages of the sea urchin Arbacia punctulata were compiled and examined to determine acceptable ranges of natural variables such as pH, ammonia, and dissolved organic carbon on the fertilization and embryological development endpoints. In addition, laboratory experiments were also conducted with A. punctulata and compared with information from the literature. Pore water with pH as low as 6.9 is an unlikely contributor to toxicity for the fertilization and embryological development tests with A. punctulata. Other species of sea urchin have narrower pH tolerance ranges. Ammonia is rarely a contributing factor in pore water toxicity tests using the fertilization endpoint, but the embryological development endpoint may be influenced by ammonia concentrations commonly found in porewater samples. Therefore, ammonia needs to be considered when interpreting results for the embryological development test. Humic acid does not affect sea urchin fertilization at saturation concentrations, but it could have an effect on the embryological development endpoint at near-saturation concentrations. There was no correlation between sediment total organic carbon concentrations and porewater dissolved organic carbon concentrations. Because of the potential for many varying substances to activate parthenogenesis in sea urchin eggs, it is recommended that a no-sperm control be included with every fertilization test treatment. ?? 2006 Springer Science+Business Media, Inc.

  13. A magnetic vector potential corresponding to a centrally conservative current element force

    International Nuclear Information System (INIS)

    Minteer, Timothy M

    2015-01-01

    The magnetic vector potential (Coulomb gauge) is commonly introduced in magnetostatic chapters of electromagnetism textbooks. However, what is not typically presented are the infinite subsets of the Coulomb gauge associated with differential current elements. This work provides a comparison of various differential magnetic vector potentials, differential magnetostatic potential energies, as well as differential current element forces as a collective work not available elsewhere. The differential magnetic vector potential highlighted in this work is the Coulomb–Ampère gauge corresponding to the centrally conservative Ampère current element force. The centrally conservative force is modeled as a mean valued continual exchange of energy carrier mediators accounting for both the differential magnetostatic potential energy and Ampère current element force of two differential current elements. (paper)

  14. Studies of seaweeds as indicators of toxic element pollution in Ghana using neutron activation analysis

    International Nuclear Information System (INIS)

    Serfor-Armah, Y.

    2006-11-01

    The concentrations of 25 elements namely: AI, As, Br, Ca, Cd, CI, Co, Cr, Cu, Fe, Hf, Hg, I, K, La, Mg, Mn, Na, Ni, Sb, Sc, Sm, Sr, V and Zn in seven Rhodophyta (red), three Phaeophyta (brown) and five Chlorophyta (green) seaweed species from different areas along the coast of Ghana were determined by instrumental neutron activation analysis (INAA) and preconcentration NAA (PNAA). These species potentially could be used as biomonitors and bioremoval agents. The irradiations using thermal and epithermal neutrons were done using the Ghana Research Reactor-I (GHARR-I) facility at Ghana Atomic Energy Commission, Kwabenya and the Dalhousie University SLOWPOKE-2 Reactor (DUSR) facilities. Counting was done using both the conventional and anti-coincidence γ ray spectrometry. The PNAA method was developed for the simultaneous extraction of Cd, Cr, Hg, and Zn, as well as Sb and V individually from the seaweed samples. The PNAA method involved the use of a mixture of PAN and TAN chelating agents and PONPE-20 surfactant in cloud point extraction (CPE). The parameters affecting the CPE have been optimized. The recoveries under the optimum conditions of pH 3.7 for V, 6.4 for Sb, 8.6 for Cd, Cr, Hg, and Zn, [PAN/TAN] of 1x10 - 4M, [PONPE-20] of 0.1% (m/v), ionic strength 0.05 M KN 0 3, and a temperature of 41 0 C were generally >96%. The mean detection limits for Cd, Cr, Hg, Sb, V and Zn were 6.0, 3.6, 1.2, 2.8, 1.51 and 2.6 ng/g respectively. The CPE method developed was also used successfully to speciate As(III) and As(V) from the Sargassum vulgare, the seaweed. The maximum extraction of As(III) occurred at a pH of 6.7 and that of As(V) at pH of 3.8. The results indicated that As(III) and As(V) formed only 6.27% of the total arsenic concentration, while the other species of arsenic constitute 93.73%. The precision and accuracy of the INAA and PNAA methods developed were evaluated. Schewart control charts were constructed for internal quality assessment purposes. The results

  15. Microplastic potentiates triclosan toxicity to the marine copepod Acartia tonsa (Dana)

    DEFF Research Database (Denmark)

    Syberg, Kristian; Nielsen, Anne; Khan, Farhan

    2017-01-01

    Microplastics (MP) are contaminants of environmental concern partly due to plastics ability to sorb and transport hydrophobic organic contaminants (HOC). The importance of this "vector effect" is currently being debated in the scientific community. This debate largely ignores that the co-exposure......Microplastics (MP) are contaminants of environmental concern partly due to plastics ability to sorb and transport hydrophobic organic contaminants (HOC). The importance of this "vector effect" is currently being debated in the scientific community. This debate largely ignores that the co......-exposures of MP and HOC are mixtures of hazardous agents, which can be addressed from a mixture toxicity perspective. In this study, mixture effects of polyethylene microbeads (MP) and triclosan (TCS) (a commonly used antibacterial agent in cosmetics) were assessed on the marine copepod Acartia tonsa. Data...... indicated that MP potentiate the toxicity of TCS, illustrating the importance of understanding the mixture interaction between plastics and HOC when addressing the environmental importance of the vector effect....

  16. Evaluation of ameliorative potential of supranutritional selenium on enrofloxacin-induced testicular toxicity.

    Science.gov (United States)

    Rungsung, Soya; Khan, Adil Mehraj; Sood, Naresh Kumar; Rampal, Satyavan; Singh Saini, Simrat Pal

    2016-05-25

    The study was designed to assess the ameliorative potential of selenium (Se) on enrofloxacin-induced testicular toxicity in rats. There was a significant decrease in body weight and non-significant decrease in mean testicular weight of enrofloxacin treated rats. In enrofloxacin treated rats, total sperm count and viability decreased where as sperm abnormalities increased. Testicular histopathology revealed dose dependent dysregulation of spermatogenesis and presence of necrotic debris in seminiferous tubules which was marginally improved with Se. Enrofloxacin also produced a dose dependent decrease in testosterone level. The activity of testicular antioxidant enzymes decreased where as lipid peroxidation increased in a dose-dependent manner. Se supplementation partially restored oxidative stress and sperm damage and did not affect the plasma concentrations of enrofloxacin or ciprofloxacain. The results indicate that enrofloxacin produces a dose-dependent testicular toxicity in rats that is moderately ameliorated with supranutritional Se. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Transuranium element toxicity: dose-response relationships at low exposure levels. Summary and speculative interpretation relative to exposure limits

    International Nuclear Information System (INIS)

    Thompson, R.C.

    1975-01-01

    A summary is given of information on transuranium element toxicity and the correlation of this information with current established exposure limits. It is difficult to calculate a biologically relevant radiation dose from deposited plutonium; it is exposure that must be controlled in order to prevent biological effect, and if the relationship between exposure and effect is known, then radiation dose is of no concern. There are extensive data on the effects of plutonium in bone. Results of studies at the University of Utah indicate that plutonium in beagles may be as much as ten times more toxic than radium. It has been suggested that this toxicity ratio may be even higher in man than in the beagle dog because of differences in surface-to-volume ratios and differences in the rate of burial of surface-deposited plutonium. The present capabilities for extrapolating dose-effect relationships seem to be limited to the setting of upper limits, based on assumptions of linearity and considerations related to natural background

  18. Geochemistry of Toxic Elements and Their Removal via the Preparation of High-Uranium Coal in Southwestern China

    Directory of Open Access Journals (Sweden)

    Piaopiao Duan

    2018-02-01

    Full Text Available High-uranium (U coal is the dominant form of coal in Southwestern China. However, directly utilizing this resource can also harm the environment because this element is radioactive; it is, therefore, necessary to clean this kind of coal before burning. This research studied the geochemistry of toxic elements and their partitioning during the preparation of high-U coal in China. The results show that high-U coals are mainly distributed in Southwestern China and are characterized by a high organic sulfur (S content and vanadium (V-chromium (Cr-molybdenum (Mo-U element assemblage. These elements are well-correlated with one another, but are all negatively related to ash yield, indicating that all four are syngenetic in origin and associated with organic materials. A mineralogical analysis shows that U in Ganhe and Rongyang coal occurs within fine-grained anatase, clay minerals, guadarramite, and pyrite, while V occurs in clay minerals, pyrite, and dolomite, and Cr occurs in dolomite. Other elements, such as fluorine (F, lead (Pb, selenium (Se, and mercury (Hg, mainly occur in pyrite. By applying a gravity separation method to separate minerals from coal, the content of the enrichment element assemblage of V-Cr-Mo-U in Rongyang coal is still shown to be higher than, or close to, that of the original feed because this element assemblage is derived from hydrothermal fluids during syngenetic or early diagenetic phases, but other elements (beryllium [Be], F, manganese [Mn], zinc [Zn], Pb, arsenic [As], Se, Hg can be efficiently removed. Once cleaned, the coal obtained by gravity separation was subject to a flotation test to separate minerals; these results indicate that while a portion of V and Cr can be removed, Mo and U remain difficult to extract. It is evident that the two most commonly utilized industrialized coal preparation methods, gravity separation and flotation, cannot effectively remove U from coal where this element occurs in large

  19. Progress report on analysis for toxic elements in food and drinking water by means of neutron activation analysis

    International Nuclear Information System (INIS)

    Leelhaphunt, N.; Chueinta, S.; Dejkumhang, M.; Chueinta, W.; Nouchpramool, S.

    1988-01-01

    From the view point of environmental safety assessment, it is important to find out the information of the levels of toxic elements in foodstuffs for human consumption so as to establish the maximum permissible concentrations of dietary intake of toxic elements for Thai people. This study will consequently be a great help for Thailand's economics in view of quality assurance of our exported foodstuffs as well as the health and welfare of Thai people. In brief, this research covered the following studies: a) development of a proper technique for the determination of arsenic (As), cadmium (Cd), copper (Cu) and zinc (Zn) by ion-exchange chromatography, mercury (Hg) and selenium (Se) by direct combustion technique, bromine (Br), cobalt (Co), iron (Fe) and manganese (Mn) by instrumental neutron activation technique, lead (Pb) by flame atomic absorption spectrometry, b) management of appropriate sample preparation technique, and c) investigation of the amount of As, Cd, Cu, Zn, Hg, Se, Br, Co, Fe, Mn and Pb in various kinds of vegetables, meat, poultry, bean, peas and various species of rice, fish and shellfish. 4 refs, 1 fig., 25 tabs

  20. Chemical and sewage sludge co-incineration in a full-scale MSW incinerator: toxic trace element mass balance.

    Science.gov (United States)

    Biganzoli, Laura; Grosso, Mario; Giugliano, Michele; Campolunghi, Manuel

    2012-10-01

    Co-incineration of sludges with MSW is a quite common practice in Europe. This paper illustrates a case of co-incineration of both sewage sludges and chemical sludges, the latter obtained from drinking water production, in a waste-to-energy (WTE) plant located in northern Italy and equipped with a grate furnace, and compares the toxic trace elements mass balance with and without the co-incineration of sludges. The results show that co-incineration of sewage and chemical sludges does not result in an increase of toxic trace elements the total release in environment, with the exception of arsenic, whose total release increases from 1 mg t(fuel) (-1) during standard operation to 3 mg t(fuel) (-1) when sludges are co-incinerated. The increase of arsenic release is, however, attributable to the sole bottom ashes, where its concentration is five times higher during sludge co-incineration. No variation is observed for arsenic release at the stack. This fact is a further guarantee that the co-incineration of sludges, when performed in a state-of-the-art WTE plant, does not have negative effects on the atmospheric environment.

  1. Dietary Intakes of Minerals, Essential and Toxic Trace Elements for Adults from Eragrostis tef L.: A Nutritional Assessment

    Directory of Open Access Journals (Sweden)

    Eva Koubová

    2018-04-01

    Full Text Available This study analysed the contents of thirty-six mineral and trace elements in teff (Eragrostis tef L. grains. What is more, dietary intakes were calculated. Inductively coupled plasma mass spectrometry (ICP-MS was used to assess mineral and trace element contents. Consequently, the appropriate Recommended Dietary Allowance (RDA or adequate intake (AI, and provisional tolerable weekly intake (PTWI or provisional tolerable monthly intake (PTMI values for adults were determined according to the Food and Agriculture Organization/World Health Organization (FAO/WHO and Institute of Medicine (IOM regulations. Teff is a significant contributor to RDAs and AIs for females in the following order: Mn > Cu > Zn ≥ Mg > Fe ≥ P and Ca. For males, teff contributes in the order, Mn > Cu > Fe > Zn ≥ P ≥ Mg > and Ca. The concentration of arsenic (65.9 µg/kg in brown teff originating in Bolivia exceeded the average acceptable value set by Reg. No. 1881 of 6–50 µg/kg in cereals consumed in the EU. The PTWIs or PTMIs for Al, Cd, Sn and Hg were all under 7%, which is below the limits of toxic element intake related to the body weight of 65 kg for adult females and 80 kg for males, set by the FAO/WHO. Teff grains can be recommended as a valuable and safe source of minerals and trace elements.

  2. Activation analytical determination of essential and toxic trace elements in biological material

    International Nuclear Information System (INIS)

    Schelenz, R.

    1980-01-01

    In order to determine the essential trace elements Hg, Ag, Cu and Se in food (potatoes, milk powder) and biological standard materials (fruit tree leaves), simple, fast radiochemical separation methods are worked out. Following oxidative decomposition and destillation of Hg, the elements silver, copper and selenium are found in the destillation residue and can be electrochemically enriched on an amalgamated Cu foil (determination of Ag and Se in the concentration range of 10 -9 to 10 -8 g, of Cu in the range of 10 -12 to 10 -10 g), whilst the matrix elements Na, K, P are adsorbed on a column with 3 different inorganic ion exchangers. The eluate of the ion exchanger can be added directly to the multielement gamma spectroscopy. The possiblity of working purely instrumentally is demonstrated by 2 examples: multielement analysis of human hair and river water. (RB) [de

  3. Bacteria Inside Semiconductors as Potential Sensor Elements: Biochip Progress

    Directory of Open Access Journals (Sweden)

    Vasu R. Sah

    2014-06-01

    Full Text Available It was discovered at the beginning of this Century that living bacteria—and specifically the extremophile Pseudomonas syzgii—could be captured inside growing crystals of pure water-corroding semiconductors—specifically germanium—and thereby initiated pursuit of truly functional “biochip-based” biosensors. This observation was first made at the inside ultraviolet-illuminated walls of ultrapure water-flowing semiconductor fabrication facilities (fabs and has since been, not as perfectly, replicated in simpler flow cell systems for chip manufacture, described here. Recognizing the potential importance of these adducts as optical switches, for example, or probes of metabolic events, the influences of the fabs and their components on the crystal nucleation and growth phenomena now identified are reviewed and discussed with regard to further research needs. For example, optical beams of current photonic circuits can be more easily modulated by integral embedded cells into electrical signals on semiconductors. Such research responds to a recently published Grand Challenge in ceramic science, designing and synthesizing oxide electronics, surfaces, interfaces and nanoscale structures that can be tuned by biological stimuli, to reveal phenomena not otherwise possible with conventional semiconductor electronics. This short review addresses only the fabrication facilities’ features at the time of first production of these potential biochips.

  4. Bacteria inside semiconductors as potential sensor elements: biochip progress.

    Science.gov (United States)

    Sah, Vasu R; Baier, Robert E

    2014-06-24

    It was discovered at the beginning of this Century that living bacteria-and specifically the extremophile Pseudomonas syzgii-could be captured inside growing crystals of pure water-corroding semiconductors-specifically germanium-and thereby initiated pursuit of truly functional "biochip-based" biosensors. This observation was first made at the inside ultraviolet-illuminated walls of ultrapure water-flowing semiconductor fabrication facilities (fabs) and has since been, not as perfectly, replicated in simpler flow cell systems for chip manufacture, described here. Recognizing the potential importance of these adducts as optical switches, for example, or probes of metabolic events, the influences of the fabs and their components on the crystal nucleation and growth phenomena now identified are reviewed and discussed with regard to further research needs. For example, optical beams of current photonic circuits can be more easily modulated by integral embedded cells into electrical signals on semiconductors. Such research responds to a recently published Grand Challenge in ceramic science, designing and synthesizing oxide electronics, surfaces, interfaces and nanoscale structures that can be tuned by biological stimuli, to reveal phenomena not otherwise possible with conventional semiconductor electronics. This short review addresses only the fabrication facilities' features at the time of first production of these potential biochips.

  5. Nanoscale copper in the soil–plant system – toxicity and underlying potential mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Anjum, Naser A., E-mail: anjum@ua.pt [CESAM-Centre for Environmental and Marine Studies & Department of Chemistry, University of Aveiro, 3810-193 Aveiro (Portugal); Adam, Vojtech [Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno (Czech Republic); Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno (Czech Republic); Kizek, Rene [Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno (Czech Republic); Duarte, Armando C.; Pereira, Eduarda [CESAM-Centre for Environmental and Marine Studies & Department of Chemistry, University of Aveiro, 3810-193 Aveiro (Portugal); Iqbal, Muhammad [Department of Botany, Faculty of Science, Hamdard University, New Delhi 110062 (India); Lukatkin, Alexander S. [Department of Botany, Plant Physiology and Ecology, N.P. Ogarev Mordovia State University, Bolshevistskaja Str., 68. Saransk 430005 (Russian Federation); Ahmad, Iqbal, E-mail: ahmadr@ua.pt [CESAM-Centre for Environmental and Marine Studies & Department of Chemistry, University of Aveiro, 3810-193 Aveiro (Portugal); CESAM-Centre for Environmental and Marine Studies & Department of Biology, University of Aveiro, 3810-193 Aveiro (Portugal)

    2015-04-15

    Nanoscale copper particles (nano-Cu) are used in many antimicrobial formulations and products for their antimicrobial activity. They may enter deliberately and/or accidentally into terrestrial environments including soils. Being the major ‘eco-receptors’ of nanoscale particles in the terrestrial ecosystem, soil–microbiota and plants (the soil–plant system) have been used as a model to dissect the potential impact of these particles on the environmental and human health. In the soil–plant system, the plant can be an indirect non-target organism of the soil-associated nano-Cu that may in turn affect plant-based products and their consumers. By all accounts, information pertaining to nano-Cu toxicity and the underlying potential mechanisms in the soil–plant system remains scanty, deficient and little discussed. Therefore, based on some recent reports from (bio)chemical, molecular and genetic studies of nano-Cu versus soil–plant system, this article: (i) overviews the status, chemistry and toxicity of nano-Cu in soil and plants, (ii) discusses critically the poorly understood potential mechanisms of nano-Cu toxicity and tolerance both in soil–microbiota and plants, and (iii) proposes future research directions. It appears from studies hitherto made that the uncontrolled generation and inefficient metabolism of reactive oxygen species through different reactions are the major factors underpinning the overall nano-Cu consequences in both the systems. However, it is not clear whether the nano-Cu or the ion released from it is the cause of the toxicity. We advocate to intensify the multi-approach studies focused at a complete characterization of the nano-Cu, its toxicity (during life cycles of the least-explored soil–microbiota and plants), and behavior in an environmentally relevant terrestrial exposure setting. Such studies may help to obtain a deeper insight into nano-Cu actions and address adequately the nano-Cu-associated safety concerns in the

  6. Nanoscale copper in the soil–plant system – toxicity and underlying potential mechanisms

    International Nuclear Information System (INIS)

    Anjum, Naser A.; Adam, Vojtech; Kizek, Rene; Duarte, Armando C.; Pereira, Eduarda; Iqbal, Muhammad; Lukatkin, Alexander S.; Ahmad, Iqbal

    2015-01-01

    Nanoscale copper particles (nano-Cu) are used in many antimicrobial formulations and products for their antimicrobial activity. They may enter deliberately and/or accidentally into terrestrial environments including soils. Being the major ‘eco-receptors’ of nanoscale particles in the terrestrial ecosystem, soil–microbiota and plants (the soil–plant system) have been used as a model to dissect the potential impact of these particles on the environmental and human health. In the soil–plant system, the plant can be an indirect non-target organism of the soil-associated nano-Cu that may in turn affect plant-based products and their consumers. By all accounts, information pertaining to nano-Cu toxicity and the underlying potential mechanisms in the soil–plant system remains scanty, deficient and little discussed. Therefore, based on some recent reports from (bio)chemical, molecular and genetic studies of nano-Cu versus soil–plant system, this article: (i) overviews the status, chemistry and toxicity of nano-Cu in soil and plants, (ii) discusses critically the poorly understood potential mechanisms of nano-Cu toxicity and tolerance both in soil–microbiota and plants, and (iii) proposes future research directions. It appears from studies hitherto made that the uncontrolled generation and inefficient metabolism of reactive oxygen species through different reactions are the major factors underpinning the overall nano-Cu consequences in both the systems. However, it is not clear whether the nano-Cu or the ion released from it is the cause of the toxicity. We advocate to intensify the multi-approach studies focused at a complete characterization of the nano-Cu, its toxicity (during life cycles of the least-explored soil–microbiota and plants), and behavior in an environmentally relevant terrestrial exposure setting. Such studies may help to obtain a deeper insight into nano-Cu actions and address adequately the nano-Cu-associated safety concerns in the

  7. Bioaccessibility and Speciation of Potential Toxicants in Some Geogenic Sources of Atmospheric Particulate Matter

    Science.gov (United States)

    Morman, S. A.; Wolf, R. E.; Plumlee, G.; Reynolds, R. L.

    2008-12-01

    The correlation of exposure to particulate matter (PM) and increased morbidity and mortality was established in the 1970's. Research focused on elucidating mechanisms of action (i.e. particle size, composition, and biodurability), has generally examined anthropogenic sources such as solid or liquid combustion byproducts of fossil fuels, byproducts from the smelting of metal ores, and commercial/industrial mineral dusts (asbestos, crystalline silica. metal dusts). While many studies exist on agricultural exposures to inorganic dust, far fewer have examined health issues related to particulate matter contributions from rural, non-agricultural dusts or other geogenic sources. Geogenic PM (produced by natural processes such as volcanic ash, volcanic fog (vog), dusts from dry lakes or glacial deposits, smoke and windborne ash from wildfires, and dusts containing various soil pathogens) and geoanthropogenic PM (produced from natural sources by processes that are modified or enhanced by human activities such as dusts from lakebeds dried by human removal of water, dusts produced from areas that have undergone desertification as a result of human practices etc.) are increasingly recognized as potential agents of toxicity and disease, via both environmental and occupational exposures. Surface sediment on some dry lake beds may contribute significant amounts of mineral dusts to the atmospheric load. For example, Owens Lake (a dry lake in southern California) has been a major source of PM10 (particulate matter less than 10 micrometers) dust in the United States. Dusts from dry and drying saline lakes may contain high concentrations of metals, such as arsenic, with known human health toxicity. Wildfires, consuming over nine million acres in 2007, also contribute significant amounts of particulate matter in addition to their other hazards. Designed to estimate the bioaccessibility of metals in soils, dusts and other environmental materials by measuring the reactivity of the

  8. Levels of trace elements in medicinal plants with anti-diabetic potential

    International Nuclear Information System (INIS)

    Ray, D.K.; Jena, S.

    2014-01-01

    Medicinal plants with anti-diabetic potential have been characterized by Particle-Induced X-ray Emission (PIXE) technique. Trace elements such as Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Rb, Sr and Pb are found to be present in these studied medicinal plant samples. The concentrations of elements like K and Ca are quantified in percentage level whereas other elements are found to be in parts per million levels. Elemental analysis of ten different medicinal plant samples commonly used for management and cure of diabetes, shows variation in concentrations. These elements either directly or indirectly may play some role to control diabetes. (author)

  9. Suspended electrodialytic extraction of toxic elements for detoxification of three different mine tailings

    DEFF Research Database (Denmark)

    Jensen, Pernille Erland; Ottosen, Lisbeth M.; Hansen, H.K.

    2016-01-01

    have shown that electrokinetic treatment can remove Cd, Cu, Pb, and Zn from tailings soils; As from tailings; and Cu from tailings. Still, however, a major concern is the long treatment-time required for the element-transport through the tailings matrix. Therefore several enhancement methods have been...

  10. Analytic determination of the activation of essential and toxic trace elements in biological material

    International Nuclear Information System (INIS)

    Schelenz, R.

    1980-01-01

    A neutron activation-analysis technique for the multielement determination in biological material was developed. The individual steps of this procedure comprise radiochemical and also instrumental analytic techniques. After radiochemical separation 34 elements can be determined, after only instrumental procedures 26 elements can be detected in biological material. The radiochemical analysis of 34 elements lasts 4 days. Tracer investigations on the radionuclide retention of the anorganic separators HAP, TiP and ZP in 9N aqueous HNO 3 solution indicated that apart from Na-24, K-42 and P-32 the radionuclides Cs-134, Rb-86 and Se-75 are almost quantitatively adsorbed at the separators. For the remaining investigated radionuclides different but well-reproducible retention values resulted. The pH-value only slightly influences the extent of the radionuclide retention. Kinetic investigations on the radiochemical precipitation of some radionuclides on Cu and Cu(Hg)sub(x) were carried out. The depositing of the radionuclides Ag-110m, Hg-203 and Se-75 at 0 0 C and room temperature on Cu(Hg)sub(x) and Cu foil is a first order reaction. The half-life periods and the velocity constants of the depositing on Cu and Cu(Hg)sub(x) were determined for the investigated radionuclides in dependency of the temperature. The technique was examined by means of international biological multielement standards of known element combinations. The realisation of ring tests for the multielement determination in potatoe and milk powder showed that this method provides precise results. The applicability of the radiochemical method was confirmed by the simultaneous determination of 25 elements in overall nutrition samples. The instrumental technique was applied for the multielement determination in human hair (of the head) and in river water. (orig./MG) [de

  11. Studies of seaweeds as an indicators of toxic element pollution in Ghana using neutron activation analysis

    International Nuclear Information System (INIS)

    Serfor-Armah, Y.

    2006-01-01

    The concentrations of 25 elements namely: AI, As, Br, Ca, Cd, CI, Co, Cu, Fe, Hf, Hg, I, K, La, Mg, Mn, Na, Ni, Sb, Sc, Sm, Sr, V and Zn in seven Rhodophyta (red), three Phaeophyta (brown) and five Chlorophyta (green) seaweed species from different areas along the coast of Ghana were determined by instrumental neutron activation analysis (INAA) and preconcentration NAA (PNAA). These species potentially could be used as biomonitors and bioremoval agents. The irradiations using thermal and epithermal neutrons were done using the Ghana Research Reactor-1 (GHARR-I) facility at Ghana Atomic Energy Commission, Kwabenya and the Dalhousie University SLOWPOKE-2 Reactor (DUSR) facilities. Counting was done using both the conventional and anti-coincidence γ- ray spectrometry. The PNAA method was developed for the simultaneous extraction of Cd, Cr, Hg, and Zn, as well as Sb and V individually from the seaweed samples. The PNAA method involved the use of a mixture of PAN and TAN chelating agents and PONPE-20 surfactant in cloud point extraction (CPE). The parameters affecting the CPE have been optimized. The recoveries under the optimum conditions of pH 3.7 for V, 6.4 for Sb, 8.6 for Cd, Cr, Hg, and Zn, (PAN/TAN) of 1 x l0 -4 M. (PONPE-20) of 0.1 % (m/v), ionic strength 0.05 M KN0 3 , and a temperature of 41°C were generally >96%. The mean detection limits for Cd, Cr, Hg, Sb, V and Zn were 6.0, 3.6, 1.2, 2.8, 1.51 and 2.6 ng/g respectively. The CPE method developed was also used successfully to speciate As(lIl) and As(V) from the Sargassum vulgare the seaweed. The maximum extraction of As(lII) occurred at a pH of 6.7 and that of As(V) at pH of 3.8. The results indicated that As(III) and As(V) formed only 6.27% of the total arsenic concentration, while the other species of arsenic constitute 93.73%. The precision and accuracy of the INAA and PNAA methods developed were evaluated. Schewart control charts were constructed for internal quality assessment purposes. The results

  12. Relationship between physico-chemical characteristics and potential toxicity of PM10.

    Science.gov (United States)

    Megido, Laura; Suárez-Peña, Beatriz; Negral, Luis; Castrillón, Leonor; Suárez, Susana; Fernández-Nava, Yolanda; Marañón, Elena

    2016-11-01

    PM10 was sampled at a suburban location affected by traffic and industry in the north of Spain. The samples were analysed to determine the chemical components of PM10 (organic and elemental carbon, soluble chemical species and metals). The aim of this study was to assess the toxicity of PM10 in terms of the bulk analysis and the physico-chemical properties of the particles. Total carbon, sulphates, ammonium, chlorides and nitrates were found to be the major constituents of PM10. The contribution of the last of these was found to increase significantly with PM10 concentration (Pearson coefficient correlation of 0.7, p-value major risk to human health. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Pharmacophore modeling and in silico toxicity assessment of potential anticancer agents from African medicinal plants.

    Science.gov (United States)

    Ntie-Kang, Fidele; Simoben, Conrad Veranso; Karaman, Berin; Ngwa, Valery Fuh; Judson, Philip Neville; Sippl, Wolfgang; Mbaze, Luc Meva'a

    2016-01-01

    Molecular modeling has been employed in the search for lead compounds of chemotherapy to fight cancer. In this study, pharmacophore models have been generated and validated for use in virtual screening protocols for eight known anticancer drug targets, including tyrosine kinase, protein kinase B β, cyclin-dependent kinase, protein farnesyltransferase, human protein kinase, glycogen synthase kinase, and indoleamine 2,3-dioxygenase 1. Pharmacophore models were validated through receiver operating characteristic and Güner-Henry scoring methods, indicating that several of the models generated could be useful for the identification of potential anticancer agents from natural product databases. The validated pharmacophore models were used as three-dimensional search queries for virtual screening of the newly developed AfroCancer database (~400 compounds from African medicinal plants), along with the Naturally Occurring Plant-based Anticancer Compound-Activity-Target dataset (comprising ~1,500 published naturally occurring plant-based compounds from around the world). Additionally, an in silico assessment of toxicity of the two datasets was carried out by the use of 88 toxicity end points predicted by the Lhasa's expert knowledge-based system (Derek), showing that only an insignificant proportion of the promising anticancer agents would be likely showing high toxicity profiles. A diversity study of the two datasets, carried out using the analysis of principal components from the most important physicochemical properties often used to access drug-likeness of compound datasets, showed that the two datasets do not occupy the same chemical space.

  14. Potential of Annona muricata L. seed oil: phytochemical and nutritional characterization associated with non-toxicity

    Directory of Open Access Journals (Sweden)

    L. C. Pinto

    2018-03-01

    Full Text Available The aim of this study was to evaluate the nutritional quality, phenolic compounds, fatty acid and antioxidant activity in vitro as well as a toxicological screening of A. muricata seed oil in vivo. The chemical composition and quantification of phenolic compounds were determined by the Adolfo Lutz Institute normative. The antioxidant activity was evaluated by DPPH, FRAP and ABTS methods. The oil was extracted by chloroform/ methanol and precipitated crude (AmPtO and supernatant oils (AmSO were obtained. The fatty acid profile was evaluated by gas chromatography and total compounds by HPLC-DAD. BALB/C mice received AmPtO and AmSO (0.5 and 1.0mL·Kg-1 for 14 days. Toxicity parameters were assessed. The major fatty acids in the oil were oleic (39.2% and linoleic (33%. HPLC-DAD suggested the presence of acetogenins (annonacin: 595 [M-H]-, with a greater presence in AmPtO. The AmPtO group showed toxicity, which may be related to the acetogenin content in AmPtO. The AmSO group showed no toxicity and this oil has potential for food or medicinal use.

  15. [Investigation of potential toxic factors for fleece-flower root: from perspective of processing methods evolution].

    Science.gov (United States)

    Cui, He-Rong; Bai, Zhao-Fang; Song, Hai-Bo; Jia, Tian-Zhu; Wang, Jia-Bo; Xiao, Xiao-He

    2016-01-01

    In recent years, the rapid growth of reports on fleece-flower root-caused liver damages has drawn wide attention of both at home and abroad, however, there were rare literature on toxicology of fleece-flower root in ancient Chinese medicine. But why there are so many reports on toxicology of fleece-flower root now compared with the ancient literature? As a typical tonic medicine, the clinical utility of fleece-flower root was largely limited by its standardization and reliability of processing methods in ancient Chinese medicine. The ancient processing methods of fleece-flower root emphasized nine times of steaming and nine times of drying, while the modern processes have been simplified into one time of steaming. Whether the differences between ancient and modern processing methods are the potential cause of the increased events of fleece-flower root-caused liver damages. We will make deep analysis and provide new clues and perspectives for the research on its toxicity. This article, therefore, would discuss the affecting factors and key problems in toxicity attenuation of fleece-flower root on the basis of sorting out the processing methods of fleece-flower root in ancient medical books and modern standards, in order to provide the reference for establishing specification for toxicity attenuation of fleece-flower root. Copyright© by the Chinese Pharmaceutical Association.

  16. Degradation study of pesticides by direct photolysis - Structural characterization and potential toxicity of photo products

    International Nuclear Information System (INIS)

    Rifai, A.

    2013-01-01

    Pesticides belong to the large family of organic pollutants. In general, they are intended to fight against crop pests. Distribution of pesticides in nature creates pollution in DIFFERENT compartments of the biosphere (water, soil and air) and can induce acute toxic effects on human beings of the terrestrial and aquatic living biomass. It is now shown that some pesticides are endocrine disruptors and are particularly carcinogenic and mutagenic effects in humans. Pesticides can undergo various processes of transformation in the natural life cycle (biodegradation, volatilization, solar radiation ...) or following applied in the sectors of natural water purification and treatment stations sewage treatment. The presence of degradation products of pesticides in our environment is even more alarming that their structures and potential toxicities generally unknown. Molecules belonging to two families of pesticides were selected for this study: herbicides, represented by metolachlor, and fungicides represented by procymidone, pyrimethanil and boscalid. The first part of the thesis focused on the development of an analytical strategy to characterize the structures of compounds from degradation by photolysis of pesticides. The second part focused on estimating the toxicity of degradation products using a test database in silico. Identification of degradation products was achieved through two complementary analysis techniques: the gas chromatography coupled to a mass spectrometer ''multi-stage'' (GC-MSn) and liquid chromatography coupled to a tandem mass spectrometer (LC-MS/MS). The estimation of the toxicity of the degradation products was performed using the TEST program QSAR recently developed to try to predict the toxicity of molecules. The strategy of the structural elucidation of degradation products of pesticides studied is based on studying of the mechanisms of fragmentation of parent molecules of the degradation products. The molar mass of parent

  17. Trophic transfer of toxic elements in the estuarine invertebrate and fish food web of Daliao River, Liaodong Bay, China

    International Nuclear Information System (INIS)

    Guo, Bobo; Jiao, Deqi; Wang, Jing; Lei, Kai; Lin, Chunye

    2016-01-01

    In order to study element accumulation and trophic transfer in the food web, sixteen benthic invertebrate species and nine fish species were collected from the Daliao River estuary for analysis of toxic elements and nitrogen stable isotope in the muscle tissue. The concentrations ranged between 1.44–17.98, 0.01–9.30, 0.17–36.15, 0.7–145.4, 0.01–0.33, 0.14–14.88, 0.10–2.51, 0.02–0.14, and 19.3–221.1 mg kg −1 for As, Cd, Cu, Hg, Ni, Pb, Sb, and Zn, respectively. As, Cd, Cu, and Zn were significantly higher in the benthic invertebrates than in fish, whereas Hg and Sb were significantly lower. In addition, the benthic invertebrates were characterized by the highest bioaccumulation factor (BAF) for Cd, whereas the fish were characterized by the highest BAF for Hg. A significant decrease in Cd, Cr, Cu, and Ni levels, and a significant increase in Hg and Sb levels were observed with increasing trophic levels. - Highlights: • Toxic elements and trophic level were determined in biota from Daliao River estuary. • Benthic invertebrates had higher As, Cd, Cu, Zn and lower Hg and Sb levels than fish. • Benthic invertebrates accumulated high As levels, while fish accumulated high Hg levels. • Cd, Cr, Cu, Ni levels decreased, and Hg and Sb levels increased with trophic levels.

  18. Determination of Heavy and Toxic Trace Elements in Sediments of Qarun Lake Using Instrumental Neutron Activation Analysis Technique

    International Nuclear Information System (INIS)

    Hamed, A.; Abd EI-Samad, M.; Soliman, N.F.

    2011-01-01

    An investigation of certain heavy and toxic trace elements in 15 sediment samples from different areas at Qarun Lake was performed by a neutron activation technique using the neutron irradiation facilities of the Second Egyptian Research Reactor (ETRR-2). The samples together with two sets of gold foils (one bare and the other covered with cadmium) and two Standard Reference Materials IAEA (Soil-7) were irradiated at the core of the reactor in two capsules for 8520 seconds, another two capsules each has two sets of gold foils (one bare and the other covered with cadmium) are used to determine the neutron fluxes around the sediment samples. The gamma-rays of nuclides from the irradiated samples were carried out by means of a well calibrated high resolution HPGe detection system. The concentrations of product nuclides containing in the irradiated samples were determined from the peak counting-rates of the prominent gamma-ray lines for the corresponding nuclides using Single External Comparator Method (k 0 -Standardization Method) which called k 0 -NAA technique. The neutron flux ratios (f) in the same radiation sites of the sediment samples bottles were calculated as well as the cadmium ratios (R e d). MS Excel work books were constructed and used in our calculation. The total contents of As , Ba , Ca ,Co, Cr ,Cs, Eu ,Hf ,Hg,Na ,Ru ,Sc ,Se ,Sm ,Sn ,Sr ,Th ,Rb ,Zn ,and Zr in these samples were measured. The objectives .of this study were evaluated to identify the variations of concentration of some elements that have an impact on environmental pollutions. The results indicated that the concentrations of toxic trace elements of Ba, Cr, Se, Sn, Hg, Sin and Zn may represent pollutions problem

  19. Toxic element mobility assessment and modeling for regional geo-scientific survey to support Risk Assessment in a European Union context

    Science.gov (United States)

    Abdaal, Ahmed; Jordan, Gyozo; Bartha, Andras; Fugedi, Ubul

    2013-04-01

    The Mine Waste Directive 2006/21/EC requires the risk-based inventory of all mine waste sites in Europe. The geochemical documentation concerning inert classification and ranking of the mine wastes requires detailed field study and laboratory testing and analyses of waste material to assess the Acid Mine Drainage potential and toxic element mobility. The procedure applied in this study used a multi-level decision support scheme including: 1) expert judgment, 2) data review, 3) representative field sampling and laboratory analysis of formations listed in the Inert Mining Waste List, and 4) requesting available laboratory analysis data from selected operating mines. Based on expert judgment, the listed formations were classified into three categories. A: inert B: probably inert, but has to be checked, C: probably not inert, has to be examined. This paper discusses the heavy metal contamination risk assessment (RA) in leached quarry-mine waste sites in Hungary. In total 34 mine waste sites (including tailing lagoons and heaps of both abandoned mines and active quarries) have been selected for scientific testing using the EU Pre-selection Protocol. Over 93 field samples have been collected from the mine sites including Ore (Andesite and Ryolite), Coal (Lignite, black and brown coals), Peat, Alginite, Bauxite, Clay and Limestone. Laboratory analyses of the total toxic element content (aqua regia extraction), the mobile toxic element content (deionized water leaching) and the analysis of different forms of sulfur (sulfuric acid potential) ) on the base of Hungarian GKM Decree No. 14/2008. (IV. 3) concerning mining waste management. A detailed geochemical study together with spatial analysis and GIS has been performed to derive a geochemically sound contamination RA of the mine waste sites. Key parameters such as heavy metal and sulphur content, in addition to the distance to the nearest surface and ground water bodies, or to sensitive receptors such as settlements and

  20. Source and Enrichment of Toxic Elements in Coal Seams around Mafic Intrusions: Constraints from Pyrites in the Yuandian Coal Mine in Anhui, Eastern China

    Directory of Open Access Journals (Sweden)

    Yanfei An

    2018-04-01

    Full Text Available Pyrite, a mineral that can cause potential environmental issues in coal mining, is commonly found in coal seams around intrusions. In this paper, pyrites from the Yuandian Coal Mine (Huaibei Coalfield, Anhui, Eastern China were studied using SEM, Raman and LA-ICP-MS. The pyrite morphologic and geochemical data suggest that (1 four pyrite generations are present (framboidal sedimentary pyrites (Py I in the original coal, coarse-grained magmatic pyrites (Py II in the intruding diabase, fine-grained metamorphic pyrites (Py III in the intrusive contact aureole, and spheroid/vein hydrothermal pyrites (Py IV in the cokeite; and (2 concentrations of cobalt, nickel, arsenic, selenium, lead and copper in the metamorphic pyrites are much higher than the other pyrite generations. We propose that mafic magmatism is the main contributor of the toxic elements to the intrusion-related cokeite at Yuandian.

  1. Application of neutron activation analysis and inductively coupled plasma mass spectrometry to the determination of toxic and essential elements in Australian foods

    International Nuclear Information System (INIS)

    Fardy, J.J.; McOrist, G.D.; Bowles, C.J.; Farrar, Y.J.; Warner, I.M.

    1990-01-01

    Current Australian legislation specifies the maximum permitted levels of nine toxic elements in foods while the National Health and Medical Research Council (NH and NRC) has listed recommended daily intake figures for seven essential elements. This investigation examined the compliance of Australian foods with both these requirements. Australia-wide samples of representative foods from the diets of Australians were used in this study after the NH and NRC kindly permitted us to join their Market Basket (Noxious Substance) Survey. Both toxic and essential element concentrations in these foods were determined using the advanced analytical techniques of instrumental and radiochemical neutron activation analysis and inductively coupled plasma mass spectrometry. With very few exceptions foods do not exceed the maximum, permitted levels for toxic substances. Daily intake figures for essential elements generally lie close to the maximum recommended values listed by NH and NRC. (author). 11 refs, 22 figs, 17 tabs

  2. "The fairer the better?" Use of potentially toxic skin bleaching products.

    Science.gov (United States)

    Darj, Elisabeth; Infanti, Jennifer J; Ahlberg, Beth Maina; Okumu, Jecinta

    2015-12-01

    Skin bleaching is a widespread phenomenon in spite of their potentially toxic health effects. This study aimed to determine if such products are used in Sweden in particular by pregnant women, furthermore to explore immigrant women's view skin bleaching. 455 pregnant women completed a questionnaire, which were statistically analysed. Focus groups and individual interviews were conducted with immigrant women, content analysis was used to assess the data. Skin bleaching products were used by 2.6% of pregnant women, significantlly more by women born in non-European countries. Motivating factors were associated with the concept of beauty together with social and economic advantages. The women had low awareness of the potential health risks of the products. Regulations on the trade of skin bleaching products have not effectively reduced the availability of the products in Sweden nor the popularity of skin bleaching. There is need for further research especially among pregnant women and possible effects on newborns. Products should be tested for toxicity. Public health information should be developed and health care providers educated and aware of this practice, due to their potential negative health implications.

  3. Phytochemical constituents, antioxidant activity and toxicity potential of the essential oil from Ferula gummosa Boiss. roots

    Directory of Open Access Journals (Sweden)

    T. Saadattalab

    2017-11-01

    Full Text Available Background and objectives: Ferula gummosa Boiss. (Umbelliferae is a popular medicinal plant, which is known mostly for therapeutic uses of its oleo-gum-resin (Barijeh in Persian. In the present study, the essential oil of F. gummosa roots was investigated for its phytochemical constituents, antioxidant activity and toxicity potential. Methods: Phytochemical constituents of the essential oil (extracted by hydrodistillation method were analyzed using GC-MS. Antioxidant and toxicity properties of the oil were also evaluated in DPPH free radical-scavenging assay and brine shrimp lethality test, respectively. Results: Forty-two compounds, representing 87.7% of total oil, were identified by GC-MS analysis of the plant roots oil. The essential oil was characterized by a high concentration of monoterpene hydrocarbons (55.9%, mainly β-pinene (33.2%, β-phellandrene (8.0% and α-pinene (6.9%. In DPPH free radical-scavenging assay, the oil sample did not demonstrate any activity at the highest tested concentration (1.0 mg/mL. However, it was found very toxic in brine shrimp lethality test with LD50 value of 2.4 µg/mL. Conclusion: The results of this study introduced the F. gummosa roots oil as a source of monoterpene hydrocarbons, especially β-pinene. Considering the high yield of essential oil extraction (12.1% v/w, these compounds may be involved in anticonvulsant, antinociceptive and anti-inflammatory properties of F. gummosa root. Moreover, considerable toxicity of the root oil highlights it as an appropriate candidate for further mechanistic toxicological studies.

  4. Quantitative analysis of potentially toxic metals in alginates for dental use

    Directory of Open Access Journals (Sweden)

    A. S. BRAGA

    2009-01-01

    Full Text Available

    Alginate is one the materials most employed in practice to make dental impressions. Substances like zinc, cadmium and lead silicate, which are included in several alginate brands with the aim of improving their physical, chemical and mechanical properties, are a source of serious concern as regards their toxicity. The most serious chronic effect of oral exposure to cadmium is renal toxicity. Assimilation of lead has deleterious effects on the gastrointestinal tract, hematopoietic system, cardiovascular system, central and peripheral nervous systems, kidneys, immune system, and reproductive system. Chronic oral exposures to zinc have resulted in hypochromic and microcyte anemia in some individuals. The aim of the present study was to measure the cadmium, lead and zinc contents of seven brands of alginate for dental use on sale in Brazil. The samples were weighed and placed in the Teflon cups of a closedsystem microwave oven. Aqua regia (4mL concentrated HCl:HNO3, 3:1 v/v and hydrofluoric acid (2mL concentrated HF were added to the samples, which were then subjected to heating. The samples were then cooled to room temperature and diluted to 25 mL in deionized water in a volumetric glass flask. The samples were diluted in duplicate and analyzed against a reagent blank. The analyses were performed in an atomic absorption flame spectrophotometer. Neither lead nor cadmium was detected. Zinc contents ranged from 0.001% to 1.36% by weight. The alginates exhibited low contents of the metals under study and gave no cause for concern regarding toxicity; even so, it is advisable to monitor potentially toxic materials continually and to analyze their plasmatic levels in the professionals working with them. Keywords: Cadmium, lead, zinc, alginates, intoxication, irreversible hydrocolloid.

  5. Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil

    Energy Technology Data Exchange (ETDEWEB)

    Beesley, Luke, E-mail: L.Beesley@2007.ljmu.ac.u [Faculty of Science, Liverpool John Moores University, Liverpool L3 3AF (United Kingdom); Moreno-Jimenez, Eduardo [Departamento de Quimica Agricola, Universidad Autonoma de Madrid, 28049 Madrid (Spain); Gomez-Eyles, Jose L. [University of Reading, Department of Soil Science, Whiteknights, Reading RG6 6DW (United Kingdom)

    2010-06-15

    Applying amendments to multi-element contaminated soils can have contradictory effects on the mobility, bioavailability and toxicity of specific elements, depending on the amendment. Trace elements and PAHs were monitored in a contaminated soil amended with biochar and greenwaste compost over 60 days field exposure, after which phytotoxicity was assessed by a simple bio-indicator test. Copper and As concentrations in soil pore water increased more than 30 fold after adding both amendments, associated with significant increases in dissolved organic carbon and pH, whereas Zn and Cd significantly decreased. Biochar was most effective, resulting in a 10 fold decrease of Cd in pore water and a resultant reduction in phytotoxicity. Concentrations of PAHs were also reduced by biochar, with greater than 50% decreases of the heavier, more toxicologically relevant PAHs. The results highlight the potential of biochar for contaminated land remediation. - Biochar was more effective than greenwaste compost at reducing bioavailable fractions of phytotoxic Cd and Zn as well as the heavier, more toxicologically relevant PAHs.

  6. Assessment of metal leachability and toxicity from sediment potentially stored on land

    OpenAIRE

    Baran, A; Tarnawski, M; Michalec, B

    2015-01-01

    The aim of this study was to assess the toxicity and metal leachability from three dredged bottom sediments potentially stored on land. Washing out was conducted at a sediment dry mass to water mass ratio of 1:10. The method relies on washing out pollutants from the examined sample using water with third degree of purity in static/quasi-dynamic conditions. The investigations comprised three 27-h washing out cycles, including leaching in static conditions (19 h) and shaking (8 h). Bottom sedim...

  7. First record of potentially toxic dinoflagellate, Alexandrium minutum Halim 1960, from Peruvian coastal

    Directory of Open Access Journals (Sweden)

    Maribel Baylón

    2015-04-01

    Full Text Available Herein, we report the first record of the potentially toxic dinoflagellate Alexandrium minutum Halim 1960 from the Peruvian littoral. Alexandrium minutum produced the algae bloom in March 2006 and February 2009, in the Callao bay. Its identification was carried out by a morpho-taxonomic examination, detailing their plates with light and epifluorescence microscopy, moreover its quantification was realized in sedimentation chambers. This is the first report of A. minutum for Southeast Pacific. The characteristics in size, shape and thecal morphology were similarly to original descriptions of this species.

  8. Determination of some toxic trace elements in Indian tobacco and its smoke

    International Nuclear Information System (INIS)

    Shaikh, A.N.; Khandekar, R.N.; Anand, S.J.S.; Mishra, U.C.

    1992-01-01

    Toxic trace metals like mercury, arsenic and cadmium have been determined in widely used Indian chewing tobacco and cigarette tobacco by neutron activation followed by sequential radiochemical separation (RNAA). Differential Pulse Anodic Stripping Voltammetry (DPASV) has been used for the estimation of lead, cadmium and copper in cigarette tobacco and its smoke aerosols. The reliability of the data has been assured by analyzing standard reference materials, bovine liver (NBS-1577) and orchard leaves (NBS-1571), and intercomparison of the Pb, Cd and Cu values by three techniques, namely, RNAA, DPASV and Energy Dispersive X-ray Fluorescence technique (EDXRF). The levels of Hg, Cd, As, Pb, and Cu in cigarette and chewing tobacco and the estimated intake of Cd, Cu and Pb to the smoker are presented and discussed. (author) 12 refs.; 3 tabs

  9. Evaluation of medicinal potential of medicinal plants and herbs in terms of nutritional elements analysis using INAA; under thermal neutrons irradiation, and ICPS

    International Nuclear Information System (INIS)

    Ram, Rajesh; Awashthi, N.K.

    2012-01-01

    Radioactivity is the phenomenon of spontaneous emission of short waves radiations. It is toxic to Bio Organisms. But it can be used to analyze toxic as well as Nutritional Elements, when powdered sample of plants and herbs irradiated with thermal neutrons (γ-radiation). The Nutritional Elements Acquire Artificial radioactivity and emits radiation which is used to analyze the Elements by Instrumental Neutron Activation Analysis. Plants and Herbs use known to be reservoir of various metabolite. Minerals are primary metabolite and play vital role in the regulation of the metabolic activity in the body as well as formation of body structure and skeleton. Many trace elements play a vital role in the general well being as well as cure of diseases. Role of metals in curing ailment was first realized in Ayurveda. It is reviewed that the herbal medicines can supply the deficient element in a bioavailable form and the person suffering from its deficiency can be easily cured. Therefore an attempt has been made to evaluate the Medicinal Potential in some medicinal herbs use as brain tonic by using Induced Couple Plasma Spectroscopy, Instrumental Neutron Activation Analysis. We have analyzed sixteen medicinal herbs for four bulk elements (Na, K, Ca, Mg) and nine trace elements (Fe, Cr, Mn, Co, Cu, Zn, Ni, Cd, Pb). In order to check quality assurance and validation of elemental data eight biological standard Reference Materials (BSRMS) are also analyzed. Accuracy and precision measurements were carried out by replicate analysis. Our data should be reliable within ± 10%. On the basis of elemental data in sixteen medicinal herbs commonly used as brain tonic and vitalizer, it is concluded that Amala, Gokshur, Yastimadhu, Sankhpuspi most enriched in Fe, Ca, Mg and other nutritional elements specially Mn, Cu, Zn,. No particular herb is enriched in all elements. Elemental contents of environmental contaminants such Ni, Cd, Pb, Hg, are minimal so as not to cause any harm to our body

  10. Essential and toxic element determination in edible mushrooms by neutron activation analysis

    International Nuclear Information System (INIS)

    Moura, Patricia Landim da Costa

    2008-01-01

    In this study concentrations of As, Br, Co, Cr, Cs, Fe, K, Na, Rb, Se and Zn were determined in edible mushrooms acquired from commercial establishments in the city of Sao Paulo and directly from Mogi das Cruzes, Suzano, Juquitiba and Mirandopolis producers. The analytical technique used for determining these elements in edible mushrooms was Instrumental Neutron Activation Analysis (INAA). Species of the Agaricus, Lentinus and Pleurotus genera were acquired during the period from November, 2006 to March, 2007. About 150 to 200 mg of freeze-dried mushrooms were irradiated in a neutron flux of 1012 cm -2 s -1 for 8 hours in the IEA-R1 nuclear research reactor at IPEN-CNEN-SP. In order to evaluate the precision and accuracy of the methodology, four reference materials: INCT-MPH-2 Mixed Polish Herbs and INCT-TL-1 Tea Leaves, NIST SRM 1577b Bovine Liver, and the material Mushroom from IAEA were analyzed. Results showed some variation in the element concentrations among the different genera. In some samples, arsenic was found but in low concentrations. Arsenic is probably derived from the contamination from pesticides used in the cultivation, in their the substrates where mushrooms uptake their nutrients. Although there are element concentration variations, mushrooms can still be considered a very rich nutritional source, mainly because of their low concentrations of Na, and due to the good source of K, Fe and Zn. (author)

  11. Essential and toxic element concentrations in monofloral honeys from southern Croatia.

    Science.gov (United States)

    Bilandžić, Nina; Tlak Gajger, Ivana; Kosanović, Marina; Čalopek, Bruno; Sedak, Marija; Solomun Kolanović, Božica; Varenina, Ivana; Luburić, Đurđica Božić; Varga, Ines; Đokić, Maja

    2017-11-01

    The concentrations of 24 elements in seven honey types (multifloral, heather, common heather, bearberry, sage, mandarin orange-blossom and honeydew) collected in southern Mediterranean regions of Croatia were determined using ICP-MS. Significant differences were found in the concentrations of Ag, As, Ba, Cu, Co, Fe, K, Mg, Mn, Mo, Na, Ni, Se, Sb, U and Th (p<0.05, all) among honeys. The highest element concentrations were determined in honeydew honeys, with the exception of multifloral (Ca, Cr, Mo, Se), common heather (Mg, Na), bearberry (Ba, Fe, Pb) and sage (Ag) honeys. Among the floral honeys, the highest concentrations were found in multifloral honey (Al, As, Be, Ca, Cr, Mn, Mo, Ni, Se, Th and U), common heather (Co, K, Mg, Na, V), sage (Ag, Cd, Cu), and bearberry (Ba, Fe, Pb, Sb, Zn). The results contribute to the evidence supporting the role of botanical origin on the elemental composition of honey. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Distribution of toxic trace elements in soil/sediment in post-Katrina New Orleans and the Louisiana Delta

    International Nuclear Information System (INIS)

    Su Tingzhi; Shu Shi; Shi Honglan; Wang Jianmin; Adams, Craig; Witt, Emitt C.

    2008-01-01

    This study provided a comprehensive assessment of seven toxic trace elements (As, Pb, V, Cr, Cd, Cu, and Hg) in the soil/sediment of Katrina affected greater New Orleans region 1 month after the recession of flood water. Results indicated significant contamination of As and V and non-significant contamination of Cd, Cr, Cu, Hg and Pb at most sampling sites. Compared to the reported EPA Region 6 soil background inorganic levels, except As, the concentrations of other six elements had greatly increased throughout the studied area; St. Bernard Parish and Plaquemines Parish showed greater contamination than other regions. Comparison between pre- and post-Katrina data in similar areas, and data for surface, shallow, and deep samples indicated that the trace element distribution in post-Katrina New Orleans was not obviously attributed to the flooding. This study suggests that more detailed study of As and V contamination at identified locations is needed. - This article provides an in-depth assessment of the contamination of As, Pb, V, Cr, Cd, Cu, and Hg in post-Katrina greater New Orleans region

  13. Surma eye cosmetic in Afghanistan: a potential source of lead toxicity in children.

    Science.gov (United States)

    McMichael, J R; Stoff, B K

    2018-02-01

    Surma is a traditional eye cosmetic used as an eyeliner for infants in Afghanistan, as well as in many other countries in Asia, the Middle East, and Africa. Surma has been reported to contain lead and to be a potential source of lead toxicity in children, which can lead to permanent damage to multiple organ systems. To our knowledge, assessment for lead in surma found in Afghanistan has not been performed. We determined the quantitative lead content of a convenience sample of 10 surma products acquired in Afghanistan. Analysis revealed that 70% of surma samples contained high levels of lead (range 35-83%). The remaining samples contained low levels of lead (range 0.04-0.17%). The majority of surma samples contained very high levels of lead, a troubling finding that could potentially correlate with lead toxicity in Afghan children. Making available lead-free surma alternatives and providing health education, for both healthcare professionals and the general population, in locations where surma use is prevalent and for those involved in care of refugees and immigrants from Afghanistan, may be strategies to prevent lead poisoning in children. What is Known: • Surma is a traditional cosmetic used as an eyeliner for infants in Afghanistan as well as in many countries in Asia, the Middle East, and Africa. • Surma has been reported to contain lead and to be a source of lead toxicity in children. What is New: • Assessment for lead content in surma found in Afghanistan has not been performed. • In this convenience sample of 10 surma products acquired in Afghanistan, 70% contained very high levels of lead.

  14. X-Ray fluorescence determination of the mobile forms of toxic elements in meadow chernozems

    International Nuclear Information System (INIS)

    Belikov, K.N.; Blank, A.B.; Shevtsov, N.I.

    1997-01-01

    An X-ray fluorescence method for determining mobile forms of Mn, V, Cr, Co, Ni, Zn, and Pb in meadow chernozems was developed. It is based on the extraction of analytes with an acetate-ammonia buffer solution and the evaporation of the obtained filtrate with carbon powder followed by the X-ray fluorescence analysis of the dry residue. The effect of concomitants on the analytical signals of elements under determination was examined. It was suggested to spike samples with barium in order to decrease analytical errors. (author)

  15. Seaweed as bio indicators for monitoring toxic element pollutants in the marine ecosystem. Progress report

    International Nuclear Information System (INIS)

    Serfor-Armah, Y.; Nyarko, B.J.B.; Osae, E.K.; Carboo, D.; Seku, F.

    1997-01-01

    Twelve seaweed species were sampled from June 1996 to August 1997 along the coast of Southern Ghana which is being washed by the Gulf of Guinea (part of Atlantic ocean). Instrumental neutron activation analysis (INAA) was used to measure the concentration of twenty six chemical elements, with the aim of selecting suitable seaweeds for bio-monitoring. Al, As, Ca, Cl, K, Mg, Mn, Na and V were found in most of the seaweed species. The high values of the metal concentrations in the macro algae suggest that these marine organisms can be used as biological indicators for studying coastal pollution. (author)

  16. Toxicity, sublethal effects, and potential modes of action of select fungicides on freshwater fish and invertebrates

    Science.gov (United States)

    Elskus, Adria A.

    2012-01-01

    Despite decades of agricultural and urban use of fungicides and widespread detection of these pesticides in surface waters, relatively few data are available on the effects of fungicides on fish and invertebrates in the aquatic environment. Nine fungicides are reviewed in this report: azoxystrobin, boscalid, chlorothalonil, fludioxonil, myclobutanil, fenarimol, pyraclostrobin, pyrimethanil, and zoxamide. These fungicides were identified as emerging chemicals of concern because of their high or increasing global use rates, detection frequency in surface waters, or likely persistence in the environment. A review of the literature revealed significant sublethal effects of fungicides on fish, aquatic invertebrates, and ecosystems, including zooplankton and fish reproduction, fish immune function, zooplankton community composition, metabolic enzymes, and ecosystem processes, such as leaf decomposition in streams, among other biological effects. Some of these effects can occur at fungicide concentrations well below single-species acute lethality values (48- or 96-hour concentration that effects a response in 50 percent of the organisms, that is, effective concentration killing 50 percent of the organisms in 48 or 96 hours) and chronic sublethal values (for example, 21-day no observed adverse effects concentration), indicating that single-species toxicity values may dramatically underestimate the toxic potency of some fungicides. Fungicide modes of toxic action in fungi can sometimes reflect the biochemical and (or) physiological effects of fungicides observed in vertebrates and invertebrates; however, far more studies are needed to explore the potential to predict effects in nontarget organisms based on specific fungicide modes of toxic action. Fungicides can also have additive and (or) synergistic effects when used with other fungicides and insecticides, highlighting the need to study pesticide mixtures that occur in surface waters. For fungicides that partition to

  17. Potentially toxic metal contamination of urban soils and roadside dust in Shanghai, China

    International Nuclear Information System (INIS)

    Shi Guitao; Chen Zhenlou; Xu Shiyuan; Zhang Ju; Wang Li; Bi Chunjuan; Teng Jiyan

    2008-01-01

    A detailed investigation was conducted to understand the contamination characteristics of a selected set of potentially toxic metals in Shanghai. The amount of Pb, Zn, Cu, Cr, Cd and Ni were determined from 273 soil/dust samples collected within urban area. The results indicated that concentration of all metals except Ni in soils was significant, and metal pollution was even severer in roadside dust. A series of metal spatial distribution maps were created through geostatistical analysis, and the pollution hotspots tended to associate with city core area, major road junctions, and the regions close to industrial zones. In attempt of identifying the source of metals through geostatistical and multivariate statistical analyses, it was concluded as follows: Pb, Zn and Cu mainly originated from traffic contaminants; soil Ni was associated with natural concentration; Cd largely came from point-sourced industrial pollution; and Cr, Ni in dust were mainly related to atmospheric deposition. - Human activities have led to high accumulation of potentially toxic metals in urban soils and roadside dust of Shanghai

  18. Potentially toxic metal contamination of urban soils and roadside dust in Shanghai, China

    Energy Technology Data Exchange (ETDEWEB)

    Shi Guitao [Key Laboratory of Geographic Information Science of Ministry of Education, East China Normal University, Shanghai 200062 (China); Chen Zhenlou [Key Laboratory of Geographic Information Science of Ministry of Education, East China Normal University, Shanghai 200062 (China)], E-mail: gt_shi@163.com; Xu Shiyuan [Key Laboratory of Geographic Information Science of Ministry of Education, East China Normal University, Shanghai 200062 (China); Zhang Ju [School of Environment and Planning, Liaocheng University, Liaocheng 252059 (China); Wang Li; Bi Chunjuan [Key Laboratory of Geographic Information Science of Ministry of Education, East China Normal University, Shanghai 200062 (China); Teng Jiyan [Shanghai Chongming Dongtan National Nature Reserve, Shanghai 202183 (China)

    2008-11-15

    A detailed investigation was conducted to understand the contamination characteristics of a selected set of potentially toxic metals in Shanghai. The amount of Pb, Zn, Cu, Cr, Cd and Ni were determined from 273 soil/dust samples collected within urban area. The results indicated that concentration of all metals except Ni in soils was significant, and metal pollution was even severer in roadside dust. A series of metal spatial distribution maps were created through geostatistical analysis, and the pollution hotspots tended to associate with city core area, major road junctions, and the regions close to industrial zones. In attempt of identifying the source of metals through geostatistical and multivariate statistical analyses, it was concluded as follows: Pb, Zn and Cu mainly originated from traffic contaminants; soil Ni was associated with natural concentration; Cd largely came from point-sourced industrial pollution; and Cr, Ni in dust were mainly related to atmospheric deposition. - Human activities have led to high accumulation of potentially toxic metals in urban soils and roadside dust of Shanghai.

  19. Evaluation of toxic metals and essential elements in children with learning disabilities from a rural area of southern Brazil.

    Science.gov (United States)

    do Nascimento, Sabrina Nunes; Charão, Mariele Feiffer; Moro, Angela Maria; Roehrs, Miguel; Paniz, Clovis; Baierle, Marília; Brucker, Natália; Gioda, Adriana; Barbosa, Fernando; Bohrer, Denise; Ávila, Daiana Silva; Garcia, Solange Cristina

    2014-10-17

    Children's exposure to metals can result in adverse effects such as cognitive function impairments. This study aimed to evaluate some toxic metals and levels of essential trace elements in blood, hair, and drinking water in children from a rural area of Southern Brazil. Cognitive ability and δ-aminolevulinate dehydratase (ALA-D) activity were evaluated. Oxidative stress was evaluated as a main mechanism of metal toxicity, through the quantification of malondialdehyde (MDA) levels. This study included 20 children from a rural area and 20 children from an urban area. Our findings demonstrated increase in blood lead (Pb) levels (BLLs). Also, increased levels of nickel (Ni) in blood and increase of aluminum (Al) levels in hair and drinking water in rural children were found. Deficiency in selenium (Se) levels was observed in rural children as well. Rural children with visual-motor immaturity presented Pb levels in hair significantly increased in relation to rural children without visual-motor immaturity (p < 0.05). Negative correlations between BLLs and ALA-D activity and positive correlations between BLLs and ALA-RE activity were observed. MDA was significantly higher in rural compared to urban children (p < 0.05). Our findings suggest that rural children were co-exposed to toxic metals, especially Al, Pb and Ni. Moreover, a slight deficiency of Se was observed. Low performance on cognitive ability tests and ALA-D inhibition can be related to metal exposure in rural children. Oxidative stress was suggested as a main toxicological mechanism involved in metal exposure.

  20. Evaluation of Toxic Metals and Essential Elements in Children with Learning Disabilities from a Rural Area of Southern Brazil

    Directory of Open Access Journals (Sweden)

    Sabrina Nunes do Nascimento

    2014-10-01

    Full Text Available Children’s exposure to metals can result in adverse effects such as cognitive function impairments. This study aimed to evaluate some toxic metals and levels of essential trace elements in blood, hair, and drinking water in children from a rural area of Southern Brazil. Cognitive ability and δ-aminolevulinate dehydratase (ALA-D activity were evaluated. Oxidative stress was evaluated as a main mechanism of metal toxicity, through the quantification of malondialdehyde (MDA levels. This study included 20 children from a rural area and 20 children from an urban area. Our findings demonstrated increase in blood lead (Pb levels (BLLs. Also, increased levels of nickel (Ni in blood and increase of aluminum (Al levels in hair and drinking water in rural children were found. Deficiency in selenium (Se levels was observed in rural children as well. Rural children with visual-motor immaturity presented Pb levels in hair significantly increased in relation to rural children without visual-motor immaturity (p < 0.05. Negative correlations between BLLs and ALA-D activity and positive correlations between BLLs and ALA-RE activity were observed. MDA was significantly higher in rural compared to urban children (p < 0.05. Our findings suggest that rural children were co-exposed to toxic metals, especially Al, Pb and Ni. Moreover, a slight deficiency of Se was observed. Low performance on cognitive ability tests and ALA-D inhibition can be related to metal exposure in rural children. Oxidative stress was suggested as a main toxicological mechanism involved in metal exposure.

  1. A New Potential Cause in the Development of Toxic Anterior Segment Syndrome: Fibrin Glue

    Directory of Open Access Journals (Sweden)

    Selçuk Sızmaz

    2014-08-01

    Full Text Available Objectives: To present a potential cause for toxic anterior segment syndrome (TASS. Materials and Methods: We report 4 cases of TASS that occurred following uneventful phacoemulsification and intraocular lens implantation. Results: The 4 cases were the first consecutive 2 cases of 2 different surgery days, 5 months apart. The most prominent sign of TASS was limbus-to-limbus corneal edema. Pain and/or intraocular pressure rise were also common. All surgical and presurgical procedures were checked after the first outbreak, whereas the second outbreak required further investigation. Fibrin glue remnants from preceding pterygium surgery with conjunctival autografting were found to be the potential cause. Despite intensive corticosteroid therapy, corneal edema did not resolve in 2 patients who underwent keratoplasty. Conclusion: TASS is a sight-threatening condition which requires thorough investigation for prevention of new cases. All steps must be carefully revised. (Turk J Ophthalmol 2014; 44: 280-3

  2. Screening of foods and related products for toxic elements with a portable X-ray tube analyzer

    International Nuclear Information System (INIS)

    Anderson, D.L.

    2009-01-01

    Capabilities of a portable X-ray tube-based analyzer were evaluated for screening foods, thin films, and ceramic glazes for toxic elements. A beverage spiked with Cr, Cu, and As and cocoa powder spiked with As and Pb could easily be distinguished from unadulterated products when analyzed through their original container walls. With calibration, results for thin films and ceramic glazes yielded accurate Pb results. Limits of detection (LODs) were 0.2-15 and 15 μg cm -2 , respectively, for Pb and Cd in thin films and about 2 μg cm -2 for Pb in glazes. With analysis times of 0.5-1 min, sensitivities and LODs were superior to those obtained with radioisotopic X-ray fluorescence analysis. (author)

  3. Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy

    Directory of Open Access Journals (Sweden)

    Lai David

    2005-10-01

    Full Text Available Abstract The rapid proliferation of many different engineered nanomaterials (defined as materials designed and produced to have structural features with at least one dimension of 100 nanometers or less presents a dilemma to regulators regarding hazard identification. The International Life Sciences Institute Research Foundation/Risk Science Institute convened an expert working group to develop a screening strategy for the hazard identification of engineered nanomaterials. The working group report presents the elements of a screening strategy rather than a detailed testing protocol. Based on an evaluation of the limited data currently available, the report presents a broad data gathering strategy applicable to this early stage in the development of a risk assessment process for nanomaterials. Oral, dermal, inhalation, and injection routes of exposure are included recognizing that, depending on use patterns, exposure to nanomaterials may occur by any of these routes. The three key elements of the toxicity screening strategy are: Physicochemical Characteristics, In Vitro Assays (cellular and non-cellular, and In Vivo Assays. There is a strong likelihood that biological activity of nanoparticles will depend on physicochemical parameters not routinely considered in toxicity screening studies. Physicochemical properties that may be important in understanding the toxic effects of test materials include particle size and size distribution, agglomeration state, shape, crystal structure, chemical composition, surface area, surface chemistry, surface charge, and porosity. In vitro techniques allow specific biological and mechanistic pathways to be isolated and tested under controlled conditions, in ways that are not feasible in in vivo tests. Tests are suggested for portal-of-entry toxicity for lungs, skin, and the mucosal membranes, and target organ toxicity for endothelium, blood, spleen, liver, nervous system, heart, and kidney. Non-cellular assessment

  4. Complex mixtures of dissolved pesticides show potential aquatic toxicity in a synoptic study of Midwestern U.S. streams

    Science.gov (United States)

    Nowell, Lisa H.; Moran, Patrick W.; Schmidt, Travis S.; Norman, Julia E.; Nakagaki, Naomi; Shoda, Megan E.; Mahler, Barbara J.; Van Metre, Peter C.; Stone, Wesley W.; Sandstrom, Mark W.; Hladik, Michelle L.

    2018-01-01

    Aquatic organisms in streams are exposed to pesticide mixtures that vary in composition over time in response to changes in flow conditions, pesticide inputs to the stream, and pesticide fate and degradation within the stream. To characterize mixtures of dissolved-phase pesticides and degradates in Midwestern streams, a synoptic study was conducted at 100 streams during May–August 2013. In weekly water samples, 94 pesticides and 89 degradates were detected, with a median of 25 compounds detected per sample and 54 detected per site. In a screening-level assessment using aquatic-life benchmarks and the Pesticide Toxicity Index (PTI), potential effects on fish were unlikely in most streams. For invertebrates, potential chronic toxicity was predicted in 53% of streams, punctuated in 12% of streams by acutely toxic exposures. For aquatic plants, acute but likely reversible effects on biomass were predicted in 75% of streams, with potential longer-term effects on plant communities in 9% of streams. Relatively few pesticides in water—atrazine, acetochlor, metolachlor, imidacloprid, fipronil, organophosphate insecticides, and carbendazim—were predicted to be major contributors to potential toxicity. Agricultural streams had the highest potential for effects on plants, especially in May–June, corresponding to high spring-flush herbicide concentrations. Urban streams had higher detection frequencies and concentrations of insecticides and most fungicides than in agricultural streams, and higher potential for invertebrate toxicity, which peaked during July–August. Toxicity-screening predictions for invertebrates were supported by quantile regressions showing significant associations for the Benthic Invertebrate-PTI and imidacloprid concentrations with invertebrate community metrics for MSQA streams, and by mesocosm toxicity testing with imidacloprid showing effects on invertebrate communities at environmentally relevant concentrations. This study documents the most

  5. Development of radiochemical separation method for determination of toxic elements in biological samples

    International Nuclear Information System (INIS)

    Maihara, V.A.; Vasconcellos, M.B.A.; Favaro, D.I.T.; Armelin, M.J.A.

    1990-01-01

    In order to determine Hg, Sb, As and Se in biological materials by neutron activation analysis, a radiochemical separation was developed. The chemical separation procedure used was based on the digestion of the irradiated sample in a mixture of H NO 3 and H 2 SO 4 in a teflon bomb, at 130 0 C for 1 to 4 hours. After the dissolution of organic matter, Hg and Sb were retained by a Dowex 2-X8 resin column in 6 M HCl. The effluent was passed through a TDO, tin dioxide column which retains As and Se in 3 M HCl medium. Radioactive tracers of these elements were used to determine the yields of the separation process. Certified reference materials were analyzed to check the precision and accuracy of the method. (author)

  6. Development of a radiochemical separation method for toxic elements determination from biologic samples

    International Nuclear Information System (INIS)

    Malhara, V.A.; Vasconcellos, M.B.A.; Favaro, D.I.T.; Armelin, M.J.A.

    1990-01-01

    In order to determine Hg, Sb, As and Se in biological materials by neutron activation analysis, a radiochemical separation was developed. The chemical separation procedure used was based on the digestion of the irradiated sample in a mixture of HNO 3 and H 2 SO 4 in a teflon bomb, at 130 0 C for 1 to 4 hours. After the dissolution of organic matter, Hg and Sb were retained by a Dowex 2-XB resin column in 6M HCI. The efluent was passed through a TDO, tin dioxide column which retains As and Se in 3M HCI medium. Radioactive tracers of these elements were used to determine the yields of the separation process. Certified reference materials were analyzed to check the precision and accuracy of the method. (author)

  7. Analysis for toxic elements in food and drinking water in Thailand by neutron activation analysis

    International Nuclear Information System (INIS)

    Leelhaphunt, N.; Chueinta, S.; Punnachaiya, M.; Chueinta, W.; Nouchpramool, S.

    1994-01-01

    This paper presents the results of a research aimed at the determination of several trace elements in foodstuffs and water in Thailand. The project included the development of adequate analytical procedures for the determination of As, Cd, Cu and Zn by ion exchange chromatography; Hg and Se by a direct combustion technique; Br, Co, Fe and Mn by instrumental neutron activation analysis (INAA); Pb by flame atomic absorption spectrophotometry; and As, Co, Mn, Sb, U, V, Zn, and Cr in water samples by pre-concentration on activated carbon followed by INAA. The samples analyzed comprised various kinds of vegetables, meat, poultry, beans and peas, various species of rice, fish, shellfish and other marine products. Natural and tap water samples were collected at several locations in twenty-nice provinces in Southern, Northern, North-Eastern and Central parts of Thailand. (author). 16 refs, 1 fig., 49 tabs

  8. Toxic elements and speciation in seafood samples from different contaminated sites in Europe

    DEFF Research Database (Denmark)

    Maulvault, Ana Luísa; Anacleto, Patrícia; Barbosa, Vera

    2015-01-01

    pressure, i.e. hotspot areas. Different species (Mytilus galloprovincialis, n=50; Chamelea gallina, n=50; Liza aurata, n=25; Platichthys flesus, n=25; Laminaria digitata, n=15; and Saccharina latissima, n=15) sampled in Tagus estuary, Po delta, Ebro delta, western Scheldt, and in the vicinities of a fish...... different elemental profiles, likely as a result of their ecological strategies, metabolism and levels in the environment (i.e. seawater and sediments). Higher levels of Cd (0.15-0.94mgkg(-1)), Pb (0.37-0.89mgkg(-1)), Co (0.48-1.1mgkg(-1)), Cu (4.8-8.4mgkg(-1)), Zn (75-153mgkg(-1)), Cr (1.0-4.5mgkg(-1...

  9. Toxic potential of the emerging contaminant nicotine to the aquatic ecosystem.

    Science.gov (United States)

    Oropesa, Ana Lourdes; Floro, António Miguel; Palma, Patrícia

    2017-07-01

    Nicotine is a "life-style compound" widely consumed by human populations and, consequently, often found in surface waters. This fact presents a concern for possible effects in the aquatic ecosystems. The objective of this study was to assess the potential lethal and sublethal toxicity of nicotine in aquatic organisms from different trophic levels (Vibrio fischeri, Pseudokirchneriella subcapitata, Thamnocephalus platyurus, and Daphnia magna). The bioassays were performed by exposing the organisms to concentrations of nicotine in a range of 0.5-1000 μg/L. Results showed that nicotine, at tested concentration, was not acutely toxic to V. fischeri and T. platyurus. On the contrary, this substance exhibited toxicity to P. subcapitata and Daphnia magna. Thus, concentrations of nicotine of 100 and 200 μg/L promoted an inhibition in the growth of P. subcapitata. In addition, a concentration of 100 μg/L nicotine acted on the reproduction of the crustacean D. magna, by decreasing the number of juveniles produced by female. On the other hand, the results showed that concentrations equal to or greater than 10 μg/L induced the production of daphnids male offspring, which may indicate that nicotine is a weak juvenoid compound of the D. magna endocrine system. Furthermore, the result showed that concentrations tested of this chemical have the capacity to revert the effect of fenoxycarb, a strong juvenoid chemical insecticide. The results of the study revealed that nicotine can induce several changes in some of the most important key groups of the aquatic compartment, which can compromise, in a short time, the balance of aquatic ecosystem. Finally, a preliminary environmental risk assessment of this stimulant was performed from the highest measured concentration in surface water and the no observable effect concentration value in the most sensitive species, i.e., D. magna. This process revealed that nicotine can produce an important risk to aquatic organisms.

  10. Rethink potential risks of toxic emissions from natural gas and oil mining.

    Science.gov (United States)

    Meng, Qingmin

    2018-09-01

    Studies have showed the increasing environmental and public health risks of toxic emissions from natural gas and oil mining, which have become even worse as fracking is becoming a dominant approach in current natural gas extraction. However, governments and communities often overlook the serious air pollutants from oil and gas mining, which are often quantified lower than the significant levels of adverse health effects. Therefore, we are facing a challenging dilemma: how could we clearly understand the potential risks of air toxics from natural gas and oil mining. This short study aims at the design and application of simple and robust methods to enhance and improve current understanding of the becoming worse toxic air emissions from natural gas and oil mining as fracking is becoming the major approach. Two simple ratios, the min-to-national-average and the max-to-national-average, are designed and applied to each type of air pollutants in a natural gas and oil mining region. The two ratios directly indicate how significantly high a type of air pollutant could be due to natural gas and oil mining by comparing it to the national average records, although it may not reach the significant risks of adverse health effects according to current risk screening methods. The min-to-national-average and the max-to-national-average ratios can be used as a direct and powerful method to describe the significance of air pollution by comparing it to the national average. The two ratios are easy to use for governments, stakeholders, and the public to pay enough attention on the air pollutants from natural gas and oil mining. The two ratios can also be thematically mapped at sampled sites for spatial monitoring, but spatial mitigation and analysis of environmental and health risks need other measurements of environmental and demographic characteristics across a natural gas and oil mining area. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Evaluation of the use of human hair for biomonitoring the deficiency of essential and exposure to toxic elements

    International Nuclear Information System (INIS)

    Rodrigues, Jairo L.; Batista, Bruno L.; Nunes, Juliana A.; Passos, Carlos J.S.; Barbosa, Fernando

    2008-01-01

    Monitoring the nutritional status of essential elements and assessing exposure of individuals to toxic elements is of great importance for human health. Thus, the appropriate selection and measurement of biomarkers of internal dose is of critical importance. Due to their many advantages, hair samples have been widely used to assess human exposure to different contaminants. However, the validity of this biomarker in evaluating the level of trace elements in the human body is debatable. In the present study, we evaluated the relationship between levels of trace elements in hair and whole blood or plasma in a Brazilian population. Hair, blood and plasma were collected from 280 adult volunteers for metal determination. An ICP-MS was used for sample analysis. Manganese, copper, lead and strontium levels in blood varied from 5.1 to 14.7, from 494.8 to 2383.8, from 5.9 to 330.1 and from 11.6 to 87.3 μg/L, respectively. Corresponding levels in hair varied from 0.05 to 6.71, from 0.02 to 37.59, from 0.02 to 30.63 and from 0.9 to 12.6 μg/g. Trace element levels in plasma varied from 0.07 to 8.62, from 118.2 to 1577.7 and from 2.31 to 34.2 μg/L for Mn, Cu and Sr, respectively. There was a weak correlation (r = 0.22, p < 0.001) between lead levels in hair and blood. Moreover, copper and strontium levels in blood correlate with those levels in plasma (r = 0.64 , p < 0.001 for Cu) and (r = 0.22, p < 0.05 for Sr). However, for Cu, Mn and Sr there was no correlation between levels in hair and blood. Our findings suggest that while the idea of measuring trace elements in hair is attractive, hair is not an appropriate biomarker for evaluating Cu, Mn and Sr deficiency or Pb exposure

  12. Evaluation of the use of human hair for biomonitoring the deficiency of essential and exposure to toxic elements

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Jairo L.; Batista, Bruno L.; Nunes, Juliana A.; Passos, Carlos J.S. [Laboratorio de Toxicologia e Essencialidade de Metais, Depto. de Analises Clinicas, Toxicologicas e Bromatologicas, Faculdade de Ciencias Farmaceuticas de Ribeirao Preto-USP, Avenida do Cafe s/n, Monte Alegre, 14040-903, Ribeirao Preto-SP (Brazil); Barbosa, Fernando [Laboratorio de Toxicologia e Essencialidade de Metais, Depto. de Analises Clinicas, Toxicologicas e Bromatologicas, Faculdade de Ciencias Farmaceuticas de Ribeirao Preto-USP, Avenida do Cafe s/n, Monte Alegre, 14040-903, Ribeirao Preto-SP (Brazil)], E-mail: fbarbosa@fcfrp.usp.br

    2008-11-01

    Monitoring the nutritional status of essential elements and assessing exposure of individuals to toxic elements is of great importance for human health. Thus, the appropriate selection and measurement of biomarkers of internal dose is of critical importance. Due to their many advantages, hair samples have been widely used to assess human exposure to different contaminants. However, the validity of this biomarker in evaluating the level of trace elements in the human body is debatable. In the present study, we evaluated the relationship between levels of trace elements in hair and whole blood or plasma in a Brazilian population. Hair, blood and plasma were collected from 280 adult volunteers for metal determination. An ICP-MS was used for sample analysis. Manganese, copper, lead and strontium levels in blood varied from 5.1 to 14.7, from 494.8 to 2383.8, from 5.9 to 330.1 and from 11.6 to 87.3 {mu}g/L, respectively. Corresponding levels in hair varied from 0.05 to 6.71, from 0.02 to 37.59, from 0.02 to 30.63 and from 0.9 to 12.6 {mu}g/g. Trace element levels in plasma varied from 0.07 to 8.62, from 118.2 to 1577.7 and from 2.31 to 34.2 {mu}g/L for Mn, Cu and Sr, respectively. There was a weak correlation (r = 0.22, p < 0.001) between lead levels in hair and blood. Moreover, copper and strontium levels in blood correlate with those levels in plasma (r = 0.64 , p < 0.001 for Cu) and (r = 0.22, p < 0.05 for Sr). However, for Cu, Mn and Sr there was no correlation between levels in hair and blood. Our findings suggest that while the idea of measuring trace elements in hair is attractive, hair is not an appropriate biomarker for evaluating Cu, Mn and Sr deficiency or Pb exposure.

  13. E-cigarettes as a source of toxic and potentially carcinogenic metals

    International Nuclear Information System (INIS)

    Hess, Catherine Ann; Olmedo, Pablo; Navas-Acien, Ana; Goessler, Walter; Cohen, Joanna E.; Rule, Ana Maria

    2017-01-01

    Background and aims: The popularity of electronic cigarette devices is growing worldwide. The health impact of e-cigarette use, however, remains unclear. E-cigarettes are marketed as a safer alternative to cigarettes. The aim of this research was the characterization and quantification of toxic metal concentrations in five, nationally popular brands of cig-a-like e-cigarettes. Methods: We analyzed the cartomizer liquid in 10 cartomizer refills for each of five brands by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Results: All of the tested metals (cadmium, chromium, lead, manganese and nickel) were found in the e-liquids analyzed. Across all analyzed brands, mean (SD) concentrations ranged from 4.89 (0.893) to 1970 (1540) μg/L for lead, 53.9 (6.95) to 2110 (5220) μg/L for chromium and 58.7 (22.4) to 22,600 (24,400) μg/L for nickel. Manganese concentrations ranged from 28.7 (9.79) to 6910.2 (12,200) μg/L. We found marked variability in nickel and chromium concentration within and between brands, which may come from heating elements. Conclusion: Additional research is needed to evaluate whether e-cigarettes represent a relevant exposure pathway for toxic metals in users. - Highlights: • Certain brands of cig-a-like e-cigarettes contain high levels of nickel and chromium. • Cig-a-likes contain low levels of cadmium, compared to tobacco cigarettes. • Nickel and chromium in the e-liquid of cig-a-likes may come from nichrome heating coils.

  14. E-cigarettes as a source of toxic and potentially carcinogenic metals

    Energy Technology Data Exchange (ETDEWEB)

    Hess, Catherine Ann, E-mail: chess@prev.org [University of California, Berkeley, School of Public Health, Prevention Research Center, 180 Grand Ave., Ste. 1200, Oakland, CA 94612 (United States); Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St. Baltimore, MD 21205 (United States); Olmedo, Pablo [Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St. Baltimore, MD 21205 (United States); Navas-Acien, Ana [Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St. Baltimore, MD 21205 (United States); Institute for Global Tobacco Control, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St. Baltimore, MD 21205 (United States); Goessler, Walter [Karl-Franzens-Universität Graz, Graz, Institute of Chemistry, Unversitätsplatz 1, 8010 Graz (Austria); Cohen, Joanna E. [Institute for Global Tobacco Control, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St. Baltimore, MD 21205 (United States); Rule, Ana Maria [Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St. Baltimore, MD 21205 (United States)

    2017-01-15

    Background and aims: The popularity of electronic cigarette devices is growing worldwide. The health impact of e-cigarette use, however, remains unclear. E-cigarettes are marketed as a safer alternative to cigarettes. The aim of this research was the characterization and quantification of toxic metal concentrations in five, nationally popular brands of cig-a-like e-cigarettes. Methods: We analyzed the cartomizer liquid in 10 cartomizer refills for each of five brands by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Results: All of the tested metals (cadmium, chromium, lead, manganese and nickel) were found in the e-liquids analyzed. Across all analyzed brands, mean (SD) concentrations ranged from 4.89 (0.893) to 1970 (1540) μg/L for lead, 53.9 (6.95) to 2110 (5220) μg/L for chromium and 58.7 (22.4) to 22,600 (24,400) μg/L for nickel. Manganese concentrations ranged from 28.7 (9.79) to 6910.2 (12,200) μg/L. We found marked variability in nickel and chromium concentration within and between brands, which may come from heating elements. Conclusion: Additional research is needed to evaluate whether e-cigarettes represent a relevant exposure pathway for toxic metals in users. - Highlights: • Certain brands of cig-a-like e-cigarettes contain high levels of nickel and chromium. • Cig-a-likes contain low levels of cadmium, compared to tobacco cigarettes. • Nickel and chromium in the e-liquid of cig-a-likes may come from nichrome heating coils.

  15. Potential environmental impacts of light-emitting diodes (LEDs): metallic resources, toxicity, and hazardous waste classification.

    Science.gov (United States)

    Lim, Seong-Rin; Kang, Daniel; Ogunseitan, Oladele A; Schoenung, Julie M

    2011-01-01

    Light-emitting diodes (LEDs) are advertised as environmentally friendly because they are energy efficient and mercury-free. This study aimed to determine if LEDs engender other forms of environmental and human health impacts, and to characterize variation across different LEDs based on color and intensity. The objectives are as follows: (i) to use standardized leachability tests to examine whether LEDs are to be categorized as hazardous waste under existing United States federal and California state regulations; and (ii) to use material life cycle impact and hazard assessment methods to evaluate resource depletion and toxicity potentials of LEDs based on their metallic constituents. According to federal standards, LEDs are not hazardous except for low-intensity red LEDs, which leached Pb at levels exceeding regulatory limits (186 mg/L; regulatory limit: 5). However, according to California regulations, excessive levels of copper (up to 3892 mg/kg; limit: 2500), Pb (up to 8103 mg/kg; limit: 1000), nickel (up to 4797 mg/kg; limit: 2000), or silver (up to 721 mg/kg; limit: 500) render all except low-intensity yellow LEDs hazardous. The environmental burden associated with resource depletion potentials derives primarily from gold and silver, whereas the burden from toxicity potentials is associated primarily with arsenic, copper, nickel, lead, iron, and silver. Establishing benchmark levels of these substances can help manufacturers implement design for environment through informed materials substitution, can motivate recyclers and waste management teams to recognize resource value and occupational hazards, and can inform policymakers who establish waste management policies for LEDs.

  16. The influence of physical activity on hair toxic and essential trace element content in male and female students.

    Science.gov (United States)

    Zaitseva, Irina P; Skalny, Andrey A; Tinkov, Alexey A; Berezkina, Elena S; Grabeklis, Andrei R; Skalny, Anatoly V

    2015-02-01

    The primary aim of the current study is to estimate the effect of different physical activity levels on hair trace element content in male and female students. A total of 113 students (59 women and 54 men) of P. G. Demidov Yaroslavl State University (Yaroslavl, Russia) took part in the current investigation. According to the level of the physical activity, all students were divided into three groups: high, medium, and low physical activity. Essential and toxic metal content (μg/g) in hair samples was assessed by inductively coupled plasma mass spectrometry using NexION 300D + NWR213 (Perkin-Elmer, USA). The obtained data show that hair iodine, zinc, arsenic, nickel, and tin levels are not related to physical activity in male and female students. At the same time, increased physical activity is associated with decreased hair copper, vanadium, bismuth, and mercury content in comparison to the low physical activity groups. Students with higher physical activity are also characterized by significantly higher hair cobalt, iron, manganese, selenium, cadmium, lithium, and lead concentrations. Finally, statistical analysis has revealed maximal gender differences in hair trace element content in the high physical activity groups, whereas in the low activity groups, the hair metal concentrations were nearly similar in females and males.

  17. Synthesis of a novel nanopesticide and its potential toxic effect on soil microbial activity

    Science.gov (United States)

    Liu, Wenjuan; Yao, Jun; Cai, Minmin; Chai, Hankuai; Zhang, Chi; Sun, Jingjing; Chandankere, Radhika; Masakorala, Kanaji

    2014-11-01

    A new nanopesticide, carboxymethyl-β-cyclodextrin-Fe3O4 magnetic nanoparticles-Diuron (CM-β-CD-MNPs-Diuron), was synthesized from an inclusion complex of CM-β-CD-MNPs as host and diuron as guest molecules. The transmission electron microscopy revealed it had an average diameter of 25 nm which is more or less the same as that of MNPs (average diameter 23 nm). The CM-β-CD grafting was confirmed by infrared spectroscopy, and the amount of CM-β-CD grafted on the surface of MNPs was determined to be 144.1 mg/g by thermogravimetry. The feasibility of using CM-β-CD-MNPs as a nanocarrier for loading diuron was verified by investigating the formation of inclusion complex. The complexation of CM-β-CD-MNPs with diuron followed the Langmuir adsorption isotherm. In this work, the potential toxic effect of CM-β-CD-MNPs-Diuron on soil microbial was evaluated by microcalorimetry, urease enzyme and real-time quantitative PCR (qPCR). The thermokinetic parameters were observed to decrease with increase in the loading of CM-β-CD-MNPs-Diuron in soil. The urease activity data showed that there was a significant effect ( p Diuron on the enzyme activity. The microcalorimetric analysis was in agreement with qPCR, confirming the toxic effect of this nanopesticide on microorganism in soil.

  18. Engineered Nanoparticles as Potential Food Contaminants and Their Toxicity to Caco-2 Cells.

    Science.gov (United States)

    Mao, Xiaomo; Nguyen, Trang H D; Lin, Mengshi; Mustapha, Azlin

    2016-08-01

    Engineered nanoparticles (ENPs), such as metallic or metallic oxide nanoparticles (NPs), have gained much attention in recent years. Increasing use of ENPs in various areas may lead to the release of ENPs into the environment and cause the contamination of agricultural and food products by ENPs. In this study, we selected two important ENPs (zinc oxide [ZnO] and silver [Ag] NPs) as potential food contaminants and investigated their toxicity via an in vitro model using Caco-2 cells. The physical properties of ENPs and their effects on Caco-2 cells were characterized by electron microscopy and energy dispersive X-ray spectroscopic (EDS) techniques. Results demonstrate that a significant inhibition of cell viability was observed after a 24-h of exposure of Caco-2 cells to 3-, 6-, and 12-mM ZnO NPs or 0.5-, 1.5-, and 3-mM Ag NPs. The noticeable changes of cells include the alteration in cell shape, abnormal nuclear structure, membrane blebbing, and cytoplasmic deterioration. The toxicity of ZnO NPs, but not that of Ag NPs after exposure to simulated gastric fluid, significantly decreased. Scanning transmission electron microscopy shows that ZnO and Ag NPs penetrated the membrane of Caco-2 cells. EDS results also confirm the presence of NPs in the cytoplasm of the cells. This study demonstrates that ZnO and Ag NPs have cytotoxic effects and can inhibit the growth of Caco-2 cells. © 2016 Institute of Food Technologists®

  19. Antioxidants as potential medical countermeasures for chemical warfare agents and toxic industrial chemicals.

    Science.gov (United States)

    McElroy, Cameron S; Day, Brian J

    2016-01-15

    The continuing horrors of military conflicts and terrorism often involve the use of chemical warfare agents (CWAs) and toxic industrial chemicals (TICs). Many CWA and TIC exposures are difficult to treat due to the danger they pose to first responders and their rapid onset that can produce death shortly after exposure. While the specific mechanism(s) of toxicity of these agents are diverse, many are associated either directly or indirectly with increased oxidative stress in affected tissues. This has led to the exploration of various antioxidants as potential medical countermeasures for CWA/TIC exposures. Studies have been performed across a wide array of agents, model organisms, exposure systems, and antioxidants, looking at an almost equally diverse set of endpoints. Attempts at treating CWAs/TICs with antioxidants have met with mixed results, ranging from no effect to nearly complete protection. The aim of this commentary is to summarize the literature in each category for evidence of oxidative stress and antioxidant efficacy against CWAs and TICs. While there is great disparity in the data concerning methods, models, and remedies, the outlook on antioxidants as medical countermeasures for CWA/TIC management appears promising. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Potentiation of Sodium Metabisulfite Toxicity by Propylene Glycol in Both in Vitro and in Vivo Systems

    Directory of Open Access Journals (Sweden)

    Jean Yoo

    2018-02-01

    body weight in the high-dose group, inhalation of SM and PG mixtures for 2 weeks significantly decreased body weight and induced metaplasia of the respiratory epithelium into squamous cells in the medium- and high-dose groups. In conclusion, PG potentiated the toxicity of SM in human lung epithelial cells and the inhalation toxicity in rats.

  1. Determination of macro, essential trace elements, toxic heavy metal concentrations, crude oil extracts and ash composition from Saudi Arabian fruits and vegetables having medicinal values

    Directory of Open Access Journals (Sweden)

    Hana R. Alzahrani

    2017-11-01

    Full Text Available The concentrations of essential elements (Mg, Ca, Na, K, Fe, Zn, Se, Al, Ni, and Cu and toxic heavy metals (Pb, As, Cr, Cd, and Cr from Saudi Arabian fruits and vegetables were determined by inductively coupled plasma optical emission spectrophotometry (ICP/OES. Two types of butters, Caralluma munbayana and Caralluma hesperidum, Vigna (Vigna unguiculata, common fig (Ficus carica, Annona seeds (Annonaceae seeds, Annona fruits (Annonaceae fruits, Fennel (Foeniculum vulgare, and Fennel flowers (Nigella sativa were investigated, because they are used by indigenous groups as traditional medicines with Soxhlet-extraction and dry-ashing protocol. The estimated daily dietary element intake in food samples was further calculated in order to evaluate the element dietary intake and fruit and vegetable consumption pattern of the indigenes of Saudi Arabia. The crude oil and ash compositions varied widely, but suggested that most of the foods were good sources of oils and minerals. The figures-of-merit of the ICP-OES calibration curves were excellent with good linearity (R2 > 0.9921. The use of ICP-OES in this study allowed the accurate analysis and the detection of the elements at low levels. Essential elements (K, Ca, Na, and Mg had the highest concentrations while toxic heavy metals (As, Pb, and Cd had the lowest in the foods. Essential element pairs (Mg-Na, Mg-Ca, Fe-Al were highly correlated, suggesting that these foods are sources of multiple nutrients. Toxic element pairs (Pb-Cd, Pb-As, and Cd-As, however, were poorly correlated in the foods, suggesting that these elements do not have a common source in these foods. Average consumption of these foods should provide the recommended daily allowances of essential elements, but will not expose consumers to toxic heavy metals. The ICP-OES method was validated by determining method detection limits and percent recoveries of laboratory-fortified blanks, which were generally 90–100%.

  2. Toxic elements in free-living freshwater fish, water and sediments in Poland

    Directory of Open Access Journals (Sweden)

    Szkoda Józef

    2014-12-01

    Full Text Available Samples for analysis were collected from 10 areas, including the major Polish rivers and lakes, with different sources of environmental pollution (industrial, municipal, and farming. The materials was taken from the lakes of Mazury, located in a non-industrialised region, from the Brda River, an area impacted by pig farms, from the lakes of Lipczyno Wielkie/Pomerania, from the Wkra River, an area impacted by poultry farms, from the Dunajec River at the Roznowski Reservoir, from the Vistula River at Cracow and Warsaw, from the Odra River at Wroclaw and the Warta River estuary, and also from Rybnik Power Station Reservoir. Concentrations of Pb, Cd, Hg, and As were analysed in 397 fish muscle and 128 sediment samples using an atomic absorption spectrometry technique. The analytical procedures were covered by a quality assurance programme. It was demonstrated that the average concentrations of lead, cadmium, and arsenic in fish were in the low hundredths and thousandths of a mg/kg and never exceeded permitted limits established for food. Higher values of these elements were found in fish from bodies of water located in the zone of influence of large urban agglomerations, especially the Cracow region. High concentrations of lead and cadmium were also found in Vistula River sediments near Cracow, where the maximum values were 134.10 mg/kg and 21.24 mg/kg dry weight for lead and cadmium respectively. The average concentration of mercury in a predatory fish muscle (0.179 mg/kg was almost twice as high as in the omnivorous fish (0.103 mg/kg. Only a single fish sample exceeded the maximum limit for this metal (0.50 mg/kg and did not present a risk to consumers’ health.

  3. Potential Medicinal Application and Toxicity Evaluation of Extracts from Bamboo Plants.

    Science.gov (United States)

    Panee, Jun

    2015-06-01

    Bamboo plants play a significant role in traditional Asian medicine, especially in China and Japan. Biomedical investigations on the health-benefiting effects as well as toxicity of different parts and species of bamboo have been carried out worldwide since the 1960s, and documented a wide range of protective effects of bamboo-derived products, such as protection against oxidative stress, inflammation, lipotoxicity, cancer, and cardiovascular disease. Some of these products may interfere with male and female reproductive function, thyroid hormone metabolism, and hepatic xenobiotransformation enzymes. The diversity of bamboo species, parts of the plants available for medicinal use, and different extraction methods suggest that bamboo has great potential for producing a range of extracts with functional utility in medicine.

  4. Impact of Saw Dust Application on the Distribution of Potentially Toxic Metals in Contaminated Soil.

    Science.gov (United States)

    Awokunmi, Emmmanuel E

    2017-12-01

    The need to develop an approach for the reclamation of contaminated site using locally available agricultural waste has been considered. The present study investigated the application of sawdust as an effective amendment in the immobilization of potentially toxic metals (PTMs) by conducting a greenhouse experiment on soil collected from an automobile dumpsite. The amended and non-amended soil samples were analyzed for their physicochemical parameters and sequential extraction of PTMs. The results revealed that application of amendment had positive impact on the physicochemical parameters as organic matter content and cation exchange capacity increased from 12.1% to 12.8% and 16.4 to 16.8 meq/100 g respectively. However, the mobility and bioavalability of these metals was reduced as they were found to be distributed mostly in the non-exchangeable phase of soil. Therefore, application of sawdust successfully immobilized PTMs and could be applied for future studies in agricultural soil reclamation.

  5. Preliminary Assessment of Cyanobacteria Diversity and Toxic Potential in Ten Freshwater Lakes in Selangor, Malaysia.

    Science.gov (United States)

    Sinang, Som Cit; Poh, Keong Bun; Shamsudin, Syakirah; Sinden, Ann

    2015-10-01

    Toxic cyanobacteria blooms are increasing in magnitude and frequency worldwide. However, this issue has not been adequately addressed in Malaysia. Therefore, this study aims to better understand eutrophication levels, cyanobacteria diversity, and microcystin concentrations in ten Malaysian freshwater lakes. The results revealed that most lakes were eutrophic, with total phosphorus and total chlorophyll-a concentrations ranging from 15 to 4270 µg L(-1) and 1.1 to 903.1 µg L(-1), respectively. Cyanobacteria were detected in all lakes, and identified as Microcystis spp., Planktothrix spp., Phormidium spp., Oscillatoria spp., and Lyngbya spp. Microcystis spp. was the most commonly observed and most abundant cyanobacteria recorded. Semi-quantitative microcystin analysis indicated the presence of microcystin in all lakes. These findings illustrate the potential health risk of cyanobacteria in Malaysia freshwater lakes, thus magnifying the importance of cyanobacteria monitoring and management in Malaysian waterways.

  6. Molecular interaction of 2-mercaptobenzimidazole with catalase reveals a potentially toxic mechanism of the inhibitor.

    Science.gov (United States)

    Teng, Yue; Zou, Luyi; Huang, Ming; Zong, Wansong

    2014-12-01

    2-Mercaptobenzimidazole (MBI) is widely utilized as a corrosion inhibitor, copper-plating brightener and rubber accelerator. The residue of MBI in the environment possesses a potential risk to human health. In this work, the toxic interaction of MBI with the important antioxidant enzyme catalase (CAT) was investigated using spectroscopic and molecular docking methods under physiological conditions. MBI can spontaneously bind with CAT with one binding site through hydrogen bonds and van der Waals forces to form MBI-CAT complex. The molecular docking study revealed that MBI bound into the CAT interface of chains B and C, which led to some conformational and microenvironmental changes of CAT and further resulted in the inhibition of CAT activity. This present study provides direct evidence at a molecular level to show that exposure to MBI could induce changes in the structure and function of the enzyme CAT. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Potential toxicity of phthalic acid esters plasticizer: interaction of dimethyl phthalate with trypsin in vitro.

    Science.gov (United States)

    Wang, Yaping; Zhang, Guowen; Wang, Langhong

    2015-01-14

    Dimethyl phthalate (DMP) is widely used as a plasticizer in industrial processes and has been reported to possess potential toxicity to the human body. In this study, the interaction between DMP and trypsin in vitro was investigated. The results of fluorescence, UV–vis, circular dichroism, and Fourier transform infrared spectra along with cyclic voltammetric measurements indicated that the remarkable fluorescence quenching and conformational changes of trypsin resulted from the formation of a DMP–trypsin complex, which was driven mainly by hydrophobic interactions. The molecular docking and trypsin activity assay showed that DMP primarily interacted with the catalytic triad of trypsin and led to the inhibition of trypsin activity. The dimensions of the individual trypsin molecules were found to become larger after binding with DMP by atomic force microscopy imaging. This study offers a comprehensive picture of DMP–trypsin interaction, which is expected to provide insights into the toxicological effect of DMP.

  8. Analytical matrix elements of semifinite 2D two centre nuclear potential

    International Nuclear Information System (INIS)

    Niculescu, V. L. R.; Catana, S.; Catana, D.; Babin, V.

    1998-01-01

    In the present work we introduce a new 2D potential which is a symmetric double-well in one variable and with one centre in the other. The factorable potential matrix elements are expressed by analytical formulas. This implies a shorter computational time. (author)

  9. Potential of extracellular microRNAs as biomarkers of acetaminophen toxicity in children

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xi, E-mail: Xi.Yang@fda.hhs.gov [Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Road, Jefferson, AR (United States); Salminen, William F., E-mail: Willie.Salminen@parexel.com [Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Road, Jefferson, AR (United States); Shi, Qiang, E-mail: Qiang.Shi@fda.hhs.gov [Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Road, Jefferson, AR (United States); Greenhaw, James, E-mail: James.Greenhaw@fda.hhs.gov [Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Road, Jefferson, AR (United States); Gill, Pritmohinder S., E-mail: PSGill@uams.edu [Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR (United States); Clinical Pharmacology and Toxicology Section, Arkansas Children' s Hospital, Little Rock, AR (United States); Bhattacharyya, Sudeepa, E-mail: SBhattacharyya2@uams.edu [Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR (United States); Clinical Pharmacology and Toxicology Section, Arkansas Children' s Hospital, Little Rock, AR (United States); Beger, Richard D., E-mail: Richard.Beger@fda.hhs.gov [Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Road, Jefferson, AR (United States); Mendrick, Donna L., E-mail: Donna.Mendrick@fda.hhs.gov [Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Road, Jefferson, AR (United States); Mattes, William B., E-mail: William.Mattes@fda.hhs.gov [Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Road, Jefferson, AR (United States); and others

    2015-04-15

    Developing biomarkers for detecting acetaminophen (APAP) toxicity has been widely investigated. Recent studies of adults with APAP-induced liver injury have reported human serum microRNA-122 (miR-122) as a novel biomarker of APAP-induced liver injury. The goal of this study was to examine extracellular microRNAs (miRNAs) as potential biomarkers for APAP liver injury in children. Global levels of serum and urine miRNAs were examined in three pediatric subgroups: 1) healthy children (n = 10), 2) hospitalized children receiving therapeutic doses of APAP (n = 10) and 3) children hospitalized for APAP overdose (n = 8). Out of 147 miRNAs detected in the APAP overdose group, eight showed significantly increased median levels in serum (miR-122, -375, -423-5p, -30d-5p, -125b-5p, -4732-5p, -204-5p, and -574-3p), compared to the other groups. Analysis of urine samples from the same patients had significantly increased median levels of four miRNAs (miR-375, -940, -9-3p and -302a) compared to the other groups. Importantly, correlation of peak serum APAP protein adduct levels (an indicator of the oxidation of APAP to the reactive metabolite N-acetyl-para-quinone imine) with peak miRNA levels showed that the highest correlation was observed for serum miR-122 (R = 0.94; p < 0.01) followed by miR-375 (R = 0.70; p = 0.05). Conclusion: Our findings demonstrate that miRNAs are increased in children with APAP toxicity and correlate with APAP protein adducts, suggesting a potential role as biomarkers of APAP toxicity. - Highlights: • Serum miR-122 and miR-375 levels were increased in children with APAP overdose. • Urine levels of miR-375 and miR-940 were increased in the APAP overdose group. • Peak serum miR-122 levels were correlated with peak serum APAP protein adducts.

  10. Assessment of potential toxicity of a smokeless tobacco product (naswar) available on the Pakistani market.

    Science.gov (United States)

    Zakiullah; Saeed, Muhammad; Muhammad, Naveed; Khan, Saeed Ahmad; Gul, Farah; Khuda, Fazli; Humayun, Muhammad; Khan, Hamayun

    2012-07-01

    'Naswar' is a smokeless tobacco product (STP) widely used in Pakistan. It has been correlated with oral and oesophageal cancer in recent clinical studies. The toxic effects associated with STPs have been associated with trace level contaminants present in these products. The toxin levels of Pakistani naswar are reported for the first time in this study. A total of 30 Pakistani brands of naswar were tested for a variety of toxic constituents and carcinogens such as cadmium, arsenic, lead and other carcinogenic metals, nitrite and nitrate, and nicotine and pH. The average values of all the toxins studied were well above their allowable limits, making the product a health risk for consumers. Calculated lifetime cancer risk from cadmium and lead was 1 lac (100,000) to 10 lac (1,000,000) times higher than the minimum 10E-4 (0.00001) to 10E-6 (0.000001), which is the 'target range' for potentially hazardous substances, according to the US Environmental Protection Agency. Similarly, the level of arsenic was in the range of 0.15 to 14.04 μg/g, the average being 1.25 μg/g. The estimated average bioavailable concentration of arsenic is 0.125-0.25 μg/g, which is higher than the allowable standard of 0.01 μg/g. Similarly, the average minimum daily intake of chromium and nickel was 126.97 μg and 122.01 μg, as compared to allowable 30-35 μg and 35 μg, respectively; a 4-5 times higher exposure. However, beryllium was not detected in any of the brands studied. The pH was highly basic, averaging 8.56, which favours the formation of tobacco specific amines thus making the product potentially toxic. This study validates clinical studies correlating incidence of cancer with naswar use in Pakistan. This study shows that the production, packaging, sale and consumption of naswar should be regulated so as to protect the public from the health hazards associated with its consumption.

  11. Potential toxic elements in stream sediments, soils and waters in an abandoned radium mine (central Portugal).

    Science.gov (United States)

    Antunes, I M H R; Neiva, A M R; Albuquerque, M T D; Carvalho, P C S; Santos, A C T; Cunha, Pedro P

    2018-02-01

    The Alto da Várzea radium mine (AV) exploited ore and U-bearing minerals, such as autunite and torbernite. The mine was exploited underground from 1911 to 1922, closed in 1946 without restoration, and actually a commercial area is deployed. Stream sediments, soils and water samples were collected between 2008 and 2009. Stream sediments are mainly contaminated in As, Th, U and W, which is related to the AV radium mine. The PTEs, As, Co, Cr, Sr, Th, U, W, Zn, and electrical conductivity reached the highest values in soils collected inside the mine influence. Soils are contaminated with As and U and must not be used for any purpose. Most waters have pH values ranging from 4.3 to 6.8 and are poorly mineralized (EC = 41-186 µS/cm; TDS = 33-172 mg/L). Groundwater contains the highest Cu, Cr and Pb contents. Arsenic occurs predominantly as H 2 (AsO 4 ) - and H(AsO 4 ) 2- . Waters are saturated in goethite, haematite and some of them also in lepidocrocite and ferrihydrite, which adsorbs As (V). Lead is divalent in waters collected during the warm season, being mobile in these waters. Thorium occurs mainly as Th(OH) 3 (CO 3 ) - , Th(OH) 2 (CO 3 ) and Th(OH) 2 (CO 3 ) 2 2- , which increase water Th contents. Uranium occurs predominantly as UO 2 CO 3 , but CaUO 2 (CO 3 ) 3 2- and CaUO 2 (CO 3 ) 3 also occur, decreasing its mobility in water. The waters are contaminated in NO 2 - , Mn, Cu, As, Pb and U and must not be used for human consumption and in agricultural activities. The water contamination is mainly associated with the old radium mine and human activities. A restoration of the mining area with PTE monitoring is necessary to avoid a public hazard.

  12. Phytoremediation of soils and water contaminated with toxic elements and radionuclides

    International Nuclear Information System (INIS)

    Cornish, J.E.; Huddleston, G.J.; Levine, R.S.

    1995-01-01

    At many U.S. Department of Energy (DOE) facilities and other sites, large volumes of soils, sediments and waters are contaminated with heavy metals and/or radionuclides, often at only a relatively small factor above regulatory action levels. In response, the DOE's Office of Technology Development is evaluating the emerging biotechnology known as phytoremediation; this approach utilizes the accelerated transfer of contaminant mass from solution to either root or above ground biomass. After growth, the plant biomass - containing 100 to 1,000 times the contaminant levels observed with conventional plants - is processed to achieve further volume reduction and contaminant concentration. Thus, phytoremediation offers the potential for low cost remediation of highly to moderately contaminated media. Progress made to date by DOE in developing this technology will be summarized and evaluated

  13. Levels of potentially toxic metals in water, sediment and peat from Wonderfonteinspruit, North West Province, South Africa.

    Science.gov (United States)

    Nsaka, Ntumba C; McCrindle, Robert I; Ambushe, Abayneh A

    2018-04-30

    Environmental monitoring of the levels of potentially toxic metals is of importance because of possible adverse effects on living species. This study was conducted to assess the levels of Cd, Cr, Cu, Hg, Mn, Pb, U and V in water, sediment and peat samples collected from the region of Wonderfonteinspruit. Water samples were simply filtered and acidified with HNO 3 prior to analysis. Sediment and peat were oven-dried, ground, sieved and mineralised using a microwave digestion system. Concentrations of the selected elements in all samples were determined by inductively coupled plasma-mass spectrometry. A Zeeman mercury analyser was also used for quantification of Hg in the same sediment and peat samples. The method validation was carried out using SRM 1643e water and BCR 320R sediment certified reference materials. The results showed no significant difference at 95% level of confidence between the certified and measured values after using the Student's t-test. The levels of Cd, Cr, Cu, Pb, V and U found in rivers and dams were lower than the tentative South African water quality range guideline for domestic and irrigation purposes. However, water from dams and certain rivers was unsuitable for irrigation and domestic use.

  14. Trace element content of vegetables grown in the victorian goldfields: characterization of a potential hazard

    International Nuclear Information System (INIS)

    Harvey, G.; Dowling, K.; Waldron, H.; Garnett, D.

    2003-01-01

    Plants take-up trace elements essential to healthy growth, but if metal accumulation is excessive, harmful effects are noted in the plant and potentially in the organisms that feed on them. Central Victoria has a rich gold mining heritage, and as such, much of the landscape has been disturbed by the addition of mine waste material, providing an abundant source of metals in a mobile environment. A biogeochemical survey was conducted to evaluate the trace element content of backyard vegetable gardens in the gold field region and the trace element accumulation in commonly grown vegetables. Vegetable (n150) and soil (n59) samples were analysed by instrumental neutron activation analysis. Results indicate that vegetables grown in the central Victorian goldfields have only slightly elevated trace element content. Some exceptions exist, specifically for silverbeet, but the hazard potential is minimal

  15. [Monitoring and assessment contamination of toxic elements food in Tatarstan monitoring and evaluation of contamination by toxic elements of food products in the territory of the Republic of Tatarstan].

    Science.gov (United States)

    Frolova, O A; Karpova, M V; Makhmutova, I P; Musin, R A

    2014-01-01

    Actual consumption of toxic elements in the body of an adult human in the Republic of Tatarstan (during the period of the study of the production in 2008-2012) amounts for lead: 0.68 mg/week for cadmium: 0.18 mg/day, arsenic: 0.68 mg/day, mercury: 0.21 mg/week (per 1 kg body weight) or respectively: 22.81%, 18.0%, 13.69%, 4.27% of the allowable levels of the chemical load. We have performed calculations with account of the balance of food resources per capita per year in the Republic of Tatarstan. This analysis showed that the main dietary sources of income for cadmium there are milk and dairy products (48.32%), bakery products (16.07%), meat and meat products (13.22%); for lead there are bakely products (26.85%), potatoes (24.36%), milk and dairy products (23.94%), meat and meat products (7.55%); for mercury there are milk and dairy products (53.72%), meat and meat products (16.82%), potatoes (10.92%); fish and fish products (4.74%); for arsenic there are milk and dairy products (72.51%), meat and meat products (12.8%), bakery products (3.05% ,); fish and fish products (2.23%). It is important to know not only what products are the most contaminated, but what place in the structure of the nutrition they take.

  16. EDRXF measurements of heavy elements in soil samples from some potentially polluted sites in zambia

    International Nuclear Information System (INIS)

    Hayumbu, P.; Phiri, L.K.; Mambo, A.; Sokotela, S.B.

    2001-01-01

    A survey of heavy element levels in top soils collected around four industrial plants and along four highway stretches demonstrated that there was significant pollution only around an abandoned Pb/Zn mine. Sample collection in a rectangular grid encompassing each source sought to depict the spatial extent of pollution. Ascertaining levels of heavy elements in potentially polluted soils in urban areas of Zambia and along major highways was deemed desirable because it is common practice to grow maize and vegetables in lots adjacent to accessible industrial sites and highways. Pb is a heavy element of interest for all sampled sites whose distribution at the abandoned mine ranged from 13 to 2028 ppm

  17. Concentrations and geographical variations of selected toxic elements in meat from semi-domesticated reindeer (Rangifer tarandus tarandus L.) in mid- and northern Norway: evaluation of risk assessment.

    Science.gov (United States)

    Hassan, Ammar Ali; Brustad, Magritt; Sandanger, Torkjel M

    2012-05-01

    Meat samples (n = 100) from semi-domesticated reindeer (Rangifer tarandus tarandus L.) were randomly collected from 10 grazing districts distributed over four Norwegian counties in 2008 and 2009. The main aim was to study concentrations and geographical variations in selected toxic elements; cadmium (Cd), lead (Pb), arsenic (As), copper (Cu), nickel (Ni) and vanadium (V) in order to assess the risk associated with reindeer meat consumption. Sample solutions were analysed using an inductively coupled plasma high resolution mass spectrometer (ICP-HRMS), whereas analysis of variance (ANOVA) was used for statistical analyses. Geographical variations in element concentrations were revealed, with As and Cd demonstrating the largest geographical differences. No clear geographical gradient was observed except for the east-west downward gradient for As. The As concentrations were highest in the vicinity of the Russian border, and only Cd was shown to increase with age (p < 0.05). Sex had no significant effect on the concentration of the studied elements. The concentrations of all the studied elements in reindeer meat were generally low and considerably below the maximum levels (ML) available for toxic elements set by the European Commission (EC). Thus, reindeer meat is not likely to be a significant contributor to the human body burden of toxic elements.

  18. Use of human milk in the assessment of toxic metal exposure and essential element status in breastfeeding women and their infants in coastal Croatia.

    Science.gov (United States)

    Grzunov Letinić, Judita; Matek Sarić, Marijana; Piasek, Martina; Jurasović, Jasna; Varnai, Veda Marija; Sulimanec Grgec, Antonija; Orct, Tatjana

    2016-12-01

    Pregnant and lactating women and infants are vulnerable population groups for adverse effects of toxic metals due to their high nutritional needs and the resultant increased gastrointestinal absorption of both, essential and toxic elements. Although breastfeeding is recommended for infants worldwide, as human milk is the best source of nutrients and other required bioactive factors, it is also a pathway of maternal excretion of toxic substances including toxic metals and thus a source of infant exposure. The aim of this research was to assess health risks in breastfeeding women in the coastal area of the Republic of Croatia and their infants (N=107) due to maternal exposure to Cd and Pb via cigarette smoking, and Hg via seafood and dental amalgam fillings, and their interaction with essential elements. Biological markers of exposure were the concentrations of main toxic metals Pb, Cd and Hg in maternal blood and three types of breast milk throughout lactation stages. Biological markers of effects were the levels of essential elements Ca, Fe, Cu, Zn and Se in maternal serum and breast milk. With regard to cigarette smoking as a source of exposure to Cd and Pb, there were effects of smoking on Cd concentration in blood and correlations between the smoking index and Cd concentrations in maternal blood (ρ=0.593; Pexposure in both breastfeeding women and their infants. Copyright © 2016 Elsevier GmbH. All rights reserved.

  19. Testing contamination risk assessment methods for toxic elements from mine waste sites

    Science.gov (United States)

    Abdaal, A.; Jordan, G.; Szilassi, P.; Kiss, J.; Detzky, G.

    2012-04-01

    Major incidents involving mine waste facilities and poor environmental management practices have left a legacy of thousands of contaminated sites like in the historic mining areas in the Carpathian Basin. Associated environmental risks have triggered the development of new EU environmental legislation to prevent and minimize the effects of such incidents. The Mine Waste Directive requires the risk-based inventory of all mine waste sites in Europe by May 2012. In order to address the mining problems a standard risk-based Pre-selection protocol has been developed by the EU Commission. This paper discusses the heavy metal contamination in acid mine drainage (AMD) for risk assessment (RA) along the Source-Pathway-Receptor chain using decision support methods which are intended to aid national and regional organizations in the inventory and assessment of potentially contaminated mine waste sites. Several recognized methods such as the European Environmental Agency (EEA) standard PRAMS model for soil contamination, US EPA-based AIMSS and Irish HMS-IRC models for RA of abandoned sites are reviewed, compared and tested for the mining waste environment. In total 145 ore mine waste sites have been selected for scientific testing using the EU Pre-selection protocol as a case study from Hungary. The proportion of uncertain to certain responses for a site and for the total number of sites may give an insight of specific and overall uncertainty in the data we use. The Pre-selection questions are efficiently linked to a GIS system as database inquiries using digital spatial data to directly generate answers. Key parameters such as distance to the nearest surface and ground water bodies, to settlements and protected areas are calculated and statistically evaluated using STATGRAPHICS® in order to calibrate the RA models. According to our scientific research results, of the 145 sites 11 sites are the most risky having foundation slope >20o, 57 sites are within distance 66 (class VI

  20. Essentially deadly: living with toxic elements: Humans and plants have evolved various mechanisms to deal with and even adopt toxic heavy metals

    OpenAIRE

    Hunter, Philip

    2015-01-01

    Organisms have evolved to deal with or make use of toxic metals. Understanding these mechanisms could help to protect the health of mine workers, tackle malnourishment, or improve ways to clean up polluted environments.

  1. Potential hazards of toxic metals found in toothpastes commonly used in Nigeria.

    Science.gov (United States)

    Orisakwe, Orish Ebere; Okolo, Kenneth Obinna; Igweze, Zelinjo Nkeiruka; Ajaezi, Godwin Chukwuebuka; Udowelle, Nnaemeka Arinze

    2016-01-01

    Toothpastes have multi-functional configurations as oral care products. They can however constitute a pos- sible source, amongst others, of toxic metal exposure in public health. Indeed, the public health impact of personal hygiene and consumer products is largely unknown. To determine the level of toxic metals (lead, cadmium, cobalt, chromium, nickel) in toothpastes available in Nigeria, (home produced and imported), and assess the potential risk to the people. The samples of toothpastes commonly used in Nigeria were tested. Using a market basket protocol thirty five different brands of toothpaste were used. Samples were digest by addition of 10 mL mixture of conc. nitric and hydrochloric acids (HCl:HNO(3), 3:1), followed by heating to dryness. 20 mL deionized water was added, stirred and filtered. The filtrate was made up in standard volumetric flask and lead, cadmium, chromium, cobalt and nickel concentrations were determined using the atomic absorption spectrophotometry 205A. The daily intake of metals and target hazard quotient (THQ) were then calculated. Pepsodent and Flodent had the highest levels of lead at respectively 23.575 and 18.092 mg/kg while Colgate Herbal had the highest nickel of 18.535 mg/kg. The daily intake estimates of all imported toothpaste samples were below the stated upper limits (UL). All target hazard quotients were also found to be below one. Although the UL, THQ and daily intake rates were all normal, the high levels of lead in some of the tooth- pastes an important concern to public health suggesting that pre-marketing safety studies of toothpastes may be worthwhile for the regulatory authorities.

  2. Toxicity, analgesic and sedative potential of crude extract of soil-borne phytopathogenic fungi Aspergillus flavus

    Directory of Open Access Journals (Sweden)

    Bashir Ahmad

    2016-11-01

    Full Text Available Background: Aspergillus flavus is one of the most abundant mold present around the world. The present study was conducted to investigate the acute toxicity, analgesic and sedative effect of the crude extract obtained from soil borne fungi A. flavus. Methods: The fungi was isolated from soil samples and identified morphologically and microscopically. The growth condition i.e. media, temperature, pH, and incubation period were optimized. In these optimized growth condition, A. flavus was grown in batch culture in shaking incubator. Crude contents were extracted by using ethyl acetate solvent. Crude secondary metabolites were screened for acute toxicity, analgesic and sedative effect. Results: Upon completion of the experiment, blood was collected from the tail vein of albino mice, and different haematological tests were conducted. White blood cells counts displayed a slight increase (10.6× 109/L above their normal range (0.8–6.8 × 109/L, which may be due to the increment in the number of lymphocytes or granulocytes. However, the percentage of lymphocytes was much lower (17.7%, while the percentage of the granulocytes was higher (61.4% than its normal range (8.6–38.9%. A reduction in the mean number of writhing in the different test groups was caused by the application of the crude ethyl acetate extract through the i.p. route at different doses (50, 100, and 150 mg/kg body weight. The results of our investigation showed the EtOAc extract of A. flavus can cause a significant sedative effect in open field. Conclusion: It was concluded from the present study that the A. flavus has the potential to produce bioactive metabolites which have analgesic and sedative effect.

  3. Potential hepatic toxicity of buprofezin at sublethal concentrations: ROS-mediated conversion of energy metabolism.

    Science.gov (United States)

    Ji, Xiaotong; Ku, Tingting; Zhu, Na; Ning, Xia; Wei, Wei; Li, Guangke; Sang, Nan

    2016-12-15

    Buprofezin is known for its broad-spectrum action and environmental safety. The popularity of buprofezin has raised concerns about its potentially adverse effects on human health and risk to the environment. In this study, we first identified the liver as one of the major organs in which buprofezin accumulated, and we detected a severe oxidative stress response. Next, we demonstrated that sublethal concentrations of buprofezin promoted the conversion of energy metabolism from the aerobic tricarboxylic acid (TCA) cycle and oxidative phosphorylation to anaerobic glycolysis. Importantly, reactive oxygen species (ROS) generation partially accounted for the shunting of the energy metabolism through the buprofezin-mediated inhibition of cytochrome c oxidase activity. ROS directly perturbed the activities of several key TCA cycle enzymes, stimulated glycolysis, and indirectly disturbed the activity of the respiratory chain complex by altering mitochondrial DNA (mtDNA). These findings clarify the potential mechanisms of buprofezin toxicity and provide biomarkers for buprofezin-mediated hepatotoxicity at sublethal concentrations. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Evaluation of the potential cardioprotective activity of some Saudi plants against doxorubicin toxicity.

    Science.gov (United States)

    Ashour, Osama M; Abdel-Naim, Ashraf B; Abdallah, Hossam M; Nagy, Ayman A; Mohamadin, Ahmed M; Abdel-Sattar, Essam A

    2012-01-01

    Doxorubicin (DOX) is an anthracycline antibiotic widely used as a chemotherapeutic agent in the treatment of several tumours. However, its cardiac toxicity limits its use at maximum therapeutic doses. Most studies implicated increased oxidative stress as the major determinant of DOX cardiotoxicity. The local Saudi flora is very rich in a variety of plants of quite known folkloric or traditional medicinal uses. Tribulus macropterus Boiss., Olea europaea L. subsp. africana (Mill.) P. S. Green, Tamarix aphylla (L.) H. Karst., Cynomorium coccineum L., Cordia myxa L., Calligonum comosum L' Hér, and Withania somnifera (L.) Dunal are Saudi plants known to have antioxidant activities. The aim of the current study was to explore the potential protective effects of methanolic extracts of these seven Saudi plants against DOX-induced cardiotoxicity in rats. Two plants showed promising cardioprotective potential in the order Calligonum comosum > Cordia myxa. The two plant extracts showed potent in vitro radical scavenging and antioxidant properties. They significantly protected against DOX-induced alterations in cardiac oxidative stress markers (GSH and MDA) and cardiac serum markers (CK-MB and LDH activities). Additionally, histopathological examination indicated a protection against DOX-induced cardiotoxicity. In conclusion, C. comosum and C. myxa exerted protective activity against DOX-induced cardiotoxicity, which is, at least partly, due to their antioxidant effect.

  5. Application of neutron activation analysis and inductively coupled plasma mass spectrometry to the determination of toxic and essential elements in Australian foods

    International Nuclear Information System (INIS)

    Fardy, J.J.; McOrist, G.D.; Farrar, Y.J.; Bowles, C.J.; Warner, I.M.; Tan Mingguang

    1994-01-01

    Current Australian Legislation specifies the maximum permitted levels of nine toxic elements in food while the National Health and Medical Research Council (NH and MRC) has listed recommended daily intake figures for seven essential elements. This investigation examined the compliance of Australian foods with both these requirements. Australia-wide samples of representative foods from the diets of Australians were used in this study after the NH and MRC kindly permitted us to join their Market Basket (Noxious Substance) Survey. Both toxic and essential element concentrations in these foods were determined using the advanced analytical techniques of instrumental (INAA) and radiochemical neutron activation analysis (RNAA) and inductively coupled plasma mass spectrometry (ICP-MS). With very few exceptions, foods do not exceed the maximum permitted levels for toxic substances. Daily intake figures for essential elements generally lie close to the maximum recommended values listed by NH and MRC. Since another source of toxic element intake is drinking water, samples from different locations were analyzed by NAA and inductively coupled plasma atomic emission spectroscopy (ICP-AES). They were extremely low in trace elements with the exception of copper, iron, zinc and lead which approached the maximum permitted concentrations. The performance of NAA and ICP-MS for analyzing biological materials were compared. NAA cannot match the superior sensitivity for a wider range of elements obtained by ICP-MS. This has been verified for a wide range of food materials. While NAA is an inconvenient and time-consuming technique for many applications, it does not suffer from blank problems after irradiation of the sample and becomes the preferred technique where low limits of detection are required for trace concentrations in solid samples. (author). 22 refs, 27 figs, 21 tabs

  6. An integrative view of cisplatin-induced renal and cardiac toxicities: molecular mechanisms, current treatment challenges and potential protective measures

    Science.gov (United States)

    Dugbartey, George J.; Peppone, Luke J.; de Graaf, Inge A.M.

    2017-01-01

    Cisplatin is currently one of the most widely-used chemotherapeutic agents against various malignancies. Its clinical application is limited, however, by inherent renal and cardiac toxicities and other side effects, of which the underlying mechanisms are only partly understood. Experimental studies show cisplatin generates reactive oxygen species, which impair the cell’s antioxidant defense system, causing oxidative stress and potentiating injury, thereby culminating in kidney and heart failure. Understanding the molecular mechanisms of cisplatin-induced renal and cardiac toxicities may allow clinicians to prevent or treat this problem better and may also provide a model for investigating drug-induced organ toxicity in general. This review discusses some of the major molecular mechanisms of cisplatin-induced renal and cardiac toxicities including disruption of ionic homeostasis and energy status of the cell leading to cell injury and cell death. We highlight clinical manifestations of both toxicities as well as (novel)biomarkers such as kidney injury molecule-1 (KIM-1), tissue inhibitor of metalloproteinase-1 (TIMP-1) and N-terminal pro-B-type natriuretic peptide (NT-proBNP). We also present some current treatment challenges and propose potential protective strategies with novel pharmacological compounds that might mitigate or prevent these toxicities, which include the use of hydrogen sulfide. PMID:27717837

  7. Hydroponics: A Versatile System to Study Nutrient Allocation and Plant Responses to Nutrient Availability and Exposure to Toxic Elements.

    Science.gov (United States)

    Nguyen, Nga T; McInturf, Samuel A; Mendoza-Cózatl, David G

    2016-07-13

    Hydroponic systems have been utilized as one of the standard methods for plant biology research and are also used in commercial production for several crops, including lettuce and tomato. Within the plant research community, numerous hydroponic systems have been designed to study plant responses to biotic and abiotic stresses. Here we present a hydroponic protocol that can be easily implemented in laboratories interested in pursuing studies on plant mineral nutrition. This protocol describes the hydroponic system set up in detail and the preparation of plant material for successful experiments. Most of the materials described in this protocol can be found outside scientific supply companies, making the set up for hydroponic experiments less expensive and convenient. The use of a hydroponic growth system is most advantageous in situations where the nutrient media need to be well controlled and when intact roots need to be harvested for downstream applications. We also demonstrate how nutrient concentrations can be modified to induce plant responses to both essential nutrients and toxic non-essential elements.

  8. Levels of essential and toxic elements in Porphyra columbina and Ulva sp. from San Jorge Gulf, Patagonia Argentina

    International Nuclear Information System (INIS)

    Perez, Adriana Angela; Farias, Silvia Sara; Strobl, Analia Mabel; Perez, Laura Beatriz; Lopez, Clara Magdalena; Pineiro, Adriana; Roses, Otmaro; Fajardo, Maria Angelica

    2007-01-01

    Baseline concentration levels of As, B, Ca, Cd, Cr, Cu, Co, Fe, Mg, Mn, Mo, Ni, P, Pb, Se, V, and Zn were determined for Porphyra columbina and Ulva sp. collected from three locations along San Jorge Gulf, in Patagonia Argentina. Elements were quantified by inductively coupled plasma-optical emission spectrometry, with the exception of lead and cadmium in some samples which were determined by electrothermal atomic absorption spectrometry. Three stations with different exposure degree to human activities, Bahia Solano, the mouth of Arroyo La Mata stream and Punta Maqueda, were selected as sampling points. The results showed a wide range of metal retention capacity between the two studied species. Regarding the levels of pollutants found in the researched sites, Punta Maqueda seemed to be less influenced by anthropogenic activities than the other two sites except for Cd. Taking into account their toxicities seasonal variations in Pb and Cd levels were studied in both algae in Punta Maqueda. Maximum concentrations of Cd (9.8 μg g -1 dry wt.) were observed in P. columbina during winter, and maximum levels of Pb (0.82 μg g -1 dry wt.) were detected in Ulva sp. during summer. Legislative and health safety aspects were evaluated for Cd and Pb

  9. Levels of essential and toxic elements in Porphyra columbina and Ulva sp. from San Jorge Gulf, Patagonia Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Perez, Adriana Angela [Catedras de Toxicologia y Quimica Legal, Biologia y Bromatologia y Nutricion, Universidad Nacional de la Patagonia San Juan Bosco, Chubut (Argentina); Farias, Silvia Sara [Comision Nacional de Energia Atomica, Gerencia de Tecnologia y Medio Ambiente, Buenos Aires (Argentina); Strobl, Analia Mabel [Catedras de Toxicologia y Quimica Legal, Biologia y Bromatologia y Nutricion, Universidad Nacional de la Patagonia San Juan Bosco, Chubut (Argentina); Perez, Laura Beatriz [Catedras de Toxicologia y Quimica Legal, Biologia y Bromatologia y Nutricion, Universidad Nacional de la Patagonia San Juan Bosco, Chubut (Argentina); Lopez, Clara Magdalena [Catedra de Toxicologia y Quimica Legal, Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires (Argentina); Pineiro, Adriana [Catedra de Toxicologia y Quimica Legal, Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires (Argentina); Roses, Otmaro [Catedra de Toxicologia y Quimica Legal, Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires (Argentina); Fajardo, Maria Angelica [Catedras de Toxicologia y Quimica Legal, Biologia y Bromatologia y Nutricion, Universidad Nacional de la Patagonia San Juan Bosco, Chubut (Argentina)]. E-mail: copipat@sinectis.com.ar

    2007-04-15

    Baseline concentration levels of As, B, Ca, Cd, Cr, Cu, Co, Fe, Mg, Mn, Mo, Ni, P, Pb, Se, V, and Zn were determined for Porphyra columbina and Ulva sp. collected from three locations along San Jorge Gulf, in Patagonia Argentina. Elements were quantified by inductively coupled plasma-optical emission spectrometry, with the exception of lead and cadmium in some samples which were determined by electrothermal atomic absorption spectrometry. Three stations with different exposure degree to human activities, Bahia Solano, the mouth of Arroyo La Mata stream and Punta Maqueda, were selected as sampling points. The results showed a wide range of metal retention capacity between the two studied species. Regarding the levels of pollutants found in the researched sites, Punta Maqueda seemed to be less influenced by anthropogenic activities than the other two sites except for Cd. Taking into account their toxicities seasonal variations in Pb and Cd levels were studied in both algae in Punta Maqueda. Maximum concentrations of Cd (9.8 {mu}g g{sup -1} dry wt.) were observed in P. columbina during winter, and maximum levels of Pb (0.82 {mu}g g{sup -1} dry wt.) were detected in Ulva sp. during summer. Legislative and health safety aspects were evaluated for Cd and Pb.

  10. Finite element simulations of electrostatic dopant potentials in thin semiconductor specimens for electron holography

    Energy Technology Data Exchange (ETDEWEB)

    Somodi, P.K.; Twitchett-Harrison, A.C.; Midgley, P.A. [Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ (United Kingdom); Kardynał, B.E. [Peter Grünberg Institute 9, Forschungszentrum Jülich, D-52425 Jülich (Germany); Barnes, C.H.W. [Department of Physics, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Dunin-Borkowski, R.E., E-mail: rafaldb@gmail.com [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute 5, Forschungszentrum Jülich, D-52425 Jülich (Germany)

    2013-11-15

    Two-dimensional finite element simulations of electrostatic dopant potentials in parallel-sided semiconductor specimens that contain p–n junctions are used to assess the effect of the electrical state of the surface of a thin specimen on projected potentials measured using off-axis electron holography in the transmission electron microscope. For a specimen that is constrained to have an equipotential surface, the simulations show that the step in the projected potential across a p–n junction is always lower than would be predicted from the properties of the bulk device, but is relatively insensitive to the value of the surface state energy, especially for thicker specimens and higher dopant concentrations. The depletion width measured from the projected potential, however, has a complicated dependence on specimen thickness. The results of the simulations are of broader interest for understanding the influence of surfaces and interfaces on electrostatic potentials in nanoscale semiconductor devices. - Highlights: • Finite element simulations are performed to calculate electrostatic dopant potentials in TEM specimens that contain p–n junctions. • The effect of the electrical state of the specimen surface on the projected potential is assessed for equipotential specimen surfaces. • The step in projected potential is always found to be lower than the step in potential in the bulk device. • The step in projected potential is least sensitive to surface state energy for thicker specimens and higher dopant concentrations. • The depletion width measured from the projected potential has a complicated dependence on specimen thickness.

  11. Finite element simulations of electrostatic dopant potentials in thin semiconductor specimens for electron holography

    International Nuclear Information System (INIS)

    Somodi, P.K.; Twitchett-Harrison, A.C.; Midgley, P.A.; Kardynał, B.E.; Barnes, C.H.W.; Dunin-Borkowski, R.E.

    2013-01-01

    Two-dimensional finite element simulations of electrostatic dopant potentials in parallel-sided semiconductor specimens that contain p–n junctions are used to assess the effect of the electrical state of the surface of a thin specimen on projected potentials measured using off-axis electron holography in the transmission electron microscope. For a specimen that is constrained to have an equipotential surface, the simulations show that the step in the projected potential across a p–n junction is always lower than would be predicted from the properties of the bulk device, but is relatively insensitive to the value of the surface state energy, especially for thicker specimens and higher dopant concentrations. The depletion width measured from the projected potential, however, has a complicated dependence on specimen thickness. The results of the simulations are of broader interest for understanding the influence of surfaces and interfaces on electrostatic potentials in nanoscale semiconductor devices. - Highlights: • Finite element simulations are performed to calculate electrostatic dopant potentials in TEM specimens that contain p–n junctions. • The effect of the electrical state of the specimen surface on the projected potential is assessed for equipotential specimen surfaces. • The step in projected potential is always found to be lower than the step in potential in the bulk device. • The step in projected potential is least sensitive to surface state energy for thicker specimens and higher dopant concentrations. • The depletion width measured from the projected potential has a complicated dependence on specimen thickness

  12. Time-response characteristic and potential biomarker identification of heavy metal induced toxicity in zebrafish.

    Science.gov (United States)

    Yin, Jian; Wang, Ai-Ping; Li, Wan-Fang; Shi, Rui; Jin, Hong-Tao; Wei, Jin-Feng

    2018-01-01

    The present work aims to explore the time-response (from 24 h to 96 h) characteristic and identify early potential sensitive biomarkers of copper (Cu) (as copper chloride dihydrate), cadmium (Cd) (as cadmium acetate), lead (Pb) (as lead nitrate) and chromium (Cr) (as potassium dichromate) exposure in adult zebrafish, focusing on reactive oxygen species (ROS), SOD activity, lipid peroxidation and gene expression related to oxidative stress and inflammatory response. Furthermore, the survival rate decreased apparently by a concentration-dependent manner after Cu, Cr, Cd and Pb exposure, and we selected non-lethal concentrations 0.05 mg/L for Cu, 15 mg/L for Cr, 3 mg/L for Cd and 93.75μg/L for Pb to test the effect on the following biological indicators. Under non-lethal concentration, the four heavy metals have no apparent histological change in adult zebrafish gills. Similar trends in ROS production, MDA level and SOD activity were up-regulated by the four heavy metals, while MDA level responded more sensitive to Pb by time-dependent manner than the other three heavy metals. In addition, mRNA levels related to antioxidant system (SOD1, SOD2 and Nrf2) were up-regulated by non-lethal concentration Cu, Cr, Cd and Pb exposure. MDA level and SOD1 gene have a more delayed response to heavy metals. Genes related to immunotoxicity were increased significantly after heavy metals exposure at non-lethal concentrations. TNF-α and IL-1β gene have similar sensibility to the four heavy metals, while IL-8 gene was more responsive to Cr, Cd and Pb exposure at 48 h groups and IFN-γ gene showed more sensitivity to Cu at 48 h groups than the other heavy metals. In conclusion, the present works have suggested that the IFN-γ gene may applied as early sensitive biomarker to identify Cu-induced toxicity, while MDA content and IL-8 gene may use as early sensitive biomarkers for evaluating the risk of Pb exposure. Moreover, IL-8 and IFN-γ gene were more responsive to heavy

  13. Interesting Features of Ionization Potentials for Elements (Z ≤ 119) along the Periodic Table

    International Nuclear Information System (INIS)

    Gu Chun; Zeng De-Ling; Li Jia-Ming; Jin Rui; Yue Xian-Fang; Gao Xiang

    2016-01-01

    The ionization potential (IP) is a basic property of an atom, which has many applications such as in element analysis. With the Dirac–Slater methods (i.e., mean field theory), IPs of all occupied orbitals for elements with atomic number (Z ≤ 119) are calculated conveniently and systematically. Compared with available experimental measurements, the theoretical accuracies of IPs for various occupied orbitals are ascertained. The map of the inner orbital IPs with good accuracies should be useful to select x-ray energies for element analysis. Based on systematic variations of the first IPs for the outermost orbitals in good agreement with experimental values as well as other IPs, mechanisms of electronic configurations of all atomic elements (Z ≤ 119) along the periodic table are elucidated. It is interesting to note that there exist some deficiencies of the intermediate orbital IPs, which are due to electron correlations and should be treated beyond the mean field theory. (paper)

  14. Human health and ecological toxicity potentials due to heavy metal content in waste electronic devices with flat panel displays

    International Nuclear Information System (INIS)

    Lim, Seong-Rin; Schoenung, Julie M.

    2010-01-01

    Display devices such as cathode-ray tube (CRT) televisions and computer monitors are known to contain toxic substances and have consequently been banned from disposal in landfills in the State of California and elsewhere. New types of flat panel display (FPD) devices, millions of which are now purchased each year, also contain toxic substances, but have not previously been systematically studied and compared to assess the potential impact that could result from their ultimate disposal. In the current work, the focus is on the evaluation of end-of-life toxicity potential from the heavy metal content in select FPD devices with the intent to inform material selection and design-for-environment (DfE) decisions. Specifically, the metals antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, copper, lead, mercury, molybdenum, nickel, selenium, silver, vanadium, and zinc in plasma TVs, LCD (liquid crystal display) TVs, LCD computer monitors and laptop computers are considered. The human health and ecotoxicity potentials are evaluated through a life cycle assessment perspective by combining data on the respective heavy metal contents, the characterization factors in the U.S. EPA Tool for the Reduction and Assessment of Chemical and other environmental Impacts (TRACI), and a pathway and impact model. Principal contributors to the toxicity potentials are lead, arsenic, copper, and mercury. Although the heavy metal content in newer flat panel display devices creates less human health toxicity potential than that in CRTs, for ecological toxicity, the new devices are worse, especially because of the mercury in LCD TVs and the copper in plasma TVs.

  15. The Kuril Islands as a potential region for aquaculture: Trace elements in chum salmon

    International Nuclear Information System (INIS)

    Khristoforova, Nadezhda K.; Tsygankov, Vasiliy Yu.; Lukyanova, Olga N.; Boyarova, Margarita D.

    2016-01-01

    The Kuril Islands region is considered promising for development of salmon aquaculture. There are 41 salmon fish hatcheries in the Sakhalin Island and the Kuril Islands, 34 of them are hatcheries of the chum. Therefore, concentrations of six elements (Zn, Cu, Cd, Pb, As, and Hg) were determined in chum salmon were caught in this region. The contents of toxic elements (Cd, Pb, As, and Hg) don't exceed their maximum permissible concentrations (MPC) according to the Russian sanitary standards, but concentration of Pb are closely to MPC. Increased concentrations of Pb in wild chum have the natural origin. The unusual conditions of the Western Pacific are formed under the influence such factors as volcanism and upwelling. - Highlights: • High content of Pb, found in chum from the Kuril Islands, is caused by natural sources. • The content of elements do not exceed maximum permissible concentrations in Russia. • Kuril region is considered as promising zone for development of salmon aquaculture. - Kuril region is suitable for aquaculture development of Pacific salmon.

  16. Matrix elements of the potential energy operator for the six nucleon system between the generating invariants

    International Nuclear Information System (INIS)

    Filippov, G.F.; Lopez Trujillo, A.; Rybkin, I.Yu.

    1993-01-01

    The matrix elements of the potential energy operator (which includes central, spin-orbit and tensor components) are calculated between the generating invariants of the cluster basis describing α + d and t+h configurations of the six-nucleon system. (author). 12 refs

  17. Application of Neutron Activation Analysis to the determination of essential and toxic elements in agroindustrial by-products employed in animal feeding

    International Nuclear Information System (INIS)

    Teruya, Carla Mitie

    1999-01-01

    In the present work the concentrations of essential elements Ca (calcium), CI (chlorine), K (potassium), Mg (magnesium), Na (sodium), Co (cobalt), Cr (chromium), Cu (copper), Fe (iron), Mn (manganese). Mo (molybdenum), Se (selenium), V (vanadium) and Zn (zinc), the toxic elements As (arsenic), Cd (cadmium) and Hg (mercury) and the elements without defined functions to the animal metabolism, such as Br (bromine), Eu (europium). La (lanthanum), Rb (rubidium), Sb (antinomies), Sc (scandium), Ta (tantalum), Th (thorium) and U (uranium) were determined in agroindustrial by-products employed in animal feeding by instrumental neutron activation analysis (INAA). Forty samples of agroindustrial by-products were analyzed, six of which are from animal origin and the others are from vegetable origin. All these materials are widely used in bovine feeding, mainly in dry season, when the forage become scarce. The precision and accuracy of the method were evaluated by means of analysis of the following certified reference materials: Rice Flour NIES-CRM-10C, Pig Kidney BCR-CRM, Oyster Tissue NIST-SRM-1566a e Buffalo River Sediment NIST-SRM-2704. The results, in general, are lower than 10 %. The results for the most of essential minerals were lower than the toxic limit for animals, and they reached the minimum requirements for domestic animals, although some agroindustrial by-products showed concentrations lower than the requirement. For all samples, the concentrations of toxic minerals were lower than the toxic limit (author)

  18. Maintenance of adult primate liver in organ culture: Potential use in toxicity testing

    International Nuclear Information System (INIS)

    Smith, P.F.; O'Brien, K.A.; Allen, L.; DeLuca, J.; Norman, B.; Keenan, K.P.

    1991-01-01

    Adult Rhesus monkey liver slices were incubated using a dynamic organ culture method to determine hepatocyte viability, drug biotransformation potential and the in vitro response to the hepatotoxicant, allyl alcohol (AA). After 1, 2, 4, or 8 hr, slices were removed from culture and analyzed for incorporation of [ 3 H]-leucine into acid-precipitable material, and medium alanine aminotransferase (ALT) activity was determined. Separate slices were taken for histological evaluation and for evaluation of microsomal 7-ethoxy-4-trifluoromethyl coumarin-O-deethylase (EFCOD) activity. Incorporation of [ 3 H]-leucine into slices was linear over the period of incubation and was specifically inhibited by cycloheximide (10 uM) at all time points. In the absence of AA, enzyme leakage was minimal over 8 hr. Marked ALT leakage occurred with 1 mM AA. Control slices had an initial fall to 55% of in vivo EFCOD activity that stabilized at 40-50% control slices indicated that there was minimal cellular degeneration and that, in PAS-stained sections, glycogen accumulation occurred over the incubation period. This system allows for maintenance and viability of adult primate liver slices in culture for at least 8 hr and may be useful for in vitro toxicity and biotransformation studies

  19. The potential DNA toxic changes among workers exposed to antimony trioxide.

    Science.gov (United States)

    El Shanawany, Safaa; Foda, Nermine; Hashad, Doaa I; Salama, Naglaa; Sobh, Zahraa

    2017-05-01

    Occupational exposure to antimony has gained much interest when specific toxic effects were noticed among workers processing antimony. Thus, the aim of the present work was to investigate the potential DNA oxidative damage occurring among Egyptian workers occupationally exposed to antimony trioxide. The study was conducted on 25 subjects exposed to antimony trioxide while working in the polymerization process of polyester in Misrayon and Polyester Fiber Company, KafrEldawwar, Beheira, Egypt. Urinary antimony levels were assessed using inductive coupled plasma-optical emission spectrometry (ICP-OES) and considered as a biological exposure index. DNA damage and total oxidant capacity (TOC) were assessed using ELISA. DNA damage was detected in the form of increased apurinic/apyrimidinic (AP) sites among antimony trioxide-exposed workers compared to control subjects, but it could not be explained by oxidative mechanisms due to lack of significant correlation between DNA damage and measured TOC. Antimony trioxide might have a genotoxic impact on occupationally exposed workers which could not be attributed to oxidative stress in the studied cases.

  20. Evaluation of potential relationships between benthic community structure and toxic metals in Laizhou Bay.

    Science.gov (United States)

    Wu, Bin; Song, Jinming; Li, Xuegang

    2014-10-15

    The objective of the present study was to examine the relationships between benthic community structure and toxic metals using bivariate/multivariate techniques at 17 sediment locations in Laizhou Bay, North China. Sediment chemical data were evaluated against geochemical background values and sediment quality guidelines, which identified Cu and As as contaminants of concern with a moderate potential for adverse effects. Benthic community data were subjected to non-metric multidimensional scaling, which generated four groups of stations. Spearman rank correlation was then employed to explore the relationships between the major axes of heavy metals and benthic community structure. However, weak and insignificant correlations were found between these axes, indicating that contaminants of concern may not be the primary explanatory factors. Polychaeta were abundant in southern Laizhou Bay, serving as a warning regarding the health status of the ecosystem. Integrated sediment quality assessment showed sediments from northern central locations were impaired, displaying less diverse benthos and higher metal contamination. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. The potential role of earthworms in toxicity assessment of terrestrial hazardous waste sites

    Energy Technology Data Exchange (ETDEWEB)

    Goven, A.J.; Fitzpatrick, L.C. [Univ. of North Texas, Denton, TX (United States); Venables, B.J. [TRAC Labs., Inc., Denton, TX (United States)

    1994-12-31

    Understanding the toxic potential and mechanisms of action of environmental xenobiotics is fundamental for assessing risk to public and environmental health. Current established protocols with earthworms focus primarily on defining the lethal effects of chemicals associated with soil contamination. Development of sublethal assays, until recently, has been largely ignored. Here the authors develop rationale for use of earthworms as a model organism for comprehensive assessment of risks to higher wildlife from contaminated soils and hazardous waste sites. They present a panel of lethal (LC/LD50`s) and sublethal measurement endpoint biomarkers, developed within the framework of the National Toxicology Program`s tiered immunotoxicity protocol for mice and according to published criteria for good measurement endpoints, that represent sensitive phylogenetically-conserved processes. Specifically the authors discuss immunosuppressive effects of terrestrial heavy metal and organic contamination on the innate, nonspecific and specific immune responses of earthworm, Lumbricus terrestris, coelomocytes in terms of total and differential cell counts, lysozyme activity, nitroblue tetrazolium dye reduction, phagocytic activity and secretary rosette formation. Findings indicate that sensitive phylogenetically conserved immune responses present in invertebrates can be used to assess or predict risk to wildlife from contaminated soils.

  2. Exposure to potentially toxic hydrocarbons and halocarbons released from the dialyzer and tubing set during hemodialysis.

    Science.gov (United States)

    Lee, Hyun Ji Julie; Meinardi, Simone; Pahl, Madeleine V; Vaziri, Nostratola D; Blake, Donald R

    2012-10-01

    Although much is known about the effect of chronic kidney failure and dialysis on the composition of solutes in plasma, little is known about their impact on the composition of gaseous compounds in exhaled breath. This study was designed to explore the effect of uremia and the hemodialysis (HD) procedure on the composition of exhaled breath. Breath samples were collected from 10 dialysis patients immediately before, during, and after a dialysis session. To determine the potential introduction of gaseous compounds from dialysis components, gasses emitted from dialyzers, tubing set, dialysate, and water supplies were collected. Prospective cohort study. 10 HD patients and 10 age-matched healthy individuals. Predictors include the dialyzers, tubing set, dialysate, and water supplies before, during, and after dialysis. Changes in the composition of exhaled breath. A 5-column/detector gas chromatography system was used to measure hydrocarbon, halocarbon, oxygenate, and alkyl nitrate compounds. Concentrations of 14 hydrocarbons and halocarbons in patients' breath rapidly increased after the onset of the HD treatment. All 14 compounds and 5 others not found in patients' breath were emitted from the dialyzers and tubing sets. Contrary to earlier reports, exhaled breath ethane concentrations in our dialysis patients were virtually unchanged during the HD treatment. Single-center study with a small sample size may limit the generalizability of the findings. The study documented the release of several potentially toxic hydrocarbons and halocarbons to patients from the dialyzer and tubing sets during the HD procedure. Because long-term exposure to these compounds may contribute to the morbidity and mortality in dialysis population, this issue should be considered in the manufacturing of the new generation of dialyzers and dialysis tubing sets. Copyright © 2012 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  3. Cadmium-Induced Toxicity and the Hepatoprotective Potentials of Aqueous Extract of Jessiaea Nervosa Leaf

    Directory of Open Access Journals (Sweden)

    Ama Udu Ibiam

    2013-08-01

    Full Text Available Purpose: Hepatoprotective potentials of Jussiaea nervosa leaf extract against Cadmium-induced hepatotoxicity were investigated. Methods: Forty albino rats were randomly assigned into groups A-G with 4 rats in each of the groups A-F. Group A served as control and were given feed only while rats in groups B-F were orally exposed to varying concentrations of cadmium for six weeks. Effects of cadmium were most significant at 12 mg/Kg body weight (BW, and this dose was used for subsequent test involving oral administration of Jussiaea nervosa leaf extracts. In this segment, group G (n= 16 was sub-divided into four: G1-G4, with each sub-group containing four rats. Rats in sub-group G1 were given cadmium and feed only and served as positive control. Rats in sub-groups G2, G3, and G4 were given cadmium and 20, 50 and 100g/kg BW of Jussiaea nervosa extract, respectively, for six weeks. Blood and liver were analysed using standard laboratory techniques and methods. Results: Liver function parameters (ALT, AST, ALP, bilirubin were significantly (p<0.05 elevated in exposed rats in comparison to the controls, except for total protein and albumin, which were significantly decreased. Histopathological assessment reveals renal pathology in exposed rats in sharp contrast with the controls. Jussiaea nervosa extract however lowered the values of liver function parameters with 100mg/Kg BW dose producing the highest ameliorative effects. Similarly, the serum albumin and total protein significantly (p<0.05 improved with normal liver architecture. Conclusion: The results show the hepatoprotective potentials of Jussiaea nervosa extract against Cd toxicity.

  4. Water-Based Automobile Paints Potentially Reduce the Exposure of Refinish Painters to Toxic Metals

    Directory of Open Access Journals (Sweden)

    Der-Jen Hsu

    2018-05-01

    Full Text Available Exposure to lead-containing dusts is a global public health concern. This work addresses an important issue of whether eco-friendly water-based paints reduce the exposure potential of auto-repainting workers to metals. With this aim, metal levels in automobile paints and worker metal exposure were measured using both solvent- and water-based paints. The levels of metals, and particularly Pb, Cr (total, Fe, and Cu, in solvent-based paints varied greatly among colors and brands. Lead concentrations ranged from below the detection limit (~0.25 μg/g to 107,928 μg/g (dry film across all samples. In water-based paints, the concentrations of Pb and Cr (total were generally two to three orders of magnitude lower, but the concentrations of Al and Cu exceeded those in some solvent-based paints. The personal short-term exposure of workers who applied water-based paints of popular colors, such as black and white, were generally low, with Pb levels of less than <4 µg/m3 and Cr (total levels of less than 1 µg/m3. Conversely, mean short-term exposure to Pb during the painting of a yellow cab using solvent-based paints were 2028 µg/m3, which was ~14 times the Taiwan short-term permissible exposure limit, while the mean level of exposure to Cr (total was 290 µg/m3, which was well below the exposure limit. This study demonstrates that water-based paints reduce the exposure potential to lead, and highlights the importance of source control in limiting the toxic metals in paints.

  5. Potential renal toxicity bio-markers indicating radiation injury after 177Lu-octreotate treatment

    International Nuclear Information System (INIS)

    Dalmo, J.; Forssell-Aronsson, E.; Westberg, E.; Toernqvist, M.; Svedborn, L.; Barregaerd, L.

    2015-01-01

    Full text of publication follows. The kidneys are one of the most exposed non-tumor tissues and regarded as one of the main dose-limiting organs in peptide receptor radionuclide therapy (PRRT). [ 177 Lu-DOTA0, Tyr3]-octreotate ( 177 Lu-octreotate) has shown promising results in the treatment of somatostatin receptor over-expressing neuroendocrine tumors, but optimization is still needed. The ability to give each patient as much 177 Lu-octreotate as possible without inducing nephrotoxicity is necessary for an efficient treatment. However, due to large inter-individual differences in uptake and retention in the kidneys, there is a need for efficient methods that can indicate renal injury early. A possible way is to identify bio-markers for high risk of radiation nephrotoxicity. The aim of this study was to investigate the potential of using urinary retinol binding protein (RBP), and blood valinhydantoin (VH) as bio-markers of nephrotoxicity on adult mice after 177 Lu-octreotate treatment. BALB/c nude mice (n=6/group) were i.v. injected with 60 MBq or 120 MBq of 177 Lu-octreotate. The control group was mock treated with saline. Spot urine samples were collected before injection, and 14, 30, 60 and 90 days after injection. Analysis of RBP4 and creatinine was performed using Mouse RBP4 ELISA kit and Creatinine kit from R/D Systems, respectively. Erythrocytes were separated from whole blood samples collected 90 days after injection, and analysed for VH by LC-MS/MS. The ratio between VH and a volumetric standard was calculated. The RBP/creatinine level increased with time in both groups given 177 Lu-octreotate, with earlier and higher response for the 120 MBq group. No clear change in VH level between the different groups was observed. The results show that RBP may be a promising new bio-marker for radiation induced kidney toxicity. The presently used method based on VH was not sensitive enough to be used as kidney toxicity marker. Further studies on mice are ongoing to

  6. Toxicity of neem's oil, a potential biocide against the invasive mussel Limnoperna fortunei (Dunker 1857

    Directory of Open Access Journals (Sweden)

    Patricio J. Pereyra

    2012-12-01

    Full Text Available The golden mussel Limnoperna fortunei (Dunker 1857 is one of the most distributed Nuisance Invasive Species (NIS in South America, and a threat of great concern for the industry of the area. In this study, we carried out toxicity tests made with a Neem's oil solution with L. fortunei larvae and benthonic adults (7, 13 and 19 ± 1 mm. Tests with non-target species (Daphnia magna, Lactuca sativa and Cnesterodon decemmculatus were also made with the aim to evaluate the potential toxicity of the Neem's solution in the environment. The LC100 of Neem's solution obtained for larvae was 500 µl/L, a value much higher than the one obtained for D. magna and C. decemmaculatus. Thus, we recommend that it should not be used in open waters. However, since the adults were killed in 72 h and the larvae in 24 h, this product can be used in closed systems, in man-made facilities.O Mexilhão dourado Limnoperna fortunei (Dunker 1857 é uma das espécies invasoras melhor distribuídas na América do Sul, sendo motivo de grande preocupação para a indústria local. Neste estudo, nós realizamos ensaios de toxicidade de soluções de Óleo de Neem em larvas e adultos bentônicos de L. fortune (7, 13 e 19 ± 1 mm. Com o objetivo de avaliar o potencial tóxico do Óleo de Neem no ambiente também foram realizados testes com organismos não alvo (Daphnia magna, Lactuca sativa e Cnesterodon decemmculatus. A LC100 da solução de Neem para larvas foi 500 µl/L, um valor muito superior ao obtido para D. magna e C. decemmaculatus. Desta forma, nossa recomendação é que este óleo não deve ser utilizado em ambientes naturais abertos. No entanto, uma vez que os adultos morreram em 72h e as larvas em 24h, este produto pode ser utilizado em sistemas fechados construídos pelo homem.

  7. Ceriodaphnia dubia as a potential bio-indicator for assessing acute aluminum oxide nanoparticle toxicity in fresh water environment.

    Directory of Open Access Journals (Sweden)

    Sunandan Pakrashi

    Full Text Available Growing nanomaterials based consumer applications have raised concerns about their potential release into the aquatic ecosystems and the consequent toxicological impacts. So environmental monitoring of the nanomaterials in aqueous systems becomes imperative. The current study reveals the potential of Ceriodaphnia dubia (C. dubia as a bio-indicator for aluminum oxide nanoparticles in a fresh water aquatic ecosystem where it occupies an important ecological niche as a primary consumer. This study aims to investigate the aluminium oxide nanoparticle induced acute toxicity on Ceriodaphnia dubia in a freshwater system. The bioavailability of the aluminum oxide nanoparticles has been studied with respect to their aggregation behavior in the system and correlated with the toxicity endpoints. The oxidative stress generated by the particles contributed greatly toward their toxicity. The crucial role of leached aluminium ion mediated toxicity in the later phases (48 h and 72 h in conjunction with the effects from the nano-sized particles in the initial phases (24 h puts forth the dynamics of nanotoxicity in the test system. The internalization of nanoparticles (both gross and systemic uptake as substantiated through the transmission electron microscopy (TEM and inductively coupled plasma optical emission spectral (ICP-OES analysis was another major contributor toward acute toxicity. Concluding the present study, Ceriodaphnia dubia can be a promising candidate for bio-monitoring the aluminium oxide nanoparticles in a fresh water system.

  8. Human Pluripotent Stem Cell-Based Assay Predicts Developmental Toxicity Potential of ToxCast Chemicals (ACT meeting)

    Science.gov (United States)

    Worldwide initiatives to screen for toxicity potential among the thousands of chemicals currently in use require inexpensive and high-throughput in vitro models to meet their goals. The devTOX quickPredict platform is an in vitro human pluripotent stem cell-based assay used to as...

  9. Bisphenol A alternatives in thermal paper from the Netherlands, Spain, Sweden and Norway. Screening and potential toxicity

    NARCIS (Netherlands)

    Björnsdotter, Maria K.; Jonker, Willem; Legradi, Jessica; Kool, Jeroen; Ballesteros-Gómez, Ana

    2017-01-01

    Thermal paper contains potentially toxic additives, such as bisphenol A (BPA), as a common color developer. Because of its known endocrine disrupting effects, structural analogues to BPA, such as bisphenol S (BPS), D-8 and Pergafast 201, have been used as alternatives, but little is known about the

  10. Evaluate the potential environmental toxicity of quantum dots on ciliated protozoa by microcalorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Qi [College of Chemistry and Life Science, Guangxi Teachers Education University, Nanning 530001 (China); State Key Laboratory of Virology, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China); Huang, Shan, E-mail: huangs@whu.edu.cn [College of Chemistry and Life Science, Guangxi Teachers Education University, Nanning 530001 (China); State Key Laboratory of Virology, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China); Su, Wei [College of Chemistry and Life Science, Guangxi Teachers Education University, Nanning 530001 (China); Li, Peiyuan [College of Pharmacy, Guangxi Traditional Chinese Medical University, Nanning 530001 (China); Liang, Zuocui; Ou, Jianzhen; Ma, Jianqiang [College of Chemistry and Life Science, Guangxi Teachers Education University, Nanning 530001 (China); Liu, Yi, E-mail: prof.liuyi@263.net [State Key Laboratory of Virology, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China)

    2012-11-10

    Highlights: Black-Right-Pointing-Pointer The toxic effects of QDs to T. thermophila BF{sub 5} using a TAM air microcalorimeter. Black-Right-Pointing-Pointer QDs were acutely toxic for T. thermophila BF{sub 5} growth in a dose-dependent manner. Black-Right-Pointing-Pointer The toxicity of different ligands-capped QDs on T. thermophila BF{sub 5} was investigated. Black-Right-Pointing-Pointer QDs could be ingested by cells and affect the morphology of T. thermophila BF{sub 5}. - Abstract: In the present study, we evaluated the toxic effects of mercaptoacetic acid (MAA)-capped CdSe QDs and CdSe/ZnS QDs to particle-ingesting model ciliated protozoa Tetrahymena thermophila BF{sub 5} (T. thermophila BF{sub 5}) by using a TAM air isothermal microcalorimeter. These results suggested that both MAA-CdSe QDs and MAA-CdSe/ZnS QDs were indeed acutely toxic for T. thermophila BF{sub 5} growth in a dose-dependent manner, and the toxicities of both MAA-CdSe QDs and MAA-CdSe/ZnS QDs increased dramatically after UV irradiation due to the liberation of more toxic Cd{sup 2+}, which indicated that the toxicity of MAA-CdSe/ZnS QDs was less than that of MAA-CdSe QDs. Furthermore, the toxicity of different ligands-capped CdSe/ZnS QDs on T. thermophila BF{sub 5} was also investigated. The uptake of MAA-CdSe/ZnS QDs and adenosine 5 Prime -monophosphate (AMP)-CdSe/ZnS QDs by cells and the morphological change during the process of T. thermophila BF{sub 5} growth incubated with these QDs were further studied by fluorescence inverted microscopy.

  11. Evaluate the potential environmental toxicity of quantum dots on ciliated protozoa by microcalorimetry

    International Nuclear Information System (INIS)

    Xiao, Qi; Huang, Shan; Su, Wei; Li, Peiyuan; Liang, Zuocui; Ou, Jianzhen; Ma, Jianqiang; Liu, Yi

    2012-01-01

    Highlights: ► The toxic effects of QDs to T. thermophila BF 5 using a TAM air microcalorimeter. ► QDs were acutely toxic for T. thermophila BF 5 growth in a dose-dependent manner. ► The toxicity of different ligands-capped QDs on T. thermophila BF 5 was investigated. ► QDs could be ingested by cells and affect the morphology of T. thermophila BF 5 . - Abstract: In the present study, we evaluated the toxic effects of mercaptoacetic acid (MAA)-capped CdSe QDs and CdSe/ZnS QDs to particle-ingesting model ciliated protozoa Tetrahymena thermophila BF 5 (T. thermophila BF 5 ) by using a TAM air isothermal microcalorimeter. These results suggested that both MAA-CdSe QDs and MAA-CdSe/ZnS QDs were indeed acutely toxic for T. thermophila BF 5 growth in a dose-dependent manner, and the toxicities of both MAA-CdSe QDs and MAA-CdSe/ZnS QDs increased dramatically after UV irradiation due to the liberation of more toxic Cd 2+ , which indicated that the toxicity of MAA-CdSe/ZnS QDs was less than that of MAA-CdSe QDs. Furthermore, the toxicity of different ligands-capped CdSe/ZnS QDs on T. thermophila BF 5 was also investigated. The uptake of MAA-CdSe/ZnS QDs and adenosine 5′-monophosphate (AMP)-CdSe/ZnS QDs by cells and the morphological change during the process of T. thermophila BF 5 growth incubated with these QDs were further studied by fluorescence inverted microscopy.

  12. Abundance, distribution and potential impact of transposable elements in the genome of Mycosphaerella fijiensis

    Directory of Open Access Journals (Sweden)

    Santana Mateus F

    2012-12-01

    Full Text Available Abstract Background Mycosphaerella fijiensis is a ascomycete that causes Black Sigatoka in bananas. Recently, the M. fijiensis genome was sequenced. Repetitive sequences are ubiquitous components of fungal genomes. In most genomic analyses, repetitive sequences are associated with transposable elements (TEs. TEs are dispersed repetitive DNA sequences found in a host genome. These elements have the ability to move from one location to another within the genome, and their insertion can cause a wide spectrum of mutations in their hosts. Some of the deleterious effects of TEs may be due to ectopic recombination among TEs of the same family. In addition, some transposons are physically linked to genes and can control their expression. To prevent possible damage caused by the presence of TEs in the genome, some fungi possess TE-silencing mechanisms, such as RIP (Repeat Induced Point mutation. In this study, the abundance, distribution and potential impact of TEs in the genome of M. fijiensis were investigated. Results A total of 613 LTR-Gypsy and 27 LTR-Copia complete elements of the class I were detected. Among the class II elements, a total of 28 Mariner, five Mutator and one Harbinger complete elements were identified. The results of this study indicate that transposons were and are important ectopic recombination sites. A distribution analysis of a transposable element from each class of the M. fijiensis isolates revealed variable hybridization profiles, indicating the activity of these elements. Several genes encoding proteins involved in important metabolic pathways and with potential correlation to pathogenicity systems were identified upstream and downstream of transposable elements. A comparison of the sequences from different transposon groups suggested the action of the RIP silencing mechanism in the genome of this microorganism. Conclusions The analysis of TEs in M. fijiensis suggests that TEs play an important role in the evolution of

  13. Abundance, distribution and potential impact of transposable elements in the genome of Mycosphaerella fijiensis.

    Science.gov (United States)

    Santana, Mateus F; Silva, José C F; Batista, Aline D; Ribeiro, Lílian E; da Silva, Gilvan F; de Araújo, Elza F; de Queiroz, Marisa V

    2012-12-22

    Mycosphaerella fijiensis is a ascomycete that causes Black Sigatoka in bananas. Recently, the M. fijiensis genome was sequenced. Repetitive sequences are ubiquitous components of fungal genomes. In most genomic analyses, repetitive sequences are associated with transposable elements (TEs). TEs are dispersed repetitive DNA sequences found in a host genome. These elements have the ability to move from one location to another within the genome, and their insertion can cause a wide spectrum of mutations in their hosts. Some of the deleterious effects of TEs may be due to ectopic recombination among TEs of the same family. In addition, some transposons are physically linked to genes and can control their expression. To prevent possible damage caused by the presence of TEs in the genome, some fungi possess TE-silencing mechanisms, such as RIP (Repeat Induced Point mutation). In this study, the abundance, distribution and potential impact of TEs in the genome of M. fijiensis were investigated. A total of 613 LTR-Gypsy and 27 LTR-Copia complete elements of the class I were detected. Among the class II elements, a total of 28 Mariner, five Mutator and one Harbinger complete elements were identified. The results of this study indicate that transposons were and are important ectopic recombination sites. A distribution analysis of a transposable element from each class of the M. fijiensis isolates revealed variable hybridization profiles, indicating the activity of these elements. Several genes encoding proteins involved in important metabolic pathways and with potential correlation to pathogenicity systems were identified upstream and downstream of transposable elements. A comparison of the sequences from different transposon groups suggested the action of the RIP silencing mechanism in the genome of this microorganism. The analysis of TEs in M. fijiensis suggests that TEs play an important role in the evolution of this organism because the activity of these elements, as well

  14. Current matrix element in HAL QCD's wavefunction-equivalent potential method

    Science.gov (United States)

    Watanabe, Kai; Ishii, Noriyoshi

    2018-04-01

    We give a formula to calculate a matrix element of a conserved current in the effective quantum mechanics defined by the wavefunction-equivalent potentials proposed by the HAL QCD collaboration. As a first step, a non-relativistic field theory with two-channel coupling is considered as the original theory, with which a wavefunction-equivalent HAL QCD potential is obtained in a closed analytic form. The external field method is used to derive the formula by demanding that the result should agree with the original theory. With this formula, the matrix element is obtained by sandwiching the effective current operator between the left and right eigenfunctions of the effective Hamiltonian associated with the HAL QCD potential. In addition to the naive one-body current, the effective current operator contains an additional two-body term emerging from the degrees of freedom which has been integrated out.

  15. Matrix elements of Yale potential and level properties of light nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, N; Prakash, O [Delhi Univ. (India). Dept. of Physics and Astrophysics

    1976-07-01

    Shell model calculations using bare and renormalized matrix elements of the Yale potential are reported for the normal-parity states of A = 6-9 nuclei. Renormalization of the two-body matrix elements using second-order perturbation theory is not found to improve the agreements with the experimental data. Inclusion of the energy shifts of ground state rotational bands in /sup 8/Be and /sup 9/Be are, however, found to improve the agreements with the excitation energies of nuclear levels. The need for carrying out more calculations of these nuclei with realistic forces is pointed out.

  16. UV-visible degradation of boscalid--structural characterization of photoproducts and potential toxicity using in silico tests.

    Science.gov (United States)

    Lassalle, Yannick; Kinani, Aziz; Rifai, Ahmad; Souissi, Yasmine; Clavaguera, Carine; Bourcier, Sophie; Jaber, Farouk; Bouchonnet, Stéphane

    2014-05-30

    Boscalid is a carboximide fungicide mainly used for vineyard protection as well as for tomato, apple, blueberry and various ornamental cultivations. The structural elucidation of by-products arising from the UV-visible photodegradation of boscalid has been investigated by gas chromatography/multi-stage mass spectrometry (GC/MS(n) ) and liquid chromatography/tandem mass spectrometry (LC/MS/MS) couplings. The potential toxicities of transformation products were estimated by in silico calculations. Aqueous solutions of boscalid were irradiated up to 150 min in a self-made reactor equipped with a mercury lamp. Analyses were carried out using a gas chromatograph coupled with an ion trap mass spectrometer operated in both electron ionization (EI) and chemical ionization (CI) modes and a liquid chromatograph coupled with a quadrupole time-of-flight (Q-TOF) mass spectrometer operated in electrospray ionization (ESI) mode. Multiple-stage collision-induced dissociation (CID) experiments were performed to establish dissociation pathways of ions. The QSAR (Quantitative Structure-Activity Relationship) T.E.S.T. program allowed the estimation of the toxicities of the by-products. Eight photoproducts were investigated. Chemical structures were proposed not only on the interpretation of multi-stage CID experiments, but also on kinetics data. These structures led us to suggest photodegradation pathways. Three photoproducts were finally detected in Lebanon in a real sample of grape leaves for which routine analysis had led to the detection of boscalid at 4 mg kg(-1). With one exception, the structures proposed for the photoproducts on the basis of mass spectra interpretation have not been reported in previous studies. In silico toxicity predictions showed that two photoproducts are potentially more toxic than the parent compound considering oral rat LD50 while five photoproducts may induce mutagenic toxicity. With the exception of one compound, all photoproducts may

  17. UV-visible degradation of boscalid- structural characterization of photoproducts and potential toxicity using in silico tests

    International Nuclear Information System (INIS)

    Rifai, A.; Jaber, F.; Lassalle, Y.; Kinani, A.; Souissi, Y.; Clavaguera, C.; Bourcier, S.; Bouchonnet, St.

    2014-01-01

    RATIONALE: Boscalid is a carboximide fungicide mainly used for vineyard protection as well as for tomato, apple, blueberry and various ornamental cultivations. The structural elucidation of by-products arising from the UV-visible photodegradation of boscalid has been investigated by gas chromatography/multi-stage mass spectrometry (GC/MSn) and liquid chromatography/tandem mass spectrometry (LC/MS/MS) couplings. The potential toxicities of transformation products were estimated by in silico calculations. METHODS: Aqueous solutions of boscalid were irradiated up to 150 min in a self-made reactor equipped with a mercury lamp. Analyses were carried out using a gas chromatograph coupled with an ion trap mass spectrometer operated in both electron ionization (EI) and chemical ionization (CI) modes and a liquid chromatograph coupled with a quadrupole time-of-flight (Q-TOF) mass spectrometer operated in electrospray ionization (ESI) mode. Multiple-stage collision-induced dissociation (CID) experiments were performed to establish dissociation pathways of ions. The QSAR (Quantitative Structure-Activity Relationship) T.E.S.T. program allowed the estimation of the toxicities of the by-products. RESULTS: Eight photoproducts were investigated. Chemical structures were proposed not only on the interpretation of multi-stage CID experiments, but also on kinetics data. These structures led us to suggest photodegradation pathways. Three photoproducts were finally detected in Lebanon in a real sample of grape leaves for which routine analysis had led to the detection of boscalid at 4 mg kg1. CONCLUSIONS: With one exception, the structures proposed for the photoproducts on the basis of mass spectra interpretation have not been reported in previous studies. In silico toxicity predictions showed that two photoproducts are potentially more toxic than the parent compound considering oral rat LD50 while five photoproducts may induce mutagenic toxicity. With the exception of one compound

  18. Comparative study for toxic elements determination in air particulate reference material by INAA, CCT-ICP-MS, and ICP-MS

    International Nuclear Information System (INIS)

    Lim, J.M.; Lee, J.H.; Kim, K.H.; Moon, J.H.; Chung, Y.S.

    2005-01-01

    Although toxic elements are minor components in the atmospheric environment, they play a significant role as important marker for atmospheric science such as risk assessment, long-range transfer study, and source apportionment. Therefore, the techniques, which allow accurate and fast elemental analysis with a minimum pre-treatment, are very important. INAA has a main advantage of non-destruction of air particulate samples, while inductively Coupled plasma with mass spectrometry (ICP-MS) encounters the most significant difficulties in pre-treatment (digestion, fusion, and dilution) and polyatomic spectral interferences for interest toxic elements, Although INAA is still reference method, a number of factors (disadvantages of cost, complexity of the instruments, and scarcity of nuclear reactor) limit its applications. To date, the use of collision cell technology ICP-MS (CCT-ICP-MS) is recommended instead of typical ICP-MS for the analysis of the toxic elements; this is because CCT-ICP-MS technique prevents polyatomic spectral interferences despite of contamination and volatile effects. In this study, a number of toxic elements in reference material, NIST SRM 2783 (air particulate on filter media) were determined by INAA, CCT-ICP-MS, and ICP-MS. For both ICP methods, the filters were decomposed by microwave digestion with 5mL nitric acid. The analytical results by three methods were compared with certificated data; the INAA results showed the most accurate and precise data sets for all target elements among three methods. In detail, the deviation between analytical results and SRM's by INAA fell below 10% for all elements excluding As (14%), while those by CCT-ICP-MS were about 20%. For ICP-MS, the result does not agree with certificated data for several elements, because polyatomic spectral interference (due to 40 Ar 35 Cl, 40 Ar 23 Na, and 35 Cl 16 O) generate positive error of analytical result for As, Cu, and V. Based on our result, INAA is still one of the most

  19. Deficiency in the mitochondrial apoptotic pathway reveals the toxic potential of autophagy under ER stress conditions.

    Science.gov (United States)

    Deegan, Shane; Saveljeva, Svetlana; Logue, Susan E; Pakos-Zebrucka, Karolina; Gupta, Sanjeev; Vandenabeele, Peter; Bertrand, Mathieu J M; Samali, Afshin

    2014-01-01

    Endoplasmic reticulum (ER) stress-induced cell death is normally associated with activation of the mitochondrial apoptotic pathway, which is characterized by CYCS (cytochrome c, somatic) release, apoptosome formation, and caspase activation, resulting in cell death. In this study, we demonstrate that under conditions of ER stress cells devoid of CASP9/caspase-9 or BAX and BAK1, and therefore defective in the mitochondrial apoptotic pathway, still undergo a delayed form of cell death associated with the activation of caspases, therefore revealing the existence of an alternative stress-induced caspase activation pathway. We identified CASP8/caspase-8 as the apical protease in this caspase cascade, and found that knockdown of either of the key autophagic genes, ATG5 or ATG7, impacted on CASP8 activation and cell death induction, highlighting the crucial role of autophagy in the activation of this novel ER stress-induced death pathway. In line with this, we identified a protein complex composed of ATG5, FADD, and pro-CASP8 whose assembly coincides with caspase activation and cell death induction. Together, our results reveal the toxic potential of autophagy in cells undergoing ER stress that are defective in the mitochondrial apoptotic pathway, and suggest a model in which the autophagosome functions as a platform facilitating pro-CASP8 activation. Chemoresistance, a common problem in the treatment of cancer, is frequently caused by the downregulation of key mitochondrial death effector proteins. Alternate stress-induced apoptotic pathways, such as the one described here, may become of particular relevance for tackling the problem of chemoresistance in cancer cells.

  20. Modes of occurrence of potentially hazardous elements in coal: levels of confidence

    Science.gov (United States)

    Finkelman, R.B.

    1994-01-01

    The modes of occurrence of the potentially hazardous elements in coal will be of significance in any attempt to reduce their mobilization due to coal combustion. Antimony and selenium may be present in solid solution in pyrite, as minute accessory sulfides dispersed throughout the organic matrix, or in organic association. Because of these modes of occurrence it is anticipated that less than 50% of these elements will be routinely removed by conventional coal cleaning procedures. Arsenic and mercury occur primarily in late-stage coarse-grained pyrite therefore physical coal cleaning procedures should be successful in removing substantial proportions of these elements. Cadmium occurs in sphalerite and lead in galena. Both of these minerals exhibit a wide range of particle sizes and textural relations. Depending on the particle size and textural relations, physical coal cleaning may remove as little as 25% of these elements or as much as 75%. Manganese in bituminous coal occurs in carbonates, especially siderite. Physical coal cleaning should remove a substantial proportion of this element. More information is needed to elucidate the modes of occurrence of beryllium, chromium, cobalt, and nickel. ?? 1994.

  1. Co-ordinated research project on use of nuclear and related analytical techniques in studying human health impacts of toxic elements consumed through foodstuffs contaminated by industrial activities. Report on the first research co-ordination meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    The overall objective of the Co-ordinated research project is to provide a scientific basis for better assessment of selected pollutants in the food chain with a view to elucidating their impacts on human health and nutrition. Results of this study will enhance the existing body of knowledge and can be used to develop preventive strategies. Specific objectve: To determine the extent to which toxic element levels in food are affected by surrounding industrial activities and to assess potential human exposure from the consumption of such foodstuffs. EXPECTED RESEARCH OUTPUTS (RESULTS): Harmonized protocols and procedures for sampling and analyses; ? Compiled results for toxic element levels and their average daily dietary intake (ADDI) / dietary intake; Evaluated toxic element exposure levels based on biological indicators (where applicable); Publications of the study results in an IAEA TECDOC, and in peer-reviewed journals by participants. ACTION PLAN (ACTIVITIES) a. Core research activities: 1 Identification of the study areas and population groups. 2 Collection of information on food consumption patterns of the population groups under study (e.g. through questionnaires). 3 Development of harmonized protocols and validation of analytical methodologies in compliance with ISO/IEC 17025. 4 Collection and analysis of food samples, and estimation of the dietary intake. 5 Collection and analysis of biological indicators where applicable. 6 Evaluation of possible relationships between human exposures and biological indicators for the pollutants studied. 4b. Supplementary activities: ? Speciation studies of pollutants. ? Comparison of present and previous data on relevant parameters. ? Possible production and distribution of laboratory intercomparison samples. 7. Recommendations for nuclear analytical techniques ? Nuclear analytical technique (NAT) such as INAA, PIXE, PIGE, XRF should be the primary technique of analysis; Instrumental neutron activation analysis (INAA

  2. Determination of essential and toxic elements in sea bass (Centropomus sp.) and hake (Cynoscion leiarchus) consumed in the city of Sao Paulo by neutron activation analysis

    International Nuclear Information System (INIS)

    Fabiano, Karen C.; Moreira, Edson G.; Vasconcellos, Marina B.A.

    2013-01-01

    The goal was to use the Instrumental Neutron Activation Analysis (INAA) to evaluate the levels of essential and toxic elements in samples of hake (Cynoscion leiarchus) and sea bass (Centropomus sp.) that are most consumed fish in the town of some Sao Paulo. Ten specimens of hake and sea bass were acquired in Companhia de Entrepostos e Armazens Gerais de Sao Paulo (CEAGESP), main supply center for the population of the metropolitan area of Sao Paulo. After gutted and cleaned, the edible tissue was freeze-dried, ground and sieved. The elements were determined through the use of hyperpure germanium spectrometer after irradiation in the nuclear research reactor IEAR-1

  3. The potentiation of zinc toxicity by soil moisture in a boreal forest ecosystem.

    Science.gov (United States)

    Owojori, Olugbenga J; Siciliano, Steven D

    2015-03-01

    Northern boreal forests often experience forest dieback as a result of metal ore mining and smelting. The common solution is to lime the soil, which increases pH, reducing metal toxicity and encouraging recovery. In certain situations, however, such as in Flin Flon, Manitoba, Canada, liming has yielded only moderate benefits, with some locations responding well to liming and other locations not at all. In an effort to increase the effectiveness of the ecorestoration strategy, the authors investigated if these differences in liming responsiveness were linked to differences in toxicity. Toxicity of metal-impacted Flin Flon soils on the oribatid mite Oppia nitens and the collembolan Folsomia candida was assessed, with a view toward identifying the metal of concern in the area. The effects of moisture content on metal sorption, uptake, and toxicity to the invertebrates were also investigated. Toxicity tests with the invertebrates were conducted using either Flin Flon soils or artificial soils with moisture content adjusted to 30%, 45%, 60%, or 75% of the maximum water-holding capacity of the soil samples. The Relative to Cd Toxicity Model identified Zn as the metal of concern in the area, and this was confirmed using validation tests with field contaminated soils. Furthermore, increasing the moisture content in soils increased the amount of mobile Zn available for uptake with the ion exchange resin. Survival and reproduction of both invertebrates were reduced under Zn exposure as moisture level increased. Thus, moisture-collecting landforms, which are often also associated with high Zn concentrations at Flin Flon, have, as a result, higher Zn toxicity to the soil ecosystem because of increases in soil moisture. © 2014 SETAC.

  4. Realizing the therapeutic potential of rare earth elements in designing nanoparticles to target and treat glioblastoma.

    Science.gov (United States)

    Lu, Victor M; McDonald, Kerrie L; Townley, Helen E

    2017-10-01

    The prognosis of brain cancer glioblastoma (GBM) is poor, and despite intense research, there have been no significant improvements within the last decade. This stasis implicates the need for more novel therapeutic investigation. One such option is the use of nanoparticles (NPs), which can be beneficial due to their ability to penetrate the brain, overcome the blood-brain barrier and take advantage of the enhanced permeation and retention effect of GBM to improve specificity. Rare earth elements possess a number of interesting natural properties due to their unique electronic configuration, which may prove therapeutically advantageous in an NP formulation. The underexplored exciting potential for rare earth elements to augment the therapeutic potential of NPs in GBM treatment is discussed in this review.

  5. Study of radon concentration and toxic elements in drinking and irrigated water and its implications in Sungai Petani, Kedah, Malaysia

    Directory of Open Access Journals (Sweden)

    Nisar Ahmad

    2015-07-01

    Full Text Available The radon activity concentration and toxic elements have been assessed in drinking and irrigated water samples collected from different locations of Sungai Petani, Kedah, Malaysia. The water samples were collected from wells, streams and taps. A calibrated alpha spectrometer RAD-7 (Model 2890 and Atomic Absorption Spectrometers (Perkin–Elmer, Model AAnalyst 200, Shimadzu, Model AA-700 were used to estimate radon activity concentration and toxic elements, respectively. Maximum average value of radon concentration among the various types of water sources was found 14.7 ± 1.44 Bq/l in well water used for drinking and irrigation and minimum was found 5.37 ± 0.58 Bq/l in tap water used for drinking. Contribution of radon in drinking water to indoor air and age dependent associated annual effective doses were calculated from the measured radon concentration and were found less than lower limit of recommended action level. The activity concentrations of Ni > Pb > Cd > As > Cr were found higher for streams water as compared to wells and tap water. Values of radon concentration in well water were found higher than EPA recommended level and lower than WHO action level while the annual effective doses and level of toxic elements in water reported in this study were found lower than recommended level.

  6. Transformation of toxic potential of Jatropha curcas (Ratanjyot into protein source: A mini-review

    Directory of Open Access Journals (Sweden)

    Amit Shukla

    2015-06-01

    Full Text Available The production of animal largely depends on supplying of quality feed and proteinaceous supplement to the animals. Jatropha plant can grow in the barren lands, and are used as a source of biodiesel. Besides, the plant may act as a rich proteinaceous source. However, the antinutritional factors present in the seed and seed oil of the plant may hamper the availability and beneficial use of the plant. Curcin and phorbol esters are the major toxic compounds present in the plant; these toxic compounds cause to produce liver and kidney diseases. Detoxification of these toxic compounds by physical and chemical means converting to less toxic seed cake may serve the purpose of using this plant in future as a replacement of costly protein supplement for animals. Therefore, in modern world, it is recommended to utilize the protein source by neutralizing the antinutritional factors. This mini-review describes the updates on how J. curcas can be utilized as a supplementary source of protein for animals by decreasing its toxicity.

  7. Finite element transport methods for criticality calculations - current status and potential applications

    International Nuclear Information System (INIS)

    Oliveira, C.R.E. de; Goddard, A.

    1991-01-01

    In this paper we review the current status of the finite element method applied to the solution of the neutron transport equation and we discuss its potential role in the field of criticality safety. We show that the method's ability in handling complex, irregular geometry in two- and three-dimensions coupled with its accurate solutions potentially renders it an attractive alternative to the longer-established Monte Carlo method. Details of the most favoured form of the method - that which combines finite elements in space and spherical harmonics in angle - are presented. This form of the method, which has been extensively investigated over the last decade by research groups at the University of London, has been numerically implemented in the finite element code EVENT. The code has among its main features the capability of solving fixed source eigenvalue and time-dependent complex geometry problems in two- and three-dimensions. Other features of the code include anisotropic up- and down-scatter, direct and/or adjoint solutions and access to standard data libraries. Numerical examples, ranging from simple criticality benchmark studies to the analysis of idealised three-dimensional reactor cores, are presented to demonstrate the potential of the method. (author)

  8. Using aquatic macroinvertebrate species traits to build test batteries for sediment toxicity assessment: accounting for the diversity of potential biological responses to toxicants.

    Science.gov (United States)

    Ducrot, Virginie; Usseglio-Polatera, Philippe; Péry, T Alexandre R R; Mouthon, Jacques; Lafont, Michel; Roger, Marie-Claude; Garric, Jeanne; Férard, Jean-François

    2005-09-01

    An original species-selection method for the building of test batteries is presented. This method is based on the statistical analysis of the biological and ecological trait patterns of species. It has been applied to build a macroinvertebrate test battery for the assessment of sediment toxicity, which efficiently describes the diversity of benthic macroinvertebrate biological responses to toxicants in a large European lowland river. First, 109 potential representatives of benthic communities of European lowland rivers were selected from a list of 479 taxa, considering 11 biological traits accounting for the main routes of exposure to a sediment-bound toxicant and eight ecological traits providing an adequate description of habitat characteristics used by the taxa. Second, their biological and ecological trait patterns were compared using coinertia analysis. This comparison allowed the clustering of taxa into groups of organisms that exhibited similar life-history characteristics, physiological and behavioral features, and similar habitat use. Groups exhibited various sizes (7-35 taxa), taxonomic compositions, and biological and ecological features. Main differences among group characteristics concerned morphology, substrate preferendum and habitat utilization, nutritional features, maximal size, and life-history strategy. Third, the best representatives of the mean biological and ecological characteristics of each group were included in the test battery. The final selection was composed of Chironomus riparius (Insecta: Diptera), Branchiura sowerbyi (Oligochaeta: Tubificidae), Lumbriculus variegatus (Oligochaeta: Lumbriculidae), Valvata piscinalis (Gastropoda: Valvatidae), and Sericostoma personatum (Trichoptera: Sericostomatidae). This approach permitted the biological and ecological variety of the battery to be maximized. Because biological and ecological traits of taxa determine species sensitivity, such maximization should permit the battery to better account

  9. Accumulation of technetium from soil by plants: a potential mechanism for uptake and toxicity

    International Nuclear Information System (INIS)

    Wildung, R.E.; Garland, T.R.; Cataldo, D.A.

    1975-07-01

    The isotope 99 Tc (T 1 / 2 , 2.15 x 10 5 years) is produced by the spontaneous fission of 238 U in nature and by the slow neutron fission of 238 U in nuclear reactors. In the latter case, the potential exists for Tc entrance into the environment in emissions from nuclear reactors, nuclear fuel reprocessing plants, and other facilities which use Tc for commercial purposes. Results are reported from studies on Tc uptake by plants. The most stable chemical species of Tc in aqueous solution is the pertechnetate ion (TcO 4 -1 ), and it is this form which is most likely to enter surface soils. Recent studies indicated that at least over the short term, pertechnetate is soluble and highly mobile in most soils and is sorbed in significant quantities only in high organic matter, low pH soils. Plant availability normally increases with increased ion solubility in soil provided the ion is not discriminated against at the plant root level. Furthermore, the aqueous chemistry of pertechnetate is similar in several respects to permanganate and molybdate, compounds of elements essential in []lant nutrition. Experiments were undertaken to determine the uptake and distribution of Tc in plants as a function of time using soybeans (Glycine max) and 99 Tc as a tracer. (CH)

  10. Beyond platinum: synthesis, characterization, and in vitro toxicity of Cu(II-releasing polymer nanoparticles for potential use as a drug delivery vector

    Directory of Open Access Journals (Sweden)

    Harris Alesha

    2011-01-01

    Full Text Available Abstract The field of drug delivery focuses primarily on delivering small organic molecules or DNA/RNA as therapeutics and has largely ignored the potential for delivering catalytically active transition metal ions and complexes. The delivery of a variety of transition metals has potential for inducing apoptosis in targeted cells. The chief aims of this work were the development of a suitable delivery vector for a prototypical transition metal, Cu2+, and demonstration of the ability to impact cancer cell viability via exposure to such a Cu-loaded vector. Carboxylate-functionalized nanoparticles were synthesized by free radical polymerization and were subsequently loaded with Cu2+ via binding to particle-bound carboxylate functional groups. Cu loading and release were characterized via ICP MS, EDX, XPS, and elemental analysis. Results demonstrated that Cu could be loaded in high weight percent (up to 16 wt.% and that Cu was released from the particles in a pH-dependent manner. Metal release was a function of both pH and the presence of competing ligands. The toxicity of the particles was measured in HeLa cells where reductions in cell viability greater than 95% were observed at high Cu loading. The combined pH sensitivity and significant toxicity make this copper delivery vector an excellent candidate for the targeted killing of disease cells when combined with an effective cellular targeting strategy.

  11. Spatial and Temporal Dynamics of Potentially Toxic Cyanobacteria in the Riverine Region of a Temperate Estuarine System Altered by Weirs

    Directory of Open Access Journals (Sweden)

    Jacqueline Martha Malazarte

    2017-10-01

    Full Text Available The effects of weirs on fish and other biological communities have garnered considerable study, whereas the effects of weirs on community composition of toxic cyanobacteria have not yet been well documented. In this study, temporal and spatial variations in species composition and the abundance of potentially toxic cyanobacteria were investigated in the riverine regions of the temperate Youngsan River estuary, where two weirs have recently been constructed. Four stations were sampled 0.5 m below the surface monthly along the channel of the upper river from May 2014 to April 2015 to explore cyanobacterial composition and abundance, while physicochemical and biological parameters were measured to elucidate possible mechanisms controlling these dynamics. Two stations were located upstream at free-flowing sites, and the other stations were located downstream at impounded sites near the weirs. Twenty-eight cyanobacterial species were identified, seven of which were potentially toxic: Microcystis sp., M. aeruginosa, M. flos-aquae, Dolichospermum sp., Aphanocapsa sp., Oscillatoria sp. and Phormidium sp. Microcystis sp. was the most abundant in June 2014 at the lowest station near the weir. Meanwhile, Phormidium sp. occurred at low abundance throughout the study period, except during the winter months, when its abundance was elevated. The interactive forward selection method highlighted dissolved inorganic nitrogen and zooplankton abundance as explanatory variables for this observed variation, but their effects on cyanobacterial growth are unclear. However, temperature was the major determinant for the temporal variation in cyanobacterial populations. Cluster analysis showed that the downstream stations near the weirs had a high similarity of potentially toxic cyanobacteria. Significantly higher abundance, especially of Microcystis sp., was also recorded at the impounded sites suggesting that the presence of weirs might affect variations in toxic

  12. Effects of the interleukin-6 (IL-6) polymorphism on toxic metal and trace element levels in placental tissues

    International Nuclear Information System (INIS)

    Kayaalti, Zeliha; Tekin, Deniz; Aliyev, Vugar; Yalcin, Serap; Kurtay, Guelay; Soeylemezoglu, Tuelin

    2011-01-01

    The placenta is a crucial organ of fetal origin that functions in providing nutrients to the fetus from the mother. During pregnancy, the need for essential micronutrients, such as Fe and Zn, increases due to the requirements of the growing fetus. Maternal Fe deficiency induces an increase in Cu levels and can also affect cytokine levels in the placenta. On the other hand, Cu deficiency, although not as common, can also have destructive effects on the fetus. Interleukin-6 (IL-6) is a pleiotropic cytokine with a wide range of biological activities, including such as immune responses, acute-phase reactions, and inflammation. The placenta produces a significant amount of IL-6 during pregnancy. The effects of the IL-6 -174 G/C single nucleotide polymorphism (SNP) on IL-6 gene transcription and on plasma cytokine levels were assessed in the present study. We investigated the association between the IL-6 -174 G/C polymorphism and trace element/toxic metal levels in placental tissues. For the purposes of this study, 95 healthy volunteers were evaluated. Presence of the IL-6 polymorphism was determined using the standard polymerase chain reaction (PCR)-restriction fragment length polymorphism (RFLP) technique, and metal levels were analyzed by atomic absorption spectrometry (AAS). Based on our data, there were no significant associations between the IL-6 -174 G/C polymorphism and Pb, Cd, Fe, or Zn levels in the placental tissues (p > 0.05), but a statistically significant association was detected between the polymorphism and Cu levels (p = 0.016). We determined that the mean Cu levels in the placental tissues from individuals with GG, GC and CC genotypes were 5.62 ± 1.98, 6.22 ± 3.22 and 8.00 ± 1.32 ppm, respectively, whereas the overall mean Cu level from the placental tissues was 5.98 ± 2.51 ppm. - Highlights: → We studied between the association of IL-6 polymorphism and metal levels in the placenta tissues. → It was the first report evaluating the association

  13. Biofabrication of zinc oxide nanoparticles using fruit extract of Rosa canina and their toxic potential against bacteria: A mechanistic approach

    International Nuclear Information System (INIS)

    Jafarirad, Saeed; Mehrabi, Meysam; Divband, Baharak; Kosari-Nasab, Morteza

    2016-01-01

    The use of plant extract in the biosynthesis of nanoparticles (NPs) can be an eco-friendly approach and have been suggested as a possible alternative to classic methods namely physical and chemical procedures. In this study, the biosynthesis of zinc oxide (ZnO) NPs by both “conventional heating” (CH) and “microwave irradiation” (MI) methods has been reported. Stable and spherical ZnONPs were produced using zinc nitrate and flesh extract of Rosa canina fruit (rosehip) which was used as a precursor. The flesh extract acts as a reducing and capping agent for generation of ZnONPs. The structural, morphological and colloidal properties of the as-synthesized NPs have been confirmed by X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive X-ray (EDX), Fourier transform Infrared (FT-IR) and Dynamic Light Scattering (DLS). In comparison with the CH method, the MI method has some advantages such as significantly short reaction time (within 8 min) owing to the high heating rate and thus the accelerated reaction rate. Both methods led to the synthesis of nearly identical NPs with respect to shape and size according to the results of DLS, XRD and SEM techniques. The possible mechanism for synthesis pathway has been proposed based on FT IR results, XRD patterns, potentiometric data and antioxidant activity. In addition, the antibacterial activity of as-prepared ZnONPs was investigated against several bacteria such as Listeria monocytogenes, Escherichia coli, Salmonella typhimurium. Moreover, the efficacy of ZnONPs to treat cancer cell lines were measured by means of cell viability test via MTT assay in which concentrations of 0.05 and 0.1 mg/mL of ZnONPs induced a very low toxicity