WorldWideScience

Sample records for potent marine toxins

  1. Synthesis and biology of cyclic imine toxins, an emerging class of potent, globally distributed marine toxins.

    Science.gov (United States)

    Stivala, Craig E; Benoit, Evelyne; Aráoz, Rómulo; Servent, Denis; Novikov, Alexei; Molgó, Jordi; Zakarian, Armen

    2015-03-01

    From a small group of exotic compounds isolated only two decades ago, Cyclic Imine (CI) toxins have become a major class of marine toxins with global distribution. Their distinct chemical structure, biological mechanism of action, and intricate chemistry ensures that CI toxins will continue to be the subject of fascinating fundamental studies in the broad fields of chemistry, chemical biology, and toxicology. The worldwide occurrence of potent CI toxins in marine environments, their accumulation in shellfish, and chemical stability are important considerations in assessing risk factors for human health. This review article aims to provide an account of chemistry, biology, and toxicology of CI toxins from their discovery to the present day.

  2. Marine algal toxins: origins, health effects, and their increased occurrence

    International Nuclear Information System (INIS)

    Van Dolah, Frances M.

    2000-01-01

    Certain marine algae produce potent toxins that impact human health through the consumption of contaminated shellfish and finfish and through water or aerosol exposure. Over the past three decades, the frequency and global distribution of toxic algal incidents appear to have increased, and human intoxications from novel algal sources have occurred. This increase is of particular concern, since it parallels recent evidence of large-scale ecologic disturbances that coincide with trends in global warming. The extent to which human activities have contributed to their increase therefore comes into question. This review summarizes the origins and health effects of marine algal toxins, as well as changes in their current global distribution, and examines possible causes for the recent increase in their occurrence. (Author)

  3. Potent antitumor activity of a urokinase-activated engineered anthrax toxin

    Science.gov (United States)

    Liu, Shihui; Aaronson, Hannah; Mitola, David J.; Leppla, Stephen H.; Bugge, Thomas H.

    2003-01-01

    The acquisition of cell-surface urokinase plasminogen activator activity is a hallmark of malignancy. We generated an engineered anthrax toxin that is activated by cell-surface urokinase in vivo and displays limited toxicity to normal tissue but broad and potent tumoricidal activity. Native anthrax toxin protective antigen, when administered with a chimeric anthrax toxin lethal factor, Pseudomonas exotoxin fusion protein, was extremely toxic to mice, causing rapid and fatal organ damage. Replacing the furin activation sequence in anthrax toxin protective antigen with an artificial peptide sequence efficiently activated by urokinase greatly attenuated toxicity to mice. In addition, the mutation conferred cell-surface urokinase-dependent toxin activation in vivo, as determined by using a panel of plasminogen, plasminogen activator, plasminogen activator receptor, and plasminogen activator inhibitor-deficient mice. Surprisingly, toxin activation critically depended on both urokinase plasminogen activator receptor and plasminogen in vivo, showing that both proteins are essential cofactors for the generation of cell-surface urokinase. The engineered toxin displayed potent tumor cell cytotoxicity to a spectrum of transplanted tumors of diverse origin and could eradicate established solid tumors. This tumoricidal activity depended strictly on tumor cell-surface plasminogen activation. The data show that a simple change of protease activation specificity converts anthrax toxin from a highly lethal to a potent tumoricidal agent.

  4. Marine and freshwater toxins.

    Science.gov (United States)

    Hungerford, James M

    2006-01-01

    In a very busy and exciting year, 2005 included First Action approval of a much needed official method for paralytic shellfish toxins and multiple international toxin symposia highlighted by groundbreaking research. These are the first-year milestones and activities of the Marine and Freshwater Toxins Task Force and Analytical Community. Inaugurated in 2004 and described in detail in last year's General Referee Report (1) this international toxins group has grown to 150 members from many regions and countries. Perhaps most important they are now making important and global contributions to food safety and to providing alternatives to animal-based assays. Official Method 2005.06 was first approved in late 2004 by the Task Force and subsequently Official First Action in 2005 (2) by the Methods Committee on Natural Toxins and Food Allergens and the Official Methods Board. This nonproprietary method (3) is a precolumn oxidation, liquid chromatographic method that makes good use of fluorescence detection to provide high sensitivity detection of the saxitoxins. It has also proven to be rugged enough for regulatory use and the highest level of validation. As pointed out in the report of method principle investigator and Study Director James Lawrence, approval of 2005.06 now provides the first official alternative to the mouse bioassay after many decades of shellfish monitoring. This past year in April 2005 the group also held their first international conference, "Marine and Freshwater Toxins Analysis: Ist Joint Symposium and AOAC Task Force Meeting," in Baiona, Spain. The 4-day conference consisted of research and stakeholder presentations and symposium-integrated subgroup sessions on ciguatoxins, saxitoxin assays and liquid chromatography (LC) methods for saxitoxins and domoic acids, okadaiates and azaspiracids, and yessotoxins. Many of these subgroups were recently formed in 2005 and are working towards their goals of producing officially validated analytical methods

  5. Pufferfish mortality associated with novel polar marine toxins in Hawaii

    Science.gov (United States)

    Work, Thierry M.; Moeller, Perer D. R.; Beauchesne, Kevin R.; Dagenais, Julie; Breeden, Renee; Rameyer, Robert; Walsh, Willliam A.; Abecassis, Melanie; Kobayashi, Donald R.; Conway, Carla M.; Winton, James

    2017-01-01

    Fish die-offs are important signals in tropical marine ecosystems. In 2010, a mass mortality of pufferfish in Hawaii (USA) was dominated by Arothron hispidus showing aberrant neurological behaviors. Using pathology, toxinology, and field surveys, we implicated a series of novel, polar, marine toxins as a likely cause of this mass mortality. Our findings are striking in that (1) a marine toxin was associated with a kill of a fish species that is itself toxic; (2) we provide a plausible mechanism to explain clinical signs of affected fish; and (3) this epizootic likely depleted puffer populations. Whilst our data are compelling, we did not synthesize the toxin de novo, and we were unable to categorically prove that the polar toxins caused mortality or that they were metabolites of an undefined parent compound. However, our approach does provide a template for marine fish kill investigations associated with marine toxins and inherent limitations of existing methods. Our study also highlights the need for more rapid and cost-effective tools to identify new marine toxins, particularly small, highly polar molecules.

  6. Studies on marine toxins: chemical and biological aspects

    International Nuclear Information System (INIS)

    Stonik, Valentin A; Stonik, Inna V

    2010-01-01

    The structures and mechanisms of biological action of the best known representatives of the main groups of marine toxins are presented. It is shown that many compounds have complex chemical structures and possess extremely high toxicities. Characteristic features of isolation, structure determination and syntheses of these compounds using the achievement of modern organic chemistry are discussed. The methods of identification and quantitative analysis of marine toxins are briefly reviewed.

  7. Paralytic shellfish toxins in the Atlantic horse mackerel (Trachurus trachurus over a bloom of Gymnodinium catenatum: the prevalence of decarbamoylsaxitoxin in the marine food web

    Directory of Open Access Journals (Sweden)

    Sandra Lage

    2013-03-01

    Full Text Available This study reports the accumulation of paralytic shellfish toxins (PSTs in Atlantic horse mackerel (Trachurus trachurus over a bloom of the toxigenic dinoflagellate Gymnodinium catenatum. High levels of toxins, up to 4800 μg STXeq kg–1, were registered at the peak of the bloom (5.0 103 cells l–1. The suite of individual PSTs was examined. Decarbamoylsaxitoxin (dcSTX and B1 constituted nearly 90% of toxins (on a molar basis determined in mackerel. This profile of toxins markedly differs from the known profile of toxins produced by G. catenatum strains isolated from the Portuguese coast, which is dominated by N-sulfocarbamoyl toxins, in particular the C1+2 toxins. The prevalence of the potent dcSTX in the pelagic environment and its transfer through the marine food web is highlighted in this study. Atlantic horse mackerel is identified as a high potential vector of PSTs along the Portuguese coast. This fish species has a central position in the marine food web, being an important predator of zooplankton and at the same time an important diet item of top predators. This study reveals bioaccumulation values that are important for evaluating potential impacts of blooms of PST-producing dinoflagellates on marine ecosystems or their components, such as fish.

  8. Mycosporine-Like Amino Acids and Marine Toxins - The Common and the Different

    Science.gov (United States)

    Klisch, Manfred; Häder, Donat-P.

    2008-01-01

    Marine microorganisms harbor a multitude of secondary metabolites. Among these are toxins of different chemical classes as well as the UV-protective mycosporine-like amino acids (MAAs). The latter form a group of water-soluble, low molecular-weight (generally < 400) compounds composed of either an aminocyclohexenone or an aminocyclohexenimine ring, carrying amino acid or amino alcohol substituents. So far there has been no report of toxicity in MAAs but nevertheless there are some features they have in common with marine toxins. Among the organisms producing MAAs are cyanobacteria, dinoflagellates and diatoms that also synthesize toxins. As in cyclic peptide toxins found in cyanobacteria, amino acids are the main building blocks of MAAs. Both, MAAs and some marine toxins are transferred to other organisms e.g. via the food chains, and chemical modifications can take place in secondary consumers. In contrast to algal toxins, the physiological role of MAAs is clearly the protection from harmful UV radiation by physical screening. However, other roles, e.g. as osmolytes and antioxidants, are also considered. In this paper the common characteristics of MAAs and marine toxins are discussed as well as the differences. PMID:18728764

  9. Mycosporine-Like Amino Acids and Marine Toxins - The Common and the Different

    Directory of Open Access Journals (Sweden)

    Donat P. Häder

    2008-05-01

    Full Text Available Marine microorganisms harbor a multitude of secondary metabolites. Among these are toxins of different chemical classes as well as the UV-protective mycosporinelike amino acids (MAAs. The latter form a group of water-soluble, low molecular-weight (generally < 400 compounds composed of either an aminocyclohexenone or an aminocyclohexenimine ring, carrying amino acid or amino alcohol substituents. So far there has been no report of toxicity in MAAs but nevertheless there are some features they have in common with marine toxins. Among the organisms producing MAAs are cyanobacteria, dinoflagellates and diatoms that also synthesize toxins. As in cyclic peptide toxins found in cyanobacteria, amino acids are the main building blocks of MAAs. Both, MAAs and some marine toxins are transferred to other organisms e.g. via the food chains, and chemical modifications can take place in secondary consumers. In contrast to algal toxins, the physiological role of MAAs is clearly the protection from harmful UV radiation by physical screening. However, other roles, e.g. as osmolytes and antioxidants, are also considered. In this paper the common characteristics of MAAs and marine toxins are discussed as well as the differences.

  10. EFFECT OF MARINE TOXINS ON THERMOREGULATION IN MICE.

    Science.gov (United States)

    Marine algal toxins are extremely toxic and can represent a major health problem to humans and animals. Temperature regulation is one of many processes to be affected by exposure to these toxins. Mice and rats become markedly hypothermic when subjected to acute exposure to the ma...

  11. Toxin production in Dinophysis and the fate of these toxins in marine mussels

    DEFF Research Database (Denmark)

    Nielsen, Lasse Tor

    Diarrhetic shellfish poisoning (DSP) poses a considerable threat to food safety and to the economy of shellfish fishers and farmers in many parts of the world. Thousands of DSP intoxications have been reported, and bivalve harvesting can sometimes be closed down several months in a row. The toxins....... acuta. I grew the two species in laboratory cultures at different irradiances (7-130 μmol photons m-2 s-1) and with different food availability. The results showed that irradiance had no effects on toxin profiles, and only limited effects of the cellular toxin contents. Rather, toxin production rates...... are primarily produced by the marine mixotrophic dinoflagellates Dinophysis spp., known to occur in most parts of the world. Dinophysis can, along with other planktonic organisms, be consumed by filter-feeding bivalves, and thus the toxins can accumulate. Dinophysis can produce the three toxin groups, okadaic...

  12. The marine cytotoxin portimine is a potent and selective inducer of apoptosis.

    Science.gov (United States)

    Cuddihy, Sarah L; Drake, Sarah; Harwood, D Tim; Selwood, Andrew I; McNabb, Paul S; Hampton, Mark B

    2016-12-01

    Portimine is a recently discovered member of a class of marine micro-algal toxins called cyclic imines. In dramatic contrast to related compounds in this toxin class, portimine has very low acute toxicity to mice but is highly cytotoxic to cultured cells. In this study we show that portimine kills human Jurkat T-lymphoma cells and mouse embryonic fibroblasts (MEFs), with LC 50 values of 6 and 2.5 nM respectively. Treated cells displayed rapid caspase activation and phosphatidylserine exposure, indicative of apoptotic cell death. Jurkat cells overexpressing the anti-apoptotic protein Bcl-2 or Bax/Bak knockout MEFs were completely protected from portimine. This protection was apparent even at high concentrations of portimine, with no evidence of necrotic cell death, indicating that portimine is a selective chemical inducer of apoptosis. Treatment of the Bcl-2-overexpressing cells with both portimine and the Bcl-2 inhibitor ABT-737 proved a powerful combination, causing >90 % death. We conclude that portimine is one of the most potent naturally derived inducers of apoptosis to be discovered, and it displays strong selectivity for the induction of apoptotic pathways.

  13. Palytoxin: a new marine toxin from a coelenterate.

    Science.gov (United States)

    Moore, R E; Scheuer, P J

    1971-04-30

    Palytoxin has been isolated from the zoanthids "limu-make-o-Hana" (Tentatively identified as Palythoa sp.) as a noncrystalline, chromatographically pure entity. Apart from polypeptide and protein toxins, it is the most highly toxic substance known, with a lethal dose (LD(59)) in mice of 0.15 microgram per kilogram by intravenous injection. Unlike the potent toxins batrachotoxin, saxitoxin, and tetrodotoxin which have molecular weights of 500 or less, palytoxin has an estimated molecular weight of 3300 and contains no repetitive amino acid or sugar units.

  14. Marine Toxins That Target Voltage-gated Sodium Channels

    Directory of Open Access Journals (Sweden)

    Robert J. French

    2006-04-01

    Full Text Available Abstract: Eukaryotic, voltage-gated sodium (NaV channels are large membrane proteins which underlie generation and propagation of rapid electrical signals in nerve, muscle and heart. Nine different NaV receptor sites, for natural ligands and/or drugs, have been identified, based on functional analyses and site-directed mutagenesis. In the marine ecosystem, numerous toxins have evolved to disrupt NaV channel function, either by inhibition of current flow through the channels, or by modifying the activation and inactivation gating processes by which the channels open and close. These toxins function in their native environment as offensive or defensive weapons in prey capture or deterrence of predators. In composition, they range from organic molecules of varying size and complexity to peptides consisting of ~10-70 amino acids. We review the variety of known NaV-targeted marine toxins, outlining, where known, their sites of interaction with the channel protein and their functional effects. In a number of cases, these natural ligands have the potential applications as drugs in clinical settings, or as models for drug development.

  15. Biodegradation of polyether algal toxins--isolation of potential marine bacteria.

    Science.gov (United States)

    Shetty, Kateel G; Huntzicker, Jacqueline V; Rein, Kathleen S; Jayachandran, Krish

    2010-12-01

    Marine algal toxins such as brevetoxins, okadaic acid, yessotoxin, and ciguatoxin are polyether compounds. The fate of polyether toxins in the aqueous phase, particularly bacterial biotransformation of the toxins, is poorly understood. An inexpensive and easily available polyether structural analog salinomycin was used for enrichment and isolation of potential polyether toxin degrading aquatic marine bacteria from Florida bay area, and from red tide endemic sites in the South Florida Gulf coast. Bacterial growth on salinomycin was observed in most of the enrichment cultures from both regions with colony forming units ranging from 0 to 6×10(7) per mL. The salinomycin biodegradation efficiency of bacterial isolates determined using LC-MS ranged from 22% to 94%. Selected bacterial isolates were grown in media with brevetoxin as the sole carbon source to screen for brevetoxin biodegradation capability using ELISA. Out of the two efficient salinomycin biodegrading isolates MB-2 and MB-4, maximum brevetoxin biodegradation efficiency of 45% was observed with MB-4, while MB-2 was unable to biodegrade brevetoxin. Based on 16S rRNA sequence similarity MB-4 was found have a match with Chromohalobacter sp.

  16. Regulations for marine microalgal toxins: Towards harmonization of ...

    African Journals Online (AJOL)

    The World Trade Organization and the General Agreements on Tariffs and Trade encourage the harmonization of regulations on food safety requirements. The current policy on trade liberalization of seafood is presented, together with a review of the regulations for marine microalgal toxins. Activities on harmonization of ...

  17. Assessing the presence of marine toxins in bivalve molluscs from southwest India.

    Science.gov (United States)

    Turner, Andrew D; Dhanji-Rapkova, Monika; Rowland-Pilgrim, Stephanie; Turner, Lucy M; Rai, Ashwin; Venugopal, Moleyur N; Karunasagar, Indrani; Godhe, Anna

    2017-12-15

    The south west coast of India has been showing a steady increase in shellfish cultivation both for local consumption and fishery export, over recent years. Perna viridis and Crassostrea madrasensis are two species of bivalve molluscs which grow in some selected regions of southern Karnataka, close to the city of Mangalore. In the early 1980s, shellfish consumers in the region were affected by intoxication from Paralytic Shellfish Poison present in local bivalves (clams and oysters) resulting in hospitalisation of many, including one fatality. Since then, there have been no further reports of serious shellfish intoxication and there is little awareness of the risks from natural toxins and no routine monitoring programme in place to protect shellfish consumers. This study presents the findings from the first ever systematic assessment of the presence of marine toxins in mussels and oysters grown in four different shellfish harvesting areas in the region. Shellfish were collected and subjected to analysis for ASP, PSP and lipophilic toxins, as well as a suite of non-EU regulated toxins such as tetrodotoxin and selected cyclic imines. Results revealed the presence of low levels of PSP toxins in oysters throughout the study period. Overall, total toxicities reached a maximum of 10% of the EU regulatory limit of 800 μg STX eq/kg. Toxin profiles were similar to those reported from the 1980 outbreak. No evidence was found for significant levels of ASP and lipophilic toxins, although some cyclic imines were detected, including gymnodimine. The results indicated that the risk to shellfish consumers during this specific study period would have been low. However, with historical evidence for extremely high levels of PSP toxins in molluscs, there is a strong need for routine surveillance of shellfish production areas for marine toxins, in order to mitigate against human health impacts resulting from unexpected harmful algal blooms, with potentially devastating socio

  18. The analysis of lipophilic marine toxins : development of an alternative method

    NARCIS (Netherlands)

    Gerssen, A.

    2010-01-01

    Lipophilic marine toxins are produced by certain algae species and can accumulate in filter feeding shellfish such as mussels, scallops and oysters. Consumption of contaminated shellfish can lead to severe intoxications such as diarrhea, abdominal cramps and vomiting. Methods described in

  19. Yessotoxins, a Group of Marine Polyether Toxins: an Overview

    Directory of Open Access Journals (Sweden)

    José J. Fernández

    2008-05-01

    Full Text Available Yessotoxin (YTX is a marine polyether toxin that was first isolated in 1986 from the scallop Patinopecten yessoensis. Subsequently, it was reported that YTX is produced by the dinoflagellates Protoceratium reticulatum, Lingulodinium polyedrum and Gonyaulax spinifera. YTXs have been associated with diarrhetic shellfish poisoning (DSP because they are often simultaneously extracted with DSP toxins, and give positive results when tested in the conventional mouse bioassay for DSP toxins. However, recent evidence suggests that YTXs should be excluded from the DSP toxins group, because unlike okadaic acid (OA and dinophyisistoxin-1 (DTX-1, YTXs do not cause either diarrhea or inhibition of protein phosphatases . In spite of the increasing number of molecular studies focused on the toxicity of YTX, the precise mechanism of action is currently unknown. Since the discovery of YTX, almost forty new analogues isolated from both mussels and dinoflagellates have been characterized by NMR or LC-MS/MS techniques. These studies indicate a wide variability in the profile and the relative abundance of YTXs in both, bivalves and dinoflagellates. This review covers current knowledge on the origin, producer organisms and vectors, chemical structures, metabolism, biosynthetic origin, toxicological properties, potential risks to human health and advances in detection methods of YTXs.

  20. Marine toxins and the cytoskeleton: a new view of palytoxin toxicity.

    Science.gov (United States)

    Louzao, M Carmen; Ares, Isabel R; Cagide, Eva

    2008-12-01

    Palytoxin is a marine toxin first isolated from zoanthids (genus Palythoa), even though dinoflagellates of the genus Ostreopsis are the most probable origin of the toxin. Ostreopsis has a wide distribution in tropical and subtropical areas, but recently these dinoflagellates have also started to appear in the Mediterranean Sea. Two of the most remarkable properties of palytoxin are the large and complex structure (with different analogs, such as ostreocin-D or ovatoxin-a) and the extreme acute animal toxicity. The Na(+)/K(+)-ATPase has been proposed as receptor for palytoxin. The marine toxin is known to act on the Na(+) pump and elicit an increase in Na(+) permeability, which leads to depolarization and a secondary Ca(2+) influx, interfering with some functions of cells. Studies on the cellular cytoskeleton have revealed that the signaling cascade triggered by palytoxin leads to actin filament system distortion. The activity of palytoxin on the actin cytoskeleton is only partially associated with the cytosolic Ca(2+) changes; therefore, this ion represents an important factor in altering this structure, but it is not the only cause. The goal of the present minireview is to compile the findings reported to date about: (a) how palytoxin and analogs are able to modify the actin cytoskeleton within different cellular models; and (b) what signaling mechanisms could be involved in the modulation of cytoskeletal dynamics by palytoxin.

  1. Rapid Extraction and Identification of Maitotoxin and Ciguatoxin-Like Toxins from Caribbean and Pacific Gambierdiscus Using a New Functional Bioassay

    OpenAIRE

    Lewis, Richard J.; Inserra, Marco; Vetter, Irina; Holland, William C.; Hardison, D. Ransom; Tester, Patricia A.; Litaker, R. Wayne

    2016-01-01

    Background Ciguatera is a circumtropical disease produced by polyether sodium channel toxins (ciguatoxins) that enter the marine food chain and accumulate in otherwise edible fish. Ciguatoxins, as well as potent water-soluble polyethers known as maitotoxins, are produced by certain dinoflagellate species in the genus Gambierdiscus and Fukuyoa spp. in the Pacific but little is known of the potential of related Caribbean species to produce these toxins. Methods We established a simplified proce...

  2. A neurophysiological method of rapid detection and analysis of marine algal toxins

    DEFF Research Database (Denmark)

    Kerr, DS; Bødtkjer, Donna Briggs; Saba, HI

    1999-01-01

    a robust, reversible increase in amplitude mic spikes, and the appearance of multiple spikes (i.e., epileptiform activity) within minutes of toxin wash-in. Other notable features of the domoic acid signature included a significant decrease in amplitude of the field EPSPs, and a complete absence of effect...... responsive fashion at toxin concentrations of 25-200 nM, and tests of naturally contaminated shellfish confirmed the utility of this assay as a screening method for PSP. Our findings suggest that the in vitro hippocampal slice preparation has potential in the detection and analysis of three marine algal...

  3. Dangerous relations in the Arctic marine food web: Interactions between toxin producing Pseudo-nitzschia diatoms and Calanus copepodites

    DEFF Research Database (Denmark)

    Hardardottir, Sara; Pancic, Marina; Tammilehto, Anna

    2015-01-01

    Diatoms of the genus Pseudo-nitzschia produce domoic acid (DA), a toxin that is vectored in the marine food web, thus causing serious problems for marine organisms and humans. In spite of this, knowledge of interactions between grazing zooplankton and diatoms is restricted. In this study, we...... examined the interactions between Calanus copepodites and toxin producing Pseudo-nitzschia. The copepodites were fed with different concentrations of toxic P. seriata and a strain of P. obtusa that previously was tested to be non-toxic. The ingestion rates did not differ among the diets (P. seriata, P...

  4. Bibliography of Venomous and Poisonous Marine Animals and Their Toxins

    Science.gov (United States)

    1984-02-01

    1972. (Paris) 105, 187, 1978. 479 ANON. Red tide research flows on. 488 AVARIA, S. Red tides off the coast BioScience 26, 223, 1976. of Chile . In...and CAMPOD6NICO, I. vol. 1, p. 157, 1965. Mareas rojas en Chile . Intercien- cia 3, 144, 1978. 735 HALSTEAD, B.W. Poisonous and Venomous Marine...hemolytic toxin from Chir- Aguas Brasileiras. Mem. Inst. onex fleckeri (box jelly-.ish). Butantan Simp. Iterrac. L3, 27, Proc. Aust. biochem. Soc. 9

  5. Tetrodotoxin-Producing Bacteria: Detection, Distribution and Migration of the Toxin in Aquatic Systems

    Directory of Open Access Journals (Sweden)

    Timur Yu. Magarlamov

    2017-05-01

    Full Text Available This review is devoted to the marine bacterial producers of tetrodotoxin (TTX, a potent non-protein neuroparalytic toxin. In addition to the issues of the ecology and distribution of TTX-producing bacteria, this review examines issues relating to toxin migration from bacteria to TTX-bearing animals. It is shown that the mechanism of TTX extraction from toxin-producing bacteria to the environment occur through cell death, passive/active toxin excretion, or spore germination of spore-forming bacteria. Data on TTX microdistribution in toxic organs of TTX-bearing animals indicate toxin migration from the digestive system to target organs through the transport system of the organism. The role of symbiotic microflora in animal toxicity is also discussed: despite low toxin production by bacterial strains in laboratory conditions, even minimal amounts of TTX produced by intestinal microflora of an animal can contribute to its toxicity. Special attention is paid to methods of TTX detection applicable to bacteria. Due to the complexity of toxin detection in TTX-producing bacteria, it is necessary to use several methods based on different methodological approaches. Issues crucial for further progress in detecting natural sources of TTX investigation are also considered.

  6. Alternative Methods for the Detection of Emerging Marine Toxins: Biosensors, Biochemical Assays and Cell-Based Assays

    Directory of Open Access Journals (Sweden)

    Laia Reverté

    2014-11-01

    Full Text Available The emergence of marine toxins in water and seafood may have a considerable impact on public health. Although the tendency in Europe is to consolidate, when possible, official reference methods based on instrumental analysis, the development of alternative or complementary methods providing functional or toxicological information may provide advantages in terms of risk identification, but also low cost, simplicity, ease of use and high-throughput analysis. This article gives an overview of the immunoassays, cell-based assays, receptor-binding assays and biosensors that have been developed for the screening and quantification of emerging marine toxins: palytoxins, ciguatoxins, cyclic imines and tetrodotoxins. Their advantages and limitations are discussed, as well as their possible integration in research and monitoring programs.

  7. Alternative Methods for the Detection of Emerging Marine Toxins: Biosensors, Biochemical Assays and Cell-Based Assays

    Science.gov (United States)

    Reverté, Laia; Soliño, Lucía; Carnicer, Olga; Diogène, Jorge; Campàs, Mònica

    2014-01-01

    The emergence of marine toxins in water and seafood may have a considerable impact on public health. Although the tendency in Europe is to consolidate, when possible, official reference methods based on instrumental analysis, the development of alternative or complementary methods providing functional or toxicological information may provide advantages in terms of risk identification, but also low cost, simplicity, ease of use and high-throughput analysis. This article gives an overview of the immunoassays, cell-based assays, receptor-binding assays and biosensors that have been developed for the screening and quantification of emerging marine toxins: palytoxins, ciguatoxins, cyclic imines and tetrodotoxins. Their advantages and limitations are discussed, as well as their possible integration in research and monitoring programs. PMID:25431968

  8. Cephalopods as Vectors of Harmful Algal Bloom Toxins in Marine Food Webs

    Directory of Open Access Journals (Sweden)

    Rui Rosa

    2013-09-01

    Full Text Available Here we summarize the current knowledge on the transfer and accumulation of harmful algal bloom (HAB-related toxins in cephalopods (octopods, cuttlefishes and squids. These mollusks have been reported to accumulate several HAB-toxins, namely domoic acid (DA, and its isomers, saxitoxin (and its derivatives and palytoxin (and palytoxin-like compounds and, therefore, act as HAB-toxin vectors in marine food webs. Coastal octopods and cuttlefishes store considerably high levels of DA (amnesic shellfish toxin in several tissues, but mainly in the digestive gland (DG—the primary site of digestive absorption and intracellular digestion. Studies on the sub-cellular partitioning of DA in the soluble and insoluble fractions showed that nearly all DA (92.6% is found in the cytosol. This favors the trophic transfer of the toxins since cytosolic substances can be absorbed by predators with greater efficiency. The available information on the accumulation and tissue distribution of DA in squids (e.g., in stranded Humboldt squids, Dosidicus gigas is scarcer than in other cephalopod groups. Regarding paralytic shellfish toxins (PSTs, these organisms accumulate them at the greatest extent in DG >> kidneys > stomach > branchial hearts > posterior salivary glands > gills. Palytoxins are among the most toxic molecules identified and stranded octopods revealed high contamination levels, with ovatoxin (a palytoxin analogue reaching 971 μg kg−1 and palytoxin reaching 115 μg kg−1 (the regulatory limit for PlTXs is 30 μg kg−1 in shellfish. Although the impacts of HAB-toxins in cephalopod physiology are not as well understood as in fish species, similar effects are expected since they possess a complex nervous system and highly developed brain comparable to that of the vertebrates. Compared to bivalves, cephalopods represent a lower risk of shellfish poisoning in humans, since they are usually consumed eviscerated, with exception of traditional dishes from the

  9. Mycosporine-Like Amino Acids and Marine Toxins - The Common and the Different

    OpenAIRE

    Donat P. Häder; Manfred Klisch

    2008-01-01

    Marine microorganisms harbor a multitude of secondary metabolites. Among these are toxins of different chemical classes as well as the UV-protective mycosporine-like amino acids (MAAs). The latter form a group of water-soluble, low molecular-weight (generally < 400) compounds composed of either an aminocyclohexenone or an aminocyclohexenimine ring, carrying amino acid or amino alcohol substituents. So far there has been no report of toxicity in MAAs but nevertheless there are some features th...

  10. Validation of a an analysis method of Marine Bio toxins Type Saxitoxin based on test coupled receptor (RBA) with Radiochemical Detection with liquid scintillation

    International Nuclear Information System (INIS)

    Selmi, Zied

    2009-01-01

    The saxitoxin s are bio toxins belonging to the family of toxins of the type PSP. They are paralysing toxins secreted by marine micro-organisms, phytoplankton, called Alexandrium. They constitute a risk for the human health in the event of their consumption in contaminated food. The acceptable maximum limit of these bio toxins in molluscs and shellfish is fixed to 800 μg /kg of meat of molluscs or shellfish. It proves, thus, that it is essential to develop and validate analytical methods for the level monitoring of contamination of the marine resources by these species in order to found a program of their monitoring and to guarantee an acceptable level of the food safety of the products available on the national and international markets. The present work allowed the validation of the quantification method of these toxins which is based on the use of the Receptor Binding Assay (RBA) with liquid scintillation nuclear technique detection using tritium as radiotracer and while proceeding by the different statistical tests of validation (Standard Nf XP T 90-210). The field of linearity ranged from 0 to 20 n M and the limit of detection was found to be 1 n M. The validation of this method will allow the reinforcement of the analytical means of analysis of marine bi toxins type SXT and to set up, in the near future, a monitoring and surveillance routine program for these bio toxins at the national, regional and African scales. (Author)

  11. [Intoxication of botulinum toxin].

    Science.gov (United States)

    Chudzicka, Aleksandra

    2015-09-01

    Botulinum toxin is an egzotoxin produced by Gram positive bacteria Clostridium botulinum. It is among the most potent toxins known. The 3 main clinical presentations of botulism are as follows: foodborne botulism, infant botulism and wound botulism. The main symptom of intoxication is flat muscles paralysis. The treatment is supportive care and administration of antitoxin. In prevention the correct preparing of canned food is most important. Botulinum toxin is accepted as a biological weapon. © 2015 MEDPRESS.

  12. Sample limited characterization of a novel disulfide-rich venom peptide toxin from terebrid marine snail Terebra variegata.

    Directory of Open Access Journals (Sweden)

    Prachi Anand

    Full Text Available Disulfide-rich peptide toxins found in the secretions of venomous organisms such as snakes, spiders, scorpions, leeches, and marine snails are highly efficient and effective tools for novel therapeutic drug development. Venom peptide toxins have been used extensively to characterize ion channels in the nervous system and platelet aggregation in haemostatic systems. A significant hurdle in characterizing disulfide-rich peptide toxins from venomous animals is obtaining significant quantities needed for sequence and structural analyses. Presented here is a strategy for the structural characterization of venom peptide toxins from sample limited (4 ng specimens via direct mass spectrometry sequencing, chemical synthesis and NMR structure elucidation. Using this integrated approach, venom peptide Tv1 from Terebra variegata was discovered. Tv1 displays a unique fold not witnessed in prior snail neuropeptides. The novel structural features found for Tv1 suggest that the terebrid pool of peptide toxins may target different neuronal agents with varying specificities compared to previously characterized snail neuropeptides.

  13. Studies on the interaction between marine polyether toxins and the voltage sensitive sodium channel

    International Nuclear Information System (INIS)

    Tachibana, Kazuo; Konoki, Keichi; Fukuzawa, Seketsu

    2003-01-01

    An analysis was made on three-dimensional structure of membrane proteins by prolonging the activated state of membrane protein using external factors like natural toxins having a strong affinity to the activated state. In addition, this study aimed to clarify the structural basis for the activation of membrane proteins. First, functional analysis was made for the complex of potential-dependent Na channel and brevetoxin, marine polycyclic toxin. Then, its binding site was determined using photo-affinity labeling. Next, an investigation was made on intracellular target molecule of ritteragine B, a cytotoxic steroidal alkaloid isolated from Retterella tokioka Kott in 1992. This molecule was used to elucidate the mechanism of cell growth. It was suggested that the cytotoxity of ritteragine was not due to non-specific interaction with cell membrane, but due to an inhibition of some physiological activity through interaction with its target molecule. Furthermore, functional mechanism of norzoanthamine, a marine anti-osteoporosis alkaloid isolated from Zoanthus sp. was investigated using ovariectomized mouse as a postomenopausal osteoporosis model. It was demonstrated that the marine alkaloid is strongly inhibitory to lowering of bone weight and strength. To elucidate the physiological effects of zoanthamine in molecular level, construction of in vitro experimental system was made using human epithelial osteoblast, Saos-2, in which production of TGF-β has been demonstrated. When added with norzoanthamine to the model system, stimulative effects on its cell growth and adhesion were observed, indicating the expression of its target molecule. Additionally, functional analysis was made on okadaic acid binding protein, OABP-2. It has been reported that okadaic acid, a marine polyether toxin isolated from Halichondria okadai was strongly cytotoxic because of protein phosphatase activity. Since okadaic acid has been demonstrated to be also toxic to the host, sponge, it has been

  14. Type VI Secretion System Toxins Horizontally Shared between Marine Bacteria.

    Directory of Open Access Journals (Sweden)

    Dor Salomon

    2015-08-01

    Full Text Available The type VI secretion system (T6SS is a widespread protein secretion apparatus used by Gram-negative bacteria to deliver toxic effector proteins into adjacent bacterial or host cells. Here, we uncovered a role in interbacterial competition for the two T6SSs encoded by the marine pathogen Vibrio alginolyticus. Using comparative proteomics and genetics, we identified their effector repertoires. In addition to the previously described effector V12G01_02265, we identified three new effectors secreted by T6SS1, indicating that the T6SS1 secretes at least four antibacterial effectors, of which three are members of the MIX-effector class. We also showed that the T6SS2 secretes at least three antibacterial effectors. Our findings revealed that many MIX-effectors belonging to clan V are "orphan" effectors that neighbor mobile elements and are shared between marine bacteria via horizontal gene transfer. We demonstrated that a MIX V-effector from V. alginolyticus is a functional T6SS effector when ectopically expressed in another Vibrio species. We propose that mobile MIX V-effectors serve as an environmental reservoir of T6SS effectors that are shared and used to diversify antibacterial toxin repertoires in marine bacteria, resulting in enhanced competitive fitness.

  15. Guanidinium Toxins and Their Interactions with Voltage-Gated Sodium Ion Channels

    Directory of Open Access Journals (Sweden)

    Lorena M. Durán-Riveroll

    2017-10-01

    Full Text Available Guanidinium toxins, such as saxitoxin (STX, tetrodotoxin (TTX and their analogs, are naturally occurring alkaloids with divergent evolutionary origins and biogeographical distribution, but which share the common chemical feature of guanidinium moieties. These guanidinium groups confer high biological activity with high affinity and ion flux blockage capacity for voltage-gated sodium channels (NaV. Members of the STX group, known collectively as paralytic shellfish toxins (PSTs, are produced among three genera of marine dinoflagellates and about a dozen genera of primarily freshwater or brackish water cyanobacteria. In contrast, toxins of the TTX group occur mainly in macrozoa, particularly among puffer fish, several species of marine invertebrates and a few terrestrial amphibians. In the case of TTX and analogs, most evidence suggests that symbiotic bacteria are the origin of the toxins, although endogenous biosynthesis independent from bacteria has not been excluded. The evolutionary origin of the biosynthetic genes for STX and analogs in dinoflagellates and cyanobacteria remains elusive. These highly potent molecules have been the subject of intensive research since the latter half of the past century; first to study the mode of action of their toxigenicity, and later as tools to characterize the role and structure of NaV channels, and finally as therapeutics. Their pharmacological activities have provided encouragement for their use as therapeutants for ion channel-related pathologies, such as pain control. The functional role in aquatic and terrestrial ecosystems for both groups of toxins is unproven, although plausible mechanisms of ion channel regulation and chemical defense are often invoked. Molecular approaches and the development of improved detection methods will yield deeper understanding of their physiological and ecological roles. This knowledge will facilitate their further biotechnological exploitation and point the way towards

  16. Paralytic toxin profile of the marine dinoflagellate Gymnodinium catenatum Graham from the Mexican Pacific as revealed by LC-MS/MS.

    Science.gov (United States)

    Bustillos-Guzmán, José J; Band-Schmidt, Christine J; Durán-Riveroll, Lorena M; Hernández-Sandoval, Francisco E; López-Cortés, David J; Núñez-Vázquez, Erick J; Cembella, Allan; Krock, Bernd

    2015-01-01

    The paralytic shellfish toxin (PST) profiles of Gymnodinium catenatum Graham have been reported for several strains from the Pacific coast of Mexico cultured under different laboratory conditions, as well as from natural populations. Up to 15 saxitoxin analogues occurred and the quantity of each toxin depended on the growth phase and culture conditions. Previous analysis of toxin profiles of G. catenatum isolated from Mexico have been based on post-column oxidation liquid chromatography with fluorescence detection (LC-FLD), a method prone to artefacts and non-specificity, leading to misinterpretation of toxin composition. We describe, for the first time, the complete toxin profile for several G. catenatum strains from diverse locations of the Pacific coast of Mexico. The new results confirmed previous reports on the dominance of the less potent sulfocarbamoyl toxins (C1/2); significant differences, however, in the composition (e.g., absence of saxitoxin, gonyautoxin 2/3 and neosaxitoxin) were revealed in our confirmatory analysis. The LC-MS/MS analyses also indicated at least seven putative benzoyl toxin analogues and provided support for their existence. This new toxin profile shows a high similarity (> 80%) to the profiles reported from several regions around the world, suggesting low genetic variability among global populations.

  17. Comparative analysis of purified Pacific and Caribbean ciguatoxin congeners and related marine toxins using a modified ELISA technique.

    Science.gov (United States)

    Campora, Cara E; Hokama, Y; Ebesu, Joanne S M

    2006-01-01

    The monoclonal antibody to ciguatoxin (CTX) produced from a hybridoma cell line was assayed for the detection of four congeners of CTX: Pacific ciguatoxin-1 (P-CTX-1), Pacific ciguatoxin-2 (P-CTX-2), Pacific ciguatoxin-3 (P-CTX-3), and Caribbean ciguatoxin-1 (C-CTX-1) and related marine toxins, including domoic acid, palytoxin, and okadaic acid, using a modified enzyme-linked immunosorbent assay (ELISA). Lower detection limits were assessed and linearity was statistically established (P<0.05) for P-CTX-1, P-CTX-2, and P-CTX-3 and C-CTX-1 at concentrations ranging from 0 to 5.00 ng, while the other marine toxins showed statistically insignificant cross-reactivities at similar concentrations. Thus, the monoclonal antibody to CTX is able to specifically detect various CTX congeners at levels comparable to those naturally occurring in ciguatoxic fish. (c) 2006 Wiley-Liss, Inc.

  18. Tumor Targeting and Drug Delivery by Anthrax Toxin

    OpenAIRE

    Bachran, Christopher; Leppla, Stephen H.

    2016-01-01

    Anthrax toxin is a potent tripartite protein toxin from Bacillus anthracis. It is one of the two virulence factors and causes the disease anthrax. The receptor-binding component of the toxin, protective antigen, needs to be cleaved by furin-like proteases to be activated and to deliver the enzymatic moieties lethal factor and edema factor to the cytosol of cells. Alteration of the protease cleavage site allows the activation of the toxin selectively in response to the presence of tumor-associ...

  19. Solid phase extraction for removal of matrix effects in lipophilic marine toxin analysis by liquid chromatography-tandem mass spectrometry

    NARCIS (Netherlands)

    Gerssen, A.; McElhinney, M.; Mulder, P.P.J.; Bire, R.; Hess, P.; Boer, de J.

    2009-01-01

    The potential of solid phase extraction (SPE) clean-up has been assessed to reduce matrix effects (signal suppression or enhancement) in the liquid chromatography-tandem mass spectrometry (LC¿MS/MS) analysis of lipophilic marine toxins. A large array of ion-exchange, silica-based, and mixed-function

  20. Solid phase extraction for removal of matrix effects in lipophilic marine toxin analysis by liquid chromatography-tandem mass spectrometry

    NARCIS (Netherlands)

    Gerssen, A.; McElhinney, A. M.; Mulder, P.P.J.; Bire, L.; Hess, P.; de Boer, J.

    2009-01-01

    The potential of solid phase extraction (SPE) clean-up has been assessed to reduce matrix effects (signal suppression or enhancement) in the liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis of lipophilic marine toxins. A large array of ion-exchange, silica-based, and mixed-function

  1. Conditional Toxin Splicing Using a Split Intein System.

    Science.gov (United States)

    Alford, Spencer C; O'Sullivan, Connor; Howard, Perry L

    2017-01-01

    Protein toxin splicing mediated by split inteins can be used as a strategy for conditional cell ablation. The approach requires artificial fragmentation of a potent protein toxin and tethering each toxin fragment to a split intein fragment. The toxin-intein fragments are, in turn, fused to dimerization domains, such that addition of a dimerizing agent reconstitutes the split intein. These chimeric toxin-intein fusions remain nontoxic until the dimerizer is added, resulting in activation of intein splicing and ligation of toxin fragments to form an active toxin. Considerations for the engineering and implementation of conditional toxin splicing (CTS) systems include: choice of toxin split site, split site (extein) chemistry, and temperature sensitivity. The following method outlines design criteria and implementation notes for CTS using a previously engineered system for splicing a toxin called sarcin, as well as for developing alternative CTS systems.

  2. Marine biotoxins

    National Research Council Canada - National Science Library

    2004-01-01

    ... (ciguatera fish poisoning). It discusses in detail the causative toxins produced by marine organisms, chemical structures and analytical methods, habitat and occurrence of the toxin-producing organisms, case studies and existing regulations...

  3. Marine toxins and their toxicological significance: An overview

    Digital Repository Service at National Institute of Oceanography (India)

    Sarkar, A.

    , Hemolysins-1 and hemolysin-2, saxitoxin, neosaxitoxin, gonyautoxin, tetrodotoxin, ptychodiscus brevis toxin and theonellamide F. According to their mode of action, these toxins are classified into different categories such as cytotoxin, enterotoxin...

  4. Standardization of process for increased production of pure and potent tetanus toxin

    Directory of Open Access Journals (Sweden)

    Chellamani Muniandi

    2013-09-01

    Full Text Available When stationary pot culture was replaced by submerged cultivation of Clostridium tetani, an anaerobic organism, in afermentor using a vibromixer and optimum supply of sterile air to the headspace of the fermentor to flush out the accumulatedgases, a significant increase in the tetanus toxin yield in a short time cultivation (about 5 to 6 days against8 days was noticed. It was found that under optimal conditions of temperature, vibromixing, surface aeration, and analkaline pH favored toxin release. Furthermore, to enhance the production volume, fermentor culture is more suitable.The tetanus toxin was produced with good Limes flocculation (Lf titre and high antigenic purity. Under optimal conditions,the papain digest broth was successfully substituted in place of N.Z Case for the production of pure and potenttetanus toxin. J Microbiol Infect Dis 2013; 3(3: 133-139Key words: Clostridium tetani, modified mueller miller medium, papain digest, limes flocculation

  5. Discovery of potent broad spectrum antivirals derived from marine actinobacteria.

    Directory of Open Access Journals (Sweden)

    Avi Raveh

    Full Text Available Natural products provide a vast array of chemical structures to explore in the discovery of new medicines. Although secondary metabolites produced by microbes have been developed to treat a variety of diseases, including bacterial and fungal infections, to date there has been limited investigation of natural products with antiviral activity. In this report, we used a phenotypic cell-based replicon assay coupled with an iterative biochemical fractionation process to identify, purify, and characterize antiviral compounds produced by marine microbes. We isolated a compound from Streptomyces kaviengensis, a novel actinomycetes isolated from marine sediments obtained off the coast of New Ireland, Papua New Guinea, which we identified as antimycin A1a. This compound displays potent activity against western equine encephalitis virus in cultured cells with half-maximal inhibitory concentrations of less than 4 nM and a selectivity index of greater than 550. Our efforts also revealed that several antimycin A analogues display antiviral activity, and mechanism of action studies confirmed that these Streptomyces-derived secondary metabolites function by inhibiting the cellular mitochondrial electron transport chain, thereby suppressing de novo pyrimidine synthesis. Furthermore, we found that antimycin A functions as a broad spectrum agent with activity against a wide range of RNA viruses in cultured cells, including members of the Togaviridae, Flaviviridae, Bunyaviridae, Picornaviridae, and Paramyxoviridae families. Finally, we demonstrate that antimycin A reduces central nervous system viral titers, improves clinical disease severity, and enhances survival in mice given a lethal challenge with western equine encephalitis virus. Our results provide conclusive validation for using natural product resources derived from marine microbes as source material for antiviral drug discovery, and they indicate that host mitochondrial electron transport is a viable

  6. Risk Assessment of Shellfish Toxins

    Directory of Open Access Journals (Sweden)

    Rex Munday

    2013-11-01

    Full Text Available Complex secondary metabolites, some of which are highly toxic to mammals, are produced by many marine organisms. Some of these organisms are important food sources for marine animals and, when ingested, the toxins that they produce may be absorbed and stored in the tissues of the predators, which then become toxic to animals higher up the food chain. This is a particular problem with shellfish, and many cases of poisoning are reported in shellfish consumers each year. At present, there is no practicable means of preventing uptake of the toxins by shellfish or of removing them after harvesting. Assessment of the risk posed by such toxins is therefore required in order to determine levels that are unlikely to cause adverse effects in humans and to permit the establishment of regulatory limits in shellfish for human consumption. In the present review, the basic principles of risk assessment are described, and the progress made toward robust risk assessment of seafood toxins is discussed. While good progress has been made, it is clear that further toxicological studies are required before this goal is fully achieved.

  7. Occurrence of marine algal toxins in oyster and phytoplankton samples in Daya Bay, South China Sea.

    Science.gov (United States)

    Jiang, Tao; Liu, Lei; Li, Yang; Zhang, Jing; Tan, Zhijun; Wu, Haiyan; Jiang, Tianjiu; Lu, Songhui

    2017-09-01

    The occurrence and seasonal variations of marine algal toxins in phytoplankton and oyster samples in Daya Bay (DYB), South China Sea were investigated. Two Dinophysis species, namely, D. caudata and D. acuminata complex, were identified as Okadaic acid (OA)/pectenotoxin (PTX) related species. Liquid chromatography with tandem mass spectrometry (LC-MS/MS) analysis demonstrated that 2.04-14.47 pg PTX2 per cell was the predominant toxin in single-cell isolates of D. caudata. D. acuminata was not subjected to toxin analysis. The occurrence of OAs in phytoplankton concentrates of net-haul sample coincided with the presence of D. accuminata complex, suggesting that this species is most likely an OA producer in this sea area. OA, dinophysistoxins-1 (DTX1), PTX2, PTX2sa, gymnodimine (GYM), homoyessotoxin (homoYTX), and domoic acid (DA) demonstrated positive results in net haul samples. To our best knowledge, this paper is the first to report the detection of GYM, DA, and homoYTX in phytoplankton samples in Chinese coastal waters. Among the algal toxins, GYM demonstrated the highest frequency of positive detections in phytoplankton concentrates (13/17). Five compounds of algal toxins, including OA, DTX1, PTX2, PTX2sa, and GYM, were detected in oyster samples. DA and homoYTX were not detected in oysters despite of positive detections for both in the phytoplankton concentrates. However, neither the presence nor absence of DA in oysters can be determined because extraction conditions with 100% methanol used to isolate toxins from oysters (recommended by the EU-Harmonised Standard Operating Procedure, 2015) would likely be unsuitable for this water-soluble toxin. In addition, transformation of DA during the digestion process of oysters may also be involved in the negative detections of this toxin. GYM exhibited the highest frequency of positive results in oysters (14/17). OAs were only detected in the hydrolyzed oyster samples. The detection rates of PTX and PTX2sa in

  8. Botulinum toxin: bioweapon & magic drug.

    Science.gov (United States)

    Dhaked, Ram Kumar; Singh, Manglesh Kumar; Singh, Padma; Gupta, Pallavi

    2010-11-01

    Botulinum neurotoxins, causative agents of botulism in humans, are produced by Clostridium botulinum, an anaerobic spore-former Gram positive bacillus. Botulinum neurotoxin poses a major bioweapon threat because of its extreme potency and lethality; its ease of production, transport, and misuse; and the need for prolonged intensive care among affected persons. A single gram of crystalline toxin, evenly dispersed and inhaled, can kill more than one million people. The basis of the phenomenal potency of botulinum toxin is enzymatic; the toxin is a zinc proteinase that cleaves neuronal vesicle associated proteins responsible for acetylcholine release into the neuromuscular junction. As a military or terrorist weapon, botulinum toxin could be disseminated via aerosol or by contamination of water or food supplies, causing widespread casualties. A fascinating aspect of botulinum toxin research in recent years has been development of the most potent toxin into a molecule of significant therapeutic utility . It is the first biological toxin which is licensed for treatment of human diseases. In the late 1980s, Canada approved use of the toxin to treat strabismus, in 2001 in the removal of facial wrinkles and in 2002, the FDA in the United States followed suit. The present review focuses on both warfare potential and medical uses of botulinum neurotoxin.

  9. The Transcriptome of the Zoanthid Protopalythoa variabilis (Cnidaria, Anthozoa) Predicts a Basal Repertoire of Toxin-like and Venom-Auxiliary Polypeptides.

    Science.gov (United States)

    Huang, Chen; Morlighem, Jean-Étienne Rl; Zhou, Hefeng; Lima, Érica P; Gomes, Paula B; Cai, Jing; Lou, Inchio; Pérez, Carlos D; Lee, Simon Ming; Rádis-Baptista, Gandhi

    2016-10-05

    Protopalythoa is a zoanthid that, together with thousands of predominantly marine species, such as hydra, jellyfish, and sea anemones, composes the oldest eumetazoan phylum, i.e., the Cnidaria. Some of these species, such as sea wasps and sea anemones, are highly venomous organisms that can produce deadly toxins for preying, for defense or for territorial disputes. Despite the fact that hundreds of organic and polypeptide toxins have been characterized from sea anemones and jellyfish, practically nothing is known about the toxin repertoire in zoanthids. Here, based on a transcriptome analysis of the zoanthid Protopalythoa variabilis, numerous predicted polypeptides with canonical venom protein features are identified. These polypeptides comprise putative proteins from different toxin families: neurotoxic peptides, hemostatic and hemorrhagic toxins, membrane-active (pore-forming) proteins, protease inhibitors, mixed-function venom enzymes, and venom auxiliary proteins. The synthesis and functional analysis of two of these predicted toxin products, one related to the ShK/Aurelin family and the other to a recently discovered anthozoan toxin, displayed potent in vivo neurotoxicity that impaired swimming in larval zebrafish. Altogether, the complex array of venom-related transcripts that are identified in P. variabilis, some of which are first reported in Cnidaria, provides novel insight into the toxin distribution among species and might contribute to the understanding of composition and evolution of venom polypeptides in toxiferous animals. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  10. Toxin profile of Gymnodinium catenatum (Dinophyceae) from the Portuguese coast, as determined by liquid chromatography tandem mass spectrometry.

    Science.gov (United States)

    Costa, Pedro R; Robertson, Alison; Quilliam, Michael A

    2015-04-13

    The marine dinoflagellate Gymnodinium catenatum has been associated with paralytic shellfish poisoning (PSP) outbreaks in Portuguese waters for many years. PSP syndrome is caused by consumption of seafood contaminated with paralytic shellfish toxins (PSTs), a suite of potent neurotoxins. Gymnodinium catenatum was frequently reported along the Portuguese coast throughout the late 1980s and early 1990s, but was absent between 1995 and 2005. Since this time, G. catenatum blooms have been recurrent, causing contamination of fishery resources along the Atlantic coast of Portugal. The aim of this study was to evaluate the toxin profile of G. catenatum isolated from the Portuguese coast before and after the 10-year hiatus to determine changes and potential impacts for the region. Hydrophilic interaction liquid chromatography tandem mass spectrometry (HILIC-MS/MS) was utilized to determine the presence of any known and emerging PSTs in sample extracts. Several PST derivatives were identified, including the N-sulfocarbamoyl analogues (C1-4), gonyautoxin 5 (GTX5), gonyautoxin 6 (GTX6), and decarbamoyl derivatives, decarbamoyl saxitoxin (dcSTX), decarbamoyl neosaxitoxin (dcNeo) and decarbamoyl gonyautoxin 3 (dcGTX3). In addition, three known hydroxy benzoate derivatives, G. catenatum toxin 1 (GC1), GC2 and GC3, were confirmed in cultured and wild strains of G. catenatum. Moreover, two presumed N-hydroxylated analogues of GC2 and GC3, designated GC5 and GC6, are reported. This work contributes to our understanding of the toxigenicity of G. catenatum in the coastal waters of Portugal and provides valuable information on emerging PST classes that may be relevant for routine monitoring programs tasked with the prevention and control of marine toxins in fish and shellfish.

  11. Comparison of anorectic potencies of the trichothecenes T-2 toxin, HT-2 toxin and satratoxin G to the ipecac alkaloid emetine

    Directory of Open Access Journals (Sweden)

    Wenda Wu

    2015-01-01

    Full Text Available Trichothecene mycotoxins, potent translational inhibitors that are associated with human food poisonings and damp-building illnesses, are of considerable concern to animal and human health. Food refusal is a hallmark of exposure of experimental animals to deoxynivalenol (DON and other Type B trichothecenes but less is known about the anorectic effects of foodborne Type A trichothecenes (e.g., T-2 toxin, HT-2 toxin, airborne Type D trichothecenes (e.g., satratoxin G [SG] or functionally analogous metabolites that impair protein synthesis. Here, we utilized a well-described mouse model of food intake to compare the anorectic potencies of T-2 toxin, HT-2 toxin, and SG to that of emetine, a medicinal alkaloid derived from ipecac that inhibits translation. Intraperitoneal (IP administration with T-2 toxin, HT-2 toxin, emetine and SG evoked anorectic responses that occurred within 0.5 h that lasted up to 96, 96, 3 and 96 h, respectively, with lowest observed adverse effect levels (LOAELs being 0.1, 0.1, 2.5 and 0.25 mg/kg BW, respectively. When delivered via natural routes of exposure, T-2 toxin, HT-2 toxin, emetine (oral and SG (intranasal induced anorectic responses that lasted up to 48, 48, 3 and 6 h, respectively with LOAELs being 0.1, 0.1, 0.25, and 0.5 mg/kg BW, respectively. All four compounds were generally much more potent than DON which was previously observed to have LOAELs of 1 and 2.5 mg/kg BW after IP and oral dosing, respectively. Taken together, these anorectic potency data will be valuable in discerning the relative risks from trichothecenes and other translational inhibitors of natural origin.

  12. Occurrence and sequestration of toxins in food chains.

    Science.gov (United States)

    Mebs, D

    1998-11-01

    Animals may acquire toxicity by absorbing toxic compounds from their food, e.g. from plants or other animals. Sequestration and accumulation of toxins may provide protection from predators, which learn to avoid this prey because of unpleasant experiences such as bitter taste. This is a common phenomenon in marine as well as in terrestrial ecosystems. Moreover, toxins may enter food chains where they accumulate reaching high, often lethal concentrations. Palytoxin which had been primarily detected in marine zoanthids (Palythoa sp.), occurs also in a wide range of other animals, e.g. in sponges, corals, shellfish, polychaetes and crustaceans, but also in fish, which feed on crustaceans and zoanthids as well. These animals exhibit a high resistance to the toxin's action. The mechanisms which protect the Na+, K+-ATPase of their cell membranes, the primary target of palytoxin, is unknown. Sequestration of the toxin by other animals may cause health problems due to food poisoning.

  13. Detecting marine hazardous substances and organisms: sensors for pollutants, toxins, and pathogens

    Directory of Open Access Journals (Sweden)

    O. Zielinski

    2009-09-01

    Full Text Available Marine environments are influenced by a wide diversity of anthropogenic and natural substances and organisms that may have adverse effects on human health and ecosystems. Real-time measurements of pollutants, toxins, and pathogens across a range of spatial scales are required to adequately monitor these hazards, manage the consequences, and to understand the processes governing their magnitude and distribution. Significant technological advancements have been made in recent years for the detection and analysis of such marine hazards. In particular, sensors deployed on a variety of mobile and fixed-point observing platforms provide a valuable means to assess hazards. In this review, we present state-of-the-art of sensor technology for the detection of harmful substances and organisms in the ocean. Sensors are classified by their adaptability to various platforms, addressing large, intermediate, or small areal scales. Current gaps and future demands are identified with an indication of the urgent need for new sensors to detect marine hazards at all scales in autonomous real-time mode. Progress in sensor technology is expected to depend on the development of small-scale sensor technologies with a high sensitivity and specificity towards target analytes or organisms. However, deployable systems must comply with platform requirements as these interconnect the three areal scales. Future developments will include the integration of existing methods into complex and operational sensing systems for a comprehensive strategy for long-term monitoring. The combination of sensor techniques on all scales will remain crucial for the demand of large spatial and temporal coverage.

  14. Neurotoxic Syndromes in Marine Poisonings a Review

    Directory of Open Access Journals (Sweden)

    Gholam Hossein Mohebbi

    2014-08-01

    Full Text Available Background: Marine neurotoxins as of Marine biotoxins are natural toxins that produced mainly by dinoflagellates, diatoms and several species of invertebrates and fish. Marine poisoning results from the ingestion of marine animals contain these toxins and causes considerable adverse effects. Materials and methods: This review provides some facts about the structures of marine neurotoxins, their molecular target and pharmacology, analytical methods for their detection and quantitation, diagnosis and laboratory testing, clinical manifestations, as well as prevention and treatment, if were obtainable. Furthermore, we focus on marine poisoning and various associated neurological syndromes like ciguatera, tetrodotoxin poisoning, and paralytic shellfish poisoning, after ingestion of the common marine toxins. Results: A number of neurotoxins that prescribed according to their potency (LD50 are: Maitotoxin, Ciguatoxins and Palytoxin, Tetrodotoxin and Saxitoxin, Brevetoxins, Azaspiracid, Yessotoxin, Cooliatoxin, Domoic acid and Conotoxins, Respectively. The primary target of most marine neurotoxins is voltage gated sodium channels and the resulting block of ion conductance through these channels. Moreover, these compounds interact with voltage-gated potassium and calcium channels and modulate the flux of stated ions into many cell types. As well, the target recognized for palytoxin is the Na+- K+ /ATPase. Conclusion: Results of reviewed studies revealed that, the Ciguatera is the commonest syndrome of marine poisoning, but is rarely lethal. Puffer fish poisoning results from the ingestion of fish containing tetrodotoxin and paralytic shellfish poisoning are less common, but have a higher fatality rate than ciguatera. Despite their high toxicity, no much research has been done on some of the toxins, like maitotoxin. In addition, there have remained unknown the pharmacological effects, mechanism of action and molecular target of some toxins such as

  15. The Dinoflagellate Toxin 20-Methyl Spirolide-G Potently Blocks Skeletal Muscle and Neuronal Nicotinic Acetylcholine Receptors

    Directory of Open Access Journals (Sweden)

    Aurélie Couesnon

    2016-08-01

    Full Text Available The cyclic imine toxin 20-methyl spirolide G (20-meSPX-G, produced by the toxigenic dinoflagellate Alexandrium ostenfeldii/Alexandrium peruvianum, has been previously reported to contaminate shellfish in various European coastal locations, as revealed by mouse toxicity bioassay. The aim of the present study was to determine its toxicological profile and its molecular target selectivity. 20-meSPX-G blocked nerve-evoked isometric contractions in isolated mouse neuromuscular preparations, while it had no action on contractions elicited by direct electrical stimulation, and reduced reversibly nerve-evoked compound muscle action potential amplitudes in anesthetized mice. Voltage-clamp recordings in Xenopus oocytes revealed that 20-meSPX-G potently inhibited currents evoked by ACh on Torpedo muscle-type and human α7 nicotinic acetylcholine receptors (nAChR, whereas lower potency was observed in human α4β2 nAChR. Competition-binding assays showed that 20-meSPX-G fully displaced [3H]epibatidine binding to HEK-293 cells expressing the human α3β2 (Ki = 0.040 nM, whereas a 90-fold lower affinity was detected in human α4β2 nAChR. The spirolide displaced [125I]α-bungarotoxin binding to Torpedo membranes (Ki = 0.028 nM and in HEK-293 cells expressing chick chimeric α7-5HT3 nAChR (Ki = 0.11 nM. In conclusion, this is the first study to demonstrate that 20-meSPX-G is a potent antagonist of nAChRs, and its subtype selectivity is discussed on the basis of molecular docking models.

  16. Gambierol, a toxin produced by the dinoflagellate Gambierdiscus toxicus, is a potent blocker of voltage-gated potassium channels☆

    Science.gov (United States)

    Cuypers, Eva; Abdel-Mottaleb, Yousra; Kopljar, Ivan; Rainier, Jon D.; Raes, Adam L.; Snyders, Dirk J.; Tytgat, Jan

    2008-01-01

    In this study, we pharmacologically characterized gambierol, a marine polycyclic ether toxin which is produced by the dinoflagellate Gambierdiscus toxicus. Besides several other polycyclic ether toxins like ciguatoxins, this scarcely studied toxin is one of the compounds that may be responsible for ciguatera fish poisoning (CFP). Unfortunately, the biological target(s) that underlies CFP is still partly unknown. Today, ciguatoxins are described to specifically activate voltage-gated sodium channels by interacting with their receptor site 5. But some dispute about the role of gambierol in the CFP story shows up: some describe voltage-gated sodium channels as the target, while others pinpoint voltage-gated potassium channels as targets. Since gambierol was never tested on isolated ion channels before, it was subjected in this work to extensive screening on a panel of 17 ion channels: nine cloned voltage-gated ion channels (mammalian Nav1.1–Nav1.8 and insect Para) and eight cloned voltage-gated potassium channels (mammalian Kv1.1–Kv1.6, hERG and insect ShakerIR) expressed in Xenopus laevis oocytes using two-electrode voltage-clamp technique. All tested sodium channel subtypes are insensitive to gambierol concentrations up to 10 μM. In contrast, Kv1.2 is the most sensitive voltage-gated potassium channel subtype with almost full block (>97%) and an half maximal inhibitory concentration (IC50) of 34.5 nM. To the best of our knowledge, this is the first study where the selectivity of gambierol is tested on isolated voltage-gated ion channels. Therefore, these results lead to a better understanding of gambierol and its possible role in CFP and they may also be useful in the development of more effective treatments. PMID:18313714

  17. Toxin Profile of Gymnodinium catenatum (Dinophyceae from the Portuguese Coast, as Determined by Liquid Chromatography Tandem Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Pedro R. Costa

    2015-04-01

    Full Text Available The marine dinoflagellate Gymnodinium catenatum has been associated with paralytic shellfish poisoning (PSP outbreaks in Portuguese waters for many years. PSP syndrome is caused by consumption of seafood contaminated with paralytic shellfish toxins (PSTs, a suite of potent neurotoxins. Gymnodinium catenatum was frequently reported along the Portuguese coast throughout the late 1980s and early 1990s, but was absent between 1995 and 2005. Since this time, G. catenatum blooms have been recurrent, causing contamination of fishery resources along the Atlantic coast of Portugal. The aim of this study was to evaluate the toxin profile of G. catenatum isolated from the Portuguese coast before and after the 10-year hiatus to determine changes and potential impacts for the region. Hydrophilic interaction liquid chromatography tandem mass spectrometry (HILIC-MS/MS was utilized to determine the presence of any known and emerging PSTs in sample extracts. Several PST derivatives were identified, including the N-sulfocarbamoyl analogues (C1–4, gonyautoxin 5 (GTX5, gonyautoxin 6 (GTX6, and decarbamoyl derivatives, decarbamoyl saxitoxin (dcSTX, decarbamoyl neosaxitoxin (dcNeo and decarbamoyl gonyautoxin 3 (dcGTX3. In addition, three known hydroxy benzoate derivatives, G. catenatum toxin 1 (GC1, GC2 and GC3, were confirmed in cultured and wild strains of G. catenatum. Moreover, two presumed N-hydroxylated analogues of GC2 and GC3, designated GC5 and GC6, are reported. This work contributes to our understanding of the toxigenicity of G. catenatum in the coastal waters of Portugal and provides valuable information on emerging PST classes that may be relevant for routine monitoring programs tasked with the prevention and control of marine toxins in fish and shellfish.

  18. Toxin Profile of Gymnodinium catenatum (Dinophyceae) from the Portuguese Coast, as Determined by Liquid Chromatography Tandem Mass Spectrometry

    Science.gov (United States)

    Costa, Pedro R.; Robertson, Alison; Quilliam, Michael A.

    2015-01-01

    The marine dinoflagellate Gymnodinium catenatum has been associated with paralytic shellfish poisoning (PSP) outbreaks in Portuguese waters for many years. PSP syndrome is caused by consumption of seafood contaminated with paralytic shellfish toxins (PSTs), a suite of potent neurotoxins. Gymnodinium catenatum was frequently reported along the Portuguese coast throughout the late 1980s and early 1990s, but was absent between 1995 and 2005. Since this time, G. catenatum blooms have been recurrent, causing contamination of fishery resources along the Atlantic coast of Portugal. The aim of this study was to evaluate the toxin profile of G. catenatum isolated from the Portuguese coast before and after the 10-year hiatus to determine changes and potential impacts for the region. Hydrophilic interaction liquid chromatography tandem mass spectrometry (HILIC-MS/MS) was utilized to determine the presence of any known and emerging PSTs in sample extracts. Several PST derivatives were identified, including the N-sulfocarbamoyl analogues (C1–4), gonyautoxin 5 (GTX5), gonyautoxin 6 (GTX6), and decarbamoyl derivatives, decarbamoyl saxitoxin (dcSTX), decarbamoyl neosaxitoxin (dcNeo) and decarbamoyl gonyautoxin 3 (dcGTX3). In addition, three known hydroxy benzoate derivatives, G. catenatum toxin 1 (GC1), GC2 and GC3, were confirmed in cultured and wild strains of G. catenatum. Moreover, two presumed N-hydroxylated analogues of GC2 and GC3, designated GC5 and GC6, are reported. This work contributes to our understanding of the toxigenicity of G. catenatum in the coastal waters of Portugal and provides valuable information on emerging PST classes that may be relevant for routine monitoring programs tasked with the prevention and control of marine toxins in fish and shellfish. PMID:25871287

  19. Design of monodisperse and well-defined polypeptide-based polyvalent inhibitors of anthrax toxin.

    Science.gov (United States)

    Patke, Sanket; Boggara, Mohan; Maheshwari, Ronak; Srivastava, Sunit K; Arha, Manish; Douaisi, Marc; Martin, Jacob T; Harvey, Ian B; Brier, Matthew; Rosen, Tania; Mogridge, Jeremy; Kane, Ravi S

    2014-07-28

    The design of polyvalent molecules, presenting multiple copies of a specific ligand, represents a promising strategy to inhibit pathogens and toxins. The ability to control independently the valency and the spacing between ligands would be valuable for elucidating structure-activity relationships and for designing potent polyvalent molecules. To that end, we designed monodisperse polypeptide-based polyvalent inhibitors of anthrax toxin in which multiple copies of an inhibitory toxin-binding peptide were separated by flexible peptide linkers. By tuning the valency and linker length, we designed polyvalent inhibitors that were over four orders of magnitude more potent than the corresponding monovalent ligands. This strategy for the rational design of monodisperse polyvalent molecules may not only be broadly applicable for the inhibition of toxins and pathogens, but also for controlling the nanoscale organization of cellular receptors to regulate signaling and the fate of stem cells. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Cyanobacteria toxins in the Salton Sea.

    Science.gov (United States)

    Carmichael, Wayne W; Li, RenHui

    2006-04-19

    The Salton Sea (SS) is the largest inland body of water in California: surface area 980 km2, volume 7.3 million acre-feet, 58 km long, 14-22 km wide, maximum depth 15 m. Located in the southeastern Sonoran desert of California, it is 85 m below sea level at its lowest point. It was formed between 1905 and 1907 from heavy river flows of the Colorado River. Since its formation, it has attracted both people and wildlife, including flocks of migratory birds that have made the Salton Sea a critical stopover on the Pacific flyway. Over the past 15 years wintering populations of eared grebe (Podiceps nigricollis) at the Salton Sea, have experienced over 200,000 mortalities. The cause of these large die-offs remains unknown. The unique environmental conditions of the Salton Sea, including salinities from brackish freshwater at river inlets to hypersaline conditions, extreme daily summer temperatures (>38 degrees C), and high nutrient loading from rivers and agricultural drainage favor eutrophic conditions that encourage algal blooms throughout the year. A significant component of these algal blooms are the prokaryotic group - the Cyanophyta or blue-green algae (also called Cyanobacteria). Since many Cyanobacteria produce toxins (the cyanotoxins) it became important to evaluate their presence and to determine if they are a contributing factor in eared-grebe mortalities at the Salton Sea. From November 1999 to April 2001, 247 water and sediment samples were received for phytoplankton identification and cyanotoxin analyses. Immunoassay (ELISA) screening of these samples found that eighty five percent of all water samples contained low but detectable levels of the potent cyclic peptide liver toxin called microcystins. Isolation and identification of cyanobacteria isolates showed that the picoplanktonic Synechococcus and the benthic filamentous Oscillatoria were dominant. Both organisms were found to produce microcystins dominated by microcystin-LR and YR. A laboratory strain

  1. Tumor Targeting and Drug Delivery by Anthrax Toxin

    Directory of Open Access Journals (Sweden)

    Christopher Bachran

    2016-07-01

    Full Text Available Anthrax toxin is a potent tripartite protein toxin from Bacillus anthracis. It is one of the two virulence factors and causes the disease anthrax. The receptor-binding component of the toxin, protective antigen, needs to be cleaved by furin-like proteases to be activated and to deliver the enzymatic moieties lethal factor and edema factor to the cytosol of cells. Alteration of the protease cleavage site allows the activation of the toxin selectively in response to the presence of tumor-associated proteases. This initial idea of re-targeting anthrax toxin to tumor cells was further elaborated in recent years and resulted in the design of many modifications of anthrax toxin, which resulted in successful tumor therapy in animal models. These modifications include the combination of different toxin variants that require activation by two different tumor-associated proteases for increased specificity of toxin activation. The anthrax toxin system has proved to be a versatile system for drug delivery of several enzymatic moieties into cells. This highly efficient delivery system has recently been further modified by introducing ubiquitin as a cytosolic cleavage site into lethal factor fusion proteins. This review article describes the latest developments in this field of tumor targeting and drug delivery.

  2. Tumor Targeting and Drug Delivery by Anthrax Toxin.

    Science.gov (United States)

    Bachran, Christopher; Leppla, Stephen H

    2016-07-01

    Anthrax toxin is a potent tripartite protein toxin from Bacillus anthracis. It is one of the two virulence factors and causes the disease anthrax. The receptor-binding component of the toxin, protective antigen, needs to be cleaved by furin-like proteases to be activated and to deliver the enzymatic moieties lethal factor and edema factor to the cytosol of cells. Alteration of the protease cleavage site allows the activation of the toxin selectively in response to the presence of tumor-associated proteases. This initial idea of re-targeting anthrax toxin to tumor cells was further elaborated in recent years and resulted in the design of many modifications of anthrax toxin, which resulted in successful tumor therapy in animal models. These modifications include the combination of different toxin variants that require activation by two different tumor-associated proteases for increased specificity of toxin activation. The anthrax toxin system has proved to be a versatile system for drug delivery of several enzymatic moieties into cells. This highly efficient delivery system has recently been further modified by introducing ubiquitin as a cytosolic cleavage site into lethal factor fusion proteins. This review article describes the latest developments in this field of tumor targeting and drug delivery.

  3. Botulinum toxin for the treatment of bruxism.

    Science.gov (United States)

    Tinastepe, Neslihan; Küçük, Burcu Bal; Oral, Koray

    2015-10-01

    Botulinum toxin, the most potent biological toxin, has been shown to be effective for a variety of disorders in several medical conditions, when used both therapeutically and cosmetically. In recent years, there has been a rising trend in the use of this pharmacological agent to control bruxing activity, despite its reported adverse effects. The aim of this review was to provide a brief overview to clarify the underlying essential ideas for the use of botulinum toxin in bruxism based on available scientific papers. An electronic literature search was performed to identify publications related to botulinum toxin and its use for bruxism in PubMed. Hand searching of relevant articles was also made to identify additional studies. Of the eleven identified studies, only two were randomized controlled trials, compared with the effectiveness of botulinum toxins on the reduction in the frequency of bruxism events and myofascial pain after injection. The authors of these studies concluded that botulinum toxin could be used as an effective treatment for reducing nocturnal bruxism and myofascial pain in patients with bruxism. Evidence-based research was limited on this topic. More randomized controlled studies are needed to confirm that botulinum toxin is safe and reliable for routine clinical use in bruxism.

  4. General synthesis of β-alanine-containing spider polyamine toxins and discovery of nephila polyamine toxins 1 and 8 as highly potent inhibitors of ionotropic glutamate receptors

    DEFF Research Database (Denmark)

    Lucas, Simon; Poulsen, Mette H; Nørager, Niels G

    2012-01-01

    Certain spiders contain large pools of polyamine toxins, which are putative pharmacological tools awaiting further discovery. Here we present a general synthesis strategy for this class of toxins and prepare five structurally varied polyamine toxins. Electrophysiological testing at three ionotrop...

  5. Effects of T-2 toxin on turkey herpesvirus–induced vaccinal immunity against Marek’s disease

    Science.gov (United States)

    T-2 toxin, a very potent immunotoxic Type A trichothecene, is a secondary metabolite produced primarily by Fusarium spp., which grows on cereal grains and can lead to contaminated livestock feed. Repeated exposure to T-2 toxin has been shown to cause immunosuppression and decrease the resistance of ...

  6. Rapid Extraction and Identification of Maitotoxin and Ciguatoxin-Like Toxins from Caribbean and Pacific Gambierdiscus Using a New Functional Bioassay.

    Directory of Open Access Journals (Sweden)

    Richard J Lewis

    Full Text Available Ciguatera is a circumtropical disease produced by polyether sodium channel toxins (ciguatoxins that enter the marine food chain and accumulate in otherwise edible fish. Ciguatoxins, as well as potent water-soluble polyethers known as maitotoxins, are produced by certain dinoflagellate species in the genus Gambierdiscus and Fukuyoa spp. in the Pacific but little is known of the potential of related Caribbean species to produce these toxins.We established a simplified procedure for extracting polyether toxins from Gambierdiscus and Fukuyoa spp. based on the ciguatoxin rapid extraction method (CREM. Fractionated extracts from identified Pacific and Caribbean isolates were analysed using a functional bioassay that recorded intracellular calcium changes (Ca2+ in response to sample addition in SH-SY5Y cells. Maitotoxin directly elevated Ca2+i, while low levels of ciguatoxin-like toxins were detected using veratridine to enhance responses.We identified significant maitotoxin production in 11 of 12 isolates analysed, with 6 of 12 producing at least two forms of maitotoxin. In contrast, only 2 Caribbean isolates produced detectable levels of ciguatoxin-like activity despite a detection limit of >30 pM. Significant strain-dependent differences in the levels and types of ciguatoxins and maitotoxins produced by the same Gambierdiscus spp. were also identified.The ability to rapidly identify polyether toxins produced by Gambierdiscus spp. in culture has the potential to distinguish ciguatoxin-producing species prior to large-scale culture and in naturally occurring blooms of Gambierdiscus and Fukuyoa spp. Our results have implications for the evaluation of ciguatera risk associated with Gambierdiscus and related species.

  7. Rapid Extraction and Identification of Maitotoxin and Ciguatoxin-Like Toxins from Caribbean and Pacific Gambierdiscus Using a New Functional Bioassay.

    Science.gov (United States)

    Lewis, Richard J; Inserra, Marco; Vetter, Irina; Holland, William C; Hardison, D Ransom; Tester, Patricia A; Litaker, R Wayne

    2016-01-01

    Ciguatera is a circumtropical disease produced by polyether sodium channel toxins (ciguatoxins) that enter the marine food chain and accumulate in otherwise edible fish. Ciguatoxins, as well as potent water-soluble polyethers known as maitotoxins, are produced by certain dinoflagellate species in the genus Gambierdiscus and Fukuyoa spp. in the Pacific but little is known of the potential of related Caribbean species to produce these toxins. We established a simplified procedure for extracting polyether toxins from Gambierdiscus and Fukuyoa spp. based on the ciguatoxin rapid extraction method (CREM). Fractionated extracts from identified Pacific and Caribbean isolates were analysed using a functional bioassay that recorded intracellular calcium changes (Ca2+) in response to sample addition in SH-SY5Y cells. Maitotoxin directly elevated Ca2+i, while low levels of ciguatoxin-like toxins were detected using veratridine to enhance responses. We identified significant maitotoxin production in 11 of 12 isolates analysed, with 6 of 12 producing at least two forms of maitotoxin. In contrast, only 2 Caribbean isolates produced detectable levels of ciguatoxin-like activity despite a detection limit of >30 pM. Significant strain-dependent differences in the levels and types of ciguatoxins and maitotoxins produced by the same Gambierdiscus spp. were also identified. The ability to rapidly identify polyether toxins produced by Gambierdiscus spp. in culture has the potential to distinguish ciguatoxin-producing species prior to large-scale culture and in naturally occurring blooms of Gambierdiscus and Fukuyoa spp. Our results have implications for the evaluation of ciguatera risk associated with Gambierdiscus and related species.

  8. Botulinum toxin in pain treatment.

    Science.gov (United States)

    Colhado, Orlando Carlos Gomes; Boeing, Marcelo; Ortega, Luciano Bornia

    2009-01-01

    Botulinum toxin (BTX) is one of the most potent bacterial toxins known and its effectiveness in the treatment of some pain syndromes is well known. However, the efficacy of some of its indications is still in the process of being confirmed. The objective of this study was to review the history, pharmacological properties, and clinical applications of BTX in the treatment of pain of different origins. Botulinum toxin is produced by fermentation of Clostridium botulinum, a Gram-positive, anaerobic bacterium. Commercially, BTX comes in two presentations, types A and B. Botulinum toxin, a neurotoxin with high affinity for cholinergic synapses, blocks the release of acetylcholine by nerve endings without interfering with neuronal conduction of electrical signals or synthesis and storage of acetylcholine. It has been proven that BTX can selectively weaken painful muscles, interrupting the spasm-pain cycle. Several studies have demonstrated the efficacy and safety of BTX-A in the treatment of tension headaches, migraines, chronic lumbar pain, and myofascial pain. Botulinum toxin type A is well tolerated in the treatment of chronic pain disorders in which pharmacotherapy regimens can cause side effects. The reduction in the consumption of analgesics and length of action of 3 to 4 months per dose represent other advantages of its use. However, further studies are necessary to establish the efficacy of BTX-A in chronic pain disorders and its exact mechanism of action, as well as its potential in multifactorial treatments.

  9. Climate change impacts on natural toxins in food production systems, exemplified by deoxynivalenol in wheat and diarrhetic shellfish toxins

    DEFF Research Database (Denmark)

    van der Fels-Klerx, H J; Olesen, Jørgen E; Naustvoll, L-J

    2012-01-01

    Climate change is expected to affect food and feed safety, including the occurrence of natural toxins in primary crop and seafood production; however, to date, quantitative estimates are scarce. This study aimed to estimate the impact of climate change effects on mycotoxin contamination of cereal...... on food safety hazards, rather than median or average values only. Furthermore, it is recommended to closely monitor levels of mycotoxins and marine biotoxins in the future, in particular related to risky situations associated with favourable climatic conditions for toxin producing organisms...

  10. Chemical engineering and structural and pharmacological characterization of the α-scorpion toxin OD1.

    Science.gov (United States)

    Durek, Thomas; Vetter, Irina; Wang, Ching-I Anderson; Motin, Leonid; Knapp, Oliver; Adams, David J; Lewis, Richard J; Alewood, Paul F

    2013-01-01

    Scorpion α-toxins are invaluable pharmacological tools for studying voltage-gated sodium channels, but few structure-function studies have been undertaken due to their challenging synthesis. To address this deficiency, we report a chemical engineering strategy based upon native chemical ligation. The chemical synthesis of α-toxin OD1 was achieved by chemical ligation of three unprotected peptide segments. A high resolution X-ray structure (1.8 Å) of synthetic OD1 showed the typical βαββ α-toxin fold and revealed important conformational differences in the pharmacophore region when compared with other α-toxin structures. Pharmacological analysis of synthetic OD1 revealed potent α-toxin activity (inhibition of fast inactivation) at Nav1.7, as well as Nav1.4 and Nav1.6. In addition, OD1 also produced potent β-toxin activity at Nav1.4 and Nav1.6 (shift of channel activation in the hyperpolarizing direction), indicating that OD1 might interact at more than one site with Nav1.4 and Nav1.6. Investigation of nine OD1 mutants revealed that three residues in the reverse turn contributed significantly to selectivity, with the triple OD1 mutant (D9K, D10P, K11H) being 40-fold more selective for Nav1.7 over Nav1.6, while OD1 K11V was 5-fold more selective for Nav1.6 than Nav1.7. This switch in selectivity highlights the importance of the reverse turn for engineering α-toxins with altered selectivity at Nav subtypes.

  11. Cyanobacterial toxins: risk management for health protection

    International Nuclear Information System (INIS)

    Codd, Geoffrey A.; Morrison, Louise F.; Metcalf, James S.

    2005-01-01

    This paper reviews the occurrence and properties of cyanobacterial toxins, with reference to the recognition and management of the human health risks which they may present. Mass populations of toxin-producing cyanobacteria in natural and controlled waterbodies include blooms and scums of planktonic species, and mats and biofilms of benthic species. Toxic cyanobacterial populations have been reported in freshwaters in over 45 countries, and in numerous brackish, coastal, and marine environments. The principal toxigenic genera are listed. Known sources of the families of cyanobacterial toxins (hepato-, neuro-, and cytotoxins, irritants, and gastrointestinal toxins) are briefly discussed. Key procedures in the risk management of cyanobacterial toxins and cells are reviewed, including derivations (where sufficient data are available) of tolerable daily intakes (TDIs) and guideline values (GVs) with reference to the toxins in drinking water, and guideline levels for toxigenic cyanobacteria in bathing waters. Uncertainties and some gaps in knowledge are also discussed, including the importance of exposure media (animal and plant foods), in addition to potable and recreational waters. Finally, we present an outline of steps to develop and implement risk management strategies for cyanobacterial cells and toxins in waterbodies, with recent applications and the integration of Hazard Assessment Critical Control Point (HACCP) principles

  12. Uptake, transfer and elimination kinetics of paralytic shellfish toxins in common octopus (Octopus vulgaris).

    Science.gov (United States)

    Lopes, Vanessa M; Baptista, Miguel; Repolho, Tiago; Rosa, Rui; Costa, Pedro Reis

    2014-01-01

    Marine phycotoxins derived from harmful algal blooms are known to be associated with mass mortalities in the higher trophic levels of marine food webs. Bivalve mollusks and planktivorous fish are the most studied vectors of marine phycotoxins. However, field surveys recently showed that cephalopod mollusks also constitute potential vectors of toxins. Thus, here we determine, for the first time, the time course of accumulation and depuration of paralytic shellfish toxins (PSTs) in the common octopus (Octopus vulgaris). Concomitantly, the underlying kinetics of toxin transfer between tissue compartments was also calculated. Naturally contaminated clams were used to orally expose the octopus to PSTs during 6 days. Afterwards, octopus specimens were fed with non-contaminated shellfish during 10 days of depuration period. Toxins reached the highest concentrations in the digestive gland surpassing the levels in the kidney by three orders of magnitude. PSTs were not detected in any other tissue analyzed. Net accumulation efficiencies of 42% for GTX5, 36% for dcSTX and 23% for C1+2 were calculated for the digestive gland. These compounds were the most abundant toxins in both digestive gland and the contaminated shellfish diet. The small differences in relative abundance of each toxin observed between the prey and the cephalopod predator indicates low conversion rates of these toxins. The depuration period was better described using an exponential decay model comprising a single compartment - the entire viscera. It is worth noting that since octopuses' excretion and depuration rates are low, the digestive gland is able to accumulate very high toxin concentrations for long periods of time. Therefore, the present study clearly shows that O. vulgaris is a high-potential vector of PSTs during and even after the occurrence of these toxic algal blooms. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Sources, factors, mechanisms and possible solutions to pollutants in marine ecosystems

    International Nuclear Information System (INIS)

    Mostofa, Khan M.G.; Liu, Cong-Qiang; Vione, Davide; Gao, Kunshan; Ogawa, Hiroshi

    2013-01-01

    Algal toxins or red-tide toxins produced during algal blooms are naturally-derived toxic emerging contaminants (ECs) that may kill organisms, including humans, through contaminated fish or seafood. Other ECs produced either naturally or anthropogenically ultimately flow into marine waters. Pharmaceuticals are also an important pollution source, mostly due to overproduction and incorrect disposal. Ship breaking and recycle industries (SBRIs) can also release various pollutants and substantially deteriorate habitats and marine biodiversity. Overfishing is significantly increasing due to the global food crisis, caused by an increasing world population. Organic matter (OM) pollution and global warming (GW) are key factors that exacerbate these challenges (e.g. algal blooms), to which acidification in marine waters should be added as well. Sources, factors, mechanisms and possible remedial measures of these challenges to marine ecosystems are discussed, including their eventual impact on all forms of life including humans. -- Review of sources, factors, mechanisms and possible remedial measures of key pollutants (contaminants, toxins, ship breaking, overfishing) in marine ecosystems

  14. The toxins of Cyanobacteria.

    Science.gov (United States)

    Patocka, J

    2001-01-01

    Cyanobacteria, formerly called "blue-green algae", are simple, primitive photosynthetic microorganism wide occurrence in fresh, brackish and salt waters. Forty different genera of Cyanobacteria are known and many of them are producers of potent toxins responsible for a wide array of human illnesses, aquatic mammal and bird morbidity and mortality, and extensive fish kills. These cyanotoxins act as neurotoxins or hepatotoxins and are structurally and functionally diverse, and many are derived from unique biosynthetic pathways. All known cyanotoxins and their chemical and toxicological characteristics are presented in this article.

  15. The Determination of Marine Biotoxins in Seafood

    NARCIS (Netherlands)

    Gerssen, Arjen; Klijnstra, Mirjam D.

    2017-01-01

    Marine biotoxins are natural toxins produced by specific algae species. These toxins can accumulate in seafood such as mussels, oysters and fish. Consumption of contaminated seafood may lead to severe intoxication such as memory loss, paralysis, diarrhoea and even death. In order to protect

  16. Food safety: developement of new methods for marine algal toxins detection

    OpenAIRE

    Barreras Garcia, Alvaro

    2013-01-01

    2011/2012 SUMMARY Biotoxins produced by harmful algae during their proliferation can be accumulated by filter feeding organisms, such as bivalve shellfish, within their flesh. Furthermore, these toxins gradually are transferred to the higher trophic levels in the food chain, posing a threat to human health, after consumption of contaminated seafood. Filter-feeding invertebrates are organisms in which the toxin accumulation is a well-known phenomenon, especially during harmful algal...

  17. Short Toxin-like Proteins Abound in Cnidaria Genomes

    Directory of Open Access Journals (Sweden)

    Michal Linial

    2012-11-01

    Full Text Available Cnidaria is a rich phylum that includes thousands of marine species. In this study, we focused on Anthozoa and Hydrozoa that are represented by the Nematostella vectensis (Sea anemone and Hydra magnipapillata genomes. We present a method for ranking the toxin-like candidates from complete proteomes of Cnidaria. Toxin-like functions were revealed using ClanTox, a statistical machine-learning predictor trained on ion channel inhibitors from venomous animals. Fundamental features that were emphasized in training ClanTox include cysteines and their spacing along the sequences. Among the 83,000 proteins derived from Cnidaria representatives, we found 170 candidates that fulfill the properties of toxin-like-proteins, the vast majority of which were previously unrecognized as toxins. An additional 394 short proteins exhibit characteristics of toxin-like proteins at a moderate degree of confidence. Remarkably, only 11% of the predicted toxin-like proteins were previously classified as toxins. Based on our prediction methodology and manual annotation, we inferred functions for over 400 of these proteins. Such functions include protease inhibitors, membrane pore formation, ion channel blockers and metal binding proteins. Many of the proteins belong to small families of paralogs. We conclude that the evolutionary expansion of toxin-like proteins in Cnidaria contributes to their fitness in the complex environment of the aquatic ecosystem.

  18. Comparative toxicity and efficacy of engineered anthrax lethal toxin variants with broad anti-tumor activities

    International Nuclear Information System (INIS)

    Peters, Diane E.; Hoover, Benjamin; Cloud, Loretta Grey; Liu, Shihui; Molinolo, Alfredo A.; Leppla, Stephen H.; Bugge, Thomas H.

    2014-01-01

    We have previously designed and characterized versions of anthrax lethal toxin that are selectively cytotoxic in the tumor microenvironment and which display broad and potent anti-tumor activities in vivo. Here, we have performed the first direct comparison of the safety and efficacy of three engineered anthrax lethal toxin variants requiring activation by either matrix-metalloproteinases (MMPs), urokinase plasminogen activator (uPA) or co-localized MMP/uPA activities. C57BL/6J mice were challenged with six doses of engineered toxins via intraperitoneal (I.P.) or intravenous (I.V.) dose routes to determine the maximum tolerated dose for six administrations (MTD6) and dose-limiting toxicities. Efficacy was evaluated using the B16-BL6 syngraft model of melanoma; mice bearing established tumors were treated with six I.P. doses of toxin and tumor measurements and immunohistochemistry, paired with terminal blood work, were used to elaborate upon the anti-tumor mechanism and relative efficacy of each variant. We found that MMP-, uPA- and dual MMP/uPA-activated anthrax lethal toxins exhibited the same dose-limiting toxicity; dose-dependent GI toxicity. In terms of efficacy, all three toxins significantly reduced primary B16-BL6 tumor burden, ranging from 32% to 87% reduction, and they also delayed disease progression as evidenced by dose-dependent normalization of blood work values. While target organ toxicity and effective doses were similar amongst the variants, the dual MMP/uPA-activated anthrax lethal toxin exhibited the highest I.P. MTD6 and was 1.5–3-fold better tolerated than the single MMP- and uPA-activated toxins. Overall, we demonstrate that this dual MMP/uPA-activated anthrax lethal toxin can be administered safely and is highly effective in a preclinical model of melanoma. This modified bacterial cytotoxin is thus a promising candidate for further clinical development and evaluation for use in treating human cancers. - Highlights: • Toxicity and anti

  19. Comparative toxicity and efficacy of engineered anthrax lethal toxin variants with broad anti-tumor activities

    Energy Technology Data Exchange (ETDEWEB)

    Peters, Diane E. [Proteases and Tissue Remodeling Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD (United States); Program of Pharmacology and Experimental Therapeutics, Tufts University School of Medicine, Boston, MA (United States); Hoover, Benjamin [Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD (United States); Cloud, Loretta Grey [Proteases and Tissue Remodeling Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD (United States); Liu, Shihui [Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD (United States); Molinolo, Alfredo A. [Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD (United States); Leppla, Stephen H. [Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD (United States); Bugge, Thomas H., E-mail: thomas.bugge@nih.go [Proteases and Tissue Remodeling Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD (United States)

    2014-09-01

    We have previously designed and characterized versions of anthrax lethal toxin that are selectively cytotoxic in the tumor microenvironment and which display broad and potent anti-tumor activities in vivo. Here, we have performed the first direct comparison of the safety and efficacy of three engineered anthrax lethal toxin variants requiring activation by either matrix-metalloproteinases (MMPs), urokinase plasminogen activator (uPA) or co-localized MMP/uPA activities. C57BL/6J mice were challenged with six doses of engineered toxins via intraperitoneal (I.P.) or intravenous (I.V.) dose routes to determine the maximum tolerated dose for six administrations (MTD6) and dose-limiting toxicities. Efficacy was evaluated using the B16-BL6 syngraft model of melanoma; mice bearing established tumors were treated with six I.P. doses of toxin and tumor measurements and immunohistochemistry, paired with terminal blood work, were used to elaborate upon the anti-tumor mechanism and relative efficacy of each variant. We found that MMP-, uPA- and dual MMP/uPA-activated anthrax lethal toxins exhibited the same dose-limiting toxicity; dose-dependent GI toxicity. In terms of efficacy, all three toxins significantly reduced primary B16-BL6 tumor burden, ranging from 32% to 87% reduction, and they also delayed disease progression as evidenced by dose-dependent normalization of blood work values. While target organ toxicity and effective doses were similar amongst the variants, the dual MMP/uPA-activated anthrax lethal toxin exhibited the highest I.P. MTD6 and was 1.5–3-fold better tolerated than the single MMP- and uPA-activated toxins. Overall, we demonstrate that this dual MMP/uPA-activated anthrax lethal toxin can be administered safely and is highly effective in a preclinical model of melanoma. This modified bacterial cytotoxin is thus a promising candidate for further clinical development and evaluation for use in treating human cancers. - Highlights: • Toxicity and anti

  20. Comparative proteomic analysis reveals proteins putatively involved in toxin biosynthesis in the marine dinoflagellate Alexandrium catenella.

    Science.gov (United States)

    Wang, Da-Zhi; Gao, Yue; Lin, Lin; Hong, Hua-Sheng

    2013-01-22

    Alexandrium is a neurotoxin-producing dinoflagellate genus resulting in paralytic shellfish poisonings around the world. However, little is known about the toxin biosynthesis mechanism in Alexandrium. This study compared protein profiles of A. catenella collected at different toxin biosynthesis stages (non-toxin synthesis, initial toxin synthesis and toxin synthesizing) coupled with the cell cycle, and identified differentially expressed proteins using 2-DE and MALDI-TOF-TOF mass spectrometry. The results showed that toxin biosynthesis of A. catenella occurred within a defined time frame in the G1 phase of the cell cycle. Proteomic analysis indicated that 102 protein spots altered significantly in abundance (P translation. Among them, nine proteins with known functions in paralytic shellfish toxin-producing cyanobacteria, i.e., methionine S-adenosyltransferase, chloroplast ferredoxin-NADP+ reductase, S-adenosylhomocysteinase, adenosylhomocysteinase, ornithine carbamoyltransferase, inorganic pyrophosphatase, sulfotransferase (similar to), alcohol dehydrogenase and arginine deiminase, varied significantly at different toxin biosynthesis stages and formed an interaction network, indicating that they might be involved in toxin biosynthesis in A. catenella. This study is the first step in the dissection of the behavior of the A. catenella proteome during different toxin biosynthesis stages and provides new insights into toxin biosynthesis in dinoflagellates.

  1. Botulinum Toxin for the Treatment of Tremor and Tics.

    Science.gov (United States)

    Lotia, Mitesh; Jankovic, Joseph

    2016-02-01

    The therapeutic applications of botulinum toxin (BoNT) have grown manifold since its initial approval in 1989 by the U.S. Food and Drug Administration for the treatment of strabismus, blepharospasm, and other facial spasms. Although it is the most potent biologic toxin known to man, long-term studies have established its safety in the treatment of a variety of neurologic and nonneurologic disorders. Despite a paucity of randomized controlled trials, BoNT has been found to be beneficial in treating a variety of tremors and tics when used by clinicians skilled in the administration of the drug for these hyperkinetic movement disorders. Botulinum toxin injections can provide meaningful improvement in patients with localized tremors and tics; in some cases, they may be an alternative to other treatments with more undesirable adverse effects. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  2. Potent antifouling compounds produced by marine Streptomyces

    KAUST Repository

    Xu, Ying; He, Hongping; Schulz, Stefan; Liu, Xin; Fusetani, Nobushino; Xiong, Hairong; Xiao, Xiang; Qian, Peiyuan

    2010-01-01

    of a marine Streptomyces strain obtained from deep-sea sediments. Antifouling activities of these five compounds and four other structurally-related compounds isolated from a North Sea Streptomyces strain against major fouling organisms were compared

  3. The Regulatory Networks That Control Clostridium difficile Toxin Synthesis

    Science.gov (United States)

    Martin-Verstraete, Isabelle; Peltier, Johann; Dupuy, Bruno

    2016-01-01

    The pathogenic clostridia cause many human and animal diseases, which typically arise as a consequence of the production of potent exotoxins. Among the enterotoxic clostridia, Clostridium difficile is the main causative agent of nosocomial intestinal infections in adults with a compromised gut microbiota caused by antibiotic treatment. The symptoms of C. difficile infection are essentially caused by the production of two exotoxins: TcdA and TcdB. Moreover, for severe forms of disease, the spectrum of diseases caused by C. difficile has also been correlated to the levels of toxins that are produced during host infection. This observation strengthened the idea that the regulation of toxin synthesis is an important part of C. difficile pathogenesis. This review summarizes our current knowledge about the regulators and sigma factors that have been reported to control toxin gene expression in response to several environmental signals and stresses, including the availability of certain carbon sources and amino acids, or to signaling molecules, such as the autoinducing peptides of quorum sensing systems. The overlapping regulation of key metabolic pathways and toxin synthesis strongly suggests that toxin production is a complex response that is triggered by bacteria in response to particular states of nutrient availability during infection. PMID:27187475

  4. Comparative Proteomic Analysis Reveals Proteins Putatively Involved in Toxin Biosynthesis in the Marine Dinoflagellate Alexandrium catenella

    Directory of Open Access Journals (Sweden)

    Da-Zhi Wang

    2013-01-01

    Full Text Available Alexandrium is a neurotoxin-producing dinoflagellate genus resulting in paralytic shellfish poisonings around the world. However, little is known about the toxin biosynthesis mechanism in Alexandrium. This study compared protein profiles of A. catenella collected at different toxin biosynthesis stages (non-toxin synthesis, initial toxin synthesis and toxin synthesizing coupled with the cell cycle, and identified differentially expressed proteins using 2-DE and MALDI-TOF-TOF mass spectrometry. The results showed that toxin biosynthesis of A. catenella occurred within a defined time frame in the G1 phase of the cell cycle. Proteomic analysis indicated that 102 protein spots altered significantly in abundance (P < 0.05, and 53 proteins were identified using database searching. These proteins were involved in a variety of biological processes, i.e., protein modification and biosynthesis, metabolism, cell division, oxidative stress, transport, signal transduction, and translation. Among them, nine proteins with known functions in paralytic shellfish toxin-producing cyanobacteria, i.e., methionine S-adenosyltransferase, chloroplast ferredoxin-NADP+ reductase, S-adenosylhomocysteinase, adenosylhomocysteinase, ornithine carbamoyltransferase, inorganic pyrophosphatase, sulfotransferase (similar to, alcohol dehydrogenase and arginine deiminase, varied significantly at different toxin biosynthesis stages and formed an interaction network, indicating that they might be involved in toxin biosynthesis in A. catenella. This study is the first step in the dissection of the behavior of the A. catenella proteome during different toxin biosynthesis stages and provides new insights into toxin biosynthesis in dinoflagellates.

  5. Marine Battlefields

    DEFF Research Database (Denmark)

    Harðardóttir, Sara

    as they are an important food source for various marine animals. For both phytoand zooplankton predation is a major cause of mortality, and strategies for protection or avoidance are important for survival. Diatoms of the genera Nitzschia and Pseudo-nitzschia are known to produce a neuro-toxin, domoic acid (DA). Despite......Phytoplankton species are photosynthetic organisms found in most aquatic habitats. In the ocean, phytoplankton are tremendously important because they produce the energy that forms the base of the marine food web. Zooplankton feed on phytoplankton and mediate the energy to higher trophic levels...

  6. The cytolethal distending toxin contributes to microbial virulence and disease pathogenesis by acting as a tri-perditious toxin

    Directory of Open Access Journals (Sweden)

    Monika D Scuron

    2016-12-01

    Full Text Available This review summarizes the current status and recent advances in our understanding of the role that the cytolethal distending toxin (Cdt plays as a virulence factor in promoting disease by toxin-producing pathogens. A major focus of this review is on the relationship between structure and function of the individual subunits that comprise the AB2 Cdt holotoxin. In particular, we concentrate on the molecular mechanisms that characterize this toxin and which account for the ability of Cdt to intoxicate multiple cell types by utilizing a ubiquitous binding partner on the cell membrane. Furthermore, we propose a paradigm shift for the molecular mode of action by which the active Cdt subunit, CdtB, is able to block a key signaling cascade and thereby lead to outcomes based upon programming and the role of the phosphatidylinositol 3-kinase (PI-3K in a variety of cells. Based upon the collective Cdt literature, we now propose that Cdt is a unique and potent virulence factor capable of acting as a tri-perditious toxin that impairs host defenses by: 1 disrupting epithelial barriers; 2 suppressing acquired immunity; 3 promoting pro-inflammatory responses. Thus Cdt plays a key role in facilitating the early stages of infection and the later stages of disease progression by contributing to persistence and impairing host elimination.

  7. Neurotoxins from Marine Dinoflagellates: A Brief Review

    Directory of Open Access Journals (Sweden)

    Da-Zhi Wang

    2008-06-01

    Full Text Available Dinoflagellates are not only important marine primary producers and grazers, but also the major causative agents of harmful algal blooms. It has been reported that many dinoflagellate species can produce various natural toxins. These toxins can be extremely toxic and many of them are effective at far lower dosages than conventional chemical agents. Consumption of seafood contaminated by algal toxins results in various seafood poisoning syndromes: paralytic shellfish poisoning (PSP, neurotoxic shellfish poisoning (NSP, amnesic shellfish poisoning (ASP, diarrheic shellfish poisoning (DSP, ciguatera fish poisoning (CFP and azaspiracid shellfish poisoning (ASP. Most of these poisonings are caused by neurotoxins which present themselves with highly specific effects on the nervous system of animals, including humans, by interfering with nerve impulse transmission. Neurotoxins are a varied group of compounds, both chemically and pharmacologically. They vary in both chemical structure and mechanism of action, and produce very distinct biological effects, which provides a potential application of these toxins in pharmacology and toxicology. This review summarizes the origin, structure and clinical symptoms of PSP, NSP, CFP, AZP, yessotoxin and palytoxin produced by marine dinoflagellates, as well as their molecular mechanisms of action on voltage-gated ion channels.

  8. The ladder-shaped polyether toxin gambierol anchors the gating machinery of Kv3.1 channels in the resting state

    Science.gov (United States)

    Kopljar, Ivan; Labro, Alain J.; de Block, Tessa; Rainier, Jon D.; Tytgat, Jan

    2013-01-01

    Voltage-gated potassium (Kv) and sodium (Nav) channels are key determinants of cellular excitability and serve as targets of neurotoxins. Most marine ciguatoxins potentiate Nav channels and cause ciguatera seafood poisoning. Several ciguatoxins have also been shown to affect Kv channels, and we showed previously that the ladder-shaped polyether toxin gambierol is a potent Kv channel inhibitor. Most likely, gambierol acts via a lipid-exposed binding site, located outside the K+ permeation pathway. However, the mechanism by which gambierol inhibits Kv channels remained unknown. Using gating and ionic current analysis to investigate how gambierol affected S6 gate opening and voltage-sensing domain (VSD) movements, we show that the resting (closed) channel conformation forms the high-affinity state for gambierol. The voltage dependence of activation was shifted by >120 mV in the depolarizing direction, precluding channel opening in the physiological voltage range. The (early) transitions between the resting and the open state were monitored with gating currents, and provided evidence that strong depolarizations allowed VSD movement up to the activated-not-open state. However, for transition to the fully open (ion-conducting) state, the toxin first needed to dissociate. These dissociation kinetics were markedly accelerated in the activated-not-open state, presumably because this state displayed a much lower affinity for gambierol. A tetrameric concatemer with only one high-affinity binding site still displayed high toxin sensitivity, suggesting that interaction with a single binding site prevented the concerted step required for channel opening. We propose a mechanism whereby gambierol anchors the channel’s gating machinery in the resting state, requiring more work from the VSD to open the channel. This mechanism is quite different from the action of classical gating modifier peptides (e.g., hanatoxin). Therefore, polyether toxins open new opportunities in structure

  9. Rhodamine B-conjugated encrypted vipericidin nonapeptide is a potent toxin to zebrafish and associated with in vitro cytotoxicity.

    Science.gov (United States)

    Wang, Liang; Chan, Judy Y W; Rêgo, Juciane V; Chong, Cheong-Meng; Ai, Nana; Falcão, Cláudio B; Rádis-Baptista, Gandhi; Lee, Simon M Y

    2015-06-01

    Animal venoms contain a diverse array of proteins and enzymes that are toxic toward various physiological systems. However, there are also some practical medicinal uses for these toxins including use as anti-bacterial and anti-tumor agents. In this study, we identified a nine-residue cryptic oligopeptide, KRFKKFFKK (EVP50) that is repeatedly encoded in tandem within vipericidin sequences. EVP50 displayed in vivo potent lethal toxicity to zebrafish larvae (LD50=6 μM) when the peptide's N-terminus was chemically conjugated to rhodamine B (RhoB). In vitro, RhoB-conjugated EVP50 (RhoB-EVP50) exhibited a concentration-dependent cytotoxic effect toward MCF-7 and MDA-MB-231 breast cancer cells. In MCF-7 cells, the RhoB-EVP50 nonapeptide accumulated inside the cells within minutes. In the cytoplasm, the RhoB-EVP50 induced extracellular calcium influx and intracellular calcium release. Membrane budding was also observed after incubation with micromolar concentrations of the fluorescent EVP50 conjugate. The conjugate's interference with calcium homeostasis, its intracellular accumulation and its induced membrane dysfunction (budding and vacuolization) seem to act in concert to disrupt the cell circuitry. Contrastively, unconjugated EVP50 peptide did not display neither toxic nor cytotoxic activities in our in vivo and in vitro models. The synergic mechanism of toxicity was restricted to the structurally modified encrypted vipericidin nonapeptide. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Phenol-Soluble Modulin Toxins of Staphylococcus haemolyticus

    Directory of Open Access Journals (Sweden)

    Fei Da

    2017-05-01

    Full Text Available Coagulase-negative staphylococci (CoNS are important nosocomial pathogens and the leading cause of sepsis. The second most frequently implicated species, after Staphylococcus epidermidis, is Staphylococcus haemolyticus. However, we have a significant lack of knowledge about what causes virulence of S. haemolyticus, as virulence factors of this pathogen have remained virtually unexplored. In contrast to the aggressive pathogen Staphylococcus aureus, toxin production has traditionally not been associated with CoNS. Recent findings have suggested that phenol-soluble modulins (PSMs, amphipathic peptide toxins with broad cytolytic activity, are widespread in staphylococci, but there has been no systematic assessment of PSM production in CoNS other than S. epidermidis. Here, we identified, purified, and characterized PSMs of S. haemolyticus. We found three PSMs of the β-type, which correspond to peptides that before were described to have anti-gonococcal activity. We also detected an α-type PSM that has not previously been described. Furthermore, we confirmed that S. haemolyticus does not produce a δ-toxin, as results from genome sequencing had indicated. All four S. haemolyticus PSMs had strong pro-inflammatory activity, promoting neutrophil chemotaxis. Notably, we identified in particular the novel α-type PSM, S. haemolyticus PSMα, as a potent hemolysin and leukocidin. For the first time, our study describes toxins of this important staphylococcal pathogen with the potential to have a significant impact on virulence during blood infection and sepsis.

  11. Use of Biosensors as Alternatives to Current Regulatory Methods for Marine Biotoxins

    Directory of Open Access Journals (Sweden)

    Luis M. Botana

    2009-11-01

    Full Text Available Marine toxins are currently monitored by means of a bioassay that requires the use of many mice, which poses a technical and ethical problem in many countries. With the exception of domoic acid, there is a legal requirement for the presence of other toxins (yessotoxin, saxitoxin and analogs, okadaic acid and analogs, pectenotoxins and azaspiracids in seafood to be controlled by bioassay, but other toxins, such as palytoxin, cyclic imines, ciguatera and tetrodotoxin are potentially present in European food and there are no legal requirements or technical approaches available to identify their presence. The need for alternative methods to the bioassay is clearly important, and biosensors have become in recent years a feasible alternative to animal sacrifice. This review will discuss the advantages and disadvantages of using biosensors as alternatives to animal assays for marine toxins, with particular focus on surface plasmon resonance (SPR technology.

  12. Photocatalytic Cellulosic Electrospun Fibers for the Degradation of Potent Cyanobacteria Toxin Microcystin-LR

    Science.gov (United States)

    2012-01-01

    visible light activated or UV light activated), the surface area of the fiber mat, and loading solution pH all have an effect on the distribution of...photocatalysis with nanoparticles (such as titania, TiO2 ) show tremendous promise as a simple and energy efficient tech- nology for water purification and...LR (MC-LR). MC- LR is one of the most commonly found cyanobacteria toxins generated by the more frequently occurring cyanobacteria algae blooms in

  13. Chemical synthesis, 3D structure, and ASIC binding site of the toxin mambalgin-2.

    Science.gov (United States)

    Schroeder, Christina I; Rash, Lachlan D; Vila-Farrés, Xavier; Rosengren, K Johan; Mobli, Mehdi; King, Glenn F; Alewood, Paul F; Craik, David J; Durek, Thomas

    2014-01-20

    Mambalgins are a novel class of snake venom components that exert potent analgesic effects mediated through the inhibition of acid-sensing ion channels (ASICs). The 57-residue polypeptide mambalgin-2 (Ma-2) was synthesized by using a combination of solid-phase peptide synthesis and native chemical ligation. The structure of the synthetic toxin, determined using homonuclear NMR, revealed an unusual three-finger toxin fold reminiscent of functionally unrelated snake toxins. Electrophysiological analysis of Ma-2 on wild-type and mutant ASIC1a receptors allowed us to identify α-helix 5, which borders on the functionally critical acidic pocket of the channel, as a major part of the Ma-2 binding site. This region is also crucial for the interaction of ASIC1a with the spider toxin PcTx1, thus suggesting that the binding sites for these toxins substantially overlap. This work lays the foundation for structure-activity relationship (SAR) studies and further development of this promising analgesic peptide. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Development of a recombinant toxin fragment vaccine for Clostridium difficile infection.

    Science.gov (United States)

    Karczewski, Jerzy; Zorman, Julie; Wang, Su; Miezeiewski, Matthew; Xie, Jinfu; Soring, Keri; Petrescu, Ioan; Rogers, Irene; Thiriot, David S; Cook, James C; Chamberlin, Mihaela; Xoconostle, Rachel F; Nahas, Debbie D; Joyce, Joseph G; Bodmer, Jean-Luc; Heinrichs, Jon H; Secore, Susan

    2014-05-19

    Clostridium difficile infection (CDI) is the major cause of antibiotic-associated diarrhea and pseudomembranous colitis, a disease associated with significant morbidity and mortality. The disease is mostly of nosocomial origin, with elderly patients undergoing anti-microbial therapy being particularly at risk. C. difficile produces two large toxins: Toxin A (TcdA) and Toxin B (TcdB). The two toxins act synergistically to damage and impair the colonic epithelium, and are primarily responsible for the pathogenesis associated with CDI. The feasibility of toxin-based vaccination against C. difficile is being vigorously investigated. A vaccine based on formaldehyde-inactivated Toxin A and Toxin B (toxoids) was reported to be safe and immunogenic in healthy volunteers and is now undergoing evaluation in clinical efficacy trials. In order to eliminate cytotoxic effects, a chemical inactivation step must be included in the manufacturing process of this toxin-based vaccine. In addition, the large-scale production of highly toxic antigens could be a challenging and costly process. Vaccines based on non-toxic fragments of genetically engineered versions of the toxins alleviate most of these limitations. We have evaluated a vaccine assembled from two recombinant fragments of TcdB and explored their potential as components of a novel experimental vaccine against CDI. Golden Syrian hamsters vaccinated with recombinant fragments of TcdB combined with full length TcdA (Toxoid A) developed high titer IgG responses and potent neutralizing antibody titers. We also show here that the recombinant vaccine protected animals against lethal challenge with C. difficile spores, with efficacy equivalent to the toxoid vaccine. The development of a two-segment recombinant vaccine could provide several advantages over toxoid TcdA/TcdB such as improvements in manufacturability. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Analysis of the mechanisms that underlie absorption of botulinum toxin by the inhalation route.

    Science.gov (United States)

    Al-Saleem, Fetweh H; Ancharski, Denise M; Joshi, Suresh G; Elias, M; Singh, Ajay; Nasser, Zidoon; Simpson, Lance L

    2012-12-01

    Botulinum toxin is a highly potent oral and inhalation poison, which means that the toxin must have an efficient mechanism for penetration of epithelial barriers. To date, three models for toxin passage across epithelial barriers have been proposed: (i) the toxin itself undergoes binding and transcytosis; (ii) an auxiliary protein, HA35, transports toxin from the apical to the basal side of epithelial cells; and (iii) an auxiliary protein, HA35, acts on the basal side of epithelial cells to disrupt tight junctions, and this permits paracellular flux of toxin. These models were evaluated by studying toxin absorption following inhalation exposure in mice. Three types of experiments were conducted. In the first, the potency of pure neurotoxin was compared with that of progenitor toxin complex, which contains HA35. The results showed that the rate and extent of toxin absorption, as well as the potency of absorbed toxin, did not depend upon, nor were they enhanced by, the presence of HA35. In the second type of experiment, the potencies of pure neurotoxin and progenitor toxin complex were compared in the absence or presence of antibodies on the apical side of epithelial cells. Antibodies directed against the neurotoxin protected against challenge, but antibodies against HA35 did not. In the final type of experiment, the potency of pure neurotoxin and toxin complex was compared in animals pretreated to deliver antibodies to the basal side of epithelial cells. Once again, antibodies directed against the neurotoxin provided resistance to challenge, but antibodies directed against HA35 did not. Taken collectively, the data indicate that the toxin by itself is capable of crossing epithelial barriers. The data do not support any hypothesis in which HA35 is essential for toxin penetration of epithelial barriers.

  16. The scorpion toxin Bot IX is a potent member of the α-like family and has a unique N-terminal sequence extension.

    Science.gov (United States)

    Martin-Eauclaire, Marie-France; Salvatierra, Juan; Bosmans, Frank; Bougis, Pierre E

    2016-09-01

    We report the detailed chemical, immunological and pharmacological characterization of the α-toxin Bot IX from the Moroccan scorpion Buthus occitanus tunetanus venom. Bot IX, which consists of 70 amino acids, is a highly atypical toxin. It carries a unique N-terminal sequence extension and is highly lethal in mice. Voltage clamp recordings on oocytes expressing rat Nav1.2 or insect BgNav1 reveal that, similar to other α-like toxins, Bot IX inhibits fast inactivation of both variants. Moreover, Bot IX belongs to the same structural/immunological group as the α-like toxin Bot I. Remarkably, radioiodinated Bot IX competes efficiently with the classical α-toxin AaH II from Androctonus australis, and displays one of the highest affinities for Nav channels. © 2016 Federation of European Biochemical Societies.

  17. Rationally designed chemokine-based toxin targeting the viral G protein-coupled receptor US28 potently inhibits cytomegalovirus infection in vivo

    DEFF Research Database (Denmark)

    Spiess, Katja; Jeppesen, Mads G.; Malmgaard-Clausen, Mikkel

    2015-01-01

    The use of receptor-ligand interactions to direct toxins to kill diseased cells selectively has shown considerable promise for treatment of a number of cancers and, more recently, autoimmune disease. Here we move the fusion toxin protein (FTP) technology beyond cancer/autoimmune therapeutics to t...

  18. Marine-derived fungi: Source of biologically potent and novel compounds

    Digital Repository Service at National Institute of Oceanography (India)

    Majik, M.S.; Parvatkar, R.R.; Tilvi, S.; Gawas, S.G.

    -83) showed potent anti-mycobacterial activity against Mycobacterium smegmatis, M. bovisand M. tuberculosis, with MIC values in the range 0.02–2.0 mg/mL, and were effective against both actively growing and dormant states. Trichodermaquinone (84...

  19. A national survey of marine biotoxins in wild-caught abalone in Australia.

    Science.gov (United States)

    Malhi, Navreet; Turnbull, Alison; Tan, Jessica; Kiermeier, Andreas; Nimmagadda, Rama; McLeod, Catherine

    2014-11-01

    The first national survey of Australian wild-caught abalone was conducted between September 2012 and December 2013. The aim of the survey was to determine the presence of paralytic shellfish toxins (PSTs), amnesic shellfish toxins (ASTs), and diarrhetic shellfish toxins (DSTs) in wild-caught abalone at levels above the current Codex marine biotoxin limits during the 2013 fishing season. Abalone (n = 190) were collected from 68 abalone-fishing blocks for which the combined annual harvest accounts for 80 % of Australian production. Concurrent seawater samples were collected and enumerated for potentially toxic phytoplankton. The foot and viscera tissues of each abalone sample were analyzed separately for PSTs, ASTs, and DSTs. No samples (abalone foot or viscera) contained toxins at levels exceeding the marine biotoxin limits stipulated by Codex. The resulting prevalence estimate suggests that less than 1.6 % of the commercially caught wild abalone population in Australia were contaminated with marine biotoxins at levels above the regulatory limit during the survey period. ASTs were detected at very low (trace) levels in the foot and viscera tissue of four and three abalone samples, respectively. To our knowledge, this represents the first reported detection of domoic acid in Australian abalone. PSTs also were detected at very low levels in 17 samples of abalone foot tissue and 6 samples of abalone viscera. The association between the low levels of ASTs and PSTs detected in abalone and the presence of potential toxin-producing phytoplankton in seawater samples was weak. DSTs were not detected in any abalone despite the detection of very low levels of DST-producing phytoplankton in a small number (9 of 77) of seawater samples. The results of this survey should be useful for public health risk assessments and provide additional evidence that the prevalence of marine biotoxins in Australian wild-caught abalone is very low.

  20. The neurologic effects of noxious marine creatures.

    Science.gov (United States)

    Southcott, R V

    1975-01-01

    The concept of the sea as a source of noxious agents is perhaps not a familiar one to clinical neurologists, judging by the lack of reference to these agents in standard textbooks. Chemical, physiologic, and pharmacologic laboratories are increasingly investigating the properties of marine toxins, finding in them compounds with interesting and novel structures or unusual physiologic effects. Such substances are seen as possible agents for biologic and, more particularly, physiologic research, and as possible sources of new pharmaceuticals. These include hormone-like substances and antiviral or antitumor agents. Despite these specialized developments, which are in large measure a consequence of the technological advances of the present century, the clinician is at times directly concerned with the effects of marine toxic substances. For example, in Japan, puffer fish or tetrodotoxic poisoning is one of the major causes of deaths from food poisoning. Another marine toxin that has caused many explosive outbreaks of food poisoning. with many deaths in various parts of the world, comes from clams or mussels. This toxin, saxitoxin, is produced by species of marine protozoa including Gonyaulax, and is concentrated in filter-feeding molluscs. These two examples were of significant interest in medicine long before the technologic developments of the twentieth century. In the last few decades, entirely new problems of marine intoxication have arisen as a result of marine pollution from the disposal of industrial wastes in the sea. The most striking example of a man-made marine intoxication has been the outbreak of Minamata disease. In Minamata, Japan, the disposal of mercury-contaminated industrial wastes from a plastics factory into an enclosed bay, followed by human consumption of the contaminated fishes, crabs, or shellfish, led to many instances of acute cerebral degeneration. With the increasing exploration of the sea for both pleasure and economic exploitation, which

  1. Anticancer drugs from marine flora: an overview.

    Science.gov (United States)

    Sithranga Boopathy, N; Kathiresan, K

    2010-01-01

    Marine floras, such as bacteria, actinobacteria, cyanobacteria, fungi, microalgae, seaweeds, mangroves, and other halophytes are extremely important oceanic resources, constituting over 90% of the oceanic biomass. They are taxonomically diverse, largely productive, biologically active, and chemically unique offering a great scope for discovery of new anticancer drugs. The marine floras are rich in medicinally potent chemicals predominantly belonging to polyphenols and sulphated polysaccharides. The chemicals have displayed an array of pharmacological properties especially antioxidant, immunostimulatory, and antitumour activities. The phytochemicals possibly activate macrophages, induce apoptosis, and prevent oxidative damage of DNA, thereby controlling carcinogenesis. In spite of vast resources enriched with chemicals, the marine floras are largely unexplored for anticancer lead compounds. Hence, this paper reviews the works so far conducted on this aspect with a view to provide a baseline information for promoting the marine flora-based anticancer research in the present context of increasing cancer incidence, deprived of the cheaper, safer, and potent medicines to challenge the dreadful human disease.

  2. Anticancer Drugs from Marine Flora: An Overview

    Directory of Open Access Journals (Sweden)

    N. Sithranga Boopathy

    2010-01-01

    Full Text Available Marine floras, such as bacteria, actinobacteria, cyanobacteria, fungi, microalgae, seaweeds, mangroves, and other halophytes are extremely important oceanic resources, constituting over 90% of the oceanic biomass. They are taxonomically diverse, largely productive, biologically active, and chemically unique offering a great scope for discovery of new anticancer drugs. The marine floras are rich in medicinally potent chemicals predominantly belonging to polyphenols and sulphated polysaccharides. The chemicals have displayed an array of pharmacological properties especially antioxidant, immunostimulatory, and antitumour activities. The phytochemicals possibly activate macrophages, induce apoptosis, and prevent oxidative damage of DNA, thereby controlling carcinogenesis. In spite of vast resources enriched with chemicals, the marine floras are largely unexplored for anticancer lead compounds. Hence, this paper reviews the works so far conducted on this aspect with a view to provide a baseline information for promoting the marine flora-based anticancer research in the present context of increasing cancer incidence, deprived of the cheaper, safer, and potent medicines to challenge the dreadful human disease.

  3. Rachael Carson Lecture - Algal Toxins in the Deep Blue Sea: an Environmental Concern?

    Science.gov (United States)

    Silver, M. W.; Bargu, S.

    2008-05-01

    Many land plants are known to possess toxins, presumably for grazer deterrence, whereas toxins in marine phytoplankton are a much rarer phenomenon, particularly in open ocean (blue water) environments. Several dozen phytoplankton species, frequently dinoflagellates but also some diatoms, form "harmful algal blooms" nearshore: here their toxins can contaminate filter-feeding shellfish resulting in poisoning "syndromes" when humans consume the tainted shellfish. The present rise in such coastal events is a likely consequence of human activities. In blue water, open ocean environments, the filamentous cyanobacterium Trichodesmium (a blue green alga) is one of the few bloom-forming toxin producers and hosts a consortium of microorganisms that may be partially immune to its toxins. Pseudo-nitzschia, a ubiquitous genus of diatoms recently has been shown to include coastal species that produce domoic acid (DA), a neurotoxin that passes through the food web, sometimes with resulting deaths of marine birds and mammals. Oceanic species of Pseudo-nitzschia also exist but are less well known, and DA has not yet been found in them. Here we review some general features of toxic marine phytoplankton, recent studies on DA in coastal ecosystems and describe some of our findings on blue water Pseudo-nitzschia. We will summarize laboratory experiments that show complex patterns of DA retention and release into the water when Fe is added to coastal Pseudo-nitzschia cultures. In oceanic species, equivalent experiments on cell physiology are limited and the natural species and abundance patterns poorly known. Here we present our recent discovery that DA occurs in oceanic Pseudo-nitzschia and review evidence from the literature that this genus may be preferentially enhanced when iron is added to HNLC (high nutrient, low chlorophyll) waters: areas where nitrogen and phosphorus are not yet depleted, but iron concentrations and phytoplankton biomass are low. The rapid growth of these DA

  4. Bacterial community affects toxin production by Gymnodinium catenatum.

    Directory of Open Access Journals (Sweden)

    Maria E Albinsson

    Full Text Available The paralytic shellfish toxin (PST-producing dinoflagellate Gymnodinium catenatum grows in association with a complex marine bacterial community that is both essential for growth and can alter culture growth dynamics. Using a bacterial community replacement approach, we examined the intracellular PST content, production rate, and profile of G. catenatum cultures grown with bacterial communities of differing complexity and composition. Clonal offspring were established from surface-sterilized resting cysts (produced by sexual crosses of strain GCDE06 and strain GCLV01 and grown with: 1 complex bacterial communities derived from each of the two parent cultures; 2 simplified bacterial communities composed of the G. catenatum-associated bacteria Marinobacter sp. strain DG879 or Alcanivorax sp. strain DG881; 3 a complex bacterial community associated with an untreated, unsterilized sexual cross of the parents. Toxin content (STX-equivalent per cell of clonal offspring (134-197 fmol STX cell(-1 was similar to the parent cultures (169-206 fmol STX cell(-1, however cultures grown with single bacterial types contained less toxin (134-146 fmol STX cell(-1 than offspring or parent cultures grown with more complex mixed bacterial communities (152-176 fmol STX cell(-1. Specific toxin production rate (fmol STX day(-1 was strongly correlated with culture growth rate. Net toxin production rate (fmol STX cell(-1 day(-1 did not differ among treatments, however, mean net toxin production rate of offspring was 8-fold lower than the parent cultures, suggesting that completion of the sexual lifecycle in laboratory cultures leads to reduced toxin production. The PST profiles of offspring cultures were most similar to parent GCDE06 with the exception of cultures grown with Marinobacter sp. DG879 which produced higher proportions of dcGTX2+3 and GC1+2, and lower proportions of C1+2 and C3+4. Our data demonstrate that the bacterial community can alter intracellular STX

  5. Bacterial community affects toxin production by Gymnodinium catenatum.

    Science.gov (United States)

    Albinsson, Maria E; Negri, Andrew P; Blackburn, Susan I; Bolch, Christopher J S

    2014-01-01

    The paralytic shellfish toxin (PST)-producing dinoflagellate Gymnodinium catenatum grows in association with a complex marine bacterial community that is both essential for growth and can alter culture growth dynamics. Using a bacterial community replacement approach, we examined the intracellular PST content, production rate, and profile of G. catenatum cultures grown with bacterial communities of differing complexity and composition. Clonal offspring were established from surface-sterilized resting cysts (produced by sexual crosses of strain GCDE06 and strain GCLV01) and grown with: 1) complex bacterial communities derived from each of the two parent cultures; 2) simplified bacterial communities composed of the G. catenatum-associated bacteria Marinobacter sp. strain DG879 or Alcanivorax sp. strain DG881; 3) a complex bacterial community associated with an untreated, unsterilized sexual cross of the parents. Toxin content (STX-equivalent per cell) of clonal offspring (134-197 fmol STX cell(-1)) was similar to the parent cultures (169-206 fmol STX cell(-1)), however cultures grown with single bacterial types contained less toxin (134-146 fmol STX cell(-1)) than offspring or parent cultures grown with more complex mixed bacterial communities (152-176 fmol STX cell(-1)). Specific toxin production rate (fmol STX day(-1)) was strongly correlated with culture growth rate. Net toxin production rate (fmol STX cell(-1) day(-1)) did not differ among treatments, however, mean net toxin production rate of offspring was 8-fold lower than the parent cultures, suggesting that completion of the sexual lifecycle in laboratory cultures leads to reduced toxin production. The PST profiles of offspring cultures were most similar to parent GCDE06 with the exception of cultures grown with Marinobacter sp. DG879 which produced higher proportions of dcGTX2+3 and GC1+2, and lower proportions of C1+2 and C3+4. Our data demonstrate that the bacterial community can alter intracellular STX

  6. Biodegradation of polyether algal toxins–Isolation of potential marine bacteria

    Science.gov (United States)

    SHETTY, KATEEL G.; HUNTZICKER, JACQUELINE V.; REIN, KATHLEEN S.; JAYACHANDRAN, KRISH

    2012-01-01

    Marine algal toxins such as brevetoxins, okadaic acid, yessotoxin, and ciguatoxin are polyether compounds. The fate of polyether toxins in the aqueous phase, particularly bacterial biotransformation of the toxins, is poorly understood. An inexpensive and easily available polyether structural analog salinomycin was used for enrichment and isolation of potential polyether toxin degrading aquatic marine bacteria from Florida bay area, and from red tide endemic sites in the South Florida Gulf coast. Bacterial growth on salinomycin was observed in most of the enrichment cultures from both regions with colony forming units ranging from 0 to 6 × 107 per mL. The salinomycin biodegradation efficiency of bacterial isolates determined using LC-MS ranged from 22% to 94%. Selected bacterial isolates were grown in media with brevetoxin as the sole carbon source to screen for brevetoxin biodegradation capability using ELISA. Out of the two efficient salinomycin biodegrading isolates MB-2 and MB-4, maximum brevetoxin biodegradation efficiency of 45% was observed with MB-4, while MB-2 was unable to biodegrade brevetoxin. Based on 16S rRNA sequence similarity MB-4 was found have a match with Chromohalobacter sp. PMID:20954040

  7. Selective Activation of a Perforin-Granzyme B Fusion Protein Toxin by PSA as Therapy for Metastatic Prostate Cancer

    Science.gov (United States)

    2016-10-01

    SUPPLEMENTARY NOTES 14. ABSTRACT Protein toxins represent a class of agents that can kill cells in a proliferation independent manner . Many such...in a proliferation independent manner . Many such proteins, derived primarily from bacterial sources, have been identified that are highly potent

  8. Physical, chemical, phytoplankton, marine toxin, and other data from bottle casts and bottom grabs from NOAA Ship ALBATROSS IV and other platforms as part of the North East Monitoring Program and other projects from 1977-02-12 to 1981-08-10 (NODC Accession 8500078)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical, chemical, phytoplankton, marine toxin, and other data from bottle casts and bottom grabs from NOAA Ship ALBATROSS IV and other platforms from 12 February...

  9. Diversity and Impact of Prokaryotic Toxins on Aquatic Environments: A Review

    Directory of Open Access Journals (Sweden)

    Rogério Tenreiro

    2010-10-01

    Full Text Available Microorganisms are ubiquitous in all habitats and are recognized by their metabolic versatility and ability to produce many bioactive compounds, including toxins. Some of the most common toxins present in water are produced by several cyanobacterial species. As a result, their blooms create major threats to animal and human health, tourism, recreation and aquaculture. Quite a few cyanobacterial toxins have been described, including hepatotoxins, neurotoxins, cytotoxins and dermatotoxins. These toxins are secondary metabolites, presenting a vast diversity of structures and variants. Most of cyanobacterial secondary metabolites are peptides or have peptidic substructures and are assumed to be synthesized by non-ribosomal peptide synthesis (NRPS, involving peptide synthetases, or NRPS/PKS, involving peptide synthetases and polyketide synthases hybrid pathways. Besides cyanobacteria, other bacteria associated with aquatic environments are recognized as significant toxin producers, representing important issues in food safety, public health, and human and animal well being. Vibrio species are one of the most representative groups of aquatic toxin producers, commonly associated with seafood-born infections. Some enterotoxins and hemolysins have been identified as fundamental for V. cholerae and V. vulnificus pathogenesis, but there is evidence for the existence of other potential toxins. Campylobacter spp. and Escherichia coli are also water contaminants and are able to produce important toxins after infecting their hosts. Other bacteria associated with aquatic environments are emerging as toxin producers, namely Legionella pneumophila and Aeromonas hydrophila, described as responsible for the synthesis of several exotoxins, enterotoxins and cytotoxins. Furthermore, several Clostridium species can produce potent neurotoxins. Although not considered aquatic microorganisms, they are ubiquitous in the environment and can easily contaminate drinking

  10. Potent Antifouling Marine Dihydroquinolin-2(1H)-one-Containing Alkaloids from the Gorgonian Coral-Derived Fungus Scopulariopsis sp.

    Science.gov (United States)

    Shao, Chang-Lun; Xu, Ru-Fang; Wang, Chang-Yun; Qian, Pei-Yuan; Wang, Kai-Ling; Wei, Mei-Yan

    2015-08-01

    Marine biofouling has a major economic impact, especially when it occurs on ship hulls or aquaculture facilities. Since the International Maritime Organization (IMO) treaty to ban the application of organotin-based paints to ships went into effect in 2008, there is an urgent demand for the development of efficient and environmentally friendly antifouling agents. Marine microorganisms have proved to be a potential source of antifouling natural compounds. In this study, six dihydroquinolin-2-one-containing alkaloids, three monoterpenoids combined with a 4-phenyl-3,4-dihydroquinolin-2(1H)-one (1-3) and three 4-phenyl-3,4-dihydroquinolin-2(1H)-one alkaloids (4-6), were isolated from the gorgonian coral-derived fungus Scopulariopsis sp. collected in the South China Sea. These dihydroquinolin-2-one-containing alkaloids were evaluated against the larval settlement of barnacle Balanus amphitrite, and antifouling activity was detected for the first time for this class of metabolites. All of them except 6 showed strong antifouling activity. Compounds 1 and 2 were discovered to be the most promising non-toxic antilarval settlement candidates. Especially, compound 1 is the strongest antifouling compound in nature until now which showed highly potent activity with picomolar level (EC50 17.5 pM) and a very safety and high therapeutic ratio (LC50/EC50 1200). This represents an effective non-toxic, anti-larval settlement structural class of promising antifouling lead compound.

  11. Potent Antifouling Marine Dihydroquinolin-2(1H)-one-Containing Alkaloids from the Gorgonian Coral-Derived Fungus Scopulariopsis sp.

    KAUST Repository

    Shao, Chang Lun

    2015-04-02

    Marine biofouling has a major economic impact, especially when it occurs on ship hulls or aquaculture facilities. Since the International Maritime Organization (IMO) treaty to ban the application of organotin-based paints to ships went into effect in 2008, there is an urgent demand for the development of efficient and environmentally friendly antifouling agents. Marine microorganisms have proved to be a potential source of antifouling natural compounds. In this study, six dihydroquinolin-2-one-containing alkaloids, three monoterpenoids combined with a 4-phenyl-3,4-dihydroquinolin-2(1H)-one (1–3) and three 4-phenyl-3,4-dihydroquinolin-2(1H)-one alkaloids (4–6), were isolated from the gorgonian coral-derived fungus Scopulariopsis sp. collected in the South China Sea. These dihydroquinolin-2-one-containing alkaloids were evaluated against the larval settlement of barnacle Balanus amphitrite, and antifouling activity was detected for the first time for this class of metabolites. All of them except 6 showed strong antifouling activity. Compounds 1 and 2 were discovered to be the most promising non-toxic antilarval settlement candidates. Especially, compound 1 is the strongest antifouling compound in nature until now which showed highly potent activity with picomolar level (EC50 17.5 pM) and a very safety and high therapeutic ratio (LC50/EC50 1200). This represents an effective non-toxic, anti-larval settlement structural class of promising antifouling lead compound. © 2015 Springer Science+Business Media New York

  12. Climate change impacts on natural toxins in food production systems, exemplified by deoxynivalenol in wheat and diarrhetic shellfish toxins.

    Science.gov (United States)

    van der Fels-Klerx, H J; Olesen, J E; Naustvoll, L-J; Friocourt, Y; Mengelers, M J B; Christensen, J H

    2012-01-01

    Climate change is expected to affect food and feed safety, including the occurrence of natural toxins in primary crop and seafood production; however, to date, quantitative estimates are scarce. This study aimed to estimate the impact of climate change effects on mycotoxin contamination of cereal grains cultivated in the terrestrial area of north west Europe, and on the frequency of harmful algal blooms and contamination of shellfish with marine biotoxins in the North Sea coastal zone. The study focused on contamination of wheat with deoxynivalenol, and on abundance of Dinophysis spp. and the possible relationship with diarrhetic shellfish toxins. The study used currently available data and models. Global and regional climate models were combined with models of crop phenology, mycotoxin prediction models, hydrodynamic models and ecological models, with the output of one model being used as input for the other. In addition, statistical data analyses using existing national datasets from the study area were performed to obtain information on the relationships between Dinophysis spp. cell counts and contamination of shellfish with diarrhetic shellfish toxins as well as on frequency of cereal cropping. In this paper, a summary of the study is presented, and overall conclusions and recommendations are given. Climate change projections for the years 2031-2050 were used as the starting point of the analyses relative to a preceding 20-year baseline period from which the climate change signal was calculated. Results showed that, in general, climate change effects lead to advanced flowering and harvest of wheat, and increased risk of contamination of wheat with deoxynivalenol. Blooms of dinoflagellates were estimated to occur more often. If the group of Dinophysis spp. behaves similarly to other flagellates in the future then frequency of harmful algal blooms of Dinophysis spp. may also increase, but consequences for contamination of shellfish with diarrhetic shellfish

  13. Fibre optic microarrays for the detection and enumeration of harmful ...

    African Journals Online (AJOL)

    Harmful algal blooms (HABs) are a serious threat to coastal resources, causing impacts ranging from the contamination of seafood products with potent toxins to mortalities of wild and farmed fish and other marine animals. As the threat from HABs has expanded, new approaches have become necessary, including ...

  14. How the marine biotoxins affect human health.

    Science.gov (United States)

    Morabito, Silvia; Silvestro, Serena; Faggio, Caterina

    2018-03-01

    Several marine microalgae produce dangerous toxins very damaging to human health, aquatic ecosystems and coastal resources. These Harmful Algal Blooms (HABs) in recent decades seem greatly increased regarding frequency, severity and biogeographical level, causing serious health risks as a consequence of the consumption of contaminated seafood. Toxins can cause various clinically described syndromes, characterised by a wide range of symptoms: amnesic (ASP), diarrhoetic (DSP), azaspirazid (AZP), neurotoxic (NSP) and paralytic (PSP) shellfish poisonings and ciguatera fish poisoning. The spread of HABs is probably a result of anthropogenic activities and climate change, that influence marine planktonic systems, including global warming, habitat modification, eutrophication and growth of exogenous species in response to human pressures. HABs are a worldwide matter that requests local solutions and international cooperation. This review supplies an overview of HAB phenomena, and, in particular, we describe the major consequences of HABs on human health.

  15. Feasibility study on production of a matrix reference material for cyanobacterial toxins.

    Science.gov (United States)

    Hollingdale, Christie; Thomas, Krista; Lewis, Nancy; Békri, Khalida; McCarron, Pearse; Quilliam, Michael A

    2015-07-01

    The worldwide increase in cyanobacterial contamination of freshwater lakes and rivers is of great concern as many cyanobacteria produce potent hepatotoxins and neurotoxins (cyanotoxins). Such toxins pose a threat to aquatic ecosystems, livestock, and drinking water supplies. In addition, dietary supplements prepared from cyanobacteria can pose a risk to consumers if they contain toxins. Analytical monitoring for toxins in the environment and in consumer products is essential for the protection of public health. Reference materials (RMs) are an essential tool for the development and validation of analytical methods and are necessary for ongoing quality control of monitoring operations. Since the availability of appropriate RMs for cyanotoxins has been very limited, the present study was undertaken to examine the feasibility of producing a cyanobacterial matrix RM containing various cyanotoxins. The first step was large-scale culturing of various cyanobacterial cultures that produce anatoxins, microcystins, and cylindrospermopsins. After harvesting, the biomass was lyophilized, blended, homogenized, milled, and bottled. The moisture content and physical characteristics were assessed in order to evaluate the effectiveness of the production process. Toxin levels were measured by liquid chromatography with tandem mass spectrometry and ultraviolet detection. The reference material was found to be homogeneous for toxin content. Stability studies showed no significant degradation of target toxins over a period of 310 days at temperatures up to +40 °C except for the anatoxin-a, which showed some degradation at +40 °C. These results show that a fit-for-purpose matrix RM for cyanotoxins can be prepared using the processes and techniques applied in this work.

  16. Profiling of Extracellular Toxins Associated with Diarrhetic Shellfish Poison in Prorocentrum lima Culture Medium by High-Performance Liquid Chromatography Coupled with Mass Spectrometry.

    Science.gov (United States)

    Pan, Lei; Chen, Junhui; Shen, Huihui; He, Xiuping; Li, Guangjiu; Song, Xincheng; Zhou, Deshan; Sun, Chengjun

    2017-09-30

    Extracellular toxins released by marine toxigenic algae into the marine environment have attracted increasing attention in recent years. In this study, profiling, characterization and quantification of extracellular toxin compounds associated with diarrhetic shellfish poison (DSP) in the culture medium of toxin-producing dinoflagellates were performed using high-performance liquid chromatography-high-resolution mass spectrometry/tandem mass spectrometry for the first time. Results showed that solid-phase extraction can effectively enrich and clean the DSP compounds in the culture medium of Prorocentrum lima ( P. lima ), and the proposed method achieved satisfactory recoveries (94.80%-100.58%) and repeatability (relative standard deviation ≤9.27%). Commercial software associated with the accurate mass information of known DSP toxins and their derivatives was used to screen and identify DSP compounds. Nine extracellular DSP compounds were identified, of which seven toxins (including OA-D7b, OA-D9b, OA-D10a/b, and so on) were found in the culture medium of P. lima for the first time. The results of quantitative analysis showed that the contents of extracellular DSP compounds in P. lima culture medium were relatively high, and the types and contents of intracellular and extracellular toxins apparently varied in the different growth stages of P. lima . The concentrations of extracellular okadaic acid and dinophysistoxin-1 were within 19.9-34.0 and 15.2-27.9 μg/L, respectively. The total concentration of the DSP compounds was within the range of 57.70-79.63 μg/L. The results showed that the proposed method is an effective tool for profiling the extracellular DSP compounds in the culture medium of marine toxigenic algae.

  17. Innovative mode of action based in vitro assays for detection of marine neurotoxins

    NARCIS (Netherlands)

    Nicolas, J.A.Y.

    2015-01-01

    Innovative mode of action based in vitro assays for detection of marine neurotoxins

    J. Nicolas, P.J.M. Hendriksen, T.F.H. Bovee, I.M.C.M. Rietjens

    Marine biotoxins are naturally occurring compounds produced by particular phytoplankton species. These toxins often accumulate in

  18. Failure of manganese to protect from Shiga toxin.

    Directory of Open Access Journals (Sweden)

    Marsha A Gaston

    Full Text Available Shiga toxin (Stx, the main virulence factor of Shiga toxin producing Escherichia coli, is a major public health threat, causing hemorrhagic colitis and hemolytic uremic syndrome. Currently, there are no approved therapeutics for these infections; however manganese has been reported to provide protection from the Stx1 variant isolated from Shigella dysenteriae (Stx1-S both in vitro and in vivo. We investigated the efficacy of manganese protection from Stx1-S and the more potent Stx2a isoform, using experimental systems well-established for studying Stx: in vitro responses of Vero monkey kidney cells, and in vivo toxicity to CD-1 outbred mice. Manganese treatment at the reported therapeutic concentration was toxic to Vero cells in culture and to CD-1 mice. At lower manganese concentrations that were better tolerated, we observed no protection from Stx1-S or Stx2a toxicity. The ability of manganese to prevent the effects of Stx may be particular to certain cell lines, mouse strains, or may only be manifested at high, potentially toxic manganese concentrations.

  19. A polyether biotoxin binding site on the lipid-exposed face of the pore domain of Kv channels revealed by the marine toxin gambierol

    Science.gov (United States)

    Kopljar, Ivan; Labro, Alain J.; Cuypers, Eva; Johnson, Henry W. B.; Rainier, Jon D.; Tytgat, Jan; Snyders, Dirk J.

    2009-01-01

    Gambierol is a marine polycyclic ether toxin belonging to the group of ciguatera toxins. It does not activate voltage-gated sodium channels (VGSCs) but inhibits Kv1 potassium channels by an unknown mechanism. While testing whether Kv2, Kv3, and Kv4 channels also serve as targets, we found that Kv3.1 was inhibited with an IC50 of 1.2 ± 0.2 nM, whereas Kv2 and Kv4 channels were insensitive to 1 μM gambierol. Onset of block was similar from either side of the membrane, and gambierol did not compete with internal cavity blockers. The inhibition did not require channel opening and could not be reversed by strong depolarization. Using chimeric Kv3.1–Kv2.1 constructs, the toxin sensitivity was traced to S6, in which T427 was identified as a key determinant. In Kv3.1 homology models, T427 and other molecular determinants (L348, F351) reside in a space between S5 and S6 outside the permeation pathway. In conclusion, we propose that gambierol acts as a gating modifier that binds to the lipid-exposed surface of the pore domain, thereby stabilizing the closed state. This site may be the topological equivalent of the neurotoxin site 5 of VGSCs. Further elucidation of this previously undescribed binding site may explain why most ciguatoxins activate VGSCs, whereas others inhibit voltage-dependent potassium (Kv) channels. This previously undescribed Kv neurotoxin site may have wide implications not only for our understanding of channel function at the molecular level but for future development of drugs to alleviate ciguatera poisoning or to modulate electrical excitability in general. PMID:19482941

  20. Profiling of Extracellular Toxins Associated with Diarrhetic Shellfish Poison in Prorocentrum lima Culture Medium by High-Performance Liquid Chromatography Coupled with Mass Spectrometry

    Science.gov (United States)

    Pan, Lei; Chen, Junhui; Shen, Huihui; He, Xiuping; Li, Guangjiu; Song, Xincheng; Zhou, Deshan; Sun, Chengjun

    2017-01-01

    Extracellular toxins released by marine toxigenic algae into the marine environment have attracted increasing attention in recent years. In this study, profiling, characterization and quantification of extracellular toxin compounds associated with diarrhetic shellfish poison (DSP) in the culture medium of toxin-producing dinoflagellates were performed using high-performance liquid chromatography–high-resolution mass spectrometry/tandem mass spectrometry for the first time. Results showed that solid-phase extraction can effectively enrich and clean the DSP compounds in the culture medium of Prorocentrum lima (P. lima), and the proposed method achieved satisfactory recoveries (94.80%–100.58%) and repeatability (relative standard deviation ≤9.27%). Commercial software associated with the accurate mass information of known DSP toxins and their derivatives was used to screen and identify DSP compounds. Nine extracellular DSP compounds were identified, of which seven toxins (including OA-D7b, OA-D9b, OA-D10a/b, and so on) were found in the culture medium of P. lima for the first time. The results of quantitative analysis showed that the contents of extracellular DSP compounds in P. lima culture medium were relatively high, and the types and contents of intracellular and extracellular toxins apparently varied in the different growth stages of P. lima. The concentrations of extracellular okadaic acid and dinophysistoxin-1 were within 19.9–34.0 and 15.2–27.9 μg/L, respectively. The total concentration of the DSP compounds was within the range of 57.70–79.63 μg/L. The results showed that the proposed method is an effective tool for profiling the extracellular DSP compounds in the culture medium of marine toxigenic algae. PMID:28974018

  1. Profiling of Extracellular Toxins Associated with Diarrhetic Shellfish Poison in Prorocentrum lima Culture Medium by High-Performance Liquid Chromatography Coupled with Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Lei Pan

    2017-09-01

    Full Text Available Extracellular toxins released by marine toxigenic algae into the marine environment have attracted increasing attention in recent years. In this study, profiling, characterization and quantification of extracellular toxin compounds associated with diarrhetic shellfish poison (DSP in the culture medium of toxin-producing dinoflagellates were performed using high-performance liquid chromatography–high-resolution mass spectrometry/tandem mass spectrometry for the first time. Results showed that solid-phase extraction can effectively enrich and clean the DSP compounds in the culture medium of Prorocentrum lima (P. lima, and the proposed method achieved satisfactory recoveries (94.80%–100.58% and repeatability (relative standard deviation ≤9.27%. Commercial software associated with the accurate mass information of known DSP toxins and their derivatives was used to screen and identify DSP compounds. Nine extracellular DSP compounds were identified, of which seven toxins (including OA-D7b, OA-D9b, OA-D10a/b, and so on were found in the culture medium of P. lima for the first time. The results of quantitative analysis showed that the contents of extracellular DSP compounds in P. lima culture medium were relatively high, and the types and contents of intracellular and extracellular toxins apparently varied in the different growth stages of P. lima. The concentrations of extracellular okadaic acid and dinophysistoxin-1 were within 19.9–34.0 and 15.2–27.9 μg/L, respectively. The total concentration of the DSP compounds was within the range of 57.70–79.63 μg/L. The results showed that the proposed method is an effective tool for profiling the extracellular DSP compounds in the culture medium of marine toxigenic algae.

  2. A novel antibody-based biomarker for chronic algal toxin exposure and sub-acute neurotoxicity

    Science.gov (United States)

    Lefebvre, Kathi A.; Frame, Elizabeth R.; Gulland, Frances; Hansen, John D.; Kendrick, Preston S.; Beyer, Richard P.; Bammler, Theo K.; Farin, Frederico M.; Hiolski, Emma M.; Smith, Donald R.; Marcinek, David J.

    2012-01-01

    The neurotoxic amino acid, domoic acid (DA), is naturally produced by marine phytoplankton and presents a significant threat to the health of marine mammals, seabirds and humans via transfer of the toxin through the foodweb. In humans, acute exposure causes a neurotoxic illness known as amnesic shellfish poisoning characterized by seizures, memory loss, coma and death. Regular monitoring for high DA levels in edible shellfish tissues has been effective in protecting human consumers from acute DA exposure. However, chronic low-level DA exposure remains a concern, particularly in coastal and tribal communities that subsistence harvest shellfish known to contain low levels of the toxin. Domoic acid exposure via consumption of planktivorous fish also has a profound health impact on California sea lions (Zalophus californianus) affecting hundreds of animals yearly. Due to increasing algal toxin exposure threats globally, there is a critical need for reliable diagnostic tests for assessing chronic DA exposure in humans and wildlife. Here we report the discovery of a novel DA-specific antibody response that is a signature of chronic low-level exposure identified initially in a zebrafish exposure model and confirmed in naturally exposed wild sea lions. Additionally, we found that chronic exposure in zebrafish caused increased neurologic sensitivity to DA, revealing that repetitive exposure to DA well below the threshold for acute behavioral toxicity has underlying neurotoxic consequences. The discovery that chronic exposure to low levels of a small, water-soluble single amino acid triggers a detectable antibody response is surprising and has profound implications for the development of diagnostic tests for exposure to other pervasive environmental toxins.

  3. A novel antibody-based biomarker for chronic algal toxin exposure and sub-acute neurotoxicity.

    Science.gov (United States)

    Lefebvre, Kathi A; Frame, Elizabeth R; Gulland, Frances; Hansen, John D; Kendrick, Preston S; Beyer, Richard P; Bammler, Theo K; Farin, Frederico M; Hiolski, Emma M; Smith, Donald R; Marcinek, David J

    2012-01-01

    The neurotoxic amino acid, domoic acid (DA), is naturally produced by marine phytoplankton and presents a significant threat to the health of marine mammals, seabirds and humans via transfer of the toxin through the foodweb. In humans, acute exposure causes a neurotoxic illness known as amnesic shellfish poisoning characterized by seizures, memory loss, coma and death. Regular monitoring for high DA levels in edible shellfish tissues has been effective in protecting human consumers from acute DA exposure. However, chronic low-level DA exposure remains a concern, particularly in coastal and tribal communities that subsistence harvest shellfish known to contain low levels of the toxin. Domoic acid exposure via consumption of planktivorous fish also has a profound health impact on California sea lions (Zalophus californianus) affecting hundreds of animals yearly. Due to increasing algal toxin exposure threats globally, there is a critical need for reliable diagnostic tests for assessing chronic DA exposure in humans and wildlife. Here we report the discovery of a novel DA-specific antibody response that is a signature of chronic low-level exposure identified initially in a zebrafish exposure model and confirmed in naturally exposed wild sea lions. Additionally, we found that chronic exposure in zebrafish caused increased neurologic sensitivity to DA, revealing that repetitive exposure to DA well below the threshold for acute behavioral toxicity has underlying neurotoxic consequences. The discovery that chronic exposure to low levels of a small, water-soluble single amino acid triggers a detectable antibody response is surprising and has profound implications for the development of diagnostic tests for exposure to other pervasive environmental toxins.

  4. Anticancer Drugs from Marine Flora: An Overview

    OpenAIRE

    Sithranga Boopathy, N.; Kathiresan, K.

    2010-01-01

    Marine floras, such as bacteria, actinobacteria, cyanobacteria, fungi, microalgae, seaweeds, mangroves, and other halophytes are extremely important oceanic resources, constituting over 90% of the oceanic biomass. They are taxonomically diverse, largely productive, biologically active, and chemically unique offering a great scope for discovery of new anticancer drugs. The marine floras are rich in medicinally potent chemicals predominantly belonging to polyphenols and sulphated polysaccharide...

  5. Emergent Toxins in North Atlantic Temperate Waters: A Challenge for Monitoring Programs and Legislation

    Directory of Open Access Journals (Sweden)

    Marisa Silva

    2015-03-01

    Full Text Available Harmful Algal Blooms (HAB are complex to manage due to their intermittent nature and their severe impact on the economy and human health. The conditions which promote HAB have not yet been fully explained, though climate change and anthropogenic intervention are pointed as significant factors. The rise of water temperature, the opening of new sea canals and the introduction of ship ballast waters all contribute to the dispersion and establishment of toxin-producing invasive species that promote the settling of emergent toxins in the food-chain. Tetrodotoxin, ciguatoxin, palytoxin and cyclic imines are commonly reported in warm waters but have also caused poisoning incidents in temperate zones. There is evidence that monitoring for these toxins exclusively in bivalves is simplistic and underestimates the risk to public health, since new vectors have been reported for these toxins and as well for regulated toxins such as PSTs and DSTs. In order to avoid public health impacts, there is a need for adequate monitoring programs, a need for establishing appropriate legislation, and a need for optimizing effective methods of analysis. In this review, we will compile evidence concerning emergent marine toxins and provide data that may indicate the need to restructure the current monitoring programs of HAB.

  6. Emergent Toxins in North Atlantic Temperate Waters: A Challenge for Monitoring Programs and Legislation

    Science.gov (United States)

    Silva, Marisa; Pratheepa, Vijaya K.; Botana, Luis M.; Vasconcelos, Vitor

    2015-01-01

    Harmful Algal Blooms (HAB) are complex to manage due to their intermittent nature and their severe impact on the economy and human health. The conditions which promote HAB have not yet been fully explained, though climate change and anthropogenic intervention are pointed as significant factors. The rise of water temperature, the opening of new sea canals and the introduction of ship ballast waters all contribute to the dispersion and establishment of toxin-producing invasive species that promote the settling of emergent toxins in the food-chain. Tetrodotoxin, ciguatoxin, palytoxin and cyclic imines are commonly reported in warm waters but have also caused poisoning incidents in temperate zones. There is evidence that monitoring for these toxins exclusively in bivalves is simplistic and underestimates the risk to public health, since new vectors have been reported for these toxins and as well for regulated toxins such as PSTs and DSTs. In order to avoid public health impacts, there is a need for adequate monitoring programs, a need for establishing appropriate legislation, and a need for optimizing effective methods of analysis. In this review, we will compile evidence concerning emergent marine toxins and provide data that may indicate the need to restructure the current monitoring programs of HAB. PMID:25785464

  7. Stool C difficile toxin

    Science.gov (United States)

    ... toxin; Colitis - toxin; Pseudomembranous - toxin; Necrotizing colitis - toxin; C difficile - toxin ... be analyzed. There are several ways to detect C difficile toxin in the stool sample. Enzyme immunoassay ( ...

  8. Detection of Harmful Algal Toxins Using the Radioligand Receptor Binding Assay. A Manual of Methods

    International Nuclear Information System (INIS)

    2013-12-01

    Marine ecosystems and their resources play major roles in sustaining human population and economic growth in coastal developing countries. These ecosystems are subjected to various natural and human-made threats. Among these are harmful algal blooms (HABs), which are natural phenomena that are increasingly being reported around the globe and responsible for human poisoning through the accumulation of potent toxins in marine food products. The impact of HABs may be aggravated by a limited knowledge of the microalgal species that cause toxic outbreaks, their biology, their diversity, their life cycles, and by poor capabilities for predicting the outbreaks and assessing the degree of HAB toxicity. Other negative factors are the lack of recognition of the disease, the lack of epidemiological data, the lack of adequate and specific treatment and low public awareness. Owing to the profound public health and socioeconomic impact of HABs, many countries have developed and implemented HAB related monitoring programmes and regulatory frameworks. Following a request made by the Philippines during the IAEA General Conference in 1997 to identify possible meaures to address the impacts of HABs, the IAEA initiated related Technical Cooperation projects to assist Member States in strengthening their capacities for prevention, management and mitigation of health and socioeconomic impacts of HABs. Since 1998, the IAEA and the National Oceanic and Atmospheric Administration (NOAA) have undertaken concerted actions to develop and to validate a radioligand based method, the receptor binding assay (RBA). The RBA is now recognized by the AOAC International as an official method for the detection of paralytic shellfish poisoning toxins. Within the IAEA Technical Cooperation programme, the RBA methodology was transferred to over 23 Member States in Africa, Asia, the Pacific region and Latin America. Transfer of knowledge and relevant equipment has enabled the development and strengthening

  9. Sustainable production of toxin free marine microalgae biomass as fish feed in large scale open system in the Qatari desert.

    Science.gov (United States)

    Das, Probir; Thaher, Mahmoud Ibrahim; Hakim, Mohammed Abdul Quadir Mohd Abdul; Al-Jabri, Hareb Mohammed S J

    2015-09-01

    Mass cultivation of microalgae biomass for feed should be cost effective and toxin free. Evaporation loss in Qatar can be as high as 2 cm/d. Hence, production of marine microalgae biomass in Qatar would also require mitigating water loss as there was only very limited groundwater reserve. To address these issues, a combination of four growth conditions were applied to a 25,000 L raceway pond: locally isolated microalgae strain was selected which could grow in elevated salinity; strain that did not require silica and vitamins; volume of the culture would increase over time keeping denser inoculum in the beginning, and evaporation water loss would be balanced by adding seawater only. A local saline tolerant Nannochloropsis sp. was selected which did not require silica and vitamins. When the above conditions were combined in the pond, average areal biomass productivities reached 20.37 g/m(2)/d, and the culture was not contaminated by any toxic microalgae. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Marine fish oil is more potent than plant-based n-3 polyunsaturated fatty acids in the prevention of mammary tumors.

    Science.gov (United States)

    Liu, Jiajie; Abdelmagid, Salma A; Pinelli, Christopher J; Monk, Jennifer M; Liddle, Danyelle M; Hillyer, Lyn M; Hucik, Barbora; Silva, Anjali; Subedi, Sanjeena; Wood, Geoffrey A; Robinson, Lindsay E; Muller, William J; Ma, David W L

    2017-12-27

    Marine-derived n-3 polyunsaturated fatty acids (PUFAs), such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), have been shown to inhibit mammary carcinogenesis. However, evidence regarding plant-based α-linolenic acid (ALA), the major n-3 PUFA in the Western diet, remains equivocal. The objective of this study was to examine the effect of lifelong exposure to plant- or marine-derived n-3 PUFAs on pubertal mammary gland and tumor development in MMTV-neu(ndl)-YD5 mice. It is hypothesized that lifelong exposure to n-3 PUFA reduces terminal end buds during puberty leading to delayed tumor onset, volume and multiplicity. It is further hypothesized that plant-derived n-3 PUFAs will exert dose-dependent effects. Harems of MMTV-FVB males were bred with wild-type females and fed either a (1) 10% safflower (10% SF, n-6 PUFA, control), (2) 10% flaxseed (10% FS), (3) 7% safflower plus 3% flaxseed (3% FS) or (4) 7% safflower plus 3% menhaden (3% FO) diet. Female offspring were maintained on parental diets. Compared to SF, 10% FS and 3% FO reduced (P<.05) terminal end buds at 6 weeks and tumor volume and multiplicity at 20 weeks. A dose-dependent reduction of tumor volume and multiplicity was observed in mice fed 3% and 10% FS. Antitumorigenic effects were associated with altered HER2, pHER-2, pAkt and Ki-67 protein expression. Compared to 10% SF, 3% FO significantly down-regulated expression of genes involved in eicosanoid synthesis and inflammation. From this, it can be estimated that ALA was 1/8 as potent as EPA+DHA. Thus, marine-derived n-3 PUFAs have greater potency versus plant-based n-3 PUFAs. Copyright © 2018. Published by Elsevier Inc.

  11. In vitro evaluation, biodistribution and scintigraphic imaging in mice of radiolabeled anthrax toxins

    International Nuclear Information System (INIS)

    Dadachova, Ekaterina; Rivera, Johanna; Revskaya, Ekaterina; Nakouzi, Antonio; Cahill, Sean M.; Blumenstein, Michael; Xiao, Hui; Rykunov, Dmitry; Casadevall, Arturo

    2008-01-01

    Introduction: There is a lot of interest towards creating therapies and vaccines for Bacillus anthracis, a bacterium which causes anthrax in humans and which spores can be made into potent biological weapons. Systemic injection of lethal factor (LF), edema factor (EF) and protective antigen (PA) in mice produces toxicity, and this protocol is commonly used to investigate the efficacy of specific antibodies in passive protection and vaccine studies. Availability of toxins labeled with imageable radioisotopes would allow to demonstrate their tissue distribution after intravenous injection at toxin concentration that are below pharmacologically significant to avoid masking by toxic effects. Methods: LF, EF and PA were radiolabeled with 188 Re and 99m Tc, and their performance in vitro was evaluated by macrophages and Chinese hamster ovary cells toxicity assays and by binding to macrophages. Scintigraphic imaging and biodistribution of intravenously (IV) injected 99m Tc-and 123 I-labeled toxins was performed in BALB/c mice. Results: Radiolabeled toxins preserved their biological activity. Scatchard-type analysis of the binding of radiolabeled PA to the J774.16 macrophage-like cells revealed 6.6x10 4 binding sites per cell with a dissociation constant of 6.7 nM. Comparative scintigraphic imaging of mice injected intravenously with either 99m Tc-or 123 I-labeled PA, EF and LF toxins demonstrated similar biodistribution patterns with early localization of radioactivity in the liver, spleen, intestines and excretion through kidneys. The finding of renal excretion shortly after IV injection strongly suggests that toxins are rapidly degraded which could contribute to the variability of mouse toxigenic assays. Biodistribution studies confirmed that all three toxins concentrated in the liver and the presence of high levels of radioactivity again implied rapid degradation in vivo. Conclusions: The availability of 188 Re and 99m Tc-labeled PA, LF and EF toxins allowed us to

  12. Isolation and characterization of delta toxin from the venom of Crotalus durissus terrificus

    International Nuclear Information System (INIS)

    Campos, Lucelia de Almeida

    2006-01-01

    The Crotalus durissus terrificus venom has been so far described as being of low complexity, with four major components described: convulxin, gyroxin, crotoxin and crotamine. In recent studies, other components of this venom were characterized as, for example, an analgesic factor. In 1980, Vital Brazil predicted the existence of a toxin which could be involved in platelet aggregation, and named it delta toxin. However, this toxin has never been isolated or characterized. The aim of the present work was to purify and characterize this toxin. After FPLC size exclusion chromatography followed by reverse phase HPLC, an homogeneous fraction was obtained, with a molecular weight of 14,074.92 Da. When analyzed by SOS-PAGE, this toxin presented an anomalous behavior, with a molecular weight of 14 kDa, while in 2D gels, spots around 40 kDa and with an isoelectrical point between 4 and 5 were observed suggesting isoforms with glicosilation microheterogeneity. After trypsin digestion, the fragments were submitted to the swissprot databank showing high homology (43% coverage, 15 matching peptides) with trocarin, a prothrombin activator from Tropidechis carinatus. These data were further confirmed by aminoacid analysis. The toxin was tested for its ability to activate factor II and X using synthetic substrates. Our data indicate a direct activation of factor X. The same toxin also behaved as a potent direct platelet aggregation activator on washed platelets. Assays with specific inhibitors indicate that neither metalloproteinase, nor serinoproteinase or t lectin domains are involved in the aggregating activity, since EDTA, benzamidin and D-galactose did not inhibit the toxin. In the present work, we were able to identify, purify and characterize a new toxin from the brazilian rattlesnake. It behaved as predicted by Vital-Brazil and displayed direct factor X activating properties, also inducing platelet aggregation, even at low concentrations. Our data also indicate that it is

  13. Warm temperature acclimation impacts metabolism of paralytic shellfish toxins from Alexandrium minutum in commercial oysters.

    Science.gov (United States)

    Farrell, Hazel; Seebacher, Frank; O'Connor, Wayne; Zammit, Anthony; Harwood, D Tim; Murray, Shauna

    2015-09-01

    Species of Alexandrium produce potent neurotoxins termed paralytic shellfish toxins and are expanding their ranges worldwide, concurrent with increases in sea surface temperature. The metabolism of molluscs is temperature dependent, and increases in ocean temperature may influence both the abundance and distribution of Alexandrium and the dynamics of toxin uptake and depuration in shellfish. Here, we conducted a large-scale study of the effect of temperature on the uptake and depuration of paralytic shellfish toxins in three commercial oysters (Saccostrea glomerata and diploid and triploid Crassostrea gigas, n = 252 per species/ploidy level). Oysters were acclimated to two constant temperatures, reflecting current and predicted climate scenarios (22 and 27 °C), and fed a diet including the paralytic shellfish toxin-producing species Alexandrium minutum. While the oysters fed on A. minutum in similar quantities, concentrations of the toxin analogue GTX1,4 were significantly lower in warm-acclimated S. glomerata and diploid C. gigas after 12 days. Following exposure to A. minutum, toxicity of triploid C. gigas was not affected by temperature. Generally, detoxification rates were reduced in warm-acclimated oysters. The routine metabolism of the oysters was not affected by the toxins, but a significant effect was found at a cellular level in diploid C. gigas. The increasing incidences of Alexandrium blooms worldwide are a challenge for shellfish food safety regulation. Our findings indicate that rising ocean temperatures may reduce paralytic shellfish toxin accumulation in two of the three oyster types; however, they may persist for longer periods in oyster tissue. © 2015 John Wiley & Sons Ltd.

  14. Marine microorganisms. Umi no biseibutsu

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, U. (Hiroshima University, Hiroshima (Japan). Faculty of Applied Biological Science)

    1992-11-10

    This paper explains properties, interactions, and activities of marine microorganisms. Marine bacteria include bacteria of vibrio family of arteromonas genus, luminous bacteria, and aerobic photosynthetic bacteria. Majority of marine bacteria is halophilic, and many proliferate at 5[degree]C or lower. Some of them can proliferate at 20[degree]C to 30[degree]C, or as high temperature as 80[degree]C and higher. Spongiaria and tumicata have many symbiotic microorganisms, and genes equivalent to luminous bacteria genes were discovered in DNA of light emitting organs in luminous fishes. It was verified that animal groups in upwelling zones are supported by bacteria that assimilate inorganics supplied from ocean bottoms. Marine bacteria decompose almost all of organics brought in from land to sea, and those produced in sea. Marine bacteria engage in complex interrelations with other organisms for competition, antagonism, parasitism, and symbiosis. The bacteria make antibacterial substances, anti-algae bacteria, enzyme inhibitors, toxins, pharmacologically active substances, and such physiologically active substances as deposition promoting substances to undersea structures including shells and barnacles, and deposition blocking substances. 53 refs., 3 figs.

  15. Enhancing the sustainability of the Marine Coastal Environment of the Mediterranean, the Red Sea and the Gulf

    International Nuclear Information System (INIS)

    El Samad, O.

    2012-01-01

    This project enhances the national capabilities to monitor and assess contaminants in the marine environment that could be organic pollutants, radioactive materials and toxins. This will be very beneficial as, the monitoring processes and control of marine pollution is a very strategic important objective of the national institutes concerned with environmental protection and rehabilitation of the marine environment. (author)

  16. An Enterotoxin-Like Binary Protein from Pseudomonas protegens with Potent Nematicidal Activity.

    Science.gov (United States)

    Wei, Jun-Zhi; Siehl, Daniel L; Hou, Zhenglin; Rosen, Barbara; Oral, Jarred; Taylor, Christopher G; Wu, Gusui

    2017-10-01

    Soil microbes are a major food source for free-living soil nematodes. It is known that certain soil bacteria have evolved systems to combat predation. We identified the nematode-antagonistic Pseudomonas protegens strain 15G2 from screening of microbes. Through protein purification we identified a binary protein, designated Pp-ANP, which is responsible for the nematicidal activity. This binary protein inhibits Caenorhabditis elegans growth and development by arresting larvae at the L1 stage and killing older-staged worms. The two subunits, Pp-ANP1a and Pp-ANP2a, are active when reconstituted from separate expression in Escherichia coli The binary toxin also shows strong nematicidal activity against three other free-living nematodes ( Pristionchus pacificus , Panagrellus redivivus , and Acrobeloides sp.), but we did not find any activity against insects and fungi under test conditions, indicating specificity for nematodes. Pp-ANP1a has no significant identity to any known proteins, while Pp-ANP2a shows ∼30% identity to E. coli heat-labile enterotoxin (LT) subunit A and cholera toxin (CT) subunit A. Protein modeling indicates that Pp-ANP2a is structurally similar to CT/LT and likely acts as an ADP-ribosyltransferase. Despite the similarity, Pp-ANP shows several characteristics distinct from CT/LT toxins. Our results indicate that Pp-ANP is a new enterotoxin-like binary toxin with potent and specific activity to nematodes. The potency and specificity of Pp-ANP suggest applications in controlling parasitic nematodes and open an avenue for further research on its mechanism of action and role in bacterium-nematode interaction. IMPORTANCE This study reports the discovery of a new enterotoxin-like binary protein, Pp-ANP, from a Pseudomonas protegens strain. Pp-ANP shows strong nematicidal activity against Caenorhabditis elegans larvae and older-staged worms. It also shows strong activity on other free-living nematodes ( Pristionchus pacificus , Panagrellus redivivus , and

  17. GENE EXPRESSION PROFILING OF HUMAN LIVER CARCINOMA (HepG2) CELLS EXPOSED TO THE MARINE TOXIN OKADAIC ACID

    Science.gov (United States)

    Fieber, Lynne A.; Greer, Justin B.; Guo, Fujiang; Crawford, Douglas C.; Rein, Kathleen S.

    2012-01-01

    The marine toxin, okadaic acid (OA) is produced by dinoflagellates of the genera Prorocentrum and Dinophysis and is the causative agent of the syndrome known as diarrheic shellfish poisoning (DSP). In addition, OA acts as both a tumor promoter, attributed to OA-induced inhibition of protein phosphatases as well as an inducer of apoptosis. To better understand the potentially divergent toxicological profile of OA, the concentration dependent cytotoxicity and alterations in gene expression on the human liver tumor cell line HepG2 upon OA exposure were determined using RNA microarrays, DNA fragmentation, and cell proliferation assays as well as determinations of cell detachment and cell death in different concentrations of OA. mRNA expression was quantified for approximately 15,000 genes. Cell attachment and proliferation were both negatively correlated with OA concentration. Detached cells displayed necrotic DNA signatures but apoptosis also was broadly observed. Data suggest that OA has a concentration dependent effect on cell cycle, which might explain the divergent effects that at low concentration OA stimulates genes involved in the cell cycle and at high concentrations it stimulates apoptosis. PMID:23172983

  18. A Polychaete’s Powerful Punch: Venom Gland Transcriptomics of Glycera Reveals a Complex Cocktail of Toxin Homologs

    Science.gov (United States)

    von Reumont, Björn M.; Richter, Sandy; Hering, Lars; Sykes, Dan; Hetmank, Jörg; Jenner, Ronald A.; Bleidorn, Christoph

    2014-01-01

    Glycerids are marine annelids commonly known as bloodworms. Bloodworms have an eversible proboscis adorned with jaws connected to venom glands. Bloodworms prey on invertebrates, and it is known that the venom glands produce compounds that can induce toxic effects in animals. Yet, none of these putative toxins has been characterized on a molecular basis. Here we present the transcriptomic profiles of the venom glands of three species of bloodworm, Glycera dibranchiata, Glycera fallax and Glycera tridactyla, as well as the body tissue of G. tridactyla. The venom glands express a complex mixture of transcripts coding for putative toxin precursors. These transcripts represent 20 known toxin classes that have been convergently recruited into animal venoms, as well as transcripts potentially coding for Glycera-specific toxins. The toxins represent five functional categories: Pore-forming and membrane-disrupting toxins, neurotoxins, protease inhibitors, other enzymes, and CAP domain toxins. Many of the transcripts coding for putative Glycera toxins belong to classes that have been widely recruited into venoms, but some are homologs of toxins previously only known from the venoms of scorpaeniform fish and monotremes (stonustoxin-like toxin), turrid gastropods (turripeptide-like peptides), and sea anemones (gigantoxin I-like neurotoxin). This complex mixture of toxin homologs suggests that bloodworms employ venom while predating on macroscopic prey, casting doubt on the previously widespread opinion that G. dibranchiata is a detritivore. Our results further show that researchers should be aware that different assembly methods, as well as different methods of homology prediction, can influence the transcriptomic profiling of venom glands. PMID:25193302

  19. Inhibition of cholera toxin and other AB toxins by polyphenolic compounds

    Science.gov (United States)

    All AB-type protein toxins have intracellular targets despite an initial extracellular location. These toxins use different methods to reach the cytosol and have different effects on the target cell. Broad-spectrum inhibitors against AB toxins are therefore hard to develop because the toxins use dif...

  20. A Polychaete's powerful punch: venom gland transcriptomics of Glycera reveals a complex cocktail of toxin homologs.

    Science.gov (United States)

    von Reumont, Björn M; Campbell, Lahcen I; Richter, Sandy; Hering, Lars; Sykes, Dan; Hetmank, Jörg; Jenner, Ronald A; Bleidorn, Christoph

    2014-09-05

    Glycerids are marine annelids commonly known as bloodworms. Bloodworms have an eversible proboscis adorned with jaws connected to venom glands. Bloodworms prey on invertebrates, and it is known that the venom glands produce compounds that can induce toxic effects in animals. Yet, none of these putative toxins has been characterized on a molecular basis. Here we present the transcriptomic profiles of the venom glands of three species of bloodworm, Glycera dibranchiata, Glycera fallax and Glycera tridactyla, as well as the body tissue of G. tridactyla. The venom glands express a complex mixture of transcripts coding for putative toxin precursors. These transcripts represent 20 known toxin classes that have been convergently recruited into animal venoms, as well as transcripts potentially coding for Glycera-specific toxins. The toxins represent five functional categories: Pore-forming and membrane-disrupting toxins, neurotoxins, protease inhibitors, other enzymes, and CAP domain toxins. Many of the transcripts coding for putative Glycera toxins belong to classes that have been widely recruited into venoms, but some are homologs of toxins previously only known from the venoms of scorpaeniform fish and monotremes (stonustoxin-like toxin), turrid gastropods (turripeptide-like peptides), and sea anemones (gigantoxin I-like neurotoxin). This complex mixture of toxin homologs suggests that bloodworms employ venom while predating on macroscopic prey, casting doubt on the previously widespread opinion that G. dibranchiata is a detritivore. Our results further show that researchers should be aware that different assembly methods, as well as different methods of homology prediction, can influence the transcriptomic profiling of venom glands. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  1. Binding of ATP by pertussis toxin and isolated toxin subunits

    International Nuclear Information System (INIS)

    Hausman, S.Z.; Manclark, C.R.; Burns, D.L.

    1990-01-01

    The binding of ATP to pertussis toxin and its components, the A subunit and B oligomer, was investigated. Whereas, radiolabeled ATP bound to the B oligomer and pertussis toxin, no binding to the A subunit was observed. The binding of [ 3 H]ATP to pertussis toxin and the B oligomer was inhibited by nucleotides. The relative effectiveness of the nucleotides was shown to be ATP > GTP > CTP > TTP for pertussis toxin and ATP > GTP > TTP > CTP for the B oligomer. Phosphate ions inhibited the binding of [ 3 H]ATP to pertussis toxin in a competitive manner; however, the presence of phosphate ions was essential for binding of ATP to the B oligomer. The toxin substrate, NAD, did not affect the binding of [ 3 H]ATP to pertussis toxin, although the glycoprotein fetuin significantly decreased binding. These results suggest that the binding site for ATP is located on the B oligomer and is distinct from the enzymatically active site but may be located near the eukaryotic receptor binding site

  2. Binding of ATP by pertussis toxin and isolated toxin subunits

    Energy Technology Data Exchange (ETDEWEB)

    Hausman, S.Z.; Manclark, C.R.; Burns, D.L. (Center for Biologics Evaluation and Research, Bethesda, MD (USA))

    1990-07-03

    The binding of ATP to pertussis toxin and its components, the A subunit and B oligomer, was investigated. Whereas, radiolabeled ATP bound to the B oligomer and pertussis toxin, no binding to the A subunit was observed. The binding of ({sup 3}H)ATP to pertussis toxin and the B oligomer was inhibited by nucleotides. The relative effectiveness of the nucleotides was shown to be ATP > GTP > CTP > TTP for pertussis toxin and ATP > GTP > TTP > CTP for the B oligomer. Phosphate ions inhibited the binding of ({sup 3}H)ATP to pertussis toxin in a competitive manner; however, the presence of phosphate ions was essential for binding of ATP to the B oligomer. The toxin substrate, NAD, did not affect the binding of ({sup 3}H)ATP to pertussis toxin, although the glycoprotein fetuin significantly decreased binding. These results suggest that the binding site for ATP is located on the B oligomer and is distinct from the enzymatically active site but may be located near the eukaryotic receptor binding site.

  3. Evaluation of Rapid, Early Warning Approaches to Track Shellfish Toxins Associated with Dinophysis and Alexandrium Blooms

    Directory of Open Access Journals (Sweden)

    Theresa K. Hattenrath-Lehmann

    2018-01-01

    Full Text Available Marine biotoxin-contaminated seafood has caused thousands of poisonings worldwide this century. Given these threats, there is an increasing need for improved technologies that can be easily integrated into coastal monitoring programs. This study evaluates approaches for monitoring toxins associated with recurrent toxin-producing Alexandrium and Dinophysis blooms on Long Island, NY, USA, which cause paralytic and diarrhetic shellfish poisoning (PSP and DSP, respectively. Within contrasting locations, the dynamics of pelagic Alexandrium and Dinophysis cell densities, toxins in plankton, and toxins in deployed blue mussels (Mytilus edulis were compared with passive solid-phase adsorption toxin tracking (SPATT samplers filled with two types of resin, HP20 and XAD-2. Multiple species of wild shellfish were also collected during Dinophysis blooms and used to compare toxin content using two different extraction techniques (single dispersive and double exhaustive and two different toxin analysis assays (liquid chromatography/mass spectrometry and the protein phosphatase inhibition assay (PP2A for the measurement of DSP toxins. DSP toxins measured in the HP20 resin were significantly correlated (R2 = 0.7–0.9, p < 0.001 with total DSP toxins in shellfish, but were detected more than three weeks prior to detection in deployed mussels. Both resins adsorbed measurable levels of PSP toxins, but neither quantitatively tracked Alexandrium cell densities, toxicity in plankton or toxins in shellfish. DSP extraction and toxin analysis methods did not differ significantly (p > 0.05, were highly correlated (R2 = 0.98–0.99; p < 0.001 and provided complete recovery of DSP toxins from standard reference materials. Blue mussels (Mytilus edulis and ribbed mussels (Geukensia demissa were found to accumulate DSP toxins above federal and international standards (160 ng g−1 during Dinophysis blooms while Eastern oysters (Crassostrea virginica and soft shell clams (Mya

  4. Apparent bioaccumulation of cylindrospermopsin and paralytic shellfish toxins by finfish in Lake Catemaco (Veracruz, Mexico).

    Science.gov (United States)

    Berry, J P; Jaja-Chimedza, A; Dávalos-Lind, L; Lind, O

    2012-01-01

    Compared to the well-characterized health threats associated with contamination of fish and shellfish by algal toxins in marine fisheries, the toxicological relevance of the bioaccumulation of toxins from cyanobacteria (blue-green algae), as the primary toxigenic algae in freshwater systems, remains relatively unknown. Lake Catemaco (Veracruz, Mexico) is a small, tropical lake system specifically characterized by a year-round dominance of the known toxigenic cyanobacterial genus, Cylindrospermopsis, and by low, but detectable, levels of both a cyanobacterial hepatotoxin, cylindrospermopsin (CYN), and paralytic shellfish toxins (PSTs). In the present study, we evaluated, using enzyme-linked immunoassay (ELISA), levels of both toxins in several species of finfish caught and consumed locally in the region to investigate the bioaccumulation of, and possible health threats associated with, these toxins as potential foodborne contaminants. ELISA detected levels of both CYN and PSTs in fish tissues from the lake. Levels were generally low (≤ 1 ng g(-1) tissue); however, calculated bioaccumulation factors (BAFs) indicate that toxin levels exceed the rather low levels in the water column and, consequently, indicated bioaccumulation (BAF >1). A reasonable correlation was observed between measured bioaccumulation of CYN and PSTs, possibly indicating a mutual source of both toxins, and most likely cells of Cylindrospermopsis, the dominant cyanobacteria in the lake, and a known producer of both metabolites. The potential roles of trophic transport in the system, as well as possible implications for human health with regards to bioaccumulation, are discussed.

  5. Recent updates of marine antimicrobial peptides.

    Science.gov (United States)

    Semreen, Mohammad H; El-Gamal, Mohammed I; Abdin, Shifaa; Alkhazraji, Hajar; Kamal, Leena; Hammad, Saba; El-Awady, Faten; Waleed, Dima; Kourbaj, Layal

    2018-03-01

    Antimicrobial peptides are group of proteins showing broad-spectrum antimicrobial activity that have been known to be powerful agents against a variety of pathogens. This class of compounds contributed to solving the microbial resistance dilemma that limited the use of many potent antimicrobial agents. The marine environment is known to be one of the richest sources for antimicrobial peptides, yet this environment is not fully explored. Hence, the scientific research attention should be directed toward the marine ecosystem as enormous amount of useful discoveries could be brought to the forefront. In the current article, the marine antimicrobial peptides reported from mid 2012 to 2017 have been reviewed.

  6. Recent updates of marine antimicrobial peptides

    Directory of Open Access Journals (Sweden)

    Mohammad H. Semreen

    2018-03-01

    Full Text Available Antimicrobial peptides are group of proteins showing broad-spectrum antimicrobial activity that have been known to be powerful agents against a variety of pathogens. This class of compounds contributed to solving the microbial resistance dilemma that limited the use of many potent antimicrobial agents. The marine environment is known to be one of the richest sources for antimicrobial peptides, yet this environment is not fully explored. Hence, the scientific research attention should be directed toward the marine ecosystem as enormous amount of useful discoveries could be brought to the forefront. In the current article, the marine antimicrobial peptides reported from mid 2012 to 2017 have been reviewed.

  7. Potent antifouling compounds produced by marine Streptomyces

    KAUST Repository

    Xu, Ying

    2010-02-01

    Biofouling causes huge economic loss and a recent global ban on organotin compounds as antifouling agents has increased the need for safe and effective antifouling compounds. Five structurally similar compounds were isolated from the crude extract of a marine Streptomyces strain obtained from deep-sea sediments. Antifouling activities of these five compounds and four other structurally-related compounds isolated from a North Sea Streptomyces strain against major fouling organisms were compared to probe structure-activity relationships of compounds. The functional moiety responsible for antifouling activity lies in the 2-furanone ring and that the lipophilicity of compounds substantially affects their antifouling activities. Based on these findings, a compound with a straight alkyl side-chain was synthesized and proved itself as a very effective non-toxic, anti-larval settlement agent against three major fouling organisms. The strong antifouling activity, relatively low toxicity, and simple structures of these compounds make them promising candidates for new antifouling additives. © 2009 Elsevier Ltd. All rights reserved.

  8. Failure of botulinum toxin injection for neurogenic detrusor overactivity: Switch of toxin versus second injection of the same toxin.

    Science.gov (United States)

    Peyronnet, Benoit; Castel-Lacanal, Evelyne; Manunta, Andréa; Roumiguié, Mathieu; Marque, Philippe; Rischmann, Pascal; Gamé, Xavier

    2015-12-01

    To evaluate the efficacy of a second injection of the same toxin versus switching to a different botulinum toxin A after failure of a first detrusor injection in patients with neurogenic detrusor overactivity. The charts of all patients who underwent detrusor injections of botulinum toxin A (either abobotulinumtoxinA or onabotulinumtoxinA) for the management of neurogenic detrusor overactivity at a single institution were retrospectively reviewed. Patients in whom a first detrusor injection had failed were included in the present study. They were managed by a second injection of the same toxin at the same dosage or by a new detrusor injection using a different botulinum toxin A. Success was defined as a resolution of urgency, urinary incontinence and detrusor overactivity in a patient self-catheterizing seven times or less per 24 h. A total of 58 patients were included for analysis. A toxin switch was carried out in 29 patients, whereas the other 29 patients received a reinjection of the same toxin at the same dose. The success rate was higher in patients who received a toxin switch (51.7% vs. 24.1%, P = 0.03). Patients treated with a switch from abobotulinumtoxinA to onabotulinumtoxinA and those treated with a switch from onabotulinumtoxinA to abobotulinumtoxinA had similar success rates (52.9% vs. 50%, P = 0.88). After failure of a first detrusor injection of botulinum toxin for neurogenic detrusor overactivity, a switch to a different toxin seems to be more effective than a second injection of the same toxin. The replacement of onabotulinumtoxin by abobotulinumtoxin or the reverse provides similar results. © 2015 The Japanese Urological Association.

  9. Radiolabelling of cholera toxin

    International Nuclear Information System (INIS)

    Santos, R.G.; Neves, Nicoli M.J.; Abdalla, L.F.; Brandao, R.L.; Etchehebehere, L.; Lima, M.E. de; Nicoli, J.R.

    1999-01-01

    Binding of cholera toxin to ganglioside receptors of enterocyte microvilli catalyzes the activation of adenylate cyclase causing a rise in cAMP which final result is a copious diarrhea. Saccharomyces boulardii, a nonpathogenic yeast has been used to prevent diarrhea. Although the antidiarrheic properties of S. boulardii are widely recognized, this yeast has been used on empirical basis, and the mechanism of this protective effect is unknown. The addition of cholera toxin to S. boulardii induces the raising of cAMP that triggers the activation of neutral trehalase. This suggests that toxin specifically binding to cells, is internalized and active the protein phosphorylation cascade. Our objective is labeling the cholera toxin to verify the presence of binding sites on yeast cell surfaces for the cholera toxin. Cholera toxin was radiolabelled with Na 125 I by a chloramine-T method modified from Cuatrecasas and Griffiths et alii. The 125 I-Cholera toxin showed a specific radioactivity at about 1000 cpm/fmol toxin. Biological activity of labeled cholera toxin measured by trehalase activation was similar to the native toxin. (author)

  10. Comparative toxicity and efficacy of engineered anthrax lethal toxin variants with broad anti-tumor activities.

    Science.gov (United States)

    Peters, Diane E; Hoover, Benjamin; Cloud, Loretta Grey; Liu, Shihui; Molinolo, Alfredo A; Leppla, Stephen H; Bugge, Thomas H

    2014-09-01

    We have previously designed and characterized versions of anthrax lethal toxin that are selectively cytotoxic in the tumor microenvironment and which display broad and potent anti-tumor activities in vivo. Here, we have performed the first direct comparison of the safety and efficacy of three engineered anthrax lethal toxin variants requiring activation by either matrix-metalloproteinases (MMPs), urokinase plasminogen activator (uPA) or co-localized MMP/uPA activities. C57BL/6J mice were challenged with six doses of engineered toxins via intraperitoneal (I.P.) or intravenous (I.V.) dose routes to determine the maximum tolerated dose for six administrations (MTD6) and dose-limiting toxicities. Efficacy was evaluated using the B16-BL6 syngraft model of melanoma; mice bearing established tumors were treated with six I.P. doses of toxin and tumor measurements and immunohistochemistry, paired with terminal blood work, were used to elaborate upon the anti-tumor mechanism and relative efficacy of each variant. We found that MMP-, uPA- and dual MMP/uPA-activated anthrax lethal toxins exhibited the same dose-limiting toxicity; dose-dependent GI toxicity. In terms of efficacy, all three toxins significantly reduced primary B16-BL6 tumor burden, ranging from 32% to 87% reduction, and they also delayed disease progression as evidenced by dose-dependent normalization of blood work values. While target organ toxicity and effective doses were similar amongst the variants, the dual MMP/uPA-activated anthrax lethal toxin exhibited the highest I.P. MTD6 and was 1.5-3-fold better tolerated than the single MMP- and uPA-activated toxins. Overall, we demonstrate that this dual MMP/uPA-activated anthrax lethal toxin can be administered safely and is highly effective in a preclinical model of melanoma. This modified bacterial cytotoxin is thus a promising candidate for further clinical development and evaluation for use in treating human cancers. Published by Elsevier Inc.

  11. Saxitoxins and okadaic acid group: accumulation and distribution in invertebrate marine vectors from Southern Chile.

    Science.gov (United States)

    García, Carlos; Pérez, Francisco; Contreras, Cristóbal; Figueroa, Diego; Barriga, Andrés; López-Rivera, Américo; Araneda, Oscar F; Contreras, Héctor R

    2015-01-01

    Harmful algae blooms (HABs) are the main source of marine toxins in the aquatic environment surrounding the austral fjords in Chile. Huichas Island (Aysén) has an history of HABs spanning more than 30 years, but there is limited investigation of the bioaccumulation of marine toxins in the bivalves and gastropods from the Region of Aysén. In this study, bivalves (Mytilus chilenses, Choromytilus chorus, Aulacomya ater, Gari solida, Tagelus dombeii and Venus antiqua) and carnivorous gastropods (Argobuccinum ranelliformes and Concholepas concholepas) were collected from 28 sites. Researchers analysed the accumulation of STX-group toxins using a LC with a derivatisation post column (LC-PCOX), while lipophilic toxins (OA-group, azapiracids, pectenotoxins and yessotoxins) were analysed using LC-MS/MS with electrospray ionisation (+/-) in visceral (hepatopancreas) and non-visceral tissues (mantle, adductor muscle, gills and foot). Levels of STX-group and OA-group toxins varied among individuals from the same site. Among all tissue samples, the highest concentrations of STX-group toxins were noted in the hepatopancreas in V. antiqua (95 ± 0.1 μg STX-eq 100 g(-1)), T. dombeii (148 ± 1.4 μg STX-eq 100 g(-1)) and G. solida (3232 ± 5.2 μg STX-eq 100 g(-1); p concholepas (81 ± 0.7 μg STX-eq 100 g(-1)) and T. dombeii (114 ± 1.2 μg STX-eq 100 g(-1)). The highest variability of toxins was detected in G. solida, where high levels of carbamate derivatives were identified (GTXs, neoSTX and STX). In addition to the detected hydrophilic toxins, OA-group toxins were detected (OA and DTX-1) with an average ratio of ≈1:1. The highest levels of OA-group toxins were in the foot of C. concholepas, with levels of 400.3 ± 3.6 μg OA eq kg(-1) (p mantle > adductor muscle for the STX-group toxins and foot > digestive gland for the OA-group toxins. These results gave a better understanding of the variability and compartmentalisation of STX-group and OA-group toxins in different

  12. Anorectic response to the trichothecene T-2 toxin correspond to plasma elevations of the satiety hormone glucose-dependent insulinotropic polypeptide and peptide YY3-36.

    Science.gov (United States)

    Sheng, Kun; Zhang, Hua; Yue, Jianming; Gu, Wei; Gu, Chao; Zhang, Haibin; Wu, Wenda

    2018-04-22

    T-2 toxin, a potent type A trichothecene mycotoxin, is produced by various Fusarium species and can negatively impact animal and human health. Although anorexia induction is a common hallmark of T-2 toxin-induced toxicity, the underlying mechanisms for this adverse effect are not fully understood. The goal of this study was to determine the roles of two gut satiety hormones, glucose-dependent insulinotropic polypeptide (GIP) and Peptide YY 3-36 (PYY 3-36 ) in anorexia induction by T-2 toxin. Elevations of plasma GIP and PYY 3-36 markedly corresponded to anorexia induction following oral exposure to T-2 toxin using a nocturnal mouse anorexia model. Direct administration of exogenous GIP and PYY 3-36 similarly induced anorectic responses. Furthermore, the GIP receptor antagonist Pro3GIP dose-dependently attenuated both GIP- and T-2 toxin-induced anorectic responses. Pretreatment with NPY2 receptor antagonist JNJ-31020028 induced a dose-dependent attenuation of both PYY 3-36 - and T-2 toxin-induced anorectic responses. To summarize, these findings suggest that both GIP and PYY 3-36 might be critical mediators of anorexia induction by T-2 toxin. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Radiolabelling of cholera toxin

    Energy Technology Data Exchange (ETDEWEB)

    Santos, R.G.; Neves, Nicoli M.J. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Belo Horizonte, MG (Brazil); Abdalla, L.F.; Brandao, R.L.; Etchehebehere, L. [Ouro Preto Univ., MG (Brazil). Escola de Farmacia. Lab. de Fisiologia e Bioquimica de Microorganismos; Lima, M.E. de [Minas Gerais Univ., Belo Horizonte, MG (Brazil). Inst. de Ciencias Biologicas. Dept. de Bioquimica e Imunologia; Nicoli, J.R. [Minas Gerais Univ., Belo Horizonte, MG (Brazil). Inst. de Ciencias Biologicas. Dept. de Microbiologia

    1999-11-01

    Binding of cholera toxin to ganglioside receptors of enterocyte microvilli catalyzes the activation of adenylate cyclase causing a rise in cAMP which final result is a copious diarrhea. Saccharomyces boulardii, a nonpathogenic yeast has been used to prevent diarrhea. Although the antidiarrheic properties of S. boulardii are widely recognized, this yeast has been used on empirical basis, and the mechanism of this protective effect is unknown. The addition of cholera toxin to S. boulardii induces the raising of cAMP that triggers the activation of neutral trehalase. This suggests that toxin specifically binding to cells, is internalized and active the protein phosphorylation cascade. Our objective is labeling the cholera toxin to verify the presence of binding sites on yeast cell surfaces for the cholera toxin. Cholera toxin was radiolabelled with Na {sup 125} I by a chloramine-T method modified from Cuatrecasas and Griffiths et alii. The {sup 125} I-Cholera toxin showed a specific radioactivity at about 1000 cpm/fmol toxin. Biological activity of labeled cholera toxin measured by trehalase activation was similar to the native toxin. (author) 5 refs., 3 figs.; e-mail: nevesmj at urano.cdtn.br

  14. Adsorption of marine phycotoxin okadaic acid on a covalent organic framework.

    Science.gov (United States)

    Salonen, Laura M; Pinela, Sara R; Fernandes, Soraia P S; Louçano, João; Carbó-Argibay, Enrique; Sarriá, Marisa P; Rodríguez-Abreu, Carlos; Peixoto, João; Espiña, Begoña

    2017-11-24

    Phycotoxins, compounds produced by some marine microalgal species, can reach high concentrations in the sea when a massive proliferation occurs, the so-called harmful algal bloom. These compounds are especially dangerous to human health when concentrated in the digestive glands of seafood. In order to generate an early warning system to alert for approaching toxic outbreaks, it is very important to improve monitoring methods of phycotoxins in aquatic ecosystems. Solid-phase adsorption toxin tracking devices reported thus far based on polymeric resins have not been able to provide an efficient harmful algal bloom prediction system due to their low adsorption capabilities. In this work, a water-stable covalent organic framework (COF) was evaluated as adsorbent for the hydrophobic toxin okadaic acid, one of the most relevant marine toxins and the parental compound of the most common group of toxins responsible for the diarrhetic shellfish poisoning. Adsorption kinetics of okadaic acid onto the COF in seawater showed that equilibrium concentration was reached in only 60min, with a maximum experimental adsorption of 61mgg -1 . Desorption of okadaic acid from the COF was successful with both 70% ethanol and acetonitrile as solvent, and the COF material could be reused with minor losses in adsorption capacity for three cycles. The results demonstrate that COF materials are promising candidates for solid-phase adsorption in water monitoring devices. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. The cytolethal distending toxin from the chancroid bacterium Haemophilus ducreyi induces cell-cycle arrest in the G2 phase.

    Science.gov (United States)

    Cortes-Bratti, X; Chaves-Olarte, E; Lagergård, T; Thelestam, M

    1999-01-01

    The potent cytolethal distending toxin produced by Haemophilus ducreyi is a putative virulence factor in the pathogenesis of chancroid. We studied its action on eukaryotic cells, with the long-term goal of understanding the pathophysiology of the disease. Intoxication of cultured human epithelial-like cells, human keratinocytes, and hamster fibroblasts was irreversible, and appeared as a gradual distention of three- to fivefold the size of control cells. Organized actin assemblies appeared concomitantly with cell enlargement, promoted by a mechanism that probably does not involve small GTPases of the Rho protein family. Intoxicated cells did not proliferate. Similar to cells treated with other cytolethal distending toxins, these cells accumulated in the G2 phase of the cell cycle, demonstrating an increased level of the tyrosine phosphorylated (inactive) form of the cyclin-dependent kinase p34(cdc2). DNA synthesis was not affected until several hours after this increase, suggesting that the toxin acts directly on some kinase/phosphatase in the signaling network controlling the p34(cdc2) activity. We propose that this toxin has an important role both in the generation of chancroid ulcers and in their slow healing. The toxin may also be an interesting new tool for molecular studies of the eukaryotic cell- cycle machinery.

  16. Bioterrorism: toxins as weapons.

    Science.gov (United States)

    Anderson, Peter D

    2012-04-01

    The potential for biological weapons to be used in terrorism is a real possibility. Biological weapons include infectious agents and toxins. Toxins are poisons produced by living organisms. Toxins relevant to bioterrorism include ricin, botulinum, Clostridium perfrigens epsilson toxin, conotoxins, shigatoxins, saxitoxins, tetrodotoxins, mycotoxins, and nicotine. Toxins have properties of biological and chemical weapons. Unlike pathogens, toxins do not produce an infection. Ricin causes multiorgan toxicity by blocking protein synthesis. Botulinum blocks acetylcholine in the peripheral nervous system leading to muscle paralysis. Epsilon toxin damages cell membranes. Conotoxins block potassium and sodium channels in neurons. Shigatoxins inhibit protein synthesis and induce apoptosis. Saxitoxin and tetrodotoxin inhibit sodium channels in neurons. Mycotoxins include aflatoxins and trichothecenes. Aflatoxins are carcinogens. Trichothecenes inhibit protein and nucleic acid synthesis. Nicotine produces numerous nicotinic effects in the nervous system.

  17. Diversity of peptidic and proteinaceous toxins from social Hymenoptera venoms.

    Science.gov (United States)

    Dos Santos-Pinto, José Roberto Aparecido; Perez-Riverol, Amilcar; Lasa, Alexis Musacchio; Palma, Mario Sergio

    2018-06-15

    Among venomous animals, Hymenoptera have been suggested as a rich source of natural toxins. Due to their broad ecological diversity, venom from Hymenoptera insects (bees, wasps and ants) have evolved differentially thus widening the types and biological functions of their components. To date, insect toxinology analysis have scarcely uncovered the complex composition of bee, wasp and ant venoms which include low molecular weight compounds, highly abundant peptides and proteins, including several allergens. In Hymenoptera, these complex mixtures of toxins represent a potent arsenal of biological weapons that are used for self-defense, to repel intruders and to capture prey. Consequently, Hymenoptera venom components have a broad range of pharmacological targets and have been extensively studied, as promising sources of new drugs and biopesticides. In addition, the identification and molecular characterization of Hymenoptera venom allergens have allowed for the rational design of component-resolved diagnosis of allergy, finally improving the outcome of venom immunotherapy (VIT). Until recently, a limited number of Hymenoptera venoms had been unveiled due to the technical limitations of the approaches used to date. Nevertheless, the application of novel techniques with high dynamic range has significantly increased the number of identified peptidic and proteinaceous toxins. Considering this, the present review summarizes the current knowledge about the most representative Hymenoptera venom peptides and proteins which are under study for a better understanding of the insect-caused envenoming process and the development of new drugs and biopesticides. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Characterisation of Non-Autoinducing Tropodithietic Acid (TDA) Production from Marine Sponge Pseudovibrio Species

    DEFF Research Database (Denmark)

    Harrington, Catriona; Reen, F. Jerry; Mooij, Marlies J.

    2014-01-01

    is the antibacterial compound tropodithietic acid (TDA). The aim of this study was to provide insight into the bioactivity of and the factors governing the production of TDA in marine Pseudovibrio isolates from a collection of marine sponges. The TDA produced by these Pseudovibrio isolates exhibited potent...

  19. Botulinum toxin in myotonia congenita: it does not help against rigidity and pain.

    Science.gov (United States)

    Dressler, Dirk; Adib Saberi, Fereshte

    2014-05-01

    Botulinum toxin (BT) is a potent local muscle relaxant with analgetic properties. Myotonia congenita (MC) is a genetic disorder producing muscle rigidity and pain. BT injected into the trapezius produced mild paresis, but no effect on rigidity and pain. There were no signs of systemic effects. Lack of BT efficacy on MC rigidity confirms its origin from muscle membrane dysfunction rather than from inappropriate neuromuscular activation. Lack of BT efficacy on pain could be caused by lack of anti-rigidity effect. It could also be due to separate non-muscular pain mechanisms unresponsive to BT.

  20. Pacific ciguatoxin 1B-induced modulation of inflammatory mediators in a murine macrophage cell line.

    Science.gov (United States)

    Matsui, Mariko; Kumar-Roine, Shilpa; Darius, H Taiana; Chinain, Mireille; Laurent, Dominique; Pauillac, Serge

    2010-10-01

    Ciguatoxins, potent marine neurotoxins responsible for ciguatera, exert their numerous damaging effects through primary binding to the voltage-sensitive sodium channels of excitable cells. Using RAW 264.7 murine macrophages, we report the first experimental study presenting evidence that P-CTX-1B (the most potent congener from the Pacific) could modulate mRNA expression of pro- and anti-inflammatory cytokines as well as of inducible nitric oxide synthase (iNOS). P-CTX-1B, unlike other less potent marine polyether toxins, P-CTX-3C and PbTx-3, induced the overexpression of interleukin (IL)-1beta, IL-6, IL-10, tumor necrosis factor-alpha and iNOS with different magnitude and kinetic profiles, as compared to bacterial lipopolysaccharide (LPS). Unlike LPS, P-CTX-1B did not modulate IL-11 expression. In this report, we provide new evidence of the P-CTX-1B iNOS- and cytokines-inducing ability and shed new light on host response to potent neurotoxins. Copyright 2009 Elsevier Ltd. All rights reserved.

  1. Cationic uremic toxins affect human renal proximal tubule cell functioning through interaction with the organic cation transporter.

    Science.gov (United States)

    Schophuizen, Carolien M S; Wilmer, Martijn J; Jansen, Jitske; Gustavsson, Lena; Hilgendorf, Constanze; Hoenderop, Joost G J; van den Heuvel, Lambert P; Masereeuw, Rosalinde

    2013-12-01

    Several organic cations, such as guanidino compounds and polyamines, have been found to accumulate in plasma of patients with kidney failure due to inadequate renal clearance. Here, we studied the interaction of cationic uremic toxins with renal organic cation transport in a conditionally immortalized human proximal tubule epithelial cell line (ciPTEC). Transporter activity was measured and validated in cell suspensions by studying uptake of the fluorescent substrate 4-(4-(dimethylamino)styryl)-N-methylpyridinium-iodide (ASP(+)). Subsequently, the inhibitory potencies of the cationic uremic toxins, cadaverine, putrescine, spermine and spermidine (polyamines), acrolein (polyamine breakdown product), guanidine, and methylguanidine (guanidino compounds) were determined. Concentration-dependent inhibition of ASP(+) uptake by TPA, cimetidine, quinidine, and metformin confirmed functional endogenous organic cation transporter 2 (OCT2) expression in ciPTEC. All uremic toxins tested inhibited ASP(+) uptake, of which acrolein required the lowest concentration to provoke a half-maximal inhibition (IC50 = 44 ± 2 μM). A Dixon plot was constructed for acrolein using three independent inhibition curves with 10, 20, or 30 μM ASP(+), which demonstrated competitive or mixed type of interaction (K i = 93 ± 16 μM). Exposing the cells to a mixture of cationic uremic toxins resulted in a more potent and biphasic inhibitory response curve, indicating complex interactions between the toxins and ASP(+) uptake. In conclusion, ciPTEC proves a suitable model to study cationic xenobiotic interactions. Inhibition of cellular uptake transport was demonstrated for several uremic toxins, which might indicate a possible role in kidney disease progression during uremia.

  2. Botulinum toxin

    Directory of Open Access Journals (Sweden)

    Nigam P

    2010-01-01

    Full Text Available Botulinum toxin, one of the most poisonous biological substances known, is a neurotoxin produced by the bacterium Clostridium botulinum. C. botulinum elaborates eight antigenically distinguishable exotoxins (A, B, C 1 , C 2 , D, E, F and G. All serotypes interfere with neural transmission by blocking the release of acetylcholine, the principal neurotransmitter at the neuromuscular junction, causing muscle paralysis. The weakness induced by injection with botulinum toxin A usually lasts about three months. Botulinum toxins now play a very significant role in the management of a wide variety of medical conditions, especially strabismus and focal dystonias, hemifacial spasm, and various spastic movement disorders, headaches, hypersalivation, hyperhidrosis, and some chronic conditions that respond only partially to medical treatment. The list of possible new indications is rapidly expanding. The cosmetological applications include correction of lines, creases and wrinkling all over the face, chin, neck, and chest to dermatological applications such as hyperhidrosis. Injections with botulinum toxin are generally well tolerated and side effects are few. A precise knowledge and understanding of the functional anatomy of the mimetic muscles is absolutely necessary to correctly use botulinum toxins in clinical practice.

  3. Biosurfactants, bioemulsifiers and exopolysaccharides from marine microorganisms.

    Science.gov (United States)

    Satpute, Surekha K; Banat, Ibrahim M; Dhakephalkar, Prashant K; Banpurkar, Arun G; Chopade, Balu A

    2010-01-01

    Marine biosphere offers wealthy flora and fauna, which represents a vast natural resource of imperative functional commercial grade products. Among the various bioactive compounds, biosurfactant (BS)/bioemulsifiers (BE) are attracting major interest and attention due to their structural and functional diversity. The versatile properties of surface active molecules find numerous applications in various industries. Marine microorganisms such as Acinetobacter, Arthrobacter, Pseudomonas, Halomonas, Myroides, Corynebacteria, Bacillus, Alteromonas sp. have been studied for production of BS/BE and exopolysaccharides (EPS). Due to the enormity of marine biosphere, most of the marine microbial world remains unexplored. The discovery of potent BS/BE producing marine microorganism would enhance the use of environmental biodegradable surface active molecule and hopefully reduce total dependence or number of new application oriented towards the chemical synthetic surfactant industry. Our present review gives comprehensive information on BS/BE which has been reported to be produced by marine microorganisms and their possible potential future applications.

  4. Identification and validation of a linear protective neutralizing epitope in the β-pore domain of alpha toxin.

    Science.gov (United States)

    Oscherwitz, Jon; Cease, Kemp B

    2015-01-01

    The plethora of virulence factors associated with Staphylococcus aureus make this bacterium an attractive candidate for a molecularly-designed epitope-focused vaccine. This approach, which necessitates the identification of neutralizing epitopes for incorporation into a vaccine construct, is being evaluated for pathogens where conventional approaches have failed to elicit protective humoral responses, like HIV-1 and malaria, but may also hold promise for pathogens like S. aureus, where the elicitation of humoral immunity against multiple virulence factors may be required for development of an effective vaccine. Among the virulence factors employed by S. aureus, animal model and epidemiological data suggest that alpha toxin, a multimeric β-pore forming toxin like protective antigen from Bacillus anthracis, is particularly critical, yet no candidate neutralizing epitopes have been delineated in alpha toxin to date. We have previously shown that a linear determinant in the 2β2-2β3 loop of the pore forming domain of B. anthracis protective antigen is a linear neutralizing epitope. Antibody against this site is highly potent for neutralizing anthrax lethal toxin in vitro and for protection of rabbits in vivo from virulent B. anthracis. We hypothesized that sequences in the β-pore of S. aureus alpha toxin that share structural and functional homology to β-pore sequences in protective antigen would contain a similarly critical neutralizing epitope. Using an in vivo mapping strategy employing peptide immunogens, an optimized in vitro toxin neutralization assay, and an in vivo dermonecrosis model, we have now confirmed the presence of this epitope in alpha toxin, termed the pore neutralizing determinant. Antibody specific for this determinant neutralizes alpha toxin in vitro, and is highly effective for mitigating dermonecrosis and bacterial growth in a mouse model of S. aureus USA300 skin infection. The delineation of this linear neutralizing determinant in alpha

  5. Identification and validation of a linear protective neutralizing epitope in the β-pore domain of alpha toxin.

    Directory of Open Access Journals (Sweden)

    Jon Oscherwitz

    Full Text Available The plethora of virulence factors associated with Staphylococcus aureus make this bacterium an attractive candidate for a molecularly-designed epitope-focused vaccine. This approach, which necessitates the identification of neutralizing epitopes for incorporation into a vaccine construct, is being evaluated for pathogens where conventional approaches have failed to elicit protective humoral responses, like HIV-1 and malaria, but may also hold promise for pathogens like S. aureus, where the elicitation of humoral immunity against multiple virulence factors may be required for development of an effective vaccine. Among the virulence factors employed by S. aureus, animal model and epidemiological data suggest that alpha toxin, a multimeric β-pore forming toxin like protective antigen from Bacillus anthracis, is particularly critical, yet no candidate neutralizing epitopes have been delineated in alpha toxin to date. We have previously shown that a linear determinant in the 2β2-2β3 loop of the pore forming domain of B. anthracis protective antigen is a linear neutralizing epitope. Antibody against this site is highly potent for neutralizing anthrax lethal toxin in vitro and for protection of rabbits in vivo from virulent B. anthracis. We hypothesized that sequences in the β-pore of S. aureus alpha toxin that share structural and functional homology to β-pore sequences in protective antigen would contain a similarly critical neutralizing epitope. Using an in vivo mapping strategy employing peptide immunogens, an optimized in vitro toxin neutralization assay, and an in vivo dermonecrosis model, we have now confirmed the presence of this epitope in alpha toxin, termed the pore neutralizing determinant. Antibody specific for this determinant neutralizes alpha toxin in vitro, and is highly effective for mitigating dermonecrosis and bacterial growth in a mouse model of S. aureus USA300 skin infection. The delineation of this linear neutralizing

  6. Paralytic shellfish toxin biosynthesis in cyanobacteria and dinoflagellates: A molecular overview.

    Science.gov (United States)

    Wang, Da-Zhi; Zhang, Shu-Fei; Zhang, Yong; Lin, Lin

    2016-03-01

    Paralytic shellfish toxins (PSTs) are a group of water soluble neurotoxic alkaloids produced by two different kingdoms of life, prokaryotic cyanobacteria and eukaryotic dinoflagellates. Owing to the wide distribution of these organisms, these toxic secondary metabolites account for paralytic shellfish poisonings around the world. On the other hand, their specific binding to voltage-gated sodium channels makes these toxins potentially useful in pharmacological and toxicological applications. Much effort has been devoted to the biosynthetic mechanism of PSTs, and gene clusters encoding 26 proteins involved in PST biosynthesis have been unveiled in several cyanobacterial species. Functional analysis of toxin genes indicates that PST biosynthesis in cyanobacteria is a complex process including biosynthesis, regulation, modification and export. However, less is known about the toxin biosynthesis in dinoflagellates owing to our poor understanding of the massive genome and unique chromosomal characteristics [1]. So far, few genes involved in PST biosynthesis have been identified from dinoflagellates. Moreover, the proteins involved in PST production are far from being totally explored. Thus, the origin and evolution of PST biosynthesis in these two kingdoms are still controversial. In this review, we summarize the recent progress on the characterization of genes and proteins involved in PST biosynthesis in cyanobacteria and dinoflagellates, and discuss the standing evolutionary hypotheses concerning the origin of toxin biosynthesis as well as future perspectives in PST biosynthesis. Paralytic shellfish toxins (PSTs) are a group of potent neurotoxins which specifically block voltage-gated sodium channels in excitable cells and result in paralytic shellfish poisonings (PSPs) around the world. Two different kingdoms of life, cyanobacteria and dinoflagellates are able to produce PSTs. However, in contrast with cyanobacteria, our understanding of PST biosynthesis in

  7. Detection, occurrence and monthly variations of typical lipophilic marine toxins associated with diarrhetic shellfish poisoning in the coastal seawater of Qingdao City, China.

    Science.gov (United States)

    Li, Xin; Li, Zhaoyong; Chen, Junhui; Shi, Qian; Zhang, Rutan; Wang, Shuai; Wang, Xiaoru

    2014-09-01

    In recent years, related research has mainly examined lipophilic marine toxins (LMTs) in contaminated bivalves or toxic algae, whereas the levels of LMTs in seawater remain largely unexplored. Okadaic acid (OA), yessotoxin (YTX), and pectenotoxin-2 (PTX2) are three typical LMTs produced by certain marine algae that are closely linked to diarrhetic shellfish poisoning. In this study, a new method of solid phase extraction combined with liquid chromatography - electrospray ionization ion trap tandem mass spectrometry was developed to determine the presence of OA, YTX, and PTX2 in seawater simultaneously. Satisfactory sensitivity, repeatability (RSDseawater. OA and PTX2 were detected in all the seawater samples collected from eight locations along the coastline of Qingdao City, China on October 23, 2012, with concentration ranges of OA 4.24-9.64ngL(-1) and PTX2 0.42-0.74ngL(-1). Monthly concentrations of OA and PTX2 in the seawater of four locations were determined over the course of a year, with concentration ranges of OA 1.41-89.52ngL(-1) and PTX2 below detectable limit to 1.70ngL(-1). The peak values of OA and PTX2 in coastal seawater were observed in August and July, respectively. Our results suggest that follow-up research on the fate modeling and risk assessment of LMTs in coastal seawater should be implemented. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Repeated mass strandings of Miocene marine mammals from Atacama Region of Chile point to sudden death at sea.

    Science.gov (United States)

    Pyenson, Nicholas D; Gutstein, Carolina S; Parham, James F; Le Roux, Jacobus P; Chavarría, Catalina Carreño; Little, Holly; Metallo, Adam; Rossi, Vincent; Valenzuela-Toro, Ana M; Velez-Juarbe, Jorge; Santelli, Cara M; Rogers, David Rubilar; Cozzuol, Mario A; Suárez, Mario E

    2014-04-22

    Marine mammal mass strandings have occurred for millions of years, but their origins defy singular explanations. Beyond human causes, mass strandings have been attributed to herding behaviour, large-scale oceanographic fronts and harmful algal blooms (HABs). Because algal toxins cause organ failure in marine mammals, HABs are the most common mass stranding agent with broad geographical and widespread taxonomic impact. Toxin-mediated mortalities in marine food webs have the potential to occur over geological timescales, but direct evidence for their antiquity has been lacking. Here, we describe an unusually dense accumulation of fossil marine vertebrates from Cerro Ballena, a Late Miocene locality in Atacama Region of Chile, preserving over 40 skeletons of rorqual whales, sperm whales, seals, aquatic sloths, walrus-whales and predatory bony fish. Marine mammal skeletons are distributed in four discrete horizons at the site, representing a recurring accumulation mechanism. Taphonomic analysis points to strong spatial focusing with a rapid death mechanism at sea, before being buried on a barrier-protected supratidal flat. In modern settings, HABs are the only known natural cause for such repeated, multispecies accumulations. This proposed agent suggests that upwelling zones elsewhere in the world should preserve fossil marine vertebrate accumulations in similar modes and densities.

  9. Repeated mass strandings of Miocene marine mammals from Atacama Region of Chile point to sudden death at sea

    Science.gov (United States)

    Pyenson, Nicholas D.; Gutstein, Carolina S.; Parham, James F.; Le Roux, Jacobus P.; Chavarría, Catalina Carreño; Little, Holly; Metallo, Adam; Rossi, Vincent; Valenzuela-Toro, Ana M.; Velez-Juarbe, Jorge; Santelli, Cara M.; Rogers, David Rubilar; Cozzuol, Mario A.; Suárez, Mario E.

    2014-01-01

    Marine mammal mass strandings have occurred for millions of years, but their origins defy singular explanations. Beyond human causes, mass strandings have been attributed to herding behaviour, large-scale oceanographic fronts and harmful algal blooms (HABs). Because algal toxins cause organ failure in marine mammals, HABs are the most common mass stranding agent with broad geographical and widespread taxonomic impact. Toxin-mediated mortalities in marine food webs have the potential to occur over geological timescales, but direct evidence for their antiquity has been lacking. Here, we describe an unusually dense accumulation of fossil marine vertebrates from Cerro Ballena, a Late Miocene locality in Atacama Region of Chile, preserving over 40 skeletons of rorqual whales, sperm whales, seals, aquatic sloths, walrus-whales and predatory bony fish. Marine mammal skeletons are distributed in four discrete horizons at the site, representing a recurring accumulation mechanism. Taphonomic analysis points to strong spatial focusing with a rapid death mechanism at sea, before being buried on a barrier-protected supratidal flat. In modern settings, HABs are the only known natural cause for such repeated, multispecies accumulations. This proposed agent suggests that upwelling zones elsewhere in the world should preserve fossil marine vertebrate accumulations in similar modes and densities. PMID:24573855

  10. Botulinum toxin in parkinsonism: The when, how, and which for botulinum toxin injections.

    Science.gov (United States)

    Cardoso, Francisco

    2018-06-01

    The aim of this article is to provide a review of the use of injections of botulinum toxin in the management of selected symptoms and signs of Parkinson's disease and other forms of parkinsonism. Sialorrhea is defined as inability to control oral secretions, resulting in excessive saliva in the oropharynx. There is a high level of evidence for the treatment of sialorrhea in parkinsonism with injections of different forms of botulinum toxin type A as well as botulinum toxin type B. Tremor can be improved by the use of botulinum toxin injections but improved tremor control often leads to concomitant motor weakness, limiting its use. Levodopa induced dyskinesias are difficult to treat with botulinum toxin injections because of their variable frequency and direction. Apraxia of eyelid opening, a sign more commonly seen in progressive supranuclear palsy and other tauopathies, often improves after botulinum toxin injections. Recent data suggest that regardless of the underlying mechanism, pain in parkinsonism can be alleviated by botulinum toxin injections. Finally, freezing of gait, camptocormia and Pisa syndrome in parkinsonism almost invariably fail to respond to botulinum toxin injections. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Construction and Screening of Marine Metagenomic Large Insert Libraries.

    Science.gov (United States)

    Weiland-Bräuer, Nancy; Langfeldt, Daniela; Schmitz, Ruth A

    2017-01-01

    The marine environment covers more than 70 % of the world's surface. Marine microbial communities are highly diverse and have evolved during extended evolutionary processes of physiological adaptations under the influence of a variety of ecological conditions and selection pressures. They harbor an enormous diversity of microbes with still unknown and probably new physiological characteristics. In the past, marine microbes, mostly bacteria of microbial consortia attached to marine tissues of multicellular organisms, have proven to be a rich source of highly potent bioactive compounds, which represent a considerable number of drug candidates. However, to date, the biodiversity of marine microbes and the versatility of their bioactive compounds and metabolites have not been fully explored. This chapter describes sampling in the marine environment, construction of metagenomic large insert libraries from marine habitats, and exemplarily one function based screen of metagenomic clones for identification of quorum quenching activities.

  12. Polyamine toxins

    DEFF Research Database (Denmark)

    Strømgaard, Kristian; Jensen, Lars S; Vogensen, Stine B

    2005-01-01

    Polyamine toxins, isolated from spiders and wasps, have been used as pharmacological tools for the study of ionotropic receptors, but their use have so far been hampered by their lack of selectivity. In this mini-review, we describe how careful synthetic modification of native polyamine toxins ha...

  13. Higher cytotoxicity of divalent antibody-toxins than monovalent antibody-toxins

    International Nuclear Information System (INIS)

    Won, JaeSeon; Nam, PilWon; Lee, YongChan; Choe, MuHyeon

    2009-01-01

    Recombinant antibody-toxins are constructed via the fusion of a 'carcinoma-specific' antibody fragment to a toxin. Due to the high affinity and high selectivity of the antibody fragments, antibody-toxins can bind to surface antigens on cancer cells and kill them without harming normal cells [L.H. Pai, J.K. Batra, D.J. FitzGerald, M.C. Willingham, I. Pastan, Anti-tumor activities of immunotoxins made of monoclonal antibody B3 and various forms of Pseudomonas exotoxin, Proc. Natl. Acad. Sci. USA 88 (1991) 3358-3362]. In this study, we constructed the antibody-toxin, Fab-SWn-PE38, with SWn (n = 3, 6, 9) sequences containing n-time repeated (G 4 S) between the Fab fragment and PE38 (38 kDa truncated form of Pseudomonas exotoxin A). The SWn sequence also harbored one cysteine residue that could form a disulfide bridge between two Fab-SWn-PE38 monomers. We assessed the cytotoxicity of the monovalent (Fab-SWn-PE38), and divalent ([Fab-SWn-PE38] 2 ) antibody-toxins. The cytotoxicity of the dimer against the CRL1739 cell line was approximately 18.8-fold higher than that of the monomer on the ng/ml scale, which was approximately 37.6-fold higher on the pM scale. These results strongly indicate that divalency provides higher cytotoxicity for an antibody-toxin.

  14. Swinholide J, a Potent Cytotoxin from the Marine Sponge Theonella swinhoei

    Directory of Open Access Journals (Sweden)

    Angela Zampella

    2011-06-01

    Full Text Available In our ongoing search for new pharmacologically active leads from Solomon organisms, we have examined the sponge Theonella swinhoei. Herein we report the isolation and structure elucidation of swinholide A (1 and one new macrolide, swinholide J (2. Swinholide J is an unprecedented asymmetric 44-membered dilactone with an epoxide functionality in half of the molecule. The structural determination was based on extensive interpretation of high-field NMR spectra and HRESIMS data. Swinholide J displayed potent in vitro cytotoxicity against KB cells (human nasopharynx cancer with an IC50 value of 6 nM.

  15. Botulinum toxin A, brain and pain.

    Science.gov (United States)

    Matak, Ivica; Lacković, Zdravko

    2014-01-01

    Botulinum neurotoxin type A (BoNT/A) is one of the most potent toxins known and a potential biological threat. At the same time, it is among the most widely used therapeutic proteins used yearly by millions of people, especially for cosmetic purposes. Currently, its clinical use in certain types of pain is increasing, and its long-term duration of effects represents a special clinical value. Efficacy of BoNT/A in different types of pain has been found in numerous clinical trials and case reports, as well as in animal pain models. However, sites and mechanisms of BoNT/A actions involved in nociception are a matter of controversy. In analogy with well known neuroparalytic effects in peripheral cholinergic synapses, presently dominant opinion is that BoNT/A exerts pain reduction by inhibiting peripheral neurotransmitter/inflammatory mediator release from sensory nerves. On the other hand, growing number of behavioral and immunohistochemical studies demonstrated the requirement of axonal transport for BoNT/A's antinociceptive action. In addition, toxin's enzymatic activity in central sensory regions was clearly identified after its peripheral application. Apart from general pharmacology, this review summarizes the clinical and experimental evidence for BoNT/A antinociceptive activity and compares the data in favor of peripheral vs. central site and mechanism of action. Based on literature review and published results from our laboratory we propose that the hypothesis of peripheral site of BoNT/A action is not sufficient to explain the experimental data collected up to now. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Autoproteolytic Activation of Bacterial Toxins

    Directory of Open Access Journals (Sweden)

    Aimee Shen

    2010-05-01

    Full Text Available Protease domains within toxins typically act as the primary effector domain within target cells. By contrast, the primary function of the cysteine protease domain (CPD in Multifunctional Autoprocessing RTX-like (MARTX and Clostridium sp. glucosylating toxin families is to proteolytically cleave the toxin and release its cognate effector domains. The CPD becomes activated upon binding to the eukaryotic-specific small molecule, inositol hexakisphosphate (InsP6, which is found abundantly in the eukaryotic cytosol. This property allows the CPD to spatially and temporally regulate toxin activation, making it a prime candidate for developing anti-toxin therapeutics. In this review, we summarize recent findings related to defining the regulation of toxin function by the CPD and the development of inhibitors to prevent CPD-mediated activation of bacterial toxins.

  17. Exploration of immunoglobulin transcriptomes from mice immunized with three-finger toxins and phospholipases A2 from the Central American coral snake, Micrurus nigrocinctus

    Directory of Open Access Journals (Sweden)

    Andreas H. Laustsen

    2017-01-01

    Full Text Available Snakebite envenomings represent a neglected public health issue in many parts of the rural tropical world. Animal-derived antivenoms have existed for more than a hundred years and are effective in neutralizing snake venom toxins when timely administered. However, the low immunogenicity of many small but potent snake venom toxins represents a challenge for obtaining a balanced immune response against the medically relevant components of the venom. Here, we employ high-throughput sequencing of the immunoglobulin (Ig transcriptome of mice immunized with a three-finger toxin and a phospholipase A2 from the venom of the Central American coral snake, Micrurus nigrocinctus. Although exploratory in nature, our indicate results showed that only low frequencies of mRNA encoding IgG isotypes, the most relevant isotype for therapeutic purposes, were present in splenocytes of five mice immunized with 6 doses of the two types of toxins over 90 days. Furthermore, analysis of Ig heavy chain transcripts showed that no particular combination of variable (V and joining (J gene segments had been selected in the immunization process, as would be expected after a strong humoral immune response to a single antigen. Combined with the titration of toxin-specific antibodies in the sera of immunized mice, these data support the low immunogenicity of three-finger toxins and phospholipases A2found in M. nigrocinctusvenoms, and highlight the need for future studies analyzing the complexity of antibody responses to toxins at the molecular level.

  18. Expression and mutagenesis of the sea anemone toxin Av2 reveals key amino acid residues important for activity on voltage-gated sodium channels.

    Science.gov (United States)

    Moran, Yehu; Cohen, Lior; Kahn, Roy; Karbat, Izhar; Gordon, Dalia; Gurevitz, Michael

    2006-07-25

    Type I sea anemone toxins are highly potent modulators of voltage-gated Na-channels (Na(v)s) and compete with the structurally dissimilar scorpion alpha-toxins on binding to receptor site-3. Although these features provide two structurally different probes for studying receptor site-3 and channel fast inactivation, the bioactive surface of sea anemone toxins has not been fully resolved. We established an efficient expression system for Av2 (known as ATX II), a highly insecticidal sea anemone toxin from Anemonia viridis (previously named A. sulcata), and mutagenized it throughout. Each toxin mutant was analyzed in toxicity and binding assays as well as by circular dichroism spectroscopy to discern the effects derived from structural perturbation from those related to bioactivity. Six residues were found to constitute the anti-insect bioactive surface of Av2 (Val-2, Leu-5, Asn-16, Leu-18, and Ile-41). Further analysis of nine Av2 mutants on the human heart channel Na(v)1.5 expressed in Xenopus oocytes indicated that the bioactive surfaces toward insects and mammals practically coincide but differ from the bioactive surface of a structurally similar sea anemone toxin, Anthopleurin B, from Anthopleura xanthogrammica. Hence, our results not only demonstrate clear differences in the bioactive surfaces of Av2 and scorpion alpha-toxins but also indicate that despite the general conservation in structure and importance of the Arg-14 loop and its flanking residues Gly-10 and Gly-20 for function, the surface of interaction between different sea anemone toxins and Na(v)s varies.

  19. Toxin-Based Therapeutic Approaches

    Science.gov (United States)

    Shapira, Assaf; Benhar, Itai

    2010-01-01

    Protein toxins confer a defense against predation/grazing or a superior pathogenic competence upon the producing organism. Such toxins have been perfected through evolution in poisonous animals/plants and pathogenic bacteria. Over the past five decades, a lot of effort has been invested in studying their mechanism of action, the way they contribute to pathogenicity and in the development of antidotes that neutralize their action. In parallel, many research groups turned to explore the pharmaceutical potential of such toxins when they are used to efficiently impair essential cellular processes and/or damage the integrity of their target cells. The following review summarizes major advances in the field of toxin based therapeutics and offers a comprehensive description of the mode of action of each applied toxin. PMID:22069564

  20. Affinity chromatography of tetanus toxin, tetanus toxoid, and botulinum A toxin on synaptosomes, and differentiation of their acceptors

    Energy Technology Data Exchange (ETDEWEB)

    Habermann, E [Giessen Univ. (Germany, F.R.). Pharmakologisches Inst.

    1976-01-01

    /sup 125/I-labelled tetanus toxin and /sup 125/I-labelled botulinum A neurotoxin are known to be specifically bound to brain synaptosomes. In order to discriminate between active toxin and inactive admixtures present in the starting material or arising during iodination, synaptosome columns were prepared using bromacetylcellulose and/or kieselgur (Celite) as carriers. Both types of columns adsorb the toxins from low ionic strength medium and release them if the pH and ionic strength are raised. Botulinum toxin was eluted with lower ionic strength than tetanus toxin, and could be freed from nontoxic admixtures. Analysis by affinity chromatography disclosed partially toxoided tetanus toxin in both labelled and unlabelled toxin samples. High concentrations of formaldehyde (0.5%) destroyed both toxicity and affinity to the synaptosomes of tetanus toxin. Low concentrations of formaldehyde (0.05%) yielded a derivative of low toxicity which was still, however less firmly, bound to synaptosomes. Tetanus and botulinum toxin differ by their acceptors. Whereas unlabelled botulinum toxin is unable to compete with labelled tetanus toxin, unlabelled tetanus toxin slightly competes with botulinum toxin. Both labelled toxins display anomalous binding behaviour in that they cannot be displaced completely even with a large excess of unlabelled toxin.

  1. Affinity chromatography of tetanus toxin, tetanus toxoid, and botulinum A toxin on synaptosomes, and differentiation of their acceptors

    International Nuclear Information System (INIS)

    Habermann, E.

    1976-01-01

    125 I-labelled tetanus toxin and 125 I-labelled botulinum A neurotoxin are known to be specifically bound to brain synaptosomes. In order to discriminate between active toxin and inactive admixtures present in the starting material or arising during iodination, synaptosome columns were prepared using bromacetylcellulose and/or kieselgur (Celite) as carriers. Both types of columns adsorb the toxins from low ionic strength medium and release them if the pH and ionic strength are raised. Botulinum toxin was eluted with lower ionic strength than tetanus toxin, and could be freed from nontoxic admixtures. Analysis by affinity chromatography disclosed partially toxoided tetanus toxin in both labelled and unlabelled toxin samples. High concentrations of formaldehyde (0.5%) destroyed both toxicity and affinity to the synaptosomes of tetanus toxin. Low concentrations of formaldehyde (0.05%) yielded a derivative of low toxicity which was still, however less firmly, bound to synaptosomes. Tetanus and botulinum toxin differ by their acceptors. Whereas unlabelled botulinum toxin is unable to compete with labelled tetanus toxin, unlabelled tetanus toxin slightly competes with botulinum toxin. Both labelled toxins display anomalous binding behaviour in that they cannot be displaced completely even with a large excess of unlabelled toxin. (orig.) [de

  2. Potent Skin Cancer Chemopreventing Activity of Some Novel Semi-synthetic Cembranoids from Marine Sources

    OpenAIRE

    Fahmy, Hesham; Zjawiony, Jordan K.; Konoshima, Takao; Tokuda, Harukuni; Khan, Shabana; Khalifa, Sherief

    2006-01-01

    Abstract: In the course of our continuing research in development and evaluation of novel skin cancer chemopreventive agents from marine sources, five semi-synthetic cembranoids derived from the marine natural product sarcophine, isolated from the soft coral Sarcophyton glaucum, were synthesized and shown to exhibit a remarkable chemopreventive activity in the in-vitro Epstein Barr Virus Early Antigen (EBV-EA) activation assay. These compounds were assayed in vivo using the two-stage carcinog...

  3. Toxin-Based Therapeutic Approaches

    Directory of Open Access Journals (Sweden)

    Itai Benhar

    2010-10-01

    Full Text Available Protein toxins confer a defense against predation/grazing or a superior pathogenic competence upon the producing organism. Such toxins have been perfected through evolution in poisonous animals/plants and pathogenic bacteria. Over the past five decades, a lot of effort has been invested in studying their mechanism of action, the way they contribute to pathogenicity and in the development of antidotes that neutralize their action. In parallel, many research groups turned to explore the pharmaceutical potential of such toxins when they are used to efficiently impair essential cellular processes and/or damage the integrity of their target cells. The following review summarizes major advances in the field of toxin based therapeutics and offers a comprehensive description of the mode of action of each applied toxin.

  4. Design, synthesis, and pharmacological characterization of polyamine toxin derivatives

    DEFF Research Database (Denmark)

    Jensen, Lars S; Bølcho, Ulrik; Egebjerg, Jan

    2006-01-01

    for memory formation and are involved in neurodegenerative diseases. Previous studies have demonstrated that modification of the polyamine moiety of philanthotoxins can lead to very potent and highly selective ligands for the AMPA receptor, as exemplified with philanthotoxin-56. Much less attention has been......Polyamine toxins, such as philanthotoxins, are low-molecular-weight compounds isolated from spiders and wasps, which modulate ligand-gated ion channels in the nervous system. Philanthotoxins bind to the pore-forming region of AMPA receptors, a subtype of glutamate receptors which are important...... paid to the importance of the aromatic head group of philanthotoxins, but herein we demonstrate that modification of this moiety leads to a significant improvement in potency relative to philanthotoxin-56 at cloned AMPA receptors. Interestingly, the incorporation of an adamantane moiety is particularly...

  5. Yessotoxin, a Marine Toxin, Exhibits Anti-Allergic and Anti-Tumoural Activities Inhibiting Melanoma Tumour Growth in a Preclinical Model.

    Directory of Open Access Journals (Sweden)

    Araceli Tobío

    Full Text Available Yessotoxins (YTXs are a group of marine toxins produced by the dinoflagellates Protoceratium reticulatum, Lingulodinium polyedrum and Gonyaulax spinifera. They may have medical interest due to their potential role as anti-allergic but also anti-cancer compounds. However, their biological activities remain poorly characterized. Here, we show that the small molecular compound YTX causes a slight but significant reduction of the ability of mast cells to degranulate. Strikingly, further examination revealed that YTX had a marked and selective cytotoxicity for the RBL-2H3 mast cell line inducing apoptosis, while primary bone marrow derived mast cells were highly resistant. In addition, YTX exhibited strong cytotoxicity against the human B-chronic lymphocytic leukaemia cell line MEC1 and the murine melanoma cell line B16F10. To analyse the potential role of YTX as an anti-cancer drug in vivo we used the well-established B16F10 melanoma preclinical mouse model. Our results demonstrate that a few local application of YTX around established tumours dramatically diminished tumour growth in the absence of any significant toxicity as determined by the absence of weight loss and haematological alterations. Our data support that YTX may have a minor role as an anti-allergic drug, but reveals an important potential for its use as an anti-cancer drug.

  6. Substitutions in the domain III voltage-sensing module enhance the sensitivity of an insect sodium channel to a scorpion beta-toxin.

    Science.gov (United States)

    Song, Weizhong; Du, Yuzhe; Liu, Zhiqi; Luo, Ningguang; Turkov, Michael; Gordon, Dalia; Gurevitz, Michael; Goldin, Alan L; Dong, Ke

    2011-05-06

    Scorpion β-toxins bind to the extracellular regions of the voltage-sensing module of domain II and to the pore module of domain III in voltage-gated sodium channels and enhance channel activation by trapping and stabilizing the voltage sensor of domain II in its activated state. We investigated the interaction of a highly potent insect-selective scorpion depressant β-toxin, Lqh-dprIT(3), from Leiurus quinquestriatus hebraeus with insect sodium channels from Blattella germanica (BgNa(v)). Like other scorpion β-toxins, Lqh-dprIT(3) shifts the voltage dependence of activation of BgNa(v) channels expressed in Xenopus oocytes to more negative membrane potentials but only after strong depolarizing prepulses. Notably, among 10 BgNa(v) splice variants tested for their sensitivity to the toxin, only BgNa(v)1-1 was hypersensitive due to an L1285P substitution in IIIS1 resulting from a U-to-C RNA-editing event. Furthermore, charge reversal of a negatively charged residue (E1290K) at the extracellular end of IIIS1 and the two innermost positively charged residues (R4E and R5E) in IIIS4 also increased the channel sensitivity to Lqh-dprIT(3). Besides enhancement of toxin sensitivity, the R4E substitution caused an additional 20-mV negative shift in the voltage dependence of activation of toxin-modified channels, inducing a unique toxin-modified state. Our findings provide the first direct evidence for the involvement of the domain III voltage-sensing module in the action of scorpion β-toxins. This hypersensitivity most likely reflects an increase in IIS4 trapping via allosteric mechanisms, suggesting coupling between the voltage sensors in neighboring domains during channel activation.

  7. Associations between marine phytoplankton and symptoms of illness among recreational beachgoers in Puerto Rico, 2009

    Science.gov (United States)

    While phytoplankton generally have crucial roles in marine ecosystems, a small subset can release toxins and produce harmful algal blooms (HABs). HABs can be a threat to human health as symptoms from exposure range from neurological impairment to gastrointestinal (GI), dermal, a...

  8. Botulinum Toxin (Botox) for Facial Wrinkles

    Science.gov (United States)

    ... Stories Español Eye Health / Eye Health A-Z Botulinum Toxin (Botox) for Facial Wrinkles Sections Botulinum Toxin (Botox) ... Facial Wrinkles How Does Botulinum Toxin (Botox) Work? Botulinum Toxin (Botox) for Facial Wrinkles Leer en Español: La ...

  9. Lymphocyte receptors for pertussis toxin

    Energy Technology Data Exchange (ETDEWEB)

    Clark, C.G.; Armstrong, G.D. (Univ. of Alberta, Edmonton (Canada))

    1990-12-01

    We have investigated human T-lymphocyte receptors for pertussis toxin by affinity isolation and photoaffinity labeling procedures. T lymphocytes were obtained from peripheral human blood, surface iodinated, and solubilized in Triton X-100. The iodinated mixture was then passed through pertussis toxin-agarose, and the fractions were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Autoradiography of the fixed, dried gels revealed several bands in the pertussis toxin-bound fraction that were not observed in fractions obtained from histone or fetuin-agarose. Further investigations employed a photoaffinity labeling reagent, sulfosuccinimidyl 2-(p-azido-salicylamido)-1,3'-dithiopropionate, to identify pertussis toxin receptors in freshly isolated peripheral blood monocytic cells, T lymphocytes, and Jurkat cells. In all three cell systems, the pertussis toxin affinity probe specifically labeled a single protein species with an apparent molecular weight of 70,000 that was not observed when the procedure was performed in the presence of excess unmodified pertussis toxin. A protein comparable in molecular weight to the one detected by the photoaffinity labeling technique was also observed among the species that bound to pertussis toxin-agarose. The results suggest that pertussis toxin may bind to a 70,000-Da receptor in human T lymphocytes.

  10. Topical botulinum toxin.

    Science.gov (United States)

    Collins, Ashley; Nasir, Adnan

    2010-03-01

    Nanotechnology is a rapidly growing discipline that capitalizes on the unique properties of matter engineered on the nanoscale. Vehicles incorporating nanotechnology have led to great strides in drug delivery, allowing for increased active ingredient stability, bioavailability, and site-specific targeting. Botulinum toxin has historically been used for the correction of neurological and neuromuscular disorders, such as torticollis, blepharospasm, and strabismus. Recent dermatological indications have been for the management of axillary hyperhydrosis and facial rhytides. Traditional methods of botulinum toxin delivery have been needle-based. These have been associated with increased pain and cost. Newer methods of botulinum toxin formulation have yielded topical preparations that are bioactive in small pilot clinical studies. While there are some risks associated with topical delivery, the refinement and standardization of delivery systems and techniques for the topical administration of botulinum toxin using nanotechnology is anticipated in the near future.

  11. Recent Advances in Drug Discovery from South African Marine Invertebrates

    Directory of Open Access Journals (Sweden)

    Michael T. Davies-Coleman

    2015-10-01

    Full Text Available Recent developments in marine drug discovery from three South African marine invertebrates, the tube worm Cephalodiscus gilchristi, the ascidian Lissoclinum sp. and the sponge Topsentia pachastrelloides, are presented. Recent reports of the bioactivity and synthesis of the anti-cancer secondary metabolites cephalostatin and mandelalides (from C. gilchristi and Lissoclinum sp., respectively and various analogues are presented. The threat of drug-resistant pathogens, e.g., methicillin-resistant Staphylococcus aureus (MRSA, is assuming greater global significance, and medicinal chemistry strategies to exploit the potent MRSA PK inhibition, first revealed by two marine secondary metabolites, cis-3,4-dihydrohamacanthin B and bromodeoxytopsentin from T. pachastrelloides, are compared.

  12. Botulinum toxin injection - larynx

    Science.gov (United States)

    Injection laryngoplasty; Botox - larynx: spasmodic dysphonia-BTX; Essential voice tremor (EVT)-btx; Glottic insufficiency; Percutaneous electromyography - guided botulinum toxin treatment; Percutaneous indirect laryngoscopy - guided botulinum toxin treatment; ...

  13. SiMa Cells for a Serotype Specific and Sensitive Cell-Based Neutralization Test for Botulinum Toxin A and E.

    Science.gov (United States)

    Bak, Nicola; Rajagopal, Shalini; Stickings, Paul; Sesardic, Dorothea

    2017-07-20

    Botulinum toxins (BoNTs), of which there are seven serotypes, are among the most potent neurotoxins, with serotypes A, B and E causing human botulism. Antitoxins form the first line of treatment for botulism, and functional, highly sensitive in vitro methods for toxin neutralization are needed to replace the current in vivo methods used for determination of antitoxin potency. In this preliminary proof of concept study, we report the development of a neutralization test using the neuroblastoma SiMa cell line. The assay is serotype specific for either BoNT/A or BoNT/E, which both cleave unique sequences on SNAP-25 within SiMa cells. The end point is simple immunodetection of cleaved SNAP-25 from cell lysates with antibodies detecting only the newly exposed sequence on SNAP-25. Neutralizing antibodies prevent the toxin-induced cleavage of SNAP-25. The toxin neutralization assay, with an EC50 of ~2 mIU/mL determined with a standardized reference antiserum, is more sensitive than the mouse bioassays. Relevance was demonstrated with commercial and experimental antitoxins targeting different functional domains, and of known in vivo neutralizing activities. This is the first report describing a simple, specific, in vitro cell-based assay for the detection of neutralizing antibodies against BoNT/A and BoNT/E with a sensitivity exceeding that of the mouse bioassay.

  14. Why do we study animal toxins?

    Science.gov (United States)

    ZHANG, Yun

    2015-01-01

    Venom (toxins) is an important trait evolved along the evolutionary tree of animals. Our knowledges on venoms, such as their origins and loss, the biological relevance and the coevolutionary patterns with other organisms are greatly helpful in understanding many fundamental biological questions, i.e., the environmental adaptation and survival competition, the evolution shaped development and balance of venoms, and the sophisticated correlations among venom, immunity, body power, intelligence, their genetic basis, inherent association, as well as the cost-benefit and trade-offs of biological economy. Lethal animal envenomation can be found worldwide. However, from foe to friend, toxin studies have led lots of important discoveries and exciting avenues in deciphering and fighting human diseases, including the works awarded the Nobel Prize and lots of key clinic therapeutics. According to our survey, so far, only less than 0.1% of the toxins of the venomous animals in China have been explored. We emphasize on the similarities shared by venom and immune systems, as well as the studies of toxin knowledge-based physiological toxin-like proteins/peptides (TLPs). We propose the natural pairing hypothesis. Evolution links toxins with humans. Our mission is to find out the right natural pairings and interactions of our body elements with toxins, and with endogenous toxin-like molecules. Although, in nature, toxins may endanger human lives, but from a philosophical point of view, knowing them well is an effective way to better understand ourselves. So, this is why we study toxins. PMID:26228472

  15. Marine mammals as sentinel species for oceans and human health.

    Science.gov (United States)

    Bossart, G D

    2011-05-01

    The long-term consequences of climate change and potential environmental degradation are likely to include aspects of disease emergence in marine plants and animals. In turn, these emerging diseases may have epizootic potential, zoonotic implications, and a complex pathogenesis involving other cofactors such as anthropogenic contaminant burden, genetics, and immunologic dysfunction. The concept of marine sentinel organisms provides one approach to evaluating aquatic ecosystem health. Such sentinels are barometers for current or potential negative impacts on individual- and population-level animal health. In turn, using marine sentinels permits better characterization and management of impacts that ultimately affect animal and human health associated with the oceans. Marine mammals are prime sentinel species because many species have long life spans, are long-term coastal residents, feed at a high trophic level, and have unique fat stores that can serve as depots for anthropogenic toxins. Marine mammals may be exposed to environmental stressors such as chemical pollutants, harmful algal biotoxins, and emerging or resurging pathogens. Since many marine mammal species share the coastal environment with humans and consume the same food, they also may serve as effective sentinels for public health problems. Finally, marine mammals are charismatic megafauna that typically stimulate an exaggerated human behavioral response and are thus more likely to be observed.

  16. Biofilm generation by Piscirickettsia salmonis under growth stress conditions: a putative in vivo survival/persistence strategy in marine environments.

    Science.gov (United States)

    Marshall, Sergio H; Gómez, Fernando A; Ramírez, Ramón; Nilo, Luis; Henríquez, Vitalia

    2012-01-01

    Piscirickettsia salmonis is a bacterial fish pathogen seriously threatening the sustainability of the Chilean salmon industry. The biology and life cycle of this bacterium is not completely understood and there are no reports explaining how it survives or persists in marine environments. This work provides descriptive data of P. salmonis behavior when it is exposed to stress conditions, producing large cell aggregates closely resembling typical biofilm structures. In order to track this putative biofilm, we used indirect fluorescence and scanning electron microscopy. Complex masses were observed over time; the bacteria appear to be embedded within a matrix which disappears when it is exposed to cellulase, suggesting a polysaccharide nature typical of biofilm formation. Two lectins (ConA and WGA) were used to characterize the matrix. Both lectins showed a strong reaction with the structure, validating the exopolysaccharide nature of the matrix. Recently, several studies have demonstrated a correlation between toxin/anti-toxin system expression at initial stages of biofilm formation. In this report, QRT-PCR analysis was used with the P. salmonis toxin/anti-toxin mazEF operon, showing induction of these genes at early stages of biofilm formation, suggesting that said formation may be an adaptive strategy for survival and persistence under stress conditions in marine environments. Copyright © 2012 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  17. A four-disulphide-bridged toxin, with high affinity towards voltage-gated K+ channels, isolated from Heterometrus spinnifer (Scorpionidae) venom.

    Science.gov (United States)

    Lebrun, B; Romi-Lebrun, R; Martin-Eauclaire, M F; Yasuda, A; Ishiguro, M; Oyama, Y; Pongs, O; Nakajima, T

    1997-11-15

    A new toxin, named HsTX1, has been identified in the venom of Heterometrus spinnifer (Scorpionidae), on the basis of its ability to block the rat Kv1.3 channels expressed in Xenopus oocytes. HsTX1 has been purified and characterized as a 34-residue peptide reticulated by four disulphide bridges. HsTX1 shares 53% and 59% sequence identity with Pandinus imperator toxin1 (Pi1) and maurotoxin, two recently isolated four-disulphide-bridged toxins, whereas it is only 32-47% identical with the other scorpion K+ channel toxins, reticulated by three disulphide bridges. The amidated and carboxylated forms of HsTX1 were synthesized chemically, and identity between the natural and the synthetic amidated peptides was proved by mass spectrometry, co-elution on C18 HPLC and blocking activity on the rat Kv1.3 channels. The disulphide bridge pattern was studied by (1) limited reduction-alkylation at acidic pH and (2) enzymic cleavage on an immobilized trypsin cartridge, both followed by mass and sequence analyses. Three of the disulphide bonds are connected as in the three-disulphide-bridged scorpion toxins, and the two extra half-cystine residues of HsTX1 are cross-linked, as in Pi1. These results, together with those of CD analysis, suggest that HsTX1 probably adopts the same general folding as all scorpion K+ channel toxins. HsTX1 is a potent inhibitor of the rat Kv1.3 channels (IC50 approx. 12 pM). HsTX1 does not compete with 125I-apamin for binding to its receptor site on rat brain synaptosomal membranes, but competes efficiently with 125I-kaliotoxin for binding to the voltage-gated K+ channels on the same preparation (IC50 approx. 1 pM).

  18. Plant Insecticidal Toxins in Ecological Networks

    Directory of Open Access Journals (Sweden)

    Sébastien Ibanez

    2012-04-01

    Full Text Available Plant secondary metabolites play a key role in plant-insect interactions, whether constitutive or induced, C- or N-based. Anti-herbivore defences against insects can act as repellents, deterrents, growth inhibitors or cause direct mortality. In turn, insects have evolved a variety of strategies to act against plant toxins, e.g., avoidance, excretion, sequestration and degradation of the toxin, eventually leading to a co-evolutionary arms race between insects and plants and to co-diversification. Anti-herbivore defences also negatively impact mutualistic partners, possibly leading to an ecological cost of toxin production. However, in other cases toxins can also be used by plants involved in mutualistic interactions to exclude inadequate partners and to modify the cost/benefit ratio of mutualism to their advantage. When considering the whole community, toxins have an effect at many trophic levels. Aposematic insects sequester toxins to defend themselves against predators. Depending on the ecological context, toxins can either increase insects’ vulnerability to parasitoids and entomopathogens or protect them, eventually leading to self-medication. We conclude that studying the community-level impacts of plant toxins can provide new insights into the synthesis between community and evolutionary ecology.

  19. Plant insecticidal toxins in ecological networks.

    Science.gov (United States)

    Ibanez, Sébastien; Gallet, Christiane; Després, Laurence

    2012-04-01

    Plant secondary metabolites play a key role in plant-insect interactions, whether constitutive or induced, C- or N-based. Anti-herbivore defences against insects can act as repellents, deterrents, growth inhibitors or cause direct mortality. In turn, insects have evolved a variety of strategies to act against plant toxins, e.g., avoidance, excretion, sequestration and degradation of the toxin, eventually leading to a co-evolutionary arms race between insects and plants and to co-diversification. Anti-herbivore defences also negatively impact mutualistic partners, possibly leading to an ecological cost of toxin production. However, in other cases toxins can also be used by plants involved in mutualistic interactions to exclude inadequate partners and to modify the cost/benefit ratio of mutualism to their advantage. When considering the whole community, toxins have an effect at many trophic levels. Aposematic insects sequester toxins to defend themselves against predators. Depending on the ecological context, toxins can either increase insects' vulnerability to parasitoids and entomopathogens or protect them, eventually leading to self-medication. We conclude that studying the community-level impacts of plant toxins can provide new insights into the synthesis between community and evolutionary ecology.

  20. Marine Phytophthora species can hamper conservation and restoration of vegetated coastal ecosystems

    NARCIS (Netherlands)

    Govers, Laura L.; Man in 't Veld, Willem A.; Meffert, Johan P.; Bouma, Tjeerd J.; van Rijswick, Patricia C. J.; Heusinkveld, Jannes H. T.; Orth, Robert J.; van Katwijk, Marieke M.; van der Heide, Tjisse

    2016-01-01

    Phytophthora species are potent pathogens that can devastate terrestrial plants, causing billions of dollars of damage yearly to agricultural crops and harming fragile ecosystems worldwide. Yet, virtually nothing is known about the distribution and pathogenicity of their marine relatives. This is

  1. Simultaneous removal of potent cyanotoxins from water using magnetophoretic nanoparticle of polypyrrole: adsorption kinetic and isotherm study.

    Science.gov (United States)

    Hena, S; Rozi, R; Tabassum, S; Huda, A

    2016-08-01

    Cyanotoxins, microcystins and cylindrospermopsin, are potent toxins produced by cyanobacteria in potable water supplies. This study investigated the removal of cyanotoxins from aqueous media by magnetophoretic nanoparticle of polypyrrole adsorbent. The adsorption process was pH dependent with maximum adsorption occurring at pH 7 for microcystin-LA, LR, and YR and at pH 9 for microcystin-RR and cylindrospermopsin (CYN). Kinetic studies and adsorption isotherms reflected better fit for pseudo-second-order rate and Langmuir isotherm model, respectively. Thermodynamic calculations showed that the cyanotoxin adsorption process is endothermic and spontaneous in nature. The regenerated adsorbent can be successfully reused without appreciable loss of its original capacity.

  2. Detection of ciguatoxin-like and paralysing toxins in Trichodesmium spp. from New Caledonia lagoon.

    Science.gov (United States)

    Kerbrat, Anne-Sophie; Darius, H Taiana; Pauillac, Serge; Chinain, Mireille; Laurent, Dominique

    2010-01-01

    Marine pelagic cyanobacteria Trichodesmium are widespread in the New Caledonia lagoon. Blooms of these Oscillatoriales are suspected to be a potential source of toxins in the ciguatera food chain and were previously reported to contain certain types of paralysing toxins. In the present study, toxicity experiments were conducted on lipid- and water-soluble extracts of freeze-dried samples of these cyanobacteria. Lipid-soluble fractions revealed a ciguatoxin-like activity in both in vivo (mouse bioassay) and in vitro (mouse neuroblastoma cells assay and receptor binding assay using tritiated brevetoxin-3) assays. The water-soluble fractions tested on mice exhibited neurotoxicity with paralytic symptoms. These toxicities have also been observed with benthic filamentous cyanobacteria within the Oscillatoriales order, also collected in New Caledonia. This study provides an unprecedented evidence of the toxicity of Trichodesmium species from the New Caledonia lagoon. This survey also demonstrates the possible role of these cyanobacteria in ciguatera fish poisoning. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  3. Defense against Toxin Weapons

    National Research Council Canada - National Science Library

    Franz, David

    1998-01-01

    .... We typically fear what we do not understand. Although un- derstanding toxin poisoning is less useful in a toxin attack than knowledge of cold injury on an Arctic battlefield, information on any threat reduces its potential to harm...

  4. Fatal Canine Intoxications Linked to the Presence of Saxitoxins in Stranded Marine Organisms Following Winter Storm Activity

    Directory of Open Access Journals (Sweden)

    Andrew D. Turner

    2018-02-01

    Full Text Available At the start of 2018, multiple incidents of dog illnesses were reported following consumption of marine species washed up onto the beaches of eastern England after winter storms. Over a two-week period, nine confirmed illnesses including two canine deaths were recorded. Symptoms in the affected dogs included sickness, loss of motor control, and muscle paralysis. Samples of flatfish, starfish, and crab from the beaches in the affected areas were analysed for a suite of naturally occurring marine neurotoxins of dinoflagellate origin. Toxins causing paralytic shellfish poisoning (PSP were detected and quantified using two independent chemical testing methods in samples of all three marine types, with concentrations over 14,000 µg saxitoxin (STX eq/kg found in one starfish sample. Further evidence for PSP intoxication of the dogs was obtained with the positive identification of PSP toxins in a vomited crab sample from one deceased dog and in gastrointestinal samples collected post mortem from a second affected dog. Together, this is the first report providing evidence of starfish being implicated in a PSP intoxication case and the first report of PSP in canines.

  5. Food toxin detection with atomic force microscope

    Science.gov (United States)

    Externally introduced toxins or internal spoilage correlated pathogens and their metabolites are all potential sources of food toxins. To prevent and protect unsafe food, many food toxin detection techniques have been developed to detect various toxins for quality control. Although several routine m...

  6. Cellular Entry of Clostridium perfringens Iota-Toxin and Clostridium botulinum C2 Toxin.

    Science.gov (United States)

    Takehara, Masaya; Takagishi, Teruhisa; Seike, Soshi; Oda, Masataka; Sakaguchi, Yoshihiko; Hisatsune, Junzo; Ochi, Sadayuki; Kobayashi, Keiko; Nagahama, Masahiro

    2017-08-11

    Clostridium perfringens iota-toxin and Clostridium botulinum C2 toxin are composed of two non-linked proteins, one being the enzymatic component and the other being the binding/translocation component. These latter components recognize specific receptors and oligomerize in plasma membrane lipid-rafts, mediating the uptake of the enzymatic component into the cytosol. Enzymatic components induce actin cytoskeleton disorganization through the ADP-ribosylation of actin and are responsible for cell rounding and death. This review focuses upon the recent advances in cellular internalization of clostridial binary toxins.

  7. Mutant with diphtheria toxin receptor and acidification function but defective in entry of toxin

    International Nuclear Information System (INIS)

    Kohno, Kenji; Hayes, H.; Mekada, Eisuke; Uchida, Tsuyoshi

    1987-01-01

    A mutant of Chinese hamster ovary cells, GE1, that is highly resistant to diphtheria toxin was isolated. The mutant contains 50% ADP-ribosylatable elongation factor 2, but its protein synthesis was not inhibited by the toxin even at concentrations above 100 μg/ml. 125 I-labeled diphtheria toxin was associated with GE1 cells as well as with the parent cells but did not block protein synthesis of GE1 cells even when the cells were exposed to low pH in the presence or absence of NH 4 Cl. The infections of GE1 cells and the parent cells by vesicular stomatitis virus were similar. GE1 cells were cross-resistant to Pseudomonas aeruginosa exotoxin A and so were about 1,000 times more resistant to this toxin than the parent cells. Hybrids of GE1 cells and the parent cells or mutant cells lacking a functional receptor were more sensitive to diphtheria toxin than GE1 cells. These results suggest that entry of diphtheria toxin into cells requires a cellular factor(s) in addition to those involved in receptor function and acidification of endosomes and that GE1 cells do not express this cellular factor. This character is recessive in GE1 cells

  8. Cholera Toxin B: One Subunit with Many Pharmaceutical Applications

    Directory of Open Access Journals (Sweden)

    Keegan J. Baldauf

    2015-03-01

    Full Text Available Cholera, a waterborne acute diarrheal disease caused by Vibrio cholerae, remains prevalent in underdeveloped countries and is a serious health threat to those living in unsanitary conditions. The major virulence factor is cholera toxin (CT, which consists of two subunits: the A subunit (CTA and the B subunit (CTB. CTB is a 55 kD homopentameric, non-toxic protein binding to the GM1 ganglioside on mammalian cells with high affinity. Currently, recombinantly produced CTB is used as a component of an internationally licensed oral cholera vaccine, as the protein induces potent humoral immunity that can neutralize CT in the gut. Additionally, recent studies have revealed that CTB administration leads to the induction of anti-inflammatory mechanisms in vivo. This review will cover the potential of CTB as an immunomodulatory and anti-inflammatory agent. We will also summarize various recombinant expression systems available for recombinant CTB bioproduction.

  9. Computational Studies of Snake Venom Toxins.

    Science.gov (United States)

    Ojeda, Paola G; Ramírez, David; Alzate-Morales, Jans; Caballero, Julio; Kaas, Quentin; González, Wendy

    2017-12-22

    Most snake venom toxins are proteins, and participate to envenomation through a diverse array of bioactivities, such as bleeding, inflammation, and pain, cytotoxic, cardiotoxic or neurotoxic effects. The venom of a single snake species contains hundreds of toxins, and the venoms of the 725 species of venomous snakes represent a large pool of potentially bioactive proteins. Despite considerable discovery efforts, most of the snake venom toxins are still uncharacterized. Modern bioinformatics tools have been recently developed to mine snake venoms, helping focus experimental research on the most potentially interesting toxins. Some computational techniques predict toxin molecular targets, and the binding mode to these targets. This review gives an overview of current knowledge on the ~2200 sequences, and more than 400 three-dimensional structures of snake toxins deposited in public repositories, as well as of molecular modeling studies of the interaction between these toxins and their molecular targets. We also describe how modern bioinformatics have been used to study the snake venom protein phospholipase A2, the small basic myotoxin Crotamine, and the three-finger peptide Mambalgin.

  10. Computational Studies of Snake Venom Toxins

    Directory of Open Access Journals (Sweden)

    Paola G. Ojeda

    2017-12-01

    Full Text Available Most snake venom toxins are proteins, and participate to envenomation through a diverse array of bioactivities, such as bleeding, inflammation, and pain, cytotoxic, cardiotoxic or neurotoxic effects. The venom of a single snake species contains hundreds of toxins, and the venoms of the 725 species of venomous snakes represent a large pool of potentially bioactive proteins. Despite considerable discovery efforts, most of the snake venom toxins are still uncharacterized. Modern bioinformatics tools have been recently developed to mine snake venoms, helping focus experimental research on the most potentially interesting toxins. Some computational techniques predict toxin molecular targets, and the binding mode to these targets. This review gives an overview of current knowledge on the ~2200 sequences, and more than 400 three-dimensional structures of snake toxins deposited in public repositories, as well as of molecular modeling studies of the interaction between these toxins and their molecular targets. We also describe how modern bioinformatics have been used to study the snake venom protein phospholipase A2, the small basic myotoxin Crotamine, and the three-finger peptide Mambalgin.

  11. Concurrent Exposure of Bottlenose Dolphins (Tursiops truncatus) to Multiple Algal Toxins in Sarasota Bay, Florida, USA

    Science.gov (United States)

    Twiner, Michael J.; Fire, Spencer; Schwacke, Lori; Davidson, Leigh; Wang, Zhihong; Morton, Steve; Roth, Stephen; Balmer, Brian; Rowles, Teresa K.; Wells, Randall S.

    2011-01-01

    Sentinel species such as bottlenose dolphins (Tursiops truncatus) can be impacted by large-scale mortality events due to exposure to marine algal toxins. In the Sarasota Bay region (Gulf of Mexico, Florida, USA), the bottlenose dolphin population is frequently exposed to harmful algal blooms (HABs) of Karenia brevis and the neurotoxic brevetoxins (PbTx; BTX) produced by this dinoflagellate. Live dolphins sampled during capture-release health assessments performed in this region tested positive for two HAB toxins; brevetoxin and domoic acid (DA). Over a ten-year study period (2000–2009) we have determined that bottlenose dolphins are exposed to brevetoxin and/or DA on a nearly annual basis (i.e., DA: 2004, 2005, 2006, 2008, 2009; brevetoxin: 2000, 2004, 2005, 2008, 2009) with 36% of all animals testing positive for brevetoxin (n = 118) and 53% positive for DA (n = 83) with several individuals (14%) testing positive for both neurotoxins in at least one tissue/fluid. To date there have been no previously published reports of DA in southwestern Florida marine mammals, however the May 2008 health assessment coincided with a Pseudo-nitzschia pseudodelicatissima bloom that was the likely source of DA observed in seawater and live dolphin samples. Concurrently, both DA and brevetoxin were observed in common prey fish. Although no Pseudo-nitzschia bloom was identified the following year, DA was identified in seawater, fish, sediment, snails, and dolphins. DA concentrations in feces were positively correlated with hematologic parameters including an increase in total white blood cell (p = 0.001) and eosinophil (p<0.001) counts. Our findings demonstrate that dolphins within Sarasota Bay are commonly exposed to two algal toxins, and provide the impetus to further explore the potential long-term impacts on bottlenose dolphin health. PMID:21423740

  12. Concurrent exposure of bottlenose dolphins (Tursiops truncatus to multiple algal toxins in Sarasota Bay, Florida, USA.

    Directory of Open Access Journals (Sweden)

    Michael J Twiner

    Full Text Available Sentinel species such as bottlenose dolphins (Tursiops truncatus can be impacted by large-scale mortality events due to exposure to marine algal toxins. In the Sarasota Bay region (Gulf of Mexico, Florida, USA, the bottlenose dolphin population is frequently exposed to harmful algal blooms (HABs of Karenia brevis and the neurotoxic brevetoxins (PbTx; BTX produced by this dinoflagellate. Live dolphins sampled during capture-release health assessments performed in this region tested positive for two HAB toxins; brevetoxin and domoic acid (DA. Over a ten-year study period (2000-2009 we have determined that bottlenose dolphins are exposed to brevetoxin and/or DA on a nearly annual basis (i.e., DA: 2004, 2005, 2006, 2008, 2009; brevetoxin: 2000, 2004, 2005, 2008, 2009 with 36% of all animals testing positive for brevetoxin (n = 118 and 53% positive for DA (n = 83 with several individuals (14% testing positive for both neurotoxins in at least one tissue/fluid. To date there have been no previously published reports of DA in southwestern Florida marine mammals, however the May 2008 health assessment coincided with a Pseudo-nitzschia pseudodelicatissima bloom that was the likely source of DA observed in seawater and live dolphin samples. Concurrently, both DA and brevetoxin were observed in common prey fish. Although no Pseudo-nitzschia bloom was identified the following year, DA was identified in seawater, fish, sediment, snails, and dolphins. DA concentrations in feces were positively correlated with hematologic parameters including an increase in total white blood cell (p = 0.001 and eosinophil (p<0.001 counts. Our findings demonstrate that dolphins within Sarasota Bay are commonly exposed to two algal toxins, and provide the impetus to further explore the potential long-term impacts on bottlenose dolphin health.

  13. Removal of hepatitis C virus-infected cells by a zymogenized bacterial toxin.

    Directory of Open Access Journals (Sweden)

    Assaf Shapira

    Full Text Available Hepatitis C virus (HCV infection is a major cause of chronic liver disease and has become a global health threat. No HCV vaccine is currently available and treatment with antiviral therapy is associated with adverse side effects. Moreover, there is no preventive therapy for recurrent hepatitis C post liver transplantation. The NS3 serine protease is necessary for HCV replication and represents a prime target for developing anti HCV therapies. Recently we described a therapeutic approach for eradication of HCV infected cells that is based on protein delivery of two NS3 protease-activatable recombinant toxins we named "zymoxins". These toxins were inactivated by fusion to rationally designed inhibitory peptides via NS3-cleavable linkers. Once delivered to cells where NS3 protease is present, the inhibitory peptide is removed resulting in re-activation of cytotoxic activity. The zymoxins we described suffered from two limitations: they required high levels of protease for activation and had basal activities in the un-activated form that resulted in a narrow potential therapeutic window. Here, we present a solution that overcame the major limitations of the "first generation zymoxins" by converting MazF ribonuclease, the toxic component of the E. coli chromosomal MazEF toxin-antitoxin system, into an NS3-activated zymoxin that is introduced to cells by means of gene delivery. We constructed an expression cassette that encodes for a single polypeptide that incorporates both the toxin and a fragment of its potent natural antidote, MazE, linked via an NS3-cleavable linker. While covalently paired to its inhibitor, the ribonuclease is well tolerated when expressed in naïve, healthy cells. In contrast, activating proteolysis that is induced by even low levels of NS3, results in an eradication of NS3 expressing model cells and HCV infected cells. Zymoxins may thus become a valuable tool in eradicating cells infected by intracellular pathogens that

  14. Removal of Hepatitis C Virus-Infected Cells by a Zymogenized Bacterial Toxin

    Science.gov (United States)

    Shapira, Assaf; Shapira, Shiran; Gal-Tanamy, Meital; Zemel, Romy; Tur-Kaspa, Ran; Benhar, Itai

    2012-01-01

    Hepatitis C virus (HCV) infection is a major cause of chronic liver disease and has become a global health threat. No HCV vaccine is currently available and treatment with antiviral therapy is associated with adverse side effects. Moreover, there is no preventive therapy for recurrent hepatitis C post liver transplantation. The NS3 serine protease is necessary for HCV replication and represents a prime target for developing anti HCV therapies. Recently we described a therapeutic approach for eradication of HCV infected cells that is based on protein delivery of two NS3 protease-activatable recombinant toxins we named “zymoxins”. These toxins were inactivated by fusion to rationally designed inhibitory peptides via NS3-cleavable linkers. Once delivered to cells where NS3 protease is present, the inhibitory peptide is removed resulting in re-activation of cytotoxic activity. The zymoxins we described suffered from two limitations: they required high levels of protease for activation and had basal activities in the un-activated form that resulted in a narrow potential therapeutic window. Here, we present a solution that overcame the major limitations of the “first generation zymoxins” by converting MazF ribonuclease, the toxic component of the E. coli chromosomal MazEF toxin-antitoxin system, into an NS3-activated zymoxin that is introduced to cells by means of gene delivery. We constructed an expression cassette that encodes for a single polypeptide that incorporates both the toxin and a fragment of its potent natural antidote, MazE, linked via an NS3-cleavable linker. While covalently paired to its inhibitor, the ribonuclease is well tolerated when expressed in naïve, healthy cells. In contrast, activating proteolysis that is induced by even low levels of NS3, results in an eradication of NS3 expressing model cells and HCV infected cells. Zymoxins may thus become a valuable tool in eradicating cells infected by intracellular pathogens that express

  15. Investigation of the detoxification mechanism of formaldehyde-treated tetanus toxin

    DEFF Research Database (Denmark)

    Thaysen-Andersen, Morten; Jørgensen, Sys Borcher; Wilhelmsen, Ellen Sloth

    2007-01-01

    and properties of the vaccine component, occurs through partly unknown chemical modifications of the toxin. The aim of this study was to gain knowledge of the detoxification mechanism in the generation of the tetanus vaccine. Two approaches were chosen: (i) the effect of changes in the concentrations of lysine...... The tetanus vaccine is based on the extremely potent tetanus neurotoxin (TeNT), which is converted by treatment with formaldehyde and lysine into the non-toxic, but still immunogenic tetanus toxoid (TTd). This formaldehyde-induced detoxification, which to a large extend determines the quality...... and formaldehyde in the detoxification process and (ii) characterisation of the chemically detoxified TTd. (i) We examined a number of TTd components that was produced by varying the concentrations of formaldehyde and lysine during the inactivation. Toxicity tests showed that the detoxification failed when...

  16. Differential neutralizing activities of a single domain camelid antibody (VHH specific for ricin toxin's binding subunit (RTB.

    Directory of Open Access Journals (Sweden)

    Cristina Herrera

    Full Text Available Ricin, a member of the A-B family of ribosome-inactivating proteins, is classified as a Select Toxin by the Centers for Disease Control and Prevention because of its potential use as a biothreat agent. In an effort to engineer therapeutics for ricin, we recently produced a collection of alpaca-derived, heavy-chain only antibody VH domains (VHH or "nanobody" specific for ricin's enzymatic (RTA and binding (RTB subunits. We reported that one particular RTB-specific VHH, RTB-B7, when covalently linked via a peptide spacer to different RTA-specific VHHs, resulted in heterodimers like VHH D10/B7 that were capable of passively protecting mice against a lethal dose challenge with ricin. However, RTB-B7 itself, when mixed with ricin at a 1 ∶ 10 toxin:antibody ratio did not afford any protection in vivo, even though it had demonstrable toxin-neutralizing activity in vitro. To better define the specific attributes of antibodies associated with ricin neutralization in vitro and in vivo, we undertook a more thorough characterization of RTB-B7. We report that RTB-B7, even at 100-fold molar excess (toxin:antibody was unable to alter the toxicity of ricin in a mouse model. On the other hand, in two well-established cytotoxicity assays, RTB-B7 neutralized ricin with a 50% inhibitory concentration (IC50 that was equivalent to that of 24B11, a well-characterized and potent RTB-specific murine monoclonal antibody. In fact, RTB-B7 and 24B11 were virtually identical when compared across a series of in vitro assays, including adherence to and neutralization of ricin after the toxin was pre-bound to cell surface receptors. RTB-B7 differed from both 24B11 and VHH D10/B7 in that it was relatively less effective at blocking ricin attachment to receptors on host cells and was not able to form high molecular weight toxin:antibody complexes in solution. Whether either of these activities is important in ricin toxin neutralizing activity in vivo remains to be determined.

  17. Brown spider dermonecrotic toxin directly induces nephrotoxicity

    International Nuclear Information System (INIS)

    Chaim, Olga Meiri; Sade, Youssef Bacila; Bertoni da Silveira, Rafael; Toma, Leny; Kalapothakis, Evanguedes; Chavez-Olortegui, Carlos; Mangili, Oldemir Carlos; Gremski, Waldemiro; Dietrich, Carl Peter von; Nader, Helena B.; Sanches Veiga, Silvio

    2006-01-01

    Brown spider (Loxosceles genus) venom can induce dermonecrotic lesions at the bite site and systemic manifestations including fever, vomiting, convulsions, disseminated intravascular coagulation, hemolytic anemia and acute renal failure. The venom is composed of a mixture of proteins with several molecules biochemically and biologically well characterized. The mechanism by which the venom induces renal damage is unknown. By using mice exposed to Loxosceles intermedia recombinant dermonecrotic toxin (LiRecDT), we showed direct induction of renal injuries. Microscopic analysis of renal biopsies from dermonecrotic toxin-treated mice showed histological alterations including glomerular edema and tubular necrosis. Hyalinization of tubules with deposition of proteinaceous material in the tubule lumen, tubule epithelial cell vacuoles, tubular edema and epithelial cell lysis was also observed. Leukocytic infiltration was neither observed in the glomerulus nor the tubules. Renal vessels showed no sign of inflammatory response. Additionally, biochemical analyses showed such toxin-induced changes in renal function as urine alkalinization, hematuria and azotemia with elevation of blood urea nitrogen levels. Immunofluorescence with dermonecrotic toxin antibodies and confocal microscopy analysis showed deposition and direct binding of this toxin to renal intrinsic structures. By immunoblotting with a hyperimmune dermonecrotic toxin antiserum on renal lysates from toxin-treated mice, we detected a positive signal at the region of 33-35 kDa, which strengthens the idea that renal failure is directly induced by dermonecrotic toxin. Immunofluorescence reaction with dermonecrotic toxin antibodies revealed deposition and binding of this toxin directly in MDCK epithelial cells in culture. Similarly, dermonecrotic toxin treatment caused morphological alterations of MDCK cells including cytoplasmic vacuoles, blebs, evoked impaired spreading and detached cells from each other and from

  18. Cellular Entry of Clostridium perfringens Iota-Toxin and Clostridium botulinum C2 Toxin

    Directory of Open Access Journals (Sweden)

    Masaya Takehara

    2017-08-01

    Full Text Available Clostridium perfringens iota-toxin and Clostridium botulinum C2 toxin are composed of two non-linked proteins, one being the enzymatic component and the other being the binding/translocation component. These latter components recognize specific receptors and oligomerize in plasma membrane lipid-rafts, mediating the uptake of the enzymatic component into the cytosol. Enzymatic components induce actin cytoskeleton disorganization through the ADP-ribosylation of actin and are responsible for cell rounding and death. This review focuses upon the recent advances in cellular internalization of clostridial binary toxins.

  19. EGA Protects Mammalian Cells from Clostridium difficile CDT, Clostridium perfringens Iota Toxin and Clostridium botulinum C2 Toxin.

    Science.gov (United States)

    Schnell, Leonie; Mittler, Ann-Katrin; Sadi, Mirko; Popoff, Michel R; Schwan, Carsten; Aktories, Klaus; Mattarei, Andrea; Azarnia Tehran, Domenico; Montecucco, Cesare; Barth, Holger

    2016-04-01

    The pathogenic bacteria Clostridium difficile, Clostridium perfringens and Clostridium botulinum produce the binary actin ADP-ribosylating toxins CDT, iota and C2, respectively. These toxins are composed of a transport component (B) and a separate enzyme component (A). When both components assemble on the surface of mammalian target cells, the B components mediate the entry of the A components via endosomes into the cytosol. Here, the A components ADP-ribosylate G-actin, resulting in depolymerization of F-actin, cell-rounding and eventually death. In the present study, we demonstrate that 4-bromobenzaldehyde N-(2,6-dimethylphenyl)semicarbazone (EGA), a compound that protects cells from multiple toxins and viruses, also protects different mammalian epithelial cells from all three binary actin ADP-ribosylating toxins. In contrast, EGA did not inhibit the intoxication of cells with Clostridium difficile toxins A and B, indicating a possible different entry route for this toxin. EGA does not affect either the binding of the C2 toxin to the cells surface or the enzyme activity of the A components of CDT, iota and C2, suggesting that this compound interferes with cellular uptake of the toxins. Moreover, for C2 toxin, we demonstrated that EGA inhibits the pH-dependent transport of the A component across cell membranes. EGA is not cytotoxic, and therefore, we propose it as a lead compound for the development of novel pharmacological inhibitors against clostridial binary actin ADP-ribosylating toxins.

  20. EGA Protects Mammalian Cells from Clostridium difficile CDT, Clostridium perfringens Iota Toxin and Clostridium botulinum C2 Toxin

    Science.gov (United States)

    Schnell, Leonie; Mittler, Ann-Katrin; Sadi, Mirko; Popoff, Michel R.; Schwan, Carsten; Aktories, Klaus; Mattarei, Andrea; Tehran, Domenico Azarnia; Montecucco, Cesare; Barth, Holger

    2016-01-01

    The pathogenic bacteria Clostridium difficile, Clostridium perfringens and Clostridium botulinum produce the binary actin ADP-ribosylating toxins CDT, iota and C2, respectively. These toxins are composed of a transport component (B) and a separate enzyme component (A). When both components assemble on the surface of mammalian target cells, the B components mediate the entry of the A components via endosomes into the cytosol. Here, the A components ADP-ribosylate G-actin, resulting in depolymerization of F-actin, cell-rounding and eventually death. In the present study, we demonstrate that 4-bromobenzaldehyde N-(2,6-dimethylphenyl)semicarbazone (EGA), a compound that protects cells from multiple toxins and viruses, also protects different mammalian epithelial cells from all three binary actin ADP-ribosylating toxins. In contrast, EGA did not inhibit the intoxication of cells with Clostridium difficile toxins A and B, indicating a possible different entry route for this toxin. EGA does not affect either the binding of the C2 toxin to the cells surface or the enzyme activity of the A components of CDT, iota and C2, suggesting that this compound interferes with cellular uptake of the toxins. Moreover, for C2 toxin, we demonstrated that EGA inhibits the pH-dependent transport of the A component across cell membranes. EGA is not cytotoxic, and therefore, we propose it as a lead compound for the development of novel pharmacological inhibitors against clostridial binary actin ADP-ribosylating toxins. PMID:27043629

  1. SVM-based prediction of propeptide cleavage sites in spider toxins identifies toxin innovation in an Australian tarantula.

    Directory of Open Access Journals (Sweden)

    Emily S W Wong

    Full Text Available Spider neurotoxins are commonly used as pharmacological tools and are a popular source of novel compounds with therapeutic and agrochemical potential. Since venom peptides are inherently toxic, the host spider must employ strategies to avoid adverse effects prior to venom use. It is partly for this reason that most spider toxins encode a protective proregion that upon enzymatic cleavage is excised from the mature peptide. In order to identify the mature toxin sequence directly from toxin transcripts, without resorting to protein sequencing, the propeptide cleavage site in the toxin precursor must be predicted bioinformatically. We evaluated different machine learning strategies (support vector machines, hidden Markov model and decision tree and developed an algorithm (SpiderP for prediction of propeptide cleavage sites in spider toxins. Our strategy uses a support vector machine (SVM framework that combines both local and global sequence information. Our method is superior or comparable to current tools for prediction of propeptide sequences in spider toxins. Evaluation of the SVM method on an independent test set of known toxin sequences yielded 96% sensitivity and 100% specificity. Furthermore, we sequenced five novel peptides (not used to train the final predictor from the venom of the Australian tarantula Selenotypus plumipes to test the accuracy of the predictor and found 80% sensitivity and 99.6% 8-mer specificity. Finally, we used the predictor together with homology information to predict and characterize seven groups of novel toxins from the deeply sequenced venom gland transcriptome of S. plumipes, which revealed structural complexity and innovations in the evolution of the toxins. The precursor prediction tool (SpiderP is freely available on ArachnoServer (http://www.arachnoserver.org/spiderP.html, a web portal to a comprehensive relational database of spider toxins. All training data, test data, and scripts used are available from

  2. Microalgal toxin(s): characteristics and importance

    African Journals Online (AJOL)

    Prokaryotic and eukaryotic microalgae produce a wide array of compounds with biological activities. These include antibiotics, algicides, toxins, pharmaceutically active compounds and plant growth regulators. Toxic microalgae, in this sense, are common only among the cyanobacteria and dinoflagellates. The microalgal ...

  3. Immunotoxins: The Role of the Toxin

    Directory of Open Access Journals (Sweden)

    David FitzGerald

    2013-08-01

    Full Text Available Immunotoxins are antibody-toxin bifunctional molecules that rely on intracellular toxin action to kill target cells. Target specificity is determined via the binding attributes of the chosen antibody. Mostly, but not exclusively, immunotoxins are purpose-built to kill cancer cells as part of novel treatment approaches. Other applications for immunotoxins include immune regulation and the treatment of viral or parasitic diseases. Here we discuss the utility of protein toxins, of both bacterial and plant origin, joined to antibodies for targeting cancer cells. Finally, while clinical goals are focused on the development of novel cancer treatments, much has been learned about toxin action and intracellular pathways. Thus toxins are considered both medicines for treating human disease and probes of cellular function.

  4. Radioimmunoassay for yeast killer toxin from Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Siddiqui, F.A.; Bussey, H.

    1981-01-01

    A radioimmunoassay was developed for the K1 killer toxin from strain T158C/S14a of Saccharomyces cerevisiae. Iodine 125-labelled toxin was made to a specific activity of 100 μCi/mg of protein. Antibody to purified toxin was prepared in rabbits using toxin cross-linked to itself. These antibodies, partially purified by 50 percent ammonium sulfate precipitation and Sepharose CL-6B column chromatography, produced one precipitation band with killer toxin and bound 125 I-labelled toxin in a radioimmunoassay. The antibody preparation also bound with the toxins from another K1 killer, A364A, and three chromosomal superkiller mutants derived from it. (auth)

  5. Natural Proline-Rich Cyclopolypeptides from Marine Organisms: Chemistry, Synthetic Methodologies and Biological Status.

    Science.gov (United States)

    Fang, Wan-Yin; Dahiya, Rajiv; Qin, Hua-Li; Mourya, Rita; Maharaj, Sandeep

    2016-10-26

    Peptides have gained increased interest as therapeutics during recent years. More than 60 peptide drugs have reached the market for the benefit of patients and several hundreds of novel therapeutic peptides are in preclinical and clinical development. The key contributor to this success is the potent and specific, yet safe, mode of action of peptides. Among the wide range of biologically-active peptides, naturally-occurring marine-derived cyclopolypeptides exhibit a broad range of unusual and potent pharmacological activities. Because of their size and complexity, proline-rich cyclic peptides (PRCPs) occupy a crucial chemical space in drug discovery that may provide useful scaffolds for modulating more challenging biological targets, such as protein-protein interactions and allosteric binding sites. Diverse pharmacological activities of natural cyclic peptides from marine sponges, tunicates and cyanobacteria have encouraged efforts to develop cyclic peptides with well-known synthetic methods, including solid-phase and solution-phase techniques of peptide synthesis. The present review highlights the natural resources, unique structural features and the most relevant biological properties of proline-rich peptides of marine-origin, focusing on the potential therapeutic role that the PRCPs may play as a promising source of new peptide-based novel drugs.

  6. Efficacy of a potential trivalent vaccine based on Hc fragments of botulinum toxins A, B, and E produced in a cell-free expression system.

    Science.gov (United States)

    Zichel, R; Mimran, A; Keren, A; Barnea, A; Steinberger-Levy, I; Marcus, D; Turgeman, A; Reuveny, S

    2010-05-01

    Botulinum toxins produced by the anaerobic bacterium Clostridium botulinum are the most potent biological toxins in nature. Traditionally, people at risk are immunized with a formaldehyde-inactivated toxin complex. Second generation vaccines are based on the recombinant carboxy-terminal heavy-chain (Hc) fragment of the neurotoxin. However, the materialization of this approach is challenging, mainly due to the high AT content of clostridial genes. Herein, we present an alternative strategy in which the native genes encoding Hc proteins of botulinum toxins A, B, and E were used to express the recombinant Hc fragments in a cell-free expression system. We used the unique property of this open system to introduce different combinations of chaperone systems, protein disulfide isomerase (PDI), and reducing/oxidizing environments directly to the expression reaction. Optimized expression conditions led to increased production of soluble Hc protein, which was successfully scaled up using a continuous exchange (CE) cell-free system. Hc proteins were produced at a concentration of more than 1 mg/ml and purified by one-step Ni(+) affinity chromatography. Mice immunized with three injections containing 5 microg of any of the in vitro-expressed, alum-absorbed, Hc vaccines generated a serum enzyme-linked immunosorbent assay (ELISA) titer of 10(5) against the native toxin complex, which enabled protection against a high-dose toxin challenge (10(3) to 10(6) mouse 50% lethal dose [MsLD(50)]). Finally, immunization with a trivalent HcA, HcB, and HcE vaccine protected mice against the corresponding trivalent 10(5) MsLD(50) toxin challenge. Our results together with the latest developments in scalability of the in vitro protein expression systems offer alternative routes for the preparation of botulinum vaccine.

  7. Role of Botulinum Toxin in Depression.

    Science.gov (United States)

    Parsaik, Ajay K; Mascarenhas, Sonia S; Hashmi, Aqeel; Prokop, Larry J; John, Vineeth; Okusaga, Olaoluwa; Singh, Balwinder

    2016-03-01

    The goal of this review was to consolidate the evidence concerning the efficacy of botulinum toxin type A (onabotulinumtoxinA) in depression. We searched MEDLINE, EMBASE, Cochrane, and Scopus through May 5, 2014, for studies evaluating the efficacy of botulinum toxin A in depression. Only randomized controlled trials were included in the meta-analysis. A pooled mean difference in primary depression score, and pooled odds ratio for response and remission rate with 95% confidence interval (CI) were estimated using the random-effects model. Heterogeneity was assessed using Cochran Q test and χ statistic. Of the 639 articles that were initially retrieved, 5 studies enrolling 194 subjects (age 49±9.6 y) were included in the systematic review, and 3 randomized controlled trials enrolling 134 subjects were included in the meta-analysis. The meta-analysis showed a significant decrease in mean primary depression scores among patients who received botulinum toxin A compared with placebo (-9.80; 95% CI, -12.90 to -6.69) with modest heterogeneity between the studies (Cochran Q test, χ=70). Response and remission rates were 8.3 and 4.6 times higher, respectively, among patients receiving botulinum toxin A compared with placebo, with no heterogeneity between the studies. The 2 studies excluded from the meta-analysis also found a significant decrease in primary depression scores in patients after receiving botulinum toxin A. A few subjects had minor side effects, which were similar between the groups receiving botulinum toxin and those receiving placebo. This study suggests that botulinum toxin A can produce significant improvement in depressive symptoms and is a safe adjunctive treatment for patients receiving pharmacotherapy for depression. Future trials are needed to evaluate the antidepressant effect per se of botulinum toxin A and to further elucidate the underlying antidepressant mechanism of botulinum toxin A.

  8. Botulinum toxin therapy for limb dystonias.

    Science.gov (United States)

    Yoshimura, D M; Aminoff, M J; Olney, R K

    1992-03-01

    We investigated the effectiveness of botulinum toxin in 17 patients with limb dystonias (10 with occupational cramps, three with idiopathic dystonia unrelated to activity, and two each with post-stroke and parkinsonian dystonia) in a placebo-controlled, blinded study. We identified affected muscles clinically and by recording the EMG from implanted wire electrodes at rest and during performance of tasks that precipitated abnormal postures. There were three injections given with graded doses of toxin (average doses, 5 to 10, 10 to 20, and 20 to 40 units per muscle) and one with placebo, in random order. Subjective improvement occurred after 53% of injections of botulinum toxin, and this was substantial in 24%. Only one patient (7%) improved after placebo injection. Subjective improvement occurred in 82% of patients with at least one dose of toxin, lasting for 1 to 4 months. Response rates were similar between clinical groups. Objective evaluation failed to demonstrate significant improvement following treatment with toxin compared with placebo. The major side effect was transient focal weakness after 53% of injections of toxin.

  9. Algal toxins and reverse osmosis desalination operations: Laboratory bench testing and field monitoring of domoic acid, saxitoxin, brevetoxin and okadaic acid

    KAUST Repository

    Seubert, Erica L.

    2012-12-01

    The occurrence and intensity of harmful algal blooms (HABs) have been increasing globally during the past few decades. The impact of these events on seawater desalination facilities has become an important topic in recent years due to enhanced societal interest and reliance on this technology for augmenting world water supplies. A variety of harmful bloom-forming species of microalgae occur in southern California, as well as many other locations throughout the world, and several of these species are known to produce potent neurotoxins. These algal toxins can cause a myriad of human health issues, including death, when ingested via contaminated seafood. This study was designed to investigate the impact that algal toxin presence may have on both the intake and reverse osmosis (RO) desalination process; most importantly, whether or not the naturally occurring algal toxins can pass through the RO membrane and into the desalination product. Bench-scale RO experiments were conducted to explore the potential of extracellular algal toxins contaminating the RO product. Concentrations exceeding maximal values previously reported during natural blooms were used in the laboratory experiments, with treatments comprised of 50 μg/L of domoic acid (DA), 2 μg/L of saxitoxin (STX) and 20 μg/L of brevetoxin (PbTx). None of the algal toxins used in the bench-scale experiments were detectable in the desalinated product water. Monitoring for intracellular and extracellular concentrations of DA, STX, PbTx and okadaic acid (OA) within the intake and desalinated water from a pilot RO desalination plant in El Segundo, CA, was conducted from 2005 to 2009. During the five-year monitoring period, DA and STX were detected sporadically in the intake waters but never in the desalinated water. PbTx and OA were not detected in either the intake or desalinated water. The results of this study demonstrate the potential for HAB toxins to be inducted into coastal RO intake facilities, and the

  10. Algal toxins and reverse osmosis desalination operations: Laboratory bench testing and field monitoring of domoic acid, saxitoxin, brevetoxin and okadaic acid

    KAUST Repository

    Seubert, Erica L.; Trussell, Shane; Eagleton, John; Schnetzer, Astrid; Cetinić, Ivona; Lauri, Phil; Jones, Burton; Caron, David A.

    2012-01-01

    The occurrence and intensity of harmful algal blooms (HABs) have been increasing globally during the past few decades. The impact of these events on seawater desalination facilities has become an important topic in recent years due to enhanced societal interest and reliance on this technology for augmenting world water supplies. A variety of harmful bloom-forming species of microalgae occur in southern California, as well as many other locations throughout the world, and several of these species are known to produce potent neurotoxins. These algal toxins can cause a myriad of human health issues, including death, when ingested via contaminated seafood. This study was designed to investigate the impact that algal toxin presence may have on both the intake and reverse osmosis (RO) desalination process; most importantly, whether or not the naturally occurring algal toxins can pass through the RO membrane and into the desalination product. Bench-scale RO experiments were conducted to explore the potential of extracellular algal toxins contaminating the RO product. Concentrations exceeding maximal values previously reported during natural blooms were used in the laboratory experiments, with treatments comprised of 50 μg/L of domoic acid (DA), 2 μg/L of saxitoxin (STX) and 20 μg/L of brevetoxin (PbTx). None of the algal toxins used in the bench-scale experiments were detectable in the desalinated product water. Monitoring for intracellular and extracellular concentrations of DA, STX, PbTx and okadaic acid (OA) within the intake and desalinated water from a pilot RO desalination plant in El Segundo, CA, was conducted from 2005 to 2009. During the five-year monitoring period, DA and STX were detected sporadically in the intake waters but never in the desalinated water. PbTx and OA were not detected in either the intake or desalinated water. The results of this study demonstrate the potential for HAB toxins to be inducted into coastal RO intake facilities, and the

  11. Arthropod toxins and their antinociceptive properties: From venoms to painkillers.

    Science.gov (United States)

    Monge-Fuentes, Victoria; Arenas, Claudia; Galante, Priscilla; Gonçalves, Jacqueline Coimbra; Mortari, Márcia Renata; Schwartz, Elisabeth Ferroni

    2018-03-29

    The complex process of pain control commonly involves the use of systemic analgesics; however, in many cases, a more potent and effective polypharmacological approach is needed to promote clinically significant improvement. Additionally, considering side effects caused by current painkillers, drug discovery is once more turning to nature as a source of more efficient therapeutic alternatives. In this context, arthropod venoms contain a vast array of bioactive substances that have evolved to selectively bind to specific pharmacological targets involved in the pain signaling pathway, playing an important role as pain activators or modulators, the latter serving as promising analgesic agents. The current review explores how the pain pathway works and surveys neuroactive compounds obtained from arthropods' toxins, which function as pain modulators through their interaction with specific ion channels and membrane receptors, emerging as promising candidates for drug design and development. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Marine Biotoxins: Occurrence, Toxicity, and Detection Methods

    Science.gov (United States)

    Asakawa, M.

    2017-04-01

    This review summarizes the role of marine organisms as vectors of marine biotoxins, and discusses the need for surveillance to protect public health and ensure the quality of seafood. I Paralytic shellfish poison (PSP) and PSP-bearing organisms-PSP is produced by toxic dinoflagellates species belonging to the genera Alexandrium, Gymnodinium, and Pyrodinium. Traditionally, PSP monitoring programs have only considered filter-feeding molluscs that concentrate these toxic algae, however, increasing attention is now being paid to higher-order predators that carry PSP, such as carnivorous gastropods and crustaceans. II. Tetrodotoxin (TTX) and TTX-bearing organisms - TTX is the most common natural marine toxin that causes food poisonings in Japan, and poses a serious public health risk. TTX was long believed to be present only in pufferfish. However, TTX was detected in the eggs of California newt Taricha torosa in 1964, and since then it has been detected in a wide variety of species belonging to several different phyla. In this study, the main toxic components in the highly toxic ribbon worm Cephalothrix simula and the greater blue-ringed octopus Hapalochlaena lunulata from Japan were purified and analysed.

  13. Sensitivity of cancer cells to truncated diphtheria toxin.

    Directory of Open Access Journals (Sweden)

    Yi Zhang

    2010-05-01

    Full Text Available Diphtheria toxin (DT has been utilized as a prospective anti-cancer agent for the targeted delivery of cytotoxic therapy to otherwise untreatable neoplasia. DT is an extremely potent toxin for which the entry of a single molecule into a cell can be lethal. DT has been targeted to cancer cells by deleting the cell receptor-binding domain and combining the remaining catalytic portion with targeting proteins that selectively bind to the surface of cancer cells. It has been assumed that "receptorless" DT cannot bind to and kill cells. In the present study, we report that "receptorless" recombinant DT385 is in fact cytotoxic to a variety of cancer cell lines.In vitro cytotoxicity of DT385 was measured by cell proliferation, cell staining and apoptosis assays. For in vivo studies, the chick chorioallantoic membrane (CAM system was used to evaluate the effect of DT385 on angiogenesis. The CAM and mouse model system was used to evaluate the effect of DT385 on HEp3 and Lewis lung carcinoma (LLC tumor growth, respectively.Of 18 human cancer cell lines tested, 15 were affected by DT385 with IC(50 ranging from 0.12-2.8 microM. Furthermore, high concentrations of DT385 failed to affect growth arrested cells. The cellular toxicity of DT385 was due to the inhibition of protein synthesis and induction of apoptosis. In vivo, DT385 diminished angiogenesis and decreased tumor growth in the CAM system, and inhibited the subcutaneous growth of LLC tumors in mice.DT385 possesses anti-angiogenic and anti-tumor activity and may have potential as a therapeutic agent.

  14. Recent Insights into Clostridium perfringens Beta-Toxin

    Directory of Open Access Journals (Sweden)

    Masahiro Nagahama

    2015-02-01

    Full Text Available Clostridium perfringens beta-toxin is a key mediator of necrotizing enterocolitis and enterotoxemia. It is a pore-forming toxin (PFT that exerts cytotoxic effect. Experimental investigation using piglet and rabbit intestinal loop models and a mouse infection model apparently showed that beta-toxin is the important pathogenic factor of the organisms. The toxin caused the swelling and disruption of HL-60 cells and formed a functional pore in the lipid raft microdomains of sensitive cells. These findings represent significant progress in the characterization of the toxin with knowledge on its biological features, mechanism of action and structure-function having been accumulated. Our aims here are to review the current progresses in our comprehension of the virulence of C. perfringens type C and the character, biological feature and structure-function of beta-toxin.

  15. Need for organic reference materials in marine science

    Energy Technology Data Exchange (ETDEWEB)

    Wells, D.E.

    1988-12-01

    The reference materials (RMs) available for organic trace analysis (OTA) and the development programmes of the RM producers are reviewed. The need for a wider range of determinants, matrices and classes of RMs, particularly the more widespread use of laboratory RMs (LRMs) is discussed. Additional certified RMs should include phenolic surfactant degradation products, chlorophenolics from the wood and paper industries, and organobromines from fire retardants. RMs as molecular markers of geogenic, pyrogenic and biogenic sources; chlorophylls and xanthophylls as a measure of marine productivity and natural shellfish toxins are proposed.

  16. Isolation and characterization of delta toxin from the venom of Crotalus durissus terrificus; Isolamento e caracterizacao da delta toxina do veneno de Crotalus durissus terrificus

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Lucelia de Almeida

    2006-07-01

    The Crotalus durissus terrificus venom has been so far described as being of low complexity, with four major components described: convulxin, gyroxin, crotoxin and crotamine. In recent studies, other components of this venom were characterized as, for example, an analgesic factor. In 1980, Vital Brazil predicted the existence of a toxin which could be involved in platelet aggregation, and named it delta toxin. However, this toxin has never been isolated or characterized. The aim of the present work was to purify and characterize this toxin. After FPLC size exclusion chromatography followed by reverse phase HPLC, an homogeneous fraction was obtained, with a molecular weight of 14,074.92 Da. When analyzed by SOS-PAGE, this toxin presented an anomalous behavior, with a molecular weight of 14 kDa, while in 2D gels, spots around 40 kDa and with an isoelectrical point between 4 and 5 were observed suggesting isoforms with glicosilation microheterogeneity. After trypsin digestion, the fragments were submitted to the swissprot databank showing high homology (43% coverage, 15 matching peptides) with trocarin, a prothrombin activator from Tropidechis carinatus. These data were further confirmed by aminoacid analysis. The toxin was tested for its ability to activate factor II and X using synthetic substrates. Our data indicate a direct activation of factor X. The same toxin also behaved as a potent direct platelet aggregation activator on washed platelets. Assays with specific inhibitors indicate that neither metalloproteinase, nor serinoproteinase or t lectin domains are involved in the aggregating activity, since EDTA, benzamidin and D-galactose did not inhibit the toxin. In the present work, we were able to identify, purify and characterize a new toxin from the brazilian rattlesnake. It behaved as predicted by Vital-Brazil and displayed direct factor X activating properties, also inducing platelet aggregation, even at low concentrations. Our data also indicate that it is

  17. Toxin profiles of five geographical isolates of Dinophysis spp. from North and South America.

    Science.gov (United States)

    Fux, Elie; Smith, Juliette L; Tong, Mengmeng; Guzmán, Leonardo; Anderson, Donald M

    2011-02-01

    Marine dinoflagellates of the genus Dinophysis can produce toxins of the okadaic acid (OA) and pectenotoxin (PTX) groups. These lipophilic toxins accumulate in filter-feeding shellfish and cause an illness in consumers called diarrhetic shellfish poisoning (DSP). In 2008, a bloom of Dinophysis led to the closure of shellfish harvesting areas along the Texas coast, one of the first DSP-related closures in the U.S. This event resulted in a broad study of toxin production in isolates of Dinophysis spp. from U.S. waters. In the present study, we compared toxin profiles in geographical isolates of Dinophysis collected in the U.S. (Eel Pond, Woods Hole MA; Martha's Vineyard, MA; and Port Aransas Bay, Texas), and in those from Canada (Blacks Harbour, Bay of Fundy) and Chile (Reloncavi Estuary), when cultured in the laboratory under the same conditions. For each isolate, the mitochondrial cox1 gene was sequenced to assist in species identification. Strains from the northeastern U.S. and Canada were all assigned to Dinophysis acuminata, while those from Chile and Texas were most likely within the D. acuminata complex whereas precise species designation could not be made with this marker. Toxins were detected in all Dinophysis isolates and each isolate had a different profile. Toxin profiles of isolates from Eel Pond, Martha's Vineyard, and Bay of Fundy were most similar, in that they all contained OA, DTX1, and PTX2. The Eel Pond isolate also contained OA-D8 and DTX1-D7, and low levels (unconfirmed structurally) of DTX1-D8 and DTX1-D9. D. acuminata from Martha's Vineyard produced DTX1-D7, along with OA, DTX1, and PTX2, as identified in both the cells and the culture medium. D. acuminata from the Bay of Fundy produced DTX1 and PTX2, as found in both cells and culture medium, while only trace amounts of OA were detected in the medium. The Dinophysis strain from Texas only produced OA, and the one from Chile only PTX2, as confirmed in both cells and culture medium. Published

  18. Military Importance of Natural Toxins and Their Analogs

    Directory of Open Access Journals (Sweden)

    Vladimír Pitschmann

    2016-04-01

    Full Text Available Toxin weapon research, development, production and the ban on its uses is an integral part of international law, with particular attention paid to the protection against these weapons. In spite of this, hazards associated with toxins cannot be completely excluded. Some of these hazards are also pointed out in the present review. The article deals with the characteristics and properties of natural toxins and synthetic analogs potentially constituting the basis of toxin weapons. It briefly describes the history of military research and the use of toxins from distant history up to the present age. With respect to effective disarmament conventions, it mentions certain contemporary concepts of possible toxin applications for military purposes and the protection of public order (suppression of riots; it also briefly refers to the question of terrorism. In addition, it deals with certain traditional as well as modern technologies of the research, synthesis, and use of toxins, which can affect the continuing development of toxin weapons. These are, for example, cases of new toxins from natural sources, their chemical synthesis, production of synthetic analogs, the possibility of using methods of genetic engineering and modern biotechnologies or the possible applications of nanotechnology and certain pharmaceutical methods for the effective transfer of toxins into the organism. The authors evaluate the military importance of toxins based on their comparison with traditional chemical warfare agents. They appeal to the ethics of the scientific work as a principal condition for the prevention of toxin abuse in wars, military conflicts, as well as in non-military attacks.

  19. Military Importance of Natural Toxins and Their Analogs.

    Science.gov (United States)

    Pitschmann, Vladimír; Hon, Zdeněk

    2016-04-28

    Toxin weapon research, development, production and the ban on its uses is an integral part of international law, with particular attention paid to the protection against these weapons. In spite of this, hazards associated with toxins cannot be completely excluded. Some of these hazards are also pointed out in the present review. The article deals with the characteristics and properties of natural toxins and synthetic analogs potentially constituting the basis of toxin weapons. It briefly describes the history of military research and the use of toxins from distant history up to the present age. With respect to effective disarmament conventions, it mentions certain contemporary concepts of possible toxin applications for military purposes and the protection of public order (suppression of riots); it also briefly refers to the question of terrorism. In addition, it deals with certain traditional as well as modern technologies of the research, synthesis, and use of toxins, which can affect the continuing development of toxin weapons. These are, for example, cases of new toxins from natural sources, their chemical synthesis, production of synthetic analogs, the possibility of using methods of genetic engineering and modern biotechnologies or the possible applications of nanotechnology and certain pharmaceutical methods for the effective transfer of toxins into the organism. The authors evaluate the military importance of toxins based on their comparison with traditional chemical warfare agents. They appeal to the ethics of the scientific work as a principal condition for the prevention of toxin abuse in wars, military conflicts, as well as in non-military attacks.

  20. Evidence for a novel marine harmful algal bloom: cyanotoxin (microcystin transfer from land to sea otters.

    Directory of Open Access Journals (Sweden)

    Melissa A Miller

    Full Text Available "Super-blooms" of cyanobacteria that produce potent and environmentally persistent biotoxins (microcystins are an emerging global health issue in freshwater habitats. Monitoring of the marine environment for secondary impacts has been minimal, although microcystin-contaminated freshwater is known to be entering marine ecosystems. Here we confirm deaths of marine mammals from microcystin intoxication and provide evidence implicating land-sea flow with trophic transfer through marine invertebrates as the most likely route of exposure. This hypothesis was evaluated through environmental detection of potential freshwater and marine microcystin sources, sea otter necropsy with biochemical analysis of tissues and evaluation of bioaccumulation of freshwater microcystins by marine invertebrates. Ocean discharge of freshwater microcystins was confirmed for three nutrient-impaired rivers flowing into the Monterey Bay National Marine Sanctuary, and microcystin concentrations up to 2,900 ppm (2.9 million ppb were detected in a freshwater lake and downstream tributaries to within 1 km of the ocean. Deaths of 21 southern sea otters, a federally listed threatened species, were linked to microcystin intoxication. Finally, farmed and free-living marine clams, mussels and oysters of species that are often consumed by sea otters and humans exhibited significant biomagnification (to 107 times ambient water levels and slow depuration of freshwater cyanotoxins, suggesting a potentially serious environmental and public health threat that extends from the lowest trophic levels of nutrient-impaired freshwater habitat to apex marine predators. Microcystin-poisoned sea otters were commonly recovered near river mouths and harbors and contaminated marine bivalves were implicated as the most likely source of this potent hepatotoxin for wild otters. This is the first report of deaths of marine mammals due to cyanotoxins and confirms the existence of a novel class of marine

  1. Evidence for a novel marine harmful algal bloom: Cyanotoxin (Microcystin) transfer from land to sea otters

    Science.gov (United States)

    Miller, Melissa A.; Kudela, Raphael M.; Mekebri, Abdu; Crane, Dave; Oates, Stori C.; Tinker, M. Timothy; Staedler, Michelle; Miller, Woutrina A.; Toy-Choutka, Sharon; Dominik, Clare; Hardin, Dane; Langlois, Gregg; Murray, Michael; Ward, Kim; Jessup, David A.

    2010-01-01

    "Super-blooms" of cyanobacteria that produce potent and environmentally persistent biotoxins (microcystins) are an emerging global health issue in freshwater habitats. Monitoring of the marine environment for secondary impacts has been minimal, although microcystin-contaminated freshwater is known to be entering marine ecosystems. Here we confirm deaths of marine mammals from microcystin intoxication and provide evidence implicating land-sea flow with trophic transfer through marine invertebrates as the most likely route of exposure. This hypothesis was evaluated through environmental detection of potential freshwater and marine microcystin sources, sea otter necropsy with biochemical analysis of tissues and evaluation of bioaccumulation of freshwater microcystins by marine invertebrates. Ocean discharge of freshwater microcystins was confirmed for three nutrient-impaired rivers flowing into the Monterey Bay National Marine Sanctuary, and microcystin concentrations up to 2,900 ppm (2.9 million ppb) were detected in a freshwater lake and downstream tributaries to within 1 km of the ocean. Deaths of 21 southern sea otters, a federally listed threatened species, were linked to microcystin intoxication. Finally, farmed and free-living marine clams, mussels and oysters of species that are often consumed by sea otters and humans exhibited significant biomagnification (to 107 times ambient water levels) and slow depuration of freshwater cyanotoxins, suggesting a potentially serious environmental and public health threat that extends from the lowest trophic levels of nutrient-impaired freshwater habitat to apex marine predators. Microcystin-poisoned sea otters were commonly recovered near river mouths and harbors and contaminated marine bivalves were implicated as the most likely source of this potent hepatotoxin for wild otters. This is the first report of deaths of marine mammals due to cyanotoxins and confirms the existence of a novel class of marine "harmful algal

  2. SHELL DISEASES AND TOXINS REGULATED BY LAW

    Directory of Open Access Journals (Sweden)

    Natalija Topić Popović

    1999-06-01

    Full Text Available There is a long tradition of cultivating shells in Croatia, and the shell industry has a good perspective of further development. Since shells are delicate organisms that require special breeding conditions and climate, they are also subject to many diseases. Bonamiosis, haplospioridiosis, marteiliosis, microcytosis and perkinsosis are stated by the International Bureau for Epizootics as shell diseases that, in keeping with law, must be reported, and iridovirosis as a disease of a potential international importance. The same diseases are regulated by the Veterinary Law from 1997 as infectious diseases prevention of which is of an interest for the Republic of Croatia. Although, according to the law, it does not have to be prevented, in this article the disease Mytilicola is also described. According to the Health Department Statute from 1994, eatable part of shells are being tested for toxins of some marine dinoflagelates that can damage human health, and these are PSP (Paralytic Shellfish Poison, DSP (Diarrhoeic Shellfish Poison and NSP (Neuroparalytic Shellfish Poison.

  3. Antifouling Compounds from Marine Macroalgae.

    Science.gov (United States)

    Dahms, Hans Uwe; Dobretsov, Sergey

    2017-08-28

    Marine macroalgae produce a wide variety of biologically-active metabolites that have been developed into commercial products, such as antibiotics, immunosuppressive, anti-inflammatory, cytotoxic agents, and cosmetic products. Many marine algae remain clean over longer periods of time, suggesting their strong antifouling potential. Isolation of biogenic compounds and the determination of their structure could provide leads for the development of environmentally-friendly antifouling paints. Isolated substances with potent antifouling activity belong to fatty acids, lipopeptides, amides, alkaloids, lactones, steroids, terpenoids, and pyrroles. It is unclear as yet to what extent symbiotic microorganisms are involved in the synthesis of these compounds. Algal secondary metabolites have the potential to be produced commercially using genetic and metabolic engineering techniques. This review provides an overview of publications from 2010 to February 2017 about antifouling activity of green, brown, and red algae. Some researchers were focusing on antifouling compounds of brown macroalgae, while metabolites of green algae received less attention. Several studies tested antifouling activity against bacteria, microalgae and invertebrates, but in only a few studies was the quorum sensing inhibitory activity of marine macroalgae tested. Rarely, antifouling compounds from macroalgae were isolated and tested in an ecologically-relevant way.

  4. Bacillus anthracis lethal toxin disrupts TCR signaling in CD1d-restricted NKT cells leading to functional anergy.

    Directory of Open Access Journals (Sweden)

    Sunil K Joshi

    2009-09-01

    Full Text Available Exogenous CD1d-binding glycolipid (alpha-Galactosylceramide, alpha-GC stimulates TCR signaling and activation of type-1 natural killer-like T (NKT cells. Activated NKT cells play a central role in the regulation of adaptive and protective immune responses against pathogens and tumors. In the present study, we tested the effect of Bacillus anthracis lethal toxin (LT on NKT cells both in vivo and in vitro. LT is a binary toxin known to suppress host immune responses during anthrax disease and intoxicates cells by protective antigen (PA-mediated intracellular delivery of lethal factor (LF, a potent metalloprotease. We observed that NKT cells expressed anthrax toxin receptors (CMG-2 and TEM-8 and bound more PA than other immune cell types. A sub-lethal dose of LT administered in vivo in C57BL/6 mice decreased expression of the activation receptor NKG2D by NKT cells but not by NK cells. The in vivo administration of LT led to decreased TCR-induced cytokine secretion but did not affect TCR expression. Further analysis revealed LT-dependent inhibition of TCR-stimulated MAP kinase signaling in NKT cells attributable to LT cleavage of the MAP kinase kinase MEK-2. We propose that Bacillus anthracis-derived LT causes a novel form of functional anergy in NKT cells and therefore has potential for contributing to immune evasion by the pathogen.

  5. Toxins of filamentous fungi.

    Science.gov (United States)

    Bhatnagar, Deepak; Yu, Jiujiang; Ehrlich, Kenneth C

    2002-01-01

    Mycotoxins are low-molecular-weight secondary metabolites of fungi. The most significant mycotoxins are contaminants of agricultural commodities, foods and feeds. Fungi that produce these toxins do so both prior to harvest and during storage. Although contamination of commodities by toxigenic fungi occurs frequently in areas with a hot and humid climate (i.e. conditions favorable for fungal growth), they can also be found in temperate conditions. Production of mycotoxins is dependent upon the type of producing fungus and environmental conditions such as the substrate, water activity (moisture and relative humidity), duration of exposure to stress conditions and microbial, insect or other animal interactions. Although outbreaks of mycotoxicoses in humans have been documented, several of these have not been well characterized, neither has a direct correlation between the mycotoxin and resulting toxic effect been well established in vivo. Even though the specific modes of action of most of the toxins are not well established, acute and chronic effects in prokaryotic and eukaryotic systems, including humans have been reported. The toxicity of the mycotoxins varies considerably with the toxin, the animal species exposed to it, and the extent of exposure, age and nutritional status. Most of the toxic effects of mycotoxins are limited to specific organs, but several mycotoxins affect many organs. Induction of cancer by some mycotoxins is a major concern as a chronic effect of these toxins. It is nearly impossible to eliminate mycotoxins from the foods and feed in spite of the regulatory efforts at the national and international levels to remove the contaminated commodities. This is because mycotoxins are highly stable compounds, the producing fungi are ubiquitous, and food contamination can occur both before and after harvest. Nevertheless, good farm management practices and adequate storage facilities minimize the toxin contamination problems. Current research is

  6. Toxin-Antitoxin Battle in Bacteria

    DEFF Research Database (Denmark)

    Cataudella, Ilaria

    This PhD thesis consists of three research projects revolving around the common thread of investigation of the properties and biological functions of Toxin-Antitoxin loci. Toxin-Antitoxin (TA) loci are transcriptionally regulated via an auto-inhibition mechanism called conditional cooperativity, ...

  7. Bio Warfare and Terrorism: Toxins and Other Mid-Spectrum Agents

    National Research Council Canada - National Science Library

    Madsen, James M

    2005-01-01

    ... counterparts are still by definition toxins. Related terms include phycotoxins (toxins from algae), mycotoxins (fungal toxins), phytotoxins (plant toxins), and venoms (toxins from animals, especially vertebrates...

  8. Engineering toxins for 21st century therapies.

    Science.gov (United States)

    Chaddock, John A; Acharya, K Ravi

    2011-04-01

    'Engineering Toxins for 21st Century Therapies' (9-10 September 2010) was part of the Royal Society International Seminar series held at the Kavli International Centre, UK. Participants were assembled from a range of disciplines (academic, industry, regulatory, public health) to discuss the future potential of toxin-based therapies. The meeting explored how the current structural and mechanistic knowledge of toxins could be used to engineer future toxin-based therapies. To date, significant progress has been made in the design of novel recombinant biologics based on domains of natural toxins, engineered to exhibit advantageous properties. The meeting concluded, firstly that future product development vitally required the appropriate combination of creativity and innovation that can come from the academic, biotechnology and pharma sectors. Second, that continued investigation into understanding the basic science of the toxins and their targets was essential in order to develop new opportunities for the existing products and to create new products with enhanced properties. Finally, it was concluded that the clinical potential for development of novel biologics based on toxin domains was evident. © 2011 The Authors Journal compilation © 2011 FEBS.

  9. Crystallization of isoelectrically homogeneous cholera toxin

    International Nuclear Information System (INIS)

    Spangler, B.D.; Westbrook, E.M.

    1989-01-01

    Past difficulty in growing good crystals of cholera toxin has prevented the study of the crystal structure of this important protein. The authors have determined that failure of cholera toxin to crystallize well has been due to its heterogeneity. They have now succeeded in overcoming the problem by isolating a single isoelectric variant of this oligomeric protein (one A subunit and five B subunits). Cholera toxin purified by their procedure readily forms large single crystals. The crystal form has been described previously. They have recorded data from native crystals of cholera toxin to 3.0-angstrom resolution with our electronic area detectors. With these data, they have found the orientation of a 5-fold symmetry axis within these crystals, perpendicular to the screw dyad of the crystal. They are now determining the crystal structure of cholera toxin by a combination of multiple heavy-atom isomorphous replacement and density modification techniques, making use of rotational 5-fold averaging of the B subunits

  10. Botulinum toxin in trigeminal neuralgia.

    Science.gov (United States)

    Castillo-Álvarez, Federico; Hernando de la Bárcena, Ignacio; Marzo-Sola, María Eugenia

    2017-01-06

    Trigeminal neuralgia is one of the most disabling facial pain syndromes, with a significant impact on patients' quality of life. Pharmacotherapy is the first choice for treatment but cases of drug resistance often require new strategies, among which various interventional treatments have been used. In recent years a new therapeutic strategy consisting of botulinum toxin has emerged, with promising results. We reviewed clinical cases and case series, open-label studies and randomized clinical trials examining the use of botulinum toxin for drug-refractory trigeminal neuralgia published in the literature. The administration of botulinum toxin has proven to be a safe and effective therapeutic strategy in patients with drug-refractory idiopathic trigeminal neuralgia, but many questions remain unanswered as to the precise role of botulinum toxin in the treatment of this disease. Copyright © 2016 Elsevier España, S.L.U. All rights reserved.

  11. Collaborative Research Program on Seafood Toxins

    Science.gov (United States)

    1988-08-14

    Crystallographic Structures of Saxitoxins Cl and C2 Appendix C: Collaborative Research Program an Seafcod Toxins Progress Report on Ciguatera and Related...radioimmunoassay for PSP were also evalumted. The Hokama stick test for ciguatera toxin was also evaluated. 4. initiate Studies on the Accumulation...tco•d which caie a form of b-mnn poisoning referred to as ciguatera . The respcnsible toxins originate from ll1ular rine algae of the division

  12. Entry of Shiga toxin into cells

    DEFF Research Database (Denmark)

    Sandvig, Kirsten; van Deurs, Bo

    1994-01-01

    Cellebiologi, Shiga toxin, receptors, glycolipids, endocytosis, trans-Golgi network, endoplasmic reticulum, retrograde transport......Cellebiologi, Shiga toxin, receptors, glycolipids, endocytosis, trans-Golgi network, endoplasmic reticulum, retrograde transport...

  13. Discovery of a distinct superfamily of Kunitz-type toxin (KTT from tarantulas.

    Directory of Open Access Journals (Sweden)

    Chun-Hua Yuan

    Full Text Available BACKGROUND: Kuntiz-type toxins (KTTs have been found in the venom of animals such as snake, cone snail and sea anemone. The main ancestral function of Kunitz-type proteins was the inhibition of a diverse array of serine proteases, while toxic activities (such as ion-channel blocking were developed under a variety of Darwinian selection pressures. How new functions were grafted onto an old protein scaffold and what effect Darwinian selection pressures had on KTT evolution remains a puzzle. PRINCIPAL FINDINGS: Here we report the presence of a new superfamily of ktts in spiders (TARANTULAS: Ornithoctonus huwena and Ornithoctonus hainana, which share low sequence similarity to known KTTs and is clustered in a distinct clade in the phylogenetic tree of KTT evolution. The representative molecule of spider KTTs, HWTX-XI, purified from the venom of O. huwena, is a bi-functional protein which is a very potent trypsin inhibitor (about 30-fold more strong than BPTI as well as a weak Kv1.1 potassium channel blocker. Structural analysis of HWTX-XI in 3-D by NMR together with comparative function analysis of 18 expressed mutants of this toxin revealed two separate sites, corresponding to these two activities, located on the two ends of the cone-shape molecule of HWTX-XI. Comparison of non-synonymous/synonymous mutation ratios (omega for each site in spider and snake KTTs, as well as PBTI like body Kunitz proteins revealed high Darwinian selection pressure on the binding sites for Kv channels and serine proteases in snake, while only on the proteases in spider and none detected in body proteins, suggesting different rates and patterns of evolution among them. The results also revealed a series of key events in the history of spider KTT evolution, including the formation of a novel KTT family (named sub-Kuntiz-type toxins derived from the ancestral native KTTs with the loss of the second disulfide bridge accompanied by several dramatic sequence modifications

  14. Botulinum Toxin: Pharmacology and Therapeutic Roles in Pain States.

    Science.gov (United States)

    Patil, Shilpadevi; Willett, Olga; Thompkins, Terin; Hermann, Robert; Ramanathan, Sathish; Cornett, Elyse M; Fox, Charles J; Kaye, Alan David

    2016-03-01

    Botulinum toxin, also known as Botox, is produced by Clostridium botulinum, a gram-positive anaerobic bacterium, and botulinum toxin injections are among the most commonly practiced cosmetic procedures in the USA. Although botulinum toxin is typically associated with cosmetic procedures, it can be used to treat a variety of other conditions, including pain. Botulinum toxin blocks the release of acetylcholine from nerve endings to paralyze muscles and to decrease the pain response. Botulinum toxin has a long duration of action, lasting up to 5 months after initial treatment which makes it an excellent treatment for chronic pain patients. This manuscript will outline in detail why botulinum toxin is used as a successful treatment for pain in multiple conditions as well as outline the risks associated with using botulinum toxin in certain individuals. As of today, the only FDA-approved chronic condition that botulinum toxin can be used to treat is migraines and this is related to its ability to decrease muscle tension and increase muscle relaxation. Contraindications to botulinum toxin treatments are limited to a hypersensitivity to the toxin or an infection at the site of injection, and there are no known drug interactions with botulinum toxin. Botulinum toxin is an advantageous and effective alternative pain treatment and a therapy to consider for those that do not respond to opioid treatment. In summary, botulinum toxin is a relatively safe and effective treatment for individuals with certain pain conditions, including migraines. More research is warranted to elucidate chronic and long-term implications of botulinum toxin treatment as well as effects in pregnant, elderly, and adolescent patients.

  15. Loading and Light Degradation Characteristics of B t Toxin on Nano goethite: A Potential Material for Controlling the Environmental Risk of B t Toxin

    International Nuclear Information System (INIS)

    Zhou, X.; She, Ch.; She, Ch.; Liu, H.

    2015-01-01

    Transgenic B t-modified crops release toxins into soil through root exudate s and upon decomposition of residues. The fate of these toxins in soil has not been yet clearly elucidated. Nano goethite was found to have a different influence on the lifetime and identicalness activity of B t toxin. The aim of this study was to elucidate the adsorption characteristics of B t toxin on nano goethite and its activity changes before and after adsorption. The adsorption of toxin on nano goethite reached equilibrium within 5 h, and the adsorption isotherm of B t toxin on nano goethite conformed to the Langmuir equation (). In the range of ph from 6.0 to 8.0, larger adsorption occurred at lower ph value. The toxin adsorption decreased with the temperature between 10 and 50 degree. The results of Ftir, XRD, and SEM indicated that toxin did not influence the structure of nano goethite and the adsorption of toxin only on the surface of nano goethite. The LC_5_0 value for bound toxin was higher than that of free toxin, and the nano goethite greatly accelerated the degradation of toxin by ultraviolet irradiation. The above results suggested that nano goethite is a potential material for controlling the environmental risk of toxin released by Bt transgenic plants

  16. Hunt for Palytoxins in a Wide Variety of Marine Organisms Harvested in 2010 on the French Mediterranean Coast

    Directory of Open Access Journals (Sweden)

    Ronel Biré

    2015-08-01

    Full Text Available During the summer of 2010, 31 species including fish, echinoderms, gastropods, crustaceans, cephalopods and sponges were sampled in the Bay of Villefranche on the French Mediterranean coast and screened for the presence of PLTX-group toxins using the haemolytic assay. Liquid chromatography tandem mass spectrometry (LC-MS/MS was used for confirmatory purposes and to determine the toxin profile. The mean toxin concentration in the whole flesh of all sampled marine organisms, determined using the lower- (LB and upper-bound (UB approach was 4.3 and 5.1 µg·kg−1, respectively, with less than 1% of the results exceeding the European Food Safety Authority (EFSA threshold of 30 µg·kg−1and the highest values being reported for sea urchins (107.6 and 108.0 µg·kg−1. Toxins accumulated almost exclusively in the digestive tube of the tested species, with the exception of octopus, in which there were detectable toxin amounts in the remaining tissues (RT. The mean toxin concentration in the RT of the sampled organisms (fishes, echinoderms and cephalopods was 0.7 and 1.7 µg·kg−1 (LB and UB, respectively, with a maximum value of 19.9 µg·kg−1 for octopus RT. The herbivorous and omnivorous organisms were the most contaminated species, indicating that diet influences the contamination process, and the LC-MS/MS revealed that ovatoxin-a was the only toxin detected.

  17. Monoclonal antibodies and toxins--a perspective on function and isotype.

    Science.gov (United States)

    Chow, Siu-Kei; Casadevall, Arturo

    2012-06-01

    Antibody therapy remains the only effective treatment for toxin-mediated diseases. The development of hybridoma technology has allowed the isolation of monoclonal antibodies (mAbs) with high specificity and defined properties, and numerous mAbs have been purified and characterized for their protective efficacy against different toxins. This review summarizes the mAb studies for 6 toxins--Shiga toxin, pertussis toxin, anthrax toxin, ricin toxin, botulinum toxin, and Staphylococcal enterotoxin B (SEB)--and analyzes the prevalence of mAb functions and their isotypes. Here we show that most toxin-binding mAbs resulted from immunization are non-protective and that mAbs with potential therapeutic use are preferably characterized. Various common practices and caveats of protection studies are discussed, with the goal of providing insights for the design of future research on antibody-toxin interactions.

  18. Computational Studies of Snake Venom Toxins

    OpenAIRE

    Paola G. Ojeda; David Ramírez; Jans Alzate-Morales; Julio Caballero; Quentin Kaas; Wendy González

    2017-01-01

    Most snake venom toxins are proteins, and participate to envenomation through a diverse array of bioactivities, such as bleeding, inflammation, and pain, cytotoxic, cardiotoxic or neurotoxic effects. The venom of a single snake species contains hundreds of toxins, and the venoms of the 725 species of venomous snakes represent a large pool of potentially bioactive proteins. Despite considerable discovery efforts, most of the snake venom toxins are still uncharacterized. Modern bioinformatics t...

  19. Clostridium botulinum C2 toxin--new insights into the cellular up-take of the actin-ADP-ribosylating toxin.

    Science.gov (United States)

    Aktories, Klaus; Barth, Holger

    2004-04-01

    Clostridium botulinum C2 toxin is a member of the family of binary actin-ADP-ribosylating toxins. It consists of the enzyme component C2I, and the separated binding/translocation component C2II. Proteolytically activated C2II forms heptamers and binds to a carbohydrate cell surface receptor. After attachment of C2I, the toxin complex is endocytosed to reach early endosomes. At low pH of endosomes, C2II-heptamers insert into the membrane, form pores and deliver C2I into the cytosol. Here, C2I ADP-ribosylates actin at Arg177 to block actin polymerization and to induce depolymerization of actin filaments. The mini-review describes main properties of C2 toxin and discusses new findings on the involvement of chaperones in the up-take process of the toxin.

  20. Ciguatoxins Evoke Potent CGRP Release by Activation of Voltage-Gated Sodium Channel Subtypes NaV1.9, NaV1.7 and NaV1.1

    Directory of Open Access Journals (Sweden)

    Filip Touska

    2017-08-01

    Full Text Available Ciguatoxins (CTXs are marine toxins that cause ciguatera fish poisoning, a debilitating disease dominated by sensory and neurological disturbances that include cold allodynia and various painful symptoms as well as long-lasting pruritus. Although CTXs are known as the most potent mammalian sodium channel activator toxins, the etiology of many of its neurosensory symptoms remains unresolved. We recently described that local application of 1 nM Pacific Ciguatoxin-1 (P-CTX-1 into the skin of human subjects induces a long-lasting, painful axon reflex flare and that CTXs are particularly effective in releasing calcitonin-gene related peptide (CGRP from nerve terminals. In this study, we used mouse and rat skin preparations and enzyme-linked immunosorbent assays (ELISA to study the molecular mechanism by which P-CTX-1 induces CGRP release. We show that P-CTX-1 induces CGRP release more effectively in mouse as compared to rat skin, exhibiting EC50 concentrations in the low nanomolar range. P-CTX-1-induced CGRP release from skin is dependent on extracellular calcium and sodium, but independent from the activation of various thermosensory transient receptor potential (TRP ion channels. In contrast, lidocaine and tetrodotoxin (TTX reduce CGRP release by 53–75%, with the remaining fraction involving L-type and T-type voltage-gated calcium channels (VGCC. Using transgenic mice, we revealed that the TTX-resistant voltage-gated sodium channel (VGSC NaV1.9, but not NaV1.8 or NaV1.7 alone and the combined activation of the TTX-sensitive VGSC subtypes NaV1.7 and NaV1.1 carry the largest part of the P-CTX-1-caused CGRP release of 42% and 34%, respectively. Given the contribution of CGRP to nociceptive and itch sensing pathways, our findings contribute to a better understanding of sensory symptoms of acute and chronic ciguatera that may help in the identification of potential therapeutics.

  1. Ciguatoxins Evoke Potent CGRP Release by Activation of Voltage-Gated Sodium Channel Subtypes NaV1.9, NaV1.7 and NaV1.1

    Science.gov (United States)

    Touska, Filip; Sattler, Simon; Malsch, Philipp; Lewis, Richard J.; Zimmermann, Katharina

    2017-01-01

    Ciguatoxins (CTXs) are marine toxins that cause ciguatera fish poisoning, a debilitating disease dominated by sensory and neurological disturbances that include cold allodynia and various painful symptoms as well as long-lasting pruritus. Although CTXs are known as the most potent mammalian sodium channel activator toxins, the etiology of many of its neurosensory symptoms remains unresolved. We recently described that local application of 1 nM Pacific Ciguatoxin-1 (P-CTX-1) into the skin of human subjects induces a long-lasting, painful axon reflex flare and that CTXs are particularly effective in releasing calcitonin-gene related peptide (CGRP) from nerve terminals. In this study, we used mouse and rat skin preparations and enzyme-linked immunosorbent assays (ELISA) to study the molecular mechanism by which P-CTX-1 induces CGRP release. We show that P-CTX-1 induces CGRP release more effectively in mouse as compared to rat skin, exhibiting EC50 concentrations in the low nanomolar range. P-CTX-1-induced CGRP release from skin is dependent on extracellular calcium and sodium, but independent from the activation of various thermosensory transient receptor potential (TRP) ion channels. In contrast, lidocaine and tetrodotoxin (TTX) reduce CGRP release by 53–75%, with the remaining fraction involving L-type and T-type voltage-gated calcium channels (VGCC). Using transgenic mice, we revealed that the TTX-resistant voltage-gated sodium channel (VGSC) NaV1.9, but not NaV1.8 or NaV1.7 alone and the combined activation of the TTX-sensitive VGSC subtypes NaV1.7 and NaV1.1 carry the largest part of the P-CTX-1-caused CGRP release of 42% and 34%, respectively. Given the contribution of CGRP to nociceptive and itch sensing pathways, our findings contribute to a better understanding of sensory symptoms of acute and chronic ciguatera that may help in the identification of potential therapeutics. PMID:28867800

  2. Toxins That Affect Voltage-Gated Sodium Channels.

    Science.gov (United States)

    Ji, Yonghua

    2017-10-26

    Voltage-gated sodium channels (VGSCs) are critical in generation and conduction of electrical signals in multiple excitable tissues. Natural toxins, produced by animal, plant, and microorganisms, target VGSCs through diverse strategies developed over millions of years of evolutions. Studying of the diverse interaction between VGSC and VGSC-targeting toxins has been contributing to the increasing understanding of molecular structure and function, pharmacology, and drug development potential of VGSCs. This chapter aims to summarize some of the current views on the VGSC-toxin interaction based on the established receptor sites of VGSC for natural toxins.

  3. Karmitoxin: An amine containing polyhydroxy-polyene toxin from the marine dinoflagellate Karlodinium armiger

    DEFF Research Database (Denmark)

    Rasmussen, Silas Anselm; Binzer, Sofie Bjørnholt; Hoeck, Casper

    2017-01-01

    Marine algae from the genus Karlodinium are known to be involved in fish-killing events worldwide. Here we report for the first time the chemistry and bioactivity of a natural product from the newly described mixotrophic dinoflagellate Karlodinium armiger. Our work describes the isolation and str...

  4. Molecular Structure of Endotoxins from Gram-negative Marine Bacteria: An Update

    Directory of Open Access Journals (Sweden)

    Antonio Molinaro

    2007-09-01

    Full Text Available Marine bacteria are microrganisms that have adapted, through millions of years, to survival in environments often characterized by one or more extreme physical or chemical parameters, namely pressure, temperature and salinity. The main interest in the research on marine bacteria is due to their ability to produce several biologically active molecules, such as antibiotics, toxins and antitoxins, antitumor and antimicrobial agents. Nonetheless, lipopolysaccharides (LPSs, or their portions, from Gram-negative marine bacteria, have often shown low virulence, and represent potential candidates in the development of drugs to prevent septic shock. Besides, the molecular architecture of such molecules is related to the possibility of thriving in marine habitats, shielding the cell from the disrupting action of natural stress factors. Over the last few years, the depiction of a variety of structures of lipids A, core oligosaccharides and O-specific polysaccharides from LPSs of marine microrganisms has been given. In particular, here we will examine the most recently encountered structures for bacteria belonging to the genera Shewanella, Pseudoalteromonas and Alteromonas, of the γ-Proteobacteria phylum, and to the genera Flavobacterium, Cellulophaga, Arenibacter and Chryseobacterium, of the Cytophaga- Flavobacterium-Bacteroides phylum. Particular attention will be paid to the chemical features expressed by these structures (characteristic monosaccharides, non-glycidic appendages, phosphate groups, to the typifying traits of LPSs from marine bacteria and to the possible correlation existing between such features and the adaptation, over years, of bacteria to marine environments.

  5. Binding of Diphtheria Toxin to Phospholipids in Liposomes

    Science.gov (United States)

    Alving, Carl R.; Iglewski, Barbara H.; Urban, Katharine A.; Moss, Joel; Richards, Roberta L.; Sadoff, Jerald C.

    1980-04-01

    Diphtheria toxin bound to the phosphate portion of some, but not all, phospholipids in liposomes. Liposomes consisting of dimyristoyl phosphatidylcholine and cholesterol did not bind toxin. Addition of 20 mol% (compared to dimyristoyl phosphatidylcholine) of dipalmitoyl phosphatidic acid, dicetyl phosphate, phosphatidylinositol phosphate, cardiolipin, or phosphatidylserine in the liposomes resulted in substantial binding of toxin. Inclusion of phosphatidylinositol in dimyristol phosphatidylcholine / cholesterol liposomes did not result in toxin binding. The calcium salt of dipalmitoyl phosphatidic acid was more effective than the sodium salt, and the highest level of binding occurred with liposomes consisting only of dipalmitoyl phosphatidic acid (calcium salt) and cholesterol. Binding of toxin to liposomes was dependent on pH, and the pattern of pH dependence varied with liposomes having different compositions. Incubation of diphtheria toxin with liposomes containing dicetyl phosphate resulted in maximal binding at pH 3.6, whereas binding to liposomes containing phosphatidylinositol phosphate was maximal above pH 7. Toxin did not bind to liposomes containing 20 mol% of a free fatty acid (palmitic acid) or a sulfated lipid (3-sulfogalactosylceramide). Toxin binding to dicetyl phosphate or phosphatidylinositol phosphate was inhibited by UTP, ATP, phosphocholine, or p-nitrophenyl phosphate, but not by uracil. We conclude that (a) diphtheria toxin binds specifically to the phosphate portion of certain phospholipids, (b) binding to phospholipids in liposomes is dependent on pH, but is not due only to electrostatic interaction, and (c) binding may be strongly influenced by the composition of adjacent phospholipids that do not bind toxin. We propose that a minor membrane phospholipid (such as phosphatidylinositol phosphate or phosphatidic acid), or that some other phosphorylated membrane molecule (such as a phosphoprotein) may be important in the initial binding of

  6. Can a toxin gene NAAT be used to predict toxin EIA and the severity of Clostridium difficile infection?

    Directory of Open Access Journals (Sweden)

    Mark I. Garvey

    2017-12-01

    Full Text Available Abstract Background Diagnosis of C. difficile infection (CDI is controversial because of the many laboratory methods available and their lack of ability to distinguish between carriage, mild or severe disease. Here we describe whether a low C. difficile toxin B nucleic acid amplification test (NAAT cycle threshold (CT can predict toxin EIA, CDI severity and mortality. Methods A three-stage algorithm was employed for CDI testing, comprising a screening test for glutamate dehydrogenase (GDH, followed by a NAAT, then a toxin enzyme immunoassay (EIA. All diarrhoeal samples positive for GDH and NAAT between 2012 and 2016 were analysed. The performance of the NAAT CT value as a classifier of toxin EIA outcome was analysed using a ROC curve; patient mortality was compared to CTs and toxin EIA via linear regression models. Results A CT value ≤26 was associated with ≥72% toxin EIA positivity; applying a logistic regression model we demonstrated an association between low CT values and toxin EIA positivity. A CT value of ≤26 was significantly associated (p = 0.0262 with increased one month mortality, severe cases of CDI or failure of first line treatment. The ROC curve probabilities demonstrated a CT cut off value of 26.6. Discussions Here we demonstrate that a CT ≤26 indicates more severe CDI and is associated with higher mortality. Samples with a low CT value are often toxin EIA positive, questioning the need for this additional EIA test. Conclusions A CT ≤26 could be used to assess the potential for severity of CDI and guide patient treatment.

  7. Drooling in Parkinson's disease: A randomized controlled trial of incobotulinum toxin A and meta-analysis of Botulinum toxins.

    Science.gov (United States)

    Narayanaswami, Pushpa; Geisbush, Thomas; Tarulli, Andrew; Raynor, Elizabeth; Gautam, Shiva; Tarsy, Daniel; Gronseth, Gary

    2016-09-01

    Botulinum toxins are a therapeutic option for drooling in Parkinson's Disease (PD). The aims of this study were to: 1. evaluate the efficacy of incobotulinum toxin A for drooling in PD. 2. Perform a meta-analysis of studies of Botulinum toxins for drooling in PD. 1. Primary study: Randomized, double blind, placebo controlled, cross over trial. Incobotulinum toxin (100 units) or saline was injected into the parotid (20 units) and submandibular (30 units) glands. Subjects returned monthly for three evaluations after each injection. Outcome measures were saliva weight and Drooling Frequency and Severity Scale. 2. Systematic review of literature, followed by inverse variance meta-analyses using random effects models. 1. Primary Study: Nine of 10 subjects completed both arms. There was no significant change in the primary outcome of saliva weight one month after injection in the treatment period compared to placebo period (mean difference, gm ± SD: -0.194 ± 0.61, range: -1.28 to 0.97, 95% CI -0.71 to 0.32). Secondary outcomes also did not change. 2. Meta-analysis of six studies demonstrated significant benefit of Botulinum toxin on functional outcomes (effect size, Cohen's d: -1.32, CI -1.86 to -0.78). The other studies used a higher dose of Botulinum toxin A into the parotid glands. This study did not demonstrate efficacy of incobotulinum toxin A for drooling in PD, but lacked precision to exclude moderate benefit. The parotid/submandibular dose-ratio may have influenced results. Studies evaluating higher doses of incobotulinum toxin A into the parotid glands may be useful. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Array biosensor for detection of toxins

    Science.gov (United States)

    Ligler, Frances S.; Taitt, Chris Rowe; Shriver-Lake, Lisa C.; Sapsford, Kim E.; Shubin, Yura; Golden, Joel P.

    2003-01-01

    The array biosensor is capable of detecting multiple targets rapidly and simultaneously on the surface of a single waveguide. Sandwich and competitive fluoroimmunoassays have been developed to detect high and low molecular weight toxins, respectively, in complex samples. Recognition molecules (usually antibodies) were first immobilized in specific locations on the waveguide and the resultant patterned array was used to interrogate up to 12 different samples for the presence of multiple different analytes. Upon binding of a fluorescent analyte or fluorescent immunocomplex, the pattern of fluorescent spots was detected using a CCD camera. Automated image analysis was used to determine a mean fluorescence value for each assay spot and to subtract the local background signal. The location of the spot and its mean fluorescence value were used to determine the toxin identity and concentration. Toxins were measured in clinical fluids, environmental samples and foods, with minimal sample preparation. Results are shown for rapid analyses of staphylococcal enterotoxin B, ricin, cholera toxin, botulinum toxoids, trinitrotoluene, and the mycotoxin fumonisin. Toxins were detected at levels as low as 0.5 ng mL(-1).

  9. Staphylococcus aureus α-Toxin: Nearly a Century of Intrigue

    Directory of Open Access Journals (Sweden)

    Bryan J. Berube

    2013-06-01

    Full Text Available Staphylococcus aureus secretes a number of host-injurious toxins, among the most prominent of which is the small β-barrel pore-forming toxin α-hemolysin. Initially named based on its properties as a red blood cell lytic toxin, early studies suggested a far greater complexity of α-hemolysin action as nucleated cells also exhibited distinct responses to intoxication. The hemolysin, most aptly referred to as α-toxin based on its broad range of cellular specificity, has long been recognized as an important cause of injury in the context of both skin necrosis and lethal infection. The recent identification of ADAM10 as a cellular receptor for α-toxin has provided keen insight on the biology of toxin action during disease pathogenesis, demonstrating the molecular mechanisms by which the toxin causes tissue barrier disruption at host interfaces lined by epithelial or endothelial cells. This review highlights both the historical studies that laid the groundwork for nearly a century of research on α-toxin and key findings on the structural and functional biology of the toxin, in addition to discussing emerging observations that have significantly expanded our understanding of this toxin in S. aureus disease. The identification of ADAM10 as a proteinaceous receptor for the toxin not only provides a greater appreciation of truths uncovered by many historic studies, but now affords the opportunity to more extensively probe and understand the role of α-toxin in modulation of the complex interaction of S. aureus with its human host.

  10. Botulinum toxin for the treatment of strabismus.

    Science.gov (United States)

    Rowe, Fiona J; Noonan, Carmel P

    2017-03-02

    The use of botulinum toxin as an investigative and treatment modality for strabismus is well reported in the medical literature. However, it is unclear how effective it is in comparison to other treatment options for strabismus. The primary objective was to examine the efficacy of botulinum toxin therapy in the treatment of strabismus compared with alternative conservative or surgical treatment options. This review sought to ascertain those types of strabismus that particularly benefit from the use of botulinum toxin as a treatment option (such as small angle strabismus or strabismus with binocular potential, i.e. the potential to use both eyes together as a pair). The secondary objectives were to investigate the dose effect and complication rates associated with botulinum toxin. We searched CENTRAL (which contains the Cochrane Eyes and Vision Trials Register) (2016, Issue 6), Ovid MEDLINE, Ovid MEDLINE In-Process and Other Non-Indexed Citations, Ovid MEDLINE Daily, Ovid OLDMEDLINE (January 1946 to July 2016), Embase (January 1980 to July 2016), Latin American and Caribbean Literature on Health Sciences (LILACS) (January 1982 to July 2016), the ISRCTN registry (www.isrctn.com/editAdvancedSearch), ClinicalTrials.gov (www.clinicaltrials.gov), and the World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en). We did not use any date or language restrictions in the electronic searches for trials. We last searched the electronic databases on 11 July 2016. We handsearched the British and Irish Orthoptic Journal, Australian Orthoptic Journal, proceedings of the European Strabismological Association (ESA), International Strabismological Association (ISA) and International Orthoptic Association (IOA) (www.liv.ac.uk/orthoptics/research/search.htm) and American Academy of Paediatric Ophthalmology and Strabismus meetings (AAPOS). We contacted researchers who are active in this field for information about further

  11. Single toxin dose-response models revisited

    Energy Technology Data Exchange (ETDEWEB)

    Demidenko, Eugene, E-mail: eugened@dartmouth.edu [Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, NH03756 (United States); Glaholt, SP, E-mail: sglaholt@indiana.edu [Indiana University, School of Public & Environmental Affairs, Bloomington, IN47405 (United States); Department of Biological Sciences, Dartmouth College, Hanover, NH03755 (United States); Kyker-Snowman, E, E-mail: ek2002@wildcats.unh.edu [Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH03824 (United States); Shaw, JR, E-mail: joeshaw@indiana.edu [Indiana University, School of Public & Environmental Affairs, Bloomington, IN47405 (United States); Chen, CY, E-mail: Celia.Y.Chen@dartmouth.edu [Department of Biological Sciences, Dartmouth College, Hanover, NH03755 (United States)

    2017-01-01

    The goal of this paper is to offer a rigorous analysis of the sigmoid shape single toxin dose-response relationship. The toxin efficacy function is introduced and four special points, including maximum toxin efficacy and inflection points, on the dose-response curve are defined. The special points define three phases of the toxin effect on mortality: (1) toxin concentrations smaller than the first inflection point or (2) larger then the second inflection point imply low mortality rate, and (3) concentrations between the first and the second inflection points imply high mortality rate. Probabilistic interpretation and mathematical analysis for each of the four models, Hill, logit, probit, and Weibull is provided. Two general model extensions are introduced: (1) the multi-target hit model that accounts for the existence of several vital receptors affected by the toxin, and (2) model with a nonzero mortality at zero concentration to account for natural mortality. Special attention is given to statistical estimation in the framework of the generalized linear model with the binomial dependent variable as the mortality count in each experiment, contrary to the widespread nonlinear regression treating the mortality rate as continuous variable. The models are illustrated using standard EPA Daphnia acute (48 h) toxicity tests with mortality as a function of NiCl or CuSO{sub 4} toxin. - Highlights: • The paper offers a rigorous study of a sigmoid dose-response relationship. • The concentration with highest mortality rate is rigorously defined. • A table with four special points for five morality curves is presented. • Two new sigmoid dose-response models have been introduced. • The generalized linear model is advocated for estimation of sigmoid dose-response relationship.

  12. The botulinum toxin as a therapeutic agent: molecular and pharmacological insights

    Directory of Open Access Journals (Sweden)

    Kukreja R

    2015-12-01

    Full Text Available Roshan Kukreja,1 Bal Ram Singh2 1Department of Chemistry and Biochemistry, University of Massachusetts, 2Botulinum Research Center, Institute of Advanced Sciences, Dartmouth, MA, USA Abstract: Botulinum neurotoxins (BoNTs, the most potent toxins known to mankind, are metalloproteases that act on nerve–muscle junctions to block exocytosis through a very specific and exclusive endopeptidase activity against soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE proteins of presynaptic vesicle fusion machinery. This very ability of the toxins to produce flaccid muscle paralysis through chemical denervation has been put to good use, and these potentially lethal toxins have been licensed to treat an ever expanding list of medical disorders and more popularly in the field of esthetic medicine. In most cases, therapeutic BoNT preparations are high-molecular-weight protein complexes consisting of BoNT, complexing proteins, and excipients. There is at least one isolated BoNT, which is free of complexing proteins in the market (Xeomin®. Each commercially available BoNT formulation is unique, differing mainly in molecular size and composition of complexing proteins, biological activity, and antigenicity. BoNT serotype A is marketed as Botox®, Dysport®, and Xeomin®, while BoNT type B is commercially available as Myobloc®. Nerve terminal intoxication by BoNTs is completely reversible, and the duration of therapeutic effects of BoNTs varies for different serotypes. Depending on the target tissue, BoNTs can block the cholinergic neuromuscular or cholinergic autonomic innervation of exocrine glands and smooth muscles. Therapeutic BoNTs exhibit a high safety and very limited adverse effects profile. Despite their established efficacy, the greatest concern with the use of therapeutic BoNTs is their propensity to elicit immunogenic reactions that might render the patient unresponsive to subsequent treatments, particularly in chronic

  13. Anthrax Toxin Receptor 2–Dependent Lethal Toxin Killing In Vivo

    Science.gov (United States)

    Scobie, Heather M; Wigelsworth, Darran J; Marlett, John M; Thomas, Diane; Rainey, G. Jonah A; Lacy, D. Borden; Manchester, Marianne; Collier, R. John; Young, John A. T

    2006-01-01

    Anthrax toxin receptors 1 and 2 (ANTXR1 and ANTXR2) have a related integrin-like inserted (I) domain which interacts with a metal cation that is coordinated by residue D683 of the protective antigen (PA) subunit of anthrax toxin. The receptor-bound metal ion and PA residue D683 are critical for ANTXR1-PA binding. Since PA can bind to ANTXR2 with reduced affinity in the absence of metal ions, we reasoned that D683 mutant forms of PA might specifically interact with ANTXR2. We show here that this is the case. The differential ability of ANTXR1 and ANTXR2 to bind D683 mutant PA proteins was mapped to nonconserved receptor residues at the binding interface with PA domain 2. Moreover, a D683K mutant form of PA that bound specifically to human and rat ANTXR2 mediated killing of rats by anthrax lethal toxin, providing strong evidence for the physiological importance of ANTXR2 in anthrax disease pathogenesis. PMID:17054395

  14. Toxin-Based Therapeutic Approaches

    OpenAIRE

    Itai Benhar; Assaf Shapira

    2010-01-01

    Protein toxins confer a defense against predation/grazing or a superior pathogenic competence upon the producing organism. Such toxins have been perfected through evolution in poisonous animals/plants and pathogenic bacteria. Over the past five decades, a lot of effort has been invested in studying their mechanism of action, the way they contribute to pathogenicity and in the development of antidotes that neutralize their action. In parallel, many research groups turned to explore the pharmac...

  15. Interplay between toxin transport and flotillin localization

    DEFF Research Database (Denmark)

    Pust, Sascha; Dyve, Anne Berit; Torgersen, Maria L

    2010-01-01

    The flotillin proteins are localized in lipid domains at the plasma membrane as well as in intracellular compartments. In the present study, we examined the importance of flotillin-1 and flotillin-2 for the uptake and transport of the bacterial Shiga toxin (Stx) and the plant toxin ricin and we...... for flotillin-1 or -2. However, the Golgi-dependent sulfation of both toxins was significantly reduced in flotillin knockdown cells. Interestingly, when the transport of ricin to the ER was investigated, we obtained an increased mannosylation of ricin in flotillin-1 and flotillin-2 knockdown cells. The toxicity...... of both toxins was twofold increased in flotillin-depleted cells. Since BFA (Brefeldin A) inhibits the toxicity even in flotillin knockdown cells, the retrograde toxin transport is apparently still Golgi-dependent. Thus, flotillin proteins regulate and facilitate the retrograde transport of Stx and ricin....

  16. Occupational health issues in marine and freshwater research

    Directory of Open Access Journals (Sweden)

    Courtenay Glenn

    2012-03-01

    Full Text Available Abstract Marine and freshwater scientists are potentially exposed to a wide variety of occupational hazards. Depending on the focus of their research, risks may include animal attacks, physiological stresses, exposure to toxins and carcinogens, and dangerous environmental conditions. Many of these hazards have been investigated amongst the general population in their recreational use of the environment; however, very few studies have specifically related potential hazards to occupational exposure. For example, while the incidence of shark and crocodile attacks may invoke strong emotions and the occupational risk of working with these animals is certainly real, many more people are stung by jellyfish or bitten by snakes or dogs each year. Furthermore, a large proportion of SCUBA-related injuries and deaths are incurred by novice or uncertified divers, rather than professional divers using aquatic environments. Nonetheless, marine and freshwater research remains a potentially risky occupation, and the likelihood of death, injury and long-term health impacts still needs to be seriously considered.

  17. Screening for the presence of lipophilic marine biotoxins in shellfish samples using the neuro-2a bioassay.

    Science.gov (United States)

    Bodero, Marcia; Bovee, Toine F H; Wang, Si; Hoogenboom, Ron L A P; Klijnstra, Mirjam D; Portier, Liza; Hendriksen, Peter J M; Gerssen, Arjen

    2018-02-01

    The neuro-2a bioassay is considered as one of the most promising cell-based in vitro bioassays for the broad screening of seafood products for the presence of marine biotoxins. The neuro-2a assay has been shown to detect a wide array of toxins like paralytic shellfish poisons (PSPs), ciguatoxins, and also lipophilic marine biotoxins (LMBs). However, the neuro-2a assay is rarely used for routine testing of samples due to matrix effects that, for example, lead to false positives when testing for LMBs. As a result there are only limited data on validation and evaluation of its performance on real samples. In the present study, the standard extraction procedure for LMBs was adjusted by introducing an additional clean-up step with n-hexane. Recovery losses due to this extra step were less than 10%. This wash step was a crucial addition in order to eliminate false-positive outcomes due to matrix effects. Next, the applicability of this assay was assessed by testing a broad range of shellfish samples contaminated with various LMBs, including diarrhetic shellfish toxins/poisons (DSPs). For comparison, the samples were also analysed by LC-MS/MS. Standards of all regulated LMBs were tested, including analogues of some of these toxins. The neuro-2a cells showed good sensitivity towards all compounds. Extracts of 87 samples, both blank and contaminated with various toxins, were tested. The neuro-2a outcomes were in line with those of LC-MS/MS analysis and support the applicability of this assay for the screening of samples for LMBs. However, for use in a daily routine setting, the test might be further improved and we discuss several recommended modifications which should be considered before a full validation is carried out.

  18. Botulinum toxin for vaginismus treatment.

    Science.gov (United States)

    Ferreira, Juliana Rocha; Souza, Renan Pedra

    2012-01-01

    Vaginismus is characterized by recurrent or persistent involuntary contraction of the perineal muscles surrounding the outer third of the vagina when penile, finger, tampon, or speculum penetration is attempted. Recent results have suggested the use of botulinum toxin for the treatment of vaginismus. Here, we assessed previously published data to evaluate the therapeutic effectiveness of botulinum toxin for vaginismus. We have carried out a systematic review followed by a meta-analysis. Our results indicate that botulinum toxin is an effective therapeutic option for patients with vaginismus (pooled odds ratio of 8.723 with 95% confidence interval limits of 1.942 and 39.162, p = 0.005). This may hold particularly true in treatment-refractory patients because most of the studies included in this meta-analysis have enrolled these subjects in their primary analysis. Botulinum toxin appears to bea reasonable intervention for vaginismus. However, this conclusion should be read carefully because of the deficiency of placebo-controlled randomized clinical trials and the quality issues presented in the existing ones.

  19. A toxin-binding alkaline phosphatase fragment synergizes Bt toxin Cry1Ac against susceptible and resistant Helicoverpa armigera.

    Directory of Open Access Journals (Sweden)

    Wenbo Chen

    Full Text Available Evolution of resistance by insects threatens the continued success of pest control using insecticidal crystal (Cry proteins from the bacterium Bacillus thuringiensis (Bt in sprays and transgenic plants. In this study, laboratory selection with Cry1Ac yielded five strains of cotton bollworm, Helicoverpa armigera, with resistance ratios at the median lethal concentration (LC50 of activated Cry1Ac ranging from 22 to 1700. Reduced activity and reduced transcription of an alkaline phosphatase protein that binds Cry1Ac was associated with resistance to Cry1Ac in the four most resistant strains. A Cry1Ac-binding fragment of alkaline phosphatase from H. armigera (HaALP1f was not toxic by itself, but it increased mortality caused by Cry1Ac in a susceptible strain and in all five resistant strains. Although synergism of Bt toxins against susceptible insects by toxin-binding fragments of cadherin and aminopeptidase N has been reported previously, the results here provide the first evidence of synergism of a Bt toxin by a toxin-binding fragment of alkaline phosphatase. The results here also provide the first evidence of synergism of a Bt toxin by any toxin-binding peptide against resistant insects.

  20. Immense essence of excellence: marine microbial bioactive compounds.

    Science.gov (United States)

    Bhatnagar, Ira; Kim, Se-Kwon

    2010-10-15

    Oceans have borne most of the biological activities on our planet. A number of biologically active compounds with varying degrees of action, such as anti-tumor, anti-cancer, anti-microtubule, anti-proliferative, cytotoxic, photo protective, as well as antibiotic and antifouling properties, have been isolated to date from marine sources. The marine environment also represents a largely unexplored source for isolation of new microbes (bacteria, fungi, actinomycetes, microalgae-cyanobacteria and diatoms) that are potent producers of bioactive secondary metabolites. Extensive research has been done to unveil the bioactive potential of marine microbes (free living and symbiotic) and the results are amazingly diverse and productive. Some of these bioactive secondary metabolites of microbial origin with strong antibacterial and antifungal activities are being intensely used as antibiotics and may be effective against infectious diseases such as HIV, conditions of multiple bacterial infections (penicillin, cephalosporines, streptomycin, and vancomycin) or neuropsychiatric sequelae. Research is also being conducted on the general aspects of biophysical and biochemical properties, chemical structures and biotechnological applications of the bioactive substances derived from marine microorganisms, and their potential use as cosmeceuticals and nutraceuticals. This review is an attempt to consolidate the latest studies and critical research in this field, and to showcase the immense competence of marine microbial flora as bioactive metabolite producers. In addition, the present review addresses some effective and novel approaches of procuring marine microbial compounds utilizing the latest screening strategies of drug discovery.

  1. Immense Essence of Excellence: Marine Microbial Bioactive Compounds

    Directory of Open Access Journals (Sweden)

    Ira Bhatnagar

    2010-10-01

    Full Text Available Oceans have borne most of the biological activities on our planet. A number of biologically active compounds with varying degrees of action, such as anti-tumor, anti-cancer, anti-microtubule, anti-proliferative, cytotoxic, photo protective, as well as antibiotic and antifouling properties, have been isolated to date from marine sources. The marine environment also represents a largely unexplored source for isolation of new microbes (bacteria, fungi, actinomycetes, microalgae-cyanobacteria and diatoms that are potent producers of bioactive secondary metabolites. Extensive research has been done to unveil the bioactive potential of marine microbes (free living and symbiotic and the results are amazingly diverse and productive. Some of these bioactive secondary metabolites of microbial origin with strong antibacterial and antifungal activities are being intensely used as antibiotics and may be effective against infectious diseases such as HIV, conditions of multiple bacterial infections (penicillin, cephalosporines, streptomycin, and vancomycin or neuropsychiatric sequelae. Research is also being conducted on the general aspects of biophysical and biochemical properties, chemical structures and biotechnological applications of the bioactive substances derived from marine microorganisms, and their potential use as cosmeceuticals and nutraceuticals. This review is an attempt to consolidate the latest studies and critical research in this field, and to showcase the immense competence of marine microbial flora as bioactive metabolite producers. In addition, the present review addresses some effective and novel approaches of procuring marine microbial compounds utilizing the latest screening strategies of drug discovery.

  2. Gene expression profiling in brain of mice exposed to the marine neurotoxin ciguatoxin reveals an acute anti-inflammatory, neuroprotective response.

    Science.gov (United States)

    Ryan, James C; Morey, Jeanine S; Bottein, Marie-Yasmine Dechraoui; Ramsdell, John S; Van Dolah, Frances M

    2010-08-26

    Ciguatoxins (CTXs) are polyether marine neurotoxins and potent activators of voltage-gated sodium channels. This toxin is carried by multiple reef-fish species and human consumption of ciguatoxins can result in an explosive gastrointestinal/neurologic illness. This study characterizes the global transcriptional response in mouse brain to a symptomatic dose of the highly toxic Pacific ciguatoxin P-CTX-1 and additionally compares this data to transcriptional profiles from liver and whole blood examined previously. Adult male C57/BL6 mice were injected with 0.26 ng/g P-CTX-1 while controls received only vehicle. Animals were sacrificed at 1, 4 and 24 hrs and transcriptional profiling was performed on brain RNA with Agilent whole genome microarrays. RT-PCR was used to independently validate gene expression and the web tool DAVID was used to analyze gene ontology (GO) and molecular pathway enrichment of the gene expression data. A pronounced 4°C hypothermic response was recorded in these mice, reaching a minimum at 1 hr and lasting for 8 hrs post toxin exposure. Ratio expression data were filtered by intensity, fold change and p-value, with the resulting data used for time course analysis, K-means clustering, ontology classification and KEGG pathway enrichment. Top GO hits for this gene set included acute phase response and mono-oxygenase activity. Molecular pathway analysis showed enrichment for complement/coagulation cascades and metabolism of xenobiotics. Many immediate early genes such as Fos, Jun and Early Growth Response isoforms were down-regulated although others associated with stress such as glucocorticoid responsive genes were up-regulated. Real time PCR confirmation was performed on 22 differentially expressed genes with a correlation of 0.9 (Spearman's Rho, p < 0.0001) with microarray results. Many of the genes differentially expressed in this study, in parallel with the hypothermia, figure prominently in protection against neuroinflammation. Pathologic

  3. Harmful Algal Blooms (HABs)

    Science.gov (United States)

    ... toxins that may harm or kill fish and marine animals. Humans who eat shellfish contaminated with HAB toxins ... toxins that may harm or kill fish and marine animals. Humans who eat shellfish containing toxins produced by ...

  4. Clostridial Binary Toxins: Iota and C2 Family Portraits

    Science.gov (United States)

    Stiles, Bradley G.; Wigelsworth, Darran J.; Popoff, Michel R.; Barth, Holger

    2011-01-01

    There are many pathogenic Clostridium species with diverse virulence factors that include protein toxins. Some of these bacteria, such as C. botulinum, C. difficile, C. perfringens, and C. spiroforme, cause enteric problems in animals as well as humans. These often fatal diseases can partly be attributed to binary protein toxins that follow a classic AB paradigm. Within a targeted cell, all clostridial binary toxins destroy filamentous actin via mono-ADP-ribosylation of globular actin by the A component. However, much less is known about B component binding to cell-surface receptors. These toxins share sequence homology amongst themselves and with those produced by another Gram-positive, spore-forming bacterium also commonly associated with soil and disease: Bacillus anthracis. This review focuses upon the iota and C2 families of clostridial binary toxins and includes: (1) basics of the bacterial source; (2) toxin biochemistry; (3) sophisticated cellular uptake machinery; and (4) host–cell responses following toxin-mediated disruption of the cytoskeleton. In summary, these protein toxins aid diverse enteric species within the genus Clostridium. PMID:22919577

  5. In vitro reconstitution of the Clostridium botulinum type D progenitor toxin.

    Science.gov (United States)

    Kouguchi, Hirokazu; Watanabe, Toshihiro; Sagane, Yoshimasa; Sunagawa, Hiroyuki; Ohyama, Tohru

    2002-01-25

    Clostridium botulinum type D strain 4947 produces two different sizes of progenitor toxins (M and L) as intact forms without proteolytic processing. The M toxin is composed of neurotoxin (NT) and nontoxic-nonhemagglutinin (NTNHA), whereas the L toxin is composed of the M toxin and hemagglutinin (HA) subcomponents (HA-70, HA-17, and HA-33). The HA-70 subcomponent and the HA-33/17 complex were isolated from the L toxin to near homogeneity by chromatography in the presence of denaturing agents. We were able to demonstrate, for the first time, in vitro reconstitution of the L toxin formed by mixing purified M toxin, HA-70, and HA-33/17. The properties of reconstituted and native L toxins are indistinguishable with respect to their gel filtration profiles, native-PAGE profiles, hemagglutination activity, binding activity to erythrocytes, and oral toxicity to mice. M toxin, which contained nicked NTNHA prepared by treatment with trypsin, could no longer be reconstituted to the L toxin with HA subcomponents, whereas the L toxin treated with proteases was not degraded into M toxin and HA subcomponents. We conclude that the M toxin forms first by assembly of NT with NTNHA and is subsequently converted to the L toxin by assembly with HA-70 and HA-33/17.

  6. Botulinum Toxin for Rhinitis.

    Science.gov (United States)

    Ozcan, Cengiz; Ismi, Onur

    2016-08-01

    Rhinitis is a common clinical entity. Besides nasal obstruction, itching, and sneezing, one of the most important symptoms of rhinitis is nasal hypersecretion produced by nasal glands and exudate from the nasal vascular bed. Allergic rhinitis is an IgE-mediated inflammatory reaction of nasal mucosa after exposure to environmental allergens. Idiopathic rhinitis describes rhinitis symptoms that occur after non-allergic, noninfectious irritants. Specific allergen avoidance, topical nasal decongestants, nasal corticosteroids, immunotherapy, and sinonasal surgery are the main treatment options. Because the current treatment modalities are not enough for reducing rhinorrhea in some patients, novel treatment options are required to solve this problem. Botulinum toxin is an exotoxin generated by Clostridium botulinum. It disturbs the signal transmission at the neuromuscular and neuroglandular junction by inhibiting the acetylcholine release from the presynaptic nerve terminal. It has been widely used in neuromuscular, hypersecretory, and autonomic nerve system disorders. There have been a lot of published articles concerning the effect of this toxin on rhinitis symptoms. Based on the results of these reports, intranasal botulinum toxin A administration appears to be a safe and effective treatment method for decreasing rhinitis symptoms in rhinitis patients with a long-lasting effect. Botulinum toxin type A will be a good treatment option for the chronic rhinitis patients who are resistant to other treatment methods.

  7. Diffusion of Botulinum Toxins

    Directory of Open Access Journals (Sweden)

    Matthew A. Brodsky

    2012-08-01

    Full Text Available Background: It is generally agreed that diffusion of botulinum toxin occurs, but the extent of the spread and its clinical importance are disputed. Many factors have been suggested to play a role but which have the most clinical relevance is a subject of much discussion.Methods: This review discusses the variables affecting diffusion, including protein composition and molecular size as well as injection factors (e.g., volume, dose, injection method. It also discusses data on diffusion from comparative studies in animal models and human clinical trials that illustrate differences between the available botulinum toxin products (onabotulinumtoxinA, abobotulinumtoxinA, incobotulinumtoxinA, and rimabotulinumtoxinB.Results: Neither molecular weight nor the presence of complexing proteins appears to affect diffusion; however, injection volume, concentration, and dose all play roles and are modifiable. Both animal and human studies show that botulinum toxin products are not interchangeable, and that some products are associated with greater diffusion and higher rates of diffusion-related adverse events than others.Discussion: Each of the botulinum toxins is a unique pharmacologic entity. A working knowledge of the different serotypes is essential to avoid unwanted diffusion-related adverse events. In addition, clinicians should be aware that the factors influencing diffusion may range from properties intrinsic to the drug to accurate muscle selection as well as dilution, volume, and dose injected.

  8. The role of toxins in Clostridium difficile infection.

    Science.gov (United States)

    Chandrasekaran, Ramyavardhanee; Lacy, D Borden

    2017-11-01

    Clostridium difficile is a bacterial pathogen that is the leading cause of nosocomial antibiotic-associated diarrhea and pseudomembranous colitis worldwide. The incidence, severity, mortality and healthcare costs associated with C. difficile infection (CDI) are rising, making C. difficile a major threat to public health. Traditional treatments for CDI involve use of antibiotics such as metronidazole and vancomycin, but disease recurrence occurs in about 30% of patients, highlighting the need for new therapies. The pathogenesis of C. difficile is primarily mediated by the actions of two large clostridial glucosylating toxins, toxin A (TcdA) and toxin B (TcdB). Some strains produce a third toxin, the binary toxin C. difficile transferase, which can also contribute to C. difficile virulence and disease. These toxins act on the colonic epithelium and immune cells and induce a complex cascade of cellular events that result in fluid secretion, inflammation and tissue damage, which are the hallmark features of the disease. In this review, we summarize our current understanding of the structure and mechanism of action of the C. difficile toxins and their role in disease. Published by Oxford University Press on behalf of FEMS 2017.

  9. Temperature Effects Explain Continental Scale Distribution of Cyanobacterial Toxins.

    Science.gov (United States)

    Mantzouki, Evanthia; Lürling, Miquel; Fastner, Jutta; de Senerpont Domis, Lisette; Wilk-Woźniak, Elżbieta; Koreivienė, Judita; Seelen, Laura; Teurlincx, Sven; Verstijnen, Yvon; Krztoń, Wojciech; Walusiak, Edward; Karosienė, Jūratė; Kasperovičienė, Jūratė; Savadova, Ksenija; Vitonytė, Irma; Cillero-Castro, Carmen; Budzyńska, Agnieszka; Goldyn, Ryszard; Kozak, Anna; Rosińska, Joanna; Szeląg-Wasielewska, Elżbieta; Domek, Piotr; Jakubowska-Krepska, Natalia; Kwasizur, Kinga; Messyasz, Beata; Pełechaty, Aleksandra; Pełechaty, Mariusz; Kokocinski, Mikolaj; García-Murcia, Ana; Real, Monserrat; Romans, Elvira; Noguero-Ribes, Jordi; Duque, David Parreño; Fernández-Morán, Elísabeth; Karakaya, Nusret; Häggqvist, Kerstin; Demir, Nilsun; Beklioğlu, Meryem; Filiz, Nur; Levi, Eti E.; Iskin, Uğur; Bezirci, Gizem; Tavşanoğlu, Ülkü Nihan; Özhan, Koray; Gkelis, Spyros; Panou, Manthos; Fakioglu, Özden; Avagianos, Christos; Kaloudis, Triantafyllos; Çelik, Kemal; Yilmaz, Mete; Marcé, Rafael; Catalán, Nuria; Bravo, Andrea G.; Buck, Moritz; Colom-Montero, William; Mustonen, Kristiina; Pierson, Don; Yang, Yang; Raposeiro, Pedro M.; Gonçalves, Vítor; Antoniou, Maria G.; Tsiarta, Nikoletta; McCarthy, Valerie; Perello, Victor C.; Feldmann, Tõnu; Laas, Alo; Panksep, Kristel; Tuvikene, Lea; Gagala, Ilona; Mankiewicz-Boczek, Joana; Yağcı, Meral Apaydın; Çınar, Şakir; Çapkın, Kadir; Yağcı, Abdulkadir; Cesur, Mehmet; Bilgin, Fuat; Bulut, Cafer; Uysal, Rahmi; Obertegger, Ulrike; Boscaini, Adriano; Flaim, Giovanna; Salmaso, Nico; Cerasino, Leonardo; Richardson, Jessica; Visser, Petra M.; Verspagen, Jolanda M. H.; Karan, Tünay; Soylu, Elif Neyran; Maraşlıoğlu, Faruk; Napiórkowska-Krzebietke, Agnieszka; Ochocka, Agnieszka; Pasztaleniec, Agnieszka; Antão-Geraldes, Ana M.; Vasconcelos, Vitor; Morais, João; Vale, Micaela; Köker, Latife; Akçaalan, Reyhan; Albay, Meriç; Špoljarić Maronić, Dubravka; Stević, Filip; Žuna Pfeiffer, Tanja; Fonvielle, Jeremy; Straile, Dietmar; Rothhaupt, Karl-Otto; Hansson, Lars-Anders; Urrutia-Cordero, Pablo; Bláha, Luděk; Geriš, Rodan; Fránková, Markéta; Koçer, Mehmet Ali Turan; Alp, Mehmet Tahir; Remec-Rekar, Spela; Elersek, Tina; Triantis, Theodoros; Zervou, Sevasti-Kiriaki; Hiskia, Anastasia; Haande, Sigrid; Skjelbred, Birger; Madrecka, Beata; Nemova, Hana; Drastichova, Iveta; Chomova, Lucia; Edwards, Christine; Sevindik, Tuğba Ongun; Tunca, Hatice; Önem, Burçin; Aleksovski, Boris; Krstić, Svetislav; Vucelić, Itana Bokan; Nawrocka, Lidia; Salmi, Pauliina; Machado-Vieira, Danielle; de Oliveira, Alinne Gurjão; Delgado-Martín, Jordi; García, David; Cereijo, Jose Luís; Gomà, Joan; Trapote, Mari Carmen; Vegas-Vilarrúbia, Teresa; Obrador, Biel; Grabowska, Magdalena; Karpowicz, Maciej; Chmura, Damian; Úbeda, Bárbara; Gálvez, José Ángel; Özen, Arda; Christoffersen, Kirsten Seestern; Warming, Trine Perlt; Kobos, Justyna; Mazur-Marzec, Hanna; Pérez-Martínez, Carmen; Ramos-Rodríguez, Eloísa; Arvola, Lauri; Alcaraz-Párraga, Pablo; Toporowska, Magdalena; Pawlik-Skowronska, Barbara; Niedźwiecki, Michał; Pęczuła, Wojciech; Leira, Manel; Hernández, Armand; Moreno-Ostos, Enrique; Blanco, José María; Rodríguez, Valeriano; Montes-Pérez, Jorge Juan; Palomino, Roberto L.; Rodríguez-Pérez, Estela; Carballeira, Rafael; Camacho, Antonio; Picazo, Antonio; Rochera, Carlos; Santamans, Anna C.; Ferriol, Carmen; Romo, Susana; Soria, Juan Miguel; Dunalska, Julita; Sieńska, Justyna; Szymański, Daniel; Kruk, Marek; Kostrzewska-Szlakowska, Iwona; Jasser, Iwona; Žutinić, Petar; Gligora Udovič, Marija; Plenković-Moraj, Anđelka; Frąk, Magdalena; Bańkowska-Sobczak, Agnieszka; Wasilewicz, Michał; Özkan, Korhan; Maliaka, Valentini; Kangro, Kersti; Grossart, Hans-Peter; Paerl, Hans W.; Carey, Cayelan C.; Ibelings, Bas W.

    2018-04-13

    Insight into how environmental change determines the production and distribution of cyanobacterial toxins is necessary for risk assessment. Management guidelines currently focus on hepatotoxins (microcystins). Increasing attention is given to other classes, such as neurotoxins (e.g., anatoxin-a) and cytotoxins (e.g., cylindrospermopsin) due to their potency. Most studies examine the relationship between individual toxin variants and environmental factors, such as nutrients, temperature and light. In summer 2015, we collected samples across Europe to investigate the effect of nutrient and temperature gradients on the variability of toxin production at a continental scale. Direct and indirect effects of temperature were the main drivers of the spatial distribution in the toxins produced by the cyanobacterial community, the toxin concentrations and toxin quota. Generalized linear models showed that a Toxin Diversity Index (TDI) increased with latitude, while it decreased with water stability. Increases in TDI were explained through a significant increase in toxin variants such as MC-YR, anatoxin and cylindrospermopsin, accompanied by a decreasing presence of MC-LR. While global warming continues, the direct and indirect effects of increased lake temperatures will drive changes in the distribution of cyanobacterial toxins in Europe, potentially promoting selection of a few highly toxic species or strains.

  10. Temperature Effects Explain Continental Scale Distribution of Cyanobacterial Toxins

    Directory of Open Access Journals (Sweden)

    Evanthia Mantzouki

    2018-04-01

    Full Text Available Insight into how environmental change determines the production and distribution of cyanobacterial toxins is necessary for risk assessment. Management guidelines currently focus on hepatotoxins (microcystins. Increasing attention is given to other classes, such as neurotoxins (e.g., anatoxin-a and cytotoxins (e.g., cylindrospermopsin due to their potency. Most studies examine the relationship between individual toxin variants and environmental factors, such as nutrients, temperature and light. In summer 2015, we collected samples across Europe to investigate the effect of nutrient and temperature gradients on the variability of toxin production at a continental scale. Direct and indirect effects of temperature were the main drivers of the spatial distribution in the toxins produced by the cyanobacterial community, the toxin concentrations and toxin quota. Generalized linear models showed that a Toxin Diversity Index (TDI increased with latitude, while it decreased with water stability. Increases in TDI were explained through a significant increase in toxin variants such as MC-YR, anatoxin and cylindrospermopsin, accompanied by a decreasing presence of MC-LR. While global warming continues, the direct and indirect effects of increased lake temperatures will drive changes in the distribution of cyanobacterial toxins in Europe, potentially promoting selection of a few highly toxic species or strains.

  11. Enzyme-Assisted Discovery of Antioxidant Peptides from Edible Marine Invertebrates: A Review.

    Science.gov (United States)

    Chai, Tsun-Thai; Law, Yew-Chye; Wong, Fai-Chu; Kim, Se-Kwon

    2017-02-16

    Marine invertebrates, such as oysters, mussels, clams, scallop, jellyfishes, squids, prawns, sea cucumbers and sea squirts, are consumed as foods. These edible marine invertebrates are sources of potent bioactive peptides. The last two decades have seen a surge of interest in the discovery of antioxidant peptides from edible marine invertebrates. Enzymatic hydrolysis is an efficient strategy commonly used for releasing antioxidant peptides from food proteins. A growing number of antioxidant peptide sequences have been identified from the enzymatic hydrolysates of edible marine invertebrates. Antioxidant peptides have potential applications in food, pharmaceuticals and cosmetics. In this review, we first give a brief overview of the current state of progress of antioxidant peptide research, with special attention to marine antioxidant peptides. We then focus on 22 investigations which identified 32 antioxidant peptides from enzymatic hydrolysates of edible marine invertebrates. Strategies adopted by various research groups in the purification and identification of the antioxidant peptides will be summarized. Structural characteristic of the peptide sequences in relation to their antioxidant activities will be reviewed. Potential applications of the peptide sequences and future research prospects will also be discussed.

  12. Diphtheria toxin translocation across cellular membranes is regulated by sphingolipids

    International Nuclear Information System (INIS)

    Spilsberg, Bjorn; Hanada, Kentaro; Sandvig, Kirsten

    2005-01-01

    Diphtheria toxin is translocated across cellular membranes when receptor-bound toxin is exposed to low pH. To study the role of sphingolipids for toxin translocation, both a mutant cell line lacking the first enzyme in de novo sphingolipid synthesis, serine palmitoyltransferase, and a specific inhibitor of the same enzyme, myriocin, were used. The serine palmitoyltransferase-deficient cell line (LY-B) was found to be 10-15 times more sensitive to diphtheria toxin than the genetically complemented cell line (LY-B/cLCB1) and the wild-type cell line (CHO-K1), both when toxin translocation directly across the plasma membrane was induced by exposing cells with surface-bound toxin to low pH, and when the toxin followed its normal route via acidified endosomes into the cytosol. Toxin binding was similar in these three cell lines. Furthermore, inhibition of serine palmitoyltransferase activity by addition of myriocin sensitized the two control cell lines (LY-B/cLCB1 and CHO-K1) to diphtheria toxin, whereas, as expected, no effect was observed in cells lacking serine palmitoyltransferase (LY-B). In conclusion, diphtheria toxin translocation is facilitated by depletion of membrane sphingolipids

  13. Bacterial toxins as pathogen weapons against phagocytes

    Directory of Open Access Journals (Sweden)

    Ana edo Vale

    2016-02-01

    Full Text Available Bacterial toxins are virulence factors that manipulate host cell functions and take over the control of vital processes of living organisms to favour microbial infection. Some toxins directly target innate immune cells, thereby annihilating a major branch of the host immune response. In this review we will focus on bacterial toxins that act from the extracellular milieu and hinder the function of macrophages and neutrophils. In particular, we will concentrate on toxins from Gram-positive and Gram-negative bacteria that manipulate cell signalling or induce cell death by either imposing direct damage to the host cells cytoplasmic membrane or enzymatically modifying key eukaryotic targets. Outcomes regarding pathogen dissemination, host damage and disease progression will be discussed.

  14. Tetrodotoxin, an Extremely Potent Marine Neurotoxin: Distribution, Toxicity, Origin and Therapeutical Uses

    Directory of Open Access Journals (Sweden)

    Jorge Lago

    2015-10-01

    Full Text Available Tetrodotoxin (TTX is a potent neurotoxin responsible for many human intoxications and fatalities each year. The origin of TTX is unknown, but in the pufferfish, it seems to be produced by endosymbiotic bacteria that often seem to be passed down the food chain. The ingestion of contaminated pufferfish, considered the most delicious fish in Japan, is the usual route of toxicity. This neurotoxin, reported as a threat to human health in Asian countries, has spread to the Pacific and Mediterranean, due to the increase of temperature waters worldwide. TTX, for which there is no known antidote, inhibits sodium channel producing heart failure in many cases and consequently death. In Japan, a regulatory limit of 2 mg eq TTX/kg was established, although the restaurant preparation of “fugu” is strictly controlled by law and only chefs qualified are allowed to prepare the fish. Due to its paralysis effect, this neurotoxin could be used in the medical field as an analgesic to treat some cancer pains.

  15. Isolation of stigmast-5,24-dien-3-ol from marine brown algae Sargassum tenerrimum and its antipredatory activity

    Digital Repository Service at National Institute of Oceanography (India)

    Majik, M.S.; Adel, H.; Shirodkar, D.; Tilvi, S.; Furtado, J.

    In recent years many sterols with potent biological activity have been identified from marine sources. Here we report the isolation of stigmast-5,24-dien-3-ol (fucosterol) as a major metabolite from the bioactive hexane-fraction of Sargassum...

  16. Venom Down Under: Dynamic Evolution of Australian Elapid Snake Toxins

    Science.gov (United States)

    Jackson, Timothy N. W.; Sunagar, Kartik; Undheim, Eivind A. B.; Koludarov, Ivan; Chan, Angelo H. C.; Sanders, Kate; Ali, Syed A.; Hendrikx, Iwan; Dunstan, Nathan; Fry, Bryan G.

    2013-01-01

    Despite the unparalleled diversity of venomous snakes in Australia, research has concentrated on a handful of medically significant species and even of these very few toxins have been fully sequenced. In this study, venom gland transcriptomes were sequenced from eleven species of small Australian elapid snakes, from eleven genera, spanning a broad phylogenetic range. The particularly large number of sequences obtained for three-finger toxin (3FTx) peptides allowed for robust reconstructions of their dynamic molecular evolutionary histories. We demonstrated that each species preferentially favoured different types of α-neurotoxic 3FTx, probably as a result of differing feeding ecologies. The three forms of α-neurotoxin [Type I (also known as (aka): short-chain), Type II (aka: long-chain) and Type III] not only adopted differential rates of evolution, but have also conserved a diversity of residues, presumably to potentiate prey-specific toxicity. Despite these differences, the different α-neurotoxin types were shown to accumulate mutations in similar regions of the protein, largely in the loops and structurally unimportant regions, highlighting the significant role of focal mutagenesis. We theorize that this phenomenon not only affects toxin potency or specificity, but also generates necessary variation for preventing/delaying prey animals from acquiring venom-resistance. This study also recovered the first full-length sequences for multimeric phospholipase A2 (PLA2) ‘taipoxin/paradoxin’ subunits from non-Oxyuranus species, confirming the early recruitment of this extremely potent neurotoxin complex to the venom arsenal of Australian elapid snakes. We also recovered the first natriuretic peptides from an elapid that lack the derived C-terminal tail and resemble the plesiotypic form (ancestral character state) found in viper venoms. This provides supporting evidence for a single early recruitment of natriuretic peptides into snake venoms. Novel forms of kunitz

  17. A novel toxin from Haplopelma lividum selectively inhibits the NAV1.8 channel and possesses potent analgesic efficacy

    DEFF Research Database (Denmark)

    Meng, Ping; Huang, Honggang; Wang, Gan

    2017-01-01

    Spider venoms are a complex mixture of peptides with a large number of neurotoxins targeting ion channels. Although thousands of peptide toxins have been identified from venoms of numerous species of spiders, many unknown species urgently need to be investigated. In this study, a novel sodium...... channel inhibitor, μ-TRTX-Hl1a, was identified from the venom of Haplopelma lividum. It contained eight cysteines and formed a conserved cysteine pattern of ICK motif. μ-TRTX-Hl1a inhibited the TTX-resistant (TTX-r) sodium channel current rather than the TTX-sensitive (TTX-s) sodium channel current...

  18. Dynamics of plc gene transcription and α-toxin production during growth of Clostridium perfringens strains with contrasting α-toxin production

    DEFF Research Database (Denmark)

    Abildgaard, Lone; Schramm, Andreas; Rudi, Knut

    2009-01-01

    The aim of the present study was to investigate transcription dynamics of the α-toxin-encoding plc gene relative to two housekeeping genes (gyrA and rplL) in batch cultures of three Clostridium perfringens strains with low, intermediate, and high levels of α-toxin production, respectively. The plc...... transcript level was always low in the low α-toxin producing strain. For the two other strains, plc transcription showed an inducible pattern and reached a maximum level in the late exponential growth phase. The transcription levels were however inversely correlated to α-toxin production for the two strains....... We propose that this discrepancy is due to differences in plc translation rates between the strains and that strain-specific translational rates therefore must be determined before α-toxin production can be extrapolated from transcript levels in C. perfringens....

  19. CD44 Promotes intoxication by the clostridial iota-family toxins.

    Science.gov (United States)

    Wigelsworth, Darran J; Ruthel, Gordon; Schnell, Leonie; Herrlich, Peter; Blonder, Josip; Veenstra, Timothy D; Carman, Robert J; Wilkins, Tracy D; Van Nhieu, Guy Tran; Pauillac, Serge; Gibert, Maryse; Sauvonnet, Nathalie; Stiles, Bradley G; Popoff, Michel R; Barth, Holger

    2012-01-01

    Various pathogenic clostridia produce binary protein toxins associated with enteric diseases of humans and animals. Separate binding/translocation (B) components bind to a protein receptor on the cell surface, assemble with enzymatic (A) component(s), and mediate endocytosis of the toxin complex. Ultimately there is translocation of A component(s) from acidified endosomes into the cytosol, leading to destruction of the actin cytoskeleton. Our results revealed that CD44, a multifunctional surface protein of mammalian cells, facilitates intoxication by the iota family of clostridial binary toxins. Specific antibody against CD44 inhibited cytotoxicity of the prototypical Clostridium perfringens iota toxin. Versus CD44(+) melanoma cells, those lacking CD44 bound less toxin and were dose-dependently resistant to C. perfringens iota, as well as Clostridium difficile and Clostridium spiroforme iota-like, toxins. Purified CD44 specifically interacted in vitro with iota and iota-like, but not related Clostridium botulinum C2, toxins. Furthermore, CD44 knockout mice were resistant to iota toxin lethality. Collective data reveal an important role for CD44 during intoxication by a family of clostridial binary toxins.

  20. Three New Malyngamides from the Marine Cyanobacterium Moorea producens

    Directory of Open Access Journals (Sweden)

    Kosuke Sueyoshi

    2017-11-01

    Full Text Available Three new compounds of the malyngamide series, 6,8-di-O-acetylmalyngamide 2 (1, 6-O-acetylmalyngamide 2 (2, and N-demethyl-isomalyngamide I (3, were isolated from the marine cyanobacterium Moorea producens. Their structures were determined by spectroscopic analysis and chemical derivatization and degradation. These compounds stimulated glucose uptake in cultured L6 myotubes. In particular, 6,8-di-O-acetylmalyngamide 2 (1 showed potent activity and activated adenosine monophosphate-activated protein kinase (AMPK.

  1. Marine Biotoxins: Occurrence, Toxicity, Regulatory Limits and Reference Methods

    Directory of Open Access Journals (Sweden)

    Pierina Visciano

    2016-07-01

    Full Text Available Harmful algal blooms are natural phenomena caused by the massive growth of phytoplankton that may contain highly toxic chemicals, the so-called marine biotoxins causing illness and even death to both aquatic organisms and humans. Their occurrence has been increased in frequency and severity, suggesting a worldwide public health risk. Marine biotoxins can accumulate in bivalve molluscs and regulatory limits have been set for some classes according to European Union legislation. These compounds can be distinguished in water- and fat-soluble molecules. The first group involves those of Paralytic Shellfish Poisoning and Amnesic Shellfish Poisoning, whereas the toxins soluble in fat can cause Diarrheic Shellfish Poisoning and Neurotoxic Shellfish Poisoning. Due to the lack of long-term toxicity studies, establishing tolerable daily intakes for any of these marine biotoxins was not possible, but an acute reference dose can be considered more appropriate, because these molecules show an acute toxicity. Dietary exposure assessment is linked both to the levels of marine biotoxins present in bivalve molluscs and the portion that could be eaten by consumers. Symptoms may vary from a severe gastrointestinal intoxication with diarrhea, nausea, vomiting, and abdominal cramps to neurological disorders such as ataxia, dizziness, partial paralysis, and respiratory distress. The official method for the detection of marine biotoxins is the mouse bioassay (MBA showing some limits due to ethical restrictions and insufficient specificity. For this reason, the liquid chromatography–mass spectrometry method has replaced MBA as the reference technique. However, the monitoring of algal blooms producing marine biotoxins should be regularly assessed in order to obtain more reliable, accurate estimates of bloom toxicity and their potential impacts.

  2. Toxin gene determination and evolution in scorpaenoid fish.

    Science.gov (United States)

    Chuang, Po-Shun; Shiao, Jen-Chieh

    2014-09-01

    In this study, we determine the toxin genes from both cDNA and genomic DNA of four scorpaenoid fish and reconstruct their evolutionary relationship. The deduced protein sequences of the two toxin subunits in Sebastapistes strongia, Scorpaenopsis oxycephala, and Sebastiscus marmoratus are about 700 amino acid, similar to the sizes of the stonefish (Synanceia horrida, and Synanceia verrucosa) and lionfish (Pterois antennata and Pterois volitans) toxins previously published. The intron positions are highly conserved among these species, which indicate the applicability of gene finding by using genomic DNA template. The phylogenetic analysis shows that the two toxin subunits were duplicated prior to the speciation of Scorpaenoidei. The precedence of the gene duplication over speciation indicates that the toxin genes may be common to the whole family of Scorpaeniform. Furthermore, one additional toxin gene has been determined in the genomic DNA of Dendrochirus zebra. The phylogenetic analysis suggests that an additional gene duplication occurred before the speciation of the lionfish (Pteroinae) and a pseudogene may be generally present in the lineage of lionfish. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Discovery of novel bacterial toxins by genomics and computational biology.

    Science.gov (United States)

    Doxey, Andrew C; Mansfield, Michael J; Montecucco, Cesare

    2018-06-01

    Hundreds and hundreds of bacterial protein toxins are presently known. Traditionally, toxin identification begins with pathological studies of bacterial infectious disease. Following identification and cultivation of a bacterial pathogen, the protein toxin is purified from the culture medium and its pathogenic activity is studied using the methods of biochemistry and structural biology, cell biology, tissue and organ biology, and appropriate animal models, supplemented by bioimaging techniques. The ongoing and explosive development of high-throughput DNA sequencing and bioinformatic approaches have set in motion a revolution in many fields of biology, including microbiology. One consequence is that genes encoding novel bacterial toxins can be identified by bioinformatic and computational methods based on previous knowledge accumulated from studies of the biology and pathology of thousands of known bacterial protein toxins. Starting from the paradigmatic cases of diphtheria toxin, tetanus and botulinum neurotoxins, this review discusses traditional experimental approaches as well as bioinformatics and genomics-driven approaches that facilitate the discovery of novel bacterial toxins. We discuss recent work on the identification of novel botulinum-like toxins from genera such as Weissella, Chryseobacterium, and Enteroccocus, and the implications of these computationally identified toxins in the field. Finally, we discuss the promise of metagenomics in the discovery of novel toxins and their ecological niches, and present data suggesting the existence of uncharacterized, botulinum-like toxin genes in insect gut metagenomes. Copyright © 2018. Published by Elsevier Ltd.

  4. 77 FR 9888 - Shiga Toxin-Producing Escherichia coli

    Science.gov (United States)

    2012-02-21

    ... Toxin-Producing Escherichia coli in Certain Raw Beef Products AGENCY: Food Safety and Inspection Service... toxin-producing Escherichia coli (STEC) serogroups (O26, O45, O103, O111, O121, and O145). This new date..., that are contaminated with Shiga toxin-producing Escherichia coli (STEC) O26, O45, O103, O111, O121...

  5. Immunosuppressive compounds from a deep water marine sponge, Agelas flabelliformis.

    Science.gov (United States)

    Gunasekera, S P; Cranick, S; Longley, R E

    1989-01-01

    Two immunosuppressive compounds, 4 alpha-methyl-5 alpha-cholest-8-en-3 beta-ol and 4,5-dibromo-2-pyrrolic acid were isolated from a deep water marine sponge, Agelas flabelliformis. Their structures were determined by comparison of their spectral data with those of samples isolated from other organisms. Both compounds were highly active in suppression of the response of murine splenocytes in the two-way mixed lymphocyte reaction (MLR) with little to no demonstrable cytotoxicity at lower doses. In addition, 4,5-dibromo-2-pyrrolic acid suppressed the proliferative response of splenocytes to suboptimal concentrations of the mitogen, concanavalin A (Con A). These results describe for the first time compounds isolated from the marine sponge A. flabelliformis that possess potent in vitro immunosuppressive activity.

  6. Cellular Uptake of the Clostridium perfringens Binary Iota-Toxin

    Science.gov (United States)

    Blöcker, Dagmar; Behlke, Joachim; Aktories, Klaus; Barth, Holger

    2001-01-01

    The binary iota-toxin is produced by Clostridium perfringens type E strains and consists of two separate proteins, the binding component iota b (98 kDa) and an actin-ADP-ribosylating enzyme component iota a (47 kDa). Iota b binds to the cell surface receptor and mediates the translocation of iota a into the cytosol. Here we studied the cellular uptake of iota-toxin into Vero cells. Bafilomycin A1, but not brefeldin A or nocodazole, inhibited the cytotoxic effects of iota-toxin, indicating that toxin is translocated from an endosomal compartment into the cytoplasm. Acidification (pH ≤ 5.0) of the extracellular medium enabled iota a to directly enter the cytosol in the presence of iota b. Activation by chymotrypsin induced oligomerization of iota b in solution. An average mass of 530 ± 28 kDa for oligomers was determined by analytical ultracentrifugation, indicating heptamer formation. The entry of iota-toxin into polarized CaCo-2 cells was studied by measuring the decrease in transepithelial resistance after toxin treatment. Iota-toxin led to a significant decrease in resistance when it was applied to the basolateral surface of the cells but not following application to the apical surface, indicating a polarized localization of the iota-toxin receptor. PMID:11292715

  7. T-2 toxin Analysis in Poultry and Cattle Feedstuff.

    Science.gov (United States)

    Gholampour Azizi, Issa; Azarmi, Masumeh; Danesh Pouya, Naser; Rouhi, Samaneh

    2014-05-01

    T-2 toxin is a mycotoxin that is produced by the Fusarium fungi. Consumption of food and feed contaminated with T-2 toxin causes diseases in humans and animals. In this study T-2 toxin was analyzed in poultry and cattle feedstuff in cities of Mazandaran province (Babol, Sari, Chalus), Northern Iran. In this study, 90 samples were analyzed for T-2 toxin contamination by the ELISA method. Out of 60 concentrate and bagasse samples collected from various cities of Mazandaran province, 11.7% and 3.3% were contaminated with T-2 toxin at concentrations > 25 and 50 µg/kg, respectively. For mixed poultry diets, while 10% of the 30 analyzed samples were contaminated with > 25 µg/kg, none of the tested samples contained T-2 toxin at levels > 50 µg/kg. The results obtained from this study show that poultry and cattle feedstuff can be contaminated with different amounts of T-2 toxin in different conditions and locations. Feedstuff that are contaminated by this toxin cause different diseases in animals; thus, potential transfer of mycotoxins to edible by-products from animals fed mycotoxin-contaminated feeds drives the need to routinely monitor mycotoxins in animal feeds and their components. This is the basis on which effective management of mycotoxins and their effects can be implemented.

  8. Dinophysis Toxins: Causative Organisms, Distribution and Fate in Shellfish

    Science.gov (United States)

    Reguera, Beatriz; Riobó, Pilar; Rodríguez, Francisco; Díaz, Patricio A.; Pizarro, Gemita; Paz, Beatriz; Franco, José M.; Blanco, Juan

    2014-01-01

    Several Dinophysis species produce diarrhoetic toxins (okadaic acid and dinophysistoxins) and pectenotoxins, and cause gastointestinal illness, Diarrhetic Shellfish Poisoning (DSP), even at low cell densities (Chile, and Europe. Toxicity and toxin profiles are very variable, more between strains than species. The distribution of DSP events mirrors that of shellfish production areas that have implemented toxin regulations, otherwise misinterpreted as bacterial or viral contamination. Field observations and laboratory experiments have shown that most of the toxins produced by Dinophysis are released into the medium, raising questions about the ecological role of extracelular toxins and their potential uptake by shellfish. Shellfish contamination results from a complex balance between food selection, adsorption, species-specific enzymatic transformations, and allometric processes. Highest risk areas are those combining Dinophysis strains with high cell content of okadaates, aquaculture with predominance of mytilids (good accumulators of toxins), and consumers who frequently include mussels in their diet. Regions including pectenotoxins in their regulated phycotoxins will suffer from much longer harvesting bans and from disloyal competition with production areas where these toxins have been deregulated. PMID:24447996

  9. Phosphorus physiological ecology and molecular mechanisms in marine phytoplankton.

    Science.gov (United States)

    Lin, Senjie; Litaker, Richard Wayne; Sunda, William G

    2016-02-01

    Phosphorus (P) is an essential nutrient for marine phytoplankton and indeed all life forms. Current data show that P availability is growth-limiting in certain marine systems and can impact algal species composition. Available P occurs in marine waters as dissolved inorganic phosphate (primarily orthophosphate [Pi]) or as a myriad of dissolved organic phosphorus (DOP) compounds. Despite numerous studies on P physiology and ecology and increasing research on genomics in marine phytoplankton, there have been few attempts to synthesize information from these different disciplines. This paper is aimed to integrate the physiological and molecular information on the acquisition, utilization, and storage of P in marine phytoplankton and the strategies used by these organisms to acclimate and adapt to variations in P availability. Where applicable, we attempt to identify gaps in our current knowledge that warrant further research and examine possible metabolic pathways that might occur in phytoplankton from well-studied bacterial models. Physical and chemical limitations governing cellular P uptake are explored along with physiological and molecular mechanisms to adapt and acclimate to temporally and spatially varying P nutrient regimes. Topics covered include cellular Pi uptake and feedback regulation of uptake systems, enzymatic utilization of DOP, P acquisition by phagotrophy, P-limitation of phytoplankton growth in oceanic and coastal waters, and the role of P-limitation in regulating cell size and toxin levels in phytoplankton. Finally, we examine the role of P and other nutrients in the transition of phytoplankton communities from early succession species (diatoms) to late succession ones (e.g., dinoflagellates and haptophytes). © 2015 Phycological Society of America.

  10. Toxic potential of palytoxin.

    Science.gov (United States)

    Patocka, Jiří; Gupta, Ramesh C; Wu, Qing-hua; Kuca, Kamil

    2015-10-01

    This review briefly describes the origin, chemistry, molecular mechanism of action, pharmacology, toxicology, and ecotoxicology of palytoxin and its analogues. Palytoxin and its analogues are produced by marine dinoflagellates. Palytoxin is also produced by Zoanthids (i.e. Palythoa), and Cyanobacteria (Trichodesmium). Palytoxin is a very large, non-proteinaceous molecule with a complex chemical structure having both lipophilic and hydrophilic moieties. Palytoxin is one of the most potent marine toxins with an LD50 of 150 ng/kg body weight in mice exposed intravenously. Pharmacological and electrophysiological studies have demonstrated that palytoxin acts as a hemolysin and alters the function of excitable cells through multiple mechanisms of action. Palytoxin selectively binds to Na(+)/K(+)-ATPase with a Kd of 20 pM and transforms the pump into a channel permeable to monovalent cations with a single-channel conductance of 10 pS. This mechanism of action could have multiple effects on cells. Evaluation of palytoxin toxicity using various animal models revealed that palytoxin is an extremely potent neurotoxin following an intravenous, intraperitoneal, intramuscular, subcutaneous or intratracheal route of exposure. Palytoxin also causes non-lethal, yet serious toxic effects following dermal or ocular exposure. Most incidents of palytoxin poisoning have manifested after oral intake of contaminated seafood. Poisonings in humans have also been noted after inhalation, cutaneous/systemic exposures with direct contact of aerosolized seawater during Ostreopsis blooms and/or through maintaining aquaria containing Cnidarian zoanthids. Palytoxin has a strong potential for toxicity in humans and animals, and currently this toxin is of great concern worldwide.

  11. Isolation of Shiga toxin-producing Escherichia coli harboring variant Shiga toxin genes from seafood

    Directory of Open Access Journals (Sweden)

    Sreepriya Prakasan

    2018-03-01

    Full Text Available Background and Aim: Shiga toxin-producing Escherichia coli (STEC are important pathogens of global significance. STEC are responsible for numerous food-borne outbreaks worldwide and their presence in food is a potential health hazard. The objective of the present study was to determine the incidence of STEC in fresh seafood in Mumbai, India, and to characterize STEC with respect to their virulence determinants. Materials and Methods: A total of 368 E. coli were isolated from 39 fresh seafood samples (18 finfish and 21 shellfish using culture-based methods. The isolates were screened by polymerase chain reaction (PCR for the genes commonly associated with STEC. The variant Shiga toxin genes were confirmed by Southern blotting and hybridization followed by DNA sequencing. Results: One or more Shiga toxins genes were detected in 61 isolates. Of 39 samples analyzed, 10 (25.64% samples harbored STEC. Other virulence genes, namely, eaeA (coding for an intimin and hlyA (hemolysin A were detected in 43 and 15 seafood isolates, respectively. The variant stx1 genes from 6 isolates were sequenced, five of which were found to be stx1d variants, while one sequence varied considerably from known stx1 sequences. Southern hybridization and DNA sequence analysis suggested putative Shiga toxin variant genes (stx2 in at least 3 other isolates. Conclusion: The results of this study showed the occurrence of STEC in seafood harboring one or more Shiga toxin genes. The detection of STEC by PCR may be hampered due to the presence of variant genes such as the stx1d in STEC. This is the first report of stx1d gene in STEC isolated from Indian seafood.

  12. First Evidence of Palytoxin and 42-Hydroxy-palytoxin in the Marine Cyanobacterium Trichodesmium

    Directory of Open Access Journals (Sweden)

    Dominique Laurent

    2011-03-01

    Full Text Available Marine pelagic diazotrophic cyanobacteria of the genus Trichodesmium (Oscillatoriales are widespread throughout the tropics and subtropics, and are particularly common in the waters of New Caledonia. Blooms of Trichodesmium are suspected to be a potential source of toxins in the ciguatera food chain and were previously reported to contain several types of paralyzing toxins. The toxicity of water-soluble extracts of Trichodesmium spp. were analyzed by mouse bioassay and Neuroblastoma assay and their toxic compounds characterized using liquid chromatography coupled with tandem mass spectrometry techniques. Here, we report the first identification of palytoxin and one of its derivatives, 42-hydroxy-palytoxin, in field samples of Trichodesmium collected in the New Caledonian lagoon. The possible role played by Trichodesmium blooms in the development of clupeotoxism, this human intoxication following the ingestion of plankton-eating fish and classically associated with Ostreopsis blooms, is also discussed.

  13. Conjugated Linoleic Acid Reduces Cholera Toxin Production In Vitro and In Vivo by Inhibiting Vibrio cholerae ToxT Activity.

    Science.gov (United States)

    Withey, Jeffrey H; Nag, Drubhajyoti; Plecha, Sarah C; Sinha, Ritam; Koley, Hemanta

    2015-12-01

    The severe diarrheal disease cholera is endemic in over 50 countries. Current therapies for cholera patients involve oral and/or intravenous rehydration, often combined with the use of antibiotics to shorten the duration and intensity of the disease. However, as antibiotic resistance increases, treatment options will become limited. Linoleic acid has been shown to be a potent negative effector of V. cholerae virulence that acts on the major virulence transcription regulator protein, ToxT, to inhibit virulence gene expression. ToxT activates transcription of the two major virulence factors required for disease, cholera toxin (CT) and toxin-coregulated pilus (TCP). A conjugated form of linoleic acid (CLA) is currently sold over the counter as a dietary supplement and is generally recognized as safe by the U.S. Food and Drug Administration. This study examined whether CLA could be used as a new therapy to reduce CT production, which, in turn, would decrease disease duration and intensity in cholera patients. CLA could be used in place of traditional antibiotics and would be very unlikely to generate resistance, as it affects only virulence factor production and not bacterial growth or survival. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  14. [Environmental toxins in breast milk].

    Science.gov (United States)

    Bratlid, Dag

    2009-12-17

    Breast milk is very important to ensure infants a well-composed and safe diet during the first year of life. However, the quality of breast milk seems to be affected by an increasing amount of environmental toxins (particularly so-called Persistent, Bioaccumulative Toxins [PBTs]). Many concerns have been raised about the negative effects this may have on infant health. The article is a review of literature (mainly review articles) identified through a non-systematic search in PubMed. The concentration of PBTs in breast milk is mainly caused by man's position as the terminal link in the nutritional chain. Many breast-fed infants have a daily intake of such toxins that exceed limits defined for the population in general. Animal studies demonstrate effects on endocrine function and neurotoxicity in the offspring, and a number of human studies seem to point in the same direction. However the "original" optimal composition of breast milk still seems to protect against long-term effects of such toxicity. There is international consensus about the need to monitor breast milk for the presence of PBTs. Such surveillance will be a good indicator of the population's general exposure to these toxins and may also contribute to identifying groups as risk who should not breast-feed their children for a long time.

  15. Marine-Derived 2-Aminoimidazolone Alkaloids. Leucettamine B-Related Polyandrocarpamines Inhibit Mammalian and Protozoan DYRK & CLK Kinases

    Directory of Open Access Journals (Sweden)

    Nadège Loaëc

    2017-10-01

    Full Text Available A large diversity of 2-aminoimidazolone alkaloids is produced by various marine invertebrates, especially by the marine Calcareous sponges Leucetta and Clathrina. The phylogeny of these sponges and the wide scope of 2-aminoimidazolone alkaloids they produce are reviewed in this article. The origin (invertebrate cells, associated microorganisms, or filtered plankton, physiological functions, and natural molecular targets of these alkaloids are largely unknown. Following the identification of leucettamine B as an inhibitor of selected protein kinases, we synthesized a family of analogues, collectively named leucettines, as potent inhibitors of DYRKs (dual-specificity, tyrosine phosphorylation regulated kinases and CLKs (cdc2-like kinases and potential pharmacological leads for the treatment of several diseases, including Alzheimer’s disease and Down syndrome. We assembled a small library of marine sponge- and ascidian-derived 2-aminoimidazolone alkaloids, along with several synthetic analogues, and tested them on a panel of mammalian and protozoan kinases. Polyandrocarpamines A and B were found to be potent and selective inhibitors of DYRKs and CLKs. They inhibited cyclin D1 phosphorylation on a DYRK1A phosphosite in cultured cells. 2-Aminoimidazolones thus represent a promising chemical scaffold for the design of potential therapeutic drug candidates acting as specific inhibitors of disease-relevant kinases, and possibly other disease-relevant targets.

  16. Botulinum toxin for treatment of glandular hypersecretory disorders.

    LENUS (Irish Health Repository)

    Laing, T A

    2012-02-03

    SUMMARY: The use of botulinum toxin to treat disorders of the salivary glands is increasing in popularity in recent years. Recent reports of the use of botulinum toxin in glandular hypersecretion suggest overall favourable results with minimal side-effects. However, few randomised clinical trials means that data are limited with respect to candidate suitability, treatment dosages, frequency and duration of treatment. We report a selection of such cases from our own department managed with botulinum toxin and review the current data on use of the toxin to treat salivary gland disorders such as Frey\\'s syndrome, excessive salivation (sialorrhoea), focal and general hyperhidrosis, excessive lacrimation and chronic rhinitis.

  17. Comparison of clinical marking and ultrasound-guided injection of Botulinum type A toxin into the masseter muscles for treating bruxism and its cosmetic effects.

    Science.gov (United States)

    Quezada-Gaon, Natacha; Wortsman, Ximena; Peñaloza, Osvaldo; Carrasco, Juan Eduardo

    2016-09-01

    Botulinum toxin type A has been used for treating the hypertrophy of the masseter muscles and its cosmetic effects. Ultrasound is increasingly used in dermatology, along with the guidance of mini-invasive procedures. To evaluate the role of ultrasound for guiding the application of Botulinum A toxin in patients with cosmetic alterations due to bruxism, correlate the clinical landmarks with the ultrasound findings, and study the effect on the symptoms, cosmetics, and quality of life. Twenty individuals with bruxism and cosmetic alterations underwent an ultrasound-guided injection of Botulinum toxin type A in each masseter muscle. Clinical and ultrasound marking of the procedure was compared. Clinical and sonographic evaluation was performed at the time of injection and 3 months later. Ten normal individuals underwent ultrasound of the masseter muscles as a control group. Up to 65% of individuals showed anatomical variants of the salivary glands. The method for clinically marking the skin showed a frequently erroneous location of the anterior point (up to 40% of cases) that was proven by ultrasound to be out of the muscle. In 20% of cases, ultrasound showed that the needle should be longer to enter the muscle. After injection, most of the patients demonstrated a decrease of the symptoms and cosmetic and quality of life improvements. Ultrasound can be a potent tool for guiding the injection of Botulinum toxin into the masseter muscles. It may contribute to a more personalized procedure, better cosmetic results, and help to avoid potential complications. © 2016 Wiley Periodicals, Inc.

  18. Characterization of a Toxin A-Negative, Toxin B-Positive Strain of Clostridium difficile Responsible for a Nosocomial Outbreak of Clostridium difficile-Associated Diarrhea

    Science.gov (United States)

    Alfa, Michelle J.; Kabani, Amin; Lyerly, David; Moncrief, Scott; Neville, Laurie M.; Al-Barrak, Ali; Harding, Godfrey K. H.; Dyck, Brenda; Olekson, Karen; Embil, John M.

    2000-01-01

    Clostridium difficile-associated diarrhea (CAD) is a very common nosocomial infection that contributes significantly to patient morbidity and mortality as well as to the cost of hospitalization. Previously, strains of toxin A-negative, toxin B-positive C. difficile were not thought to be associated with clinically significant disease. This study reports the characterization of a toxin A-negative, toxin B-positive strain of C. difficile that was responsible for a recently described nosocomial outbreak of CAD. Analysis of the seven patient isolates from the outbreak by pulsed-field gel electrophoresis indicated that this outbreak was due to transmission of a single strain of C. difficile. Our characterization of this strain (HSC98) has demonstrated that the toxin A gene lacks 1.8 kb from the carboxy repetitive oligopeptide (CROP) region but apparently has no other major deletions from other regions of the toxin A or toxin B gene. The remaining 1.3-kb fragment of the toxin A CROP region from strain HSC98 showed 98% sequence homology with strain 1470, previously reported by M. Weidmann in 1997 (GenBank accession number Y12616), suggesting that HSC98 is toxinotype VIII. The HSC98 strain infecting patients involved in this outbreak produced the full spectrum of clinical illness usually associated with C. difficile-associated disease. This pathogenic spectrum was manifest despite the inability of this strain to alter tight junctions as determined by using in vitro tissue culture testing, which suggested that no functional toxin A was produced by this strain. PMID:10878068

  19. Uptake and bioaccumulation of Cry toxins by an aphidophagous predator

    International Nuclear Information System (INIS)

    Paula, Débora P.; Andow, David A.

    2016-01-01

    Uptake of Cry toxins by insect natural enemies has rarely been considered and bioaccumulation has not yet been demonstrated. Uptake can be demonstrated by the continued presence of Cry toxin after exposure has stopped and gut contents eliminated. Bioaccumulation can be demonstrated by showing uptake and that the concentration of Cry toxin in the natural enemy exceeds that in its food. We exposed larvae of the aphidophagous predator, Harmonia axyridis, to Cry1Ac and Cry1F through uniform and constant tritrophic exposure via an aphid, Myzus persicae, and looked for toxin presence in the pupae. We repeated the experiment using only Cry1F and tested newly emerged adults. Both Cry toxins were detected in pupae, and Cry1F was detected in recently emerged, unfed adults. Cry1Ac was present 2.05 times and Cry1F 3.09 times higher in predator pupae than in the aphid prey. Uptake and bioaccumulation in the third trophic level might increase the persistence of Cry toxins in the food web and mediate new exposure routes to natural enemies. - Highlights: • Uptake and bioaccumulation of two Cry toxins by a larval coccinellid was tested. • Uptake was demonstrated by presence of the toxins in pupae and adults. • Bioaccumulation was shown by higher toxin concentration in pupae than prey. • Cry1Ac was present 2.05× and Cry1F 3.09× higher in predator pupae than prey. • This might increase persistence of Cry toxins in food webs with new exposure routes. - Immatures of the predaceous coccinellid Harmonia axyridis can uptake and bioaccumulate Cry toxins delivered via their aphid prey.

  20. [Botulinum toxin: An important complement for facial rejuvenation surgery].

    Science.gov (United States)

    Le Louarn, C

    2017-10-01

    The improved understanding of the functional anatomy of the face and of the action of the botulinum toxin A leads us to determine a new injection procedure which consequently decreases the risk of eyebrow and eyelid ptosis and increases the toxin's injection possibilities and efficiencies. With less units of toxin, the technique herein described proposes to be more efficient on more muscles: variable toxin injections concentration adapted to each injected muscle are used. Thanks to a new procedure in the upper face, toxin A injection can be quite close to an endoscopic surgical action. In addition, interesting results are achievable to rejuvenate the lateral canthus with injection on the upper lateral tarsus, to rejuvenate the nose with injection at the alar base, the jawline and the neck region. Lastly, a smoothing effect on the skin (meso botox) is obtained by the anticholinergic action of the toxin A on the dermal receptors. Copyright © 2017. Published by Elsevier Masson SAS.

  1. AB toxins: a paradigm switch from deadly to desirable.

    Science.gov (United States)

    Odumosu, Oludare; Nicholas, Dequina; Yano, Hiroshi; Langridge, William

    2010-07-01

    To ensure their survival, a number of bacterial and plant species have evolved a common strategy to capture energy from other biological systems. Being imperfect pathogens, organisms synthesizing multi-subunit AB toxins are responsible for the mortality of millions of people and animals annually. Vaccination against these organisms and their toxins has proved rather ineffective in providing long-term protection from disease. In response to the debilitating effects of AB toxins on epithelial cells of the digestive mucosa, mechanisms underlying toxin immunomodulation of immune responses have become the focus of increasing experimentation. The results of these studies reveal that AB toxins may have a beneficial application as adjuvants for the enhancement of immune protection against infection and autoimmunity. Here, we examine similarities and differences in the structure and function of bacterial and plant AB toxins that underlie their toxicity and their exceptional properties as immunomodulators for stimulating immune responses against infectious disease and for immune suppression of organ-specific autoimmunity.

  2. AB Toxins: A Paradigm Switch from Deadly to Desirable

    Directory of Open Access Journals (Sweden)

    Oludare Odumosu

    2010-06-01

    Full Text Available To ensure their survival, a number of bacterial and plant species have evolved a common strategy to capture energy from other biological systems. Being imperfect pathogens, organisms synthesizing multi-subunit AB toxins are responsible for the mortality of millions of people and animals annually. Vaccination against these organisms and their toxins has proved rather ineffective in providing long-term protection from disease. In response to the debilitating effects of AB toxins on epithelial cells of the digestive mucosa, mechanisms underlying toxin immunomodulation of immune responses have become the focus of increasing experimentation. The results of these studies reveal that AB toxins may have a beneficial application as adjuvants for the enhancement of immune protection against infection and autoimmunity. Here, we examine similarities and differences in the structure and function of bacterial and plant AB toxins that underlie their toxicity and their exceptional properties as immunomodulators for stimulating immune responses against infectious disease and for immune suppression of organ-specific autoimmunity.

  3. Botulinum toxin A for the Treatment of Overactive Bladder.

    Science.gov (United States)

    Hsieh, Po-Fan; Chiu, Hung-Chieh; Chen, Kuan-Chieh; Chang, Chao-Hsiang; Chou, Eric Chieh-Lung

    2016-02-29

    The standard treatment for overactive bladder starts with patient education and behavior therapies, followed by antimuscarinic agents. For patients with urgency urinary incontinence refractory to antimuscarinic therapy, currently both American Urological Association (AUA) and European Association of Urology (EAU) guidelines suggested that intravesical injection of botulinum toxin A should be offered. The mechanism of botulinum toxin A includes inhibition of vesicular release of neurotransmitters and the axonal expression of capsaicin and purinergic receptors in the suburothelium, as well as attenuation of central sensitization. Multiple randomized, placebo-controlled trials demonstrated that botulinum toxin A to be an effective treatment for patients with refractory idiopathic or neurogenic detrusor overactivity. The urinary incontinence episodes, maximum cystometric capacity, and maximum detrusor pressure were improved greater by botulinum toxin A compared to placebo. The adverse effects of botulinum toxin A, such as urinary retention and urinary tract infection, were primarily localized to the lower urinary tract. Therefore, botulinum toxin A offers an effective treatment option for patients with refractory overactive bladder.

  4. Toxins and antimicrobial peptides: interactions with membranes

    Science.gov (United States)

    Schlamadinger, Diana E.; Gable, Jonathan E.; Kim, Judy E.

    2009-08-01

    The innate immunity to pathogenic invasion of organisms in the plant and animal kingdoms relies upon cationic antimicrobial peptides (AMPs) as the first line of defense. In addition to these natural peptide antibiotics, similar cationic peptides, such as the bee venom toxin melittin, act as nonspecific toxins. Molecular details of AMP and peptide toxin action are not known, but the universal function of these peptides to disrupt cell membranes of pathogenic bacteria (AMPs) or a diverse set of eukaryotes and prokaryotes (melittin) is widely accepted. Here, we have utilized spectroscopic techniques to elucidate peptide-membrane interactions of alpha-helical human and mouse AMPs of the cathelicidin family as well as the peptide toxin melittin. The activity of these natural peptides and their engineered analogs was studied on eukaryotic and prokaryotic membrane mimics consisting of resistant pathogens.

  5. Botulinum toxin type a for chronic migraine.

    Science.gov (United States)

    Ashkenazi, Avi

    2010-03-01

    Chronic migraine (CM) is the leading cause of chronic daily headache, a common and debilitating headache syndrome. The management of CM patients is challenging, with only limited benefit from available oral preventive medications. Botulinum neurotoxin (BoNT) has been used extensively to treat disorders associated with increased muscle tone. More recent scientific data support an analgesic effect of the toxin. The pharmacokinetic and pharmacodynamic profiles of BoNT make it an appealing candidate for migraine prevention. Results from older clinical trials on the efficacy of the toxin in CM were inconclusive. However, recent trials using more stringent inclusion criteria have shown positive results, supporting the use of the toxin in some patients with this disorder. This review summarizes the scientific data on the analgesic properties of BoNT, as well as the clinical data on the efficacy of the toxin in treating CM.

  6. Stealth and mimicry by deadly bacterial toxins

    DEFF Research Database (Denmark)

    Yates, S.P.; Jørgensen, Rene; Andersen, Gregers Rom

    2006-01-01

    Diphtheria toxin and exotoxin A are well-characterized members of the ADP-ribosyltransferase toxin family that serve as virulence factors in the pathogenic bacteria, Corynebacterium diphtheriae and Pseudomonas aeruginosa.  New high-resolution structural data of the Michaelis complex...

  7. Engineering of a Potent Recombinant Lectin-Toxin Fusion Protein to Eliminate Human Pluripotent Stem Cells.

    Science.gov (United States)

    Tateno, Hiroaki; Saito, Sayoko

    2017-07-10

    The use of human pluripotent stem cells (hPSCs) such as human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) in regenerative medicine is hindered by their tumorigenic potential. Previously, we developed a recombinant lectin-toxin fusion protein of the hPSC-specific lectin rBC2LCN, which has a 23 kDa catalytic domain (domain III) of Pseudomonas aeruginosa exotoxin A (rBC2LCN-PE23). This fusion protein could selectively eliminate hPSCs following its addition to the cell culture medium. Here we conjugated rBC2LCN lectin with a 38 kDa domain of exotoxin A containing domains Ib and II in addition to domain III (PE38). The developed rBC2LCN-PE38 fusion protein could eliminate 50% of 201B7 hPSCs at a concentration of 0.003 μg/mL (24 h incubation), representing an approximately 556-fold higher activity than rBC2LCN-PE23. Little or no effect on human fibroblasts, human mesenchymal stem cells, and hiPSC-derived hepatocytes was observed at concentrations lower than 1 μg/mL. Finally, we demonstrate that rBC2LCN-PE38 selectively eliminates hiPSCs from a mixed culture of hiPSCs and hiPSC-derived hepatocytes. Since rBC2LCN-PE38 can be prepared from soluble fractions of E. coli culture at a yield of 9 mg/L, rBC2LCN-PE38 represents a practical reagent to remove human pluripotent stem cells residing in cultured cells destined for transplantation.

  8. Acid Sphingomyelinase Promotes Cellular Internalization of Clostridium perfringens Iota-Toxin.

    Science.gov (United States)

    Nagahama, Masahiro; Takehara, Masaya; Miyamoto, Kazuaki; Ishidoh, Kazumi; Kobayashi, Keiko

    2018-05-20

    Clostridium perfringens iota-toxin is a binary actin-ADP-ribosylating toxin composed of the enzymatic component Ia and receptor binding component Ib. Ib binds to a cell surface receptor, forms Ib oligomer in lipid rafts, and associates with Ia. The Ia-Ib complex then internalizes by endocytosis. Here, we showed that acid sphingomyelinase (ASMase) facilitates the cellular uptake of iota-toxin. Inhibitions of ASMase and lysosomal exocytosis by respective blockers depressed cell rounding induced by iota-toxin. The cytotoxicity of the toxin increased in the presence of Ca 2+ in extracellular fluids. Ib entered target cells in the presence but not the absence of Ca 2+ . Ib induced the extracellular release of ASMase in the presence of Ca 2+ . ASMase siRNA prevented the cell rounding induced by iota-toxin. Furthermore, treatment of the cells with Ib resulted in the production of ceramide in cytoplasmic vesicles. These observations showed that ASMase promotes the internalization of iota-toxin into target cells.

  9. Solid-phase synthesis of polyamine toxin analogues

    DEFF Research Database (Denmark)

    Kromann, Hasse; Krikstolaityte, Sonata; Andersen, Anne J

    2002-01-01

    The wasp toxin philanthotoxin-433 (PhTX-433) is a nonselective and noncompetitive antagonist of ionotropic receptors, such as ionotropic glutamate receptors and nicotinic acetylcholine receptors. Polyamine toxins are extensively used for the characterization of subtypes of ionotropic glutamate re...

  10. Cnidarian Toxins Acting on Voltage-Gated Ion Channels

    Directory of Open Access Journals (Sweden)

    Robert M. Greenberg

    2006-04-01

    Full Text Available Abstract: Voltage-gated ion channels generate electrical activity in excitable cells. As such, they are essential components of neuromuscular and neuronal systems, and are targeted by toxins from a wide variety of phyla, including the cnidarians. Here, we review cnidarian toxins known to target voltage-gated ion channels, the specific channel types targeted, and, where known, the sites of action of cnidarian toxins on different channels.

  11. Dysport: pharmacological properties and factors that influence toxin action.

    Science.gov (United States)

    Pickett, Andy

    2009-10-01

    The pharmacological properties of Dysport that influence toxin action are reviewed and compared with other botulinum toxin products. In particular, the subject of diffusion is examined and discussed based upon the evidence that currently exists, both from laboratory studies and from clinical data. Diffusion of botulinum toxin products is not related to the size of the toxin complex in the product since the complex dissociates under physiological conditions, releasing the naked neurotoxin to act. The active neurotoxin in Type A products is the same and therefore diffusion is equal when equal doses are administered.

  12. Emergence of Escherichia coli encoding Shiga toxin 2f in human Shiga toxin-producing E-coli (STEC) infections in the Netherlands, January 2008 to December 2011

    NARCIS (Netherlands)

    Friesema, I.; van der Zwaluw, K.; Schuurman, T.; Kooistra-Smid, M.; Franz, E.; van Duynhoven, Y.; van Pelt, W.

    2014-01-01

    The Shiga toxins of Shiga toxin-producing Escherichia coli (STEC) can be divided into Shiga toxin 1 (Stx1) and Shiga toxin 2 (Stx2) with several sub-variants. Variant Stx(2f) is one of the latest described, but has been rarely associated with symptomatic human infections. In the enhanced STEC

  13. How Parkinsonian Toxins Dysregulate the Autophagy Machinery

    Directory of Open Access Journals (Sweden)

    Ruben K. Dagda

    2013-11-01

    Full Text Available Since their discovery, Parkinsonian toxins (6-hydroxydopamine, MPP+, paraquat, and rotenone have been widely employed as in vivo and in vitro chemical models of Parkinson’s disease (PD. Alterations in mitochondrial homeostasis, protein quality control pathways, and more recently, autophagy/mitophagy have been implicated in neurotoxin models of PD. Here, we highlight the molecular mechanisms by which different PD toxins dysregulate autophagy/mitophagy and how alterations of these pathways play beneficial or detrimental roles in dopamine neurons. The convergent and divergent effects of PD toxins on mitochondrial function and autophagy/mitophagy are also discussed in this review. Furthermore, we propose new diagnostic tools and discuss how pharmacological modulators of autophagy/mitophagy can be developed as disease-modifying treatments for PD. Finally, we discuss the critical need to identify endogenous and synthetic forms of PD toxins and develop efficient health preventive programs to mitigate the risk of developing PD.

  14. Dinophysis Toxins: Causative Organisms, Distribution and Fate in Shellfish

    Directory of Open Access Journals (Sweden)

    Beatriz Reguera

    2014-01-01

    Full Text Available Several Dinophysis species produce diarrhoetic toxins (okadaic acid and dinophysistoxins and pectenotoxins, and cause gastointestinal illness, Diarrhetic Shellfish Poisoning (DSP, even at low cell densities (<103 cells·L−1. They are the main threat, in terms of days of harvesting bans, to aquaculture in Northern Japan, Chile, and Europe. Toxicity and toxin profiles are very variable, more between strains than species. The distribution of DSP events mirrors that of shellfish production areas that have implemented toxin regulations, otherwise misinterpreted as bacterial or viral contamination. Field observations and laboratory experiments have shown that most of the toxins produced by Dinophysis are released into the medium, raising questions about the ecological role of extracelular toxins and their potential uptake by shellfish. Shellfish contamination results from a complex balance between food selection, adsorption, species-specific enzymatic transformations, and allometric processes. Highest risk areas are those combining Dinophysis strains with high cell content of okadaates, aquaculture with predominance of mytilids (good accumulators of toxins, and consumers who frequently include mussels in their diet. Regions including pectenotoxins in their regulated phycotoxins will suffer from much longer harvesting bans and from disloyal competition with production areas where these toxins have been deregulated.

  15. ACTION OF DIPHTHERIA TOXIN IN THE GUINEA PIG

    Science.gov (United States)

    Baseman, Joel B.; Pappenheimer, A. M.; Gill, D. M.; Harper, Annabel A.

    1970-01-01

    The blood clearance and distribution in the tissues of 125I after intravenous injection of small doses (1.5–5 MLD or 0.08–0.25 µg) of 125I-labeled diphtheria toxin has been followed in guinea pigs and rabbits and compared with the fate of equivalent amounts of injected 125I-labeled toxoid and bovine serum albumin. Toxoid disappeared most rapidly from the blood stream and label accumulated and was retained in liver, spleen, and especially in kidney. Both toxin and BSA behaved differently. Label was found widely distributed among all the organs except the nervous system and its rate of disappearance from the tissues paralleled its disappearance from the circulation. There was no evidence for any particular affinity of toxin for muscle tissue or for a "target" organ. Previous reports by others that toxin causes specific and selective impairment of protein synthesis in muscle tissue were not confirmed. On the contrary, both in guinea pigs and rabbits, a reduced rate of protein synthesis was observed in all tissues that had taken up the toxin label. In tissues removed from intoxicated animals of both species there was an associated reduction in aminoacyl transferase 2 content. It is concluded that the primary action of diphtheria toxin in the living animal is to effect the inactivation of aminoacyl transferase 2. The resulting inhibition in rate of protein synthesis leads to morphologic damage in all tissues reached by the toxin and ultimately to death of the animal. PMID:5511567

  16. Comparison of T-2 Toxin and HT-2 Toxin Distributed in the Skeletal System with That in Other Tissues of Rats by Acute Toxicity Test.

    Science.gov (United States)

    Yu, Fang Fang; Lin, Xia Lu; Yang, Lei; Liu, Huan; Wang, Xi; Fang, Hua; Lammi, ZMikko J; Guo, Xiong

    2017-11-01

    Twelve healthy rats were divided into the T-2 toxin group receiving gavage of 1 mg/kg T-2 toxin and the control group receiving gavage of normal saline. Total relative concentrations of T-2 toxin and HT-2 toxin in the skeletal system (thighbone, knee joints, and costal cartilage) were significantly higher than those in the heart, liver, and kidneys (P skeletal system (thighbone and costal cartilage) were also significantly higher than those in the heart, liver, and kidneys. The rats administered T-2 toxin showed rapid metabolism compared with that in rats administered HT-2 toxin, and the metabolic conversion rates in the different tissues were 68.20%-90.70%. Copyright © 2017 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  17. APETx4, a Novel Sea Anemone Toxin and a Modulator of the Cancer-Relevant Potassium Channel KV10.1

    Directory of Open Access Journals (Sweden)

    Lien Moreels

    2017-09-01

    Full Text Available The human ether-à-go-go channel (hEag1 or KV10.1 is a cancer-relevant voltage-gated potassium channel that is overexpressed in a majority of human tumors. Peptides that are able to selectively inhibit this channel can be lead compounds in the search for new anticancer drugs. Here, we report the activity-guided purification and electrophysiological characterization of a novel KV10.1 inhibitor from the sea anemone Anthopleura elegantissima. Purified sea anemone fractions were screened for inhibitory activity on KV10.1 by measuring whole-cell currents as expressed in Xenopus laevis oocytes using the two-microelectrode voltage clamp technique. Fractions that showed activity on Kv10.1 were further purified by RP-HPLC. The amino acid sequence of the peptide was determined by a combination of MALDI- LIFT-TOF/TOF MS/MS and CID-ESI-FT-ICR MS/MS and showed a high similarity with APETx1 and APETx3 and was therefore named APETx4. Subsequently, the peptide was electrophysiologically characterized on KV10.1. The selectivity of the toxin was investigated on an array of voltage-gated ion channels, including the cardiac human ether-à-go-go-related gene potassium channel (hERG or Kv11.1. The toxin inhibits KV10.1 with an IC50 value of 1.1 μM. In the presence of a similar toxin concentration, a shift of the activation curve towards more positive potentials was observed. Similar to the effect of the gating modifier toxin APETx1 on hERG, the inhibition of Kv10.1 by the isolated toxin is reduced at more positive voltages and the peptide seems to keep the channel in a closed state. Although the peptide also induces inhibitory effects on other KV and NaV channels, it exhibits no significant effect on hERG. Moreover, APETx4 induces a concentration-dependent cytotoxic and proapoptotic effect in various cancerous and noncancerous cell lines. This newly identified KV10.1 inhibitor can be used as a tool to further characterize the oncogenic channel KV10.1 or as a

  18. Determination of the toxic variability of lipophilic biotoxins in marine bivalve and gastropod tissues treated with an industrial canning process.

    Science.gov (United States)

    García, Carlos; Oyaneder-Terrazas, Javiera; Contreras, Cristóbal; Del Campo, Miguel; Torres, Rafael; Contreras, Héctor R

    2016-11-01

    Contamination of shellfish with lipophilic marine biotoxins (LMB), pectenotoxins (PTXs), yessotoxins (YTXs) and okadaic acid (OA) toxin groups in southern Chile is a constant challenge for the development of miticulture considering the high incidence of toxic episodes that tend to occur. This research is focused on using methodologies for assessing the decrease in toxins of natural resources in Chile with high value, without altering the organoleptic properties of the shellfish. The species were processed through steaming (1 min at 121°C) and subsequent canning (5 min at 121°C). Changes in the profiles of toxins and total toxicity levels of LMB in endemic bivalves and gastropods were determined using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The total reduction of toxicity (≈ 15%) was not related to the destruction of the toxin, but rather to the loss of LMB on removing the shells and packing media of canned products (***p < 0.001). Industrial processing of shellfish reduces LMB contents by up to 15% of the total initial contents, concomitant only with the interconversion of PTX-group toxins into PTX-2sa. In soft bottom-dwelling species with toxicities beyond the standard for safe human consumption (≥ 160 μg OA-eq kg - 1 ), toxicity can be reduced to safe levels through industrial preparation procedures.

  19. Crystal structure of Clostridium difficile toxin A

    Energy Technology Data Exchange (ETDEWEB)

    Chumbler, Nicole M.; Rutherford, Stacey A.; Zhang, Zhifen; Farrow, Melissa A.; Lisher, John P.; Farquhar, Erik; Giedroc, David P.; Spiller, Benjamin W.; Melnyk, Roman A.; Lacy, D. Borden

    2016-01-11

    Clostridium difficile infection is the leading cause of hospital-acquired diarrhoea and pseudomembranous colitis. Disease is mediated by the actions of two toxins, TcdA and TcdB, which cause the diarrhoea, as well as inflammation and necrosis within the colon. The toxins are large (308 and 270 kDa, respectively), homologous (47% amino acid identity) glucosyltransferases that target small GTPases within the host. The multidomain toxins enter cells by receptor-mediated endocytosis and, upon exposure to the low pH of the endosome, insert into and deliver two enzymatic domains across the membrane. Eukaryotic inositol-hexakisphosphate (InsP6) binds an autoprocessing domain to activate a proteolysis event that releases the N-terminal glucosyltransferase domain into the cytosol. Here, we report the crystal structure of a 1,832-amino-acid fragment of TcdA (TcdA1832), which reveals a requirement for zinc in the mechanism of toxin autoprocessing and an extended delivery domain that serves as a scaffold for the hydrophobic α-helices involved in pH-dependent pore formation. A surface loop of the delivery domain whose sequence is strictly conserved among all large clostridial toxins is shown to be functionally important, and is highlighted for future efforts in the development of vaccines and novel therapeutics.

  20. Botulinum Toxin and Muscle Atrophy: A Wanted or Unwanted Effect.

    Science.gov (United States)

    Durand, Paul D; Couto, Rafael A; Isakov, Raymond; Yoo, Donald B; Azizzadeh, Babak; Guyuron, Bahman; Zins, James E

    2016-04-01

    While the facial rejuvenating effect of botulinum toxin type A is well known and widespread, its use in body and facial contouring is less common. We first describe its use for deliberate muscle volume reduction, and then document instances of unanticipated and undesirable muscle atrophy. Finally, we investigate the potential long-term adverse effects of botulinum toxin-induced muscle atrophy. Although the use of botulinum toxin type A in the cosmetic patient has been extensively studied, there are several questions yet to be addressed. Does prolonged botulinum toxin treatment increase its duration of action? What is the mechanism of muscle atrophy and what is the cause of its reversibility once treatment has stopped? We proceed to examine how prolonged chemodenervation with botulinum toxin can increase its duration of effect and potentially contribute to muscle atrophy. Instances of inadvertent botulinum toxin-induced atrophy are also described. These include the "hourglass deformity" secondary to botulinum toxin type A treatment for migraine headaches, and a patient with atrophy of multiple facial muscles from injections for hemifacial spasm. Numerous reports demonstrate that muscle atrophy after botulinum toxin type A treatment occurs and is both reversible and temporary, with current literature supporting the notion that repeated chemodenervation with botulinum toxin likely responsible for both therapeutic and incidental temporary muscle atrophy. Furthermore, duration of response may be increased with subsequent treatments, thus minimizing frequency of reinjection. Practitioners should be aware of the temporary and reversible effect of botulinum toxin-induced muscle atrophy and be prepared to reassure patients on this matter. © 2016 The American Society for Aesthetic Plastic Surgery, Inc. Reprints and permission: journals.permissions@oup.com.

  1. Toxic Microalgal Blooms: What Can Nuclear Techniques Provide for Their Management?

    Energy Technology Data Exchange (ETDEWEB)

    Reguera, B. [Instituto Espanol de Oceanografia, Centro Oceanografico de Vigo (Spain); Boisson, F. [International Atomic Energy Agency, Environment Laboratories (Monaco); Darius, H. T. [Institut Louis Malarde, Laboratoire de Recherche sur les Microalgues Toxiques, Tahiti, French Polynesia (France); Dechraoui Bottein, M. -Y. [NOAA, National Ocean Service, Marine Biotoxins Programme, Center for Coastal Environmental Health and Biomolecular Research, Charleston, SC (United States)

    2013-07-15

    Some harmful algal blooms (HABs) produce potent toxins that accumulate in shellfish and fish and represent a major threat to human health, international trade and sustainable coastal fisheries development. In the context of climate change and displacement of endemic toxigenic species (via ship ballast waters and other vectors) to new coastal areas, HABs appear to be more frequent and widespread. The IAEA Marine Environment Laboratory and its partners have been developing and transferring isotopic based analytical methods and instrumentation for monitoring HAB species, their biotoxins, and radiometric dating of sediment cores. The extremely sensitive and robust Receptor Binding Assay (RBA) for toxins associated with Paralytic Shellfish Poisoning (PSP) and Ciguatera Fish Poisoning (CFP) provides an alternative method to the standard mouse bioassay, and radiometric sediment core dating combined with fossil cyst abundance allows reconstruction of the prior history of blooms and their relationship to climate. (author)

  2. Oxidative Stress in Shiga Toxin Production by Enterohemorrhagic Escherichia coli

    Directory of Open Access Journals (Sweden)

    Katarzyna Licznerska

    2016-01-01

    Full Text Available Virulence of enterohemorrhagic Escherichia coli (EHEC strains depends on production of Shiga toxins. These toxins are encoded in genomes of lambdoid bacteriophages (Shiga toxin-converting phages, present in EHEC cells as prophages. The genes coding for Shiga toxins are silent in lysogenic bacteria, and prophage induction is necessary for their efficient expression and toxin production. Under laboratory conditions, treatment with UV light or antibiotics interfering with DNA replication are commonly used to induce lambdoid prophages. Since such conditions are unlikely to occur in human intestine, various research groups searched for other factors or agents that might induce Shiga toxin-converting prophages. Among other conditions, it was reported that treatment with H2O2 caused induction of these prophages, though with efficiency significantly lower relative to UV-irradiation or mitomycin C treatment. A molecular mechanism of this phenomenon has been proposed. It appears that the oxidative stress represents natural conditions provoking induction of Shiga toxin-converting prophages as a consequence of H2O2 excretion by either neutrophils in infected humans or protist predators outside human body. Finally, the recently proposed biological role of Shiga toxin production is described in this paper, and the “bacterial altruism” and “Trojan Horse” hypotheses, which are connected to the oxidative stress, are discussed.

  3. Botulinum Toxin in Neurogenic Detrusor Overactivity

    Directory of Open Access Journals (Sweden)

    Carlos Arturo Levi D'Ancona

    2012-09-01

    Full Text Available Purpose To evaluate the effects of botulinum toxin on urodynamic parameters and quality of life in patients with neurogenic detrusor overactivity. Methods Thirty four adult patients with spinal cord injury and detrusor overactivity were selected. The patients received 300 units of botulinum toxin type A. The endpoints evaluated with the episodes of urinary incontinence and measured the maximum cystometric capacity, maximum amplitude of detrusor pressure and bladder compliance at the beginning and end of the study (24 weeks and evaluated the quality of life by applying the Qualiveen questionnaire. Results A significant decrease in the episodes of urinary incontinence was observed. All urodynamic parameters presented a significant improvement. The same was observed in the quality of life index and the specific impact of urinary problems scores from the Qualiveen questionnaire. Six patients did not complete the study, two due to incomplete follow-up, and four violated protocol and were excluded from the analyses. No systemic adverse events of botulinum toxin type A were reported. Conclusions A botulinum toxin type A showed a significantly improved response in urodynamics parameters and specific and general quality of life.

  4. Bacterial toxin-antitoxin systems: more than selfish entities?

    OpenAIRE

    Laurence Van Melderen; Manuel Saavedra De Bast

    2009-01-01

    Bacterial toxin?antitoxin (TA) systems are diverse and widespread in the prokaryotic kingdom. They are composed of closely linked genes encoding a stable toxin that can harm the host cell and its cognate labile antitoxin, which protects the host from the toxin's deleterious effect. TA systems are thought to invade bacterial genomes through horizontal gene transfer. Some TA systems might behave as selfish elements and favour their own maintenance at the expense of their host. As a consequence,...

  5. Gene therapy for carcinoma of the breast: Genetic toxins

    International Nuclear Information System (INIS)

    Vassaux, Georges; Lemoine, Nick R

    2000-01-01

    Gene therapy was initially envisaged as a potential treatment for genetically inherited, monogenic disorders. The applications of gene therapy have now become wider, however, and include cardiovascular diseases, vaccination and cancers in which conventional therapies have failed. With regard to oncology, various gene therapy approaches have been developed. Among them, the use of genetic toxins to kill cancer cells selectively is emerging. Two different types of genetic toxins have been developed so far: the metabolic toxins and the dominant-negative class of toxins. This review describes these two different approaches, and discusses their potential applications in cancer gene therapy

  6. Modification of opiate agonist binding by pertussis toxin

    Energy Technology Data Exchange (ETDEWEB)

    Abood, M.E.; Lee, N.M.; Loh, H.H.

    1986-03-05

    Opiate agonist binding is decreased by GTP, suggesting the possible involvement of GTP binding proteins in regulation of opiate receptor binding. This possibility was addressed by asking whether pertussis toxin treatment, which results in ADP-ribosylation and modification of G proteins, would alter opiate agonist binding. The striatum was chosen for the initial brain area to be studied, since regulation of opiate action in this area had been shown to be modified by pertussis toxin. Treatment of striatal membranes with pertussis toxin results in up to a 55% decrease in /sup 3/(H)-DADLE binding as compared with membranes treated identically without toxin. This corresponds to a near complete ADP-ribosylation of both G proteins in the striatal membrane. The decrease in agonist binding appears to be due to an altered affinity of the receptor for agonist as opposed to a decrease in the number of sites. This effect of pertussis toxin on opiate agonist binding demonstrates the actual involvement of G proteins in regulation of opiate receptor binding.

  7. Modification of opiate agonist binding by pertussis toxin

    International Nuclear Information System (INIS)

    Abood, M.E.; Lee, N.M.; Loh, H.H.

    1986-01-01

    Opiate agonist binding is decreased by GTP, suggesting the possible involvement of GTP binding proteins in regulation of opiate receptor binding. This possibility was addressed by asking whether pertussis toxin treatment, which results in ADP-ribosylation and modification of G proteins, would alter opiate agonist binding. The striatum was chosen for the initial brain area to be studied, since regulation of opiate action in this area had been shown to be modified by pertussis toxin. Treatment of striatal membranes with pertussis toxin results in up to a 55% decrease in 3 (H)-DADLE binding as compared with membranes treated identically without toxin. This corresponds to a near complete ADP-ribosylation of both G proteins in the striatal membrane. The decrease in agonist binding appears to be due to an altered affinity of the receptor for agonist as opposed to a decrease in the number of sites. This effect of pertussis toxin on opiate agonist binding demonstrates the actual involvement of G proteins in regulation of opiate receptor binding

  8. ADP-ribosylation of transducin by pertussis toxin

    International Nuclear Information System (INIS)

    Watkins, P.A.; Burns, D.L.; Kanaho, Y.; Liu, T.Y.; Hewlett, E.L.; Moss, J.

    1985-01-01

    Transducin, the guanyl nucleotide-binding regulatory protein of retinal rod outer segments that couples the photon receptor, rhodopsin, with the light-activated cGMP phosphodiesterase, can be resolved into two functional components, T alpha and T beta gamma. T alpha (39 kDa), which is [ 32 P]ADP-ribosylated by pertussis toxin and [ 32 P]NAD in rod outer segments and in purified transducin, was also labeled by the toxin after separation from T beta gamma (36 kDa and approximately 10 kDa); neither component of T beta gamma was a pertussis toxin substrate. Labeling of T alpha was enhanced by T beta gamma and was maximal at approximately 1:1 molar ratio of T alpha : T beta gamma. Limited proteolysis by trypsin of T alpha in the presence of guanyl-5'-yl imidodiphosphate (Gpp(NH)p) resulted in the sequential appearance of proteins of 38 and 32 kDa. The amino terminus of both 38- and 32 -kDa proteins was leucine, whereas that of T alpha could not be identified and was assumed to be blocked. The 32 -kDa peptide was not a pertussis toxin substrate. Labeling of the 38-kDa protein was poor and was not enhanced by T beta gamma. Trypsin treatment of [ 32 P]ADP-ribosyl-T alpha produced a labeled 37-38-kDa doublet followed by appearance of radioactivity at the dye front. It appears, therefore, that, although the 38-kDa protein was poor toxin substrate, it contained the ADP-ribosylation site. Without rhodopsin, labeling of T alpha (in the presence of T beta gamma) was unaffected by Gpp(NH)p, guanosine 5'-O-(thiotriphosphate) (GTP gamma S), GTP, GDP, and guanosine 5'-O-(thiodiphosphate) (GDP beta S) but was increased by ATP. When photolyzed rhodopsin and T beta gamma were present, Gpp(NH)p and GTP gamma S decreased [ 32 P]ADP-ribosylation by pertussis toxin. Thus, pertussis toxin-catalyzed [ 32 P]ADP-ribosylation of T alpha was affected by nucleotides, rhodopsin and light in addition to T beta gamma

  9. Toxin synergism in snake venoms

    DEFF Research Database (Denmark)

    Laustsen, Andreas Hougaard

    2016-01-01

    Synergism between venom toxins exists for a range of snake species. Synergism can be derived from both intermolecular interactions and supramolecular interactions between venom components, and can be the result of toxins targeting the same protein, biochemical pathway or physiological process. Few...... simple systematic tools and methods for determining the presence of synergism exist, but include co-administration of venom components and assessment of Accumulated Toxicity Scores. A better understanding of how to investigate synergism in snake venoms may help unravel strategies for developing novel...

  10. Detection of a Planktothrix agardhii Bloom in Portuguese Marine Coastal Waters

    Directory of Open Access Journals (Sweden)

    Catarina Churro

    2017-12-01

    Full Text Available Cyanobacteria blooms are frequent in freshwaters and are responsible for water quality deterioration and human intoxication. Although, not a new phenomenon, concern exists on the increasing persistence, scale, and toxicity of these blooms. There is evidence, in recent years, of the transfer of these toxins from inland to marine waters through freshwater outflow. However, the true impact of these blooms in marine habitats has been overlooked. In the present work, we describe the detection of Planktothrix agardhii, which is a common microcystin producer, in the Portuguese marine coastal waters nearby a river outfall in an area used for shellfish harvesting and recreational activities. P. agardhii was first observed in November of 2016 in seawater samples that are in the scope of the national shellfish monitoring system. This occurrence was followed closely between November and December of 2016 by a weekly sampling of mussels and water from the sea pier and adjacent river mouth with salinity ranging from 35 to 3. High cell densities were found in the water from both sea pier and river outfall, reaching concentrations of 4,960,608 cells·L−1 and 6810.3 × 106 cells·L−1 respectively. Cultures were also established with success from the environment and microplate salinity growth assays showed that the isolates grew at salinity 10. HPLC-PDA analysis of total microcystin content in mussel tissue, water biomass, and P. agardhii cultures did not retrieve a positive result. In addition, microcystin related genes were not detected in the water nor cultures. So, the P. agardhii present in the environment was probably a non-toxic strain. This is, to our knowledge, the first report on a P. agardhii bloom reaching the sea and points to the relevance to also monitoring freshwater harmful phytoplankton and related toxins in seafood harvesting and recreational coastal areas, particularly under the influence of river plumes.

  11. Toxin-independent virulence of Bacillus anthracis in rabbits.

    Directory of Open Access Journals (Sweden)

    Haim Levy

    Full Text Available The accepted paradigm states that anthrax is both an invasive and toxinogenic disease and that the toxins play a major role in pathogenicity. In the guinea pig (GP model we have previously shown that deletion of all three toxin components results in a relatively moderate attenuation in virulence, indicating that B. anthracis possesses an additional toxin-independent virulence mechanism. To characterize this toxin-independent mechanism in anthrax disease, we developed a new rabbit model by intravenous injection (IV of B. anthracis encapsulated vegetative cells, artificially creating bacteremia. Using this model we were able to demonstrate that also in rabbits, B. anthracis mutants lacking the toxins are capable of killing the host within 24 hours. This virulent trait depends on the activity of AtxA in the presence of pXO2, as, in the absence of the toxin genes, deletion of either component abolishes virulence. Furthermore, this IV virulence depends mainly on AtxA rather than the whole pXO1. A similar pattern was shown in the GP model using subcutaneous (SC administration of spores of the mutant strains, demonstrating the generality of the phenomenon. The virulent strains showed higher bacteremia levels and more efficient tissue dissemination; however our interpretation is that tissue dissemination per se is not the main determinant of virulence whose exact nature requires further elucidation.

  12. Mass Spectrometric Identification and Differentiation of Botulinum Neurotoxins through Toxin Proteomics.

    Science.gov (United States)

    Kalb, Suzanne R; Barr, John R

    2013-08-01

    Botulinum neurotoxins (BoNTs) cause the disease botulism, which can be lethal if untreated. There are seven known serotypes of BoNT, A-G, defined by their response to antisera. Many serotypes are distinguished into differing subtypes based on amino acid sequence and immunogenic properties, and some subtypes are further differentiated into toxin variants. Toxin characterization is important as different types of BoNT can respond differently to medical countermeasures for botulism, and characterization of the toxin can aid in epidemiologic and forensic investigations. Proteomic techniques have been established to determine the serotype, subtype, or toxin variant of BoNT. These techniques involve digestion of the toxin into peptides, tandem mass spectrometric (MS/MS) analysis of the peptides, and database searching to identify the BoNT protein. These techniques demonstrate the capability to detect BoNT and its neurotoxin-associated proteins, and differentiate the toxin from other toxins which are up to 99.9% identical in some cases. This differentiation can be accomplished from toxins present in a complex matrix such as stool, food, or bacterial cultures and no DNA is required.

  13. Radiation resistance of paralytic shellfish poison (PSP) toxins

    Energy Technology Data Exchange (ETDEWEB)

    San Juan, Edith M

    2000-04-01

    Radiation resistance of paralytic shellfish poison (PSP) toxins, obtained from Pyrodinium bahamense var. compressum in shellstocks of green mussels, was determined by subjecting the semi-purified toxin extract as well as the shellstocks of green mussels to high doses of ionizing radiation of 5, 10, 15 and 20 kGy. The concentration of the PSP toxins was determined by the Standard Mouse Bioassay (SMB) method. The radiation assistance of the toxins was determined by plotting the PSP toxin concentration versus applied dose in a semilog paper. The D{sub 10} value or decimal reduction dose was obtained from the straight line which is the dose required to reduce the toxicity level by 90%. The effects of irradiation on the quality of green mussels in terms of its physico-chemical, microbiological and sensory attributes were also conducted. The effect of irradiation on the fatty acid components of green mussels was determined by gas chromatography. Radiation resistance of the PSP toxins was determined to be lower in samples with initially high toxicity level as compared with samples with initially low toxicity level. The D{sub 10} values of samples with initially high PSP level were 28.5 kGy in shellstocks of green musssels and 17.5 kGy in the semi-purified toxin extract. When the PSP level was low initially, the D{sub 10} values were as high as 57.5 and 43.5 kGy in shellstocks of green mussels for the two trials, and 43.0 kGy in semi-purified toxin extract. The microbial load of the irradiated mussels was remarkably reduced. No differnce in color and odor characteristics were observed in the mussel samples subjected to varying doses of ionizing radiation. There was darkening in the color of mussel meat and its juice. The concentration of the fatty acid components in the fresh green mussels were considerably higher as compared with those present in the irradiated mussels, though some volatile fatty acids were detected as a result of irradiation. (Author)

  14. Radiation resistance of paralytic shellfish poison (PSP) toxins

    International Nuclear Information System (INIS)

    San Juan, Edith M.

    2000-04-01

    Radiation resistance of paralytic shellfish poison (PSP) toxins, obtained from Pyrodinium bahamense var. compressum in shellstocks of green mussels, was determined by subjecting the semi-purified toxin extract as well as the shellstocks of green mussels to high doses of ionizing radiation of 5, 10, 15 and 20 kGy. The concentration of the PSP toxins was determined by the Standard Mouse Bioassay (SMB) method. The radiation assistance of the toxins was determined by plotting the PSP toxin concentration versus applied dose in a semilog paper. The D 10 value or decimal reduction dose was obtained from the straight line which is the dose required to reduce the toxicity level by 90%. The effects of irradiation on the quality of green mussels in terms of its physico-chemical, microbiological and sensory attributes were also conducted. The effect of irradiation on the fatty acid components of green mussels was determined by gas chromatography. Radiation resistance of the PSP toxins was determined to be lower in samples with initially high toxicity level as compared with samples with initially low toxicity level. The D 10 values of samples with initially high PSP level were 28.5 kGy in shellstocks of green musssels and 17.5 kGy in the semi-purified toxin extract. When the PSP level was low initially, the D 10 values were as high as 57.5 and 43.5 kGy in shellstocks of green mussels for the two trials, and 43.0 kGy in semi-purified toxin extract. The microbial load of the irradiated mussels was remarkably reduced. No differnce in color and odor characteristics were observed in the mussel samples subjected to varying doses of ionizing radiation. There was darkening in the color of mussel meat and its juice. The concentration of the fatty acid components in the fresh green mussels were considerably higher as compared with those present in the irradiated mussels, though some volatile fatty acids were detected as a result of irradiation. (Author)

  15. Proteinaceous toxins from three species of scorpaeniform fish (lionfish Pterois lunulata, devil stinger Inimicus japonicus and waspfish Hypodytes rubripinnis): close similarity in properties and primary structures to stonefish toxins.

    Science.gov (United States)

    Kiriake, Aya; Suzuki, Yasuko; Nagashima, Yuji; Shiomi, Kazuo

    2013-08-01

    The crude toxins from three species of venomous fish (lionfish Pterois lunulata, devil stinger Inimicus japonicus and waspfish Hypodytes rubripinnis) belonging to the order Scorpaeniformes exhibited mouse-lethal, hemolytic, edema-forming and nociceptive activities. In view of the antigenic cross-reactivity with the stonefish toxins, the primary structures of the stonefish toxin-like toxins from the three scorpaeniform fish were determined by cDNA cloning using primers designed from the highly conserved sequences of the stonefish toxins. Based on the data obtained in gel filtration, immunoblotting and cDNA cloning, each toxin was judged to be a 160 kDa heterodimer composed of 80 kDa α- and β-subunits. The three scorpaeniform fish toxins contain a B30.2/SPRY domain (∼200 amino acid residues) in the C-terminal region of each subunit, as reported for the toxins from two species of lionfish and two species of stonefish. With respect to the amino acid sequence similarity, the scorpaeniform fish toxins are divided into the following two groups: toxins from three species of lionfish and those from devil stinger, two species of stonefish and waspfish. The phylogenetic tree generated also clearly supports the classification of the toxins. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Diphtheria toxin-induced channels in Vero cells selective for monovalent cations

    International Nuclear Information System (INIS)

    Sandvig, K.; Olsnes, S.

    1988-01-01

    Ion fluxes associated with translocation of diphtheria toxin across the surface membrane of Vero cells were studied. When cells with surface-bound toxin were exposed to low pH to induce toxin entry, the cells became permeable to Na+, K+, H+, choline+, and glucosamine+. There was no increased permeability to Cl-, SO4(-2), glucose, or sucrose, whereas the uptake of 45 Ca2+ was slightly increased. The influx of Ca2+, which appears to be different from that of monovalent cations, was reduced by several inhibitors of anion transport and by verapamil, Mn2+, Co2+, and Ca2+, but not by Mg2+. The toxin-induced fluxes of N+, K+, and protons were inhibited by Cd2+. Cd2+ also protected the cells against intoxication by diphtheria toxin, suggesting that the open cation-selective channel is required for toxin translocation. The involvement of the toxin receptor is discussed

  17. Preliminary study on swarming marine bacteria isolated from Pulau Tinggi's sponges

    Science.gov (United States)

    Sairi, Fareed; Idris, Hamidah; Zakaria, Nur Syuhana; Usup, Gires; Ahmad, Asmat

    2015-09-01

    Marine sponges were known to produce novel bioactive compounds that have anti-bacterial, anti-viral, anti-cancer and anti-fungal activities. Most of the bioactive compounds were secreted from the bacteria that lives on the sponges. The bacterial communities also produced biofilm, toxin or biosurfactant that protect the sponges from disease or in-coming predator. In this study, twenty nine marine bacteria with swarming motility characteristic was isolated from 2 different sponge samples collected in Pulau Tinggi These isolates were grown and their genome were extracted for molecular identification using the 16S rRNA approach. Sequence comparison using BLASTn and multiple alignments using MEGA4 was performed to produce a phylogenetic tree. The phylogenetic tree revealed that 20 of the isolates were grouped under α-Proteobacteria that comprised of 19 isolates in the Vibrionaceae family and one belongs to Aeromonadaceae family. Furthermore, six isolates from Actinobacteria family and three isolates from Firmicutes were also detected. The swarming characteristic indicates the possible production of biosurfactant.

  18. Cholix Toxin, a Novel ADP-ribosylating Factor from Vibrio cholerae

    Energy Technology Data Exchange (ETDEWEB)

    Jorgensen, Rene; Purdy, Alexandra E.; Fieldhouse, Robert J.; Kimber, Matthew S.; Bartlett, Douglas H.; Merrill, A. Rod (Guelph); (NIH); (UCSD)

    2008-07-15

    The ADP-ribosyltransferases are a class of enzymes that display activity in a variety of bacterial pathogens responsible for causing diseases in plants and animals, including those affecting mankind, such as diphtheria, cholera, and whooping cough. We report the characterization of a novel toxin from Vibrio cholerae, which we call cholix toxin. The toxin is active against mammalian cells (IC50 = 4.6 {+-} 0.4 ng/ml) and crustaceans (Artemia nauplii LD50 = 10 {+-} 2 {mu}g/ml). Here we show that this toxin is the third member of the diphthamide-specific class of ADP-ribose transferases and that it possesses specific ADP-ribose transferase activity against ribosomal eukaryotic elongation factor 2. We also describe the high resolution crystal structures of the multidomain toxin and its catalytic domain at 2.1- and 1.25-{angstrom} resolution, respectively. The new structural data show that cholix toxin possesses the necessary molecular features required for infection of eukaryotes by receptor-mediated endocytosis, translocation to the host cytoplasm, and inhibition of protein synthesis by specific modification of elongation factor 2. The crystal structures also provide important insight into the structural basis for activation of toxin ADP-ribosyltransferase activity. These results indicate that cholix toxin may be an important virulence factor of Vibrio cholerae that likely plays a significant role in the survival of the organism in an aquatic environment.

  19. Exploring Marine Cyanobacteria for Lead Compounds of Pharmaceutical Importance

    Directory of Open Access Journals (Sweden)

    Bushra Uzair

    2012-01-01

    Full Text Available The Ocean, which is called the “mother of origin of life,” is also the source of structurally unique natural products that are mainly accumulated in living organisms. Cyanobacteria are photosynthetic prokaryotes used as food by humans. They are excellent source of vitamins and proteins vital for life. Several of these compounds show pharmacological activities and are helpful for the invention and discovery of bioactive compounds, primarily for deadly diseases like cancer, acquired immunodeficiency syndrome (AIDS, arthritis, and so forth, while other compounds have been developed as analgesics or to treat inflammation, and so forth. They produce a large variety of bioactive compounds, including substances with anticancer and antiviral activity, UV protectants, specific inhibitors of enzymes, and potent hepatotoxins and neurotoxins. Many cyanobacteria produce compounds with potent biological activities. This paper aims to showcase the structural diversity of marine cyanobacterial secondary metabolites with a comprehensive coverage of alkaloids and other applications of cyanobacteria.

  20. Gene expression profiling in brain of mice exposed to the marine neurotoxin ciguatoxin reveals an acute anti-inflammatory, neuroprotective response

    Directory of Open Access Journals (Sweden)

    Ryan James C

    2010-08-01

    Full Text Available Abstract Background Ciguatoxins (CTXs are polyether marine neurotoxins and potent activators of voltage-gated sodium channels. This toxin is carried by multiple reef-fish species and human consumption of ciguatoxins can result in an explosive gastrointestinal/neurologic illness. This study characterizes the global transcriptional response in mouse brain to a symptomatic dose of the highly toxic Pacific ciguatoxin P-CTX-1 and additionally compares this data to transcriptional profiles from liver and whole blood examined previously. Adult male C57/BL6 mice were injected with 0.26 ng/g P-CTX-1 while controls received only vehicle. Animals were sacrificed at 1, 4 and 24 hrs and transcriptional profiling was performed on brain RNA with Agilent whole genome microarrays. RT-PCR was used to independently validate gene expression and the web tool DAVID was used to analyze gene ontology (GO and molecular pathway enrichment of the gene expression data. Results A pronounced 4°C hypothermic response was recorded in these mice, reaching a minimum at 1 hr and lasting for 8 hrs post toxin exposure. Ratio expression data were filtered by intensity, fold change and p-value, with the resulting data used for time course analysis, K-means clustering, ontology classification and KEGG pathway enrichment. Top GO hits for this gene set included acute phase response and mono-oxygenase activity. Molecular pathway analysis showed enrichment for complement/coagulation cascades and metabolism of xenobiotics. Many immediate early genes such as Fos, Jun and Early Growth Response isoforms were down-regulated although others associated with stress such as glucocorticoid responsive genes were up-regulated. Real time PCR confirmation was performed on 22 differentially expressed genes with a correlation of 0.9 (Spearman's Rho, p Conclusions Many of the genes differentially expressed in this study, in parallel with the hypothermia, figure prominently in protection against

  1. Botulinum toxin type A versus botulinum toxin type B for cervical dystonia.

    Science.gov (United States)

    Duarte, Gonçalo S; Castelão, Mafalda; Rodrigues, Filipe B; Marques, Raquel E; Ferreira, Joaquim; Sampaio, Cristina; Moore, Austen P; Costa, João

    2016-10-26

    This is an update of a Cochrane review first published in 2003. Cervical dystonia is the most common form of focal dystonia and is a disabling disorder characterised by painful involuntary head posturing. There are two available formulations of botulinum toxin, with botulinum toxin type A (BtA) usually considered the first line therapy for this condition. Botulinum toxin type B (BtB) is an alternative option, with no compelling theoretical reason why it might not be as- or even more effective - than BtA. To compare the efficacy, safety and tolerability of botulinum toxin type A (BtA) versus botulinum toxin type B (BtB) in people with cervical dystonia. To identify studies for this review we searched the Cochrane Movement Disorders Group Trials Register, the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, reference lists of articles and conference proceedings. All elements of the search, with no language restrictions, were last run in October 2016. Double-blind, parallel, randomised, placebo-controlled trials (RCTs) comparing BtA versus BtB in adults with cervical dystonia. Two independent authors assessed records, selected included studies, extracted data using a paper pro forma, and evaluated the risk of bias. We resolved disagreements by consensus or by consulting a third author. We performed meta-analyses using the random-effects model, for the comparison BtA versus BtB to estimate pooled effects and corresponding 95% confidence intervals (95% CI). No prespecified subgroup analyses were carried out. The primary efficacy outcome was improvement on any validated symptomatic rating scale, and the primary safety outcome was the proportion of participants with adverse events. We included three RCTs, all new to this update, of very low to low methodological quality, with a total of 270 participants.Two studies exclusively enrolled participants with a known positive response to BtA treatment. This raises concerns of population enrichment

  2. [Botulism: structure and function of botulinum toxin and its clinical application].

    Science.gov (United States)

    Oguma, Keiji; Yamamoto, Yumiko; Suzuki, Tomonori; Fatmawati, Ni Nengah Dwi; Fujita, Kumiko

    2012-08-01

    Clostridium botulinum produces seven immunological distinct poisonous neurotoxins, A to G, with molecular masses of approximately 150kDa. In acidic foods and culture fluid, the neurotoxins associate with non-toxic components, and form large complexes designated progenitor toxins. The progenitor toxins are found in three forms named LL, L, and M. These neurotoxins and progenitor toxins were purified, and whole nucleotide sequences of their structure genes were determined. In this manuscript, the structure and function of these toxins, and the application of these toxins to clinical usage have been described.

  3. Botulinum toxin in the treatment of vocal fold nodules.

    Science.gov (United States)

    Allen, Jacqui E; Belafsky, Peter C

    2009-12-01

    Promising new techniques in the management of vocal fold nodules have been developed in the past 2 years. Simultaneously, the therapeutic use of botulinum toxin has rapidly expanded. This review explores the use of botulinum toxin in treatment of vocal nodules and summarizes current therapeutic concepts. New microsurgical instruments and techniques, refinements in laser technology, radiosurgical excision and steroid intralesional injections are all promising new techniques in the management of vocal nodules. Botulinum toxin-induced 'voice rest' is a new technique we have employed in patients with recalcitrant nodules. Successful resolution of nodules is possible with this technique, without the risk of vocal fold scarring inherent in dissection/excision techniques. Botulinum toxin usage is exponentially increasing, and large-scale, long-term studies demonstrate its safety profile. Targeted vocal fold temporary paralysis induced by botulinum toxin injection is a new, well tolerated and efficacious treatment in patients with persistent vocal fold nodules.

  4. Antifouling potential of the marine microalga Dunaliella salina.

    Science.gov (United States)

    Gao, Min; Li, Fengchao; Su, Rongguo; Wang, Ke; Li, Xuzhao; Lu, Wei

    2014-11-01

    Marine organisms have usually been viewed as sources of environmentally friendly compounds with antifouling activity. We performed a series of operations to investigate the antifouling potential of the marine microalga Dunaliella salina. For the ethyl acetate crude extract, the antialgal activity was significant, and the EC50 value against Skeletonema costatum was 58.9 μg ml(-1). The isolated purified extract was tested for antifouling activity, the EC 50 value against S. costatum was 21.2 μg ml(-1), and the LC50 against Balanus amphitrite larvae was 18.8 μg ml(-1). Subsequently, both UHR-TOF-MS and GC-MS were used for the structural elucidation of the compounds, and a series of unsaturated and saturated 16- and 18-carbon fatty acids were detected. The data suggested that the fatty acid extracts from D. salina possess high antifouling activity, and could be used as substitutes for potent, toxic antifouling compounds.

  5. Synthesis of protein in intestinal cells exposed to cholera toxin

    International Nuclear Information System (INIS)

    Peterson, J.W.; Berg, W.D. Jr.; Coppenhaver, D.H.

    1987-01-01

    The mechanism by which cyclic adenosine monophosphate (AMP), formed by intestinal epithelial cells in response to cholera toxin, ultimately results in alterations in water and electrolyte transport is poorly understood. Several studies have indicated that inhibitors of transcription or translation block much of the transport of ions and water in the intestine and edema formation in tissue elicited by cholera toxin. Data presented in this study confirmed the inhibitory effects of cycloheximide on cholera toxin-induced fluid accumulation in the rabbit intestinal loop model. Neither cycloheximide nor actinomycin D altered the amount of cyclic AMP that accumulated in intestinal cells and Chinese hamster ovary cells exposed to cholera toxin. An increase in [ 3 H] leucine incorporation was readily demonstrable in intestinal epithelial cells from rabbits challenged with Vibrio cholerae. Similarly, intestinal epithelial cells incubated with cholera toxin for 4 hr synthesized substantially more protein than controls as determined by relative incorporation of [ 35 S] methionine. Most of the new protein synthesized in response to cholera toxin was membrane associated and of high molecular weight. The possible significance of the toxin-induced protein relative to cholera pathogenesis was discussed

  6. Botulinum Toxin in Management of Limb Tremor

    Directory of Open Access Journals (Sweden)

    Elina Zakin

    2017-11-01

    Full Text Available Essential tremor is characterized by persistent, usually bilateral and symmetric, postural or kinetic activation of agonist and antagonist muscles involving either the distal or proximal upper extremity. Quality of life is often affected and one’s ability to perform daily tasks becomes impaired. Oral therapies, including propranolol and primidone, can be effective in the management of essential tremor, although adverse effects can limit their use and about 50% of individuals lack response to oral pharmacotherapy. Locally administered botulinum toxin injection has become increasingly useful in the management of essential tremor. Targeting of select muscles with botulinum toxin is an area of active research, and muscle selection has important implications for toxin dosing and functional outcomes. The use of anatomical landmarks with palpation, EMG guidance, electrical stimulation, and ultrasound has been studied as a technique for muscle localization in toxin injection. Earlier studies implemented a standard protocol for the injection of (predominantly wrist flexors and extensors using palpation and EMG guidance. Targeting of muscles by selection of specific activators of tremor (tailored to each patient using kinematic analysis might allow for improvement in efficacy, including functional outcomes. It is this individualized muscle selection and toxin dosing (requiring injection within various sites of a single muscle that has allowed for success in the management of tremors.

  7. Harmful Algal Blooms

    Science.gov (United States)

    Graham, Jennifer L.

    2007-01-01

    What are Harmful Algal Blooms (HABs)? Freshwater and marine harmful algal blooms (HABs) can occur anytime water use is impaired due to excessive accumulations of algae. HAB occurrence is affected by a complex set of physical, chemical, biological, hydrological, and meteorological conditions making it difficult to isolate specific causative environmental factors. Potential impairments include reduction in water quality, accumulation of malodorous scums in beach areas, algal production of toxins potent enough to poison both aquatic and terrestrial organisms, and algal production of taste-and-odor compounds that cause unpalatable drinking water and fish. HABs are a global problem, and toxic freshwater and (or) marine algae have been implicated in human and animal illness and death in over 45 countries worldwide and in at least 27 U.S. States (Yoo and others, 1995; Chorus and Bartram, 1999; Huisman and others, 2005).

  8. A Quantitative Electrochemiluminescence Assay for Clostridium perfringens alpha toxin

    National Research Council Canada - National Science Library

    Merrill, Gerald A; Rivera, Victor R; Neal, Dwayne D; Young, Charles; Poli, Mark A

    2006-01-01

    .... Biotinylated antibodies to C. perfringens alpha toxin bound to streptavidin paramagnetic beads specifically immunoadsorbed soluble sample alpha toxin which subsequently selectively immunoadsorbed ruthenium (Ru...

  9. Fate of Fusarium Toxins during Brewing.

    Science.gov (United States)

    Habler, Katharina; Geissinger, Cajetan; Hofer, Katharina; Schüler, Jan; Moghari, Sarah; Hess, Michael; Gastl, Martina; Rychlik, Michael

    2017-01-11

    Some information is available about the fate of Fusarium toxins during the brewing process, but only little is known about the single processing steps in detail. In our study we produced beer from two different barley cultivars inoculated with three different Fusarium species, namely, Fusarium culmorum, Fusarium sporotrichioides, and Fusarium avenaceum, producing a wide range of mycotoxins such as type B trichothecenes, type A trichothecenes, and enniatins. By the use of multi-mycotoxin LC-MS/MS stable isotope dilution methods we were able to follow the fate of Fusarium toxins during the entire brewing process. In particular, the type B trichothecenes deoxynivalenol, 3-acetyldeoxynivalenol, and 15-acetyldeoxynivalenol showed similar behaviors. Between 35 and 52% of those toxins remained in the beer after filtration. The contents of the potentially hazardous deoxynivalenol-3-glucoside and the type A trichothecenes increased during mashing, but a rapid decrease of deoxynivalenol-3-glucoside content was found during the following steps of lautering and wort boiling. The concentration of enniatins greatly decreased with the discarding of spent grains or finally with the hot break. The results of our study show the retention of diverse Fusarium toxins during the brewing process and allow for assessing the food safety of beer regarding the monitored Fusarium mycotoxins.

  10. Evolution of Bacillus thuringiensis Cry toxins insecticidal activity.

    Science.gov (United States)

    Bravo, Alejandra; Gómez, Isabel; Porta, Helena; García-Gómez, Blanca Ines; Rodriguez-Almazan, Claudia; Pardo, Liliana; Soberón, Mario

    2013-01-01

    Insecticidal Cry proteins produced by Bacillus thuringiensis are use worldwide in transgenic crops for efficient pest control. Among the family of Cry toxins, the three domain Cry family is the better characterized regarding their natural evolution leading to a large number of Cry proteins with similar structure, mode of action but different insect specificity. Also, this group is the better characterized regarding the study of their mode of action and the molecular basis of insect specificity. In this review we discuss how Cry toxins have evolved insect specificity in nature and analyse several cases of improvement of Cry toxin action by genetic engineering, some of these examples are currently used in transgenic crops. We believe that the success in the improvement of insecticidal activity by genetic evolution of Cry toxins will depend on the knowledge of the rate-limiting steps of Cry toxicity in different insect pests, the mapping of the specificity binding regions in the Cry toxins, as well as the improvement of mutagenesis strategies and selection procedures. © 2012 The Authors. Microbial Biotechnology © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  11. Treatment of Palatal Myoclonus with Botulinum Toxin Injection

    Directory of Open Access Journals (Sweden)

    Mursalin M. Anis

    2013-01-01

    Full Text Available Palatal myoclonus is a rare cause of pulsatile tinnitus in patients presenting to the otolaryngology office. Rhythmic involuntary contractions of the palatal muscles produce the pulsatile tinnitus in these patients. Treatment of this benign but distressing condition with anxiolytics, anticonvulsants, and surgery has been largely unsuccessful. A few investigators have obtained promising results with botulinum toxin injection into the palatal muscles. We present a patient with palatal myoclonus who failed conservative treatment with anxiolytics. Unilateral injection of botulinum toxin into her tensor veli palatini muscle under electromyographic guidance resolved pulsatile tinnitus in her ipsilateral ear and unmasked pulsatile tinnitus in the contralateral ear. A novel method of following transient postinjection symptoms using a diary is presented in this study. Botulinum toxin dose must be titrated to achieve optimal results in each individual patient, analogous to titrations done for spasmodic dysphonia. Knowledge of the temporal onset of postinjection side effects and symptomatic relief may aid physicians in dose titration and surveillance. We present suggestions on titrating the botulinum toxin dose to optimal levels. A review of the literature on the use of botulinum toxin for palatal myoclonus and some common complications are discussed.

  12. Lipoproteins/peptides are sepsis-inducing toxins from bacteria that can be neutralized by synthetic anti-endotoxin peptides.

    Science.gov (United States)

    Martinez de Tejada, Guillermo; Heinbockel, Lena; Ferrer-Espada, Raquel; Heine, Holger; Alexander, Christian; Bárcena-Varela, Sergio; Goldmann, Torsten; Correa, Wilmar; Wiesmüller, Karl-Heinz; Gisch, Nicolas; Sánchez-Gómez, Susana; Fukuoka, Satoshi; Schürholz, Tobias; Gutsmann, Thomas; Brandenburg, Klaus

    2015-09-22

    Sepsis, a life-threatening syndrome with increasing incidence worldwide, is triggered by an overwhelming inflammation induced by microbial toxins released into the bloodstream during infection. A well-known sepsis-inducing factor is the membrane constituent of Gram-negative bacteria, lipopolysaccharide (LPS), signalling via Toll-like receptor-4. Although sepsis is caused in more than 50% cases by Gram-positive and mycoplasma cells, the causative compounds are still poorly described. In contradicting investigations lipoproteins/-peptides (LP), lipoteichoic acids (LTA), and peptidoglycans (PGN), were made responsible for eliciting this pathology. Here, we used human mononuclear cells from healthy donors to determine the cytokine-inducing activity of various LPs from different bacterial origin, synthetic and natural, and compared their activity with that of natural LTA and PGN. We demonstrate that LP are the most potent non-LPS pro-inflammatory toxins of the bacterial cell walls, signalling via Toll-like receptor-2, not only in vitro, but also when inoculated into mice: A synthetic LP caused sepsis-related pathological symptoms in a dose-response manner. Additionally, these mice produced pro-inflammatory cytokines characteristic of a septic reaction. Importantly, the recently designed polypeptide Aspidasept(®) which has been proven to efficiently neutralize LPS in vivo, inhibited cytokines induced by the various non-LPS compounds protecting animals from the pro-inflammatory activity of synthetic LP.

  13. Treatment of Gastrointestinal Sphincters Spasms with Botulinum Toxin A

    Directory of Open Access Journals (Sweden)

    Giuseppe Brisinda

    2015-05-01

    Full Text Available Botulinum toxin A inhibits neuromuscular transmission. It has become a drug with many indications. The range of clinical applications has grown to encompass several neurological and non-neurological conditions. One of the most recent achievements in the field is the observation that botulinum toxin A provides benefit in diseases of the gastrointestinal tract. Although toxin blocks cholinergic nerve endings in the autonomic nervous system, it has also been shown that it does not block non-adrenergic non-cholinergic responses mediated by nitric oxide. This has promoted further interest in using botulinum toxin A as a treatment for overactive smooth muscles and sphincters. The introduction of this therapy has made the treatment of several clinical conditions easier, in the outpatient setting, at a lower cost and without permanent complications. This review presents current data on the use of botulinum toxin A in the treatment of pathological conditions of the gastrointestinal tract.

  14. Cosmetic Effect of Botulinum Toxin In Focal Hyperhydrosis

    Directory of Open Access Journals (Sweden)

    Jain S

    2005-01-01

    Full Text Available Hyperhydrosis of axillae, palm and sole is not a very uncommon problem. It leads to great embarrassment and considerable emotional stress to the individuals. Botulinum toxins prevent the release of acetylcholine at nerve terminals, therefore, reduces sweat secretion. Six patients of axillary and 4 patients of palmer and planter hyperhydrosis were treated with botulinum toxin. All patients experienced relatively satisfactory reduction of hyperhydrosis for period ranging between 4-7 months. No adverse effects were observed. Botulinum toxin therefore can be considered as an effective treatment in focal hyperhydrosis.

  15. The resurgence of botulinum toxin injection for strabismus in children.

    Science.gov (United States)

    Mahan, Marielle; Engel, J Mark

    2017-09-01

    The present review discusses recent advances in the use of botulinum toxin for the management of strabismus in children. Botulinum toxin injection produces similar results compared to surgery for certain subtypes of strabismus, especially acute onset esotropia. It may be more effective in many subtypes of esotropia where surgery has been less reliable, including partially accommodative esotropia, esotropia associated with cerebral palsy, and thyroid eye disease. Small retrospective studies have demonstrated the efficacy of botulinum toxin in the treatment of many types of pediatric strabismus, providing some guidance for clinicians to determine which patients would benefit most from this intervention. Although administration of botulinum toxin is generally accepted as a reasonable option in select cases, many strabismus surgeons have not fully embraced the treatment, in part because of perceived disadvantages compared to surgery and difficulty in identifying subsets with the highest potential for therapeutic success. A recent study compared the administration of botulinum toxin in children with acute-onset esotropia to surgical correction and found botulinum toxin had a statistically equal success rate, but with the advantage of significantly less time under general anesthesia. In addition, botulinum toxin has been recently tried in patients with partially accommodative esotropia, esotropia associated with cerebral palsy, cyclic esotropia, and in patients with thyroid eye disease. The present review will discuss current clinical recommendations based on recent studies on the use of botulinum toxin in children with strabismus.

  16. Effect of Gating Modifier Toxins on Membrane Thickness: Implications for Toxin Effect on Gramicidin and Mechanosensitive Channels

    Directory of Open Access Journals (Sweden)

    Shin-Ho Chung

    2013-02-01

    Full Text Available Various gating modifier toxins partition into membranes and interfere with the gating mechanisms of biological ion channels. For example, GsMTx4 potentiates gramicidin and several bacterial mechanosensitive channels whose gating kinetics are sensitive to mechanical properties of the membrane, whereas binding of HpTx2 shifts the voltage-activity curve of the voltage-gated potassium channel Kv4.2 to the right. The detailed process by which the toxin partitions into membranes has been difficult to probe using molecular dynamics due to the limited time scale accessible. Here we develop a protocol that allows the spontaneous assembly of a polypeptide toxin into membranes in atomistic molecular dynamics simulations of tens of nanoseconds. The protocol is applied to GsMTx4 and HpTx2. Both toxins, released in water at the start of the simulation, spontaneously bind into the lipid bilayer within 50 ns, with their hydrophobic patch penetrated into the bilayer beyond the phosphate groups of the lipids. It is found that the bilayer is about 2 Å thinner upon the binding of a GsMTx4 monomer. Such a thinning effect of GsMTx4 on membranes may explain its potentiation effect on gramicidin and mechanosensitive channels.

  17. Potentiometric chemical sensors for the detection of paralytic shellfish toxins.

    Science.gov (United States)

    Ferreira, Nádia S; Cruz, Marco G N; Gomes, Maria Teresa S R; Rudnitskaya, Alisa

    2018-05-01

    Potentiometric chemical sensors for the detection of paralytic shellfish toxins have been developed. Four toxins typically encountered in Portuguese waters, namely saxitoxin, decarbamoyl saxitoxin, gonyautoxin GTX5 and C1&C2, were selected for the study. A series of miniaturized sensors with solid inner contact and plasticized polyvinylchloride membranes containing ionophores, nine compositions in total, were prepared and their characteristics evaluated. Sensors displayed cross-sensitivity to four studied toxins, i.e. response to several toxins together with low selectivity. High selectivity towards paralytic shellfish toxins was observed in the presence of inorganic cations with selectivity coefficients ranging from 0.04 to 0.001 for Na + and K + and 3.6*10 -4 to 3.4*10 -5 for Ca 2+ . Detection limits were in the range from 0.25 to 0.9 μmolL -1 for saxitoxin and decarbamoyl saxitoxin, and from 0.08 to 1.8 μmolL -1 for GTX5 and C1&C2, which allows toxin detection at the concentration levels corresponding to the legal limits. Characteristics of the developed sensors allow their use in the electronic tongue multisensor system for simultaneous quantification of paralytic shellfish toxins. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Production of fibrinolytic protease from Streptomyces lusitanus isolated from marine sediments

    Science.gov (United States)

    SudeshWarma, S.; Merlyn keziah, S.; Subathra Devi, C.

    2017-11-01

    This study aim was to isolate, screen, characterize and optimize marine Streptomyces for fibrinolytic enzyme production. The potent actinomycete isolate was subjected to optimization. The parameters for optimization included pH, temperature, carbon, nitrogen sources. The crude supernatant produced was purified using size exclusion gel filtration chromatography. The optimized parameters for maximum productivity were found to be pH 7, 37°C, maltose and peptone respectively. The molecular weight of the purified enzyme was found to be 21kDa.

  19. Milling technological experiments to reduce Fusarium toxin contamination in wheat

    Directory of Open Access Journals (Sweden)

    Véha A.

    2015-01-01

    Full Text Available We examine 4 different DON-toxin-containing (0.74 - 1.15 - 1.19 - 2.14 mg/kg winter wheat samples: they were debranned and undebranned, and we investigated the flour’s and the by-products’ (coarse, fine bran toxin content changes. SATAKE lab-debranner was used for debranning and BRABENDER lab-mill for the milling process. Without debranning, two sample flours were above the DON toxin limit (0.75 mg/kg, which are waste. By minimum debranning (and minimum debranning mass loss; 6-8%, our experience with whole flour is that the multi-stage debranning measurement significantly reduces the content of the flour’s DON toxin, while the milling by-products, only after careful consideration and DON toxin measurements, may be produced for public consumption and for feeding.

  20. Differential toxin profiles of ciguatoxins in marine organisms: Chemistry, fate and global distribution.

    Science.gov (United States)

    Soliño, Lucía; Costa, Pedro Reis

    2018-05-17

    Ciguatoxins (CTXs) are fish metabolism products and a result of biotransformation of precursor gambiertoxins produced, in the first instance, by benthic dinoflagellates Gambierdiscus and Fukuyoa. Ciguatoxins are potent neurotoxins that selectively open voltage gated sodium channels in excitable cells causing the human food poisoning known as Ciguatera (CFP). Endemic from tropical areas in central Pacific and West Indian Ocean, and the Caribbean Sea, CTX may affect up to 500,000 people annually due to fish consumption. Their recent occurrence in European waters highlights the need for a multidisciplinary approach of CTX research in order to better understand the diversity and transformation of microalgae products through food webs. This article intends to review available information on chemistry, toxicity, distribution and fate of known CTX compounds from a critical perspective to provide an overview of future trends and needs on ciguatera research. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Staphylococcus aureus α-toxin modulates skin host response to viral infection.

    Science.gov (United States)

    Bin, Lianghua; Kim, Byung Eui; Brauweiler, Anne; Goleva, Elena; Streib, Joanne; Ji, Yinduo; Schlievert, Patrick M; Leung, Donald Y M

    2012-09-01

    Patients with atopic dermatitis (AD) with a history of eczema herpeticum have increased staphylococcal colonization and infections. However, whether Staphylococcus aureus alters the outcome of skin viral infection has not been determined. We investigated whether S aureus toxins modulated host response to herpes simplex virus (HSV) 1 and vaccinia virus (VV) infections in normal human keratinocytes (NHKs) and in murine infection models. NHKs were treated with S aureus toxins before incubation of viruses. BALB/c mice were inoculated with S aureus 2 days before VV scarification. Viral loads of HSV-1 and VV were evaluated by using real-time PCR, a viral plaque-forming assay, and immunofluorescence staining. Small interfering RNA duplexes were used to knockdown the gene expression of the cellular receptor of α-toxin, a disintegrin and metalloprotease 10 (ADAM10). ADAM10 protein and α-toxin heptamers were detected by using Western blot assays. We demonstrate that sublytic staphylococcal α-toxin increases viral loads of HSV-1 and VV in NHKs. Furthermore, we demonstrate in vivo that the VV load is significantly greater (P skin inoculated with an α-toxin-producing S aureus strain compared with murine skin inoculated with the isogenic α-toxin-deleted strain. The viral enhancing effect of α-toxin is mediated by ADAM10 and is associated with its pore-forming property. Moreover, we demonstrate that α-toxin promotes viral entry in NHKs. The current study introduces the novel concept that staphylococcal α-toxin promotes viral skin infection and provides a mechanism by which S aureus infection might predispose the host toward disseminated viral infections. Copyright © 2012 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  2. Quantitative determination of biological activity of botulinum toxins utilizing compound muscle action potentials (CMAP), and comparison of neuromuscular transmission blockage and muscle flaccidity among toxins.

    Science.gov (United States)

    Torii, Yasushi; Goto, Yoshitaka; Takahashi, Motohide; Ishida, Setsuji; Harakawa, Tetsuhiro; Sakamoto, Takashi; Kaji, Ryuji; Kozaki, Shunji; Ginnaga, Akihiro

    2010-01-01

    The biological activity of various types of botulinum toxin has been evaluated using the mouse intraperitoneal LD(50) test (ip LD(50)). This method requires a large number of mice to precisely determine toxin activity, and so has posed a problem with regard to animal welfare. We have used a direct measure of neuromuscular transmission, the compound muscle action potential (CMAP), to evaluate the effect of different types of botulinum neurotoxin (NTX), and we compared the effects of these toxins to evaluate muscle relaxation by employing the digit abduction scoring (DAS) assay. This method can be used to measure a broad range of toxin activities the day after administration. Types A, C, C/D, and E NTX reduced the CMAP amplitude one day after administration at below 1 ip LD(50), an effect that cannot be detected using the mouse ip LD(50) assay. The method is useful not only for measuring toxin activity, but also for evaluating the characteristics of different types of NTX. The rat CMAP test is straightforward, highly reproducible, and can directly determine the efficacy of toxin preparations through their inhibition of neuromuscular transmission. Thus, this method may be suitable for pharmacology studies and the quality control of toxin preparations. Copyright 2009 Elsevier Ltd. All rights reserved.

  3. Binding properties of Clostridium botulinum type C progenitor toxin to mucins.

    Science.gov (United States)

    Nakamura, Toshio; Takada, Noriko; Tonozuka, Takashi; Sakano, Yoshiyuki; Oguma, Keiji; Nishikawa, Atsushi

    2007-04-01

    It has been reported that Clostridium botulinum type C 16S progenitor toxin (C16S toxin) first binds to the sialic acid on the cell surface of mucin before invading cells [A. Nishikawa, N. Uotsu, H. Arimitsu, J.C. Lee, Y. Miura, Y. Fujinaga, H. Nakada, T. Watanabe, T. Ohyama, Y. Sakano, K. Oguma, The receptor and transporter for internalization of Clostridium botulinum type C progenitor toxin into HT-29 cells, Biochem. Biophys. Res. Commun. 319 (2004) 327-333]. In this study we investigated the binding properties of the C16S toxin to glycoproteins. Although the toxin bound to membrane blotted mucin derived from the bovine submaxillary gland (BSM), which contains a lot of sialyl oligosaccharides, it did not bind to neuraminidase-treated BSM. The binding of the toxin to BSM was inhibited by N-acetylneuraminic acid, N-glycolylneuraminic acid, and sialyl oligosaccharides strongly, but was not inhibited by neutral oligosaccharides. Both sialyl alpha2-3 lactose and sialyl alpha2-6 lactose prevented binding similarly. On the other hand, the toxin also bound well to porcine gastric mucin. In this case, neutral oligosaccharides might play an important role as ligand, since galactose and lactose inhibited binding. These results suggest that the toxin is capable of recognizing a wide variety of oligosaccharide structures.

  4. Prediction of Toxin Genes from Chinese Yellow Catfish Based on Transcriptomic and Proteomic Sequencing

    Directory of Open Access Journals (Sweden)

    Bing Xie

    2016-04-01

    Full Text Available Fish venom remains a virtually untapped resource. There are so few fish toxin sequences for reference, which increases the difficulty to study toxins from venomous fish and to develop efficient and fast methods to dig out toxin genes or proteins. Here, we utilized Chinese yellow catfish (Pelteobagrus fulvidraco as our research object, since it is a representative species in Siluriformes with its venom glands embedded in the pectoral and dorsal fins. In this study, we set up an in-house toxin database and a novel toxin-discovering protocol to dig out precise toxin genes by combination of transcriptomic and proteomic sequencing. Finally, we obtained 15 putative toxin proteins distributed in five groups, namely Veficolin, Ink toxin, Adamalysin, Za2G and CRISP toxin. It seems that we have developed a novel bioinformatics method, through which we could identify toxin proteins with high confidence. Meanwhile, these toxins can also be useful for comparative studies in other fish and development of potential drugs.

  5. ADP-ribosylation by cholera toxin: functional analysis of a cellular system that stimulates the enzymic activity of cholera toxin fragment A1

    International Nuclear Information System (INIS)

    Gill, D.M.; Coburn, J.

    1987-01-01

    The authors have clarified relationships between cholera toxin, cholera toxin substrates, a membrane protein S that is required for toxin activity, and a soluble protein CF that is needed for the function of S. The toxin has little intrinsic ability to catalyze ADP-ribosylations unless it encounters the active form of the S protein, which is S liganded to GTP or to a GTP analogue. In the presence of CF, S x GTP forms readily, though reversibly, but a more permanent active species, S-guanosine 5'-O-(3-thiotriphosphate) (S x GTPγS), forms over a period of 10-15 min at 37 0 C. Both guanosine 5'-O-(2-thiodiphosphate) and GTP block this quasi-permanent activation. Some S x GTPγS forms in membranes that are exposed to CF alone and then to GTPγS, with a wash in between, and it is possible that CF facilitates a G nucleotide exchange. S x GTPγS dissolved by nonionic detergents persists in solution and can be used to support the ADP-ribosylation of nucleotide-free substrates. In this circumstance, added guanyl nucleotides have no further effect. This active form of S is unstable, especially when heated, but the thermal inactivation above 45 0 C is decreased by GTPγS. Active S is required equally for the ADP-ribosylation of all of cholera toxin's protein substrates, regardless of whether they bind GTP or not. They suggest that active S interacts directly with the enzymic A 1 fragments of cholera toxin and not with any toxin substrate. The activation and activity of S are independent of the state, or even the presence, of adenylate cyclase and seem to be involved with the cyclase system only via cholera toxin. S is apparently not related by function to certain other GTP binding proteins, including p21/sup ras/, and appears to be a new GTP binding protein whose physiologic role remains to be identified

  6. A Supramolecular Approach toward Bioinspired PAMAM-Dendronized Fusion Toxins.

    Science.gov (United States)

    Kuan, Seah Ling; Förtsch, Christina; Ng, David Yuen Wah; Fischer, Stephan; Tokura, Yu; Liu, Weina; Wu, Yuzhou; Koynov, Kaloian; Barth, Holger; Weil, Tanja

    2016-06-01

    Nature has provided a highly optimized toolbox in bacterial endotoxins with precise functions dictated by their clear structural division. Inspired by this streamlined design, a supramolecular approach capitalizing on the strong biomolecular (streptavidin (SA))-biotin interactions is reported herein to prepare two multipartite fusion constructs, which involves the generation 2.0 (D2) or generation 3.0 (D3) polyamidoamine-dendronized transporter proteins (dendronized streptavidin (D3SA) and dendronized human serum albumin (D2HSA)) non-covalently fused to the C3bot1 enzyme from Clostridium botulinum, a potent and specific Rho-inhibitor. The fusion constructs, D3SA-C3 and D2HSA-C3, represent the first examples of dendronized protein transporters that are fused to the C3 enzyme, and it is successfully demonstrated that the C3 Rho-inhibitor is delivered into the cytosol of mammalian cells as determined from the characteristic C3-mediated changes in cell morphology and confocal microscopy. The design circumvents the low uptake of the C3 enzyme by eukaryotic cells and holds great promise for reprogramming the properties of toxin enzymes using a supramolecular approach to broaden their therapeutic applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Active Sites of Spinoxin, a Potassium Channel Scorpion Toxin, Elucidated by Systematic Alanine Scanning.

    Science.gov (United States)

    Peigneur, Steve; Yamaguchi, Yoko; Kawano, Chihiro; Nose, Takeru; Nirthanan, Selvanayagam; Gopalakrishnakone, Ponnampalam; Tytgat, Jan; Sato, Kazuki

    2016-05-31

    Peptide toxins from scorpion venoms constitute the largest group of toxins that target the voltage-gated potassium channel (Kv). Spinoxin (SPX) isolated from the venom of scorpion Heterometrus spinifer is a 34-residue peptide neurotoxin cross-linked by four disulfide bridges. SPX is a potent inhibitor of Kv1.3 potassium channels (IC50 = 63 nM), which are considered to be valid molecular targets in the diagnostics and therapy of various autoimmune disorders and cancers. Here we synthesized 25 analogues of SPX and analyzed the role of each amino acid in SPX using alanine scanning to study its structure-function relationships. All synthetic analogues showed similar disulfide bond pairings and secondary structures as native SPX. Alanine replacements at Lys(23), Asn(26), and Lys(30) resulted in loss of activity against Kv1.3 potassium channels, whereas replacements at Arg(7), Met(14), Lys(27), and Tyr(32) also largely reduced inhibitory activity. These results suggest that the side chains of these amino acids in SPX play an important role in its interaction with Kv1.3 channels. In particular, Lys(23) appears to be a key residue that underpins Kv1.3 channel inhibition. Of these seven amino acid residues, four are basic amino acids, suggesting that the positive electrostatic potential on the surface of SPX is likely required for high affinity interaction with Kv1.3 channels. This study provides insight into the structure-function relationships of SPX with implications for the rational design of new lead compounds targeting potassium channels with high potency.

  8. Structural constraints-based evaluation of immunogenic avirulent toxins from Clostridium botulinum C2 and C3 toxins as subunit vaccines.

    Science.gov (United States)

    Prisilla, A; Prathiviraj, R; Sasikala, R; Chellapandi, P

    2016-10-01

    Clostridium botulinum (group-III) is an anaerobic bacterium producing C2 and C3 toxins in addition to botulinum neurotoxins in avian and mammalian cells. C2 and C3 toxins are members of bacterial ADP-ribosyltransferase superfamily, which modify the eukaryotic cell surface proteins by ADP-ribosylation reaction. Herein, the mutant proteins with lack of catalytic and pore forming function derived from C2 (C2I and C2II) and C3 toxins were computationally evaluated to understand their structure-function integrity. We have chosen many structural constraints including local structural environment, folding process, backbone conformation, conformational dynamic sub-space, NAD-binding specificity and antigenic determinants for screening of suitable avirulent toxins. A total of 20 avirulent mutants were identified out of 23 mutants, which were experimentally produced by site-directed mutagenesis. No changes in secondary structural elements in particular to α-helices and β-sheets and also in fold rate of all-β classes. Structural stability was maintained by reordered hydrophobic and hydrogen bonding patterns. Molecular dynamic studies suggested that coupled mutations may restrain the binding affinity to NAD(+) or protein substrate upon structural destabilization. Avirulent toxins of this study have stable energetic backbone conformation with a common blue print of folding process. Molecular docking studies revealed that avirulent mutants formed more favorable hydrogen bonding with the side-chain of amino acids near to conserved NAD-binding core, despite of restraining NAD-binding specificity. Thus, structural constraints in the avirulent toxins would determine their immunogenic nature for the prioritization of protein-based subunit vaccine/immunogens to avian and veterinary animals infected with C. botulinum. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. PSP toxin levels and plankton community composition and abundance in size-fractionated vertical profiles during spring/summer blooms of the toxic dinoflagellate Alexandrium fundyense in the Gulf of Maine and on Georges Bank, 2007, 2008, and 2010: 2. Plankton community composition and abundance.

    Science.gov (United States)

    Petitpas, Christian M; Turner, Jefferson T; Deeds, Jonathan R; Keafer, Bruce A; McGillicuddy, Dennis J; Milligan, Peter J; Shue, Vangie; White, Kevin D; Anderson, Donald M

    2014-05-01

    As part of the Gulf of Maine Toxicity (GOMTOX) project, we determined Alexandrium fundyense abundance, paralytic shellfish poisoning (PSP) toxin levels in various plankton size fractions, and the community composition of potential grazers of A. fundyense in plankton size fractions during blooms of this toxic dinoflagellate in the coastal Gulf of Maine and on Georges Bank in spring and summer of 2007, 2008, and 2010. PSP toxins and A. fundyense cells were found throughout the sampled water column (down to 50 m) in the 20-64 μm size fractions. While PSP toxins were widespread throughout all size classes of the zooplankton grazing community, the majority of the toxin was measured in the 20-64 μm size fraction. A. fundyense cellular toxin content estimated from field samples was significantly higher in the coastal Gulf of Maine than on Georges Bank. Most samples containing PSP toxins in the present study had diverse assemblages of grazers. However, some samples clearly suggested PSP toxin accumulation in several different grazer taxa including tintinnids, heterotrophic dinoflagellates of the genus Protoperidinium , barnacle nauplii, the harpacticoid copepod Microsetella norvegica , the calanoid copepods Calanus finmarchicus and Pseudocalanus spp., the marine cladoceran Evadne nordmanni , and hydroids of the genus Clytia . Thus, a diverse assemblage of zooplankton grazers accumulated PSP toxins through food-web interactions. This raises the question of whether PSP toxins pose a potential human health risk not only from nearshore bivalve shellfish, but also potentially from fish and other upper-level consumers in zooplankton-based pelagic food webs.

  10. Toxin-mediated effects on the innate mucosal defenses: implications for enteric vaccines

    DEFF Research Database (Denmark)

    Glenn, Gregory M; Francis, David H; Danielsen, E Michael

    2009-01-01

    mucosal barrier as a key step in enteric pathogen survival. We review key observations relevant to the roles of LT and cholera toxin in protective immunity and the effects of these toxins on innate mucosal defenses. We suggest either that toxin-mediated fluid secretion mechanically disrupts the mucus...... layer or that toxins interfere with innate mucosal defenses by other means. Such a breach gives pathogens access to the enterocyte, leading to binding and pathogenicity by enterotoxigenic E. coli (ETEC) and other organisms. Given the common exposure to LT(+) ETEC by humans visiting or residing...... unexpectedly broad protective effects against LT(+) ETEC and mixed infections when using a toxin-based enteric vaccine. If toxins truly exert barrier-disruptive effects as a key step in pathogenesis, then a return to classic toxin-based vaccine strategies for enteric disease is warranted and can be expected...

  11. Anti-idiotypic antibodies that protect cells against the action of diphtheria toxin

    International Nuclear Information System (INIS)

    Rolf, J.M.; Gaudin, H.M.; Tirrell, S.M.; MacDonald, A.B.; Eidels, L.

    1989-01-01

    An anti-idiotypic serum prepared against the combining site (idiotype) of specific anti-diphtheria toxoid antibodies was characterized with respect to its interaction with highly diphtheria toxin-sensitive Vero cells. Although the anti-idiotypic serum protected Vero cells against the cytotoxic action of diphtheria toxin, it did not prevent the binding of 125 I-labeled diphtheria toxin to the cells but did inhibit the internalization and degradation of 125 I-labeled toxin. This anti-idiotypic serum immunoprecipitated a cell-surface protein from radiolabeled Vero cells with an apparent Mr of approximately 15,000. These results are consistent with the hypothesis that the anti-idiotypic serum contains antibodies that carry an internal image of an internalization site on the toxin and that a cell-surface protein involved in toxin internalization possesses a complementary site recognized by both the toxin and the anti-idiotypic antibodies

  12. Shiga toxin induces membrane reorganization and formation of long range lipid order

    DEFF Research Database (Denmark)

    Solovyeva, Vita; Johannes, Ludger; Simonsen, Adam Cohen

    2015-01-01

    membrane reordering. When Shiga toxin was added above the lipid chain melting temperature, the toxin interaction with the membrane induced rearrangement and clustering of Gb3 lipids that resulted in the long range order and alignment of lipids in gel domains. The toxin induced redistribution of Gb3 lipids...... inside gel domains is governed by the temperature at which Shiga toxin was added to the membrane: above or below the phase transition. The temperature is thus one of the critical factors controlling lipid organization and texture in the presence of Shiga toxin. Lipid chain ordering imposed by Shiga toxin...... binding can be another factor driving the reconstruction of lipid organization and crystallization of lipids inside gel domains....

  13. Pertussis toxin treatment does not block inhibition by atrial natriuretic factor of aldosterone secretion in cultured bovine zona glomerulosa cells

    International Nuclear Information System (INIS)

    De Lean, A.; Cantin, M.

    1986-01-01

    The authors have previously reported that atrial natriuretic factor (ANF) potently inhibits PGE or forskolin-stimulation aldosterone secretion in bovine zona glomerulosa (ZG) by acting through specific high affinity receptors. In order to evaluate the functional role of the regulatory protein N/sub i/ and the inhibition of adenylate cyclase activity (AC) in ZG, the authors have studied the effect of treatment with PT on inhibition by ANF of aldosterone production. Primary cultures of ZG were treated for 18 hours in serum-free F12 medium with (0-100 ng/ml PT). No effect of PT pretreatment was observed either on basal, PGE-stimulated or ANF-inhibited levels of steroidogenesis. When membranes prepared from control ZG were ADP-ribosylated with [ 32 P] NAD in the presence of PT, two toxin-specific bands with 39 Kd and 41 Kd were documented on SDS gel. Cell pretreatment with as low as 1 ng/ml drastically reduced further labelling of these two bands while higher doses completely abolished them. Since PT treatment covalently modifies completely the toxin substrate without altering ANF inhibition of adrenal steroidogenesis, the authors conclude that N/sub i/ is not involved in the mode of action of ANF on aldosterone production

  14. Office-based endoscopic botulinum toxin injection in laryngeal movement disorders.

    Science.gov (United States)

    Kaderbay, A; Righini, C A; Castellanos, P F; Atallah, I

    2018-06-01

    Botulinum toxin injection is widely used for the treatment of laryngeal movement disorders. Electromyography-guided percutaneous injection is the technique most commonly used to perform intralaryngeal botulinum toxin injection. We describe an endoscopic approach for intralaryngeal botulinum toxin injection under local anaesthesia without using electromyography. A flexible video-endoscope with an operating channel is used. After local anaesthesia of the larynx by instillation of lidocaine, a flexible needle is inserted into the operating channel in order to inject the desired dose of botulinum toxin into the vocal and/or vestibular folds. Endoscopic botulinum toxin injection under local anaesthesia is a reliable technique for the treatment of laryngeal movement disorders. It can be performed by any laryngologist without the need for electromyography. It is easy to perform for the operator and comfortable for the patient. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  15. Prokaryotic adenylate cyclase toxin stimulates anterior pituitary cells in culture

    International Nuclear Information System (INIS)

    Cronin, M.J.; Evans, W.S.; Rogol, A.D.; Weiss, A.A.; Thorner, M.O.; Orth, D.N.; Nicholson, W.E.; Yasumoto, T.; Hewlett, E.L.

    1986-01-01

    Bordetella pertussis synthesis a variety of virulence factors including a calmodulin-dependent adenylate cyclase (AC) toxin. Treatment of anterior pituitary cells with this AC toxin resulted in an increase in cellular cAMP levels that was associated with accelerated exocytosis of growth hormone (GH), prolactin, adrenocorticotropic hormone (ACTH), and luteinizing hormone (LH). The kinetics of release of these hormones, however, were markedly different; GH and prolactin were rapidly released, while LH and ACTH secretion was more gradually elevated. Neither dopamine agonists nor somatostatin changes the ability of AC toxin to generate cAMP (up to 2 h). Low concentrations of AC toxin amplified the secretory response to hypophysiotrophic hormones. The authors conclude that bacterial AC toxin can rapidly elevate cAMP levels in anterior pituitary cells and that it is the response that explains the subsequent acceleration of hormone release

  16. Effects of Clostridium perfringens iota toxin in the small intestine of mice.

    Science.gov (United States)

    Redondo, Leandro M; Redondo, Enzo A; Dailoff, Gabriela C; Leiva, Carlos L; Díaz-Carrasco, Juan M; Bruzzone, Octavio A; Cangelosi, Adriana; Geoghegan, Patricia; Fernandez-Miyakawa, Mariano E

    2017-12-01

    Iota toxin is a binary toxin solely produced by Clostridium perfringens type E strains, and is structurally related to CDT from C. difficile and CST from C. spiroforme. As type E causes hemorrhagic enteritis in cattle, it is usually assumed that associated diseases are mediated by iota toxin, although evidence in this regard has not been provided. In the present report, iota toxin intestinal effects were evaluated in vivo using a mouse model. Histological damage was observed in ileal loops treated with purified iota toxin after 4 h of incubation. Luminal iota toxin induced fluid accumulation in the small intestine in a dose dependent manner, as determined by the enteropooling and the intestinal loop assays. None of these changes were observed in the large intestine. These results suggest that C. perfringens iota toxin alters intestinal permeability, predominantly by inducing necrosis and degenerative changes in the mucosal epithelium of the small intestine, as well as changes in intestinal motility. The obtained results suggest a central role for iota toxin in the pathogenesis of C. perfringens type E hemorrhagic enteritis, and contribute to remark the importance of clostridial binary toxins in digestive diseases. Published by Elsevier Ltd.

  17. Comparative genomics evidence that only protein toxins are tagging bad bugs

    Directory of Open Access Journals (Sweden)

    Kalliopi eGeorgiades

    2011-10-01

    Full Text Available The term toxin was introduced by Roux and Yersin and describes macromolecular substances that, when produced during infection or when introduced parenterally or orally, cause an impairment of physiological functions that lead to disease or to the death of the infected organism. Long after the discovery of toxins, early genetic studies on bacterial virulence demonstrated that removing a certain number of genes from pathogenic bacteria decreases their capacity to infect hosts. Each of the removed factors was therefore referred to as a virulence factor, and it was speculated that non-pathogenic bacteria lack such supplementary factors. However, many recent comparative studies demonstrate that the specialization of bacteria to eukaryotic hosts is associated with massive gene loss. We recently demonstrated that the only features that seem to characterize 12 epidemic bacteria are toxin-antitoxin (TA modules, which are addiction molecules in host bacteria. In this study, we investigated if protein toxins are indeed the only molecules specific to pathogenic bacteria by comparing 14 epidemic bacterial killers (bad bugs with their 14 closest non-epidemic relatives (controls. We found protein toxins in significantly more elevated numbers in all of the bad bugs. For the first time, statistical principal components analysis, including genome size, GC%, TA modules, restriction enzymes and toxins, revealed that toxins are the only proteins other than TA modules that are correlated with the pathogenic character of bacteria. Moreover, intracellular toxins appear to be more correlated with the pathogenic character of bacteria than secreted toxins. In conclusion, we hypothesize that the only truly identifiable phenomena, witnessing the convergent evolution of the most pathogenic bacteria for humans are the loss of metabolic activities, i.e., the outcome of the loss of regulatory and transcription factors and the presence of protein toxins, alone or coupled as TA

  18. Anti-idiotypic antibodies that protect cells against the action of diphtheria toxin

    Energy Technology Data Exchange (ETDEWEB)

    Rolf, J.M.; Gaudin, H.M.; Tirrell, S.M.; MacDonald, A.B.; Eidels, L.

    1989-03-01

    An anti-idiotypic serum prepared against the combining site (idiotype) of specific anti-diphtheria toxoid antibodies was characterized with respect to its interaction with highly diphtheria toxin-sensitive Vero cells. Although the anti-idiotypic serum protected Vero cells against the cytotoxic action of diphtheria toxin, it did not prevent the binding of /sup 125/I-labeled diphtheria toxin to the cells but did inhibit the internalization and degradation of /sup 125/I-labeled toxin. This anti-idiotypic serum immunoprecipitated a cell-surface protein from radiolabeled Vero cells with an apparent Mr of approximately 15,000. These results are consistent with the hypothesis that the anti-idiotypic serum contains antibodies that carry an internal image of an internalization site on the toxin and that a cell-surface protein involved in toxin internalization possesses a complementary site recognized by both the toxin and the anti-idiotypic antibodies.

  19. EFEKTIFITAS TOXIN BOTULLINUM UNTUK MANAJEMEN BLEFAROSPASME ESSENSIAL DAN SPASME HEMIFASIAL

    Directory of Open Access Journals (Sweden)

    Hendriati Hendriati

    2010-09-01

    Full Text Available AbstrakUntuk mengukur efektifikas toxin Botullinum pada kasus-kasus okuloplastik (blefarospasme essensial dan spasme hemifasial.Laporan kasus 16 pasien yang terdiri dari 14 kasus spasme hemifasial dan 2 kasus blefarospasme essensial. Digunakan 6 vial toxin Botullinum. Vial pertama digunakan untuk pasien spasme hemifasial dan 1 pasien blefasrospasme di minggu berikutnya. vial kedua dan ketiga masing-masing digunakan untuk 2 pasien spasme hemifasial. Vial keempat digunakan untuk pasien blefarospasme yang menggunakan vial pertama (setelah 6 bulan, dan 1 pasien spasme hemifasial yang menggunakan vial kedua ( setelah 4 bulan dan 1 pasien spasme hemifasial baru. Setelah 1 minggu, toxin Botullinum vial keempat digunakan untuk 6 pasien spasme hemifasial dan 1 pasien blefarospasme essensial yang menggunakan vial pertama 8 hari berikutnya (setelah 7 bulan.Terdapat 16 pasien pada studi ini ; 14 spasme hemifasial dan 2 blefarospasme essensial. Pada 5 pasien dilakukan injeksi ulangan dengan jangka waktu yang berbeda. Tidak ditemukan efek samping pada pasien-pasien ini.Toxin Botulinum efektif untuk manajemen spasme hemifasial dan blefarospasme essensial tetapi efeknya temporer. Pada studi ini, jangka waktu injeksi ulangan bervariasi sekitar 4 – 7 bulan pada 5 pasien.Kata Kunci : Toxin Botulinum toxin, spasme hemifasial, blefarospasmeAbstractTo asses Botulinum Toxin efficacy in oculoplastic cases (blepharospasm and hemifacial spasm.A case report on 16 patients consisted of 14 hemifacial spasms and 2 essential blepharospasm. Six vials of botulinum toxin were used. First vial was used for two patients of hemifacial spasm and one blepharospasm patient one week later. Second and third vials were used each for two patients of hemifacial spasms. Fourth vial was used for one blepharospasm patient from first vial user (after six month, one hemifacial spasm from second vial user (after four months and one new hemifacial spasm. After one week, Botulinum toxin from

  20. Bacterial toxin-antitoxin systems: more than selfish entities?

    Science.gov (United States)

    Van Melderen, Laurence; Saavedra De Bast, Manuel

    2009-03-01

    Bacterial toxin-antitoxin (TA) systems are diverse and widespread in the prokaryotic kingdom. They are composed of closely linked genes encoding a stable toxin that can harm the host cell and its cognate labile antitoxin, which protects the host from the toxin's deleterious effect. TA systems are thought to invade bacterial genomes through horizontal gene transfer. Some TA systems might behave as selfish elements and favour their own maintenance at the expense of their host. As a consequence, they may contribute to the maintenance of plasmids or genomic islands, such as super-integrons, by post-segregational killing of the cell that loses these genes and so suffers the stable toxin's destructive effect. The function of the chromosomally encoded TA systems is less clear and still open to debate. This Review discusses current hypotheses regarding the biological roles of these evolutionarily successful small operons. We consider the various selective forces that could drive the maintenance of TA systems in bacterial genomes.

  1. Bacterial toxin-antitoxin systems: more than selfish entities?

    Directory of Open Access Journals (Sweden)

    Laurence Van Melderen

    2009-03-01

    Full Text Available Bacterial toxin-antitoxin (TA systems are diverse and widespread in the prokaryotic kingdom. They are composed of closely linked genes encoding a stable toxin that can harm the host cell and its cognate labile antitoxin, which protects the host from the toxin's deleterious effect. TA systems are thought to invade bacterial genomes through horizontal gene transfer. Some TA systems might behave as selfish elements and favour their own maintenance at the expense of their host. As a consequence, they may contribute to the maintenance of plasmids or genomic islands, such as super-integrons, by post-segregational killing of the cell that loses these genes and so suffers the stable toxin's destructive effect. The function of the chromosomally encoded TA systems is less clear and still open to debate. This Review discusses current hypotheses regarding the biological roles of these evolutionarily successful small operons. We consider the various selective forces that could drive the maintenance of TA systems in bacterial genomes.

  2. Botulinum toxin for treatment of the focal dystonia.

    Science.gov (United States)

    Nakamura, Yusaku

    2017-07-29

    Dystonia is defined as a movement disorder characterized by sustained or intermittent muscles contraction causing abnormal, often repetitive, movements, postures, or both. Dystonic movements are typically patterned and twisting, and may be tremulous. The precis diagnosis of dystonia is difficult for physicians because neurological brain imaging does not provide enough practical information. The diagnosis is depend on clinical experience of physicians. Botulinum toxin treatment is the accepted standard of care for patients with focal dystonia. Botulinum toxin treatment results in significant improvement of decreasing the symptom of dystonia. The success of treatment is dependent on muscle selection for treating involved muscles. Usually performance of botulinum toxin treatment is injected according to clinical experience of surface anatomy or clinical location method. However, the benefit of guidance of botulinum toxin treatment is improve outcome in dystonia. Injection techniques with ultra sound echogram or EMG guidance to identify dystonic muscles can be more benefit for patients.

  3. Botulinum toxin treatment for facial palsy: A systematic review.

    Science.gov (United States)

    Cooper, Lilli; Lui, Michael; Nduka, Charles

    2017-06-01

    Facial palsy may be complicated by ipsilateral synkinesis or contralateral hyperkinesis. Botulinum toxin is increasingly used in the management of facial palsy; however, the optimum dose, treatment interval, adjunct therapy and performance as compared with alternative treatments have not been well established. This study aimed to systematically review the evidence for the use of botulinum toxin in facial palsy. The Cochrane central register of controlled trials (CENTRAL), MEDLINE(R) (1946 to September 2015) and Embase Classic + Embase (1947 to September 2015) were searched for randomised studies using botulinum toxin in facial palsy. Forty-seven studies were identified, and three included. Their physical and patient-reported outcomes are described, and observations and cautions are discussed. Facial asymmetry has a strong correlation to subjective domains such as impairment in social interaction and perception of self-image and appearance. Botulinum toxin injections represent a minimally invasive technique that is helpful in restoring facial symmetry at rest and during movement in chronic, and potentially acute, facial palsy. Botulinum toxin in combination with physical therapy may be particularly helpful. Currently, there is a paucity of data; areas for further research are suggested. A strong body of evidence may allow botulinum toxin treatment to be nationally standardised and recommended in the management of facial palsy. Copyright © 2017 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  4. Special issue: engineering toxins for 21st-century therapies: introduction.

    Science.gov (United States)

    Acharya, K Ravi

    2011-12-01

    This special issue on 'Engineering toxins for 21st century therapies' provides a critical review of the current state of multifaceted aspects of toxin research by some of the leading researchers in the field. It also highlights the clinical potential and challenges for development of novel biologics based on engineered toxin derived products. © 2011 The Author Journal compilation © 2011 FEBS.

  5. Determination of low tetanus or diphtheria antitoxin titers in sera by a toxin neutralization assay and a modified toxin-binding inhibition test

    Directory of Open Access Journals (Sweden)

    M.H. Sonobe

    2007-01-01

    Full Text Available A method for the screening of tetanus and diphtheria antibodies in serum using anatoxin (inactivated toxin instead of toxin was developed as an alternative to the in vivo toxin neutralization assay based on the toxin-binding inhibition test (TOBI test. In this study, the serum titers (values between 1.0 and 19.5 IU measured by a modified TOBI test (Modi-TOBI test and toxin neutralization assays were correlated (P < 0.0001. Titers of tetanus or diphtheria antibodies were evaluated in serum samples from guinea pigs immunized with tetanus toxoid, diphtheria-tetanus or triple vaccine. For the Modi-TOBI test, after blocking the microtiter plates, standard tetanus or diphtheria antitoxin and different concentrations of guinea pig sera were incubated with the respective anatoxin. Twelve hours later, these samples were transferred to a plate previously coated with tetanus or diphtheria antitoxin to bind the remaining anatoxin. The anatoxin was then detected using a peroxidase-labeled tetanus or diphtheria antitoxin. Serum titers were calculated using a linear regression plot of the results for the corresponding standard antitoxin. For the toxin neutralization assay, L+/10/50 doses of either toxin combined with different concentrations of serum samples were inoculated into mice for anti-tetanus detection, or in guinea pigs for anti-diphtheria detection. Both assays were suitable for determining wide ranges of antitoxin levels. The linear regression plots showed high correlation coefficients for tetanus (r² = 0.95, P < 0.0001 and for diphtheria (r² = 0.93, P < 0.0001 between the in vitro and the in vivo assays. The standardized method is appropriate for evaluating titers of neutralizing antibodies, thus permitting the in vitro control of serum antitoxin levels.

  6. Fidaxomicin Inhibits Clostridium difficile Toxin A-Mediated Enteritis in the Mouse Ileum

    Science.gov (United States)

    Koon, Hon Wai; Ho, Samantha; Hing, Tressia C.; Cheng, Michelle; Chen, Xinhua; Ichikawa, Yoshi; Kelly, Ciarán P.

    2014-01-01

    Clostridium difficile infection (CDI) is a common, debilitating infection with high morbidity and mortality. C. difficile causes diarrhea and intestinal inflammation by releasing two toxins, toxin A and toxin B. The macrolide antibiotic fidaxomicin was recently shown to be effective in treating CDI, and its beneficial effect was associated with fewer recurrent infections in CDI patients. Since other macrolides possess anti-inflammatory properties, we examined the possibility that fidaxomicin alters C. difficile toxin A-induced ileal inflammation in mice. The ileal loops of anesthetized mice were injected with fidaxomicin (5, 10, or 20 μM), and after 30 min, the loops were injected with purified C. difficile toxin A or phosphate-buffered saline alone. Four hours after toxin A administration, ileal tissues were processed for histological evaluation (epithelial cell damage, neutrophil infiltration, congestion, and edema) and cytokine measurements. C. difficile toxin A caused histologic damage, evidenced by increased mean histologic score and ileal interleukin-1β (IL-1β) protein and mRNA expression. Treatment with fidaxomicin (20 μM) or its primary metabolite, OP-1118 (120 μM), significantly inhibited toxin A-mediated histologic damage and reduced the mean histology score and ileal IL-1β protein and mRNA expression. Both fidaxomicin and OP-1118 reduced toxin A-induced cell rounding in human colonic CCD-18Co fibroblasts. Treatment of ileal loops with vancomycin (20 μM) and metronidazole (20 μM) did not alter toxin A-induced histologic damage and IL-1β protein expression. In addition to its well known antibacterial effects against C. difficile, fidaxomicin may possess anti-inflammatory activity directed against the intestinal effects of C. difficile toxins. PMID:24890583

  7. Characterization of the Deep-Sea Streptomyces sp. SCSIO 02999 Derived VapC/VapB Toxin-Antitoxin System in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Yunxue Guo

    2016-07-01

    Full Text Available Toxin-antitoxin (TA systems are small genetic elements that are ubiquitous in prokaryotes. Most studies on TA systems have focused on commensal and pathogenic bacteria; yet very few studies have focused on TAs in marine bacteria, especially those isolated from a deep sea environment. Here, we characterized a type II VapC/VapB TA system from the deep-sea derived Streptomyces sp. SCSIO 02999. The VapC (virulence-associated protein protein belongs to the PIN (PilT N-terminal superfamily. Overproduction of VapC strongly inhibited cell growth and resulted in a bleb-containing morphology in E. coli. The toxicity of VapC was neutralized through direct protein–protein interaction by a small protein antitoxin VapB encoded by a neighboring gene. Antitoxin VapB alone or the VapB/VapC complex negatively regulated the vapBC promoter activity. We further revealed that three conserved Asp residues in the PIN domain were essential for the toxic effect of VapC. Additionally, the VapC/VapB TA system stabilized plasmid in E. coli. Furthermore, VapC cross-activated transcription of several TA operons via a partially Lon-dependent mechanism in E. coli, and the activated toxins accumulated more preferentially than their antitoxin partners. Collectively, we identified and characterized a new deep sea TA system in the deep sea Streptomyces sp. and demonstrated that the VapC toxin in this system can cross-activate TA operons in E. coli.

  8. Characterization of the Deep-Sea Streptomyces sp. SCSIO 02999 Derived VapC/VapB Toxin-Antitoxin System in Escherichia coli.

    Science.gov (United States)

    Guo, Yunxue; Yao, Jianyun; Sun, Chenglong; Wen, Zhongling; Wang, Xiaoxue

    2016-07-01

    Toxin-antitoxin (TA) systems are small genetic elements that are ubiquitous in prokaryotes. Most studies on TA systems have focused on commensal and pathogenic bacteria; yet very few studies have focused on TAs in marine bacteria, especially those isolated from a deep sea environment. Here, we characterized a type II VapC/VapB TA system from the deep-sea derived Streptomyces sp. SCSIO 02999. The VapC (virulence-associated protein) protein belongs to the PIN (PilT N-terminal) superfamily. Overproduction of VapC strongly inhibited cell growth and resulted in a bleb-containing morphology in E. coli. The toxicity of VapC was neutralized through direct protein-protein interaction by a small protein antitoxin VapB encoded by a neighboring gene. Antitoxin VapB alone or the VapB/VapC complex negatively regulated the vapBC promoter activity. We further revealed that three conserved Asp residues in the PIN domain were essential for the toxic effect of VapC. Additionally, the VapC/VapB TA system stabilized plasmid in E. coli. Furthermore, VapC cross-activated transcription of several TA operons via a partially Lon-dependent mechanism in E. coli, and the activated toxins accumulated more preferentially than their antitoxin partners. Collectively, we identified and characterized a new deep sea TA system in the deep sea Streptomyces sp. and demonstrated that the VapC toxin in this system can cross-activate TA operons in E. coli.

  9. Alpha-Toxin Promotes Mucosal Biofilm Formation by Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Michele J Anderson

    2012-05-01

    Full Text Available Staphylococcus aureus causes numerous diseases in humans ranging from the mild skin infections to serious, life-threatening, superantigen-mediated Toxic Shock Syndrome (TSS. S. aureus may also be asymptomatically carried in the anterior nares, vagina or on the skin, which serve as reservoirs for infection. Pulsed-field gel electrophoresis clonal type USA200 is the most widely disseminated colonizer and a major cause of TSS. Our prior studies indicated that α-toxin was a major epithelial proinflammatory exotoxin produced by TSS S. aureus USA200 isolates. It also facilitated the penetration of TSS Toxin-1 (TSST-1 across vaginal mucosa. However, the majority of menstrual TSS isolates produce low α-toxin due to a nonsense point mutation at codon 113, designated hly, suggesting mucosal adaptation. The aim of this study was to characterize the differences between TSS USA200 strains [high (hla+ and low (hly+ α-toxin producers] in their abilities to infect and disrupt vaginal mucosal tissue. A mucosal model was developed using ex vivo porcine vaginal mucosa, LIVE/DEAD® staining and confocal microscropy to characterize biofilm formation and tissue viability of TSS USA 200 isolates CDC587 and MN8, which contain the α-toxin pseudogene (hly, MNPE (hla+ and MNPE isogenic hla knockout (hlaKO. All TSS strains grew to similar bacterial densities (1-5 x 108 CFU on the mucosa and were proinflammatory over 3 days. However, MNPE formed biofilms with significant reductions in the mucosal viability whereas neither CDC587, MN8 (hly+, or MNPE hlaKO, formed biofilms and were less cytotoxic. The addition of exogenous, purified α-toxin to MNPE hlaKO restored the biofilm phenotype. Our studies suggest α-toxin affects S. aureus phenotypic growth on vaginal mucosa, by promoting tissue disruption and biofilm formation; and α–toxin mutants (hly are not benign colonizers, but rather form a different type of infection, which we have termed high density pathogenic

  10. Binding assays for the quantitative detection of P. brevis polyether neurotoxins in biological samples and antibodies as therapeutic aids for polyether marine intoxication. Annual report, 1 December 1987-30 November 1988

    Energy Technology Data Exchange (ETDEWEB)

    Baden, D.G.

    1988-12-15

    The polyether lipid-soluble toxins isolated from the marine dinoflagellate Ptychodiscus brevis (formerly Gymnodinium breve) can be detected using two separate types of specific binding reaction. Using tritiated PbTx-3 as a specific probe for binding to voltage-dependent sodium channels in rat brain synaptosomes or to specific polyclonal antibodies, binding equilibria and displacement by unlabeled brevetoxins were compared. Labeled toxin can be displaced in a competitive manner by any of the other 5 naturally-occurring toxins; the quantitative displacement ability of each appears to reflect individual potency in fish bioassay. A comparison of ED50 in Radioimmunoassay and ED50 in synaptosome binding assay indicates that the former assay is useful for detection of toxins which possess the structural backbone of PbTx-3, the immunizing hapten. Thus, the two assays have quantitative applicability; the sodium channel with respect to potency and the antibodies with respect to structure. Microtiter plate assays utilizing each specific brevetoxin binding component and enzyme-linked toxin hapten have been successful and indicate a general applicability of colorimetric prototypes. There, is however, considerable manipulation required to decrease non-specific binding of the hydrophobic toxin-enzyme complex to the plates. Preliminary studies aimed at producing monoclonal antibodies have been explored using brevetoxins linked to keyhole limpet hemocyanin.

  11. AdE-1, a new inotropic Na(+) channel toxin from Aiptasia diaphana, is similar to, yet distinct from, known anemone Na(+) channel toxins.

    Science.gov (United States)

    Nesher, Nir; Shapira, Eli; Sher, Daniel; Moran, Yehu; Tsveyer, Liora; Turchetti-Maia, Ana Luiza; Horowitz, Michal; Hochner, Binyamin; Zlotkin, Eliahu

    2013-04-01

    Heart failure is one of the most prevalent causes of death in the western world. Sea anemone contains a myriad of short peptide neurotoxins affecting many pharmacological targets, several of which possess cardiotonic activity. In the present study we describe the isolation and characterization of AdE-1 (ion channel modifier), a novel cardiotonic peptide from the sea anemone Aiptasia diaphana, which differs from other cnidarian toxins. Although AdE-1 has the same cysteine residue arrangement as sea anemone type 1 and 2 Na(+) channel toxins, its sequence contains many substitutions in conserved and essential sites and its overall homology to other toxins identified to date is low (Anemonia viridis toxin II), AdE-1 markedly inhibits Na(+) current inactivation with no significant effect on current activation, suggesting a similar mechanism of action. However, its effects on twitch relaxation velocity, action potential amplitude and on the time to peak suggest that this novel toxin affects cardiomyocyte function via a more complex mechanism. Additionally, Av2's characteristic delayed and early after-depolarizations were not observed. Despite its structural differences, AdE-1 physiologic effectiveness is comparable with Av2 with a similar ED(50) value to blowfly larvae. This finding raises questions regarding the extent of the universality of structure-function in sea anemone Na(+) channel toxins.

  12. Lysionotin attenuates Staphylococcus aureus pathogenicity by inhibiting α-toxin expression.

    Science.gov (United States)

    Teng, Zihao; Shi, Dongxue; Liu, Huanyu; Shen, Ziying; Zha, Yonghong; Li, Wenhua; Deng, Xuming; Wang, Jianfeng

    2017-09-01

    α-Toxin, one of the best known pore-forming proteins produced by Staphylococcus aureus (S. aureus), is a critical virulence factor in multiple infections. The necessity of α-toxin for S. aureus pathogenicity suggests that this toxin is an important target for the development of a potential treatment strategy. In this study, we showed that lysionotin, a natural compound, can inhibit the hemolytic activity of culture supernatants by S. aureus by reducing α-toxin expression. Using real-time PCR analysis, we showed that transcription of hla (the gene encoding α-toxin) and agr (the locus regulating hla) was significantly inhibited by lysionotin. Lactate dehydrogenase and live/dead assays indicated that lysionotin effectively protected human alveolar epithelial cells against S. aureus, and in vivo studies also demonstrated that lysionotin can protect mice from pneumonia caused by S. aureus. These findings suggest that lysionotin is an efficient inhibitor of α-toxin expression and shows significant protection against S. aureus in vitro and in vivo. This study supports a potential strategy for the treatment of S. aureus infection by inhibiting the expression of virulence factors and indicates that lysionotin may be a potential treatment for S. aureus pneumonia.

  13. T-2 Toxin-induced Toxicity in Pregnant Mice and Rats

    Directory of Open Access Journals (Sweden)

    Shinya Sehata

    2008-11-01

    Full Text Available T-2 toxin is a cytotoxic secondary fungal metabolite that belongs to the trichothecene mycotoxin family. This mycotoxin is a well known inhibitor of protein synthesis through its high binding affinity to peptidyl transferase, which is an integral part of the ribosomal 60s subunit, and it also inhibits the synthesis of DNA and RNA, probably secondary to the inhibition of protein synthesis. In addition, T-2 toxin is said to induce apoptosis in many types of cells bearing high proliferating activity. T-2 toxin readily passes the placenta and is distributed to embryo/fetal tissues, which include many component cells bearing high proliferating activity. This paper reviews the reported data related to T-2 toxin-induced maternal and fetal toxicities in pregnant mice and rats. The mechanisms of T-2 toxin-induced apoptosis in maternal and fetal tissues are also discussed in this paper.

  14. Toxins and derivatives in molecular pharmaceutics: Drug delivery and targeted therapy.

    Science.gov (United States)

    Zhan, Changyou; Li, Chong; Wei, Xiaoli; Lu, Wuyuan; Lu, Weiyue

    2015-08-01

    Protein and peptide toxins offer an invaluable source for the development of actively targeted drug delivery systems. They avidly bind to a variety of cognate receptors, some of which are expressed or even up-regulated in diseased tissues and biological barriers. Protein and peptide toxins or their derivatives can act as ligands to facilitate tissue- or organ-specific accumulation of therapeutics. Some toxins have evolved from a relatively small number of structural frameworks that are particularly suitable for addressing the crucial issues of potency and stability, making them an instrumental source of leads and templates for targeted therapy. The focus of this review is on protein and peptide toxins for the development of targeted drug delivery systems and molecular therapies. We summarize disease- and biological barrier-related toxin receptors, as well as targeted drug delivery strategies inspired by those receptors. The design of new therapeutics based on protein and peptide toxins is also discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Prevalence and Toxin Characteristics of Bacillus thuringiensis Isolated from Organic Vegetables.

    Science.gov (United States)

    Kim, Jung-Beom; Choi, Ok-Kyung; Kwon, Sun-Mok; Cho, Seung-Hak; Park, Byung-Jae; Jin, Na Young; Yu, Yong Man; Oh, Deog-Hwan

    2017-08-28

    The prevalence and toxin characteristics of Bacillus thuringiensis isolated from 39 organic vegetables were investigated. B. thuringiensis was detected in 30 out of the 39 organic vegetables (76.9%) with a mean value of 2.60 log CFU/g. Twenty-five out of the 30 B. thuringiensis isolates (83.3%) showed insecticidal toxicity against Spodoptera exigua . The hblCDA, nheABC , and entFM genes were found to be the major toxin genes, but the ces gene was not detected in any of the tested B. thuringiensis isolates. The hemolysin BL enterotoxin was detected in all 30 B. thuringiensis isolates (100%). The non-hemolytic enterotoxin complex was found in 27 out of 30 B. thuringiensis isolates (90.0%). The B. thuringiensis tested in this study had similar toxin gene characteristics to B. cereus , which possessed more than one toxin gene. B. thuringiensis could have the potential risk of foodborne illness based on the toxin genes and toxin-producing ability.

  16. Marine Algae As A Prospective Source For Antidiabetic Compounds - A Brief Review.

    Science.gov (United States)

    Unnikrishnan, Pulikkaparambil Sasidharan; Jayasri, Mangalam Achuthananda

    2018-01-01

    Diabetes Mellitus (DM) is a metabolic disorder characterized by chronic hyperglycaemia, which is attributed to several life threatening complications including atherosclerosis, nephropathy, and retinopathy. The current therapies available for the management of DM mainly include oral antidiabetic drugs and insulin injections. However, continuous use of synthetic drugs provides lower healing with many side effects. Therefore, there is an urge for safe and efficient antidiabetic drugs for the management of DM. In the continuing search for effective antidiabetic drugs, marine algae (seaweeds) remains as a promising source with potent bioactivity. It is anticipated that the isolation, characterization, and pharmacological study of unexplored marine algae can be useful in the discovery of novel antidiabetic compounds with high biomedical value. Among marine algae, brown and red algae are reported to exhibit antidiabetic activity. Majority of the investigations on algal derived compounds controls the blood glucose levels through the inhbition of carbohydrate hydroloyzing enzymes and protein tyrosine phosphatase 1B enzymes, insulin sensitization, glucose uptake effect and other protective effects against diabetic complications. Based on the above perspective this review provides; profiles for various marine algae posessing antidiabetic activity. This study also highlights the therapeutic potential of compounds isolated from marine algae for the effective management of diabetes and its associated complications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. Mechanism of Shiga Toxin Clustering on Membranes

    DEFF Research Database (Denmark)

    Pezeshkian, Weria; Gao, Haifei; Arumugam, Senthil

    2017-01-01

    between them. The precise mechanism by which this clustering occurs remains poorly defined. Here, we used vesicle and cell systems and computer simulations to show that line tension due to curvature, height, or compositional mismatch, and lipid or solvent depletion cannot drive the clustering of Shiga...... toxin molecules. By contrast, in coarse-grained computer simulations, a correlation was found between clustering and toxin nanoparticle-driven suppression of membrane fluctuations, and experimentally we observed that clustering required the toxin molecules to be tightly bound to the membrane surface...... molecules (several nanometers), and persist even beyond. This force is predicted to operate between manufactured nanoparticles providing they are sufficiently rigid and tightly bound to the plasma membrane, thereby suggesting a route for the targeting of nanoparticles to cells for biomedical applications....

  18. Update on botulinum toxin and dermal fillers.

    Science.gov (United States)

    Berbos, Zachary J; Lipham, William J

    2010-09-01

    The art and science of facial rejuvenation is an ever-evolving field of medicine, as evidenced by the continual development of new surgical and nonsurgical treatment modalities. Over the past 10 years, the use of botulinum toxin and dermal fillers for aesthetic purposes has risen sharply. Herein, we discuss properties of several commonly used injectable products and provide basic instruction for their use toward the goal of achieving facial rejuvenation. The demand for nonsurgical injection-based facial rejuvenation products has risen enormously in recent years. Used independently or concurrently, botulinum toxin and dermal filler agents offer an affordable, minimally invasive approach to facial rejuvenation. Botulinum toxin and dermal fillers can be used to diminish facial rhytides, restore facial volume, and sculpt facial contours, thereby achieving an aesthetically pleasing, youthful facial appearance.

  19. Treatment of proctalgia fugax with botulinum A toxin.

    Science.gov (United States)

    Katsinelos, P; Kalomenopoulou, M; Christodoulou, K; Katsiba, D; Tsolkas, P; Pilpilidis, I; Papagiannis, A; Kapitsinis, I; Vasiliadis, I; Souparis, T

    2001-11-01

    Two recent studies described a temporal association between a high-amplitude and high-frequency myoelectrical activity of the anal sphincter and the occurrence of proctalgia, which suggest that paroxysmal hyperkinesis of the anus may cause proctalgia fugax. We describe a single case of proctalgia fugax responding to anal sphincter injection of Clostridium botulinum type A toxin. The presumed aetiology of proctalgia fugax is discussed and the possible mechanism of action of botulinum toxin (BTX) in this condition is outlined. Botulinum A toxin seems to be a promising treatment for patients with proctalgia fugax, and further trials appear to be worthwhile for this condition, which has been described as incurable.

  20. Nanoporous biomaterials for uremic toxin adsorption in artificial kidney systems: A review.

    Science.gov (United States)

    Cheah, Wee-Keat; Ishikawa, Kunio; Othman, Radzali; Yeoh, Fei-Yee

    2017-07-01

    Hemodialysis, one of the earliest artificial kidney systems, removes uremic toxins via diffusion through a semipermeable porous membrane into the dialysate fluid. Miniaturization of the present hemodialysis system into a portable and wearable device to maintain continuous removal of uremic toxins would require that the amount of dialysate used within a closed-system is greatly reduced. Diffused uremic toxins within a closed-system dialysate need to be removed to maintain the optimum concentration gradient for continuous uremic toxin removal by the dialyzer. In this dialysate regenerative system, adsorption of uremic toxins by nanoporous biomaterials is essential. Throughout the years of artificial kidney development, activated carbon has been identified as a potential adsorbent for uremic toxins. Adsorption of uremic toxins necessitates nanoporous biomaterials, especially activated carbon. Nanoporous biomaterials are also utilized in hemoperfusion for uremic toxin removal. Further miniaturization of artificial kidney system and improvements on uremic toxin adsorption capacity would require high performance nanoporous biomaterials which possess not only higher surface area, controlled pore size, but also designed architecture or structure and surface functional groups. This article reviews on various nanoporous biomaterials used in current artificial kidney systems and several emerging nanoporous biomaterials. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1232-1240, 2017. © 2016 Wiley Periodicals, Inc.

  1. Potent Antifouling Marine Dihydroquinolin-2(1H)-one-Containing Alkaloids from the Gorgonian Coral-Derived Fungus Scopulariopsis sp.

    KAUST Repository

    Shao, Chang Lun; Xu, Ru Fang; Wang, Chang Yun; Qian, Pei Yuan; Wang, Kai Ling; Wei, Mei Yan

    2015-01-01

    in 2008, there is an urgent demand for the development of efficient and environmentally friendly antifouling agents. Marine microorganisms have proved to be a potential source of antifouling natural compounds. In this study, six dihydroquinolin-2-one-containing

  2. Potency of a human monoclonal antibody to diphtheria toxin relative to equine diphtheria anti-toxin in a guinea pig intoxication model.

    Science.gov (United States)

    Smith, Heidi L; Cheslock, Peter; Leney, Mark; Barton, Bruce; Molrine, Deborah C

    2016-08-17

    Prompt administration of anti-toxin reduces mortality following Corynebacterium diphtheriae infection. Current treatment relies upon equine diphtheria anti-toxin (DAT), with a 10% risk of serum sickness and rarely anaphylaxis. The global DAT supply is extremely limited; most manufacturers have ceased production. S315 is a neutralizing human IgG1 monoclonal antibody to diphtheria toxin that may provide a safe and effective alternative to equine DAT and address critical supply issues. To guide dose selection for IND-enabling pharmacology and toxicology studies, we dose-ranged S315 and DAT in a guinea pig model of diphtheria intoxication based on the NIH Minimum Requirements potency assay. Animals received a single injection of antibody premixed with toxin, were monitored for 30 days, and assigned a numeric score for clinical signs of disease. Animals receiving ≥ 27.5 µg of S315 or ≥ 1.75 IU of DAT survived whereas animals receiving ≤ 22.5 µg of S315 or ≤ 1.25 IU of DAT died, yielding a potency estimate of 17 µg S315/IU DAT (95% CI 16-21) for an endpoint of survival. Because some surviving animals exhibited transient limb weakness, likely a systemic sign of toxicity, DAT and S315 doses required to prevent hind limb paralysis were also determined, yielding a relative potency of 48 µg/IU (95% CI 38-59) for this alternate endpoint. To support advancement of S315 into clinical trials, potency estimates will be used to evaluate the efficacy of S315 versus DAT in an animal model with antibody administration after toxin exposure, more closely modeling anti-toxin therapy in humans.

  3. Association of Bordetella dermonecrotic toxin with the extracellular matrix

    Directory of Open Access Journals (Sweden)

    Miyake Masami

    2010-09-01

    Full Text Available Abstract Background Bordetella dermonecrotic toxin (DNT causes the turbinate atrophy in swine atrophic rhinitis, caused by a Bordetella bronchiseptica infection of pigs, by inhibiting osteoblastic differentiation. The toxin is not actively secreted from the bacteria, and is presumed to be present in only small amounts in infected areas. How such small amounts can affect target tissues is unknown. Results Fluorescence microscopy revealed that DNT associated with a fibrillar structure developed on cultured cells. A cellular component cross-linked with DNT conjugated with a cross-linker was identified as fibronectin by mass spectrometry. Colocalization of the fibronectin network on the cells with DNT was also observed by fluorescence microscope. Several lines of evidence suggested that DNT interacts with fibronectin not directly, but through another cellular component that remains to be identified. The colocalization was observed in not only DNT-sensitive cells but also insensitive cells, indicating that the fibronectin network neither serves as a receptor for the toxin nor is involved in the intoxicating procedures. The fibronectin network-associated toxin was easily liberated when the concentration of toxin in the local environment decreased, and was still active. Conclusions Components in the extracellular matrix are known to regulate activities of various growth factors by binding and liberating them in response to alterations in the extracellular environment. Similarly, the fibronectin-based extracellular matrix may function as a temporary storage system for DNT, enabling small amounts of the toxin to efficiently affect target tissues or cells.

  4. Antiradiation Vaccine: Immunological neutralization of Radiation Toxins at Acute Radiation Syndromes.

    Science.gov (United States)

    Popov, Dmitri; Maliev, Slava

    Introduction: Current medical management of the Acute Radiation Syndromes (ARS) does not include immune prophylaxis based on the Antiradiation Vaccine. Existing principles for the treatment of acute radiation syndromes are based on the replacement and supportive therapy. Haemotopoietic cell transplantation is recomended as an important method of treatment of a Haemopoietic form of the ARS. Though in the different hospitals and institutions, 31 pa-tients with a haemopoietic form have previously undergone transplantation with stem cells, in all cases(100%) the transplantants were rejected. Lethality rate was 87%.(N.Daniak et al. 2005). A large amount of biological substances or antigens isolated from bacterias (flagellin and derivates), plants, different types of venom (honeybees, scorpions, snakes) have been studied. This biological active substances can produce a nonspecific stimulation of immune system of mammals and protect against of mild doses of irradiation. But their radioprotection efficacy against high doses of radiation were not sufficient. Relative radioprotection characteristics or adaptive properties of antioxidants were expressed only at mild doses of radiation. However antioxidants demonstrated a very low protective efficacy at high doses of radiation. Some ex-periments demonstrated even a harmful effect of antioxidants administered to animals that had severe forms of the ARS. Only Specific Radiation Toxins roused a specific antigenic stim-ulation of antibody synthesis. An active immunization by non-toxic doses of radiation toxins includes a complex of radiation toxins that we call the Specific Radiation Determinant (SRD). Immunization must be provided not less than 24 days before irradiation and it is effective up to three years and more. Active immunization by radiation toxins significantly reduces the mortality rate (100%) and improves survival rate up to 60% compare with the 0% sur-vival rate among the irradiated animals in control groups

  5. Alternaria Toxins: Potential Virulence Factors and Genes Related to Pathogenesis

    Directory of Open Access Journals (Sweden)

    Mukesh Meena

    2017-08-01

    Full Text Available Alternaria is an important fungus to study due to their different life style from saprophytes to endophytes and a very successful fungal pathogen that causes diseases to a number of economically important crops. Alternaria species have been well-characterized for the production of different host-specific toxins (HSTs and non-host specific toxins (nHSTs which depend upon their physiological and morphological stages. The pathogenicity of Alternaria species depends on host susceptibility or resistance as well as quantitative production of HSTs and nHSTs. These toxins are chemically low molecular weight secondary metabolites (SMs. The effects of toxins are mainly on different parts of cells like mitochondria, chloroplast, plasma membrane, Golgi complex, nucleus, etc. Alternaria species produce several nHSTs such as brefeldin A, tenuazonic acid, tentoxin, and zinniol. HSTs that act in very low concentrations affect only certain plant varieties or genotype and play a role in determining the host range of specificity of plant pathogens. The commonly known HSTs are AAL-, AK-, AM-, AF-, ACR-, and ACT-toxins which are named by their host specificity and these toxins are classified into different family groups. The HSTs are differentiated on the basis of bio-statistical and other molecular analyses. All these toxins have different mode of action, biochemical reactions and signaling mechanisms to cause diseases. Different species of Alternaria produced toxins which reveal its biochemical and genetic effects on itself as well as on its host cells tissues. The genes responsible for the production of HSTs are found on the conditionally dispensable chromosomes (CDCs which have been well characterized. Different bio-statistical methods like basic local alignment search tool (BLAST data analysis used for the annotation of gene prediction, pathogenicity-related genes may provide surprising knowledge in present and future.

  6. Anti-photoaging and Photoprotective Compounds Derived from Marine Organisms

    Directory of Open Access Journals (Sweden)

    Ramjee Pallela

    2010-04-01

    Full Text Available Marine organisms form a prominent component of the oceanic population, which significantly contribute in the production of cosmeceutical and pharmaceutical molecules with biologically efficient moieties. In addition to the molecules of various biological activities like anti-bacterial, anti-cancerous, anti-inflammatory and anti-oxidative etc., these organisms also produce potential photoprotective or anti-photoaging agents, which are attracting present day researchers. Continuous exposure to UV irradiation (both UV-A and UV-B leads to the skin cancer and other photoaging complications, which are typically mediated by the reactive oxygen species (ROS, generated in the oxidative pathways. Many of the anti-oxidative and anti-photoaging compounds have been identified previously, which work efficiently against photodamage of the skin. Recently, marine originated photoprotective or anti-photoaging behavior was observed in the methanol extracts of Corallina pilulifera (CPM. These extracts were found to exert potent antioxidant activity and protective effect on UV-A-induced oxidative stress in human dermal fibroblast (HDF cells by protecting DNA and also by inhibiting matrix metalloproteinases (MMPs, a key component in photoaging of the skin due to exposure to UV-A. The present review depicts various other photoprotective compounds from algae and other marine sources for further elaborative research and their probable use in cosmeceutical and pharmaceutical industries.

  7. Marine actinomycetes: an ongoing source of novel bioactive metabolites.

    Science.gov (United States)

    Subramani, Ramesh; Aalbersberg, William

    2012-12-20

    Actinomycetes are virtually unlimited sources of novel compounds with many therapeutic applications and hold a prominent position due to their diversity and proven ability to produce novel bioactive compounds. There are more than 22,000 known microbial secondary metabolites, 70% of which are produced by actinomycetes, 20% from fungi, 7% from Bacillus spp. and 1-2% by other bacteria. Among the actinomycetes, streptomycetes group are considered economically important because out of the approximately more than 10,000 known antibiotics, 50-55% are produced by this genus. The ecological role of actinomycetes in the marine ecosystem is largely neglected and various assumptions meant there was little incentive to isolate marine strains for search and discovery of new drugs. The search for and discovery of rare and new actinomycetes is of significant interest to drug discovery due to a growing need for the development of new and potent therapeutic agents. Modern molecular technologies are adding strength to the target-directed search for detection and isolation of bioactive actinomycetes, and continued development of improved cultivation methods and molecular technologies for accessing the marine environment promises to provide access to this significant new source of chemical diversity with novel/rare actinomycetes including new species of previously reported actinomycetes. Copyright © 2012 Elsevier GmbH. All rights reserved.

  8. Vth Pan American Symposium on Animal, Plant and Microbial Toxins

    National Research Council Canada - National Science Library

    Ownby, Charlotte

    1996-01-01

    .... Presentations on arthropod toxins included work on scorpion neurotoxins, K+ channel-blocking peptides, lice and wasp proteins, stinging insect venom allergens and Australian funnel-web spider toxins...

  9. K2 killer toxin-induced physiological changes in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Orentaite, Irma; Poranen, Minna M; Oksanen, Hanna M; Daugelavicius, Rimantas; Bamford, Dennis H

    2016-03-01

    Saccharomyces cerevisiae cells produce killer toxins, such as K1, K2 and K28, that can modulate the growth of other yeasts giving advantage for the killer strains. Here we focused on the physiological changes induced by K2 toxin on a non-toxin-producing yeast strain as well as K1, K2 and K28 killer strains. Potentiometric measurements were adjusted to observe that K2 toxin immediately acts on the sensitive cells leading to membrane permeability. This correlated with reduced respiration activity, lowered intracellular ATP content and decrease in cell viability. However, we did not detect any significant ATP leakage from the cells treated by killer toxin K2. Strains producing heterologous toxins K1 and K28 were less sensitive to K2 than the non-toxin producing one suggesting partial cross-protection between the different killer systems. This phenomenon may be connected to the observed differences in respiratory activities of the killer strains and the non-toxin-producing strain at low pH. This might also have practical consequences in wine industry; both as beneficial ones in controlling contaminating yeasts and non-beneficial ones causing sluggish fermentation. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Toxin studies using an integrated biophysical and structural biology approach.

    Energy Technology Data Exchange (ETDEWEB)

    Last, Julie A.; Schroeder, Anne E.; Slade, Andrea Lynn; Sasaki, Darryl Yoshio; Yip, Christopher M. (University of Toronto, Toronto, Ontario, Canada); Schoeniger, Joseph S. (Sandia National Laboratories, Livermore, CA)

    2005-03-01

    Clostridial neurotoxins, such as botulinum and tetanus, are generally thought to invade neural cells through a process of high affinity binding mediated by gangliosides, internalization via endosome formation, and subsequent membrane penetration of the catalytic domain activated by a pH drop in the endosome. This surface recognition and internalization process is still not well understood with regard to what specific membrane features the toxins target, the intermolecular interactions between bound toxins, and the molecular conformational changes that occur as a result of pH lowering. In an effort to elucidate the mechanism of tetanus toxin binding and permeation through the membrane a simple yet representative model was developed that consisted of the ganglioside G{sub tlb} incorporated in a bilayer of cholesterol and DPPC (dipalmitoylphosphatidyl choline). The bilayers were stable over time yet sensitive towards the binding and activity of whole toxin. A liposome leakage study at constant pH as well as with a pH gradient, to mimic the processes of the endosome, was used to elucidate the effect of pH on the toxin's membrane binding and permeation capability. Topographic imaging of the membrane surface, via in situ tapping mode AFM, provided nanoscale characterization of the toxin's binding location and pore formation activity.

  11. Regulating Toxin-Antitoxin Expression: Controlled Detonation of Intracellular Molecular Timebombs

    Directory of Open Access Journals (Sweden)

    Finbarr Hayes

    2014-01-01

    Full Text Available Genes for toxin-antitoxin (TA complexes are widely disseminated in bacteria, including in pathogenic and antibiotic resistant species. The toxins are liberated from association with the cognate antitoxins by certain physiological triggers to impair vital cellular functions. TAs also are implicated in antibiotic persistence, biofilm formation, and bacteriophage resistance. Among the ever increasing number of TA modules that have been identified, the most numerous are complexes in which both toxin and antitoxin are proteins. Transcriptional autoregulation of the operons encoding these complexes is key to ensuring balanced TA production and to prevent inadvertent toxin release. Control typically is exerted by binding of the antitoxin to regulatory sequences upstream of the operons. The toxin protein commonly works as a transcriptional corepressor that remodels and stabilizes the antitoxin. However, there are notable exceptions to this paradigm. Moreover, it is becoming clear that TA complexes often form one strand in an interconnected web of stress responses suggesting that their transcriptional regulation may prove to be more intricate than currently understood. Furthermore, interference with TA gene transcriptional autoregulation holds considerable promise as a novel antibacterial strategy: artificial release of the toxin factor using designer drugs is a potential approach to induce bacterial suicide from within.

  12. Two enzymes involved in biosynthesis of the host-selective phytotoxin HC-toxin

    International Nuclear Information System (INIS)

    Walton, J.D.

    1987-01-01

    Cochliobolus carbonum race 1 produces a cyclic tetrapeptide HC-toxin, which is necessary for its exceptional virulence on certain varieties of maize. Previous genetic analysis of HC-toxin production by the fungus has indicated that a single genetic locus controls HC-toxin production. Enzymes involved in the biosynthesis of HC-toxin have been sought by following the precedents established for the biosynthetic enzymes of cyclic peptide antibiotics. Two enzymatic activities from C. carbonum race 1 were found, a D-alanine- and an L-proline-dependent ATP/PP/sub i/ exchange, which by biochemical and genetic criteria were shown to be involved in the biosynthesis of HC-toxin. These two activities were present in all tested race 1 isolates of C. carbonum, which produce HC-toxin, and in none of the tested race 2 and race 3 isolates, which do not produce the toxin. In a genetic cross between two isolates of C. carbonum differing at the tox locus, all tox + progeny had both activities, and all tox - progeny lacked both activities

  13. Recent advances in the medicinal chemistry of polyamine toxins

    DEFF Research Database (Denmark)

    Strømgaard, K; Andersen, K; Krogsgaard-Larsen, P

    2001-01-01

    This review describes the recent developments in the field of polyamine toxins, with focus on structure activity relationship investigations, including studies of importance of the polyamine moiety for biological activity, photolabeling studies using polyamine toxins as templates, as well as use ...

  14. An insecticidal toxin from Nephila clavata spider venom.

    Science.gov (United States)

    Jin, Lin; Fang, Mingqian; Chen, Mengrou; Zhou, Chunling; Ombati, Rose; Hakim, Md Abdul; Mo, Guoxiang; Lai, Ren; Yan, Xiuwen; Wang, Yumin; Yang, Shilong

    2017-07-01

    Spiders are the most successful insect predators given that they use their venom containing insecticidal peptides as biochemical weapons for preying. Due to the high specificity and potency of peptidic toxins, discoveries of insecticidal toxins from spider venom have provided an opportunity to obtain natural compounds for agricultural applications without affecting human health. In this study, a novel insecticidal toxin (μ-NPTX-Nc1a) was identified and characterized from the venom of Nephila clavata. Its primary sequence is GCNPDCTGIQCGWPRCPGGQNPVMDKCVSCCPFCPPKSAQG which was determined by automated Edman degradation, cDNA cloning, and MS/MS analysis. BLAST search indicated that Nc1a shows no similarity with known peptides or proteins, indicating that Nc1a belongs to a novel family of insecticidal peptide. Nc1a displayed inhibitory effects on Na V and K V channels in cockroach dorsal unpaired median neurons. The median lethal dose (LD50) of Nc1a on cockroach was 573 ng/g. Herein, a study that identifies a novel insecticidal toxin, which can be a potential candidate and/or template for the development of bioinsecticides, is presented.

  15. The Structural Diversity of Carbohydrate Antigens of Selected Gram-Negative Marine Bacteria

    Directory of Open Access Journals (Sweden)

    Elena P. Ivanova

    2011-10-01

    Full Text Available Marine microorganisms have evolved for millions of years to survive in the environments characterized by one or more extreme physical or chemical parameters, e.g., high pressure, low temperature or high salinity. Marine bacteria have the ability to produce a range of biologically active molecules, such as antibiotics, toxins and antitoxins, antitumor and antimicrobial agents, and as a result, they have been a topic of research interest for many years. Among these biologically active molecules, the carbohydrate antigens, lipopolysaccharides (LPSs, O-antigens found in cell walls of Gram-negative marine bacteria, show great potential as candidates in the development of drugs to prevent septic shock due to their low virulence. The structural diversity of LPSs is thought to be a reflection of the ability for these bacteria to adapt to an array of habitats, protecting the cell from being compromised by exposure to harsh environmental stress factors. Over the last few years, the variety of structures of core oligosaccharides and O-specific polysaccharides from LPSs of marine microrganisms has been discovered. In this review, we discuss the most recently encountered structures that have been identified from bacteria belonging to the genera Aeromonas, Alteromonas, Idiomarina, Microbulbifer, Pseudoalteromonas, Plesiomonas and Shewanella of the Gammaproteobacteria phylum; Sulfitobacter and Loktanella of the Alphaproteobactera phylum and to the genera Arenibacter, Cellulophaga, Chryseobacterium, Flavobacterium, Flexibacter of the Cytophaga-Flavobacterium-Bacteroides phylum. Particular attention is paid to the particular chemical features of the LPSs, such as the monosaccharide type, non-sugar substituents and phosphate groups, together with some of the typifying traits of LPSs obtained from marine bacteria. A possible correlation is then made between such features and the environmental adaptations undertaken by marine bacteria.

  16. Changes in intestinal fluid and mucosal immune responses to cholera toxin in Giardia muris infection and binding of cholera toxin to Giardia muris trophozoites.

    Science.gov (United States)

    Ljungström, I; Holmgren, J; Svennerholm, A M; Ferrante, A

    1985-10-01

    The effect of Giardia muris infection on the diarrheal response and gut mucosal antibody response to cholera toxin was examined in mice. The results obtained showed that the fluid accumulation in intestinal loops exposed to cholera toxin was increased in mice infected with a low number (5 X 10(4) ) of G. muris cysts compared with the response in noninfected mice. This effect was associated with a marked reduction in absorption of oral rehydration fluid from the intestine. In contrast, mice infected with a high dose (2 X 10(5) ) of cysts showed a marked decrease in fluid accumulation in response to the toxin. This decrease might be related to the finding that both G. muris and Giardia lamblia trophozoites can bind significant amounts of cholera toxin. Evidence is presented which suggests that the gut mucosal antibody response, mainly immunoglobulin A but also immunoglobulin G, to an immunization course with perorally administered cholera toxin was depressed in mice infected with G. muris. The reduction in antibody levels was particularly evident when the primary immunization was made very early after infection. The serum antitoxin antibodies to the oral immunization with cholera toxin were, however, not affected. Likewise, the delayed-type hypersensitivity response against sheep erythrocytes in animals primed subcutaneously with sheep erythrocytes was not modified during the course of G. muris infection.

  17. Guidelines for safe handling of toxins. Technical report

    Energy Technology Data Exchange (ETDEWEB)

    Szilagyi, M.

    1995-11-01

    Toxins are highly toxic chemicals which cause illness through all routes of entry into the body. This technical note has been prepared to ensure that preparation, handling, and disposal of toxins does not constitute a greater occupational hazard than is necessary. It includes hazards that may be encountered and the precautions that should be taken against such hazards.

  18. Detection of Shiga toxins genes by Multiplex PCR in clinical samples

    Directory of Open Access Journals (Sweden)

    2013-09-01

    Full Text Available Background: Different methods have been used for detection of shiga toxins; such as,  cell culture, ELISA, and RFPLA. However, all of these methods suffer from high cost, time-consumption and relatively low sensitivity. In this study we used Multiplex PCR method for detection of genes encoding shiga toxins. Material and Methods: In this study, 63 clinical samples were obtained from positive cultures of Shigella and E. coli O157, from Bahman 1391 until Ordibehesht 1392 in Mazandaran province. Initial confirmation of shiga toxins producing bacteria was performed by biochemical and serological methods. After DNA extraction, detection of stx1 and stx2 genes was accomplished by multiplex PCR.  For confirmation of the PCR amplicon, DNA sequencing was used. Antibiotic sensitivity tests were performed by disk diffusion method. Results:  Among the positive strains, 13 strains contained stx2 genes, 4 strains contained Stx/Stx1 genes and 4 strains harbored both Stx/Stx1 and Stx2. The DNA extracted from other Gram-negative bacteria was not protected by the relevant parts of these toxins. Sequencing of the amplified fragments indicated the correct toxin sequences.  The sensitivity for identification of Stx/Stx1 gene was 1.56 pg/ µl and for Stx2 was 1.08 pg/µl. The toxin positive strains were all sensitive to Cefixime, Gentamicin, Amikacin, Ceftriaxone, and Nitrofurantoin. Conclusion: This method is fast and accurate for detection of bacteria producing shiga toxin and can be used to identify different types of shiga toxin.

  19. Diversification of Type VI Secretion System Toxins Reveals Ancient Antagonism among Bee Gut Microbes

    Directory of Open Access Journals (Sweden)

    Margaret I. Steele

    2017-12-01

    Full Text Available Microbial communities are shaped by interactions among their constituent members. Some Gram-negative bacteria employ type VI secretion systems (T6SSs to inject protein toxins into neighboring cells. These interactions have been theorized to affect the composition of host-associated microbiomes, but the role of T6SSs in the evolution of gut communities is not well understood. We report the discovery of two T6SSs and numerous T6SS-associated Rhs toxins within the gut bacteria of honey bees and bumble bees. We sequenced the genomes of 28 strains of Snodgrassella alvi, a characteristic bee gut microbe, and found tremendous variability in their Rhs toxin complements: altogether, these strains appear to encode hundreds of unique toxins. Some toxins are shared with Gilliamella apicola, a coresident gut symbiont, implicating horizontal gene transfer as a source of toxin diversity in the bee gut. We use data from a transposon mutagenesis screen to identify toxins with antibacterial function in the bee gut and validate the function and specificity of a subset of these toxin and immunity genes in Escherichia coli. Using transcriptome sequencing, we demonstrate that S. alvi T6SSs and associated toxins are upregulated in the gut environment. We find that S. alvi Rhs loci have a conserved architecture, consistent with the C-terminal displacement model of toxin diversification, with Rhs toxins, toxin fragments, and cognate immunity genes that are expressed and confer strong fitness effects in vivo. Our findings of T6SS activity and Rhs toxin diversity suggest that T6SS-mediated competition may be an important driver of coevolution within the bee gut microbiota.

  20. Phylogeography of cylindrospermopsin and paralytic shellfish toxin-producing nostocales cyanobacteria from mediterranean europe (Spain).

    Science.gov (United States)

    Cirés, Samuel; Wörmer, Lars; Ballot, Andreas; Agha, Ramsy; Wiedner, Claudia; Velázquez, David; Casero, María Cristina; Quesada, Antonio

    2014-02-01

    Planktonic Nostocales cyanobacteria represent a challenge for microbiological research because of the wide range of cyanotoxins that they synthesize and their invasive behavior, which is presumably enhanced by global warming. To gain insight into the phylogeography of potentially toxic Nostocales from Mediterranean Europe, 31 strains of Anabaena (Anabaena crassa, A. lemmermannii, A. mendotae, and A. planctonica), Aphanizomenon (Aphanizomenon gracile, A. ovalisporum), and Cylindrospermopsis raciborskii were isolated from 14 freshwater bodies in Spain and polyphasically analyzed for their phylogeography, cyanotoxin production, and the presence of cyanotoxin biosynthesis genes. The potent cytotoxin cylindrospermopsin (CYN) was produced by all 6 Aphanizomenon ovalisporum strains at high levels (5.7 to 9.1 μg CYN mg(-1) [dry weight]) with low variation between strains (1.5 to 3.9-fold) and a marked extracellular release (19 to 41% dissolved CYN) during exponential growth. Paralytic shellfish poisoning (PSP) neurotoxins (saxitoxin, neosaxitoxin, and decarbamoylsaxitoxin) were detected in 2 Aphanizomenon gracile strains, both containing the sxtA gene. This gene was also amplified in non-PSP toxin-producing Aphanizomenon gracile and Aphanizomenon ovalisporum. Phylogenetic analyses supported the species identification and confirmed the high similarity of Spanish Anabaena and Aphanizomenon strains with other European strains. In contrast, Cylindrospermopsis raciborskii from Spain grouped together with American strains and was clearly separate from the rest of the European strains, raising questions about the current assumptions of the phylogeography and spreading routes of C. raciborskii. The present study confirms that the nostocalean genus Aphanizomenon is a major source of CYN and PSP toxins in Europe and demonstrates the presence of the sxtA gene in CYN-producing Aphanizomenon ovalisporum.

  1. Higher-Order Structure in Bacterial VapBC Toxin-Antitoxin Complexes

    DEFF Research Database (Denmark)

    Bendtsen, Kirstine L; Brodersen, Ditlev E

    2017-01-01

    Toxin-antitoxin systems are widespread in the bacterial kingdom, including in pathogenic species, where they allow rapid adaptation to changing environmental conditions through selective inhibition of key cellular processes, such as DNA replication or protein translation. Under normal growth...... that allow auto-regulation of transcription by direct binding to promoter DNA. In this chapter, we review our current understanding of the structural characteristics of type II toxin-antitoxin complexes in bacterial cells, with a special emphasis on the staggering variety of higher-order architecture...... conditions, type II toxins are inhibited through tight protein-protein interaction with a cognate antitoxin protein. This toxin-antitoxin complex associates into a higher-order macromolecular structure, typically heterotetrameric or heterooctameric, exposing two DNA binding domains on the antitoxin...

  2. ADP-ribosylation of membrane components by pertussis and cholera toxin

    International Nuclear Information System (INIS)

    Ribeiro-Neto, F.A.P.; Mattera, F.; Hildebrandt, J.D.; Codina, J.; Field, J.B.; Birnbaumer, L.; Sekura, R.D.

    1985-01-01

    Pertussis and cholera toxins are important tools to investigate functional and structural aspects of the stimulatory (N/sub s/) and inhibitory (N/sub i/) regulatory components of adenylyl cyclase. Cholera toxin acts on N/sub s/ by ADP-ribosylating its α/sub s/ subunit; pertussis toxin acts on N/sub i/ by ADP-ribosylating its α; subunit. By using [ 32 P]NAD + and determining the transfer of its [ 32 P]ADP-ribose moiety to membrane components, it is possible to obtain information on N/sub s/ and N/sub i/. A set of protocols is presented that can be used to study simultaneously and comparatively the susceptibility of N/sub s/ and N/sub i/ to be ADP-ribosylated by cholera and pertussis toxin

  3. First evidence of "paralytic shellfish toxins" and cylindrospermopsin in a Mexican freshwater system, Lago Catemaco, and apparent bioaccumulation of the toxins in "tegogolo" snails (Pomacea patula catemacensis).

    Science.gov (United States)

    Berry, John P; Lind, Owen

    2010-05-01

    Exposure to cyanobacterial toxins in freshwater systems, including both direct (e.g., drinking water) and indirect (e.g., bioaccumulation in food webs) routes, is emerging as a potentially significant threat to human health. We investigated cyanobacterial toxins, specifically cylindrospermopsin (CYN), the microcystins (MCYST) and the "paralytic shellfish toxins" (PST), in Lago Catemaco (Veracruz, Mexico). Lago Catemaco is a tropical lake dominated by Cylindrospermopsis, specifically identified as Cylindrospermopsis catemaco and Cylindrospermopsis philippinensis, and characterized by an abundant, endemic species of snail (Pomacea patula catemacensis), known as "tegogolos," that is both consumed locally and commercially important. Samples of water, including dissolved and particulate fractions, as well as extracts of tegogolos, were screened using highly specific and sensitive ELISA. ELISA identified CYN and PST at low concentrations in only one sample of seston; however, both toxins were detected at appreciable quantities in tegogolos. Calculated bioaccumulation factors (BAF) support bioaccumulation of both toxins in tegogolos. The presence of CYN in the phytoplankton was further confirmed by HPLC-UV and LC-MS, following concentration and extraction of algal cells, but the toxin could not be confirmed by these methods in tegogolos. These data represent the first published evidence for CYN and the PST in Lago Catemaco and, indeed, for any freshwater system in Mexico. Identification of the apparent bioaccumulation of these toxins in tegogolos may suggest the need to further our understanding of the transfer of cyanobacterial toxins in freshwater food webs as it relates to human health. Copyright 2009 Elsevier Ltd. All rights reserved.

  4. Marine snail venoms: use and trends in receptor and channel neuropharmacology.

    Science.gov (United States)

    Favreau, Philippe; Stöcklin, Reto

    2009-10-01

    Venoms are rich mixtures of mainly peptides and proteins evolved by nature to catch and digest preys or for protection against predators. They represent extensive sources of potent and selective bioactive compounds that can lead to original active ingredients, for use as drugs, as pharmacological tools in research and for the biotechnology industry. Among the most fascinating venomous animals, marine snails offer a unique set of pharmacologically active components, targeting a wide diversity of receptors and ion channels. Recent advances still continue to demonstrate their huge neuropharmacological potential. In the quest for interesting pharmacological profiles, researchers face a vast number of venom components to investigate within time and technological constraints. A brief perspective on marine snail venom's complexity and features is given followed by the different discovery strategies and pharmacological approaches, exemplified with some recent developments. These advances will hopefully help further uncovering new pharmacologically important venom molecules.

  5. Biotechnological Applications of Marine Enzymes From Algae, Bacteria, Fungi, and Sponges.

    Science.gov (United States)

    Parte, S; Sirisha, V L; D'Souza, J S

    Diversity is the hallmark of all life forms that inhabit the soil, air, water, and land. All these habitats pose their unique inherent challenges so as to breed the "fittest" creatures. Similarly, the biodiversity from the marine ecosystem has evolved unique properties due to challenging environment. These challenges include permafrost regions to hydrothermal vents, oceanic trenches to abyssal plains, fluctuating saline conditions, pH, temperature, light, atmospheric pressure, and the availability of nutrients. Oceans occupy 75% of the earth's surface and harbor most ancient and diverse forms of organisms (algae, bacteria, fungi, sponges, etc.), serving as an excellent source of natural bioactive molecules, novel therapeutic compounds, and enzymes. In this chapter, we introduce enzyme technology, its current state of the art, unique enzyme properties, and the biocatalytic potential of marine algal, bacterial, fungal, and sponge enzymes that have indeed boosted the Marine Biotechnology Industry. Researchers began exploring marine enzymes, and today they are preferred over the chemical catalysts for biotechnological applications and functions, encompassing various sectors, namely, domestic, industrial, commercial, and healthcare. Next, we summarize the plausible pros and cons: the challenges encountered in the process of discovery of the potent compounds and bioactive metabolites such as biocatalysts/enzymes of biomedical, therapeutic, biotechnological, and industrial significance. The field of Marine Enzyme Technology has recently assumed importance, and if it receives further boost, it could successfully substitute other chemical sources of enzymes useful for industrial and commercial purposes and may prove as a beneficial and ecofriendly option. With appropriate directions and encouragement, marine enzyme technology can sustain the rising demand for enzyme production while maintaining the ecological balance, provided any undesired exploitation of the marine

  6. Uremic Toxins Enhance Statin-Induced Cytotoxicity in Differentiated Human Rhabdomyosarcoma Cells

    Directory of Open Access Journals (Sweden)

    Hitoshi Uchiyama

    2014-09-01

    Full Text Available The risk of myopathy and rhabdomyolysis is considerably increased in statin users with end-stage renal failure (ESRF. Uremic toxins, which accumulate in patients with ESRF, exert cytotoxic effects that are mediated by various mechanisms. Therefore, accumulation of uremic toxins might increase statin-induced cytotoxicity. The purpose of this study was to determine the effect of four uremic toxins—hippuric acid, 3-carboxy-4-methyl-5-propyl-2-furanpropionate, indole-3-acetic acid, and 3-indoxyl sulfate—on statin-induced myopathy. Differentiated rhabdomyosarcoma cells were pre-treated with the uremic toxins for seven days, and then the cells were treated with pravastatin or simvastatin. Cell viability and apoptosis were assessed by viability assays and flow cytometry. Pre-treatment with uremic toxins increased statin- but not cisplatin-induced cytotoxicity (p < 0.05 vs. untreated. In addition, the pre-treatment increased statin-induced apoptosis, which is one of the cytotoxic factors (p < 0.05 vs. untreated. However, mevalonate, farnesol, and geranylgeraniol reversed the effects of uremic toxins and lowered statin-induced cytotoxicity (p < 0.05 vs. untreated. These results demonstrate that uremic toxins enhance statin-induced apoptosis and cytotoxicity. The mechanism underlying this effect might be associated with small G-protein geranylgeranylation. In conclusion, the increased severity of statin-induced rhabdomyolysis in patients with ESRF is likely due to the accumulation of uremic toxins.

  7. Heterologous Expression of Toxins from Bacterial Toxin-Antitoxin Systems in Eukaryotic Cells: Strategies and Applications

    Science.gov (United States)

    Yeo, Chew Chieng; Abu Bakar, Fauziah; Chan, Wai Ting; Espinosa, Manuel; Harikrishna, Jennifer Ann

    2016-01-01

    Toxin-antitoxin (TA) systems are found in nearly all prokaryotic genomes and usually consist of a pair of co-transcribed genes, one of which encodes a stable toxin and the other, its cognate labile antitoxin. Certain environmental and physiological cues trigger the degradation of the antitoxin, causing activation of the toxin, leading either to the death or stasis of the host cell. TA systems have a variety of functions in the bacterial cell, including acting as mediators of programmed cell death, the induction of a dormant state known as persistence and the stable maintenance of plasmids and other mobile genetic elements. Some bacterial TA systems are functional when expressed in eukaryotic cells and this has led to several innovative applications, which are the subject of this review. Here, we look at how bacterial TA systems have been utilized for the genetic manipulation of yeasts and other eukaryotes, for the containment of genetically modified organisms, and for the engineering of high expression eukaryotic cell lines. We also examine how TA systems have been adopted as an important tool in developmental biology research for the ablation of specific cells and the potential for utility of TA systems in antiviral and anticancer gene therapies. PMID:26907343

  8. Heterologous Expression of Toxins from Bacterial Toxin-Antitoxin Systems in Eukaryotic Cells: Strategies and Applications

    Directory of Open Access Journals (Sweden)

    Chew Chieng Yeo

    2016-02-01

    Full Text Available Toxin-antitoxin (TA systems are found in nearly all prokaryotic genomes and usually consist of a pair of co-transcribed genes, one of which encodes a stable toxin and the other, its cognate labile antitoxin. Certain environmental and physiological cues trigger the degradation of the antitoxin, causing activation of the toxin, leading either to the death or stasis of the host cell. TA systems have a variety of functions in the bacterial cell, including acting as mediators of programmed cell death, the induction of a dormant state known as persistence and the stable maintenance of plasmids and other mobile genetic elements. Some bacterial TA systems are functional when expressed in eukaryotic cells and this has led to several innovative applications, which are the subject of this review. Here, we look at how bacterial TA systems have been utilized for the genetic manipulation of yeasts and other eukaryotes, for the containment of genetically modified organisms, and for the engineering of high expression eukaryotic cell lines. We also examine how TA systems have been adopted as an important tool in developmental biology research for the ablation of specific cells and the potential for utility of TA systems in antiviral and anticancer gene therapies.

  9. Cholera toxin can catalyze ADP-ribosylation of cytoskeletal proteins

    International Nuclear Information System (INIS)

    Kaslow, H.R.; Groppi, V.E.; Abood, M.E.; Bourne, H.R.

    1981-01-01

    Cholera toxin catalyzes transfer of radiolabel from [ 32 P]NAD + to several peptides in particulate preparations of human foreskin fibroblasts. Resolution of these peptides by two-dimensional gel electrophoresis allowed identification of two peptides of M/sub r/ = 42,000 and 52,000 as peptide subunits of a regulatory component of adenylate cyclase. The radiolabeling of another group of peptides (M/sub r/ = 50,000 to 65,000) suggested that cholera toxin could catalyze ADP-ribosylation of cytoskeletal proteins. This suggestion was confirmed by showing that incubation with cholera toxin and [ 32 P]NAD + caused radiolabeling of purified microtubule and intermediate filament proteins

  10. Removal of Cholera Toxin from Aqueous Solution by Probiotic Bacteria

    Directory of Open Access Journals (Sweden)

    Jussi A. O. Meriluoto

    2012-06-01

    Full Text Available Cholera remains a serious health problem, especially in developing countries where basic hygiene standards are not met. The symptoms of cholera are caused by cholera toxin, an enterotoxin, which is produced by the bacterium Vibrio cholerae. We have recently shown that human probiotic bacteria are capable of removing cyanobacterial toxins from aqueous solutions. In the present study we investigate the ability of the human probiotic bacteria, Lactobacillus rhamnosus strain GG (ATCC 53103 and Bifidobacterium longum 46 (DSM 14583, to remove cholera toxin from solution in vitro. Lactobacillus rhamnosus strain GG and Bifidobacterium longum 46 were able to remove 68% and 59% of cholera toxin from aqueous solutions during 18 h of incubation at 37 °C, respectively. The effect was dependent on bacterial concentration and L. rhamnosus GG was more effective at lower bacterial concentrations. No significant effect on cholera toxin concentration was observed when nonviable bacteria or bacterial supernatant was used.

  11. Toxins and drug discovery.

    Science.gov (United States)

    Harvey, Alan L

    2014-12-15

    Components from venoms have stimulated many drug discovery projects, with some notable successes. These are briefly reviewed, from captopril to ziconotide. However, there have been many more disappointments on the road from toxin discovery to approval of a new medicine. Drug discovery and development is an inherently risky business, and the main causes of failure during development programmes are outlined in order to highlight steps that might be taken to increase the chances of success with toxin-based drug discovery. These include having a clear focus on unmet therapeutic needs, concentrating on targets that are well-validated in terms of their relevance to the disease in question, making use of phenotypic screening rather than molecular-based assays, and working with development partners with the resources required for the long and expensive development process. Copyright © 2014 The Author. Published by Elsevier Ltd.. All rights reserved.

  12. Characterization of Hemagglutinin Negative Botulinum Progenitor Toxins

    Directory of Open Access Journals (Sweden)

    Suzanne R. Kalb

    2017-06-01

    Full Text Available Botulism is a disease involving intoxication with botulinum neurotoxins (BoNTs, toxic proteins produced by Clostridium botulinum and other clostridia. The 150 kDa neurotoxin is produced in conjunction with other proteins to form the botulinum progenitor toxin complex (PTC, alternating in size from 300 kDa to 500 kDa. These progenitor complexes can be classified into hemagglutinin positive or hemagglutinin negative, depending on the ability of some of the neurotoxin-associated proteins (NAPs to cause hemagglutination. The hemagglutinin positive progenitor toxin complex consists of BoNT, nontoxic non-hemagglutinin (NTNH, and three hemagglutinin proteins; HA-70, HA-33, and HA-17. Hemagglutinin negative progenitor toxin complexes contain BoNT and NTNH as the minimally functional PTC (M-PTC, but not the three hemagglutinin proteins. Interestingly, the genome of hemagglutinin negative progenitor toxin complexes comprises open reading frames (orfs which encode for three proteins, but the existence of these proteins has not yet been extensively demonstrated. In this work, we demonstrate that these three proteins exist and form part of the PTC for hemagglutinin negative complexes. Several hemagglutinin negative strains producing BoNT/A, /E, and /F were found to contain the three open reading frame proteins. Additionally, several BoNT/A-containing bivalent strains were examined, and NAPs from both genes, including the open reading frame proteins, were associated with BoNT/A. The open reading frame encoded proteins are more easily removed from the botulinum complex than the hemagglutinin proteins, but are present in several BoNT/A and /F toxin preparations. These are not easily removed from the BoNT/E complex, however, and are present even in commercially-available purified BoNT/E complex.

  13. Delayed Toxicity Associated with Soluble Anthrax Toxin Receptor Decoy-Ig Fusion Protein Treatment

    Science.gov (United States)

    Cote, Christopher; Welkos, Susan; Manchester, Marianne; Young, John A. T.

    2012-01-01

    Soluble receptor decoy inhibitors, including receptor-immunogloubulin (Ig) fusion proteins, have shown promise as candidate anthrax toxin therapeutics. These agents act by binding to the receptor-interaction site on the protective antigen (PA) toxin subunit, thereby blocking toxin binding to cell surface receptors. Here we have made the surprising observation that co-administration of receptor decoy-Ig fusion proteins significantly delayed, but did not protect, rats challenged with anthrax lethal toxin. The delayed toxicity was associated with the in vivo assembly of a long-lived complex comprised of anthrax lethal toxin and the receptor decoy-Ig inhibitor. Intoxication in this system presumably results from the slow dissociation of the toxin complex from the inhibitor following their prolonged circulation. We conclude that while receptor decoy-Ig proteins represent promising candidates for the early treatment of B. anthracis infection, they may not be suitable for therapeutic use at later stages when fatal levels of toxin have already accumulated in the bloodstream. PMID:22511955

  14. Efficacy of botulinum toxins on bruxism: an evidence-based review.

    Science.gov (United States)

    Long, Hu; Liao, Zhengyu; Wang, Yan; Liao, Lina; Lai, Wenli

    2012-02-01

    The objective of this study was to assess the efficacy of botulinum toxins on bruxism. Electronic databases (PubMed, Embase and Science Citation Index), websites (Cochrane Central Register of Controlled Trials and ClinicalTrials.gov) and the literature database of SIGLE (System for Information on Grey Literature in Europe) were searched from January 1990 to April 2011 for randomised controlled trials or nonrandomised studies assessing the efficacy of botulinum toxins on bruxism. There was no language restriction. Through a predefined search strategy, we retrieved 28 studies from PubMed, 94 from Embase, 60 from the Science Citation Index, two ongoing clinical trials and two from the Cochrane Central Register of Controlled Trials. Of these, only four studies met our inclusion criteria and were finally included. Of the four included studies, two were randomised controlled trials and two were controlled before-and-after studies. These studies showed that botulinum toxin injections can reduce the frequency of bruxism events, decrease bruxism-induced pain levels and satisfy patients' self-assessment with regard to the effectiveness of botulinum toxins on bruxism. In comparison with oral splint, botulinum toxins are equally effective on bruxism. Furthermore, botulinum toxin injections at a dosage of bruxism and are safe to use. Therefore, they can be used clinically for otherwise healthy patients with bruxism. © 2012 FDI World Dental Federation.

  15. Snake Venom: From Deadly Toxins to Life-saving Therapeutics.

    Science.gov (United States)

    Waheed, Humera; Moin, Syed F; Choudhary, M I

    2017-01-01

    Snakes are fascinating creatures and have been residents of this planet well before ancient humans dwelled the earth. Venomous snakes have been a figure of fear, and cause notable mortality throughout the world. The venom constitutes families of proteins and peptides with various isoforms that make it a cocktail of diverse molecules. These biomolecules are responsible for the disturbance in fundamental physiological systems of the envenomed victim, leading to morbidity which can lead to death if left untreated. Researchers have turned these life-threatening toxins into life-saving therapeutics via technological advancements. Since the development of captopril, the first drug that was derived from bradykininpotentiating peptide of Bothrops jararaca, to the disintegrins that have potent activity against certain types of cancers, snake venom components have shown great potential for the development of lead compounds for new drugs. There is a continuous development of new drugs from snake venom for coagulopathy and hemostasis to anti-cancer agents. In this review, we have focused on different snake venom proteins / peptides derived drugs that are in clinical use or in developmental stages till to date. Also, some commonly used snake venom derived diagnostic tools along with the recent updates in this exciting field are discussed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Laboratory and Clinical features of EIA Toxin-positive and EIA Toxin-negative Community-acquired Clostridium difficile Infection.

    Science.gov (United States)

    Patel, Hiren; Randhawa, Jeewanjot; Nanavati, Sushant; Marton, L Randy; Baddoura, Walid J; DeBari, Vincent A

    2015-01-01

    Studies have described the clinical course of patients with Clostridium difficile infection (CDI) with positive enzyme immunoassay (EIA) for toxins A and B. Limited information is available for the patients with negative EIA but positive for the toxin B gene (TcdB) by the PCR. The aim of our study is to determine if there are any differences that exist among the clinical and laboratory parameters in the patients tested to be positive by EIA for toxin and those who were negative. This is a retrospective cohort study conducted in a 700-bed teaching hospital. We reviewed charts of the patients with presumptive CDI between January 2006 and July 2013. We divided these patients into two groups, EIA-positive and EIA-negative, based on result of EIA for toxins A and B and the requirement for a positive PCR analysis of the TcdB gene. The EIA-positive group had significantly higher white blood cell counts (p<0.001), with a significantly greater percentage of bands (p<0.0001). Albumin and total protein both exhibit significantly (p<0.0001, both comparisons) lower values in the EIA-positive group. Among clinical findings, the EIA-positive group had significantly longer length of hospital stay (p=0.010). These data suggest that an infection with an EIA-negative strain of C. difficile presents laboratory markers closer to those of healthy subjects and clinical features suggesting considerably less severe than infection with EIA-positive C. difficile. © 2015 by the Association of Clinical Scientists, Inc.

  17. Isolation and Structural Elucidation of Chondrosterins F–H from the Marine Fungus Chondrostereum sp.

    Directory of Open Access Journals (Sweden)

    Wen-Jian Lan

    2013-02-01

    Full Text Available The marine fungus Chondrostereum sp. was collected from a soft coral of the species Sarcophyton tortuosum from the South China Sea. Three new compounds, chondrosterins F–H (1, 4 and 5, together with three known compounds, incarnal (2, arthrosporone (3, and (2E-decene-4,6,8-triyn-1-ol (6, were isolated. Their structures were elucidated primarily based on NMR and MS data. Incarnal (2 exhibited potent cytotoxic activity against various cancer cell lines.

  18. Troublesome toxins: Time to re-think plant-herbivore interactions in vertebrate ecology

    Science.gov (United States)

    Swihart, R.K.; DeAngelis, D.L.; Feng, Z.; Bryant, J.P.

    2009-01-01

    Earlier models of plant-herbivore interactions relied on forms of functional response that related rates of ingestion by herbivores to mechanical or physical attributes such as bite size and rate. These models fail to predict a growing number of findings that implicate chemical toxins as important determinants of plant-herbivore dynamics. Specifically, considerable evidence suggests that toxins set upper limits on food intake for many species of herbivorous vertebrates. Herbivores feeding on toxin-containing plants must avoid saturating their detoxification systems, which often occurs before ingestion rates are limited by mechanical handling of food items. In light of the importance of plant toxins, a new approach is needed to link herbivores to their food base. We discuss necessary features of such an approach, note recent advances in herbivore functional response models that incorporate effects of plant toxins, and mention predictions that are consistent with observations in natural systems. Future ecological studies will need to address explicitly the importance of plant toxins in shaping plant and herbivore communities.

  19. An Overview of Helicobacter pylori VacA Toxin Biology

    Science.gov (United States)

    Foegeding, Nora J.; Caston, Rhonda R.; McClain, Mark S.; Ohi, Melanie D.; Cover, Timothy L.

    2016-01-01

    The VacA toxin secreted by Helicobacter pylori enhances the ability of the bacteria to colonize the stomach and contributes to the pathogenesis of gastric adenocarcinoma and peptic ulcer disease. The amino acid sequence and structure of VacA are unrelated to corresponding features of other known bacterial toxins. VacA is classified as a pore-forming toxin, and many of its effects on host cells are attributed to formation of channels in intracellular sites. The most extensively studied VacA activity is its capacity to stimulate vacuole formation, but the toxin has many additional effects on host cells. Multiple cell types are susceptible to VacA, including gastric epithelial cells, parietal cells, T cells, and other types of immune cells. This review focuses on the wide range of VacA actions that are detectable in vitro, as well as actions of VacA in vivo that are relevant for H. pylori colonization of the stomach and development of gastric disease. PMID:27271669

  20. Susceptibility of Phelipanche and Orobanche species to AAL-toxin.

    Science.gov (United States)

    de Zélicourt, Axel; Montiel, Grégory; Pouvreau, Jean-Bernard; Thoiron, Séverine; Delgrange, Sabine; Simier, Philippe; Delavault, Philippe

    2009-10-01

    Fusarium and Alternaria spp. are phytopathogenic fungi which are known to be virulent on broomrapes and to produce sphinganine-analog mycotoxins (SAMs). AAL-toxin is a SAM produced by Alternaria alternata which causes the inhibition of sphinganine N-acyltransferase, a key enzyme in sphingolipid biosynthesis, leading to accumulation of sphingoid bases. These long chain bases (LCBs) are determinant in the occurrence of programmed cell death (PCD) in susceptible plants. We showed that broomrapes are sensitive to AAL-toxin, which is not common plant behavior, and that AAL-toxin triggers cell death at the apex of the radicle as well as LCB accumulation and DNA laddering. We also demonstrated that three Lag1 homologs, encoding components of sphinganine N-acyltransferase in yeast, are present in the Orobanche cumana genome and two of them are mutated leading to an enhanced susceptibility to AAL-toxin. We therefore propose a model for the molecular mechanism governing broomrape susceptibility to the fungus Alternaria alternata.

  1. Cationic PAMAM dendrimers as pore-blocking binary toxin inhibitors.

    Science.gov (United States)

    Förstner, Philip; Bayer, Fabienne; Kalu, Nnanya; Felsen, Susanne; Förtsch, Christina; Aloufi, Abrar; Ng, David Y W; Weil, Tanja; Nestorovich, Ekaterina M; Barth, Holger

    2014-07-14

    Dendrimers are unique highly branched macromolecules with numerous groundbreaking biomedical applications under development. Here we identified poly(amido amine) (PAMAM) dendrimers as novel blockers for the pore-forming B components of the binary anthrax toxin (PA63) and Clostridium botulinum C2 toxin (C2IIa). These pores are essential for delivery of the enzymatic A components of the internalized toxins from endosomes into the cytosol of target cells. We demonstrate that at low μM concentrations cationic PAMAM dendrimers block PA63 and C2IIa to inhibit channel-mediated transport of the A components, thereby protecting HeLa and Vero cells from intoxication. By channel reconstitution and high-resolution current recording, we show that the PAMAM dendrimers obstruct transmembrane PA63 and C2IIa pores in planar lipid bilayers at nM concentrations. These findings suggest a new potential role for the PAMAM dendrimers as effective polyvalent channel-blocking inhibitors, which can protect human target cells from intoxication with binary toxins from pathogenic bacteria.

  2. Targeting Staphylococcus aureus Toxins: A Potential form of Anti-Virulence Therapy

    Directory of Open Access Journals (Sweden)

    Cin Kong

    2016-03-01

    Full Text Available Staphylococcus aureus is an opportunistic pathogen and the leading cause of a wide range of severe clinical infections. The range of diseases reflects the diversity of virulence factors produced by this pathogen. To establish an infection in the host, S. aureus expresses an inclusive set of virulence factors such as toxins, enzymes, adhesins, and other surface proteins that allow the pathogen to survive under extreme conditions and are essential for the bacteria’s ability to spread through tissues. Expression and secretion of this array of toxins and enzymes are tightly controlled by a number of regulatory systems. S. aureus is also notorious for its ability to resist the arsenal of currently available antibiotics and dissemination of various multidrug-resistant S. aureus clones limits therapeutic options for a S. aureus infection. Recently, the development of anti-virulence therapeutics that neutralize S. aureus toxins or block the pathways that regulate toxin production has shown potential in thwarting the bacteria’s acquisition of antibiotic resistance. In this review, we provide insights into the regulation of S. aureus toxin production and potential anti-virulence strategies that target S. aureus toxins.

  3. Structure of a bacterial toxin-activating acyltransferase.

    Science.gov (United States)

    Greene, Nicholas P; Crow, Allister; Hughes, Colin; Koronakis, Vassilis

    2015-06-09

    Secreted pore-forming toxins of pathogenic Gram-negative bacteria such as Escherichia coli hemolysin (HlyA) insert into host-cell membranes to subvert signal transduction and induce apoptosis and cell lysis. Unusually, these toxins are synthesized in an inactive form that requires posttranslational activation in the bacterial cytosol. We have previously shown that the activation mechanism is an acylation event directed by a specialized acyl-transferase that uses acyl carrier protein (ACP) to covalently link fatty acids, via an amide bond, to specific internal lysine residues of the protoxin. We now reveal the 2.15-Å resolution X-ray structure of the 172-aa ApxC, a toxin-activating acyl-transferase (TAAT) from pathogenic Actinobacillus pleuropneumoniae. This determination shows that bacterial TAATs are a structurally homologous family that, despite indiscernible sequence similarity, form a distinct branch of the Gcn5-like N-acetyl transferase (GNAT) superfamily of enzymes that typically use acyl-CoA to modify diverse bacterial, archaeal, and eukaryotic substrates. A combination of structural analysis, small angle X-ray scattering, mutagenesis, and cross-linking defined the solution state of TAATs, with intermonomer interactions mediated by an N-terminal α-helix. Superposition of ApxC with substrate-bound GNATs, and assay of toxin activation and binding of acyl-ACP and protoxin peptide substrates by mutated ApxC variants, indicates the enzyme active site to be a deep surface groove.

  4. Diffusion, spread, and migration of botulinum toxin.

    Science.gov (United States)

    Ramirez-Castaneda, Juan; Jankovic, Joseph; Comella, Cynthia; Dashtipour, Khashayar; Fernandez, Hubert H; Mari, Zoltan

    2013-11-01

    Botulinum toxin (BoNT) is an acetylcholine release inhibitor and a neuromuscular blocking agent used for the treatment of a variety of neurologic and medical conditions. The efficacy and safety of BoNT depends on accurate selection and identification of intended targets but also may be determined by other factors, including physical spread of the molecule from the injection site, passive diffusion, and migration to distal sites via axonal or hematogenous transport. The passive kinetic dispersion of the toxin away from the injection site in a gradient-dependent manner may also play a role in toxin spread. In addition to unique properties of the various BoNT products, volume and dilution may also influence local and systemic distribution of BoNT. Most of the local and remote complications of BoNT injections are thought to be due to unwanted spread or diffusion of the toxin's biologic activity into adjacent and distal muscles. Despite widespread therapeutic and cosmetic use of BoNT over more than three decades, there is a remarkable paucity of published data on the mechanisms of distribution and its effects on clinical outcomes. The primary aim of this article is to critically review the available experimental and clinical literature and place it in the practical context. © 2013 International Parkinson and Movement Disorder Society.

  5. Topical Botulinum Toxin

    OpenAIRE

    Collins, Ashley; Nasir, Adnan

    2010-01-01

    Nanotechnology is a rapidly growing discipline that capitalizes on the unique properties of matter engineered on the nanoscale. Vehicles incorporating nanotechnology have led to great strides in drug delivery, allowing for increased active ingredient stability, bioavailability, and site-specific targeting. Botulinum toxin has historically been used for the correction of neurological and neuromuscular disorders, such as torticollis, blepharospasm, and strabismus. Recent dermatological indicati...

  6. Pertussis toxin inhibits somatostatin-induced K+ conductance in human pituitary tumor cells

    International Nuclear Information System (INIS)

    Yamashita, N.; Kojima, I.; Shibuya, N.; Ogata, E.

    1987-01-01

    The effect of pertussis toxin on somatostatin-induced K + current was examined in dissociated human pituitary tumor cells obtained from two acromegalic patients. Somatostatin-induced hyperpolarization or K + current was observed in 20 of 23 cells in adenoma 1 and 10 of 11 cells in adenoma 2. After treatment with pertussis toxin for 24 h, these responses were completely suppressed (0/14 in adenoma, 1, 0/10 in adenoma 2). Spontaneous action potentials, K + , Na + , and Ca 2+ currents were well preserved after pertussis toxin treatment. When crude membrane fraction was incubated with [ 32 P]NAD, a 41K protein was ADP-ribosylated by pertussis toxin. Hormone release was inhibited by somatostatin and this inhibition was blocked by pertussis toxin treatment

  7. Physiological effect of the toxin from Xanthomonas retroflexus on ...

    African Journals Online (AJOL)

    Physiological effect of the toxin from Xanthomonas retroflexus on redroot pigweed (Amaranthus retroflexus). Z Sun, M Li, J Chen, Y Li. Abstract. A new toxin from Xanthomonas retroflexus could cause a series of physiological responses on seedlings of redroot pigweed. The experimental results revealed that respiratory ratio ...

  8. 9 CFR 121.3 - VS select agents and toxins.

    Science.gov (United States)

    2010-01-01

    ... genetically modified. (d) VS select agents or toxins that meet any of the following criteria are excluded from... AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS POSSESSION, USE, AND... recombinant organisms: (1) Nucleic acids that can produce infectious forms of any of the select agent viruses...

  9. Retrograde transport of protein toxins through the Golgi apparatus

    DEFF Research Database (Denmark)

    Sandvig, Kirsten; Skotland, Tore; van Deurs, Bo

    2013-01-01

    at the cell surface, and they are endocytosed both by clathrin-dependent and clathrin-independent mechanisms. Sorting to the Golgi and retrograde transport to the endoplasmic reticulum (ER) are common to these toxins, but the exact mechanisms turn out to be toxin and cell-type dependent. In the ER...

  10. Updates on tetanus toxin: a fundamental approach

    Directory of Open Access Journals (Sweden)

    Md. Ahaduzzaman

    2015-03-01

    Full Text Available Clostridium tetani is an anaerobic bacterium that produces second most poisonous protein toxins than any other bacteria. Tetanus in animals is sporadic in nature but difficult to combat even by using antibiotics and antiserum. It is crucial to understand the fundamental mechanisms and signals that control toxin production for advance research and medicinal uses. This review was intended for better understanding the basic patho-physiology of tetanus and neurotoxins (TeNT among the audience of related field.

  11. Analysis of lipophilic marine biotoxins by liquid chromatography coupled with high-resolution mass spectrometry in seawater from the Catalan Coast.

    Science.gov (United States)

    Bosch-Orea, Cristina; Sanchís, Josep; Farré, Marinella; Barceló, Damià

    2017-09-01

    Marine biotoxins regularly occur along the coast, with several consequences for the environment as well as the food industry. Monitoring of these compounds in seawater is required to assure the safety of marine resources for human consumption, providing a means for forecasting shellfish contamination events. In this study, an analytical method was developed for the detection of ten lipophilic marine biotoxins in seawater: azaspiracids 1, 2, 3, 4 and 5, classified as azaspiracid shellfish poisoning toxins, and pectenotoxin 2, okadaic acid and the related dinophysistoxin 1, yessotoxin and homoyessotoxin, classified as diarrheic shellfish poisoning toxins. The method is based on the application of solid-liquid ultrasound-assisted extraction and solid-phase extraction, followed by high-performance liquid chromatography coupled with high-resolution mass spectrometry. The limits of detection of this method are in the range of nanograms per litre and picograms per litre for most of the compounds, and recoveries range from 20.5% to 97.2%. To validate the effectiveness of this method, 36 samples of surface water from open coastal areas and marinas located along the Catalan coast on the Mediterranean Sea were collected and analysed. Eighty-eight per cent of these samples exhibited okadaic acid in particulate and aqueous phases in concentrations ranging from 0.11 to 560 μg/g and from 2.1 to 1780 ng/L respectively. Samples from open coastal areas exhibited higher concentrations of okadaic acid in particulate material, whereas in samples collected in sportive ports, the particulate material exhibited lower levels than the aqueous phase. Graphical Abstract Biotoxins investigated in seawater of the Catalan coast.

  12. Monitoring of DSP toxins in small-sized plankton fraction of seawater collected in Mutsu Bay, Japan, by ELISA method: relation with toxin contamination of scallop.

    Science.gov (United States)

    Imai, Ichiro; Sugioka, Hikaru; Nishitani, Goh; Mitsuya, Tadashi; Hamano, Yonekazu

    2003-01-01

    Monitorings were conducted on DSP toxins in mid-gut gland of scallop (mouse assay), cell numbers of toxic dinoflagellate species of Dinophysis, and diarrhetic shellfish poisoning (DSP) toxins in small-sized (0.7-5 microm) plankton fraction of seawater collected from surface (0 m) and 20 m depth at a station in Mutsu Bay, Aomori Prefecture, Japan, in 2000. A specific enzyme-linked immunosorbent assay (ELISA) was employed for the analysis of DSP toxins in small-sized plankton fraction using a mouse monoclonal anti-okadaic acid antibody which recognizes okadaic acid, dinophysistoxin-1, and dinophysistoxin-3. DSP toxins were detected twice in the mid-gut gland of scallops at 1.1-2.3 MU (mouse units) g(-1) on 26 June and at 0.6-1.2 MU g(-1) on 3 July, respectively. Relatively high cell densities of D. fortii were observed on 26 June and 11 September, and may only contribute to the bivalve toxicity during late June to early July. D. acuminata did not appear to be responsible for the toxicity of scallops in Mutsu Bay in 2000. ELISA monitoring of small-sized plankton fraction in seawater could detect DSP toxins two weeks before the detection of the toxin in scallops, and could do so two weeks after the loss of the bivalve toxicity by mouse assay. On 17 July, toxic D. fortii was detected at only small number, <10 cells l(-1), but DSP toxins were detected by the ELISA assay, suggesting a presence of other toxic small-sized plankton in seawater. For the purpose of reducing negative impacts of DSP occurrences, monitorings have been carried out hitherto on DSP toxins of bivalve tissues by mouse assay and on cell densities of "toxic" species of Dinophysis. Here we propose a usefulness of ELISA monitoring of plankton toxicity, especially in small-sized fraction, which are possible foods of mixotrophic Dinophysis, as a practical tool for detecting and predicting DSPs in coastal areas of fisheries grounds of bivalve aquaculture.

  13. Effects of anti-inflammatory drugs on fever and neutrophilia induced by Clostridium difficile toxin B

    Directory of Open Access Journals (Sweden)

    R. A. Cardoso

    1996-01-01

    Full Text Available This study investigated the ability of Clostridium difficile toxin B, isolated from the VPI 10463 strain, to induce fever and neutrophilia in rats. Intravenous injection of toxin B (0.005–0.5 μg/kg evoked a dose-dependent increase in body temperature. The febrile response to 0.5 μg/kg of the toxin started in 2.5 h, peaked at 5 h, and subsided fully within 24 h. Toxin B also induced a dosedependent neutrophilia. Pretreatment with indomethacin (2 mg/kg, i.p. did not affect the neutrophilia induced by toxin B, but significantly reduced the febrile response measured 4 to 8 h after toxin B injection. Dexamethasone (0.5 mg/ kg also markedly diminished the febrile response induced by toxin B. These results show that Clostridium difficile toxin B induced a febrile response susceptible to inhibition by dexamethasone and indomethacin. Furthermore, they suggest that prostaglandins are not involved in the neutrophilia caused by this toxin.

  14. Effect of Cryphonectria parasitica toxin on lipid peroxidation and ...

    African Journals Online (AJOL)

    In order to clarify the responses of different chestnut cultivars to Cp-toxin stress, the effect of Cp-toxin from Cryphonectria parasitica (Murr.) Barr on Castanea mollissima Blume, especially on its cell structure, was examined. Chestnut shoots of both resistant (Beiyu No. 2) and susceptible (Hongguang) cultivars were treated ...

  15. Characterisation of Non-Autoinducing Tropodithietic Acid (TDA Production from Marine Sponge Pseudovibrio Species

    Directory of Open Access Journals (Sweden)

    Catriona Harrington

    2014-12-01

    Full Text Available The search for new antimicrobial compounds has gained added momentum in recent years, paralleled by the exponential rise in resistance to most known classes of current antibiotics. While modifications of existing drugs have brought some limited clinical success, there remains a critical need for new classes of antimicrobial compound to which key clinical pathogens will be naive. This has provided the context and impetus to marine biodiscovery programmes that seek to isolate and characterize new activities from the aquatic ecosystem. One new antibiotic to emerge from these initiatives is the antibacterial compound tropodithietic acid (TDA. The aim of this study was to provide insight into the bioactivity of and the factors governing the production of TDA in marine Pseudovibrio isolates from a collection of marine sponges. The TDA produced by these Pseudovibrio isolates exhibited potent antimicrobial activity against a broad spectrum of clinical pathogens, while TDA tolerance was frequent in non-TDA producing marine isolates. Comparative genomics analysis suggested a high degree of conservation among the tda biosynthetic clusters while expression studies revealed coordinated regulation of TDA synthesis upon transition from log to stationary phase growth, which was not induced by TDA itself or by the presence of the C10-acyl homoserine lactone quorum sensing signal molecule.

  16. Interaction of the alpha-toxin of Staphylococcus aureus with the liposome membrane.

    Science.gov (United States)

    Ikigai, H; Nakae, T

    1987-02-15

    When the liposome membrane is exposed to the alpha-toxin of Staphylococcus aureus, fluorescence of the tryptophan residue(s) of the toxin molecule increases concomitantly with the degree of toxin-hexamer formation (Ikigai, H., and Nakae, T. (1985) Biochem. Biophys. Res. Commun. 130, 175-181). In the present study, the toxin-membrane interaction was distinguished from the hexamer formation by the fluorescence energy transfer from the tryptophan residue(s) of the toxin molecule to the dansylated phosphatidylethanolamine in phosphatidylcholine liposome. Measurement of these two parameters yielded the following results. The effect of the toxin concentration and phospholipid concentration on these two parameters showed first order kinetics. The effect of liposome size on the energy transfer and the fluorescence increment of the tryptophan residue(s) was only detectable in small liposomes. Under moderately acidic or basic conditions, the fluorescence energy transfer always preceded the fluorescence increment of the tryptophan residue(s). The fluorescence increment at 336 nm at temperatures below 20 degrees C showed a latent period, whereas the fluorescence energy transfer did not. These results were thought to indicate that when alpha-toxin damages the target membrane, the molecule interacts with the membrane first, and then undergoes oligomerization within the membrane.

  17. Saccharomyces boulardii protease inhibits Clostridium difficile toxin A effects in the rat ileum.

    Science.gov (United States)

    Castagliuolo, I; LaMont, J T; Nikulasson, S T; Pothoulakis, C

    1996-01-01

    Saccharomyces boulardii, a nonpathogenic yeast, is effective in treating some patients with Clostridium difficile diarrhea and colitis. We have previously reported that S. boulardii inhibits rat ileal secretion in response to C. difficile toxin A possibly by releasing a protease that digests the intestinal receptor for this toxin (C. Pothoulakis, C. P. Kelly, M. A. Joshi, N. Gao, C. J. O'Keane, I. Castagliuolo, and J. T. LaMont, Gastroenterology 104: 1108-1115, 1993). The aim of this study was to purify and characterize this protease. S. boulardii protease was partially purified by gel filtration on Sephadex G-50 and octyl-Sepharose. The effect of S. boulardii protease on rat ileal secretion, epithelial permeability, and morphology in response to toxin A was examined in rat ileal loops in vivo. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the purified S. boulardii protease revealed a major band at 54 kDa. Pretreatment of rat ileal brush border (BB) membranes with partially purified protease reduced specific toxin A receptor binding (by 26%). Partially purified protease digested the toxin A molecule and significantly reduced its binding to BB membranes in vitro (by 42%). Preincubation of toxin A with S. boulardii protease inhibited ileal secretion (46% inhibition, P < 0.01), mannitol permeability (74% inhibition, P < 0.01), and histologic damage caused by toxin A. Thus, S. boulardii protease inhibits the intestinal effects of C. difficile toxin A by proteolysis of the toxin and inhibition of toxin A binding to its BB receptor. Our results may be relevant to the mechanism by which S. boulardii exerts its protective effects in C. difficile infection in humans. PMID:8945570

  18. Toxin-Induced Experimental Models of Learning and Memory Impairment.

    Science.gov (United States)

    More, Sandeep Vasant; Kumar, Hemant; Cho, Duk-Yeon; Yun, Yo-Sep; Choi, Dong-Kug

    2016-09-01

    Animal models for learning and memory have significantly contributed to novel strategies for drug development and hence are an imperative part in the assessment of therapeutics. Learning and memory involve different stages including acquisition, consolidation, and retrieval and each stage can be characterized using specific toxin. Recent studies have postulated the molecular basis of these processes and have also demonstrated many signaling molecules that are involved in several stages of memory. Most insights into learning and memory impairment and to develop a novel compound stems from the investigations performed in experimental models, especially those produced by neurotoxins models. Several toxins have been utilized based on their mechanism of action for learning and memory impairment such as scopolamine, streptozotocin, quinolinic acid, and domoic acid. Further, some toxins like 6-hydroxy dopamine (6-OHDA), 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and amyloid-β are known to cause specific learning and memory impairment which imitate the disease pathology of Parkinson's disease dementia and Alzheimer's disease dementia. Apart from these toxins, several other toxins come under a miscellaneous category like an environmental pollutant, snake venoms, botulinum, and lipopolysaccharide. This review will focus on the various classes of neurotoxin models for learning and memory impairment with their specific mechanism of action that could assist the process of drug discovery and development for dementia and cognitive disorders.

  19. Influence of Selenium on the Production of T-2 Toxin by Fusarium poae.

    Science.gov (United States)

    Cheng, Bolun; Zhang, Yan; Tong, Bei; Yin, Hong

    2017-07-01

    The objective of this study was to investigate the effects of selenium on the production of T-2 toxin by a Fusarium poae strain cultured in a synthetic medium containing different concentrations of selenium. The T-2 toxin contents in fermentative products were evaluated by a high performance liquid chromatography (HPLC). The results showed that the production of T-2 toxin was correlated with the concentration of selenium added to the medium. In all three treatments, the addition of 1 mg/L selenium to the medium resulted in a lower toxin yield than the control (0 mg/L); the yield of the toxin began to increase when selenium concentration was 10 mg/L, while it decreased again at 20 mg/L. In summary, T-2 toxin yield in the fermentative product was affected by the addition of selenium to the medium, and a selenium concentration of 20 mg/L produced the maximum inhibitory effect of T-2 toxin yield in the fermentative product of F. poae.

  20. Electrophysiological response of chicken's jejunal epithelium to increasing levels of T-2 toxin.

    Science.gov (United States)

    Yunus, Agha Waqar; Kröger, Susan; Tichy, Alexander; Zentek, Jürgen; Böhm, Josef

    2013-02-01

    The present investigations were conducted to test the effects of T-2 toxin on electrophysiological variables of jejunal epithelium of chicken. Jejunal segments of broilers were monitored in Ussing chambers in the presence of T-2 toxin at the levels of 0 (negative control), 0 (methanol/vehicle control), 0.1, 1, 5, and 10 μg/ml of buffer. T-2 toxin did not affect basal values of short circuit current (I(sc)), transmural potential difference, or tissue conductivity in the jejunal epithelium. T-2 toxin also did not statistically affect glucose-induced electrophysiological variables during the first 3 min of glucose induction. Compared to the vehicle control, the ouabain-sensitive I(sc) was negatively affected (P = 0.008) only under 5 μg of T-2 toxin/ml. Increasing levels of T-2 toxin negatively affected the ouabain-sensitive I(sc) in a cubic (P = 0.007) fashion. These data indicate that acute exposure to moderate levels of T-2 toxin may progressively impair the cation gradient across the jejunal epithelium.

  1. Toxin formation by Clostridium botulinum type B in radurized fish

    International Nuclear Information System (INIS)

    Suhadi, F.; Thayib, S.S.

    1981-01-01

    The relation between maximum storage life and earliest toxin formation by proteolytic and nonproteolytic strains of C. botulinum type B in irradiated and unirradiated raw fish was determinated. The fish species used were Rastrelliger sp., Euthynnus sp. and Scomberomorus sp. Uninoculated fish samples held under the same treatment conditions were evaluated for the estimation of storage life by untrained panelist. The results showed that a storage temperature at or lower than 5.6 0 C is recommended in order to avoid botulism hazard caused by nonproteolytic type B. When the samples were inoculated with spores of proteolytic strains, no toxic samples were found during the storage life in all treatments with storage temperatures at or lower than 10.2 0 C. Toxin formation by proteolytic strains of C. botulinum type B in boiled (''Pindang'') chub mackerel (Rastrelliger sp.) under storage at ambient temperatures (27-31 0 C) was also determinated. The results showed that in the samples which were inoculated before the process of ''Pindang'', the earliest toxin formations were detected after the samples were spoiled regardless of the irradiation dose, strain and inoculum level; while in control unsalted samples, toxin was detected before or after the samples were spoiled, depending on the strain and inoculum level. Salt content in ordinary ''Pindang'' fish plays a major role both in extension of the storage life and the delay in toxin formation. When the samples were inoculated after the process of ''Pindang'', toxin was detected before or after the samples were spoiled, depending on the strain, salt content, irradiation dose and inoculum level. Irradiation does not prevent the toxin formation in ''Pindang'' fish if the samples are heavily contaminated with proteolytic strains of C. botulinum type B after cooking. (author)

  2. Doc toxin is a kinase that inactivates elongation factor Tu.

    Science.gov (United States)

    Cruz, Jonathan W; Rothenbacher, Francesca P; Maehigashi, Tatsuya; Lane, William S; Dunham, Christine M; Woychik, Nancy A

    2014-03-14

    The Doc toxin from bacteriophage P1 (of the phd-doc toxin-antitoxin system) has served as a model for the family of Doc toxins, many of which are harbored in the genomes of pathogens. We have shown previously that the mode of action of this toxin is distinct from the majority derived from toxin-antitoxin systems: it does not cleave RNA; in fact P1 Doc expression leads to mRNA stabilization. However, the molecular triggers that lead to translation arrest are not understood. The presence of a Fic domain, albeit slightly altered in length and at the catalytic site, provided a clue to the mechanism of P1 Doc action, as most proteins with this conserved domain inactivate GTPases through addition of an adenylyl group (also referred to as AMPylation). We demonstrated that P1 Doc added a single phosphate group to the essential translation elongation factor and GTPase, elongation factor (EF)-Tu. The phosphorylation site was at a highly conserved threonine, Thr-382, which was blocked when EF-Tu was treated with the antibiotic kirromycin. Therefore, we have established that Fic domain proteins can function as kinases. This distinct enzymatic activity exhibited by P1 Doc also solves the mystery of the degenerate Fic motif unique to the Doc family of toxins. Moreover, we have established that all characterized Fic domain proteins, even those that phosphorylate, target pivotal GTPases for inactivation through a post-translational modification at a single functionally critical acceptor site.

  3. Escherichia coli Shiga Toxin Mechanisms of Action in Renal Disease

    Directory of Open Access Journals (Sweden)

    Tom G. Obrig

    2010-12-01

    Full Text Available Shiga toxin-producing Escherichia coli is a contaminant of food and water that in humans causes a diarrheal prodrome followed by more severe disease of the kidneys and an array of symptoms of the central nervous system. The systemic disease is a complex referred to as diarrhea-associated hemolytic uremic syndrome (D+HUS. D+HUS is characterized by thrombocytopenia, microangiopathic hemolytic anemia, and acute renal failure. This review focuses on the renal aspects of D+HUS. Current knowledge of this renal disease is derived from a combination of human samples, animal models of D+HUS, and interaction of Shiga toxin with isolated renal cell types. Shiga toxin is a multi-subunit protein complex that binds to a glycosphingolipid receptor, Gb3, on select eukaryotic cell types. Location of Gb3 in the kidney is predictive of the sites of action of Shiga toxin. However, the toxin is cytotoxic to some, but not all cell types that express Gb3. It also can cause apoptosis or generate an inflammatory response in some cells. Together, this myriad of results is responsible for D+HUS disease.

  4. Changes in protease activity and Cry3Aa toxin binding in the Colorado potato beetle: implications for insect resistance to Bacillus thuringiensis toxins

    Science.gov (United States)

    Olga Loseva; Mohamed Ibrahim; Mehmet Candas; C. Noah Koller; Leah S. Bauer; Lee A. Jr. Bulla

    2002-01-01

    Widespread commercial use of Bacillus thuringiensis Cry toxins to control pest insects has increased the likelihood for development of insect resistance to this entomopathogen. In this study, we investigated protease activity profiles and toxin-binding capacities in the midgut of a strain of Colorado potato beetle (CPB) that has developed resistance...

  5. Shiga Toxin (Stx) Gene Detection and Verotoxigenic Potentials of ...

    African Journals Online (AJOL)

    DR-AMADI

    Nigerian Journal of Basic and Applied Science (June, 2016), 24(1): 98-105 .... dangerous pathogenic shiga- toxin producing E. coli from the food product. Consequent .... Table 3: Vero Toxin Analysis of non – 0157 E. coli Isolates From Nono Sold in Nigeria. City .... receptors in their plasma membranes and will detect all ...

  6. Altruism of Shiga toxin-producing Escherichia coli: recent hypothesis versus experimental results

    Directory of Open Access Journals (Sweden)

    Joanna M Los

    2013-01-01

    Full Text Available Shiga toxin-producing Escherichia coli (STEC may cause bloody diarrhea and hemorrhagic colitis, with subsequent systemic disease. Since genes coding for Shiga toxins (stx genes are located on lambdoid prophages, their effective production occurs only after prophage induction. Such induction and subsequent lytic development of Shiga toxin-converting bacteriophages results not only in production of toxic proteins, but also in the lysis (and thus, the death of the host cell. Therefore, one may ask the question: what is the benefit for bacteria to produce the toxin if they die due to phage production and subsequent cell lysis? Recently, a hypothesis was proposed (simultaneously but independently by two research groups that STEC may benefit from Shiga toxin production as a result of toxin-dependent killing of eukaryotic cells such as unicellular predators or human leukocytes. This hypothesis could make sense only if we assume that prophage induction (and production of the toxin occurs only in a small fraction of bacterial cells, thus, a few members of the population are sacrificed for the benefit of the rest, providing an example of ‘bacterial altruism’. However, various reports indicating that the frequency of spontaneous induction of Shiga toxin-converting prophages is higher than that of other lambdoid prophages might seem to contradict the for-mentioned model. On the other hand, analysis of recently published results, discussed here, indicated that the efficiency of prophage excision under conditions that may likely occur in the natural habitat of STEC is sufficiently low to ensure survival of a large fraction of the bacterial host. A molecular mechanism by which partial prophage induction may occur is proposed. We conclude that the published data supports the proposed model of bacterial ‘altruism’ where prophage induction occurs at a low enough frequency to render toxin production a positive selective force on the general STEC population.

  7. Solid-phase synthesis and biological evaluation of Joro spider toxin-4 from Nephila clavata

    DEFF Research Database (Denmark)

    Barslund, Anne Fuglsang; Poulsen, Mette Homann; Bach, Tinna Brøbech

    2011-01-01

    Polyamine toxins from orb weaver spiders are attractive pharmacological tools particularly for studies of ionotropic glutamate (iGlu) receptors in the brain. These polyamine toxins are biosynthesized in a combinatorial manner, providing a plethora of related, but structurally complex toxins...... to be exploited in biological studies. Here, we have used solid-phase synthetic methodology for the efficient synthesis of Joro spider toxin-4 (JSTX-4) (1) from Nephila clavata, providing sufficient amounts of the toxin for biological evaluation at iGlu receptor subtypes using electrophysiology. Biological...

  8. Troublesome toxins: time to re-think plant-herbivore interactions in vertebrate ecology

    Directory of Open Access Journals (Sweden)

    Feng Zhilan

    2009-02-01

    Full Text Available Abstract Earlier models of plant-herbivore interactions relied on forms of functional response that related rates of ingestion by herbivores to mechanical or physical attributes such as bite size and rate. These models fail to predict a growing number of findings that implicate chemical toxins as important determinants of plant-herbivore dynamics. Specifically, considerable evidence suggests that toxins set upper limits on food intake for many species of herbivorous vertebrates. Herbivores feeding on toxin-containing plants must avoid saturating their detoxification systems, which often occurs before ingestion rates are limited by mechanical handling of food items. In light of the importance of plant toxins, a new approach is needed to link herbivores to their food base. We discuss necessary features of such an approach, note recent advances in herbivore functional response models that incorporate effects of plant toxins, and mention predictions that are consistent with observations in natural systems. Future ecological studies will need to address explicitly the importance of plant toxins in shaping plant and herbivore communities.

  9. Mechanisms of Action and Cell Death Associated with Clostridium perfringens Toxins

    Directory of Open Access Journals (Sweden)

    Mauricio A. Navarro

    2018-05-01

    Full Text Available Clostridium perfringens uses its large arsenal of protein toxins to produce histotoxic, neurologic and intestinal infections in humans and animals. The major toxins involved in diseases are alpha (CPA, beta (CPB, epsilon (ETX, iota (ITX, enterotoxin (CPE, and necrotic B-like (NetB toxins. CPA is the main virulence factor involved in gas gangrene in humans, whereas its role in animal diseases is limited and controversial. CPB is responsible for necrotizing enteritis and enterotoxemia, mostly in neonatal individuals of many animal species, including humans. ETX is the main toxin involved in enterotoxemia of sheep and goats. ITX has been implicated in cases of enteritis in rabbits and other animal species; however, its specific role in causing disease has not been proved. CPE is responsible for human food-poisoning and non-foodborne C. perfringens-mediated diarrhea. NetB is the cause of necrotic enteritis in chickens. In most cases, host–toxin interaction starts on the plasma membrane of target cells via specific receptors, resulting in the activation of intracellular pathways with a variety of effects, commonly including cell death. In general, the molecular mechanisms of cell death associated with C. perfringens toxins involve features of apoptosis, necrosis and/or necroptosis.

  10. Retargeting the Clostridium botulinum C2 toxin to the neuronal cytosol.

    Science.gov (United States)

    Pavlik, Benjamin J; Hruska, Elizabeth J; Van Cott, Kevin E; Blum, Paul H

    2016-03-30

    Many biological toxins are known to attack specific cell types, delivering their enzymatic payloads to the cytosol. This process can be manipulated by molecular engineering of chimeric toxins. Using toxins with naturally unlinked components as a starting point is advantageous because it allows for the development of payloads separately from the binding/translocation components. Here the Clostridium botulinum C2 binding/translocation domain was retargeted to neural cell populations by deleting its non-specific binding domain and replacing it with a C. botulinum neurotoxin binding domain. This fusion protein was used to deliver fluorescently labeled payloads to Neuro-2a cells. Intracellular delivery was quantified by flow cytometry and found to be dependent on artificial enrichment of cells with the polysialoganglioside receptor GT1b. Visualization by confocal microscopy showed a dissociation of payloads from the early endosome indicating translocation of the chimeric toxin. The natural Clostridium botulinum C2 toxin was then delivered to human glioblastoma A172 and synchronized HeLa cells. In the presence of the fusion protein, native cytosolic enzymatic activity of the enzyme was observed and found to be GT1b-dependent. This retargeted toxin may enable delivery of therapeutics to peripheral neurons and be of use in addressing experimental questions about neural physiology.

  11. New Typical Vector of Neurotoxin β-N-Methylamino-l-Alanine (BMAA in the Marine Benthic Ecosystem

    Directory of Open Access Journals (Sweden)

    Aifeng Li

    2016-11-01

    Full Text Available The neurotoxin β-N-methylamino-l-alanine (BMAA has been identified as an environmental factor triggering neurodegenerative diseases such as Amyotrophic Lateral Sclerosis (ALS and Alzheimer’s disease (AD. We investigated the possible vectors of BMAA and its isomers 2,4-diaminobutyric acid (DAB and N-2(aminoethylglycine (AEG in marine mollusks collected from the Chinese coast. Sixty-eight samples of marine mollusks were collected along the Chinese coast in 2016, and were analyzed by an HILIC-MS/MS (hydrophilic interaction liquid chromatography with tandem quadrupole mass spectrometer method without derivatization. BMAA was detected in a total of five samples from three species: Neverita didyma, Solen strictus, and Mytilus coruscus. The top three concentrations of free-form BMAA (0.99~3.97 μg·g−1 wet weight were detected in N. didyma. DAB was universally detected in most of the mollusk samples (53/68 with no species-specific or regional differences (0.051~2.65 μg·g−1 wet weight. No AEG was detected in any mollusk samples tested here. The results indicate that the gastropod N. didyma might be an important vector of the neurotoxin BMAA in the Chinese marine ecosystem. The neurotoxin DAB was universally present in marine bivalve and gastropod mollusks. Since N. didyma is consumed by humans, we suggest that the origin and risk of BMAA and DAB toxins in the marine ecosystem should be further investigated in the future.

  12. Determining the Advantages, Costs, and Trade-Offs of a Novel Sodium Channel Mutation in the Copepod Acartia hudsonica to Paralytic Shellfish Toxins (PST.

    Directory of Open Access Journals (Sweden)

    Michael Finiguerra

    Full Text Available The marine copepod Acartia hudsonica was shown to be adapted to dinoflagellate prey, Alexandrium fundyense, which produce paralytic shellfish toxins (PST. Adaptation to PSTs in other organisms is caused by a mutation in the sodium channel. Recently, a mutation in the sodium channel in A. hudsonica was found. In this study, we rigorously tested for advantages, costs, and trade-offs associated with the mutant isoform of A. hudsonica under toxic and non-toxic conditions. We combined fitness with wild-type: mutant isoform ratio measurements on the same individual copepod to test our hypotheses. All A. hudsonica copepods express both the wild-type and mutant sodium channel isoforms, but in different proportions; some individuals express predominantly mutant (PMI or wild-type isoforms (PWI, while most individuals express relatively equal amounts of each (EI. There was no consistent pattern of improved performance as a function of toxin dose for egg production rate (EPR, ingestion rate (I, and gross growth efficiency (GGE for individuals in the PMI group relative to individuals in the PWI expression group. Neither was there any evidence to indicate a fitness benefit to the mutant isoform at intermediate toxin doses. No clear advantage under toxic conditions was associated with the mutation. Using a mixed-diet approach, there was also no observed relationship between individual wild-type: mutant isoform ratios and among expression groups, on both toxic and non-toxic diets, for eggs produced over three days. Lastly, expression of the mutant isoform did not mitigate the negative effects of the toxin. That is, the reductions in EPR from a toxic to non-toxic diet for copepods were independent of expression groups. Overall, the results did not support our hypotheses; the mutant sodium channel isoform does not appear to be related to adaptation to PST in A. hudsonica. Other potential mechanisms responsible for the adaptation are discussed.

  13. Genotoxicity and potential carcinogenicity of cyanobacterial toxins - a review.

    Science.gov (United States)

    Zegura, Bojana; Straser, Alja; Filipič, Metka

    2011-01-01

    The occurrence of cyanobacterial blooms has increased significantly in many regions of the world in the last century due to water eutrophication. These blooms are hazardous to humans, animals, and plants due to the production of cyanotoxins, which can be classified in five different groups: hepatotoxins, neurotoxins, cytotoxins, dermatotoxins, and irritant toxins (lipopolysaccharides). There is evidence that certain cyanobacterial toxins are genotoxic and carcinogenic; however, the mechanisms of their potential carcinogenicity are not well understood. The most frequently occurring and widespread cyanotoxins in brackish and freshwater blooms are the cyclic heptapeptides, i.e., microcystins (MCs), and the pentapeptides, i.e., nodularins (NODs). The main mechanism associated with potential carcinogenic activity of MCs and NOD is the inhibition of protein phosphatases, which leads to the hyperphosphorylation of cellular proteins, which is considered to be associated with their tumor-promoting activity. Apart from this, MCs and NOD induce increased formation of reactive oxygen species and, consequently, oxidative DNA damage. There is also evidence that MCs and NOD induce micronuclei, and NOD was shown to have aneugenic activity. Both cyanotoxins interfere with DNA damage repair pathways, which, along with DNA damage, is an important factor involved in the carcinogenicity of these agents. Furthermore, these toxins increase the expression of TNF-α and early-response genes, including proto-oncogenes, genes involved in the response to DNA damage, cell cycle arrest, and apoptosis. Rodent studies indicate that MCs and NOD are tumor promotors, whereas NOD is thought to have also tumor-initiating activity. Another cyanobacterial toxin, cylindrospermopsin (CYN), which has been neglected for a long time, is lately being increasingly found in the freshwater environment. The principal mechanism of its toxicity is the irreversible inhibition of protein synthesis. It is pro

  14. Detection of Staphylococcus aureus delta-toxin production by whole-cell MALDI-TOF mass spectrometry.

    Directory of Open Access Journals (Sweden)

    Julie Gagnaire

    Full Text Available The aim of the present study was to detect the Staphylococcus aureus delta-toxin using Whole-Cell (WC Matrix Assisted Laser Desorption Ionization-Time-of-Flight (MALDI-TOF mass spectrometry (MS, correlate delta-toxin expression with accessory gene regulator (agr status, and assess the prevalence of agr deficiency in clinical isolates with and without resistance to methicillin and glycopeptides. The position of the delta-toxin peak in the mass spectrum was identified using purified delta-toxin and isogenic wild type and mutant strains for agr-rnaIII, which encodes delta-toxin. Correlation between delta-toxin production and agr RNAIII expression was assessed by northern blotting. A series of 168 consecutive clinical isolates and 23 unrelated glycopeptide-intermediate S. aureus strains (GISA/heterogeneous GISA were then tested by WC-MALDI-TOF MS. The delta-toxin peak was detected at 3005±5 Thomson, as expected for the naturally formylated delta toxin, or at 3035±5 Thomson for its G10S variant. Multivariate analysis showed that chronicity of S. aureus infection and glycopeptide resistance were significantly associated with delta-toxin deficiency (p = 0.048; CI 95%: 1.01-10.24; p = 0.023; CI 95%: 1.20-12.76, respectively. In conclusion, the S. aureus delta-toxin was identified in the WC-MALDI-TOF MS spectrum generated during routine identification procedures. Consequently, agr status can potentially predict infectious complications and rationalise application of novel virulence factor-based therapies.

  15. Glycan Encapsulated Gold Nanoparticles Selectively Inhibit Shiga Toxins 1 and 2

    OpenAIRE

    Kulkarni, Ashish A.; Fuller-Schaefer, Cynthia; Korman, Henry; Weiss, Alison A.; Iyer, Suri S.

    2010-01-01

    Shiga toxins (Stx) released by Escherichia coli O157:H7 and Shigella dysentriae, cause life-threatening conditions that include hemolytic-uremic syndrome (HUS), kidney failure and neurological complications. Cellular entry is mediated by the B subunit of the AB5 toxin, which recognizes cell surface glycolipids present in lipid raft like structures. We developed gold glyconanoparticles that present a multivalent display similar to the cell surface glycolipids to compete for these toxins. These...

  16. Tarantula toxins use common surfaces for interacting with Kv and ASIC ion channels.

    Science.gov (United States)

    Gupta, Kanchan; Zamanian, Maryam; Bae, Chanhyung; Milescu, Mirela; Krepkiy, Dmitriy; Tilley, Drew C; Sack, Jon T; Yarov-Yarovoy, Vladimir; Kim, Jae Il; Swartz, Kenton J

    2015-05-07

    Tarantula toxins that bind to voltage-sensing domains of voltage-activated ion channels are thought to partition into the membrane and bind to the channel within the bilayer. While no structures of a voltage-sensor toxin bound to a channel have been solved, a structural homolog, psalmotoxin (PcTx1), was recently crystalized in complex with the extracellular domain of an acid sensing ion channel (ASIC). In the present study we use spectroscopic, biophysical and computational approaches to compare membrane interaction properties and channel binding surfaces of PcTx1 with the voltage-sensor toxin guangxitoxin (GxTx-1E). Our results show that both types of tarantula toxins interact with membranes, but that voltage-sensor toxins partition deeper into the bilayer. In addition, our results suggest that tarantula toxins have evolved a similar concave surface for clamping onto α-helices that is effective in aqueous or lipidic physical environments.

  17. CD28: Direct and Critical Receptor for Superantigen Toxins

    Directory of Open Access Journals (Sweden)

    Ziv Rotfogel

    2013-09-01

    Full Text Available Every adaptive immune response requires costimulation through the B7/CD28 axis, with CD28 on T-cells functioning as principal costimulatory receptor. Staphylococcal and streptococcal superantigen toxins hyperstimulate the T-cell-mediated immune response by orders of magnitude, inducing a lethal cytokine storm. We show that to elicit an inflammatory cytokine storm and lethality, superantigens must bind directly to CD28. Blocking access of the superantigen to its CD28 receptor with peptides mimicking the contact domains in either toxin or CD28 suffices to protect mice effectively from lethal shock. Our finding that CD28 is a direct receptor of superantigen toxins broadens the scope of microbial pathogen recognition mechanisms.

  18. Filaggrin-dependent secretion of sphingomyelinase protects against staphylococcal α-toxin-induced keratinocyte death.

    Science.gov (United States)

    Brauweiler, Anne M; Bin, Lianghua; Kim, Byung Eui; Oyoshi, Michiko K; Geha, Raif S; Goleva, Elena; Leung, Donald Y M

    2013-02-01

    The skin of patients with atopic dermatitis (AD) has defects in keratinocyte differentiation, particularly in expression of the epidermal barrier protein filaggrin. AD skin lesions are often exacerbated by Staphylococcus aureus-mediated secretion of the virulence factor α-toxin. It is unknown whether lack of keratinocyte differentiation predisposes to enhanced lethality from staphylococcal toxins. We investigated whether keratinocyte differentiation and filaggrin expression protect against cell death induced by staphylococcal α-toxin. Filaggrin-deficient primary keratinocytes were generated through small interfering RNA gene knockdown. RNA expression was determined by using real-time PCR. Cell death was determined by using the lactate dehydrogenase assay. Keratinocyte cell survival in filaggrin-deficient (ft/ft) mouse skin biopsies was determined based on Keratin 5 staining. α-Toxin heptamer formation and acid sphingomyelinase expression were determined by means of immunoblotting. We found that filaggrin expression, occurring as the result of keratinocyte differentiation, significantly inhibits staphylococcal α-toxin-mediated pathogenicity. Furthermore, filaggrin plays a crucial role in protecting cells by mediating the secretion of sphingomyelinase, an enzyme that reduces the number of α-toxin binding sites on the keratinocyte surface. Finally, we determined that sphingomyelinase enzymatic activity directly prevents α-toxin binding and protects keratinocytes against α-toxin-induced cytotoxicity. The current study introduces the novel concept that S aureus α-toxin preferentially targets and destroys filaggrin-deficient keratinocytes. It also provides a mechanism to explain the increased propensity for S aureus-mediated exacerbation of AD skin disease. Copyright © 2012 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  19. Headache and botulinum toxin

    OpenAIRE

    Porta, M.; Camerlingo, M.

    2005-01-01

    The authors discuss clinical and international experience about botulinum toxins (BTX types A and B) in headache treatment. Data from literature suggest good results for the treatment of tensiontype headache, migraine and chronic tension–type headache. In the present paper mechanisms of action and injection sites will also be discussed.

  20. Therapeutic Approaches of Botulinum Toxin in Gynecology

    OpenAIRE

    Marius Alexandru Moga; Oana Gabriela Dimienescu; Andreea Bălan; Ioan Scârneciu; Barna Barabaș; Liana Pleș

    2018-01-01

    Botulinum toxins (BoNTs) are produced by several anaerobic species of the genus Clostridium and, although they were originally considered lethal toxins, today they find their usefulness in the treatment of a wide range of pathologies in various medical specialties. Botulinum neurotoxin has been identified in seven different isoforms (BoNT-A, BoNT-B, BoNT-C, BoNT-D, BoNT-E, BoNT-F, and BoNT-G). Neurotoxigenic Clostridia can produce more than 40 different BoNT subtypes and, recently, a new BoNT...