WorldWideScience

Sample records for post irradiation annealing

  1. Post-irradiation annealing of coarse-grained model alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ray, P H.N.; Wilson, C; McElroy, R J [AEA Reactor Services, Harwell (United Kingdom)

    1994-12-31

    Thermal ageing and irradiation studies have been carried out on three model alloys (JPC, JPB, JPG) that have identical compositions except for different levels of phosphorus and/or copper. They have been irradiated in three conditions, as-received, heat treated to produce a coarse grained microstructure (similar to heat-affected-zone), and in this condition further aged at 450 C to produce a temper embrittled condition. One of the alloy have been subject to a post-irradiation anneal. The effect of these treatments on mechanical property changes has been characterized by Charpy testing and Vickers hardness measurements; the phosphorus segregation has been studied by a combination of STEM and Auger techniques.

  2. Investigation of neutron irradiated reactor vessel steels using post-irradiation annealing techniques

    Energy Technology Data Exchange (ETDEWEB)

    Nakata, Hayato; Fukuya, Koji [Institute of Nuclear Safety System Inc., Mihama, Fukui (Japan)

    2001-09-01

    The matrix damage is known to be a major factor that contributes to embrittlement and hardening of irradiated reactor vessel steels, and is assumed to be composed of the point defect clusters. However field emission gun scanning transmission electron microscopy (FEGSTEM) and atom probe (AP) could not detect any evidence of the matrix damage. In this study, post irradiation annealing experiments combining positron annihilation lineshape analysis (PALA) and hardness experiments were applied to an actual surveillance test specimen and a sample of reactor vessel steel irradiated in a material test reactor (MTR), in order to investigate the matrix damage recovery behavior and its contribution to hardening. It was confirmed that higher fluence increased the hardness and the volume fraction of open volume defects and that higher flux decreased the thermal stability of matrix damage and the effect on hardening. The contribution of matrix damage to hardening could be estimated to be below 30%. (author)

  3. Microstructure and mechanical properties of neutron irradiated OFHC-copper before and after post-irradiation annealing

    DEFF Research Database (Denmark)

    Singh, B.N.; Edwards, D.J.; Toft, P.

    2001-01-01

    of recovery depends on the irradiation dose level. However, the post-irradiation annealing eliminates theproblem of yield drop and reinstates enough uniform elongation to render the material useful again. These results are discussed in terms of the cascade induced source hardening (CISH) and the dispersed...

  4. Effect of neutron irradiation and post-irradiation annealing on microstructure and mechanical properties of OFHC-copper

    International Nuclear Information System (INIS)

    Singh, B.N.; Edwards, D.J.; Toft, P.

    2001-01-01

    Specimens of oxygen-free high conductivity (OFHC) copper were irradiated in the DR-3 reactor at Risoe at 100 deg. C to doses in the range 0.01-0.3 dpa (NRT). Some of the specimens were tensile tested in the as-irradiated condition at 100 deg. C whereas others were given a post-irradiation annealing treatment at 300 deg. C for 50 h and subsequently tested at 100 deg. C. The microstructure of specimens was characterized in the as-irradiated as well as irradiated and annealed conditions both before and after tensile deformation. While the interstitial loop microstructure coarsens with irradiation dose, no significant changes were observed in the population of stacking fault tetrahedra (SFT). The post-irradiation annealing leads to only a partial recovery and the level of recovery depends on the irradiation dose level. However, the post-irradiation annealing eliminates the yield drop and reinstates enough uniform elongation to render the material useful again. These results are discussed in terms of the cascade-induced source hardening (CISH) model

  5. Effect of neutron irradiation and post-irradiation annealing on microstructure and mechanical properties of OFHC-copper

    Energy Technology Data Exchange (ETDEWEB)

    Singh, B.N. E-mail: bachu.singh@risoe.dk; Edwards, D.J.; Toft, P

    2001-12-01

    Specimens of oxygen-free high conductivity (OFHC) copper were irradiated in the DR-3 reactor at Risoe at 100 deg. C to doses in the range 0.01-0.3 dpa (NRT). Some of the specimens were tensile tested in the as-irradiated condition at 100 deg. C whereas others were given a post-irradiation annealing treatment at 300 deg. C for 50 h and subsequently tested at 100 deg. C. The microstructure of specimens was characterized in the as-irradiated as well as irradiated and annealed conditions both before and after tensile deformation. While the interstitial loop microstructure coarsens with irradiation dose, no significant changes were observed in the population of stacking fault tetrahedra (SFT). The post-irradiation annealing leads to only a partial recovery and the level of recovery depends on the irradiation dose level. However, the post-irradiation annealing eliminates the yield drop and reinstates enough uniform elongation to render the material useful again. These results are discussed in terms of the cascade-induced source hardening (CISH) model.

  6. Effect of neutron irradiation and post-irradiation annealing on microstructure and mechanical properties of OFHC-copper

    Science.gov (United States)

    Singh, B. N.; Edwards, D. J.; Toft, P.

    2001-12-01

    Specimens of oxygen-free high conductivity (OFHC) copper were irradiated in the DR-3 reactor at Risø at 100 °C to doses in the range 0.01-0.3 dpa (NRT). Some of the specimens were tensile tested in the as-irradiated condition at 100 °C whereas others were given a post-irradiation annealing treatment at 300 °C for 50 h and subsequently tested at 100 °C. The microstructure of specimens was characterized in the as-irradiated as well as irradiated and annealed conditions both before and after tensile deformation. While the interstitial loop microstructure coarsens with irradiation dose, no significant changes were observed in the population of stacking fault tetrahedra (SFT). The post-irradiation annealing leads to only a partial recovery and the level of recovery depends on the irradiation dose level. However, the post-irradiation annealing eliminates the yield drop and reinstates enough uniform elongation to render the material useful again. These results are discussed in terms of the cascade-induced source hardening (CISH) model.

  7. Microstructure and mechanical properties of neutron irradiated OFHC-copper before and after post-irradiation annealing

    International Nuclear Information System (INIS)

    Singh, B.N.; Edwards, D.J.; Toft, P.

    2001-02-01

    Tensile specimens of OFHC-copper were irradiated with fission neutrons in the DR-3 reactor at Risoe National Laboratory at 100 deg. C to different displacement dose levels in the range of 0.01 to 0.3 dpa (NRT). Some of the specimens were tensile tested in the as-irradiated condition at 100 deg. C whereas other were given a post-irradiation annealing at 300 deg. C for 50 h and subsequently tested at 100 deg. C. Transmission electron microscopy was used to characterize the microstructure of specimens in the as-irradiation as well as irradiation and annealed conditions both before and after tensile deformation. The results show that while the interstitial loop microstructure coarsens with irradiation dose, no significant changes are observed in the population of stacking fault tetrahedra. The results also illustrates that the post-irradiation annealing leads to only a partial recovery and that the level of recovery depends on the irradiation dose level. However, the post-irradiation annealing eliminates the problem of yield drop and reinstates enough uniform elongation to render the material useful again. These results are discussed in terms of the cascade induced source hardening (CISH) and the dispersed barrier hardening (DBH) models. Both technological and scientific implications of these results are considered. (au)

  8. DAMAGE IN MOLYBDENUM ASSOCIATED WITH NEUTRON IRRADIATION AND SUBSEQUENT POST-IRRADIATION ANNEALING

    Energy Technology Data Exchange (ETDEWEB)

    Mastel, B.

    1963-07-23

    Molybdemum containing carbon was studied in an attempt to establish the combined effect of impurity content and neutron irradiation on the properties and structure of specific metals. Molybdenum foils were punched into discs and heat treated in vacuum. They were then slow-cooled and irradiated. After irradiation and subsequent decay of radioactivity to a low level the foils were subjected to x-ray diffraction measurements. Cold-worked foils with less than 10 ppm carbon showed no change in microstructure due to irradiation. Molybdenum foils that were annealed prior to irradiation showed spot defects. In foils containing up to 500 ppm carbon, it was concluded that the small loops present after irradiation are due to the clustering of point defects at interstitial carbon atoms, followed by collapse to form a dislocation loop. The amount of lattice expansion after irradiation was strongly dependent on impurity content. Neutron irradiation was found to reduce the number of active slip systems. (M.C.G.)

  9. Effects of post-irradiation annealing on the transformation behavior of Ti-Ni alloys

    International Nuclear Information System (INIS)

    Kimura, A.; Tsuruga, H.; Morimura, T.; Misawa, T.; Miyazaki, S.

    1993-01-01

    Recovery processes of martensitic transformation of neutron irradiated Ti-50.0, 50.5 and 51.0 at.%Ni alloys during post-irradiation annealing were investigated by means of differential scanning calorimetry (DSC), tensile tests and transmission electron microscope (TEM) observations. Neutron irradiation up to a fluence of 1.2x10 24 n/cm 2 at 333 K suppressed the martensitic transformation as well as the stress-induced martensitic transformation of these alloys above 150 K. The TEM observations revealed that the disordered zones containing small defect clusters in high density were formed in the neutron irradiated Ti-Ni alloys. The DSC measurements also showed that the post-irradiation annealing caused recovery of the transformation of which the progress depended on the annealing temperature and period. A significant retardation of the recovery was recognized in the Ti-51.0 at.%Ni alloy in comparison with the Ti-50.0 at.%Ni alloy. From the shifts in the transformation temperature upon isothermal annealing at various annealing temperatures, the activation energies of the recovery process of the transformation in the neutron irradiated Ti-50.0 and 51.0 at.%Ni alloys were evaluated by a cross-cut method to be 1.2 eV and 1.5 eV, respectively. The recovery of the transformation was ascribed to the re-ordering resulting from decomposition of vacancy clusters, and those obtained values of the activation energy were considered to be the sum of the migration energy of vacancy and the binding energy of vacancy-vacancy cluster. The retardation of the recovery in the Ti-51.0 at%Ni alloy was interpreted in terms of large binding energy in this alloy due to the off-stoichiometry. (author)

  10. Mitigating IASCC of Reactor Core Internals by Post-Irradiation Annealing

    Energy Technology Data Exchange (ETDEWEB)

    Was, Gary [Univ. of Michigan, Ann Arbor, MI (United States)

    2017-06-02

    This final report summarizes research performed during the period between September 2012 and December 2016, with the objective of establishing the effectiveness of post-irradiation annealing (PIA) as an advanced mitigation strategy for irradiation-assisted stress corrosion cracking (IASCC). This was completed by using irradiated 304SS control blade material to conduct crack initiation and crack growth rate (CGR) experiments in simulated BWR environment. The mechanism by which PIA affects IASCC susceptibility will also be verified. The success of this project will provide a foundation for the use of PIA as a mitigation strategy for core internal components in commercial reactors.

  11. Mitigating IASCC of Reactor Core Internals by Post-Irradiation Annealing

    International Nuclear Information System (INIS)

    Was, Gary

    2017-01-01

    This final report summarizes research performed during the period between September 2012 and December 2016, with the objective of establishing the effectiveness of post-irradiation annealing (PIA) as an advanced mitigation strategy for irradiation-assisted stress corrosion cracking (IASCC). This was completed by using irradiated 304SS control blade material to conduct crack initiation and crack growth rate (CGR) experiments in simulated BWR environment. The mechanism by which PIA affects IASCC susceptibility will also be verified. The success of this project will provide a foundation for the use of PIA as a mitigation strategy for core internal components in commercial reactors.

  12. Isothermal and isochronal annealing methodology to study post-irradiation temperature activated phenomena

    International Nuclear Information System (INIS)

    Chabrerie, C.; Autran, J.L.; Paillet, P.; Flament, O.; Leray, J.L.; Boudenot, J.C.

    1997-01-01

    In this work, the evolution of the oxide trapped charge has been modeled, to predict post-irradiation behavior for arbitrary anneal conditions (i.e., arbitrary temperature-time profiles). Using experimental data obtained from a single isochronal anneal, the method consists of calculating the evolution of the energy distribution of the oxide trapped charge, in the framework of a thermally activated charge detrapping model. This methodology is illustrated in this paper by the prediction of experimental isothermal data from isochronal measurements. The implications of these results to hardness assurance test methods are discussed

  13. The growth of intra-granular bubbles in post-irradiation annealed UO2 fuel

    International Nuclear Information System (INIS)

    White, R.J.

    2001-01-01

    Post-irradiation examinations of low temperature irradiated UO 2 reveal large numbers of very small intra-granular bubbles, typically of around 1 nm diameter. During high temperature reactor transients these bubbles act as sinks for fission gas atoms and vacancies and can give rise to large volumetric swellings, sometimes of the order of 10%. Under irradiation conditions, the nucleation and growth of these bubbles is determined by a balance between irradiation-induced nucleation, diffusional growth and an irradiation induced re-solution mechanism. This conceptual picture is, however, incomplete because in the absence of irradiation the model predicts that the bubble population present from the pre-irradiation would act as the dominant sink for fission gas atoms resulting in large intra-granular swellings and little or no fission gas release. In practice, large fission gas releases are observed from post-irradiation annealed fuel. A recent series of experiments addressed the issue of fission gas release and swelling in post-irradiation annealed UO 2 originating from Advanced Gas Cooled Reactor (AGR) fuel which had been ramp tested in the Halden Test reactor. Specimens of fuel were subjected to transient heating at ramp rates of 0.5 deg. C/s and 20 deg. C/s to target temperatures between 1600 deg. C and 1900 deg. C. The release of fission gas was monitored during the tests. Subsequently, the fuel was subjected to post-irradiation examination involving detailed Scanning Electron Microscopy (SEM) analysis. Bubble-size distributions were obtained from seventeen specimens, which entailed the measurement of nearly 26,000 intra-granular bubbles. The analysis reveals that the bubble densities remain approximately invariant during the anneals and the bubble-size distributions exhibit long exponential tails in which the largest bubbles are present in concentrations of 10 4 or 10 5 lower than the concentrations of the average sized bubbles. Detailed modelling of the bubble

  14. Temper embrittlement, irradiation induced phosphorus segregation and implications for post-irradiation annealing of reactor pressure vessels

    International Nuclear Information System (INIS)

    McElroy, R.J.; English, C.A.; Foreman, A.J.; Gage, G.; Hyde, J.M.; Ray, P.H.N.; Vatter, I.A.

    1999-01-01

    Three steels designated JPB, JPC and JPG from the IAEA Phase 3 Programme containing two copper and phosphorus levels were pre- and post-irradiation Charpy and hardness tested in the as-received (AR), 1200 C/0.5h heat treated (HT) and heat treated and 450 C/2000h aged (HTA) conditions. The HT condition was designed to simulate coarse grained heat-affected zones (HAZ's) and showed a marked sensitivity to thermal ageing in all three alloys. Embrittlement after thermal ageing was greater in the higher phosphorus alloys JPB and JPG. Charpy shifts due to thermal ageing of between 118 and 209 C were observed and accompanied by pronounced intergranular fracture, due to phosphorus segregation. The irradiation embrittlement response was complex. The low copper alloys, JPC and JPB, in the HT and HTA condition exhibited significant irradiation induced Charpy shift but very low or even negative hardness changes indicating non-hardening embrittlement. The higher copper alloy, JPG, also exhibited irradiation hardening in line with its copper content. Fractographic and microchemical studies indicated irradiation induced phosphorus segregation and a transition from cleavage to intergranular failure at grain boundary phosphorus concentrations above a critical level. The enhanced grain boundary phosphorus level increased with dose in agreement with a kinetic segregation model developed at Harwell. The relevance of the thermal ageing studies to RPV Annealing for Plant-Life Extension was identified early in the program. It is of concern that annealing of RPV's has been performed, or is proposed, at temperatures in the range 425--475 C for periods of about 1 week (168h). Much attention has been given to the use of in-situ hardness measurements and machining miniature Charpy and tensile specimens from belt-line plate and weld materials. However, HAZ's, often containing higher phosphorus levels than the present materials, have largely been ignored. A post-irradiation annealing (PIA

  15. Microstructural evolution of nanochannel CrN films under ion irradiation at elevated temperature and post-irradiation annealing

    Science.gov (United States)

    Tang, Jun; Hong, Mengqing; Wang, Yongqiang; Qin, Wenjing; Ren, Feng; Dong, Lan; Wang, Hui; Hu, Lulu; Cai, Guangxu; Jiang, Changzhong

    2018-03-01

    High-performance radiation tolerance materials are crucial for the success of future advanced nuclear reactors. In this paper, we present a further investigation that the "vein-like" nanochannel films can enhance radiation tolerance under ion irradiation at high temperature and post-irradiation annealing. The chromium nitride (CrN) nanochannel films with different nanochannel densities and the compact CrN film are chosen as a model system for these studies. Microstructural evolution of these films were investigated using Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Elastic Recoil Detection (ERD) and Grazing Incidence X-ray Diffraction (GIXRD). Under the high fluence He+ ion irradiation at 500 °C, small He bubbles with low bubble densities are observed in the irradiated nanochannel CrN films, while the aligned large He bubbles, blistering and texture reconstruction are found in the irradiated compact CrN film. For the heavy Ar2+ ion irradiation at 500 °C, the microstructure of the nanochannel CrN RT film is more stable than that of the compact CrN film due to the effective releasing of defects via the nanochannel structure. Under the He+ ion irradiation and subsequent annealing, compared with the compact film, the nanochannel films have excellent performance for the suppression of He bubble growth and possess the strong microstructural stability. Basing on the analysis on the sizes and number densities of bubbles as well as the concentrations of He retained in the nanochannel CrN films and the compact CrN film under different experimental conditions, potential mechanism for the enhanced radiation tolerance are discussed. Nanochannels play a crucial role on the release of He/defects under ion irradiation. We conclude that the tailored "vein-like" nanochannel structure may be used as advanced radiation tolerance materials for future nuclear reactors.

  16. Evolution of the radiation-induced defect structure in 316 type stainless steel after post-irradiation annealing

    Energy Technology Data Exchange (ETDEWEB)

    Van Renterghem, W., E-mail: wvrenter@sckcen.be; Konstantinović, M.J., E-mail: mkonstan@sckcen.be; Vankeerberghen, M., E-mail: mvankeer@sckcen.be

    2014-09-15

    Highlights: • TEM study of irradiated CW316 steel after post-irradiation annealing. • Frank loops were removed after annealing at 550 °C, by unfaulting and growing. • The cavity density decreases after annealing at 550 °C, but not completely removed. • Frank loop and cavity removal is controlled by the annealing temperature. • The dissolution of γ' precipitates is controlled by the iron diffusion length. - Abstract: The thermal stability of Frank loops, black dots, cavities and γ′ precipitates in an irradiated 316 stainless steel was studied by transmission electron microscopy. The samples were retrieved from a thimble tube irradiated at around 320 °C up to 80 dpa in a commercial nuclear power reactor, and thermally annealed, varying both annealing temperature and time. With increasing annealing temperature the density of all defects gradually decreased, resulting in the complete removal of Frank loops at 550 °C. In contrast to other defects, the density of the γ′ precipitates sharply decreased with increasing annealing time, which indicates that the dissolution of the γ′ precipitates is governed by the iron diffusion length.

  17. Neutron, gamma ray and post-irradiation thermal annealing effects on power semiconductor switches

    International Nuclear Information System (INIS)

    Schwarze, G.E.; Frasca, A.J.

    1994-01-01

    The effects of neutrons and gamma rays on the electrical and switching characteristics of power semiconductor switches must be known and understood by the designer of the power conditioning, control, and transmission subsystem of space nuclear power systems. The SP-100 radiation requirements at 25 m from the nuclear source are a neutron fluence of 10 13 n/cm 2 and a gamma dose of 0.5 Mrads. Experimental data showing the effects of neutrons and gamma rays on the performance characteristics of power-type NPN Bipolar Junction Transistors (BJTs), Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs), and Static Induction Transistors (SITs) are given in this paper. These three types of devices were tested at radiation levels which met or exceeded the SP-100 requirements. For the SP-100 radiation requirements, the BJTs were found to be most sensitive to neutrons, the MOSFETs were most sensitive to gamma rays, and the SITs were only slightly sensitive to neutrons. Post-irradiation thermal anneals at 300 K and up to 425 K were done on these devices and the effectiveness of these anneals are also discussed

  18. Neutron, gamma ray and post-irradiation thermal annealing effects on power semiconductor switches

    Science.gov (United States)

    Schwarze, G. E.; Frasca, A. J.

    1991-01-01

    The effects of neutron and gamma rays on the electrical and switching characteristics of power semiconductor switches must be known and understood by the designer of the power conditioning, control, and transmission subsystem of space nuclear power systems. The SP-100 radiation requirements at 25 m from the nuclear source are a neutron fluence of 10(exp 13) n/sq cm and a gamma dose of 0.5 Mrads. Experimental data showing the effects of neutrons and gamma rays on the performance characteristics of power-type NPN Bipolar Junction Transistors (BJTs), Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs), and Static Induction Transistors (SITs) are presented. These three types of devices were tested at radiation levels which met or exceeded the SP-100 requirements. For the SP-100 radiation requirements, the BJTs were found to be most sensitive to neutrons, the MOSFETs were most sensitive to gamma rays, and the SITs were only slightly sensitive to neutrons. Post-irradiation thermal anneals at 300 K and up to 425 K were done on these devices and the effectiveness of these anneals are also discussed.

  19. Kinetic Monte Carlo simulation of nanostructural evolution under post-irradiation annealing in dilute FeMnNi

    Energy Technology Data Exchange (ETDEWEB)

    Chiapetto, M. [SCK-CEN, Nuclear Materials Science Institute, Mol (Belgium); Unite Materiaux et Transformations (UMET), UMR 8207, Universite de Lille 1, ENSCL, Villeneuve d' Ascq (France); Becquart, C.S. [Unite Materiaux et Transformations (UMET), UMR 8207, Universite de Lille 1, ENSCL, Villeneuve d' Ascq (France); Laboratoire commun EDF-CNRS, Etude et Modelisation des Microstructures pour le Vieillissement des Materiaux (EM2VM) (France); Domain, C. [EDF R and D, Departement Materiaux et Mecanique des Composants, Les Renardieres, Moret sur Loing (France); Laboratoire commun EDF-CNRS, Etude et Modelisation des Microstructures pour le Vieillissement des Materiaux (EM2VM) (France); Malerba, L. [SCK-CEN, Nuclear Materials Science Institute, Mol (Belgium)

    2015-01-01

    Post-irradiation annealing experiments are often used to obtain clearer information on the nature of defects produced by irradiation. However, their interpretation is not always straightforward without the support of physical models. We apply here a physically-based set of parameters for object kinetic Monte Carlo (OKMC) simulations of the nanostructural evolution of FeMnNi alloys under irradiation to the simulation of their post-irradiation isochronal annealing, from 290 to 600 C. The model adopts a ''grey alloy'' scheme, i.e. the solute atoms are not introduced explicitly, only their effect on the properties of point-defect clusters is. Namely, it is assumed that both vacancy and SIA clusters are significantly slowed down by the solutes. The slowing down increases with size until the clusters become immobile. Specifically, the slowing down of SIA clusters by Mn and Ni can be justified in terms of the interaction between these atoms and crowdions in Fe. The results of the model compare quantitatively well with post-irradiation isochronal annealing experimental data, providing clear insight into the mechanisms that determine the disappearance or re-arrangement of defects as functions of annealing time and temperature. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Fission gas release during post irradiation annealing of large grain size fuels from Hinkley point B

    International Nuclear Information System (INIS)

    Killeen, J.C.

    1997-01-01

    A series of post-irradiation anneals has been carried out on fuel taken from an experimental stringer from Hinkley Point B AGR. The stringer was part of an experimental programme in the reactor to study the effect of large grain size fuel. Three differing fuel types were present in separate pins in the stringer. One variant of large grain size fuel had been prepared by using an MgO dopant during fuel manufactured, a second by high temperature sintering of standard fuel and the third was a reference, 12μm grain size fuel. Both large grain size variants had similar grain sizes around 35μm. The present experiments took fuel samples from highly rated pins from the stringer with local burn-up in excess of 25GWd/tU and annealed these to temperature of up to 1535 deg. C under reducing conditions to allow a comparison of fission gas behaviour at high release levels. The results demonstrate the beneficial effect of large grain size on release rate of 85 Kr following interlinkage. At low temperatures and release rates there was no difference between the fuel types, but at temperatures in excess of 1400 deg. C the release rate was found to be inversely dependent on the fuel grain size. The experiments showed some differences between the doped and undoped large grains size fuel in that the former became interlinked at a lower temperature, releasing fission gas at an increased rate at this temperature. At higher temperatures the grain size effect was dominant. The temperature dependence for fission gas release was determined over a narrow range of temperature and found to be similar for all three types and for both pre-interlinkage and post-interlinkage releases, the difference between the release rates is then seen to be controlled by grain size. (author). 4 refs, 7 figs, 3 tabs

  1. Fission gas release during post irradiation annealing of large grain size fuels from Hinkley point B

    Energy Technology Data Exchange (ETDEWEB)

    Killeen, J C [Nuclear Electric plc, Barnwood (United Kingdom)

    1997-08-01

    A series of post-irradiation anneals has been carried out on fuel taken from an experimental stringer from Hinkley Point B AGR. The stringer was part of an experimental programme in the reactor to study the effect of large grain size fuel. Three differing fuel types were present in separate pins in the stringer. One variant of large grain size fuel had been prepared by using an MgO dopant during fuel manufactured, a second by high temperature sintering of standard fuel and the third was a reference, 12{mu}m grain size fuel. Both large grain size variants had similar grain sizes around 35{mu}m. The present experiments took fuel samples from highly rated pins from the stringer with local burn-up in excess of 25GWd/tU and annealed these to temperature of up to 1535 deg. C under reducing conditions to allow a comparison of fission gas behaviour at high release levels. The results demonstrate the beneficial effect of large grain size on release rate of {sup 85}Kr following interlinkage. At low temperatures and release rates there was no difference between the fuel types, but at temperatures in excess of 1400 deg. C the release rate was found to be inversely dependent on the fuel grain size. The experiments showed some differences between the doped and undoped large grains size fuel in that the former became interlinked at a lower temperature, releasing fission gas at an increased rate at this temperature. At higher temperatures the grain size effect was dominant. The temperature dependence for fission gas release was determined over a narrow range of temperature and found to be similar for all three types and for both pre-interlinkage and post-interlinkage releases, the difference between the release rates is then seen to be controlled by grain size. (author). 4 refs, 7 figs, 3 tabs.

  2. Defects annihilation behavior of neutron-irradiated SiC ceramics densified by liquid-phase-assisted method after post-irradiation annealing

    Directory of Open Access Journals (Sweden)

    Mohd Idzat Idris

    2016-12-01

    Full Text Available Numerous studies on the recovery behavior of neutron-irradiated high-purity SiC have shown that most of the defects present in it are annihilated by post-irradiation annealing, if the neutron fluence is less than 1×1026 n/m2 (>0.1MeV and the irradiation is performed at temperatures lower than 973K. However, the recovery behavior of SiC fabricated by the nanoinfiltrated and transient eutectic phase (NITE process is not well understood. In this study, the effects of secondary phases on the irradiation-related swelling and recovery behavior of monolithic NITE-SiC after post-irradiation annealing were studied. The NITE-SiC specimens were irradiated in the BR2 reactor at fluences of up to 2.0–2.5×1024 n/m2 (E>0.1MeV at 333–363K. This resulted in the specimens swelling up ∼1.3%, which is 0.1% higher than the increase seen in concurrently irradiated high-purity SiC. The recovery behaviors of the specimens after post-irradiation thermal annealing were examined using a precision dilatometer; the specimens were heated at temperatures of up to 1673K using a step-heating method. The recovery curves were analyzed using a first-order model, and the rate constants for each annealing step were obtained to determine the activation energy for volume recovery. The NITE-A specimen (containing 12 wt% sintering additives recovered completely after annealing at ∼1573K; however, it shrank because of the volatilization of the oxide phases at 1673K. The NITE-B specimen (containing 18wt% sintering additives did not recover fully, since the secondary phase (YAG was crystallized during the annealing process. The recovery mechanism of NITE-A SiC was based on the recombination of the C and Si Frenkel pairs, which were very closely sited or only slightly separated at temperatures lower than 1223K, as well as the recombination of the slightly separated C Frenkel pairs and the migration of C and Si interstitials at temperatures of 1223–1573K. That is to say, the

  3. TEM examination of the effect of post-irradiation annealing on 7.7 dpa AISI 304 stainless steel

    International Nuclear Information System (INIS)

    Karlsen, W.; Ivanchenko, M.; Pakarinen, J.; Karlsen, T.

    2015-01-01

    Stainless steels exposed to neutron irradiation during service in light water reactors (LWR) can become susceptible to intergranular cracking, referred to as irradiation assisted stress corrosion cracking (IASCC). Analytical transmission electron microscopy (ATEM) was used to examine the effect of post-irradiation annealing (PIA) on radiation-induced segregation (RIS) at the grain boundaries of 7.7 dpa AISI 304 stainless steel. The grain boundary profiles and the irradiation damage were analysed in the as-irradiated state and after PIA of 6 hours at 500 C. degrees and after 25 hours at 500 C. degrees and 550 C. degrees by using transmission electron microscopy (TEM). As a main conclusion from the TEM examinations, the effects of PIA were found to be relatively small after only 6 hours, while after 25 hours of PIA at both 500 and 550 C. degrees, RIS was almost recovered and only marginal deviation in chemical composition could be found near the GB. The as-irradiated state showed extreme RIS values of Si 4.9 wt%, Cr 14.7 wt%, Ni 23.4 wt%, and P 1.4 wt%., while upon PIA for 6 hours the extreme values for RIS were Si 3.9 wt%, Cr 16.0 wt%, Ni 21 wt%, and P 0.9 wt%. After 6 hours annealing at 500 C. dislocation loops start to grow, while dislocation density remains of the same order of magnitude. After annealing for 25 hours at 500 C. degrees the average size of dislocation loops remains nearly the same, while dislocation density was reduced almost by one fold. In the areas where dislocation density was found to be the lowest some features, which can most likely be attributed to stacking fault tetrahedral (SFT) were found. Annealing at even higher temperature (550 C.) affected the average size of the dislocation loops, making them almost twice as large as well as resulting in a very broad distribution of dislocation sizes. Density of dislocations is also reduced by one fold in comparison to the as irradiated condition and leads to formation of SFTs, which could be

  4. Recovery behavior of high purity cubic SiC polycrystals by post-irradiation annealing up to 1673 K after low temperature neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Idris, Mohd Idzat, E-mail: idzat.i.aa@m.titech.ac.jp [Department of Nuclear Engineering, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550 Japan (Japan); The National University of Malaysia, School of Applied Physics, Faculty of Science and Technology, 43600 Bangi Selangor (Malaysia); Yamazaki, Saishun; Yoshida, Katsumi; Yano, Toyohiko [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550 Japan (Japan)

    2015-10-15

    Two kinds of high purity cubic (β) SiC polycrystals, PureBeta-SiC and CVD-SiC, were irradiated in the BR2 reactor (Belgium) up to a fluence of 2.0–2.5 × 10{sup 24} (E > 0.1 MeV) at 333–363 K. Changes in macroscopic lengths were examined by post-irradiation thermal annealing using a precision dilatometer up to 1673 K with a step-heating method. The specimen was held at each temperature step for 6 h and the change in length of the specimen was recorded during each isothermal annealing step from 373 K to 1673 K with 50 K increments. The recovery curves were analyzed with the first order model, and rate constants at each annealing step were obtained. Recovery of defects, induced by neutron irradiation in high purity β-SiC, has four stages of different activation energies. At 373–573 K, the activation energy of PureBeta-SiC and CVD-SiC was in the range of 0.17–0.24 eV and 0.12–0.14 eV; 0.002–0.04 eV and 0.006–0.04 eV at 723–923 K; 0.20–0.27 eV and 0.26–0.31 eV at 923–1223 K; and 1.37–1.38 eV and 1.26–1.29 eV at 1323–1523 K, respectively. Below ∼1223 K the recombination occurred possibly for closely positioned C and Si Frenkel pairs, and no long range migration is deemed essential. Nearly three-fourths of recovery, induced by neutron irradiation, occur by this mechanism. In addition, at 1323–1523 K, recombination of slightly separated C Frenkel pairs and more long-range migration of Si interstitials may have occurred for PureBeta-SiC and CVD-SiC specimens. Migration of both vacancies may be restricted up to ∼1523 K. Comparing to hexagonal α-SiC, high purity β-SiC recovered more quickly in the lower annealing temperature range of less than 873 K, in particular less than 573 K. - Highlights: • Two kinds of high purity cubic (β) SiC polycrystals were irradiated. • Macroscopic lengths were examined by post-irradiation thermal annealing. • The recovery curves were analyzed with first order model.

  5. Effects of post-stress hydrogen annealing on MOS oxides after 60Co irradiation or Fowler-Nordheim injection

    International Nuclear Information System (INIS)

    Saks, N.S.; Stahlbush, R.E.; Mrstik, B.J.; Rendell, R.W.; Klein, R.B.

    1993-01-01

    Changes in interface trap density D it have been determined in MOSFETs as a function of time during hydrogen annealing at 295K. Large increases in D it are observed during H 2 annealing in MOSFETs previously stressed by either 60 Co irradiation or Fowler-Nordheim electron injection. The annealing behavior is very similar for both types of stress, which suggests that the D it creation mechanism involves similar chemistry for hydrogen reactions. Studies of the time dependence of D it creation as a function of MOSFET gate length show that the time dependence is limited primarily by lateral diffusion of molecular hydrogen (H 2 ) through the gate oxide. An activation energy of 0.57 eV, which is consistent with H 2 diffusion, is obtained from the temperature dependence

  6. 133Xe release during post-irradiation annealing of uranium metal in the presence of a constant volume of air Pt. 1

    International Nuclear Information System (INIS)

    Marei, S.A.; El-Garhy, M.; El-Bayoumy, S.; Muenze, R.; Hladik, O.

    1978-01-01

    The fractional release of 133 Xe at different temperatures was studied as a function of time in the presence of air during post-irradiation annealing of uranium metal. The relation between the fractional release and tsup(1/2) was found to be irregular. There is an initial step in the annealing curves (at the temperature range of 400-710 deg C) which decreases by increasing temperature and totally disappears at the high temperature of 800-1000 deg C. The initial step was found to be due to the surface oxidation of uranium metal. The other two parts of the release curves are normal for 133 Xe release from uranium metal. Since in this work the irradiation temperature is low ( 133 Xe. (T.G.)

  7. Irradiation embrittlement and optimisation of annealing

    International Nuclear Information System (INIS)

    1993-01-01

    This conference is composed of 30 papers grouped in 6 sessions related to the following themes: neutron irradiation effects in pressure vessel steels and weldments used in PWR, WWER and BWR nuclear plants; results from surveillance programmes (irradiation induced damage and annealing processes); studies on the influence of variations in irradiation conditions and mechanisms, and modelling; mitigation of irradiation effects, especially through thermal annealing; mechanical test procedures and specimen size effects

  8. Irradiation embrittlement and optimisation of annealing

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    This conference is composed of 30 papers grouped in 6 sessions related to the following themes: neutron irradiation effects in pressure vessel steels and weldments used in PWR, WWER and BWR nuclear plants; results from surveillance programmes (irradiation induced damage and annealing processes); studies on the influence of variations in irradiation conditions and mechanisms, and modelling; mitigation of irradiation effects, especially through thermal annealing; mechanical test procedures and specimen size effects.

  9. Mesoscale Benchmark Demonstration Problem 1: Mesoscale Simulations of Intra-granular Fission Gas Bubbles in UO2 under Post-irradiation Thermal Annealing

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yulan; Hu, Shenyang Y.; Montgomery, Robert; Gao, Fei; Sun, Xin; Tonks, Michael; Biner, Bullent; Millet, Paul; Tikare, Veena; Radhakrishnan, Balasubramaniam; Andersson , David

    2012-04-11

    A study was conducted to evaluate the capabilities of different numerical methods used to represent microstructure behavior at the mesoscale for irradiated material using an idealized benchmark problem. The purpose of the mesoscale benchmark problem was to provide a common basis to assess several mesoscale methods with the objective of identifying the strengths and areas of improvement in the predictive modeling of microstructure evolution. In this work, mesoscale models (phase-field, Potts, and kinetic Monte Carlo) developed by PNNL, INL, SNL, and ORNL were used to calculate the evolution kinetics of intra-granular fission gas bubbles in UO2 fuel under post-irradiation thermal annealing conditions. The benchmark problem was constructed to include important microstructural evolution mechanisms on the kinetics of intra-granular fission gas bubble behavior such as the atomic diffusion of Xe atoms, U vacancies, and O vacancies, the effect of vacancy capture and emission from defects, and the elastic interaction of non-equilibrium gas bubbles. An idealized set of assumptions was imposed on the benchmark problem to simplify the mechanisms considered. The capability and numerical efficiency of different models are compared against selected experimental and simulation results. These comparisons find that the phase-field methods, by the nature of the free energy formulation, are able to represent a larger subset of the mechanisms influencing the intra-granular bubble growth and coarsening mechanisms in the idealized benchmark problem as compared to the Potts and kinetic Monte Carlo methods. It is recognized that the mesoscale benchmark problem as formulated does not specifically highlight the strengths of the discrete particle modeling used in the Potts and kinetic Monte Carlo methods. Future efforts are recommended to construct increasingly more complex mesoscale benchmark problems to further verify and validate the predictive capabilities of the mesoscale modeling

  10. Modeling of irradiation embrittlement and annealing/recovery in pressure vessel steels

    International Nuclear Information System (INIS)

    Lott, R.G.; Freyer, P.D.

    1996-01-01

    The results of reactor pressure vessel (RPV) annealing studies are interpreted in light of the current understanding of radiation embrittlement phenomena in RPV steels. An extensive RPV irradiation embrittlement and annealing database has been compiled and the data reveal that the majority of annealing studies completed to date have employed test reactor irradiated weldments. Although test reactor and power reactor irradiations result in similar embrittlement trends, subtle differences between these two damage states can become important in the interpretation of annealing results. Microstructural studies of irradiated steels suggest that there are several different irradiation-induced microstructural features that contribute to embrittlement. The amount of annealing recovery and the post-anneal re-embrittlement behavior of a steel are determined by the annealing response of these microstructural defects. The active embrittlement mechanisms are determined largely by the irradiation temperature and the material composition. Interpretation and thorough understanding of annealing results require a model that considers the underlying physical mechanisms of embrittlement. This paper presents a framework for the construction of a physically based mechanistic model of irradiation embrittlement and annealing behavior

  11. Response of neutron-irradiated RPV steels to thermal annealing

    International Nuclear Information System (INIS)

    Iskander, S.K.; Sokolov, M.A.; Nanstad, R.K.

    1997-01-01

    One of the options to mitigate the effects of irradiation on reactor pressure vessels (RPVs) is to thermally anneal them to restore the fracture toughness properties that have been degraded by neutron irradiation. This paper summarizes experimental results of work performed at the Oak Ridge National Laboratory (ORNL) to study the annealing response of several irradiated RPV steels

  12. Post-irradiation diarrhea

    International Nuclear Information System (INIS)

    Meerwaldt, J.H.

    1984-01-01

    In radiotherapy of pelvic cancers, the X-ray dose to be delivered to the tumour is limited by the tolerance of healthy surrounding tissue. In recent years, a number of serious complications of irradiation of pelvic organs were encountered. Modern radiotherapy necessitates the acceptance of a calculated risk of complications in order to achieve a better cure rate. To calculate these risks, one has to know the radiation dose-effect relationship of normal tissues. Of the normal tissues most at risk when treating pelvic tumours only the bowel is studied. In the literature regarding post-irradiation bowel complications, severe and mild complications are often mixed. In the present investigation the author concentrated on the group of patients with relatively mild symptoms. He studied the incidence and course of post-irradiation diarrhea in 196 patients treated for carcinoma of the uterine cervix or endometrium. The aims of the present study were: 1) to determine the incidence, course and prognostic significance of post-irradiation diarrhea; 2) to assess the influence of radiotherapy factors; 3) to study the relation of bile acid metabolism to post-irradiation diarrhea; 4) to investigate whether local factors (reservoir function) were primarily responsible. (Auth.)

  13. Isothermal and isochronal annealing experiments on irradiated commercial power VDMOSFETs

    International Nuclear Information System (INIS)

    Jaksic, A.B.; Pejovic, M.M.; Ristic, G.S.

    1999-01-01

    The paper presents results of isothermal and isochronal annealing experiments on several types of gamma-ray irradiated commercial N- and P-channel power VDMOSFETs. Transistors were characterized for their threshold voltage shift and densities of radiation-induced oxide-trap charge and interface traps. The results show that the temperature enhances interface trap formation and oxide-trap charge decay rates, but also contributes to the passivation of interface traps. The study demonstrates that formation and passivation of interface traps are simultaneous processes. At certain conditions (lower temperature and/or positive bias) interface-trap formation dominates. Oppositely, at other conditions (higher temperature and/or negative bias) passivation is predominant. However at some conditions there is a complex interplay between formation and passivation of interface traps, resulting in interface traps increase followed by decrease at later annealing times. No model for interface trap post-irradiation behavior can explain this effect better than the recently proposed H-W model

  14. Annealing effect on restoration of irradiation steel properties

    International Nuclear Information System (INIS)

    Vishkarev, O.M.; Kolesova, T.N.; Myasnikova, K.P.; Pecherin, A.M.; Shamardin, V.K.

    1986-01-01

    The effect of temperature and annealing time on the restoration of properties of the 15Kh2NMFAA and 15Kh2MFA steels after irradiation at 285 deg with the fluence of 6x10 23 neutr/m 2 (E>0.5 MeV) is studied. Microhardness (H μ ) restoration in the irradiated 15Kh2NMFAA steel is shown to start from 350 deg C annealing temperature. The complete microhardness restoration is observed at the annealing temperature of 500 deg C for 10 hours

  15. Temperature annealing of tracks induced by ion irradiation of graphite

    International Nuclear Information System (INIS)

    Liu, J.; Yao, H.J.; Sun, Y.M.; Duan, J.L.; Hou, M.D.; Mo, D.; Wang, Z.G.; Jin, Y.F.; Abe, H.; Li, Z.C.; Sekimura, N.

    2006-01-01

    Highly oriented pyrolytic graphite (HOPG) samples were irradiated by Xe ions of initial kinetic energy of 3 MeV/u. The irradiations were performed at temperatures of 500 and 800 K. Scanning tunneling microscopy (STM) images show that the tracks occasionally have elongated structures under high-temperature irradiation. The track creation yield at 800 K is by three orders of magnitude smaller compared to that obtained during room-temperature irradiation. STM and Raman spectra show that amorphization occurs in graphite samples irradiated at 500 K to higher fluences, but not at 800 K. The obtained experimental results clearly reveal that the irradiation under high temperature causes track annealing

  16. Post-irradiation effects in CMOS integrated circuits

    International Nuclear Information System (INIS)

    Zietlow, T.C.; Barnes, C.E.; Morse, T.C.; Grusynski, J.S.; Nakamura, K.; Amram, A.; Wilson, K.T.

    1988-01-01

    The post-irradiation response of CMOS integrated circuits from three vendors has been measured as a function of temperature and irradiation bias. The author's have found that a worst-case anneal temperature for rebound testing is highly process dependent. At an anneal temperature of 80 0 C, the timing parameters of a 16K SRAM from vendor A quickly saturate at maximum values, and display no further changes at this temperature. At higher temperature, evidence for the anneal of interface state charge is observed. Dynamic bias during irradiation results in the same saturation value for the timing parameters, but the anneal time required to reach this value is longer. CMOS/SOS integrated circuits (vendor B) were also examined, and showed similar behavior, except that the saturation value for the timing parameters was stable up to 105 0 C. After irradiation to 10 Mrad(Si), a 16K SRAM (vendor C) was annealed at 80 0 C. In contrast to the results from the vendor A SRAM, the access time decreased toward prerad values during the anneal. Another part irradiated in the same manner but annealed at room temperature showed a slight increase during the anneal

  17. Irradiation, annealing, and reirradiation research in the ORNL heavy-section steel irradiation program

    International Nuclear Information System (INIS)

    Nanstad, R.K.; Iskander, S.K.; McCabe, D.E.; Sokolov, M.A.

    1997-01-01

    One of the options to mitigate the effects of irradiation on reactor pressure vessels (RPV) is to thermally anneal them to restore the toughness properties that have been degraded by neutron irradiation. This paper summarizes experimental results from work performed as part of the Heavy-Section Steel Irradiation (HSSI) Program managed by Oak Ridge National Laboratory (ORNL) for the U.S. Nuclear Regulatory Commission. The HSSI Program focuses on annealing and re-embrittlement response of materials which are representative of those in commercial RPVs and which are considered to be radiation-sensitive. Experimental studies include (1) the annealing of materials in the existing inventory of previously irradiated materials, (2) reirradiation of previously irradiated/annealed materials in a collaborative program with the University of California, Santa Barbara (UCSB), (3) irradiation/annealing/reirradiation of U.S. and Russian materials in a cooperative program with the Russian Research Center-Kurchatov Institute (RRC-KI), (4) the design and fabrication of an irradiation/anneal/reirradiation capsule and facility for operation at the University of Michigan Ford Reactor, (5) the investigation of potential for irradiation-and/or thermal-induced temper embrittlement in heat-affected zones (HAZs) of RPV steels due to phosphorous segregation at grain boundaries, and (6) investigation of the relationship between Charpy impact toughness and fracture toughness under all conditions of irradiation, annealing, and reirradiation

  18. Thermal annealing in neutron-irradiated tribromobenzenes

    DEFF Research Database (Denmark)

    Siekierska, K.E.; Halpern, A.; Maddock, A. G.

    1968-01-01

    in the crystals was estimated by means of the 1,2-dibromoethylene exchange technique. The results suggest that, as a consequence of nuclear events, quite a number of different reactions occur whereas the principal annealing reaction is a recombination of atomic bromine with a dibromophenyl radical....

  19. Kinetics of annealing of irradiated surveillance pressure vessel steel

    International Nuclear Information System (INIS)

    Harvey, D.J.; Wechsler, M.S.

    1982-01-01

    Indentation hardness measurements as a function of annealing were made on broken halves of Charpy impact surveillance samples. The samples had been irradiated in commercial power reactors to a neutron fluence of approximately 1 x 10 18 neutrons per cm 2 , E > 1 MeV, at a temperature of about 300 0 C (570 0 F). Results are reported for the weld metal, which showed greater radiation hardening than the base plate or heat-affected zone material. Isochronal and isothermal anneals were conducted on the irradiated surveillance samples and on unirradiated control samples. No hardness changes upon annealing occurred for the control samples. The recovery in hardness for the irradiated samples took place mostly between 400 and 500 0 C. Based on the Meechan-Brinkman method of analysis, the activation energy for annealing was found to be 0.60 +- 0.06 eV. According to computer simulation calculations of Beeler, the activation energy for migration of vacancies in alpha iron is about 0.67 eV. Therefore, the results of this preliminary study appear to be consistent with a mechanism of annealing of radiation damage in pressure vessel steels based on the migration of radiation-produced lattice vacancies

  20. Isothermal annealing kinetics of X-irradiated pyrene by EPR

    International Nuclear Information System (INIS)

    Partiti, C.S.M.; Pontuschka, W.M.; Fazzio, A.; Piccini, A.

    1989-07-01

    The annealing behavior of X-irradiated stable free radicals found in Pyrene (C 16 H 10 ) single crystals was studied by EPR. Two processes of thermal decay kinetics were found, both with the same activation energy (1.9±0.1) ev. (author) [pt

  1. Infrared absorption studies of the annealing of irradiated diamonds

    International Nuclear Information System (INIS)

    Woods, G.S.

    1984-01-01

    Natural (types Ia and IIa) and synthetic (type Ib) diamonds have been irradiated with energetic electrons and neutrons and then heated at temperatures up to 1400 deg C. Attendant changes in the infrared absorption spectra, especially above the Raman frequency (1332 cm -1 ), have been monitored. The most prominent absorption to develop in the infrared region proper, on annealing both type Ia and type Ib specimens, whether electron- or neutron-irradiated is the H1a line at 1450 cm -1 . Measurements taken of neutron-irradiated type Ia specimens show that the strength of this line is specimen-dependent, and that it is a linear function of radiation dose. Isochronal annealing studies show that the onset of the line occurs during heating at 250 deg C for type Ia specimens and at 650 deg C for type Ib specimens. The absorption begins to weaken during heating at 1100 deg C, but it is very persistent, surviving an anneal of 4 hours at 1400 deg C, albeit with diminished intensity. Three other weaker lines at 1438, 1358 and 1355 cm -1 develop with the 1450 cm -1 line, but differ from it and from each other in subsequent annealing behaviour. Other lines were observed; these are reported and discussed. (author)

  2. Post irradiation conical keratosis

    International Nuclear Information System (INIS)

    Vestey, J.P.; Hunter, J.A.A.; Mallet, R.B.; Rodger, A.

    1989-01-01

    The authors have recently seen 3 patients affected by a widespread eruption of minute keratoses confined to areas of irradiated skin with clinical and histologial features of which they have been unable to find previous literary descriptions. A fourth patient with similar clinical and histopathological features occurring after exposure only to actinic irradiation is described. (author)

  3. Post irradiation conical keratosis

    Energy Technology Data Exchange (ETDEWEB)

    Vestey, J.P.; Hunter, J.A.A. (Royal Infirmary, Edinburgh (UK)); Mallet, R.B. (Westminster Hospital, London (UK)); Rodger, A. (Western General Hospital, Edinburgh (UK))

    1989-03-01

    The authors have recently seen 3 patients affected by a widespread eruption of minute keratoses confined to areas of irradiated skin with clinical and histologial features of which they have been unable to find previous literary descriptions. A fourth patient with similar clinical and histopathological features occurring after exposure only to actinic irradiation is described. (author).

  4. Positron annihilation studies on reactor irradiated and thermal annealed ferrocene

    International Nuclear Information System (INIS)

    Marques Netto, A.; Carvalho, R.S.; Magalhaes, W.F.; Sinisterra, R.D.

    1996-01-01

    Retention and thermal annealing following (n, γ) reaction in solid ferrocene, Fe(C 5 H 5 ) 2 , were studied by positron annihilation lifetime spectroscopy (PAL). Positronium (Ps) formation was observed in the non-irradiated compound with a probability or intensity (I 3 ) of 30%. Upon irradiation of the compound with thermal neutrons in a nuclear reactor, I 3 decreases with increasing irradiation time. Thermal treatment again increases I 3 values from 16% to 25%, revealing an important proportion of molecular reformation without variation of the ortho-positronium lifetime (τ 3 ). These results point out the major influence of the electronic structure as determining the Ps yields in the pure complex. In the irradiated and non irradiated complexes the results are satisfactorily explained on the basis of the spur model. (orig.)

  5. Toward understanding dynamic annealing processes in irradiated ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Myers, Michael Thomas [Texas A & M Univ., College Station, TX (United States)

    2013-05-01

    High energy particle irradiation inevitably generates defects in solids. The ballistic formation and thermalization of the defect creation process occur rapidly, and are believed to be reasonably well understood. However, knowledge of the evolution of defects after damage cascade thermalization, referred to as dynamic annealing, is quite limited. Unraveling the mechanisms associated with dynamic annealing is crucial since such processes play an important role in the formation of stable postirradiation disorder in ion-beam-processing of semiconductors, and determines the “radiation tolerance” of many nuclear materials. The purpose of this dissertation is to further our understanding of the processes involved in dynamic annealing. In order to achieve this, two main tasks are undertaken.

  6. Post irradiation examination technology exchange

    International Nuclear Information System (INIS)

    Sozawa, Shizuo; Ito, Masayasu; Taguchi, Taketoshi; Nakagawa, Tetsuya; Lee, Hyung-Kwon

    2012-01-01

    Under the KAERI and JAEA agreement, in a part of the program 18 (Post Irradiation Examination (PIE) and Evaluation Technique of Irradiated Materials), an eddy current test was proposed as a round robin test, and it has been being progressed in both organizations in order to enhance the post irradiation examination technology. Up to now, several data are obtained by both PIE facilities. In this paper, the round robin test program is shown, and also shown obtained data with discussion from applicability as a nondestructive test in the hot cell. (author)

  7. Recovery of the irradiated JFETs by thermal annealing

    International Nuclear Information System (INIS)

    Assaf, J.

    2007-10-01

    Study about the recovering of irradiated JFET transistors has been reported. The JFETs were damaged totally or partially by exposition to Gamma ray and neutrons. Electronics noise has used to evaluate the effect of radiation and the recovery. The study focused on the recovery by thermal annealing, where samples have been heated gradually until 140 centigrade degree (410 K). The recovery ratio given by this method was higher than that resulted from the relaxation method (time recovery) carried out in the room temperature (300 K), especially for Gamma irradiated samples.(author)

  8. Irradiation and annealing of p-type silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Lebedev, Alexander A.; Bogdanova, Elena V.; Grigor' eva, Maria V.; Lebedev, Sergey P. [A.F. Ioffe Physical-Technical Institute, St. Petersburg, 194021 (Russian Federation); Kozlovski, Vitaly V. [St. Petersburg State Polytechnic University, St. Petersburg, 195251 (Russian Federation)

    2014-02-21

    The development of the technology of semiconductor devices based on silicon carbide and the beginning of their industrial manufacture have made increasingly topical studies of the radiation hardness of this material on the one hand and of the proton irradiation to form high-receptivity regions on the other hand. This paper reports on a study of the carrier removal rate (V{sub d}) in p-6H-SiC under irradiation with 8 MeV protons and of the conductivity restoration in radiation- compensated epitaxial layers of various p-type silicon carbide polytypes. V{sub d} was determined by analysis of capacitance-voltage characteristics and from results of Hall effect measurements. It was found that the complete compensation of samples with the initial value of Na - Nd ≈ 1.5 × 10{sup 18} cm{sup −3} occurs at an irradiation dose of ∼1.1 × 10{sup 16} cm{sup −2}. It is shown that specific features of the sublimation layer SiC (compared to CVD layers) are clearly manifested upon the gamma and electron irradiation and are hardly noticeable under the proton and neutron irradiation. It was also found that the radiation-induced compensation of SiC is retained after its annealing at ≤1000°C. The conductivity is almost completely restored at T ≥ 1200°C. This character of annealing of the radiation compensation is independent of a silicon carbide polytype and the starting doping level of the epitaxial layer. The complete annealing temperatures considerably exceed the working temperatures of SiC-based devices. It is shown that the radiation compensation is a promising method in the technology of high-temperature devices based on SiC.

  9. Irradiation and annealing behavior of 15Kh2MFA reactor pressure vessel steel

    International Nuclear Information System (INIS)

    Popp, K.; Bergmann, U.; Bergner, F.; Hampe, E.; Leonhardt, W.D.; Schuetzler, H.P.; Viehrig, H.W.

    1992-01-01

    This work deals with the mechanical properties of RPV steels used WWER-440. The materials under investigation were a forging (base metal 15Kh2MFA) and the corresponding weld. Charpy V-notch specimens and tensile test specimens were irradiated in the WWER-2 Rheinsberg at about 270 C up to the two neutron fluence levels of 4 x 10 18 and 5 x 10 19 n/cm 2 (E>1MeV). Post-irradiation annealing heat treatments were performed, among others a 475 C/152 h treatment of technical interest. (orig.)

  10. Effects of irradiation and isochronal anneal temperature on hole and electron trapping in MOS devices

    International Nuclear Information System (INIS)

    Fleetwood, D.M.; Winokur, P.S.; Shaneyfelt, M.R.; Riewe, L.C.; Flament, O.; Paillet, P.; Leray, J.L.

    1998-02-01

    Capacitance-voltage and thermally-stimulated-current techniques are used to estimate trapped hole and electron densities in MOS oxides as functions of irradiation and isochronal anneal temperature. Trapped-charge annealing and compensation effects are discussed

  11. Testing of irradiated and annealed 15H2MFA materials

    International Nuclear Information System (INIS)

    Gillemot, F.; Uri, G.

    1994-01-01

    A set of surveillance samples made from 15H2MFA material has been studied in the laboratory of AEKI. Miniature notched tensile specimens were cut from some remnants of irradiated and broke surveillance charpy remnants. The Absorbed Specific Fracture Energy (ASFE) was measured on the specimens. A cutting machine and testing technique were elaborated for the measurements. The second part of the Charpy remnants was annealed at 460 deg. C and 490 deg. C for 6-8 hours. The specimens were tested similarity and the results were compared. (author). 5 refs, 9 figs

  12. Inert annealing of irradiated graphite by inductive heating

    International Nuclear Information System (INIS)

    Botzem, W.; Woerner, J.

    2001-01-01

    Fission neutrons change physical properties of graphite being used in nuclear reactors as moderator and as structural material. The understanding of these effects on an atomic model is expressed by dislocations of carbon atoms within the graphite and the thereby stored energy is known as Wigner Energy. The dismantling of the Pile 1 core may necessitate the thermal treatment of the irradiated but otherwise undamaged graphite. This heat treatment - usually called annealing - initiates the release of stored Wigner Energy in a controlled manner. This energy could otherwise give rise to an increase in temperature under certain conditions during transport or preparation for final storage. In order to prevent such an effect it is intended to anneal the major part of Pile 1 graphite before it is packed into boxes suitable for final disposal. Different heating techniques have been assessed. Inductive heating in an inert atmosphere was selected for installation in the Pile 1 Waste Processing Facility built for the treatment and packaging of the dismantled Pile 1 waste. The graphite blocks will be heated up to 250 deg. C in the annealing ovens, which results in the release of significant amount of the stored energy. External heat sources in a final repository will never heat up the storage boxes to such a temperature. (author)

  13. Annealing effects on resistivity and Hall coefficient of neutron irradiated silicon

    International Nuclear Information System (INIS)

    Biggeri, U.

    1995-01-01

    High Temperature Annealing (HTA) treatment has been carried out on fast-neutron irradiated silicon samples with temperatures up to 300 C. Fluences of irradiation up to 1x10 14 n/cm 2 were used. Before annealing, samples irradiated with fluences higher than 1x10 13 n/cm 2 suffered the type conductivity inversion from n-type to p-type. The changes in the resisitivity and Hall coefficient during each annealing step have been measured by Hall effect analysis. Results indicate the possible creation of acceptors for low temperature annealing up to 150 C and the phosphorous release by E centres at annealing temperatures among 150 C and 200 C. Heating samples up to 300 C allows the recovering of the sample resistivity to its value before irradiation, with the peculiarity that bulks inverted to p-type after irradiation does not come back to n-type after annealing. (orig.)

  14. Experimental study of swelling of irradiated solid methane during annealing

    International Nuclear Information System (INIS)

    Shabalin, E.; Fedorov, A.; Kulagin, E.; Kulikov, S.; Melikhov, V.; Shabalin, D.

    2008-01-01

    Solid methane, notwithstanding its poor radiation properties, is still widely in use at pulsed neutron sources. One of the specific problems is radiolytic hydrogen gas pressure on the walls of a methane chamber during annealing of methane. Results of experimental study of this phenomenon under fast neutron irradiation with the help of a specially made low temperature irradiation rig at the IBR-2 pulsed reactor are presented. Peak pressure on the wall of the experimental capsule during heating of a sample irradiated at 23-35 K appeared to have a maximum of 27 bar at the absorbed dose 20 MGy, and then falls down with higher doses. Pressure always reached its peak value within the temperature range 72-79 K. Generally, three phases of methane swelling during heating can be distinguished, each characterized by proper rate and intensity. Results of this study were accounted for in design of the solid methane moderator of the second target station of the ISIS facility (England)

  15. Physical model of evolution of oxygen subsystem of PLZT-ceramics at neutron irradiation and annealing

    CERN Document Server

    Kulikov, D V; Trushin, Y V; Veber, K V; Khumer, K; Bitner, R; Shternberg, A R

    2001-01-01

    The physical model of evolution of the oxygen subsystem defects of the ferroelectric PLZT-ceramics by the neutron irradiation and isochrone annealing is proposed. The model accounts for the effect the lanthanum content on the material properties. The changes in the oxygen vacancies concentration, calculated by the proposed model, agree well with the polarization experimental behavior by the irradiated material annealing

  16. Low-temperature annealing of radiation defects in electron-irradiated gallium phosphide

    International Nuclear Information System (INIS)

    Kolb, A.A.; Megela, I.G.; Buturlakin, A.P.; Goyer, D.B.

    1990-01-01

    The isochronal annealing of radiation defects in high-energy electron irradiated n-GaP monocrystals within the 77 to 300 K range has been investigated by optical and electrical techniques. The changes in conductance and charge carrier mobility as functions of annealing temperature as well as the variation of optical absorption spectra of GaP under irradiation and annealing provide evidence that most of radiation defects are likely secondary complexes of defects

  17. Improvement on the electrical characteristics of Pd/HfO2/6H-SiC MIS capacitors using post deposition annealing and post metallization annealing

    Science.gov (United States)

    Esakky, Papanasam; Kailath, Binsu J.

    2017-08-01

    HfO2 as a gate dielectric enables high electric field operation of SiC MIS structure and as gas sensor HfO2/SiC capacitors offer higher sensitivity than SiO2/SiC capacitors. The issue of higher density of oxygen vacancies and associated higher leakage current necessitates better passivation of HfO2/SiC interface. Effect of post deposition annealing in N2O plasma and post metallization annealing in forming gas on the structural and electrical characteristics of Pd/HfO2/SiC MIS capacitors are reported in this work. N2O plasma annealing suppresses crystallization during high temperature annealing thereby improving the thermal stability and plasma annealing followed by rapid thermal annealing in N2 result in formation of Hf silicate at the HfO2/SiC interface resulting in order of magnitude lower density of interface states and gate leakage current. Post metallization annealing in forming gas for 40 min reduces interface state density by two orders while gate leakage current density is reduced by thrice. Post deposition annealing in N2O plasma and post metallization annealing in forming gas are observed to be effective passivation techniques improving the electrical characteristics of HfO2/SiC capacitors.

  18. Improving ion irradiated high Tc Josephson junctions by annealing: The role of vacancy-interstitial annihilation

    International Nuclear Information System (INIS)

    Sirena, M.; Matzen, S.; Bergeal, N.; Lesueur, J.; Faini, G.; Bernard, R.; Briatico, J.; Crete, D. G.

    2007-01-01

    The authors have studied the annealing effect in the transport properties of high T c Josephson junctions (JJs) made by ion irradiation. Low temperature annealing (80 deg. C) increases the JJ coupling temperature (T J ) and the I c R n product, where I c is the critical current and R n the normal resistance. They have found that the spread in JJ characteristics can be reduced by sufficient long annealing times, increasing the reproducibility of ion irradiated Josephson junctions. The characteristic annealing time and the evolution of the spread in the JJ characteristics can be explained by a vacancy-interstitial annihilation process rather than by an oxygen diffusion one

  19. Improvement on the electrical characteristics of Pd/HfO{sub 2}/6H-SiC MIS capacitors using post deposition annealing and post metallization annealing

    Energy Technology Data Exchange (ETDEWEB)

    Esakky, Papanasam, E-mail: papanasamte@gmail.com; Kailath, Binsu J

    2017-08-15

    Highlights: • Post deposition annealing (PDA) and post metallization annealing (PMA) on the electrical characteristics of Pd/HfO{sub 2}/6H-SiC MIS capacitors. • Post deposition N{sub 2}O plasma annealing inhibits crystallization of HfO{sub 2} during high temperature annealing. • Plasma annealing followed by RTA in N{sub 2} results in formation of hafnium silicate at the HfO{sub 2}-SiC interface. • PDA reduces interface state density (D{sub it}) and gate leakage current density (J{sub g}) by order. • PMA in forming gas for 40 min results in better passivation and reduces D{sub it} by two orders and J{sub g} by thrice. - Abstract: HfO{sub 2} as a gate dielectric enables high electric field operation of SiC MIS structure and as gas sensor HfO{sub 2}/SiC capacitors offer higher sensitivity than SiO{sub 2}/SiC capacitors. The issue of higher density of oxygen vacancies and associated higher leakage current necessitates better passivation of HfO{sub 2}/SiC interface. Effect of post deposition annealing in N{sub 2}O plasma and post metallization annealing in forming gas on the structural and electrical characteristics of Pd/HfO{sub 2}/SiC MIS capacitors are reported in this work. N{sub 2}O plasma annealing suppresses crystallization during high temperature annealing thereby improving the thermal stability and plasma annealing followed by rapid thermal annealing in N{sub 2} result in formation of Hf silicate at the HfO{sub 2}/SiC interface resulting in order of magnitude lower density of interface states and gate leakage current. Post metallization annealing in forming gas for 40 min reduces interface state density by two orders while gate leakage current density is reduced by thrice. Post deposition annealing in N{sub 2}O plasma and post metallization annealing in forming gas are observed to be effective passivation techniques improving the electrical characteristics of HfO{sub 2}/SiC capacitors.

  20. Annealing of dislocation loops in neutron-irradiated copper investigated by positron annihilation

    International Nuclear Information System (INIS)

    Gauster, W.B.; Mantl, S.; Schober, T.; Triftshauser, W.

    1975-01-01

    Positron annihilation angular correlation measurements were carried out on neutron-irradiated copper as a function of annealing temperature. Two types of specimens were used: single crystals irradiated with fast neutrons, and 10 B-doped polycrystalline samples irradiated with thermal neutrons. All irradiations were at approximately 320 0 K. A structure in the annealing curve, not previously observed by other techniques, indicates that between 460 and 600 0 K the dislocation loops present after irradiation dissociate and more effective positron trapping sites are formed. (auth)

  1. Post irradiation test report of irradiated DUPIC simulated fuel

    International Nuclear Information System (INIS)

    Yang, Myung Seung; Jung, I. H.; Moon, J. S. and others

    2001-12-01

    The post-irradiation examination of irradiated DUPIC (Direct Use of Spent PWR Fuel in CANDU Reactors) simulated fuel in HANARO was performed at IMEF (Irradiated Material Examination Facility) in KAERI during 6 months from October 1999 to March 2000. The objectives of this post-irradiation test are i) the integrity of the capsule to be used for DUPIC fuel, ii) ensuring the irradiation requirements of DUPIC fuel at HANARO, iii) performance verification in-core behavior at HANARO of DUPIC simulated fuel, iv) establishing and improvement the data base for DUPIC fuel performance verification codes, and v) establishing the irradiation procedure in HANARO for DUPIC fuel. The post-irradiation examination performed are γ-scanning, profilometry, density, hardness, observation the microstructure and fission product distribution by optical microscope and electron probe microanalyser (EPMA)

  2. The annealing effects on irradiated SiC piezo resistive pressure sensor

    International Nuclear Information System (INIS)

    Almaz, E.; Blue, T. E.; Zhang, P.

    2009-01-01

    The effects of temperature on annealing of Silicon Carbide (SiC) piezo resistive pressure sensor which was broken after high fluence neutron irradiation, were investigated. Previously, SiC piezo resistive sensor irradiated with gamma ray and fast neutron in the Co-60 gamma-ray irradiator and Beam Port 1 (BP1) and Auxiliary Irradiation Facility (AIF) at the Ohio State University Nuclear Reactor Laboratory (OSUNRL) respectively. The Annealing temperatures were tested up to 400 C. The Pressure-Output voltage results showed recovery after annealing process on SiC piezo resistive pressure sensor. The bridge resistances of the SiC pressure sensor stayed at the same level up to 300 C. After 400 C annealing, the resistance values changed dramatically.

  3. Effect of hydration on the annealing of chemical radiation damage in gamma-irradiated strontium bromate

    International Nuclear Information System (INIS)

    Nair, S.M.K.; Sahish, T.S.

    1991-01-01

    Rehydration of γ-irradiated anhydrous strontium bromate induces direct recovery of damage. The recovery process is unimolecular and the rehydrated salt is susceptible to thermal annealing. (author) 11 refs.; 2 figs

  4. Annealing effects of carbon fiber-reinforced epoxy resin composites irradiated by electron beams

    International Nuclear Information System (INIS)

    Udagawa, Akira; Sasuga, Tuneo; Ito, Hiroshi; Hagiwara, Miyuki

    1987-01-01

    Carbon cloth-reinforced epoxy resin composites were irradiated with 2 MeV electrons at room temperature and then annealed in air for 2 h at temperatures up to 180 deg C. A considerable decrease in the three-point bending strength occurred when the irradiated composites were annealed in the temperature range of 115 - 135 deg C which is below the glass transition temperature T g of the matrix resin, while the bending strength remained unchanged up to 180 deg C for the unirradiated composites. In the dynamic viscoelastic spectra of the irradiated matrix, a new relaxation appeared at the temperature extending from 50 deg C to just below the matrix T g and disappeared on annealing for 2 h at 135 deg C. Annealing also decreased the concentration of free radicals existing stably in the irradiated matrix at room temperature. After annealing, a large amount of clacks and voids were observed in the fractography of the composites by scanning electron microscopy. These results indicate: (1) Annealing brings about rearrangement of the radiation-induced molecular chain scission in the matrix; (2) The bending strength of the irradiated composites decreased owing to the increased brittleness of the matrix by annealing. (author)

  5. Study of crosslinking onset and hydrogen annealing of ultra-high molecular weight polyethylene irradiated with high-energy protons

    Science.gov (United States)

    Wilson, John Ford

    1997-09-01

    Ultra high molecular weight polyethylene (UHMW-PE) is used extensively in hip and knee endoprostheses. Radiation damage from the sterilization of these endoprostheses prior to surgical insertion results in polymer crosslinking and decreased oxidative stability. The motivation for this study was to determine if UHMW-PE could be crosslinked by low dose proton irradiation with minimal radiation damage and its subsequent deleterious effects. I found that low dose proton irradiation and post irradiation hydrogen annealing did crosslink UHMW-PE and limit post irradiation oxidation. Crosslinking onset was investigated for UHMW-PE irradiated with 2.6 and 30 MeV H+ ions at low doses from 5.7 × 1011-2.3 × 1014 ions/cm2. Crosslinking was determined from gel permeation chromatography (GPC) of 1,2,4 trichlorobenzene sol fractions and increased with dose. Fourier transform infrared spectroscopy (FTIR) showed irradiation resulted in increased free radicals confirmed from increased carbonyl groups. Radiation damage, especially at the highest doses observed, also showed up in carbon double bonds and increased methyl end groups. Hydrogen annealing after ion irradiation resulted in 40- 50% decrease in FTIR absorption associated with carbonyl. The hydrogen annealing prevented further oxidation after aging for 1024 hours at 80oC. Hydrogen annealing was successful in healing radiation damage through reacting with the free radicals generated during proton irradiation. Polyethylenes, polyesters, and polyamides are used in diverse applications by the medical profession in the treatment of orthopedic impairments and cardiovascular disease and for neural implants. These artificial implants are sterilized with gamma irradiation prior to surgery and the resulting radiation damage can lead to accelerated deterioration of the implant properties. The findings in this study will greatly impact the continued use of these materials through the elimination of many problems associated with radiation

  6. Atom Probe Tomography Characterization of the Solute Distributions in a Neutron-Irradiated and Annealed Pressure Vessel Steel Weld

    Energy Technology Data Exchange (ETDEWEB)

    Miller, M.K.

    2001-01-30

    A combined atom probe tomography and atom probe field ion microscopy study has been performed on a submerged arc weld irradiated to high fluence in the Heavy-Section Steel irradiation (HSSI) fifth irradiation series (Weld 73W). The composition of this weld is Fe - 0.27 at. % Cu, 1.58% Mn, 0.57% Ni, 0.34% MO, 0.27% Cr, 0.58% Si, 0.003% V, 0.45% C, 0.009% P, and 0.009% S. The material was examined after five conditions: after a typical stress relief treatment of 40 h at 607 C, after neutron irradiation to a fluence of 2 x 10{sup 23} n m{sup {minus}2} (E > 1 MeV), and after irradiation and isothermal anneals of 0.5, 1, and 168 h at 454 C. This report describes the matrix composition and the size, composition, and number density of the ultrafine copper-enriched precipitates that formed under neutron irradiation and the change in these parameters with post-irradiation annealing treatments.

  7. Transformation of point defects under annealing of neutron-irradiated Si and Si:Ge

    International Nuclear Information System (INIS)

    Pomozov, Yu.V.; Khirunenko, L.I.; Shakhovtsev, V.I.; Yashnik, V.I.

    1990-01-01

    Transformation of point radiation defects under isochronous annealing of neurton-irradaited Si and Si:Ge is studied. It is determined, that occurence of several new centers which produce A-centre range absorption bands is observed at annealing within 423-493 K temperature range. It is shown that vacancy and oxygen are included in the centers composition. It is found that VO centre transformation into VO 2 at annealing occurs via intermediate stage in contrast to that occuring in electron-irradiated crystals via VO direct diffusion to interstitial oxygen. Transformation of centers under Si ansd Si:Ge annealing occurs similarly

  8. Low temperature thermal annealing in fast neutron-irradiated potassium permanganate

    Energy Technology Data Exchange (ETDEWEB)

    Owens, C W; Lecington, W C [New Hampshire Univ., Durham (USA). Dept. of Chemistry

    1975-01-01

    The effect of thermal annealing on the retention of recoil /sup 54/Mn as permanganate in crystalline KMnO/sub 4/ irradiated with fast neutrons at liquid nitrogen temperature has been studied. The retention after 4 hrs of annealing increases from about 8% at -196/sup 0/ to a maximum of 61% at 180/sup 0/, then decreases at higher temperatures. A single activation energy (approximately 0.01 eV) applies to the thermal annealing process between -196/sup 0/ and -40/sup 0/. Extrapolation of the data suggests that below -229/sup 0/ no thermal annealing would occur.

  9. Thermal annealing of gamma irradiated ammonium chloride (Preprint no. RC-37)

    International Nuclear Information System (INIS)

    Kalkar, C.D.; Lala, Neeta

    1991-01-01

    Ammonium chloride produces N 2 H 4 + and Cl 2 as the main radiolytic products on gamma irradiation. Thermal annealing has a marked effect on the stability of N 2 H 4 + and Cl 2 . During the thermal annealing the chemical yield of nitrite and iodine was studied by dissolving irradiated ammonium chloride in aqueous sodium nitrate and potassium iodide respectively. The yield of iodine in isochronal annealing showed an exponential behaviour with temperature while that of nitrite showed a decrease and then increases at higher temperatures. The results are explained on the basis of dissociation and recombination of N 2 H 4 + with temperature. (author). 3 refs., 2 figs

  10. Microstructural defect evolution in neutron – Irradiated 12Cr18Ni9Ti stainless steel during subsequent isochronous annealing

    Energy Technology Data Exchange (ETDEWEB)

    Tsay, K.V.; Maksimkin, O.P.; Turubarova, L.G.; Rofman, O.V. [Institute of Nuclear Physics NNC RK, Almaty (Kazakhstan); Garner, F.A., E-mail: frank.garner@dslextreme.com [Radiation Effects Consulting, Richland, WA (United States)

    2013-08-15

    Transmission electron microscopy and microhardness measurements were used to examine changes in microstructure and associated strengthening induced in austenitic stainless steel 12Cr18Ni9Ti irradiated to ∼0.001 and ∼5 dpa in the WWR-K reactor before and after being subjected to post-irradiation isochronal annealing. The relatively low values of irradiation temperature and dpa rate (∼80 °C and ∼1.2 × 10{sup −8} dpa/s) experienced by this steel allowed characterization of defect microstructures over a wide range of defect ensembles, all at constant composition, produced first by irradiation and then by annealing at temperatures between 450 and 1050 °C. It was shown that the dispersed barrier hardening model with commonly accepted physical properties successfully predicted the observed hardening. It was also observed that when TiC precipitates form at higher annealing temperatures, the alloy does not change in hardness, reflecting a balance between precipitate-hardening and matrix-softening due to removal of solute-strengthening elements titanium and carbon. Such matrix-softening is not often considered in other studies, especially where the contribution of precipitates to hardening is a second-order effect.

  11. Microstructural defect evolution in neutron – Irradiated 12Cr18Ni9Ti stainless steel during subsequent isochronous annealing

    International Nuclear Information System (INIS)

    Tsay, K.V.; Maksimkin, O.P.; Turubarova, L.G.; Rofman, O.V.; Garner, F.A.

    2013-01-01

    Transmission electron microscopy and microhardness measurements were used to examine changes in microstructure and associated strengthening induced in austenitic stainless steel 12Cr18Ni9Ti irradiated to ∼0.001 and ∼5 dpa in the WWR-K reactor before and after being subjected to post-irradiation isochronal annealing. The relatively low values of irradiation temperature and dpa rate (∼80 °C and ∼1.2 × 10 −8 dpa/s) experienced by this steel allowed characterization of defect microstructures over a wide range of defect ensembles, all at constant composition, produced first by irradiation and then by annealing at temperatures between 450 and 1050 °C. It was shown that the dispersed barrier hardening model with commonly accepted physical properties successfully predicted the observed hardening. It was also observed that when TiC precipitates form at higher annealing temperatures, the alloy does not change in hardness, reflecting a balance between precipitate-hardening and matrix-softening due to removal of solute-strengthening elements titanium and carbon. Such matrix-softening is not often considered in other studies, especially where the contribution of precipitates to hardening is a second-order effect

  12. irradiation growth in annealed Zr2.5wt%Nb at 3530K

    International Nuclear Information System (INIS)

    Rogerson, A.; Murgatroyd, R.A.

    1978-10-01

    Zr 2.5wt%Nb growth specimens have been irradiated at 353 0 K to a fast neutron dose of approximately 4.0 x 10 25 n/m 2 . Specimens were taken from the longitudinal and transverse directions of a nominally annealed, seam-welded tube and irradiated in both the stress relieved and fully annealed conditions. Growth in these specimens is characterised by large positive and negative strains in the longitudinal and transverse directions respectively, with dimensional changes in weld material exhibiting intermediate growth behaviour. The results are compared with growth data on both annealed and cold worked Zircaloy-2 at 353 0 K and discussed in terms of the effect of texture, grain size, and cold work on irradiation growth. It is concluded that the continuation of growth to high doses in annealed Zr-2.5wt%Nb at 353 0 K results from interstitial induced dislocation climb with vacancies diffusing to grain boundaries. (author)

  13. Study on the behavior of irradiated light water reactor fuel during out-of-pile annealing

    International Nuclear Information System (INIS)

    Yanagisawa, Kazuaki; Kanazawa, Hiroyuki; Uno, Hisao; Sasajima, Hideo

    1988-11-01

    Using the pre-irradiated light water reactor fuel (burnup: 35 MWd/kgU) and the slightly irradiated NSRR fuel (burnup: 5.6 x 10 -6 MWd/kgU), FP gas release rate up to the temperature of 2273 K was measured through out-of-pile annealing test. Results of this experiment were compared with those of ORNL annealing test (SFD/HI-test series) performed in USA. Obtained conclusions are: (1) Maximum release rate of Kr gas in light water reactor fuel was 6.4 % min -1 at temperature of 2273 K. This was in good agreement with ORNL data. FP gas release rate during annealing test was increased greatly with increasing fuel burnup and annealing temperature. (2) No FP was detected in NSRR slightly irradiated fuel up to the temperature of 1913 K. (author)

  14. A determination of the benefits of annealing irradiated pressure vessel weldments

    International Nuclear Information System (INIS)

    Lott, R.G.; Mager, T.R.

    1988-01-01

    The long-term benefit of annealing an irradiated reactor pressure vessel steel may be described in terms of a benefit factor, B. The benefit factor compares the mechanical properties of an annealed and reirradiated specimen with an equivalent specimen having no intermediate anneal. The benefit factor was determined using a series of microhardness specimens prepared from nuclear pressure vessel surveillance program materials. These specimens were annealed and then reirradiated in a test reactor. There was an obvious long-term benefit in the specimens annealed at 450 0 C. The long-term benefit was less obvious at 400 0 C and no significant benefit was noted at 350 0 C. The benefit factor may also be used as the basis of a surveillance program for an annealed pressure vessel. A strategy for such a surveillance program is described. (author)

  15. Defect annealing and thermal desorption of deuterium in low dose HFIR neutron-irradiated tungsten

    International Nuclear Information System (INIS)

    Shimada, Masashi; Hara, Masanori; Otsuka, Teppei; Oya, Yasuhisa; Hatano, Yuji

    2015-01-01

    Three tungsten samples irradiated at High Flux Isotope Reactor at Oak Ridge National Laboratory were exposed to deuterium plasma (ion fluence of 1 × 10 26 m −2 ) at three different temperatures (100, 200, and 500 °C) in Tritium Plasma Experiment at Idaho National Laboratory. Subsequently, thermal desorption spectroscopy was performed with a ramp rate of 10 °C min −1 up to 900 °C, and the samples were annealed at 900 °C for 0.5 h. These procedures were repeated three times to uncover defect-annealing effects on deuterium retention. The results show that deuterium retention decreases approximately 70% for at 500 °C after each annealing, and radiation damages were not annealed out completely even after the 3rd annealing. TMAP modeling revealed the trap concentration decreases approximately 80% after each annealing at 900 °C for 0.5 h

  16. Defect annealing and thermal desorption of deuterium in low dose HFIR neutron-irradiated tungsten

    Science.gov (United States)

    Shimada, Masashi; Hara, Masanori; Otsuka, Teppei; Oya, Yasuhisa; Hatano, Yuji

    2015-08-01

    Three tungsten samples irradiated at High Flux Isotope Reactor at Oak Ridge National Laboratory were exposed to deuterium plasma (ion fluence of 1 × 1026 m-2) at three different temperatures (100, 200, and 500 °C) in Tritium Plasma Experiment at Idaho National Laboratory. Subsequently, thermal desorption spectroscopy was performed with a ramp rate of 10 °C min-1 up to 900 °C, and the samples were annealed at 900 °C for 0.5 h. These procedures were repeated three times to uncover defect-annealing effects on deuterium retention. The results show that deuterium retention decreases approximately 70% for at 500 °C after each annealing, and radiation damages were not annealed out completely even after the 3rd annealing. TMAP modeling revealed the trap concentration decreases approximately 80% after each annealing at 900 °C for 0.5 h.

  17. Defect annealing and thermal desorption of deuterium in low dose HFIR neutron-irradiated tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, Masashi, E-mail: Masashi.Shimada@inl.gov [Fusion Safety Program, Idaho National Laboratory, Idaho Falls, ID (United States); Hara, Masanori [Hydrogen Isotope Research Center, University of Toyama, Toyama (Japan); Otsuka, Teppei [Kyushu University, Interdisciplinary Graduate School of Engineering Science, Higashi-ku, Fukuoka (Japan); Oya, Yasuhisa [Radioscience Research Laboratory, Faculty of Science, Shizuoka University, Shizuoka (Japan); Hatano, Yuji [Hydrogen Isotope Research Center, University of Toyama, Toyama (Japan)

    2015-08-15

    Three tungsten samples irradiated at High Flux Isotope Reactor at Oak Ridge National Laboratory were exposed to deuterium plasma (ion fluence of 1 × 10{sup 26} m{sup −2}) at three different temperatures (100, 200, and 500 °C) in Tritium Plasma Experiment at Idaho National Laboratory. Subsequently, thermal desorption spectroscopy was performed with a ramp rate of 10 °C min{sup −1} up to 900 °C, and the samples were annealed at 900 °C for 0.5 h. These procedures were repeated three times to uncover defect-annealing effects on deuterium retention. The results show that deuterium retention decreases approximately 70% for at 500 °C after each annealing, and radiation damages were not annealed out completely even after the 3rd annealing. TMAP modeling revealed the trap concentration decreases approximately 80% after each annealing at 900 °C for 0.5 h.

  18. Void formation by annealing of neutron-irradiated plastically deformed molybdenum

    International Nuclear Information System (INIS)

    Petersen, K.; Nielsen, B.; Thrane, N.

    1976-01-01

    The positron annihilation technique has been used in order to study the influence of plastic deformation on the formation and growth of voids in neutron irradiated molybdenum single crystals treated by isochronal annealing. Samples were prepared in three ways: deformed 12-19% before irradiation, deformed 12-19% after irradiation, and - for reference purposes -non-deformed. In addition a polycrystalline sample was prepared in order to study the influence of the grain boundaries. All samples were irradiated at 60 0 C with a flux of 2.5 x 10 18 fast neutrons/cm 2 . After irradiation the samples were subjected to isochronal annealing. It was found that deformation before irradiation probably enhanced the formation of voids slightly. Deformation after irradiation strongly reduced the void formation. The presence of grain boundaries in the polycrystalline sample had a reducing influence on the growth of voids. (author)

  19. Strain relaxation near high-k/Si interface by post-deposition annealing

    International Nuclear Information System (INIS)

    Emoto, T.; Akimoto, K.; Yoshida, Y.; Ichimiya, A.; Nabatame, T.; Toriumi, A.

    2005-01-01

    We studied the effect of post-deposition annealing on a HfO 2 /Si interface of by extremely asymmetric X-ray diffraction. Comparing the rocking curves before annealing the sample with those of the annealed sample, it is found that an interfacial layer with a density of 3 g/cm 3 grows at the interface between the HfO 2 layer and the substrate during post-deposition annealing. The wavelength dependency of the integrated intensities of the rocking curve for the as-deposited sample fluctuated with the observation position. This fluctuation was suppressed by annealing. From these results we concluded that the strain introduced into the substrate becomes homogeneous by annealing. Moreover, a quantitative estimation of the strain by curve fitting reveals the existence of compressive strain under the HfO 2 layer

  20. Investigation of irradiation embrittlement and annealing behaviour of JRQ pressure vessel steel by instrumented impact tests

    Energy Technology Data Exchange (ETDEWEB)

    Valo, M; Rintamaa, R; Nevalainen, M; Wallin, K; Torronen, K [Technical Research Centre of Finland, Espoo (Finland); Tipping, P [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1994-12-31

    Seven series of A533-B type pressure vessel steel specimens irradiated as well as irradiated - annealed - re-irradiated to different fast neutron fluences (up to 5.10{sup 19}/cm{sup 2}) have been tested with a new type of instrumented impact test machine. The radiation embrittlement and the effect of the intermediate annealing was assessed by using the ductile and cleavage fracture initiation toughness. Although the ductile fracture initiation toughness exhibited scatter, the transition temperature shift corresponding to the dynamic cleavage fracture initiation agreed well with the 41 J Charpy-V shift. The results indicate that annealing is beneficial in restoring mechanical properties in an irradiated nuclear pressure vessel steel. (authors). 8 refs., 11 figs., 1 tab.

  1. Effects of post-growth annealing on InGaAs quantum posts embedded in Schottky diodes

    International Nuclear Information System (INIS)

    Schramm, A; Polojärvi, V; Hakkarainen, T V; Tukiainen, A; Guina, M

    2011-01-01

    We study effects of rapid thermal annealing on photoluminescence and electron confinement of InGaAs quantum posts by means of photoluminescence experiments and capacitance–voltage spectroscopy. The quantum posts are embedded in n-type Schottky diodes grown by molecular beam epitaxy on GaAs(1 0 0). The observed photoluminescence spectra arise from the quantum posts as well as from a contribution of a wetting-layer superlattice. With increasing annealing temperatures, the quantum-post photoluminescence blueshifts toward the wetting-layer superlattice, and upon the highest annealing step, the wetting-layer superlattice luminescence dominates. In capacitance–voltage experiments, we clearly observe a charge accumulation in the quantum-post layer as well as from the wetting-layer superlattice. Capacitance–voltage spectra and carrier-density profiles only experience slight changes upon annealing treatments. We suggest that the main electron accumulation takes place in the wetting-layer superlattice

  2. Projection of the annealing behavior of irradiated Si sensors in the LHC environment

    CERN Document Server

    Chatterji, S; Bhardwaj, N; Chauhan, S S; Choudhary, B C; Gupta, P; Jha, M; Kumar, A; Naimuddin, M; Ranjan, K; Shivpuri, R K; Srivastava-Ajay, K

    2004-01-01

    The study of the radiation tolerance and subsequent annealing effects on p+-n-n+ silicon micro strip detectors has been performed as a part of R&D program for the preshower detector in the CMS experiment. CMS silicon strip sensors were irradiated with 24 GeV protons at CERN proton synchrotron (PS) to a total fluence of 3*10/sup 14/ p/cm/sup 2 /. Sensors were stored in freezer after irradiation and I-V and C-V measurements were carried out. Variation in full depletion voltage and leakage current have been studied as a function of annealing time. The breakdown performance of the device actually improves after irradiation due to the beneficial effect of type-inversion. The breakdown voltage increases further with annealing time. However, the leakage current increases tremendously just after irradiation. As the sensors are annealed, there is a drop in leakage current. The rate of annealing is observed to be temperature dependent. Hence in terms of leakage current, it seems that room temperature annealing is b...

  3. High-temperature annealing of proton irradiated beryllium – A dilatometry-based study

    Energy Technology Data Exchange (ETDEWEB)

    Simos, Nikolaos, E-mail: simos@bnl.gov [Brookhaven National Laboratory, Upton, NY, 11973 (United States); Elbakhshwan, Mohamed; Zhong, Zhong; Ghose, Sanjit [Brookhaven National Laboratory, Upton, NY, 11973 (United States); Savkliyildiz, Ilyas [Rutgers University (United States)

    2016-08-15

    S−200 F grade beryllium has been irradiated with 160 MeV protons up to 1.2 10{sup 20} cm{sup −2} peak fluence and irradiation temperatures in the range of 100–200 °C. To address the effect of proton irradiation on dimensional stability, an important parameter in its consideration in fusion reactor applications, and to simulate high temperature irradiation conditions, multi-stage annealing using high precision dilatometry to temperatures up to 740 °C were conducted in air. X-ray diffraction studies were also performed to compliment the macroscopic thermal study and offer a microscopic view of the irradiation effects on the crystal lattice. The primary objective was to qualify the competing dimensional change processes occurring at elevated temperatures namely manufacturing defect annealing, lattice parameter recovery, transmutation {sup 4}He and {sup 3}H diffusion and swelling and oxidation kinetics. Further, quantification of the effect of irradiation dose and annealing temperature and duration on dimensional changes is sought. The study revealed the presence of manufacturing porosity in the beryllium grade, the oxidation acceleration effect of irradiation including the discontinuous character of oxidation advancement, the effect of annealing duration on the recovery of lattice parameters recovery and the triggering temperature for transmutation gas diffusion leading to swelling.

  4. A study of proton polarization in ammonia (NH sub 3 ) under irradiation and annealing

    Energy Technology Data Exchange (ETDEWEB)

    Belyaev, A.A.; Get' man, V.A.; Dzyubak, A.P.; Karnaukhov, I.M.; Lukhanin, A.A.; Neffa, A.Yu.; Semisalov, I.L.; Sorokin, P.V.; Sporov, E.S.; Telegin, Yu.N.; Tolmachev, I.A.; Trotsenko, V.I. (Kharkov Institute of Physics and Technology, Ukrainian SSR, Academy of Sciences, 310108 Kharkov, USSR (UA))

    1989-05-05

    The proton polarization in irradiated NH{sub 3} has been measured as a function of the irradiation dose and annealing temperature. The analysis of the experimental data obtained shows that under low-temperature'' irradiation along with the NH{sup {minus}}{sub 2} the e{sub tr}-radical is likely to be formed which contributes to the polarization build-up and relaxation and influences the radiation damage resistance of the target.

  5. Temperature, stress, and annealing effects on the luminescence from electron-irradiated silicon

    Science.gov (United States)

    Jones, C. E.; Johnson, E. S.; Compton, W. D.; Noonan, J. R.; Streetman, B. G.

    1973-01-01

    Low-temperature photoluminescence spectra are presented for Si crystals which have been irradiated with high-energy electrons. Studies of isochronal annealing, stress effects, and the temperature dependences of the luminescence are used to discuss the nature of the luminescent transitions and the properties of defects. Two dominant bands present after room-temperature anneal of irradiated material are discussed, and correlations of the properties of these bands are made with known Si defects. A band between 0.8 and 1.0 eV has properties which are related to those of the divacancy, and a band between 0.6 and 0.8 eV has properties related to those of the Si-G15(K) center. Additional peaks appear in the luminescence after high-temperature anneal; the influence of impurities and the effects of annealing of these lines are discussed.

  6. Annealing of ion irradiated high TC Josephson junctions studied by numerical simulations

    International Nuclear Information System (INIS)

    Sirena, M.; Matzen, S.; Bergeal, N.; Lesueur, J.; Faini, G.; Bernard, R.; Briatico, J.; Crete, D. G.

    2009-01-01

    Recently, annealing of ion irradiated high T c Josephson iunctions (JJs) has been studied experimentally in the perspective of improving their reproducibility. Here we present numerical simulations based on random walk and Monte Carlo calculations of the evolution of JJ characteristics such as the transition temperature T c ' and its spread ΔT c ' , and compare them with experimental results on junctions irradiated with 100 and 150 keV oxygen ions, and annealed at low temperatures (below 80 deg. C). We have successfully used a vacancy-interstitial annihilation mechanism to describe the evolution of the T c ' and the homogeneity of a JJ array, analyzing the evolution of the defects density mean value and its distribution width. The annealing first increases the spread in T c ' for short annealing times due to the stochastic nature of the process, but then tends to reduce it for longer times, which is interesting for technological applications

  7. Graphite moderator annealing of the experimental reactor for irradiation (0.5 MW)

    International Nuclear Information System (INIS)

    Oliveira Avila, Carlos Alberto de; Pires, Luis Fernando Goncalves

    1995-01-01

    This work describes an operational procedure for the annealing of the graphite moderator in the 0,5 MW Experimental Reactor for Irradiation. A theoretical methodology has been developed for calculating the temperature field during the annealing process. The equations for mass, momentum, and energy conservation for the coolant as well as for the energy conservation in the moderator are solved numerically. The energy stored in the graphite and released in the annealing is accounted for by the use of a modified source term in the energy conservation equation for the moderator. A good agreement has been found for comparisons of the calculations with annealing data from the BEPO reactor. The major parameters affecting annealing have also been determined. (author). 8 refs, 11 figs

  8. AGR-1 Post Irradiation Examination Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Demkowicz, Paul Andrew [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-08-01

    The post-irradiation examination (PIE) of the Advanced Gas Reactor (AGR)-1 experiment was a multi-year, collaborative effort between Idaho National Laboratory (INL) and Oak Ridge National Laboratory (ORNL) to study the performance of UCO (uranium carbide, uranium oxide) tristructural isotropic (TRISO) coated particle fuel fabricated in the U.S. and irradiated at the Advanced Test Reactor at INL to a peak burnup of 19.6% fissions per initial metal atom. This work involved a broad array of experiments and analyses to evaluate the level of fission product retention by the fuel particles and compacts (both during irradiation and during post-irradiation heating tests to simulate reactor accident conditions), investigate the kernel and coating layer morphology evolution and the causes of coating failure, and explore the migration of fission products through the coating layers. The results have generally confirmed the excellent performance of the AGR-1 fuel, first indicated during the irradiation by the observation of zero TRISO coated particle failures out of 298,000 particles in the experiment. Overall release of fission products was determined by PIE to have been relatively low during the irradiation. A significant finding was the extremely low levels of cesium released through intact coatings. This was true both during the irradiation and during post-irradiation heating tests to temperatures as high as 1800°C. Post-irradiation safety test fuel performance was generally excellent. Silver release from the particles and compacts during irradiation was often very high. Extensive microanalysis of fuel particles was performed after irradiation and after high-temperature safety testing. The results of particle microanalysis indicate that the UCO fuel is effective at controlling the oxygen partial pressure within the particle and limiting kernel migration. Post-irradiation examination has provided the final body of data that speaks to the quality of the AGR-1 fuel, building

  9. Low temperature processed InGaZnO thin film transistor using the combination of hydrogen irradiation and annealing

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyun-Woo; Choi, Min-Jun; Jo, Yongcheol; Chung, Kwun-Bum, E-mail: kbchung@dongguk.edu

    2014-12-01

    Highlights: • We studied the low temperature process of InGaZnO oxide thin film transistor. • Hydorgen irradiation was used for low temperature process below 150 °C. • Using hydrogen irradiation, field effect mobility of IGZO TFT was enhanced to ∼5 cm{sup 2} /Vs. • We examined the origin of improvement of device performance via electronic structure. - Abstract: Device performance of radio frequency (RF) sputtered InGaZnO (IGZO) thin film transistors (TFTs) were improved using combination post-treatment with hydrogen irradiation and low temperature annealing at 150 °C. Under the combination treatment, IGZO TFTs were significantly enhanced without changing physical structure and chemical composition. On the other hand, the electronic structure represents a dramatically modification of the chemical bonding states, band edge states below the conduction band, and band alignment. Compared to the hydrogen irradiation or low temperature annealing, the combination treatment induces the increase of oxygen deficient chemical bonding states, the shallow band edge state below the conduction band, and the smaller energy difference of conduction band offset, which can generate the increase in charge carrier and enhance the device performance.

  10. Irradiation, Annealing, and Reirradiation Effects on American and Russian Reactor Pressure Vessel Steels

    International Nuclear Information System (INIS)

    Chernobaeva, A.A.; Korolev, Y.N.; Nanstad, R.K.; Nikolaev, Y.A.; Sokolov, M.A.

    1998-01-01

    One of the options to mitigate the effects of irradiation on reactor pressure vessels (RPVs) is to thermally anneal them to restore the toughness properties that have been degraded by neutron irradiation. Even though a postirradiation anneal may be deemed successful, a critical aspect of continued RPV operation is the rate of embrittlement upon reirradiation. There are insufficient data available to allow for verification of available models of reirradiation embrittlement or for the development of a reliable predictive methodology. This is especially true in the case of fracture toughness data. Under the U.S.-Russia Joint Coordinating Committee for Civilian Nuclear Reactor Safety (JCCCNRS), Working Group 3 on Radiation Embrittlement, Structural Integrity, and Life Extension of Reactor Vessels and Supports agreed to conduct a comparative study of annealing and reirradiation effects on RPV steels. The Working Group agreed that each side would irradiate, anneal, reirradiate (if feasible ), and test two materials of the other. Charpy V-notch (CVN) and tensile specimens were included. Oak Ridge National Laboratory (ORNL) conducted such a program (irradiation and annealing, including static fracture toughness) with two weld metals representative of VVER-440 and VVER-1000 RPVs, while the Russian Research Center-Kurchatov Institute (RRC-KI) conducted a program (irradiation, annealing, reirradiation, and reannealing) with Heavy-Section Steel Technology (HSST) Program Plate 02 and Heavy-Section Steel Irradiation (HSSI) Program Weld 73W. The results for each material from each laboratory are compared with those from the other laboratory. The ORNL experiments with the VVER welds included irradiation to about 1 x 10 19 n/cm 2 (>1 MeV), while the RRC-KI experiments with the U.S. materials included irradiations from about 2 to 18 x 10 19 n/cm 2 (>l MeV). In both cases, irradiations were conducted at ∼290 C and annealing treatments were conducted at ∼454 C. The ORNL and RRC

  11. Preparation of (Bi, Pb)-2223/Ag tapes by high temperature sintering and post-annealing process

    DEFF Research Database (Denmark)

    Hua, L.; Grivel, Jean-Claude; Andersen, L.G.

    2002-01-01

    A novel heat treatment process was developed to fabricate (Bi, Pb)-2223/Ag tapes with high critical current density (J(c)). The process can be divided into two parts: reformation and post-annealing. Tapes were first heated to the maximum temperature (830-860 degreesC) followed by slow cooling...... (reformation). Then, tape, were annealed between 760 and 820 degreesC (post-annealing). Reformation is expected to produce a large amount of liquid phase which may heat microcracks, decrease porosity, and improve grain growth. However, since the sintering temperature is beyond the Bi-2223 single-phase region......-energy synchrotron XRD and SEM/EDX. Some process parameters e.g. sintering temperature. cooling rate. and post-annealing time were optimised. (C) 2002 Elsevier Science B.V. All rights reserved....

  12. Irradiation embrittlement of reactor pressure vessel steels: Considerations for thermal annealing

    International Nuclear Information System (INIS)

    Burke, M.G.; Freyer, P.D.; Mager, T.R.

    1993-01-01

    In this paper, an overview of the irradiation embrittlement phenomenon is presented from a structure-properties viewpoint. Effects of irradiation conditions on embrittlement are first reviewed: irradiation temperature, fluence, flux, and steel or alloy composition. Then, the techniques for identifying/characterizing the irradiation-induced microstructural features are described: TEM/STEM (electron microscopy), small angle neutron scattering, atom probe field-ion microscopy, positron annihilation lifetime spectroscopy. Mechanisms of hardening and embrittlement generally consist of a ''precipitation-type'' and a ''damage-type'' component and the potential of annealing treatments for restoring the most of the original pressure vessel material toughness is examined; its conditions and mechanisms involved are discussed. Feasibility and economic evaluation of annealing costs is also carried out. 90 refs., 4 figs

  13. Irradiation embrittlement of reactor pressure vessel steels: Considerations for thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Burke, M G; Freyer, P D; Mager, T R

    1994-12-31

    In this paper, an overview of the irradiation embrittlement phenomenon is presented from a structure-properties viewpoint. Effects of irradiation conditions on embrittlement are first reviewed: irradiation temperature, fluence, flux, and steel or alloy composition. Then, the techniques for identifying/characterizing the irradiation-induced microstructural features are described: TEM/STEM (electron microscopy), small angle neutron scattering, atom probe field-ion microscopy, positron annihilation lifetime spectroscopy. Mechanisms of hardening and embrittlement generally consist of a ``precipitation-type`` and a ``damage-type`` component and the potential of annealing treatments for restoring the most of the original pressure vessel material toughness is examined; its conditions and mechanisms involved are discussed. Feasibility and economic evaluation of annealing costs is also carried out. 90 refs., 4 figs.

  14. Annealing of silicon epitaxial n+-p-structures irradiated with fast electrons

    International Nuclear Information System (INIS)

    Korshunov, F.P.; Turin, P.M.; Gurinovich, V.A.; Zhdanovich, N.E.

    2010-01-01

    Static (forward voltage drop and barrier capacitance) and dynamic (minority charge carriers lifetime in p-base) parameters changes of n + -p-structures irradiated with electrons (6 MeV) have been investigated. It is established that the forward voltage drop and the barrier capacitance of n + -p-junction recover during annealing at about 623 K, but the minority charge carriers lifetime recovery occurs at annealing temperatures above 773 K. The recovery of a forward voltage drop and barrier capacitance is related with annealing of radiation complexes of divacancy-oxygen (V 2 O) and boron-carbon (B i C s ). The recovery of minority charge carriers lifetime in structures is related mainly with annealing of radiation complex of carbonoxygen (C i O i ). (authors)

  15. Effect of thermal annealing on property changes of neutron-irradiated non-graphitized carbon materials and nuclear graphite

    International Nuclear Information System (INIS)

    Matsuo, Hideto

    1991-06-01

    Changes in dimension of non-graphitized carbon materials and nuclear graphite, and the bulk density, electrical resistivity, Young's modulus and thermal expansivity of nuclear graphite were studied after neutron irradiation at 1128-1483 K and the successive thermal annealing up to 2573 K. Carbon materials showed larger and anisotropic dimensional shrinkage than that of nuclear graphite after the irradiation. The irradiation-induced dimensional shrinkage of carbon materials decreased during annealing at temperatures from 1773 to 2023 K, followed by a slight increase at higher temperatures. On the other hand, the irradiated nuclear graphite hardly showed the changes in length, density and thermal expansivity under the thermal annealing, but the electrical resistivity and Young's modulus showed a gradual decrease with annealing temperature. It has been clarified that there exists significant difference in the effect of thermal annealing on irradiation-induced dimensional shrinkage between graphitized nuclear graphite and non-graphitized carbon materials. (author)

  16. Thermal defect annealing of swift heavy ion irradiated ThO2

    Science.gov (United States)

    Palomares, Raul I.; Tracy, Cameron L.; Neuefeind, Joerg; Ewing, Rodney C.; Trautmann, Christina; Lang, Maik

    2017-08-01

    Isochronal annealing, neutron total scattering, and Raman spectroscopy were used to characterize the structural recovery of polycrystalline ThO2 irradiated with 2-GeV Au ions to a fluence of 1 × 1013 ions/cm2. Neutron diffraction patterns show that the Bragg signal-to-noise ratio increases and the unit cell parameter decreases as a function of isochronal annealing temperature, with the latter reaching its pre-irradiation value by 750 °C. Diffuse neutron scattering and Raman spectroscopy measurements indicate that an isochronal annealing event occurs between 275-425 °C. This feature is attributed to the annihilation of oxygen point defects and small oxygen defect clusters.

  17. Radiation annealing mechanisms of low-alloy reactor pressure vessel steels dependent on irradiation temperature and neutron fluence

    International Nuclear Information System (INIS)

    Pachur, D.

    1982-01-01

    Heat treatment after irradiation of reactor pressure vessel steels showed annealing of irradiation embrittlement. Depending on the irradiation temperature, the embrittlement started to anneal at about 220 0 C and was completely annealed at 500 0 C with 4 h of annealing time. The annealing behavior was normally measured in terms of the Vickers hardness increase produced by irradiation relative to the initial hardness as a function of the annealing temperature. Annealing results of other mechanical properties correspond to hardness results. During annealing, various recovery mechanisms occur in different temperature ranges. These are characterized by activation energies from 1.5 to 2.1 eV. The individual mechanisms were determined by the different time dependencies at various temperatures. The relative contributions of the mechanisms showed a neutron fluence dependence, with the lower activation energy mechanisms being predominant at low fluence and vice versa. In the temperature range where partial annealing of a mechanism took place during irradiation, an increase in activation energy was observed. Trend curves for the increase in transition temperature with irradiation, for the relative increase of Vickers hardness and yield strength, and for the relative decrease of Charpy-V upper shelf energy are interpreted by the behavior of different mechanisms

  18. Thermal annealing response following irradiation of a CMOS imager for the JUICE JANUS instrument

    Science.gov (United States)

    Lofthouse-Smith, D.-D.; Soman, M. R.; Allanwood, E. A. H.; Stefanov, K. D.; Holland, A. D.; Leese, M.; Turne, P.

    2018-03-01

    ESA's JUICE (JUpiter ICy moon Explorer) spacecraft is an L-class mission destined for the Jovian system in 2030. Its primary goals are to investigate the conditions for planetary formation and the emergence of life, and how does the solar system work. The JANUS camera, an instrument on JUICE, uses a 4T back illuminated CMOS image sensor, the CIS115 designed by Teledyne e2v. JANUS imager test campaigns are studying the CIS115 following exposure to gammas, protons, electrons and heavy ions, simulating the harsh radiation environment present in the Jovian system. The degradation of 4T CMOS device performance following proton fluences is being studied, as well as the effectiveness of thermal annealing to reverse radiation damage. One key parameter for the JANUS mission is the Dark current of the CIS115, which has been shown to degrade in previous radiation campaigns. A thermal anneal of the CIS115 has been used to accelerate any annealing following the irradiation as well as to study the evolution of any performance characteristics. CIS115s have been irradiated to double the expected End of Life (EOL) levels for displacement damage radiation (2×1010 protons, 10 MeV equivalent). Following this, devices have undergone a thermal anneal cycle at 100oC for 168 hours to reveal the extent to which CIS115 recovers pre-irradiation performance. Dark current activation energy analysis following proton fluence gives information on trap species present in the device and how effective anneal is at removing these trap species. Thermal anneal shows no quantifiable change in the activation energy of the dark current following irradiation.

  19. Post deposition annealing effect on the properties of Al2O3/InP interface

    Science.gov (United States)

    Kim, Hogyoung; Kim, Dong Ha; Choi, Byung Joon

    2018-02-01

    Post deposition in-situ annealing effect on the interfacial and electrical properties of Au/Al2O3/n-InP junctions were investigated. With increasing the annealing time, both the barrier height and ideality factor changed slightly but the series resistance decreased significantly. Photoluminescence (PL) measurements showed that the intensities of both the near band edge (NBE) emission from InP and defect-related bands (DBs) from Al2O3 decreased with 30 min annealing. With increasing the annealing time, the diffusion of oxygen (indium) atoms into Al2O3/InP interface (into Al2O3 layer) occurred more significantly, giving rise to the increase of the interface state density. Therefore, the out-diffusion of oxygen atoms from Al2O3 during the annealing process should be controlled carefully to optimize the Al2O3/InP based devices.

  20. Effect of Different Post Deposition Annealing Treatments on Properties of Zinc Oxide Thin Films

    Directory of Open Access Journals (Sweden)

    Arti Arora

    2010-06-01

    Full Text Available Two different post deposition annealing atmospheres of oxygen and forming gas have been investigated for the improvement of rf sputtered zinc oxide thin films. The results show that type of atmosphere (oxidant o reduction plays an important role in the changes observed in structural, electrical and optical properties. It has been found that the structural properties of rf sputtered zinc oxide films improve in all the annealing environments. The intensity and grain size increases as the annealing temperature increases. It has been found that films become stress free at lowest temperature in oxygen as compare to forming gas annealing. The zinc oxide films annealed in oxygen shows sufficient resistivity associated to high transmittance (83 % characteristics required for MEMS based acoustic devices.

  1. Proteomics of post-irradiation recovery in D. radiodurans

    International Nuclear Information System (INIS)

    Basu, Bhakti; Apte, Shree Kumar

    2012-01-01

    An extremophile Deinococcus radiodurans is bestowed with an extraordinary DNA repair ability that renders it virtually resistant to all known forms of DNA damage caused by ionizing radiations (10 kGy of gamma rays), UV (1 kJ/m 2 ) or weeks of desiccation etc. The genome of D. radiodurans encodes a unique combination of DNA repair pathways such as prokaryotic type RecFOR mediated homologous recombination (HR) and nucleotide/base excision repair along with eukaryotic type strand annealing (SA) and non-homologous end joining (NHEJ), but is devoid of universal prokaryotic DNA repair pathways such as RecBCD mediated HR, photo-reactivation and SOS response. Collective evidence obtained so far from multiple approaches, have indicated (i) that all genes essential for DNA repair are not necessarily induced following radiation stress (ii) early RecA independent DNA assembly occurs, and (iii) absolute necessity of RecA dependent HR for final genome restitution. The 6 kGy gamma irradiation inducible proteome dynamics were mapped during the post-irradiation growth arrest phase by 2D protein electrophoresis coupled with mass spectrometry. Radiation inducible expression of at least 33 proteins was evident in the first 1h of post irradiation recovery

  2. Irradiation creep of solution annealed and coldworked 316 stainless steel

    International Nuclear Information System (INIS)

    Boutard, J.L.; Carteret, Y.; Cauvin, R.; Guerin, Y.; Maillard, A.

    1983-04-01

    Because SA and CW 316 stainless steels were used as standard cladding material, a lot of plastic strain data is now avalaible. Most of it is published and analyzed in term of an irradiation creep modulus A defined as the ratio of the equivalent plastic strain to the product of the equivalent stress by the dose. In fact the experimental data and the theoretical analysis of the in-pile deformation mechanisms show a more complicated situation. The purpose of this paper is to reanalyze our results taking into account this situation. This approach is divided in two parts: 1) the high temperature range (T>=450 0 C) where data come from irradiated pins; 2) the low temperature range (T 0 C) where results come from pressurized tubes irradiated in experimental rigs

  3. New facility for post irradiation examination of neutron irradiated beryllium

    International Nuclear Information System (INIS)

    Ishitsuka, Etsuo; Kawamura, Hiroshi

    1995-01-01

    Beryllium is expected as a neutron multiplier and plasma facing materials in the fusion reactor, and the neutron irradiation data on properties of beryllium up to 800 degrees C need for the engineering design. The acquisition of data on the tritium behavior, swelling, thermal and mechanical properties are first priority in ITER design. Facility for the post irradiation examination of neutron irradiated beryllium was constructed in the hot laboratory of Japan Materials Testing Reactor to get the engineering design data mentioned above. This facility consist of the four glove boxes, dry air supplier, tritium monitoring and removal system, storage box of neutron irradiated samples. Beryllium handling are restricted by the amount of tritium;7.4 GBq/day and 60 Co;7.4 MBq/day

  4. Post-annealing effects on pulsed laser deposition-grown GaN thin films

    International Nuclear Information System (INIS)

    Cheng, Yu-Wen; Wu, Hao-Yu; Lin, Yu-Zhong; Lee, Cheng-Che; Lin, Ching-Fuh

    2015-01-01

    In this work, the post-annealing effects on gallium nitride (GaN) thin films grown from pulsed laser deposition (PLD) are investigated. The as-deposited GaN thin films grown from PLD are annealed at different temperatures in nitrogen ambient. Significant changes of the GaN crystal properties are observed. Raman spectroscopy is used to observe the crystallinity, the change of residual stress, and the thermal decomposition of the annealed GaN thin films. X-ray diffraction is also applied to identify the crystal phase of GaN thin films, and the surface morphology of GaN thin films annealed at different temperatures is observed by scanning electron microscopy. Through the above analyses, the GaN thin films grown by PLD undergo three stages: phase transition, stress alteration, and thermal decomposition. At a low annealing temperature, the rock salt GaN in GaN films is transformed into wurtzite. The rock salt GaN diminishes with increasing annealing temperature. At a medium annealing temperature, the residual stress of the film changes significantly from compressive strain to tensile strain. As the annealing temperature further increases, the GaN undergoes thermal decomposition and the surface becomes granular. By investigating the annealing temperature effects and controlling the optimized annealing temperature of the GaN thin films, we are able to obtain highly crystalline and strain-free GaN thin films by PLD. - Highlights: • The GaN thin film is grown on sapphire by pulsed laser deposition. • The GaN film undergoes three stages with increasing annealing temperature. • In the first stage, the film transfers from rock salt to wurtzite phase. • In the second stage, the stress in film changes from compressive to tensile. • In the final stage, the film thermally decomposes and becomes granular

  5. Post annealing performance evaluation of printable interdigital capacitive sensors by principal component analysis

    KAUST Repository

    Zia, Asif Iqbal

    2015-06-01

    The surface roughness of thin-film gold electrodes induces instability in impedance spectroscopy measurements of capacitive interdigital printable sensors. Post-fabrication thermodynamic annealing was carried out at temperatures ranging from 30 °C to 210 °C in a vacuum oven and the variation in surface morphology of thin-film gold electrodes was observed by scanning electron microscopy. Impedance spectra obtained at different temperatures were translated into equivalent circuit models by applying complex nonlinear least square curve-fitting algorithm. Principal component analysis was applied to deduce the classification of the parameters affected due to the annealing process and to evaluate the performance stability using mathematical model. Physics of the thermodynamic annealing was discussed based on the surface activation energies. The post anneal testing of the sensors validated the achieved stability in impedance measurement. © 2001-2012 IEEE.

  6. Post annealing performance evaluation of printable interdigital capacitive sensors by principal component analysis

    KAUST Repository

    Zia, Asif Iqbal; Mukhopadhyay, Subhas Chandra; Yu, Paklam; Al-Bahadly, Ibrahim H.; Gooneratne, Chinthaka Pasan; Kosel, Jü rgen

    2015-01-01

    The surface roughness of thin-film gold electrodes induces instability in impedance spectroscopy measurements of capacitive interdigital printable sensors. Post-fabrication thermodynamic annealing was carried out at temperatures ranging from 30 °C to 210 °C in a vacuum oven and the variation in surface morphology of thin-film gold electrodes was observed by scanning electron microscopy. Impedance spectra obtained at different temperatures were translated into equivalent circuit models by applying complex nonlinear least square curve-fitting algorithm. Principal component analysis was applied to deduce the classification of the parameters affected due to the annealing process and to evaluate the performance stability using mathematical model. Physics of the thermodynamic annealing was discussed based on the surface activation energies. The post anneal testing of the sensors validated the achieved stability in impedance measurement. © 2001-2012 IEEE.

  7. Effect of phase instabilities on the correlation of nickel ion and neutron irradiation swelling in solution annealed 316 stainless steel

    International Nuclear Information System (INIS)

    Rowcliffe, A.F.; Lee, E.H.; Sklad, P.S.

    1979-01-01

    Annealed 316 stainless steel specimens were neutron irradiated to establish steady-state microstructures and then subjected to further high temperature irradiations with 4 MeV Ni ions. It is shown that void growth under neutron irradiation is simulated in ion irradiations carried out at approx. 180 0 C above reactor temperature. However, the precipitate microstructure developed during neutron irradiation is unstable during subsequent ion irradiation. As a result, the relative swelling rates at various reactor temperatures are not simulated correctly

  8. Annealing of neutron-irradiated vanadium containing oxygen

    International Nuclear Information System (INIS)

    Foster, R.E.

    1979-01-01

    A study to clarify the role of interstitial oxygen in irradiated vanadium by measuring the activation energy of the 0.2 T/sub m/ recovery stage in well-characterized samples, where T/sub m/ is the melting temperature in degrees Kelvin, is described

  9. Post irradiation effects (PIE) in integrated circuits

    International Nuclear Information System (INIS)

    Barnes, C.E.; Shaw, D.C.; Fleetwood, D.M.; Winokur, P.S.

    1992-01-01

    Post Irradiation Effects (PIE) ranging from normal recovery catastrophic failure have been observed in integrated circuits during the PIE period. These variations indicate that a rebound or PIE recipe used for radiation hardness assurance must be chosen with care. In this paper, the authors provide examples of PIE in a variety of integrated circuits of importance to spacecraft electronics

  10. Formation of tungsten oxide nanowires by ion irradiation and vacuum annealing

    Science.gov (United States)

    Zheng, Xu-Dong; Ren, Feng; Wu, Heng-Yi; Qin, Wen-Jing; Jiang, Chang-Zhong

    2018-04-01

    Here we reported the fabrication of tungsten oxide (WO3-x ) nanowires by Ar+ ion irradiation of WO3 thin films followed by annealing in vacuum. The nanowire length increases with increasing irradiation fluence and with decreasing ion energy. We propose that the stress-driven diffusion of the irradiation-induced W interstitial atoms is responsible for the formation of the nanowires. Comparing to the pristine film, the fabricated nanowire film shows a 106-fold enhancement in electrical conductivity, resulting from the high-density irradiation-induced vacancies on the oxygen sublattice. The nanostructure exhibits largely enhanced surface-enhanced Raman scattering effect due to the oxygen vacancy. Thus, ion irradiation provides a powerful approach for fabricating and tailoring the surface nanostructures of semiconductors.

  11. The influence of electron irradiation at the various temperatures and annealing on carriers mobility at the low temperatures in neutron transmutation doped gallium arsenide

    International Nuclear Information System (INIS)

    Korshunov, F.P.; Kurilovich, N.F.; Prokhorenko, T.A.; Troshchinskii, V.T.; Shesholko, V.K.

    1999-01-01

    The influence of electron irradiation at the various temperatures and annealing on measured at T=100 K carriers mobility in neutron transmutation doped GaAs have been investigated. It was detected that rate of mobility decreasing with irradiation dose increasing decreases when irradiation temperature increases. It was shown that at the same time it take place the radiation defects creating and their particular or full annealing (in the dependence on irradiation temperature). Radiation stimulated annealing (annealing that take place during irradiation at the elevated temperatures) is more effective than the annealing at the same temperatures that take place after crystals are irradiated at room temperature. It means that any defects annealing during irradiation at elevated temperatures take place at more low temperatures than that during annealing after irradiation at room temperature

  12. Radiation damage structure in irradiated and annealed 440 WWER-Type reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Kocik, J.; Keilova, E.

    1993-01-01

    A review of irradiation damages in WWER-type RPV steels based on conventional Transmission Electron Microscopy investigations in a power reactor and a research reactor, is presented; the samples consist in Cr-Mo-V ferritic steel (15Kh2MFA type). The visible part of radiation-induced defects consists of very fine vanadium carbide precipitates, small dislocation loops and black dots (presumably corresponding to clusters and particle embryos formed from vacancies and solute-atoms (vanadium, copper, phosphorus) and carbon associated with vanadium. Radiation-induced defects are concentrated at dislocation substructure during irradiation in a power reactor, revealing the role of radiation-enhanced diffusion in damage structure forming process. Contrarily, the distribution of defects resulting from annealing of specimens irradiated in the research reactor is pre-determined by an homogenous distribution of radiation-induced defects prior to annealing. Increasing the number of re-irradiation and annealing cycles, the amount of dislocation loops among all defects seems to be growing. Simultaneously, the dislocation substructure recovers considerably. (authors). 14 refs., 11 figs., 3 tabs

  13. Radiation damage structure in irradiated and annealed 440 WWER-Type reactor pressure vessel steels

    Energy Technology Data Exchange (ETDEWEB)

    Kocik, J; Keilova, E [Czech Nuclear Society, Prague (Czech Republic)

    1994-12-31

    A review of irradiation damages in WWER-type RPV steels based on conventional Transmission Electron Microscopy investigations in a power reactor and a research reactor, is presented; the samples consist in Cr-Mo-V ferritic steel (15Kh2MFA type). The visible part of radiation-induced defects consists of very fine vanadium carbide precipitates, small dislocation loops and black dots (presumably corresponding) to clusters and particle embryos formed from vacancies and solute-atoms (vanadium, copper, phosphorus) and carbon associated with vanadium. Radiation-induced defects are concentrated at dislocation substructure during irradiation in a power reactor, revealing the role of radiation-enhanced diffusion in damage structure forming process. Contrarily, the distribution of defects resulting from annealing of specimens irradiated in the research reactor is pre-determined by an homogenous distribution of radiation-induced defects prior to annealing. Increasing the number of re-irradiation and annealing cycles, the amount of dislocation loops among all defects seems to be growing. Simultaneously, the dislocation substructure recovers considerably. (authors). 14 refs., 11 figs., 3 tabs.

  14. Recombination luminescence in irradiated silicon - Effects of thermal annealing and lithium impurity.

    Science.gov (United States)

    Johnson, E. S.; Compton, W. D.

    1971-01-01

    Use of luminescence in irradiated silicon to determine the thermal stability of the defects responsible for the recombination. It is found that the defect responsible for the zero-phonon line at 0.97 eV has an annealing behavior similar to that of the divacancy and that the zero-phonon line at 0.79 eV anneals in a manner similar to the G-15 or K-center. Annealing at temperatures up to 500 C generates other defects whose luminescence is distinct from that seen previously. Addition of lithium to the material produces defects with new characteristic luminescence. Of particular importance is a defect with a level at E sub g -1.045 eV.

  15. Annealing effect on the reproducibility of Josephson Junctions made by ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Sirena, M; Matzen, S; Bergeal, N; Lesueur, J [Laboratoire Photons Et Matiere, CNRS, ESPCI, 10 Rue Vauquelin 75231 Paris (France) (France); Faini, G [Laboratoire de Photonique et Nanostructures, Route de Nozay, 91460 Marcoussis (France) (France); Bernard, R; Briatico, J; Crete, D [UMR-CNRS/THALES, Route D128, 91767 Palaiseau (France) (France)], E-mail: martin.sirena@espci.fr

    2008-02-01

    We have studied the annealing effects on the transport properties of High Tc Josephson Junctions (JJ) made by ion irradiation. Several JJ were measured for different annealing times and the experimental data were compared to numerical simulations. We have successfully used a vacancy-interstitial annihilation mechanism to describe the evolution of the JJ coupling temperature (T{sub J}) and the homogeneity of a JJ array, related to the evolution of the defects density mean value and its distribution width. For sufficient long annealing times (t > 600 min), {delta}T{sub J} was significatively reduced. This result appears to be very encouraging for future applications where the spread in JJ characteristics has to be as low as possible.

  16. Annealing effect on the reproducibility of Josephson Junctions made by ion irradiation

    International Nuclear Information System (INIS)

    Sirena, M; Matzen, S; Bergeal, N; Lesueur, J; Faini, G; Bernard, R; Briatico, J; Crete, D

    2008-01-01

    We have studied the annealing effects on the transport properties of High Tc Josephson Junctions (JJ) made by ion irradiation. Several JJ were measured for different annealing times and the experimental data were compared to numerical simulations. We have successfully used a vacancy-interstitial annihilation mechanism to describe the evolution of the JJ coupling temperature (T J ) and the homogeneity of a JJ array, related to the evolution of the defects density mean value and its distribution width. For sufficient long annealing times (t > 600 min), ΔT J was significatively reduced. This result appears to be very encouraging for future applications where the spread in JJ characteristics has to be as low as possible

  17. Post-Irradiation Behaviour of I131 in TeO2

    International Nuclear Information System (INIS)

    Jaćimović, Lj.; Stevović, J.; Veljković, S.R.

    1965-01-01

    The system I 131 in TeO 2 is interesting because little is known about thermal chemical changes in this target. Radioiodine was produced by neutron irradiation of TeO 2 in the reactor. Irradiated TeO 2 was dissolved in diluted NaOH. The analysis of the iodine valency forms was made by ion exchange techniques. The thermal and radiation stability of TeO 2 was studied by using the spectrophotometric method for the determination of tellurium. Post-irradiation annealing of I 131 in TeO 2 was studied in dependence on the time and temperature of the heating. The main tendency of annealing was the reduction of radioiodine. The time dependence of this process indicates a fast change at high temperatures. The curves are more complex at lower temperatures. The annealing may appear complex because of the variety of thermal reactions of iodine intermediary. It may react with products of the following processes: tellurium recoil and corresponding hot zone, beta transition of Te 131 and TeO 2 itself. The kinetics of these changes was considered and an estimation of the processes during annealing was made. The influence of the neutron flux on the kinetics of annealing was also studied. (author) [fr

  18. CCE measurements and annealing studies on proton-irradiated p-type MCz silicon diodes

    CERN Document Server

    Hoedlmoser, H; Köhler, M; Nordlund, H

    2007-01-01

    Magnetic Czochralski (MCz) silicon has recently been investigated for the development of radiation tolerant detectors for future high-luminosity HEP experiments. A study of p-type MCz Silicon diodes irradiated with protons up to a fluence of has been performed by means of Charge Collection Efficiency (CCE) measurements as well as standard CV/IV characterizations. The changes of CCE, full depletion voltage and leakage current as a function of fluence are reported. A subsequent annealing study of the irradiated detectors shows an increase in effective doping concentration and a decrease in the leakage current, whereas the CCE remains basically unchanged. Two different series of detectors have been compared differing in the implantation dose of p-spray isolation as well as effective doping concentration (Neff) of the p-type bulk presumably due to a difference in thermal donor (TD) activation during processing. The series with the higher concentration of TDs shows a delayed reverse annealing of Neff after irradia...

  19. Anisotropy variation of crystallographic orientation in pyrocarbon coatings of fuel particles by annealing and neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Koizlik, K.

    1973-04-15

    This document is a translation of those parts of the German report Jul-868-RW concerned with changes in anisotropy as determined using an optical technique on pyrocarbon coatings on fuel particles resulting from annealing and neutron irradiations. Two lists of contents are included, one is for the present document and the other is the full contents of the original report and is included for the generl interest of users.

  20. Analysis of mechanical tensile properties of irradiated and annealed RPV weld overlay cladding

    Energy Technology Data Exchange (ETDEWEB)

    Novak, J [Czech Nuclear Society, Prague (Czech Republic)

    1994-12-31

    Mechanical tensile properties of irradiated and annealed outer layer of reactor pressure vessel weld overlay cladding, composed of Cr19Ni10Nb alloy, have been experimentally determined by conventional tensile testing and indentation testing. The constitutive properties of weld overlay cladding are then modelled with two homogenization models of the constitutive properties of elastic-plastic matrix-inclusion composites; numerical and experimental results are then compared. 10 refs., 4 figs., 4 tabs.

  1. Analysis of mechanical tensile properties of irradiated and annealed RPV weld overlay cladding

    International Nuclear Information System (INIS)

    Novak, J.

    1993-01-01

    Mechanical tensile properties of irradiated and annealed outer layer of reactor pressure vessel weld overlay cladding, composed of Cr19Ni10Nb alloy, have been experimentally determined by conventional tensile testing and indentation testing. The constitutive properties of weld overlay cladding are then modelled with two homogenization models of the constitutive properties of elastic-plastic matrix-inclusion composites; numerical and experimental results are then compared. 10 refs., 4 figs., 4 tabs

  2. Control of crystal structure, morphology and optical properties of ceria films by post deposition annealing treatments

    International Nuclear Information System (INIS)

    Eltayeb, Asmaa; Vijayaraghavan, Rajani K.; McCoy, Anthony P.; Cullen, Joseph; Daniels, Stephen; McGlynn, Enda

    2016-01-01

    In this paper, the effects of post-deposition annealing temperature and atmosphere on the properties of pulsed DC magnetron sputtered ceria (CeO_2) thin films, including crystalline structure, grain size and shape and optical properties were investigated. Experimental results, obtained from X-ray diffraction (XRD), showed that the prepared films crystallised predominantly in the CeO_2 cubic fluorite structure, although evidence of Ce_2O_3 was also seen and this was quantified by a Rietveld refinement. The anneal temperature and oxygen content of the Ar/O_2 annealing atmosphere both played important roles on the size and shape of the nanocrystals as determined by atomic force microscopy (AFM). The average grain size (determined by an AFM) as well as the out of plane coherence length (obtained from XRD) varied with increasing oxygen flow rate (OFR) in the annealing chamber. In addition, the shape of the grains seen in the AFM studies transformed from circular to triangular as the OFR was raised from 20 sccm to 30 sccm during an 800 °C thermal anneal. X-ray photoelectron spectroscopy was used to measure near-surface oxidation states of the thin-films with varying OFR in the annealing chamber. The bandgap energies were estimated from the ultra-violet and visible absorption spectra and low-temperature photoluminescence. An extracted bandgap value of 3.04 eV was determined for as-deposited CeO_2 films and this value increased with increasing annealing temperatures. However, no difference was observed in bandgap energies with variation of annealing atmosphere. - Highlights: • Deposition of ceria thin films by pulsed DC magnetron sputtering • Effect of annealing temperature and gas ambient on film crystalline structure • Evidence for control of the film roughness and grain size and shape is achieved. • Investigation of the effect of post-deposition annealing on the film stoichiometry • Films showed blue shifts in bandgap energies with increasing annealing

  3. Post-irradiation examination and R and D programs using irradiated fuels at KAERI

    International Nuclear Information System (INIS)

    Chun, Yong Bum; Min, Duck Kee; Kim, Eun Ka and others

    2000-12-01

    This report describes the Post-Irradiation Examination(PIE) and R and D programs using irradiated fuels at KAERI. The objectives of post-irradiation examination (PIE) for the PWR irradiated fuels, CANDU fuels, HANARO fuels and test fuel materials are to verify the irradiation performance and their integrity as well as to construct a fuel performance data base. The comprehensive utilization program of the KAERI's post-irradiation examination related nuclear facilities such as Post-Irradiation Examination Facility (PIEF), Irradiated Materials Examination Facility (IMEF) and HANARO is described

  4. Post-irradiation examination and R and D programs using irradiated fuels at KAERI

    International Nuclear Information System (INIS)

    Chun, Yong Bum; So, Dong Sup; Lee, Byung Doo; Lee, Song Ho; Min, Duck Kee

    2001-09-01

    This report describes the Post-Irradiation Examination(PIE) and R and D programs using irradiated fuels at KAERI. The objectives of post-irradiation examination (PIE) for the PWR irradiated fuels, CANDU fuels, HANARO fuels and test fuel materials are to verify the irradiation performance and their integrity as well as to construct a fuel performance data base. The comprehensive utilization program of the KAERI's post-irradiation examination related nuclear facilities such as Post-Irradiation Examination Facility (PIEF), Irradiated Materials Examination Facility (IMEF) and HANARO is described

  5. Color center annealing and ageing in electron and ion-irradiated yttria-stabilized zirconia

    International Nuclear Information System (INIS)

    Costantini, Jean-Marc; Beuneu, Francois

    2005-01-01

    We have used X-band electron paramagnetic resonance (EPR) measurements at room-temperature (RT) to study the thermal annealing and RT ageing of color centers induced in yttria-stabilized zirconia (YSZ), i.e. ZrO 2 :Y with 9.5 mol% Y 2 O 3 , by swift electron and ion-irradiations. YSZ single crystals with the orientation were irradiated with 2.5 MeV electrons, and implanted with 100 MeV 13 C ions. Electron and ion beams produce the same two color centers, namely an F + -type center (singly ionized oxygen vacancy) and the so-called T-center (Zr 3+ in a trigonal oxygen local environment) which is also produced by X-ray irradiations. Isochronal annealing was performed in air up to 973 K. For both electron and ion irradiations, the defect densities are plotted versus temperature or time at various fluences. The influence of a thermal treatment at 1373 K of the YSZ single crystals under vacuum prior to the irradiations was also investigated. In these reduced samples, color centers are found to be more stable than in as-received samples. Two kinds of recovery processes are observed depending on fluence and heat treatment

  6. Degradation and annealing studies on gamma rays irradiated COTS PPD CISs at different dose rates

    International Nuclear Information System (INIS)

    Wang, Zujun; Ma, Yingwu; Liu, Jing; Xue, Yuan; He, Baoping; Yao, Zhibin; Huang, Shaoyan; Liu, Minbo; Sheng, Jiangkun

    2016-01-01

    The degradation and annealing studies on Colbalt-60 gamma-rays irradiated commercial-off-the-shelf (COTS) pinned photodiode (PPD) CMOS image sensors (CISs) at the various dose rates are presented. The irradiation experiments of COTS PPD CISs are carried out at 0.3, 3.0 and 30.0 rad(Si)/s. The COTS PPD CISs are manufactured using a standard 0.18-μm CMOS technology with four-transistor pixel PPD architecture. The behavior of the tested CISs shows a remarkable degradation after irradiation and differs in the dose rates. The dark current, dark signal non-uniformity (DSNU), random noise, saturation output, signal to noise ratio (SNR), and dynamic range (DR) versus the total ionizing dose (TID) at the various dose rates are investigated. The tendency of dark current, DSNU, and random noise increase and saturation output, SNR, and DR to decrease at 3.0 rad(Si)/s are far greater than those at 0.3 and 30.0 rad(Si)/s. The damage mechanisms caused by TID irradiation at the various dose rates are also analyzed. The annealing tests are carried out at room temperature with unbiased conditions after irradiation.

  7. Degradation and annealing studies on gamma rays irradiated COTS PPD CISs at different dose rates

    Science.gov (United States)

    Wang, Zujun; Ma, Yingwu; Liu, Jing; Xue, Yuan; He, Baoping; Yao, Zhibin; Huang, Shaoyan; Liu, Minbo; Sheng, Jiangkun

    2016-06-01

    The degradation and annealing studies on Colbalt-60 gamma-rays irradiated commercial-off-the-shelf (COTS) pinned photodiode (PPD) CMOS image sensors (CISs) at the various dose rates are presented. The irradiation experiments of COTS PPD CISs are carried out at 0.3, 3.0 and 30.0 rad(Si)/s. The COTS PPD CISs are manufactured using a standard 0.18-μm CMOS technology with four-transistor pixel PPD architecture. The behavior of the tested CISs shows a remarkable degradation after irradiation and differs in the dose rates. The dark current, dark signal non-uniformity (DSNU), random noise, saturation output, signal to noise ratio (SNR), and dynamic range (DR) versus the total ionizing dose (TID) at the various dose rates are investigated. The tendency of dark current, DSNU, and random noise increase and saturation output, SNR, and DR to decrease at 3.0 rad(Si)/s are far greater than those at 0.3 and 30.0 rad(Si)/s. The damage mechanisms caused by TID irradiation at the various dose rates are also analyzed. The annealing tests are carried out at room temperature with unbiased conditions after irradiation.

  8. Precipitation response of annealed type 316 stainless steel in HFIR irradiations at 550 to 6800C

    International Nuclear Information System (INIS)

    Maziasz, P.J.

    1978-01-01

    Precipitation in annealed type 316 stainless steel after HFIR irradiation at 550--680 0 C to fluences producing 2000--3300 at. ppM He and 30--47 dpa is changed relative to fast reactor or thermal aging exposure to similar temperatures and times. The phases observed after HFIR irradiation are the same as those observed after aging to temperatures 70--200 0 C higher or for much longer times. There is a similar temperature shift in addition to different phases observed for HFIR irradiation compared with EBR-II. The changes observed are coincident with including simultaneous helium production to high levels in the irradiation damage products of the material

  9. Thermodynamics of post-growth annealing of cadmium zinc telluride nuclear radiation detectors

    Science.gov (United States)

    Adams, Aaron Lee

    Nuclear Radiation Detectors are used for detecting, tracking, and identifying radioactive materials which emit high-energy gamma and X-rays. The use of Cadmium Zinc Telluride (CdZnTe) detectors is particularly attractive because of the detector's ability to operate at room temperature and measure the energy spectra of gamma-ray sources with a high resolution, typically less than 1% at 662 keV. While CdZnTe detectors are acceptable imperfections in the crystals limit their full market potential. One of the major imperfections are Tellurium inclusions generated during the crystal growth process by the retrograde solubility of Tellurium and Tellurium-rich melt trapped at the growth interface. Tellurium inclusions trap charge carriers generated by gamma and X-ray photons and thus reduce the portion of generated charge carriers that reach the electrodes for collection and conversion into a readable signal which is representative of the ionizing radiation's energy and intensity. One approach in resolving this problem is post-growth annealing which has the potential of removing the Tellurium inclusions and associated impurities. The goal of this project is to use experimental techniques to study the thermodynamics of Tellurium inclusion migration in post-growth annealing of CdZnTe nuclear detectors with the temperature gradient zone migration (TGZM) technique. Systematic experiments will be carried out to provide adequate thermodynamic data that will inform the engineering community of the optimum annealing parameters. Additionally, multivariable correlations that involve the Tellurium diffusion coefficient, annealing parameters, and CdZnTe properties will be analyzed. The experimental approach will involve systematic annealing experiments (in Cd vapor overpressure) on different sizes of CdZnTe crystals at varying temperature gradients ranging from 0 to 60°C/mm (used to migrate the Tellurium inclusion to one side of the crystal), and at annealing temperatures ranging

  10. Evolution of secondary-phase precipitates during annealing of the 12Kh18N9T steel irradiated with neutrons to a dose of 5 DPA

    Science.gov (United States)

    Tsai, K. V.; Maksimkin, O. P.; Turubarova, L. G.

    2007-03-01

    The formation and evolution of thermally-induced secondary precipitates in an austenitic stainless steel 12Kh18N9T irradiated in the core of a laboratory reactor VVR-K to a dose of 5 dpa and subjected to post-radiation isochronous annealings for 1 h in a temperature range from 450 to 1050°C have been studied using transmission electron microscopy (TEM) and microhardness measurements. It has been shown that the formation of stitch (secondary) titanium carbides and M 23C6 carbides at grain and twin boundaries after annealing at 1050°C is preceded by a complex evolution of fineparticles of secondary phases (titanium carbides and nitrides) precipitated at dislocation loops and dislocations during annealing at temperatures above 750°C.

  11. Study of defect annealing behaviour in neutron irradiated Cu and Fe using positron annihilation and electrical conductivity

    International Nuclear Information System (INIS)

    Eldrup, M.; Singh, B.N.

    2000-01-01

    To compare the defect accumulation and the annealing behaviour in an fcc and a bcc metal, OFHC-Cu and pure Fe were neutron irradiated at 100 deg. C to a fluence of 1.5 x 10 24 n/m 2 , (E > 1 MeV). Isochronal annealing was carried out and the annealing behaviour followed by positron annihilation spectroscopy (PAS) as well as electrical conductivity measurements. The results for the two specimens in the as-irradiated state are very different. In Cu the defect positron lifetime is characteristic of single vacancies, very small vacancy clusters or stacking fault tetrahedra, while in Fe the defect lifetimes confirm the presence of micro-voids and voids. The electrical conductivity, on the other hand does not discriminate between the two types of damage in the irradiated specimens. During annealing of the irradiated Fe below stage V, the average void size grows by migration and coalescence of the micro-voids and voids. At and above stage V the void density decreases and the voids finally anneal out at ∼500 deg. C. In contrast, the annealing of irradiated Cu below stage V does not yield any evidence for the evolution of micro-voids or voids. The implications of these results are discussed. One conclusion is that neutron irradiation below stage V causes higher void swelling in bcc iron than in fcc copper

  12. Irradiation as an alternative post harvest treatment

    Energy Technology Data Exchange (ETDEWEB)

    Satin, M. [Agricultural Industries and Post-harvest Management Service, FAO, Rome (Italy); Loaharanu, P. [Head, Food Preservation Section, Joint FAO/ IAEA Division of Nuclear Techniques in Food and Agriculture, Wagramerstr. 5, A-1400, Vienna (Austria)

    1997-12-31

    This current world population has significantly added to the pressures placed upon our finite resources and our resulting ability to feed ourselves. In order to cope with current and future demands, the two established lines of action, that is, reduced population growth and expansion of agricultural production, must be supplemented with the parallel activity of reducing food losses during and after harvest. For developing countries in particular, enormous post-harvest losses result from spillage, contamination, pests and physiological deterioration during storage. Studies in these countries indicate that post-harvest losses are enormous and amount to tens of millions of tons per year valued at billions of dollars. Programs to reduce post-harvest losses, if applied properly, can result in realistic yield increases between 10 and 30%, which can be directly converted into increased consumption for humans. Post-harvest losses vary greatly and are a function of the crop variety, pest combinations in the environment, climate, the system of harvesting, storage, handling, marketing, and even the social and cultural environment. Pests are among the most criticals of these factors. Because of the disastrous potential consequences of such pests, quarantine regulations prohibit the entrance of plants or products which might hide the unwanted pest from countries where it is known to exist. Quarantine treatments are can be chemical, physical or ionizing radiation treatment. Numerous investigations on the use of ionizing radiation for the disinfestation of fresh plant materials indicate that rather low dosages will control fruit-fly problems, thus making it well suited for quarantine treatment. The effectiveness of the irradiation as a broad spectrum quarantine treatment of fresh fruits and vegetables was recognized by the several plant protection organizations around the world. Currently, some 40 countries have approved one or more irradiated food items or groups of food

  13. Irradiation as an alternative post harvest treatment

    Energy Technology Data Exchange (ETDEWEB)

    Satin, M [Agricultural Industries and Post-harvest Management Service, FAO, Rome (Italy); Loaharanu, P [Head, Food Preservation Section, Joint FAO/ IAEA Division of Nuclear Techniques in Food and Agriculture, Wagramerstr. 5, A-1400, Vienna (Austria)

    1998-12-31

    This current world population has significantly added to the pressures placed upon our finite resources and our resulting ability to feed ourselves. In order to cope with current and future demands, the two established lines of action, that is, reduced population growth and expansion of agricultural production, must be supplemented with the parallel activity of reducing food losses during and after harvest. For developing countries in particular, enormous post-harvest losses result from spillage, contamination, pests and physiological deterioration during storage. Studies in these countries indicate that post-harvest losses are enormous and amount to tens of millions of tons per year valued at billions of dollars. Programs to reduce post-harvest losses, if applied properly, can result in realistic yield increases between 10 and 30%, which can be directly converted into increased consumption for humans. Post-harvest losses vary greatly and are a function of the crop variety, pest combinations in the environment, climate, the system of harvesting, storage, handling, marketing, and even the social and cultural environment. Pests are among the most criticals of these factors. Because of the disastrous potential consequences of such pests, quarantine regulations prohibit the entrance of plants or products which might hide the unwanted pest from countries where it is known to exist. Quarantine treatments are can be chemical, physical or ionizing radiation treatment. Numerous investigations on the use of ionizing radiation for the disinfestation of fresh plant materials indicate that rather low dosages will control fruit-fly problems, thus making it well suited for quarantine treatment. The effectiveness of the irradiation as a broad spectrum quarantine treatment of fresh fruits and vegetables was recognized by the several plant protection organizations around the world. Currently, some 40 countries have approved one or more irradiated food items or groups of food

  14. Irradiation as an alternative post harvest treatment

    International Nuclear Information System (INIS)

    Satin, M.; Loaharanu, P.

    1997-01-01

    This current world population has significantly added to the pressures placed upon our finite resources and our resulting ability to feed ourselves. In order to cope with current and future demands, the two established lines of action, that is, reduced population growth and expansion of agricultural production, must be supplemented with the parallel activity of reducing food losses during and after harvest. For developing countries in particular, enormous post-harvest losses result from spillage, contamination, pests and physiological deterioration during storage. Studies in these countries indicate that post-harvest losses are enormous and amount to tens of millions of tons per year valued at billions of dollars. Programs to reduce post-harvest losses, if applied properly, can result in realistic yield increases between 10 and 30%, which can be directly converted into increased consumption for humans. Post-harvest losses vary greatly and are a function of the crop variety, pest combinations in the environment, climate, the system of harvesting, storage, handling, marketing, and even the social and cultural environment. Pests are among the most criticals of these factors. Because of the disastrous potential consequences of such pests, quarantine regulations prohibit the entrance of plants or products which might hide the unwanted pest from countries where it is known to exist. Quarantine treatments are can be chemical, physical or ionizing radiation treatment. Numerous investigations on the use of ionizing radiation for the disinfestation of fresh plant materials indicate that rather low dosages will control fruit-fly problems, thus making it well suited for quarantine treatment. The effectiveness of the irradiation as a broad spectrum quarantine treatment of fresh fruits and vegetables was recognized by the several plant protection organizations around the world. Currently, some 40 countries have approved one or more irradiated food items or groups of food

  15. Structural changes in the crystal-amorphous interface of isotactic polypropylene film induced by annealing and γ-irradiation

    International Nuclear Information System (INIS)

    Nishimoto, Sei-ichi; Seike, Hideo; Chaisupakitsin, M.; Yoshii, Fumio; Makuuchi, Keizo.

    1995-01-01

    Annealing and radiation effects on the microstructures of isotactic polypropylenes, homopolymer and ethylene (<2.3 wt%) incorporated random copolymers, in the solid state were studied to get mechanistic insight into the modification and degradation of mechanical properties. The growth of helical conformation of isotactic chains in the crystal-amorphous interface was induced to greater extent by γ-irradiation, while the transition from smectic to monoclinic modifications in the crystal phase occurred simultaneously by annealing. The yield stress of the polypropylene films increased with the increased content of helical conformation as the result of annealing and/or γ-irradiation. (author)

  16. Complex impedance spectroscopy of alkali impurities in as-grown, irradiated and annealed quartz

    International Nuclear Information System (INIS)

    Devautour-Vinot, S.; Cambon, O.; Prud'homme, N.; Giuntini, J. C.; Boy, J.-J.; Cibiel, G.

    2007-01-01

    This work compares the dielectric relaxation properties of different crystalline quartz materials, according to their source (natural or synthetics). It is shown that these relaxation properties are due to a hopping process of alkaline (Li + , Na + , and K + ) impurities located near [Al-O 4 ] 5- tetrahedra. A detailed analysis, in terms of the distribution function of the dielectric loss peak, allowed us to perfectly distinguish the different types of as-grown quartz. We show that (i) the natural quartz has less stable M + charge carriers than the synthetic materials and that (ii) the homogeneity of the M + trapping sites, created by the [Al-O 4 ] 5- tetrahedra, strongly depends on the crystal growth conditions. These features were then studied using quartz samples with different treatment conditions: as-grown, irradiated, or annealed at high temperature. We propose that the irradiation greatly facilitates the M + relaxation, by creating additional low energy M + hosting sites, whose number depends on the source of the quartz crystals. We also show that for 100 krad irradiation, the saturation state of the defects is already reached for all the materials under consideration. Finally, we propose that the irradiation followed by annealing at 450 deg. C improves the M + stability and homogeneity in quartz materials, compared with the as-grown materials, this trend being much more relevant for the natural than for the synthetic quartz

  17. Characterization of damaging in apatitic materials irradiated with heavy ions and thermally annealed

    International Nuclear Information System (INIS)

    Tisserand, R.

    2004-12-01

    Some minerals belonging to the family of apatite are seen to be potential candidates for use as conditioning matrices or transmutation targets for high level nuclear waste management. Indeed, studies of natural nuclear reactors (Oklo) highlighted the strong ability of these minerals to anneal irradiation damage. In order to determine the global behaviour of these materials, we performed a fundamental study on the evolution of irradiation damage induced by various heavy ions in two apatites: a natural phospho-calcic fluor-apatite from Durango and a synthetic sintered mono-silicated fluor-apatite, called britholite. The damage in these materials was measured by using channelling R.B.S. and X-ray diffraction respectively and by determining an amorphization effective radius Re. The results revealed a similar behaviour for both apatites according to the electronic energy deposit at the entrance of the material. In addition, the effect of an isothermal annealing at 300 C was quantified on a mono-silicated britholite previously irradiated with Kr ions. We highlighted in this case the return of the lattice parameters to their initial values, followed by a partial and slow rebuilding of the crystalline lattice versus the annealing time. Finally, we followed the changes in the morphology of etch pits in the Durango fluor-apatite after acid dissolution as a function of the energy deposit by the ions. We showed that the influence of crystallography leads quickly to opening angles close to 30 degrees. The calculation of etching velocities within the irradiated material highlighted that there is a range of deposit energy where the velocity ratio increases strongly before becoming constant. (author)

  18. Cytogenetics of Post-Irradiation Mouse Leukaemia

    Energy Technology Data Exchange (ETDEWEB)

    Wald, N.; Pan, S.; Upton, A.; Brown, R. [Graduate School of Public Health, University of Pittsburgh, PA (United States); Oak Ridge National Laboratory, Oak Ridge, TN (United States)

    1969-11-15

    The interrelationship between radiation, cytogenetic abnormalities, and viruses in leukaemogenesis has been studied in the RF/Un mouse which develops a high incidence of granulocytic leukaemia on radiation exposure. A virus-like agent has been demonstrated in such leukaemic animals and the disease has been transmitted by passage of apparently acellular materials from irradiated primary animals to normal recipients. Pilot cytogenetic studies revealed consistent abnormal chromosome markers and modal shifts in both irradiated leukaemic animals and in non-irradiated animals developing leukaemia after passage injection. To define better the relationship between consistent bone-marrow chromosome aberrations and postirradiation primary and passaged leukaemia, 100 RF/Un mice were studied which were irradiated with 300 R of 250-kVp X-rays at 100 weeks of age and subsequently developed leukaemia. Eighty-seven had granulocytic leukaemia and in 72 of these, bone-marrow cytogenetic abnormalities were found. The distribution of-numerical and structural chromosome aberrations in 3225 cells studied are reviewed in derail. The correlation of specific aberrations to clinical and histopathologic findings has been attempted: Sequential passages of apparently cell-free material from the post-irradiation leukaemic mice into unirradiated RE/Un recipients and subsequent passages from leukaemic recipients were performed to observe the evolution of any initial chromosome markers and shifts in modal chromosome number in the passage generations. Two-hundred-thirty-six mice were inoculated with the material obtained either from primary post-irradiation leukaemic mice or from serially-passaged leukaemia cases. In the most extensive passaged line, 22 transfer generations containing 129 leukaemic mice were examined by clinical, histopathologic, -haematologic and cytogenetic procedures. Evolution of abnormal chromosome modes from 41 in the early passages to 39 chromosomes consistently after the 4

  19. Hot cell facilities for post irradiation examination

    International Nuclear Information System (INIS)

    Mishra, Prerna; Bhandekar, Anil; Pandit, K.M.; Dhotre, M.P.; Rath, B.N.; Nagaraju, P.; Dubey, J.S.; Mallik, G.K.; Singh, J.L.

    2017-01-01

    Reliable performance of nuclear fuels and critical core components has a large bearing on the economics of nuclear power and radiation safety of plant operating personnel. In view of this, Post Irradiation Examination (PIE) is periodically carried out on fuels and components to generate feedback information which is used by the designers, fabricators and the reactor operators to bring about changes for improved performance of the fuel and components. Examination of the fuel bundles has to be carried out inside hot cells due to their high radioactivity

  20. The kinetics of isothermal annealing of gamma-irradiation damage in crystalline barium nitrate

    International Nuclear Information System (INIS)

    Nair, S.M.K.; Krishnan, M.S.; James, C.

    1983-01-01

    The annealing of #betta#-irradiation damage in crystalline barium nitrate at different temperatures in the range 370 to 430 deg C is a combination of a first-order process affecting a small portion of the fragments and a second-order process, with a higher energy of activation, governing the behaviour of the remainder approx. 73%. The annealing data have been analysed on the models for simple interstitial vacancy recombination and also as a combination of a first-order and second-order process with an energy of activation of 10.9 and 24.0 kcal mole - 1 respectively. It is considered that the first-order process is the combination of close-correlated pairs of O and NO 2- fragments and the second order process involves the single reaction of random recombination of the fragments throughout the crystal. (author)

  1. Thermoluminiscence and thermal annealing of F centres in KCL gamma irradiated

    International Nuclear Information System (INIS)

    Ausin Alonso, Vicente.

    1976-01-01

    The thermoluminiscence spectrum and phosphorescence decays of Harshaw KCl samples gamma irradiated at room temperature have been studied up to 400 0 C. For the six peaks found, the order of recombination kinetics, the pre-exponential factor and the activation energy have been obtained. It has been observed that the area under the thermoluminiscence curve is always proportional to the F centre concentration in the sample before heating. It was also found that there is an annealing step of F centres corresponding to each thermoluminiscence peak, when the temperature of the sample is raised at a constant rate. It is concluded that the F centres play the role of recombination centres in the annealing process, the interstitials being the mobile entities moving towards there combination centre. At some stage in the process light is emitted. (author)

  2. Effects of homogenization treatment on recrystallization behavior of 7150 aluminum sheet during post-rolling annealing

    International Nuclear Information System (INIS)

    Guo, Zhanying; Zhao, Gang; Chen, X.-Grant

    2016-01-01

    The effects of two homogenization treatments applied to the direct chill (DC) cast billet on the recrystallization behavior in 7150 aluminum alloy during post-rolling annealing have been investigated using the electron backscatter diffraction (EBSD) technique. Following hot and cold rolling to the sheet, measured orientation maps, the recrystallization fraction and grain size, the misorientation angle and the subgrain size were used to characterize the recovery and recrystallization processes at different annealing temperatures. The results were compared between the conventional one-step homogenization and the new two-step homogenization, with the first step being pretreated at 250 °C. Al_3Zr dispersoids with higher densities and smaller sizes were obtained after the two-step homogenization, which strongly retarded subgrain/grain boundary mobility and inhibited recrystallization. Compared with the conventional one-step homogenized samples, a significantly lower recrystallized fraction and a smaller recrystallized grain size were obtained under all annealing conditions after cold rolling in the two-step homogenized samples. - Highlights: • Effects of two homogenization treatments on recrystallization in 7150 Al sheets • Quantitative study on the recrystallization evolution during post-rolling annealing • Al_3Zr dispersoids with higher densities and smaller sizes after two-step treatment • Higher recrystallization resistance of 7150 sheets with two-step homogenization

  3. Interface reactions between Pd thin films and SiC by thermal annealing and SHI irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Njoroge, E.G., E-mail: eric.njoroge@up.ac.za [Department of Physics, University of Pretoria, Pretoria (South Africa); Theron, C.C. [Department of Physics, University of Pretoria, Pretoria (South Africa); Skuratov, V.A. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Wamwangi, D. [School of Physics, University of Witwatersrand, Johannesburg (South Africa); Hlatshwayo, T.T. [Department of Physics, University of Pretoria, Pretoria (South Africa); Comrie, C.M. [MRD, iThemba LABS, P.O. Box 722, Somerset West 7129 (South Africa); Malherbe, J.B. [Department of Physics, University of Pretoria, Pretoria (South Africa)

    2016-03-15

    The solid-state reactions between Pd thin films and 6H-SiC substrates induced by thermal annealing, room temperature swift heavy ion (SHI) irradiation and high temperature SHI irradiation have been investigated by in situ and real-time Rutherford backscattering spectrometry (RBS) and Grazing incidence X-ray diffraction (GIXRD). At room temperature, no silicides were detected to have formed in the Pd/SiC samples. Two reaction growth zones were observed in the samples annealed in situ and analysed by real time RBS. The initial reaction growth region led to formation of Pd{sub 3}Si or (Pd{sub 2}Si + Pd{sub 4}Si) as the initial phase(s) to form at a temperature of about 450 °C. Thereafter, the reaction zone did not change until a temperature of 640 °C was attained where Pd{sub 2}Si was observed to form in the reaction zone. Kinetic analysis of the initial reaction indicates very fast reaction rates of about 1.55 × 10{sup 15} at cm{sup −2}/s and the Pd silicide formed grew linear with time. SHI irradiation of the Pd/SiC samples was performed by 167 MeV Xe{sup 26+} ions at room temperature at high fluences of 1.07 × 10{sup 14} and 4 × 10{sup 14} ions/cm{sup 2} and at 400 °C at lower fluences of 5 × 10{sup 13} ions/cm{sup 2}. The Pd/SiC interface was analysed by RBS and no SHI induced diffusion was observed for room temperature irradiations. The sample irradiated at 400 °C, SHI induced diffusion was observed to occur accompanied with the formation of Pd{sub 4}Si, Pd{sub 9}Si{sub 2} and Pd{sub 5}Si phases which were identified by GIXRD analysis.

  4. Effects of annealing time on the recovery of Charpy V-notch properties of irradiated high-copper weld metal

    International Nuclear Information System (INIS)

    Iskander, S.K.; Sokolov, M.A.; Nanstad, R.K.

    1994-01-01

    One of the options to mitigate the effects of irradiation on reactor pressure vessels is to thermally anneal them to restore the toughness properties that have been degraded by neutron irradiation. An important issue to be resolved is the effect on the toughness properties of reirradiating a vessel that has been annealed. This paper describes the annealing response of irradiated high-copper submerged-arc weld HSSI 73W. For this study, the weld has been annealed at 454 C (850 F) for lengths of time varying between 1 and 14 days. The Charpy V-notch 41-J (30-ft-lb) transition temperature (TT 41J ) almost fully recovered for the longest period studied, but recovered to a lesser degree for the shorter periods. No significant recovery of the TT 41J was observed for a 7-day anneal at 343 C (650 F). At 454 C for the durations studied, the values of the upper-shelf impact energy of irradiated and annealed weld metal exceeded the values in the unirradiated condition. Similar behavior was observed after aging the unirradiated weld metal at 460 and 490 C for 1 week

  5. Proton irradiation of a swept charge device at cryogenic temperature and the subsequent annealing

    International Nuclear Information System (INIS)

    Gow, J P D; Smith, P H; Hall, D J; Holland, A D; Murray, N J; Pool, P

    2015-01-01

    A number of studies have demonstrated that a room temperature proton irradiation may not be sufficient to provide an accurate estimation of the impact of the space radiation environment on detector performance. This is a result of the relationship between defect mobility and temperature, causing the performance to vary subject to the temperature history of the device from the point at which it was irradiated. Results measured using Charge Coupled Devices (CCD) irradiated at room temperature therefore tend to differ from those taken when the device was irradiated at a cryogenic temperature, more appropriate considering the operating conditions in space, impacting the prediction of in-flight performance. This paper describes the cryogenic irradiation, and subsequent annealing of an e2v technologies Swept Charge Device (SCD) CCD236 irradiated at −35.4°C with a 10 MeV equivalent proton fluence of 5.0 × 10 8 protons · cm −2 . The CCD236 is a large area (4.4 cm 2 ) X-ray detector that will be flown on-board the Chandrayaan-2 and Hard X-ray Modulation Telescope spacecraft, in the Chandrayaan-2 Large Area Soft X-ray Spectrometer and the Soft X-ray Detector respectively. The SCD is readout continually in order to benefit from intrinsic dither mode clocking, leading to suppression of the surface component of the dark current and allowing the detector to be operated at warmer temperatures than a conventional CCD. The SCD is therefore an excellent choice to test and demonstrate the variation in the impact of irradiation at cryogenic temperatures in comparison to a more typical room temperature irradiation

  6. Post-annealing recrystallization and damage recovery process in Fe ion implanted Si

    International Nuclear Information System (INIS)

    Naito, Muneyuki; Hirata, Akihiko; Ishimaru, Manabu; Hirotsu, Yoshihiko

    2007-01-01

    We have investigated ion-beam-induced and thermal annealing-induced microstructures in high fluence Fe implanted Si using transmission electron microscopy. Si(1 1 1) substrates were irradiated with 120 keV Fe ions at 120 K to fluences of 0.4 x 10 17 and 4.0 x 10 17 cm -2 . A continuous amorphous layer was formed on Si substrates in both as-implanted samples. After thermal annealing at 1073 K for 2 h, β-FeSi 2 fine particles buried in a polycrystalline Si layer were observed in the low fluence sample, while a continuous β-FeSi 2 layer was formed in the high fluence sample. We discuss the relationship between ion fluence and defects recovery process in Fe ion implanted Si

  7. Effects of substrate temperature and post-deposition anneal on properties of evaporated cadmium telluride films

    International Nuclear Information System (INIS)

    Bacaksiz, E.; Basol, B.M.; Altunbas, M.; Novruzov, V.; Yanmaz, E.; Nezir, S.

    2007-01-01

    The effects of substrate temperature and post-deposition heat treatment steps on the morphology, structural, optical and electrical properties of thin film CdTe layers grown by vacuum evaporation were investigated. Scanning electron microscopy and X-ray diffraction (XRD) techniques were employed to study the structural changes. It was observed that the grain sizes and morphologies of as-deposited layers were similar for substrate temperatures of - 173 deg. C and - 73 deg. C. However, CdTe films produced at a substrate temperature of 27 deg. C had substantially larger grain size and clearly facetted morphology. Annealing at 200-400 deg. C in air did not cause any appreciable grain growth in any of the films irrespective of their growth temperature. However, annealing at 400 deg. C reduced faceting in all cases and initiated fusing between grains. XRD studies showed that this behavior after annealing at 400 deg. C coincided with an onset of a degree of randomization in the originally strong (111) texture of the as-grown layers. Optical band gap measurements showed sharpening of the band-edge upon annealing at 400 deg. C and a band gap value in the range of 1.46-1.49 eV. Resistivity measurements indicated that annealing at 400 deg. C in air forms a highly resistive compensated CdTe film. All results point to 400 deg. C to be a critical annealing temperature at which optical, structural and electrical properties of CdTe layers start to change

  8. Study of post annealing influence on structural, chemical and electrical properties of ZTO thin films

    International Nuclear Information System (INIS)

    Jain, Vipin Kumar; Kumar, Praveen; Kumar, Mahesh; Jain, Praveen; Bhandari, Deepika; Vijay, Y.K.

    2011-01-01

    Research highlights: → Structural, chemical and electrical properties of cost effective ZTO thin films with varying concentrations. → Effect of annealing of ZTO films. - Abstract: Zinc-Tin-Oxide (ZTO) thin films were deposited on glass substrate with varying concentrations (ZnO:SnO 2 ; 100:0, 90:10, 70:30 and 50:50 wt.%) at room temperature by flash evaporation technique. These deposited ZTO films were annealed at 450 deg. C in vacuum. These films were characterized to study the effect of annealing and addition of SnO 2 concentration on the structural, chemical and electrical properties. The XRD analysis indicates that crystallization of the ZTO films strongly depends on the concentration of SnO 2 and post annealing where annealed films showed polycrystalline nature. Atomic force microscopy (AFM) images manifest the surface morphology of these ZTO thin films. The XPS core level spectra of Zn(2p), O(1s) and Sn(3d) have been deconvoluted into their Gaussian component to evaluate the chemical changes, while valence band spectra reveal the electronic structures of these films. A small shift in Zn(2p) and Sn(3d) core level towards higher binding energy and O(1s) core level towards lower binding energy have been observed. The minimum electrical resistivity (ρ ∼ 3.69 x 10 -2 Ω-cm), maximum carrier concentration (n ∼ 3.26 x 10 19 cm -3 ) and Hall mobility (μ ∼ 5.2 cm 2 v -1 s -1 ) were obtained for as-prepared ZTO (50:50) film thereafter move towards lowest resistivity (ρ ∼ 1.12 x 10 -3 Ω-cm), highest carrier concentration (n ∼ 2.96 x 10 20 cm -3 ) and mobility (μ ∼ 18.8 cm 2 v -1 s -1 ) for annealed ZTO (50:50) thin film.

  9. A study of the mechanical property changes of irradiation embrittled pressure vessel steels and their response to annealing treatments

    International Nuclear Information System (INIS)

    Tipping, P.; Waeber, W.B.; Mercier, O.

    1991-01-01

    Isochronal and isothermal heat treatments have been used to study the recovery of hardness of a neutron irradiated pressure vessel steel forging for the purposes of planning and realizing IAR (Irradiated-Annealed-Reirradiated) experiments. Charpy V notch tests have been performed to assess the toughness of the material irradiated to various fluences up to a maximum of 5 x 10 19 n/cm 2 , E>1 MeV at 290 o C with and without an intermediate annealing treatment at 450 o C x 168 h. The effect of the intermediate annealing was evident. The recovery of the upper shelf energies was strongly enhanced by a thermal ageing effect due to the annealing treatment for all fluence levels investigated compared to the irradiated condition. The transition temperature shifts exhibited a less straightforward behaviour due to the mentioned ageing effect which opposed the recovery process for this property leading to a net shift increase at lower and to a net recovery benefit at higher fluence levels. A phenomenological model description for the IAR embrittlement-recovery path is suggested. For this material and these irradiation conditions a plant life extension (PLEX) may be brought about if a specific annealing treatment is applied at a fluence level that is half the anticipated target fluence F for PLEX. In this case it was found that F>1.6 x 10 19 n/cm 2 . (author)

  10. Post-deposition thermal annealing studies of hydrogenated microcrystalline silicon deposited at 40 deg. C

    International Nuclear Information System (INIS)

    Bronsveld, P.C.P.; Wagt, H.J. van der; Rath, J.K.; Schropp, R.E.I.; Beyer, W.

    2007-01-01

    Post-deposition thermal annealing studies, including gas effusion measurements, measurements of infrared absorption versus annealing state, cross-sectional transmission electron microscopy (X-TEM) and atomic force microscopy (AFM), are used for structural characterization of hydrogenated amorphous and microcrystalline silicon films, prepared by very high frequency plasma enhanced chemical vapor deposition (VHF-PECVD) at low substrate temperature (T S ). Such films are of interest for application in thin semiconductor devices deposited on cheap plastics. For T S ∼ 40 deg. C, H-evolution shows rather complicated spectra for (near-) microcrystalline material, with hydrogen effusion maxima seen at ∼ 200-250 deg. C, 380 deg. C and ∼ 450-500 deg. C, while for the amorphous material typical spectra for good-quality dense material are found. Effusion experiments of implanted He demonstrate for the microcrystalline material the presence of a rather open (void-rich) structure. A similar tendency can be concluded from Ne effusion experiments. Fourier Transform infrared (FTIR) spectra of stepwise annealed samples show Si-H bond rupture already at annealing temperatures of 150 deg. C. Combined AFM/X-TEM studies reveal a columnar microstructure for all of these (near-) microcrystalline materials, of which the open structure is the most probable explanation of the shift of the H-effusion maximum in (near-) microcrystalline material to lower temperature

  11. VVER fuel. Results of post irradiation examination

    International Nuclear Information System (INIS)

    Smirnov, V.P.; Markov, D.V.; Smirnov, A.V.; Polenok, V.S.; Perepelkin, S.O.; Ivashchenko, A.A.

    2005-01-01

    The present paper presents the main results of post-irradiation examination of more than 40 different fuel assemblies (FA) operated in the cores of VVER-1000 and VVER-440-type power reactors in a wide range of fuel burnup. The condition of fuel assembly components from the viewpoint of deformation, corrosion resistance and mechanical properties is described here. A serviceability of the FA design as a whole and interaction between individual FA components under vibration condition and mechanical load received primary emphasis. The reasons of FA damage fuel element failure in a wide range of fuel burnup are also analyzed. A possibility and ways of fuel burnup increase have been proved experimentally for the case of high-level serviceability maintenance of fuel elements to provide for advanced fuel cycles. (author)

  12. Mathematical Model for Post-Irradiation Haemopoiesis

    Energy Technology Data Exchange (ETDEWEB)

    Okunewick, J. P.; Kretchmar, A. L. [Rand Corporation, Santa Monica, CA (United States); Medical Division, Oak Ridge Associated Universities, Oak Ridge, TN (United States)

    1968-08-15

    A model for haemopoiesis has been constructed based on the following hypothesis: (a) Haemopoietic stem cells have the capability of either reproducing as stem cells or differentiating into specialized blood cells of at least two different types; (b) The size of the stem-cell compartment is in part regulated by the rate of increase due to stem-cell reproduction and in part by the rate of loss of stem cells through differentiation; (c) In addition, the size of the stem-cell compartment is in part regulated by a competitive cell-to-cell interaction between the stem-cells themselves and between the differentiating cells and the stem-cells, such that the presence of an exceptionally large number of either cell type would have a repressive effect on the rate of increase of the stem-cell population. This model has been applied to the post-irradiation erythropoietic behaviour of the rat. In the computer studies with the model, an X-ray dose sufficient to inhibit reproduction in 50% of the erythroid stem cells was assumed. It was also assumed that reproduction and differentiation are genetically separately controlled processes and that, therefore, some part of the reproductively injured cells were still capable of differentiation. Under these conditions the model predicted an abortive rise in reticulocyte number, peaking at about 6 days. True recovery was predicted to occur at about 16 days. Both the abortive rise and the true recovery were also present in those segments of the model representing earlier erythroid cells, occurring at progressively earlier times in progressively more primitive cells. Comparison of the model's predictions with experimentally obtained data for post-irradiation erythroid recovery showed a good agreement both with respect to the time of the abortive peak and the time of true recovery. (author)

  13. Mathematical Model for Post-Irradiation Haemopoiesis

    International Nuclear Information System (INIS)

    Okunewick, J.P.; Kretchmar, A.L.

    1968-01-01

    A model for haemopoiesis has been constructed based on the following hypothesis: (a) Haemopoietic stem cells have the capability of either reproducing as stem cells or differentiating into specialized blood cells of at least two different types; (b) The size of the stem-cell compartment is in part regulated by the rate of increase due to stem-cell reproduction and in part by the rate of loss of stem cells through differentiation; (c) In addition, the size of the stem-cell compartment is in part regulated by a competitive cell-to-cell interaction between the stem-cells themselves and between the differentiating cells and the stem-cells, such that the presence of an exceptionally large number of either cell type would have a repressive effect on the rate of increase of the stem-cell population. This model has been applied to the post-irradiation erythropoietic behaviour of the rat. In the computer studies with the model, an X-ray dose sufficient to inhibit reproduction in 50% of the erythroid stem cells was assumed. It was also assumed that reproduction and differentiation are genetically separately controlled processes and that, therefore, some part of the reproductively injured cells were still capable of differentiation. Under these conditions the model predicted an abortive rise in reticulocyte number, peaking at about 6 days. True recovery was predicted to occur at about 16 days. Both the abortive rise and the true recovery were also present in those segments of the model representing earlier erythroid cells, occurring at progressively earlier times in progressively more primitive cells. Comparison of the model's predictions with experimentally obtained data for post-irradiation erythroid recovery showed a good agreement both with respect to the time of the abortive peak and the time of true recovery. (author)

  14. Resistivity of atomic layer deposition grown ZnO: The influence of deposition temperature and post-annealing

    Energy Technology Data Exchange (ETDEWEB)

    Laube, J., E-mail: laube@imtek.de; Nübling, D.; Beh, H.; Gutsch, S.; Hiller, D.; Zacharias, M.

    2016-03-31

    Conductive zinc oxide (ZnO) films deposited by atomic layer deposition were studied as function of post-annealing treatments. Effusion experiments were conducted on ZnO films deposited at different temperatures. The influence of different annealing atmospheres on the resistivity of the films was investigated and compared to reference samples. It was found that the influence of the deposition temperature on the resistivity is much higher than that of subsequent annealings. This leads to the conclusion that reduction of the resistivity by diffusion of different gases, such as oxygen and hydrogen, into annealed ZnO films is unlikely. - Highlights: • Conformal growth of ZnO-ALD over a temperature range of 25 °C up to 300 °C. • Post-annealing in different atmospheres (H{sub 2}, O{sub 2}, vacuum) and temperatures. • Analysis of film-conductivity and effusion characteristic.

  15. Effect of post annealing treatment on electrochromic properties of spray deposited niobium oxide thin films

    International Nuclear Information System (INIS)

    Mujawar, S.H.; Inamdar, A.I.; Betty, C.A.; Ganesan, V.; Patil, P.S.

    2007-01-01

    Niobium oxide thin films were deposited on the glass and fluorine doped tin oxide (FTO) coated glass substrates using simple and inexpensive spray pyrolysis technique. During deposition of the films various process parameters like nozzle to substrate distance, spray rate, concentration of sprayed solution were optimized to obtain well adherent and transparent films. The films prepared were further annealed and effect of post annealing on the structural, morphological, optical and electrochromic properties was studied. Structural and morphological characterizations of the films were carried out using scanning electron microscopy, atomic force microscopy and X-ray diffraction techniques. Electrochemical properties of the niobium oxide thin films were studied by using cyclic-voltammetry, chronoamperometry and chronocoulometry

  16. Post irradiation examination on test fuel pins for PWR

    International Nuclear Information System (INIS)

    Fogaca Filho, N.; Ambrozio Filho, F.

    1981-01-01

    Certain aspects of irradiation technology on test fuel pins for PWR, are studied. The results of post irradiation tests, performed on test fuel pins in hot cells, are presented. The results of the tests permit an evaluation of the effects of irradiation on the fuel and cladding of the pin. (Author) [pt

  17. Irradiation and annealing effects of deuteron irradiated NbTi and V3Ga multifilamentary composite wires at low temperature

    International Nuclear Information System (INIS)

    Seibt, E.

    1975-01-01

    To study the effects of low-temperature irradiation on technological type II-superconductors, NbTi and V 3 Ga multifilamentary composite wires, the critical current I/sub c/ and transition temperature T/sub c/ were measured before and after irradiation with 50-MeV deuterons at 10 and 15 0 K, respectively. While the irradiation effects on I/sub c/ and T/sub c/ of NbTi are substantially unaffected, the V 3 Ga wires undergo a reduction in I/sub c/ of about 50 percent and T/sub c/ decreases from 14.7 +- 0.1 0 K to 12.3 +- 0.1 0 K at a total deuteron flux of 2.6 x 10 17 cm -2 . Annealing experiments at room temperature and 100 0 C show only a small recovery of the superconducting properties up to 15 percent. The field dependence of the volume pinning force densities P/sub V/ was determined and the results are shown to be consistent with a qualitative dynamic pinning model

  18. Improved characteristics of amorphous indium-gallium-zinc-oxide-based resistive random access memory using hydrogen post-annealing

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Dae Yun; Lee, Tae-Ho; Kim, Tae Geun, E-mail: tgkim1@korea.ac.kr [School of Electrical Engineering, Korea University, Seoul 02841 (Korea, Republic of)

    2016-08-15

    The authors report an improvement in resistive switching (RS) characteristics of amorphous indium-gallium-zinc-oxide (a-IGZO)-based resistive random access memory devices using hydrogen post-annealing. Because this a-IGZO thin film has oxygen off-stoichiometry in the form of deficient and excessive oxygen sites, the film properties can be improved by introducing hydrogen atoms through the annealing process. After hydrogen post-annealing, the device exhibited a stable bipolar RS, low-voltage set and reset operation, long retention (>10{sup 5 }s), good endurance (>10{sup 6} cycles), and a narrow distribution in each current state. The effect of hydrogen post-annealing is also investigated by analyzing the sample surface using X-ray photon spectroscopy and atomic force microscopy.

  19. Effect of laser-plasma X-ray irradiation on crystallization of amorphous silicon film by excimer laser annealing

    International Nuclear Information System (INIS)

    Matsuo, Naoto; Uejukkoku, Kazuya; Heya, Akira; Takanashi, Yasuyuki; Amano, Sho; Miyamoto, Shuji; Mochizuki, Takayasu

    2007-01-01

    The effect of laser plasma soft X-ray (LPX) irradiation on crystallization by excimer laser annealing (ELA) was investigated at low ELA energy densities. The crystalline fraction at energy densities of 50 and 60 mJ/cm 2 for LPX followed by ELA is nearly equal to that at 80 to 100 mJ/cm 2 for the ELA method with non-LPX irradiation. The results obtained indicate that LPX irradiation before ELA reduces the critical energy density for the start of crystallization. The combined method of LPX irradiation and ELA will enable us to realize a low-temperature process for ELA crystallization. (author)

  20. Effects of 500 keV electron irradiation and subsequent annealing on 1/f noise in copper films

    International Nuclear Information System (INIS)

    Pelz, J.; Clarke, J.

    1985-10-01

    Polycrystalline copper films were maintained at 90K on the cold stage of an electron microscope and irradiated with 500keV electrons to induce defect. With an electron dose of about 5 x 10 20 cm -2 , the spectral density of the noise voltage across the films increased by an order of magnitude while the electrical resistivity increased by at most 10%. The films were annealed at progressively higher temperatures; after each annealing process the 1/f noise and resistivity were remeasured at 90K. Both the 1/f noise and resistivity were reduced, but at the lower annealing temperatures the fractional reduction in the added noise was substantially more than in the added resistivity. These result suggest that a large fraction of the added noise may be generated by a small mobile fraction of the added defects that are more readily annealed than the majority of the defects. After a room temperature annealing process, both the noise and resistivity returned nearly to their initial values. The temperature dependence of the noise after irradiation and partial annealing was consistant with the Dutta-Dimon-Horn thermal activation model

  1. The effects of 500 keV electron irradiation and subsequent annealing on 1/f noise in copper films

    International Nuclear Information System (INIS)

    Pelz, J.; Clarke, J.

    1986-01-01

    Polycrystalline copper films were maintained at 90K on the cold stage of an electron microscope and irradiated with 500keV electrons to induce defects. With an electron dose of about 5 x 10 20 cm -2 , the spectral density of the noise voltage across the films increased by an order of magnitude while the electrical resistivity increased by at most 10%. The films were annealed at progressively higher temperatures; after each annealing process the 1/f noise and resistivity were remeasured at 90K. Both the 1/f noise and resistivity were reduced, but at the lower annealing temperatures the fractional reduction in the added noise was substantially more than in the added resistivity. These results suggest that a large fraction of the added noise may be generated by a small mobile fraction of the added defects that are more readily annealed than the majority of the defects. After a room temperature annealing process, both the noise and resistivity returned nearly to their initial values. The temperature dependence of the noise after irradiation and partial annealing was consistent with the Dutta-Dimon-Horn thermal activation model. (Auth.)

  2. Repair behavior of He+-irradiated W-Y2O3 composites after different temperature-isochronal annealing experiments

    Science.gov (United States)

    Yao, Gang; Tan, Xiao-Yue; Luo, Lai-Ma; Zan, Xiang; Liu, Jia-Qin; Xu, Qiu; Zhu, Xifao-Yong; Wu, Yu-Cheng

    2018-01-01

    W-2%Y2O3 composites were prepared by wet chemical and powder metallurgy. Commercial roll tungsten was selected as a comparative sample in the He+ irradiation experiment. The experiment was conducted under He+ beam energy of 50 eV, irradiation dose of approximately 9.9 × 1024 ions/m2, and temperature of 1503-1553 K. The samples were annealed at 1173, 1373, and 1573 K for 1 h. The irradiation surface was observed in situ. The W-2%Y2O3 composites and pure tungsten displayed different grain orientation damage morphologies. In addition, the fuzzy structure was more likely to converge densely at the phase interface. Annealing repairs material surface irradiation damage, whereas the phase interface acts as a He+ migration channel.

  3. Operation of post-irradiation examination facility

    Energy Technology Data Exchange (ETDEWEB)

    Kim, E. G.; Jeon, Y. B.; Ku, D. S.

    1996-12-01

    In 1996, the post-irradiation examination(PIE) of nuclear fuels was performed as follows. It has been searched for the caution of defection of defected fuel rods of Youngkwang-4 reactor through NDT and metallographic examination that had been required by KEPCO. And in-pool inspection of Kori-1 spent fuel assembly(FO2) was carried out. HVAC system and pool water treatment system have been operated to maintain the facility safely, and electric power supply system was checked and maintained for the normal and steady supply electric power to the facility. Image processing software was developed for measurement of defection of spent fuel rods. Besides, a radiation shielding glove box was fabricated and a hot cell compressor for volume reduction of radioactive materials was fabricated and installed in hot cell. Safeguards of nuclear materials were implemented in strict accordance with the relevant Korean rules and regulations as well as the international non-proliferation regime. Also the IAEA inspection was carried out on the quarterly basis. (author). 31 tabs., 71 figs., 4 refs.

  4. Optimization of urea-EnFET based on Ta2O5 layer with post annealing.

    Science.gov (United States)

    Lue, Cheng-En; Yu, Ting-Chun; Yang, Chia-Ming; Pijanowska, Dorota G; Lai, Chao-Sung

    2011-01-01

    In this study, the urea-enzymatic field effect transistors (EnFETs) were investigated based on pH-ion sensitive field effect transistors (ISFETs) with tantalum pentoxide (Ta(2)O(5)) sensing membranes. In addition, a post N(2) annealing was used to improve the sensing properties. At first, the pH sensitivity, hysteresis, drift, and light induced drift of the ISFETs were evaluated. After the covalent bonding process and urease immobilization, the urea sensitivity of the EnFETs were also investigated and compared with the conventional Si(3)N(4) sensing layer. The ISFETs and EnFETs with annealed Ta(2)O(5) sensing membranes showed the best responses, including the highest pH sensitivity (56.9 mV/pH, from pH 2 to pH 12) and also corresponded to the highest urea sensitivity (61 mV/pC(urea), from 1 mM to 7.5 mM). Besides, the non-ideal factors of pH hysteresis, time drift, and light induced drift of the annealed samples were also lower than the controlled Ta(2)O(5) and Si(3)N(4) sensing membranes.

  5. Optimization of Urea-EnFET Based on Ta2O5 Layer with Post Annealing

    Directory of Open Access Journals (Sweden)

    Chao-Sung Lai

    2011-04-01

    Full Text Available In this study, the urea-enzymatic field effect transistors (EnFETs were investigated based on pH-ion sensitive field effect transistors (ISFETs with tantalum pentoxide (Ta2O5 sensing membranes. In addition, a post N2 annealing was used to improve the sensing properties. At first, the pH sensitivity, hysteresis, drift, and light induced drift of the ISFETs were evaluated. After the covalent bonding process and urease immobilization, the urea sensitivity of the EnFETs were also investigated and compared with the conventional Si3N4 sensing layer. The ISFETs and EnFETs with annealed Ta2O5 sensing membranes showed the best responses, including the highest pH sensitivity (56.9 mV/pH, from pH 2 to pH 12 and also corresponded to the highest urea sensitivity (61 mV/pCurea, from 1 mM to 7.5 mM. Besides, the non-ideal factors of pH hysteresis, time drift, and light induced drift of the annealed samples were also lower than the controlled Ta2O5 and Si3N4 sensing membranes.

  6. Influence of post-radiation, accelerate annealing and discreteness on the TID parameters of memerizer

    International Nuclear Information System (INIS)

    Wang Qunyong; Liu Yanfang; Chen Yu; Jiang Dayong; Bai Ye; Song Yan

    2010-01-01

    By the study of post-radiation and accelerate annealing in the total ionizing dose (TID), we find out that the additional 50% dose radiation and high temperature accelerate annealing (100 degree C 168 h) can not be skipped in the test because it is necessary to strictly check the memory's TID effect in the space radiation environment. The analysis of device's discreteness in the test shows that parameters of device should be tested before the radiation to get their standard deviation. The high reliability of the memorizer which used in the satellite can be ensured by rejecting the device which increases the standard deviation. The TID test in the NASA report have been confirmed that the effectiveness of parameter test in 'read-only', 'write' and 'erase' mode is better than the test in 'only read' mode as it can reflect the degradation characteristics of the memorizer following ionizing radiation more reasonable. The test sequence applied for each memory at any electrical measurement steps after exposures annealing should be considered. (authors)

  7. Neutron flux and annealing effects on irradiation hardening of RPV materials

    Science.gov (United States)

    Chaouadi, R.; Gérard, R.

    2011-11-01

    This paper aims to examine an eventual effect of neutron flux, sometimes referred to as dose rate effect, on irradiation hardening of a typical A533B reactor pressure vessel steel. Tensile tests on both low flux (reactor surveillance data) and high flux (BR2 reactor) were performed in a large fluence range. The obtained results indicate two features. First, the surveillance data exhibit a constant (˜90 MPa) higher yield strength than the high flux data. However, this difference cannot be explained from a flux effect but most probably from differences in the initial tensile properties. The hardening kinetic of both low and high flux is the same. Annealing at low temperature, 345 °C/40 h, to eventually reveal unstable matrix damage did not affect both BR2 and surveillance specimens. This is confirmed by other annealing experimental data including both tensile and hardness measurements and tensile data on A508 forging and weld. It is suggested that the absence of flux effect on the tensile properties while different radiation-induced microstructures can be attributed to thermal ageing effects.

  8. High temperature annealing of minority carrier traps in irradiated MOCVD n(+)p InP solar cell junctions

    Science.gov (United States)

    Messenger, S. R.; Walters, R. J.; Summers, G. P.

    1993-01-01

    Deep level transient spectroscopy was used to monitor thermal annealing of trapping centers in electron irradiated n(+)p InP junctions grown by metalorganic chemical vapor deposition, at temperatures ranging from 500 up to 650K. Special emphasis is given to the behavior of the minority carrier (electron) traps EA (0.24 eV), EC (0.12 eV), and ED (0.31 eV) which have received considerably less attention than the majority carrier (hole) traps H3, H4, and H5, although this work does extend the annealing behavior of the hole traps to higher temperatures than previously reported. It is found that H5 begins to anneal above 500K and is completely removed by 630K. The electron traps begin to anneal above 540K and are reduced to about half intensity by 630K. Although they each have slightly different annealing temperatures, EA, EC, and ED are all removed by 650K. A new hole trap called H3'(0.33 eV) grows as the other traps anneal and is the only trap remaining at 650K. This annealing behavior is much different than that reported for diffused junctions.

  9. The effect of low temperature neutron irradiation and annealing on the thermal conductivity of advanced carbon-based materials

    International Nuclear Information System (INIS)

    Barabash, V.; Mazul, I.; Latypov, R.; Pokrovsky, A.; Wu, C.H.

    2002-01-01

    Several carbon-based materials (carbon fibre composites NB 31, NS 31 and UAM-92, doped graphite RGTi-91), were irradiated at about 90 deg. C in the damage dose range 0.0021-0.13 dpa. Significant reduction of the thermal conductivity of all materials was observed (e.g. at damage dose of ∼0.13 dpa the thermal conductivity degraded up to level of ∼2-3% of the initial values). However, saturation of this effect was observed starting at a dose of ∼0.06 dpa. The effect of annealing at 250 and 350 deg. C on the recovery of thermal conductivity of NB 31 and NS 31 was studied and it was shown this annealing can significantly improve thermal conductivity (∼2.5-3 times). The data on the degradation of the thermal conductivity after additional irradiation after annealing is also reported

  10. IAEA Post Irradiation Examination Facilities Database

    International Nuclear Information System (INIS)

    Jenssen, Haakon; Blanc, J.Y.; Dobuisson, P.; Manzel, R.; Egorov, A.A.; Golovanov, V.; Souslov, D.

    2005-01-01

    The number of hot cells in the world in which post irradiation examination (PIE) can be performed has diminished during the last few decades. This creates problems for countries that have nuclear power plants and require PIE for surveillance, safety and fuel development. With this in mind, the IAEA initiated the issue of a catalogue within the framework of a coordinated research program (CRP), started in 1992 and completed in 1995, under the title of ''Examination and Documentation Methodology for Water Reactor Fuel (ED-WARF-II)''. Within this program, a group of technical consultants prepared a questionnaire to be completed by relevant laboratories. From these questionnaires a catalogue was assembled. The catalogue lists the laboratories and PIE possibilities worldwide in order to make it more convenient to arrange and perform contractual PIE within hot cells on water reactor fuels and core components, e.g. structural and absorber materials. This catalogue was published as working material in the Agency in 1996. During 2002 and 2003, the catalogue was converted to a database and updated through questionnaires to the laboratories in the Member States of the Agency. This activity was recommended by the IAEA Technical Working Group on Water Reactor Fuel Performance and Technology (TWGFPT) at its plenary meeting in April 2001. The database consists of five main areas about PIE facilities: acceptance criteria for irradiated components; cell characteristics; PIE techniques; refabrication/instrumentation capabilities; and storage and conditioning capabilities. The content of the database represents the status of the listed laboratories as of 2003. With the database utilizing a uniform format for all laboratories and details of technique, it is hoped that the IAEA Member States will be able to use this catalogue to select laboratories most relevant to their particular needs. The database can also be used to compare the PIE capabilities worldwide with current and future

  11. New Therapeutic Possibilities of the Post-Irradiation Haemorrhagic Syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Pospisil, J.; Dienstbier, Z. [Institute of Biophysics and Nuclear Medicine, Faculty of General Medicine, Charles University, Prague, Czechoslovak Socialist Republic (Czech Republic); Skala, E. [Central Military Hospital, Prague-Stresovice, Czechoslovak Socialist Republic (Czech Republic)

    1969-10-15

    Haemorrhagic diathesis is one of the dominant symptoms of acute post-irradiation lesion. Haemorrhagic syndrome is caused by the disturbance of haemocoagulation during simultaneous lesion of the vascular system. In our study we have tried to affect the post-irradiation haemocoagulation disturbance. Epsilon- amino-caproic acid (EACA) administered between the 8{sup th} and the 18{sup th} day (0.4 g/kg per day) to whole- body irradiated dogs (600 R) partially regulated the post-irradiation disturbance of haemocoagulation. The favourable effect of EACA was verified by in vitro experiments in which the blood of irradiated dogs was used. A repeated administration of EACA in the dose of 0.4 g/kg per day to whole-body irradiated rats (600 R) did not substantially affect the post-irradiation changes in the number of white blood elements; however, its administration to healthy animals caused lymphocytosis. In whole-body irradiated dogs (600 R) we have found lower levels of EACA in the blood up to the 8 day following irradiation as compared with healthy dogs after oral application of EACA. The whole-body irradiation of mice did not increase the acute toxicity of EACA. The daily administration of 0.4 g EACA/kg to whole-body irradiated mice (600 and 700 R) did not change the mortality induced by irradiation. The authors consider EACA to be a suitable compound for a complex therapy of radiation sickness. The administration of para-amino-methyl-benzoic acid (PAMBA), in spite of a certain improvement of postirradiation haemocoagulation disturbance, is less efficient. Our recent experiments with ellagic acid which significantly affects the post-traumatic haemorrhage in whole-body irradiated rats seem to be very promising. (author)

  12. Post-irradiation stability of polyvinyl chloride at sterilizing doses

    International Nuclear Information System (INIS)

    Naimian, F.; Katbab, A.A.; Nazokdast, H.

    1994-01-01

    Post-irradiation stability of plasticized PVC irradiated by 60 Co gamma ray at sterilizing doses has been studied. Effects of irradiation upon chemical structure, mechanical properties and rheological behaviour of samples contained different amounts of Di(2-ethylhexyl)phthalate as plasticizer have been investigated. Formation of conjugated double bonds, carbonyl and hydroxyl groups have been followed by UV and FTIR spectrometers up to 6 months after irradiation. FTIR spectra of irradiated samples showed no significant changes in carbonyl and hydroxyl groups even 6 months after irradiation. However, changes in UV-visible spectra was observed for the irradiated samples up to 6 months post-irradiation. This has been attributed to the formation of polyenes which leads to the discoloration of this polymer. Despite a certain degree of discoloration, it appears that the mechanical properties of PVC are not affected by irradiation at sterilizing doses. No change in the melt viscosity of the irradiated PVC samples with post-irradiation was observed, which is inconsistent with the IR results. (author)

  13. Regulation of multispanning membrane protein topology via post-translational annealing.

    Science.gov (United States)

    Van Lehn, Reid C; Zhang, Bin; Miller, Thomas F

    2015-09-26

    The canonical mechanism for multispanning membrane protein topogenesis suggests that protein topology is established during cotranslational membrane integration. However, this mechanism is inconsistent with the behavior of EmrE, a dual-topology protein for which the mutation of positively charged loop residues, even close to the C-terminus, leads to dramatic shifts in its topology. We use coarse-grained simulations to investigate the Sec-facilitated membrane integration of EmrE and its mutants on realistic biological timescales. This work reveals a mechanism for regulating membrane-protein topogenesis, in which initially misintegrated configurations of the proteins undergo post-translational annealing to reach fully integrated multispanning topologies. The energetic barriers associated with this post-translational annealing process enforce kinetic pathways that dictate the topology of the fully integrated proteins. The proposed mechanism agrees well with the experimentally observed features of EmrE topogenesis and provides a range of experimentally testable predictions regarding the effect of translocon mutations on membrane protein topogenesis.

  14. Kinetics modeling of precipitation with characteristic shape during post-implantation annealing

    Directory of Open Access Journals (Sweden)

    Kun-Dar Li

    2015-11-01

    Full Text Available In this study, we investigated the precipitation with characteristic shape in the microstructure during post-implantation annealing via a theoretical modeling approach. The processes of precipitates formation and evolution during phase separation were based on a nucleation and growth mechanism of atomic diffusion. Different stages of the precipitation, including the nucleation, growth and coalescence, were distinctly revealed in the numerical simulations. In addition, the influences of ion dose, temperature and crystallographic symmetry on the processes of faceted precipitation were also demonstrated. To comprehend the kinetic mechanism, the simulation results were further analyzed quantitatively by the Kolmogorov-Johnson-Mehl-Avrami (KJMA equation. The Avrami exponents obtained from the regression curves varied from 1.47 to 0.52 for different conditions. With the increase of ion dose and temperature, the nucleation and growth of precipitations were expedited in accordance with the shortened incubation time and the raised coefficient of growth rate. A miscellaneous shape of precipitates in various crystallographic symmetry systems could be simulated through this anisotropic model. From the analyses of the kinetics, more fundamental information about the nucleation and growth mechanism of faceted precipitation during post-implantation annealing was acquired for future application.

  15. Operation of post-irradiation examination facility

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun Ka; Park, Kwang Joon; Jeon, Yong Bum [and others; Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-02-01

    In 1995, the post-irradiation examination (PIE) of nuclear fuels was performed as follows. The relation between burnup and top nozzle spring force of fuel assembly was obtained by measuring the holddown spring force on the Kori-1 reactor fuel assemblies. The resonance ultrasonic test for inspection of defect and moisture in fuel rod was carried out on fuel rods of C15 and J14 assemblies, and the change of fuel rod condition by storing in pool has been analyzed on the intentionally defected fuel rods (ID-C and ID-L) as well as intact fuel rod (1-2) by NDT in ht cell. The oxide layer thickness on cladding surface of J44-L12 fuel rod was measured by NDT method and metallography to reveal the oxidation as a function of temperature in the fuel rod, and the burnup of J44 fuel assembly was measured by chemical analysis. HVAC system and pool water treatment system of the PIE facility were continuously operated for air filtration and water purification. The monitoring of radiation and pool water in PIE facility has been carried out to maintain the facility safety, and electric power supply system was checked and maintained to supply the electric power to the facility normally. The developed measurement techniques of oxide layer thickness on fuel rod cladding and holddown spring force of top nozzle in fuel assembly were applied to examine the nuclear fuels. Besides, a radiation shielding glove box was designed and a hot cell compressor for volume reduction of radioactive materials was fabricated. 19 tabs., 38 figs., 7 refs. (Author) .new.

  16. Fabrication of Si surface pattern by Ar beam irradiation and annealing method

    International Nuclear Information System (INIS)

    Zhang, J.; Momota, S.; Maeda, K.; Terauchi, H.; Furuta, M.; Kawaharamura, T.; Nitta, N.; Wang, D.

    2012-01-01

    The fabrication process of crater structures on Si crystal has been studied by an irradiation of Ar beam and a thermal annealing at 600 °C. The fabricated surface was measured by field emission scanning electron microscope and atomic force microscope. The results have shown the controllability of specifications of crater formation such as density, diameter and depth by changing two irradiation parameters, fluence and energy of Ar ions. By changing the fluence over a range of 1 ∼ 10 × 10 16 /cm 2 , we could control a density of crater 0 ∼ 39 counts/100μm 2 . By changing the energy over a range of 90 ∼ 270 keV, we could control a diameter and a depth of crater in 0.8 ∼ 4.1μm and 99 ∼ 229nm, respectively. The present result is consistent with the previously proposed model that the crater structure would be arising from an exfoliated surface layer of silicon. The present result has indicated the possibility of the crater production phenomena as a hopeful method to fabricate the surface pattern on a micro-nano meter scale.

  17. Enhancement of optical transmittance and electrical resistivity of post-annealed ITO thin films RF sputtered on Si

    Science.gov (United States)

    Ali, Ahmad Hadi; Hassan, Zainuriah; Shuhaimi, Ahmad

    2018-06-01

    This paper reports on the enhancement of optical transmittance and electrical resistivity of indium tin oxide (ITO) transparent conductive oxides (TCO) deposited by radio frequency (RF) sputtering on Si substrate. Post-annealing was conducted on the samples at temperature ranges of 500-700 °C. From X-ray diffraction analysis (XRD), ITO (2 2 2) peak was observed after post-annealing indicating crystallization phase of the films. From UV-vis measurements, the ITO thin film shows highest transmittance of more than 90% at post-annealing temperature of 700 °C as compared to the as-deposited thin films. From atomic force microscope (AFM), the surface roughness becomes smoother after post-annealing as compared to the as-deposited. The lowest electrical resistivity for ITO sample is 6.68 × 10-4 Ω cm after post-annealed at 700 °C that are contributed by high carrier concentration and mobility. The improved structural and surface morphological characteristics helps in increasing the optical transmittance and reducing the electrical resistivity of the ITO thin films.

  18. Post-annealing effect on the room-temperature ferromagnetism in Cu-doped ZnO thin films

    International Nuclear Information System (INIS)

    Hu, Yu-Min; Kuang, Chein-Hsiun; Han, Tai-Chun; Yu, Chin-Chung; Li, Sih-Sian

    2015-01-01

    In this work, we investigated the structural and magnetic properties of both as-deposited and post-annealed Cu-doped ZnO thin films for better understanding the possible mechanisms of room-temperature ferromagnetism (RT-FM) in ZnO-based diluted magnetic oxides. All of the films have a c-axis-oriented wurtzite structure and display RT-FM. X-ray photoelectron spectroscopy results showed that the incorporated Cu ions in as-deposited films are in 1+ valence state merely, while an additional 2+ valence state occurs in post-annealed films. The presence of Cu 2+ state in post-annealed film accompanies a higher magnetization value than that of as-deposited film and, in particular, the magnetization curves at 10 K and 300 K of the post-annealed film separate distinctly. Since Cu 1+ ion has a filled 3d band, the RT-FM in as-deposited Cu-doped ZnO thin films may stem solely from intrinsic defects, while that in post-annealed films is enhanced due to the presence of CuO crystallites

  19. Comparison of different experimental and analytical measures of the thermal annealing response of neutron-irradiated RPV steels

    International Nuclear Information System (INIS)

    Iskander, S.K.; Sokolov, M.A.; Nanstad, R.K.

    1997-01-01

    The thermal annealing response of several materials as indicated by Charpy transition temperature (TT) and upper-shelf energy (USE), crack initiation toughness, K Jc , predictive models, and automated-ball indentation (ABI) testing are compared. The materials investigated are representative reactor pressure vessel (RPV) steels (several welds and a plate) that were irradiated for other tasks of the Heavy-Section Steel Irradiation (HSSI) Program and are relatively well characterized in the unirradiated and irradiated conditions. They have been annealed at two temperatures, 343 and 454 C (650 and 850 F) for varying lengths of time. The correlation of the Charpy response and the fracture toughness, ABI, and the response predicted by the annealing model of Eason et al. for these conditions and materials appears to be reasonable. The USE after annealing at the temperature of 454 C appears to recover at a faster rate than the TT, and even over-recovers (i.e., the recovered USE exceeds that of the unirradiated material)

  20. Post-factum detection of food irradiation

    International Nuclear Information System (INIS)

    Meier, W.

    1991-01-01

    Irradiation of food containing bones or shells can be detected with a high degree of certainty by means of ESR and by analysis of the volatile hydrocarbons or of the o-tyrosine. The last two methods are used for identification of irradiated pure meat samples. Detection of irradiation in spices and dried vegetables is possible with the thermoluminescence method and ESR, if non-irradiated control samples are available. These methods are being tested in the period 1990/1991 by an EC Commission-sponsored interlaboratory study of spices and food containing bones or shells, whereas the two chemical methods need further optimisation by work done in smaller working groups. (orig.) [de

  1. WWER fuel: Results of post irradiation examination

    International Nuclear Information System (INIS)

    Markov, D.V.; Smirnov, V.P.; Smirnov, A.V.; Polenok, V.S.; Perepelkin, S.O.; Ivashchenko, A.A.

    2006-01-01

    Experience in the field of fabrication, operation, testing and post-irradiation examinations (PIE) made it possible to settle the following requirements for a new generation of WWER nuclear fuel: - For WWER-1000 FA, the service life is no less than 5 years, 3 alternative fuel cycles (FC): 12 months x 4 FCs, 12 months x 5 FCs and 18 months x 3 FCs; - For WWER-440 FA, fuel cycle is 12 months x 5 FCs and a part of operating assembly is left for the 6. year; - High fuel burnup - up to 70 MWd/kgU; - Dimensional stability of FA and its components; - FA repairability; - Adaptability of fuel cycles; - Maintenance of maneuvering operating conditions at the NPP; - Reliability of control rod operation; - High serviceability level - FE leakage is no worse than 10-5 l/year. In order to provide the fulfillment of the above-given requirements, designers and production engineers have worked out cumulative measures and engineering solutions, which are introduced in development of a new generation fuel. Currently old design FA-M assemblies provided with steel skeleton are being operated in WWER-1000 reactors at Ukrainian and Bulgarian NPPs. As for Russian NPPs, new-type FAs are operated. These are advanced FAs (AFA), FA-A and FA-2 provided with zirconium alloy skeletons. A design of the second generation of WWER-440 operating assemblies was developed with respect to changes in some geometrical parameters, fastening of FEs in the lower grid (splinting was substituted for collet), usage of reinforcing rib under the lower grid, anti-debris filter and hafnium elements of junction unit as well as hafnium content decrease from 0.05 % mass down to 0.01% mass in zirconium materials. They are basic designs of FAs in order to be introduced in a five-year fuel cycle of WWER-440 NPPs in Czech Republic and Slovakia since 2005 and have got prospects for development. The operating experience of dismountable operating assemblies at the Loviisa NPP, vibration-proof operating assemblies at the

  2. Layer-controllable graphene by plasma thinning and post-annealing

    Science.gov (United States)

    Zhang, Lufang; Feng, Shaopeng; Xiao, Shaoqing; Shen, Gang; Zhang, Xiumei; Nan, Haiyan; Gu, Xiaofeng; Ostrikov, Kostya (Ken)

    2018-05-01

    The electronic structure of graphene depends crucially on its layer number and therefore engineering the number of graphene's atomic stacking layers is of great importance for the preparation of graphene-based devices. In this paper, we demonstrated a relatively less invasive, high-throughput and uniform large-area plasma thinning of graphene based on direct bombardment effect of fast-moving ionic hydrogen or argon species. Any desired number of graphene layers including trilayer, bilayer and monolayer can be obtained. Structural changes of graphene layers are studied by optical microscopy, Raman spectroscopy and atomic force microscopy. Post annealing is adopted to self-heal the lattice defects induced by the ion bombardment effect. This plasma etching technique is efficient and compatible with semiconductor manufacturing processes, and may find important applications for graphene-based device fabrication.

  3. AGC-2 Specimen Post Irradiation Data Package Report

    Energy Technology Data Exchange (ETDEWEB)

    Windes, William Enoch [Idaho National Lab. (INL), Idaho Falls, ID (United States); Swank, W. David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rohrbaugh, David T. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cottle, David L. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-08-01

    This report documents results of the post-irradiation examination material property testing of the creep, control, and piggyback specimens from the irradiation creep capsule Advanced Graphite Creep (AGC)-2 are reported. This is the second of a series of six irradiation test trains planned as part of the AGC experiment to fully characterize the neutron irradiation effects and radiation creep behavior of current nuclear graphite grades. The AGC-2 capsule was irradiated in the Idaho National Laboratory Advanced Test Reactor at a nominal temperature of 600°C and to a peak dose of 5 dpa (displacements per atom). One-half of the creep specimens were subjected to mechanical stresses (an applied stress of either 13.8, 17.2, or 20.7 MPa) to induce irradiation creep. All post-irradiation testing and measurement results are reported with the exception of the irradiation mechanical strength testing, which is the last destructive testing stage of the irradiation testing program. Material property tests were conducted on specimens from 15 nuclear graphite grades using a similar loading configuration as the first AGC capsule (AGC-1) to provide easy comparison between the two capsules. However, AGC-2 contained an increased number of specimens (i.e., 487 total specimens irradiated) and replaced specimens of the minor grade 2020 with the newer grade 2114. The data reported include specimen dimensions for both stressed and unstressed specimens to establish the irradiation creep rates, mass and volume data necessary to derive density, elastic constants (Young’s modulus, shear modulus, and Poisson’s ratio) from ultrasonic time-of-flight velocity measurements, Young’s modulus from the fundamental frequency of vibration, electrical resistivity, and thermal diffusivity and thermal expansion data from 100–500°C. No data outliers were determined after all measurements were completed. A brief statistical analysis was performed on the irradiated data and a limited comparison between

  4. Post-annealing effects on shallow-junction characteristics caused by 20 keV BGe molecular ion implantation

    International Nuclear Information System (INIS)

    Liang, J.H.; Sang, Y.J.; Wang, C.-H.; Wang, T.W.; Hsu, J.Y.; Niu, H.; Tseng, M.S.

    2005-01-01

    This study examines the post-annealing-dependent behaviors of the shallow junction produced by implanting 10 15 cm -2 20 keV BGe ions into n-type silicon specimens. Post-annealing treatments consisted of one- and two-step annealing including both furnace annealing (FA) and rapid thermal annealing (RTA). Comparison of the one-step FA at 550 deg. C and the one-step RTA at 1050 deg. C revealed that boron depth profiles were slightly diffused in the former but exhibited considerable transient-enhanced diffusion (TED) in the latter. However, both the one-step FA- and RTA-annealed germanium depth profiles barely diffused, while the latter diffusing slightly deeper than the former. The optimum value of junction depth (x j ) times sheet resistance (R s ) was obtained with one-step FA at 550 deg. C for 1 h. The two-step annealing (FA at 550 deg. C and RTA at 1050 deg. C) results showed that the RTA-induced TED in the boron depth profiles could be effectively retarded only when FA took place for more than 3 h. Again, germanium depth profiles are also barely diffused while the corresponding TEDs were larger than those in one-step FA but smaller than those in one-step RTA. Furthermore, the two-step annealing of FA at 550 deg. C for 3 h followed by RTA at 1050 deg. C for 30 s is suggested when attempting to obtain an optimum value of x j R s

  5. Improving Nanofiber Membrane Characteristics and Membrane Distillation Performance of Heat-Pressed Membranes via Annealing Post-Treatment

    Directory of Open Access Journals (Sweden)

    Minwei Yao

    2017-01-01

    Full Text Available Electrospun membranes are gaining interest for use in membrane distillation (MD due to their high porosity and interconnected pore structure; however, they are still susceptible to wetting during MD operation because of their relatively low liquid entry pressure (LEP. In this study, post-treatment had been applied to improve the LEP, as well as its permeation and salt rejection efficiency. The post-treatment included two continuous procedures: heat-pressing and annealing. In this study, annealing was applied on the membranes that had been heat-pressed. It was found that annealing improved the MD performance as the average flux reached 35 L/m2·h or LMH (>10% improvement of the ones without annealing while still maintaining 99.99% salt rejection. Further tests on LEP, contact angle, and pore size distribution explain the improvement due to annealing well. Fourier transform infrared spectroscopy and X-ray diffraction analyses of the membranes showed that there was an increase in the crystallinity of the polyvinylidene fluoride-co-hexafluoropropylene (PVDF-HFP membrane; also, peaks indicating the α phase of polyvinylidene fluoride (PVDF became noticeable after annealing, indicating some β and amorphous states of polymer were converted into the α phase. The changes were favorable for membrane distillation as the non-polar α phase of PVDF reduces the dipolar attraction force between the membrane and water molecules, and the increase in crystallinity would result in higher thermal stability. The present results indicate the positive effect of the heat-press followed by an annealing post-treatment on the membrane characteristics and MD performance.

  6. Strain and defect microstructure in ion-irradiated GeSi/Si strained layers as a function of annealing temperature

    International Nuclear Information System (INIS)

    Glasko, J.M.; Elliman, R.G.; Zou, J.; Cockayne, D.J.H.; Fitz Gerald, J.D.

    1998-01-01

    High energy (1 MeV), ion irradiation of GeSi/Si strained layers at elevated temperatures can cause strain relaxation. In this study, the effect of subsequent thermal annealing was investigated. Three distinct annealing stages were identified and correlated with the evolution of the defect microstructure. In the temperature range from 350 to 600 deg C, a gradual recovery of strain is observed. This is believed to result from the annealing of small defect clusters and the growth of voids. The voids are visible at annealing temperatures in excess of 600 deg C, consistent with an excess vacancy concentration in the irradiated alloy layer. The 600 to 750 deg C range is marked by pronounced maximal recovery of strain, and is correlated with the dissolution of faulted loops in the substrate. At temperatures in the range 750-1000 deg C, strain relaxation is observed and is correlated with the growth of intrinsic dislocations within the alloy layer. These dislocations nucleate at the alloy-substrate interface and grow within the alloy layer, towards the surface. (authors)

  7. Polyamines and post-irradiation cell proliferation

    International Nuclear Information System (INIS)

    Rosiek, O.; Wronowski, T.; Lerozak, K.; Kopec, M.

    1978-01-01

    The results of three sets of experiments will be presented. Firstly polyamines and DNA content was determined in bone marrow, mesenteric lymph nodes, spleen, liver and kidney of rabbits at the 1, 5, 10 and 20th day after exposure to 600 R of X-irradiation. Polyamine concentration in bone marrow, spleen and lymph nodes was found to be markedly increased during the period of postirradiation recovery. Secondly, effect of 10 -5 M methyl glyoxalbis, guanylhydrazone (MGBG), an inhibitor of spermidine and spermine synthesis, on multiplication of X-irradiated cultures of murine lymphoblaste L5178Y-S was assessed. MGBG-induced inhibition of cell proliferation could be prevented by concurrent administration of 10 -4 M spermidine. Thirdly the influence of putrescine on bone marrow cellularity and 3 H-thymidine incorporation into bone marrow cells was investigated in X-irradiated mice. The results obtained indicate close relation of polyamines to cell proliferation processes after irradiation. (orig./AJ) [de

  8. Fuel fabrication and post-irradiation examination

    Energy Technology Data Exchange (ETDEWEB)

    Venter, P J; Aspeling, J C [Atomic Energy Corporation of South Africa Ltd., Pretoria (South Africa)

    1990-06-01

    This paper provides an overview of the A/c's Bevan and Eldopar facilities for the fabrication of nuclear fuel. It also describes the sophisticated Hot Cell Complex, which is capable of accommodating pressurised water reactor fuel and various other irradiated samples. Some interesting problems and their solutions are discussed. (author)

  9. Fuel fabrication and post-irradiation examination

    International Nuclear Information System (INIS)

    Venter, P.J.; Aspeling, J.C.

    1990-01-01

    This paper provides an overview of the A/c's Bevan and Eldopar facilities for the fabrication of nuclear fuel. It also describes the sophisticated Hot Cell Complex, which is capable of accommodating pressurised water reactor fuel and various other irradiated samples. Some interesting problems and their solutions are discussed. (author)

  10. Effect of medium and post-irradiation storage on rooting of irradiated onions

    International Nuclear Information System (INIS)

    Singh, Rita

    2000-01-01

    Rooting test for detection of irradiation in onion bulbs was studied. Onions were exposed to different dose levels of 30, 60, 90, 120 and 150 Gy. The effects of irradiation dose, cultivar difference, rooting medium and post-irradiation storage on the rooting were investigated. The number and the length of the roots formed in onions were found to decrease on irradiation. The effect was more at higher doses. The effect of irradiation on rooting was also evident after 120 days of storage. (author)

  11. The effect of anneal, solar irradiation and humidity on the adhesion/cohesion properties of P3HT:PCBM based inverted polymer solar cells

    KAUST Repository

    Dupont, Stephanie R.

    2012-06-01

    We use a thin-film adhesion technique that enables us to precisely measure the energy required to separate adjacent layers in OPV cells. We demonstrate the presence of weak interfaces in prototypical inverted polymer solar cells, either prepared by spin, spray or slot-die coating, including flexible and non flexible solar cells. In all cases, we observed adhesive failure at P3HT:PCBM/PEDOT:PSS interface, indicating the intrinsic material dependence of this mechanism. The impact of temperature, solar irradiation and humidity on the adhesion and cohesion properties of this particular interface is discussed. First, we have found that post-deposition annealing increases the adhesion significantly. Annealing changes the morphology in the photoactive layer and consequently alters the chemical properties at the interface. Second, solar irradiation on fully encapsulated solar cells has no damaging but in contrast an enhancing effect on the adhesion properties, due to the heat generated from IR radiation. Finally, the synergetic effect of stress and an environmental species like moisture greatly accelerates the decohesion rate in the weak hygroscopic PEDOT:PSS layer. This results in a loss of mechanical integrity and device performance. The insight into the mechanisms of delamination and decohesion yields general guidelines for the design of more reliable organic electronic devices. © 2012 IEEE.

  12. Silver nanocluster formation in ion-exchanged glasses by annealing, ion beam and laser beam irradiation: An EXAFS study

    International Nuclear Information System (INIS)

    Battaglin, G.; Cattaruzza, E.; Gonella, F.; Polloni, R.; D'Acapito, F.; Colonna, S.; Mattei, G.; Maurizio, C.; Mazzoldi, P.; Padovani, S.; Sada, C.; Quaranta, A.; Longo, A.

    2003-01-01

    Extended X-ray absorption fine structure analysis is used to determine the silver local environment in silicate glasses doped by the Ag-alkali ion-exchange process, followed by different treatments, namely, ion irradiation, thermal annealing in reducing atmosphere, laser irradiation. The obtained results indicate that metal nanocluster composites with different cluster structures may be formed with these multistep methodologies, pointing out the role of the preparation parameters in giving rise to different features. Lattice parameters and cluster diameter were determined by grazing incidence X-ray diffraction

  13. High-voltage electron-microscope investigation of point-defect agglomerates in irradiated copper during in-situ annealing

    International Nuclear Information System (INIS)

    Jaeger, W.; Urban, K.; Frank, W.

    1980-01-01

    Thin copper foils were irradiated with 650 keV electrons at 10 K in a high-voltage electron microscope (HVEM) to doses phi in the range 2 x 10 23 electrons/m 2 approximately 25 electrons /m 2 and then annealed in situ up to room temperature and outside the HVEM between room temperature and 470 K. During irradiation visible defect clusters were formed only at phi >= 2.5 x 10 24 electrons/m 2 . At smaller doses defect clusters became visible after annealing at 50 K. Between 50 K and 120 K further clusters, mainly dislocation loops on brace111 planes, appeared. Above 120 K, particularly between 160 K and 300 K, some of the dislocation loops became glissile. They glided out of the specimens or agglomerated to larger clusters of frequently complex shapes. As a consequence between 160 K and 300 K the cluster density decreased strongly, whereas the mean cluster size increased monotonously through the entire range of annealing temperatures covered. Contrast analyses between 180 K and 400 K revealed that the great majority of the dislocation loops were of interstitial type. At 470 K a new type of small clusters emerged, presumably of vacancy type. These observations are compared with other studies on electron-irradiated copper and with the current models of radiation damage in metals. (author)

  14. Chemical changes after irradiation and post-irradiation storage in tilapia and Spanish mackerel

    International Nuclear Information System (INIS)

    Al-Kahtani, H.A.; Abu-Tarboush, H.M.; Bajaber, A.S.; Atia, M.; Abou-Arab, A.A.; El-Mojaddidi, M.A.

    1996-01-01

    Influence of gamma irradiation (1.5-10 kGy) and post-irradiation storage up to 20 days at 2 +/- 2 degrees C on some chemical criteria of tilapia and spanish mackerel were studied. Total volatile basic nitrogen formation was lower in irradiated fish than in the unirradiated. Irradiation also caused a larger increase in thiobarbituric acid values which continued gradually during storage. Some fatty acids decreased by irradiation treatments at all doses. Thiamin loss was more severe at higher doses (greater than or equal to 4.5 kGy), whereas riboflavin was not affected. Alpha and gamma tocopherols of tilapia and alpha, beta, gamma, and delta tocopherols, in Spanish mackerel, decreased with increased dose and continued to decrease during 20-day post-irradiation storage

  15. Post irradiation examinations on HTTR materials

    International Nuclear Information System (INIS)

    Sakai, Haruyuki; Ohmi, Masao; Eto, Motokuni; Watanabe, Katsutoshi

    1995-01-01

    The HTTR (High Temperature engineering Test Reactor) is being constructed at Oarai Research Establishment of the Japan Atomic Energy Research Institute. In order to develop necessary materials for the HTTR, after irradiations in the JMTR, PIEs are being carried out on these materials in the JMTRHL (JMTR Hot Laboratory). Impact test, tensile test, fatigue test, creep test, metallography and so on were performed for irradiated 2 1/4Cr 1Mo steel as the pressure vessel material and Alloy 800H as the cladding material of the control rod. A fatigue testing machine and four creep testing machines newly designed were fabricated and installed in the steel cells in order to evaluate the integrity of the HTTR materials. The development process and PIE results obtained with these machines are given in this paper

  16. Post-irradiation arthropathy of hip

    Energy Technology Data Exchange (ETDEWEB)

    Tomimatsu, T; Nagatsuka, Y; Horibe, K; Amino, K; Furuya, K [Kawaguchi Kogyo Tobu Byoin (Japan)

    1976-06-01

    Three cases in which arthropathy of hip occurred by irradiation therapy were reported. After receiving the depth dose of 500 to 600 rads at the inguinal region, a severe coxalgia occurred suddenly after a definite latent period. There were increases of sedimentation rate and ..gamma.. globulin. In roentgenogram, narrowing of articular space, bone atrophy, central dearticulation, and bone destruction and osteosclerosis occurred rapidly in order. As pathological findings, vascular occlusion, hemorrhage, hemolysis, osteonecrosis, abrasion of cartilage, fibrosis, and infectious cellular infiltration were observed. First, blood vessels were damaged by irradiation. Thereafter, circulatory insufficiency occurred in cotyloid cavity and femoral head, to which the influence of load was added. Thus, it is considered that the disease occurred. It seems that an articular cartilage is not always radioresistant. It is considered that the narrowing of articular space in roentgenogram is due to the degenerative necrosis of cartilage. Much attention should be paid to complications such as this disease etc. in radiation therapy.

  17. Post-irradiation chemical analyses of poultry

    International Nuclear Information System (INIS)

    Singh, H.

    1988-01-01

    Salmonella contamination of chicken is a major public health concern, causing sickness and loss of productivity. Modern concentrated production methods increase the difficulty of Salmonella control. While heat pasteurization and chlorine treatment for Salmonella have shortcomings, low doses of gamma radiation are very effective in controlling Salmonella and spoilage microorganisms. The organoleptic shelf life of fresh chicken at 1 to 4 degrees Celsius (6 to 10 days) is extended by a factor of ∼ 2 by a dose of 2.5 kGy and does not increase further with higher doses up to ∼ 8 kGy. The reason for the lack of greater organoleptic shelf life by more than a factor of ∼ 2 is the continuing degradative changes in meat due to enzymatic activity. The product obtained with doses around 2.5 kGy is very good, and is acceptable up to doses of ∼ 8 kGy. Irradiation at doses higher than 2.5 kGy results in some radiation odor that disappears on storage at 1 to 4 degrees Celsius, and on roasting of the meat. The odor is due to the production of some of the small molecular weight volatile compounds, which are also produced by free-radical mediated autoxidation, thermal treatment, and enzymatic and microbial reactions with the meat components. Low-dose irradiation shows insignificant changes in the physical attributes like water-holding capacity, changes in proteins, amino acids, fats and rancidity indices. Review of the feeding studies with radiation-sterilized chicken meat (≥ 30 kGy, the Raltech study) indicated that the irradiated meat was wholesome and safe. It is therefore, reasonable to assume that the low-dose (≤ 8 kGy) irradiated chicken would also be safe. Also the two Federation of American Societies for Experimental Biology (FASEB) committees, which reviewed the over 100 identified volatile compounds produced in μg/kg (ppb) quantities, concluded that there were no ground for suspecting these products of being a hazard to the consumer

  18. Effect of substrate temperature and post annealing temperature on ZnO:Zn PLD thin film properties

    Science.gov (United States)

    Hasabeldaim, E.; Ntwaeaborwa, O. M.; Kroon, R. E.; Coetsee, E.; Swart, H. C.

    2017-12-01

    The pulsed laser deposition (PLD) substrate temperature and post-annealing temperature are effective methods to control the film optical and structural properties. The structure, morphology and optical properties of the deposited and post-annealed PLD ZnO:Zn films were studied. The films were deposited at different substrate temperatures of 50 °C, 200 °C and 400 °C. The films deposited at the substrate temperature of 50 °C and 200 °C were post-annealed in air at 400 °C and 600 °C for two hours. The films all had a highly preferential orientation with the hexagonal c-axis perpendicular to the substrate surface. The stress was found to be compressive stress with values -3.289 GPa, -4.864 GPa and -4.425 GPa for the film deposited at 50 °C, 200 °C and 400 °C, respectively. After post-annealing treatments, the stress of the films was almost completely released and stress-free films were obtained. The crystallite sizes were 19 nm, 25 nm and 39 nm, while the average particles sizes were 95 nm, 85 nm and 129 nm for the film deposited at 50 °C, 200 °C and 400 °C respectively. The crystallite sizes and particles sizes seemed to increase with the increase in the substrate temperature. Contrary to this, the change in crystallite sizes were inversely proportional to the particles size when increasing the post-annealing temperatures. Deconvoluted X-ray photoelectron spectroscopy peaks of the O1s binding energy region revealed that the films deposited at different substrate temperatures contained oxygen-related defects. Photoluminescence studies revealed that the films all emitted ultra-violet emission around 379 nm. The film deposited at 50 °C emitted a broad green emission centered at ∼524 nm. By increasing the substrate temperature up to 200 °C and 400 °C a new orange emission around 621 nm and 634 nm as well as a weak emission around 416 nm and 500 nm were observed, respectively. After post-annealing treatments, new bands over the visible region (blue, green

  19. 16-rod-bundle: Irradiation in the MZFR and post-irradiation examinations

    International Nuclear Information System (INIS)

    Manzel, R.

    1979-04-01

    In the course of the irradiation of a 16-rod prototype bundle, the basis has been established for the irradiation of experimental fuel assemblies containing full-length PWR fuel rods in standard positions of the MZFR. The prototype bundle was discharged after an irradiation time of 284 full power days and a burnup of 11400 MWd/tU. The overall performance of the prototype bundle was highly satisfactory. Detailed post-irradiation examinations confirmed the good conditions of bundle structures and fuel rods. (orig.) [de

  20. Effect of Pre-Irradiation Annealing and Laser Modification on the Formation of Radiation-Induced Surface Color Centers in Lithium Fluoride

    Science.gov (United States)

    Voitovich, A. P.; Kalinov, V. S.; Novikov, A. N.; Radkevich, A. V.; Runets, L. P.; Stupak, A. P.; Tarasenko, N. V.

    2017-01-01

    It is shown that surface color centers of the same type are formed in the surface layer and in regions with damaged crystal structure inside crystalline lithium fluoride after γ-irradiation. Results are presented from a study of the effect of pre-irradiation annealing on the efficiency with which surface centers are formed in lithium fluoride nanocrystals. Raising the temperature for pre-irradiation annealing from room temperature to 250°C leads to a substantial reduction in the efficiency with which these centers are created. Surface color centers are not detected after γ-irradiation for pre-irradiation annealing temperatures of 300°C and above. Adsorption of atmospheric gases on the crystal surface cannot be regarded as a necessary condition for the formation of radiation-induced surface centers.

  1. Response to annealing and reirradiation of AISI 304L stainless steel following initial high-dose neutron irradiation in EBR-II

    International Nuclear Information System (INIS)

    Porter, D.L.; McVay, G.L.; Walters, L.C.

    1980-01-01

    The object of this study was to measure the stability of irradiation-induced microstructure upon annealing and, by selectively annealing out some of these features and reirradiating the material, it was expected that information could be gained concerning the role of microstructural changes in the void swelling process. Transmission electron microscopic examinations of isochronally annealed (200 to 1050 0 C) AISI 304L stainless steel, which had been irradiated at approximately 415 0 C to a fast (E > 0.1 MeV) neutron fluence of approximately 5.1 x 10 26 n/m 2 , verified that the two-stage hardness recovery with temperatures was related to a low temperature annealing of dislocation structures and a higher temperature annealing of voids and solute redistribution

  2. Effect of post-deposition implantation and annealing on the properties of PECVD deposited silicon nitride films

    International Nuclear Information System (INIS)

    Shams, Q.A.

    1988-01-01

    Recently it has been shown that memory-quality silicon nitride can be deposited using plasma enhanced chemical vapor deposition (PECVD). Nitrogen implantation and post-deposition annealing resulted in improved memory properties of MNOS devices. The primary objective of the work described here is the continuation of the above work. Silicon nitride films were deposited using argon as the carrier gas and evaluated in terms of memory performance as the charge-trapping layer in the metal-nitride-oxide-silicon (MNOS) capacitor structure. The bonding structure of PECVD silicon nitride was modified by annealing in different ambients at temperatures higher than the deposition temperature. Post-deposition ion implantation was used to introduce argon into the films in an attempt to influence the transfer, trapping, and emission of charge during write/erase exercising of the MNOS devices. Results show that the memory performance of PECVD silicon nitride is sensitive to the deposition parameters and post-deposition processing

  3. Fluence-rate effects on irradiation embrittlement and composition and temperature effects on annealing/reirradiation sensitivity

    International Nuclear Information System (INIS)

    Hawthorne, J.R.; Hiser, A.L.

    1988-01-01

    Recent MEA investigation on the effect of neutron fluence rate on radiation-induced embrittlement accrual and the contributions of metallurgical variables to postirradiation annealing and re-irradiation behavior are reviewed. Studies of fluence-rate effects involved experiments in the UBR test reactor and separately, radiation sensitivity determinations for the decommissioned Gundremmingen (KRB-A) vessel material. Annealing-reirradiation studies employed 399 0 C and 454 0 C heat treatments. Material composition is shown to play a major role in postirradiation annealing recovery. Results illustrate effects of variable copper and variable nickel contents on recoveray of steel plate having low phosphorus levels. Composition effects on recovery were also observed for prototypic welds depicting high/low copper and high/low nickel contents and three flux types. The welds, in addition, indicate major differences in re-irradiation sensitivity. The UBR investigations revealed a significant difference in fluence rate sensitivity between the ASTM A 302-B reference plate and a submerged-arc (S/A) Linde 80 weld. Studies of the Gundremmingen reactor vessel, representing a joint USA-FRG-UK undertaking revealed an anomaly in strong vs. weak test orientation radiation sensitivity. (orig./HP)

  4. Gamma-ray irradiation and post-irradiation at room and elevated temperature response of pMOS dosimeters with thick gate oxides

    Directory of Open Access Journals (Sweden)

    Pejović Momčilo M.

    2011-01-01

    Full Text Available Gamma-ray irradiation and post-irradiation response at room and elevated temperature have been studied for radiation sensitive pMOS transistors with gate oxide thickness of 100 and 400 nm, respectively. Their response was followed based on the changes in the threshold voltage shift which was estimated on the basis of transfer characteristics in saturation. The presence of radiation-induced fixed oxide traps and switching traps - which lead to a change in the threshold voltage - was estimated from the sub-threshold I-V curves, using the midgap technique. It was shown that fixed oxide traps have a dominant influence on the change in the threshold voltage shift during gamma-ray irradiation and annealing.

  5. Luminescence lifetimes in quartz: dependence on annealing temperature prior to beta irradiation

    International Nuclear Information System (INIS)

    Galloway, R.B.

    2002-01-01

    It is well known that the thermal history of a quartz sample influences the optically stimulated luminescence sensitivity of the quartz. It is found that the optically stimulated luminescence lifetime, determined from time resolved spectra obtained with pulsed stimulation, also depends on past thermal treatment. For samples at 20 deg. C during stimulation, the lifetime depends on beta dose and on duration of preheating at 220 deg. C prior to stimulation for quartz annealed at 600 deg. C and above, but is independent of these factors for quartz annealed at 500 deg. C and below. For stimulation at higher temperatures, the lifetime becomes shorter if the sample is held at temperatures above 125 deg. C during stimulation, in a manner consistent with thermal quenching. A single exponential decay is all that is required to fit the time resolved spectra for un-annealed quartz regardless of the temperature during stimulation (20-175 deg. C), or to fit the time resolved spectra from all samples held at 20 deg. C during stimulation, regardless of annealing temperature (20-1000 deg. C). An additional shorter lifetime is found for some combinations of annealing temperature and temperature during stimulation. The results are discussed in terms of a model previously used to explain thermal sensitisation. The luminescence lifetime data are best explained by the presence of two principal luminescence centres, their relative importance depending on the annealing temperature, with a third centre involved for limited combinations of annealing temperature and temperature during stimulation

  6. Characteristics of OMVPE grown GaAsBi QW lasers and impact of post-growth thermal annealing

    Science.gov (United States)

    Kim, Honghyuk; Guan, Yingxin; Babcock, Susan E.; Kuech, Thomas F.; Mawst, Luke J.

    2018-03-01

    Laser diodes employing a strain-compensated GaAs1-xBix/GaAs1-yPy single quantum well (SQW) active region were grown by organometallic vapor phase epitaxy (OMVPE). High resolution x-ray diffraction, room temperature photoluminescence, and real-time optical reflectance measurements during the OMVPE growth were used to find the optimum process window for the growth of the active region material. Systematic post-growth in situ thermal anneals of various lengths were carried out in order to investigate the impacts of thermal annealing on the laser device performance characteristics. While the lowest threshold current density was achieved after the thermal annealing for 30 min at 630 °C, a gradual decrease in the external differential quantum efficiency was observed as the annealing time increases. It was observed that the temperature sensitivities of the threshold current density increase while those of lasing wavelength and slope efficiency remain nearly constant with increasing annealing time. Z-contrast scanning transmission electron microscopic) analysis revealed inhomogeneous Bi distribution within the QW active region.

  7. Annealing of TiO2 Films Deposited on Si by Irradiating Nitrogen Ion Beams

    International Nuclear Information System (INIS)

    Yokota, Katsuhiro; Yano, Yoshinori; Miyashita, Fumiyoshi

    2006-01-01

    Thin TiO2 films were deposited on Si at a temperature of 600 deg. C by an ion beam assisted deposition (IBAD) method. The TiO2 films were annealed for 30 min in Ar at temperatures below 700 deg. C. The as-deposited TiO2 films had high permittivities such 200 εo and consisted of crystallites that were not preferentially oriented to the c-axis but had an expanded c-axis. On the annealed TiO2 films, permittivities became lower with increasing annealing temperature, and crystallites were oriented preferentially to the (110) plane

  8. Post Irradiation Mechanical Behaviour of Three EUROFER Joints

    International Nuclear Information System (INIS)

    Lucon, E.; Leenaers, A.; Vandermeulen, W.

    2006-01-01

    The post-irradiation mechanical properties of three EUROFER joints (two diffusion joints and one TIG weld) have been characterized after irradiation to 1.8 dpa at 300 degrees Celsius in the BR-2 reactor. Tensile, KLST impact and fracture toughness tests have been performed. Based on the results obtained and on the comparison with data from EUROFER base material irradiated under similar conditions, the post-irradiation mechanical behaviour of both diffusion joints (laboratory and mock-up) appears similar to that of the base material. The properties of the TIG joint are affected by the lack of a post-weld heat treatment, which causes the material from the upper part of the weld to be significantly worse than that of the lower region. Thus, specimens from the upper layer exhibit extremely pronounced hardening and embrittlement caused by irradiation. The samples extracted from the lower layer show much better resistance to neutron exposure, although their measured properties do not match those of the diffusion joints. The results presented demonstrate that diffusion joining can be a very promising technique.

  9. KEY RESULTS FROM IRRADIATION AND POST-IRRADIATION EXAMINATION OF AGR-1 UCO TRISO FUEL

    Energy Technology Data Exchange (ETDEWEB)

    Demkowicz, Paul A.; Hunn, John D.; Petti, David A.; Morris, Robert N.

    2016-11-01

    The AGR-1 irradiation experiment was performed as the first test of tristructural isotropic (TRISO) fuel in the US Advanced Gas Reactor Fuel Development and Qualification Program. The experiment consisted of 72 right cylinder fuel compacts containing approximately 3×105 coated fuel particles with uranium oxide/uranium carbide (UCO) fuel kernels. The fuel was irradiated in the Advanced Test Reactor for a total of 620 effective full power days. Fuel burnup ranged from 11.3 to 19.6% fissions per initial metal atom and time average, volume average irradiation temperatures of the individual compacts ranged from 955 to 1136°C. This paper focuses on key results from the irradiation and post-irradiation examination, which revealed a robust fuel with excellent performance characteristics under the conditions tested and have significantly improved the understanding of UCO coated particle fuel irradiation behavior within the US program. The fuel exhibited a very low incidence of TRISO coating failure during irradiation and post-irradiation safety testing at temperatures up to 1800°C. Advanced PIE methods have allowed particles with SiC coating failure to be isolated and meticulously examined, which has elucidated the specific causes of SiC failure in these specimens. The level of fission product release from the fuel during irradiation and post-irradiation safety testing has been studied in detail. Results indicated very low release of krypton and cesium through intact SiC and modest release of europium and strontium, while also confirming the potential for significant silver release through the coatings depending on irradiation conditions. Focused study of fission products within the coating layers of irradiated particles down to nanometer length scales has provided new insights into fission product transport through the coating layers and the role various fission products may have on coating integrity. The broader implications of these results and the application of

  10. Effect of post oxidation anneal on VUV radiation-hardness of the Si/SiO2 system studied by positron annihilation spectroscopy

    International Nuclear Information System (INIS)

    Clement, M.; Nijs, J.M.M. de; Veen, A. van; Schut, H.; Balk, P.

    1995-01-01

    The effect of a post oxidation anneal at 1,000 C in a N 2 ambient of the thermally grown Si/SiO 2 system was investigated using vacuum ultraviolet irradiation for determining the generation of interface traps of the Al metallized system in combination with positron annihilation spectroscopy to characterize the structure of the oxide network. A correlation was found between the generation of interface traps and the S parameter of the positron trapping sites in the oxide close to the Si. It appears likely that the positrons are trapped in the larger near-interfacial oxide network interstices. These interstices could act as scavengers for the metastable intermediate (atomic hydrogen or excitons) involved in the generation of the interface traps

  11. The role of Frenkel defect diffusion in dynamic annealing in ion-irradiated Si

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, J. B.; Aji, L. B. Bayu; Martin, A. A.; Shin, S. J.; Shao, L.; Kucheyev, S. O.

    2017-01-06

    The formation of stable radiation damage in crystalline solids often proceeds via complex dynamic annealing processes, involving migration and interaction of ballistically-generated point defects. The dominant dynamic annealing processes, however, remain unknown even for crystalline Si. Here, we use a pulsed ion beam method to study defect dynamics in Si bombarded in the temperature range from -20 to 140 °C with 500 keV Ar ions. Results reveal a defect relaxation time constant of ~10–0.2 ms, which decreases monotonically with increasing temperature. The dynamic annealing rate shows an Arrhenius dependence with two well-defined activation energies of 73 ± 5 meV and 420 ± 10 meV, below and above 60 °C, respectively. Rate theory modeling, bench-marked against this data, suggests a crucial role of both vacancy and interstitial diffusion, with the dynamic annealing rate limited by the migration and interaction of vacancies.

  12. Electron spin resonance in neutron-irradiated graphite. Dependence on temperature and effect of annealing; Resonance paramagnetique du graphite irradie aux neutrons. Variation en fonction de la temperature et experiences de recuit

    Energy Technology Data Exchange (ETDEWEB)

    Kester, T [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires, Laboratoire de resonance magnetique

    1967-09-01

    The temperature dependence of the electron spin resonance signal from neutron irradiated graphite has been studied. The results lead to an interpretation of the nature of the paramagnetic centers created by irradiation. In annealing experiments on graphite samples, which had been irradiated at low temperature, two annealing peaks and one anti-annealing peak were found. Interpretations are proposed for these peaks. (author) [French] Le graphite irradie aux neutrons a ete etudie par resonance paramagnetique electronique en fonction de la temperature. La nature des centres paramagnetiques crees par irradiation est interpretee a l'aide des resultats. Des experiences de recuit sur des echantillons de graphite irradie a 77 deg. K ont permis de mettre en evidence deux pics de recuit et un pic d'anti-recuit, pour lesquels des interpretations sont proposees. (auteur)

  13. Kinetics of isothermal annealing of hypochlorite in γ-irradiated potassium chlorate

    International Nuclear Information System (INIS)

    Arnikar, H.J.; Patil, S.F.; Patil, B.T.

    1977-01-01

    The kinetics of isothermal annealing of hypochlorite formed in the gamma radiolysis of potassium chlorate crystals have been studied at different temperatures in the range of 100-160 deg C. The hypochlorite is found to anneal by a combination of first and second order processes, the former being fast, virtually reaching completion within a few hours. It is then followed by a slow second order process. (authors)

  14. Surface structure of Cr0.5 Ti0.5N coatings after heavy ions irradiation and annealing

    International Nuclear Information System (INIS)

    Kislitsin, Sergey; Gorlachev, Igor; Uglov, Vladimir

    2015-01-01

    Results of surface structure investigations of TiCrN coating on carbon steel after irradiation by helium, krypton and xenon heavy ions are reported in the present publication. The series of Cr50Ti50N coatings on carbon steel with thickness of 50,..., 300 nm were formed by vacuum arc deposition techniques. Specimens with TiCrN coating on carbon steel were irradiated by low energy 4 He +1 (22 keV) and 4 He +2 (40 keV) ions and high energy Xe +18 and Kr +14 ions with energy of 1.5 MeV/nucleon. Fluence of He ions was 1.0x10 17 ion.cm -2 , fluence of Xe and Kr ions was 5x10 14 -1.0x10 15 ion.cm -2 , irradiation temperature did not exceed 150 deg. C. Study of surface structure was performed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Methods of Roentgen diffractometry and Rutherford backscattering was applied for determination of structure and thickness of coating. In case of irradiation with Xe +18 and Kr +14 ions an investigation of surface morphology and structure was done after successive two hours vacuum annealing of irradiated samples at temperatures 400 deg. C, 500 deg. C and 600 deg. C. It was shown that after irradiation by Xe and Kr ions on the surface of coating convexities appear, surface density of which correlates with ion flux. In the case of Xe, ions irradiation generated convexities of spherical and elongated shape with dimensions ranging from ten to hundreds nm. In the case of Kr ions, only spherical globules were generated, dimensions of which are 10-30 nm. The most likely explanation of observed surface damage is that: convexities on the surface are generated at ion bombardment of specimens with coating. Convexities are the traces of ions passing through coating and they are due to structural reconstruction at energy release along a trajectory of ions braking. Convexities of elongated shape represent overlapping traces from two passing ions. When the projective range of Xe and Kr ions exceeds coating thickness, damage

  15. Effect of foil orientation on damage accumulation during irradiation in magnesium and annealing response of dislocation loops

    International Nuclear Information System (INIS)

    Khan, A.K.; Yao, Z.; Daymond, M.R.; Holt, R.A.

    2012-01-01

    Highlights: ► Effect of foil orientation on electron irradiation damage in Mg is analyzed. ► Prism plane defects increases in prism foils as compared to basal foils. ► Basal faults were interstitial and prism plane defects were mixed in character. ► Shrinkage of interstitial dislocations takes place by the self diffusion mechanism. - Abstract: The effect of foil orientation on damage accumulation behavior in commercial purity magnesium is investigated by in situ electron and ion irradiation. Transmission electron microscope has been used to study the dislocation loops formed by the agglomeration of point defects during irradiation. It has been observed that the ratio of prism plane to basal plane defects increases as the foil orientation is changed from basal to the prism foil. The ratio of vacancy to interstitial defects also increases in prism foils as compared to the basal foils. This point defect accumulation behavior is reversed when magnesium is irradiated with 1 MeV Kr 2+ ions and the formation of basal plane dislocation loops were only observed in prism foils and did not take place in the basal foils. Analysis showed that all the basal plane dislocation loops have Burgers vector of the type 1/(6〈202 ¯ 3〉) and are interstitial in nature whereas prism plane dislocation loops have Burgers vector of the type 1/(3〈112 ¯ 0〉) and are of mixed interstitial/vacancy in character. In situ annealing experiments at different temperatures performed on electron irradiated magnesium foils suggest that those dislocation loops that become thermodynamically unstable anneal out in a matter of few seconds whereas other stable dislocation loops continue to shrink by absorbing surrounding vacancy clusters. The activation energy for the shrinkage of the interstitial dislocation loops has been derived and the results show that the shrinkage of interstitial dislocation loops takes place by the mechanism of vacancy assisted self diffusion.

  16. Direct observation and mechanism for enhanced field emission sites in platinum ion implanted/post-annealed ultrananocrystalline diamond films

    Energy Technology Data Exchange (ETDEWEB)

    Panda, Kalpataru, E-mail: panda@afm.eei.eng.osaka-u.ac.jp, E-mail: phy.kalpa@gmail.com; Inami, Eiichi; Sugimoto, Yoshiaki [Graduate School of Engineering, Osaka University, 2-1, Yamada-Oka, Suita, Osaka 565-0871 (Japan); Sankaran, Kamatchi J.; Tai, Nyan Hwa [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Lin, I-Nan, E-mail: inanlin@mail.tku.edu.tw [Department of Physics, Tamkang University, Tamsui 251, Taiwan (China)

    2014-10-20

    Enhanced electron field emission (EFE) properties for ultrananocrystalline diamond (UNCD) films upon platinum (Pt) ion implantation and subsequent post-annealing processes is reported, viz., low turn-on field of 4.17 V/μm with high EFE current density of 5.08 mA/cm{sup 2} at an applied field of 7.0 V/μm. Current imaging tunneling spectroscopy (CITS) mode in scanning tunneling spectroscopy directly revealed the increased electron emission sites density for Pt ion implanted/post-annealed UNCD films than the pristine one. The high resolution CITS mapping and local current–voltage characteristic curves demonstrated that the electrons are dominantly emitted from the diamond grain boundaries and Pt nanoparticles.

  17. Direct observation and mechanism for enhanced field emission sites in platinum ion implanted/post-annealed ultrananocrystalline diamond films

    International Nuclear Information System (INIS)

    Panda, Kalpataru; Inami, Eiichi; Sugimoto, Yoshiaki; Sankaran, Kamatchi J.; Tai, Nyan Hwa; Lin, I-Nan

    2014-01-01

    Enhanced electron field emission (EFE) properties for ultrananocrystalline diamond (UNCD) films upon platinum (Pt) ion implantation and subsequent post-annealing processes is reported, viz., low turn-on field of 4.17 V/μm with high EFE current density of 5.08 mA/cm 2 at an applied field of 7.0 V/μm. Current imaging tunneling spectroscopy (CITS) mode in scanning tunneling spectroscopy directly revealed the increased electron emission sites density for Pt ion implanted/post-annealed UNCD films than the pristine one. The high resolution CITS mapping and local current–voltage characteristic curves demonstrated that the electrons are dominantly emitted from the diamond grain boundaries and Pt nanoparticles.

  18. Effect of chemical composition on irradiation embrittlement and annealing in Ni-Cr-Mo-V reactor pressure vessel steel

    Energy Technology Data Exchange (ETDEWEB)

    Novosad, P [Czech Nuclear Society, Prague (Czech Republic)

    1994-12-31

    Results concerning copper and phosphorus influence on radiation-induced changes in the Ni-Cr-Mo-V steel mechanical properties, are presented. Correlations between different mechanical properties for steels with different chemical composition, are presented. A comparison of transition temperature shifts obtained for static and dynamic fracture toughness tests and Charpy impact tests, is discussed. Recovery of radiation hardening, measured by hardness test after isochronal annealing of steels with different compositions, is also shown. Copper content strongly affects irradiation-induced changes of mechanical properties, but phosphorus content in connection with variable copper content has only a small effect. (author). 4 refs., 4 figs., 4 tabs.

  19. Tuning of deep level emission in highly oriented electrodeposited ZnO nanorods by post growth annealing treatments

    International Nuclear Information System (INIS)

    Simimol, A.; Manikandanath, N. T.; Chowdhury, Prasanta; Barshilia, Harish C.; Anappara, Aji A.

    2014-01-01

    Highly dense and c-axis oriented zinc oxide (ZnO) nanorods with hexagonal wurtzite facets were deposited on fluorine doped tin oxide coated glass substrates by a simple and cost-effective electrodeposition method at low bath temperature (80 °C). The as-grown samples were then annealed at various temperatures (T A  = 100–500 °C) in different environments (e.g., zinc, oxygen, air, and vacuum) to understand their photoluminescence (PL) behavior in the ultra-violet (UV) and the visible regions. The PL results revealed that the as-deposited ZnO nanorods consisted of oxygen vacancy (V O ), zinc interstitial (Zn i ), and oxygen interstitial (O i ) defects and these can be reduced significantly by annealing in different environments at optimal annealing temperatures. However, the intensity of deep level emission increased for T A greater than the optimized values for the respective environments due to the introduction of various defect centers. For example, for T A  ≥ 450 °C in the oxygen and air environments, the density of O i defects increased, whereas, the green emission associated with V O is dominant in the vacuum annealed (T A  = 500 °C) ZnO nanorods. The UV peak red shifted after the post-growth annealing treatments in all the environments and the vacuum annealed sample exhibited highest UV peak intensity. The observations from the PL data are supported by the micro-Raman spectroscopy. The present study gives new insight into the origin of different defects that exist in the electrodeposited ZnO nanorods and how these defects can be precisely controlled in order to get the desired emissions for the opto-electronic applications

  20. Post irradiation examinations cooperation and worldwide utilization of facilities

    International Nuclear Information System (INIS)

    Karlsson, Mikael

    2009-01-01

    Status of post irradiation examinations in Studsvik's facilities, cooperation and worldwide utilization of facilities, was described. Studsvik cooperate with irradiation facilities, as Halden, CEA and JAEA, as well as other hot cell facilities (examples, PSI, ITU and NFD) universities (example, the Royal Institute of Technology in Sweden) in order to be able to provide everything asked for by the nuclear community. Worldwide cooperation for effective use of expensive and highly specialized facilities is important, and the necessity of cooperation will be more and more recognized in the future. (author)

  1. Post harvest changes gamma-irradiated banana Prata

    International Nuclear Information System (INIS)

    Vilas Boas, E.V. de; Chitarra, A.B.; Chitarra, M.I.F.

    1996-01-01

    The effect of the gamma-irradiation was evaluated at 0.25 and 0.50 kGy, on the development of peel coloration, CO 2 and ethylene evolution, conversion of starch to sugars, pulp-to-peel ratio, pectic solubilization and activities of enzymes of the cell wall, pectin methylesterase (PME), and polygalacturonase (PG), during maturation of 'Prata' bananas. The gamma-irradiation did not affect the normal colour development of the fruits. An increase in the ethylene peak and a decrease in the CO 2 peak was observed. The gamma-irradiation did not affect the degradation of starch, while a delay in soluble sugar accumulation was noted on the 6 and 7 colour grades. The fruits subjected to 0.25 kGy had the highest increase in the pulp-to-peel relation, beginning with colour grade 5, due to a possible stress effect of that dose. An increase of pectin solubilization was observed. Higher PME activities were exhibited by irradiated fruits, although the gamma-irradiation suppressed the PG activity throughout the maturation period. The gamma-irradiation did not extend the post-harvest life of 'Prata' bananas. (author) [pt

  2. Annealing studies of irradiated p-type sensors designed for the upgrade of ATLAS Phase-II Strip Tracker

    CERN Document Server

    Wiik-Fuchs, Liv Antje Mari; The ATLAS collaboration

    2018-01-01

    The upgrade for the High Luminosity LHC in 2025 will challenge the silicon strip detector performance with high fluence and long operation time. Sensors have been designed and tests on charge collection and electrical performance have been carried out in order to evaluate their behavior. Besides that, it is important to understand and predict the long-term evolution of the sensor properties. In this work, we present detailed studies on the annealing behavior of ATLAS12 strip sensors designed by the ITK Strip Sensor Working Group and irradiated from 510^13 to 210^15 n_eq/cm^2. Systematic charge collection, leakage current and impedance measurements have been carried out during the annealing time at 23 and 60°C until break-down or the appearance of charge multiplication. Sensors showing charge multiplication have been then kept at high voltage for a long time in order to monitor their stability. The difference in the annealing behavior between the two temperatures has been analyzed. From the impedance measurem...

  3. Annealing Studies of irradiated p-type Sensors Designed for the Upgrade of ATLAS Phase-II Strip Tracker

    CERN Document Server

    Wiik-Fuchs, Liv Antje Mari; The ATLAS collaboration

    2018-01-01

    The upgrade for the High Luminosity LHC in 2025 will challenge the silicon strip detector performance with high fluence and long operation time. Sensors have been designed and tests on charge collection and electrical performance have been carried out in order to evaluate their behaviour. Besides that, it is important to understand and predict the long-term evolution of the sensor prop- erties. In this work, detailed studies on the annealing behaviour of ATLAS12 strip sensors designed by the ITK Strip Sensor Working Group and irradiated from 5 × 1013 neqcm−2 to 2 × 1015 neqcm−2 are presented. Systematic charge collection, leakage current and impedance measurements have been carried out during the annealing time at 23 and 60◦C until break-down or the appearance of charge multiplication. Sensors showing charge multiplication have been then kept at high voltage for a long time in order to monitor their stability. The difference in the annealing behaviour between the two temperatures has been analysed and...

  4. Enhanced post-annealing stability of perpendicular Ta/CoFeB/Mg/MgO multilayers by inhibiting Ta diffusion

    International Nuclear Information System (INIS)

    Li, Xu-Jing; Jiang, Shao-Long; Zhang, Jing-Yan; Liu, Qian-Qian; Liu, Yi-Wei; Zhao, Jian-Cheng; Wu, Zheng-Long; Feng, Chun; Li, Ming-Hua; Yu, Guang-Hua

    2016-01-01

    Graphical abstract: To reveal the underlying mechanism of Mg influence on the enhanced post-annealing stability of perpendicular Ta/CoFeB/Mg/MgO multilayers, the X-ray photoelectron spectroscopy analysis have been performed. It is found that a certain amount of Mg interlayer at the CoFeB/MgO interface could prevent the Ta oxidation to some extent due to the oxygen deficit MgO_x (x < 1), and consequently lower the diffusion motivation of Ta from the bottom layer to the CoFeB/MgO interfaces to some extent during the annealing process. The prevention of Ta diffusion realizes the effective hybridization of Fe and O at the CoFeB/MgO interface and maintains interfacial magnetic anisotropy (K_C_o_F_e_B_/_M_g_O). As a result, the perpendicular magnetic anisotropy at high annealing temperatures was maintained. - Highlights: • High annealing stability of perpendicular Ta/CoFeB/Mg/MgO multilayers was realized. • X-ray photoelectron spectroscopy analysis has been performed to explore the reasons. • The prevention of Ta diffusion was realized by introducing Mg at the CoFeB/MgO interface. - Abstracts: To reveal the underlying mechanism of Mg influence on the enhanced post-annealing stability of perpendicular Ta/CoFeB/Mg/MgO multilayers, the X-ray photoelectron spectroscopy analysis has been performed. It is found that a certain amount of Mg interlayer at the CoFeB/MgO interface could prevent the Ta oxidation, and consequently lower the diffusion motivation of Ta from the bottom layer to the CoFeB/MgO interfaces to some extent in the annealing process. The prevention of Ta diffusion realizes the effective hybridization of Fe and O at the CoFeB/MgO interface and maintains interfacial magnetic anisotropy (KCoFeB/MgO). As a result, the perpendicular magnetic anisotropy at high annealing temperatures is maintained

  5. Enhanced post-annealing stability of perpendicular Ta/CoFeB/Mg/MgO multilayers by inhibiting Ta diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xu-Jing; Jiang, Shao-Long; Zhang, Jing-Yan; Liu, Qian-Qian; Liu, Yi-Wei; Zhao, Jian-Cheng [Department of Materials Physics and Chemistry, University of Science and Technology Beijing, Beijing 100083 (China); Wu, Zheng-Long [Analytical and Testing Center, Beijing Normal University, Beijing 100875 (China); Feng, Chun, E-mail: fengchun@ustb.edu.cn [Department of Materials Physics and Chemistry, University of Science and Technology Beijing, Beijing 100083 (China); Li, Ming-Hua [Department of Materials Physics and Chemistry, University of Science and Technology Beijing, Beijing 100083 (China); Yu, Guang-Hua, E-mail: ghyu@mater.ustb.edu.cn [Department of Materials Physics and Chemistry, University of Science and Technology Beijing, Beijing 100083 (China)

    2016-03-01

    Graphical abstract: To reveal the underlying mechanism of Mg influence on the enhanced post-annealing stability of perpendicular Ta/CoFeB/Mg/MgO multilayers, the X-ray photoelectron spectroscopy analysis have been performed. It is found that a certain amount of Mg interlayer at the CoFeB/MgO interface could prevent the Ta oxidation to some extent due to the oxygen deficit MgO{sub x} (x < 1), and consequently lower the diffusion motivation of Ta from the bottom layer to the CoFeB/MgO interfaces to some extent during the annealing process. The prevention of Ta diffusion realizes the effective hybridization of Fe and O at the CoFeB/MgO interface and maintains interfacial magnetic anisotropy (K{sub CoFeB/MgO}). As a result, the perpendicular magnetic anisotropy at high annealing temperatures was maintained. - Highlights: • High annealing stability of perpendicular Ta/CoFeB/Mg/MgO multilayers was realized. • X-ray photoelectron spectroscopy analysis has been performed to explore the reasons. • The prevention of Ta diffusion was realized by introducing Mg at the CoFeB/MgO interface. - Abstracts: To reveal the underlying mechanism of Mg influence on the enhanced post-annealing stability of perpendicular Ta/CoFeB/Mg/MgO multilayers, the X-ray photoelectron spectroscopy analysis has been performed. It is found that a certain amount of Mg interlayer at the CoFeB/MgO interface could prevent the Ta oxidation, and consequently lower the diffusion motivation of Ta from the bottom layer to the CoFeB/MgO interfaces to some extent in the annealing process. The prevention of Ta diffusion realizes the effective hybridization of Fe and O at the CoFeB/MgO interface and maintains interfacial magnetic anisotropy (KCoFeB/MgO). As a result, the perpendicular magnetic anisotropy at high annealing temperatures is maintained.

  6. Effect of self-ion irradiation on the microstructural changes of alloy EK-181 in annealed and severely deformed conditions

    Energy Technology Data Exchange (ETDEWEB)

    Aydogan, E. [Texas A& M University, College Station, TX 77840 (United States); Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Chen, T.; Gigax, J.G.; Chen, D.; Wang, X. [Texas A& M University, College Station, TX 77840 (United States); Dzhumaev, P.S.; Emelyanova, O.V.; Ganchenkova, M.G.; Kalin, B.A.; Leontiva-Smirnova, M. [National Research Nuclear University (MEPhI), Moscow (Russian Federation); Valiev, R.Z. [Institute of Physics of Advanced Materials and Nanocenter, Ufa State Aviation Technical University, Ufa (Russian Federation); Saint Petersburg State University, St. Petersburg (Russian Federation); Enikeev, N.A.; Abramova, M.M. [Institute of Physics of Advanced Materials and Nanocenter, Ufa State Aviation Technical University, Ufa (Russian Federation); Wu, Y.; Lo, W.Y.; Yang, Y. [University of Florida, Gainesville, FL 32611 (United States); Short, M. [Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Maloy, S.A. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Garner, F.A. [Texas A& M University, College Station, TX 77840 (United States); National Research Nuclear University (MEPhI), Moscow (Russian Federation); Shao, L., E-mail: lshao@tamu.edu [Texas A& M University, College Station, TX 77840 (United States)

    2017-04-15

    EK-181 is a low-activation ferritic/martensitic steel that is an attractive candidate for in-core component materials for both fast reactors and fusion reactors. To assess the effect of microstructural engineering on radiation response, two variants of EK-181 were studied: one in an annealed condition and the other subject to severe plastic deformation. These specimens were irradiated with 3.5 MeV Fe self-ions up to 400 peak displacements per atom (dpa) at temperatures ranging from 400 °C to 500 °C. The deformation did not suppress swelling over the whole irradiated region. Instead, deformed samples showed higher swelling in the near-surface region. Void swelling was found to be correlated with grain boundary instability. Significant grain growth occurred when steady-state void growth started.

  7. Growth of ZnO nanocrystals in silica by rf co-sputter deposition and post-annealing

    International Nuclear Information System (INIS)

    Siva Kumar, V.V.; Singh, F.; Kumar, Amit; Avasthi, D.K.

    2006-01-01

    Thin films with ZnO nanocrystals in silica were synthesized by rf reactive magnetron co-sputter deposition and post-annealing. The films were deposited from a ZnO/Si composite target in an rf oxygen plasma. The deposited films were annealed in air/vacuum at high temperatures to grow ZnO nanocrystals. The deposited and annealed films were characterized by X-ray diffraction (XRD), fourier transform infrared spectroscopy (FT-IR), uv-vis spectroscopy (UV-VIS) and photoluminescence (PL) measurements. FT-IR results of the films show the vibrational features of Si-O-Si and Zn-O bonds. UV-VIS spectra of the deposited film shows the band edge of ZnO. The XRD results of the films annealed at 750 deg. C and 1000 deg. C indicate the growth of ZnO nanocrystals with average crystallite sizes between 7 nm and 26 nm. PL measurements of the deposited film show a broad visible luminescence peak which can be due to ZnO. These results suggest the growth of ZnO nanocrystals in silica matrix

  8. Effects of casting and post casting annealing on xylene isomer transport properties of Torlon® 4000T films

    KAUST Repository

    Chafin, Raymond; Lee, Jong Suk; Koros, William J.

    2010-01-01

    Procedures for Torlon® 4000T membrane formation were developed to provide attractive and repeatable xylene separation properties. Torlon® 4000T membrane films cast by our method were investigated in terms of thermally induced imidization, molecular weight enhancement, and solvent removal. After development of the Torlon® 4000T casting procedure, pervaporation of a xylene mixture (i.e. 30% para-xylene, 30% meta-xylene, 30% ortho-xylene, and 10% ethylbenzene) was performed in both Torlon® 4000T and post casting annealed Torlon® 4000T films. The xylene pervaporation in annealed Torlon® 4000T film at 200°C gave a permeability of 0.25 Barrer and a selectivity of 3.1 (para/ortho) and 2.1 (para/meta) respectively. A so-called " permeability collapse" reflecting an accelerated reduction in the free volume is consistent with significant temperature-induced changes in the films observed after thermal annealing at 300°C. This conditioning effect is induced by a combination of heat treatment and the presence of the interacting aromatic penetrants. Optical methods were used to verify that the density of annealed samples exposed to xylene for 5 days eventually increased, suggesting that the membrane is originally swollen upon initial xylene exposure, and then relaxes to a more densified, and more discriminating state. © 2010 Elsevier Ltd.

  9. Effects of casting and post casting annealing on xylene isomer transport properties of Torlon® 4000T films

    KAUST Repository

    Chafin, Raymond

    2010-07-01

    Procedures for Torlon® 4000T membrane formation were developed to provide attractive and repeatable xylene separation properties. Torlon® 4000T membrane films cast by our method were investigated in terms of thermally induced imidization, molecular weight enhancement, and solvent removal. After development of the Torlon® 4000T casting procedure, pervaporation of a xylene mixture (i.e. 30% para-xylene, 30% meta-xylene, 30% ortho-xylene, and 10% ethylbenzene) was performed in both Torlon® 4000T and post casting annealed Torlon® 4000T films. The xylene pervaporation in annealed Torlon® 4000T film at 200°C gave a permeability of 0.25 Barrer and a selectivity of 3.1 (para/ortho) and 2.1 (para/meta) respectively. A so-called " permeability collapse" reflecting an accelerated reduction in the free volume is consistent with significant temperature-induced changes in the films observed after thermal annealing at 300°C. This conditioning effect is induced by a combination of heat treatment and the presence of the interacting aromatic penetrants. Optical methods were used to verify that the density of annealed samples exposed to xylene for 5 days eventually increased, suggesting that the membrane is originally swollen upon initial xylene exposure, and then relaxes to a more densified, and more discriminating state. © 2010 Elsevier Ltd.

  10. Experimental tests of irradiation-anneal-reirradiation effects on mechanical properties of RPV plate and weld materials

    International Nuclear Information System (INIS)

    Hawthorne, J.R.

    1996-01-01

    The Charpy-V (C V ) notch ductility and tension test properties of three reactor pressure vessel (RPV) steel materials were determined for the 288 degree C (550 degree F) irradiated (I), 288 degree C (550 degree F) irradiated + 454 degree C (850 degree F)-168 h postirradiation annealed (IA), and 288 degree C (550 degree F) reirradiated (IAR) conditions. Total fluences of the I condition and the IAR condition were, respectively, 3.33 x 10 19 n/cm 2 and 4.18 x 10 19 n/cm 2 , E > 1 MeV. The irradiation portion of the IAR condition represents an incremental fluence increase of 1. 05 x 10 19 n/cm 2 , E > 1 MeV, over the I-condition fluence. The materials (specimens) were supplied by the Yankee Atomic Electric Company and represented high and low nickel content plates and a high nickel, high copper content weld deposit prototypical of the Yankee-Rowe reactor vessel. The promise of the IAR method for extending the fluence tolerance of radiation-sensitive steels and welds is clearly shown by the results. The annealing treatment produced full C V upper shelf recovery and full or nearly full recovery in the C V 41 J (30 ft-lb) transition temperature. The C V transition temperature increases produced by the reirradiation exposure were 22% to 43% of the increase produced by the first cycle irradiation exposure. A somewhat greater radiation embrittlement sensitivity and a somewhat greater reirradiation embrittlement sensitivity was exhibited by the low nickel content plate than the high nickel content plate. Its high phosphorus content is believed to be responsible. The IAR-condition properties of the surface vs. interior regions of the low nickel content plate are also compared

  11. Modification of photosensing property of CdS–Bi{sub 2}S{sub 3} bi-layer by thermal annealing and swift heavy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Shaikh, Shaheed U.; Siddiqui, Farha Y. [Thin Film and Nanotechnology Laboratory, Department of Physics (India); Department of Nanotechnology, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431004 (India); Singh, Fouran; Kulriya, Pawan K. [Inter University Accelerator Center, Aruna Asaf Ali Marg, New Delhi 110 067 (India); Phase, D.M. [UGC DAE Consortium for Scientific Research, Khandwa Road, Indore 452017 (India); Sharma, Ramphal, E-mail: ramphalsharma@yahoo.com [Thin Film and Nanotechnology Laboratory, Department of Physics (India); Department of Nanotechnology, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431004 (India)

    2016-02-01

    The CdS–Bi{sub 2}S{sub 3} bi-layer thin films have been deposited on Indium Tin Oxide (ITO) glass substrates at room temperature by Chemical Bath Deposition Technique (CBD) and bi-layer thin films were annealed in air atmosphere for 1 h at 250 {sup °}C. The air annealed sample was irradiated using Au{sup 9+} ions at the fluence 5 × 10{sup 11} ion/cm{sup 2} with 120 MeV energy. Effects of Swift Heavy Ion (SHI) irradiation on CdS–Bi{sub 2}S{sub 3} bi-layer thin films were studied. The results are explained on the basis annealing and high electronic excitation, using X-ray diffraction (XRD), Selective Electron Area Diffraction (SEAD), Atomic Force Microscopy (AFM), Raman Spectroscopy, UV spectroscopy and I–V characteristics. The photosensing property after illumination of visible light over the samples is studied. These as-deposited, annealed and irradiated bi-layer thin films are used to sense visible light at room temperature. - Graphical abstract: Schematic illustration of CdS–Bi{sub 2}S{sub 3} bi-layer thin film (a) As-deposited (b) Annealed (c) irradiated sample respectively (d) Model of bi-layer photosensor device (e) Graph of illumination intensity verses photosensitivity. - Highlights: • CdS–Bi{sub 2}S{sub 3} bi-layer thin film prepared at room temperature. • Irradiated using Au{sup 9+} ions at the fluence of 5 × 10{sup 11} ion/cm{sup 2} with 120 MeV energy. • Study of modification induced by irradiations. • Study of Photosensitivity after annealing and irradiation.

  12. Electroluminescence analysis of injection-enhanced annealing of electron irradiation-induced defects in GaInP top cells for triple-junction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Tiancheng; Lu, Ming; Yang, Kui; Xiao, Pengfei; Wang, Rong, E-mail: wangr@bnu.edu.cn

    2014-09-15

    Direct injection-enhanced annealing of defects in a GaInP top cell for GaInP/GaAs/Ge triple-junction solar cells irradiated with 1.8 MeV electrons with a fluence of 1 × 10{sup 15} cm{sup −2} has been observed and analyzed using electroluminescence (EL) spectra. Minority-carrier injection under forward bias conditions is observed to enhance defect annealing in the GaInP top cell, and recovery of the EL intensity of the GaInP top cell was observed even at room temperature. Moreover, the injection-enhanced defect annealing rates obey a simple Arrhenius law; therefore, the annealing activation energy was determined and is equal to 0.51 eV. Lastly, the H2 defect has been identified as the primary non-radiative recombination center based on a comparison of the annealing activation energies.

  13. Technical review on irradiation tests and post-irradiation examinations in JMTR

    International Nuclear Information System (INIS)

    2017-07-01

    The Japan Materials Testing Reactor (JMTR) has been contributing to various R and D activities in the nuclear research such as the fundamental research of nuclear materials/ fuels, safety research and development of power reactors, radio isotope (RI) production since its beginning of the operation in 1968. Irradiation technologies and post irradiation examination (PIE) technologies are the important factors for irradiation test research. Moreover, these technologies induce the breakthrough in area of nuclear research. JMTR has been providing unique capabilities for the irradiation test research for about 40 years since 1968. In future, any needs for irradiation test research used irradiation test reactors will continue, such as R and D of generation 4 power reactors, fundamental research of materials/fuels, RI production. Now, decontamination and new research reactor construction are common issue in the world according to aging. This situation is the same in Japan. This report outlines irradiation and PIE technologies developed at JMTR in 40 years to contribute to the technology transfer and human resource development. We hope that this report will be used for the new research rector design as well as the irradiation test research and also used for the human resource development of nuclear engineers in future. (author)

  14. Report of Post Irradiation Examination for Dry Process Fuel

    International Nuclear Information System (INIS)

    Par, Jang Jin; Jung, I. H.; Kang, K. H.; Moon, J. S.; Lee, C. R.; Ryu, H. J.; Song, K. C.; Yang, M. S.; Yoo, B. O.; Jung, Y. H.; Choo, Y. S.

    2006-08-01

    The spent PWR fuel typically contains 0.9 wt.% of fissile uranium and 0.6 wt.% of fissile plutonium, which exceeds the natural uranium fissile content of 0.711 wt.%. The neutron economy of a CANDU reactor is sufficient to utilize the DUPIC fuel, even though the neutron-absorbing fission products contained in the spent PWR fuel were remained in the DUPIC fuel. The DUPIC fuel cycle offers advantages to the countries operating both the PWR and CANDU reactors, such as saving the natural uranium, reducing the spent fuel in both PWR and CANDU, and acquiring the extra energy by reuse of the PWR spent fuel. This report contains the results of post-irradiation examination of the DUPIC fuel irradiated four times at HANARO from May 2000 to August 2006 present except the first irradiation test of simulated DUPIC fuel at HANARO on August 1999

  15. Dependence of high density nitrogen-vacancy center ensemble coherence on electron irradiation doses and annealing time

    Science.gov (United States)

    Zhang, C.; Yuan, H.; Zhang, N.; Xu, L. X.; Li, B.; Cheng, G. D.; Wang, Y.; Gui, Q.; Fang, J. C.

    2017-12-01

    Negatively charged nitrogen-vacancy (NV-) center ensembles in diamond have proved to have great potential for use in highly sensitive, small-package solid-state quantum sensors. One way to improve sensitivity is to produce a high-density NV- center ensemble on a large scale with a long coherence lifetime. In this work, the NV- center ensemble is prepared in type-Ib diamond using high energy electron irradiation and annealing, and the transverse relaxation time of the ensemble—T 2—was systematically investigated as a function of the irradiation electron dose and annealing time. Dynamical decoupling sequences were used to characterize T 2. To overcome the problem of low signal-to-noise ratio in T 2 measurement, a coupled strip lines waveguide was used to synchronously manipulate NV- centers along three directions to improve fluorescence signal contrast. Finally, NV- center ensembles with a high concentration of roughly 1015 mm-3 were manipulated within a ~10 µs coherence time. By applying a multi-coupled strip-lines waveguide to improve the effective volume of the diamond, a sub-femtotesla sensitivity for AC field magnetometry can be achieved. The long-coherence high-density large-scale NV- center ensemble in diamond means that types of room-temperature micro-sized solid-state quantum sensors with ultra-high sensitivity can be further developed in the near future.

  16. Advanced Post-Irradiation Examination Capabilities Alternatives Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    Jeff Bryan; Bill Landman; Porter Hill

    2012-12-01

    An alternatives analysis was performed for the Advanced Post-Irradiation Capabilities (APIEC) project in accordance with the U.S. Department of Energy (DOE) Order DOE O 413.3B, “Program and Project Management for the Acquisition of Capital Assets”. The Alternatives Analysis considered six major alternatives: ? No Action ? Modify Existing DOE Facilities – capabilities distributed among multiple locations ? Modify Existing DOE Facilities – capabilities consolidated at a few locations ? Construct New Facility ? Commercial Partnership ? International Partnerships Based on the alternatives analysis documented herein, it is recommended to DOE that the advanced post-irradiation examination capabilities be provided by a new facility constructed at the Materials and Fuels Complex at the Idaho National Laboratory.

  17. Effect of post-annealing on the magnetic properties of sputtered Mn56Al44 thin films

    Science.gov (United States)

    Gupta, Nanhe Kumar; Husain, Sajid; Barwal, Vineet; Behera, Nilamani; Chaudhary, Sujeet

    2018-05-01

    Mn56Al44 (MnAl) thin films of constant thickness (˜30nm) were grown on naturally oxidized Si substrates using DC-magnetron sputtering. Effect of deposition parameters such as sputtering power, substrate temperature (Ts), and post-annealing temperature have been systematically invstigated. X-ray diffraction patterns revealed the presence of mixed phases, namely the τ- and β-MnAl. The highest saturation magnetization (MS) was found to be 65emu/cc using PPMS-VSM in film grown at Ts=500°C. The magnetic ordering was found to get significantly improved by performing post-annealing of these as-grwon at 400°C for 1 hr in the presence of out-of-plane magnetic field of ˜1500Oe in vacuum. In particular, at room temperature (RT), the MS got enhanced after magnetic annealing from 65emu/cc to 500 emu/cc in MnAl films grown at Ts=500°C. This sample exhibited a magneto-resistance of ˜1.5% at RT. The tuning of the structural and magnetic properties of MnAl binary alloy thin films as established here by varying the growth parameters is critical with regards to the prospective applications of MnAl, a metastable ferromagnetic system which possesses the highest perpendicular magnetic anisotropy at RT till date.

  18. Post-growth annealing of germanium-tin alloys using pulsed excimer laser

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lanxiang; Wang, Wei; Zhou, Qian; Yeo, Yee-Chia, E-mail: yeo@ieee.org [Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117582 (Singapore); Pan, Jisheng; Zhang, Zheng [Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 117602 (Singapore); Tok, Eng Soon [Department of Physics, National University of Singapore, Singapore 117551 (Singapore)

    2015-07-14

    We investigate the impact of pulsed excimer laser anneal on fully strained germanium-tin alloys (Ge{sub 1−x}Sn{sub x}) epitaxially grown on Ge substrate by molecular beam epitaxy. Using atomic force microscopy, X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy, the morphological and compositional evolution of Ge{sub 1−x}Sn{sub x} with Sn content up to 17% after annealing using various conditions is studied. Ge{sub 0.83}Sn{sub 0.17} samples annealed at 80 mJ/cm{sup 2} or 150 mJ/cm{sup 2} have no observable changes with respect to the as-grown sample. However, Ge{sub 0.83}Sn{sub 0.17} samples annealed at 250 mJ/cm{sup 2} or 300 mJ/cm{sup 2} have Sn-rich islands on the surface, which is due to Sn segregation in the compressively strained epitaxial film. For Ge{sub 0.89}Sn{sub 0.11}, significant Sn redistribution occurs only when annealed at 300 mJ/cm{sup 2}, indicating that it has better thermal stability than Ge{sub 0.83}Sn{sub 0.17}. A mechanism is proposed to explain the formation of Sn-rich islands and Sn-depleted regions.

  19. Post-irradiation examinations of THERMHET composite fuels for transmutation

    Science.gov (United States)

    Noirot, J.; Desgranges, L.; Chauvin, N.; Georgenthum, V.

    2003-07-01

    The thermal behaviour of composite targets dedicated to minor actinide transmutation was studied using THERMHET (thermal behaviour of heterogeneous fuel) irradiation in the SILOE reactor. Three inert matrix fuel designs were tested (macro-mass, jingle and microdispersion) all with a MgAl 2O 4 spinel inert matrix and around 40% weight of UO 2 to simulate minor actinide inclusions. The post-irradiation examinations led to a new interpretation of the temperature measurement by thermocouples located in the central hole of the pellets. A major change in the micro-dispersed structure was detected. The examinations enabled us to understand the behaviour of the spinel during the different stages of irradiation. They revealed an amorphisation at low temperature and then a nano re-crystallisation at high temperature of the spinel in the micro-dispersed case. These results, together with those obtained in the MATINA irradiation of an equivalent structure, show the importance of the irradiation temperature on spinel behaviour.

  20. Post-irradiation examinations of THERMHET composite fuels for transmutation

    Energy Technology Data Exchange (ETDEWEB)

    Noirot, J. E-mail: jnoirot@cea.fr; Desgranges, L.; Chauvin, N.; Georgenthum, V

    2003-07-01

    The thermal behaviour of composite targets dedicated to minor actinide transmutation was studied using THERMHET (thermal behaviour of heterogeneous fuel) irradiation in the SILOE reactor. Three inert matrix fuel designs were tested (macro-mass, jingle and microdispersion) all with a MgAl{sub 2}O{sub 4} spinel inert matrix and around 40% weight of UO{sub 2} to simulate minor actinide inclusions. The post-irradiation examinations led to a new interpretation of the temperature measurement by thermocouples located in the central hole of the pellets. A major change in the micro-dispersed structure was detected. The examinations enabled us to understand the behaviour of the spinel during the different stages of irradiation. They revealed an amorphisation at low temperature and then a nano re-crystallisation at high temperature of the spinel in the micro-dispersed case. These results, together with those obtained in the MATINA irradiation of an equivalent structure, show the importance of the irradiation temperature on spinel behaviour.

  1. Post-irradiation examinations of THERMHET composite fuels for transmutation

    International Nuclear Information System (INIS)

    Noirot, J.; Desgranges, L.; Chauvin, N.; Georgenthum, V.

    2003-01-01

    The thermal behaviour of composite targets dedicated to minor actinide transmutation was studied using THERMHET (thermal behaviour of heterogeneous fuel) irradiation in the SILOE reactor. Three inert matrix fuel designs were tested (macro-mass, jingle and microdispersion) all with a MgAl 2 O 4 spinel inert matrix and around 40% weight of UO 2 to simulate minor actinide inclusions. The post-irradiation examinations led to a new interpretation of the temperature measurement by thermocouples located in the central hole of the pellets. A major change in the micro-dispersed structure was detected. The examinations enabled us to understand the behaviour of the spinel during the different stages of irradiation. They revealed an amorphisation at low temperature and then a nano re-crystallisation at high temperature of the spinel in the micro-dispersed case. These results, together with those obtained in the MATINA irradiation of an equivalent structure, show the importance of the irradiation temperature on spinel behaviour

  2. Studies on Post-Irradiation DNA Degradation in Micrococcus Radiodurans, Strain RII51

    DEFF Research Database (Denmark)

    Auda, H.; Emborg, C.

    1973-01-01

    The influence of irradiation condition on post-irradiation DNA degradation was studied in a radiation resistant mutant of M. radiodurans, strain ${\\rm R}_{{\\rm II}}5$. After irradiation with 1 Mrad or higher more DNA is degraded in cells irradiated in wet condition than in cells irradiated with t...

  3. Pre- and post-irradiation properties of copper alloys at 250 deg. C following bonding and bakeout thermal cycles

    International Nuclear Information System (INIS)

    Singh, B.N.; Edwards, D.J.; Eldrup, M.; Toft, P.

    1997-01-01

    Screening experiments were carried out to investigate the effect of bonding and bakeout thermal cycles on microstructure, mechanical properties and electrical resistivity of the oxide dispersion strengthened (GlidCop, CuAl-25) and the precipitation hardened (CuCrZr, CuNiBe) copper alloys. Tensile specimens of CuCrZr and CuNiBe alloys were given various heat treatments corresponding to solution anneal, prime-ageing, and bonding thermal treatment followed by re-ageing and the reactor bakeout treatment at 350 deg. C for 100 h. Tensile specimens of CuAl-25 were given the heat treatment corresponding to the bonding thermal cycle. A number of heat treated specimens were neuron irradiated at 250 deg. C to a dose level of ∼ 0.3 dpa in the DR-3 reactor at Risoe. Both unirradiated and irradiated specimens with various heat treatments were tensile tested at 250 deg. C. The microstructure and electrical resistivity of these specimens were determined in the unirradiated as well as irradiated conditions. The post-deformation microstructure of the irradiated specimens was also investigated. The fracture surfaces of both unirradiated and irradiated specimens were examined. Results of these investigations are reported in the present report. The main effect of the bonding thermal cycle heat treatment was a slight decrease in strength of CuCrZr and CuNiBe alloys. The strength of CuAl-25, on the other hand, remained almost unaltered. The post irradiation tests at 250 deg. C showed a severe loss of ductility in the case of CuNiBe alloy. The irradiated CuAl-25 and CuCrZr specimens, on the other hand, exhibited a reasonable amount of uniform elongation. The results are briefly discussed in terms of thermal and irradiation stability of precipitates and particles and irradiation-induced segregation, precipitation and recovery of dislocation microstructure. (au) 7 tabs., 28 ills., 15 refs

  4. Towards p-type ZnO using post-growth annealing

    Energy Technology Data Exchange (ETDEWEB)

    Dangbegnon, J.K.; Roro, K.T.; Botha, J.R. [Department of Physics, P.O. Box 77000, Nelson Mandela Metropolitan University, Port Elizabeth 6031 (South Africa)

    2008-01-15

    The optical properties of zinc oxide (ZnO) films grown by metalorganic chemical vapor deposition on GaAs substrate are investigated. Samples were annealed in two different ambients, namely nitrogen and oxygen, and studied by photoluminescence (PL). Samples annealed in oxygen at 600 C show arsenic acceptor-related signatures. The near-band-edge emission is dominated by an excitonic feature at 3.355 eV and compensation broadens the spectra. No such changes are observed when similar samples are annealed in nitrogen. The diffusion of arsenic from the GaAs substrate appears to be a source of acceptors. This effect is enhanced in an oxygen atmosphere. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Irradiation and Post-Irradiation Storage of Chicken: Effects on Fat and Proteins

    International Nuclear Information System (INIS)

    Abou-Tarboush, H.M.; Al-Kahtani, H.A.; Abou-Arab, A.A.; Atia, M.; Bajaber, A.S.; Ahmed, M.A.; El-Mojaddidi, M.A.

    1997-01-01

    Chicken were subjected to gamma irradiation doses of 2.5, 5.0, 7.5 and 10.0 KGy and post-irradiation storage of 21 days at 4±2º. The effects on fat and protein of chicken were studied. Rate of formation of total volatile basic-nitrogen was less in irradiated samples particularly in samples treated with 5.0KGy during the entire storage. Fatty acid profiles of chicken lipids were not significantly (P≤ 0.05) affected by irradiation especially at doses of 5.0 KGy. However, irradiation caused a large increase in thiobarbituric acid (TBA) values which continued gradually during storage. Changes in amino acids were minimal. Irradiated and unirradiated samples showed the appearance of protein subunits with molecular weights in the range of 10.0 to 88.0 and 10.0 to 67.0 KD, respectively. No changes were observed in the sarcoplasmic protein but the intensity of bands in all irradiated samples decreased after 21 days of storage

  6. Computer experiment studies on mechanisms for irradiation induced defect production and annealing processes. Final report

    International Nuclear Information System (INIS)

    Beeler, J.R. Jr.; Beeler, M.F.

    1979-06-01

    This research is based on pair potentials used in the Brookhaven work. It extends their use in defect production simulations to the 5 MeV range and characterizes the short term annealing of the primary defect states. Defect properties and interactions are studied. Defect interactions include carbon, helium, and misfit metallic substitutional impurity interactions with vacancy and interstitial defects as well as vacancy-vacancy, interstitial-interstitial and vacancy-interstitial interactions

  7. Computer experiment studies on mechanisms for irradiation induced defect production and annealing processes. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Beeler, J.R. Jr.; Beeler, M.F.

    1979-06-01

    This research is based on pair potentials used in the Brookhaven work. It extends their use in defect production simulations to the 5 MeV range and characterizes the short term annealing of the primary defect states. Defect properties and interactions are studied. Defect interactions include carbon, helium, and misfit metallic substitutional impurity interactions with vacancy and interstitial defects as well as vacancy-vacancy, interstitial-interstitial and vacancy-interstitial interactions. (FS)

  8. Damage accumulation and annealing in 6H-SiC irradiated with Si+

    International Nuclear Information System (INIS)

    Jiang, W.; Weber, W.J.; Thevuthasan, S.; McCready, D.E.

    1998-01-01

    Damage accumulation and annealing in 6H-silicon carbide (α-SiC) single crystals have been studied in situ using 2.0 MeV He + RBS in a left angle 0001 right angle -axial channeling geometry (RBS/C). The damage was induced by 550 keV Si + ion implantation (30 off normal) at a temperature of -110 C, and the damage recovery was investigated by subsequent isochronal annealing (20 min) over the temperature range from -110 C to 900 C. At ion fluences below 7.5 x 10 13 Si + /cm 2 (0.04 dpa in the damage peak), only point defects appear to be created. Furthermore, the defects on the Si sublattice can be completely recovered by thermal annealing at room temperature (RT), and recovery of defects on the C sublattice is suggested. At higher fluences, amorphization occurs; however, partial damage recovery at RT is still observed, even at a fluence of 6.6 x 10 14 Si + /cm 2 (0.35 dpa in the damage peak) where a buried amorphous layer is produced. At an ion fluence of 6.0 x 10 15 Si + /cm 2 (-90 C), an amorphous layer is created from the surface to a depth of 0.6 μm. Because of recovery processes at the buried crystalline-amorphous interface, the apparent thickness of this amorphous layer decreases slightly (<10%) with increasing temperature over the range from -90 C to 600 C. (orig.)

  9. Damage recovery in ZnO by post-implantation annealing

    International Nuclear Information System (INIS)

    Audren, A.; Hallen, A.; Linnarsson, M.K.; Possnert, G.

    2010-01-01

    ZnO bulk samples were implanted with 200 keV-Co ions at room temperature with two fluences, 1 x 10 16 and 8 x 10 16 cm -2 , and then annealed in air for 30 min at different temperatures up to 900 o C. After the implantation and each annealing step, the samples were analyzed by Rutherford backscattering spectrometry (RBS) in random and channeling directions to follow the evolution of the disorder profile. The RBS spectra reveal that disorder is created during implantation in proportion to the Co fluence. The thermal treatments induce a disorder recovery, which is however, not complete after annealing at 900 o C, where about 15% of the damage remains. To study the Co profile evolution during annealing, the samples were, in addition to RBS, characterized by secondary ion mass spectrometry (SIMS). The results show that Co diffusion starts at 800 o C, but also that a very different behavior is seen for Co concentrations below and above the solubility limit.

  10. Characterizations of MoTiO5 flash memory devices with post-annealing

    International Nuclear Information System (INIS)

    Kao, Chyuan Haur; Chen, Hsiang; Chen, Su Zhien; Chen, Yu Jie; Chu, Yu Cheng

    2014-01-01

    In this study, high-K MoTiO 5 dielectrics were applied as charge trapping layers in fabricated metal-oxide-high-K MoTiO 5 -oxide-Si-type memory devices. Among the applied MoTiO 5 trapping layer treatment conditions, annealing at 900 °C yielded devices that exhibited superior memory performance, such as a larger memory window and faster programming/erasing speed. Multiple material analyses, namely X-ray diffraction, X-ray photoelectron spectroscopy, and atomic force microscopy, confirmed that annealing at 900 °C can improve the material quality as a result of crystallization. The fabricated MoTiO 5 -based memory devices show potential for future commercial memory device applications. - Highlights: • MoTiO5-based flash memories have been fabricated. • MoTiO5 trapping layers could be formed by co-sputtering. • MoTiO5 layers with annealing exhibited a good memory performance. • Multiple material analyses confirm that annealing enhanced crystallization

  11. Post Irradiation Capabilities at the Idaho National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Schulthess, J.L.

    2011-08-01

    The U.S. Department of Energy (DOE) Office of Nuclear Energy (NE) oversees the research, development, and demonstration activities that ensure nuclear energy remains a viable energy option for the United States. Fuel and material development through fabrication, irradiation, and characterization play a significant role in accomplishing the research needed to support nuclear energy. All fuel and material development requires the understanding of irradiation effects on the fuel performance and relies on irradiation experiments ranging from tests aimed at targeted scientific questions to integral effects under representative and prototypic conditions. The DOE recently emphasized a solution-driven, goal-oriented, science-based approach to nuclear energy development. Nuclear power systems and materials were initially developed during the latter half of the 20th century and greatly facilitated by the United States ability and willingness to conduct large-scale experiments. Fifty-two research and test reactors with associated facilities for performing fabrication and pre and post irradiation examinations were constructed at what is now Idaho National Laboratory (INL), another 14 at Oak Ridge National Laboratory (ORNL), and a few more at other national laboratory sites. Building on the scientific advances of the last several decades, our understanding of fundamental nuclear science, improvements in computational platforms, and other tools now enable technological advancements with less reliance on large-scale experimentation.

  12. Post Irradiation Capabilities at the Idaho National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Schulthess, J.L.; Robert D. Mariani; Rory Kennedy; Doug Toomer

    2011-08-01

    The U.S. Department of Energy (DOE) Office of Nuclear Energy (NE) oversees the research, development, and demonstration activities that ensure nuclear energy remains a viable energy option for the United States. Fuel and material development through fabrication, irradiation, and characterization play a significant role in accomplishing the research needed to support nuclear energy. All fuel and material development requires the understanding of irradiation effects on the fuel performance and relies on irradiation experiments ranging from tests aimed at targeted scientific questions to integral effects under representative and prototypic conditions. The DOE recently emphasized a solution-driven, goal-oriented, science-based approach to nuclear energy development. Nuclear power systems and materials were initially developed during the latter half of the 20th century and greatly facilitated by the United States’ ability and willingness to conduct large-scale experiments. Fifty-two research and test reactors with associated facilities for performing fabrication and pre and post irradiation examinations were constructed at what is now Idaho National Laboratory (INL), another 14 at Oak Ridge National Laboratory (ORNL), and a few more at other national laboratory sites. Building on the scientific advances of the last several decades, our understanding of fundamental nuclear science, improvements in computational platforms, and other tools now enable technological advancements with less reliance on large-scale experimentation.

  13. Role of post irradiation growth delay in chemical radioprotection by caffeine

    International Nuclear Information System (INIS)

    Gangabhagirathi, R.; Rao, B.S.; Bhat, N.N.

    2004-01-01

    Post irradiation treatment with caffeine enhanced the survival of wild type diploid yeast strain, Saccharomyces cerevisiae X2180. The presence of caffeine during gamma irradiation also affected a similar enhancement in survival. These observations suggest that caffeine imparted significant protection against radiation. Effectiveness of caffeine, even when present only during the post irradiation period, suggests that it modulates the post irradiation recovery process in yeast cells. (author)

  14. SCK-CEN Contribution to the IAEA Round Robin Exercise on WWER-440 RPV Weld Material Irradiation, Annealing and Re-Embrittlement

    International Nuclear Information System (INIS)

    Van Walle, E.; Chaouadi, R.; Puzzolante, J.L.; Fabry, A.; Van de Velde, J.

    1998-01-01

    The contribution of the Belgian Nuclear Research Centre SCK-CEN to the IAEA Round Robin Exercise on WWER-440 RPV weld material is reported. The objective of this contribution is twofold: (1) to gain experience in the field of the testing of WWER-440 steels; (2) to analyse the round-robin data according to in-house developed on used models in order to check their validity and applicability. Results from testing on unirradiated material are reported including data obtained from chemical analysis, Charpy-V impact testing, tensile testing and fracture toughness determination. Finally, irradiation strategies that can be used in the program to obtain irradiated, irradiated-annealed and irradiated-annealed-reirradiated conditions are outlined

  15. Post irradiation examination of control rod assembly of FBTR

    International Nuclear Information System (INIS)

    Anandaraj, V.; Raghu, N.; Venkiteswaran, C.N.; Visweswaran, P.; Vijayakumar, Ran; Jayaraj, V.V.; Padmaprabu, P.; Saravanan, T.; Philip, John; Muralidharan, N.G.; Joseph, Jojo; Kasiviswanathan, K.V.

    2010-01-01

    Six control rods with boron carbide pellets are used in FBTR for shutdown and control of reactor power. One control rod after being subjected to a fluence level of 7.2 x 10 22 n/cm 2 was received for post irradiation examination (PIE) to assess its irradiation behavior and to investigate the incident of dropping of control rod. Examinations carried out include precise dimensional measurements to investigate the possibility of interference between the control rod and outer sheath, Neutron radiography and x-radiograph to assess the integrity of the boron carbide pellets and other internals, density measurements to assess the swelling behaviour of boron carbide pellets and metallographic examinations to study the cracking behaviour and microstructural changes in the pellet and the clad. Depletion of B 10 in the pellet was studied using time of flight mass spectrometry. The paper highlights the examinations and results of the PIE carried out. (author)

  16. Post Irradiation Capabilities at the Idaho National Laboratory

    International Nuclear Information System (INIS)

    Schulthess, J.L.; Rosenberg, K.E.

    2011-01-01

    The U.S. Department of Energy (DOE), Office of Nuclear Energy (NE) oversees the efforts to ensure nuclear energy remains a viable option for the United States. A significant portion of these efforts are related to post-irradiation examinations (PIE) of highly activated fuel and materials that are subject to the extreme environment inside a nuclear reactor. As the lead national laboratory, Idaho National Laboratory (INL) has a rich history, experience, workforce and capabilities for performing PIE. However, new advances in tools and techniques for performing PIE now enable understanding the performance of fuels and materials at the nano-scale and smaller level. Examination at this level is critical since this is the scale at which irradiation damage occurs. The INL is on course to adopt these advanced tools and techniques to develop a comprehensive nuclear fuels and materials characterization capability that is unique in the world. Because INL has extensive PIE capabilities currently in place, a strong foundation exist to build upon as new capabilities are implemented and work load increases. In the recent past, INL has adopted significant capability to perform advanced PIE characterization. Looking forward, INL is planning for the addition of two facilities that will be built to meet the stringent demands of advanced tools and techniques for highly activated fuels and materials characterization. Dubbed the Irradiated Materials Characterization Laboratory (IMCL) and Advanced Post Irradiation Examination Capability, these facilities are next generation PIE laboratories designed to perform the work of PIE that cannot be performed in current DOE facilities. In addition to physical capabilities, INL has recently added two significant contributors to the Advanced Test Reactor-National Scientific User Facility (ATR-NSUF), Oak Ridge National Laboratory and University of California, Berkeley.

  17. The annealing of interstitial carbon atoms in high-resistivity n-type silicon after proton irradiation

    CERN Document Server

    Kuhnke, M; Lindström, G

    2002-01-01

    The annealing of interstitial carbon C sub i after 7-10 MeV and 23 GeV proton irradiations at room temperature in high-resistivity n-type silicon is investigated. Deep level transient spectroscopy is used to determine the defect parameters. The annealing characteristics of the impurity defects C sub i , C sub i C sub s , C sub i O sub i and VO sub i suggest that the mobile C sub i atoms are also captured at divacancy VV sites at the cluster peripheries and not only at C sub s and O sub i sites in the silicon bulk. The deviation of the electrical filling characteristic of C sub i from the characteristic of a homogeneously distributed defect can be explained by an aggregation of C sub i atoms in the environment of the clusters. The capture rate of electrons into defects located in the cluster environment is reduced due to a positive space charge region surrounding the negatively charged cluster core. The optical filling characteristic of C sub i suggests that the change of the triangle-shaped electric field dis...

  18. Fabrication of zinc indium oxide thin films and effect of post annealing on structural, chemical and electrical properties

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Vipin Kumar, E-mail: vipinjain7678@gmail.com [Institute of Engineering and Technology, JK Lakshmipat University, Jaipur 302026 (India); Kumar, Praveen [Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064 (India); Srivastava, Subodh; Vijay, Y.K. [Thin film and Membrane Science Laboratory, University of Rajasthan, Jaipur 302004 (India)

    2012-07-25

    Highlights: Black-Right-Pointing-Pointer ZIO films have been prepared by flash evaporation. Black-Right-Pointing-Pointer Thermal stability of ZIO films. Black-Right-Pointing-Pointer Structural, optical, electrical and other properties have been studied. - Abstract: In the present study, zinc indium oxide (ZIO) thin films were deposited on glass substrate with varying concentration (ZnO:In{sub 2}O{sub 3} - 100:0, 90:10, 70:30 and 50:50 wt.%) at room temperature by flash evaporation technique. These deposited ZIO films were annealed in vacuum to study the thermal stability and to see the effects on the structural, chemical and electrical properties. The XRD analysis indicates that crystallization of the ZIO films strongly depends on concentration of In{sub 2}O{sub 3} and post annealing where annealed films showed polycrystalline nature. The surface morphological study of the films using scanning electron microscopy (SEM) revealed the formation of nanostructured ZIO thin films. The surface composition and oxidation state were analyzed by X-ray photoelectron spectroscopy. XPS spectra shows that as the concentration of In{sub 2}O{sub 3} increases from 10 to 50 wt%, the surface composition ratio In/Zn and O/Zn increases for as-prepared and annealed ZIO films while the XPS valance band spectra manifest the electronic transitions. The electrical resistivity was found to be decreased while carrier concentration and Hall mobility increased for both types of films with increasing concentration of In{sub 2}O{sub 3}.

  19. Annealing tests of in-pile irradiated oxide coated U-Mo/Al-Si dispersed nuclear fuel

    Science.gov (United States)

    Zweifel, T.; Valot, Ch.; Pontillon, Y.; Lamontagne, J.; Vermersch, A.; Barrallier, L.; Blay, T.; Petry, W.; Palancher, H.

    2014-09-01

    U-Mo/Al based nuclear fuels have been worldwide considered as a promising high density fuel for the conversion of high flux research reactors from highly enriched uranium to lower enrichment. In this paper, we present the annealing test up to 1800 °C of in-pile irradiated U-Mo/Al-Si fuel plate samples. More than 70% of the fission gases (FGs) are released during two major FG release peaks around 500 °C and 670 °C. Additional characterisations of the samples by XRD, EPMA and SEM suggest that up to 500 °C FGs are released from IDL/matrix interfaces. The second peak at 670 °C representing the main release of FGs originates from the interaction between U-Mo and matrix in the vicinity of the cladding.

  20. Annealing study of the electron-irradiation-induced defects H4 and E11 in InP: Defect transformation (H4-E11)→H4'

    International Nuclear Information System (INIS)

    Bretagnon, T.; Bastide, G.; Rouzeyre, M.

    1990-01-01

    Capacitance spectroscopy has been used to study the two dominant deep levels, H 4 and E 11 , produced in InP by low-energy electron irradiation. The annealing rates of H 4 and E 11 in the p-type material are found to be identical, as is also the dependence on free-carrier recombination and on the chemical nature of the acceptor (Cd or Zn). Recombination-enhanced annealing converts these traps to a hole trap H 4 ' , which is not detectable by conventional deep-level transient spectroscopy. Its emission and capture properties are measured and analyzed. The similarity of the creation and annealing behavior of H 4 and E 11 shows that they share a common point defect. Our results lead to the tentative identification of the defect as a phosphorous vacancy-acceptor complex and we show how this may anneal to the H 4 ' center

  1. Post-irradiation brain-necrosis resulting in apoplexia and death after 33 years of irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Froehlich, A [Foevarosi Laszlo Korhaz, Budapest (Hungary). Korbonctani es Korszoevettani Oszt.

    1980-04-01

    A case of post-irradiation brain-necrosis resulting in apoplexia of the cerebellum after 33 years of irradiation (19984 r.) of a presumptive cerebellar tumour is reported. The pathohistologic study revealed symptoms of the ''late'' damage and the vascular changes appeared to be the most prominent. The thickening of the vessel walls, hyperplasia of collagen fibres and deposition of calcium in the media, were the most characteristic lesions revealed. In some of the small vessels isolated calcification of the media was observed. It seems most probable that in the development of apoplexia vascular alterations could play an important role. In the available literature no report has been found on a similarly long interval elapsing between the irradiation and death.

  2. Post-irradiation brain-necrosis resulting in apoplexia and death after 33 years of irradiation

    International Nuclear Information System (INIS)

    Froehlich, A.

    1980-01-01

    A case of post-irradiation brain-necrosis resulting in apoplexia of the cerebellum after 33 years of irradiation (19984 r.) of a presumptive cerebellar tumour is reported. The pathohistologic study revealed symptoms of the ''late'' damage and the vascular changes appeared to be the most prominent. The thickening of the vessel walls, hyperplasia of collagen fibres and deposition of calcium in the media, were the most characteristic lesions revealed. In some of the small vessels isolated calcification of the media was observed. It seems most probable that in the development of apoplexia vascular alterations could play an important role. In the available literature no report has been found on a similarly long interval elapsing between the irradiation and death. (author)

  3. RERTR-12 Post-irradiation Examination Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Rice, Francine [Idaho National Lab. (INL), Idaho Falls, ID (United States); Williams, Walter [Idaho National Lab. (INL), Idaho Falls, ID (United States); Robinson, Adam [Idaho National Lab. (INL), Idaho Falls, ID (United States); Harp, Jason [Idaho National Lab. (INL), Idaho Falls, ID (United States); Meyer, Mitch [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rabin, Barry [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-02-01

    The following report contains the results and conclusions for the post irradiation examinations performed on RERTR-12 Insertion 2 experiment plates. These exams include eddy-current testing to measure oxide growth; neutron radiography for evaluating the condition of the fuel prior to sectioning and determination of fuel relocation and geometry changes; gamma scanning to provide relative measurements for burnup and indication of fuel- and fission-product relocation; profilometry to measure dimensional changes of the fuel plate; analytical chemistry to benchmark the physics burnup calculations; metallography to examine the microstructural changes in the fuel, interlayer and cladding; and microhardness testing to determine the material-property changes of the fuel and cladding.

  4. Irradiation Behavior and Post-Irradiation Examinations of an Acoustic Sensor Using a Piezoelectric Transducer

    International Nuclear Information System (INIS)

    Lambert, T.; Zacharie-Aubrun, I.; Hanifi, K.; Valot, Ch.; Fayette, L.; Rosenkantz, E.; Ferrandis, J.Y.; Tiratay, X.

    2013-06-01

    The development of advanced instrumentation for in-pile experiments in Material Testing Reactor constitutes a main goal for the improvement of the nuclear fuel behavior knowledge. In the framework of high burn-up fuel experiments under transient operating conditions, an innovative sensor based on acoustic method was developed by CEA and IES (Southern Electronic Institute).This sensor is used to determine the on-line composition of the gases located in fuel rodlet free volume and thus, allows calculating the molar fractions of fission gases and helium. The main principle of the composition determination by acoustic method consists in measuring the time of flight of an acoustic signal emitted and reflected in a specific cavity. A piezoelectric transducer, driven by a pulse generator, generates the acoustic wave in the cavity. The piezoelectric transducer is a PZT ceramic disk, mainly consisting of lead, zirconium and titanium. This acoustic method was tested with success during a first experiment called REMORA 3, and the results were used to differentiate helium and fission gas release kinetics under transient operating conditions. However, during the irradiation test, acoustic signal degradation was observed, mainly due to irradiation effect but also due to the increasing of the gas temperature. Despite this acoustic signal degradation, the time of flight measurements were carried out with good accuracy throughout the test, thanks to the development of a more efficient signal processing. After experiment, neutronic calculations were performed in order to determine neutron fluence at the level of the piezoelectric transducer. In order to have a better understanding of the acoustic sensor behavior under irradiation, Post Irradiation Examination program was done on piezoelectric transducer and on acoustic coupling material too. These examinations were also realized on a non-irradiated acoustic sensor built in the same conditions and with the same materials and the same

  5. SCK-CEN Contribution to the IAEA Round Robin Exercise on WWER-440 RPV Weld Metal Irradiation Embrittlement, annealing and Re-Embrittlement. Second Progress Report

    International Nuclear Information System (INIS)

    Van Walle, E.; Chaouadi, R.; Scibetta, M.; Lucon, E.; Weber, M.

    1999-07-01

    The report gives the actual status of the contribution of the Belgian Nuclear Research Centre SCK-CEN to the IAEA Round Robin Exercise on WWER-440 RPV Weld Material Irradiation, Annealing and Re-Embrittlement. Results from the reference testing of unirradiated material as well as the results of the CHIVAS-7 experiment are discussed

  6. Influence of post-annealing on the electrical properties of metal/oxide/silicon nitride/oxide/silicon capacitors for flash memories

    International Nuclear Information System (INIS)

    Kim, Hee Dong; An, Ho-Myoung; Kim, Kyoung Chan; Seo, Yu Jeong; Kim, Tae Geun

    2008-01-01

    We report the effect of post-annealing on the electrical properties of metal/oxide/silicon nitride/oxide/silicon (MONOS) capacitors. Four samples, namely as-deposited and annealed at 750, 850 and 950 °C for 30 s in nitrogen ambient by a rapid thermal process, were prepared and characterized for comparison. The best performance with the largest memory window of 4.4 V and the fastest program speed of 10 ms was observed for the sample annealed at 850 °C. In addition, the highest traps density of 6.84 × 10 18 cm −3 was observed with ideal trap distributions for the same sample by capacitance–voltage (C–V) measurement. These results indicate that the memory traps in the ONO structure can be engineered by post-annealing to improve the electrical properties of the MONOS device

  7. Fermi level pinning in metal/Al{sub 2}O{sub 3}/InGaAs gate stack after post metallization annealing

    Energy Technology Data Exchange (ETDEWEB)

    Winter, R.; Krylov, I.; Cytermann, C.; Eizenberg, M. [Department of Materials Science and Engineering, Technion—Israel Institute of Technology, Haifa 32000 (Israel); Tang, K.; Ahn, J.; McIntyre, P. C. [Department of Materials Science and Engineering, Stanford University, Stanford, California 94305 (United States)

    2015-08-07

    The effect of post metal deposition annealing on the effective work function in metal/Al{sub 2}O{sub 3}/InGaAs gate stacks was investigated. The effective work functions of different metal gates (Al, Au, and Pt) were measured. Flat band voltage shifts for these and other metals studied suggest that their Fermi levels become pinned after the post-metallization vacuum annealing. Moreover, there is a difference between the measured effective work functions of Al and Pt, and the reported vacuum work function of these metals after annealing. We propose that this phenomenon is caused by charging of indium and gallium induced traps at the annealed metal/Al{sub 2}O{sub 3} interface.

  8. Effect of Hydrogen Post-Annealing on Transparent Conductive ITO/Ga2O3 Bi-Layer Films for Deep Ultraviolet Light-Emitting Diodes.

    Science.gov (United States)

    Kim, Kyeong Heon; Kim, Su Jin; Park, Sang Young; Kim, Tae Geun

    2015-10-01

    The effect of hydrogen post-annealing on the electrical and optical properties of ITO/Ga2O bi-layer films, deposited by RF magnetron sputtering, is investigated for potential applications to transparent conductive electrodes of ultraviolet (UV) light-emitting diodes. Three samples--an as-deposited sample and two samples post-annealed in N2 gas and N2-H2 gas mixture--were prepared and annealed at different temperatures ranging from 100 °C to 500 °C for comparison. Among these samples, the sample annealed at 300 °C in a mixture of N2 and H2 gases shows the lowest sheet resistance of 301.3 Ω/square and a high UV transmittance of 87.1% at 300 nm.

  9. Structural and electrical properties of room temperature pulsed laser deposited and post-annealed thin SrRuO3 films

    International Nuclear Information System (INIS)

    Gautreau, O.; Harnagea, C.; Normandin, F.; Veres, T.; Pignolet, A.

    2007-01-01

    Good quality strontium ruthenate (SrRuO 3 ) thin continuous films (15 to 125 nm thick) have been synthesized on silicon (100) substrates by room temperature pulsed laser deposition under vacuum followed by a post-deposition annealing, a route unexplored and yet not reported for SrRuO 3 film growth. The presence of an interfacial Sr 2 SiO 4 layer has been identified for films annealed at high temperature, and the properties of this interface layer as well as the properties of the SrRuO 3 film have been analyzed and characterized as a function of the annealing temperature. The room temperature resistivity of the SrRuO 3 films deposited by laser ablation at room temperature and post-annealed is 2000 μΩ.cm. A critical thickness of 120 nm has been determined above which the influence of the interface layer on the resistivity becomes negligible

  10. Post-growth annealing of zinc oxide thin films pulsed laser deposited under enhanced oxygen pressure on quartz and silicon substrates

    International Nuclear Information System (INIS)

    Rusop, M.; Uma, K.; Soga, T.; Jimbo, T.

    2006-01-01

    Zinc oxide (ZnO) thin films have been prepared by pulsed laser deposition (PLD) technique at room temperature on quartz and single crystal silicon (1 0 0) substrates. The oxygen ambient gas pressure was attained at 6 Torr during the deposition. The deposited films were post-growth annealed in air at various annealing temperatures for 30 min. The X-ray diffraction (XRD), optical and electrical properties have been measured to study the properties of the films as a function of annealing temperatures. XRD has shown the strength of (0 0 2) peak increases and FWHM value decreases as the annealing temperatures increases from 200 to 600 deg. C. The post-growth annealed at 600 deg. C show dominant c-axis oriented hexagonal wurtize crystal structure and exhibit high average transmittance about 85% in the visible region and very sharp absorption edge at 376 nm with energy band gap of approximately 3.46 eV. Electrical measurement indicates the resistivity decreases with the annealing temperatures up to 600 deg. C, after which it increases with higher annealing temperatures at 800 deg. C. The complex of oxygen vacancy in the ZnO films may be the source of low conductivity in undoped ZnO films

  11. Post-irradiation hyperamylasemia as a biological dosimeter

    International Nuclear Information System (INIS)

    Dubray, Bernard; Girinski, Theo; Hennequin, Christophe; Socie, Gerard; Bonnay, Marc; Cosset, J.M.; Thames, H.D.; Becciolini, Aldo; Porciani, Sauro

    1992-01-01

    Serum alpha-amylasemia was measured before and 24 h after either total body (31 patients) or localized irradiation including salivary glands (40 patients) or pancreatic area (22 patients). A significant increase in amylasemia was observed for doses to the parotid glands larger than 0.5Gy. A sigmoid function of dose was fitted to the data and predicted a maximum amylasemia level for doses larger than 4Gy and smaller than 10Gy. Raw data from other published series were adequately described by the same model. However, confidence limits of parameters remained wide, because of a considerable interindividual variability. Post-irradiation hyperamylasemia appears to provide good criteria for triage of accidentally irradiated patients: 24 h after a dose larger than 2Gy to the parotid glands, 91% of patients had an amylasemia level higher than 2.5-fold the upper normal value (sensitivity). Conversely, 96% had their serum amylasemia lower than 2.5-fold the upper normal value when dose was smaller than 2Gy (specificity). However, a retrospective estimation of the absorbed dose (dosimetry) is not likely to be very precise because of the large interindividual variability. (author). 21 ref.; 1 fig.; 3 tabs

  12. Post-deposition annealing effects in RF reactive magnetron sputtered indium tin oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, M A; Herrero, J; Gutierrez, M T [Inst. de Energias Renovables (CIEMAT), Madrid (Spain)

    1992-05-01

    Indium tin oxide films have been grown by RF reactive magnetron sputtering. The influence of the deposition parameters on the properties of the films has been investigated and optimized, obtaining a value for the figure of merit of 6700 ({Omega} cm){sup -1}. As-grown indium tin oxide films were annealed in vacuum and O{sub 2} atmosphere. After these heat treatments the electro-optical properties were improved, with values for the resistivity of 1.9x10{sup -4} {Omega} cm and the figure of merit of 26700 ({Omega} cm){sup -1}. (orig.).

  13. The post-irradiated examination of CANDU type fuel irradiated in the Institute for Nuclear Research TRIGA reactor

    International Nuclear Information System (INIS)

    Tuturici, I.L.; Parvan, M.; Dobrin, R.; Popov, M.; Radulescu, R.; Toma, V.

    1995-01-01

    This post-irradiation examination work has been done under the Research Contract No. 7756/RB, concluded between the International Atomic Energy Agency and the Institute for Nuclear Research. The paper contains a general description of the INR post-irradiation facility and methods and the relevant post-irradiation examination results obtained from an irradiated experimental CANDU type fuel element designed, manufactured and tested by INR in a power ramp test in the 100 kW Pressurised Water Irradiation Loop of the TRIGA 14 MW(th) Reactor. The irradiation experiment consisted in testing an assembly of six fuel elements, designed to reach a bumup of ∼ 200 MWh/kgU, with typical CANDU linear power and ramp rate. (author)

  14. Effects of low temperature periodic annealing on the deep-level defects in 200 keV proton irradiated AlGaAs-GaAs solar cells

    Science.gov (United States)

    Li, S. S.; Chiu, T. T.; Loo, R. Y.

    1981-01-01

    The GaAs solar cell has shown good potential for space applications. However, degradation in performance occurred when the cells were irradiated by high energy electrons and protons in the space environment. The considered investigation is concerned with the effect of periodic thermal annealing on the deep-level defects induced by the 200 keV protons in the AlGaAs-GaAs solar cells. Protons at a fluence of 10 to the 11th P/sq cm were used in the irradiation cycle, while annealing temperatures of 200 C (for 24 hours), 300 C (six hours), and 400 C (six hours) were employed. The most likely candidate for the E(c) -0.71 eV electron trap observed in the 200 keV proton irradiated samples may be due to GaAs antisite, while the observed E(v) +0.18 eV hole trap has been attributed to the gallium vacancy related defect. The obtained results show that periodic annealing in the considered case does not offer any advantages over the one time annealing process.

  15. Irradiation creep of solution annealed and cold worked 316 stainless steel

    International Nuclear Information System (INIS)

    Boutard, J.L.; Carteret, Y.; Cauvin, R.; Maillard, A.; Guerin, Y.

    1983-01-01

    Irradiation creep strains obtained in-pile on S.A. and C.W. 316 show a linear creep-swelling correlation, the slope of which is rather insensitive to chemical composition and elements in solid solution. The variation of SIPA component resulting only from the evolution of dislocation density and void growth cannot explain such an empirical correlation. The I-creep term has, on the other hand, the right temperature dependence and order of magnitude. (author)

  16. Impacts of post-metallization annealing on the memory performance of Ti/HfO2-based resistive memory

    International Nuclear Information System (INIS)

    Chen, Pang-Shiu; Chen, Yu-Sheng; Lee, Heng-Yuan

    2013-01-01

    Impacts of post-metallization annealing (PMA) on bipolar resistance switching of Ti/HfO x stacked films were investigated. A Ti capping film as a scavenging layer with assistance of PMA is used to tune the dielectric strength of the 10-nm-thick HfO x layer. The polycrystalline microstructure of 10-nm-thick HfO x seems immune to the temperature of PMA in this work. The initial resistance and forming voltage in the Ti/HfO x devices mitigate as the increment of the annealing temperature. With enough annealing temperature (>450 °C), the device shows a good on/off ratio, high temperature operation ability and robust endurance (>10 6 cycles). Through the reaction between Ti and HfO x at 500 °C, the abundant oxygen ions are depleted from the insulator and the left charge-defects building conductive percolative paths in the dielectric layer. The operation-polarity independence of the form-free HfO x device in initial state is demonstrated. The forming-free memory with initial low resistance of 800 Ω at 0.1 V can be operated with stable bipolar resistance switching via initially positive or negative voltage sweep. The formless device with 10 nm thick HfO x also exhibits excellent nonvolatile memory performances, including enough on/off ratio, improved HRS uniformity and good high temperature retention (3 × 10 4 s at 200 °C). The results of this work suggest that the PMA temperature will affect the memory window and cycling reliability of the Ti/HfO x -based resistive memory. Optimum temperature (450 °C) will improve the memory performance of the Ti/HfO x stacked layer. (paper)

  17. The electronic structure of the [Zn(S,O)/ZnS]/CuInS 2 heterointerface - Impact of post-annealing

    Science.gov (United States)

    Bär, M.; Ennaoui, A.; Klaer, J.; Sáez-Araoz, R.; Kropp, T.; Weinhardt, L.; Heske, C.; Schock, H.-W.; Fischer, Ch.-H.; Lux-Steiner, M. C.

    2006-12-01

    Recently, Cd-free wide-gap CuInS 2-based 'CIS' thin film solar cells with a [Zn(S,O)/ZnS] bi-layer instead of a CdS buffer were developed, which (after post-annealing) showed comparable power conversion efficiencies as CdS-buffered references. To elucidate whether the heat treatment changes the electronic structure of the [Zn(S,O)/ZnS]/CIS heterointerface, which could explain the performance improvement, we have investigated corresponding structures by X-ray and UV photoelectron as well as optical spectroscopy before and after post-annealing. A heat-treatment-induced increase of the band bending in the CIS absorber could be identified, which correlates with an improved open circuit voltage of respective solar cells after post-annealing.

  18. Nanorods on surface of GaN-based thin-film LEDs deposited by post-annealing after photo-assisted chemical etching

    Science.gov (United States)

    Chen, Lung-Chien; Lin, Wun-Wei; Liu, Te-Yu

    2017-01-01

    This study investigates the optoelectronic characteristics of gallium nitride (GaN)-based thin-film light-emitting diodes (TF-LEDs) that are formed by a two-step transfer process that involves wet etching and post-annealing. In the two-step transfer process, GaN LEDs were stripped from sapphire substrates by the laser lift-off (LLO) method using a KrF laser and then transferred onto ceramic substrates. Ga-K nanorods were formed on the surface of the GaN-based TF-LEDs following photo-assisted chemical etching and photo-enhanced post-annealing at 100 °C for 1 min. As a result, the light output power of GaN-based TF-LEDs with wet etching and post-annealing was over 72% more than that of LEDs that did not undergo these treatments.

  19. Rapid preparation of solution-processed InGaZnO thin films by microwave annealing and photoirradiation

    Energy Technology Data Exchange (ETDEWEB)

    Cheong, Heajeong; Ogura, Shintaro; Ushijima, Hirobumi; Yoshida, Manabu; Fukuda, Nobuko; Uemura, Sei, E-mail: sei-uemura@aist.go.jp [Flexible Electronics Research Center (FLEC), National Institute of Advanced Industrial Science and Technology, Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565 (Japan)

    2015-06-15

    We fabricated solution-processed indium–gallium–zinc oxide (IGZO) thin-film transistors (TFTs) by microwave (MW) annealing an IGZO precursor film followed by irradiating with vacuum ultraviolet (VUV) light. MW annealing allows more rapid heating of the precursor film than conventional annealing processes using a hot plate or electric oven and promotes the crystallization of IGZO. VUV irradiation was used to reduce the duration and temperature of the post-annealing step. Consequently, the IGZO TFTs fabricated through MW annealing for 5 min and VUV irradiation for 1 min exhibited an on/off current ratio of 10{sup 8} and a field-effect mobility of 0.3 cm{sup 2} V{sup −1} s{sup −1}. These results indicate that MW annealing and photoirradiation is an effective combination for annealing solution processed IGZO precursor films to prepare the semiconductor layers of TFTs.

  20. Rapid preparation of solution-processed InGaZnO thin films by microwave annealing and photoirradiation

    International Nuclear Information System (INIS)

    Cheong, Heajeong; Ogura, Shintaro; Ushijima, Hirobumi; Yoshida, Manabu; Fukuda, Nobuko; Uemura, Sei

    2015-01-01

    We fabricated solution-processed indium–gallium–zinc oxide (IGZO) thin-film transistors (TFTs) by microwave (MW) annealing an IGZO precursor film followed by irradiating with vacuum ultraviolet (VUV) light. MW annealing allows more rapid heating of the precursor film than conventional annealing processes using a hot plate or electric oven and promotes the crystallization of IGZO. VUV irradiation was used to reduce the duration and temperature of the post-annealing step. Consequently, the IGZO TFTs fabricated through MW annealing for 5 min and VUV irradiation for 1 min exhibited an on/off current ratio of 10 8 and a field-effect mobility of 0.3 cm 2  V −1  s −1 . These results indicate that MW annealing and photoirradiation is an effective combination for annealing solution processed IGZO precursor films to prepare the semiconductor layers of TFTs

  1. Formation of interface traps in MOSFETs during annealing following low temperature irradiation

    International Nuclear Information System (INIS)

    Saks, N.S.; Griscom, D.L.; Klein, R.B.

    1988-01-01

    The formation of interface traps N/sub it/ has been studied in MOSFETs during isochronal annealing up to 350 K following exposure to ionizing radiation at 78K. Two distinct N/sub it/ formation processes are observed: (1) A small (1-10% of total) process occurs at 100-150K which the authors argue is caused by neutral atomic hydrogen, and (2) a second higher temperature (200-300K) process which accounts for most (>90%) of the N/sub it/ formation. The characteristics of the high temperature process support the proton (H/sup +/) model of N/sub it/ formation and are not in agreement with several other common models. In the second part of this paper, the authors compare charge pumping and inversion layer mobility techniques for measuring N/sub it/. The authors find that the mobility cannot be used to determine N/sub it/ at 78K (in contrast to its successful use at 295K), probably because of lateral non-uniformities (LNUs) in the large radiation-induced fixed oxide charge

  2. Post Deposition Annealing Effects on Optical, Electrical and Morphological Studies of ZnTTBPc Thin Films

    Directory of Open Access Journals (Sweden)

    B. R. Rejitha

    2012-01-01

    Full Text Available Phthalocyanines (Pcs act as efficient absorbants of photons in the visible region, specifically between 600 and 700 nm. It will produce an excited triplet state. In this paper we report the annealing effects of optical, electrical and surface morphological properties of thermal evaporated Zinc-tetra-tert-butyl-29H, 31H phthalocyanine (ZnTTBPc thin films. The optical transmittance measurements were done in the visible region (400-800 nm and, films were found to be absorbing in nature. From spectral data the absorption coefficient α, dielectric constant ε and the extinction coefficient k were evaluated and, results discussed. Also the optical band gap of the material was estimated. The activation energies were measured. Scanning electron microscopic studies was carried out to determine surface uniformity of films.

  3. Radiation-induced wear of metals in post-annealing period of operation

    International Nuclear Information System (INIS)

    Gorbatykh, V.P.

    1994-01-01

    To estimate service life of NPP equipment a new criterion is proposed. Residual resource of reactor materials under neutron irradiation is suggested to be determined through the temperature of ductile-brittle transition with account of intermediate heat treatments. 5 refs., 1 fig

  4. Modeling of MOS radiation and post irradiation effects

    International Nuclear Information System (INIS)

    Neamen, D.A.

    1984-01-01

    The radiation response and long term recovery effects in a n-channel MOSFET due to a pulse of ionizing radiation were modeled assuming that electron tunneling from the semiconductor into the oxide and the buildup of interface states were the postirradiation recovery mechanisms. The modeling used convolution theory and took into account the effects of bias changes during the recovery period and charge yield effects. Changing the bias condition during the post-irradiation recovery period changed the recovery rate. The charge yield effects changed the density of trapped positive charge in the oxide but did not change the recovery characteristics for a given oxide thickness. The modeling results were compared to previous experimental results

  5. Zinc vacancy and oxygen interstitial in ZnO revealed by sequential annealing and electron irradiation

    Science.gov (United States)

    Knutsen, K. E.; Galeckas, A.; Zubiaga, A.; Tuomisto, F.; Farlow, G. C.; Svensson, B. G.; Kuznetsov, A. Yu.

    2012-09-01

    By combining results from positron annihilation and photoluminescence spectroscopy with data from Hall effect measurements, the characteristic deep level emission centered at ˜1.75 eV and exhibiting an activation energy of thermal quenching of 11.5 meV is associated with the zinc vacancy. Further, a strong indication that oxygen interstitials act as a dominating acceptor is derived from the analysis of charge carrier losses induced by electron irradiation with variable energy below and above the threshold for Zn-atom displacement. We also demonstrate that the commonly observed green emission is related to an extrinsic acceptorlike impurity, which may be readily passivated by oxygen vacancies.

  6. Post-irradiation examination of overheated fuel bundles

    International Nuclear Information System (INIS)

    Sears, D.F.; Primeau, M.F.; Leach, D.A.

    1995-01-01

    Post-irradiation examinations (PIE) were conducted on prototype 43-element CANDU fuel bundles that overheated during test irradiations in the NRU reactor. PIE revealed that the bundles remained physically intact, but on several elements the Zr-4 sheath collapsed into axial gaps between the pellet stack and end caps, between adjacent pellets within the stacks, and into missing pellet chips and cracks. Helium pressurization tests showed that none of the collapsed elements leaked. Hydride blisters were discovered on a few elements, but the source of the hydrogen was not linked to a breach of the cladding or end caps. These defects were attributed to primary hydriding. Microstructural changes in the fuel and cladding indicate that the cladding-was briefly exposed to temperatures in the range 600-800 o C and pressures above 11.2 MPa. The results show that Zr-4 cladding behaves in a highly ductile manner during such transient, high-temperature and high-pressure excursions. (author)

  7. Post-irradiation examination of overheated fuel bundles

    International Nuclear Information System (INIS)

    Sears, D.F.; Primeau, M.F.; Leach, D.A.

    1997-08-01

    Post-irradiation examinations (PIE) were conducted on prototype 43-element CANDU fuel bundles that overheated during test irradiations in the NRU reactor. PIE revealed that the bundles remained physically intact, but on several elements the Zr-4 sheath collapsed into axial gaps between the pellet stack and end caps, between adjacent pellets within the stacks, and into missing pellet chips and cracks. Helium pressurization tests showed that none of the collapsed elements leaked. Hydride blisters were discovered on a few elements, but the source of the hydrogen was.not linked to a breach of the cladding or end caps. These defects were attributed to primary hydriding. Microstructural changes in the fuel and cladding indicate that the cladding was briefly exposed to temperatures in the range 600-800 o C and pressures above 11.2MPa. The results show that Zr-4 cladding behaves in a highly ductile manner during such transient, high-temperature and high-pressure excursions. (author)

  8. The operation of post-irradiation examination facility

    International Nuclear Information System (INIS)

    Kim, Eun Ka; Min, Duk Ki; Lee, Young Kil

    1994-12-01

    The operation of post-irradiation examination facility was performed as follow. HVAC and pool water treatment system were continuously operated, and radiation monitoring in PIE facility has been carried out to maintain the facility safely. Inspection of the fuel assembly (F02) transported from Kori Unit 1 was performed in pool, and fuel rods extracted from the fuel assembly (J44) of Kori Unit 2 NPP were examined in hot cell. A part of deteriorated pipe line of drinking water was exchanged for stainless steel pipe to prevent leaking accidents. Halon gas system was also installed in the exhausting blower room for fire fighting. And IAEA inspection camera for safeguard of nuclear materials was fixed at the wall in pool area. Radiation monitoring system were improved to display the area radioactive value at CRT monitor in health physics control room. And automatic check system for battery and emergency diesel generator was developed to measure the voltage and current of them. The performance test of oxide thickness measuring device installed in hot cell for irradiated fuel rod and improvement of the device were performed, and good measuring results using standard sample were obtained. The safeguard inspection of nuclear materials and operation inspection of the facility were carried out through the annual operation inspection, quarterly IAEA inspection and quality assurance auditing. 26 tabs., 43 figs., 14 refs. (Author) .new

  9. Modelling the growth of ZnO thin films by PVD methods and the effects of post-annealing.

    Science.gov (United States)

    Blackwell, Sabrina; Smith, Roger; Kenny, Steven D; Walls, John M; Sanz-Navarro, Carlos F

    2013-04-03

    Results are presented for modelling of the evaporation and magnetron sputter deposition of Zn(x)O(y) onto an O-terminated ZnO (0001¯) wurtzite surface. Growth was simulated through a combination of molecular dynamics (MD) and an on-the-fly kinetic Monte Carlo (otf-KMC) method, which finds diffusion pathways and barriers without prior knowledge of transitions. We examine the effects of varying experimental parameters, such as substrate bias, distribution of the deposition species and annealing temperature. It was found when comparing evaporation and sputtering growth that the latter process results in a denser and more crystalline structure, due to the higher deposition energy of the arriving species. The evaporation growth also exhibits more stacking faults than the sputtered growth. Post-annealing at 770 K did not allow complete recrystallization, resulting in films which still had stacking faults where monolayers formed in the zinc blende phase, whereas annealing at 920 K enabled the complete recrystallization of some films to the wurtzite structure. At the latter temperature atoms could also sometimes be locked in the zinc blende phase after annealing. When full recrystallization did not take place, both wurtzite and zinc blende phases were seen in the same layer, resulting in a phase boundary. Investigation of the various distributions of deposition species showed that, during evaporation, the best quality film resulted from a stoichiometric distribution where only ZnO clusters were deposited. During sputtering, however, the best quality film resulted from a slightly O rich distribution. Two stoichiometric distributions, one involving mainly ZnO clusters and the other involving mainly single species, showed that the distribution of deposition species makes a huge impact on the grown film. The deposition of predominantly single species causes many more O atoms at the surface to be sputtered or reflected, resulting in an O deficiency of up to 18% in the

  10. In-situ XMCD evaluation of ferromagnetic state at FeRh thin film surface induced by 1 keV Ar ion beam irradiation and annealing

    Energy Technology Data Exchange (ETDEWEB)

    Matsui, T. [Research Organization for the 21st Century, Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan); Graduate School of Engineering, Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan); Aikoh, K. [Graduate School of Engineering, Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan); Sakamaki, M.; Amemiya, K. [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801 (Japan); Iwase, A. [Graduate School of Engineering, Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan)

    2015-12-15

    Surface ferromagnetic state of FeRh thin films irradiated with 1 keV Ar ion-beam has been investigated by using soft X-ray Magnetic Circular Dichroism (XMCD). It was revealed that the Fe atoms of the samples were strongly spin-polarized after Ar ion-beam irradiation. Due to its small penetration depth, 1 keV Ar ion-beam irradiation can modify the magnetic state at subsurface of the samples. In accordance with the XMCD sum rule analysis, the main component of the irradiation induced ferromagnetism at the FeRh film surface was to be effective spin magnetic moment, and not to be orbital moment. We also confirmed that the surface ferromagnetic state could be produced by thermal annealing of the excessively ion irradiated paramagnetic subsurface of the FeRh thin films. This novel magnetic modification technique by using ion irradiation and subsequent annealing can be a potential tool to control the surface magnetic state of FeRh thin films.

  11. Resistive switching characteristics of solution-processed Al-Zn-Sn-O films annealed by microwave irradiation

    Science.gov (United States)

    Kim, Tae-Wan; Baek, Il-Jin; Cho, Won-Ju

    2018-02-01

    In this study, we employed microwave irradiation (MWI) at low temperature in the fabrication of solution-processed AlZnSnO (AZTO) resistive random access memory (ReRAM) devices with a structure of Ti/AZTO/Pt and compared the memory characteristics with the conventional thermal annealing (CTA) process. Typical bipolar resistance switching (BRS) behavior was observed in AZTO ReRAM devices treated with as-deposited (as-dep), CTA and MWI. In the low resistance state, the Ohmic conduction mechanism describes the dominant conduction of these devices. On the other hand, the trap-controlled space charge limited conduction (SCLC) mechanism predominates in the high resistance state. The AZTO ReRAM devices processed with MWI showed larger memory windows, uniform distribution of resistance state and operating voltage, stable DC durability (>103 cycles) and stable retention characteristics (>104 s). In addition, the AZTO ReRAM devices treated with MWI exhibited multistage storage characteristics by modulating the amplitude of the reset bias, and eight distinct resistance levels were obtained with stable retention capability.

  12. Effects of laser irradiation on optical properties of amorphous and annealed Ga15Se81In4 and Ga15Se79In6 chalcogenide thin films

    International Nuclear Information System (INIS)

    Al-Ghamdi, A.A.; Khan, Shamshad A.; Al-Heniti, S.; Al-Agel, F.A.; Al-Harbi, T.; Zulfequar, M.

    2010-01-01

    Amorphous thin films of Ga 15 Se 81 In 4 and Ga 15 Se 79 In 6 glassy alloys with thickness 3000 A were prepared by thermal evaporation onto chemically cleaned glass substrates. The changes in optical properties due to the influence of laser radiation on amorphous and thermally annealed thin films of Ga 15 Se 81 In 4 and Ga 15 Se 79 In 6 were calculated from absorbance and reflectance spectra as a function of photon energy in the wave length region 400-1000 nm. Analysis of the optical absorption data shows that the rule of non-direct transitions predominates. The optical band gaps observed to decrease with the increase of annealing temperatures. Furthermore, exposing thin films to laser irradiation leads to a decrease in optical band gap, absorption coefficient, refractive index and extinction coefficient for both as-prepared and annealed films. The decrease in the optical band gap is explained on the basis of change in nature of films, from amorphous to polycrystalline state, with the increase of annealing temperature and by laser irradiation for 10 min exposure time. Outcomes of our study confirm that this system may be used for photovoltaic devices.

  13. Dependence of the annealing kinetics of A centers and divacancies on temperature, particle energy, and irradiation dose for n-Si crystals

    International Nuclear Information System (INIS)

    Pagava, T.A.

    2002-01-01

    n-Si crystals grown by the float-zone method with a phosphorus concentration of ∼6 x 10 13 cm -3 and irradiated with 2-MeV electrons and 25-MeV protons were studied. It is shown that the kinetics of the isochronous annealing of the A centers and divacancies (the annealing temperature and the rearrangement of radiation defects in the situation where the dissociation of one type of defects gives rise to more stable defects) depends in a complicated way on the energy, dose, and temperature of irradiation; i.e., this kinetics depends on the relation between the concentrations of various radiation defects and on the charge state of reacting primary radiation defects when they interact with each other, with impurity atoms, and with disordered regions. An increase in the concentration of divacancies in the temperature range of 180-210 deg. C is attributed to the dissociation of disordered regions

  14. Identification of irradiated foods prospects for post-irradiation estimate of irradiation dose in irradiated dry egg products

    International Nuclear Information System (INIS)

    Katusin-Raxem, B.; Mihaljievic, B.; Razem, D.

    2002-01-01

    Radiation-induced chemical changes in foods are generally very small at the usual processing doses. Some exception is radiation degradation of lipids, which are the components most susceptible to oxidation. A possible use of lipid hydroperoxides (LOOH) as indicators of irradiation is described for whole egg and egg yolk powders. A sensitive and reproducible spectrophotometric method for LOOH measurement based on feric thiocyanate, as modified in our laboratory, was applied. This method enabled the determination of LOOH, including oleic acid hydroperoxides, which is usually not possible with some other frequently used methods. The lowest limit of 0.05 mmol LOOH/kg lipid could be measured. The measurements were performed in various batches of whole egg and egg yolk powders by the same producer, as well as in samples supplied by various producers. Baseline level in unirradiated egg powder 0.110 ± 0.067 mmol LOOH /kgL was established. The formation of LOOH with dose, as well as the influence of age, irradiation conditions, storage time and storage conditions on LOOH were investigated. The irradiation of whole egg and egg yolk powders in the presence of air revealed an initially slow increase of LOOH, caused by an inherent antioxidative capacity, followed by a fast linear increase after the inhibition dose (D o ). In all investigated samples D o of 2 kGy was determined. Hydroperoxides produced in irradiated materials decay with time. In whole egg and egg yolk powders, after an initially fast decay, the level of LOOH continued to decrease by the first-order decay. Nevertheless, after a six months storage it was still possible to unambiguously identify samples which had been irradiated with 2 kGy in the presence of air. Reirradiation of these samples revealed a significant reduction of D o to 1 kGy. In samples irradiated with 4 kGy and kept under the same conditions, the shortening of D o to 0.5 kGy was determined by reirradiation. This offers a possibility for the

  15. Behavior of the future LHC magnet protection diodes irradiated in a nuclear reactor at 4.6 K with intermediate annealing

    International Nuclear Information System (INIS)

    Berland, V.; Hagedorn, D.; Gerstenberg, H.

    1996-01-01

    In the framework of the LHC project at CERN, the effects of radiation on the electrical characteristics of epitaxial diodes for superconducting magnet protection were studied. The diodes were exposed to an irradiation dose up to 50 kGy and a neutron fluence of 10 15 n/cm 2 with intermediate thermal annealing each 10 kGy dose steps in the Technical University of Munich reactor at 4.6 K

  16. Thermal annealing behaviour of sulphur-35 produced in pile-irradiated mixed crystals AlCl/sub 3/-FeCl/sub 3/

    Energy Technology Data Exchange (ETDEWEB)

    Dyakovich, V; Todorovski, D S; Kostadinova, Z D [Sofia Univ. (Bulgaria). Khimicheski Fakultet

    1983-12-19

    The regression analysis of the experimental results on the thermal annealing behaviour of /sup 35/S produced in pile-irradiated mixed crystals AlCl/sub 3/-FeCl/sub 3/ confirms some suppositions made in a previous paper. The chemical state of /sup 35/S is defined by the target prehistory and the iron concentration. The influence of Fe/sup 3 +/ can be observed indirectly through its influence on the defect structure formed.

  17. Effect of post-etch annealing gas composition on the structural and electrochemical properties of Ti2CTx MXene electrodes for supercapacitor applications

    KAUST Repository

    Rakhi, R. B.

    2015-07-08

    Two-dimensional Ti2CTx MXene nanosheets were prepared by the selective etching of Al layer from Ti2AlC MAX phase using HF treatment. The MXene sheets retained the hexagonal symmetry of the parent Ti2AlC MAX phase. Effect of the post-etch annealing ambient (Ar, N2, N2/H2 and Air) on the structure and electrochemical properties of the MXene nanosheets was investigated in detail. After annealing in Air, the MXene sheets exhibited variations in structure, morphology and electrochemical properties as compared to HF treated MAX phase. In contrast, samples annealed in Ar, N2 and N2/H2 ambient retained their original morphology. However, a significant improvement in the supercapacitor performance is observed upon heat treatment in Ar, N2 and N2/H2 ambients. When used in symmetric two-electrode configuration, the MXene sample annealed in N2/H2 atmosphere exhibited the best capacitive performance with specific capacitance value (51 F/g at 1A/g) and high rate performance (86%). This improvement in the electrochemical performance of annealed samples is attributed to highest carbon content, and lowest fluorine content on the surface of the sample upon annealing, while retaining the original 2D layered morphology, and providing maximum access of aqueous electrolyte to the electrodes.

  18. PENGARUH VARIASI SUHU POST WELD HEAT TREATMENT ANNEALING TERHADAP SIFAT MEKANIS MATERIAL BAJA EMS-45 DENGAN METODE PENGELASAN SHIELDED METAL ARC WELDING (SMAW

    Directory of Open Access Journals (Sweden)

    Rusiyanto Rusiyanto

    2012-02-01

    Full Text Available Penelitian ini bertujuan Untuk mengetahui nilai kekerasan Vickers material Baja EMS-45 sebelum proses pengelasan dan setelah dilakukan proses pengelasan tanpa post weld heat treatment annealing, Untuk mengetahui berapakah suhu optimal post weld heat treatment annealing untuk material baja EMS-45 dengan variasi suhu yang digunakan 350 o C, 550 o C, dan 750 C. Untuk mengetahui struktur mikro dari material baja EMS-45 akibat variasi suhu post weld heat treatment annealing pada proses pengelasan dengan menggunakan metode pengelasan shielded metal arc welding. Bahan atau material dasar yang digunakan pada penelitian ini adalah Baja EMS-45 dengan ketebalan pelat 10 mm, lebar pelat 20 mm dan panjang 100 mm. Berdasarkan hasil pengujian nilai kekerasan tertinggi setelah proses pengelasan terletak pada daerah Logam Las. Pengelasan non PWHT memiliki nilai kekerasan paling tinggi setelah proses pengelasan yaitu sebesar 183,2 VHN. Suhu optimal Post Weld Heat Treatment Annealing untuk material baja EMS-45 adalah pada suhu 750 C. Karena pada PWHT pada suhu tersebut mengalami penurunan kekerasan yang besar yaitu sebesar 127,2 VHN, sehingga material baja EMS-45 dapat memperbaiki sifat mampu mesinnya. Struktur mikro dari material baja EMS-45 sebelum proses pengelasan berupa grafit serpih, perlit dan ferit, setelah dilakukan proses pengelasan mempunyai struktur mikro berupa matrik ferit dan grafit pada daerah logam las, matrik perlit kasar dan grafit serpih pada daerah HAZ dan struktur perlit, grafit serpih dan ferit pada daerah logam induk o o

  19. TiN/Al2O3/ZnO gate stack engineering for top-gate thin film transistors by combination of post oxidation and annealing

    Science.gov (United States)

    Kato, Kimihiko; Matsui, Hiroaki; Tabata, Hitoshi; Takenaka, Mitsuru; Takagi, Shinichi

    2018-04-01

    Control of fabrication processes for a gate stack structure with a ZnO thin channel layer and an Al2O3 gate insulator has been examined for enhancing the performance of a top-gate ZnO thin film transistor (TFT). The Al2O3/ZnO interface and the ZnO layer are defective just after the Al2O3 layer formation by atomic layer deposition. Post treatments such as plasma oxidation, annealing after the Al2O3 deposition, and gate metal formation (PMA) are promising to improve the interfacial and channel layer qualities drastically. Post-plasma oxidation effectively reduces the interfacial defect density and eliminates Fermi level pinning at the Al2O3/ZnO interface, which is essential for improving the cut-off of the drain current of TFTs. A thermal effect of post-Al2O3 deposition annealing at 350 °C can improve the crystalline quality of the ZnO layer, enhancing the mobility. On the other hand, impacts of post-Al2O3 deposition annealing and PMA need to be optimized because the annealing can also accompany the increase in the shallow-level defect density and the resulting electron concentration, in addition to the reduction in the deep-level defect density. The development of the interfacial control technique has realized the excellent TFT performance with a large ON/OFF ratio, steep subthreshold characteristics, and high field-effect mobility.

  20. Changes in the structural and electrical properties of vacuum post-annealed tungsten- and titanium-doped indium oxide films deposited by radio frequency magnetron sputtering

    NARCIS (Netherlands)

    Yan, L.T.; Schropp, R.E.I.

    2011-01-01

    Tungsten- and titanium-doped indium oxide (IWO and ITiO) filmswere deposited at room temperature by radio frequency (RF) magnetron sputtering, and vacuum post-annealing was used to improve the electron mobility. With increasing deposition power, the as deposited films showed an increasingly

  1. MR characterization of post-irradiation soft tissue edema

    International Nuclear Information System (INIS)

    Richardson, M.L.; Zink-Brody, G.C.; Patten, R.M.; Koh Wuijin; Conrad, E.U.

    1996-01-01

    Objective. Radiation therapy is often used to treat bone und soft tissue neoplasms, and commonly results in soft tissue edema in the radiation field. However, the time course, distribution and degree of this edema have not been well characterized. Our study was carried out to better define these features of the edema seen following neutron and photon radiation therapy. Results. In general, soft tissue signal intensity in the radiation field initially increased over time, peaking at about 6 months for neutron-treated patients and at about 12-18 months for photon-treated patients. Signal intensity then decreased slowly over time. However, at the end of the follow-up period, signal intensity remained elevated for most patients in both groups. Signal intensity in a particular tissue was greater and tended to persist longer on STIR sequences than on T2-weighted sequences. Survival analysis of signal intensity demonstrated much longer edema survival times for neutron-treated patients than for photon-treated patients. Signal intensity increase in the intramuscular septa persisted for much longer than for fat or muscle. A mild increase in size was noted in the subcutaneous fat and intramuscular septa. Muscle, on the other hand, showed a decrease in size following treatment. This was mild for the photon-treated group and more marked for the neutron-treated group. Conclusions. There is a relatively wide variation in the duration and degree of post-irradiation edema in soft tissues. This edema seems to persist longer in the intramuscular septa than in fat or muscle. Although the duration of follow-up was limited, our study suggests that this edema resolves in roughly half the photon-treated patients within 2-3 years post-treatment and in less than 20% of neutron-treated patients by 3-4 years post-treatment. Muscle atrophy was seen in both photon- and neutron-treated patients, but was more severe in the neutron-treated group. (orig./vhe). With 4 figs

  2. Effect of the duration of a wet KCN etching step and post deposition annealing on the efficiency of Cu2ZnSnSe4 solar cells

    OpenAIRE

    Sahayaraj, Sylvester; Brammertz, Guy; Vermang, Bart; Ranjbar, Samaneh; Meuris, Marc; Vleugels, Jef; Poortmans, Jef

    2016-01-01

    The influence of the duration of the KCN etching step on the efficiency of Cu2ZnSnSe4 (CZTSe) solar cells and Post deposition annealing (PDA) has been explored. CZTSe thin film absorbers prepared by selenization at 450 degrees C were etched by 5 wt% KCN/KOH from 30s up to 360 s before solar cell processing. KCN etching times above 120 s resulted in poor efficiencies. The fill factor (FF) and short circuit current density Jsc) of these devices were affected severely. After annealing the solar ...

  3. The effect of non-contact heating (microwave irradiation) and contact heating (annealing process) on properties and performance of polyethersulfone nanofiltration membranes

    International Nuclear Information System (INIS)

    Mansourpanah, Y.; Madaeni, S.S.; Rahimpour, A.; Farhadian, A.

    2009-01-01

    In this work the effect of microwave irradiation on morphology and performance of polyethersulfone (PES) membranes was investigated. The membranes were prepared with 20 wt.% of PES by phase inversion method. N,N-dimethylformamide (DMF) and mixture of water and ethyl alcohol (90/10 vol.%) were employed as solvent and coagulant respectively. Polyvinylpirrolidone (PVP) with the concentration of 2 wt.% was selected as pore former. The effects of irradiation time (10, 30, 60, 90, 120 s) and microwave power (180, 360, 720 and 900 W) on structure and performance of membranes were studied. Increasing the irradiation time and power caused variation in permeate flux and ion rejection. Moreover, the effects of annealing processes (60, 70, 80 deg. C) were studied. Transmembrane pressure was selected around 1.5 MPa for all experiments. Scanning electron microscope (SEM) and atomic force microscope (AFM) were employed to describe the surface morphology of the prepared membranes. The effect of microwave irradiation time in different power revealed alterations in membrane surface morphology and AFM images represented that surface parameters (such as surface roughness) have been changed. The membrane exhibited moderate rejection (47%) and low permeate flux (4.5 kg/m 2 h) at 80 deg. C for NaCl solution. The SEM images indicate that the dense skin layer is formed at 80 deg. C annealing.

  4. Effects of post-annealing and cobalt co-doping on superconducting properties of (Ca,Pr)Fe{sub 2}As{sub 2} single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Okada, T., E-mail: 8781303601@mail.ecc.u-tokyo.ac.jp; Ogino, H.; Yakita, H.; Yamamoto, A.; Kishio, K.; Shimoyama, J.

    2014-10-15

    Highlights: • Post-annealing at 400 °C killed superconductivity for Co-free sample. • Pr,Co co-doped samples maintained superconductivity even after annealing. • Two-step superconducting transition was observed via magnetization measurement. • Bulk superconductivity of low-T{sub c} component was confirmed. • Superconducting volume fraction of high-T{sub c} component was always small. - Abstract: In order to clarify the origin of anomalous superconductivity in (Ca,RE)Fe{sub 2}As{sub 2} system, Pr doped and Pr,Co co-doped CaFe{sub 2}As{sub 2} single crystals were grown by the FeAs flux method. These samples showed two-step superconducting transition with T{sub c1} = 25–42 K, and T{sub c2} < 16 K, suggesting that (Ca,RE)Fe{sub 2}As{sub 2} system has two superconducting components. Post-annealing performed for these crystals in evacuated quartz ampoules at various temperatures revealed that post-annealing at ∼400 °C increased the c-axis length for all samples. This indicates that as-grown crystals have a certain level of strain, which is released by post-annealing at ∼400 °C. Superconducting properties also changed dramatically by post-annealing. After annealing at 400 °C, some of the co-doped samples showed large superconducting volume fraction corresponding to the perfect diamagnetism below T{sub c2} and high J{sub c} values of 10{sup 4}–10{sup 5} A cm{sup −2} at 2 K in low field, indicating the bulk superconductivity of (Ca,RE)Fe{sub 2}As{sub 2} phase occurred below T{sub c2}. On the contrary, the superconducting volume fraction above T{sub c2} was always very small, suggesting that 40 K-class superconductivity observed in this system is originating in the local superconductivity in the crystal.

  5. Biochemical and Tissue Studies on Post Irradiation Recovery in Mammals

    International Nuclear Information System (INIS)

    Abdou, M.I.M.

    2004-01-01

    three main studies were performed in this thesis, namely, mortality and survival study, biochemical studies, and studies on tissue alterations cobalt-60 gamma irradiation for low let was used for the external whole body irradiation of the irradiated animal groups. a total number of animals of 722 virgin female adult wister rats of approximately the same age and weight were used for the three studies that were performed, including the control and irradiated animal groups. the animals were housed and kept with special care at fixed temperature, humidity and diet. the study on mortality and survival included 370 animals divided into control and groups irradiated with 4,5,6,7,8 and 9 Gy. this study was followed up for one year to record the number and date of animal deaths for the different irradiated groups. for the 8 and 9 Gy irradiated groups the follow up ended after 12 weeks and 11 days respectively when animal mortality reached 100%. the maximum percent mortality was noted at the second week (3.3,8,14 and 29%) for the 4,5,6 and 7 Gy irradiated groups respectively. for the 8 and 9 Gy irradiated groups, the maximum percent mortality was noted at the first week (42.9 and 90% respectively). regression equations were applied for the percent of mortality of the 5-8 Gy irradiated groups to estimate the LD 50/30, which was found to be 6.4 Gy

  6. The influence of post-growth annealing on the optical properties of InAs quantum dot chains grown on pre-patterned GaAs(100)

    International Nuclear Information System (INIS)

    Hakkarainen, T V; Polojärvi, V; Schramm, A; Tommila, J; Guina, M

    2012-01-01

    We report on the effect of post-growth thermal annealing of [011]-, [01 1-bar ]-, and [010]-oriented quantum dot chains grown by molecular beam epitaxy on GaAs(100) substrates patterned by UV-nanoimprint lithography. We show that the quantum dot chains experience a blueshift of the photoluminescence energy, spectral narrowing, and a reduction of the intersubband energy separation during annealing. The photoluminescence blueshift is more rapid for the quantum dot chains than for self-assembled quantum dots that were used as a reference. Furthermore, we studied polarization resolved photoluminescence and observed that annealing reduces the intrinsic optical anisotropy of the quantum dot chains and the self-assembled quantum dots. (paper)

  7. Post-growth annealing of Bridgman-grown CdZnTe and CdMnTe crystals for room-temperature nuclear radiation detectors

    International Nuclear Information System (INIS)

    Egarievwe, Stephen U.; Yang, Ge; Egarievwe, Alexander A.; Okwechime, Ifechukwude O.; Gray, Justin; Hales, Zaveon M.; Hossain, Anwar; Camarda, Giuseppe S.; Bolotnikov, Aleksey E.; James, Ralph B.

    2015-01-01

    Bridgman-grown cadmium zinc telluride (CdZnTe or CZT) and cadmium manganese telluride (CdMnTe or CMT) crystals often have Te inclusions that limit their performances as X-ray- and gamma-ray-detectors. We present here the results of post-growth thermal annealing aimed at reducing and eliminating Te inclusions in them. In a 2D analysis, we observed that the sizes of the Te inclusions declined to 92% during a 60-h annealing of CZT at 510 °C under Cd vapor. Further, tellurium inclusions were eliminated completely in CMT samples annealed at 570 °C in Cd vapor for 26 h, whilst their electrical resistivity fell by an order of 10 2 . During the temperature-gradient annealing of CMT at 730 °C and an 18 °C/cm temperature gradient for 18 h in a vacuum of 10 −5 mbar, we observed the diffusion of Te from the sample, so causing a reduction in size of the Te inclusions. For CZT samples annealed at 700 °C in a 10 °C/cm temperature gradient, we observed the migration of Te inclusions from a low-temperature region to a high one at 0.022 μm/s. During the temperature-gradient annealing of CZT in a vacuum of 10 −5 mbar at 570 °C and 30 °C/cm for 18 h, some Te inclusions moved toward the high-temperature side of the wafer, while other inclusions of the same size, i.e., 10 µm in diameter, remained in the same position. These results show that the migration, diffusion, and reaction of Te with Cd in the matrix of CZT- and CMT-wafers are complex phenomena that depend on the conditions in local regions, such as composition and structure, as well as on the annealing conditions

  8. Annealing study of main electron irradiation-induced defects (H4 and H5) in P-In P using DLTS technique

    International Nuclear Information System (INIS)

    Massarani, B.; Awad, F.; Kaaka, M.

    1992-12-01

    Thermal annealing of the two hole traps H 4 and H 5 in room-temperature electron-irradiated In P Schottky diodes was investigated. Electron-irradiation energy ranging between 0.15 and 1.5 MeV with doses ranging between 5 x 10 14 and 10 16 e/cm 2 . DLTS technique with double-phase detector was used in this study. Contrary to what is generally admitted, we found that H 5 anneals out at about 150 C o with an activation energy of 1 eV. We have shown that H 4 is a complex defect having two components that we could resolve. While the first one, having lower emission cross section and higher capture cross section with ΔE = 0.37 eV anneals out at about 110 C o . The other component, with ΔE = 0.50 eV is thermally stable even above 170 C o . (author). 13 refs., 17 figs., 2 tabs

  9. The effect of pre-heating and pre-irradiation with gamma rays on thermal annealing in bis [n-benzoil-n-phenyl hydroxilaminate] copper (II)

    International Nuclear Information System (INIS)

    Nakanishi, C.; Silva, C.P.G. da.

    1988-10-01

    The main purpose of this work was to make a contribution to the study of the chemical effects of the (n,γ) reaction on copper chelate. The influence of some factors such as pre-heating and pre-irradiation with gamma-rays on the retention and thermal annealing of bis-[N-benzoil-N-phenlhydroxilaminate] copper (II) was investigated. The complex was synthesized and later characterized by means of: determination of the melting-Point, elemental analysis, infra-red and vesible range absortion spectrophotometry. The compound was heated and also irradiated with gamma-rays in order to verify the effect of thermolysis and radiolysis on the retention. It seems that heat gamma-radiation can produce deffects which will lower the susceptibility of the compound to thermal annealing. On the model envolving electronic species some explanation of ours results were made and a mechanism was proposed for the retention and thermal annealing aasuming the capture of free electrons and also the existence of holes. (author) [pt

  10. The effect of pre-heating and pre-irradiation with gamma-rays on thermal annealing in-bis-[n-benzoil-n-(o) tolylhydroxylaminate] cooper (II)

    International Nuclear Information System (INIS)

    Nakanishi, C.; Silva, C.P.G. da.

    1990-02-01

    The main purpose of this work was to make a contribution on the study of the chemical effects of the (N,γ) reaction on copper chelate. The influence of some factors such as pre-heating and pre-irradiation with gama-rays on the retention and thermal annealing of bis [N-benzoyl-N-(o)tolylhydroxylaminate] copper (II) was investigated. The complex was synthesized and later characterized by means of: determination of the melting-point, elemental analysis, infra-red and visible range absortion spectrophotometry. The compound was heated and also irradiated with gamma-rays in order to verify the effect of thermolysis on the retention. It seems that heat and gamma-radiaition can produce deffects which will lower the susceptibility of the compound to thermal annealling. On the basis on the model envolving electronic species some explanation of ours results were made and a mechanism was proposed for the retention and thermal annealing assuming the capture of free electrons and also the existence of holes. (author) [pt

  11. Post-growth annealing induced change of conductivity in As-doped ZnO grown by radio frequency magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    To, C. K.; Yang, B.; Su, S. C.; Ling, C. C.; Beling, C. D.; Fung, S. [Department of Physics, University of Hong Kong, Pokfulam Road (Hong Kong)

    2011-12-01

    Arsenic-doped ZnO films were fabricated by radio frequency magnetron sputtering method at a relatively low substrate temperature of 200 deg. C. Post-growth annealing in air was carried out up to a temperature of 1000 deg. C. The samples were characterized by Hall measurement, positron annihilation spectroscopy (PAS), secondary ion mass spectroscopy (SIMS), and cathodoluminescence (CL). The as-grown sample was of n-type and it converted to p-type material after the 400 deg. C annealing. The resulting hole concentration was found to increase with annealing temperature and reached a maximum of 6 x 10{sup 17} cm{sup -3} at the annealing temperature of 600 deg. C. The origin of the p-type conductivity was consistent with the As{sub Zn}(V{sub Zn}){sub 2} shallow acceptor model. Further increasing the annealing temperature would decrease the hole concentration of the samples finally converted the sample back to n-type. With evidence, it was suggested that the removal of the p-type conductivity was due to the dissociation of the As{sub Zn}(V{sub Zn}){sub 2} acceptor and the creation of the deep level defect giving rise to the green luminescence.

  12. Post-growth annealing induced change of conductivity in As-doped ZnO grown by radio frequency magnetron sputtering

    Science.gov (United States)

    To, C. K.; Yang, B.; Su, S. C.; Ling, C. C.; Beling, C. D.; Fung, S.

    2011-12-01

    Arsenic-doped ZnO films were fabricated by radio frequency magnetron sputtering method at a relatively low substrate temperature of 200 °C. Post-growth annealing in air was carried out up to a temperature of 1000 °C. The samples were characterized by Hall measurement, positron annihilation spectroscopy (PAS), secondary ion mass spectroscopy (SIMS), and cathodoluminescence (CL). The as-grown sample was of n-type and it converted to p-type material after the 400 °C annealing. The resulting hole concentration was found to increase with annealing temperature and reached a maximum of 6 × 1017 cm-3 at the annealing temperature of 600 °C. The origin of the p-type conductivity was consistent with the AsZn(VZn)2 shallow acceptor model. Further increasing the annealing temperature would decrease the hole concentration of the samples finally converted the sample back to n-type. With evidence, it was suggested that the removal of the p-type conductivity was due to the dissociation of the AsZn(VZn)2 acceptor and the creation of the deep level defect giving rise to the green luminescence.

  13. Post-growth annealing induced change of conductivity in As-doped ZnO grown by radio frequency magnetron sputtering

    International Nuclear Information System (INIS)

    To, C. K.; Yang, B.; Su, S. C.; Ling, C. C.; Beling, C. D.; Fung, S.

    2011-01-01

    Arsenic-doped ZnO films were fabricated by radio frequency magnetron sputtering method at a relatively low substrate temperature of 200 deg. C. Post-growth annealing in air was carried out up to a temperature of 1000 deg. C. The samples were characterized by Hall measurement, positron annihilation spectroscopy (PAS), secondary ion mass spectroscopy (SIMS), and cathodoluminescence (CL). The as-grown sample was of n-type and it converted to p-type material after the 400 deg. C annealing. The resulting hole concentration was found to increase with annealing temperature and reached a maximum of 6 x 10 17 cm -3 at the annealing temperature of 600 deg. C. The origin of the p-type conductivity was consistent with the As Zn (V Zn ) 2 shallow acceptor model. Further increasing the annealing temperature would decrease the hole concentration of the samples finally converted the sample back to n-type. With evidence, it was suggested that the removal of the p-type conductivity was due to the dissociation of the As Zn (V Zn ) 2 acceptor and the creation of the deep level defect giving rise to the green luminescence.

  14. Post-irradiation handling and examination at the HFEF complex

    International Nuclear Information System (INIS)

    Bacca, J.P.

    1980-01-01

    The Hot Fuel Examination Facility provides postirradiation handling and examination of fast reactor irradiation experiments and safety tests for the United States Breeder Reactor Program. Nondestructive interim examinations and destructive terminal examinations at HFEF derive data from tests irradiated in the Experimental Breeder Reactor No. II, in the Transient Reactor Test Facility (TREAT), and in the Sodium Loop Safety Facility. Similar support will be provided in the near future for tests irradiated in the Fast Flux Test Facility, and for the larger sodium loops to be irradiated in TREAT

  15. Post irradiation examination of garter springs from Indian PHWRs

    International Nuclear Information System (INIS)

    Dubey, J.S.; Shah, Priti Kotak; Mishra, Prerna; Singh, H.N.; Alur, V.D.; Kumar, Ashwini; Bhandekar, A.; Pandit, K.M.; Anantharaman, S.

    2013-12-01

    Irradiated Zr-2.5Nb-0.5Cu garter springs, belonging to Indian Pressurised Heavy Water Reactors, which had experienced 8 to 10 Effective Full Power Years of operation were subjected to visual, dimensional, chemical, metallographic examination and relevant mechanical tests. Methodology of the tests conducted and results are presented. The digital photographs were used to measure the inner and outer circumferences by image processing. The hydrogen (H) content in the spring coils were measured using Differential Scanning Calorimetry (DSC). In the stretch test, all the irradiated GSs were found to require an additional load, as compared to unirradiated GS, to produce a given amount of residual extension which indicated that the irradiated GSs had undergone significant irradiation hardening. The crush test results showed that the minimum load required to crush the coil or cause a sudden sideways shift in the grips was higher than 400 N/coil, much higher than the design load. The test results indicated that the irradiated GS, after 10 EFPY of operation, have adequate strength and ductility to continue to meet the design intent. Mechanical tests were carried out on irradiated girdle wires taken out of the loose fit garter springs (GS) from (NAPS-1, ∼ 8.5 EFPY) and tight fit garter spring from KAPS-2 (∼ 8.0 EFPY) PHWRs. Tensile tests on the irradiated girdle wires, showed irradiation hardening in the material and reduction in ductility. The irradiated girdle wires have around 4 to 5% residual ductility level against the 15% ductility of unirradiated wire. The fracture surfaces of the irradiated as well as the un-irradiated girdle wires were observed in SEM. (author)

  16. Effect of the sample annealing temperature and sample crystallographic orientation on the charge kinetics of MgO single crystals subjected to keV electron irradiation.

    Science.gov (United States)

    Boughariou, A; Damamme, G; Kallel, A

    2015-04-01

    This paper focuses on the effect of sample annealing temperature and crystallographic orientation on the secondary electron yield of MgO during charging by a defocused electron beam irradiation. The experimental results show that there are two regimes during the charging process that are better identified by plotting the logarithm of the secondary electron emission yield, lnσ, as function of the total trapped charge in the material QT. The impact of the annealing temperature and crystallographic orientation on the evolution of lnσ is presented here. The slope of the asymptotic regime of the curve lnσ as function of QT, expressed in cm(2) per trapped charge, is probably linked to the elementary cross section of electron-hole recombination, σhole, which controls the trapping evolution in the reach of the stationary flow regime. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.

  17. Annealing enhancement effect by light illumination on proton irradiated Cu(In, Ga)Se2 thin-film solar cells

    International Nuclear Information System (INIS)

    Kawakita, Shirou; Imaizumi, Mitsuru; Matsuda, Sumio; Yamaguchi, Masafumi; Kushiya, Katsumi; Ohshima, Takeshi; Itoh, Hisayoshi

    2002-01-01

    In this paper, we investigated the high radiation tolerance of copper indium gallium di-selenide (CIGS) thin-film solar cells by conducting in situ measurements of short circuit current and open circuit voltage of CIGS thin-film solar cells during and after proton irradiation under short circuit condition. We found that the annealing rate of proton-induced defects in CIGS thin-film solar cells under light illumination with an AM0 solar simulator is higher than that under dark conditions. The activation energy of proton-induced defects in the CIGS thin-film solar cells with (without) light illumination is 0.80 eV (0.92 eV), which implies on enhanced defect annealing rate in CIGS thin-film solar cells due to minority-carrier injection. (author)

  18. High performance ultraviolet photodetectors with atomic-layer-deposited ZnO films via low-temperature post-annealing in air

    Directory of Open Access Journals (Sweden)

    Jian Gao

    2018-01-01

    Full Text Available In this work, we have investigated the effect of low temperature post-annealing in air on atomic-layer-deposited ZnO metal-semiconductor-metal (MSM ultraviolet photodetectors (UV PDs. The results indicate that the post-annealing could reduce the dark-current of the MSM device by ten orders of magnitude; however, it also decreased the photo-current of the UV PD by one order of magnitude. The former could be related to the reduction of oxygen vacancies and the crystallization enhancement of the ZnO film; the latter should be attributed to the reduction of defects in the ZnO film, thus resulting in a smaller decrease in thermionic-field emission tunneling barrier because of reduced holes trapped near the interface. For the post-annealing at 250 oC for 30 min, the dark-current was equal to 5.16×10-11 A, and the ultraviolet-visible rejection ratio approached 1.4×106, and the responsivity was as high as 1.78×103 A/W at 5V. Further, prolonging annealing time at a lower temperature (200 oC also could greatly improve the performance of the UV PD, i.e., 90 min annealing produced a quite large responsivity of 1.30×104 A/W at 5 V while maintaining a very low dark-current (1.42×10-10 A and a large ultraviolet-visible rejection ratio (4.06×105.

  19. Improved amorphous/crystalline silicon interface passivation for heterojunction solar cells by low-temperature chemical vapor deposition and post-annealing treatment.

    Science.gov (United States)

    Wang, Fengyou; Zhang, Xiaodan; Wang, Liguo; Jiang, Yuanjian; Wei, Changchun; Xu, Shengzhi; Zhao, Ying

    2014-10-07

    In this study, hydrogenated amorphous silicon (a-Si:H) thin films are deposited using a radio-frequency plasma-enhanced chemical vapor deposition (RF-PECVD) system. The Si-H configuration of the a-Si:H/c-Si interface is regulated by optimizing the deposition temperature and post-annealing duration to improve the minority carrier lifetime (τeff) of a commercial Czochralski (Cz) silicon wafer. The mechanism of this improvement involves saturation of the microstructural defects with hydrogen evolved within the a-Si:H films due to the transformation from SiH2 into SiH during the annealing process. The post-annealing temperature is controlled to ∼180 °C so that silicon heterojunction solar cells (SHJ) could be prepared without an additional annealing step. To achieve better performance of the SHJ solar cells, we also optimize the thickness of the a-Si:H passivation layer. Finally, complete SHJ solar cells are fabricated using different temperatures for the a-Si:H film deposition to study the influence of the deposition temperature on the solar cell parameters. For the optimized a-Si:H deposition conditions, an efficiency of 18.41% is achieved on a textured Cz silicon wafer.

  20. Effect of template post-annealing on Y(Dy)BaCuO nucleation on CeO2 buffered metallic tapes

    Science.gov (United States)

    Hu, Xuefeng; Zhong, Yun; Zhong, Huaxiao; Fan, Feng; Sang, Lina; Li, Mengyao; Fang, Qiang; Zheng, Jiahui; Song, Haoyu; Lu, Yuming; Liu, Zhiyong; Bai, Chuanyi; Guo, Yanqun; Cai, Chuanbing

    2017-08-01

    Substrate engineering is very significant in the synthesis of the high-temperature superconductor (HTS) coated conductor. Here we design and synthesize several distinct and stable Cerium oxide (CeO2) surface reconstructions which are used to grow epitaxial films of the HTS YBa2Cu3O7-δ (YBCO). To identify the influence of annealing and post-annealing surroundings on the nature of nucleation centers, including Ar/5%H2, humid Ar/5%H2 and O2 in high temperature annealing process, we study the well-controlled structure, surface morphology, crystal constants and surface redox processes of the ceria buffers by using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and field-emission scanning electronic microscopy (FE-SEM), respectively. The ceria film post-annealed under humid Ar/5%H2 gas shows the best buffer layer properties. Furthermore, the film absorbs more oxygen ions, which appears to contribute to oxygenation of superconductor film. The film is well-suited for ceria model studies as well as a perfect substitute for CeO2 bulk material.

  1. The influence of post-annealing treatment on the wettability of Ag+/Na+ ion-exchanged soda-lime glasses

    International Nuclear Information System (INIS)

    Razzaghi, Ahmad; Maleki, Maniya; Azizian-Kalandaragh, Yashar

    2013-01-01

    In this paper, the effect of thermal annealing and the duration of ion-exchange on the wetting parameters of the Ag + /Na + ion-exchanged glasses have been reported. The analysis of wetting angle in different post-annealing temperatures shows that the wetting angle is increased by increasing the annealing temperature. The wetting parameters of Ag + /Na + ion-exchanged glasses at different ion-exchanged periods of time have been also investigated. Scanning electron microscopy (SEM), UV–Visible spectroscopy and Fourier transform infrared (FTIR) spectroscopy have been used for determination of surface morphology and composition analysis of the prepared samples. The results of SEM show changes in the surface of the samples for different post-annealing temperatures. The optical characterization using UV–Vis spectroscopy shows an increase in the intensity of the absorption peak with increasing the ion-exchange duration. The FTIR spectroscopy confirms the formation of silver oxide material on the surface of Ag + /Na + ion-exchanged glasses.

  2. Magnetic properties dependence on the coupled effects of magnetic fields on the microstructure of as-deposited and post-annealed Co/Ni bilayer thin films

    Energy Technology Data Exchange (ETDEWEB)

    Franczak, Agnieszka [LISM, Universite de Reims Champagne-Ardenne, BP 1039, 51687 Reims Cedex 2 (France); Department of Materials Science, Katholieke Universiteit Leuven, 3001 Leuven (Belgium); Levesque, Alexandra, E-mail: alexandra.levesque@univ-reims.fr [LISM, Universite de Reims Champagne-Ardenne, BP 1039, 51687 Reims Cedex 2 (France); Coïsson, Marco [Electromagnetism Division, Istituto Nazionale di Ricerca Metrologica, 10135 Torino (Italy); Li, Donggang [LISM, Universite de Reims Champagne-Ardenne, BP 1039, 51687 Reims Cedex 2 (France); Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, 110004 Shenyang (China); Barrera, Gabriele [Electromagnetism Division, Istituto Nazionale di Ricerca Metrologica, 10135 Torino (Italy); Università di Torino, Dipartimento di Chimica, 10125 Torino (Italy); Celegato, Federica [Electromagnetism Division, Istituto Nazionale di Ricerca Metrologica, 10135 Torino (Italy); Wang, Qiang [Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, 110004 Shenyang (China); Tiberto, Paola [Electromagnetism Division, Istituto Nazionale di Ricerca Metrologica, 10135 Torino (Italy); Chopart, Jean-Paul [LISM, Universite de Reims Champagne-Ardenne, BP 1039, 51687 Reims Cedex 2 (France)

    2014-12-15

    Magnetic films and multilayers are the focus of much attention motivated mainly by their wide range of applications, such as magnetic data storage devices and sensors. The magnetic multilayer structures are normally prepared through physical means of deposition, as molecular beam epitaxy (MBE) or sputtering. However, there are already examples of materials produced by electrochemical routes, which share with the other deposition techniques a high sensitivity of magnetic and transport properties of the samples on their crystallographic and chemical structure. In addition, electrochemical deposition allows growing structures with high aspect ratio, which are not possible to obtain by MBE deposition followed by lithographic processes. The present work investigates the Co/Ni bilayered nanocrystalline films produced through the temperature-elevated electrochemical deposition, and modified by annealing carried out also under an external magnetic field. The results indicate an increase of the coercive field of deposited Co/Ni bilayers, when the electrodeposition process was conducted under magnetic field of 1 T. The annealing processing caused further remarkable increase of the coercive field of as-prepared bilayers that has been preserved under magnetic annealing conditions. The magnetic properties are discussed in terms of samples microstructure. In as-prepared samples the in-plane magnetization was observed, while high temperature treatment, causing microstructural changes in the film, resulted also in appearance of a small component of magnetization oriented perpendicularly to the films’ plane that could have been observed by MFM analysis. The induced perpendicular magnetization component in the post-annealed samples was a result of the magnetic field applied in the perpendicular direction to the samples’ surface during annealing treatment. - Highlights: • Co deposits were obtained at high electrolyte temperature under applied B-field. • The

  3. Magnetic properties dependence on the coupled effects of magnetic fields on the microstructure of as-deposited and post-annealed Co/Ni bilayer thin films

    International Nuclear Information System (INIS)

    Franczak, Agnieszka; Levesque, Alexandra; Coïsson, Marco; Li, Donggang; Barrera, Gabriele; Celegato, Federica; Wang, Qiang; Tiberto, Paola; Chopart, Jean-Paul

    2014-01-01

    Magnetic films and multilayers are the focus of much attention motivated mainly by their wide range of applications, such as magnetic data storage devices and sensors. The magnetic multilayer structures are normally prepared through physical means of deposition, as molecular beam epitaxy (MBE) or sputtering. However, there are already examples of materials produced by electrochemical routes, which share with the other deposition techniques a high sensitivity of magnetic and transport properties of the samples on their crystallographic and chemical structure. In addition, electrochemical deposition allows growing structures with high aspect ratio, which are not possible to obtain by MBE deposition followed by lithographic processes. The present work investigates the Co/Ni bilayered nanocrystalline films produced through the temperature-elevated electrochemical deposition, and modified by annealing carried out also under an external magnetic field. The results indicate an increase of the coercive field of deposited Co/Ni bilayers, when the electrodeposition process was conducted under magnetic field of 1 T. The annealing processing caused further remarkable increase of the coercive field of as-prepared bilayers that has been preserved under magnetic annealing conditions. The magnetic properties are discussed in terms of samples microstructure. In as-prepared samples the in-plane magnetization was observed, while high temperature treatment, causing microstructural changes in the film, resulted also in appearance of a small component of magnetization oriented perpendicularly to the films’ plane that could have been observed by MFM analysis. The induced perpendicular magnetization component in the post-annealed samples was a result of the magnetic field applied in the perpendicular direction to the samples’ surface during annealing treatment. - Highlights: • Co deposits were obtained at high electrolyte temperature under applied B-field. • The

  4. Design of a decontamination section of the post-irradiation examination laboratory

    International Nuclear Information System (INIS)

    Homberger, Victor; Coronel, Ruben R.; Laumann, Victor; Perez, Jorge O.; Quinteros, Andrea N.; Ratner, Marcos

    1999-01-01

    The Post-Irradiation Examination Laboratory activities include the decontamination of expensive equipment of different sizes and weight, involving the complexity and extension of the necessary decontamination. A decontamination section has been designed for that purpose. (author)

  5. Considerable Enhancement of Field Emission of SnO2Nanowires by Post-Annealing Process in Oxygen at High Temperature

    Directory of Open Access Journals (Sweden)

    Fang XS

    2009-01-01

    Full Text Available Abstract The field emission properties of SnO2nanowires fabricated by chemical vapor deposition with metallic catalyst-assistance were investigated. For the as-fabricated SnO2nanowires, the turn-on and threshold field were 4.03 and 5.4 V/μm, respectively. Considerable enhancement of field emission of SnO2nanowires was obtained by a post-annealing process in oxygen at high temperature. When the SnO2nanowires were post-annealed at 1,000 °C in oxygen, the turn-on and threshold field were decreased to 3.77 and 4.4 V/μm, respectively, and the current density was increased to 6.58 from 0.3 mA/cm2at the same applied electric field of 5.0 V/μm.

  6. Survey of post-irradiation examinations made of mixed carbide fuels

    International Nuclear Information System (INIS)

    Coquerelle, M.

    1997-01-01

    Post-irradiation examinations on mixed carbide, nitride and carbonitride fuels irradiated in fast flux reactors Rapsodie and DFR were carried out during the seventies and early eighties. In this report, emphasis was put on the fission gas release, cladding carburization and head-end gaseous oxidation process of these fuels, in particular, of mixed carbides. (author). 8 refs, 16 figs, 3 tabs

  7. Growth stress buildup in ion beam sputtered Mo thin films and comparative study of stress relaxation upon thermal annealing or ion irradiation

    International Nuclear Information System (INIS)

    Debelle, A.; Abadias, G.; Michel, A.; Jaouen, C.; Pelosin, V.

    2007-01-01

    In an effort to address the understanding of the origin of growth stress in thin films deposited under very energetic conditions, the authors investigated the stress state and microstructure of Mo thin films grown by ion beam sputtering (IBS) as well as the stress relaxation processes taking place during subsequent thermal annealing or ion irradiation. Different sets of samples were grown by varying the IBS deposition parameters, namely, the energy E 0 and the flux j of the primary ion beam, the target-to-sputtering gas mass ratio M 1 /M 2 as well as film thickness. The strain-stress state was determined by x-ray diffraction using the sin 2 ψ method and data analyzed using an original stress model which enabled them to correlate information at macroscopic (in terms of stress) and microscopic (in terms of defect concentration) levels. Results indicate that these refractory metallic thin films are characterized by a high compressive growth stress (-2.6 to -3.8 GPa), resulting from the creation of a large concentration (up to ∼1.4%) of point or cluster defects, due to the atomic peening mechanism. The M 1 /M 2 mass ratio enables tuning efficiently the mean deposited energy of the condensing atoms; thus, it appears to be the more relevant deposition parameter that allows modifying both the microstructure and the stress level in a significant way. The growth stress comes out to be highly unstable. It can be easily relaxed either by postgrowth thermal annealing or ion irradiation in the hundred keV range at very low dose [<0.1 dpa (displacement per atom)]. It is shown that thermal annealing induces deleterious effects such as oxidation of the film surface, decrease of the film density, and in some cases adhesion loss at the film/substrate interface, while ion irradiation allows controlling the stress level without generating any macroscopic damage

  8. Pharmacology of post-irradiation damage of blood capillaries

    International Nuclear Information System (INIS)

    Pospisil, J.; Pouckova, P.

    1979-01-01

    Available literature data are summed up on the effect of a number of substances on irradiation damage to blood capillaries. The substances include vitamins, bioflavonoids, serotonine, histamine, bradykinin, ACTH, adrenal hormones, vasopressin, estrogens, prostaglandins, escin 1-butanol, diisopropylfluorophosphate, phenoxybenzamine, 1,4-dihydroxybenzenesulphonic acid derivatives, and xi-aminohexanoic acid. The data include the effects of the substances administered before and after irradiation on blood capillary damage and on mortality. (Ha)

  9. Analytical methods for post-irradiation dosimetry of foods

    International Nuclear Information System (INIS)

    Rosenthal, I.

    1993-01-01

    The trade and acceptance of foods treated with ionizing radiation, gamma radiation or x-rays, require appropriate means of control. A foolproof test to detect whether or not food has been irradiated, and eventually to quantify the amount of radiation, is vital to verify the labelling and enforce legislation. Such an assay also provides the information for avoiding repeated irradiations which are likely to degrade the food in terms of organoleptic acceptability and nutritional quality. (author)

  10. Interaction of post harvest disease control treatments and gamma irradiation on mangoes

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, G.I.; Cooke, A.W. (Department of Primary Industries, Indooroopilly (Australia)); Boag, T.S. (Riverina-Murray Inst. of Higher Education, Wagga Wagga (Australia). School of Agriculture); Izard, M. (Australian Nuclear Science and Technology Organisation, Lucas Heights (Australia)); Panitz, M. (Committee of Direction of Fruit Marketing, Brisbane Markets (Australia)); Sangchote, S. (Kasetsart Univ., Bangkok (Thailand))

    1990-04-01

    The effects of gamma irradiation and disease control treatments on disease severity and post harvest quality of several mango cultivars were investigated. In mangoes cv. Kensington Pride, irradiation doses ranging from 300-1200 Gy reduced disease, but the level of control was not commercially acceptable. Hot benomyl immediately followed by irradiation provided effective control of anthracnose (Colletotrichum gloeosporioides) and stem end rot (Dothiorella dominicana) during short-term storage (15 days at 20degC). The effects of the two treatments were additive. Satisfactory disease control was achieved during long-term controlled atmosphere storage when mangoes were treated with hot benomyl followed by prochloraz and then irradiated. Effects of fungicide treatment and irradiation were additive. Fungicide, or irradiation treatments alone, were unsatisfactory. Irradiation of cv. Kensington Pride at doses in excess of 600 Gy caused unacceptable surface damage. (author).

  11. Interaction of post harvest disease control treatments and gamma irradiation on mangoes

    International Nuclear Information System (INIS)

    Johnson, G.I.; Cooke, A.W.; Boag, T.S.; Panitz, M.; Sangchote, S.

    1990-01-01

    The effects of gamma irradiation and disease control treatments on disease severity and post harvest quality of several mango cultivars were investigated. In mangoes cv. Kensington Pride, irradiation doses ranging from 300-1200 Gy reduced disease, but the level of control was not commercially acceptable. Hot benomyl immediately followed by irradiation provided effective control of anthracnose (Colletotrichum gloeosporioides) and stem end rot (Dothiorella dominicana) during short-term storage (15 days at 20degC). The effects of the two treatments were additive. Satisfactory disease control was achieved during long-term controlled atmosphere storage when mangoes were treated with hot benomyl followed by prochloraz and then irradiated. Effects of fungicide treatment and irradiation were additive. Fungicide, or irradiation treatments alone, were unsatisfactory. Irradiation of cv. Kensington Pride at doses in excess of 600 Gy caused unacceptable surface damage. (author)

  12. The influence of post-preparation annealing atmospheres on the optical properties and energy transfer between Pr3+ and Dy3+ in mixed lanthanum-yttrium oxyorthosilicate hosts

    Science.gov (United States)

    Ogugua, Simon N.; Swart, Hendrik C.; Ntwaeaborwa, Odireleng M.

    2018-02-01

    The effect of post-annealing atmospheres (air and Ar-H2) on the optical properties of La2-xYxSiO5 (x = 0, 0.5, 1, 1.5 and 2) co-doped 0.25Pr3+ and 0.25Dy3+ powder phosphors were studied. The X-ray diffraction patterns showed that the as-prepared samples have higher full width at half maximum (FWHM) than the annealed samples. The elemental composition, oxidation states, and chemical and electronic states of the phosphors were determined using the X-ray photoelectron spectroscopy. The band gap values determined from the diffuse reflectance spectra were shown to increase following the post-annealing treatments (with the values increasing in the following manner: Ar-H2-annealed > air-annealed > as-prepared). The photoluminescence intensities of the phosphors also followed the same trend as the band gap values. Two different cases of the photoluminescence mechanisms were proposed for the La2-xYxSiO5:0.25Pr3+,0.25Dy3+ phosphors. Case 1: The 4f5d energy level of Pr3+ lies within the band gap of the host and energy transfer was observed from Pr3+ to Dy3+ via the overlapping 4f5d emission peak of Pr3+ and the 4I15/2 excitation peak of Dy3+. Case II: The 4f5d energy level of Pr3+ lies close or inside the conduction band of the host and the energy transfer was not observed from Pr3+ to Dy3+. The CIE colour coordinates of the phosphors showed tunable emission colours (blue, red and white).

  13. Effect of post-deposition annealing treatment on the structural, optical and gas sensing properties of TiO/sub 2/ thin films

    International Nuclear Information System (INIS)

    Haidry, A.A.; Durina, P.; Tomasek, M.; Gregus, J.; Schlosser, P.; Mikula, M.; Truhly, M.; Roch, T.; Plecenik, T.; Pidik, A.; Zahoran, M.; Kus, P.; Plecenik, A.

    2011-01-01

    One of the potential applications of TiO/sub 2/ is its use in gas sensor technology. The aim of this work was to study the gas sensing properties of TiO/sub 2/ thin films in combination with the effect of post-deposition annealing treatment. Titanium dioxide thin films with thickness 100 nm were prepared by the reactive dc magnetron sputtering. The thin films were deposited on sapphire substrate from a titanium target in an oxygen atmosphere. The samples were then post-annealed in air in the temperature range 600 deg. C 1000 deg. C. Crystal structure, surface topography and absorption edge of the thin films have been studied by X-ray Diffraction technique, Atomic Force Microscopy and UV-VIS Spectroscopy. It was found that the phase gradually changed from anatase to rutile, the grain size and roughness tended to increase with increasing post-annealing temperature. The effect of these factors on gas sensing properties was discussed. For electrical measurements comb-like Pt electrodes were prepared by standard photolithography and the films were exposed to different concentrations of H/sub 2/ gas up to 10000 ppm in synthetic air at various operating temperatures from 200 deg. C to 350 deg. C. (author)

  14. Effect of Irradiation Maternal Diets on the Post-natal Development of Brain Rat Pups

    International Nuclear Information System (INIS)

    Hasan, S.S.

    2005-09-01

    Full text: Effect of Protein-calorie malnutrition was studied on the pups born to mothers receiving either irradiated normal diet (consisted equal parts of gram and wheat) or irradiation low protein diet (consisted one part of normal diet and three parts of heat). Level of DNA, RNA and protein content were found markedly reduced in the brain of irradiated low protein diet fed pups than in the pups fed on the irradiated normal diet. Glucose 6-phosphate dehydrogenase activity was found lower while catalase and lipid peroxidation activity were higher in the pups given irradiated low protein diet, compared whit the pups fed irradiated normal diet. On the whole both the irradiated low protein diet as well as irradiated normal diet fed pups showed higher index of biochemical changes than in the unirradiated low protein diet fed pups. Post-natal mortality was 60% in the pups given irradiated low protein diet, whereas the pups fed on the irradiated normal diet and unirradiated low protein diet did not show any death. The study given evidence that feeding of the irradiated low protein diet interferes more with the development of brain compared with the pups fed on irradiated normal diet

  15. Post-growth annealing treatment effects on properties of Na-doped CuInS2 thin films

    International Nuclear Information System (INIS)

    Zribi, M.; Kanzari, M.; Rezig, B.

    2008-01-01

    Structural and optical properties of Na-doped CuInS 2 thin films grown by double source thermal evaporation method were studied. The films were annealed from 250 to 500 deg. C in a vacuum after evaporation. X-ray diffraction pattern indicated that there are traces of Cu and In 6 S 7 , which disappeared on annealing above 350 deg. C. Good quality CuInS 2 :Na 0.3% films were obtained on annealing at 500 deg. C. Furthermore, we found that the absorption coefficient of Na-doped CuInS 2 thin films reached 1.5 x 10 5 cm -1 . The change in band gap of the doped samples annealed in the temperatures from 250 to 500 deg. C was in the range 0.038-0.105 eV

  16. Influence of post-deposition annealing on structural, morphological and optical properties of copper (II) acetylacetonate thin films.

    Science.gov (United States)

    Abdel-Khalek, H; El-Samahi, M I; El-Mahalawy, Ahmed M

    2018-05-21

    In this study, the effect of thermal annealing under vacuum conditions on structural, morphological and optical properties of thermally evaporated copper (II) acetylacetonate, cu(acac) 2 , thin films were investigated. The copper (II) acetylacetonate thin films were deposited using thermal evaporation technique at vacuum pressure ~1 × 10 -5  mbar. The deposited films were thermally annealed at 323, 373, 423, and 473 K for 2 h in vacuum. The thermogravimetric analysis of cu(acac) 2 powder indicated a thermal stability of cu(acac) 2 up to 423 K. The effects of thermal annealing on the structural properties of cu(acac) 2 were evaluated employing X-ray diffraction method and the analysis showed a polycrystalline nature of the as-deposited and annealed films with a preferred orientation in [1¯01] direction. Fourier transformation infrared (FTIR) technique was used to negate the decomposition of copper (II) acetylacetonate during preparation or/and annealing up to 423 K. The surface morphology of the prepared films was characterized by means of field emission scanning electron microscopy (FESEM). A significant enhancement of the morphological properties of cu(acac) 2 thin films was obtained till the annealing temperature reaches 423 K. The variation of optical constants that estimated from spectrophotometric measurements of the prepared thin films was investigated as a function of annealing temperature. The annealing process presented significantly impacted the nonlinear optical properties such as third-order optical susceptibility χ (3) and nonlinear refractive index n 2 of cu(acac) 2 thin films. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Post-irradiation replication and repair in UV-irradiated cells of Proteus mirabilis depends on protein synthesis and a functioning rec+ gene

    International Nuclear Information System (INIS)

    Hofemeister, J.

    1977-01-01

    The amount of and the molecular weight of newly synthesized DNA (piDNA) as well as its repair after UV irradiation in excision-proficient strains of P.mirabilis and E.coli K12 have been compared. A fraction of post-replication repair (PRR) in P.mirabilis is found to be dependent on de novo protein synthesis after UV irradiation. Pre-irradiation by UV and pre-treatment with nalidixic acid increase the efficiency of post-irradiation replication and PRR even in the presence of chloramphenicol. An inducible repair function in P.mirabilis is supposed to stimulate post-irradiation replication and repair. (author)

  18. Post-irradiation replication and repair in uv-irradiated cells of Proteus mirabilis depends on protein synthesis and a functioning rec/sup +/ gene

    Energy Technology Data Exchange (ETDEWEB)

    Hofemeister, J [Akademie der Wissenschaften der DDR, Gatersleben. Zentralinstitut fuer Genetik und Kulturpflanzenforschung

    1977-02-28

    The amount of and the molecular weight of newly synthesized DNA (piDNA) as well as its repair after uv irradiation in excision-proficient strains of P.mirabilis and E.coli K12 have been compared. A fraction of post-replication repair (PRR) in P.mirabilis is found to be dependent on de novo protein synthesis after uv irradiation. Pre-irradiation by uv and pre-treatment with nalidixic acid increase the efficiency of post-irradiation replication and PRR even in the presence of chloramphenicol. An inducible repair function in P.mirabilis is supposed to stimulate post-irradiation replication and repair.

  19. Fabrication, irradiation and post-irradiation examinations of MO2 and UO2 sphere-pac and UO2 pellet fuel pins irradiated in a PWR loop

    International Nuclear Information System (INIS)

    Linde, A. van der; Lucas Luijckx, H.J.B.; Verheugen, J.H.N.

    1982-01-01

    The document reports in detail the fuel pin fabrication data and describes the irradiation conditions and history. All the relevant results of the non-destructive and destructive post-irradiation examinations are reported. They include: visual inspection and chemical analysis of crud; length and diameter measurements; neutron radiography and gamma scanning; juncture tests and fission gas analysis (including residual gas in fuel samples); microscopy and alpha + beta/gamma autoradiography; microprobe investigations; burn-up and isotopic analysis; and hydrogen analysis in clad. The data and observations obtained are discussed in detail and conclusions are given. The irradiation and post-irradiation examinations of the R-109 pins have shown the safe, pre-calculable performance of LWR fuel pins containing mixed-oxide sphere-pac fuel with the fissile material mainly present in the large spheres

  20. Post-irradiation examinations of inert matrix nitride fuel irradiated in JMTR (01F-51A capsule)

    International Nuclear Information System (INIS)

    Iwai, Takashi; Nakajima, Kunihisa; Kikuchi, Hironobu; Honda, Junichi; Hatakeyama, Yuichi; Ono, Katsuto; Matsui, Hiroki; Arai, Yasuo

    2007-03-01

    A plutonium nitride fuel pin containing inert matrix such as ZrN and TiN was encapsulated in 01F-51A and irradiated in JMTR. Minor actinides are surrogated by plutonium. Average linear powers and burnups were 408W/cm, 30000MWd/t(Zr+Pu) [132000MWd/t-Pu] for (Zr,Pu)N and 355W/cm, 38000MWd/t(Ti+Pu) [153000MWd/t-Pu] for (TiN,PuN). The irradiated capsule was transported to Reactor Fuel Examination Facility and subjected to non-destructive and destructive post irradiation examinations. Any failure was not observed in the irradiated fuel pin. Very low fission gas release rate of about 1.6% was measured. The inner surface of cladding tube did not show any signs of chemical interaction with fuel pellet. (author)

  1. Grain engineering by ultrasonic substrate vibration post-treatment of wet perovskite films for annealing-free, high performance, and stable perovskite solar cells.

    Science.gov (United States)

    Xiong, Hao; Zabihi, Fatemeh; Wang, Hongzhi; Zhang, Qinghong; Eslamian, Morteza

    2018-05-10

    Perovskite solar cells (PSCs) have gained great interest, owing to a fast increase in their power conversion efficiency (PCE), within a few years. However, their wide application and scale-up are hampered due to multiple obstacles, such as chemical instability, which leads to a short lifetime, and their complicated reaction and crystallization, which requires thermal annealing. Here, we address these issues using the ultrasonic substrate vibration post treatment (SVPT) applied on the as-spun perovskite wet films, so as to achieve a uniform, microscale and stable mixed-halide and mixed-cation perovskite layer, (FAPbI3)0.85(MAPbBr3)0.15, without the need for a conventional thermal annealing step. This is achieved by the creation of fluid micromixing and in situ annealing within the solution, caused by the ultrasonic excitation of the wet film. The optoelectronic properties of the perovskite films subjected to the SVPT, including photoemission, carrier lifetime and band gap, are remarkably improved compared to the conventionally annealed films. When incorporated into a planar PSC, a maximum PCE of 18.55% was achieved, compared to 15.17% for the control device, with high reproducibility and no hysteresis, and the device retained 80% of its initial PCE, over a period of 20 days of storage under ambient conditions.

  2. Insights into post-annealing and silver doping effects on the internal microstructure of ZnO nanoparticles through X-ray diffraction probe

    Science.gov (United States)

    Obeydavi, Ali; Dastafkan, Kamran; Rahimi, Mohammad; Ghadam Dezfouli, Mohammad Amin

    2017-07-01

    ZnO nanoparticles were synthesized via Pechini method at various post-annealing temperatures (400°, 500°, and 600 °C) and silver doping concentrations (Zn:Ag molar ratios of 30, 20, and 10). Multifarious microstructural features including crystallite size, size-strain based broadening, residual stress, preferential orientation, crystallinity degree, lattice parameters, unit cell variation, and stacking fault probability were surveyed through phase analysis, Williamson-Hall plot, texture coefficient and unit cell calculations. X-ray probing verified good crystallinity with a hexagonal close pack Wurtzite morphology. Williamson-Hall analysis exhibited distributions of crystallite size and microstrain as well as their contributions on the line broadening of the host ZnO and guest Ag phases upon annealing-doping treatments. Textural analysis revealed the alteration in anisotropic crystallinity of the host phase and transformation of the preferred directions, (100) and (101), as function of annealing-doping processes. Besides, while guest Ag phase was shown to be polycrystalline with randomly orientated crystals at moderate concentration with respect to thermal treatment, preferential orientation went through a major change, (220) to (111), with increment in Ag loadings. Under identical synthetic conditions, the distinction in the lattice constants and unit cell variation between pure and doped ZnO nanoparticles was enforced and results verified major impressionability via annealing and doping factors.

  3. Fabrication, irradiation and post-irradiation examinations of MO2 and UO2 sphere-pac and UO2 pellet fuel pins irradiated in a PWR loop

    International Nuclear Information System (INIS)

    Linde, A. van der; Lucas Luijckx, H.J.B.; Verheugen, J.H.N.

    1981-04-01

    Three fuel pin bundles, R-109/1, 2 and 3, were irradiated in a PWR loop in the HFR at Petten during respectively 131, 57 and 57 effective full power days at average powers of approximately 39 kW.m -1 and at peak powers of approximately 60 kW.m -1 . The results of the post-irradiation examinations of these fuel bundles are presented. (Auth.)

  4. Evaluation of post-operative prophylactic irradiation for carcinoma of the esophagus

    International Nuclear Information System (INIS)

    Mafune, Ken-ichi; Tanaka, Yoichi; Fujita, Kichishiro; Sakura, Mizuyoshi

    1987-01-01

    Of 147 patients with carcinoma of the esophagus resected at Saitama Cancer Center Hospital for 10 years, 98 cases were studied to evaluate post-operative prophylactic irradiation. The total dose of irradiation was up to 4,000 ∼ 5,000 rads of Linac X-ray and the irradiated field was T-shaped covering the upper mediastinal and bilateral cervical regions. The prognosis of the post-operative irradiated group (56 cases) was significantly better than that of the control group (42 cases) (p < 0.01). This study resulted in a five-year survival rate of 34.2 percent for patients in the post-operative irradiated group, compared to 16.7 percent for those in the control group. Further detailed comparative studies revealed similar results. Cancer recurrence occurred at the irradiated fields in 8 cases (14.3 %), though in 15 cases (35.7 %) of the control group. This suggested the local suppressive effect of the post-operative irradiation to the cancer recurrence. (author)

  5. Preliminary test results for post irradiation examination on the HTTR fuel

    International Nuclear Information System (INIS)

    Ueta, Shohei; Umeda, Masayuki; Sawa, Kazuhiro; Sozawa, Shizuo; Shimizu, Michio; Ishigaki, Yoshinobu; Obata, Hiroyuki

    2007-01-01

    The future post-irradiation program for the first-loading fuel of the HTTR is scheduled using the HTTR fuel handling facilities and the Hot Laboratory in the Japan Materials Testing Reactor (JMTR) to confirm its irradiation resistance and to obtain data on its irradiation characteristics in the core. This report describes the preliminary test results and the future plan for a post-irradiation examination for the HTTR fuel. In the preliminary test, fuel compacts made with the same SiC-coated fuel particle as the first loading fuel were used. In the preliminary test, dimension, weight, fuel failure fraction, and burnup were measured, and X-ray radiograph, SEM, and EPMA observations were carried out. Finally, it was confirmed that the first-loading fuel of the HTTR showed good quality under an irradiation condition. The future plan for the post-irradiation tests was described to confirm its irradiation performance and to obtain data on its irradiation characteristics in the HTTR core. (author)

  6. Post-irradiation data analysis for NRC/PNL Halden assembly IFA-431

    International Nuclear Information System (INIS)

    Nealley, C.; Lanning, D.D.; Cunningham, M.E.; Hann, C.R.

    1979-10-01

    Results are presented for the post irradiation examination performed on IFA-431, which was a 6-rod test fuel assembly irradiated in Halden Reactor, Norway, under sponsorship of the Nuclear Regulatory Commission. The irradiation conditions included: peak powers of 33 kW/m; coolant pressure and temperature of 3.3 MPa and 240 0 C, respectively; and peak burnup of 4300 MWd/MTM. IFA-431 included instrumented rods of basic boiling water reactor design, with variations in fill gas composition, gap size, and UO 2 fuel type. The irradiation was designed to measure the effect of these variations upon fuel rod thermal and mechanical performance. The post irradiation examination assessed the permanent changes to the rods, including induced radioactivity, cladding deformation, fission gas release, and fuel densification

  7. Effect of gamma irradiation on the microstructure and post-mortem anaerobic metabolism of bovine muscle

    International Nuclear Information System (INIS)

    Yook, H.-S.; Lee, J.-W.; Lee, K.-H.; Kim, M.-K.; Song, C.-W.; Byun, M.-W.

    2001-01-01

    Experiments were performed to study the effect of gamma irradiation on morphological properties and post-mortem metabolism in bovine M. sternomandibularis with special reference to ultrastructure, shear force, pH and ATP breakdown. The shortening of sarcomere was not observed in gamma-irradiated muscle, however, the disappearance of M-line and of A- and I-bands was perceptible. During cold storage, the destruction of muscle bundles was faster in the gamma-irradiated muscle than in the non-irradiated with a dose-dependent manner. The same is true for the post mortem pH drop and ATP breakdown. So, experimental results confirmed that the anaerobic metabolism and morphological properties are noticeably affected by gamma irradiation in beef

  8. Study on the effect of post-annealing on the microstructural evolutions and mechanical properties of rolled CGPed Aluminum-Manganese-Silicon alloy

    Energy Technology Data Exchange (ETDEWEB)

    Jandaghi, Mohammad Reza, E-mail: mrj.sharif86@gmail.com [Young Researchers and Elites Club, Saveh Branch, Islamic Azad University, Saveh (Iran, Islamic Republic of); Pouraliakbar, Hesam [Young Researchers and Elites Club, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of)

    2017-01-02

    Sheet specimens of Al-Mn-Si alloy were severe plastically deformed (SPDed) through constrained groove pressing (CGP). SPDing by the strain of 2.32, samples were ultimately undergone cold rolling and post-annealing, respectively. According to the optical microscopy observations, rolling changed the semi-elongated and wavy morphology achieved by CGP into lamellar structure. This was also promoted the formation of some shear and deformation bands within processed material matrix due to the geometrical effect of applied deformation path. Evolution of intermetallic particles were characterized using field emission scanning electron microscope (FE-SEM) equipped with energy dispersive spectrometer (EDS). Dual-strained sheets were finally annealed at 150, 250 and 350 °C for 1 h. Mechanical examinations including tension and hardness were performed at room temperature. Results alluded to the fact that samples were exhibited thermal stability up to around 250 °C since rolling reduction increment diminished this critical temperature to about 150 °C. Rolling of CGPed sheet by the strain of 1.27 enhanced the ultimate tensile strength and Vickers hardness by 53.62% and 16.53%, respectively, while the elongation to failure decreased by 1.84%. Eventually, the maximum elongation of 34% and toughness of 33.3 J m{sup −3} were traced on the mentioned specimen by post-annealing at 350 °C. - Highlights: • Further straining through cold-rolling was imposed to two-pass CGPed sheets. • Post-annealing effect at 150, 250 and 350 °C was studied for Al-Mn-Si specimens. • Evolutions of microstructure and intermetallic particles were characterized. • Mechanical properties of different rolled CGPed samples were examined.

  9. Thermal annealing of recoil 56Mn in strontium permanganate under (n,γ) process

    International Nuclear Information System (INIS)

    Mishra, Shuddhodan P.; Vijaya

    2002-01-01

    Chemical stabilization of recoil 56 Mn in strontium permanganate (hydrous and anhydrous) has been investigated with a special reference to pre-and post-activation thermal annealing treatments. The retention of 56 Mn in neutron irradiated strontium permanganate showed significant variation on thermal annealing in both pre-and post-activation heated target. The recoil re-entry process obeys simple first order kinetics and the activation energy deduced for thermal annealing process is very low as computed by classical Arrhenius plots. The results observed are discussed in the light of existing ideas for understanding the recoil stabilization mechanism of parent reformation and the nature of precursors in permanganates. (author)

  10. Temperature dependence of radiation colloidal centers production and annealing in alkali halide crystals

    International Nuclear Information System (INIS)

    Kristapson, J.Z.; Ozerskii, V.J.

    1981-01-01

    The investigation results on temperature dependences of production and annealing of radiation colloidal color centers have been reviewed. In order to produce such centers in NaCl, KCl and KBr crystals the doses of 10 2 -10 4 Mrad as well as irradiation temperatures of 300-600 K and post-irradiation heating of up to 800 K were applied. It has been demonstrated that to produce X-centers, it is necessary to have optimal temperature and initial critical dose during both irradiation and post-irradiation heating of crystals. It has been also found that during annealing hole centers produced are different with regard to thermal stability. The possible recombination mechanisms of hole and electron products of radiolysis during post-irradiation heating has been analyzed [ru

  11. SU-E-T-222: Investigation of Pre and Post Irradiation Fading of the TLD100 Thermoluminescence Dosimetry for Photon Beams

    International Nuclear Information System (INIS)

    Sina, S; Sadeghi, M; Faghihi, R

    2014-01-01

    Purpose: The pre-irradiation and post-irradiation fading of the Thermoluminescense dosimeter signals were investigated in this study. Methods: Two groups of TLD chips with pre-determined ECC values were used in this study. The two groups were divided into 6 series, each composing of 5 TLD chips.The first group was used for pre-irradiation fading. 5 TLDs were exposed to a known amount of radiation from Cs-137 source, and were read out the next day. After seven days, the other 5 TLDs were exposed to the same amount of radiation and were read out after a day. The other series of 5 TLDs were also exposed after 7,19,28, 59, and 90 days, and were read out a day after irradiation. The loss in TLD signal were obtained for all the above cases. The second group, was used for postirradiation fading. All the TLDs of this group were exposed to a known amount of radiation from Cs-137 source. The 6 series composed of 5 TLDs were read out after 1,7,19,28,59, and 90 days. The above-mentioned procedures for obtaining pre-irradiation, and post-irradiation fading were performed for three storage temperatures (25°C, 4°C, and −18°C). Results: According to the results obtained in this study, in case of pre-irradiation fading study, the signal losses after 90 days are 12%, 24%, and 17% for 25°C, 4°C, and −18°C respectively. In case of post-irradiation fading study, the sensitivity losses after 90 days are 25%, 216%, and 20% for 25°C, 4°C, and −18°C respectively. Conclusion: The results indicate that the optimized time between exposing and reading out, and also the optimized time between annealing and exposing is 1 day.The reduction of Storage temperature will reduce the post-irradiation fading, While temperature reduction does not have any effect on pre-irradiation fading

  12. SU-E-T-222: Investigation of Pre and Post Irradiation Fading of the TLD100 Thermoluminescence Dosimetry for Photon Beams

    Energy Technology Data Exchange (ETDEWEB)

    Sina, S [Radiation Research Center, Shiraz University, Shiraz (Iran, Islamic Republic of); Sadeghi, M [Nuclear Engineering department, Shiraz university, Shiraz (Iran, Islamic Republic of); Faghihi, R [Radiation Research Center, Shiraz University, Shiraz (Iran, Islamic Republic of); Nuclear Engineering department, Shiraz university, Shiraz (Iran, Islamic Republic of)

    2014-06-01

    Purpose: The pre-irradiation and post-irradiation fading of the Thermoluminescense dosimeter signals were investigated in this study. Methods: Two groups of TLD chips with pre-determined ECC values were used in this study. The two groups were divided into 6 series, each composing of 5 TLD chips.The first group was used for pre-irradiation fading. 5 TLDs were exposed to a known amount of radiation from Cs-137 source, and were read out the next day. After seven days, the other 5 TLDs were exposed to the same amount of radiation and were read out after a day. The other series of 5 TLDs were also exposed after 7,19,28, 59, and 90 days, and were read out a day after irradiation. The loss in TLD signal were obtained for all the above cases. The second group, was used for postirradiation fading. All the TLDs of this group were exposed to a known amount of radiation from Cs-137 source. The 6 series composed of 5 TLDs were read out after 1,7,19,28,59, and 90 days. The above-mentioned procedures for obtaining pre-irradiation, and post-irradiation fading were performed for three storage temperatures (25°C, 4°C, and −18°C). Results: According to the results obtained in this study, in case of pre-irradiation fading study, the signal losses after 90 days are 12%, 24%, and 17% for 25°C, 4°C, and −18°C respectively. In case of post-irradiation fading study, the sensitivity losses after 90 days are 25%, 216%, and 20% for 25°C, 4°C, and −18°C respectively. Conclusion: The results indicate that the optimized time between exposing and reading out, and also the optimized time between annealing and exposing is 1 day.The reduction of Storage temperature will reduce the post-irradiation fading, While temperature reduction does not have any effect on pre-irradiation fading.

  13. Influence of gamma ray irradiation and annealing temperature on the optical constants and spectral dispersion parameters of metal-free and zinc tetraphenylporphyrin thin films: A comparative study.

    Science.gov (United States)

    Zeyada, H M; Makhlouf, M M; El-Nahass, M M

    2015-09-05

    In this work, we report on the effect of γ-ray irradiation and annealing temperature on the optical properties of metal-free tetraphenylporphyrin, H2TPP, and zinc tetraphenylporphyrin, ZnTPP, thin films. Thin films of H2TPP and ZnTPP were successfully prepared by the thermal evaporation technique. The optical properties of H2TPP and ZnTPP films were investigated using spectrophotometric measurements of the transmittance and reflectance at normal incidence of light in the wavelength range from 200 to 2500 nm. The absorption spectra of H2TPP showed four absorption bands, namely the Q, B, N and M bands. The effect of inserting Zn atom into the cavity of porphyrin macrocycle in ZnTPP molecule distorted the Q and B bands, reduced the width of absorption region and influenced the optical constants and dispersion parameters. In all conditions, the type of electron transition is indirect allowed transition. Anomalous dispersion is observed in the absorption region but normal dispersion occurs in the transparent region of spectra. We adopted multi-oscillator model and the single oscillator model to interpret the anomalous and normal dispersion, respectively. We have found that the annealing temperature has mostly the opposite effect of γ-ray irradiation on absorption and dispersion characteristics of these films. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Enhancement Performance of Hybrid Membrane Zeolite/PES for Produced Water Treatment With Membrane Modification Using Combination of Ulta Violet Irradiation, Composition of Zeolite and Thermal Annealing

    Directory of Open Access Journals (Sweden)

    Djoko Kusworo Tutuk

    2018-01-01

    Full Text Available Produced water is a wastewater from oil production that must be treated well. Membrane is one alternative of water treatments technology based on filtration method. However, in the use of membrane, there’s no exact optimal variable that influences membrane performance.This underlying research to assess factors that influences membrane performance to obtain optimal condition. Therefore, the objectives of this study are determining the effect of variable process in membrane fabrication and several modification techniques on membrane performance. The membranes were fabricated via dry-wet phase inversion method. The process variables of this experiment are varying the Zeolite concentration by low level 1% weight and 3% weight, UV irradiation time low level 2 minutes and high level 6 minutes, thermal annealing temperature low level 160°C and high level 180°C. The experiment runs were designed using central composite design. From the research that has been perfromed, PES/Zeolit membrane has a higher permeability after being irradiated by UV light and denser pore after heating and the longer of annealing time.

  15. The influence of post-deposition annealing on the structure, morphology and luminescence properties of pulsed laser deposited La0.5Gd1.5SiO5 doped Dy3+ thin films

    Science.gov (United States)

    Ogugua, Simon N.; Swart, Hendrik C.; Ntwaeaborwa, Odireleng M.

    2018-04-01

    The influence of post-deposition annealing on the structure, particle morphology and photoluminescence properties of dysprosium (Dy3+) doped La0.5Gd1.5SiO5 thin films grown on Si(111) substrates at different substrate temperatures using pulsed laser deposition (PLD) technique were studied. The X-ray diffractometer results showed an improved crystallinity after post-annealing. The topography and morphology of the post-annealed films were studied using atomic force microscopy and field emission scanning electron microscopy respectively. The elemental composition in the surface region of the films were analyzed using energy dispersive X-ray spectroscopy. The photoluminescence studies showed an improved luminescent after post-annealing. The cathodoluminescence properties of the films are also reported. The CIE colour coordinates calculated from the photoluminescence and cathodoluminescence data suggest that the films can have potential application in white light emitting diode (LED) and field emission display (FED) applications.

  16. The effect of post-annealing on surface acoustic wave devices based on ZnO thin films prepared by magnetron sputtering

    International Nuclear Information System (INIS)

    Phan, Duy-Thach; Chung, Gwiy-Sang

    2011-01-01

    Zinc oxide (ZnO) thin films were deposited on unheated silicon substrates via radio frequency (RF) magnetron sputtering, and the post-deposition annealing of the ZnO thin films was performed at 400 deg. C, 600 deg. C, 800 deg. C, and 1000 deg. C. The characteristics of the thin films were investigated by X-ray diffractometry (XRD), scanning electron microscopy (SEM), and atomic force microscopy (AFM). The films were then used to fabricate surface acoustic wave (SAW) resonators. The effects of post-annealing on the SAW devices are discussed in this work. Resulting in the 600 deg. C is determined as optimal annealing temperature for SAW devices. At 400 deg. C, the microvoids exit between the grains yield large root mean square (RMS) surface roughness and higher insertion losses in SAW devices. The highest RMS surface roughness, crack and residual stress cause a reduction of surface velocity (about 40 m/s) and increase dramatically insertion loss at 1000 deg. C. The SAW devices response becomes very weak at this temperature, the electromechanical coupling coefficient (k 2 ) of ZnO film decrease from 3.8% at 600 deg. C to 1.49% at 1000 deg. C.

  17. Post-deposition annealing temperature dependence TiO_2-based EGFET pH sensor sensitivity

    International Nuclear Information System (INIS)

    Zulkefle, M. A.; Rahman, R. A.; Yusoff, K. A.; Abdullah, W. F. H.; Rusop, M.; Herman, S. H.

    2016-01-01

    EGFET pH sensor is one type of pH sensor that is used to measure and determine pH of a solution. The sensing membrane of EGFET pH sensor plays vital role in the overall performance of the sensor. This paper studies the effects of different annealing temperature of the TiO_2 sensing membranes towards sensitivity of EGFET pH sensor. Sol-gel spin coating was chosen as TiO_2 deposition techniques since it is cost-effective and produces thin film with uniform thickness. Deposited TiO_2 thin films were then annealed at different annealing temperatures and then were connected to the gate of MOSFET as a part of the EGFET pH sensor structure. The thin films now act as sensing membranes of the EGFET pH sensor and sensitivity of each sensing membrane towards pH was measured. From the results it was determined that sensing membrane annealed at 300 °C gave the highest sensitivity followed by sample annealed at 400 °C and 500 °C.

  18. Post-deposition annealing temperature dependence TiO{sub 2}-based EGFET pH sensor sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Zulkefle, M. A., E-mail: alhadizulkefle@gmail.com; Rahman, R. A., E-mail: rohanieza.abdrahman@gmail.com; Yusoff, K. A., E-mail: khairul.aimi.yusof@gmail.com [NANO-ElecTronic Centre (NET), Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); Abdullah, W. F. H., E-mail: wanfaz@salam.uitm.edu.my [Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); Rusop, M., E-mail: rusop@salam.uitm.edu.my [NANO-Science Technology (NST), Institute of Science (IOS), Faculty of Applied Sciences, Universiti Teknologi MARA - UiTM, 40450 Shah Alam, Selangor (Malaysia); Herman, S. H., E-mail: hana1617@salam.uitm.edu.my [Core of Frontier Materials & Industry Applications, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia)

    2016-07-06

    EGFET pH sensor is one type of pH sensor that is used to measure and determine pH of a solution. The sensing membrane of EGFET pH sensor plays vital role in the overall performance of the sensor. This paper studies the effects of different annealing temperature of the TiO{sub 2} sensing membranes towards sensitivity of EGFET pH sensor. Sol-gel spin coating was chosen as TiO{sub 2} deposition techniques since it is cost-effective and produces thin film with uniform thickness. Deposited TiO{sub 2} thin films were then annealed at different annealing temperatures and then were connected to the gate of MOSFET as a part of the EGFET pH sensor structure. The thin films now act as sensing membranes of the EGFET pH sensor and sensitivity of each sensing membrane towards pH was measured. From the results it was determined that sensing membrane annealed at 300 °C gave the highest sensitivity followed by sample annealed at 400 °C and 500 °C.

  19. Isolating the effect of radiation-induced segregation in irradiation-assisted stress corrosion cracking of austenitic stainless steels

    International Nuclear Information System (INIS)

    Busby, J.T.; Was, G.S.; Kenik, E.A.

    2002-01-01

    Post-irradiation annealing was used to help identify the role of radiation-induced segregation (RIS) in irradiation-assisted stress corrosion cracking (IASCC) by preferentially removing dislocation loop damage from proton-irradiated austenitic stainless steels while leaving the RIS of major and minor alloying elements largely unchanged. The goal of this study is to better understand the underlying mechanisms of IASCC. Simulations of post-irradiation annealing of RIS and dislocation loop microstructure predicted that dislocation loops would be removed preferentially over RIS due to both thermodynamic and kinetic considerations. To verify the simulation predictions, a series of post-irradiation annealing experiments were performed. Both a high purity 304L (HP-304L) and a commercial purity 304 (CP-304) stainless steel alloy were irradiated with 3.2 MeV protons at 360 deg. C to doses of 1.0 and 2.5 dpa. Following irradiation, post-irradiation anneals were performed at temperatures ranging from 400 to 650 deg. C for times between 45 and 90 min. Grain boundary composition was measured using scanning transmission electron microscopy with energy-dispersive spectrometry in both as-irradiated and annealed samples. The dislocation loop population and radiation-induced hardness were also measured in as-irradiated and annealed specimens. At all annealing temperatures above 500 deg. C, the hardness and dislocation densities decreased with increasing annealing time or temperature much faster than RIS. Annealing at 600 deg. C for 90 min removed virtually all dislocation loops while leaving RIS virtually unchanged. Cracking susceptibility in the CP-304 alloy was mitigated rapidly during post-irradiation annealing, faster than RIS, dislocation loop density or hardening. That the cracking susceptibility changed while the grain boundary chromium composition remained essentially unchanged indicates that Cr depletion is not the primary determinator for IASCC susceptibility. For the same

  20. Biochemical Post-Irradiation Changes and Radiation Indicators: A Review

    Energy Technology Data Exchange (ETDEWEB)

    Streffer, G. [Radiologisches Institut, University of Freiburg, Freiburg im Breisgau, Federal Republic of Germany (Germany)

    1971-03-15

    In a number of mammalian tissues a breakdown of the biological macromolecules, as nucleic acids and proteins, is observed after irradiation. This degradation appears in lymphatic tissues even after a radiation exposure less than 100 R and proceeds with increasing exposure to about 600 R. On the other hand, other biochemical effects are found after the whole-body irradiation of mammals which seem to have some relation to the functional status of the organs and the organisms. It appears therefore useful to classify the biochemical effects of radiation into two groups: (1) Observations which are a consequence of the degradation processes; (2) observations which are a consequence of functional changes. Most investigations in the field of biochemical indicators after irradiation have been concerned with the first class of reactions. The excretion of deoxycytidine, thymidine and pseudouridine have been extensively investigated in animals during recent years. However, in humans the normal deoxycytidine excretion is very low, as this substance is metabolized to a higher degree in humans than in other species. {beta}-aminoisobutyric acid (BAIBA), a metabolite of thymine, was also investigated in this connection. Besides nucleic acids, proteins are broken down in these radiosensitive organs. This leads to an increased content of amino acids for instance in the lymphatic tissues and to an increase in urinary excretion of amino acids. There are two amino acids which play a special role for this discussion: cysteine and tryptophan. Taurine, a metabolite of cysteine, is excreted in the urine to an increased extent after the irradiation of mice, rats and man. Again the enhancement is proportional to the radiation exposure between 100 and 300 R. Another substance which has been extensively studied is creatine. It has been shown that there is a good relationship between radiation exposure (up to about 600 R) and the increased excretion of creatine/creatinine in the urine of rats

  1. Effect of the post-deposition annealing on electrical characteristics of MIS structures with HfO{sub 2}/SiO{sub 2} gate dielectric stacks

    Energy Technology Data Exchange (ETDEWEB)

    Taube, Andrzej [Institute of Electron Technology, Al. Lotnikow 32/46, 02-668 Warsaw (Poland); Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw (Poland); Mroczynski, Robert, E-mail: rmroczyn@elka.pw.edu.pl [Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw (Poland); Korwin-Mikke, Katarzyna [Institute of Electron Technology, Al. Lotnikow 32/46, 02-668 Warsaw (Poland); Gieraltowska, Sylwia [Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw (Poland); Szmidt, Jan [Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw (Poland); Piotrowska, Anna [Institute of Electron Technology, Al. Lotnikow 32/46, 02-668 Warsaw (Poland)

    2012-09-01

    In this work, we report on effects of post-deposition annealing on electrical characteristics of metal-insulator-semiconductor (MIS) structures with HfO{sub 2}/SiO{sub 2} double gate dielectric stacks. Obtained results have shown the deterioration of electro-physical properties of MIS structures, e.g. higher interface traps density in the middle of silicon forbidden band (D{sub itmb}), as well as non-uniform distribution and decrease of breakdown voltage (U{sub br}) values, after annealing above 400 Degree-Sign C. Two potential hypothesis of such behavior were proposed: the formation of interfacial layer between hafnia and silicon dioxide and the increase of crystallinity of HfO{sub 2} due to the high temperature treatment. Furthermore, the analysis of conduction mechanisms in investigated stacks revealed Poole-Frenkel (P-F) tunneling at broad range of electric field intensity.

  2. Vacancy effects on the formation of He and Kr cavities in 3C-SiC irradiated and annealed at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Zang, Hang, E-mail: zanghang@xjtu.edu.cn [Department of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049 (China); Jiang, Weilin, E-mail: weilin.jiang@pnnl.gov [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Liu, Wenbo [Department of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049 (China); Devaraj, Arun; Edwards, Danny J.; Henager, Charles H.; Kurtz, Richard J. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Li, Tao; He, Chaohui; Yun, Di [Department of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049 (China); Wang, Zhiguang [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2016-12-15

    Highlights: • He and Kr cavities are formed in ion-implanted and 1600 °C annealed 3C-SiC. • A higher vacancy concentration leads to formation of cavities with a smaller size and higher density. • Presence of He in irradiated 3C-SiC can significantly promote cavity growth. • Small voids are formed in Kr ion penetrated 3C-SiC during thermal annealing at 1600 °C. • Local Kr migration and trapping at cavities in SiC are observed, but long-range Kr diffusion does not occur at 1600 °C. - Abstract: Polycrystalline 3C-SiC was sequentially irradiated at 400 and 750 °C with 120 keV He{sup 2+} and 4 MeV Kr{sup 15+} ions to 10{sup 17} and 4 × 10{sup 16} cm{sup −2}, respectively. The Kr{sup 15+} ions penetrated the entire depth region of the He{sup 2+} ion implantation. Three areas of He{sup 2+}, Kr{sup 15+} and He{sup 2+} + Kr{sup 15+} ion implanted SiC were created through masked overlapping irradiation. The sample was subsequently annealed at 1600 °C in vacuum and characterized using cross-sectional transmission electron microscopy and energy-dispersive X-ray spectroscopy. Compared to the He{sup 2+} ion only implanted SiC, He cavities show a smaller size and higher density in the co-implanted SiC. At 25 dpa, presence of He in the co-implanted 3C-SiC significantly promotes cavity growth; much smaller voids are formed in the Kr{sup 15+} ion only irradiated SiC at the same dose. In addition, local Kr migration and trapping at cavities occurs, but long-range Kr diffusion in SiC is not observed up to 1600 °C.

  3. Effect of Annealing on Microstructures and Hardening of Helium-Hydrogen-Implanted Sequentially Vanadium Alloys

    Science.gov (United States)

    Jiang, Shaoning; Wang, Zhiming

    2018-03-01

    The effect of post-irradiation annealing on the microstructures and mechanical properties of V-4Cr-4Ti alloys was studied. Helium-hydrogen-irradiated sequentially V-4Cr-4Ti alloys at room temperature (RT) were undergone post-irradiation annealing at 450 °C over periods of up to 30 h. These samples were carried out by high-resolution transmission electron microscopy (HRTEM) observation and nanoindentation test. With the holding time, large amounts of point defects produced during irradiation at RT accumulated into large dislocation loops and then dislocation nets which promoted the irradiation hardening. Meanwhile, bubbles appeared. As annealing time extended, these bubbles grew up and merged, and finally broke up. In the process, the size of bubbles increased and the number density decreased. Microstructural changes due to post-irradiation annealing corresponded to the change of hardening. Dislocations and bubbles are co-contributed to irradiation hardening. With the holding time up to 30 h, the recovery of hardening is not obvious. The phenomenon was discussed by dispersed barrier hardening model and Friedel-Kroupa-Hirsch relationship.

  4. Systematic trends of YBa2Cu3O7-δ thin films post annealed in low oxygen partial pressures

    International Nuclear Information System (INIS)

    Hou, S.Y.; Phillips, J.M.; Werder, D.J.; Tiefel, T.H.; Marshall, J.H.; Siegal, M.P.

    1994-01-01

    Systematic studies have been performed on 1000 A YBa 2 Cu 3 O 7-δ films produced by the BaF 2 process and annealed in an oxygen partial pressure (p O 2 ) range from 740 Torr to 10 mTorr as well as a temperature range from 600 to 1050 degree C. The results show that while high quality films can be annealed in a wide range of oxygen partial pressure, they have different characteristics. In general, crystalline quality and T c are optimized at high p O 2 and high annealing temperature, while strong flux pinning and low normal state resistivity are achieved at lower values of both variables. Under optimized low p O 2 conditions, an ion channeling χ min of 6% is obtained on films as thick as 5000 A. This study will serve as a useful guide to tailoring film properties to the application at hand

  5. Post irradiation characterization of beryllium and beryllides after high temperature irradiation up to 3000 appm helium production in HIDOBE-01

    Energy Technology Data Exchange (ETDEWEB)

    Fedorov, A.V., E-mail: fedorov@nrg.eu [Nuclear Research and Consultancy Group, Westerduinweg 3, Postbus 25, Petten, 1755 ZG (Netherlands); Til, S. van; Stijkel, M.P. [Nuclear Research and Consultancy Group, Westerduinweg 3, Postbus 25, Petten, 1755 ZG (Netherlands); Nakamichi, M. [Japan Atomic Energy Agency, Rokkasho (Japan); Zmitko, M. [The European Joint Undertaking for ITER and the Development of Fusion Energy, c/ Josep Pla, n° 2, Torres Diagonal Litoral, Edificio B3, Barcelona 08019 (Spain)

    2016-01-15

    Titanium beryllides are considered as advanced candidate material for neutron multiplier for the helium cooled pebble bed (HCPB) and/or the water cooled ceramic breeder (WCCB) breeder blankets. In the HIDOBE-01 (HIgh DOse irradiation of BEryllium) experiment, beryllium and beryllide pellets with 5 at% and 7 at% Ti are irradiated at four different target temperatures (T{sub irr}): 425 °C, 525 °C, 650 °C and 750 °C up to the dose corresponding to 3000 appm He production in beryllium. The pellets were supplied by JAEA. During post irradiation examinations the critical properties of volumetric swelling and tritium retention were studied. Both titanium beryllide grades show significantly less swelling than the beryllium grade, with the difference increasing with the irradiation temperature. The irradiation induced swelling was studied by using direct dimensions. Both beryllide grades showed much less swelling as compare to the reference beryllium grade. Densities of the grades were studied by Archimedean immersion and by He-pycnometry, giving indications of porosity formation. While both beryllide grades show no significant reduction in density at all irradiation temperatures, the beryllium density falls steeply at higher T{sub irr}. Finally, the tritium release and retention were studied by temperature programmed desorption (TPD). Beryllium shows the same strong tritium retention as earlier observed in studies on beryllium pebbles, while the tritium inventory of the beryllides is significantly less, already at the lowest T{sub irr} of 425 °C.

  6. Effect of ultraviolet light irradiation on bond strength of fiber post: Evaluation of surface characteristic and bonded area of fiber post with resin cement

    OpenAIRE

    Reza, Fazal; Ibrahim, Nur Sukainah

    2015-01-01

    Objective: Fiber post is cemented to a root canal to restore coronal tooth structure. This research aims to evaluate the effect of ultraviolet (UV) irradiation on bond strength of fiber post with resin cement. Materials and Methods: A total of 40 of the two types of fiber posts, namely, FRC Prostec (FRC) and Fiber KOR (KOR), were used for the experiment. UV irradiation was applied on top of the fiber post surface for 0, 15, 20, and 30 min. The irradiated surface of the fiber posts (n = 5) wer...

  7. Nondestructive post-irradiation examination of Loop-1, S1 and B1 rods

    International Nuclear Information System (INIS)

    Bratton, R.L.

    1997-05-01

    As a part of the Pacific Northwest National Laboratory's Tritium Target Development Program, eleven tritium target rods were irradiated in the Advanced Test Reactor located at the Idaho National Engineering and Environmental Laboratory during 1991. Both nondestructive and destructive post-irradiation examination on all eleven rods was planned under the Tritium Target Development Program. Funding for the program was reduced in 1991 resulting in the early removal of the program experiments before reaching their irradiation goals. Post-irradiation examination was only performed on one of the irradiated rods at the Pacific Northwest National Laboratory before the program was terminated in 1992. On December 6, 1995, the Secretary of Energy announced the pursuit of the Commercial Light-Water Reactor option for producing tritium establishing the Tritium Target Qualification Program at the Pacific Northwest National Laboratory. This program decided to pursue nondestructive and destructive post-irradiation examination of the ten remaining rods from the previous program. The ten rods comprise three experiments. The Loop-1 experiment irradiated eight target rods in a loop configuration for 217 irradiation days. The other two rods were irradiated in two separate irradiation experiments, designated as S1 and B1 for 143 effective full-power days, but at different power levels. After the ten rods were transferred from the ATR Canal to the Hot Fuels Examination Facility, the following examinations were performed: (1) visual examination and photography; (2) neutron radiography; (3) axial gamma scanning; (4) contact profilometry measurement; (5) bow and length measurements; (6) rod puncture and plenum gas analysis/measurement of plenum gas quantity; (7) void volume determination; and (8) internal pressure determination. This report presents the data collected during these examinations

  8. Dose-time relationships for post-irradiation cutaneous telangiectasia

    International Nuclear Information System (INIS)

    Cohen, L.; Ubaldi, S.E.

    1977-01-01

    Seventy-five patients who had received electron beam radiation a year or more previously were studied. The irradiated skin portals were photographed and late reactions graded in terms of the number and severity of telangiectatic lesions observed. The skin dose, number of fractions, overall treatment time and irradiated volume were recorded in each case. A Strandqvist-type iso-effect line was derived for this response. A multi-probit search program also was used to derive best-fitting cell population kinetic parameters for the same data. From these parameters a comprehensive iso-effect table could be computed for a wide range of treatment schedules including daily treatment as well as fractionation at shorter and longer intervals; this provided a useful set of normal tissue tolerance limits for late effects

  9. Post-irradiation thymocyte regeneration after bone marrow transplantation

    International Nuclear Information System (INIS)

    Boersma, W.J.A.

    1981-01-01

    Bone marrow cells were separated according to buoyant density, velocity sedimentation and cell surface charge. Fractionated (C3H x AKR)F 1 bone marrow cells were transplanted into lethally-irradiated C3H recipients. In all fractions, the CFUs content and the capacity to restore the thymus cell population were determined. For all the physical parameters tested, thymocyte progenitor cells show the same distribution as CFUs. The relationship between number of thymocyte progenitor cells and number of CFUs is dependent on density. Bone marrow progenitors of PHA responsive cells are of low buoyant density and show a distribution which resembles the distribution of the progenitors of Thy 1 positive cells. After transplantation of large numbers of bone marrow cells into irradiated mice, no significant change in the CFUs content of the thymus was observed. (author)

  10. Hair transplantation for the the treatment of post-irradiation alopecia

    International Nuclear Information System (INIS)

    Kolasinski, J.; Kolenda, M.; Skowronek, J.

    2002-01-01

    Treatment of head and neck tumours and of leukaemia often necessitates radiotherapy. However; permanent alopecia in the scalp exposed to irradiation is a common problem. One of the effective methods of treatment of post-irradiation alopecia is hair transplantation. Over a period of 18 years 42 patients were treated at the Hair Clinic Poznan for post-irradiation alopecia. Due to the presence of numerous lesions in the donor and recipient scalp areas many modifications were introduced into alopecia correction. The treatment assured good cosmetic effects, free of the risk of complications. Scalps from occipital areas do not go bald when transferred to scalp areas affected by balding. On the contrary - they retain original properties, thus resulting in hair re-growth. Hair follicle transplantation is usually applied for the correction of androgenic alopecia in men and women although it may also be applied in post-trauma and post-irradiation alopecia treatment. Hair regrowth in radiotherapy patients occurs later than in androgenic alopecia patients. This phenomenon is caused by blood supply deficits in the recipient area. Autogenic hair follicle transplantation is a treatment of choice in the correction of post-irradiation alopecia, while the good cosmetic effects considerably improve the patients' quality of life. (author)

  11. UV irradiation improves the bond strength of resin cement to fiber posts.

    Science.gov (United States)

    Zhong, Bo; Zhang, Yong; Zhou, Jianfeng; Chen, Li; Li, Deli; Tan, Jianguo

    2011-01-01

    The purpose is to evaluate the effect of UV irradiation on the bond strength between epoxy-based glass fiber posts and resin cement. Twelve epoxy-based glass fiber posts were randomly divided into three groups. Group 1 (Cont.): No surface treatment. Group 2 (Low-UV): UV irradiation was conducted from a distance of 10 cm for 10 min. Group 3 (High-UV): UV irradiation was conducted from a distance of 1 cm for 3 min. A resin cement (CLEARFIL SA LUTING) was used for the post cementation to form resin slabs which contained fiber posts in the center. Microtensile bond strengths were tested and the mean bond strengths (MPa) were 18.81 for Cont. group, 23.65 for Low-UV group, 34.75 for High-UV group. UV irradiation had a significant effect on the bond strength (pUV irradiation demonstrates its capability to improve the bond strength between epoxy-based glass fiber posts and resin cement.

  12. On the determination of the post-irradiation time from the glow curve of TLD-100

    International Nuclear Information System (INIS)

    Weinstein, M.; German, U.; Dubinsky, S.; Alfassi, Z.B.

    2003-01-01

    The ratio of peak 3 to the sum of peaks 4 + 5 in TLD-100 was measured for various pre-irradiation and post-irradiation time periods, under conditions characteristic of routine personal dosimetry. It was confirmed that the value of this ratio depends only on the elapsed time between the prior readout and the present one, independent of the moment when the irradiation took place during the total time interval (storage time). This effect indicates that fading of peak 3 seems to be due mainly to changes in the unoccupied traps, and not to decay of trapped charges, being almost independent of the presence of electrons or holes in the traps. This observation leads to the conclusion that the suggestions in the past to use the decay of peak 3 in TLD-100 for the measurement of the elapsed time between irradiation and readout may have been wrong. On the other hand, the decay of peak 2 can be used to measure the elapsed time from irradiation, since the rate of decay is different when related to pre-irradiation and post-irradiation times, indicating a much higher decay rate of the trapped charges (Randall-Wilkins decay). However, because of the fast decay rate of peak 2, its use for determination of the elapsed time since irradiation is of little practical significance. (author)

  13. Post-Irradiation Examination of Array Targets - Part I

    Energy Technology Data Exchange (ETDEWEB)

    Icenhour, A.S.

    2004-01-23

    During FY 2001, two arrays, each containing seven neptunium-loaded targets, were irradiated at the Advanced Test Reactor in Idaho to examine the influence of multi-target self-shielding on {sup 236}Pu content and to evaluate fission product release data. One array consisted of seven targets that contained 10 vol% NpO{sub 2} pellets, while the other array consisted of seven targets that contained 20 vol % NpO{sub 2} pellets. The arrays were located in the same irradiation facility but were axially separated to minimize the influence of one array on the other. Each target also contained a dosimeter package, which consisted of a small NpO{sub 2} wire that was inside a vanadium container. After completion of irradiation and shipment back to the Oak Ridge National Laboratory, nine of the targets (four from the 10 vol% array and five from the 20 vol% array) were punctured for pressure measurement and measurement of {sup 85}Kr. These nine targets and the associated dosimeters were then chemically processed to measure the residual neptunium, total plutonium production, {sup 238}Pu production, and {sup 236}Pu concentration at discharge. The amount and isotopic composition of fission products were also measured. This report provides the results of the processing and analysis of the nine targets.

  14. The post irradiation examination of a sphere-pac (UPu)C fuel pin irradiated in the BR-2 reactor (MFBS 7 experiment)

    International Nuclear Information System (INIS)

    Smith, L.; Aerne, E.T.; Buergisser, B.; Flueckiger, U.; Hofer, R.; Petrik, F.

    1979-09-01

    A pin fuelled with Swiss made (UPu)C microspheres has been successfully irradiated to a peak burn-up of 6% fima in the Belgian BR2 Reactor. The pin, rated up to 95 kW/m, was intact after irradiation and exhibited a peak strain of just over 0.5%. The results of the post irradiation examination are reported. (Auth.)

  15. Electrical in situ and post-irradiation properties of ceramics relevant to fusion irradiation conditions

    International Nuclear Information System (INIS)

    Shikama, Tatsuo; Zinkle, S.J.

    2002-01-01

    Electrical properties of ceramic candidate materials for the next-generation nuclear fusion devices under relevant irradiation conditions are reviewed. A main focal point is placed on the degradation behavior of the electrical insulating ability during and after irradiation. Several important radiation induced effects play important roles: radiation induced conductivity, thermally stimulated electrical conductivity, radiation induced electrical charge separation, and radiation induced electromotive force. These phenomena will interact with each other under fusion relevant irradiation conditions. The design of electrical components for the next-generation fusion devices should take into account these complicated interactions among the radiation induced phenomena

  16. Infrared studies of the evolution of the C{sub i}O{sub i}(Si{sub I}) defect in irradiated Si upon isothermal anneals

    Energy Technology Data Exchange (ETDEWEB)

    Angeletos, T.; Londos, C. A., E-mail: hlontos@phys.uoa.gr [University of Athens, Solid State Physics Section, Panepistimiopolis Zografos, Athens 157 84 (Greece); Chroneos, A., E-mail: alexander.chroneos@imperial.ac.uk [Faculty of Engineering, Environment and Computing, Coventry University, Priory Street, Coventry CV1 5FB (United Kingdom); Department of Materials, Imperial College London, London SW7 2AZ (United Kingdom)

    2016-03-28

    Carbon-oxygen-self-interstitial complexes were investigated in silicon by means of Fourier transform infrared spectroscopy. Upon irradiation, the C{sub i}O{sub i} defect (C{sub 3}) forms which for high doses attract self-interstitials (Si{sub I}s) leading to the formation of the C{sub i}O{sub i}(Si{sub I}) defect (C{sub 4}) with two well-known related bands at 939.6 and 1024 cm{sup −1}. The bands are detectable in the spectra both in room temperature (RT) and liquid helium (LH) temperature. Upon annealing at 150 °C, these bands were transformed to three bands at 725, 952, and 973 cm{sup −1}, detectable only at LH temperatures. Upon annealing at 220 °C, these bands were transformed to three bands at 951, 969.5, and 977 cm{sup −1}, detectable both at RT and LH temperatures. Annealing at 280 °C resulted in the transformation of these bands to two new bands at 973 and 1024 cm{sup −1}. The latter bands disappear from the spectra upon annealing at 315 °C without the emergence of other bands in the spectra. Considering reaction kinetics and defect metastability, we developed a model to describe the experimental results. Annealing at 150 °C triggers the capturing of Si{sub I}s by the C{sub 4} defect leading to the formation of the C{sub i}O{sub i}(Si{sub I}){sub 2} complex. The latter structure appears to be bistable: measuring at LH, the defect is in configuration C{sub i}O{sub i}(Si{sub I}){sub 2} giving rise to the bands at 725, 952, and 973 cm{sup −1}, whereas on measurements at RT, the defect converts to another configuration C{sub i}O{sub i}(Si{sub I}){sub 2}{sup *} without detectable bands in the spectra. Possible structures of the two C{sub i}O{sub i}(Si{sub I}){sub 2} configurations are considered and discussed. Upon annealing at 220 °C, additional Si{sub I}s are captured by the C{sub i}O{sub i}(Si{sub I}){sub 2} defect leading to the formation of the C{sub i}O{sub i}(Si{sub I}){sub 3} complex, which in turn on annealing at

  17. Post-irradiation examinations of uranium-plutonium mixed nitride fuel irradiated in JMTR (89F-3A capsule)

    International Nuclear Information System (INIS)

    Iwai, Takashi; Nakajima, Kunihisa; Kikuchi, Hironobu; Arai, Yasuo; Kimura, Yasuhiko; Nagashima, Hisao; Sekita, Noriaki

    2000-03-01

    Two helium-bonded fuel pins filled with uranium-plutonium mixed nitride pellets were encapsulated in 89F-3A and irradiated in JMTR up to 5.5% FIMA at a maximum linear power of 73 kW/m. The capsule cooled for ∼5 months was transported to Reactor Fuel Examination Facility and subjected to non-destructive and destructive post irradiation examinations. Any failure was not observed in the irradiated fuel pins. Very low fission gas release rate of about 2 ∼ 3% was observed, while the diametric increase of fuel pin was limited to ∼0.4% at the position of maximum reading. The inner surface of cladding tube did not show any signs of chemical interaction with fuel pellet. (author)

  18. Effects of pre-irradiation annealing at high temperature on optical absorption and electron paramagnetic resonance of natural pumpellyite mineral

    International Nuclear Information System (INIS)

    Javier-Ccallata, Henry; Filho, Luiz Tomaz; Sartorelli, Maria L.; Watanabe, Shigueo

    2013-01-01

    Highlights: •Natural pumpellyite mineral presents superposition bands around 900 and 1060 nm due Fe 2+ and Fe 3+ . •High temperature annealing influences the EPR and OA spectra. •The behavior of EPR line for 800 and 900 °C can be attributed to forbidden dd transitions due the Fe 3+ . -- Abstract: Natural silicate mineral of pumpellyite, Ca 2 MgAl 2 (SiO 4 )(Si 2 O 7 )(OH) 2 ·(H 2 O), point group A2/m, has been studied concerning high temperature annealing and γ-radiation effects on Optical Absorption (OA) and Electron Paramagnetic Resonance (EPR) properties. Chemical analysis revealed that besides Si, Al, Ca and Mg, other oxides i.e., Fe, Mn, Na, K, Ti and P are present in the structure as impurities. OA measurements of natural and annealed pumpellyite revealed several bands in the visible region due to spin forbidden transitions of Fe 2+ and Fe 3+ . The behaviour of bands around 900 and 1060 nm, with pre-annealing and γ radiation dose, indicating a transition Fe 2+ → e − + Fe 3+ . On the other hand, EPR measurements reveal six lines of Mn 2+ , and satellites due to hyperfine interaction, superimposed on the signal of Fe 3+ around of g = 2. For heat treatment from 800 °C the signal grows significantly and for 900 °C a strong signal of Fe 3+ hides all Mn 2+ lines. The strong growth of this signal indicates that the transitions are due to Fe 3+ dipole–dipole interactions

  19. Effects of pre-irradiation annealing at high temperature on optical absorption and electron paramagnetic resonance of natural pumpellyite mineral

    Energy Technology Data Exchange (ETDEWEB)

    Javier-Ccallata, Henry, E-mail: henrysjc@gmail.com [Escuela de Ingeniería Electrónica y Telecomunicaciones, Universidad Alas Peruanas Filial Arequipa, Urb. D. A. Carrión G-14, J. L. Bustamante y Rivero, Arequipa (Peru); Laboratório de Sistemas Nanoestruturados, Departamento de Física, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina (Brazil); Filho, Luiz Tomaz [Departamento de Física Nuclear, Instituto de Física, Universidade de São Paulo, Rua do Matão, travessa R, 187, CEP 05508-900 São Paulo, SP (Brazil); Faculdade de Tecnologia e Ciências Exatas, Universidade São Judas Tadeu, Rua Taquari 546, São Paulo, SP (Brazil); Sartorelli, Maria L. [Laboratório de Sistemas Nanoestruturados, Departamento de Física, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina (Brazil); Watanabe, Shigueo [Departamento de Física Nuclear, Instituto de Física, Universidade de São Paulo, Rua do Matão, travessa R, 187, CEP 05508-900 São Paulo, SP (Brazil)

    2013-09-15

    Highlights: •Natural pumpellyite mineral presents superposition bands around 900 and 1060 nm due Fe{sup 2+}and Fe{sup 3+}. •High temperature annealing influences the EPR and OA spectra. •The behavior of EPR line for 800 and 900 °C can be attributed to forbidden dd transitions due the Fe{sup 3+}. -- Abstract: Natural silicate mineral of pumpellyite, Ca{sub 2}MgAl{sub 2}(SiO{sub 4})(Si{sub 2}O{sub 7})(OH){sub 2}·(H{sub 2}O), point group A2/m, has been studied concerning high temperature annealing and γ-radiation effects on Optical Absorption (OA) and Electron Paramagnetic Resonance (EPR) properties. Chemical analysis revealed that besides Si, Al, Ca and Mg, other oxides i.e., Fe, Mn, Na, K, Ti and P are present in the structure as impurities. OA measurements of natural and annealed pumpellyite revealed several bands in the visible region due to spin forbidden transitions of Fe{sup 2+} and Fe{sup 3+}. The behaviour of bands around 900 and 1060 nm, with pre-annealing and γ radiation dose, indicating a transition Fe{sup 2+} → e{sup −} + Fe{sup 3+}. On the other hand, EPR measurements reveal six lines of Mn{sup 2+}, and satellites due to hyperfine interaction, superimposed on the signal of Fe{sup 3+} around of g = 2. For heat treatment from 800 °C the signal grows significantly and for 900 °C a strong signal of Fe{sup 3+} hides all Mn{sup 2+} lines. The strong growth of this signal indicates that the transitions are due to Fe{sup 3+} dipole–dipole interactions.

  20. Post-irradiation abortion: a slaughter of innocents

    International Nuclear Information System (INIS)

    Dalrymple, G.V.; Baker, M.L.

    1977-01-01

    The medical profession and the lay public have not been overly concerned about the effects of diagnostic x-rays or radioactive isotopes until the last decade when radiation was rediscovered to cause damage to the fetus. In addition, radiation is associated with increased incidence of childhood cancer as well as chromosome damage and related birth defects. While some fear of radiation during the embryonic-fetal period, one of great radiosensitivity, is justified, the anxiety has been intensified by the attitudes of some physicians. Instances have occurred in which a patient who had received a very small amount of radiation (from diagnostic x-ray examination) was advised to have an abortion. A foreseeable result of such events has been litigation against involved physicians. Counter-measures that have been suggested are: do not irradiate women known to be pregnant without a firm clinical indication; if accidental iradiation is discovered the actual dose to the fetus should be estimated. Usual diagnostic examination will give fewer than 5 rads to the fetus and such doses do not represent grounds for abortion. For doses of 5-10 rads abortion could be considered and above 10 rads there would be stronger consideration for such a recommendation. other factors to be considered include age of the mother, and environmental factors (medicines, food additives, cigarettes, coffee, etc.). Proper radiologic practice will eliminate or reduce the number of pregnant women irradiated

  1. Post-irradiation treatment of human lymphocytes with spermidine reduced frequency of chromatid breaks

    International Nuclear Information System (INIS)

    Bocian, E.; Rosiek, O.; Ziemba-Zoltowska, B.

    1978-01-01

    Human lymphocyte cultures were X-irradiated with a single dose of 100 or 200 rad 46 h after phytohemagglutinin stimulation. In dose-fractionation experiments, 2h later the second dose was applied. All the cultures were harvested at 54 h after their initiation. In lymphocytes irradiated with a single dose of 200 rad, 2h post-irradiation contact with 10 -5 M exogeneous spermidine resulted in reduction of chromatid breaks by 34 %. Introduction of spermidine into culture medium for fractionation interval between the 2 doses of 100 rad reduced the frequency of chromatid breaks by 42 %. (author)

  2. AGR-1 Compact 5-3-1 Post-Irradiation Examination Results

    Energy Technology Data Exchange (ETDEWEB)

    Demkowicz, Paul [Idaho National Lab. (INL), Idaho Falls, ID (United States); Harp, Jason [Idaho National Lab. (INL), Idaho Falls, ID (United States); Winston, Phil [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ploger, Scott A. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-12-01

    The Advanced Gas Reactor (AGR) Fuel Development and Qualification Program was established to perform the requisite research and development on tristructural isotropic (TRISO) coated particle fuel to support deployment of a high-temperature gas-cooled reactor (HTGR). The work continues as part of the Advanced Reactor Technologies (ART) TRISO Fuel program. The overarching program goal is to provide a baseline fuel qualification data set to support licensing and operation of an HTGR. To achieve these goals, the program includes the elements of fuel fabrication, irradiation, post-irradiation examination (PIE) and safety testing, fuel performance, and fission product transport (INL 2015). A series of fuel irradiation experiments is being planned and conducted in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL). These experiments will provide data on fuel performance under irradiation, support fuel process development, qualify the fuel for normal operating conditions, provide irradiated fuel for safety testing, and support the development of fuel performance and fission product transport models. The first of these irradiation tests, designated AGR-1, began in the ATR in December 2006 and ended in November 2009. This experiment was conducted primarily to act as a shakedown test of the multicapsule test train design and provide early data on fuel performance for use in fuel fabrication process development. It also provided samples for post-irradiation safety testing, where fission product retention of the fuel at high temperatures will be experimentally measured. The capsule design and details of the AGR-1 experiment have been presented previously.

  3. Effect of the post-annealing temperature on the thermal-decomposed NiOx hole contact layer for perovskite solar cells

    Directory of Open Access Journals (Sweden)

    Yuxiao Guo

    2018-02-01

    Full Text Available A hysteresis-less inverted perovskite solar cell (PSC with power conversion efficiency (PCE of 13.57% was successfully achieved based on the thermal-decomposed NiOx hole contact layer, possessing better electron blocking and hole extraction properties for its suitable work function and high-conduction band edge position. Herein, the transparent and high-crystalline NiOx film is prepared by thermal-decomposing of the solution-derived Ni(OH2 film in our study, which is then employed as hole transport layer (HTL of the organic–inorganic hybrid PSCs. Reasonably, the post-annealing treatment, especially for the annealing temperature, could greatly affect the Ni(OH2 decomposition process and the quality of decomposed NiOx nanoparticles. The vital NiOx HTLs with discrepant morphology, crystallinity and transmission certainly lead to a wide range of device performance. As a result, an annealing process of 400∘C/2h significantly promotes the photovoltaic properties of the NiOx layer and the further device performance.

  4. Impact of post-deposition annealing on interfacial chemical bonding states between AlGaN and ZrO2 grown by atomic layer deposition

    International Nuclear Information System (INIS)

    Ye, Gang; Arulkumaran, Subramaniam; Ng, Geok Ing; Li, Yang; Ang, Kian Siong; Wang, Hong; Ng, Serene Lay Geok; Ji, Rong; Liu, Zhi Hong

    2015-01-01

    The effect of post-deposition annealing on chemical bonding states at interface between Al 0.5 Ga 0.5 N and ZrO 2 grown by atomic layer deposition (ALD) is studied by angle-resolved x-ray photoelectron spectroscopy and high-resolution transmission electron microscopy. It has been found that both of Al-O/Al 2p and Ga-O/Ga 3d area ratio decrease at annealing temperatures lower than 500 °C, which could be attributed to “clean up” effect of ALD-ZrO 2 on AlGaN. Compared to Ga spectra, a much larger decrease in Al-O/Al 2p ratio at a smaller take-off angle θ is observed, which indicates higher effectiveness of the passivation of Al-O bond than Ga-O bond through “clean up” effect near the interface. However, degradation of ZrO 2 /AlGaN interface quality due to re-oxidation at higher annealing temperature (>500 °C) is also found. The XPS spectra clearly reveal that Al atoms at ZrO 2 /AlGaN interface are easier to get oxidized as compared with Ga atoms

  5. Detection of irradiation induced modifications in foodstuff DNA using 32p post-labelling

    International Nuclear Information System (INIS)

    Hoey, B.M.; Swallow, A.J.; Margison, G.P.

    1991-01-01

    DNA post-labelling has been used successfully to detect damage to DNA caused by a range of damaging agents. The assay results in a fingerprint of changes induced in DNA which might, in principle, be useful as a test for the detection of the irradiation of foods. The authors present their DNA extraction and 32 p post-labelling methods from chicken or cooked prawn samples and their analysis method (High Performance liquid chromatography). It's hoped that these results could form the basis of a test to detect if foods have been irradiated

  6. Nanorods on surface of GaN-based thin-film LEDs deposited by post-annealing after photo-assisted chemical etching

    OpenAIRE

    Chen, Lung-Chien; Lin, Wun-Wei; Liu, Te-Yu

    2017-01-01

    This study investigates the optoelectronic characteristics of gallium nitride (GaN)-based thin-film light-emitting diodes (TF-LEDs) that are formed by a two-step transfer process that involves wet etching and post-annealing. In the two-step transfer process, GaN LEDs were stripped from sapphire substrates by the laser lift-off (LLO) method using a KrF laser and then transferred onto ceramic substrates. Ga-K nanorods were formed on the surface of the GaN-based TF-LEDs following photo-assisted ...

  7. Vacancy effects on the formation of helium and krypton cavities in 3-C-SiC irradiated and annealed at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Zang, Hang; Liu, Wenbo; Li, Tao; He, Chaohui; Yun, Di; Jiang, Weilin; Devaraj, Arun; Edwards, Danny J.; Henager, Charles H.; Kurtz, Richard J.; Wang, Zhiguang

    2017-02-27

    Polycrystalline 3C-SiC was sequentially irradiated at 400 and 750°C with 120 keV He2+ and 4 MeV Kr15+ ions to 1017 and 41016 cm-2, respectively. The Kr15+ ions penetrated the entire depth of the He2+ ion implantation region. Three areas of He2+, Kr15+ and He2+ + Kr15+ ion implanted 3C-SiC were created through masked overlapping irradiations. The sample was subsequently annealed at 1600°C in vacuum and characterized using cross-sectional transmission electron microscopy and energy-dispersive x-ray spectroscopy. Compared to the He2+ ion only implanted 3C-SiC, helium cavities in the He2+ and Kr15+ co-implanted 3C-SiC had a smaller size but higher density. At 25 dpa, presence of He in the co-implanted 3C-SiC significantly promoted cavity growth; much smaller voids were formed in the Kr15+ ion only irradiated 3C-SiC at the same dose. In addition, local Kr migration and trapping at cavities occurred, but long-range Kr diffusion in 3C-SiC was not observed up to 1600°C.

  8. Reactor pressure vessel thermal annealing

    International Nuclear Information System (INIS)

    Lee, A.D.

    1997-01-01

    The steel plates and/or forgings and welds in the beltline region of a reactor pressure vessel (RPV) are subject to embrittlement from neutron irradiation. This embrittlement causes the fracture toughness of the beltline materials to be less than the fracture toughness of the unirradiated material. Material properties of RPVs that have been irradiated and embrittled are recoverable through thermal annealing of the vessel. The amount of recovery primarily depends on the level of the irradiation embrittlement, the chemical composition of the steel, and the annealing temperature and time. Since annealing is an option for extending the service lives of RPVs or establishing less restrictive pressure-temperature (P-T) limits; the industry, the Department of Energy (DOE) and the Nuclear Regulatory Commission (NRC) have assisted in efforts to determine the viability of thermal annealing for embrittlement recovery. General guidance for in-service annealing is provided in American Society for Testing and Materials (ASTM) Standard E 509-86. In addition, the American Society of Mechanical Engineers (ASME) Code Case N-557 addresses annealing conditions (temperature and duration), temperature monitoring, evaluation of loadings, and non-destructive examination techniques. The NRC thermal annealing rule (10 CFR 50.66) was approved by the Commission and published in the Federal Register on December 19, 1995. The Regulatory Guide on thermal annealing (RG 1.162) was processed in parallel with the rule package and was published on February 15, 1996. RG 1.162 contains a listing of issues that need to be addressed for thermal annealing of an RPV. The RG also provides alternatives for predicting re-embrittlement trends after the thermal anneal has been completed. This paper gives an overview of methodology and recent technical references that are associated with thermal annealing. Results from the DOE annealing prototype demonstration project, as well as NRC activities related to the

  9. Influence of oxygen impurity atoms on defect clusters and radiation hardening in neutron-irradiated vanadium

    International Nuclear Information System (INIS)

    Bajaj, R.; Wechsler, M.S.

    1975-01-01

    Single crystal TEM samples and polycrystalline tensile samples of vanadium containing 60-640 wt ppm oxygen were irradiated at about 100 0 C to about 1.3 x 10 19 neutrons/cm 2 (E greater than 1 MeV) and post-irradiation annealed up to 800 0 C. The defect cluster density increased and the average size decreased with increasing oxygen concentration. Higher oxygen concentrations caused the radiation hardening and radiation-anneal hardening to increase. The observations are consistent with the nucleation of defect clusters by small oxygen or oxygen-point defect complexes and the trapping of oxygen at defect clusters upon post-irradiation annealing

  10. A case of post-irradiation mesenchymal chondrosarcoma

    Energy Technology Data Exchange (ETDEWEB)

    Hayakawa, Yuji; Komori, Kazuya; Matsunaga, Tsuyoshi [Tsuchiura Kyodo General Hospital, Ibaraki (Japan); Shibata, Toshikatsu

    2001-04-01

    A woman was first admitted to our hospital in 1987 at the age of 56 vears because of cancer of the uterine cervix. Total hysterectomy was performed, and 50 Gy of {sup 60}CO was irradiated to the whole pelvis postoperatively. After these therapies, the patient enjoyed good health for twelve years. In 1999, she was admitted again because of a large pelvic tumor which adhered to pelvic bone. Pelvic CT showed a low density mass which invaded soft tissue and surrounded the right os pubis; however there was no obvious bone destruction. Chest CT showed multiple coin lesions in both lungs. A biopsy specimen of the lesion showed characteristic bimorphic pattern composed of highly cellular proliferation of undifferentiated small cells and zones of differentiated cartilaginous tissue. (author)

  11. Radiation annealing in cuprous oxide

    DEFF Research Database (Denmark)

    Vajda, P.

    1966-01-01

    Experimental results from high-intensity gamma-irradiation of cuprous oxide are used to investigate the annealing of defects with increasing radiation dose. The results are analysed on the basis of the Balarin and Hauser (1965) statistical model of radiation annealing, giving a square...

  12. Comparative study of post-growth annealing of Cu(hfac)2, Co2(CO)8 and Me2Au(acac) metal precursors deposited by FEBID.

    Science.gov (United States)

    Puydinger Dos Santos, Marcos Vinicius; Szkudlarek, Aleksandra; Rydosz, Artur; Guerra-Nuñez, Carlos; Béron, Fanny; Pirota, Kleber Roberto; Moshkalev, Stanislav; Diniz, José Alexandre; Utke, Ivo

    2018-01-01

    Non-noble metals, such as Cu and Co, as well as noble metals, such as Au, can be used in a number modern technological applications, which include advanced scanning-probe systems, magnetic memory and storage, ferroelectric tunnel junction memristors, metal interconnects for high performance integrated circuits in microelectronics and nano-optics applications, especially in the areas of plasmonics and metamaterials. Focused-electron-beam-induced deposition (FEBID) is a maskless direct-write tool capable of defining 3-dimensional metal deposits at nanometre scale for above applications. However, codeposition of organic ligands when using organometallic precursors is a typical problem that limits FEBID of pure metal nanostructures. In this work, we present a comparative study using a post-growth annealing protocol at 100, 200, and 300 °C under high vacuum on deposits obtained from Co 2 (CO) 8 , Cu(II)(hfac) 2 , and Me 2 Au(acac) to study improvements on composition and electrical conductivity. Although the as-deposited material was similar for all precursors, metal grains embedded in a carbonaceous matrix, the post-growth annealing results differed. Cu-containing deposits showed the formation of pure Cu nanocrystals at the outer surface of the initial deposit for temperatures above 100 °C, due to the migration of Cu atoms from the carbonaceous matrix containing carbon, oxygen, and fluorine atoms. The average size of the Cu crystals doubles between 100 and 300 °C of annealing temperature, while the composition remains constant. In contrast, for Co-containing deposits oxygen release was observed upon annealing, while the carbon content remained approximately constant; the cobalt atoms coalesced to form a metallic film. The as-deposited Au-containing material shows subnanometric grains that coalesce at 100 °C, maintaining the same average size at annealing temperatures up to 300 °C. Raman analysis suggests that the amorphous carbonaceous matrix of the as-written Co

  13. InGaN nanocolumn growth self-induced by in-situ annealing and ion irradiation during growth process with molecular beam epitaxy method

    Science.gov (United States)

    Xue, Junjun; Cai, Qing; Zhang, Baohua; Ge, Mei; Chen, Dunjun; Zheng, Jianguo; Zhi, Ting; Tao, Zhikuo; Chen, Jiangwei; Wang, Lianhui; Zhang, Rong; Zheng, Youdou

    2017-11-01

    Incubation and shape transition are considered as two essential processes for nucleating of self-assembly InGaN nanocolumns (NCs) in traditional way. We propose a new approach for nuclei forming directly by in-situ annealing and ion irradiating the InGaN template during growing process. The nanoislands, considered as the nuclei of NCs, were formed by a combinational effect of thermal and ion etching (TIE), which made the gaps of the V-pits deeper and wider. On account of the decomposition of InGaN during TIE process, more nitride-rich amorphous alloys would intent to accumulate in the corroded V-pits. The amorphous alloys played a key role to promote the following growth from 2D regime into Volmer-Weber growth regime so that the NC morphology took place, rather than a compact film. As growth continued, the subsequently epitaxial InGaN alloys on the annealed NC nuclei were suffered in biaxial compressive stress for losing part of indium content from the NC nuclei during the TIE process. Strain relaxation, accompanied by thread dislocations, came up and made the lattice planes misoriented, which prevented the NCs from coalescence into a compact film at later period of growing.

  14. Post-irradiation inactivation, protection, and repair of the sulfhydryl enzyme malate synthase

    International Nuclear Information System (INIS)

    Durchschlag, H.; Zipper, P.

    1985-01-01

    Malate synthase from baker's yeast, a trimeric sulfhydryl enzyme with one essential sulfhydryl group per subunit, was inactivated by 2 kGy X-irradiation in air-saturated aqueous solution (enzyme concentration: 0.5 mg/ml). The radiation induced changes of enzymic activity were registered at about 0,30,60 h after irradiation. To elucidate the role of OH - , O 2 , and H 2 O 2 in the X-ray inactivation of the enzyme, experiments were performed in the absence of presence of different concentrations of specific additives (formate, superoxide dismutase, catalase). These additives were added to malate synthase solutions before or after X-irradiation. Moreover, repairs of inactivated malate synthase were initiated at about 0 or 30 h after irradiation by means of the sulfhydryl agent dithiothreitol. Experiments yielded the following results: 1. Irradiation of malate synthase in the absence of additives inactivated the enzyme immediately to a residual activity Asub(r)=3% (corresponding to a D 37 =0.6 kGy), and led to further slow inactivation in the post-irradiation phase. Repairs, initiated at different times after irradiation, restored enzymic activity considerably. The repair initiated at t=0 led to Asub(r)=21%; repairs started later on resulted in somewhat lower activities. The decay of reparability, however, was found to progress more slowly than post-irradiation inactivation itself. After completion of repair the activities of repaired samples did not decrease significantly. 2. The presence of specific additives during irradiation caused significant protective effects against primary inactivation. The protection by formate was very pronounced (e.g., Asub(r)=72% and D 37 =6 kGy for 100 mM formate). The presence of catalytic amounts of superoxide dismutase and/or catalase exhibited only minor effects, depending on the presence and concentration of formate. (orig.)

  15. Clinical analysis of post-irradiation sensorineural hearing loss in patients suffering from nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Lu Xueguan; Liu Zhiyong; Zhang Liyuan; Tian Ye

    2005-01-01

    Objective: To investigate the incidence of post-irradiation sensorineural hearing loss (SNHL) in patients suffering from nasopharyngeal carcinoma and to evaluate its potentially contributing factors. Methods: Pure tonetest and impedance audiography were carried out in patients suffering from nasopharyngeal carcinoma with a post-irradiation follow-up time over 1 year. Additionally, the test results were combined with clinical data and analyzed retrospectively. Results: The follow-up time of all patients ranged from 12 to 94 months (median 53 months). The incidences of SNHL at low and high frequencies were 8% and 42% respectively. Univariate analysis showed that patient's age and follow-up time affected the incidence of SNHL at high frequencies (t=2.051, P=0.0269; t=2.978, P=0.0011), but sex, preirradiation subjective hearing loss, irradiation dose and chemotherapy including cisplatin had no significance. Multivariate analysis by Binary Logistic Regression revealed that the risk of SNHL was correlated with patient's age and follow-up time (P=0.02; P=0.009). Conclusion: Post-irradiation SNHL at high frequencies in patients suffering from nasopharyngeal carcinoma is more common than that at low frequencies. The independent prognostic factors for development of SNHL at high frequencies are patient's age and follow-up time. But the role of preirradiation hearing level ,irradiation dose and chemotherapy including cisplatin are not conclusive and further research is needed. (authors)

  16. Effect of Post-annealing on the Electrochromic Properties of Layer-by-Layer Arrangement FTO-WO3-Ag-WO3-Ag

    Science.gov (United States)

    Hoseinzadeh, S.; Ghasemiasl, R.; Bahari, A.; Ramezani, A. H.

    2018-03-01

    In the current study, composites of tungsten trioxide (W03) and silver (Ag) are deposited in a layer-by-layer electrochromic (EC) arrangement onto a fluorine-doped tin oxide coated glass substrate. Tungsten oxide nanoparticles are an n-type semiconductor that can be used as EC cathode material. Nano-sized silver is a metal that can serve as an electron trap center that facilitates charge departure. In this method, the WO3 and Ag nanoparticle powder were deposited by physical vapor deposition onto the glass substrate. The fabricated electrochromic devices (ECD) were post-annealed to examine the effect of temperature on their EC properties. The morphology of the thin film was characterized by scanning electron microscopy and atomic force microscopy. Structural analysis showed that the addition of silver dopant increased the size of the aggregation of the film. The film had an average approximate roughness of about 17.8 nm. The electro-optical properties of the thin film were investigated using cyclic voltammetry and UV-visible spectroscopy to compare the effects of different post-annealing temperatures. The ECD showed that annealing at 200°C provided better conductivity (maximum current of about 90 mA in the oxidation state) and change of transmittance (ΔT = 90% at the continuous switching step) than did the other thin films. The optical band gaps of the thin film showed that it allowed direct transition at 3.85 eV. The EC properties of these combinations of coloration efficiency and response time indicate that the WO3-Ag-WO3-Ag arrangement is a promising candidate for use in such ECDs.

  17. Preparation of CuIn(S,Se){sub 2} films by PLD of precursor layers and post-annealing and their application to solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Kawabe, Toshiyuki; Maeda, Tsuyoshi; Wada, Takahiro [Department of Materials Chemistry, Ryukoku University, Seta, Otsu (Japan)

    2017-06-15

    Cu-In-S precursor films were deposited at various substrate temperatures by pulsed laser deposition (PLD). CuIn(S,Se){sub 2} films were prepared by post-annealing the Cu-In-S precursor films in H{sub 2}S and Se atmosphere. CuIn(S,Se){sub 2} solar cells with a device structure of Au/ITO/i-ZnO/CdS/CuIn(S,Se){sub 2}/Mo/soda-lime (SLG) glass were fabricated and characterized. Higher conversion efficiency was obtained for the CuIn(S,Se){sub 2} solar cell with the precursor film deposited at room temperature. The phase and microstructure of the Cu-In-S precursor and the annealed CuIn(S,Se){sub 2} films were examined by X-ray diffraction (XRD) and scanning electron microscopy (SEM). We found that the quality of the CuIn(S,Se){sub 2} films was strongly affected by the deposition temperature of Cu-In-S precursor films. We discuss the grain growth and sintering in CuIn(S,Se){sub 2} films on the basis of the results of XRD and SEM. The highest conversion efficiency of 6.38% (V{sub oc}= 521 mV, J{sub sc}= 22.6 mA cm{sup -2}, FF = 0.541) was obtained for the CuIn(S,Se){sub 2} solar cell with the precursor film deposited at room temperature and post-annealed at 620 C. The solar cell was analyzed by secondary ion mass spectroscopy (SIMS) and transmission electron microscopy (TEM). (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Post-irradiation thymocyte regeneration after bone marrow transplantation

    International Nuclear Information System (INIS)

    Boersma, W.; Betel, I.; Daculsi, R.; Westen, G. van der

    1981-01-01

    Growth kinetics of the donor-type thymus cell population after transplantation of bone marrow into irradiated syngeneic recipient mice is biphasic. During the first rapid phase of regeneration, lasting until day 19 after transplantation, the rate of development of the donor cells is independent of the number of bone marrow cells inoculated. The second slow phase is observed only when low numbers of bone marrow cells (2.5 x 10 4 ) are transplanted. The decrease in the rate of development is attributed to an efflux of donor cells from the thymus because, at the same time, the first immunologically competent cells are found in spleen. After bone marrow transplantation the regeneration of thymocyte progenitor cells in the marrow is delayed when compared to regeneration of CFUs. Therefore, regenerating marrow has a greatly reduced capacity to restore the thymus cell population. One week after transplantation of 3 x 10 6 cells, 1% of normal capacity of bone marrow is found. It is concluded that the regenerating thymus cells population after bone marrow transplantation is composed of the direct progeny of precursor cells in the inoculum. (author)

  19. Post irradiation effects on the graft of poly(tetrafluoroethylene-co-perfluoropropyl vinyl ether) (PFA) films

    International Nuclear Information System (INIS)

    Geraldes, Adriana N.; Zen, Heloisa A.; Ribeiro, Geise; Ferreira, Henrique P.; Souza, Camila P.; Parra, Duclerc F.; Lugao, Ademar B.

    2009-01-01

    Radiation induced grafting of monomers into fluorinated polymers was designed as an alternative route to polymer modification. In this work, grafting of styrene onto poly(tetrafluoroethylene-co-perfluoropropyl vinyl ether) (PFA) was studied. Radiation-induced grafting of styrene onto PFA films was investigated after simultaneous irradiation (in post-irradiation condition) using a 60 Co source. The films of PFA were irradiated at 20, 40, 80 and 100 kGy doses at room temperature and chemical changes were monitored after contact with styrene for grafting. The post-irradiation time was established between 7 and 28 days when films of PFA were maintained in styrene/toluene 1:1 v/v solution at room temperature. After these periods the grafting degrees were evaluated in the samples. The highest degree of grafting was achieved after 14 days. Chemical modifications were evaluated by infrared spectroscopic analysis (FTIR), thermogravimetry (TG), differential scanning calorimetry (DSC) and also by scanning electron microscopy (SEM). The degree of grafting (DOG) was determined gravimetrically. The results showed that irradiated PFA films at 100 kGy exhibited higher grafting degree. Surface analysis by SEM technique of irradiated, grafted and original films have presented an homogeneous surface. (author)

  20. Polycrystalline La1-xSrxMnO3 films on silicon: Influence of post-Deposition annealing on structural, (Magneto-)Optical, and (Magneto-)Electrical properties

    Science.gov (United States)

    Thoma, Patrick; Monecke, Manuel; Buja, Oana-Maria; Solonenko, Dmytro; Dudric, Roxana; Ciubotariu, Oana-Tereza; Albrecht, Manfred; Deac, Iosif G.; Tetean, Romulus; Zahn, Dietrich R. T.; Salvan, Georgeta

    2018-01-01

    The integration of La1-xSrxMnO3 (LSMO) thin film technology into established industrial silicon processes is regarded as challenging due to lattice mismatch, thermal expansion, and chemical reactions at the interface of LSMO and silicon. In this work, we investigated the physical properties of thin La0.73Sr0.27MnO3 films deposited by magnetron sputtering on silicon without a lattice matching buffer layer. The influence of a post-deposition annealing treatment on the structural, (magneto-)optical, and (magneto-)electrical properties was investigated by a variety of techniques. Using Rutherford backscattering spectroscopy, atomic force microscopy, Raman spectroscopy, and X-ray diffraction we could show that the thin films exhibit a polycrystalline, rhombohedral structure after a post-deposition annealing of at least 700 °C. The dielectric tensor in the spectral range from 1.7 eV to 5 eV determined from spectroscopic ellipsometry in combination with magneto-optical Kerr effect spectroscopy was found to be comparable to that of lattice matched films on single crystal substrates reported in literature [1]. The values of the metal-isolator transition temperature and temperature-dependent resistivities also reflect a high degree of crystalline quality of the thermally treated films.

  1. Alleviation of acute radiation damages by post-irradiation treatments

    International Nuclear Information System (INIS)

    Kurishita, A.; Ono, T.

    1992-01-01

    Radiation induced hematopoietic and gastro-intestinal damages in mice were tried to alleviate experimentally by post-treatment. Combined treatment of OK-432 and aztreonam clearly prevented the radiation induced sepsis and elevated the survival rate in mice; the survival was 80% in the OK-432 plus aztreonam group while it was 55% in the group treated with OK-432 alone and 0% with saline. Irsogladine maleate, an anti-ulcer drug, increased the survival rate of jejunal crypt stem cells with a clear dose-related trend. The D 0 for irsogladine maleate was 2.8 Gy although it was 2.3 Gy for saline, These findings suggest that some conventional drugs are effective for radiation induced hematopoietic and gastro-intestinal damages and the possibility that they can be applied for people exposed to radiation accidentally. (author)

  2. Development status of post irradiation examination techniques at the JMTR Hot Laboratory

    International Nuclear Information System (INIS)

    Ohmi, M.; Ohsawa, K.; Nakagawa, T.; Umino, A.; Shimizu, M.; Satoh, H.; Oyamada, R.

    1992-01-01

    Hot laboratory at Oarai Research Establishment was founded to examine the objects mainly irradiated at JMTR (Japan Materials Testing Reactor) and has been operated since 1971. A wide variety of post-irradiation examinations (PIE) is available using the hot laboratory. Continuous efforts are made to develop new PIE techniques to accommodate the user's requirements. The following are main techniques recently developed in the hot laboratory; 1. Remote capsule assembly including remote weld of irradiated objects for reirradiation in JMTR. 2. Fracture toughness tests of reactor component materials. 3. Creep tests of heat resistance alloys in high temperature conditions. 4. Tests of irradiation assisted stress corrosion cracking (IASCC). 5. Examination techniques of miniaturized test specimens. This report describes an outline of the hot laboratory with main emphasis on the new PIE techniques. (author)

  3. Post-irradiation repairing processes of glucose-6-phosphate dehydrogenase and catalase from Hansenula Polymorpha yeast

    International Nuclear Information System (INIS)

    Postolache, Carmen; Postolache, Cristian; Dinu, Diana; Dinischiotu, Anca; Sahini, Victor Emanuel

    2002-01-01

    The post-irradiation repairing mechanisms of two Hansenula Polymorpha yeast enzymes, glucose-6-phosphate dehydrogenase and catalase, were studied. The kinetic parameters of the selected enzymes were investigated over one month since the moment of γ-irradiation with different doses in the presence of oxygen. Dose dependent decrease of initial reaction rates was noticed for both enzymes. Small variation of initial reaction rate was recorded for glucose-6-phosphate dehydrogenase over one month, with a decreasing tendency. No significant electrophoretic changes of molecular forms of this enzyme were observed after irradiation. Continuous strong decrease of catalase activity was evident for the first 20 days after irradiation. Partial recovery process of the catalytic activity was revealed by this study. (authors)

  4. A comparative study of post-irradiation growth kinetics of spheroids and monolayers

    International Nuclear Information System (INIS)

    Dertinger, J.; Luecke-Huhle, C.

    1975-01-01

    Post-irradiation growth kinetics of γ-irradiated spheroid and monolayer cells in exponential growth phase was investigated by means of dose-response curves based on cell counts after specified time intervals following irradiation. A mathematical model of cell-growth after irradiation was fitted to these curves. The model parameters (related to division delay and growth of non-surviving cells) obtained from this analysis consistently indicated increasing resistance to sub-lethal damage of cells cultured as multicellular spheroids under conditions of increasing three-dimensional contact. In contrast, no indication of an increased radiation-resistance was found with cells cultured on a substratum under a variety of conditions. (author)

  5. Post-{gamma}-irradiation reactions in vitamin E stabilised and unstabilised HDPE

    Energy Technology Data Exchange (ETDEWEB)

    Mallegol, J.; Carlsson, D.J. E-mail: dave.carlsson@nrc.ca; Deschenes, L

    2001-12-01

    The oxidation of high density polyethylene (HDPE), both unstabilised and vitamin E stabilised, has been studied by infrared (IR) and electron paramagnetic resonance (EPR) spectroscopies in the period following {gamma}-irradiation at doses from 1 to 60 kGy (range of food sterilisation). Derivatisation by reaction with sulphur tetrafluoride was used to identify macro-ketone and carboxylic acid components of the overlapped IR carbonyl region. Oxidation continued for several hundred hours after the cessation of irradiation as shown by the increase in hydroxyl, ketone and acid groups. Carboxylic acid groups are particularly important as a direct indication of backbone scission. Vitamin E, although an effective antioxidant during {gamma}-irradiation, was less effective in reducing the post-irradiation changes, which are probably driven by migration of radical sites along the polymer backbone from within the crystalline phase to the amorphous/crystalline inter-phase, where they become oxygen accessible.

  6. Information for irradiation and post-irradiation of the silicide fuel element prototype P-07

    International Nuclear Information System (INIS)

    Abbate, Maximo J.; Sbaffoni, Maria M.

    2003-01-01

    Included in the 'Silicides' Project, developed by the Nuclear Fuels Department of the National Atomic Energy Commission (CNEA), it is foreseen the qualification of this type of fuel for research reactors in order to be used in the Argentine RA-3 reactor and to confirm the CNEA as an international supplier. The paper presents basic information on several parameters corresponding to the new silicide prototype, called P-07, to be taken into account for its irradiation, postirradiation and qualification. (author)

  7. Irradiation of Argentine MOX fuels: Post-irradiation results and analysis

    International Nuclear Information System (INIS)

    Marino, A.C.; Perez, E.; Adelfang, P.

    1997-01-01

    The irradiation of the first Argentine prototypes of PHWR MOX fuels began in 1986. These experiments were made in the HFR-Petten reactor, Holland. The rods were prepared and controlled in the CNEA's facility. The postirradiation examinations were performed in the Kernforschungszentrum, Karlsruhe, Germany and in the JRC, Petten. The first rod has been used for destructive pre-irradiation analysis. The second one as a pathfinder to adjust systems in the HFR. Two additional rods including iodine doped pellets were intended to simulate 15000 MWd/T(M) burnup. The remaining two rods were irradiated until 15000 MWd/T(M) (BU15 experiment). One of them underwent a final ramp with the aim of verifying fabrication processes and studying the behaviour under power transients. BACO code was used to define the power histories and to analyze the experiments. This paper presents the postirradiation examinations for the BU15 experiments and a comparison with the BACO outputs for the rod that presented a failure during the ramp test of the BU15 experiment. (author). 17 refs, 30 figs, 5 tabs

  8. Shear Wave Elastography--A New Quantitative Assessment of Post-Irradiation Neck Fibrosis.

    Science.gov (United States)

    Liu, K H; Bhatia, K; Chu, W; He, L T; Leung, S F; Ahuja, A T

    2015-08-01

    Shear wave elastography (SWE) is a new technique which provides quantitative assessment of soft tissue stiffness. The aim of this study was to assess the reliability of SWE stiffness measurements and its usefulness in evaluating post-irradiation neck fibrosis. 50 subjects (25 patients with previous radiotherapy to the neck and 25 sex and age-matched controls) were recruited for comparison of SWE stiffness measurements (Aixplorer, Supersonic Imagine). 30 subjects (16 healthy individuals and 14 post-irradiated patients) were recruited for a reliability study of SWE stiffness measurements. SWE stiffness measurements of the sternocleidomastoid muscle and the overlying subcutaneous tissues of the neck were made. The cross-sectional area and thickness of the sternocleidomastoid muscle and the overlying subcutaneous tissue thickness of the neck were also measured. The post-irradiation duration of the patients was recorded. The intraclass correlation coefficients for the intraoperator and interoperator reliability of deep and subcutaneous tissue SWE stiffness ranged from 0.90-0.99 and 0.77-0.94, respectively. The SWE stiffness measurements (mean +/- SD) of deep and subcutaneous tissues were significantly higher in the post-irradiated patients (64.6 ± 46.8 kPa and 63.9 ± 53.1 kPa, respectively) than the sex and age-matched controls (19.9 ± 7.8 kPa and 15.3 ± 8.37 respectively) (p < 0.001). The SWE stiffness increased with increasing post-irradiation therapy duration in the Kruskal Wallis test (p < 0.001) and correlated with muscle atrophy and subcutaneous tissue thinning (p < 0.01). SWE is a reliable technique and may potentially be an objective and specific tool in quantifying deep and subcutaneous tissue stiffness, which in turn reflects the severity of neck fibrosis. © Georg Thieme Verlag KG Stuttgart · New York.

  9. Effect of irradiation on the post-harvest life of potatoes

    International Nuclear Information System (INIS)

    Mahboob, F.; Badshah, N.; Jabeen, N.; Ayub, G.

    2004-01-01

    Research work was conducted to find out the effect of irradiation on the post-harvest life of potatoes. Cultivar Raja was obtained from Agricultural Research Institute, Tarnab, and irradiated by Cobalt-60 source at different doses 0, 5, 7.5, 10 and 15 Krad at the Nuclear Institute for Food and Agriculture (NIFA), Tarnab during the year 2002. The samples were then stored for three months at the Horticultural Research Farm, Malakandher, at a room temperature of 30-39 degree C and relative humidity of 29-63%. Various tests carried out at Food Science laboratory revealed that irradiation significantly affected the weight loss, sugars, starch, ascorbic acid, sprouting and specific gravity. It was observed that maximum sprouting has occurred in control (42.1%) followed by 5 Krad irradiated tubers (6.4%). While irradiation doses of 7.5, 10 and 15 Krad completely inhibited sprouting. Maximum percent decrease in weight (42.66%), reducing sugars (0.57%), non reducing sugars (0.87%), starch (12%), ascorbic acid (32%) and specific gravity (4%) were recorded for control while minimum percent decrease in weight (31.40%), reducing sugars (0.19%), non-reducing sugars (0.27%), starch (8.0%), ascorbic acid (12%) and specific gravity (1.7%) were noted for IS Krad irradiated tubers. Irradiation dose of 7.5 Krad seems to be better for the extension of shelf life of potatoes

  10. The analysis of Rutherford scattering-channelling measurements of disorder production and annealing in ion irradiated semiconductors

    International Nuclear Information System (INIS)

    Carter, G.; Elliman, R.G.

    1983-01-01

    Rutherford scattering and channelling of light probe ions (e.g. He + ) has been extensively used for studies of disorder production in ion implanted semiconductors. Various authors have analysed models of amorphousness accumulation and Carter and Webb have indicated the general difficulties in assessing disorder production models from RBS/channelling studies if the production modes are complex and the manner in which the technique responds to different defect structures is unspecified. For less complex disorder production modes and by making reasonable assumptions about the technique response however, some insight into the form of backscattering yield - ion implant fluence functions can be obtained as is discussed in the present communication. It thus becomes possible to infer the importance of different disorder generation processes from RBS/channelling - ion influence studies. It will also be shown how simple annealing processes modify disorder accumulation and thus again how the operation of such processes may be inferred from RBS/channelling - ion fluence measurements. (author)

  11. Approach for estimating post-annual reirradiation embrittlement of reactor vessel steels

    International Nuclear Information System (INIS)

    Server, W.L.; Taboada, A.

    1985-01-01

    Thermal annealing of a commercial nuclear reactor pressure vessel is a possible solution for extending lifetime in situations where excessive radiation embrittlement has taken place or when the original design life is approached. Two difficult facets of thermal annealing are the degree of toughness recovery after annealing and the post-anneal reirradiation embrittlement behavior. These aspects of annealing are evaluated in this paper by using simple models and translation of the initial irradiation damage curve either vertically or laterally at the point of residual shift after annealing. Results using this methodology are compared to limited actual weld metal measurements of annealing behavior. A forthcoming ASTM Guide on in-place annealing uses this methodology to assess annealing recovery and re-embrittlement response

  12. Structural Transformations in Nickel at the Irradiation Ions N+ and Post-Irradiation Heating

    International Nuclear Information System (INIS)

    Neklyudov, I.M.; Morozov, A.N.; Kulish, V.G.

    2006-01-01

    Structural transformations in nickel films exposed to N + ions were investigated through the use of electron diffraction, electron microscopy, Rutherford backscattering (RBS) of He + ions, thermal desorption spectroscopy (TDS). With an increasing exposure dose, there occurred a smooth transition of the fcc structure of Ni to the hcp phase α-Ni 3 N with the lattice parameters a=0.266 nm and c=0.430 nm. The completion of the transition was observed once the implanted nitrogen concentration corresponding to the stoichiometric ratio of Ni 3 N was attained, this giving evidence for the chemical nature of the structural change observed. During annealing, structure variations were traced, enabling one to observe the following four nickel nitrides: 1) α-Ni 3 N with a disordered arrangement of nitrogen atoms (hcp-phase with a=0.266 nm and c=0.430 nm); 2)β-Ni 3 N with an ordered arrangement of nitrogen atoms (two hexagonal lattices: one with a=0.266 nm, c=0.430 nm, and the other with a=0.466 nm and c=0.43 nm); 3) Ni 4 N having a primitive cubic lattice structure with a=0.377 nm; 4) Ni 8 N having the fcc structure with a=0.725 nm

  13. Analysis on the post-irradiation examination of the HANARO miniplate-1 irradiation test for Kijang research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Man; Tahk, Young Wook; Jeong, Yong Jin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); and others

    2017-08-15

    The construction project of the Kijang research reactor (KJRR), which is the second research reactor in Korea, has been launched. The KJRR was designed to use, for the first time, U–Mo fuel. Plate-type U–7 wt.% Mo/Al–5 wt.% Si, referred to as U–7Mo/Al–5Si, dispersion fuel with a uranium loading of 8.0 gU/cm{sup 3}, was selected to achieve higher fuel efficiency and performance than are possible when using U{sub 3}Si{sub 2}/Al dispersion fuel. To qualify the U–Mo fuel in terms of plate geometry, the first miniplates [HANARO Miniplate (HAMP-1)], containing U–7Mo/Al–5Si dispersion fuel (8 gU/cm{sup 3}), were fabricated at the Korea Atomic Energy Research Institute and recently irradiated at HANARO. The PIE (Post-irradiation Examination) results of the HAMP-1 irradiation test were analyzed in depth in order to verify the safe in-pile performance of the U–7Mo/Al–5Si dispersion fuel under the KJRR irradiation conditions. Nondestructive analyses included visual inspection, gamma spectrometric mapping, and two-dimensional measurements of the plate thickness and oxide thickness. Destructive PIE work was also carried out, focusing on characterization of the microstructural behavior using optical microscopy and scanning electron microscopy. Electron probe microanalysis was also used to measure the elemental concentrations in the interaction layer formed between the U–Mo kernels and the matrix. A blistering threshold test and a bending test were performed on the irradiated HAMP-1 miniplates that were saved from the destructive tests. Swelling evaluation of the U–Mo fuel was also conducted using two methods: plate thickness measurement and meat thickness measurement.

  14. Analysis on the post-irradiation examination of the HANARO miniplate-1 irradiation test for kijang research reactor

    Directory of Open Access Journals (Sweden)

    Jong Man Park

    2017-08-01

    Full Text Available The construction project of the Kijang research reactor (KJRR, which is the second research reactor in Korea, has been launched. The KJRR was designed to use, for the first time, U–Mo fuel. Plate-type U–7 wt.% Mo/Al–5 wt.% Si, referred to as U–7Mo/Al–5Si, dispersion fuel with a uranium loading of 8.0 gU/cm3, was selected to achieve higher fuel efficiency and performance than are possible when using U3Si2/Al dispersion fuel. To qualify the U–Mo fuel in terms of plate geometry, the first miniplates [HANARO Miniplate (HAMP-1], containing U–7Mo/Al–5Si dispersion fuel (8 gU/cm3, were fabricated at the Korea Atomic Energy Research Institute and recently irradiated at HANARO. The PIE (Post-irradiation Examination results of the HAMP-1 irradiation test were analyzed in depth in order to verify the safe in-pile performance of the U–7Mo/Al–5Si dispersion fuel under the KJRR irradiation conditions. Nondestructive analyses included visual inspection, gamma spectrometric mapping, and two-dimensional measurements of the plate thickness and oxide thickness. Destructive PIE work was also carried out, focusing on characterization of the microstructural behavior using optical microscopy and scanning electron microscopy. Electron probe microanalysis was also used to measure the elemental concentrations in the interaction layer formed between the U–Mo kernels and the matrix. A blistering threshold test and a bending test were performed on the irradiated HAMP-1 miniplates that were saved from the destructive tests. Swelling evaluation of the U–Mo fuel was also conducted using two methods: plate thickness measurement and meat thickness measurement.

  15. Controllable nitrogen doping in as deposited TiO{sub 2} film and its effect on post deposition annealing

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Shaoren; Devloo-Casier, Kilian; Devulder, Wouter; Dendooven, Jolien; Deduytsche, Davy; Detavernier, Christophe, E-mail: Christophe.Detavernier@ugent.be [Department of Solid State Sciences, Ghent University, Krijgslaan 281/S1, B-9000 Gent (Belgium); Verbruggen, Sammy W. [Department of Bio-Engineering Sciences, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium and Center for Surface Chemistry and Catalysis, KU Leuven, Kasteelpark Arenberg 23, B-3001 Heverlee (Belgium); Lenaerts, Silvia [Department of Bio-Engineering Sciences, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Martens, Johan A. [Center for Surface Chemistry and Catalysis, KU Leuven, Kasteelpark Arenberg 23, B-3001 Heverlee (Belgium); Van den Berghe, Sven [SCK-CEN, Boeretang 200, B-2400 Mol (Belgium)

    2014-01-15

    In order to narrow the band gap of TiO{sub 2}, nitrogen doping by combining thermal atomic layer deposition (TALD) of TiO{sub 2} and plasma enhanced atomic layer deposition (PEALD) of TiN has been implemented. By altering the ratio between TALD TiO{sub 2} and PEALD TiN, the as synthesized TiO{sub x}N{sub y} films showed different band gaps (from 1.91 eV to 3.14 eV). In situ x-ray diffraction characterization showed that the crystallization behavior of these films changed after nitrogen doping. After annealing in helium, nitrogen doped TiO{sub 2} films crystallized into rutile phase while for the samples annealed in air a preferential growth of the anatase TiO{sub 2} along (001) orientation was observed. Photocatalytic tests of the degradation of stearic acid were done to evaluate the effect of N doping on the photocatalytic activity.

  16. Enhanced TiC/SiC Ohmic contacts by ECR hydrogen plasma pretreatment and low-temperature post-annealing

    International Nuclear Information System (INIS)

    Liu, Bingbing; Qin, Fuwen; Wang, Dejun

    2015-01-01

    Highlights: • Low-temperature ECR microwave hydrogen plasma were pretreated for moderately doped (1 × 10"1"8 cm"−"3) SiC surfaces. • The relationship among Ohmic properties, the SiC surface properties and TiC/SiC interface properties were established. • Interface band structures were analyzed to elucidate the mechanism by which the Ohmic contacts were formed. - Abstract: We proposed an electronic cyclotron resonance (ECR) microwave hydrogen plasma pretreatment (HPT) for moderately doped (1 × 10"1"8 cm"−"3) SiC surfaces and formed ideal TiC/SiC Ohmic contacts with significantly low contact resistivity (1.5 × 10"−"5 Ω cm"2) after low-temperature annealing (600 °C). This is achieved by reducing barrier height at TiC/SiC interface because of the release of pinned Fermi level by surface flattening and SiC surface states reduction after HPT, as well as the generation of donor-type carbon vacancies, which reduced the depletion-layer width for electron tunneling after annealing. Interface band structures were analyzed to elucidate the mechanism of Ohmic contact formations.

  17. Post-irradiation analysis of low enriched U-Mo/Al dispersions fuel miniplate tests, RERTR 4 and 5

    International Nuclear Information System (INIS)

    Hofman, G.L.; Finlay, M.R.; Kim, Y.S.

    2005-01-01

    Interpretation of the post irradiation data of U-Mo/Al dispersion fuel mini plates irradiated in the Advanced Test Reactor to a maximum U-235 burn up of 80% are presented. The analyses addresses fuel swelling and porosity formation as these fuel performance issues relate to fuel fabrication and irradiation parameters. Specifically, mechanisms involved in the formation of porosity observed in the U-Mo/Al interaction phase are discussed and, means of mitigating or eliminating this irradiation phenomenon are offered. (author)

  18. Available post-irradiation examination techniques at Romanian institute for nuclear research

    International Nuclear Information System (INIS)

    Parvan, Marcel; Sorescu, Antonius; Mincu, Marin; Uta, Octavian; Dobrin, Relu

    2005-01-01

    The Romanian Institute for Nuclear Research (INR) has a set of nuclear facilities consisting of TRIGA 14 MW(th) materials testing reactor and LEPI (Romanian acronym for post-irradiation examination laboratory) which enable to investigate the behaviour of the nuclear fuel and materials under various irradiation conditions. The available techniques of post-irradiation examination (PIE) and purposes of PIE for CANDU reactor fuel are as follows. 1) Visual inspection and photography by periscope: To examine the surface condition such as deposits, corrosion etc. 2) Eddy current testing: To verify the cladding integrity. 3) Profilometry and length measurement performed both before and after irradiation: To measure the parameters which highlight the dimensional changes i.e. diameter, length, diametral and axial sheath deformation, circumferential sheath ridging height, bow and ovality. 4) Gamma scanning and Tomography: To determine the burnup, axial and radial fission products activity distribution and to check for flux peaking and loading homogeneity. 5) Puncture test: To measure the pressure, volume and composition of fission gas and the inner free volume. 6) Optical microscopy: To highlight the structural changes and hydriding, to examine the condition of the fuel-sheath interface and to measure the oxide thickness and Vickers microhardness. 7) Mass spectrometry: To measure the burnup. 8) Tensile testing: To check the mechanical properties. So far, non-destructive and destructive post-irradiation examinations have been performed on a significant number of CANDU fuel rods (about 100) manufactured by INR and irradiated to different power histories in the INR 14 MW(th) TRIGA reactor. These examinations have been performed as part of the Romanian research programme for the manufacturing, development and safety of the CANDU fuel. The paper describes the PIE techniques and some results. (Author)

  19. In situ defect annealing of swift heavy ion irradiated CeO2 and ThO2 using synchrotron X-ray diffraction and a hydrothermal diamond anvil cell

    Energy Technology Data Exchange (ETDEWEB)

    Palomares, Raul I.; Tracy, Cameron L.; Zhang, Fuxiang; Park, Changyong; Popov, Dmitry; Trautmann, Christina; Ewing, Rodney C.; Lang, Maik

    2015-04-16

    Hydrothermal diamond anvil cells (HDACs) provide facile means for coupling synchrotron X-ray techniques with pressure up to 10 GPa and temperature up to 1300 K. This manuscript reports on an application of the HDAC as an ambient-pressure sample environment for performingin situdefect annealing and thermal expansion studies of swift heavy ion irradiated CeO2and ThO2using synchrotron X-ray diffraction. The advantages of thein situHDAC technique over conventional annealing methods include rapid temperature ramping and quench times, high-resolution measurement capability, simultaneous annealing of multiple samples, and prolonged temperature and apparatus stability at high temperatures. Isochronal annealing between 300 and 1100 K revealed two-stage and one-stage defect recovery processes for irradiated CeO2and ThO2, respectively, indicating that the morphology of the defects produced by swift heavy ion irradiation of these two materials differs significantly. These results suggest that electronic configuration plays a major role in both the radiation-induced defect production and high-temperature defect recovery mechanisms of CeO2and ThO2.

  20. Vacancy effects on the formation of He and Kr cavities in 3C-SiC irradiated and annealed at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Zang, Hang; Jiang, Weilin; Liu, Wenbo; Devaraj, Arun; Edwards, Danny J.; Henager, Charles H.; Kurtz, Richard J.; Li, Tao; He, Chaohui; Yun, Di; Wang, Zhiguang

    2016-12-01

    Polycrystalline 3C-SiC was sequentially irradiated at 400 and 750°C with 120 keV He2+ and 4 MeV Kr15+ ions to E21 and 4E20 ions/m2 with profiles of the implanted species peaked at 450 and 1500 nm, respectively. The masked overlapping irradiation created three study areas of He2+, Kr15+ and He2+ + Kr15+ implanted SiC. The doses at the depth of the peak He concentration in He2+ and He2+ + Kr15+ implanted SiC correspond to 4 and 25 dpa. The sample was subsequently annealed at 1600°C for 3 h in vacuum and characterized using cross-sectional transmission electron microscopy and energy-dispersive x-ray spectroscopy. Compared to the He2+ implanted SiC, He cavities show a smaller size and higher density in the co-implanted SiC. At 25 dpa, He presence in the co-implanted 3C-SiC significantly promotes He cavity growth, as contrasted to the smaller voids formed without He in the Kr15+ irradiated SiC at the same dose. In addition, local Kr migration and trapping at cavities occur, but long-range Kr diffusion in SiC is not observed up to 1600°C.

  1. Annealing of SnO2 thin films by ultra-short laser pulses

    NARCIS (Netherlands)

    Scorticati, D.; Illiberi, A.; Bor, T.; Eijt, S.W.H.; Schut, H.; Römer, G.R.B.E.; Lange, D.F. de; Huis In't Veld, A.J.

    2014-01-01

    Post-deposition annealing by ultra-short laser pulses can modify the optical properties of SnO2 thin films by means of thermal processing. Industrial grade SnO2 films exhibited improved optical properties after picosecond laser irradiation, at the expense of a slightly increased sheet resistance

  2. Compositional and structural changes in TiB2 films induced by bias, in situ and post-deposition annealing, respectively

    International Nuclear Information System (INIS)

    Pelleg, Joshua; Sade, G.; Sinder, M.; Mogilyanski, D.

    2006-01-01

    Structural changes in TiB 2 films were induced at relatively low temperatures by the application of bias and in situ annealing or by post-deposition heat treatment of samples subjected to bias with simultaneous in situ annealing. In situ annealing by itself evoked only partial crystallization. Application of bias by itself only modified the composition of the as deposited film. A simple model is presented to explain the variation of the composition when RF bias is applied to a cold substrate. The crystallized films had a (0001) texture. A model has been suggested to explain the observed preferred orientation, based on the contribution of surface and strain energies. Both, the surface energy and strain energy are direction dependent. These were evaluated for two film orientations reported in the literature, namely, the (0001) and (101-bar 1)orientations. The preferred orientation of the film is determined by the lowest overall free energy resulting from the competition between the surface energy and the strain energy on different lattice planes. The surface energy is not film thickness dependent while the strain energy is thickness dependent and increases with it. For small film thickness, as in this work, the surface energy term is significant and (0001) orientation with a minimum surface energy is preferred. At large film thicknesses the strain energy becomes dominant and the (101-bar 1) preferred orientation is observed. Under certain experimental conditions strain energy effects may tip the preferred orientation to (101-bar 1). The elastic moduli in the (0001) and (101-bar 1) directions were determined as 435 and 538GPa, respectively

  3. Heat-treated mineral-yeast as a potent post-irradiation radioprotector

    International Nuclear Information System (INIS)

    Anzai, Kazunori; Ueno, Megumi; Nyui, Minako; Ikota, Nobuo; Kagiya, Tsutomu V.

    2008-01-01

    In vivo radioprotection of C3H mice by i.p. administration of Zn-, Mn-, Cu-, or Se-containing heat-treated Saccharomyces serevisiae yeast sample was examined. The 30-day survival of the group treated 30 min before 7.5 Gy whole-body X-irradiation with mineral-containing yeast powders suspended in 0.5% methylcellulose was significantly higher than that of control group. When mineral-yeast was administered immediately after irradiation, the survival rate was even higher and Zn- or Cu-yeast showed the highest rate (more than 90%). Although treatment with simple yeast showed a high survival rate (73%), it was significantly lower than that obtained by the Zn-yeast treatment. The effects of Zn-yeast were studied further. When the interval between irradiation and administration was varied, the protective activity of Zn-yeast decreased gradually by increasing the interval but was still significantly high for the administration at 10 h post-irradiation. The dose reduction factor of Zn-yeast (100 mg/kg, i.p. administration immediately after irradiation) was about 1.2. When the suspension of Zn-yeast was fractionated by centrifugation, the insoluble fraction showed a potent effect, while the soluble fraction had only a moderate effect. In conclusion, mineral-yeast, especially Zn-yeast, provides remarkable post-irradiation protection against lethal whole body X-irradiation. The activity is mainly attributable to the insoluble fraction, whereas some soluble components might contribute to the additional protective activity. (author)

  4. AGR-1 Compact 1-3-1 Post-Irradiation Examination Results

    Energy Technology Data Exchange (ETDEWEB)

    Demkowicz, Paul Andrew [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-12-01

    The Advanced Gas Reactor (AGR) Fuel Development and Qualification Program was established to perform the requisite research and development on tristructural isotropic (TRISO) coated particle fuel to support deployment of a high-temperature gas-cooled reactor (HTGR). The work continues as part of the Advanced Reactor Technologies (ART) TRISO Fuel program. The overarching program goal is to provide a baseline fuel qualification data set to support licensing and operation of an HTGR. To achieve these goals, the program includes the elements of fuel fabrication, irradiation, post-irradiation examination (PIE) and safety testing, fuel performance modeling, and fission product transport (INL 2015). A series of fuel irradiation experiments is being planned and conducted in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL). These experiments will provide data on fuel performance under irradiation, support fuel process development, qualify the fuel for normal operating conditions, provide irradiated fuel for safety testing, and support the development of fuel performance and fission product transport models. The first of these irradiation tests, designated AGR-1, began in the ATR in December 2006 and ended in November 2009. This experiment was conducted primarily to act as a shakedown test of the multicapsule test train design and provide early data on fuel performance for use in fuel fabrication process development. It also provided samples for post-irradiation safety testing, where fission product retention of the fuel at high temperatures will be experimentally measured. The capsule design and details of the AGR-1 experiment have been presented previously (Grover, Petti, and Maki 2010, Maki 2009).

  5. New radiation mitigators to reduce bone marrow death of mice by post-irradiation administration

    International Nuclear Information System (INIS)

    Anzai, Kazunori

    2009-01-01

    We have found recently that heat-treated mineral yeast preparations and water-soluble analogs of vitamin E are potent radiation mitigator to reduce bone marrow death of mice by post-irradiation administration. When administered immediately after whole-body X-irradiation (7.5 Gy), both Zn-yeast and γ-tocopherol dimethylglycine ester (TDMG) significantly increased the viability of mice from 0% (control) to more than 90% (treated). Zn-yeast did not inhibit the tumor-regulation by γ-rays but even sensitize the radiation effect in mice xenografts of HeLa cells. (author)

  6. Size characterisation of noble-metal nano-crystals formed in sapphire by ion irradiation and subsequent thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Mota-Santiago, Pablo-Ernesto [Instituto de Fisica, Universidad Nacional Autonoma de Mexico A.P. 20-364 01000 Mexico D.F. (Mexico); Crespo-Sosa, Alejandro, E-mail: crespo@fisica.unam.mx [Instituto de Fisica, Universidad Nacional Autonoma de Mexico A.P. 20-364 01000 Mexico D.F. (Mexico); Jimenez-Hernandez, Jose-Luis; Silva-Pereyra, Hector-Gabriel; Reyes-Esqueda, Jorge-Alejandro; Oliver, Alicia [Instituto de Fisica, Universidad Nacional Autonoma de Mexico A.P. 20-364 01000 Mexico D.F. (Mexico)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Systematic study on the formation of Ag and Au nano-particles in Al{sub 2}O{sub 3}. Black-Right-Pointing-Pointer Annealing in a reducing atmosphere, below the metal melting point is more suitable. Black-Right-Pointing-Pointer Au nano-particles grow up to 15 nm and Ag nano-particles up to 45 nm in radius. Black-Right-Pointing-Pointer Ostwald ripening is the mechanism responsible for the formation of large nanoparticles. Black-Right-Pointing-Pointer Optical properties of metallic nano-particles in Al{sub 2}O{sub 3} can be related to their size. - Abstract: Metallic nano-particles embedded in transparent dielectrics are very important for new technological applications because of their unique optical properties. These properties depend strongly on the size and shape of the nano-particles. In order to achieve the synthesis of metallic nano-particles it has been used the technique of ion implantation. This is a very common technique because it allows the control of the depth and concentration of the metallic ions inside the sample, limited mostly by straggling, without introducing other contaminant agents. The purpose of this work was to measure the size of the nano-particles grown under different conditions in Sapphire and its size evolution during the growth process. To achieve this goal, {alpha}-Al{sub 2}O{sub 3} single crystals were implanted with Ag or Au ions at room temperature with different fluences (from 2 Multiplication-Sign 10{sup 16} ions/cm{sup 2} to 8 Multiplication-Sign 10{sup 16} ions/cm{sup 2}). Afterwards, the samples were annealed at different temperatures (from 600 Degree-Sign C to 1100 Degree-Sign C) in oxidising, reducing, Ar or N{sub 2} atmospheres. We measured the ion depth profile by Rutherford Backscattering Spectroscopy (RBS) and the nano-crystals size distribution by using two methods, the surface plasmon resonance in the optical extinction spectrum and the Transmission Electron Microscopy (TEM).

  7. Development of transparent conductive indium and fluorine co-doped ZnO thin films: Effect of F concentration and post-annealing temperature

    Energy Technology Data Exchange (ETDEWEB)

    Hadri, A. [University Mohammed V, Faculty of Sciences, Physics Department, LPM, B.P. 1014, Rabat (Morocco); Taibi, M. [University of Mohammed V, LPCMIN, Ecole Normale Superieure, Rabat (Morocco); Loghmarti, M.; Nassiri, C.; Slimani Tlemçani, T. [University Mohammed V, Faculty of Sciences, Physics Department, LPM, B.P. 1014, Rabat (Morocco); Mzerd, A., E-mail: mzerd@yahoo.fr [University Mohammed V, Faculty of Sciences, Physics Department, LPM, B.P. 1014, Rabat (Morocco)

    2016-02-29

    In the present work ZnO, In doped ZnO and In-F co-doped ZnO (IFZO) films were synthesized on heated glass substrates (350 °C) by the chemical spray technique. The effect of fluorine concentration on the structural, morphological, optical and electrical properties was studied. It was observed from X-ray diffraction (XRD) that the films have a polycrystalline structure and the intensity of the peaks depend on the doping and co-doping concentration. No diffraction peak related to dopants in XRD patterns along with shift in peaks angles to ZnO proved that In and F ions were doped into ZnO thin films. The Raman spectra confirm the hexagonal structure of the as-deposited films, and demonstrated an enhancement of the surface phonon mode of doped and co-doped films as compared to undoped films. The as-deposited films showed an average transmittance above 70%, in the wavelength range of 400–800 nm. A minimum electrical resistivity, in the order of 5.2 × 10{sup −} {sup 2} Ω cm was obtained for the IFZO thin film with 5 at.% F doping. Moreover, the electrical properties of doped and co-doped films were enhanced after post-deposition annealing. It was found that post-annealed thin films at 350 °C showed a decrease of one order of magnitude of the resistivity values. Such a transparent and conducting thin film can be suitable for optical and electrical applications owing to their low resistivity combined with high transmittance in the visible range. - Highlights: • Conductive transparent ZnO, IZO, IFZO thin films were deposited by spray pyrolysis. • Doping and co-doping affect morphology and optoelectrical properties. • As deposited film with high fluorine content exhibited high carrier mobility (55 cm{sup 2} V{sup −} {sup 1} s{sup −} {sup 1}). • Correlation between intrinsic defects and carrier mobility was observed. • Post-annealing in Ar atmosphere improves conductivity.

  8. Clinical and pathologic factors predictive of biochemical control following post-prostatectomy irradiation

    International Nuclear Information System (INIS)

    Stromberg, Jannifer S.; Ziaja, Ellen L.; Horwitz, Eric M.; Vicini, Frank A.; Brabbins, Donald S.; Dmuchowski, Carl F.; Gonzalez, Jose; Martinez, Alvaro A.

    1996-01-01

    Purpose/Objective: Indications for post-prostatectomy radiation therapy are not well defined. We reviewed our experience treating post-prostatectomy patients with external beam irradiation to assess clinical and pathologic factors predictive of biochemical control. Materials and Methods: Between 1/87 and 3/93, 61 patients received post-operative tumor bed irradiation with a median dose of 59.4 Gy (50.4 - 68 Gy). Median follow-up was 4.1 years (7.6 months - 8.3 years) from irradiation. Patients were treated for the following reasons: 1) adjuvantly, within 6 months of surgery for extracapsular extension, seminal vesicle involvement, or positive surgical margins (n=38); 2) persistently elevated PSA post-operatively (n=2); 3) rising PSA >6 months after surgery (n=9); and 4) biopsy proven local recurrence (n=12). No patients had known nodal or metastatic disease. All patients had post-radiation PSA data available. Biochemical control was the endpoint studied using Kaplan-Meier life table analysis. Biochemical control was defined as the ability to maintain an undetectable PSA ( 4 and ≤1 0, >10 and ≤20, and > 20 ng/ml. The 3 year actuarial rates of biochemical control were 100% for group 1, 66.7% for group 2, 61.5% for group 3, and 28.6% for group 4. Pre-RT PSA values were also evaluated. Univariate Cox models indicated lower presurgical and pre-RT PSA values were predictive of biochemical control (p=0.017, p 6 months after surgery (group 3), the 3 year actuarial rate of biochemical control was 55.6%. The 3 year actuarial rate of biochemical control for patients treated for a biopsy proven recurrence (group 4) was 8.3%. By pair-wise log rank test, the rates of biochemical control were significantly different between groups 1 and 3 (p=0.036), groups 1 and 4 (p<0.001), and groups 3 and 4 (p=0.009). Conclusion: Biochemical control was achieved in approximately half of the patients treated with post-operative prostatic fossa irradiation. Elevated presurgical and pre

  9. Response of Gd 2 Ti 2 O 7 and La 2 Ti 2 O 7 to swift-heavy ion irradiation and annealing

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sulgiye; Lang, Maik; Tracy, Cameron L.; Zhang, Jiaming; Zhang, Fuxiang; Trautmann, Christina; Rodriguez, Matias D.; Kluth, Patrick; Ewing, Rodney C.

    2015-07-01

    Swift heavy ion (2 GeV 181Ta) irradiation-induced amorphization and temperature-induced recrystallization of cubic pyrochlore Gd2Ti2O7 (Fd3¯m) are compared with the response of a compositionally-similar material with a monoclinic-layered perovskite-type structure, La2Ti2O7 (P21). The averaged electronic energy loss, dE/dx, was 37 keV/nm and 35 keV/nm in Gd2Ti2O7 and La2Ti2O7, respectively. Systematic analysis of the structural modifications was completed using transmission electron microscopy, synchrotron X-ray diffraction, Raman spectroscopy, and small-angle X-ray scattering. Increasing ion-induced amorphization with increasing ion fluence was evident in the X-ray diffraction patterns of both compositions by a reduction in the intensity of the diffraction maxima concurrent with the growth in intensity of a broad diffuse scattering halo. Transmission electron microscopy analysis showed complete amorphization within ion tracks (diameter: ~10 nm) for the perovskite-type material; whereas a concentric, core–shell morphology was evident in the ion tracks of the pyrochlore, with an outer shell of disordered yet still crystalline material with the fluorite structure surrounding an amorphous track core (diameter: ~9 nm). The radiation response of both titanate oxides with the same stoichiometry can be understood in terms of differences in their structures and compositions. While the radiation damage susceptibility of pyrochlore A2B2O7 materials decreases as a function of the cation radius ratio rA/rB, the current study correlates this behavior with the stability field of monoclinic structures, where rLa/rTi > rGd/rTi. Isochronal annealing experiments of the irradiated materials showed complete recrystallization of La2Ti2O7 at 775 °C and of Gd2Ti2O7 at 850 °C. The annealing behavior is discussed in terms of enhanced damage recovery in La2Ti2O7, compared to the pyrochlore compounds Gd2Ti2O7. The difference in the recrystallization behavior may be related to structural

  10. Post-irradiation vasculopathy of intracranial major arteries in children; Report of two cases

    Energy Technology Data Exchange (ETDEWEB)

    Nishizawa, Shigeru; Ryu, Hiroshi; Yokoyama, Tetsuo; Ninchoji, Toshiaki; Shimoyama, Ichiro; Yamamoto, Seiji; Uemura, Kenichi [Hamamatsu Univ. School of Medicine, Shizuoka (Japan)

    1991-06-01

    We report two rare cases of post-irradiation vasculopathy of intracranial major arteries in children. A 13-year-old girl suffered from transient right hemiparesis 1 year after irradiation for suprasellar germinoma. Left carotid angiograms revealed marked stenoses of the intracranial internal carotid, middle cerebral, and anterior cerebral arteries, which were previously normal, and moyamoya vessels. A 2.5-year-old girl underwent internal irradiation with {sup 198}Au colloid for cystic craniopharyngioma. At the age of 10 years, she suddenly became unconscious after vomiting. Computed tomographic scans showed a right frontal intracerebral hematoma. Right carotid angiograms disclosed complete obstruction of the intracranial internal carotid, middle cerebral, and anterior cerebral arteries and moyamoya vessels, previously not present. The danger of radiation therapy causing occlusive vasculopathy in small and major cerebral arteries in children is emphasized. To prevent permanent ischemic neurological deficits, vasculopathy should be treated either medically or surgically as early as possible. (author).

  11. Post-Irradiation Non-Destructive Analyses of the AFIP-7 Experiment

    Science.gov (United States)

    Williams, W. J.; Robinson, A. B.; Rabin, B. H.

    2017-12-01

    This article reports the results and interpretation of post-irradiation non-destructive examinations performed on four curved full-size fuel plates that comprise the AFIP-7 experiment. These fuel plates, having a U-10 wt.%Mo monolithic design, were irradiated under moderate operating conditions in the Advanced Test Reactor to assess fuel performance for geometries that are prototypic of research reactor fuel assemblies. Non-destructive examinations include visual examination, neutron radiography, profilometry, and precision gamma scanning. This article evaluates the qualitative and quantitative data taken for each plate, compares corresponding data sets, and presents the results of swelling analyses. These characterization results demonstrate that the fuel meets established irradiation performance requirements for mechanical integrity, geometric stability, and stable and predictable behavior.

  12. Post harvest controlling of orchid thrips on cut flowers by irradiation

    International Nuclear Information System (INIS)

    Bansiddhi, K.; Siriphontangmun, S.

    1999-01-01

    Post-harvest controlling of orchid thrips, Thrips palmi Karny on cut flowers by irradiation was conducted during October 1992 to September 1997 at the Thai Irradiation Centre (TIC) and Division of Entomology and Zoology, Department of Agriculture, Thailand. The studies were carried out by conducting experiments on irradiation of cut flowers for controlling thrips with doses ranging from 0.1 to 1 kGy. The vase-life of radiated cut flowers was evaluated. Colonies of thrips were established in the laboratory in order to determine radiation sensitivity of various development stages of thrips and also to assess the occurrence of natural infestations by examining commercial market quality flowers from growers where management practices can be identified. Results from five years of research on post harvest control of thrips on orchids and cut flowers by irradiation showed that despite intensive investigation, difficulty in permanent establishment of a laboratory colony of Thrips palmi Karny for bioassays continued. The snap bean rearing method for rearing large number of thrips has bean developed, although it is less satisfactory than desirable. It has given sufficient numbers for testing in the 6th experiment. The maximum dose tolerated by Dendrobium orchid flowers at ambient temperature (25-30 deg. C) was below 0.5 kGy, but at a pre- and post irradiation temperature 15-18 deg. C, the maximum dose tolerated approached 0.75-0.8 kGy. The effective dose for control Thrips palmi Karny, however, was higher than 0.75 kGy. (author)

  13. Post irradiation examination of HANARO nucler mini-element fuel (metallographic and density test)

    International Nuclear Information System (INIS)

    Yoo, Byung Ok; Hong, K. P.; Park, D. G.; Choo, Y. S.; Baik, S. J.; Kim, K. H.; Kim, H. C.; Jung, Y. H.

    2001-05-01

    The post irradiation examination of a HANARO mini-element nuclear fuel, KH96C-004, was done in June 6, 2000. The purpose of this project is to evaluate the in-core performance and reliability of mini-element nuclear fuel for HANARO developed by the project T he Nuclear Fuel Material Development of Research Reactor . And, in order to examine the performance of mini-element nuclear fuel in normal output condition, the post irradiation examination of a nuclear fuel bundle composed by 6 mini nuclear fuel rods and 12 dummy fuel rods was performed. Based on these examination results, the safety and reliability of HANARO fuel and the basic data on the design of HANARO nuclear fuel can be ensured and obtained,

  14. Post irradiation examinations of uranium-plutonium mixed carbide fuels irradiated at low linear power rate

    International Nuclear Information System (INIS)

    Maeda, Atsushi; Sasayama, Tatsuo; Iwai, Takashi; Aizawa, Sakuei; Ohwada, Isao; Aizawa, Masao; Ohmichi, Toshihiko; Handa, Muneo

    1988-11-01

    Two pins containing uranium-plutonium carbide fuels which are different in stoichiometry, i.e. (U,Pu)C 1.0 and (U,Pu)C 1.1 , were constructed into a capsule, ICF-37H, and were irradiated in JRR-2 up to 1.0 at % burnup at the linear heat rate of 420 W/cm. After being cooled for about one year, the irradiated capsule was transferred to the Reactor Fuel Examination Facility where the non-destructive examinations of the fuel pins in the β-γ cells and the destructive ones in two α-γ inert gas atmosphere cells were carried out. The release rates of fission gas were low enough, 0.44 % from (U,Pu)C 1.0 fuel pin and 0.09% from (U,Pu)C 1.1 fuel pin, which is reasonable because of the low central temperature of fuel pellets, about 1000 deg C and is estimated that the release is mainly governed by recoil and knock-out mechanisms. Volume swelling of the fuels was observed to be in the range of 1.3 ∼ 1.6 % for carbide fuels below 1000 deg C. Respective open porosities of (U,Pu)C 1.0 and (U,Pu)C 1.1 fuel were 1.3 % and 0.45 %, being in accordance with the release behavior of fission gas. Metallographic observation of the radial sections of pellets showed the increase of pore size and crystal grain size in the center and middle region of (U,Pu)C 1.0 pellets. The chemical interaction between fuel pellets and claddings in the carbide fuels is the penetration of carbon in the fuels to stainless steel tubes. The depth of corrosion layer in inner sides of cladding tubes ranged 10 ∼ 15 μm in the (U,Pu)C 1.0 fuel and 15 #approx #25 μm in the (U,Pu)C 1.1 fuel, which is correlative with the carbon potential of fuels posibly affecting the amount of carbon penetration. (author)

  15. Post-curing conversion kinetics as functions of the irradiation time and increment thickness

    Directory of Open Access Journals (Sweden)

    Nicola Scotti

    2013-04-01

    Full Text Available Objective: This study evaluated the variation of conversion degree (DC in the 12 hours following initial photoactivation of a low-shrinkage composite resin (Venus Diamond. Material and Methods: The conversion degree was monitored for 12 hours using Attenuated Total Reflection (ATR F-TIR Spectroscopy. The composite was placed in 1 or 2 mm rings and cured for 10 or 20 seconds with a LED lamp. ATR spectra were acquired from the bottom surface of each sample immediately after the initial photoactivation (P=0, 30 minutes (P=0.5 and 12 hours after photoactivation (P=12 in order to obtain the DC progression during the post-curing period. Interactions between thickness (T, irradiation time (I and post-curing (P on the DC were calculated through ANOVA testing. Results: All the first order interactions were statistically significant, with the exception of the T-P interaction. Furthermore, the shift from P=0 to P=0.5 had a statistically higher influence than the shift from P=0.5 to P=12. The post-curing period played a fundamental role in reaching higher DC values with the low-shrinkage composite resin tested in this study. Moreover, both the irradiation time and the composite thickness strongly influenced the DC. Conclusions: Increased irradiation time may be useful in obtaining a high conversion degree (DC with a low-shrinkage nano-hybrid composite resin, particularly with 2 mm composite layers.

  16. Post-harvest UVC irradiation effect on anthocyanin profile of grape berries

    International Nuclear Information System (INIS)

    Rosas, I. de; Ponce, M.; Gargantini, R.; Martinez, L.

    2010-01-01

    Anthocyanins are a class of phenolic compounds that contribute to the color of red grapes and have shown nutraceutical properties for human health. UVC light irradiation has been proved to increase phenolic compounds such as stilbenes, but its effect on anthocyanins has not been reported. The aim of this work was to identify the best treatment conditions of UVC light irradiation on post-harvest berries of Malbec (M), Cabernet Sauvignon (CS) and Tempranillo (T) for anthocyanin increments. Grape berries were irradiated with 240 W at 20 and 40 cm from the light source, for 30, 60 and 120 seconds. Both, irradiated and control grapes were stored on darkness at 20 C degree until anthocyanin extraction with methanol/ClH. HPLC analysis were performed and nine anthocyanins were quantified. UVC light irradiation modified the anthocyanin profile of the three cultivars. All the glucoside anthocyanins derivates and peonidin-acetyl-glucoside, as well as total anthocyanins were increased when CS berries were exposed to UVC for 120 s at 40 cm. This suggests that UVC stimulated the entire biosynthetic pathway. The anthocyanin content of the control berries was always higher than the treatments with UVC on M and T, making necessary to evaluate less rigorous conditions for these varieties. (authors)

  17. Electric resistivity of 241-americium and 244-curium metals. Creation of defects and isochronous annealing of 241-americium metal after self-irradiation

    International Nuclear Information System (INIS)

    Schenkel, R.

    1977-03-01

    The temperature dependence of the electrical resistivity of thin films of bulk 241 Am metal were measured between 300 and 4.5 K. The room temperature resistivity was found to be 68.90μΩcm. At room temperature the electrical resistivity of americium increases with pressure (3% up to 13 kbar). The application of 13 kbar pressure did not change the low temperature power law in the electrical resistivity. The resistivity vs temperature curve can be explained by assuming s-d scattering of conduction electrons. The localized 5f electrons are considered to be about 5eV below the Fermi level. Americium therefore should be the first lanthanide-like element in the actinide series. The defect production due to self-irradiation damage was studied by measuring the increase of the resistivity at 4.2 K over a period of 738 h. A saturation resistivity of 16.036 μΩcm was found corresponding to a defect concentration of about 0.22 a/o. After isochronal annealing two recovery stages were observed at about 65 and 145 K. The two stages shift with increasing initial defect concentration to lower temperatures. Estimates of the activation energies and the reaction order were made and possible defect reactions suggested. The magnetic contribution to the electrical resistivity of curium, which shows an antiferromagnetic transition at 52.5 k, was obtained by subtracting the resistivity of americium (to be considered as phonon part). Comparison with theoretical models were made. At low temperatures the measurements are strongly affected by self-irradiation damage [drho/dt(t=0)=9.8μΩcm/h

  18. Influence of the post-annealing cooling rate on the superconducting and mechanical properties of LFZ textured Bi-2212 rods

    International Nuclear Information System (INIS)

    Natividad, E; Gomez, J A; Angurel, L A; Salazar, A; Pastor, J Y; Llorca, J

    2002-01-01

    Laser floating zone textured Bi 2 Sr 2 CaCu 2 O 8+δ (Bi-2212) thin rods were manufactured and subjected to a two-step annealing process at 870 deg C and 801 deg C in air. It was found that the subsequent cooling process led to marked changes in electrical properties. Three cooling rates were tested: (i) quenching in liquid nitrogen, (ii) cooling in air inside an alumina tube and (iii) cooling inside the furnace. The results showed that the faster the cooling rate, the higher the normal state resistivity. The T c distribution across the rods was also affected by the cooling rate, but no large differences were observed in the magnitude of the critical current at 77 K since the homogeneity of furnace-cooled samples compensated for the higher outer J c values of fast-cooled ones. The mechanical properties (elastic modulus and flexure strength) were not influenced by the cooling rate, but the samples quenched in liquid nitrogen were often cracked by thermal shock. The elastic modulus and the flexure strength of the rods were deteriorated by the existence of an outer ring of compact, poorly textured material and by the large bubbles found in the central region of the rod. Samples processed by a two-step texturing process which reduced the thickness of the outer ring and eliminated the bubbles had better electrical and mechanical properties

  19. Influence of the post-annealing cooling rate on the superconducting and mechanical properties of LFZ textured Bi-2212 rods

    CERN Document Server

    Natividad, E; Angurel, L A; Salazar, A; Pastor, J Y; Llorca, J

    2002-01-01

    Laser floating zone textured Bi sub 2 Sr sub 2 CaCu sub 2 O sub 8 sub + subdelta (Bi-2212) thin rods were manufactured and subjected to a two-step annealing process at 870 deg C and 801 deg C in air. It was found that the subsequent cooling process led to marked changes in electrical properties. Three cooling rates were tested: (i) quenching in liquid nitrogen, (ii) cooling in air inside an alumina tube and (iii) cooling inside the furnace. The results showed that the faster the cooling rate, the higher the normal state resistivity. The T sub c distribution across the rods was also affected by the cooling rate, but no large differences were observed in the magnitude of the critical current at 77 K since the homogeneity of furnace-cooled samples compensated for the higher outer J sub c values of fast-cooled ones. The mechanical properties (elastic modulus and flexure strength) were not influenced by the cooling rate, but the samples quenched in liquid nitrogen were often cracked by thermal shock. The elastic m...

  20. An annealing study of charge collection efficiency on Float-Zone p-on-n ministrip sensors irradiated with 24 GeV/c protons and 20 MeV neutrons

    International Nuclear Information System (INIS)

    Pacifico, N.; Dolenc-Kittelmann, I.; Gabrysch, M.; Moll, M.; Lucas, C.

    2015-01-01

    Float-Zone n-bulk p-readout silicon sensors are currently operated in the tracking layers of many High Energy Physics experiments, where they are exposed to moderate to high fluences of hadrons. Though n-readout sensors, either with p or n bulk, are available and are offering an improved radiation hardness, p-on-n sensors are still widely used and are e.g. installed in the present ATLAS and CMS experiments at CERN. Their radiation hardness and long-term performance are therefore of high interest to the detector community. We present here a study performed on these sensors after irradiation with 24 GeV/c protons and 20 MeV neutrons to fluences ranging from 1⋅10 14 to 1⋅10 15 n eq /cm 2 . The sensors were then investigated for charge collection efficiency after different isothermal annealing steps in order to understand the performance evolution of the sensor with annealing time. Additional measurements were performed for the highest neutron fluence by means of the Edge-TCT technique, to assess the electric field configuration within the sensor. The irradiation and the annealing scenarios were chosen to represent the radiation damage scenario over the expected lifetime of the LHC detectors (and even further) and to assess the effect of unplanned annealing due to potentially longer warm shutdowns or cooling problems

  1. Semiconductor annealing

    International Nuclear Information System (INIS)

    Young, J.M.; Scovell, P.D.

    1982-01-01

    A process for annealing crystal damage in ion implanted semiconductor devices in which the device is rapidly heated to a temperature between 450 and 900 0 C and allowed to cool. It has been found that such heating of the device to these relatively low temperatures results in rapid annealing. In one application the device may be heated on a graphite element mounted between electrodes in an inert atmosphere in a chamber. (author)

  2. Improving thermal model prediction through statistical analysis of irradiation and post-irradiation data from AGR experiments

    International Nuclear Information System (INIS)

    Pham, Binh T.; Hawkes, Grant L.; Einerson, Jeffrey J.

    2014-01-01

    As part of the High Temperature Reactors (HTR) R and D program, a series of irradiation tests, designated as Advanced Gas-cooled Reactor (AGR), have been defined to support development and qualification of fuel design, fabrication process, and fuel performance under normal operation and accident conditions. The AGR tests employ fuel compacts placed in a graphite cylinder shrouded by a steel capsule and instrumented with thermocouples (TC) embedded in graphite blocks enabling temperature control. While not possible to obtain by direct measurements in the tests, crucial fuel conditions (e.g., temperature, neutron fast fluence, and burnup) are calculated using core physics and thermal modeling codes. This paper is focused on AGR test fuel temperature predicted by the ABAQUS code's finite element-based thermal models. The work follows up on a previous study, in which several statistical analysis methods were adapted, implemented in the NGNP Data Management and Analysis System (NDMAS), and applied for qualification of AGR-1 thermocouple data. Abnormal trends in measured data revealed by the statistical analysis are traced to either measuring instrument deterioration or physical mechanisms in capsules that may have shifted the system thermal response. The main thrust of this work is to exploit the variety of data obtained in irradiation and post-irradiation examination (PIE) for assessment of modeling assumptions. As an example, the uneven reduction of the control gas gap in Capsule 5 found in the capsule metrology measurements in PIE helps identify mechanisms other than TC drift causing the decrease in TC readings. This suggests a more physics-based modification of the thermal model that leads to a better fit with experimental data, thus reducing model uncertainty and increasing confidence in the calculated fuel temperatures of the AGR-1 test

  3. Improving thermal model prediction through statistical analysis of irradiation and post-irradiation data from AGR experiments

    Energy Technology Data Exchange (ETDEWEB)

    Pham, Binh T., E-mail: Binh.Pham@inl.gov [Human Factor, Controls and Statistics Department, Nuclear Science and Technology, Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Hawkes, Grant L. [Thermal Science and Safety Analysis Department, Nuclear Science and Technology, Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Einerson, Jeffrey J. [Human Factor, Controls and Statistics Department, Nuclear Science and Technology, Idaho National Laboratory, Idaho Falls, ID 83415 (United States)

    2014-05-01

    As part of the High Temperature Reactors (HTR) R and D program, a series of irradiation tests, designated as Advanced Gas-cooled Reactor (AGR), have been defined to support development and qualification of fuel design, fabrication process, and fuel performance under normal operation and accident conditions. The AGR tests employ fuel compacts placed in a graphite cylinder shrouded by a steel capsule and instrumented with thermocouples (TC) embedded in graphite blocks enabling temperature control. While not possible to obtain by direct measurements in the tests, crucial fuel conditions (e.g., temperature, neutron fast fluence, and burnup) are calculated using core physics and thermal modeling codes. This paper is focused on AGR test fuel temperature predicted by the ABAQUS code's finite element-based thermal models. The work follows up on a previous study, in which several statistical analysis methods were adapted, implemented in the NGNP Data Management and Analysis System (NDMAS), and applied for qualification of AGR-1 thermocouple data. Abnormal trends in measured data revealed by the statistical analysis are traced to either measuring instrument deterioration or physical mechanisms in capsules that may have shifted the system thermal response. The main thrust of this work is to exploit the variety of data obtained in irradiation and post-irradiation examination (PIE) for assessment of modeling assumptions. As an example, the uneven reduction of the control gas gap in Capsule 5 found in the capsule metrology measurements in PIE helps identify mechanisms other than TC drift causing the decrease in TC readings. This suggests a more physics-based modification of the thermal model that leads to a better fit with experimental data, thus reducing model uncertainty and increasing confidence in the calculated fuel temperatures of the AGR-1 test.

  4. A stochastic post-processing method for solar irradiance forecasts derived from NWPs models

    Science.gov (United States)

    Lara-Fanego, V.; Pozo-Vazquez, D.; Ruiz-Arias, J. A.; Santos-Alamillos, F. J.; Tovar-Pescador, J.

    2010-09-01

    Solar irradiance forecast is an important area of research for the future of the solar-based renewable energy systems. Numerical Weather Prediction models (NWPs) have proved to be a valuable tool for solar irradiance forecasting with lead time up to a few days. Nevertheless, these models show low skill in forecasting the solar irradiance under cloudy conditions. Additionally, climatic (averaged over seasons) aerosol loading are usually considered in these models, leading to considerable errors for the Direct Normal Irradiance (DNI) forecasts during high aerosols load conditions. In this work we propose a post-processing method for the Global Irradiance (GHI) and DNI forecasts derived from NWPs. Particularly, the methods is based on the use of Autoregressive Moving Average with External Explanatory Variables (ARMAX) stochastic models. These models are applied to the residuals of the NWPs forecasts and uses as external variables the measured cloud fraction and aerosol loading of the day previous to the forecast. The method is evaluated for a set one-moth length three-days-ahead forecast of the GHI and DNI, obtained based on the WRF mesoscale atmospheric model, for several locations in Andalusia (Southern Spain). The Cloud fraction is derived from MSG satellite estimates and the aerosol loading from the MODIS platform estimates. Both sources of information are readily available at the time of the forecast. Results showed a considerable improvement of the forecasting skill of the WRF model using the proposed post-processing method. Particularly, relative improvement (in terms of the RMSE) for the DNI during summer is about 20%. A similar value is obtained for the GHI during the winter.

  5. The post irradiation examination of three fuel rods from the IFA 429 experiment irradiated in the Halden Reactor

    International Nuclear Information System (INIS)

    Williams, J.

    1979-11-01

    A series of fuel rod irradiation experiments were performed in the Halden Heavy Boiling Water Reactor in Norway. These were designed to provide a range of fuel property data as a function of burn-up. One of these experiments was the IFA-429. This was designed to study the absorption of helium filling gas by the UO 2 fuel pellets, steady state and transient fission gas release and fuel thermal behaviour to high burn-up. This data was to be obtained as a function of fuel density, fuel grain size, initial fuel/cladding gap, average linear heat rating, burn-up and overpower transients. All the fuel is in the form of pressed and sintered UO 2 pellets enriched to 13 weight percent 235 U. All the rods were clad in Zircaloy 4 tube. The details of the experiment are given. The post irradiation examination included: visual examination, neutron radiography, dimensional measurements, gamma scanning, measurement of gases in fuel rods and internal free volume, burn-up analysis, metallographic examination, measurement of retained gas in UO 2 pellets, measurement of bulk density of UO 2 . The results are given and discussed. (U.K.)

  6. Post-irradiation examination of U3SIX-AL fuel element manufactured and irradiated in Argentina

    International Nuclear Information System (INIS)

    Ruggirello, Gabriel; Calabroni, Hector; Sanchez, Miguel; Hofman, Gerard

    2002-01-01

    As a part of CNEA's qualification program as a supplier of low enriched Al-U 3 Si 2 dispersion fuel elements for research reactors, a post irradiation examination (PIE) of the first prototype of this kind, called P-04, manufactured and irradiated in Argentina, was carried out. The main purpose of this work was to set up various standard PIE techniques in the hot cell, looking forward to the next steps of the qualification program, as well as to acquire experience on the behaviour of this nuclear material and on the control of the manufacturing process. After an appropriate cooling period, on May 2000 the P-04 was transported to the hot cell in Ezeiza Atomic Centre. Non destructive and destructive tests were performed following the PIE procedures developed in Argonne National Laboratory (ANL), this mainly included dimensional measurement, microstructural observations and chemical burn-up analyses. The methodology and results of which are outlined in this report. The results obtained show a behaviour consistent with that of other fuel elements of the same kind, tested previously. On the other hand the results of this PIE, specially those concerning burn-up analysis and stability and corrosion behaviour of the fuel plates, will be of use for the IAEA Regional Program on the characterization of MTR spent fuel. (author)

  7. State of the VVER-1000 spent U-Gd fuel rods based on the results of post-irradiation examinations

    International Nuclear Information System (INIS)

    Shevlyakov, G.; Zvir, E.; Strozhuk, A.; Polenok, V.; Sidorenko, O.; Volkova, I.; Nikitin, O.

    2015-01-01

    The present paper is devoted to post-irradiation examinations (PIE) of U-Gd fuel rods with different geometry of the fuel pellets irradiated as part of the VVER-1000 fuel assembly. As evidenced by their PIE data, they did not exhaust their service life based on the main parameters (geometrical dimensions, corrosion state, and release of fission product gases). (author)

  8. Dye Sensitized Solar Cell with Conventionally Annealed and Post-Hydrothermally Treated Nanocrystalline Semiconductor Oxide TiO2 Derived from Sol-Gel Process

    Directory of Open Access Journals (Sweden)

    Akhmad Yuwono

    2011-05-01

    Full Text Available Dye-sensitized solar cell (DSSC is one of the very promising alternative renewable energy sources to anticipate the declination in the fossil fuel reserves in the next few decades and to make use of the abundance of intensive sunlight energy in tropical countries like Indonesia. In the present study, TiO2 nanoparticles of different nanocrystallinity was synthesized via sol−gel process with various water to inorganic precursor ratio (Rw of 0.85, 2.00 and 3.50 upon sol preparation, followed with subsequent drying, conventional annealing and post-hydrothermal treatments. The resulting nanoparticles were integrated into the DSSC prototype and sensitized with an organic dye made of the extract of red onion. The basic performance of the fabricated DSSC has been examined and correlated to the crystallite size and band gap energy of TiO2 nanoparticles. It was found that post-hydrothermally treated TiO2 nanoparticles derived from sol of 2.00 Rw, with the most enhanced nanocrystalline size of 12.46 nm and the lowest band gap energy of 3.48 eV, showed the highest open circuit voltage (Voc of 69.33 mV.

  9. Gamma radiolysis and post-irradiation leaching of ion exchange resins

    International Nuclear Information System (INIS)

    Traboulsi, A.

    2012-01-01

    The knowledge of the behavior under irradiation and in presence of water of Ion Exchange Resins (IER) is very necessary to predict their impact on the environment during the storage phase and in a possible deep geological disposal. The IER studied are the MB400 mixed bed resin and its 'pure' anionic and cationic components. The experimental strategy used in this work was based on the use of chemometric tools permitting to estimate the effect of the irradiation atmosphere, the dose rate, the absorbed dose and the leaching temperature. The gaseous and water-soluble radiolysis products were analyzed by gas Mass Spectrometry (MS) and Ion Chromatography (IC). The IER generated principally H 2 g, CO 2 g and amines for which quantities depended of the resin nature and the irradiation conditions. The analysis of solid irradiated resins was investigated by Fourier Transformed Infrared (FTIR) and Nuclear Magnetic Resonance ( 13 C NMR) techniques. The last ones revealed structural modifications of the IER solid matrix in function of the experimental conditions. Their behavior in presence of water was studied during 143 days by characterization of the organic matter released after their post-irradiation leaching. The kinetics showed that all the water-soluble components were releasing at the first contact with water. The Total Organic Carbon (TOC) quantity released depends, according to the resin nature, either on the dose, either on the irradiation atmosphere. The dose rate has no effect on the degradation and the leaching of the MB400 resin, which behaved differently than its pure components. (author) [fr

  10. Fuel Accident Condition Simulator (FACS) Furnace for Post-Irradiation Heating Tests of VHTR Fuel Compacts

    Energy Technology Data Exchange (ETDEWEB)

    Paul A Demkowicz; Paul Demkowicz; David V Laug

    2010-10-01

    Abstract –Fuel irradiation testing and post-irradiation examination are currently in progress as part of the Next Generation Nuclear Plant Fuels Development and Qualification Program. The PIE campaign will include extensive accident testing of irradiated very high temperature reactor fuel compacts to verify fission product retention characteristics at high temperatures. This work will be carried out at both the Idaho National Laboratory (INL) and the Oak Ridge National Laboratory, beginning with accident tests on irradiated fuel from the AGR-1 experiment in 2010. A new furnace system has been designed, built, and tested at INL to perform high temperature accident tests. The Fuel Accident Condition Simulator furnace system is designed to heat fuel specimens at temperatures up to 2000°C in helium while monitoring the release of volatile fission metals (e.g. Cs, Ag, Sr, Eu, and I) and fission gases (Kr, Xe). Fission gases released from the fuel to the sweep gas are monitored in real time using dual cryogenic traps fitted with high purity germanium detectors. Condensable fission products are collected on a plate attached to a water-cooled cold finger that can be exchanged periodically without interrupting the test. Analysis of fission products on the condensation plates involves dry gamma counting followed by chemical analysis of selected isotopes. This paper will describe design and operational details of the Fuel Accident Condition Simulator (FACS) furnace system, as well as preliminary system calibration results.

  11. Post-irradiation examination of fuel elements of Tarapur Atomic Power Station (Report-I)

    International Nuclear Information System (INIS)

    Bahl, J.K.; Sah, D.N.; Chatterjee, S.; Sivaramkrishnan, K.S.

    1979-01-01

    Detailed post-irradiation examination of three initial load fuel elements of the Tarapur Atomic Power Station (TAPS) has been carried out. The causes of the element failures have been analysed. It was observed that almost 90% of the length of the elements exoerienced nodular corrosion. It has been estimated that nodular corrosion would seriously affect the wall thickness and surface temperature of higher rated elements. Lunar shaped fret marks have also been observed at some spacer grid locations in the elements. The depth of the largest fret mark was measured to be 16.9% clad wall thickness. Detailed metallographic examination of the clad and fuel in the three elements has been done. The temperatures at different structural regions of the fuel cross-sections have been estimated. The change in fuel density during irradiation has been evaluated by comparing the irradiated fuel diameter with the mean pellet design diameter. The performance of the end plug welds and spacer grid sites in the elements has been assessed. The burnup distribution along the length of the elements has been evaluated by gamma scanning. The redistribution of fission products in the fuel has been examined by gamma scanning and beta-gamma autoradiography. Mechanical properties of the irradiated cladding have been examined by ring tensile testing. (auth.)

  12. Modeling plastic deformation of post-irradiated copper micro-pillars

    Energy Technology Data Exchange (ETDEWEB)

    Crosby, Tamer, E-mail: tcrosby@ucla.edu; Po, Giacomo, E-mail: gpo@ucla.edu; Ghoniem, Nasr M., E-mail: ghoniem@ucla.edu

    2014-12-15

    We present here an application of a fundamentally new theoretical framework for description of the simultaneous evolution of radiation damage and plasticity that can describe both in situ and ex situ deformation of structural materials [1]. The theory is based on the variational principle of maximum entropy production rate; with constraints on dislocation climb motion that are imposed by point defect fluxes as a result of irradiation. The developed theory is implemented in a new computational code that facilitates the simulation of irradiated and unirradiated materials alike in a consistent fashion [2]. Discrete Dislocation Dynamics (DDD) computer simulations are presented here for irradiated fcc metals that address the phenomenon of dislocation channel formation in post-irradiated copper. The focus of the simulations is on the role of micro-pillar boundaries and the statistics of dislocation pinning by stacking-fault tetrahedra (SFTs) on the onset of dislocation channel and incipient surface crack formation. The simulations show that the spatial heterogeneity in the distribution of SFTs naturally leads to localized plastic deformation and incipient surface fracture of micro-pillars.

  13. Post-X-irradiation effects on petunia pollen germinating in vitro and in vivo

    International Nuclear Information System (INIS)

    Gilissen, L.J.W.

    1978-01-01

    The germination of Petunia hybrida L. pollen grains in germination medium, containing 10% sucrose and 0.01 % H 3 BO 3 , was linearly related to relative humidity (RH): being minimal at 0 % RH and maximal at 100 % RH. The low germination at 0 % RH was completely restored after transfer to 100 % RH. Germination in medium decreased with increasing X-ray exposures between O and 400 kR. This decrease was caused by pollen rupture. No in vitro germination occurred at exposures of 400 kR and more. The radiosensitivity of pollen in vitro was minimal at 80 % RH. Transfer of pollen to the stigma post-X-irradiation resulted in resistance to much higher exposures of irradiation (<750 kR). The differences in radiosensitivity of the pollen germinated in vitro and in vivo are due possibly to the differences in composition of the germination medium and the stigmatic exudate. Pollen tube growth of irradiated pollen after compatible or incompatible pollination at first showed retarded then normal tube growth. A conclusion is that X-irradiation of pollen cannot influence the characteristics of pollen tube growth after compatible or incompatible pollination. (author)

  14. Possible curative role of the anti psychotic drug fluphenazine against post-irradiation injury in rats

    International Nuclear Information System (INIS)

    Hassan, S.H.M.; Abu-Ghadeer, A.R.M.; Osman, S.A.A.; Roushdy, H.M.

    1986-01-01

    In the present study, investigation of the possible curative role of the anti psychotic agent ''fluphenazine'' against post irradiation injury of certain sensitive biological targets has been studied in rats. Such investigation includes evaluation of the haematological levels, liver function as manifested by levels of relevant serum enzymes and kidney function as reflected by level of serum creatinine and rate of urine creatinine clearance. Data of the present study indicated that fractionated whole body gamma-irradiation resulted in haematological disorders, significant elevation in serum enzyme activities of both serum glutamic pyruvic transaminase (SGPT) and serum alkaline phosphatase (SALKPH.), significant decrease in serum cholinesterase (SCHE) activity and a significant increase in serum creatinine accompanied by a significant decrease in creatinine clearance. 4 figs., 4 tabs

  15. AECL hot-cell facilities and post-irradiation examination services

    International Nuclear Information System (INIS)

    Schankula, M.H.; Plaice, E.L.; Woodworth, L.G.

    1995-01-01

    This paper presents an overview of the post-irradiation examination (PIE) services available at AECL's hot-cell facilities (HCF). The HCFs are used primarily to provide PIE support for operating CANDU power reactors in Canada and abroad, and for the examination of experimental fuel bundles and core components irradiated in research reactors at the Chalk River Laboratories (CRL) and off-shore. A variety of examinations and analysis are performed ranging from non-destructive visual and dimensional inspections to detailed optical and scanning electron microscopic examinations. Several hot cells are dedicated to mechanical property testing of structural materials and to determine the fitness-for-service of reactor core components. Facility upgrades and the development of innovative examination techniques continue to improve AECL's PIE capabilities. (author)

  16. AECL hot-cell facilities and post-irradiation examination services

    International Nuclear Information System (INIS)

    Schankula, M.H.; Plaice, E.L.; Woodworth, L.G.

    1998-04-01

    This paper presents an overview of the post-irradiation examination (PIE) services available at AECL's hot-cell facilities (HCF). The HCFs are used primarily to provide PIE support for operating CANDU power reactors in Canada and abroad, and for the examination of experimental fuel bundles and core components irradiated in research reactors at the Chalk River Laboratories (CRL) and off-shore. A variety of examinations and analyses are performed ranging from non-destructive visual and dimensional inspections to detailed optical and scanning electron microscopic examinations. Several hot cells are dedicated to mechanical property testing of structural materials and to determine the fitness-for-service of reactor core components. Facility upgrades and the development of innovative examination techniques continue to improve AECL's PIE capabilities. (author)

  17. Food irradiation - a viable technology for reducing post harvest losses of food

    International Nuclear Information System (INIS)

    Loaharanu, O.

    1985-01-01

    Research and development in the past 30 years have clearly demonstrated that food irradiation is a safe, effective and environmentally clean process of food preservation. Twenty-seven countries have approved over 40 irradiated foods or groups of related food items for human consumption, either on an unconditional or a restricted basis. The technology is beginning to play an important role in reducing post-harvest losses of food in facilitating wider distribution of food in the trade. Its wide application in solving microbial spoilage loss of food, insect disinfestation, improving hygenic qualities, slowing down physiological processes of foods is reviewed. Special emphasis is placed on applications of direct relevance to countries in Asia and the Pacific region. (author)

  18. Post-irradiation pericardial malignant mesothelioma with deletion of p16: a case report.

    Science.gov (United States)

    Naeini, Yalda B; Arcega, Ramir; Hirschowitz, Sharon; Rao, Nagesh; Xu, Haodong

    2018-02-01

    Malignant mesotheliomas are rather uncommon neoplasms associated primarily with asbestos exposure; however, they may also arise as second primary malignancies after radiation therapy, with a latency period of 15-25 years. Numerous studies have reported an association between pleural malignant mesothelioma and chest radiation performed for other malignancies; on the other hand, post-irradiation mesotheliomas of the pericardium have been reported in only a few published cases to date, and no homozygous deletion of 9p21 has been described in such cases. We report the case of a 48-year-old man with a history of Hodgkin's lymphoma and no prior asbestos exposure who developed pericardial malignant epithelioid mesothelioma. We further discuss the cytologic, histologic, immunophenotypic, and fluorescence in situ hybridization findings in this case. To our knowledge, this is the first well-documented case of post-radiation pericardial malignant mesothelioma showing homozygous deletion of 9p21. Homozygous deletion of 9p21, the locus harboring the p16 gene, is present in post-irradiation pericardial malignant mesothelioma.

  19. Impact of post deposition annealing in the electrically active traps at the interface between Ge(001) substrates and LaGeO{sub x} films grown by molecular beam deposition

    Energy Technology Data Exchange (ETDEWEB)

    Molle, Alessandro [Laboratorio MDM, CNR-IMM, via C. Olivetti 2, Agrate Brianza (MB) I-20864 (Italy); Baldovino, Silvia; Fanciulli, Marco [Laboratorio MDM, CNR-IMM, via C. Olivetti 2, Agrate Brianza (MB) I-20864 (Italy); Dipartimento di Scienza dei Materiali, Universita degli Studi di Milano Bicocca, Milano (Italy); Tsoutsou, Dimitra; Golias, Evangelos; Dimoulas, Athanasios [MBE Laboratory, Institute of Materials Science, NCSR DEMOKRITOS, Athens 153 10 (Greece)

    2011-10-15

    Changes in the electron trapping at the interface between Ge substrates and LaGeO{sub x} films grown by atomic O assisted molecular beam deposition are inferred upon post deposition annealing treatment on the as-deposited films from electrically detected magnetic resonance (EDMR) spectroscopy and from the electrical response of Pt/LaGeO{sub x}/Ge metal oxide semiconductor (MOS) capacitors. The improved electrical performance of the MOS capacitors upon annealing is consistent with the EDMR detected reduction of oxide defects which are associated with GeO species in the LaGeO{sub x} layer as evidenced by x-ray photoelectron spectroscopy.

  20. Post-irradiation dietary vitamin E does not affect the development of radiation-induced lung damage in rats

    International Nuclear Information System (INIS)

    Wiegman, Erwin M.; Gameren, Mieke M. van; Kampinga, Harm H.; Szabo, Ben G.; Coppes, Rob P.

    2004-01-01

    The purpose of this study was to investigate whether application of post-irradiation vitamin E, an anti-oxidant, could prevent the development of radiation induced lung damage. Wistar rats were given vitamin E enriched or vitamin E deprived food starting from 4 weeks after 18 Gy single dose irradiation of the right thorax. Neither breathing frequencies nor CT density measurements revealed differences between the groups. It is concluded that post-irradiation vitamin E does not influence radiation-induced fibrosis to the lung

  1. Substrate-dependent post-annealing effects on the strain state and electrical transport of epitaxial La{sub 5/8-y}Pr{sub y}Ca{sub 3/8}MnO{sub 3} films

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Sixia; Wang, Haibo; Dong, Yongqi; Hong, Bing; He, Hao; Bao, Jun [National Synchrotron Radiation Laboratory and School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026 (China); Huang, Haoliang [CAS Key Laboratory of Materials for Energy Conversion and Collaborative Innovation Center of Chemistry for Energy Materials, University of Science and Technology of China, Hefei, Anhui 230026 (China); Yang, Yuanjun; Luo, Zhenlin, E-mail: zlluo@ustc.edu.cn; Yang, Mengmeng; Gao, Chen, E-mail: cgao@ustc.edu.cn [National Synchrotron Radiation Laboratory and School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026 (China); CAS Key Laboratory of Materials for Energy Conversion and Collaborative Innovation Center of Chemistry for Energy Materials, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2014-06-15

    Large scale electronic phase separation (EPS) between ferromagnetic metallic and charge-ordered insulating phases in La{sub 5/8-y}Pr{sub y}Ca{sub 3/8}MnO{sub 3} (y = 0.3) (LPCMO) is very sensitive to the structural changes. This work investigates the effects of post-annealing on the strain states and electrical transport properties of LPCMO films epitaxially grown on (001){sub pc} SrTiO{sub 3} (tensile strain), LaAlO{sub 3} (compressive strain) and NdGaO{sub 3} (near-zero strain) substrates. Before annealing, all the films are coherent-epitaxial and insulating through the measured temperature range. Obvious change of film lattice is observed during the post-annealing: the in-plane strain in LPCMO/LAO varies from −1.5% to −0.1% while that in LPCMO/STO changes from 1.6% to 1.3%, and the lattice of LPCMO/NGO keeps constant because of the good lattice-match between LPCMO and NGO. Consequently, the varied film strain leads to the emergence of metal-insulator transitions (MIT) and shift of the critical transition temperature in the electrical transport. These results demonstrate that lattice-mismatch combined with post-annealing is an effective approach to tune strain in epitaxial LPCMO films, and thus to control the EPS and MIT in the films.

  2. Substrate-dependent post-annealing effects on the strain state and electrical transport of epitaxial La5/8-yPryCa3/8MnO3 films

    International Nuclear Information System (INIS)

    Hu, Sixia; Wang, Haibo; Dong, Yongqi; Hong, Bing; He, Hao; Bao, Jun; Huang, Haoliang; Yang, Yuanjun; Luo, Zhenlin; Yang, Mengmeng; Gao, Chen

    2014-01-01

    Large scale electronic phase separation (EPS) between ferromagnetic metallic and charge-ordered insulating phases in La 5/8-y Pr y Ca 3/8 MnO 3 (y = 0.3) (LPCMO) is very sensitive to the structural changes. This work investigates the effects of post-annealing on the strain states and electrical transport properties of LPCMO films epitaxially grown on (001) pc SrTiO 3 (tensile strain), LaAlO 3 (compressive strain) and NdGaO 3 (near-zero strain) substrates. Before annealing, all the films are coherent-epitaxial and insulating through the measured temperature range. Obvious change of film lattice is observed during the post-annealing: the in-plane strain in LPCMO/LAO varies from −1.5% to −0.1% while that in LPCMO/STO changes from 1.6% to 1.3%, and the lattice of LPCMO/NGO keeps constant because of the good lattice-match between LPCMO and NGO. Consequently, the varied film strain leads to the emergence of metal-insulator transitions (MIT) and shift of the critical transition temperature in the electrical transport. These results demonstrate that lattice-mismatch combined with post-annealing is an effective approach to tune strain in epitaxial LPCMO films, and thus to control the EPS and MIT in the films

  3. Improved electrical properties after post annealing of Ba0.7Sr0.3TiO3 thin films for MIM capacitor applications

    Science.gov (United States)

    Rouahi, A.; Kahouli, A.; Sylvestre, A.; Jomni, F.; Defaÿ, E.; Yangui, B.

    2012-11-01

    Dielectric measurements have been performed on ion beam sputtering (IBS) barium strontium titanate Ba0.7Sr0.3TiO3 thin films at annealing temperatures 470 and 700 °C using impedance spectroscopy. The effect of the annealing temperature upon the electrical properties of the films is also investigated using capacitance-voltage techniques. Increasing annealing temperature suggested the increases of density and grain size, whereas the density of the trapped oxygen vacancy may be decreasing with increasing annealing temperature. The barrier height ( E a) of the oxygen vacancy decreases with increasing annealing temperature. The C- V characteristics were investigated in relation to the annealing temperature to identify the anomalous capacitance in the MIM configuration films. Among all measurement temperatures, it was observed that the data fit well by the "LGD" model. The interfacial effect and its dependence of morphology structure have been studied, and the results are discussed.

  4. Improved electrical properties after post annealing of Ba0.7Sr0.3TiO3 thin films for MIM capacitor applications

    International Nuclear Information System (INIS)

    Rouahi, A.; Kahouli, A.; Sylvestre, A.; Jomni, F.; Yangui, B.; Defay, E.

    2012-01-01

    Dielectric measurements have been performed on ion beam sputtering (IBS) barium strontium titanate Ba 0.7 Sr 0.3 TiO 3 thin films at annealing temperatures 470 and 700 C using impedance spectroscopy. The effect of the annealing temperature upon the electrical properties of the films is also investigated using capacitance-voltage techniques. Increasing annealing temperature suggested the increases of density and grain size, whereas the density of the trapped oxygen vacancy may be decreasing with increasing annealing temperature. The barrier height (E a ) of the oxygen vacancy decreases with increasing annealing temperature. The C-V characteristics were investigated in relation to the annealing temperature to identify the anomalous capacitance in the MIM configuration films. Among all measurement temperatures, it was observed that the data fit well by the ''LGD'' model. The interfacial effect and its dependence of morphology structure have been studied, and the results are discussed. (orig.)

  5. Alexandre - a multi-project, multi-material and multi-technique action for an irradiation experiment in Osiris and post irradiation examination

    International Nuclear Information System (INIS)

    Averty, X.; Brachet, J.C.; Bertin, J.L.; Pizzanelli, J.P.; Rozenblum, F.

    1999-01-01

    This paper presents the data obtained on different classes of steels neutron irradiated at 325 deg C in pressurized water with a PWR-type chemistry. This irradiation, nicknamed 'Alexandre', took place in the OSIRIS reactor and finished in November 1999, for a maximum irradiation damage of ∼9 dpa. The preliminary results (up to 3.4 dpa), discussed in relation to chemical composition and initial metallurgical conditions, are listed below: - Evolution of the mechanical properties as a function of irradiation dose including the measurements of the Reduction-in-Area to failure by image analysis. - Comparison between out-of-pile and in-pile uniform corrosion. - Microstructural aspects (fractography, Transmission Electron Microscopy, and Small Angle Neutron Scattering measurements). - Post-irradiation evolution of residual. activity. (authors)

  6. DOE's annealing prototype demonstration projects

    International Nuclear Information System (INIS)

    Warren, J.; Nakos, J.; Rochau, G.

    1997-01-01

    One of the challenges U.S. utilities face in addressing technical issues associated with the aging of nuclear power plants is the long-term effect of plant operation on reactor pressure vessels (RPVs). As a nuclear plant operates, its RPV is exposed to neutrons. For certain plants, this neutron exposure can cause embrittlement of some of the RPV welds which can shorten the useful life of the RPV. This RPV embrittlement issue has the potential to affect the continued operation of a number of operating U.S. pressurized water reactor (PWR) plants. However, RPV material properties affected by long-term irradiation are recoverable through a thermal annealing treatment of the RPV. Although a dozen Russian-designed RPVs and several U.S. military vessels have been successfully annealed, U.S. utilities have stated that a successful annealing demonstration of a U.S. RPV is a prerequisite for annealing a licensed U.S. nuclear power plant. In May 1995, the Department of Energy's Sandia National Laboratories awarded two cost-shared contracts to evaluate the feasibility of annealing U.S. licensed plants by conducting an anneal of an installed RPV using two different heating technologies. The contracts were awarded to the American Society of Mechanical Engineers (ASME) Center for Research and Technology Development (CRTD) and MPR Associates (MPR). The ASME team completed its annealing prototype demonstration in July 1996, using an indirect gas furnace at the uncompleted Public Service of Indiana's Marble Hill nuclear power plant. The MPR team's annealing prototype demonstration was scheduled to be completed in early 1997, using a direct heat electrical furnace at the uncompleted Consumers Power Company's nuclear power plant at Midland, Michigan. This paper describes the Department's annealing prototype demonstration goals and objectives; the tasks, deliverables, and results to date for each annealing prototype demonstration; and the remaining annealing technology challenges

  7. Enhancement of tumor cell killing in vitro by pre- and post-irradiation exposure to aclacinomycin A

    International Nuclear Information System (INIS)

    Bill, C.A.; Mendoza, A.; Vrdoljak, E.; Tofilon, P.J.

    1993-01-01

    Aclacinomycin A (ACM), a potent inducer of leukemic cell differentiation, significantly enhances the radiosensitivity of a human colon tumor cell line (Clone A) when cultures are exposed to 15-nM concentrations for 3 days before irradiation. We now demonstrate that incubation with ACM after irradiation can also enhance Clone A cell killing. The maximum increase in cell killing, based on colony-forming ability, occurred when Clone A cells were exposed for 1 h to 5 μM ACM model added 1 or 2 h after irradiation. The post-irradiation ACM protocol reduced the terminal slope (as reflected by D o ) of the radiation cell survival curve with no change in the low-dose, shoulder region of the curve (D q value). In contrast, for pre-irradiation treatment with ACM (15 nM, 3 days), the shoulder region of the curve was reduced with no change in the terminal slope. For pre- and post-irradiation ACM treatment the dose enhancement factors at 0.10 survival were 1.22 and 1.28, respectively. When ACM was given both before and after irradiation both the shoulder and terminal slope values decreased to produce a dose enhancement factor at a surviving fraction of 0.10 of 1.50. These data suggest that the enhanced cell killing produced by pre- and post-irradiation treatment with ACM is achieved through different mechanisms. (author) 26 refs., 3 tabs., 2 figs

  8. Molecular structure effects on the post irradiation diffusion in polymer gel dosimeters

    Energy Technology Data Exchange (ETDEWEB)

    Mattea, F.; Romero, M.; Strumia, M. [Instituto Multidisciplinario de Biologia Vegetal / CONICET, Universidad Nacional de Cordoba, Departamento de Quimica Organica, Ciudad Universitaria, 5000 Cordoba (Argentina); Vedelago, J. [Laboratorio de Investigaciones e Instrumentacion en Fisica Aplicada a la Medicina e Imagenes por Rayos X, Laboratorio 448 FaMAF - UNC, Ciudad Universitaria, 5000 Cordoba (Argentina); Quiroga, A. [Centro de Investigacion y Estudios de Matematica / CONICET, Oficina 318 FaMAF - UNC, Ciudad Universitaria, 5000 Cordoba (Argentina); Valente, M., E-mail: fmattea@gmail.com [Instituto de Fisica E. Gaviola / CONICET, LIIFAMIRx, Oficina 102 FaMAF - UNC, 5000 Cordoba (Argentina)

    2014-08-15

    Polymer gel dosimeters have specific advantages for recording 3D radiation dose distribution representing a key factor for most of the therapeutic and diagnostic radiation techniques. Radiation-induced polymerization and crosslinking reactions that take place in the dosimeter have been studied for different monomers like acrylamide and N,N-methylene-bis acrylamide (Bis) and most recently for less toxic monomers like N-isopropylacrylamide and Bis. In this work a novel system based on itaconic acid and Bis is proposed, the radical polymerization or gel formation of these monomers has been already studied for the formation of an hydrogel for non dosimetric applications and their reactivity are comparable with the already mentioned systems. Although the 3D structure is maintained after the dosimeter has been irradiated, it is not possible to eliminate the diffusion of the reacted and monomer species in regions of dose gradients within the gel after irradiation. As a consequence the dose information of the dosimeters loose quality over time. The mobility within the gelatin structure of the already mentioned species is related to their chemical structure, and nature. In this work the effect of changes in the chemical structure of the monomers over the dosimetric sensitivity and over the post-irradiation diffusion of species is studied. One of the acrylic acid groups of the itaconic acid molecule is modified to obtain molecules with similar reactivity but different molecular sizes. Dosimetric systems with these modified species, Bis, an antioxidant to avoid oxygen polymerization inhibition, water and gelatin are irradiated in an X-ray tomography at different doses, and the resulting dosimeters are characterized by Raman spectroscopy and optical absorbance to study their feasibility and capabilities as dosimetric systems, and by optical-CT to analyze the diffusion degree after being irradiated. (Author)

  9. Post-irradiation examination of CANDU fuel bundles fuelled with (Th, Pu)O2

    International Nuclear Information System (INIS)

    Karam, M.; Dimayuga, F.C.; Montin, J.

    2010-01-01

    AECL has extensive experience with thoria-based fuel irradiations as part of an ongoing R&D program on thorium within the Advanced Fuel Cycles Program. The BDL-422 experiment was one component of the thorium program that involved the fabrication and irradiation testing of six Bruce-type bundles fuelled with (Th, Pu)O 2 pellets. The fuel was manufactured in the Recycle Fuel Fabrication Laboratories (RFFL) at Chalk River allowing AECL to gain valuable experience in fabrication and handling of thoria fuel. The fuel pellets contained 86.05 wt.% Th and 1.53 wt.% Pu in (Th, Pu)O 2 . The objectives of the BDL-422 experiment were to demonstrate the ability of 37-element geometry (Th, Pu)O 2 fuel bundles to operate to high burnups up to 1000 MWh/kgHE (42 MWd/kgHE), and to examine the (Th, Pu)O 2 fuel performance. This paper describes the post-irradiation examination (PIE) results of BDL-422 fuel bundles irradiated to burnups up to 856 MWh/kgHE (36 MWd/kgHE), with power ratings ranging from 52 to 67 kW/m. PIE results for the high burnup bundles (>1000 MWh/kgHE) are being analyzed and will be reported at a later date. The (Th, Pu)O 2 fuel performance characteristics were superior to UO 2 fuel irradiated under similar conditions. Minimal grain growth was observed and was accompanied by benign fission gas release and sheath strain. Other fuel performance parameters, such as sheath oxidation and hydrogen distribution, are also discussed. (author)

  10. Molecular structure effects on the post irradiation diffusion in polymer gel dosimeters

    International Nuclear Information System (INIS)

    Mattea, F.; Romero, M.; Strumia, M.; Vedelago, J.; Quiroga, A.; Valente, M.

    2014-08-01

    Polymer gel dosimeters have specific advantages for recording 3D radiation dose distribution representing a key factor for most of the therapeutic and diagnostic radiation techniques. Radiation-induced polymerization and crosslinking reactions that take place in the dosimeter have been studied for different monomers like acrylamide and N,N-methylene-bis acrylamide (Bis) and most recently for less toxic monomers like N-isopropylacrylamide and Bis. In this work a novel system based on itaconic acid and Bis is proposed, the radical polymerization or gel formation of these monomers has been already studied for the formation of an hydrogel for non dosimetric applications and their reactivity are comparable with the already mentioned systems. Although the 3D structure is maintained after the dosimeter has been irradiated, it is not possible to eliminate the diffusion of the reacted and monomer species in regions of dose gradients within the gel after irradiation. As a consequence the dose information of the dosimeters loose quality over time. The mobility within the gelatin structure of the already mentioned species is related to their chemical structure, and nature. In this work the effect of changes in the chemical structure of the monomers over the dosimetric sensitivity and over the post-irradiation diffusion of species is studied. One of the acrylic acid groups of the itaconic acid molecule is modified to obtain molecules with similar reactivity but different molecular sizes. Dosimetric systems with these modified species, Bis, an antioxidant to avoid oxygen polymerization inhibition, water and gelatin are irradiated in an X-ray tomography at different doses, and the resulting dosimeters are characterized by Raman spectroscopy and optical absorbance to study their feasibility and capabilities as dosimetric systems, and by optical-CT to analyze the diffusion degree after being irradiated. (Author)

  11. Facilities for post-irradiation examination of experimental fuel elements at Chalk River Nuclear Laboratories

    International Nuclear Information System (INIS)

    Mizzan, E.; Chenier, R.J.

    1979-10-01

    Expansion of post-irradiation facilities at the Chalk River Nuclear Laboratories and steady improvement in hot-cell techniques and equipment are providing more support to Canada's reactor fuel development program. The hot-cell facility primarily used for examination of experimental fuels averages a quarterly throughput of 40 elements and 110 metallographic specimens. New developments in ultrasonic testing, metallographic sample preparation, active storage, active waste filtration, and fissile accountability are coming into use to increase the efficiency and safety of hot-cell operations. (author)

  12. Breast Cancer Patients' Preferences for Adjuvant Radiotherapy Post Lumpectomy: Whole Breast Irradiation vs. Partial Breast Irradiation-Single Institutional Study.

    Science.gov (United States)

    Bonin, Katija; McGuffin, Merrylee; Presutti, Roseanna; Harth, Tamara; Mesci, Aruz; Feldman-Stewart, Deb; Chow, Edward; Di Prospero, Lisa; Vesprini, Danny; Rakovitch, Eileen; Lee, Justin; Paszat, Lawrence; Doherty, Mary; Soliman, Hany; Ackerman, Ida; Cao, Xingshan; Kiss, Alex; Szumacher, Ewa

    2018-02-01

    This study was conducted to elucidate patients with early breast cancer preference for standard whole breast irradiation (WBI) or partial breast irradiation (PBI) following lumpectomy, as well as identify important factors for patients when making their treatment decisions. Based on relevant literature and ASTRO consensus statement guidelines, an educational tool and questionnaire were developed. Consenting, eligible women reviewed the educational tool and completed the trade-off questionnaire. Descriptive statistics were calculated, as well as chi-squares and a logistic regression model. Of the 90 patients who completed the study, 62 % preferred WBI, 30 % preferred PBI, 4 % required more information, and 3 % had no preferences. Of the patients who chose WBI, 58 % preferred hypofractionated RT, whereas 25 % preferred the conventional RT regimen. The majority of patients rated recurrence rate [WBI = 55/55 (100 %), PBI = 26/26 (100 %)] and survival [WBI = 54/55 (98 %), PBI = 26/26 (100 %)] as important factors contributing to their choice of treatment preference. Financial factors [WBI = 21/55 (38 %), PBI = 14/26 (53 %)] and convenience [WBI = 36/54 (67 %), PBI = 18/26 (69 %)] were rated as important less frequently. Significantly, more patients who preferred WBI also rated standard method of treatment as important when compared to patients who preferred PBI [WBI = 52/54 (96 %), PBI = 16/26 (61 %), χ 2  = 16.63, p = 0.001]. The majority of patients with early breast cancer who were surveyed for this study preferred WBI as an adjuvant treatment post lumpectomy, yet there was a sizeable minority who preferred PBI. This was associated with the importance patients place on standard treatment. These results will help medical professionals treat patients according to patient values.

  13. Semiconductor annealing

    International Nuclear Information System (INIS)

    Young, J.M.; Scovell, P.D.

    1981-01-01

    A process for annealing crystal damage in ion implanted semiconductor devices is described in which the device is rapidly heated to a temperature between 450 and 600 0 C and allowed to cool. It has been found that such heating of the device to these relatively low temperatures results in rapid annealing. In one application the device may be heated on a graphite element mounted between electrodes in an inert atmosphere in a chamber. The process may be enhanced by the application of optical radiation from a Xenon lamp. (author)

  14. Post operative high dose rate intravaginal irradiation in endometrial cancer: a safe and effective outpatient treatment

    International Nuclear Information System (INIS)

    Chen, Peter; Gibbons, Susan; Vicini, Frank; Weiner, Sheldon; Dmuchowski, Carl; Mele, Beth; Brabbins, Donald; Jennings, John; Gustafson, Gary; Martinez, Alvaro

    1995-01-01

    Purpose: We reviewed our experience with out patient high dose rate (HDR) intravaginal irradiation given post-operatively in endometrial cancer to assess local control, survival, and toxicity when used alone or in combination with external beam irradiation. Methods and Materials: From (12(88)) to (12(92)), 78 patients underwent TAH/BSO and received post-operative HDR intravaginal irradiation for endometrial cancer. Pathologic stage distribution was IB/IC: 56%, II: 22%, III: 22%. Adjuvant therapy was given in one of three schemes: HDR vaginal radiation alone (6 weekly fractions of 500 cGy prescribed 5 mm from the applicator surface treating the upper 4 cm of the vagina), pelvic irradiation with vaginal HDR (500 cGy x 4 weekly fractions) or whole abdomen/pelvic irradiation (WAPI) with vaginal HDR treatment (500 cGy x 3 weekly fractions). Prior to the first HDR vaginal treatment, a simulation with placement of vaginal apex metallic markers was performed to assure proper positioning of the intravaginal cylinders. Pelvic midline blocking was designed from the HDR intravaginal simulation films. The 55 patients who underwent combined external beam irradiation/brachytherapy received a median dose to the pelvis of 5040 cGy (range 25.2-51.6 Gy), and a median total vaginal dose of 5060 cGy (range 30.0-57.6 Gy). Results: Median follow-up is 37 months (range 6-73 months). Local control (vaginally) is 98.7%. The one vaginal failure was in the distal vagina, outside the treatment volume. All other failures (4) were distant with the vagina controlled [3 intra-abdominal and one bone/intra-abdominal]. For stages I and II, the disease free survival is 92.8%. For stage III the disease free survival is 86.5%. Median overall time to failure is 14.3 months (range 8.5-18.6 months). In terms of acute toxicity, no grade 3-4 acute toxicity of the vagina or bladder was seen. However, 9% acute GI toxicity was encountered. Chronic grade 1-2 toxicities included: vaginal 21.8% (foreshortening and

  15. Standard Guide for In-Service Annealing of Light-Water Moderated Nuclear Reactor Vessels

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2003-01-01

    1.1 This guide covers the general procedures to be considered for conducting an in-service thermal anneal of a light-water moderated nuclear reactor vessel and demonstrating the effectiveness of the procedure. The purpose of this in-service annealing (heat treatment) is to improve the mechanical properties, especially fracture toughness, of the reactor vessel materials previously degraded by neutron embrittlement. The improvement in mechanical properties generally is assessed using Charpy V-notch impact test results, or alternatively, fracture toughness test results or inferred toughness property changes from tensile, hardness, indentation, or other miniature specimen testing (1). 1.2 This guide is designed to accommodate the variable response of reactor-vessel materials in post-irradiation annealing at various temperatures and different time periods. Certain inherent limiting factors must be considered in developing an annealing procedure. These factors include system-design limitations; physical constrain...

  16. First results of the post-irradiation examination of the Ceramic Breeder materials from the Pebble Bed Assemblies Irradiation for the HCPB Blanket concept

    International Nuclear Information System (INIS)

    Hegeman, J.; Magielsen, A.J.; Peeters, M.; Stijkel, M.P.; Fokkens, J.H.; Laan, J.G. van der

    2006-01-01

    In the framework of developing the European Helium Cooled Pebble-Bed (HCPB) blanket an irradiation test of pebble-bed assemblies is performed in the HFR Petten. The experiment is focused on the thermo-mechanical behavior of the HCPB type breeder pebble-bed at DEMO representative levels of temperature and defined thermal-mechanical loads. To achieve representative conditions a section of the HCPB is simulated by EUROFER-97 cylinders with a horizontal bed of ceramic breeder pebbles sandwiched between two beryllium beds. Floating Eurofer-97 steel plates separate the pebble-beds. The structural integrity of the ceramic breeder materials is an issue for the design of the Helium Cooled Pebble Bed concept. Therefore the objective of the post irradiation examination is to study deformation of pebbles and the pebble beds and to investigate the microstructure of the ceramic pebbles from the Pebble Bed Assemblies. This paper concentrates on the Post Irradiation Examination (PIE) of the four ceramic pebble beds that have been irradiated in the Pebble Bed Assembly experiment for the HCPB blanket concept. Two assemblies with Li 4 SiO 4 pebble-beds are operated at different maximum temperatures of approximately 600 o C and 800 o C. Post irradiation computational analysis has shown that both have different creep deformation. Two other assemblies have been loaded with a ceramic breeder bed of two types of Li 2 TiO 3 beds having different sintering temperatures and consequently different creep behavior. The irradiation maximum temperature of the Li 2 TiO 3 was 800 o C. To support the first PIE result, the post irradiation thermal analysis will be discussed because thermal gradients have influence on the pebble-bed thermo-mechanical behavior and as a result it may have impact on the structural integrity of the ceramic breeder materials. (author)

  17. Inverse spinel ZnFe2O4 nanoparticles synthesized by ion implantation and post-annealing: An investigation using X-ray spectroscopy and magneto-transport

    International Nuclear Information System (INIS)

    Zhou Shengqiang; Potzger, K.; Buerger, D.; Kuepper, K.; Helm, M.; Fassbender, J.; Schmidt, H.

    2009-01-01

    Noncrystalline ZnFe 2 O 4 has been investigated intensively due to the drastic difference in cation distribution compared with bulk materials. We previously synthesized ZnFe 2 O 4 nanoparticles by ion implantation and post-annealing [S. Zhou, K. Potzger, H. Reuther, G. Talut, F. Eichhorn, J. von Borany, W. Skorupa, M. Helm, J. Fassbender, J. Phys. D - Appl. Phys. 40 (2007) 964]. These ZnFe 2 O 4 nanocrystals are crystallographically oriented inside the ZnO matrix and show a hysteretic behavior upon magnetization reversal at 5 K. Their magnetic properties are explained by assuming that Fe 3+ ions partially occupy tetrahedral sites. In this paper an X-ray spectroscopic and magneto-transport investigation on ZnFe 2 O 4 nanocrystals in a ZnO matrix will be presented. The occupation of Fe 3+ at tetrahedral sites has been directly proved. A positive magnetoresistance (MR) effect is observed and is attributed to ordinary MR.

  18. Effects of deposition and post-annealing conditions on electrical properties and thermal stability of TiAlN films by ion beam sputter deposition

    International Nuclear Information System (INIS)

    Lee, S.-Y.; Wang, S.-C.; Chen, J.-S.; Huang, J.-L.

    2006-01-01

    TiAlN films were deposited by ion beam sputter deposition (IBSD) using a Ti-Al (90/10) alloy target in a nitrogen atmosphere on thermal oxidized Si wafers. Effects of ion beam voltage, substrate temperature (T s ) and post-annealing conditions on electrical properties and oxidation resistance of TiAlN films were studied. According to the experimental results, the proper kinetic energy provided good crystallinity and a dense structure of the films. Because of their better crystallinity and predomination of (200) planes, TiAlN films deposited with 900 V at low T s (50 deg. C) have shown lower resistivity than those at high T s (250 deg. C). They also showed better oxidation resistance. If the beam voltage was too high, it caused some damage to the film surfaces, which caused poor oxidation resistance of films. When sufficient kinetic energy was provided by the beam voltage, the mobility of adatoms was too high due to their extra thermal energy, thus reducing the crystallinity and structure density of the films. A beam voltage of 900 V and a substrate temperature of 50 deg. C were the optimum deposition conditions used in this research. They provided good oxidation resistance and low electrical resistivity for IBSD TiAlN films

  19. Improved current transport properties of post annealed Y1Ba2Cu3O7-x thin films using Ag doping

    DEFF Research Database (Denmark)

    Clausen, Thomas; Skov, Johannes; Jacobsen, Claus Schelde

    1996-01-01

    The influence of Ag doping on the transport properties of Y1Ba2Cu3O7–x thin films prepared by Y, BaF2, and Cu co-evaporation and optimized ex situ post annealing has been investigated. Both undoped and Ag doped films have values of Tc above 90 K, but Jc (77 K) is highly dependent on the nominal...... thickness (tnom) of the as-deposited film. For undoped films with tnom>106 A/cm2) decreases monotonically with increasing film thickness. Above 300 nm Jc (77 K) decreases rapidly to values below 5×105 A/cm2. Ag doped films with tnom>=200 nm have higher Jc (77 K) values than those of undoped films. Ag doped...... films have a maximum in Jc (77 K) around 250 nm. As for the undoped films, there is a large decrease in Jc (77 K) for Ag doped films with tnom>=300 nm. It was found that the higher values of Jc (77 K) for the Ag doped films were due to a better epitaxial growth of the YBCO compound. The low values of Jc...

  20. Electrical characteristics and interface properties of ALD-HfO2/AlGaN/GaN MIS-HEMTs fabricated with post-deposition annealing

    Science.gov (United States)

    Kubo, Toshiharu; Egawa, Takashi

    2017-12-01

    HfO2/AlGaN/GaN metal-insulator-semiconductor (MIS)-type high electron mobility transistors (HEMTs) on Si substrates were fabricated by atomic layer deposition of HfO2 layers and post-deposition annealing (PDA). The current-voltage characteristics of the MIS-HEMTs with as-deposited HfO2 layers showed a low gate leakage current (I g) despite the relatively low band gap of HfO2, and a dynamic threshold voltage shift (ΔV th) was observed. After PDA above 500 °C, ΔV th was reduced from 2.9 to 0.7 V with an increase in I g from 2.2 × 10-7 to 4.8 × 10-2 mA mm-1. Effects of the PDA on the HfO2 layer and the HfO2/AlGaN interface were investigated by x-ray photoelectron spectroscopy (XPS) using synchrotron radiation. XPS data showed that oxygen vacancies exist in the as-deposited HfO2 layers and they disappeared with an increase in the PDA temperature. These results indicate that the deep electron traps that cause ΔV th are related to the oxygen vacancies in the HfO2 layers.

  1. Improvement in the electronic quality of pulsed laser deposited CuIn{sub 0.7}Ga{sub 0.3}Se{sub 2} thin films via post-deposition elemental sulfur annealing process

    Energy Technology Data Exchange (ETDEWEB)

    Beres, M., E-mail: matthewcberes@gmail.com [University of California, Department of Mechanical Engineering, 6141 Etcheverry Hall, Berkeley, CA 94720 (United States); Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720 (United States); Yu, K.M., E-mail: kinmanyu@cityu.edu.hk [Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720 (United States); City University of Hong Kong, Department of Physics and Materials Science, 83 Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region (Hong Kong); Syzdek, J., E-mail: jego.mejl@gmail.com [Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720 (United States); Bio-Logic USA, 9050 Executive Park Dr NW, Knoxville, TN 37923 (United States); Mao, S.S., E-mail: ssmao@me.berkeley.edu [University of California, Department of Mechanical Engineering, 6141 Etcheverry Hall, Berkeley, CA 94720 (United States); Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720 (United States)

    2016-06-01

    We synthesized CuIn{sub 0.7}Ga{sub 0.3}Se{sub 2} thin films on soda lime glass substrates using pulsed laser deposition and post-annealing under different conditions. Increasing substrate temperature during deposition and vacuum annealing after deposition both increased grain size but had negligible effect on the electronic properties of the films. As-deposited films demonstrated P-type conductivities with high carrier concentrations and low Hall mobilities, but annealing in elemental sulfur environment significantly improved the electronic properties of the films. We found that the incorporation of even small quantities of sulfur into the films reduced carrier concentrations by over three orders of magnitude and increased Hall mobilities by an order of magnitude. This resulted in films with resistivity ~ 5 Ω·cm suitable for photovoltaic applications. - Highlights: • CIGSe thin films were deposited by pulsed laser deposition. • Laser deposition parameters and annealing parameters were investigated. • As-deposited films demonstrated high hole concentrations and low Hall mobilities. • Elemental sulfur annealing significantly enhanced the electronic quality of films.

  2. Advanced post-irradiation examination techniques for water reactor fuel. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    2002-03-01

    The purpose of the meeting was to provide and overview of the status of post-irradiation examination (PIE) techniques for water cooled reactor fuel assemblies and their components with emphasis given to advanced PIE techniques applied to high burnup fuel. Papers presented at the meeting described progress obtained in non-destructive (e.g. dimensional measurements, oxide layer thickness measurements, gamma scanning and tomography, neutron and X-ray radiography, etc.) and destructive PIE techniques (e.g. microstructural studies, elemental and isotopic analysis, measurement of physical and mechanical properties, etc.) used for investigation of water reactor fuel. Recent practice in high burnup fuel investigation revealed the importance of advanced PIE techniques, such as 3-D tomography, secondary ion mass spectrometry, laser flash, high resolution transmission and scanning electron microscopy, image analysis in microstructural studies, for understanding mechanisms of fuel behaviour under irradiation. Importance and needs for in-pile irradiation of samples and rodlets in instrumented rigs were also discussed. This TECDOC contains 20 individual papers presented at the meeting; each of the papers has been indexed separately

  3. Surgical treatments for post-irradiation intestinal injury in uterine cervix cancer patients

    International Nuclear Information System (INIS)

    Nozaki, Isao; Yokoyama, Nobuji; Takashima, Shigemitsu

    1997-01-01

    We examined 19 patients with post-irradiation intestinal injury in the uterine cervix cancer for 12 years between 1985 and 1996. We discuss the usefulness and complications of surgery, mainly colostomy. The patients aged from 36 to 80 (average age 61) were treated, and their disease states were 12 cases of rectovaginal fistula, 2 of small intestinal fisfula, 1 of rectum posterior membranous fistula, 3 of proctostenosis, and 14 of proctitis with hemorrhage (including duplication). Surgical methods used were 18 cases of colostomy (2 cases were treated under peritoneum mirror) and 2 of enterocolostomy (including duplication). Eleven out of 19 patients who underwent surgery are alive now. Generally the post-irradiation intestinal injury was intractable, and the method of treatments were limited due to the coexistence of various diseases. The colostomy is safe and less invasive. Therefore patients with uterine cervix cancer having various complications can obtain high quality of life (QOL) such as the improvement of anemia and/or the increase of digestion by the colostomy. (K.H.)

  4. Surgical treatments for post-irradiation intestinal injury in uterine cervix cancer patients

    Energy Technology Data Exchange (ETDEWEB)

    Nozaki, Isao; Yokoyama, Nobuji; Takashima, Shigemitsu [National Shikoku Cancer Center Hospital, Matsuyama, Ehime (Japan)

    1997-06-01

    We examined 19 patients with post-irradiation intestinal injury in the uterine cervix cancer for 12 years between 1985 and 1996. We discuss the usefulness and complications of surgery, mainly colostomy. The patients aged from 36 to 80 (average age 61) were treated, and their disease states were 12 cases of rectovaginal fistula, 2 of small intestinal fisfula, 1 of rectum posterior membranous fistula, 3 of proctostenosis, and 14 of proctitis with hemorrhage (including duplication). Surgical methods used were 18 cases of colostomy (2 cases were treated under peritoneum mirror) and 2 of enterocolostomy (including duplication). Eleven out of 19 patients who underwent surgery are alive now. Generally the post-irradiation intestinal injury was intractable, and the method of treatments were limited due to the coexistence of various diseases. The colostomy is safe and less invasive. Therefore patients with uterine cervix cancer having various complications can obtain high quality of life (QOL) such as the improvement of anemia and/or the increase of digestion by the colostomy. (K.H.)

  5. Effect of helium irradiation on fracture modes

    International Nuclear Information System (INIS)

    Hanamura, T.; Jesser, W.A.

    1982-01-01

    The objective of this work is to determine the crack opening mode during in-situ HVEM tensile testing and how it is influenced by test temperature and helium irradiation. Most cracks were mixed mode I and II. However, between 250 0 C and room temperature the effect of helium irradiation is to increase the amount of mode I crack propagation. Mode II crack opening was observed as grain boundary sliding initiated by a predominantly mode I crack steeply intersecting the grain boundary. Mode II crack opening was absent in irradiated specimens tested between 250 0 C and room temperature, but could be restored by a post irradiation anneal

  6. SU-E-T-481: In Vivo and Post Mortem Animal Irradiation: Measured Vs. Calculated Doses

    Energy Technology Data Exchange (ETDEWEB)

    Heintz, P [Univ New Mexico Radiology Dept., Albuquerque, NM (United States); Heintz, B [Texas Oncology, PA, Southlake, TX (United States); Sandoval, D [University of New Mexico, Albuquerque, NM (United States); Weber, W; Melo, D; Guilmette, R [Lovelace Respiratory Research Institute, Albuquerque, NM (United States)

    2015-06-15

    Purpose: Computerized radiation therapy treatment planning is performed on almost all patients today. However it is seldom used for laboratory irradiations. The first objective is to assess whether modern radiation therapy treatment planning (RTP) systems accurately predict the subject dose by comparing in vivo and decedent dose measurements to calculated doses. The other objective is determine the importance of using a RTP system for laboratory irradiations. Methods: 5 MOSFET radiation dosimeters were placed enterically in each subject (2 sedated Rhesus Macaques) to measure the absorbed dose at 5 levels (carina, lung, heart, liver and rectum) during whole body irradiation. The subjects were treated with large opposed lateral fields and extended distances to cover the entire subject using a Varian 600C linac. CT simulation was performed ante-mortem (AM) and post-mortem (PM). To compare AM and PM doses, calculation points were placed at the location of each dosimeter in the treatment plan. The measured results were compared to the results using Varian Eclipse and Prowess Panther RTP systems. Results: The Varian and Prowess treatment planning system agreed to within in +1.5% for both subjects. However there were significant differences between the measured and calculated doses. For both animals the calculated central axis dose was higher than prescribed by 3–5%. This was caused in part by inaccurate measurement of animal thickness at the time of irradiation. For one subject the doses ranged from 4% to 7% high and the other subject the doses ranged 7% to 14% high when compared to the RTP doses. Conclusions: Our results suggest that using proper CT RTP system can more accurately deliver the prescribed dose to laboratory subjects. It also shows that there is significant dose variation in such subjects when inhomogeneities are not considered in the planning process.

  7. Post-radiation changes in oral tissues - An analysis of cancer irradiation cases

    Directory of Open Access Journals (Sweden)

    Jay Ashokkumar Pandya

    2014-01-01

    Full Text Available Introduction: Radiation, commonly employed as neoadjuvant, primary, and adjuvant therapy for head and neck cancer causes numerous epithelial and stromal changes, prominent among which is fibrosis with its early and late consequences. Very little is known about the true nature of the fibrosed tissue and the type of fibers accumulated. Radiotherapy affects the supporting tumor stroma often resulting in a worsening grade of tumor post-radiation. Aim: To study epithelial, neoplastic, stromal, and glandular changes in oral cavity induced by radiation therapy for oral squamous cell carcinoma (OSCC using special stains. Materials and Methods: The study included 27 samples of recurrent OSCC following completion of radiotherapy (recurrence within an average span of 11 months, and 26 non-irradiated cases of OSCC. Patients with a history of combined radiotherapy and chemotherapy were not included in the study. The epithelial changes assessed included epithelial atrophy, apoptosis, necrosis, dysplasia, and neoplasia. The connective tissue was evaluated for amount of fibrosis, quality of fibers (using picrosirius red staining, fibrinous exudate, necrosis, pattern of invasion, vessel wall thickening, and salivary gland changes. The aforementioned changes were assessed using light and polarizing microscopy and tabulated. Statistical Analysis: Epithelial and connective tissue parameters were compared between the irradiated and non-irradiated cases using chi square and t-tests. Results: Epithelial and connective tissue parameters were found to be increased in irradiated patients. Pattern of invasion by tumor cells varied from strands and  cords between the two groups studied. The effect of radiation was seen to reflect on the maturity of fibers and the regularity of their distribution.

  8. Effects of ablation energy and post-irradiation on the structure and properties of titanium dioxide nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Guillén, G. García [Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y Eléctrica, San Nicolás de los Garza, Nuevo León 66455, México (Mexico); Shaji, S., E-mail: sshajis@yahoo.com [Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y Eléctrica, San Nicolás de los Garza, Nuevo León 66455, México (Mexico); Universidad Autónoma de Nuevo León-CIIDIT, Apodaca, Nuevo León, México (Mexico); Palma, M. I. Mendivil [Centro de Investigación en Materiales Avanzados (CIMAV), Unidad Monterrey, PIIT, Apodaca, Nuevo León, México (Mexico); Avellaneda, D.; Castillo, G.A.; Roy, T.K. Das [Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y Eléctrica, San Nicolás de los Garza, Nuevo León 66455, México (Mexico); and others

    2017-05-31

    Highlights: • Highlights • TiO{sub 2} nanomaterials were prepared by PLALM. • Characterized these nanomaterials using TEM, XPS, XRD, optical and luminescence measurements. • Morphology of these nanomaterials were dependent on ablation wavelength, fluence and post-irradiation time. • Laser post irradiation modified the size, morphology and structure of these TiO{sub 2} nanomaterials. - Abstract: Nanomaterials of titanium oxide were prepared by pulsed laser ablation of a titanium metal target in distilled water. The ablation was performed at different laser energy (fluence) using a nanosecond pulsed Nd:YAG laser output of 1064 and 532 nm. A post-irradiation of titanium oxide nanocolloids obtained by ablation using 532 nm was carried out to explore its effects on the structure and properties. Analysis of morphology, crystalline phase, elemental composition, chemical state, optical and luminescent properties were performed using Transmission Electron Microscopy (TEM), X-Ray Diffraction (XRD), X-Ray Photoelectron Spectroscopy (XPS), UV–-vis absorption spectroscopy and room temperature photoluminescence spectroscopy. It was found that titanium oxide nanomaterial morphologies and optical properties were determined by ablation wavelength and fluence. Further, nanocolloids prepared by 532 nm ablation showed a crystalline phase change by laser post-irradiation. The results showed that pulsed laser ablation in liquid as well as post-irradiation were effective in modifying the final structure and properties of titanium oxide nanocolloids.

  9. Effects of ablation energy and post-irradiation on the structure and properties of titanium dioxide nanomaterials

    International Nuclear Information System (INIS)

    Guillén, G. García; Shaji, S.; Palma, M. I. Mendivil; Avellaneda, D.; Castillo, G.A.; Roy, T.K. Das

    2017-01-01

    Highlights: • Highlights • TiO_2 nanomaterials were prepared by PLALM. • Characterized these nanomaterials using TEM, XPS, XRD, optical and luminescence measurements. • Morphology of these nanomaterials were dependent on ablation wavelength, fluence and post-irradiation time. • Laser post irradiation modified the size, morphology and structure of these TiO_2 nanomaterials. - Abstract: Nanomaterials of titanium oxide were prepared by pulsed laser ablation of a titanium metal target in distilled water. The ablation was performed at different laser energy (fluence) using a nanosecond pulsed Nd:YAG laser output of 1064 and 532 nm. A post-irradiation of titanium oxide nanocolloids obtained by ablation using 532 nm was carried out to explore its effects on the structure and properties. Analysis of morphology, crystalline phase, elemental composition, chemical state, optical and luminescent properties were performed using Transmission Electron Microscopy (TEM), X-Ray Diffraction (XRD), X-Ray Photoelectron Spectroscopy (XPS), UV–-vis absorption spectroscopy and room temperature photoluminescence spectroscopy. It was found that titanium oxide nanomaterial morphologies and optical properties were determined by ablation wavelength and fluence. Further, nanocolloids prepared by 532 nm ablation showed a crystalline phase change by laser post-irradiation. The results showed that pulsed laser ablation in liquid as well as post-irradiation were effective in modifying the final structure and properties of titanium oxide nanocolloids.

  10. Program description for the qualification of CNEA - Argentina as a supplier of LEU silicide fuel and post-irradiation examinations plan for the first prototype irradiated in Argentina

    International Nuclear Information System (INIS)

    Rugirello, Gabriel; Adelfang, Pablo; Denis, Alicia; Zawerucha, Andres; Marco, Agustin di; Guillaume, Eduardo; Sbaffoni, Monica; Lacoste, Pablo

    1998-01-01

    In this report we present a description of the ongoing and future stages of the program for the qualification of CNEA, Argentina, as a supplier of low enriched uranium silicide fuel elements for research reactor. Particularly we will focus on the characteristics of the future irradiation experiment on a new detachable prototype, the post-irradiation examinations (PIE) plan for the already irradiated prototype PO4 and an overview of the recently implemented PIE facilities and equipment. The program is divided in several steps, some of which have been already completed. It concludes: development of the uranium silicide fissile material, irradiation and PIE of several full-scale prototypes. Important investments have been already carried out in the facilities for the FE production and PIE. (author)

  11. Effect of ultraviolet light irradiation period on bond strengths between fiber-reinforced composite post and core build-up composite resin.

    Science.gov (United States)

    Asakawa, Yuya; Takahashi, Hidekazu; Iwasaki, Naohiko; Kobayashi, Masahiro

    2014-01-01

    The aim of the present study was to characterize the effects of the ultraviolet light (UV) irradiation period on the bond strength of fiber-reinforced composite (FRC) posts to core build-up resin. Three types of FRC posts were prepared using polymethyl methacrylate, urethane dimethacrylate, and epoxy resin. The surfaces of these posts were treated using UV irradiation at a distance of 15 mm for 0 to 600 s. The pull-out bond strength was measured and analyzed with the Dunnett's comparison test (α=0.05). The bond strengths of the post surfaces without irradiation were 6.9 to 7.4 MPa; those after irradiation were 4.2 to 26.1 MPa. The bond strengths significantly increased after 15 to 120-s irradiation. UV irradiation on the FRC posts improved the bond strengths between the FRC posts and core build-up resin regardless of the type of matrix resin.

  12. Effects of post annealing on the microstructure, mechanical properties and cavitation erosion behavior of arc-sprayed FeNiCrBSiNbW coatings

    International Nuclear Information System (INIS)

    Lin, Jinran; Wang, Zehua; Lin, Pinghua; Cheng, Jiangbo; Zhang, Xin; Hong, Sheng

    2015-01-01

    Highlights: • FeNiCrBSiNbW coatings were prepared by arc spraying process. • Microstructural changes of the coatings were investigated by TEM. • As-sprayed coating had higher cavitation erosion resistance than annealed coatings. • The mechanism for annealing-induced change in cavitation erosion was discussed. - Abstract: FeNiCrBSiNbW coatings were fabricated via arc spraying process and were subsequently annealed at 450, 550 and 650 °C for 1 h to study the effect of annealing treatment on the microstructure, mechanical properties and cavitation erosion behavior. Microstructure was studied using scanning and transmission electron microscopy. The results showed that oxides, fine crystalline particles and borides were formed after annealing at 650 °C. With increasing annealing temperature, the coatings showed reductions in porosity and fracture toughness, and an increase in microhardness. The cavitation erosion behavior of the coatings was investigated in distilled water. The results showed that the cavitation erosion resistance of the coatings decreased with increasing annealing temperature, and the as-sprayed coating exhibited the best cavitation erosion resistance among the four kinds of coatings. This was attributed to the good fracture toughness, high amorphous phase content and the absence of oxides in the as-sprayed coating

  13. Influence of UV Photo-Transfer on Post Irradiated Double Sulphate Poly-Crystals By Gamma And X-rays

    International Nuclear Information System (INIS)

    El-kolaly, M.A.

    2000-01-01

    Solid state thermoluminescence (TL) dosimetry has for many years been the pre-eminent method for quantifying ionizing radiation dose. In this work, thermoluminescence characteristics of the double sulphate (Li Cs So 4 ) poly-crystals have been studied after exposure to different doses from X and gamma radiation. The glue curves showed TL response of three peaks at 75,125,250 degree. The structure of the glue peaks due to X-rays is quite different from that due to gamma rays. UV exposure yields a regeneration of the TL peaks for the post irradiated samples for X or gamma radiation with some changes in the peaks structure especially the third peak. For the post X-ray irradiated crystals, the area under the third glow peak (III) increased linearly with the integrated time of UV exposures till about 30 min. after which no changes were observed; while , for the post gamma-irradiated crystals two linear regions were observed

  14. Pathogenesis of post-irradiation infection. 2. Role of neutrophils in the defence of irradiated rats against Yersinia enterocolitica

    International Nuclear Information System (INIS)

    Bazin, Herve; Platteau, Bernadette; Bakour, Rabah; Janssens, Michele; Wauters, Georges

    1982-01-01

    Wistar R inbred rats showed a substantial mortality when they were given Yersinia enterocolitica eight days after a 6.5 Gy total body irradiation. The possibility to abolish the high susceptibility of these irradiated rats to Yersinia enterocolitica by intravenous injections of isogenic neutrophils is presented: irradiated rats injected with 7 to 10.10 7 isogenic neutrophils, by the intravenous route, just before or after the administration of Yersinia enterocolitica, were not susceptible. On the contrary, control irradiated rats, not transfused, were killed by the same bacterial challenge [fr

  15. Pathogenesis of post-irradiation infection. 2. Role of neutrophils in the defence of irradiated rats against Yersinia enterocolitica

    Energy Technology Data Exchange (ETDEWEB)

    Bazin, H.; Platteau, B.; Bakour, R.; Janssens, M.; Wauters, G. (Universite de Louvain, Bruxelles (Belgium))

    1982-07-01

    Wistar R inbred rats showed a substantial mortality when they were given Yersinia enterocolitica eight days after a 6.5