WorldWideScience

Sample records for possess antimicrobial properties

  1. Antimicrobial properties of star anise (Illicium verum Hook f).

    Science.gov (United States)

    De, Minakshi; De, Amit Krishna; Sen, Parimal; Banerjee, Arun Baran

    2002-02-01

    Star anise (Illicium verum Hook f) has been shown to possess potent antimicrobial properties. Chemical studies indicate that a major portion of this antimicrobial property is due to anethole present in the dried fruit. Studies with isolated anethole (compared with standard anethole) indicated that it is effective against bacteria, yeast and fungal strains. Copyright 2002 John Wiley & Sons, Ltd.

  2. Redesigned Spider Peptide with Improved Antimicrobial and Anticancer Properties.

    Science.gov (United States)

    Troeira Henriques, Sónia; Lawrence, Nicole; Chaousis, Stephanie; Ravipati, Anjaneya S; Cheneval, Olivier; Benfield, Aurélie H; Elliott, Alysha G; Kavanagh, Angela Maria; Cooper, Matthew A; Chan, Lai Yue; Huang, Yen-Hua; Craik, David J

    2017-09-15

    Gomesin, a disulfide-rich antimicrobial peptide produced by the Brazilian spider Acanthoscurria gomesiana, has been shown to be potent against Gram-negative bacteria and to possess selective anticancer properties against melanoma cells. In a recent study, a backbone cyclized analogue of gomesin was shown to be as active but more stable than its native form. In the current study, we were interested in improving the antimicrobial properties of the cyclic gomesin, understanding its selectivity toward melanoma cells and elucidating its antimicrobial and anticancer mode of action. Rationally designed analogues of cyclic gomesin were examined for their antimicrobial potency, selectivity toward cancer cells, membrane-binding affinity, and ability to disrupt cell and model membranes. We improved the activity of cyclic gomesin by ∼10-fold against tested Gram-negative and Gram-positive bacteria without increasing toxicity to human red blood cells. In addition, we showed that gomesin and its analogues are more toxic toward melanoma and leukemia cells than toward red blood cells and act by selectively targeting and disrupting cancer cell membranes. Preference toward some cancer types is likely dependent on their different cell membrane properties. Our findings highlight the potential of peptides as antimicrobial and anticancer leads and the importance of selectively targeting cancer cell membranes for drug development.

  3. Origanum vulgare mediated green synthesis of biocompatible gold nanoparticles simultaneously possessing plasmonic, antioxidant and antimicrobial properties

    Directory of Open Access Journals (Sweden)

    Benedec D

    2018-02-01

    Full Text Available Daniela Benedec,1,* Ilioara Oniga,1,* Flavia Cuibus,1 Bogdan Sevastre,2 Gabriela Stiufiuc,3 Mihaela Duma,4 Daniela Hanganu,1 Cristian Iacovita,1 Rares Stiufiuc,1,5 Constantin Mihai Lucaciu1 1Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 2Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, 3Faculty of Physics, “Babeş Bolyai” University, 4State Veterinary Laboratory for Animal Health and Safety, 5Department of Bionanoscopy, MedFuture Research Center for Advance Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania *These authors contributed equally to this work Purpose: The leaves and flowering stem of Origanum vulgare contain essential oils, flavonoids, phenolic acids and anthocyanins. We propose a new, simple, one-pot, O. vulgare extract (OVE mediated green synthesis method of biocompatible gold nanoparticles (AuNPs possessing improved antioxidant, antimicrobial and plasmonic properties.Materials and methods: Different concentrations of OVEs were used to reduce gold ions and to synthetize biocompatible spherical AuNPs. Their morphology and physical properties have been investigated by means of transmission electron microscopy, ultraviolet–visible absorption spectroscopy, photon correlation spectroscopy and Fourier transform infrared spectroscopy, whereas their plasmonic properties have been tested using surface-enhanced Raman spectroscopy (SERS. The antioxidant properties of nanoparticles (NPs have been evaluated by 2,2-diphenyl-1-picrylhydrazyl radical scavenging assay, and the antimicrobial tests were performed using the disk diffusion assay. Their cytotoxicity has been assessed by means of 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide assay.Results: The experimental results confirmed the successful synthesis of biocompatible, spherical, plasmonic NPs having a mean diameter of ~40 nm and an outstanding aqueous

  4. Antimicrobial, Optical and Mechanical Properties of Chitosan-Starch Films with Natural Extracts.

    Science.gov (United States)

    Lozano-Navarro, Jessica I; Díaz-Zavala, Nancy P; Velasco-Santos, Carlos; Martínez-Hernández, Ana L; Tijerina-Ramos, Beatriz I; García-Hernández, Margarita; Rivera-Armenta, José L; Páramo-García, Ulises; Reyes-de la Torre, Adriana I

    2017-05-05

    Natural extracts possess several kinds of antioxidants (anthocyanins, betalains, thymol, carvacrol, and resveratrol) that have also demonstrated antimicrobial properties. In order to study these properties, extracts from cranberry, blueberry, beetroot, pomegranate, oregano, pitaya, and resveratrol (from grapes) were obtained. Growth inhibition tests of mesophilic aerobes, coliforms, and fungi were conducted in films prepared from the extracts in accordance with Mexican Official Norms (NOM). Optical properties such as transparency and opacity, mechanical properties, and pH were also analyzed in these materials. The films with beetroot, cranberry, and blueberry extracts demonstrated the best antimicrobial activity against various bacteria and fungi in comparison with unmodified chitosan-starch film. This study shows that the addition of antioxidants improved the antimicrobial performance of these films. It was also found that antimicrobial properties are inherent to the films. These polymers combined with the extracts effectively inhibit or reduce microorganism growth from human and environmental contact; therefore, previous sterilization could be unnecessary in comparison with traditional plastics. The presence of extracts decreased transmittance percentages at 280 and 400 nm, as well as the transparency values, while increasing their opacity values, providing better UV-VIS light barrier properties. Despite diminished glass transition temperatures ( T g), the values obtained are still adequate for food packaging applications.

  5. Antimicrobial, Optical and Mechanical Properties of Chitosan–Starch Films with Natural Extracts

    Science.gov (United States)

    Lozano-Navarro, Jessica I.; Díaz-Zavala, Nancy P.; Velasco-Santos, Carlos; Martínez-Hernández, Ana L.; Tijerina-Ramos, Beatriz I.; García-Hernández, Margarita; Rivera-Armenta, José L.; Páramo-García, Ulises; Reyes-de la Torre, Adriana I.

    2017-01-01

    Natural extracts possess several kinds of antioxidants (anthocyanins, betalains, thymol, carvacrol, and resveratrol) that have also demonstrated antimicrobial properties. In order to study these properties, extracts from cranberry, blueberry, beetroot, pomegranate, oregano, pitaya, and resveratrol (from grapes) were obtained. Growth inhibition tests of mesophilic aerobes, coliforms, and fungi were conducted in films prepared from the extracts in accordance with Mexican Official Norms (NOM). Optical properties such as transparency and opacity, mechanical properties, and pH were also analyzed in these materials. The films with beetroot, cranberry, and blueberry extracts demonstrated the best antimicrobial activity against various bacteria and fungi in comparison with unmodified chitosan–starch film. This study shows that the addition of antioxidants improved the antimicrobial performance of these films. It was also found that antimicrobial properties are inherent to the films. These polymers combined with the extracts effectively inhibit or reduce microorganism growth from human and environmental contact; therefore, previous sterilization could be unnecessary in comparison with traditional plastics. The presence of extracts decreased transmittance percentages at 280 and 400 nm, as well as the transparency values, while increasing their opacity values, providing better UV–VIS light barrier properties. Despite diminished glass transition temperatures (Tg), the values obtained are still adequate for food packaging applications. PMID:28475151

  6. Study on the Antimicrobial Properties of Citrate-Based Biodegradable Polymers

    Directory of Open Access Journals (Sweden)

    Lee-Chun eSu

    2014-07-01

    Full Text Available Citrate-based polymers possess unique advantages for various biomedical applications since citric acid is a natural metabolism product, which is biocompatible and antimicrobial. In polymer synthesis, citric acid also provides multiple functional groups to control the crosslinking of polymers and active binding sites for further conjugation of biomolecules. Our group recently developed a number of citrate-based polymers for various biomedical applications by taking advantage of their controllable chemical, mechanical, and biological characteristics. In this study, various citric acid derived biodegradable polymers were synthesized and investigated for their physicochemical and antimicrobial properties. Results indicate that citric acid derived polymers reduced bacterial proliferation to different degrees based on their chemical composition. Among the studied polymers, poly(octamethylene citrate (POC showed approximately 70-80% suppression to microbe proliferation, owing to its relatively higher ratio of citric acid contents. Crosslinked urethane-doped polyester elastomers (CUPEs and biodegradable photoluminescent polymers (BPLPs also exhibited significant bacteria reduction of ~20% and ~50% for Staphylococcus aureus and Escherichia coli, respectively. Thus, the intrinsic antibacterial properties in citrate-based polymers enable them to inhibit bacteria growth without incorporation of antibiotics, silver nanoparticles, and other traditional bacteria-killing agents suggesting that they are unique beneficial materials for wound dressing, tissue engineering, and other potential medical applications where antimicrobial property is desired.

  7. Self-assembly of cationic multidomain peptide hydrogels: supramolecular nanostructure and rheological properties dictate antimicrobial activity

    Science.gov (United States)

    Jiang, Linhai; Xu, Dawei; Sellati, Timothy J.; Dong, He

    2015-11-01

    Hydrogels are an important class of biomaterials that have been widely utilized for a variety of biomedical/medical applications. The biological performance of hydrogels, particularly those used as wound dressing could be greatly advanced if imbued with inherent antimicrobial activity capable of staving off colonization of the wound site by opportunistic bacterial pathogens. Possessing such antimicrobial properties would also protect the hydrogel itself from being adversely affected by microbial attachment to its surface. We have previously demonstrated the broad-spectrum antimicrobial activity of supramolecular assemblies of cationic multi-domain peptides (MDPs) in solution. Here, we extend the 1-D soluble supramolecular assembly to 3-D hydrogels to investigate the effect of the supramolecular nanostructure and its rheological properties on the antimicrobial activity of self-assembled hydrogels. Among designed MDPs, the bactericidal activity of peptide hydrogels was found to follow an opposite trend to that in solution. Improved antimicrobial activity of self-assembled peptide hydrogels is dictated by the combined effect of supramolecular surface chemistry and storage modulus of the bulk materials, rather than the ability of individual peptides/peptide assemblies to penetrate bacterial cell membrane as observed in solution. The structure-property-activity relationship developed through this study will provide important guidelines for designing biocompatible peptide hydrogels with built-in antimicrobial activity for various biomedical applications.Hydrogels are an important class of biomaterials that have been widely utilized for a variety of biomedical/medical applications. The biological performance of hydrogels, particularly those used as wound dressing could be greatly advanced if imbued with inherent antimicrobial activity capable of staving off colonization of the wound site by opportunistic bacterial pathogens. Possessing such antimicrobial properties would

  8. Electrochemical and Antimicrobial Properties of Diamondlike Carbon-Metal Composite Films

    Energy Technology Data Exchange (ETDEWEB)

    MORRISON, M. L.; BUCHANAN, R. A.; LIAW, P. K.; BERRY, C. J.; BRIGMON, R.; RIESTER, L.; JIN, C.; NARAYAN, R. J.

    2005-05-11

    Implants containing antimicrobial metals may reduce morbidity, mortality, and healthcare costs associated with medical device-related infections. We have deposited diamondlike carbon-silver (DLC-Ag), diamondlike carbon-platinum (DLC-Pt), and diamondlike carbon-silver-platinum (DLC-AgPt) thin films using a multicomponent target pulsed laser deposition process. Transmission electron microscopy of the DLC-silver and DLC-platinum composite films revealed that the silver and platinum self-assemble into nanoparticle arrays within the diamondlike carbon matrix. The diamondlike carbon-silver film possesses hardness and Young's modulus values of 37 GPa and 331 GPa, respectively. The diamondlike carbon-metal composite films exhibited passive behavior at open-circuit potentials. Low corrosion rates were observed during testing in a phosphate-buffered saline (PBS) electrolyte. In addition, the diamondlike carbon-metal composite films were found to be immune to localized corrosion below 1000 mV (SCE). DLC-silver-platinum films demonstrated exceptional antimicrobial properties against Staphylococcus bacteria. It is believed that a galvanic couple forms between platinum and silver, which accelerates silver ion release and provides more robust antimicrobial activity. Diamondlike carbon-silver-platinum films may provide unique biological functionalities and improved lifetimes for cardiovascular, orthopaedic, biosensor, and implantable microelectromechanical systems.

  9. Antimicrobial Property of Hydrocolloid Impression Material Incorporated with Silver Nanoparticles Against Staphylococcus Aureus

    Directory of Open Access Journals (Sweden)

    Wangchuk Norbu Penden

    2017-01-01

    Full Text Available Dental impressions can easily become contaminated with patient’s blood and saliva which are capable of transmitting infectious diseases to dental personnel. The addition of antimicrobial agents into impression materials could be effective in reducing the chances of cross-infection. Silver nanoparticles have been applied in dentistry as a potent antimicrobial agent. This study aims to evaluate the in vitro antimicrobial efficacy of silver nanoparticles incorporated to irreversible hydrocolloid impression material against Staphylococcus aureus. Silver nanoparticles (AgZrPO4, National Direct Network Company, Thailand at concentrations of 0.25%, 0.50%, 1.00% and 1.50% w/w were added to powder of impression materials (Kromopan, Lascod, Ilaty. Impression material samples were prepared on sterile plate in accordance with manufacturer’s instruction. After setting, a 100 microliter of S. aureus ATCC6538 suspension (106 cells/mL were inoculated on the surface of the impression sample and left for 10 minutes. The amount of S. aureus on the surface was quantified using imprint technique on Mannitol Salt agar. Impression materials incorporated with AgZrPO4 showed antimicrobial property against S. aureus (up to 95% reduction compared with control (impression material without AgZrPO4. Even though the mechanism of antimicrobial action was not clearly understood, AgZrPO4 incorporated to impression material was demonstrated to possess an inhibitory effect against pathogenic bacteria. Further studies are needed to investigate physical properties of the material and the clinical usage.

  10. Structural and antimicrobial properties of human pre-elafin/trappin-2 and derived peptides against Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Gagné Stéphane M

    2010-10-01

    Full Text Available Abstract Background Pre-elafin/trappin-2 is a human innate defense molecule initially described as a potent inhibitor of neutrophil elastase. The full-length protein as well as the N-terminal "cementoin" and C-terminal "elafin" domains were also shown to possess broad antimicrobial activity, namely against the opportunistic pathogen P. aeruginosa. The mode of action of these peptides has, however, yet to be fully elucidated. Both domains of pre-elafin/trappin-2 are polycationic, but only the structure of the elafin domain is currently known. The aim of the present study was to determine the secondary structures of the cementoin domain and to characterize the antibacterial properties of these peptides against P. aeruginosa. Results We show here that the cementoin domain adopts an α-helical conformation both by circular dichroism and nuclear magnetic resonance analyses in the presence of membrane mimetics, a characteristic shared with a large number of linear polycationic antimicrobial peptides. However, pre-elafin/trappin-2 and its domains display only weak lytic properties, as assessed by scanning electron micrography, outer and inner membrane depolarization studies with P. aeruginosa and leakage of liposome-entrapped calcein. Confocal microscopy of fluorescein-labeled pre-elafin/trappin-2 suggests that this protein possesses the ability to translocate across membranes. This correlates with the finding that pre-elafin/trappin-2 and elafin bind to DNA in vitro and attenuate the expression of some P. aeruginosa virulence factors, namely the biofilm formation and the secretion of pyoverdine. Conclusions The N-terminal cementoin domain adopts α-helical secondary structures in a membrane mimetic environment, which is common in antimicrobial peptides. However, unlike numerous linear polycationic antimicrobial peptides, membrane disruption does not appear to be the main function of either cementoin, elafin or full-length pre-elafin/trappin-2 against

  11. Evaluation of antimicrobial properties of cork.

    Science.gov (United States)

    Gonçalves, Filipa; Correia, Patrícia; Silva, Susana P; Almeida-Aguiar, Cristina

    2016-02-01

    Cork presents a range of diverse and versatile properties making this material suitable for several and extremely diverse industrial applications. Despite the wide uses of cork, its antimicrobial properties and potential applications have deserved little attention from industry and the scientific community. Thus, the main purpose of this work was the evaluation of the antibacterial properties of cork, by comparison with commercially available antimicrobial materials (Ethylene-Vinyl Acetate copolymer and a currently used antimicrobial commercial additive (ACA)), following the previous development and optimization of a method for such antimicrobial assay. The AATCC 100-2004 standard method, a quantitative procedure developed for the assessment of antimicrobial properties in textile materials, was used as reference and optimized to assess cork antibacterial activity. Cork displayed high antibacterial activity against Staphylococcus aureus, with a bacterial reduction of almost 100% (96.93%) after 90 minutes of incubation, similar to the one obtained with ACA. A more reduced but time-constant antibacterial action was observed against Escherichia coli (36% reduction of the initial number of bacterial colonies). To complement this study, antibacterial activity was further evaluated for a water extract of cork and an MIC of 6 mg mL(-1) was obtained against the reference strain S. aureus. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. 22 CFR 72.14 - Nominal possession; property not normally taken into physical possession.

    Science.gov (United States)

    2010-04-01

    ... possession. (a) When a consular officer take articles of a decedent's personal property from a foreign... Department discharging the consular officer of any responsibility for the articles transferred. (b) A... effects; (2) Motor vehicles, airplanes or watercraft; (3) Toiletries, such as toothpaste or razors; (4...

  13. Antimicrobial activity against Shigella sonnei and probiotic properties of wild lactobacilli from fermented food.

    Science.gov (United States)

    Zhang, Yingchun; Zhang, Lanwei; Du, Ming; Yi, Huaxi; Guo, Chunfeng; Tuo, Yanfeng; Han, Xue; Li, Jingyan; Zhang, Lili; Yang, Lin

    2011-12-20

    Four lactobacilli strains (Lactobacillus paracasei subp. paracasei M5-L, Lactobacillus rhamnosus J10-L, Lactobacillus casei Q8-L and L. rhamnosus GG (LGG), were systematically assessed for the production of antimicrobial substances active towards Shigella sonnei, Escherichia coli and Salmonella typhimurium. Agar-well assay showed that the four lactobacilli strains displayed strong antibacterial activity towards S. sonnei. The nature of antimicrobial substances was also investigated and shown to be dependent on the production of organic acids, in particular the lactic acid. Time-kill assay showed that the viability of the S. sonnei was decreased by 2.7-3.6logCFU/ml after contact with CFCS (cell-free culture supernatants) of four lactobacilli for 2h, which confirmed the result of the agar-well assay. Further analysis of the organic acid composition in the CFCS revealed that the content of lactic acid range from 227 to 293mM. In addition, the aggregations properties, adherence properties and tolerance to simulated gastrointestinal conditions were also investigated in vitro tests. The result suggested that the M5-L, J10-L and Q8-L strains possess desirable antimicrobial activity towards S. sonnei and probiotic properties as LGG and could be potentially used as novel probiotic strains in the food industry. Copyright © 2011. Published by Elsevier GmbH.

  14. Antimicrobial properties of Zr–Cu–Al–Ag thin film metallic glass

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hsien-Wei; Hsu, Kai-Chieh; Chan, Yu-Chen [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan (China); Duh, Jenq-Gong, E-mail: jgd@mx.nthu.edu.tw [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan (China); Lee, Jyh-Wei [Department of Materials Engineering, Ming Chi University of Technology, Taipei, Taiwan (China); Center for Thin Film Technologies and Applications, Mingchi University of Technology, Taipei, Taiwan (China); Jang, Jason Shian-Ching [Department of Mechanical Engineering, Institute of Materials Science and Engineering, National Central University, Chung-Li, Taiwan (China); Chen, Guo-Ju [Department of Materials Science and Engineering, I-Shou University, Kaohsiung, Taiwan (China)

    2014-06-30

    Metallic glass as a prominent class of structure and multifunctional materials exhibits several unique properties in mechanical, electrochemical, and thermal properties. This study aimed to realize the advantage of biomedical application and to promote the attainable size of metallic glasses by the physical vapor deposition. The Zr–Cu–Al–Ag thin film metallic glass (TFMG) was deposited on silicon wafer and SUS304 stainless steel substrates by magnetron sputtering with single target. For X-ray diffraction analysis, all TFMGs revealed typical broad peaks around the incident angle of 30 to 50°, suggesting that coatings possess amorphous structure. In addition, diffuse halo ring patterns of transmission electron microscopy indicated a fine amorphorization for TFMG via sputtering process. The variation of surface roughness showed that TFMG derived from higher power of metallic targets revealed rougher morphology. Besides, the roughness of SUS304 stainless steel substrate significantly reduced from 7 nm to about 1 nm after TFMGs were deposited. The microbes of Candida albicans, Escherichia coli, and Pseudomonas aeruginosa were used and cultivated on the TFMG coatings with medium to investigate the antimicrobial properties. In the incubation experiment, the growth of each microbe was recorded by a digital photography system and the growth area was calculated by image processing software. The growth area of the microbes on the TFMG was mostly smaller than that on SUS304 stainless steel ones within incubation time of 72 h, indicating that the TFMGs reveal better antimicrobial capability. Moreover, the coatings exhibit a particularly long-term antimicrobial effect for P. aeruginosa. In summary, the Zr–Cu–Al–Ag prepared by sputtering with a single target device presented superior glass forming ability, and coatings with copper and silver constituents revealed significantly antimicrobial properties. Besides, the surface roughness is another factor to affect the

  15. Antimicrobial properties of Zr–Cu–Al–Ag thin film metallic glass

    International Nuclear Information System (INIS)

    Chen, Hsien-Wei; Hsu, Kai-Chieh; Chan, Yu-Chen; Duh, Jenq-Gong; Lee, Jyh-Wei; Jang, Jason Shian-Ching; Chen, Guo-Ju

    2014-01-01

    Metallic glass as a prominent class of structure and multifunctional materials exhibits several unique properties in mechanical, electrochemical, and thermal properties. This study aimed to realize the advantage of biomedical application and to promote the attainable size of metallic glasses by the physical vapor deposition. The Zr–Cu–Al–Ag thin film metallic glass (TFMG) was deposited on silicon wafer and SUS304 stainless steel substrates by magnetron sputtering with single target. For X-ray diffraction analysis, all TFMGs revealed typical broad peaks around the incident angle of 30 to 50°, suggesting that coatings possess amorphous structure. In addition, diffuse halo ring patterns of transmission electron microscopy indicated a fine amorphorization for TFMG via sputtering process. The variation of surface roughness showed that TFMG derived from higher power of metallic targets revealed rougher morphology. Besides, the roughness of SUS304 stainless steel substrate significantly reduced from 7 nm to about 1 nm after TFMGs were deposited. The microbes of Candida albicans, Escherichia coli, and Pseudomonas aeruginosa were used and cultivated on the TFMG coatings with medium to investigate the antimicrobial properties. In the incubation experiment, the growth of each microbe was recorded by a digital photography system and the growth area was calculated by image processing software. The growth area of the microbes on the TFMG was mostly smaller than that on SUS304 stainless steel ones within incubation time of 72 h, indicating that the TFMGs reveal better antimicrobial capability. Moreover, the coatings exhibit a particularly long-term antimicrobial effect for P. aeruginosa. In summary, the Zr–Cu–Al–Ag prepared by sputtering with a single target device presented superior glass forming ability, and coatings with copper and silver constituents revealed significantly antimicrobial properties. Besides, the surface roughness is another factor to affect the

  16. Antimicrobial properties of metal and metal-halide nanoparticles and their potential applications

    Science.gov (United States)

    Torrey, Jason Robert

    Heavy metals, including silver and copper, have been known to possess antimicrobial properties against bacterial, fungal, and viral pathogens. Metal nanoparticles (aggregations of metal atoms 1-200 nm in size) have recently become the subject of intensive study for their increased antimicrobial properties. In the current studies, metal and metal-halide nanoparticles were evaluated for their antibacterial efficacy. Silver (Ag), silver bromide (AgBr), silver iodide (AgI), and copper iodide (CuI) nanoparticles significantly reduced bacterial numbers of the Gram-negative Pseudomonas aeruginosa and the Gram-positive Staphylococcus aureus within 24 hours and were more effective against P. aeruginosa. CuI nanoparticles were found to be highly effective, reducing both organisms by >4.43 log 10 within 15 minutes at 60 ppm Cu. CuI nanoparticles formulated with different stabilizers (sodium dodecyl sulfate, SDS; polyvinyl pyrrolidone, PVP) were further tested against representative Gram-positive and Gram-negative bacteria, Mycobacteria, a fungus (Candida albicans ), and a non-enveloped virus (poliovirus). Both nanoparticles caused significant reductions in most of the Gram-negative bacteria within five minutes (>5.09-log10). The Gram-positive bacterial species and C. albicans were more sensitive to the CuI-SDS than the CuI-PVP nanoparticles. In contrast, the acid-fast Mycobacterium smegmatis was more resistant to CuI-SDS than CuI-PVP nanoparticles. Poliovirus was more resistant than the other organisms tested except for Mycobacterium fortuitum, which displayed the greatest resistance to CuI nanoparticles. As an example of a real world antimicrobial application, polymer coatings embedded with various concentrations of CuI nanoparticles were tested for antibacterial efficacy against P. aeruginosa and S. aureus. Polyester-epoxy powder coatings were found to display superior uniformity, stability and antimicrobial properties against both organisms (>4.92 log 10 after six hours at

  17. Size-dependent antimicrobial properties of the cobalt ferrite nanoparticles

    Science.gov (United States)

    Žalnėravičius, Rokas; Paškevičius, Algimantas; Kurtinaitiene, Marija; Jagminas, Arūnas

    2016-10-01

    The growing resistance of bacteria to conventional antibiotics elicited considerable interest to non-typical drugs. In this study, antimicrobial investigations were performed on low-size dispersion cobalt ferrite nanoparticles (Nps) fabricated by co-precipitation approach in several average sizes, in particular, 15.0, 5.0, and 1.65 nm. A variety of experimental tests demonstrated that the size of these Nps is determinant for antimicrobial efficiency against S. cerevisiae and several Candida species, in particular, C. parapsilosis, C. krusei, and C. albicans. The small and ultra-small fractions of CoFe2O4 Nps possess especially strong antimicrobial activity against all tested microorganisms. The possible reasons are discussed. Nps were characterized by means of transmission and high-resolution transmission electron microscopy, X-ray diffraction, energy dispersive X-ray spectroscopy and atomic force microscopy, chemical analysis and magnetic measurements.

  18. Size-dependent antimicrobial properties of the cobalt ferrite nanoparticles

    International Nuclear Information System (INIS)

    Žalnėravičius, Rokas; Paškevičius, Algimantas; Kurtinaitiene, Marija; Jagminas, Arūnas

    2016-01-01

    The growing resistance of bacteria to conventional antibiotics elicited considerable interest to non-typical drugs. In this study, antimicrobial investigations were performed on low-size dispersion cobalt ferrite nanoparticles (Nps) fabricated by co-precipitation approach in several average sizes, in particular, 15.0, 5.0, and 1.65 nm. A variety of experimental tests demonstrated that the size of these Nps is determinant for antimicrobial efficiency against S. cerevisiae and several Candida species, in particular, C. parapsilosis, C. krusei, and C. albicans. The small and ultra-small fractions of CoFe_2O_4 Nps possess especially strong antimicrobial activity against all tested microorganisms. The possible reasons are discussed. Nps were characterized by means of transmission and high-resolution transmission electron microscopy, X-ray diffraction, energy dispersive X-ray spectroscopy and atomic force microscopy, chemical analysis and magnetic measurements.Graphical Abstract

  19. The preparation, cytocompatibility and antimicrobial property of micro/nano structural titanium loading alginate and antimicrobial peptide

    Science.gov (United States)

    Liu, Zhiyuan; Zhong, Mou; Sun, Yuhua; Chen, Junhong; Feng, Bo

    2018-03-01

    Titanium with hybrid microporous/nanotubes (TMNT) structure on its surface was fabricated by acid etching and subsequently anodization at different voltages. Bovine lactoferricin, a kind of antimicrobial peptide, and sodium alginate (NaAlg) were loaded onto titanium surface through layer by layer assembly. The drug release, cytocompatibility and antimicrobial property against S.aureus and E.coil were studied by release experiment, osteoblast and bacterial cultures. Results indicated that samples with nanotubes of bigger diameter carried more drugs and had better biocompatibility, and drug-loaded samples acquired better biocompatibility compared with drug-free samples. Furthermore, the drug-loaded samples exhibited good initial antimicrobial property, but weak long-term antimicrobial property. Therefore, drug-loaded titanium with micro/nano structure, especially, of big diameter nanotubes, could be a promise material for medical implants, such as internal/external fixation devices.

  20. Size-dependent antimicrobial properties of the cobalt ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Žalnėravičius, Rokas [State Research Institute Center for Physical Sciences and Technology (Lithuania); Paškevičius, Algimantas [Nature Research Centre, Laboratory of Biodeterioration Research (Lithuania); Kurtinaitiene, Marija; Jagminas, Arūnas, E-mail: arunas.jagminas@ftmc.lt [State Research Institute Center for Physical Sciences and Technology (Lithuania)

    2016-10-15

    The growing resistance of bacteria to conventional antibiotics elicited considerable interest to non-typical drugs. In this study, antimicrobial investigations were performed on low-size dispersion cobalt ferrite nanoparticles (Nps) fabricated by co-precipitation approach in several average sizes, in particular, 15.0, 5.0, and 1.65 nm. A variety of experimental tests demonstrated that the size of these Nps is determinant for antimicrobial efficiency against S. cerevisiae and several Candida species, in particular, C. parapsilosis, C. krusei, and C. albicans. The small and ultra-small fractions of CoFe{sub 2}O{sub 4} Nps possess especially strong antimicrobial activity against all tested microorganisms. The possible reasons are discussed. Nps were characterized by means of transmission and high-resolution transmission electron microscopy, X-ray diffraction, energy dispersive X-ray spectroscopy and atomic force microscopy, chemical analysis and magnetic measurements.Graphical Abstract.

  1. The antimicrobial assessment of some Nigerian herbal soap.

    Science.gov (United States)

    Igbeneghu, O A

    2013-01-01

    Twenty samples of herbal soaps were evaluated for their antimicrobial activity against bacteria and yeast of significance in skin infections with the aim to provide some justification for the continued use of the soaps in the management of superficial skin infections. All the soaps were found to possess antimicrobial activity in a concentration and organism dependent manner. The soaps were more active against the gram positive organisms than the Gram negative organisms while none of the soaps had activity against the tested yeasts. Only 35% of the soaps were appropriately packaged with adequate directions for use and storage. The study showed that the tested soaps possessed antimicrobial properties and they can contribute to the treatment and management of skin infections caused by bacteria if well prepared with the appropriate plant materials to target specific causative organisms and packaged with appropriate directions for use and storage.

  2. High Pressure Laminates with Antimicrobial Properties

    Directory of Open Access Journals (Sweden)

    Sandra Magina

    2016-02-01

    Full Text Available High-pressure laminates (HPLs are durable, resistant to environmental effects and good cost-benefit decorative surface composite materials with special properties tailored to meet market demand. In the present work, polyhexamethylene biguanide (PHMB was incorporated for the first time into melamine-formaldehyde resin (MF matrix on the outer layer of HPLs to provide them antimicrobial properties. Chemical binding of PHMB to resin matrix was detected on the surface of produced HPLs by attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR. Antimicrobial evaluation tests were carried out on the ensuing HPLs doped with PHMB against gram-positive Listeria innocua and gram-negative Escherichia coli bacteria. The results revealed that laminates prepared with 1.0 wt % PHMB in MF resin were bacteriostatic (i.e., inhibited the growth of microorganisms, whereas those prepared with 2.4 wt % PHMB in MF resin exhibited bactericidal activity (i.e., inactivated the inoculated microorganisms. The results herein reported disclose a promising strategy for the production of HPLs with antimicrobial activity without affecting basic intrinsic quality parameters of composite material.

  3. Antimicrobial activity of different hydroxyapatites

    International Nuclear Information System (INIS)

    Feitosa, G.T.; Santos, M.V.B.; Barreto, H.M.; Osorio, L.R.; Osajima, J.A.; Silva Filho, E.C. da

    2014-01-01

    Among the applications of ceramics in the technological context, hydroxyapatite (HAp) stands out in the scientific community due to chemical biocompatibility and molecular similarity to the structures of bone and dental tissues. Such features are added to the antimicrobial properties that this brings. This work aimed at the synthesis of hydroxyapatite by two different routes, hydrothermal (HD HAp) and co-precipitation (CP HAp), as well as verification of the antimicrobial properties of these through direct contact of the powders synthesized tests with Staphylococcus aureus (SA10) and Escherichia coli (EC7) bacteria. The materials was characterized by XRD, Raman and TEM, and Antimicrobial tests showed inhibitory efficacy of 97% and 9.5% of CP HAp for SA10 and EC7, respectively. The HD HAp had inhibitory effect of 95% and 0% for EC7 and SA10, respectively. The inhibitory effect on SA10 is based on the hydrophilicity that the material possesses. (author)

  4. Antimicrobial properties of nano-silver: a cautionary approach to ionic interference.

    Science.gov (United States)

    Sheehy, K; Casey, A; Murphy, A; Chambers, G

    2015-04-01

    Metallic nanoparticles such as nano-silver have found many applications as alternative antimicrobials in recent years. However methods for determining their proposed antimicrobial activity have received little attention to date. The disk diffusion assay is commonly used as a demonstration of antimicrobial properties and is a regular feature in synthetic nanoparticle papers. The aim of this study was to assess its effectiveness in demonstrating the "nanoparticle specific" antimicrobial properties in the absence of ionic contributions from unreacted reducing agents and or impurities. The disk diffusion assay was carried out on a range of silver nanoparticles, both in-house synthesised and commercially available, using Escherichia coli ATCC 25922 as a model organism. Capped and purified nanoparticles show no antimicrobial activity despite claims to the contrary for this assay. Results will be discussed in terms of the need for researchers without a background in microbiology to understand the mechanism of antimicrobial action before choosing an assay. Also discussed is the importance understanding the physiochemical characteristics of when interpreting results. Finally the relevance of the results in terms establishing protocols for method development for 'nanoparticle specific' antimicrobial properties will also be considered. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Antimicrobial and cell-penetrating properties of penetratin analogs

    DEFF Research Database (Denmark)

    Bahnsen, Jesper Søborg; Franzyk, Henrik; Sandberg-Schaal, Anne

    2013-01-01

    Cell-penetrating peptides (CPPs) and antimicrobial peptides (AMPs) show great potential as drug delivery vectors and new antibiotic drug entities, respectively. The current study deals with the properties of a variety of peptide analogs derived from the well-known CPP penetratin as well as octaar......Cell-penetrating peptides (CPPs) and antimicrobial peptides (AMPs) show great potential as drug delivery vectors and new antibiotic drug entities, respectively. The current study deals with the properties of a variety of peptide analogs derived from the well-known CPP penetratin as well...... as octaarginine and different Tat sequences. The effects of peptide length, guanidinium content, and sequence of non-cationic residues were assessed in mammalian and bacterial cells. The arginine (Arg) content in the penetratin analogs was found to influence eukaryotic cell uptake efficiency, antimicrobial...... was similar, the eukaryotic cellular uptake of the shuffled analogs was noticeably lower than for native penetratin. Moreover, a point substitution of Met to Leu in native penetratin had no influence on eukaryotic cellular uptake and antimicrobial effect, and only a minor effect on cytotoxicity, in contrast...

  6. Polylactic Acid?Lemongrass Essential Oil Nanocapsules with Antimicrobial Properties

    OpenAIRE

    Liakos, Ioannis L.; Grumezescu, Alexandru Mihai; Holban, Alina Maria; Florin, Iordache; D?Autilia, Francesca; Carzino, Riccardo; Bianchini, Paolo; Athanassiou, Athanassia

    2016-01-01

    Polylactic acid was combined with lemongrass essential oil (EO) to produce functional nanocapsules (NCs). The obtained polylactic acid nanoparticles showed antimicrobial activity both with and without the presence of lemongrass oil; however, the presence of EO improved the activity of the NCs. The presence of lemongrass assisted the formation of well-separated NCs and also provided enhanced antimicrobial properties, since lemongrass is known for its antimicrobial character. Fluorescence micro...

  7. Physicochemical and Antimicrobial Properties of Cocoa Pod Husk Pectin Intended as a Versatile Pharmaceutical Excipient and Nutraceutical

    Directory of Open Access Journals (Sweden)

    Ofosua Adi-Dako

    2016-01-01

    Full Text Available The physicochemical and antimicrobial properties of cocoa pod husk (CPH pectin intended as a versatile pharmaceutical excipient and nutraceutical were studied. Properties investigated include pH, moisture content, ash values, swelling index, viscosity, degree of esterification (DE, flow properties, SEM, FTIR, NMR, and elemental content. Antimicrobial screening and determination of MICs against test microorganisms were undertaken using agar diffusion and broth dilution methods, respectively. CPH pectin had a DE of 26.8% and exhibited good physicochemical properties. Pectin had good microbiological quality and exhibited pseudoplastic, shear thinning behaviour, and high swelling capacity in aqueous media. The DE, FTIR, and NMR results were similar to those of previous studies and supported highly acetylated low methoxy pectin. CPH pectin was found to be a rich source of minerals and has potential as a nutraceutical. Pectin showed dose-dependent moderate activity against gram positive and gram negative microorganisms but weak activity against Listeria spp. and A. niger. The MICs of pectin ranged from 0.5 to 4.0 mg/mL, with the highest activity against E. coli and S. aureus (MIC: 0.5–1.0 mg/mL and the lowest activity against A. niger (MIC: 2.0–4.0 mg/mL. The study has demonstrated that CPH pectin possesses the requisite properties for use as a nutraceutical and functional pharmaceutical excipient.

  8. Incidence, Antimicrobial Susceptibility, and Toxin Genes Possession Screening of Staphylococcus aureus in Retail Chicken Livers and Gizzards

    Directory of Open Access Journals (Sweden)

    Lubna S. Abdalrahman

    2015-04-01

    Full Text Available Few recent outbreaks in Europe and the US involving Campylobacter and Salmonella were linked to the consumption of chicken livers. Studies investigating Staphylococcus aureus in chicken livers and gizzards are very limited. The objectives of this study were to determine the prevalence, antimicrobial resistance, and virulence of S. aureus and MRSA (Methicillin-Resistant Staphylococcus aureus in retail chicken livers and gizzards in Tulsa, Oklahoma. In this study, 156 chicken livers and 39 chicken gizzards samples of two brands were collected. While one of the brands showed very low prevalence of 1% (1/100 for S. aureus in chicken livers and gizzards, the second brand showed prevalence of 37% (31/95. No MRSA was detected since none harbored the mecA or mecC gene. Eighty seven S. aureus isolates from livers and 28 from gizzards were screened for antimicrobial resistance to 16 antimicrobials and the possession of 18 toxin genes. Resistance to most of the antimicrobials screened including cefoxitin and oxacillin was higher in the chicken gizzards isolates. While the prevalence of enterotoxin genes seg and sei was higher in the gizzards isolates, the prevalence of hemolysin genes hla, hlb, and hld was higher in the livers ones. The lucocidin genes lukE-lukD was equally prevalent in chicken livers and gizzards isolates. Using spa typing, a subset of the recovered isolates showed that they are not known to be livestock associated and, hence, may be of a human origin. In conclusion, this study stresses the importance of thorough cooking of chicken livers and gizzards since it might contain multidrug resistant enterotoxigenic S. aureus. To our knowledge this is the first study to specifically investigate the prevalence of S. aureus in chicken livers and gizzards in the US.

  9. Antimicrobial and antioxidant activities of two endemic plants from ...

    African Journals Online (AJOL)

    In addition to the antioxidant activity of these plants, the total phenolic compounds and flavonoids were also measured in the extracts. ... that the extracts of A. scabriflorum and A. tchihatschewii possess antimicrobial and antioxidant properties, and therefore, they can be used as a natural preservative ingredient in food

  10. Polylactic Acid-Lemongrass Essential Oil Nanocapsules with Antimicrobial Properties.

    Science.gov (United States)

    Liakos, Ioannis L; Grumezescu, Alexandru Mihai; Holban, Alina Maria; Florin, Iordache; D'Autilia, Francesca; Carzino, Riccardo; Bianchini, Paolo; Athanassiou, Athanassia

    2016-07-07

    Polylactic acid was combined with lemongrass essential oil (EO) to produce functional nanocapsules (NCs). The obtained polylactic acid nanoparticles showed antimicrobial activity both with and without the presence of lemongrass oil; however, the presence of EO improved the activity of the NCs. The presence of lemongrass assisted the formation of well-separated NCs and also provided enhanced antimicrobial properties, since lemongrass is known for its antimicrobial character. Fluorescence microscopy was used to optically observe the nanoparticles and NCs and revealed the attachment of lemongrass oil with the polylactic acid NCs. Dynamic light scattering was used to determine their size. UV absorption was used to determine the exact amount of lemongrass oil found in the polylactic acid-lemongrass oil NCs, which was important for understanding the minimum inhibitory concentration for the antimicrobial experiments. A series of clinically important microbial species were used in the study and the obtained NCs proved to have very good antimicrobial properties against all tested strains. Such NCs can be used for the design of ecological strategies, based on natural alternatives, which may be efficient against severe infections, including those that involve resistant pathogens and biofilms or those with difficult to reach localization.

  11. Polylactic Acid—Lemongrass Essential Oil Nanocapsules with Antimicrobial Properties

    Directory of Open Access Journals (Sweden)

    Ioannis L. Liakos

    2016-07-01

    Full Text Available Polylactic acid was combined with lemongrass essential oil (EO to produce functional nanocapsules (NCs. The obtained polylactic acid nanoparticles showed antimicrobial activity both with and without the presence of lemongrass oil; however, the presence of EO improved the activity of the NCs. The presence of lemongrass assisted the formation of well-separated NCs and also provided enhanced antimicrobial properties, since lemongrass is known for its antimicrobial character. Fluorescence microscopy was used to optically observe the nanoparticles and NCs and revealed the attachment of lemongrass oil with the polylactic acid NCs. Dynamic light scattering was used to determine their size. UV absorption was used to determine the exact amount of lemongrass oil found in the polylactic acid—lemongrass oil NCs, which was important for understanding the minimum inhibitory concentration for the antimicrobial experiments. A series of clinically important microbial species were used in the study and the obtained NCs proved to have very good antimicrobial properties against all tested strains. Such NCs can be used for the design of ecological strategies, based on natural alternatives, which may be efficient against severe infections, including those that involve resistant pathogens and biofilms or those with difficult to reach localization.

  12. Antimicrobial properties of a nanostructured eggshell from a compost-nesting bird.

    Science.gov (United States)

    D'Alba, Liliana; Jones, Darryl N; Badawy, Hope T; Eliason, Chad M; Shawkey, Matthew D

    2014-04-01

    Infection is an important source of mortality for avian embryos but parental behaviors and eggs themselves can provide a network of antimicrobial defenses. Mound builders (Aves: Megapodiidae) are unique among birds in that they produce heat for developing embryos not by sitting on eggs but by burying them in carefully tended mounds of soil and microbially decomposing vegetation. The low infection rate of eggs of one species in particular, the Australian brush-turkey (Alectura lathami), suggests that they possess strong defensive mechanisms. To identify some of these mechanisms, we first quantified antimicrobial albumen proteins and characterized eggshell structure, finding that albumen was not unusually antimicrobial, but that eggshell cuticle was composed of nanometer-sized calcite spheres. Experimental tests revealed that these modified eggshells were significantly more hydrophobic and better at preventing bacterial attachment and penetration into the egg contents than chicken eggs. Our results suggest that these mechanisms may contribute to the antimicrobial defense system of these eggs, and may provide inspiration for new biomimetic anti-fouling surfaces.

  13. [BIOLOGICAL ACTIVITY OF ANTIMICROBIAL PEPTIDES FROM CHICKENS THROMBOCYTES].

    Science.gov (United States)

    Sycheva, M V; Vasilchenko, A S; Rogozhin, E A; Pashkova, T M; Popova, L P; Kartashova, O L

    2016-01-01

    Isolation and study of biological activity of antimicrobial peptides from chickens thrombocytes. Peptides from chickens thrombocytes, obtained by reverse-phase high-performance liquid chromatography method with stepped and linear gradients of concentration increase of the organic solvent were used in the study. Their antimicrobial activity was determined by microtitration method in broth; mechanism of biological effect--by using fluorescent spectroscopy method with DNA-tropic dyes. Individual fractions of peptides were isolated from chickens thrombocytes, that possess antimicrobial activity against Staphylococcus aureus P209 and Escherichia coli K12. A disruption of integrity of barrier structures of microorganisms under the effect of thrombocyte antimicrobial peptides and predominance of cells with damaged membrane in the population of E. coli was established. The data obtained on antimicrobial activity and mechanism of bactericidal effect of the peptide fractions from chickens thrombocytes isolated for the first time expand the understanding of functional properties of chickens thrombocytes and open a perspective for their further study with the aim of use as antimicrobial means.

  14. Isolation and Identification of Phyllospheric Bacteria Possessing Antimicrobial Activity from Astragalus obtusifolius, Prosopis juliflora, Xanthium strumarium and Hippocrepis unisiliqousa.

    Science.gov (United States)

    Mazinani, Zohreh; Zamani, Marzieh; Sardari, Soroush

    2017-01-01

    The widespread utilization of antimicrobial compounds has caused emergence of resistant microorganisms in the world. Hence, the research to probe the products with antimicrobial features has led to finding natural habitats and discovering new pharmaceutical products. In this study, an attempt was made to explore the niche of novel habitat to isolate pyllospheric bacteria from the above ground parts (stems and leaves) of Astragalus obtusifolius , Prosopis juliflora , Xanthium strumarium , and Hippocrepis unisiliqousa to evaluate their antimicrobial features. The inhibitory effects of these strains on the growth of two fungi ( Aspergillus niger , Aspergillus fumigatus ), two yeasts ( Saccharomyces cerevisiae , Candida albicans ) and six bacteria ( Escherichia coli , Staphylococcus aureus , Pseudomonas aeruginosa , Bacillus subtilis , Salmonella typhi , Streptococcus pyogenes ) were tested. In total, 113 bacterial strains were isolated. Twenty five bacterial strains (B-1 to B-25) indicated promising antimicrobial (antibacterial and antifungal) activities against aforementioned pathogens. The identification of the bacterial strains was ascertained by morphological, physiological, biochemical tests and two strains with the strongest antimicrobial activities were further characterized based on 16s rRNA sequencing. These two strains were identified as Bacillus amyloliquefaciens . Our results provide evidence that phyllospheric microorganisms are capable of producing some compounds with antimicrobial properties.

  15. Antimicrobial and biocompatible properties of nanomaterials.

    Science.gov (United States)

    Ul-Islam, M; Shehzad, A; Khan, S; Khattak, W A; Ullah, M W; Park, J K

    2014-01-01

    The rapid development of drug-resistant characteristics in pathogenic viral, bacterial, and fungal species and the consequent spread of infectious diseases are currently receiving serious attention. Indeed, there is a pressing demand to explore novel materials and develop new strategies that can address these issues of serious concern. Nanomaterials are currently proving to be the most capable therapeutic agents to cope with such hazards. The exceptional physiochemical properties and impressive antimicrobial capabilities of nanoparticles have provoked their utilization in biomedical fields. Nanomaterials of both organic and inorganic nature have shown the capabilities of disrupting microbial cells through different mechanisms. Along with the direct influence on the microbial cell membrane, DNA and proteins, these nanomaterials produce reactive oxygen species (ROS) that damage cell components and viruses. Currently, a serious hazard associated with these antimicrobial nanomaterials is their toxicity to human and animal cells. Extensive studies have reported the dose, time, and cell-dependent toxicology of various nanomaterials, and some have shown excellent biocompatible properties. Nevertheless, there is still debate regarding the use of nanomaterials for medical applications. Therefore, in this review, the antimicrobial activities of various nanomaterials with details of their acting mechanisms were compiled. The relative toxic and biocompatible behavior of nanomaterials emphasized in this study provides information pertaining to their practical applicability in medical fields.

  16. Hyaluronan- and heparin-reduced silver nanoparticles with antimicrobial properties

    Science.gov (United States)

    Kemp, Melissa M; Kumar, Ashavani; Clement, Dylan; Ajayan, Pulickel; Mousa, Shaker

    2009-01-01

    Aims Silver nanoparticles exhibit unique antibacterial properties that make these ideal candidates for biological and medical applications. We utilized a clean method involving a single synthetic step to prepare silver nanoparticles that exhibit antimicrobial activity. Materials & methods These nanoparticles were prepared by reducing silver nitrate with diaminopyridinylated heparin (DAPHP) and hyaluronan (HA) polysaccharides and tested for their efficacy in inhibiting microbial growth. Results & discussion The resulting silver nanoparticles exhibit potent antimicrobial activity against Staphylococcus aureus and modest activity against Escherichia coli. Silver–HA showed greater antimicrobial activity than silver–DAPHP, while silver–glucose nanoparticles exhibited very weak antimicrobial activity. Neither HA nor DAPHP showed activity against S. aureus or E. coli. Conclusion These results suggest that DAPHP and HA silver nanoparticles have potential in antimicrobial therapeutic applications. PMID:19505245

  17. SCREENING OF ANTIMICROBIAL PROPERTIES OF ETHANOLIC EXTRACTS FROM SOME KINDS OF RAW MATERIALS WITH QUINONEDERIVATIVES

    Directory of Open Access Journals (Sweden)

    Boyko N.N.

    2014-12-01

    Full Text Available This paper presents data on screening of antimicrobial properties of extracts from some kinds of raw materials (18 plants with hydroquinone, naphtoquinone or anthraquinone derivatives. Some technological parameters of extracts (density and concentration of extraneous substances have been determined. The most appropriate microbiological method of studying antimicrobial properties of extracts, diffusion method of “well”, has been applied; special mathematic method of comparison of antimicrobial properties of extracts vector analysis has been applied in order to study and to compare antimicrobial properties of extracts. Indexes of antimicrobial properties of extracts have been determined: a complex index of medicinal product antimicrobial activity for quantitative estimation of antimicrobial effect - A, and square of correlation coefficient - r², which demonstrates the spectrum of antimicrobial activity of the extracts (degree of similarity to the standard. The most active extracts have been selected; they have antimicrobial properties of medium strength: from the herb of chimaphila umbellata А=2.20; the fruits of rhamnus cathartica А=2.12; the root of rubia tinctorum А=2.11; the bark of frangula alnus А=2.05; the root of rumex confertus А=2.04; the leaf of pyrola rotundifolia А=2.00; and leaf of arctostaphylos uva-ursi А=2.08 (but extract from uva-ursi did not affected on 2 strains of microorganisms r²=0.64. Low levels of antimicrobial activity have been demonstrated by the extract obtained from the leaf of urtica dioica А=0.72, r²=0.34. The mean result of the complex index of antimicrobial activity for the most of extracts from plants containing quinonederivatives is A = 1.77 (on 70% vol. ethanol at a ratio of raw material : extracting agent – 1:7 wt. : vol. and may range from 0.68 to 2.85. The mean result of the correlation coefficient is r = 0.93 and may range from 0.59 to 0.99. The mean result of the concentration of

  18. Effect of potassium sorbate on antimicrobial and physical properties of starch-clay nanocomposite films.

    Science.gov (United States)

    Barzegar, Hassan; Azizi, Mohammad Hossein; Barzegar, Mohsen; Hamidi-Esfahani, Zohreh

    2014-09-22

    Using fresh foods which undergo the least processing operations developed widely in recent years. Active packaging is a novel method for preserving these products. Active starch-clay nanocomposite films which contained potassium sorbate (PS) at a level of 0, 5, 7.5 and 10 g PS/100 g starch were produced and their physical, mechanical and antimicrobial properties were evaluated. In order to evaluate antimicrobial properties of films Aspergillus niger was used. The results showed that 5% of the PS did not produce antimicrobial property in the film, but by increasing the content of the additive in film formulation, antimicrobial effect increased. PS increased water permeability and elongation at break of the films, but decreased tensile strength. The rate of PS migration into the semi-solid medium in starch-nanocomposites was lower than starch films. This shows that nanocomposite films could retain their antimicrobial property for longer time. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Comparative Evaluation of the Antimicrobial Properties of Glass Ionomer Cements with and without Chlorhexidine Gluconate.

    Science.gov (United States)

    Yadiki, Josna Vinutha; Jampanapalli, Sharada Reddy; Konda, Suhasini; Inguva, Hema Chandrika; Chimata, Vamsi Krishna

    2016-01-01

    Chlorhexidine gluconate is a widely used antimicrobial agent. Adding chlorhexidine and quaternary ammonium compounds to filling materials, such as composite resins, acrylic resins, and glass ionomer cements increases the antibacterial property of restorative materials. This study includes antibacterial property of glass ionomer restorative cements with chlorhexidine gluconate. The primary objective of our study was to compare the antimicrobial properties of two commercially available glass ionomer cements with and without chlorhexidine gluconate on strains of mutans streptococci. Two glass ionomers (Fuji II Conventional and Fuji IX) were used. Chlorhexidine gluconate was mixed with glass ionomer cements, and antimicrobial properties against mutans streptococci were assessed by agar diffusion. The tested bacterial strain was inhibited and the antimicrobial properties decreased with time. The highest amount of antimicrobial activity with mean inhibitory zone was found in Fuji II with chlorhexidine gluconate followed by Fuji IX with chlorhexidine gluconate, Fuji II without chlorhexidine gluconate, and Fuji IX without chlorhexidine gluconate. The results of the study confirmed that the addition of 5% chlorhexidine gluconate to Fuji II and Fuji IX glass ionomer cements resulted in a restorative material that had increased antimicrobial properties over the conventional glass ionomer cements alone for Streptococcus mutans. How to cite this article: Yadiki JV, Jampanapalli SR , Konda S, Inguva HC, Chimata VK. Comparative Evaluation of the Antimicrobial Properties of Glass Ionomer Cements with and without Chlorhexidine Gluconate. Int J Clin Pediatr Dent 2016;9(2):99-103.

  20. EVALUATION OF CYTOTOXIC, ANTIMICROBIAL AND ANTIINFLAMMATORY PROPERTIES FROM THE LATEX OF IPOMEA STAPHYLINA

    Directory of Open Access Journals (Sweden)

    Prasanthi Narra

    2014-04-01

    Full Text Available The plant Ipomoea staphylina has been used in diverse traditional medication for the treatment of diseases and illness of human beings. The crude latex extract obtained from the stem of Ipomea staphylina was evaluated for cytotoxic, antimicrobial and wound healing properties. Cell viability and cytotoxicity assays such as Colony Formation method and Enzyme based methods that determined cell viability with a colorimetric method were performed to evaluate the medicinal properties of Ipomea staphylina. Similarly Microbiological Antibiotic Assay to determine the antimicrobial properties and wound healing properties were tested by determining the potent anti-inflammatory molecules that inhibited COX and LOX enzymes. Results showed that the latex crude extract of Ipomea staphylina showed potent Antimicrobial and Antiinflamatory properties, but the viability of the cells were unaffected.

  1. Analysis of biosurfactants from industrially viable Pseudomonas strain isolated from crude oil suggests how rhamnolipids congeners affect emulsification property and antimicrobial activity.

    Science.gov (United States)

    Das, Palashpriya; Yang, Xin-Ping; Ma, Luyan Z

    2014-01-01

    Rhamnolipid biosurfactants produced mainly by Pseudomonas sp. had been reported to possess a wide range of potential industrial application. These biosurfactants are produced as monorhamnolipid (MRL) and di-rhamnolipid (DRL) congeners. The present study deals with rhamnolipid biosurfactants produced by three bacterial isolates from crude oil. Biosurfactants produced by one of the strains (named as IMP67) was found to be very efficacious based on its critical micelle concentration value and hydrocarbon emulsification property. Strikingly, antimicrobial, and anti-biofilm potential of this biosurfactant were higher than biosurfactants produced by other two strains. Thin layer chromatography analysis and rhamnose quantification showed that the rhamnolipids of IMP67 had more MRL congeners than biosurfactants of the other two strains. Emulsification and antimicrobial actions were affected by manual change of MRL and DRL congener proportions. Increase of MRL proportion enhanced emulsification index and antimicrobial property to Gram negative bacteria. This result indicated that the ratio of MRL and DRL affected the emulsification potentials of rhamnolipids, and suggested that high emulsification potentials might enhance rhamnolipids to penetrate the cell wall of Gram negative bacteria. In line with this finding, rhamnolipids of IMP67 also reduced the MIC of some antibiotics against bacteria, suggesting their synergistic role with the antibiotics.

  2. In vitro antimicrobial and phytochemical properties of crude extract ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-10-20

    Oct 20, 2008 ... concentration of 25 mg/ml against twenty-one of the bacterial isolates, ... Key words: Afzelia africana, antimicrobial, phytochemical properties, ... A. africana mixed with millet beer has been found to ..... effects, cytostatic and antioxidant properties (Hodek et .... Role of plant polyphenols in genomic stability.

  3. STUDY OF THE ANTIMICROBIAL PROPERTIES OF CERTAIN SAPROPHYTIC OBLIGATE MARINE FUNGI

    Directory of Open Access Journals (Sweden)

    Kalyuzhnaya O.S.

    2015-05-01

    Full Text Available Today promising area of the development and introduction of new antimicrobial agents is to search for new antibiotics from natural sources, namely among marine organisms - microscopic fungi. Such saprophytic fungi as Ascomycota (families Arenariomyces, Ceriosporopsis, Corollospora, Halosphaeria and Basidiomycota (family Nia, which are widely spreaded in Ukraine (salty estuaries and the coast of the Black Sea, are the objects of the study of this work. These types of marine organisms have been provided by the Odessa Branch of the Institute of Biology of the Southern Seas after collecting samples of water, sediment, cellulose substrates and subsequent isolation and obtain pure cultures by accumulation in the form fruiting bodies of Ascomycetes and Basidiomycetes - ascocarps and basidiocarps that can be stored 3-5 months in sterile seawater. The aim of this study was to investigate the presence of antimicrobial properties of saprophytic fungi obligate marine, which are characteristic for residents in Ukraine, namely the Black Sea. Materials and methods. At this stage the study of antimicrobial activity was performed by agar diffusion method and method of cocultivation of marine fungi with test strains in liquid culture medium. We have used reference strains of microorganisms: Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 25923, Bacillus subtilis ATCC 6633, Proteus vulgaris ATCC 6896, Pseudomonas aeruginosa ATCC 27853 and opportunistic fungus Candida albicans ATCC 885-653. Results and Discussion. Determination of antimicrobial activity by agar diffusion method showed that all samples had antimicrobial activity against the Gram-positive test strains (S. aureus and B. subtilis, effect for the Gramnegative bacteria (E. coli, P. vulgaris, P. aeruginosa was much smaller or non-existent, and it isn’t observed against C. albicans (exclusion Nia vibrissa with zone of growth inhibition – 6.2 mm. The results of the counting of cells test strains

  4. Polysaccharide-based biomaterials with antimicrobial and antioxidant properties

    Directory of Open Access Journals (Sweden)

    Véronique Coma

    2013-01-01

    Full Text Available Active packaging is one of the responses to the recent food-borne microbial outbreaks and to the consumer’s demand for high quality food and for packaging that is more advanced and creative than what is currently offered. Moreover, with the recent increase in ecological awareness associated with the dramatic decrease in fossil resources, research has turned towards the elaboration of more natural materials. This paper provides a short review of biomaterials exhibiting antimicrobial and antioxidant properties for applications in food preservation. The two main concepts of active biopackaging materials are briefly introduced. The different polysaccharides potentially used in packaging materials are then presented associated with a brief overview of research works related to biopackaging, exhibiting notably antimicrobial or antioxidant properties. Finally, future trends such as the release-on-demand of bioactive agents are discussed.

  5. Antimicrobial activity of different hydroxyapatites; Atividade antimicrobiana de diferentes hidroxiapatitas

    Energy Technology Data Exchange (ETDEWEB)

    Feitosa, G.T.; Santos, M.V.B.; Barreto, H.M.; Osorio, L.R.; Osajima, J.A.; Silva Filho, E.C. da, E-mail: edsonfilho@ufpi.edu.br [Universidade Federal do Piaui (LIMAV/CCN/UFPI), Teresina, PI (Brazil). Centro de Ciencias da Natureza. Laboratorio Interdisciplinar de Materiais Avancados

    2014-07-01

    Among the applications of ceramics in the technological context, hydroxyapatite (HAp) stands out in the scientific community due to chemical biocompatibility and molecular similarity to the structures of bone and dental tissues. Such features are added to the antimicrobial properties that this brings. This work aimed at the synthesis of hydroxyapatite by two different routes, hydrothermal (HD HAp) and co-precipitation (CP HAp), as well as verification of the antimicrobial properties of these through direct contact of the powders synthesized tests with Staphylococcus aureus (SA10) and Escherichia coli (EC7) bacteria. The materials was characterized by XRD, Raman and TEM, and Antimicrobial tests showed inhibitory efficacy of 97% and 9.5% of CP HAp for SA10 and EC7, respectively. The HD HAp had inhibitory effect of 95% and 0% for EC7 and SA10, respectively. The inhibitory effect on SA10 is based on the hydrophilicity that the material possesses. (author)

  6. Investigation of antimicrobial activity and morphological properties of metal coated textile surfaces

    International Nuclear Information System (INIS)

    Aslan, Necdet; Sen, Tuba; Senturk, Kenan; Corukhlu, Turgay; Varturk, Ipek; Seker, S.; Shahidi, S.; Korachi, May; Dobrovolskiy, A.M.; Tsiolko, V.V.; Matsevich, S.V.; Keskin, S.S.

    2014-01-01

    The results of investigation antimicrobial and surface properties of the textiles metal coated by means of magnetron or the cleaning-deposition system, which is based on sequentially arranged DC anode layer accelerator and hollow cathode, are presented. The antimicrobial properties against bacteria E. coli and S. aureus of cotton and polyester/cotton textiles coated by Cu, Ti and Ag with the use of two different systems were examined and compared.

  7. Ferulaldehyde and lupeol as direct and indirect antimicrobial compounds from Cordia gilletii (Boraginaceae) root barks.

    Science.gov (United States)

    Okusa, Philippe N; Stévigny, Caroline; Névraumont, Marie; Gelbcke, Michel; Van Antwerpen, Pierre; Braekman, Jean Claude; Duez, Pierre

    2014-05-01

    Cordia gilletii De Wild (Boraginaceae), a medicinal plant used against infectious diseases in the Democratic Republic of Congo, was investigated for direct and indirect antimicrobial properties. On one hand, the methanol extract is active against many pathogenic bacteria, including resistant strains. Its bio-guided fractionation led to the isolation of ferulaldehyde; this compound showed antimicrobial and antioxidant properties that may support the activity we observed for the methanol extract and some of the traditional uses of C. gilletii. On the other hand, the n-hexane extract of root barks possesses indirect antimicrobial properties, enhancing the activity of antibiotics against methicillin-resistant Staphylococcus aureus (MRSA). The fractionation of this extract led to the isolation of lupeol, which decreases the minimum inhibitory concentration of several antibiotics (4 to 8 fold) against MRSA and contributes to the effects observed for the raw n-hexane extract.

  8. Analysis of biosurfactants from industrially-viable Pseudomonas strain isolated from crude oil suggests how rhamnolipids congeners affect on emulsification property and antimicrobial activity

    Directory of Open Access Journals (Sweden)

    Palashpriya eDas

    2014-12-01

    Full Text Available Rhamnolipid biosurfactants produced mainly by Pseudomonas sp. had been reported to possess a wide range of potential industrial application. These biosurfactants are produced as monorhamnolipid (MRL and di-rhamnolipid (DRL congeners. The present study deals with rhamnolipid biosurfactants produced by three bacterial isolates from crude oil. Biosurfactants produced by one of the strains (named as IMP67 was found to be very efficacious based on its critical micelle concentration (CMC value and hydrocarbon emulsification property. Strikingly, antimicrobial and anti-biofilm potential of this biosurfactant were higher than biosurfactants produced by other two strains. Thin layer chromatography (TLC analysis and rhamnose quantification showed that the rhamnolipids of IMP67 had more MRL congeners than biosurfactants of the other two strains. Emulsification and antimicrobial actions were affected by manual change of MRL and DRL congener proportions. Increase of MRL proportion enhanced emulsification index and antimicrobial property to Gram negative bacteria. This result indicated that the ratio of MRL and DRL affect the emulsification potentials of rhamnolipids, and suggested that high emulsification potentials might enhance rhamnolipids to penetrate the cell wall of Gram negative bacteria. In consistent, rhamnolipids of IMP67 reduced the MIC of some antibiotics against bacteria, suggesting the potential of biosurfactant as antibiotics synergist.

  9. Antimicrobial properties of uncapped silver nanoparticles synthesized by DC arc thermal plasma technique.

    Science.gov (United States)

    Shinde, Manish; Patil, Rajendra; Karmakar, Soumen; Bhoraskar, Sudha; Rane, Sunit; Gade, Wasudev; Amalnerkar, Dinesh

    2012-02-01

    We, herein, report the antimicrobial properties of uncapped silver nanoparticles for a Gram positive model organism, Bacillus subtilis. Uncapped silver nanoparticles have been prepared using less-explored DC arc thermal plasma technique by considering its large scale generation capability. It is observed that the resultant nanoparticles show size as well as optical property dependent antimicrobial effect.

  10. Development of pea protein-based bioplastics with antimicrobial properties.

    Science.gov (United States)

    Perez-Puyana, Víctor; Felix, Manuel; Romero, Alberto; Guerrero, Antonio

    2017-06-01

    In the present work, bioplastics from renewable polymers were studied in order to reduce the huge generation of plastic wastes, causing an environmental problem that continues owing to the increasing demand for plastic products. Bioplastics with much better antimicrobial properties, in particular against Gram-positive bacteria, were obtained with the addition of nisin to the initial protein/plasticizer mixture. However, the addition of nisin produces more rigid but less deformable bioplastics (higher Young's modulus but lower strain at break). The results obtained are useful to demonstrate the antimicrobial properties of pea protein-based bioplastics by adding nisin and make them suitable as potential candidates to replace conventional plastics in food packaging. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  11. Application of eco-friendly antimicrobial finish butea monosperma leaves on fabric properties of polyester and cotton/polyester

    International Nuclear Information System (INIS)

    Sadaf, S.; Saeed, M.; Kalsoom, S.; Saeed, M.

    2017-01-01

    The study was aimed to check the effect of eco-friendly antimicrobial finish on 100% polyester and 50/50 cotton/polyester woven fabrics. The leaves' extract of Butea monosperma was used as an eco-friendly antimicrobial finish. The fabric was first desized, scoured, bleached and washed then antimicrobial finish was applied by using pad dry cure method. The aesthetic, comfort and mechanical fabrics properties were checked before and after applying antimicrobial finish. Under aesthetic property stiffness and smoothness appearance was checked, under comfort related property absorbency and air permeability was checked and under mechanical property tear and tensile strength was checked. The antimicrobial finish was checked by using ASTEM E2149 Shake Flask method. The AATCC and ISO standard testing methods were used for checking fabric properties. One way ANOVA statistical test was applied for analysis of results. Antimicrobial finish has increased aesthetic (stiffness, smoothness appearance), comfort (absorbency, air permeability) and mechanical (tensile and tear strengths) properties of polyester and cotton/polyester fabrics. The antimicrobial finish was effective on both 100% polyester and 50/50 cotton/polyester fabrics up to 25 washes. This study is beneficial to medical industry, paramedical staff, sports wears, home furnishing as well as common people. (author)

  12. The Immunostimulatory and Antimicrobial Property of two Herbal ...

    African Journals Online (AJOL)

    The decoctions were assessed for immunostimulatory property in cyclophosphamide-induced immunosuppressed ICR mice. Total white blood cell count, as well as lymphocyte and neutrophil counts were determined and their effects compared with Levamisole. The decoctions were also screened for antimicrobial activity by ...

  13. In Vitro Evaluation of Nanoscale Hydroxyapatite-Based Bone Reconstructive Materials with Antimicrobial Properties.

    Science.gov (United States)

    Ajduković, Zorica R; Mihajilov-Krstev, Tatjana M; Ignjatović, Nenad L; Stojanović, Zoran; Mladenović-Antić, Snezana B; Kocić, Branislava D; Najman, Stevo; Petrović, Nenad D; Uskoković, Dragan P

    2016-02-01

    In the field of oral implantology the loss of bone tissue prevents adequate patient care, and calls for the use of synthetic biomaterials with properties that resemble natural bone. Special attention is paid to the risk of infection after the implantation of these materials. Studies have suggested that some nanocontructs containing metal ions have antimicrobial properties. The aim of this study was to examine the antimicrobial and hemolytic activity of cobalt-substituted hydroxyapatite nanoparticles, compared to hydroxyapatite and hydroxyapatite/poly-lactide-co-glycolide. The antibacterial effects of these powders were tested against two pathogenic bacterial strains: Escherichia coi (ATCC 25922) and Staphylococcus aureus (ATCC 25923), using the disc diffusion method and the quantitative antimicrobial test in a liquid medium. The quantitative antimicrobial test showed that all of the tested biomaterials have some antibacterial properties. The effects of both tests were more prominent in case of S. aureus than in E coli. A higher percentage of cobalt in the crystal structure of cobalt-substituted hydroxyapatite nanoparticles led to an increased antimicrobial activity. All of the presented biomaterial samples were found to be non-hemolytic. Having in mind that the tested of cobalt-substituted hydroxyapatite (Ca/Co-HAp) material in given concentrations shows good hemocompatibility and antimicrobial effects, along with its previously studied biological properties, the conclusion can be reached that it is a potential candidate that could substitute calcium hydroxyapatite as the material of choice for use in bone tissue engineering and clinical practices in orthopedic, oral and maxillofacial surgery.

  14. Divorcing folding from function: how acylation affects the membrane-perturbing properties of an antimicrobial peptide

    DEFF Research Database (Denmark)

    Vad, Brian Stougaard; Thomsen, Line Aagot Hede; Bertelsen, Kresten

    2010-01-01

    Many small cationic peptides, which are unstructured in aqueous solution, have antimicrobial properties. These properties are assumed to be linked to their ability to permeabilize bacterial membranes, accompanied by the transition to an alpha-helical folding state. Here we show that there is no d......Many small cationic peptides, which are unstructured in aqueous solution, have antimicrobial properties. These properties are assumed to be linked to their ability to permeabilize bacterial membranes, accompanied by the transition to an alpha-helical folding state. Here we show...... that there is no direct link between folding of the antimicrobial peptide Novicidin (Nc) and its membrane permeabilization. N-terminal acylation with C8-C16 alkyl chains and the inclusion of anionic lipids both increase Nc's ability to form alpha-helical structure in the presence of vesicles. Nevertheless, both acylation......, this cannot rationalize our results since permeabilization and antimicrobial activities are observed well below concentrations where aggregation occurs. This suggests that significant induction of alpha-helical structure is not a prerequisite for membrane perturbation in this class of antimicrobial peptides...

  15. Antimicrobial properties of graphene-like nanoparticles: coating effect on Staphylococcus aureus

    Energy Technology Data Exchange (ETDEWEB)

    Olivi, M. [Sapienza University of Rome, Department of Biology and Biotechnology (Italy); Alfè, M.; Gargiulo, V. [CNR, Institute for Research on Combustion (Italy); Valle, F. [ISMN, Institute of Nanostructured Materials (Italy); Mura, F. [Sapienza University of Rome, Department of Chemistry (Italy); Di Giosia, M.; Rapino, S. [University of Bologna, Department of Chemistry “Giacomo Ciamician” (Italy); Palleschi, C.; Uccelletti, D., E-mail: daniela.uccelletti@uniroma1.it [Sapienza University of Rome, Department of Biology and Biotechnology (Italy); Fiorito, S., E-mail: silvana.fiorito@ift.cnr.it [CNR, Institute of Translational Pharmacology (Italy)

    2016-12-15

    The exploitation of nanomaterials with antimicrobial properties has attracted an ever-growing interest in the recent years. Carbon-based materials, such as graphene and graphene family materials (GFMs), have gained most of the attention for application in many biomedical fields. Here, we describe the antimicrobial activity of graphene-like (GL) layers derived from the chemical demolition of carbon black, against the planktonic growth of Staphylococcus aureus cells, primary cause of hospital and community-acquired infections, often leading to bacteremia and sepsis. The inhibitory capabilities of GL layers on the formation of S. aureus biofilm are also assessed. The antimicrobial properties seem based mainly on the interaction between GL layers and bacteria surfaces. FESEM and AFM analyses suggest that the GL layers coat the cells as soon as they get in contact with them, as also indicated by the wettability of the GLs.

  16. Antimicrobial properties of graphene-like nanoparticles: coating effect on Staphylococcus aureus

    International Nuclear Information System (INIS)

    Olivi, M.; Alfè, M.; Gargiulo, V.; Valle, F.; Mura, F.; Di Giosia, M.; Rapino, S.; Palleschi, C.; Uccelletti, D.; Fiorito, S.

    2016-01-01

    The exploitation of nanomaterials with antimicrobial properties has attracted an ever-growing interest in the recent years. Carbon-based materials, such as graphene and graphene family materials (GFMs), have gained most of the attention for application in many biomedical fields. Here, we describe the antimicrobial activity of graphene-like (GL) layers derived from the chemical demolition of carbon black, against the planktonic growth of Staphylococcus aureus cells, primary cause of hospital and community-acquired infections, often leading to bacteremia and sepsis. The inhibitory capabilities of GL layers on the formation of S. aureus biofilm are also assessed. The antimicrobial properties seem based mainly on the interaction between GL layers and bacteria surfaces. FESEM and AFM analyses suggest that the GL layers coat the cells as soon as they get in contact with them, as also indicated by the wettability of the GLs.

  17. Eggshell bacterial load is related to antimicrobial properties of feathers lining barn swallow nests.

    Science.gov (United States)

    Peralta-Sánchez, Juan Manuel; Soler, Juan José; Martín-Platero, Antonio Manuel; Knight, Rob; Martínez-Bueno, Manuel; Møller, Anders Pape

    2014-02-01

    The use of feathers to line bird's nests has traditionally been interpreted as having a thermoregulatory function. Feather-degrading bacteria growing on feathers lining nests may have antimicrobial properties, which may provide an additional benefit to lining nests with feathers. We test the hypothesis that the production of antimicrobial substances by feather bacteria affects the microbiological environment of the nest, and therefore the bacterial density on eggshells and, indirectly, hatching success. These effects would be expected to differ between nests lined with pigmented and white feathers, because bacteria grow differently on feathers of different colors. We experimentally manipulated the composition of pigmented and unpigmented feathers in nests of the barn swallow (Hirundo rustica) and studied the antimicrobial properties against the keratin-degrading bacterium Bacillus licheniformis of bacteria isolated from feathers of each color. Analyzed feathers were collected at the end of the incubation period, and antimicrobial activity was defined as the proportion of bacteria from the feathers that produce antibacterial substances effective against B. licheniformis. Our experimental manipulation affected antimicrobial activity, which was higher in nests with only white feathers at the beginning of incubation. Moreover, white feathers showed higher antimicrobial activity than black ones. Interestingly, antimicrobial activity in feathers of one of the colors correlated negatively with bacterial density on feather of the opposite color. Finally, antimicrobial activity of white feathers was negatively related to eggshell bacterial load. These results suggest that antimicrobial properties of feathers in general and of white feathers in particular affect the bacterial environment in nests. This environment in turn affects the bacterial load on eggshells, which may affect hatching success.

  18. Antioxidant, antimicrobial and toxicological properties of Schinus molle L. essential oils.

    Science.gov (United States)

    Martins, Maria do Rosário; Arantes, Silvia; Candeias, Fátima; Tinoco, Maria Teresa; Cruz-Morais, Júlio

    2014-01-01

    Schinus molle L. has been used in folk medicine as antibacterial, antiviral, topical antiseptic, antifungal, antioxidant, anti-inflammatory, anti-tumoural as well as antispasmodic and analgesic; however, there are few studies of pharmacological and toxicological properties of Schinus molle essential oils. The aim of this study was to evaluate the antioxidant and antimicrobial activities of Schinus molle leaf and fruit essential oils, correlated with their chemical composition and evaluate their acute toxicity. The chemical composition of Schinus molle leaf and fruit essential oils were evaluated by GC-FID and GC-MS. Antioxidant properties were determined using the 2,2-diphenyl-1-picryl-hydrazyl (DPPH) free radical and β-carotene/linoleic acid methods. Antimicrobial properties were evaluated by the agar disc diffusion method and minimal inhibitory concentration assay. Toxicity in Artemia salina and acute toxicity with behavioural screening in mice were evaluated. The dominant compounds found in leaf and fruit essential oils (EOs) were monoterpene hydrocarbons, namely α-phellandrene, β-phellandrene, β-myrcene, limonene and α-pinene. EOs showed low scavenging antioxidant activity by the DPPH free radical method and a higher activity by the β-carotene/linoleic acid method. Antimicrobial activity of EOs was observed for Gram+, Gram- pathogenic bacteria and food spoilage fungi. EOs showed totoxicity for Artemia salina and lower toxicity in Swiss mice. The result showed that EOs of leaves and fruits of Schinus molle demonstrated antioxidant and antimicrobial properties, suggesting their potential use in food or pharmaceutical industries. © 2013 Published by Elsevier Ireland Ltd.

  19. Antimicrobial and physical properties of chitosan films incorporated with turmeric extract.

    Science.gov (United States)

    Kalaycıoğlu, Zeynep; Torlak, Emrah; Akın-Evingür, Gülşen; Özen, İlhan; Erim, F Bedia

    2017-08-01

    In this study, the effects of turmeric extract incorporation on the antibacterial and physical properties of the chitosan films were evaluated. Turmeric containing chitosan-based film was produced with casting procedure and cross-linked with sodium sulfate. Mechanical, optical, thermal properties, and water vapor permeability of the films were studied. The addition of turmeric to chitosan film significantly increased the tensile strength of the film and improved the ultraviolet-visible light barrier of the film. Infrared spectroscopy analysis suggested an interaction between the phenolic compounds of the extract and amin group of chitosan. Antimicrobial activity of the chitosan films was studied against Salmonella and Staphylococcus aureus by plate count agar technique and a better antimicrobial activity was observed with turmeric incorporation. Turmeric incorporated chitosan films with enhanced antimicrobial activity and film stiffness can be suggested as a promising application for food packaging. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Antimicrobial and biophysical properties of surfactant supplemented with an antimicrobial peptide for treatment of bacterial pneumonia.

    Science.gov (United States)

    Banaschewski, Brandon J H; Veldhuizen, Edwin J A; Keating, Eleonora; Haagsman, Henk P; Zuo, Yi Y; Yamashita, Cory M; Veldhuizen, Ruud A W

    2015-01-01

    Antibiotic-resistant bacterial infections represent an emerging health concern in clinical settings, and a lack of novel developments in the pharmaceutical pipeline is creating a "perfect storm" for multidrug-resistant bacterial infections. Antimicrobial peptides (AMPs) have been suggested as future therapeutics for these drug-resistant bacteria, since they have potent broad-spectrum activity, with little development of resistance. Due to the unique structure of the lung, bacterial pneumonia has the additional problem of delivering antimicrobials to the site of infection. One potential solution is coadministration of AMPs with exogenous surfactant, allowing for distribution of the peptides to distal airways and opening of collapsed lung regions. The objective of this study was to test various surfactant-AMP mixtures with regard to maintaining pulmonary surfactant biophysical properties and bactericidal functions. We compared the properties of four AMPs (CATH-1, CATH-2, CRAMP, and LL-37) suspended in bovine lipid-extract surfactant (BLES) by assessing surfactant-AMP mixture biophysical and antimicrobial functions. Antimicrobial activity was tested against methillicin-resistant Staphylococcus aureus and Pseudomonas aeruginosa. All AMP/surfactant mixtures exhibited an increase of spreading compared to a BLES control. BLES+CATH-2 mixtures had no significantly different minimum surface tension versus the BLES control. Compared to the other cathelicidins, CATH-2 retained the most bactericidal activity in the presence of BLES. The BLES+CATH-2 mixture appears to be an optimal surfactant-AMP mixture based on in vitro assays. Future directions involve investigating the potential of this mixture in animal models of bacterial pneumonia. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  1. Synthesis and structure-activity relationships of novel cationic lipids with anti-inflammatory and antimicrobial activities.

    Science.gov (United States)

    Myint, Melissa; Bucki, Robert; Janmey, Paul A; Diamond, Scott L

    2015-07-15

    Certain membrane-active cationic steroids are known to also possess both anti-inflammatory and antimicrobial properties. This combined functionality is particularly relevant for potential therapies of infections associated with elevated tissue damage, for example, cystic fibrosis airway disease, a condition characterized by chronic bacterial infections and ongoing inflammation. In this study, six novel cationic glucocorticoids were synthesized using beclomethasone, budesonide, and flumethasone. Products were either monosubstituted or disubstituted, containing one or two steroidal groups, respectively. In vitro evaluation of biological activities demonstrated dual anti-inflammatory and antimicrobial properties with limited cytotoxicity for all synthesized compounds. Budesonide-derived compounds showed the highest degree of both glucocorticoid and antimicrobial properties within their respective mono- and disubstituted categories. Structure-activity analyses revealed that activity was generally related to the potency of the parent glucocorticoid. Taken together, these data indicate that these types of dual acting cationic lipids can be synthesized with the appropriate starting steroid to tailor activities as desired. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Chitosan-Based Coating with Antimicrobial Agents: Preparation, Property, Mechanism, and Application Effectiveness on Fruits and Vegetables

    Directory of Open Access Journals (Sweden)

    Yage Xing

    2016-01-01

    Full Text Available Chitosan coating is beneficial to maintaining the storage quality and prolonging the shelf life of postharvest fruits and vegetables, which is always used as the carrier film for the antimicrobial agents. This review focuses on the preparation, property, mechanism, and application effectiveness on the fruits and vegetables of chitosan-based coating with antimicrobial agents. Chitosan, derived by deacetylation of chitin, is a modified and natural biopolymer as the coating material. In this article, the safety and biocompatible and antimicrobial properties of chitosan were introduced because these attributes are very important for its application. The methods to prepare the chitosan-based coating with antimicrobial agents, such as essential oils, acid, and nanoparticles, were developed by other researchers. Meanwhile, the application of chitosan-based coating is mainly due to its antimicrobial activity and other functional properties, which were investigated, introduced, and analyzed in this review. Furthermore, the surface and mechanical properties were also investigated by researchers and concluded in this article. Finally, the effects of chitosan-based coating on the storage quality, microbial safety, and shelf life of fruits and vegetables were introduced. Their results indicated that chitosan-based coating with different antimicrobial agents would probably have wide prospect in the preservation of fruits and vegetables in the future.

  3. Preparation, characterization, mechanical, barrier and antimicrobial properties of chitosan/PVOH/clay nanocomposites.

    Science.gov (United States)

    Giannakas, Aris; Vlacha, Maria; Salmas, Constantinos; Leontiou, Areti; Katapodis, Petros; Stamatis, Haralambos; Barkoula, Nektaria-Marianthi; Ladavos, Athanasios

    2016-04-20

    In the current study low molecular weight poly(vinylalcohol) (PVOH) was used to prepare chitosan/PVOH blends and chitosan/PVOH/montmorillonite nanocomposites via a reflux - solution - heat pressing method. The effect of PVOH content and montmorillonite type (hydrophylic vs. organically modified) on the morphology, mechanical, thermomechanical, barrier and antimicrobial properties of the obtained polymer blends and nanocomposite films was studied. Higher amounts of PVOH (20 and 30%) resulted in plasticization of the films, with an increase in the elongation at break and decrease of the stiffness and the strength while effective blending between chitosan and PVOH chains was observed based on the XRD and DMA findings. Addition of PVOH was beneficial for water and oxygen barrier properties of the obtained films while it did not influence the antimicrobial activity of films against the growth of Escherichia coli. Intercalated structures were obtained after the addition of hydrophilic and organo-modified clays leading into stiffening of the nano-modified films and enhancement of their barrier and antimicrobial properties. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Antimicrobial properties of coconut husk aqueous extract on cariogenic bacteria

    Directory of Open Access Journals (Sweden)

    Maria B Cyriac

    2013-01-01

    Full Text Available Background and Objectives: The husk fibers of coconut (Cocos nucifera are reported to be used by people of rural areas of South India for daily cleaning their teeth. As the beneficial effects of this plant material, with respect to antimicrobial properties against common cariogenic bacteria, are not scientifically proven, the present study was conducted. Materials and Methods: The husk of coconut was collected and aqueous extract was prepared and antimicrobial properties against common oral pathogens like Streptococcus mutans, Streptococcus salivarius, Streptococcus mitis, and Lactobacillus acidophilus were performed by agar well diffusion method. The values obtained were then subjected to statistical analysis using one way ANOVA and Tukey HSD. Results: Aqueous extract of coconut husk showed a concentration-dependent antimicrobial activity against different tested organisms with zone of inhibition ranging from 4.44 to 15.33 mms. However, the efficacy was less in comparison to chlorhexidine. Conclusion: Inhibitory action against cariogenic bacteria exhibited by aqueous extract of coconut husk indicate presence of highly effective active compounds in these extracts, which can be identified and incorporated into modern oral care systems for controlling dental caries.

  5. Antimicrobial activity and properties of irreversible hydrocolloid impression materials incorporated with silver nanoparticles.

    Science.gov (United States)

    Ginjupalli, Kishore; Alla, Rama Krishna; Tellapragada, Chaitanya; Gupta, Lokendra; Upadhya Perampalli, Nagaraja

    2016-06-01

    Conventional spray and the immersion disinfection of irreversible hydrocolloid impression materials may lead to dimensional changes. The purpose of this in vitro study was to investigate the antimicrobial activity and properties of irreversible hydrocolloid impression materials incorporated with silver nanoparticles. The antimicrobial activity and properties of 2 commercially available irreversible hydrocolloid impression materials were evaluated after incorporating varying concentrations of silver nanoparticles. Antimicrobial activity was determined using the disk diffusion method. The gel strength, permanent deformation, flow, and gelation time were measured according to American Dental Association specification #18. Analysis of variance was used to identify the significant differences within and across the groups (α=.05). Adding silver nanoparticles to irreversible hydrocolloid impression materials resulted in superior antimicrobial activity without adversely affecting their properties. Adding silver nanoparticles to Zelgan significantly increased the gel strength compared with the control group, except at 5 wt%. However, the gel strength of Tropicalgin was unaffected except at 5 wt%. An increase in the permanent deformation was found with the incorporation of silver nanoparticles in both Zelgan and Tropicalgin. The flow of Zelgan increased with the incorporation of silver nanoparticles, whereas a decrease in the flow of Tropicalgin was observed at 1 wt% and 2 wt%. An increase in the gelation time of both Zelgan and Tropicalgin was observed with the incorporation of silver nanoparticles. Based on this in vitro study, silver nanoparticles can be incorporated into irreversible hydrocolloid impression materials as antimicrobial agents without adversely affecting their properties. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  6. A comparative study of the physicochemical properties and antimicrobial qualities of Abuad moringa soap with conventional medicated soaps

    Directory of Open Access Journals (Sweden)

    Pius Abimbola Okiki

    2017-01-01

    Full Text Available The study was aimed at assessing the physicochemical properties and antimicrobial qualities of 'ABUAD moringa soap', a herbal soap produced with Moringa oleifera leaf by 'ABUAD Farm', Afe Babalola University, Ado Ekiti, Nigeria. The physicochemical properties and antimicrobial qualities of  ABUAD moringa soap on some selected bacteria and fungi were evaluated and compared with those of some conventional medicated and herbal soaps commonly used in Nigeria, such as Dettol,  Tetmosol, Tura, Septol, Delta and Dudu Osun (herbal, as well as Lux, which serves as a control soap. The results of the physicochemical analyses revealed that all the soaps fall within the pH range of 8.83 and 9.83. All the soaps possess low values of free caustic alkali and detectable free fatty acid, as well as moderate values of total fatty matter. In-vitro antibacterial and antifungal activities of the soaps were investigated against microbial agents commonly found in association with skin infections, using the well-agar diffusion technique. The bacteria tested were Staphylococcus aureus ATCC 25923 and Proteus mirabilis (ATCC 12453, as well as four clinical isolates namely, Escherichia coli, Leutococcus sanguinis, Corynebacterium accolens and Burkholderia cepacia. The fungi were Candida albicans ATCC 10231, Malassezia furfur ATCC 44349, and Cryptococcus neoformans ATCC 23645. All the soaps, with exeption of lux, produced varied degrees of antibacterial activities, but ABUAD Moringa soap and Dudu Osun indicated superior effectiveness against the bacteria tested. Antifugal activities were produced by ABUAD moringa and Dudu Osun soaps only, on the fungi tested.  ABUAD Moringa produced significantly higher antifungal activities on Malassezia furfur ATCC 44349 and Candida albicans ATCC 10231 than Dudu Osun, but no significant difference was observed between the two soaps on their activities against Cryptococcus neoformans ATCC 23645. The study showed that ABUAD Moringa soap

  7. Antimicrobial properties of indigenous Lactobacillus sakei strain

    OpenAIRE

    Vesković-Moračanin Slavica; Obradović D.; Velebit B.; Borović Branka; Škrinjar Marija; Turubatović L.

    2010-01-01

    The strain I 154 of Lactobacillus sakei has been isolated from traditionally fermented sausages in the course of the realization of the international project (INCO PROJECT No ICA4-CT-2002-10037). This strain exhibited the ability for bacteriocin production. Antimicrobial properties of the isolated bacteriocin (sakacine), its sensibility towards proteolytic enzymes, as well as the effect of increased to high temperatures on its stability have been examined in this work. Semi purified bacterioc...

  8. Antimicrobial properties of natural honey: a review of literature

    International Nuclear Information System (INIS)

    Aurongzeb, M.; Azim, M.K.

    2011-01-01

    Health benefits of honey have been reported in a variety of conditions including microbial infections, wound healing, inflammation, glucose tolerance and analgesia. Honey is a supersaturated sugar solution mainly comprised of D-fructose, D-glucose, sucrose, maltose and higher sugars (80% of solid mass). While other natural products i.e. alkaloids, flavonoids/isoflavones, glycosides, phenolics, peptides/proteins are present in minor quantities. A number of enzymes such as invertase, amylase and glucose oxidase have been found in honey. Antibacterial and antifungal activities of honey are well documented and characterized. These antimicrobial properties have been related to oligosaccharides, glycopeptides and peptides present in honey. Honey glucose oxidase provides a continuous and slow release of hydrogen peroxide at a level which is antibacterial but not tissue-damaging. Hydrogen peroxide produced by glucose oxidase plays important roles in inflammation, wound healing etc. The antimicrobial properties of honey have great potential for application in medicine as well as in food industry. (author)

  9. African peppermint (Mentha piperita) from Morocco: Chemical composition and antimicrobial properties of essential oil

    OpenAIRE

    Marwa, Chraibi; Fikri-Benbrahim, Kawtar; Ou-Yahia, Douae; Farah, Abdellah

    2017-01-01

    To replace and avoid synthetic chemicals toxicity, there is a growing interest in the investigation of natural products from plant origin for the discovery of active compounds with antimicrobial properties. This work was devoted to determine chemical composition and antimicrobial properties of the EO of M. piperita harvested in the garden of the National Institute of Medicinal and Aromatic Plants of Morocco. Experiments have been conducted at the Microbial Biotechnology Laboratory at the Scie...

  10. Silver Nanoparticles Complexed with Bovine Submaxillary Mucin Possess Strong Antibacterial Activity and Protect against Seedling Infection.

    Science.gov (United States)

    Makarovsky, Daria; Fadeev, Ludmila; Salam, Bolaji Babajide; Zelinger, Einat; Matan, Ofra; Inbar, Jacob; Jurkevitch, Edouard; Gozin, Michael; Burdman, Saul

    2018-02-15

    A simple method for the synthesis of nanoparticles (NPs) of silver (Ag) in a matrix of bovine submaxillary mucin (BSM) was reported previously by some of the authors of this study. Based on mucin characteristics such as long-lasting stability, water solubility, and surfactant and adhesive characteristics, we hypothesized that these compounds, named BSM-Ag NPs, may possess favorable properties as potent antimicrobial agents. The goal of this study was to assess whether BSM-Ag NPs possess antibacterial activity, focusing on important plant-pathogenic bacterial strains representing both Gram-negative ( Acidovorax and Xanthomonas ) and Gram-positive ( Clavibacter ) genera. Growth inhibition and bactericidal assays, as well as electron microscopic observations, demonstrate that BSM-Ag NPs, at relatively low concentrations of silver, exert strong antimicrobial effects. Moreover, we show that treatment of melon seeds with BSM-Ag NPs effectively prevents seed-to-seedling transmission of Acidovorax citrulli , one of the most threatening pathogens of cucurbit production worldwide. Overall, our findings demonstrate strong antimicrobial activity of BSM-Ag NPs and their potential application for reducing the spread and establishment of devastating bacterial plant diseases in agriculture. IMPORTANCE Bacterial plant diseases challenge agricultural production, and the means available to manage them are limited. Importantly, many plant-pathogenic bacteria have the ability to colonize seeds, and seed-to-seedling transmission is a critical route by which bacterial plant diseases spread to new regions and countries. The significance of our study resides in the following aspects: (i) the simplicity of the method of BSM-Ag NP synthesis, (ii) the advantageous chemical properties of BSM-Ag NPs, (iii) the strong antibacterial activity of BSM-Ag NPs at relatively low concentrations of silver, and (iv) the fact that, in contrast to most studies on the effects of metal NPs on plant pathogens

  11. The Phytochemical and Antimicrobial Properties of Entomopathogenic Fungi in Nueva Vizcaya, Philippines

    Directory of Open Access Journals (Sweden)

    Fitzgerald L. Fabelico

    2015-12-01

    Full Text Available Entomopathogenicfungi (EPF are potential biocontrol agents against agricultural pests and insects. These fungi are also known to be a source of secondary metabolites and could be a potential source of antibiotic drugs in the future. This study aims to determine the phytochemical and antimicrobial properties of EPF isolated from different host insects and their larvae in the province of Nueva Vizcaya.The method employed in this study includes the collection of EPF from dead insects and their larvae, isolation and mass production of the fungi, identification of the different fungi, extraction of secondary metabolites from the fungi, phytochemical screening, and antimicrobial assay. The results revealed that the antimicrobial properties of the different EPF could be explained by their phytochemical properties.When compared to the positive control, the significantly high antifungal activities of the Pandora neoaphidis(EPF 1 against the Candida albicans can be due to the presence of sterols. Conversely, the significantly high antibacterial activities of Beauveria alba (EPF 5 against Bacillus subtiliscould be due to the presence ofsteroids, triterpenoids, glycosides, and fatty acids.These findings indicate that entomopathogenic fungi could be a potential source of antibiotic drugs against pathogenic microorganism in the near future. To realize this, future research is highly recommended for the isolation, elucidation, and evaluation of the safety of the bioactive compounds of entomopathogenic fungi responsible for the antimicrobial activities, prior to their use in humans.

  12. Antimicrobial properties of nudibranchs tissues extracts from South Andaman, India

    Directory of Open Access Journals (Sweden)

    Kota Veeraswamy Reddy

    2015-07-01

    Full Text Available Objective: To evaluate the antimicrobial properties of tissues extracts of different nudibranchs such as Phyllidia varicosa, Plakobranchus ocellatus, Phyllidiella rosans and Halgerda stricklandi against bacterial and fungal pathogens. Methods: Nudibranchs tissue samples were subjected to organic solvent extraction for antimicrobial activity by well diffusion method. Results: The crude extract 50 μL (0.2 mg of Phyllidia varicosa showed the maximum inhibitory zone (22 mm against Shigella flexneri. Plakobranchus ocellatus extract of 50 μL (0.2 mg showed the maximum inhibitory zone against Shigella flexneri (22 mm and Staphylococcus aureus (19 mm and no significant activity was found against the fungal pathogens. Conclusions: This work reveals that nudibranch tissues contain the antimicrobial secondary metabolites, which leads the significant activity against bacterial pathogens and further emphasizes detailed study on novel drug discovery from nudibranch tissues against certain human bacterial infections.

  13. Effect of Graphene Nanoplatelets on the Physical and Antimicrobial Properties of Biopolymer-Based Nanocomposites

    Directory of Open Access Journals (Sweden)

    Roberto Scaffaro

    2016-05-01

    Full Text Available In this work, biopolymer-based nanocomposites with antimicrobial properties were prepared via melt-compounding. In particular, graphene nanoplatelets (GnPs as fillers and an antibiotic, i.e., ciprofloxacin (CFX, as biocide were incorporated in a commercial biodegradable polymer blend of poly(lactic acid (PLA and a copolyester (BioFlex®. The prepared materials were characterized by scanning electron microscopy (SEM, and rheological and mechanical measurements. Moreover, the effect of GnPs on the antimicrobial properties and release kinetics of CFX was evaluated. The results indicated that the incorporation of GnPs increased the stiffness of the biopolymeric matrix and allowed for the tuning of the release of CFX without hindering the antimicrobial activity of the obtained materials.

  14. Radiation protective agents possessing anti-oxidative properties

    Energy Technology Data Exchange (ETDEWEB)

    Anzai, Kazunori; Ueno, Emi; Yoshida, Akira; Furuse, Masako; Ikota, Nobuo [National Inst. of Radiological Sciences, Research Center for Radiation Safety, Chiba, Chiba (Japan)

    2005-11-15

    The purpose of studies is to see mechanisms of radiation protection of agents possessing anti-oxidative properties because the initial step resulting in radiation hazard is the formation of radicals by water radiolysis. Agents were commercially available or synthesized proxyl derivatives (spin prove agents), commercially available spin-trapping agents, edaravone and TMG (a tocopherol glycoside). Mice and cultured cells were X-irradiated by Shimadzu Pantak HF-320 or 320S. Survivals of cells were determined by colony assay and of mice, to which the agents were given intraperitoneally before or after X-irradiation, within 30 days post irradiation. Plasma and marrow concentrations of proxyls were estimated by electron spin resonance (ESR) spectrometry. Mechanisms of their radiation protective effects were shown different from agent to agent. TMG was found effective even post irradiation, which suggests a possibility for a new drug development. Some (spin trapping agents and TMG), virtually ineffective at the cell level, were found effective in the whole body, suggesting the necessity of studies on their disposition and metabolism. (S.I.)

  15. Radiation protective agents possessing anti-oxidative properties

    International Nuclear Information System (INIS)

    Anzai, Kazunori; Ueno, Emi; Yoshida, Akira; Furuse, Masako; Ikota, Nobuo

    2005-01-01

    The purpose of studies is to see mechanisms of radiation protection of agents possessing anti-oxidative properties because the initial step resulting in radiation hazard is the formation of radicals by water radiolysis. Agents were commercially available or synthesized proxyl derivatives (spin prove agents), commercially available spin-trapping agents, edaravone and TMG (a tocopherol glycoside). Mice and cultured cells were X-irradiated by Shimadzu Pantak HF-320 or 320S. Survivals of cells were determined by colony assay and of mice, to which the agents were given intraperitoneally before or after X-irradiation, within 30 days post irradiation. Plasma and marrow concentrations of proxyls were estimated by electron spin resonance (ESR) spectrometry. Mechanisms of their radiation protective effects were shown different from agent to agent. TMG was found effective even post irradiation, which suggests a possibility for a new drug development. Some (spin trapping agents and TMG), virtually ineffective at the cell level, were found effective in the whole body, suggesting the necessity of studies on their disposition and metabolism. (S.I.)

  16. ANTIMICROBIAL PROPERTIES OF PLEUROTUS ERYNGII AND LENTINUS EDODES HYDRO-ALCOHOLIC EXTRACTS

    Directory of Open Access Journals (Sweden)

    Gabriela Popa

    2016-11-01

    Full Text Available Besides superior nutritional values mushrooms posed significant medicinal properties. Hydro-alcoholic extracts of several isolates of Pleurotus eryngii and Lentinus edodes mushroom species were investigated for their antimicrobial activities against pathogenic microorganisms with medicinal importance. Antimicrobial activities of the extracts were evaluated by the agar disk diffusion method. Results revealed that the 70% ethylic alcohol extracts have significant inhibitory activities against Bacillus subtilis var. spizizinii, Escherichia coli and Staphylococcus aureus. The results showed that the 70% ethanol extracts of Pleurotus eryngii and Lentinus edodes mushroom isolates may have biopharmaceutical potentiality.

  17. Development of a novel resin with antimicrobial properties for dental application

    Directory of Open Access Journals (Sweden)

    Denise Tornavoi de CASTRO

    2014-10-01

    Full Text Available The adhesion of biofilm on dental prostheses is a prerequisite for the occurrence of oral diseases. Objective: To assess the antimicrobial activity and the mechanical properties of an acrylic resin embedded with nanostructured silver vanadate (β-AgVO3. Material and Methods: The minimum inhibitory concentration (MIC of β-AgVO3 was studied in relation to the species Staphylococcus aureus ATCC 25923, Streptococcus mutans ATCC 25175, Pseudomonas aeruginosa ATCC 27853, and Candida albicans ATCC 10231. The halo zone of inhibition method was performed in triplicate to determine the inhibitory effect of the modified self-curing acrylic resin Dencor Lay - Clássico®. The surface hardness and compressive strength were examined. The specimens were prepared according to the percentage of β-AgVO3 (0%-control, 0.5%, 1%, 2.5%, 5%, and 10%, with a sample size of 9x2 mm for surface hardness and antimicrobial activity tests, and 8x4 mm for the compression test. The values of the microbiologic analysis were compared and evaluated using the Kruskal-Wallis test (α=0.05; the mechanical analysis used the Shapiro-Wilk's tests, Levene's test, ANOVA (one-way, and Tukey's test (α=0.05. Results: The addition of 10% β-AgVO3 promoted antimicrobial activity against all strains. The antimicrobial effect was observed at a minimum concentration of 1% for P. aeruginosa, 2.5% for S. aureus, 5% for C. albicans, and 10% for S. mutans. Surface hardness and compressive strength increased significantly with the addition of 0.5% β-AgVO3 (p0.05. Conclusions: The incorporation of β-AgVO3 has the potential to promote antimicrobial activity in the acrylic resin. At reduced rates, it improves the mechanical properties, and, at higher rates, it does not promote changes in the control.

  18. Enhanced mechanical, thermal and antimicrobial properties of poly(vinyl alcohol)/graphene oxide/starch/silver nanocomposites films.

    Science.gov (United States)

    Usman, Adil; Hussain, Zakir; Riaz, Asim; Khan, Ahmad Nawaz

    2016-11-20

    In the present work, synthesis of poly(vinyl alcohol)/graphene oxide/starch/silver (PVA/GO/Starch/Ag) nanocomposites films is reported. Such films have been characterized and investigated for their mechanical, thermal and antimicrobial properties. The exfoliation of GO in the PVA matrix occurs owing to the non-covalent interactions of the polymer chains of PVA and hydrophilic surface of the GO layers. Presence of GO in PVA and PVA/starch blends were found to enhance the tensile strength of the nanocomposites system. It was found that the thermal stability of PVA as well as PVA/starch blend systems increased by the incorporation of GO where strong physical bonding between GO layers and PVA/starch blends is assumed to cause thermal barrier effects. Antimicrobial properties of the prepared films were investigated against Escherichia coli and Staphylococcus aureus. Our results show enhanced antimicrobial properties of the prepared films where PVA-GO, PVA-Ag, PVA-GO-Ag and PVA-GO-Ag-Starch showed antimicrobial activity in ascending order. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Antimicrobial activities and toxicity of crude extract of the ...

    African Journals Online (AJOL)

    The extract of the Psophocarpus tetragonolobus pods has been tested for antimicrobial activity in a disk diffusion assay on eight human pathogenic bacteria and two human pathogenic yeasts. The extracts of P. tetragonolobus possessed antimicrobial activity against all tested strains. The ethanolic extract of P.

  20. Effect of antimicrobial on mechanical, barrier and optical properties of corn starch based self-supporting edible film

    Directory of Open Access Journals (Sweden)

    Tanima Chowdhury

    2013-10-01

    Full Text Available Antimicrobials like potassium sorbate, sodium propionate, and benzoic acid were incorporated in corn starch based formulation to investigate their effect on mechanical, water vapour barrier and optical properties of the developed self supporting edible film. The film was prepared by casting technique. When incorporated at 1.40% and above, potassium sorbate decreased the tensile strength (about 22% and increased the elongation (about 55% of control film; whereas, it increased the water vapour permeability by 15% only when added at 2.66%. At 2.66%, benzoic acid reduced the tensile strength by 24% and sodium propionate increased elongation by 17%. These two antimicrobials did not change the water vapour permeability. However, all the three antimicrobials adversely affected the optical properties by decreasing the whiteness index, increasing yellowness index, and reducing the surface gloss, with potassium sorbate showing the maximum effect. Among the three antimicrobials, sodium propionate appeared to be the best with minimum deterioration of film properties.

  1. Preparation and characterization of antimicrobial nano-hydroxyapatite composites

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Juhong [The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou 310018 (China); Chu, Xiaobing [The First Affiliated Hospital, Zhejiang Chinese Medicine University, Hangzhou 310006 (China); Cai, Yurong [The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou 310018 (China); Tong, Peijian [The First Affiliated Hospital, Zhejiang Chinese Medicine University, Hangzhou 310006 (China); Yao, Juming, E-mail: yaoj@zstu.edu.cn [The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou 310018 (China)

    2014-04-01

    Deep infection of prosthesis is one of the most frequent complications after joint replacement. One of the most effective ways is to introduce directly some antibiotics in the local site of the surgery. In the present study, an antimicrobial composite has been fabricated using nano-hydroxyapatite particles as carriers for the antimicrobial drug of vancomycin hydrochloride (VAN) and the mixture of oxidation sodium alginate (OSA) and gelatin (GT) as a sticky matrix. Samples have been characterized using X-ray diffraction instrument (XRD), field emission scanning electron microscope (FE-SEM), transmission electron microscope (TEM) and Fourier transform infrared (FTIR) spectra, Brunauer–Emmett–Teller (BET) methods, the rotational rheometer and the texture analyzer. The release of VAN from nano-hydroxyapatite (nHAP) particles was detected by the ultraviolet–visible (UV–vis) spectrophotometer and then bactericidal property of the composite was evaluated using the Staphylococcus aureus (S. aureus) as a bacterial model. Experimental results showed that the composite possessed an adhesive property derived from the gel of OSA and GT, which implied that the composite could bond directly to the fracture surface of bones in surgery. Furthermore, VAN was loaded efficiently on the surface of nHAP particles and could be released slowly from these particles, which endowed the composite with an obvious and continuous antimicrobial performance. The sticky and antimicrobial composite may has a potential application in arthroplasty to overcome deep infection in a simple and direct manner. - Highlights: • A sticky and antimicrobial composite has been designed to overcome deep infection. • The composite was composed of antibiotic, antibiotic carrier and a viscous matrix. • The sticky matrix was obtained by blending of oxidation sodium alginate and gelatin. • Hydroxyapatite nanoparticle could be used as carrier to control release of antibiotic.

  2. Preparation and characterization of antimicrobial nano-hydroxyapatite composites

    International Nuclear Information System (INIS)

    Yu, Juhong; Chu, Xiaobing; Cai, Yurong; Tong, Peijian; Yao, Juming

    2014-01-01

    Deep infection of prosthesis is one of the most frequent complications after joint replacement. One of the most effective ways is to introduce directly some antibiotics in the local site of the surgery. In the present study, an antimicrobial composite has been fabricated using nano-hydroxyapatite particles as carriers for the antimicrobial drug of vancomycin hydrochloride (VAN) and the mixture of oxidation sodium alginate (OSA) and gelatin (GT) as a sticky matrix. Samples have been characterized using X-ray diffraction instrument (XRD), field emission scanning electron microscope (FE-SEM), transmission electron microscope (TEM) and Fourier transform infrared (FTIR) spectra, Brunauer–Emmett–Teller (BET) methods, the rotational rheometer and the texture analyzer. The release of VAN from nano-hydroxyapatite (nHAP) particles was detected by the ultraviolet–visible (UV–vis) spectrophotometer and then bactericidal property of the composite was evaluated using the Staphylococcus aureus (S. aureus) as a bacterial model. Experimental results showed that the composite possessed an adhesive property derived from the gel of OSA and GT, which implied that the composite could bond directly to the fracture surface of bones in surgery. Furthermore, VAN was loaded efficiently on the surface of nHAP particles and could be released slowly from these particles, which endowed the composite with an obvious and continuous antimicrobial performance. The sticky and antimicrobial composite may has a potential application in arthroplasty to overcome deep infection in a simple and direct manner. - Highlights: • A sticky and antimicrobial composite has been designed to overcome deep infection. • The composite was composed of antibiotic, antibiotic carrier and a viscous matrix. • The sticky matrix was obtained by blending of oxidation sodium alginate and gelatin. • Hydroxyapatite nanoparticle could be used as carrier to control release of antibiotic

  3. Comparative study of anthocyanin composition, antimicrobial and antioxidant activity in bilberry (Vaccinium myrtillus L.) and blueberry (Vaccinium corymbosum L.) fruits.

    Science.gov (United States)

    Burdulis, Deividas; Sarkinas, Antanas; Jasutiené, Ina; Stackevicené, Elicija; Nikolajevas, Laurynas; Janulis, Valdimaras

    2009-01-01

    Simultaneous comparison of bilberry (Vaccinium myrtillus L.) and blueberry (Vaccinium corymbosum L) fruits for their anthocyanin composition, antimicrobial and antioxidant activity is reported. The aim of this study was to investigate and to compare anthocyanin composition, antimicrobial and antioxidant activity in bilberry and blueberry fruits and their skins. The investigations revealed that the highest amount of total anthocyanins was observed in fruits skins of blueberry cultivars. The results, obtained by chromatographic analysis, indicated that cyanidin is a dominant anthocyanidin in bilberry and malvidin in blueberry samples. Extracts of "Herbert", "Coville", "Toro" blueberry cultivars and bilberry fruits revealed antimicrobial properties. Citrobacter freundii (ATCC 8090) and Enterococcus faecalis (ATCC29212) were the most sensitive among eight tested Gram-negative and Gram-positive bacteria. Significant differences between berry and skin extracts were not established. Studies with fruits showed that the strongest antioxidant activity possesses blueberry cultivar "Berkeley" (82.13 +/- 0.51%). Meanwhile, the amount of quenched free radicals in bilberry samples was 63.72 +/- 1.11%, respectively. The lowest antioxidant activity was estimated in blueberry cultivar "Coville". Accordingly, the strongest antiradical properties were estimated in blueberry cultivar "Ama" fruit skins. Bilberry fruit skin samples possess strong antiradical activity as well (82.69 +/- 0.37%).

  4. Antimicrobial role of human meibomian lipids at the ocular surface.

    Science.gov (United States)

    Mudgil, Poonam

    2014-10-14

    Human meibomian lipids form the outermost lipid layer of the tear film and serve many important functions to maintain its integrity. Although not investigated earlier, these lipids may have antimicrobial properties that help in strengthening the innate host defense of tears at the ocular surface. The aim of this study was to investigate the antimicrobial role of human meibomian lipids. Ocular pathogenic bacteria, Staphylococcus aureus 31, Pseudomonas aeruginosa 19, Pseudomonas aeruginosa 20, and Serratia marcescens 35, were grown in the presence and absence of human meibomian lipids in an artificial tear solution at the physiological temperature. Viable counts were obtained to note the number of bacteria surviving the treatment with meibomian lipids. Bacterial cells were imaged using scanning electron microscopy to observe the damages caused by meibomian lipids. Viable count results showed that in the presence of meibomian lipids, growth of all bacteria was considerably lower. Scanning electron microscopy showed that meibomian lipids caused extensive cellular damage to bacteria as manifested in smaller size, loss of aggregation, abnormal phenotype, cellular distortion, damaged cell wall, and cell lysis. This is the first-ever report of the antimicrobial role of human meibomian lipids. These lipids possess antimicrobial properties against both Gram-positive and Gram-negative bacteria and are involved in the innate host defense of tears in protecting the ocular surface against microbial pathogens. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  5. Antimicrobial properties of Cocos nucifera (coconut) husk: An extrapolation to oral health.

    Science.gov (United States)

    Jose, Maji; Cyriac, Maria B; Pai, Vidya; Varghese, Ipe; Shantaram, Manjula

    2014-07-01

    Brushing the teeth with fibrous husk of Cocos nucifera (coconut) is a common oral hygiene practice among people of rural areas of South India. However, the probable antimicrobial properties of this plant material against common oral pathogens have not been proved scientifically. Therefore, the present study was designed. Alcoholic extract of the husk of Cocos nucifera was prepared and the antimicrobial properties against common oral pathogens like cariogenic bacteria, periodontal pathogens, and candidal organisms were performed by the Agar Well Diffusion Method. The results obtained were then subjected to statistical analysis using One-Way Analysis of Variance (ANOVA) and the Tukey's Honestly Significant Difference (HSD). The alcoholic extract of Cocos nucifera showed a significant concentration-dependent antimicrobial activity, expressed as a zone of inhibition with respect to all tested organisms except Actinomyces species. The inhibitory effect was more significant, with a majority of cariogenic organisms and Candida, with a zone of inhibition ranging from 4.6 mm to 16.3 mm. However, the effect was lesser with Cocos nucifera compared to chlorhexidine. Minimum inhibitory concentration (MIC) ranged from 50 mg/ml to 75 mg/ml. Cocos nucifera has a significant inhibitory action against common oral pathogens, indicating the presence of highly effective antimicrobial compounds. Therefore, it is proved that its use can contribute to oral health to a great extent. Identification of these active compounds provides the scope for incorporating it into a modern oral care system, so as to control oral diseases.

  6. A comparative study of the antimicrobial properties of the ethanolic ...

    African Journals Online (AJOL)

    SERVER

    2008-02-19

    Feb 19, 2008 ... enema for intestinal worms in parts of Ivory Coast. The latex is also used as a natural preservative (Anthony,. 1995). This work was undertaken to compare the phytoche- mical and antimicrobial properties of the leaf and root extracts of L. owariensis on three clinical bacterial isolates so as to validate or ...

  7. The antimicrobial action of resveratrol against Listeria monocytogenes in food-based models and its antibiofilm properties.

    Science.gov (United States)

    Ferreira, Susana; Domingues, Fernanda

    2016-10-01

    Resveratrol (3,5,4'-trihydroxy-trans-stilbene) is a natural phytoalexin synthesized by plants in response to stress. This compound has several beneficial documented properties, namely anti-inflammatory, antioxidant, neuroprotective and antimicrobial activities. In this study the antimicrobial activity of resveratrol against Listeria monocytogenes and Listeria innocua was investigated. Resveratrol had a minimum inhibitory concentration of 200 µg mL(-1) for the tested strains, with time-kill curves demonstrating bacteriostatic activity. Inhibition of biofilm formation was also assessed, with resveratrol strongly inhibiting biofilm formation by both species even at subinhibitory concentrations. Overall, resveratrol showed antimicrobial properties on planktonic cells and on biofilm formation ability. Considering the potential use of resveratrol as a food preservative, the antimicrobial efficacy of resveratrol in food was studied in milk, lettuce leaf model and chicken juice. Resveratrol retained greater efficacy in both lettuce leaf model and chicken juice, but milk had a negative impact on its antilisterial activity, indicating a possible reduction of resveratrol availability in milk. This study reinforces resveratrol as an antimicrobial agent, pointing out its antibiofilm activity and its potential use as preservative in some food matrices. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  8. Physical and Antimicrobial Properties of Starch-PVA Blend Films as Affected by the Incorporation of Natural Antimicrobial Agents

    Directory of Open Access Journals (Sweden)

    Amalia Cano

    2015-12-01

    Full Text Available In this work, active films based on starch and PVA (S:PVA ratio of 2:1 were developed by incorporating neem (NO and oregano essential oils (OEO. First, a screening of the antifungal effectiveness of different natural extracts (echinacea, horsetail extract, liquid smoke and neem seed oil against two fungus (P. expansum and A. niger was carried out. The effect of NO and OEO incorporation on the films’ physical and antimicrobial properties was analyzed. Only composite films containing OEO exhibited antibacterial and antifungal activity. Antibacterial activity occurred at low OEO concentration (6.7%, while antifungal effect required higher doses of OEO in the films. Incorporation of oils did not notably affect the water sorption capacity and water vapor barrier properties of S-PVA films, but reduced their transparency and gloss, especially at the highest concentrations. The mechanical response of the S-PVA films was also negatively affected by oil incorporation but this was only relevant at the highest oil ratio (22%. S-PVA films with 6.7% of OEO exhibited the best physical properties, without significant differences with respect to the S-PVA matrix, while exhibiting antibacterial activity. Thus, the use of OEO as a natural antimicrobial incorporated into starch-PVA films represents a good and novel alternative in food packaging applications.

  9. Physical and Antimicrobial Properties of Starch-PVA Blend Films as Affected by the Incorporation of Natural Antimicrobial Agents.

    Science.gov (United States)

    Cano, Amalia; Cháfer, Maite; Chiralt, Amparo; González-Martínez, Chelo

    2015-12-26

    In this work, active films based on starch and PVA (S:PVA ratio of 2:1) were developed by incorporating neem (NO) and oregano essential oils (OEO). First, a screening of the antifungal effectiveness of different natural extracts (echinacea, horsetail extract, liquid smoke and neem seed oil) against two fungus ( P. expansum and A. niger ) was carried out. The effect of NO and OEO incorporation on the films' physical and antimicrobial properties was analyzed. Only composite films containing OEO exhibited antibacterial and antifungal activity. Antibacterial activity occurred at low OEO concentration (6.7%), while antifungal effect required higher doses of OEO in the films. Incorporation of oils did not notably affect the water sorption capacity and water vapor barrier properties of S-PVA films, but reduced their transparency and gloss, especially at the highest concentrations. The mechanical response of the S-PVA films was also negatively affected by oil incorporation but this was only relevant at the highest oil ratio (22%). S-PVA films with 6.7% of OEO exhibited the best physical properties, without significant differences with respect to the S-PVA matrix, while exhibiting antibacterial activity. Thus, the use of OEO as a natural antimicrobial incorporated into starch-PVA films represents a good and novel alternative in food packaging applications.

  10. Silver release and antimicrobial properties of PMMA films doped with silver ions, nano-particles and complexes

    Energy Technology Data Exchange (ETDEWEB)

    Lyutakov, O., E-mail: lyutakoo@vscht.cz [Department of Solid State Engineering, Institute of Chemical Technology, Prague (Czech Republic); Goncharova, I. [Department of Analytical Chemistry, Institute of Chemical Technology, Prague (Czech Republic); Rimpelova, S. [Department of Biochemistry and Microbiology, Institute of Chemical Technology, Prague (Czech Republic); Kolarova, K.; Svanda, J.; Svorcik, V. [Department of Solid State Engineering, Institute of Chemical Technology, Prague (Czech Republic)

    2015-04-01

    Materials prepared on the base of bioactive silver compounds have become more and more popular due to low microbial resistance to silver. In the present work, the efficiency of polymethylmethacrylate (PMMA) thin films doped with silver ions, nanoparticles and silver–imidazole polymer complex was studied by a combination of AAS, XPS and AFM techniques. The biological activities of the proposed materials were discussed in view of the rate of silver releasing from the polymer matrix. Concentrations of Ag active form were estimated by its ability to interact with L-cysteine using electronic circular dichroism spectroscopy. Rates of the released silver were compared with the biological activity in dependence on the form of embedded silver. Antimicrobial properties of doped polymer films were studied using two bacterial strains: Staphylococcus epidermidis and Escherichia coli. It was found that PMMA films doped with Ag{sup +} had greater activity than those doped with nanoparticles and silver–imidazole polymeric complexes. However, the antimicrobial efficiency of Ag{sup +} doped films was only short-term. Contrary, the antimicrobial activity of silver–imidazole/PMMA films increased in time of sample soaking. - Highlights: • PMMA thin films doped with silver ions, nanoparticles (AgNPs) and silver–imidazole helical complexes (AgIm) were studied. • Silver release from doped polymer films and its biological activity were estimated. • Antimicrobial properties of doped polymer films were also studied. • Ag ions doped films showed the strongest antimicrobial activity, which quickly disappeared. • AgIm and AgNPs doped films showed more stable antimicrobial properties. • AgIm complexes conserve their structure after addition into polymer and after leaching.

  11. Silver release and antimicrobial properties of PMMA films doped with silver ions, nano-particles and complexes

    International Nuclear Information System (INIS)

    Lyutakov, O.; Goncharova, I.; Rimpelova, S.; Kolarova, K.; Svanda, J.; Svorcik, V.

    2015-01-01

    Materials prepared on the base of bioactive silver compounds have become more and more popular due to low microbial resistance to silver. In the present work, the efficiency of polymethylmethacrylate (PMMA) thin films doped with silver ions, nanoparticles and silver–imidazole polymer complex was studied by a combination of AAS, XPS and AFM techniques. The biological activities of the proposed materials were discussed in view of the rate of silver releasing from the polymer matrix. Concentrations of Ag active form were estimated by its ability to interact with L-cysteine using electronic circular dichroism spectroscopy. Rates of the released silver were compared with the biological activity in dependence on the form of embedded silver. Antimicrobial properties of doped polymer films were studied using two bacterial strains: Staphylococcus epidermidis and Escherichia coli. It was found that PMMA films doped with Ag + had greater activity than those doped with nanoparticles and silver–imidazole polymeric complexes. However, the antimicrobial efficiency of Ag + doped films was only short-term. Contrary, the antimicrobial activity of silver–imidazole/PMMA films increased in time of sample soaking. - Highlights: • PMMA thin films doped with silver ions, nanoparticles (AgNPs) and silver–imidazole helical complexes (AgIm) were studied. • Silver release from doped polymer films and its biological activity were estimated. • Antimicrobial properties of doped polymer films were also studied. • Ag ions doped films showed the strongest antimicrobial activity, which quickly disappeared. • AgIm and AgNPs doped films showed more stable antimicrobial properties. • AgIm complexes conserve their structure after addition into polymer and after leaching

  12. Antimicrobial resistance challenged with metal-based antimicrobial macromolecules.

    Science.gov (United States)

    Abd-El-Aziz, Alaa S; Agatemor, Christian; Etkin, Nola

    2017-02-01

    Antimicrobial resistance threatens the achievements of science and medicine, as it deactivates conventional antimicrobial therapeutics. Scientists respond to the threat by developing new antimicrobial platforms to prevent and treat infections from these resistant strains. Metal-based antimicrobial macromolecules are emerging as an alternative to conventional platforms because they combine multiple mechanisms of action into one platform due to the distinctive properties of metals. For example, metals interact with intracellular proteins and enzymes, and catalyse various intracellular processes. The macromolecular architecture offers a means to enhance antimicrobial activity since several antimicrobial moieties can be conjugated to the scaffold. Further, these macromolecules can be fabricated into antimicrobial materials for contact-killing medical implants, fabrics, and devices. As volatilization or leaching out of the antimicrobial moieties from the macromolecular scaffold is reduced, these medical implants, fabrics, and devices can retain their antimicrobial activity over an extended period. Recent advances demonstrate the potential of metal-based antimicrobial macromolecules as effective platforms that prevent and treat infections from resistant strains. In this review these advances are thoroughly discussed within the context of examples of metal-based antimicrobial macromolecules, their mechanisms of action and biocompatibility. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Recovery potential of cold press byproducts obtained from the edible oil industry: physicochemical, bioactive, and antimicrobial properties.

    Science.gov (United States)

    Karaman, Safa; Karasu, Salih; Tornuk, Fatih; Toker, Omer Said; Geçgel, Ümit; Sagdic, Osman; Ozcan, Nihat; Gül, Osman

    2015-03-04

    Physicochemical, bioactive, and antimicrobial properties of different cold press edible oil byproducts (almond (AOB), walnut (WOB), pomegranate (POB), and grape (GOB)) were investigated. Oil, protein, and crude fiber content of the byproducts were found between 4.82 and 12.57%, between 9.38 and 49.05%, and between 5.87 and 45.83%, respectively. GOB had very high crude fiber content; therefore, it may have potential for use as a new dietary fiber source in the food industry. As GOB, POB, and WOB oils were rich in polyunsaturated fatty acids, AOB was rich in monounsaturated fatty acids. Oil byproducts were also found to be rich in dietary mineral contents, especially potassium, calcium, phosphorus, and magnesium. WOB had highest total phenolic (802 ppm), flavonoid (216 ppm), and total hydrolyzed tannin (2185 ppm) contents among the other byproducts. Volatile compounds of all the byproducts are mainly composed of terpenes in concentration of approximately 95%. Limonene was the dominant volatile compound in all of the byproducts. Almond and pomegranate byproduct extracts showed antibacterial activity depending on their concentration, whereas those of walnut and grape byproducts showed no antibacterial activity against any pathogenic bacteria tested. According to the results of the present study, walnut, almond, pomegranate, and grape seed oil byproducts possess valuable properties that can be taken into consideration for improvement of nutritional and functional properties of many food products.

  14. African peppermint (Mentha piperita) from Morocco: Chemical composition and antimicrobial properties of essential oil

    Science.gov (United States)

    Marwa, Chraibi; Fikri-Benbrahim, Kawtar; Ou-Yahia, Douae; Farah, Abdellah

    2017-01-01

    To replace and avoid synthetic chemicals toxicity, there is a growing interest in the investigation of natural products from plant origin for the discovery of active compounds with antimicrobial properties. This work was devoted to determine chemical composition and antimicrobial properties of the EO of M. piperita harvested in the garden of the National Institute of Medicinal and Aromatic Plants of Morocco. Experiments have been conducted at the Microbial Biotechnology Laboratory at the Sciences and Technology Faculty, Sidi Mohamed Ben Abdellah University, Fez, Morocco. M. piperita oil was screened for its antimicrobial activity against seven bacteria and two fungi using broth microdilution method. Chemical EO analysis was performed using CPG/MS. The EO revealed menthol (46.32%), menthofuran (13.18%), menthyl acetate (12.10%), menthone (7.42%), and 1,8-cineole (6.06%) as the main constituents. The tested EO exhibited strong inhibitory effect against all tested microorganisms with minimum inhibitory concentrations ranging from 0.062% to 0.5% (v/v), except for Pseudomonas aeruginosa that was the least sensitive and was only inhibited by concentrations as high as 0.5% (v/v). The studied EO showed an antimicrobial potential. This reinforces its use as an alternative to chemical additives that can be applied to the food and drug industry. PMID:28795021

  15. African peppermint (Mentha piperita from Morocco: Chemical composition and antimicrobial properties of essential oil

    Directory of Open Access Journals (Sweden)

    Chraibi Marwa

    2017-01-01

    Full Text Available To replace and avoid synthetic chemicals toxicity, there is a growing interest in the investigation of natural products from plant origin for the discovery of active compounds with antimicrobial properties. This work was devoted to determine chemical composition and antimicrobial properties of the EO of M. piperita harvested in the garden of the National Institute of Medicinal and Aromatic Plants of Morocco. Experiments have been conducted at the Microbial Biotechnology Laboratory at the Sciences and Technology Faculty, Sidi Mohamed Ben Abdellah University, Fez, Morocco. M. piperita oil was screened for its antimicrobial activity against seven bacteria and two fungi using broth microdilution method. Chemical EO analysis was performed using CPG/MS. The EO revealed menthol (46.32%, menthofuran (13.18%, menthyl acetate (12.10%, menthone (7.42%, and 1,8-cineole (6.06% as the main constituents. The tested EO exhibited strong inhibitory effect against all tested microorganisms with minimum inhibitory concentrations ranging from 0.062% to 0.5% (v/v, except for Pseudomonas aeruginosa that was the least sensitive and was only inhibited by concentrations as high as 0.5% (v/v. The studied EO showed an antimicrobial potential. This reinforces its use as an alternative to chemical additives that can be applied to the food and drug industry.

  16. Investigating the Phytochemicals and Antimicrobial Properties of Three Sedge (Cyperaceae Species

    Directory of Open Access Journals (Sweden)

    Tiwalade Adeyemi ADENIYI

    2014-09-01

    Full Text Available In order to evaluate the medicinal value of notorious sedge weeds, three species:Cyperus esculentus, Cyperus rotundus and Mariscus alternifolius were investigated for their phytochemical constituents and antimicrobial properties. Preliminary qualitative phytochemical constituents and in vitro antimicrobial activities were evaluated against four fungi species: Aspergillus niger, Aspergillus fumigatus, Penicillium chrysogenum and Candida albicans, and three bacteria species: Escherichia coli,Salmonella typhi and Staphylococcus aureus. Two solvents, water and ethanol, were used to produce the extracts and were screened for their antimicrobial activity. Antimicrobial activity evaluation of the extracts against pathogens was carried out at 100 mg/ml concentration by Disc Diffusion method for fungi, Disc Diffusion and Agar Well Diffusion methods for bacteria. Observed activities were related to standard antibiotics, antifungal and antibacterial, which served as controls. Phytochemically, the plant extracts showed the presence of carbohydrates, flavonoids, ketose sugars, steroids, reducing sugars and tannins. The ethanolic extract of C. rotundus exhibited the highest activity against A. niger, E. coli and S. aureus. No extract was active against C. albicans. From these findings, it was concluded that C. rotundus is a potential source of bioactive compounds for new drugs upon isolation and purification for treating infections caused by these pathogens.

  17. Functional Properties of Microorganisms in Fermented Foods

    Directory of Open Access Journals (Sweden)

    Jyoti Prakash Tamang

    2016-04-01

    Full Text Available Fermented foods have unique functional properties imparting some health benefits to consumers due to presence of functional microorganisms, which possess probiotics properties, antimicrobial, antioxidant, peptide production, etc. Health benefits of some global fermented foods are synthesis of nutrients, prevention of cardiovascular disease, prevention of cancer, gastrointestinal disorders, allergic reactions, diabetes, among others. The present paper is aimed to review the information on some functional properties of the microorganisms associated with fermented foods and beverages, and their health-promoting benefits to consumers.

  18. The effect of benzalkonium chloride additions to AH Plus sealer. Antimicrobial, physical and chemical properties.

    Science.gov (United States)

    Arias-Moliz, M T; Ruiz-Linares, M; Cassar, G; Ferrer-Luque, C M; Baca, P; Ordinola-Zapata, R; Camilleri, J

    2015-07-01

    The aim of this study was to determine the antimicrobial and antibiofilm activities and physicochemical properties of AH Plus sealer mixed with different concentrations of benzalkonium chloride (BC). AH Plus was tested alone and mixed with 1%, 2% and 3% of BC. The antimicrobial and antibiofilm activities of the sealers against Enterococcus faecalis were evaluated by the direct contact test (DCT) and by confocal laser scanning microscopy, respectively. Setting time, flow and solubility were assessed according to ANSI/ADA specifications. Microhardness and contact angle tests were also performed. The chemical changes of the sealers were evaluated by X-ray diffraction analysis, and both Fourier transform infrared spectroscopy (FT-IR) and attenuated total reflectance Fourier transform infrared (ATR FT-IR). AH Plus+3% BC was the only sealer to promote total elimination of E. faecalis and the biovolume in this group was significantly lower than in the rest of the sealers (p>0.05). The physical properties of the sealers were according to the ANSI/ADA specifications. The microhardness decreased significantly when BC was added and a significant reduction in contact angle was obtained when incorporating 2% and 3% BC (p<0.05). No phase changes were observed with the modified sealers. The addition of 2% or higher concentrations BC to AH Plus showed antimicrobial and antibiofilm activities without affecting the properties specified in ANSI/ADA standards. However, additives to the root canal sealer altered other physical and chemical properties that are not commonly found in the literature to evaluate filling materials. The present study highlights that the antimicrobial properties of AH Plus can be significantly improved with the addition of BC. Testing beyond what is specified in standards may be indicated. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Antimicrobial properties of analgesic kyotorphin peptides unraveled through atomic force microscopy

    International Nuclear Information System (INIS)

    Ribeiro, Marta M.B.; Franquelim, Henri G.; Torcato, Inês M.; Ramu, Vasanthakumar G.; Heras, Montserrat; Bardaji, Eduard R.; Castanho, Miguel A.R.B.

    2012-01-01

    Highlights: ► New kyotorphin derivatives have antimicrobial properties against S. aureus. ► Atomic force microscopy show membrane disturbing effects of KTP–NH 2 and IbKTP–NH 2 . ► None of the KTP derivatives are hemolytic. ► The minimal peptidic sequence with antimicrobial activity is Tyr-Arg, if amidated. -- Abstract: Antimicrobial peptides (AMPs) are promising candidates as alternatives to conventional antibiotics for the treatment of resistant pathogens. In the last decades, new AMPs have been found from the cleavage of intact proteins with no antibacterial activity themselves. Bovine hemoglobin hydrolysis, for instance, results in AMPs and the minimal antimicrobial peptide sequence was defined as Tyr-Arg plus a positively charged amino acid residue. The Tyr-Arg dipeptide alone, known as kyotorphin (KTP), is an endogenous analgesic neuropeptide but has no antimicrobial activity itself. In previous studies new KTP derivatives combining C-terminal amidation and Ibuprofen (Ib) – KTP–NH 2 , IbKTP, IbKTP–NH 2 – were designed in order to improve KTP brain targeting. Those modifications succeeded in enhancing peptide-cell membrane affinity towards fluid anionic lipids and higher analgesic activity after systemic injection resulted therefrom. Here, we investigated if this affinity for anionic lipid membranes also translates into antimicrobial activity because bacteria have anionic membranes. Atomic force microscopy revealed that KTP derivatives perturbed Staphylococcus aureus membrane structure by inducing membrane blebbing, disruption and lysis. In addition, these peptides bind to red blood cells but are non-hemolytic. From the KTP derivatives tested, amidated KTP proves to be the most active antibacterial agent. The combination of analgesia and antibacterial activities with absence of toxicity is highly appealing from the clinical point of view and broadens the therapeutic potential and application of kyotorphin peptides.

  20. Antimicrobial properties of analgesic kyotorphin peptides unraveled through atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Marta M.B.; Franquelim, Henri G.; Torcato, Ines M. [Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisboa (Portugal); Ramu, Vasanthakumar G.; Heras, Montserrat; Bardaji, Eduard R. [Laboratori d' Innovacio en Processos i Productes de Sintesi Organica (LIPPSO), Departament de Quimica, Universitat de Girona, Campus Montilivi, 17071 Girona (Spain); Castanho, Miguel A.R.B., E-mail: macastanho@fm.ul.pt [Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisboa (Portugal)

    2012-04-13

    Highlights: Black-Right-Pointing-Pointer New kyotorphin derivatives have antimicrobial properties against S. aureus. Black-Right-Pointing-Pointer Atomic force microscopy show membrane disturbing effects of KTP-NH{sub 2} and IbKTP-NH{sub 2}. Black-Right-Pointing-Pointer None of the KTP derivatives are hemolytic. Black-Right-Pointing-Pointer The minimal peptidic sequence with antimicrobial activity is Tyr-Arg, if amidated. -- Abstract: Antimicrobial peptides (AMPs) are promising candidates as alternatives to conventional antibiotics for the treatment of resistant pathogens. In the last decades, new AMPs have been found from the cleavage of intact proteins with no antibacterial activity themselves. Bovine hemoglobin hydrolysis, for instance, results in AMPs and the minimal antimicrobial peptide sequence was defined as Tyr-Arg plus a positively charged amino acid residue. The Tyr-Arg dipeptide alone, known as kyotorphin (KTP), is an endogenous analgesic neuropeptide but has no antimicrobial activity itself. In previous studies new KTP derivatives combining C-terminal amidation and Ibuprofen (Ib) - KTP-NH{sub 2}, IbKTP, IbKTP-NH{sub 2} - were designed in order to improve KTP brain targeting. Those modifications succeeded in enhancing peptide-cell membrane affinity towards fluid anionic lipids and higher analgesic activity after systemic injection resulted therefrom. Here, we investigated if this affinity for anionic lipid membranes also translates into antimicrobial activity because bacteria have anionic membranes. Atomic force microscopy revealed that KTP derivatives perturbed Staphylococcus aureus membrane structure by inducing membrane blebbing, disruption and lysis. In addition, these peptides bind to red blood cells but are non-hemolytic. From the KTP derivatives tested, amidated KTP proves to be the most active antibacterial agent. The combination of analgesia and antibacterial activities with absence of toxicity is highly appealing from the clinical point of view

  1. The effect of heat treatment on the antimicrobial properties of honey

    Directory of Open Access Journals (Sweden)

    Cuilan eChen

    2012-07-01

    Full Text Available There is increasing interest in the antimicrobial properties of honey. In most honey samples, antimicrobial activity is due to the generation of hydrogen peroxide (H2O2 by the bee-derived enzyme glucose oxidase, however the amount of H2O2 produced can vary greatly among samples. In addition, honey is a complex product, and other components may contribute to or modulate this activity, which may be further affected by processing procedures used in large-scale commercial production. In this study we examined honey derived from three native Australian floral sources that had previously been associated with H2O2-dependent activity: spotted gum (Eucalyptus maculata, red stringybark (Eucalyptus macrorrhyncha and yellowbox (Eucalyptus melliodora. Antimicrobial activity was measured using standardized assays against the bacterial pathogen Staphylococcus aureus and the fungal pathogen Candida albicans. Antibacterial activity was only seen in four of the six red stringybark samples and ranged from 12-21.1% phenol equivalence. No antibacterial activity was detected in the spotted gum or yellowbox samples. Antifungal activity ranged from MIC values of 19-38.3 % (w/v, and although all samples were significantly more active than an osmotically equivalent sugar solution, most had relatively low activity. All honey samples were provided unprocessed and underwent standard heating and filtration procedures (45˚C for 8 hours followed by filtration with a 100 µm filter, allowing the effects of commercial heating and filtration methods on antimicrobial activity and H2O2 levels to be assessed. Average antibacterial and antifungal activities decreased, but while processing was usually detrimental, occasionally the reverse was seen and antimicrobial activity increased. Significant activity was eliminated from all samples by the addition of catalase, indicating that H2O2 was chiefly responsible for their antimicrobial action, and H2O2 production was measured in the

  2. Antimicrobial and mechanical properties of dental resin composite containing bioactive glass.

    Science.gov (United States)

    Korkut, Emre; Torlak, Emrah; Altunsoy, Mustafa

    2016-07-26

    The aim of this study was to evaluate the antimicrobial efficacy and mechanical properties of dental resin composites containing different amounts of microparticulate bioactive glass (BAG). Experimental resin composites were prepared by mixing resin matrix (70% BisGMA and 30% TEGDMA) and inorganic filler with various fractions of BAG to achieve final BAG concentrations of 5, 10 and 30 wt%. Antimicrobial efficacy was assessed in aqueous suspension against Escherichia coli, Staphylococcus aureus and Streptococcus mutans and in biofilm against S. mutans. The effect of incorporation of BAG on the mechanical properties of resin composite was evaluated by measuring the surface roughness, compressive strength and flexural strength. Under the dynamic contact condition, viable counts of E. coli, S. aureus and S. mutans in suspensions were reduced up to 78%, 57% and 50%, respectively, after 90 minutes of exposure to disc-shaped composite specimens, depending on the BAG contents. In 2-day-old S. mutans biofilm, incorporation of BAG into composite at ratios of 10% and 30% resulted in 0.8 and 1.4 log reductions in the viable cell counts compared with the BAG-free composite, respectively. The surface roughness values of composite specimens did not show any significant difference (p>0.05) at any concentration of BAG. However, compressive and flexural strengths of composite were decreased significantly with addition of 30% BAG (p<0.05). The results demonstrated the successful utilization of BAG as a promising biomaterial in resin composites to provide antimicrobial function.

  3. Enhancement of the antimicrobial properties of orthorhombic molybdenum trioxide by thermal induced fracturing of the hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Shafaei, Shahram; Van Opdenbosch, Daniel [Technische Universität München (TUM), Chair for Biogenic Polymers, Schulgasse 16, D-94315 Straubing (Germany); Fey, Tobias [Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Department of Materials Science and Engineering 3: Glass and Ceramics, Martensstraße 5, D-91058 Erlangen (Germany); Koch, Marcus; Kraus, Tobias [INM, Leibniz Institute for New Materials, Campus D2 2, D-66123 Saarbrücken (Germany); Guggenbichler, Josef Peter [AMiSTec GmbH & Co. KG, Leitweg 23, A-6345 Kössen (Austria); Zollfrank, Cordt, E-mail: cordt.zollfrank@tum.de [Technische Universität München (TUM), Chair for Biogenic Polymers, Schulgasse 16, D-94315 Straubing (Germany)

    2016-01-01

    The oxides of the transition metal molybdenum exhibit excellent antimicrobial properties. We present the preparation of molybdenum trioxide dihydrate (MoO{sub 3} × 2H{sub 2}O) by an acidification method and demonstrate the thermal phase development and morphological evolution during and after calcination from 25 °C to 600 °C. The thermal dehydration of the material was found to proceed in two steps. Microbiological roll-on tests using Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa were performed and exceptional antimicrobial activities were determined for anhydrous samples with orthorhombic lattice symmetry and a large specific surface area. The increase in the specific surface area is due to crack formation and to the loss of the hydrate water after calcination at 300 °C. The results support the proposed antimicrobial mechanism for transition metal oxides, which based on a local acidity increase as a consequence of the augmented specific surface area. - Highlights: • Molybdenum trioxide dihydrate (MoO{sub 3} × 2H{sub 2}O) and anhydrous MoO{sub 3} after calcination exhibit exceptional antimicrobial activities • Especially the orthorhombic samples with a large specific surface area show excellent antimicrobial properties. • The increased specific surface area is due to crack formation and to loss of hydrate water after calcination at 300 °C. • Increased a local acidity as a consequence of the augmented surface area is related to the antimicrobial characteristics.

  4. Structural and antimicrobial properties of irradiated chitosan and its complexes with zinc

    International Nuclear Information System (INIS)

    Khan, Azam; Mehmood, Shaukat; Shafiq, Muhammad; Yasin, Tariq; Akhter, Zareen; Ahmad, Shabir

    2013-01-01

    The aim of this research was to evaluate the structural and antimicrobial properties of irradiated chitosan and its complexes with zinc. Chitosan having a molecular weight (M η ) of 220 kDa was exposed to gamma rays in dry, wet and solution forms. The chitosan-zinc complexes were prepared by varying the M η of chitosan and Zn content. Viscometeric analysis revealed a sharp decrease in the M η of chitosan irradiated in solution form even at lower doses compared with the dry and wet forms. X-ray diffraction patterns demonstrated variation in the crystallinity of chitosan upon exposure to gamma rays. The antibacterial response of the irradiated chitosan and its complexes against gram-positive and gram-negative bacteria demonstrated wide spectrum of effective antimicrobial activities, which increased with the dose. Additionally, the complexes exhibited excellent antifungal activity with no growth of Aspergallious fumigatus and Fusarium solani even after two weeks. These results suggested that the irradiated chitosan and its complexes with Zn can be used as antimicrobial additives for various applications. - Highlights: • Gamma radiation is used to lower the molecular weight of chitosan. • The effect of environment on radiation degradation of chitosan is studied. • Its complexes with different amount of zinc are prepared and characterized. • Radiation-degraded chitosan and complexes showed good antibacterial properties

  5. Study on Europium-Doped Hydroxyapatite Nanoparticles by Fourier Transform Infrared Spectroscopy and Their Antimicrobial Properties

    Directory of Open Access Journals (Sweden)

    Simona-Liliana Iconaru

    2013-01-01

    Full Text Available Fourier transform infrared spectroscopy (FT-IR analysis was conducted on europium-doped hydroxyapatite, Ca10-xEux(PO46(OH2 nanocrystalline powders (Eu:HAp with 0≤xEu≤0.2. Antimicrobial studies were also performed for the first time on Eu:HAp. The antimicrobial properties of Eu:HAp nanoparticles with 0≤xEu≤0.2 on Gram-negative (E. coli ATCC 25922, Pseudomonas aeruginosa 1397 and Gram-positive (Staphylococcus aureus 0364, Enterococcus faecalis ATCC 29212 bacteria systems and a species of fungus (Candida albicans ATCC 10231 were reported. Our study demonstrates that the antimicrobial activity of Eu:HAp nanoparticles is dependent on the europium concentration.

  6. Mechanical, material, and antimicrobial properties of acrylic bone cement impregnated with silver nanoparticles.

    Science.gov (United States)

    Slane, Josh; Vivanco, Juan; Rose, Warren; Ploeg, Heidi-Lynn; Squire, Matthew

    2015-03-01

    Prosthetic joint infection is one of the most serious complications that can lead to failure of a total joint replacement. Recently, the rise of multidrug resistant bacteria has substantially reduced the efficacy of antibiotics that are typically incorporated into acrylic bone cement. Silver nanoparticles (AgNPs) are an attractive alternative to traditional antibiotics resulting from their broad-spectrum antimicrobial activity and low bacterial resistance. The purpose of this study, therefore, was to incorporate metallic silver nanoparticles into acrylic bone cement and quantify the effects on the cement's mechanical, material and antimicrobial properties. AgNPs at three loading ratios (0.25, 0.5, and 1.0% wt/wt) were incorporated into a commercial bone cement using a probe sonication technique. The resulting cements demonstrated mechanical and material properties that were not substantially different from the standard cement. Testing against Staphylococcus aureus and Staphylococcus epidermidis using Kirby-Bauer and time-kill assays demonstrated no antimicrobial activity against planktonic bacteria. In contrast, cements modified with AgNPs significantly reduced biofilm formation on the surface of the cement. These results indicate that AgNP-loaded cement is of high potential for use in primary arthroplasty where prevention of bacterial surface colonization is vital. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Antimicrobial Activities and Time-Kill Kinetics of Extracts of Selected Ghanaian Mushrooms

    Directory of Open Access Journals (Sweden)

    Theresa Appiah

    2017-01-01

    Full Text Available The rapid rise of antimicrobial resistance is a worldwide problem. This has necessitated the need to search for new antimicrobial agents. Mushrooms are rich sources of potential antimicrobial agents. This study investigated the antimicrobial properties of methanol extracts of Trametes gibbosa, Trametes elegans, Schizophyllum commune, and Volvariella volvacea. Agar well diffusion, broth microdilution, and time-kill kinetic assays were used to determine the antimicrobial activity of the extracts against selected test organisms. Preliminary mycochemical screening revealed the presence of tannins, flavonoids, triterpenoids, anthraquinones, and alkaloids in the extracts. Methanol extracts of T. gibbosa, T. elegans, S. commune, and V. volvacea showed mean zone of growth inhibition of 10.00±0.0 to 21.50±0.84, 10.00±0.0 to 22.00±1.10, 9.00±0.63 to 21.83±1.17, and 12.00±0.0 to 21.17±1.00 mm, respectively. The minimum inhibitory concentration of methanol extracts of T. gibbosa, T. elegans, S. commune, and V. volvacea ranged from 4.0 to 20, 6.0 to 30.0, 8.0 to 10.0, and 6.0 to 20.0 mg/mL, respectively. Time-kill kinetics studies showed that the extracts possess bacteriostatic action. Methanol extracts of T. gibbosa, T. elegans, S. commune, and V. volvacea exhibited antimicrobial activity and may contain bioactive compounds which may serve as potential antibacterial and antifungal agents.

  8. Effect of deposition time of sputtering Ag-Cu thin film on mechanical and antimicrobial properties

    Science.gov (United States)

    Purniawan, A.; Hermastuti, R.; Purwaningsih, H.; Atmono, T. M.

    2018-04-01

    Metallic implants are important components in biomedical treatment. However, post-surgery infection often occurs after installation of implant. The infections are usually treated by antibiotics, but it still causes several secondary problems. As a prevention treatment, the surgical instruments and implants must be in a sterile condition. This action is still not optimal too because the material still can attract the bacteria. From material science point of view, it can be anticipated by developing a type of material which has antibacterial properties or called antimicrobial material. Silver (Ag) and Copper (Cu) have antimicrobial properties to prevent the infection. In this research, the influence of deposition time of Ag-Cu thin film deposition process as antimicrobial material with Physical Vapor Deposition (PVD) RF Sputtering method was analyzed. Deposition time used were for 10, 15 and 20 minutes in Argon gas pressure around 3 x 10-2 mbar in during deposition process. The morphology and surface roughness of Ag-Cu thin film were characterized using SEM and AFM. Based on the results, the deposition time influences the quality morphology that the thin films have good homogeneity and complete structure for longer deposition time. In addition, from roughness measurement results show that increase deposition time decrease the roughness of thin film. Antimicrobial performance was analyzed using Kirby Bauer Test. The results show that all of sample have good antimicrobial inhibition. Adhesion quality was evaluated using Rockwell C Indentation Test. However, the results indicate that the Ag-Cu thin film has low adhesion strength.

  9. Amino Acid Block Copolymers with Broad Antimicrobial Activity and Barrier Properties.

    Science.gov (United States)

    Bevilacqua, Michael P; Huang, Daniel J; Wall, Brian D; Lane, Shalyn J; Edwards, Carl K; Hanson, Jarrod A; Benitez, Diego; Solomkin, Joseph S; Deming, Timothy J

    2017-10-01

    Antimicrobial properties of a long-chain, synthetic, cationic, and hydrophobic amino acid block copolymer are reported. In 5 and 60 min time-kill assays, solutions of K 100 L 40 block copolymers (poly(l-lysine·hydrochloride) 100 -b-poly(l-leucine) 40 ) at concentrations of 10-100 µg mL -1 show multi-log reductions in colony forming units of Gram-positive and Gram-negative bacteria, as well as yeast, including multidrug-resistant strains. Driven by association of hydrophobic segments, K 100 L 40 copolymers form viscous solutions and self-supporting hydrogels in water at concentrations of 1 and 2 wt%, respectively. These K 100 L 40 preparations provide an effective barrier to microbial contamination of wounds, as measured by multi-log decreases of tissue-associated bacteria with deliberate inoculation of porcine skin explants, porcine open wounds, and rodent closed wounds with foreign body. Based on these findings, amino acid copolymers with the features of K 100 L 40 can combine potent, direct antimicrobial activity and barrier properties in one biopolymer for a new approach to prevention of wound infections. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Criminalization of 'Possession of Unexplained Property' and the ...

    African Journals Online (AJOL)

    Worku_Y

    government operating costs, increases government spending for wages and ... revenues by plundering revenue generating agencies such as tax collection, ..... a) the assets under the ownership or possession of himself and his family; and.

  11. Effect of surface properties of NiFe2O4 nanoparticles synthesized by dc thermal plasma route on antimicrobial activity

    Science.gov (United States)

    Bhosale, S. V.; Ekambe, P. S.; Bhoraskar, S. V.; Mathe, V. L.

    2018-05-01

    The present work reports the role of surface properties of NiFe2O4 nanoparticles on the antimicrobial activity. The NiFe2O4 nanoparticles were synthesized by gas phase condensation and chemical co-precipitation route. These nanoparticles were extensively investigated using X-ray diffraction, transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and electro-kinetic property measurements. The HRTEM was used to analyze surface morphology of nickel ferrite nanoparticles obtained by two different routes. Electro-kinetic properties of the nanoparticles under investigation were recorded, analyzed and correlated with the antimicrobial properties. It was observed that nickel ferrite nanoparticles synthesized by thermal plasma route (NFOTP) formed highly stable colloidal solution as compared to chemically synthesized (NFOCP), as the later tends to agglomerate due to low surface charge. The antimicrobial activity of NiFe2O4 nanoparticles were investigated on two Gram positive bacteria Staphylococcus aureus and Streptococcus pyogenes, two Gram negative bacteria Escherichia coli and Salmonella typhimurium and one fungal species Candida albicans. It was noted that the surface properties of NiFe2O4 particles have revealing effect on the antimicrobial activity. The NFOTP nanoparticles showed significant activity for gram negative E. coli bacteria however no activity was observed for other bacteria's and fungi under study. Moreover NFOCP particles did not show any significant activity for both bacteria's and fungi. Further, antimicrobial activity of nickel ferrite nanoparticles were studied even for different concentration to obtain the minimum inhibition concentration (MIC).

  12. Anti-Microbial Activity and Spectro-Chemical Investigation of Ink Extracts of Sepiella inermis (Van Hasselt 1835

    Directory of Open Access Journals (Sweden)

    Dasal VASANTHARAJA

    2014-09-01

    Full Text Available The crude petroleum ether and methanol ink extracts of Sepiella inermis were tested for their antimicrobial activity against human pathogenic fungi and bacteria by disc diffusion method. Spectral analysis was carried out by UV-VIS spectrophotometer, FT-IR, Raman IR and GC-MS. Of the two solvent extracts, only methanol extract was active and no activity was detected in petroleum ether extract. The human pathogenic fungus Candida albicans and bacterium Proteus vulgaris were found to be highly sensitive, with an inhibition zone of 20 and 19 mm respectively. GC-MS of methanol ink extract revealed sixteen compounds belonging to the derivatives of dihydroxy indole-2-carboxylic acid and dihydroxyindole. These investigations proved that methanol ink extract of Sepiella inermis possess significant antimicrobial property against both fungus and gram –ve bacteria. Since ink of sepia is available abundantly as a waste material, studies focused on isolation and characterization of bioactive substances pave the way for new antimicrobial compounds.

  13. Effects of oregano oil, carvacrol, cinnamaldehyde, and citral on antimicrobial, mechanical and barrier properties of carrot puree films

    Science.gov (United States)

    Wang, Xinwei; Liu, Huan; Wei, Jing; Ma, Zhongsu

    2011-02-01

    The effects against staphfloccus aureus and escherichia coli of oregano oil, carvacrol, cinnamaldehyde, and citral in chitosan-corn starch-gelatin-carrot puree films at 0.5% to 3% (w/w) concentrations were investigated along with the mechanical and barrier properties of the films. The presence of oregano oil, carvacrol, cinnamaldehyde, and citral did not change the good oxygen barrier of the films, but did significantly modify tensile properties and water vapor permeability, and made films darker. The data also show that the antimicrobial activities were in the following order: cinnamaldehyde > carvacrol > oregano oil > citral. Moreover, the antimicrobial films were more effective against staphfloccus aureus than against the escherichia coli. This study showed that oregano oil, carvacrol, cinnamaldehyde, and citral, especially the first three, could be used to prepare antimicrobial edible films for food applications.

  14. Current state of a dual behaviour of antimicrobial peptides-Therapeutic agents and promising delivery vectors.

    Science.gov (United States)

    Piotrowska, Urszula; Sobczak, Marcin; Oledzka, Ewa

    2017-12-01

    Micro-organism resistance is an important challenge in modern medicine due to the global uncontrolled use of antibiotics. Natural and synthetic antimicrobial peptides (AMPs) symbolize a new family of antibiotics, which have stimulated research and clinical interest as new therapeutic options for infections. They represent one of the most promising antimicrobial substances, due to their broad spectrum of biological activity, against bacteria, fungi, protozoa, viruses, yeast and even tumour cells. Besides, being antimicrobial, AMPs have been shown to bind and neutralize bacterial endotoxins, as well as possess immunomodulatory, anti-inflammatory, wound-healing, angiogenic and antitumour properties. In contrast to conventional antibiotics, which have very defined and specific molecular targets, host cationic peptides show varying, complex and very rapid mechanisms of actions that make it difficult to form an effective antimicrobial defence. Importantly, AMPs display their antimicrobial activity at micromolar concentrations or less. To do this, many peptide-based drugs are commercially available for the treatment of numerous diseases, such as hepatitis C, myeloma, skin infections and diabetes. Herein, we present an overview of the general mechanism of AMPs action, along with recent developments regarding carriers of AMPs and their potential applications in medical fields. © 2017 John Wiley & Sons A/S.

  15. Antimicrobial Peptides (AMPs

    Directory of Open Access Journals (Sweden)

    Mehrzad Sadredinamin

    2016-04-01

    Full Text Available Antimicrobial peptides (AMPs are extensive group of molecules that produced by variety tissues of invertebrate, plants, and animal species which play an important role in their immunity response. AMPs have different classifications such as; biosynthetic machines, biological sources, biological functions, molecular properties, covalent bonding patterns, three dimensional structures, and molecular targets.These molecules have multidimensional properties including antimicrobial activity, antiviral activity, antifungal activity, anti-parasite activity, biofilm control, antitumor activity, mitogens activity and linking innate to adaptive immunity that making them promising agents for therapeutic drugs. In spite of this advantage of AMPs, their clinical developments have some limitation for commercial development. But some of AMPs are under clinical trials for the therapeutic purpose such as diabetic foot ulcers, different bacterial infections and tissue damage. In this review, we emphasized on the source, structure, multidimensional properties, limitation and therapeutic applications of various antimicrobial peptides.

  16. Characterisation and functional properties of antimicrobial bio-barriers formed by natural fibres.

    Science.gov (United States)

    Tomšič, Brigita; Ilec, Eva; Žerjav, Metka; Hladnik, Aleš; Simončič, Andrej; Simončič, Barbara

    2014-10-01

    Antimicrobial bio-barriers formed on cotton (CO), silk (SE), and woollen (WO) fabrics were prepared by the application of 3-(trimethoxysilyl)-propyldimethyloctadecyl ammonium chloride (Si-QAC) at 11 concentrations ranging from 0.5% to 20% using an exhaustion method. The presence of the Si-QAC coating on the treated fabric samples was detected by X-ray photoelectron spectroscopy. The bromophenol blue reagent was used to determine the concentration of quaternary ammonium groups in the coating. The antimicrobial activity of the coated fibres against Gram-negative and Gram-positive bacteria (Escherichia coli and Staphylococcus aureus), fungi (Aspergillus niger and Chaetomium globosum), and soil microflora was assessed using standard microbiological methods. The antimicrobial protection of the fibres increased with increases in the applied concentration of Si-QAC. The fibre type strongly influenced the antimicrobial activity of Si-QAC. Si-QAC was most effective for CO fibres, less effective for WO fibres, and least effective for SE fibres, suggesting that Si-QAC is less accessible for interactions with microorganisms when applied to protein fibres than to cellulose. Although Si-QAC reduced the microbial growth, it did not significantly hinder the biodegradability or sustainability of the coated fibres when exposed to soil microflora. The extent of rotting was more influenced by the morphological and chemical properties of the fibres than by the presence of Si-QAC. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Alternative Antimicrobial Approach: Nano-Antimicrobial Materials

    Directory of Open Access Journals (Sweden)

    Nurit Beyth

    2015-01-01

    Full Text Available Despite numerous existing potent antibiotics and other antimicrobial means, bacterial infections are still a major cause of morbidity and mortality. Moreover, the need to develop additional bactericidal means has significantly increased due to the growing concern regarding multidrug-resistant bacterial strains and biofilm associated infections. Consequently, attention has been especially devoted to new and emerging nanoparticle-based materials in the field of antimicrobial chemotherapy. The present review discusses the activities of nanoparticles as an antimicrobial means, their mode of action, nanoparticle effect on drug-resistant bacteria, and the risks attendant on their use as antibacterial agents. Factors contributing to nanoparticle performance in the clinical setting, their unique properties, and mechanism of action as antibacterial agents are discussed in detail.

  18. Chemical synthesis, characterization and evaluation of antimicrobial properties of Cu and its oxide nanoparticles

    CSIR Research Space (South Africa)

    Motlatle, Abesach M

    2016-10-01

    Full Text Available of Nanoparticle Research, vol. 18: DOI: 10.1007/s11051-016-3614-8 Chemical synthesis, characterization and evaluation of antimicrobial properties of Cu and its oxide nanoparticles Motlatle AM Kesevan Pillai S Scriba MR Ray SS ABSTRACT: Cu...

  19. Study on chemical, bioactive and food preserving properties of Laetiporus sulphureus (Bull.: Fr.) Murr.

    Science.gov (United States)

    Petrović, Jovana; Stojković, Dejan; Reis, Filipa S; Barros, Lillian; Glamočlija, Jasmina; Ćirić, Ana; Ferreira, Isabel C F R; Soković, Marina

    2014-07-25

    Laetiporus sulphureus (Bull.: Fr.) Murr. was studied to determine the nutritional value, bioactive compounds, in vitro antioxidants, and antimicrobial and antitumor activities. The studied mushroom is a rich source of carbohydrates and proteins. Mannitol and trehalose were the main free sugars. In addition, the polyunsaturated fatty acids α-, γ- and δ-tocopherols were found. Oxalic and citric acids were the most abundant organic acids; cinnamic and p-hydroxybenzoic acids were quantified in the methanolic extract and could be related to the antioxidant properties. It was the polysaccharidic extract that exhibited higher antioxidant and antimicrobial activities, indicating that the compounds present in this extract possess stronger bioactivity. Only the polysaccharidic extract revealed antiproliferative activity in human tumor cell lines. In addition, a suitable model system with chicken pâté was developed to test the antimicrobial preserving properties of L. sulphureus. The methanolic extract was used to examine in situ preserving properties against Aspergillus flavus and demonstrated excellent preserving potential.

  20. ANTIOXIDANT AND ANTIMICROBIAL PROPERTIES OF STEVIA LEAVES EXTRACTS AND SILVER NANOPARTICLES COLLOIDS

    Directory of Open Access Journals (Sweden)

    Iryna Laguta

    2016-12-01

    Full Text Available Three extracts of Stevia rebaudiana (Bertoni were prepared using various types of raw materials: leaves of plants grown ex situ, leaves of plants grown in vitro, callus culture formed on damaged leaves. Composition of the extracts, their activity in the synthesis of silver nanoparticles colloids, as well as antioxidant and antimicrobial properties of the extracts and the colloids were investigated.

  1. Antimicrobial and plant growth-promoting properties of the cacao endophyte Bacillus subtilis ALB629.

    Science.gov (United States)

    Falcäo, L L; Silva-Werneck, J O; Vilarinho, B R; da Silva, J P; Pomella, A W V; Marcellino, L H

    2014-06-01

    To investigate the effects of the endophyte Bacillus subtilisALB629 on the growth of cacao seedlings at early developmental stage and to evaluate its antimicrobial properties. Germinating cacao seeds were inoculated with ALB629, and seedlings growth was evaluated 30 days later. Significant increase (P cacao-grafting procedure in the field, ALB629 increased the grafting success rate (24%), indicating its protective effect. In addition, this Bacillus secretes an antagonist compound, as shown by the antifungal activity of the cell-free culture. Bacillus subtilisALB629 promotes cacao root growth, besides promoting growth of the aerial part of cacao seedlings. It has antimicrobial properties and produces an antifungal compound. ALB629 presented beneficial characteristics for cacao cultivation, being a good biological control agent candidate. Furthermore, it is a potential source of antifungal compound with potential for commercial exploitation. © 2014 The Society for Applied Microbiology.

  2. Biologically Active and Antimicrobial Peptides from Plants

    Directory of Open Access Journals (Sweden)

    Carlos E. Salas

    2015-01-01

    Full Text Available Bioactive peptides are part of an innate response elicited by most living forms. In plants, they are produced ubiquitously in roots, seeds, flowers, stems, and leaves, highlighting their physiological importance. While most of the bioactive peptides produced in plants possess microbicide properties, there is evidence that they are also involved in cellular signaling. Structurally, there is an overall similarity when comparing them with those derived from animal or insect sources. The biological action of bioactive peptides initiates with the binding to the target membrane followed in most cases by membrane permeabilization and rupture. Here we present an overview of what is currently known about bioactive peptides from plants, focusing on their antimicrobial activity and their role in the plant signaling network and offering perspectives on their potential application.

  3. Biologically Active and Antimicrobial Peptides from Plants

    Science.gov (United States)

    Salas, Carlos E.; Badillo-Corona, Jesus A.; Ramírez-Sotelo, Guadalupe; Oliver-Salvador, Carmen

    2015-01-01

    Bioactive peptides are part of an innate response elicited by most living forms. In plants, they are produced ubiquitously in roots, seeds, flowers, stems, and leaves, highlighting their physiological importance. While most of the bioactive peptides produced in plants possess microbicide properties, there is evidence that they are also involved in cellular signaling. Structurally, there is an overall similarity when comparing them with those derived from animal or insect sources. The biological action of bioactive peptides initiates with the binding to the target membrane followed in most cases by membrane permeabilization and rupture. Here we present an overview of what is currently known about bioactive peptides from plants, focusing on their antimicrobial activity and their role in the plant signaling network and offering perspectives on their potential application. PMID:25815307

  4. Characterization of plasma-polymerized 4-vinyl pyridine with silver nanoparticies on poly(ethylene terephthalate) film for anti-microbial properties

    DEFF Research Database (Denmark)

    Jiang, J.; Winther-Jensen, Bjørn; Kjær, Erik Michael

    2006-01-01

    scanning electron microscopy (FE-SEM), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). Different thicknesses Of poly(4-vinyl pyridine) coating under different plasma polymerization conditions were studied. Silver nanoparticles with diameter around 50nm deposit were precipitated...... on the poly(4-vinyl pyridine) coating by UV irradiation in Silver nitride water solution, in order to enhance the anti-microbial properties. Different kinds of modified PET films were tested for anti-microbial properties against yeast (Debaryomyces hansenii) by using microbiological analyser mu-4200...

  5. Material Properties and Antimicrobial Activity of Polyhydroxybutyrate (PHB) Films Incorporated with Vanillin.

    Science.gov (United States)

    Xavier, Janifer Raj; Babusha, Sudalaimuthu Thangaraj; George, Johnsy; Ramana, Karna Venkata

    2015-07-01

    Polyhydroxybutyrate (PHB) was produced by Bacillus mycoides DFC 1, isolated from garden soil. Antimicrobial (AM) films of PHB were prepared by incorporating vanillin (4-hydroxy-3-methoxybenzaldehyde) from 10 to 200 μg/g of PHB. The films were assessed for antimicrobial activity against foodborne pathogens and spoilage bacteria comprising of Escherichia coli, Salmonella typhimurium, Shigella flexneri, and Staphylococcus aureus and fungi such as Aspergillus flavus, Aspergillus fumigatus, Aspergillus niger, Aspergillus parasiticus, Aspergillus ochraceus, Penicillium viridicatum, and Penicillium clavigerum. The minimum concentration of vanillin required to exhibit antimicrobial activity was ≥80 μg/g PHB for bacteria and ≥50 μg/g PHB for fungi. The PHB films with and without vanillin were studied for mechanical and thermal properties such as tensile strength, Young's modulus, percentage elongation to break, melting temperature, and heat of fusion. The thermal stability of the films was studied using thermogravimetric analysis. The release kinetics of vanillin into food matrices was also checked using food stimulants. The study is intended to find applications for PHB films containing vanillin to enhance the shelf life of foods in the form of biodegradable wrapper.

  6. A prawn core histone 4: derivation of N- and C-terminal peptides and their antimicrobial properties, molecular characterization and mRNA transcription.

    Science.gov (United States)

    Chaurasia, Mukesh Kumar; Palanisamy, Rajesh; Bhatt, Prasanth; Kumaresan, Venkatesh; Gnanam, Annie J; Pasupuleti, Mukesh; Kasi, Marimuthu; Harikrishnan, Ramaswamy; Arockiaraj, Jesu

    2015-01-01

    This study investigates the complete molecular characterization including bioinformatics characterization, gene expression, synthesis of N and C terminal peptides and their antimicrobial activity of the core histone 4 (H4) from freshwater giant prawn Macrobrachium rosenbergii (Mr). A cDNA encoding MrH4 was identified from the constructed cDNA library of M. rosenbergii during screening and the sequence was obtained using internal sequencing primers. The MrH4 coding region possesses a polypeptide of 103 amino acids with a calculated molecular weight of 11kDa and an isoelectric point of 11.5. The bioinformatics analysis showed that the MrH4 polypeptide contains a H4 signature at (15)GAKRH(19). Multiple sequence alignment of MrH4 showed that the N-terminal (21-42) and C-terminal (87-101) antimicrobial peptide regions and the pentapeptide or H4 signature (15-19) are highly conserved including in humans. The phylogenetic tree formed two separate clades of vertebrate and invertebrate H4, wherein MrH4 was located within the arthropod monophyletic clade of invertebrate H4 groups. Three-dimensional model of MrH4 was established using I-TASSER program and the model was validated using Ramachandran plot analysis. Schiffer-Edmundson helical wheel modeling was used to predict the helix propensity of N (21-42) and C (87-101) terminal derived Mr peptides. The highest gene expression was observed in gills and is induced by viral [white spot syndrome baculovirus (WSBV) and M. rosenbergii nodovirus (MrNV)] and bacterial (Aeromonas hydrophila and Vibrio harveyi) infections. The N and C terminal peptides were synthesized and their antimicrobial and hemolytic properties were examined. Both peptides showed activity against the tested Gram negative and Gram positive bacteria; however, the highest activity was noticed against Gram negative bacteria. Among the two peptides used in this study, C-terminal peptide yielded better results than the N-terminal peptide. Therefore, C terminal

  7. antimicrobial properties of some natural and synthetic fabrics modified by radiation treatments

    International Nuclear Information System (INIS)

    Mohamed, R.M.A.

    2008-01-01

    natural and synthetic fabrics have been treated with different antimicrobial metal complexes under the effect of gamma radiation . in this regard, cotton, cotton/PET blend and PET were grafted with acrylic acid by gamma radiation and this grafted fabrics were complexed with Cu(ll),Ni(ll)and Co(ll) metal ions . the antimicrobial properties were evaluated by the measurement of tensile strength of fabrics after burring in a soil for one and two weeks as well as the effect of this treatment on the growth of certain bacteria and fungi incubated on a culture for 48 hours. the results showed that the highest protection to cotton, cotton/PET blend and PET fabrics by using Cu(ll) ion in the complexation process, where the order of protection by metals is Cu(ll) > Co(ll)> Ni(ll), moreover, the more grafted fabrics the more complexed fabrics with metal ions and is higher protection against microorganisms . the treatment with the metal ions has nearly no effect on the chemical and physical properties of the natural or the synthetic fabrics as indicated from the analysis by TGA, sem, ion exchange testing and wettability testing.

  8. Plants of the Melaleuca Genus as Antimicrobial Agents: From Farm to Pharmacy.

    Science.gov (United States)

    Sharifi-Rad, Javad; Salehi, Bahare; Varoni, Elena Maria; Sharopov, Farukh; Yousaf, Zubaida; Ayatollahi, Seyed Abdulmajid; Kobarfard, Farzad; Sharifi-Rad, Mehdi; Afdjei, Mohammad Hossain; Sharifi-Rad, Majid; Iriti, Marcello

    2017-10-01

    Plants belonging to Melaleuca genus (Myrtaceae family) are native to Oceania, where they have been used for ages by Aborigine people in Australian traditional medicine, mainly because of their broad-spectrum antimicrobial activity. Although, M. linariifolia, M. dissitiflora, and other species of Melaleuca can also be used, the tea tree oil, an essential oil obtained from M. alternifolia shows the longest history of medicinal uses. Tea tree oil contains for the 80-90% several monoterpenes (terpinen-4-ol, α-terpinene, 1,8-cineol, p-cymene, α-terpineol, α-pinene, terpinolene, limonene, and sabinene). Sesquiterpenes and aromatic compounds further compose this oil. The essential oil of Melaleuca spp. has been reported to possess effective antibacterial and antifungal properties in vitro. In particular, data show that 1,8-cineol, terpinen-4-ol and methyl eugenol play the key role in mediating this oil's antimicrobial activity. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  9. Structural characterization and antimicrobial properties of silver nanoparticles prepared by inverse microemulsion method.

    Science.gov (United States)

    Wani, Irshad A; Khatoon, Sarvari; Ganguly, Aparna; Ahmed, Jahangeer; Ahmad, Tokeer; Manzoor, Nikhat

    2013-01-01

    Silver nanoparticles have been synthesized in the inverse microemulsions formed using three different surfactants viz., cetyl-trimethyl ammonium bromide (CTAB), Tergitol and Triton X-100. We have done a systematic study of the effect of the surfactants on the particle size and properties of the silver nanoparticles. Microscopic studies show the formation of spheres, cubes and discs shaped silver nanostructures with the size in the range from 8 to 40 nm. Surface plasmon resonance (SPR) peak was observed around 400 nm and 500 nm. In addition to SPR some extra peaks have also been observed due to the formation of silver metal clusters. The surface area increases from 3.45 to 15.06 m(2)/g with decreasing the size of silver nanoparticles (40-8 nm). To investigate the antimicrobial activity of silver nanoparticles, the nanoparticles were tested against the yeast, Candida albicans and the bacterium, E. coli. The results suggest very good antimicrobial activity of the silver nanoparticles against the test microbes. The mode of action of the antimicrobial activity was also proposed. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Anti-Microbial Activity and Spectro-Chemical Investigation of Ink Extracts of Sepiella inermis (Van Hasselt 1835

    Directory of Open Access Journals (Sweden)

    Dasal VASANTHARAJA

    2014-09-01

    Full Text Available The crude petroleum ether and methanol ink extracts of Sepiella inermis were tested for their antimicrobial activity against human pathogenic fungi and bacteria by disc diffusion method. Spectral analysis was carried out by UV-VIS spectrophotometer, FT-IR, Raman IR and GC-MS. Of the two solvent extracts, only methanol extract was active and no activity was detected in petroleum ether extract. The human pathogenic fungus Candida albicans and bacterium Proteus vulgaris were found to be highly sensitive, with an inhibition zone of 20 and 19 mm respectively. GC-MS of methanol ink extract revealed sixteen compounds belonging to the derivatives of dihydroxy indole-2-carboxylic acid and dihydroxyindole. These investigations proved that methanol ink extract of Sepiella inermis possess significant antimicrobial property against both fungus and gram –ve bacteria. Since ink of sepia is available abundantly as a waste material, studies focused on isolation and characterization of bioactive substances pave the way for new antimicrobial compounds.

  11. Study of antimicrobial property of some hypoglycemic drugs

    Directory of Open Access Journals (Sweden)

    Arun Kumar Dash

    2011-01-01

    Full Text Available In the present work, a comparative antimicrobial study of different hypoglycemic drugs (Metformin, Phenformin, and Rosiglitazone was carried out. The main objective was to ascertain the antimicrobial activity by using "non-antibiotics" as the test substances. The antimicrobial activity was carried out against different bacteria and fungi namely Bacillus liceniformis, Escherichia coli, Proteus vulgaris, Pseudomonas aeruginosa, Shigella flexneri, Bacillus subtilis, Staphylococcus aureus subspp., and Staphylococcus epidermidis by using disc diffusion method and agar dilution method. Ciprofloxacin was taken as the standard antibiotic. The entire procedure was carried out in an aseptic area under the laminar flow by inoculating the bacterial strain to the agar media in which the drug solution was added. Different concentrations (300 and 400 μg/ml of the standard antibiotic and selected drugs were subjected for minimum inhibitory concentration, and zone of inhibition tests and the antimicrobial activity of the selected drugs were determined.

  12. Statistical metamodeling for revealing synergistic antimicrobial interactions.

    Directory of Open Access Journals (Sweden)

    Hsiang Chia Chen

    2010-11-01

    Full Text Available Many bacterial pathogens are becoming drug resistant faster than we can develop new antimicrobials. To address this threat in public health, a metamodel antimicrobial cocktail optimization (MACO scheme is demonstrated for rapid screening of potent antibiotic cocktails using uropathogenic clinical isolates as model systems. With the MACO scheme, only 18 parallel trials were required to determine a potent antimicrobial cocktail out of hundreds of possible combinations. In particular, trimethoprim and gentamicin were identified to work synergistically for inhibiting the bacterial growth. Sensitivity analysis indicated gentamicin functions as a synergist for trimethoprim, and reduces its minimum inhibitory concentration for 40-fold. Validation study also confirmed that the trimethoprim-gentamicin synergistic cocktail effectively inhibited the growths of multiple strains of uropathogenic clinical isolates. With its effectiveness and simplicity, the MACO scheme possesses the potential to serve as a generic platform for identifying synergistic antimicrobial cocktails toward management of bacterial infection in the future.

  13. Designing, synthesis, and antimicrobial action of oxazoline and thiazoline derivatives of fatty acid esters.

    Science.gov (United States)

    Ahmad, Anis; Ahmad, Aiman; Sudhakar, Raja; Varshney, Himani; Subbarao, Naidu; Ansari, Saba; Rauf, Abdul; Khan, Asad U

    2017-11-01

    In this study, a novel series of oxazoline and thiazoline were designed as inhibitors of cytochrome P450 14 alpha-sterol demethylase (CYP51) from Candida albicans and peptide deformylase (PDF) of Escherichia coli. The long chain dibromo derivative of fatty acid esters on reaction with urea and thiourea gave their corresponding oxazolines and thiazolines, respectively. All the compounds were characterized by their spectral data (IR, 1 H NMR, 13 C NMR and MS) and tested for antibacterial and antifungal activity by disk diffusion assay and minimum inhibitory concentration by the broth microdilution method against gram-positive and gram-negative strains of bacteria as well as fungus strains. The investigation into antimicrobial screening revealed that all the compounds were found to be potent antimicrobial agents. After calculating likeness drug properties of the compounds by Prediction of Activity Spectra for Substances software, ADMET-related descriptors were computed to predict the pharmacokinetic properties for the active and bioavailable compounds by discovery studio 2.5. Molecular docking studies have been performed on PDF of E. coli and CYP 450-14DM of C. albicans to understand the mode of binding of the molecules in the active site of the receptor. Compounds (2-amino-5-(carbomethoxyoctyl)-1,3-oxazoline, 2-amino-5-(carbomethoxyoctyl)-1,3-thiazoline and 2-amino-4-pentyl-5-[(8'R)-8' hydroxy (carbomethoxydecyl)-1,3-oxazoline) showed excellent antimicrobial activity nearly equivalent to the control compounds and compounds, 2-amino-4-octyl-5-(carbomethoxyheptyl)-1,3-oxazolin, 2-amino-4-(2'R)(2'-hydroxy octyl)-5-(carbomethoxyheptyl)-1,3-oxazoline and 2-amino-4-pentyl-5-[(8'R)-8'-hydroxy(carbomethoxy decyl)-1,3-oxazolineshowed vasodilation and antihypertensive properties. Furthermore, a computational analysis of physicochemical parameters revealed that the most of the compounds possessed drug-like attributes. Using Bioinformatics approach, we found a correlation

  14. Antimicrobial activity of the essential oil of wild-growing Micromeria thymifolia (Scop. Fritsch

    Directory of Open Access Journals (Sweden)

    MARIJA A. MARIN

    2015-04-01

    Full Text Available The genus Micromeria Benth. (Lamiaceae, Nepetoideae includes about 130 species, often aromatc. The essential oil and extracts of some Micromeria species have significant antioxidant, antibacterial and antifungal activities. Micromeria thymifolia is endemic species of the Balkan peninsula. It has been traditionally used in the Mediterranean area as condiment and medicinal plant. The aim of this study was to investigate antimicrobial properties of essential oil of wild Micromeria thymifolia against four Gram negative bacteria (Escherichia coli SY252, Pseudomonas aeruginosa ATCC27853, Salmonella enterica ATCC13076 and human patogen Burkholderia cepacia ATCC25416, four Gram positive bacteria (Enterococcus fecalis ATCC29212, Staphylococcus aureus ATCC25923, Bacillus subtilis ATCC6633, Listeria innocua ATCC33090 and two fungi strains (Candida albicans ATCC10231 and Saccharomyces cerevisiae ATCC9763. The MICs of M. thymifolia essential oil against tested bacteria and fungi was assessed using microtitre plate-based antimicrobial assay. MHB was used as growth media for bacteria, with exception of L. innocua when BHI was used, YPD was used for fungi. The results of our investigation showed that the essential oil of wild-growing M. thymifolia possess significant antimicrobial activity against all tested strains except the P. aeruginosa.

  15. Evaluation of Antimicrobial Activity of Root Extracts of Abitulon indicum

    Directory of Open Access Journals (Sweden)

    Krishna Rao MORTHA

    2015-06-01

    Full Text Available Antimicrobial activity of Abitulon indicum roots was studied against seven pathogenic bacteria and three fungal strains by agar well diffusion method. Antimicrobial activity was recorded for hexane, chloroform, methanol, ethanol and aqueous extracts. Alcohol (ethanol and methanol extracts exhibited the highest degree of antimicrobial activity compared to aqueous, chloroform and hexane extracts. Pseudomonas aeruginosa was turned out to be the most susceptible bacterium to the crude root chemical constituents, using the standard Tetracycline and Clotrimazole. Minimum inhibition concentration values of hexane, chloroform, methanol, ethanol and aqueous extracts were determined by the agar dilution method and ranged between 62.5 and 1,000 µg. The study suggested that the root extracts possess bioactive compounds with antimicrobial activity against the tested bacteria and fungi, revealing a significant scope to develop a novel broad spectrum of antimicrobial drug formulation from Abitulon indicum.

  16. in-vitro antimicrobial properties of aspilla africana (compositae).

    African Journals Online (AJOL)

    Dr Olaleye

    The in vitro anti-microbial activity of the petroleum ether, chloroform and methanol extracts of Aspilia africana. (Compositae) was studied. The bacterial used for the antimicrobial analysis consisted of 3 clinical strains of. Staphylococcus aureus, Bacillus subtilis, 2 clinical strains of Escherichia coli and Pseudomonas ...

  17. The Genus Artemisia: A 2012–2017 Literature Review on Chemical Composition, Antimicrobial, Insecticidal and Antioxidant Activities of Essential Oils

    Science.gov (United States)

    Singh, Pooja

    2017-01-01

    Essential oils of aromatic and medicinal plants generally have a diverse range of activities because they possess several active constituents that work through several modes of action. The genus Artemisia includes the largest genus of family Asteraceae has several medicinal uses in human and plant diseases aliments. Extensive investigations on essential oil composition, antimicrobial, insecticidal and antioxidant studies have been conducted for various species of this genus. In this review, we have compiled data of recent literature (2012–2017) on essential oil composition, antimicrobial, insecticidal and antioxidant activities of different species of the genus Artemisia. Regarding the antimicrobial and insecticidal properties we have only described here efficacy of essential oils against plant pathogens and insect pests. The literature revealed that 1, 8-cineole, beta-pinene, thujone, artemisia ketone, camphor, caryophyllene, camphene and germacrene D are the major components in most of the essential oils of this plant species. Oils from different species of genus Artemisia exhibited strong antimicrobial activity against plant pathogens and insecticidal activity against insect pests. However, only few species have been explored for antioxidant activity. PMID:28930281

  18. The Genus Artemisia: a 2012–2017 Literature Review on Chemical Composition, Antimicrobial, Insecticidal and Antioxidant Activities of Essential Oils

    Directory of Open Access Journals (Sweden)

    Abhay K. Pandey

    2017-09-01

    Full Text Available Essential oils of aromatic and medicinal plants generally have a diverse range of activities because they possess several active constituents that work through several modes of action. The genus Artemisia includes the largest genus of family Asteraceae has several medicinal uses in human and plant diseases aliments. Extensive investigations on essential oil composition, antimicrobial, insecticidal and antioxidant studies have been conducted for various species of this genus. In this review, we have compiled data of recent literature (2012–2017 on essential oil composition, antimicrobial, insecticidal and antioxidant activities of different species of the genus Artemisia. Regarding the antimicrobial and insecticidal properties we have only described here efficacy of essential oils against plant pathogens and insect pests. The literature revealed that 1, 8-cineole, beta-pinene, thujone, artemisia ketone, camphor, caryophyllene, camphene and germacrene D are the major components in most of the essential oils of this plant species. Oils from different species of genus Artemisia exhibited strong antimicrobial activity against plant pathogens and insecticidal activity against insect pests. However, only few species have been explored for antioxidant activity.

  19. Edible films from essential-oil-loaded nanoemulsions: physicochemical characterization and antimicrobial properties

    OpenAIRE

    Acevedo Fani, Alejandra; Salvia Trujillo, Laura; Rojas Grau, María Alejandra; Martín Belloso, Olga

    2015-01-01

    Edible films including active ingredients can be used as an alternative to preserve food products. Essential oils (EOs) exhibit antimicrobial activity against pathogenic microorganisms but their low water solubility limits the application in foods. To improve water dispersion and protect EOs from degradation, nano-sized emulsions emerge as a viable alternative. Nanoemulsions containing EOs and polysaccharides could be used to form edible films with functional properties. This study was focuse...

  20. Antimicrobial properties of zeolite-X and zeolite-A ion-exchanged with silver, copper, and zinc against a broad range of microorganisms.

    Science.gov (United States)

    Demirci, Selami; Ustaoğlu, Zeynep; Yılmazer, Gonca Altın; Sahin, Fikrettin; Baç, Nurcan

    2014-02-01

    Zeolites are nanoporous alumina silicates composed of silicon, aluminum, and oxygen in a framework with cations, water within pores. Their cation contents can be exchanged with monovalent or divalent ions. In the present study, the antimicrobial (antibacterial, anticandidal, and antifungal) properties of zeolite type X and A, with different Al/Si ratio, ion exchanged with Ag(+), Zn(2+), and Cu(2+) ions were investigated individually. The study presents the synthesis and manufacture of four different zeolite types characterized by scanning electron microscopy and X-ray diffraction. The ion loading capacity of the zeolites was examined and compared with the antimicrobial characteristics against a broad range of microorganisms including bacteria, yeast, and mold. It was observed that Ag(+) ion-loaded zeolites exhibited more antibacterial activity with respect to other metal ion-embedded zeolite samples. The results clearly support that various synthetic zeolites can be ion exchanged with Ag(+), Zn(2+), and Cu(2+) ions to acquire antimicrobial properties or ion-releasing characteristics to provide prolonged or stronger activity. The current study suggested that zeolite formulations could be combined with various materials used in manufacturing medical devices, surfaces, textiles, or household items where antimicrobial properties are required.

  1. Litsea glutinosa (Lauraceae: Evaluation of its Foliar Phytochemical Constituents for Antimicrobial Activity

    Directory of Open Access Journals (Sweden)

    Mutyala Naidu LAGUDU

    2018-03-01

    Full Text Available The phytochemical investigation of the leaves of Litsea glutinosa revealed the presence of secondary metabolites like alkaloids, anthraquinones, cardiac glycosides, flavonoids, glycosides, phenols, saponins, steroids, tannins, terpenoids, volatile compounds, amino acids and carbohiydrates. The antimicrobial activity and minimum inhibition concentration values were determined for these phytochemical constituents as crude extracts using the agar well diffusion and two-fold serial dilution methods. The results indicated that Bacillus subtilis was the most susceptible bacterium with high inhibition zones for the methanol and chloroform extracts of 31 mm and 26 mm, respectively. The MIC values indicated that extracts possess good antimicrobial activity with significant MIC value against Enterococcus faecalis, Pseudomonas aeruginosa and Staphylococcus pneumoniae at 31.2 µg/ml concentrations. The extracts showed marked antimicrobial activity against both bacteria and fungi. Among the bacterial strains, gram-positive bacteria were more susceptible than the gram-negative. All the 13 microorganisms tested showed dose dependent susceptibility towards the phytochemicals present in the foliar extracts. The study suggests that Litsea glutinosa leaves possess potent antimicrobial activity and can be a good source for the development of new antibiotics.

  2. Behaviour of laser metal deposited Ti6Al4V/ Cu composites in Hank’s solution in terms of biocompatibility properties

    CSIR Research Space (South Africa)

    Erinosho, MF

    2016-01-01

    Full Text Available Ti6Al4V alloy is a well-known material for biomedical application due to the very excellent corrosion resistance it possessed. Cu has an excellent antimicrobial property and stabilizes the immune system of the body activities. In this present study...

  3. Cultivated strains of Agaricus bisporus and A. brasiliensis: chemical characterization and evaluation of antioxidant and antimicrobial properties for the final healthy product--natural preservatives in yoghurt.

    Science.gov (United States)

    Stojković, Dejan; Reis, Filipa S; Glamočlija, Jasmina; Ćirić, Ana; Barros, Lillian; Van Griensven, Leo J L D; Ferreira, Isabel C F R; Soković, Marina

    2014-07-25

    Agaricus bisporus (J. E. Lange) Emil J. Imbach and Agaricus brasiliensis Wasser, M. Didukh, Amazonas & Stamets are edible mushrooms. We chemically characterized these mushrooms for nutritional value, hydrophilic and lipophilic compounds. The antioxidant and antimicrobial activities of methanolic and ethanolic extracts were assessed. Hepatotoxicity was also evaluated. The ethanolic extract of both species was tested for inhibition of Listeria monocytogenes growth in yoghurt. Both species proved to be a good source of bioactive compounds. A. brasiliensis was richer in polyunsaturated fatty acids and revealed the highest concentration of phenolic acids, and tocopherols. A. bisporus showed the highest monounsaturated fatty acids and ergosterol contents. A. brasiliensis revealed the highest antioxidant potential, and its ethanolic extract displayed the highest antibacterial potential; the methanolic extract of A. bisporus revealed the highest antifungal activity. A. brasiliensis possessed better preserving properties in yoghurt.

  4. Antimicrobial activity of Diospyros melanoxylon bark from Similipal ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-05-04

    May 4, 2009 ... However, very limited studies on medicinal plants in general and antimicrobial ..... Recio MC (1989). A review of some antimicrobial compounds isolated ... Rwandese medicinal plants for antimicrobial and antiviral properties.

  5. Antimicrobial hyperbranched poly(ester amide)/polyaniline nanofiber modified montmorillonite nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Pramanik, Sujata [Advanced Polymer and Nanomaterial Laboratory, Department of Chemical Sciences, Tezpur University, Tezpur 784028 (India); Bharali, Pranjal; Konwar, B.K. [Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028 (India); Karak, Niranjan, E-mail: karakniranjan@yahoo.com [Advanced Polymer and Nanomaterial Laboratory, Department of Chemical Sciences, Tezpur University, Tezpur 784028 (India)

    2014-02-01

    There has been growing interest in the use of nanomaterials featuring potent of antimicrobial activity in the biomedical domain. It still remains a challenge for the researchers to develop an efficient nanocomposite possessing antimicrobial efficacy against broad spectrum microbes including bacteria, fungi as well as algal consortium, posing serious challenges for the human survival. In addressing the above problem, we report the fabrication of bio-based hyperbranched poly(ester amide) (HBPEA)/polyaniline nanofiber modified montmorillonite (MMT) nanocomposites by an ex-situ polymerization technique at varied weight percentages (1, 2.5, 5 wt.%) of the modified MMT (nanohybrid). The Fourier transform infrared spectroscopy confirmed the structural changes upon interaction of the nanohybrid with HBPEA. A probable mechanism is proposed for the formation of nanocomposites with partially exfoliated nanoplatelet structure, which was further confirmed from the high resolution transmission electron microscopic analyses. The prepared nanocomposites exhibited potent efficacy against gram positive bacteria like Bacillus subtilis and Staphylococcus aureus as compared to the gram negative ones like Pseudomonas aeruginosa and Escherichia coli. The nanocomposites showed significant antifungal activity against Aspergillus niger, Fusarium oxysporum and Coleotricum capcii and antialgal activity against algal consortium comprising of Chlorella, Hormidium and Cladophorella species. The formation of thermosetting nanocomposites resulted in the acceptable improvement of desired physico-chemical and mechanical properties including thermostability. Thus pronounced antimicrobial activity of the nanocomposites against a spectrum of bacterial and fungal strains as well as a consortium of algal species along with other desired performance vouched them as potent antimicrobial materials in the realm of health and biomedical industry. - Highlights: • A possible approach for fabrication of the

  6. Antimicrobial hyperbranched poly(ester amide)/polyaniline nanofiber modified montmorillonite nanocomposites

    International Nuclear Information System (INIS)

    Pramanik, Sujata; Bharali, Pranjal; Konwar, B.K.; Karak, Niranjan

    2014-01-01

    There has been growing interest in the use of nanomaterials featuring potent of antimicrobial activity in the biomedical domain. It still remains a challenge for the researchers to develop an efficient nanocomposite possessing antimicrobial efficacy against broad spectrum microbes including bacteria, fungi as well as algal consortium, posing serious challenges for the human survival. In addressing the above problem, we report the fabrication of bio-based hyperbranched poly(ester amide) (HBPEA)/polyaniline nanofiber modified montmorillonite (MMT) nanocomposites by an ex-situ polymerization technique at varied weight percentages (1, 2.5, 5 wt.%) of the modified MMT (nanohybrid). The Fourier transform infrared spectroscopy confirmed the structural changes upon interaction of the nanohybrid with HBPEA. A probable mechanism is proposed for the formation of nanocomposites with partially exfoliated nanoplatelet structure, which was further confirmed from the high resolution transmission electron microscopic analyses. The prepared nanocomposites exhibited potent efficacy against gram positive bacteria like Bacillus subtilis and Staphylococcus aureus as compared to the gram negative ones like Pseudomonas aeruginosa and Escherichia coli. The nanocomposites showed significant antifungal activity against Aspergillus niger, Fusarium oxysporum and Coleotricum capcii and antialgal activity against algal consortium comprising of Chlorella, Hormidium and Cladophorella species. The formation of thermosetting nanocomposites resulted in the acceptable improvement of desired physico-chemical and mechanical properties including thermostability. Thus pronounced antimicrobial activity of the nanocomposites against a spectrum of bacterial and fungal strains as well as a consortium of algal species along with other desired performance vouched them as potent antimicrobial materials in the realm of health and biomedical industry. - Highlights: • A possible approach for fabrication of the

  7. Phytochemical screening and antimicrobial activity of roots of Murraya koenigii (Linn. Spreng. (Rutaceae

    Directory of Open Access Journals (Sweden)

    Manisha Vats

    2011-12-01

    Full Text Available Murraya koenigii, family Rutaceae, commonly known as Curry leaf plant is a highly valued plant for its medicinal value and characteristic aroma. The plant is a rich source of carbazole alkaloids. The petroleum ether, chloroform, ethyl acetate and ethanol extracts of roots of the plant were screened for phytochemical properties and antimicrobial activity for Staphylococcus aureus, Micrococcus luteus, Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa, Candida albicans and Aspergillus niger. Phytochemical screening showed the presence of carbohydrates, alkaloids, steroids and flavonoids in the root extracts of the plant. The study shows that all the extracts possess remarkable antibacterial activity. Additionally, petroleum ether and chloroform extracts also had antifungal activity.

  8. Screening of commercial and pecan shell-extracted liquid smoke agents as natural antimicrobials against foodborne pathogens.

    Science.gov (United States)

    Van Loo, Ellen J; Babu, D; Crandall, Philip G; Ricke, Steven C

    2012-06-01

    Liquid smoke extracts have traditionally been used as flavoring agents, are known to possess antioxidant properties, and serve as natural alternatives to conventional antimicrobials. The antimicrobial efficacies of commercial liquid smoke samples may vary depending on their source and composition and the methods used to extract and concentrate the smoke. We investigated the MICs of eight commercial liquid smoke samples against Salmonella Enteritidis, Staphylococcus aureus, and Escherichia coli . The commercial liquid smoke samples purchased were supplied by the manufacturer as water-based or concentrated extracts of smoke from different wood sources. The MICs of the commercial smokes to inhibit the growth of foodborne pathogens ranged from 0.5 to 6.0% for E. coli, 0.5 to 8.0% for Salmonella, and 0.38 to 6% for S. aureus. The MIC for each liquid smoke sample was similar in its effect on both E. coli and Salmonella. Solvent-extracted antimicrobials prepared using pecan shells displayed significant differences between their inhibitory concentrations depending on the type of solvent used for extraction. The results indicated that the liquid smoke samples tested in this study could serve as effective natural antimicrobials and that their inhibitory effects depended more on the solvents used for extraction than the wood source.

  9. Chemical analysis of Greek pollen - Antioxidant, antimicrobial and proteasome activation properties

    Directory of Open Access Journals (Sweden)

    Gonos Efstathios

    2011-06-01

    Full Text Available Abstract Background Pollen is a bee-product known for its medical properties from ancient times. In our days is increasingly used as health food supplement and especially as a tonic primarily with appeal to the elderly to ameliorate the effects of ageing. In order to evaluate the chemical composition and the biological activity of Greek pollen which has never been studied before, one sample with identified botanical origin from sixteen different common plant taxa of Greece has been evaluated. Results Three different extracts of the studied sample of Greek pollen, have been tested, in whether could induce proteasome activities in human fibroblasts. The water extract was found to induce a highly proteasome activity, showing interesting antioxidant properties. Due to this activity the aqueous extract was further subjected to chemical analysis and seven flavonoids have been isolated and identified by modern spectral means. From the methanolic extract, sugars, lipid acids, phenolic acids and their esters have been also identified, which mainly participate to the biosynthetic pathway of pollen phenolics. The total phenolics were estimated with the Folin-Ciocalteau reagent and the total antioxidant activity was determined by the DPPH method while the extracts and the isolated compounds were also tested for their antimicrobial activity by the dilution technique. Conclusions The Greek pollen is rich in flavonoids and phenolic acids which indicate the observed free radical scavenging activity, the effects of pollen on human fibroblasts and the interesting antimicrobial profile.

  10. Antimicrobial and Barrier Properties of Bovine Gelatin Films Reinforced by Nano TiO2

    Directory of Open Access Journals (Sweden)

    R. Nassiri

    2013-11-01

    Full Text Available The effects of nano titanium dioxide incorporation were investigated on the water vaporpermeability, oxygen permeability, and antimicrobial properties of bovine gelatin films. The nano TiO2 (TiO2-N was homogenized by sonication and incorporated into bovine gelatin solutions at different concentrations(e.g. 1, 2, 3, and 5% w/w of dried gelatin. The permeability of the films to water vapor and oxygen wassignificantly decreased by incorporating of low concentration TiO2-N to gelatin solutions. TiO2-N gelatin filmsshowed an excellent antimicrobial activity against Staphylococcus aureus and Escherichia coli. Theseproperties suggest that TiO2-N has the potential as filler in gelatin-based films for using as an active packagingmaterials in pharmaceutical and food packaging industries.

  11. Hydrolates from lavender (Lavandula angustifolia)--their chemical composition as well as aromatic, antimicrobial and antioxidant properties.

    Science.gov (United States)

    Prusinowska, Renata; Śmigielski, Krzysztof; Stobiecka, Agnieszka; Kunicka-Styczyńska, Alina

    2016-01-01

    It was shown that the method for obtaining hydrolates from lavender (Lavandula angustifolia) influences the content of active compounds and the aromatic, antimicrobial and antioxidant properties of the hydrolates. The content of volatile organic compounds ranged from 9.12 to 97.23 mg/100 mL of hydrolate. Lavender hydrolate variants showed low antimicrobial activity (from 0% to 0.05%). The radical scavenging activity of DPPH was from 3.6 ± 0.5% to 3.8 ± 0.6% and oxygen radical absorbance capacity (ORAC(FL)) results were from 0 to 266 μM Trolox equivalent, depending on the hydrolate variant.

  12. Influence of Salvadora persica (miswak) extract on physical and antimicrobial properties of glass ionomer cement

    NARCIS (Netherlands)

    El-Tatari, A.; de Soet, J.J.; de Gee, A.J.; Abou Shelib, M.; van Amerongen, W.E.

    2011-01-01

    AIM: To investigate physical and antimicrobial properties of Glass Ionomer Cement (GIC) combined with Salvadora Persica Extract (SPE). METHODS: SPE was added to GIC (Fuji IX) in concentrations of 1%, 2% and 4% w/w. The compressive strength and diametral tensile strength were measured at 1 h, 24 h

  13. Colloidal silver solutions with antimicrobial properties

    International Nuclear Information System (INIS)

    Petica, A.; Gavriliu, S.; Lungu, M.; Buruntea, N.; Panzaru, C.

    2008-01-01

    Some colloidal silver solutions involving the electrochemical technique with 'sacrificial anode method and different stabilizers and co-stabilizers' have been prepared. A constant current pulse generator with stirrer at different working times has been used. To achieve stable colloidal silver solutions, a mix of different tensioactive agents namely [poly (N-vinylpyrrolidone)], Na-naphthalene sulphonate, Na-lauryl sulfate and Na-dodecyl sulphonate were tested. The effects of these various mixes of polymer and ionic surfactants upon the Ag concentration and UV-vis spectra of silver nanoparticles were determined by spectrophotometer techniques. The nanoparticles sizes have been analyzed through dynamic light scattering technique and the silver nanoparticle morphology has been evidenced by transmission electron microscopy (TEM). Micobiological analysis has been made by determining minimal inhibitorial concentration upon the following germs: Staphylococcus aureus (ATCC) (Gram-positive cocci), Pseudomonas aeruginosa (ATTC), Escherichia coli (ATCC) and Acinetobacter spp. (Gram-negative coccobacillus). To evaluate the antifungal effect, the antibiogram method involving various tests using a fungi mix of Aspergillus, Penicillium and Trichoderma species has been used. The presented method allows obtaining of some stable colloidal solutions containing up to 35 ppm of Ag with very good antimicrobial and antifungal properties

  14. Colloidal silver solutions with antimicrobial properties

    Energy Technology Data Exchange (ETDEWEB)

    Petica, A. [INCDIE ICPE-Advanced Research, Bucharest (Romania)], E-mail: petica@icpe-ca.ro; Gavriliu, S.; Lungu, M.; Buruntea, N. [INCDIE ICPE-Advanced Research, Bucharest (Romania); Panzaru, C. [Institute of Medicine and Pharmacy, Iassy (Romania)

    2008-08-25

    Some colloidal silver solutions involving the electrochemical technique with 'sacrificial anode method and different stabilizers and co-stabilizers' have been prepared. A constant current pulse generator with stirrer at different working times has been used. To achieve stable colloidal silver solutions, a mix of different tensioactive agents namely [poly (N-vinylpyrrolidone)], Na-naphthalene sulphonate, Na-lauryl sulfate and Na-dodecyl sulphonate were tested. The effects of these various mixes of polymer and ionic surfactants upon the Ag concentration and UV-vis spectra of silver nanoparticles were determined by spectrophotometer techniques. The nanoparticles sizes have been analyzed through dynamic light scattering technique and the silver nanoparticle morphology has been evidenced by transmission electron microscopy (TEM). Micobiological analysis has been made by determining minimal inhibitorial concentration upon the following germs: Staphylococcus aureus (ATCC) (Gram-positive cocci), Pseudomonas aeruginosa (ATTC), Escherichia coli (ATCC) and Acinetobacter spp. (Gram-negative coccobacillus). To evaluate the antifungal effect, the antibiogram method involving various tests using a fungi mix of Aspergillus, Penicillium and Trichoderma species has been used. The presented method allows obtaining of some stable colloidal solutions containing up to 35 ppm of Ag with very good antimicrobial and antifungal properties.

  15. Mesobuthus Venom-Derived Antimicrobial Peptides Possess Intrinsic Multifunctionality and Differential Potential as Drugs

    Directory of Open Access Journals (Sweden)

    Bin Gao

    2018-02-01

    Full Text Available Animal venoms are a mixture of peptides and proteins that serve two basic biological functions: predation and defense against both predators and microbes. Antimicrobial peptides (AMPs are a common component extensively present in various scorpion venoms (herein abbreviated as svAMPs. However, their roles in predation and defense against predators and potential as drugs are poorly understood. Here, we report five new venom peptides with antimicrobial activity from two Mesobuthus scorpion species. These α-helical linear peptides displayed highly bactericidal activity toward all the Gram-positive bacteria used here but differential activity against Gram-negative bacteria and fungi. In addition to the antibiotic activity, these AMPs displayed lethality to houseflies and hemotoxin-like toxicity on mice by causing hemolysis, tissue damage and inducing inflammatory pain. Unlike AMPs from other origins, these venom-derived AMPs seem to be unsuitable as anti-infective drugs due to their high hemolysis and low serum stability. However, MeuTXKβ1, a known two-domain Mesobuthus AMP, is an exception since it exhibits high activity toward antibiotic resistant Staphylococci clinical isolates with low hemolysis and high serum stability. The findings that the classical AMPs play predatory and defensive roles indicate that the multifunctionality of scorpion venom components is an intrinsic feature likely evolved by natural selection from microbes, prey and predators of scorpions. This definitely provides an excellent system in which one can study how a protein adaptively evolves novel functions in a new environment. Meantimes, new strategies are needed to remove the toxicity of svAMPs on eukaryotic cells when they are used as leads for anti-infective drugs.

  16. The antimicrobial activity of bupivacaine, lidocaine and mepivacaine against equine pathogens

    DEFF Research Database (Denmark)

    Adler, D. M. T.; Damborg, P.; Verwilghen, D. R.

    2017-01-01

    Lameness is the most commonly reported health problem in horses, and lameness investigations which include local anaesthetic injections are routinely performed by equine practitioners. Through this process, bacteria can enter the tissues perforated by the needle and may cause local infections...... the antimicrobial activity of the local anaesthetics bupivacaine, lidocaine and mepivacaine against 40 equine clinical bacterial isolates of the Actinobacillus, Corynebacterium, Enterobacter, Escherichia, Pseudomonas, Rhodococcus, Staphylococcus and Streptococcus genera. Minimum inhibitory and minimum bactericidal...... also bactericidal. The tested local anaesthetics possessed antimicrobial activity against equine pathogens at concentrations that are routinely applied in clinical cases. However, this antimicrobial activity should not discourage antiseptic preparation prior to local anaesthetic injections....

  17. Antimicrobial Peptides for Therapeutic Applications: A Review

    Directory of Open Access Journals (Sweden)

    Tsogbadrakh Mishig-Ochir

    2012-10-01

    Full Text Available Antimicrobial peptides (AMPs have been considered as potential therapeutic sources of future antibiotics because of their broad-spectrum activities and different mechanisms of action compared to conventional antibiotics. Although AMPs possess considerable benefits as new generation antibiotics, their clinical and commercial development still have some limitations, such as potential toxicity, susceptibility to proteases, and high cost of peptide production. In order to overcome those obstacles, extensive efforts have been carried out. For instance, unusual amino acids or peptido-mimetics are introduced to avoid the proteolytic degradation and the design of short peptides retaining antimicrobial activities is proposed as a solution for the cost issue. In this review, we focus on small peptides, especially those with less than twelve amino acids, and provide an overview of the relationships between their three-dimensional structures and antimicrobial activities. The efforts to develop highly active AMPs with shorter sequences are also described.

  18. Synthesis, Physicochemical Properties, and Antimicrobial Studies of Iron (III Complexes of Ciprofloxacin, Cloxacillin, and Amoxicillin

    Directory of Open Access Journals (Sweden)

    Fabian I. Eze

    2014-01-01

    Full Text Available Iron (III complexes of ciprofloxacin, amoxicillin, and cloxacillin were synthesized and their aqueous solubility profiles, relative stabilities, and antimicrobial properties were evaluated. The complexes showed improved aqueous solubility when compared to the corresponding ligands. Relative thermal and acid stabilities were determined spectrophotometrically and the results showed that the complexes have enhanced thermal and acid stabilities when compared to the pure ligands. Antimicrobial studies showed that the complexes have decreased activities against most of the tested microorganisms. Ciprofloxacin complex, however, showed almost the same activity as the corresponding ligand. Job’s method of continuous variation suggested 1 : 2 metals to ligand stoichiometry for ciprofloxacin complex but 1 : 1 for cloxacillin complex.

  19. Effect of the incorporation of antimicrobial/antioxidant proteins on the properties of potato starch films.

    Science.gov (United States)

    Moreno, Olga; Atarés, Lorena; Chiralt, Amparo

    2015-11-20

    Glycerol plasticized potato starch films containing bioactive proteins (lactoferrin (LF) and/or lysozyme (LZ), at 0.1 and 0.2 ratio with respect to starch) were obtained by casting method and characterized as to their microstructural, thermal and physical (water content, mechanical, water and oxygen barrier, optical) properties. The bioactive properties, named antioxidant and antimicrobial, of the proteins and the films were also characterized. The incorporation of proteins affected the structural and physical properties of potato starch films, while modifying their thermal behavior and increasing the glass transition temperature. Both proteins showed a certain degree of compatibility with starch chains through the bond formations (increase in Tg), while a part is separated and migrates to the film surface. Their incorporation, especially that of lactoferrin, greatly increased the film's brittleness, regardless of the films water content, although they enhance the water vapor and oxygen barrier properties, whatever the age of the film. Protein also reduced the film's transparency and gloss, while lactoferrin induced color changes. The thermal degradation of blend films and isolated proteins occurred at temperatures of over 250°C, which means that blend starch films can be thermoprocessed, according to their thermoplastic properties and following the usual practices of the plastics industries. A synergistic antimicrobial action against Escherichia coli and coliforms was observed when both LZ and LF were simultaneously applied. Both of these exhibited antioxidant capacity. Copyright © 2015. Published by Elsevier Ltd.

  20. Antimicrobial, Cytotoxic, Anti-Inflammatory, and Antioxidant Activity of Culinary Processed Shiitake Medicinal Mushroom (Lentinus edodes, Agaricomycetes) and Its Major Sulfur Sensory-Active Compound-Lenthionine.

    Science.gov (United States)

    Kupcova, Kristyna; Stefanova, Iveta; Plavcova, Zuzana; Hosek, Jan; Hrouzek, Pavel; Kubec, Roman

    2018-01-01

    The antimicrobial, cytotoxic, anti-inflammatory, and antioxidant properties of aqueous extracts of raw and culinary processed shiitake mushrooms were evaluated and compared with those of lenthionine (1,2,3,5,6-penta-thiepane), the principal aroma-bearing substance of the shiitake medicinal mushroom (Lentinus edodes). Antimicrobial activity was tested using a panel of 4 strains of bacteria, 2 yeasts, and 2 fungi. Cytotoxic properties were evaluated against 3 cell lines (HepG2, HeLa, PaTu), whereas the anti-inflammatory activity of tested samples was assayed based on their ability to attenuate the secretion of the cytokine tumor necrosis factor-α. Antioxidant activity was measured using in vitro DPPH and ABTS assays. It was found that lenthionine possesses significant antimicrobial properties; it is remarkably effective in inhibiting the growth of yeasts and fungi (minimum inhibitory concentration, 2-8 μg/mL) and thus is comparable to standard antifungal agents. Lenthionine is also able to decrease significantly the production of tumor necrosis factor-a and thus could be at least partly responsible for the observed anti-inflammatory effect of shiitake. On the other hand, lenthionine does not seem to contribute significantly to the well-known anticancer and antioxidant effects of the mushroom.

  1. Green synthesis of silver nanoparticles using cranberry powder aqueous extract: characterization and antimicrobial properties.

    Science.gov (United States)

    Ashour, Asmaa A; Raafat, Dina; El-Gowelli, Hanan M; El-Kamel, Amal H

    2015-01-01

    The growing threat of microbial resistance against traditional antibiotics has prompted the development of several antimicrobial nanoparticles (NPs), including silver NPs (AgNPs). In this article, a simple and eco-friendly method for the synthesis of AgNPs using the cranberry powder aqueous extract is reported. Cranberry powder aqueous extracts (0.2%, 0.5%, and 0.8% w/v) were allowed to interact for 24 hours with a silver nitrate solution (10 mM) at 30°C at a ratio of 1:10. The formation of AgNPs was confirmed by ultraviolet-visible spectroscopy and their concentrations were determined using atomic absorption spectroscopy. The prepared NPs were evaluated by transmission electron microscopy, measurement of ζ-potential, and Fourier-transform infrared spectroscopy. The in vitro antimicrobial properties of AgNPs were then investigated against several microbial strains. Finally, in vivo appraisal of both wound-healing and antimicrobial properties of either plain AgNPs (prepared using 0.2% extract) or AgNP-Pluronic F-127 gel was conducted in a rat model after induction of a Staphylococcus aureus ATCC 6538P wound infection. The formation of AgNPs was confirmed by ultraviolet-visible spectroscopy, where a surface-plasmon resonance absorption peak was observed between 432 and 438 nm. Both size and concentration of the formed AgNPs increased with increasing concentration of the extracts. The developed NPs were stable, almost spherical, and polydisperse, with a size range of 1.4-8.6 nm. The negative ζ-potential values, as well as Fourier-transform infrared spectroscopy analysis, indicated the presence of a capping agent adsorbed onto the surface of the particles. In vitro antimicrobial evaluation revealed a size-dependent activity of the AgNPs against the tested organisms. Finally, AgNPs prepared using 0.2% extract exhibited a substantial in vivo healing potential for full-thickness excision wounds in rats. AgNPs were successfully synthesized from a silver nitrate solution

  2. Chemical composition of essential oil and antimicrobial properties of Chrysantemum coronarium (Asteraceae

    Directory of Open Access Journals (Sweden)

    I. V. Ivashchenko

    2017-03-01

    Full Text Available Garland chrysanthemum (Chrysanthemum coronarium L., or edible chrysanthemum, is a valuable food, medicinal, decorative plant, containing a considerable amount of biologically active substances. The herb is widely used as a dietary food in South-East Asia, whereas in spite of being spread throughout Ukraine, it is known there rather as a decorative than a vegetable plant. Introductory studies of C. coronarium were conducted on experimental plots at the Botanical Gardens of Zhytomyr National Agroecological University, which is located in Ukrainian Polesia. Chromatographic analysis of the essential oil composition was performed on the gas-liquid chromatographer Agilent Technologies 6890 with mass spectrometric detector 5973. The material for chromatographic studies was represented by C. coronarium inflorescences. The antimicrobial properties of the ethanolic extract from the areal parts of C. coronarium were studied on test-cultures, collected from the Ukrainian Collection of Microorganisms (UCM, Institute of Microbiology and Virology of NAS Ukraine, the test-cultures being: Escherichia coli UCM B-906 (ATCC 25922, Staphilococcus aureus UCM B-904 (ATCC 25923, Pseudomonas aeruginosa UCM B-900 (ATCC 9027, Candida albicans UCM Y-1918 (ATCC 885-653. The antimicrobial effect of the investigated substances was studied by the method of serial successive dilutions which determined minimal inhibitory concentration (MIC and minimal bactericidal concentration (MBC. This article shows the results of chromatographic analysis of essential oil obtained from C. coronarium inflorescences and focuses on antimicrobial activity of the herb against the test cultures of the following microorganisms: E. coli, S. aureus, P. aeruginosa, C. albicans. In the essential oil 26 compounds have been determined, 23 of which have been identified, the major components being: chrysanthemyl acetate (24.4%, chrysanthemol (21.8%, chrysanthenyl acetate (7.6%, camphor (7.3%,

  3. Stability properties of solutions to nonlinear models possessing a sign-undefined metric

    International Nuclear Information System (INIS)

    Barashenkov, I.V.

    1983-01-01

    Multicomponent field systems possessing a sign-undefined internal space metric, in particular models with a noncompact global invariance group are investigated. It is shown that the energy cannot have even a conditional relative minimum. It is demonstrated, nevertheless, that the corresponding nonlinear equations of motion are permitted to possess stable particle-like solutions

  4. Development and characterization of novel antimicrobial bilayer films based on Polylactic acid (PLA)/Pickering emulsions.

    Science.gov (United States)

    Zhu, Jun-You; Tang, Chuan-He; Yin, Shou-Wei; Yang, Xiao-Quan

    2018-02-01

    Biodegradable food packaging is sustainable and has a great application prospect. PLA is a promising alternative for petroleum-derived polymers. However, PLA packaging suffers from poor barrier properties compared with petroleum-derived ones. To address this issue, we designed bilayer films based on PLA and Pickering emulsions. The formed bilayer films were compact and uniform and double layers were combined firmly. This strategy enhanced mechanical resistance, ductility and moisture barrier of Pickering emulsion films, and concomitantly enhanced the oxygen barrier for PLA films. Thymol loadings in Pickering emulsion layer endowed them with antimicrobial and antioxidant activity. The release profile of thymol was well fitted with Fick's second law. The antimicrobial activity of the films depended on film types, and Pickering emulsion layer presented larger inhibition zone than PLA layer, hinting that the films possessed directional releasing role. This study opens a promising route to fabricate bilayer architecture creating synergism of each layer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Antimicrobial activity of Ulva reticulata and its endophytes

    Science.gov (United States)

    Dhanya, K. I.; Swati, V. I.; Vanka, Kanth Swaroop; Osborne, W. J.

    2016-04-01

    Seaweeds are known to exhibit various antimicrobial properties, since it harbours an enormous range of indigenous bioactive compounds. The emergence of drug resistant strains has directed to the identification of prospective metabolites from seaweed and its endophytes, thereby exploiting the properties in resisting bacterial diseases. The current study was aimed to assess the antimicrobial activity of extracts obtained from Ulva reticulate, for which metabolites of Ulva reticulata and its endophytes were extracted and assessed against human pathogens like Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Salmonella typhi, and Bacillus subtilis. It was observed that the hexane extract of isolate VITDSJ2 was effective against all the tested pathogens but a significant inhibition was observed for Staphylococcus aureus and Escherichia coli. Further, Gas chromatography coupled with Mass spectroscopy (GC-MS) revealed the existence of phenol, 3, 5-bis (1, 1-dimethylethyl) in the crude hexane extract which is well-known to possess antibacterial activity. The effective isolate VITDSJ2 was identified to be the closest neighbour of Pseudomonas stutzeri by phenotypic and genotypic methods. The crude extracts of the seaweed Ulva reticulata was also screened for antibacterial activity and the hexane extract was effective in showing inhibition against all the tested pathogens. The compound in the crude extract of Ulva reticulata was identified as hentriacontane using GC-MS. The extracts obtained from dichloromethane did not show significant activity in comparison with the hexane extracts. Hence the metabolites of Ulva reticulata and the bacterial secondary metabolites of the endophytes could be used in the treatment of bacterial infections.

  6. Stability properties of solutions to nonlinear models possessing a sign-undefined metric

    International Nuclear Information System (INIS)

    Barashenkov, I.V.

    1983-01-01

    Multicomponent field systems possessing a sign-undefined internal space metric, in particular models with a noncompact global invariance group, are investigated. It is shown that the energy cannot have even a conditional relative minimum. It is demonstrated, nevertheless, that the corresponding nonlinear equations of motion are permitted to possess stable particle-like solutions. (Auth.)

  7. Antimicrobial properties and membrane-active mechanism of a potential α-helical antimicrobial derived from cathelicidin PMAP-36.

    Directory of Open Access Journals (Sweden)

    Yinfeng Lv

    Full Text Available Antimicrobial peptides (AMPs, which present in the non-specific immune system of organism, are amongst the most promising candidates for the development of novel antimicrobials. The modification of naturally occurring AMPs based on their residue composition and distribution is a simple and effective strategy for optimization of known AMPs. In this study, a series of truncated and residue-substituted derivatives of antimicrobial peptide PMAP-36 were designed and synthesized. The 24-residue truncated peptide, GI24, displayed antimicrobial activity comparable to the mother peptide PMAP-36 with MICs ranging from 1 to 4 µM, which is lower than the MICs of bee venom melittin. Although GI24 displayed high antimicrobial activity, its hemolytic activity was much lower than melittin, suggesting that GI24 have optimal cell selectivity. In addition, the crucial site of GI24 was identified through single site-mutation. An amino acid with high hydrophobicity at position 23 played an important role in guaranteeing the high antimicrobial activity of GI24. Then, lipid vesicles and whole bacteria were employed to investigate the membrane-active mechanisms. Membrane-simulating experiments showed that GI24 interacted strongly with negatively charged phospholipids and weakly with zwitterionic phospholipids, which corresponded well with the data of its biological activities. Membrane permeabilization and flow cytometry provide the evidence that GI24 killed microbial cells by permeabilizing the cell membrane and damaging membrane integrity. GI24 resulted in greater cell morphological changes and visible pores on cell membrane as determined using scanning electron microscopy (SEM and transmission electron microscope (TEM. Taken together, the peptide GI24 may provide a promising antimicrobial agent for therapeutic applications against the frequently-encountered bacteria.

  8. Micro-encapsulation of ozonated red pepper seed oil with antimicrobial activity and application to nonwoven fabric.

    Science.gov (United States)

    Özyildiz, F; Karagönlü, S; Basal, G; Uzel, A; Bayraktar, O

    2013-03-01

    In recent years, functional fabrics possessing antimicrobial activity have drawn significant interest because antibiotic resistance is becoming widespread among pathogenic micro-organisms. The aim of this study was to produce microcapsules incorporating ozonated red pepper seed oil (ORPSO) with antimicrobial properties and apply them to nonwoven fabrics to prepare functional textiles. Red pepper seed oil (RPSO) was ozonated and micro-encapsulated via a complex coacervation method using gelatin (GE) and gum arabic (GA) as wall materials. While micro-encapsulation yield and oil loading decreased with increases in the amount of surfactant, the mean particle size increased. The antimicrobial activity of the oil was tested via the disc diffusion method. The microcapsules were also tested using the agar well method. While RPSO had no effect on the test micro-organisms, the ORPSO and microcapsules containing ORPSO were found to be active against the test micro-organisms. The microcapsules were then applied to nonwoven fabric using the padding method to produce a disposable functional textile. The microcapsule-impregnated functional fabrics provided a 5 log decrease in 1 h. It is therefore possible to functionalize nonwoven fabrics to have antimicrobial activity against antibiotic-resistant micro-organisms, using microcapsules containing ORPSO. This is the first report on the antimicrobial action of RPSO after ozonation process. These findings suggest that ozonated red pepper seed oil (ORPSO) may be a useful and effective antimicrobial agent against the micro-organisms with antibiotic resistance. Therefore, as a natural product, RPSO represents a sustainable alternative to the use of synthetic antimicrobial agents. To our knowledge, this is also the first time that ORPSO has been micro-encapsulated for the preparation of functional textile material with significant antimicrobial activity. © 2012 The Society for Applied Microbiology.

  9. In vitro antimicrobial and phytochemical properties of crude extract ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-10-20

    Oct 20, 2008 ... University of Fort Hare, Alice 5700, South Africa. 2Department of Microbiology, Obafemi Awolowo .... Thus improvement on such extract by pharmaceutical industry to produce antimicrobial drug of ... Table 1. Antimicrobial activity profile of the crude extract of stem bark of A. africana. Zones of inhibition (mm)*.

  10. Antimicrobial and physical-mechanical properties of agar-based films incorporated with grapefruit seed extract.

    Science.gov (United States)

    Kanmani, Paulraj; Rhim, Jong-Whan

    2014-02-15

    The use of synthetic petroleum based packaging films caused serious environmental problems due to their difficulty in recycling and poor biodegradability. Therefore, present study was aimed to develop natural biopolymer-based antimicrobial packaging films as an alternative for the synthetic packaging films. As a natural antimicrobial agent, grapefruit seed extract (GSE) has been incorporated into agar to prepare antimicrobial packaging film. The films with different concentrations of GSE were prepared by a solvent casting method and the resulting composite films were examined physically and mechanically. In addition, the films were characterized by FE-SEM, XRD, FT-IR and TGA. The incorporation of GSE caused increase in color, UV barrier, moisture content, water solubility and water vapor permeability, while decrease in surface hydrophobicity, tensile strength and elastic modulus of the films. As the concentration of GSE increased from 0.6 to 13.3 μg/mL, the physical and mechanical properties of the films were affected significantly. The addition of GSE changed film microstructure of the film, but did not influence the crystallinity of agar and thermal stability of the agar-based films. The agar/GSE films exhibited distinctive antimicrobial activity against three test food pathogens, such as Listeria monocytogenes, Bacillus cereus and Escherichia coli. These results suggest that agar/GSE films have potential to be used in an active food packaging systems for maintaining food safety and extending the shelf-life of the packaged food. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Antimicrobial Treatment of Polymeric Medical Devices by Silver Nanomaterials and Related Technology.

    Science.gov (United States)

    Polívková, Markéta; Hubáček, Tomáš; Staszek, Marek; Švorčík, Václav; Siegel, Jakub

    2017-02-15

    Antimicrobial biocompatible polymers form a group of highly desirable materials in medicinal technology that exhibit interesting thermal and mechanical properties, and high chemical resistance. There are numerous types of polymers with antimicrobial activity or antimicrobial properties conferred through their proper modification. In this review, we focus on the second type of polymers, especially those whose antimicrobial activity is conferred by nanotechnology. Nanotechnology processing is a developing area that exploits the antibacterial effects of broad-scale compounds, both organic and inorganic, to form value-added medical devices. This work gives an overview of nanostructured antimicrobial agents, especially silver ones, used together with biocompatible polymers as effective antimicrobial composites in healthcare. The bactericidal properties of non-conventional antimicrobial agents are compared with those of conventional ones and the advantages and disadvantages are discussed.

  12. Antimicrobial Treatment of Polymeric Medical Devices by Silver Nanomaterials and Related Technology

    Directory of Open Access Journals (Sweden)

    Markéta Polívková

    2017-02-01

    Full Text Available Antimicrobial biocompatible polymers form a group of highly desirable materials in medicinal technology that exhibit interesting thermal and mechanical properties, and high chemical resistance. There are numerous types of polymers with antimicrobial activity or antimicrobial properties conferred through their proper modification. In this review, we focus on the second type of polymers, especially those whose antimicrobial activity is conferred by nanotechnology. Nanotechnology processing is a developing area that exploits the antibacterial effects of broad-scale compounds, both organic and inorganic, to form value-added medical devices. This work gives an overview of nanostructured antimicrobial agents, especially silver ones, used together with biocompatible polymers as effective antimicrobial composites in healthcare. The bactericidal properties of non-conventional antimicrobial agents are compared with those of conventional ones and the advantages and disadvantages are discussed.

  13. Effects of allspice, cinnamon, and clove bud essential oils in edible apple films on physical properties and antimicrobial activities.

    Science.gov (United States)

    Du, W-X; Olsen, C W; Avena-Bustillos, R J; McHugh, T H; Levin, C E; Friedman, Mendel

    2009-09-01

    Essential oils (EOs) derived from plants are rich sources of volatile terpenoids and phenolic compounds. Such compounds have the potential to inactivate pathogenic bacteria on contact and in the vapor phase. Edible films made from fruits or vegetables containing EOs can be used commercially to protect food against contamination by pathogenic bacteria. EOs from cinnamon, allspice, and clove bud plants are compatible with the sensory characteristics of apple-based edible films. These films could extend product shelf life and reduce risk of pathogen growth on food surfaces. This study evaluated physical properties (water vapor permeability, color, tensile properties) and antimicrobial activities against Escherichia coli O157:H7, Salmonella enterica, and Listeria monocytogenes of allspice, cinnamon, and clove bud oils in apple puree film-forming solutions formulated into edible films at 0.5% to 3% (w/w) concentrations. Antimicrobial activities were determined by 2 independent methods: overlay of the film on top of the bacteria and vapor phase diffusion of the antimicrobial from the film to the bacteria. The antimicrobial activities against the 3 pathogens were in the following order: cinnamon oil > clove bud oil > allspice oil. The antimicrobial films were more effective against L. monocytogenes than against the S. enterica. The oils reduced the viscosity of the apple solutions and increased elongation and darkened the colors of the films. They did not affect water vapor permeability. The results show that apple-based films with allspice, cinnamon, or clove bud oils were active against 3 foodborne pathogens by both direct contact with the bacteria and indirectly by vapors emanating from the films.

  14. Antioxidant, Anti-microbial Properties and Chemical Composition of Cumin Essential Oils Extracted by Three Methods

    Directory of Open Access Journals (Sweden)

    Fang Lianying

    2018-04-01

    Full Text Available The purpose of this study is to evaluate the chemical composition, antioxidant and anti-bacterial activity of cumin essential oils (CEOs extracted by different techniques, including supercritical carbon dioxide extraction (SCE, subcritical butane extraction (SBE and traditional solvent extraction (SE. Our results indicated that CEOs are a valuable source of bioactive compounds, including cumin aldehyde, γ-terpinene and β-pinene. The most abundant components found in CEOs obtained by SCE and SBE were similar, while the abundant components in SE, β-Cumic aldehyde (19.31% and α-phellandrene (9.49%, were distinctive. CEOs obtained by SCE exhibited higher antioxidant activity, followed by those extracted by SE and SBE. Moreover, the anti-microbial properties of CEOs obtained by SCE and SBE were higher than that of CEOs collected by SE. In conclusion, CEOs exhibit strong antioxidant and anti-microbial properties, which suggests a potential role of CEOs in preventing diseases associated with aging and oxidative stress, and our results highlight the potential usage of CEOs in the food industry.

  15. Comparative studies on structural properties and antimicrobial potential of spinel ferrite nanoparticles synthesized using various methods

    Science.gov (United States)

    Baraliya, Jagdish D.; Rakhashiya, Purvi M.; Patel, Pooja P.; Thaker, Vrinda S.; Joshi, Hiren H.

    2017-05-01

    In this study, novel multifunctional magnetic iron-based nanoparticles (CoFe2O4) coated with silica, silica-DEG (diethylene glycol), PEG (polyethylene glycol) were synthesized using Auto Combustion Method (ACM), Co-precipitation Method (COPM), Citrate Precursor Method (CPM), Flash Combustion Method (FCM). These spinel ferrite nanoparticles also contain very high antibacterial properties to fulfill the requirements of a drug delivery system so that the antibiotic concentration could be minimized. A potential delivery system could be based on a ferromagnetic fluid. The effects of various preparation methods on the physical properties of the nanoparticles were examined. The nanoparticles were also tested against four human pathogenic bacteria (Gram negative E.coli, P. aeruginosa, Gram positive S. aureus, S. pyogenus) and two fungi (C. albicans, A.niger). It was revealed that a nanoparticle has strong antibacterial activity as compared to antifungal. Further, Gram positive bacteria are more affected than Gram negative bacteria. It was also clear that different methods of coating have great influence on the antimicrobial properties. It was observed that these nanoparticles have significantly different but potentially very high antimicrobial activities against the tested organisms than found elsewhere by other nanoparticles on the same organisms.

  16. Possessive Pronouns in European Portuguese and Old French

    Directory of Open Access Journals (Sweden)

    Matilde Miguel

    2002-12-01

    Full Text Available The aim of this paper is to bring European Portuguese (EP data into light, showing that, in spite of the lack of morphological evidence, the syntactic behaviour of possessives, across EP dialects, shows evidences for a tripartite possessive system (Cardinaletti, 1998; Cardinaletti & Starke, 1999. It will be argued that the syntactic position of possessives parallels the positions assumed for EP sentential subjects in non interrogative contexts: [Spec, AgrsP], [Spec, TP] and [Spec, VP]. As a matter of fact, depending on their syntactic properties and assuming, as null hypothesis, that the nominal head moves to Numb'º', possessives may occur in [Spec, AgrsNP], [Spec, NumbP] and [Spec, NP]. Furthermore, would it be so, this dialectal variation would be useful in order to understand the changes that have occurred in other romance languages in previous stages. It might be the case that the loss of weak possessive forms (“mien” in French parallels, among other things, the lack of sentential subjects in [Spec, TP].

  17. Antimicrobial properties of Kalanchoe blossfeldiana: a focus on drug resistance with particular reference to quorum sensing-mediated bacterial biofilm formation.

    Science.gov (United States)

    Sarkar, Ratul; Mondal, Chaitali; Bera, Rammohan; Chakraborty, Sumon; Barik, Rajib; Roy, Paramita; Kumar, Alekh; Yadav, Kirendra K; Choudhury, Jayanta; Chaudhary, Sushil K; Samanta, Samir K; Karmakar, Sanmoy; Das, Satadal; Mukherjee, Pulok K; Mukherjee, Joydeep; Sen, Tuhinadri

    2015-07-01

    This study attempts to investigate the antimicrobial properties of Kalanchoe blossfeldiana with a particular reference to quorum sensing (QS)-mediated biofilm formation. The methanol extract of K. blossfeldiana leaves (MEKB) was evaluated for antimicrobial properties including QS-controlled production of biofilm (including virulence factor, motility and lactone formation) in Pseudomonas aeruginosa. Methanol extract of K. blossfeldiana was also evaluated for anti-cytokine (tumour necrosis factor-alpha, interleukin-6 and interleukin-1 beta) properties in peripheral blood mononuclear cells (PBMC). Methanol extract of K. blossfeldiana exhibited antimicrobial effect on clinical isolates, as well as standard reference strains. Pseudomonas aeruginosa exposed to MEKB (subminimum inhibitory concentration (MIC)) displayed reduced biofilm formation, whereas supra-MIC produced destruction of preformed biofilms. Methanol extract of K. blossfeldiana reduced the secretion of virulence factors (protease and pyoverdin) along with generation of acyl homoserine lactone (AHL). Confocal laser scanning microscopy images indicate reduction of biofilm thickness. The extract also reduced cytokine formation in lipopolysaccharide-stimulated PBMC. Kalanchoe blossfeldiana was found to interfere with AHL production, which in turn may be responsible for downregulating QS-mediated production of biofilm and virulence. This first report on the antibiofilm and anticytokine properties of this plant may open up new vistas for future exploration of this plant for combating biofilm-related resistant infections. © 2015 Royal Pharmaceutical Society.

  18. Characterization of antimicrobial properties on the growth of S. aureus of novel renewable blends of gliadins and chitosan of interest in food packaging and coating applications.

    Science.gov (United States)

    Fernandez-Saiz, P; Lagaron, J M; Hernandez-Muñoz, P; Ocio, M J

    2008-05-10

    The biocide properties of chitosan-based materials have been known for many years. However, typical antimicrobial formulations of chitosan, mostly chitosonium salts, are known to be very water sensitive materials which may impair their use in many application fields such as food packaging or food coating applications. This first work reports on the development and characterization of the antimicrobial properties of novel fully renewable blends of chitosan with more water-resistant gliadin proteins isolated from wheat gluten. Chitosan release to the nutrient broth from a wide range of blends was studied making use of the ninhydrin method. The results indicated that both pure chitosan and its blends with gliadins presented significant antimicrobial activity, which increased with increasing the amount of chitosan in the composite formulation as expected. The gliadins-chitosan blends showed good transparency and film-forming properties and better water resistance than pure chitosan. The release tests revealed that dissolution of the biocide glucosamine groups, i.e. the chitosan water soluble fractions, also increased with the amount of chitosan present in the formulation. The release of these groups was for the first time directly correlated with the antimicrobial properties exhibited by the blends. Thus, incorporation of chitosan into an insoluble biopolymer matrix was revealed as a very feasible strategy to generate novel chitosan-based antimicrobial materials with potential advantages, for instance active food packaging applications.

  19. Antimicrobial Property of Extracts of Indian Lichen against Human Pathogenic Bacteria

    Directory of Open Access Journals (Sweden)

    Priya Srivastava

    2013-01-01

    Full Text Available Context. Usnea ghattensis G. Awasthi (Usneaceae endemic fruticose lichen found growing luxuriantly in Northern Western Ghats of India, it also contains Usnic acid as a major chemical and tested against some human pathogenic bacteria. Objective. To explore antimicrobial properties of Usnea ghattensis against some human pathogenic bacteria. Materials and Methods. The lichen was extracted in acetone, methanol, and ethanol. In vitro antimicrobial activity was tested initially by Kirby-Bauer technique of disc diffusion method and was confirmed by minimum inhibitory concentration using Broth microdilution method according to the NCCLS guidelines. Results. Ethanol extract was most effective against Bacillus cereus and Pseudomonas aeruginosa with a zone of inhibition 29.8 ± 0.6 mm and 12.3 ± 0.5 mm diameters at a concentration of 0.2 mg/mL. Acetone and methanol extract demonstrated almost similar activity against Staphylococcus aureus and the zone of inhibition was 24.6 ± 0.5 and 24.7 ± 0.4 mm. Only methanol extract was showing activity against Streptococcus faecalis with a 13.5 ± 0.8 mm zone. MIC value noted against Staphylococcus aureus and Streptococcus faecalis was 6.25 μg/mL and 25 μg/mL, whereas against Bacillus cereus and Pseudomonas aeruginosa, MIC calculated was 3.125 μg/mL and 200 μg/mL, respectively. Conclusion. The present study demonstrates the relatively higher activity of this lichen against not only gram (+ but significantly also against gram (− bacteria. This indicates that this lichen might be a rich source of effective antimicrobial agents.

  20. Antimicrobial membrane surfaces via efficient polyethyleneimine immobilization and cationization

    Science.gov (United States)

    Qiu, Wen-Ze; Zhao, Zi-Shu; Du, Yong; Hu, Meng-Xin; Xu, Zhi-Kang

    2017-12-01

    Biofouling control is a major task in membrane separation processes for water treatment and biomedical applications. In this work, N-alkylated polyethylenimine (PEI) is facilely and efficiently introduced onto the membrane surfaces via the co-deposition of catechol (CCh) and PEI, followed by further grafting of PEIs (600 Da, 70 kDa and 750 kDa) and cationization with methyl iodide (CH3I). The physical and chemical properties of the constructed membrane surfaces are characterized with scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, zeta potential and water contact angle measurements. Antibacterial assay reveals that the optimized membrane surfaces possess around 95% antibacterial efficiency against Gram-positive Staphylococcus aureus (S. aureus) with weak adhesion of bacteria cells after 24 h of bacterial contact. Additionally, the membrane surfaces also exhibit much enhanced antifouling property during the filtration of opposite charged bovine serum albumin (BSA). These results demonstrate a useful strategy for the surface modification of separation membranes by a kind of antimicrobial and antifouling coating.

  1. Pectins filled with LDH-antimicrobial molecules: preparation, characterization and physical properties.

    Science.gov (United States)

    Gorrasi, Giuliana; Bugatti, Valeria; Vittoria, Vittoria

    2012-06-05

    Nanohybrids of layered double hydroxide (LDH) with intercalated active molecules: benzoate, 2,4-dichlorobenzoate, para-hydroxybenzoate and ortho-hydroxybenzoate, were incorporated into pectins from apples through high energy ball milling in the presence of water. Cast films were obtained and analysed. X-ray diffraction analysis showed a complete destructuration of all nanohybrids in the pectin matrix. Thermogravimetric analysis showed a better thermal resistance of pectin in the presence of fillers, especially para-hydroxybenzoate and ortho-hydroxybenzoate. Mechanical properties showed an improvement of elastic modulus in particular for LDH-para-hydroxybenzoate nanohybrid, due probably to a better interaction between pectin matrix and nanohybrid layers. Barrier properties (sorption and diffusion) to water vapour showed improvement in the dependence on the intercalated active molecule, the best improvement was achieved for composites containing para-hydroxybenzoate molecules, suggesting that the interaction between the filler phase and the polymer plays an important role in sorption and diffusion phenomena. Incorporation of these active molecules gave antimicrobial properties to the composite films giving opportunities in the field of active packaging. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Essential oil of the leaves of Ricinus communis L.: in vitro cytotoxicity and antimicrobial properties.

    Science.gov (United States)

    Zarai, Zied; Ben Chobba, Ines; Ben Mansour, Riadh; Békir, Ahmed; Gharsallah, Néji; Kadri, Adel

    2012-08-13

    The aim of the present study was to appraise the antimicrobial activity of Ricinus communis L. essential oil against different pathogenic microorganisms and the cytotoxic activity against HeLa cell lines. The agar disk diffusion method was used to study the antibacterial activity of Ricinus communis L. essential oil against 12 bacterial and 4 fungi strains. The disc diameters of zone of inhibition (DD), the minimum inhibitory concentrations (MIC) and the concentration inhibiting 50% (IC50) were investigated to characterize the antimicrobial activities of this essential oil. The in vitro cytotoxicity of Ricinus communis L. essential oil was examined using a modified MTT assay; the viability and the IC50 were used to evaluate this test. The essential oil from the leaves of Ricinus communis L. was analyzed by GC-MS and bioassays were carried out. Five constituents of the oil were identified by GC-MS. The antimicrobial activity of the oil was investigated in order to evaluate its efficacy against twelve bacteria and four fungi species, using disc diffusion and minimum inhibitory concentration methods. The essential oil showed strong antimicrobial activity against all microorganisms tested with higher sensitivity for Bacillus subtilis, Staphylococcus aureus and Enterobacter cloacae. The cytotoxic and apoptotic effects of the essential oil on HeLa cell lines were examined by MTT assay. The cytotoxicity of the oil was quite strong with IC50 values less than 2.63 mg/ml for both cell lines. The present study showed the potential antimicrobial and anticarcinogenic properties of the essential oil of Ricinus communis L., indicating the possibilities of its potential use in the formula of natural remedies for the topical treatment of infections.

  3. Modulating the properties of sunflower oil based novel emulgels using castor oil fatty acid ester: prospects for topical antimicrobial drug delivery.

    Science.gov (United States)

    Behera, B; Biswal, D; Uvanesh, K; Srivastava, A K; Bhattacharya, Mrinal K; Paramanik, K; Pal, K

    2015-04-01

    The current study describes the effect of polyglycerol polyricinoleate (PGPR) on the properties of sunflower oil and span-40 based emulgels. The prepared emulgels contained PGPR in varied concentrations. The microstructure of the emulgels was characterized by bright-field microscopy. The molecular interactions amongst the components of the emulgels were studied using FTIR spectroscopy. The flow and mechanical behaviors of the emulgels were studied using cone-and-plate viscometer and static mechanical tester, respectively. The efficiency of the metronidazole-loaded emulgels as antimicrobial formulations was tested in vitro. E. coli was used as the model microorganism for the antimicrobial study. The emulgels were also explored for iontophoretic delivery applications. The biocompatibility of the emulgels was tested using human keratinocytes (HaCaT). The microscopic evaluation of the emulgels indicated formation of biphasic formulations. FTIR studies suggested a decrease in the hydrogen bonding amongst the components of the emulgels as the concentration of the PGPR was increased. Viscosity studies indicated shear-thinning property of the emulgels. An increase in the PGPR concentration resulted in the reduction in the mechanical properties of the emulgels. Incorporation of PGPR resulted in the decrease in the drug released (both passive and iontophoresis) from the emulgels. The emulgels were found to be cytocompatible in the presence of keratinocytes. The drug loaded emulgels showed good antimicrobial activity against E. coli. In gist, the developed emulgels can be tried for controlled delivery of antimicrobial drugs. The physical and the release properties of the emulgels can be modulated by incorporating PGPR in varied proportions. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Wound-healing and antimicrobial properties of dichloromethane fraction of Dialium guineense (Wild) fruit coat

    OpenAIRE

    Nnadi Charles Okeke; K C Udeani Theophilus; Ugwu Linus Onyebuchi

    2016-01-01

    This research established the scientific bases for the folkloric use of the neglected Dialium guineense fruit coat in wound and microbial infection management in Nigeria. The phytochemical analysis of the crude extract, fractions and sub-fractions was performed by standard methods. Agar well diffusion protocol was adopted for the antimicrobial assay while the wound healing properties was determined by full thickness skin excision wound model. Phytochemical analysis showed high relative propor...

  5. A novel coping metal material CoCrCu alloy fabricated by selective laser melting with antimicrobial and antibiofilm properties

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Ling [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Memarzadeh, Kaveh [Institute of Dentistry, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, Newark Street, London E1 2AT (United Kingdom); Zhang, Shuyuan; Sun, Ziqing; Yang, Chunguang [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Ren, Guogang [University of Hertfordshire, Hatfield AL10 9AB (United Kingdom); Allaker, Robert P., E-mail: r.p.allaker@qmul.ac.uk [Institute of Dentistry, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, Newark Street, London E1 2AT (United Kingdom); Yang, Ke, E-mail: kyang@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China)

    2016-10-01

    Objective: The aim of this study was to fabricate a novel coping metal CoCrCu alloy using a selective laser melting (SLM) technique with antimicrobial and antibiofilm activities and to investigate its microstructure, mechanical properties, corrosion resistance and biocompatibility. Methods: Novel CoCrCu alloy was fabricated using SLM from a mixture of commercial CoCr based alloy and elemental Cu powders. SLM CoCr without Cu served as control. Antibacterial activity was analyzed using standard antimicrobial tests, and antibiofilm properties were investigated using confocal laser scanning microscope. Cu distribution and microstructure were determined using scanning electron microscope, optical microscopy and X-ray diffraction. Corrosion resistance was evaluated by potential dynamic polarization and biocompatibility measured using an MTT assay. Results: SLM CoCrCu alloys were found to be bactericidal and able to inhibit biofilm formation. Other factors such as microstructure, mechanical properties, corrosion resistance and biocompatibility were similar to those of SLM CoCr alloys. Significance: The addition of appropriate amounts of Cu not only maintains normal beneficial properties of CoCr based alloys, but also provides SLM CoCrCu alloys with excellent antibacterial and antibiofilm capabilities. This material has the potential to be used as a coping metal for dental applications. - Highlights: • Novel CoCrCu alloys were fabricated by using selective laser melting (SLM). • SLM CoCrCu alloys showed satisfied antimicrobial and antibiofilm activities. • SLM CoCrCu alloys have no cytotoxic effect on normal cells. • Other properties of SLM CoCrCu alloys were similar to SLM CoCr alloys. • SLM CoCrCu alloys have the potential to be used as coping metals.

  6. A novel coping metal material CoCrCu alloy fabricated by selective laser melting with antimicrobial and antibiofilm properties

    International Nuclear Information System (INIS)

    Ren, Ling; Memarzadeh, Kaveh; Zhang, Shuyuan; Sun, Ziqing; Yang, Chunguang; Ren, Guogang; Allaker, Robert P.; Yang, Ke

    2016-01-01

    Objective: The aim of this study was to fabricate a novel coping metal CoCrCu alloy using a selective laser melting (SLM) technique with antimicrobial and antibiofilm activities and to investigate its microstructure, mechanical properties, corrosion resistance and biocompatibility. Methods: Novel CoCrCu alloy was fabricated using SLM from a mixture of commercial CoCr based alloy and elemental Cu powders. SLM CoCr without Cu served as control. Antibacterial activity was analyzed using standard antimicrobial tests, and antibiofilm properties were investigated using confocal laser scanning microscope. Cu distribution and microstructure were determined using scanning electron microscope, optical microscopy and X-ray diffraction. Corrosion resistance was evaluated by potential dynamic polarization and biocompatibility measured using an MTT assay. Results: SLM CoCrCu alloys were found to be bactericidal and able to inhibit biofilm formation. Other factors such as microstructure, mechanical properties, corrosion resistance and biocompatibility were similar to those of SLM CoCr alloys. Significance: The addition of appropriate amounts of Cu not only maintains normal beneficial properties of CoCr based alloys, but also provides SLM CoCrCu alloys with excellent antibacterial and antibiofilm capabilities. This material has the potential to be used as a coping metal for dental applications. - Highlights: • Novel CoCrCu alloys were fabricated by using selective laser melting (SLM). • SLM CoCrCu alloys showed satisfied antimicrobial and antibiofilm activities. • SLM CoCrCu alloys have no cytotoxic effect on normal cells. • Other properties of SLM CoCrCu alloys were similar to SLM CoCr alloys. • SLM CoCrCu alloys have the potential to be used as coping metals.

  7. Editorial of the Special Issue Antimicrobial Polymers

    Directory of Open Access Journals (Sweden)

    Iolanda Francolini

    2013-09-01

    Full Text Available The special issue “Antimicrobial Polymers” includes research and review papers concerning the recent advances on preparation of antimicrobial polymers and their relevance to industrial settings and biomedical field. Antimicrobial polymers have recently emerged as promising candidates to fight microbial contamination onto surfaces thanks to their interesting properties. In this special issue, the main strategies pursued for developing antimicrobial polymers, including polymer impregnation with antimicrobial agents or synthesis of polymers bearing antimicrobial moieties, were discussed. The future application of these polymers either in industrial or healthcare settings could result in an extremely positive impact not only at the economic level but also for the improvement of quality of life.

  8. Preparation of zeolite-A/chitosan hybrid composites and their bioactivities and antimicrobial activities

    International Nuclear Information System (INIS)

    Yu, Liang; Gong, Jie; Zeng, Changfeng; Zhang, Lixiong

    2013-01-01

    Zeolite-A/chitosan hybrid composites with zeolite contents of 20–55 wt.% were prepared by in situ transformation of silica/chitosan mixtures in a sodium aluminate alkaline solution through impregnation–gelation–hydrothermal synthesis. The products were characterized by X-ray diffraction, diffuse reflectance infrared Fourier transform spectroscopy, scanning electron microscopy, thermogravimetric analysis, and mercury penetration porosimetry. Their in vitro bioactivities were examined using as-synthesized and Ca 2+ -exchanged hybrid composites in simulated body fluid (SBF) for hydroxyapatite (HAP) growth. Their antimicrobial activities for Escherichia coli (E. coli) in trypticase soy broth (TSB) were evaluated using Ag + -exchanged hybrid composites. The zeolite-A/chitosan hybrid composites could be prepared as various shapes, including cylinders, plates and thin films. They possessed macropores with pore sizes ranging from 100 to 300 μm and showed compressive mechanical strength as high as 3.2 MPa when the zeolite content was 35 wt.%. Fast growth on the Ca 2+ -exchanged hybrid composites was observed with the highest weight gain of 51.4% in 30 days. The 35 wt.% Ag + -exchanged hybrid composite showed the highest antimicrobial activity, which could reduce the 9 × 10 6 CFU mL −1 E. coli concentration to zero within 4 h of incubation time with the Ag + -exchanged hybrid composite amount of 0.4 g L −1 . The bioactivity and antimicrobial activity could be combined by ion-exchanging the composites first with Ca 2+ and then with Ag + . These zeolite-A/chitosan hybrid composites have potential applications on tissue engineering and antimicrobial food packaging. - Graphical abstract: Zeolite A/chitosan hybrid composites were prepared by in situ transformation of precursors in the chitosan matrix, which possess macroporous structures and exhibit superior bioactivity and antimicrobial activity and potential biomedical application. Highlights: • Zeolite A

  9. Preparation of zeolite-A/chitosan hybrid composites and their bioactivities and antimicrobial activities

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Liang; Gong, Jie [State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing University of Technology, Nanjing 210009 (China); Zeng, Changfeng [College of Mechanic and Power Engineering, Nanjing University of Technology, Nanjing 210009 (China); Zhang, Lixiong, E-mail: lixiongzhang@yahoo.com [State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing University of Technology, Nanjing 210009 (China)

    2013-10-15

    Zeolite-A/chitosan hybrid composites with zeolite contents of 20–55 wt.% were prepared by in situ transformation of silica/chitosan mixtures in a sodium aluminate alkaline solution through impregnation–gelation–hydrothermal synthesis. The products were characterized by X-ray diffraction, diffuse reflectance infrared Fourier transform spectroscopy, scanning electron microscopy, thermogravimetric analysis, and mercury penetration porosimetry. Their in vitro bioactivities were examined using as-synthesized and Ca{sup 2+}-exchanged hybrid composites in simulated body fluid (SBF) for hydroxyapatite (HAP) growth. Their antimicrobial activities for Escherichia coli (E. coli) in trypticase soy broth (TSB) were evaluated using Ag{sup +}-exchanged hybrid composites. The zeolite-A/chitosan hybrid composites could be prepared as various shapes, including cylinders, plates and thin films. They possessed macropores with pore sizes ranging from 100 to 300 μm and showed compressive mechanical strength as high as 3.2 MPa when the zeolite content was 35 wt.%. Fast growth on the Ca{sup 2+}-exchanged hybrid composites was observed with the highest weight gain of 51.4% in 30 days. The 35 wt.% Ag{sup +}-exchanged hybrid composite showed the highest antimicrobial activity, which could reduce the 9 × 10{sup 6} CFU mL{sup −1}E. coli concentration to zero within 4 h of incubation time with the Ag{sup +}-exchanged hybrid composite amount of 0.4 g L{sup −1}. The bioactivity and antimicrobial activity could be combined by ion-exchanging the composites first with Ca{sup 2+} and then with Ag{sup +}. These zeolite-A/chitosan hybrid composites have potential applications on tissue engineering and antimicrobial food packaging. - Graphical abstract: Zeolite A/chitosan hybrid composites were prepared by in situ transformation of precursors in the chitosan matrix, which possess macroporous structures and exhibit superior bioactivity and antimicrobial activity and potential biomedical

  10. Pathogen- and Host-Directed Anti-Inflammatory Activities of Macrolide Antibiotics

    OpenAIRE

    Steel, Helen C.; Theron, Annette J.; Cockeran, Riana; Anderson, Ronald; Feldman, Charles

    2012-01-01

    Macrolide antibiotics possess several, beneficial, secondary properties which complement their primary antimicrobial activity. In addition to high levels of tissue penetration, which may counteract seemingly macrolide-resistant bacterial pathogens, these agents also possess anti-inflammatory properties, unrelated to their primary antimicrobial activity. Macrolides target cells of both the innate and adaptive immune systems, as well as structural cells, and are beneficial in controlling harmfu...

  11. Advances in the Fabrication of Antimicrobial Hydrogels for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Carmen M. González-Henríquez

    2017-02-01

    Full Text Available This review describes, in an organized manner, the recent developments in the elaboration of hydrogels that possess antimicrobial activity. The fabrication of antibacterial hydrogels for biomedical applications that permits cell adhesion and proliferation still remains as an interesting challenge, in particular for tissue engineering applications. In this context, a large number of studies has been carried out in the design of hydrogels that serve as support for antimicrobial agents (nanoparticles, antibiotics, etc.. Another interesting approach is to use polymers with inherent antimicrobial activity provided by functional groups contained in their structures, such as quaternary ammonium salt or hydrogels fabricated from antimicrobial peptides (AMPs or natural polymers, such as chitosan. A summary of the different alternatives employed for this purpose is described in this review, considering their advantages and disadvantages. Finally, more recent methodologies that lead to more sophisticated hydrogels that are able to react to external stimuli are equally depicted in this review.

  12. Health-Promoting Properties of Eucommia ulmoides: A Review

    Directory of Open Access Journals (Sweden)

    Tarique Hussain

    2016-01-01

    Full Text Available Eucommia ulmoides (EU (also known as “Du Zhong” in Chinese language is a plant containing various kinds of chemical constituents such as lignans, iridoids, phenolics, steroids, flavonoids, and other compounds. These constituents of EU possess various medicinal properties and have been used in Chinese Traditional Medicine (TCM as a folk drink and functional food for several thousand years. EU has several pharmacological properties such as antioxidant, anti-inflammatory, antiallergic, antimicrobial, anticancer, antiaging, cardioprotective, and neuroprotective properties. Hence, it has been widely used solely or in combination with other compounds to treat cardiovascular and cerebrovascular diseases, sexual dysfunction, cancer, metabolic syndrome, and neurological diseases. This review paper summarizes the various active ingredients contained in EU and their health-promoting properties, thus serving as a reference material for the application of EU.

  13. Analysis of phytochemical profile of Terminalia arjuna bark extract with antioxidative and antimicrobial properties.

    Science.gov (United States)

    Mandal, Shreya; Patra, Arpita; Samanta, Animesh; Roy, Suchismita; Mandal, Arpita; Mahapatra, Tapasi Das; Pradhan, Shrabani; Das, Koushik; Nandi, Dilip Kumar

    2013-12-01

    To investigate phytochemical screening, antimicrobial activity and qualitative thin layer chromatographic separation of flavonoid components, antioxidant activity and total flavonoid compound of Terminalia arjuna. For phytochemical screening, some common and available standard tests were done. Antimicrobial bioassay was done through agar well diffusion method. Detection of antioxidant activity and flavonoid compounds were done through thin layer chromatography. Total antioxidant activity was measured by 2, 2-diphenyl-1-picrylhydrazyl (DPPH) in colorimetric method. Aluminum chloride colorimetric method was used for total flavonoid determination. Phytochemical screening showed the active compounds presence in high concentration, such as phytosterol, lactones, flavonoids, phenolic compounds and tannins and glycosides. The antimicrobial activity of extract showed that greater inhibition zone against Gram negative bacteria than Gram positive bacteria. This methanolic extract showed a promising antioxidant activity, as absorption of DPPH redicles decreased in DPPH free radical scavenging assay. Flavonoids components having antioxidant property present in the methanol extract at a level of 199.00 mg quercetin equivalent/g of dried methanol extract in colorimetric method. The Terminalia arjuna bark extract revealed the presence of bio-active constituents which are known to exhibit medicinal as well as physiological activities. Copyright © 2013 Asian Pacific Tropical Biomedical Magazine. Published by Elsevier B.V. All rights reserved.

  14. Chromatographic Characterization and GC-MS Evaluation of the Bioactive Constituents with Antimicrobial Potential from the Pigmented Ink of Loligo duvauceli.

    Science.gov (United States)

    Girija, Smiline; Duraipandiyan, Veeramuthu; Kuppusamy, Pandi Suba; Gajendran, Hariprasad; Rajagopal, Raghuraman

    2014-01-01

    Chromatographic characterization and the GC-MS evaluation of the black pigmented ink of Loligo duvauceli in the present study have yielded an array of bioactive compounds with potent antimicrobial property. Facing an alarm of antimicrobial resistance globally, a need for elucidating antimicrobial agents from natural sources will be the need for the hour. In this view, this study is aimed at characterizing the black pigmented ink of the Indian squid L. duvauceli. The squid ink was subjected to crude solvent extraction and was fractionated by silica gel column chromatography. TLC and HPTLC profiles were recorded. Antimicrobial bioassay of the squid ink fractions was done by agar well diffusion method. The antimicrobial fraction was then characterized using GC-MS analysis. The results showed that the n-hexane extract upon column fractionation yielded a total of 8 fractions with the mobile phase of Hex/EtOAc in different gradients. TLC and HPTLC profiles showed a single spot with a retention factor of 0.76. Fraction 1 showed significant antibacterial activity against Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus, and Lactobacillus acidophilus and a promising antifungal activity against Candida albicans. The antimicrobial fraction upon GC-MS analysis of bis(2-ethylhexyl) phthalate (BEHP) possesses the highest percentage of area normalisation (91%) with other few minor constituents. The study is concluded by stating that the antimicrobial efficacy of the squid ink might be due to the synergistic effects of the phthalate derivative and the other minor volatile compounds analysed in the squid ink.

  15. Chemical Composition and Antimicrobial Activities of Essential Oils of Some Coniferous Plants Cultivated in Egypt.

    Science.gov (United States)

    Ibrahim, Taghreed A; El-Hela, Atef A; El-Hefnawy, Hala M; Al-Taweel, Areej M; Perveen, Shagufta

    2017-01-01

    Family Cupressaceae is the largest coniferous plant family. Essential oils of many species belonging to family Cupressaceae are known to have several biological activities specially antimicrobial activity. The essential oils from aerial parts of Calocedrus decurrens Torr., Cupressus sempervirens stricta L. and Tetraclinis articulata (Vahl) Mast. were prepared by hydrodistillation. The chemical composition of the essential oils has been elucidated by gas chromatography-mass spectroscopy analysis. The prepared essential oils were examined against selected species of Gram-positive, Gram-negative bacteria and Candida species. Broth dilution methods were used to detect minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and minimum fungicidal concentration (MFC). Sixteen compounds were identified in the essential oils of both Calocedrus decurrens and Cupressus sempervirens L. and fifteen compounds were identified in the essential oil of Tetraclinis articulata . δ-3-Carene (43.10%), (+)-Cedrol (74.03%) and Camphor (21.23%) were the major constituents in the essential oils of Calocedrus decurrens , Cupressus sempervirens L. and Tetraclinis articulata , respectively. The essential oils showed strong antimicrobial activities against the selected microorganisms in concentration range 0.02 3- 3.03 µL/mL. This study could contribute to the chemotaxonomic characterization of family Cupressaceae. In addition, it proved that the essential oils under investigation possess potential antimicrobial properties.

  16. Preventing maritime transport of pathogens: the remarkable antimicrobial properties of silver-supported catalysts for ship ballast water disinfection.

    Science.gov (United States)

    Theologides, C P; Theofilou, S P; Anayiotos, A; Costa, C N

    2017-07-01

    Ship ballast water (SBW) antimicrobial treatment is considered as a priority issue for the shipping industry. The present work investigates the possibility of utilizing antimicrobial catalysis as an effective method for the treatment of SBW. Taking into account the well-known antimicrobial properties of ionic silver (Ag + ), five silver-supported catalysts (Ag/γ-Al 2 O 3 ) with various loadings (0.05, 0.1, 0.2, 0.5, and 1 wt%) were prepared and examined for the antimicrobial treatment of SBW. The bactericidal activity of the aforementioned catalysts was investigated towards the inhibition of Escherichia coli (Gram-negative) and Escherichia faecalis (Gram-positive) bacteria. Catalytic experiments were conducted in a three-phase continuous flow stirred tank reactor, used in a semi-batch mode. It was found that using the catalyst with the lowest metal loading, the inhibition of E. coli reached 95.8% after 30 minutes of treatment of an E. coli bacterial solution, while the inhibition obtained for E. faecalis was 76.2% after 60 minutes of treatment of an E. faecalis bacterial solution. Even better results (100% inhibition after 5 min of reaction) were obtained using the catalysts with higher Ag loadings. The results of the present work indicate that the prepared monometallic catalysts exert their antimicrobial activity within a short period of time, revealing, for the first time ever, that the field of antimicrobial heterogeneous catalysis using deposited ionic silver on a solid support may prove decisive for the disinfection of SBW.

  17. Antimicrobial activity of camwood (Baphia nitida) dyes on common ...

    African Journals Online (AJOL)

    enoh

    2012-03-29

    Mar 29, 2012 ... on common human pathogens. O. K. Agwa*, C. I. ... and have antimicrobial properties (Egharevba and. Ikhatua, 2008). ... properties. Antibiotic susceptibility is used to determine the efficacy of these plants for use as antibiotics. The most basic laboratory measurement of the activity of an antimicrobial agent ...

  18. Chitosan films incorporated with nettle (Urtica dioica L.) extract-loaded nanoliposomes: I. Physicochemical characterisation and antimicrobial properties.

    Science.gov (United States)

    Haghju, Sara; Beigzadeh, Sara; Almasi, Hadi; Hamishehkar, Hamed

    2016-07-17

    The objective of this study was to characterise and compare physical, mechanical and antimicrobial properties of chitosan-based films, containing free or nanoencapsulated nettle (Urtica dioica L.) extract (NE) at concentrations of 0, 0.5, 1 and 1.5% w/w. Nanoliposomes were prepared using soy-lecithin by thin-film hydration and sonication method to generate an average size of 107-136 nm with 70% encapsulation efficiency. The information on FT-IR reflected that some new interaction have occurred between chitosan and nanoliposomes. Despite the increasing yellowness and decreasing whiteness indexes, the nanoliposomes incorporation improved the thermal properties and mechanical stiffness and caused to decrease water vapour permeability (WVP), moisture uptake and water solubility. The possible antimicrobial activity of the films containing NE-loaded nanoliposomes against Staphylococcus aureus was decreased in comparison to free NE-incorporated films, which could be due to the inhibition effect of the encapsulation that prevents the release of NE from the matrix.

  19. Leaching and antimicrobial properties of silver nanoparticles loaded onto natural zeolite clinoptilolite by ion exchange and wet impregnation

    CSIR Research Space (South Africa)

    Missengue, RNM

    2015-11-01

    Full Text Available This study aimed to compare the leaching and antimicrobial properties of silver that was loaded onto the natural zeolite clinoptilolite by ion exchange and wet impregnation. Silver ions were reduced using sodium borohydride (NaBH(sub4...

  20. Antimicrobial effect of lactobacillus and bacillus derived ...

    African Journals Online (AJOL)

    This study focused on the screening, production, extraction of biosurfactants from Lactobacillus and Bacillus bacteria and their antimicrobial properties against causal microorganisms of food borne infections (food borne pathogens). The biosurfactants were investigated for potential antimicrobial activity using disk diffusion.

  1. Antimicrobial Properties and Cytocompatibility of PLGA/Ag Nanocomposites

    Directory of Open Access Journals (Sweden)

    Mariangela Scavone

    2016-01-01

    Full Text Available The purpose of this study was to investigate the antimicrobial properties of multifunctional nanocomposites based on poly(dl-Lactide-co-Glycolide (PLGA and increasing concentration of silver (Ag nanoparticles and their effects on cell viability for biomedical applications. PLGA nanocomposite films, produced by solvent casting with 1 wt%, 3 wt% and 7 wt% of Ag nanoparticles were investigated and surface properties were characterized by atomic force microscopy and contact angle measurements. Antibacterial tests were performed using an Escherichia coli RB and Staphylococcus aureus 8325-4 strains. The cell viability and morphology were performed with a murine fibroblast cell line (L929 and a human osteosarcoma cell line (SAOS-2 by cell viability assay and electron microscopy observations. Matrix protein secretion and deposition were also quantified by enzyme-linked immunosorbent assay (ELISA. The results suggest that the PLGA film morphology can be modified introducing a small percentage of silver nanoparticles, which induce the onset of porous round-like microstructures and also affect the wettability. The PLGA/Ag films having silver nanoparticles of more than 3 wt% showed antibacterial effects against E. coli and S. aureus. Furthermore, silver-containing PLGA films displayed also a good cytocompatibility when assayed with L929 and SAOS-2 cells; indicating the PLGA/3Ag nanocomposite film as a promising candidate for tissue engineering applications.

  2. Report on the Medicinal Use of Eleven Lamiaceae Species in Lebanon and Rationalization of Their Antimicrobial Potential by Examination of the Chemical Composition and Antimicrobial Activity of Their Essential Oils.

    Science.gov (United States)

    Khoury, Madona; Stien, Didier; Eparvier, Véronique; Ouaini, Naïm; El Beyrouthy, Marc

    2016-01-01

    Many Lamiaceae species are consumed in the Lebanese cuisine as food or condiment and are largely used in the traditional medicine of Lebanon to treat various diseases, including microbial infections. In this article we report the traditional medicinal uses of eleven Lamiaceae species: Coridothymus capitatus L., Lavandula stoechas L., Lavandula angustifolia Mill., Mentha spicata L. subsp. condensata , Origanum syriacum L., Rosmarinus officinalis , Salvia fruticosa Miller., Satureja cuneifolia Ten., Satureja thymbra L., Thymbra spicata L., and Vitex agnus-castus L. and study the chemical composition and antimicrobial activity of their essential oils (EOs). Our survey showed that Lamiaceae species are mainly used against gastrointestinal disorders and microbial infections. Chemical analysis of the EOs obtained from these plants allowed us to identify seventy-five compounds describing more than 90% of the relative composition of each EO. Essential oils with high amounts of thymol and carvacrol possessed the strongest antimicrobial activity. As expected, these two compounds demonstrated an interesting antifungal efficacy against the filamentous fungus T. rubrum . Our results confirmed that some of the Lamiaceae species used in Lebanon ethnopharmacological practices as antimicrobial agents do possess antibacterial and antifungal potential consistent with their use in alternative or complementary medicine.

  3. Report on the Medicinal Use of Eleven Lamiaceae Species in Lebanon and Rationalization of Their Antimicrobial Potential by Examination of the Chemical Composition and Antimicrobial Activity of Their Essential Oils

    Directory of Open Access Journals (Sweden)

    Madona Khoury

    2016-01-01

    Full Text Available Many Lamiaceae species are consumed in the Lebanese cuisine as food or condiment and are largely used in the traditional medicine of Lebanon to treat various diseases, including microbial infections. In this article we report the traditional medicinal uses of eleven Lamiaceae species: Coridothymus capitatus L., Lavandula stoechas L., Lavandula angustifolia Mill., Mentha spicata L. subsp. condensata, Origanum syriacum L., Rosmarinus officinalis, Salvia fruticosa Miller., Satureja cuneifolia Ten., Satureja thymbra L., Thymbra spicata L., and Vitex agnus-castus L. and study the chemical composition and antimicrobial activity of their essential oils (EOs. Our survey showed that Lamiaceae species are mainly used against gastrointestinal disorders and microbial infections. Chemical analysis of the EOs obtained from these plants allowed us to identify seventy-five compounds describing more than 90% of the relative composition of each EO. Essential oils with high amounts of thymol and carvacrol possessed the strongest antimicrobial activity. As expected, these two compounds demonstrated an interesting antifungal efficacy against the filamentous fungus T. rubrum. Our results confirmed that some of the Lamiaceae species used in Lebanon ethnopharmacological practices as antimicrobial agents do possess antibacterial and antifungal potential consistent with their use in alternative or complementary medicine.

  4. Report on the Medicinal Use of Eleven Lamiaceae Species in Lebanon and Rationalization of Their Antimicrobial Potential by Examination of the Chemical Composition and Antimicrobial Activity of Their Essential Oils

    Science.gov (United States)

    Khoury, Madona; Eparvier, Véronique; Ouaini, Naïm

    2016-01-01

    Many Lamiaceae species are consumed in the Lebanese cuisine as food or condiment and are largely used in the traditional medicine of Lebanon to treat various diseases, including microbial infections. In this article we report the traditional medicinal uses of eleven Lamiaceae species: Coridothymus capitatus L., Lavandula stoechas L., Lavandula angustifolia Mill., Mentha spicata L. subsp. condensata, Origanum syriacum L., Rosmarinus officinalis, Salvia fruticosa Miller., Satureja cuneifolia Ten., Satureja thymbra L., Thymbra spicata L., and Vitex agnus-castus L. and study the chemical composition and antimicrobial activity of their essential oils (EOs). Our survey showed that Lamiaceae species are mainly used against gastrointestinal disorders and microbial infections. Chemical analysis of the EOs obtained from these plants allowed us to identify seventy-five compounds describing more than 90% of the relative composition of each EO. Essential oils with high amounts of thymol and carvacrol possessed the strongest antimicrobial activity. As expected, these two compounds demonstrated an interesting antifungal efficacy against the filamentous fungus T. rubrum. Our results confirmed that some of the Lamiaceae species used in Lebanon ethnopharmacological practices as antimicrobial agents do possess antibacterial and antifungal potential consistent with their use in alternative or complementary medicine. PMID:28053641

  5. Genomewide Analysis of the Antimicrobial Peptides in Python bivittatus and Characterization of Cathelicidins with Potent Antimicrobial Activity and Low Cytotoxicity.

    Science.gov (United States)

    Kim, Dayeong; Soundrarajan, Nagasundarapandian; Lee, Juyeon; Cho, Hye-Sun; Choi, Minkyeung; Cha, Se-Yeoun; Ahn, Byeongyong; Jeon, Hyoim; Le, Minh Thong; Song, Hyuk; Kim, Jin-Hoi; Park, Chankyu

    2017-09-01

    In this study, we sought to identify novel antimicrobial peptides (AMPs) in Python bivittatus through bioinformatic analyses of publicly available genome information and experimental validation. In our analysis of the python genome, we identified 29 AMP-related candidate sequences. Of these, we selected five cathelicidin-like sequences and subjected them to further in silico analyses. The results showed that these sequences likely have antimicrobial activity. The sequences were named Pb-CATH1 to Pb-CATH5 according to their sequence similarity to previously reported snake cathelicidins. We predicted their molecular structure and then chemically synthesized the mature peptide for three putative cathelicidins and subjected them to biological activity tests. Interestingly, all three peptides showed potent antimicrobial effects against Gram-negative bacteria but very weak activity against Gram-positive bacteria. Remarkably, ΔPb-CATH4 showed potent activity against antibiotic-resistant clinical isolates and also was observed to possess very low hemolytic activity and cytotoxicity. ΔPb-CATH4 also showed considerable serum stability. Electron microscopic analysis indicated that ΔPb-CATH4 exerts its effects via toroidal pore preformation. Structural comparison of the cathelicidins identified in this study to previously reported ones revealed that these Pb-CATHs are representatives of a new group of reptilian cathelicidins lacking the acidic connecting domain. Furthermore, Pb-CATH4 possesses a completely different mature peptide sequence from those of previously described reptilian cathelicidins. These new AMPs may be candidates for the development of alternatives to or complements of antibiotics to control multidrug-resistant pathogens. Copyright © 2017 American Society for Microbiology.

  6. Sporulation properties and antimicrobial susceptibility in endemic and rare Clostridium difficile PCR ribotypes.

    Science.gov (United States)

    Zidaric, Valerija; Rupnik, Maja

    2016-06-01

    Increased sporulation and antibiotic resistance have been proposed to be associated with certain Clostridium difficile epidemic strains such as PCR ribotype 027. In this study we examined these properties in another widespread PCR ribotype, 014/020, in comparison to prevalent PCR ribotype 002 and a group of rarely represented PCR ribotypes. Highest sporulation was observed in 014/020 strains at 24 h, while after 72 h PCR ribotype 002 and rare PCR ribotypes formed higher total number of spores. PCR ribotype 014/020 strains exhibited slightly higher resistance to tested antimicrobials, followed by group of rare PCR ribotypes and less common PCR ribotype 002. Neither sporulation properties nor antibiotic resistance clearly differed in endemic and rare strains. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Gingival Mesenchymal Stem Cell (GMSC) Delivery System Based on RGD-Coupled Alginate Hydrogel with Antimicrobial Properties: A Novel Treatment Modality for Peri-Implantitis.

    Science.gov (United States)

    Diniz, Ivana M A; Chen, Chider; Ansari, Sahar; Zadeh, Homayoun H; Moshaverinia, Maryam; Chee, Daniel; Marques, Márcia M; Shi, Songtao; Moshaverinia, Alireza

    2016-02-01

    Peri-implantitis is one of the most common inflammatory complications in dental implantology. Similar to periodontitis, in peri-implantitis, destructive inflammatory changes take place in the tissues surrounding a dental implant. Bacterial flora at the failing implant sites resemble the pathogens in periodontal disease and consist of Gram-negative anaerobic bacteria including Aggregatibacter actinomycetemcomitans (Aa). Here we demonstrate the effectiveness of a silver lactate (SL)-containing RGD-coupled alginate hydrogel scaffold as a promising stem cell delivery vehicle with antimicrobial properties. Gingival mesenchymal stem cells (GMSCs) or human bone marrow mesenchymal stem cells (hBMMSCs) were encapsulated in SL-loaded alginate hydrogel microspheres. Stem cell viability, proliferation, and osteo-differentiation capacity were analyzed. Our results showed that SL exhibited antimicrobial properties against Aa in a dose-dependent manner, with 0.50 mg/ml showing the greatest antimicrobial properties while still maintaining cell viability. At this concentration, SL-containing alginate hydrogel was able to inhibit Aa growth on the surface of Ti discs and significantly reduce the bacterial load in Aa suspensions. Silver ions were effectively released from the SL-loaded alginate microspheres for up to 2 weeks. Osteogenic differentiation of GMSCs and hBMMSCs encapsulated in the SL-loaded alginate microspheres were confirmed by the intense mineral matrix deposition and high expression of osteogenesis-related genes. Taken together, our findings confirm that GMSCs encapsulated in RGD-modified alginate hydrogel containing SL show promise for bone tissue engineering with antimicrobial properties against Aa bacteria in vitro. © 2015 by the American College of Prosthodontists.

  8. Evaluation of Debaryomyces hansenii for Potential Probiotic Properties

    DEFF Research Database (Denmark)

    Ochangco, Honeylet Sabas

    epithelial invasion, producing antimicrobial substances, improving absorption of nutrients, and protecting the host against pathogens (Rolfe 2000). Saccharomyces cerevisiae var. boulardii (S. boulardii), a patented yeast preparation and the only probiotic yeast available on the market, has been widely...... studied as a probiotic. The clinical activity of S. boulardii is especially relevant to antibiotic-associated diarrhoea and recurrent Clostridium difficile intestinal infections (Czerucka, Piche, and Rampal 2007), and this yeast is used in many countries as both a preventive and therapeutic agent...... for diarrhoea and other gastrointestinal (GI) disorders because it is not affected by the administration of antimicrobial agents. Furthermore, S. boulardii possesses many properties of a probiotic organism. For example, it survives transit through the GI tract, it can grow at a temperature of 37 °C...

  9. Antimicrobial activity of Nigerian medicinal plants

    Science.gov (United States)

    Anyanwu, Madubuike Umunna; Okoye, Rosemary Chinazam

    2017-01-01

    Antimicrobial resistance (AMR) is currently one of the major threats facing mankind. The emergence and rapid spread of multi- and pan-drug-resistant organisms (such as vancomycin-, methicillin-, extended-spectrum β-lactam-, carbapenem- and colistin-resistant organisms) has put the world in a dilemma. The health and economic burden associated with AMR on a global scale are dreadful. Available antimicrobials have been misused and are almost ineffective with some of these drugs associated with dangerous side effects in some individuals. Development of new, effective, and safe antimicrobials is one of the ways by which AMR burden can be reduced. The rate at which microorganisms develop AMR mechanisms outpaces the rate at which new antimicrobials are being developed. Medicinal plants are potential sources of new antimicrobial molecules. There is renewed interest in antimicrobial activities of phytochemicals. Nigeria boasts of a huge heritage of medicinal plants and there is avalanche of researches that have been undertaken to screen antimicrobial activities of these plants. Scientific compilation of these studies could provide useful information on the antimicrobial properties of the plants. This information can be useful in the development of new antimicrobial drugs. This paper reviews antimicrobial researches that have been undertaken on Nigerian medicinal plants. PMID:28512606

  10. Synthesis, spectroscopic and antimicrobial properties of Co(II), Ni (II ...

    African Journals Online (AJOL)

    The objective of this study is to investigate the antimicrobial activity of novel Schiff base metal complexes. The resistance of micro-organisms to classical antimicrobial compounds poses a challenge to effective management and treatment of some diseases. In line with this, copper (II), nickel (II) and cobalt (II) complexes of ...

  11. Photochemically synthesized heparin-based silver nanoparticles: an antimicrobial activity study

    Science.gov (United States)

    Rodriguez-Torres, Maria del Pilar; Acosta-Torres, Laura Susana; Díaz-Torres, Luis Armando

    2017-08-01

    The antimicrobial activity of silver nanoparticles has been extensively studied in the last years. Such nanoparticles constitute a potential and promising approach for the development of new antimicrobial systems especially due to the fact that several microorganisms are developing resistance to some already existing antimicrobial agents, therefore making antibacterial and antimicrobial studies on alternative materials necessary to overcome this issue. Silver nanoparticle concentration and size are determining factors on the antimicrobial activity of these nano systems. Heparin is a polysaccharide that belongs to the glycosaminoglycans (GAGs) family, molecules formed by a base disaccharide whose components are joined by a glycosidic linkage that is a repeating unit along their structure. It is highly sulfated making it a negatively charged material that is also widely used as an anticoagulant in Medicine because its biocompatibility besides it is also produced within the human body, specifically in the mast cells. Heparin alone possesses antimicrobial activity although it has not been studied very much in detail, it only has been demonstrated that it inhibits E. coli, P. aeruginosa, S. aureus and S. epidermidis, so taking this into account, this study is dedicated to assess UV photochemically-synthesized (λ=254 nm) heparin-based silver nanoparticles antimicrobial activity using the agar disk diffusion method complemented by the broth microdilution method to estimate de minimum inhibitory concentration (MIC), that is the lowest concentration at which an antimicrobial will inhibit visible growth of a microorganism. The strains used were the ones aforementioned to assess the antimicrobial activity degree these heparinbased nanoparticles exhibit.

  12. Chemical composition and antimicrobial evaluation of Achillea aucheri essential oil

    Directory of Open Access Journals (Sweden)

    2017-11-01

    Full Text Available Background and objectives: The majority of the Achillea spp. are used as medicinal plants with therapeutic applications worldwide. Achillea aucheri was selected in our study to assess its essential oil chemical composition along with antimicrobial evaluation. Methods: The essential oil of A. aucheri achieved through hydrodistillation, was analyzed via gas chromatography-mass spectrometry (GC-MS. Afterwards, the microbial growth inhibitory property of the A. aucheri essential oil was determined using the agar disk-diffusion method against five Gram-positive strains (Staphylococus aureus, Staphylococus epidermidis, Micrococcus luteus, Bacillus subtilis, Bacillus cereus, three Gram-negative bacteria (Eschrichia coli, Psedumonas aeruginosa, Salmonella typhi and a fungus (Candida albicans. Besides, minimal inhibitory concentrations (MICs of the sensitive strains were determined by broth dilution method to evaluate the inhibitory properties.Results: The GC-MS analysis, allowed us to identify 28 compounds, representing 98.1% of the total essential oil. The main components of the oil were identified as α-thujone (45.6%, artemisia alcohol (26.5% and yomogi alcohol (8.8%. The findings of the antimicrobial assay indicated that S. aureus was the most sensitive strain with the strongest inhibition zone of 31.5 ± 0.5 and MIC of 2.5 % v/v, followed by S. epidermidis and M. luteus, respectively.Conclusion: Overall, A. aucheri essential oil possessed potential antibacterial and antioxidant activities that could be attributed to the high content of oxygenated monoterpenes present in the oil which requisite for further exploration of the compounds in charge, considering the growing statistics of bacterial resistance worldwide.

  13. Cationic antimicrobial peptides in penaeid shrimp.

    Science.gov (United States)

    Tassanakajon, Anchalee; Amparyup, Piti; Somboonwiwat, Kunlaya; Supungul, Premruethai

    2011-08-01

    Penaeid shrimp aquaculture has been consistently affected worldwide by devastating diseases that cause a severe loss in production. To fight a variety of harmful microbes in the surrounding environment, particularly at high densities (of which intensive farming represents an extreme example), shrimps have evolved and use a diverse array of antimicrobial peptides (AMPs) as part of an important first-line response of the host defense system. Cationic AMPs in penaeid shrimps composed of penaeidins, crustins, and anti-lipopolysaccharide factors are comprised of multiple classes or isoforms and possess antibacterial and antifungal activities against different strains of bacteria and fungi. Shrimp AMPs are primarily expressed in circulating hemocytes, which is the main site of the immune response, and hemocytes expressing AMPs probably migrate to infection sites to fight against pathogen invasion. Indeed, most AMPs are produced as early as the nauplii developmental stage to protect shrimp larvae from infections. In this review, we discuss the sequence diversity, expression, gene structure, and antimicrobial activities of cationic AMPs in penaeid shrimps. The information available on antimicrobial activities indicates that these shrimp AMPs have potential therapeutic applications in the control of disease problems in aquaculture.

  14. Effect of Storage in Distilled Water for Three Months on the Antimicrobial Properties of Poly(methyl methacrylate Denture Base Material Doped with Inorganic Filler

    Directory of Open Access Journals (Sweden)

    Grzegorz Chladek

    2016-04-01

    Full Text Available The colonization of poly(methyl methacrylate (PMMA denture base materials by pathogenic microorganisms is a major problem associated with the use of prostheses, and the incorporation of antimicrobial fillers is a method of improving the antimicrobial properties of these materials. Numerous studies have demonstrated the initial in vitro antimicrobial effectiveness of this type of material; however, reports demonstrating the stability of these fillers over longer periods are not available. In this study, silver sodium hydrogen zirconium phosphate was introduced into the powder component of a PMMA denture base material at concentrations of 0.25%, 0.5%, 1%, 2%, 4%, and 8% (w/w. The survival rates of the gram-positive bacterium Staphylococcus aureus, gram-negative bacterium Escherichia coli and yeast-type fungus Candida albicans were established after fungal or bacterial suspensions were incubated with samples that had been previously stored in distilled water. Storage over a three-month period led to the progressive reduction of the initial antimicrobial properties. The results of this study suggest that additional microbiological tests should be conducted for materials that are treated with antimicrobial fillers and intended for long-term use. Future long-term studies of the migration of silver ions from the polymer matrix and the influence of different media on this ion emission are required.

  15. Characterization of Antimicrobial Peptides toward the Development of Novel Antibiotics

    Directory of Open Access Journals (Sweden)

    Wataru Aoki

    2013-08-01

    Full Text Available Antimicrobial agents have eradicated many infectious diseases and significantly improved our living environment. However, abuse of antimicrobial agents has accelerated the emergence of multidrug-resistant microorganisms, and there is an urgent need for novel antibiotics. Antimicrobial peptides (AMPs have attracted attention as a novel class of antimicrobial agents because AMPs efficiently kill a wide range of species, including bacteria, fungi, and viruses, via a novel mechanism of action. In addition, they are effective against pathogens that are resistant to almost all conventional antibiotics. AMPs have promising properties; they directly disrupt the functions of cellular membranes and nucleic acids, and the rate of appearance of AMP-resistant strains is very low. However, as pharmaceuticals, AMPs exhibit unfavorable properties, such as instability, hemolytic activity, high cost of production, salt sensitivity, and a broad spectrum of activity. Therefore, it is vital to improve these properties to develop novel AMP treatments. Here, we have reviewed the basic biochemical properties of AMPs and the recent strategies used to modulate these properties of AMPs to enhance their safety.

  16. A Review of the Uses and Medicinal Properties of Dennettia tripetala (Pepperfruit

    Directory of Open Access Journals (Sweden)

    Sylvia Oghogho Iseghohi

    2015-11-01

    Full Text Available Dennettia tripetala (commonly known as Pepperfruit is widely consumed by the inhabitants of West Africa due to its distinctive spicy taste. It is also used traditionally as a remedy for cough, fever, toothache, diabetes, and nausea. The highly nutritious fruit is rich in protein, carbohydrates, as well as the antioxidant vitamins A, C, and E. The plant possesses phytochemicals that have been shown to elicit antimicrobial, insecticidal, analgesic, and anti-inflammatory properties. The plant has also been shown to possess chemotherapeutic, antihyperglycemic, and antioxidant properties. In addition, D. tripetala finds application in food preservation and seasoning. This review is the first attempt to pool together scientific evidence for the ethnomedicinal uses of D. tripetala. A critique of the literature is provided, as well as suggestions for future studies that can pave the way for further discoveries on the medicinal effects of D. tripetala.

  17. Chilean berry Ugni molinae Turcz. fruit and leaves extracts with interesting antioxidant, antimicrobial and tyrosinase inhibitory properties.

    Science.gov (United States)

    López de Dicastillo, Carol; Bustos, Fernanda; Valenzuela, Ximena; López-Carballo, Gracia; Vilariño, Jose M; Galotto, Maria Jose

    2017-12-01

    The knowledge of the biological properties of fruits and leaves of murta (Ugni molinae Turcz.) has been owned by native Chilean culture. The present study investigated the phenolic content, the antioxidant, antimicrobial and anti-tyrosinase activities of different murta fruit and leaves extracts to approach their uses on future food, pharmaceutical and cosmetic applications. Extractions of murta fruit and leaves were carried out under water, ethanol and ethanol 50%. Phenolic content of these extracts was measured through Folin Ciocalteu test and the antioxidant power by four different antioxidant systems (ORAC, FRAP, DPPH and TEAC assays) owing to elucidate the main mechanism of antioxidant. Some flavonoids, such as rutin, isoquercitrin and quercitrin hydrate were identified and quantified through HPLC analysis. Antimicrobial activity was determined measuring minimum inhibition concentration (MIC) and minimum bactericidal concentration (MBC) values against Escherichia coli and Listeria monocytogenes, and the effect of these extracts on L. monocytogenes was confirmed by flow cytometry. Highest contents of polyphenol compounds were obtained in hydroalcoholic extracts (28±1mggallicacid/g dry fruit, and 128±6mggallicacid/g dry leaves). The same trend was found for the values of biological properties: hydroalcoholic extracts showed the strongest activities. Leaves presented higher antioxidant, antimicrobial and anti-tyrosinase properties than murta fruit. Highest antioxidant activity values according to ORAC, FRAP, TEAC and DPPH were 80±8mgTrolox/g, 70±2mgTrolox/g, 87±8mgTrolox/g and 110±12mgTrolox/g, respectively, for murta fruit samples, and 280±10mgTrolox/g, 192±4mgTrolox/g, 286±13mgTrolox/g and 361±13mgTrolox/g, respectively, for murta leaves. These activities were confirmed by HPLC analysis that revealed highest presence of analyzed compounds on leaves hydroalcoholic extract. Regarding to antimicrobial analysis, hydroalcoholic leaves extract presented the

  18. Antimicrobial activity of extracts from in vivo and in vitro propagated ...

    African Journals Online (AJOL)

    The antimicrobial activity of 18 different extracts from in vivo and in vitro grown L. album L. plants was evaluated against clinical bacteria and yeasts using the well diffusion method. All the used extracts demonstrated antibacterial activity, whereas only the water extracts from leaves (in vivo) possessed antifungal activity ...

  19. Antimicrobial screening of some derivatives of methyl alpha-D-glucopyranoside

    International Nuclear Information System (INIS)

    Abdul, K.M.S.; Kawsar, S.M.S.; Rehman, S.

    2009-01-01

    In vitro antimicrobial functionality test of methyl 4,6-O-cyclohexylidene-alpha-D-glucopyranoside and its twelve acylated derivatives against ten human pathogenic bacteria and six phytopathogenic fungi comparative to Ampicillin and Nystatin revealed the tested chemicals to possess moderate to good antibacterial and antifungal activity and to be more effective against fungal phytopathogens. Many of these chemicals exhibited better antimicrobial activity than the standard antibiotics. Minimum Inhibition Concentration (MIC) of methyl 4,6-O-cyclohexylidene-2-O-myristoyl- 3-O-palmitoyl-alpha-D-glucopyranoside against Bacillus cereus, Bacillus subtilis and Staphylococcus aureus was 25, 12.5 and 25 macro g/disc, respectively. (author)

  20. Antidiarrheal and antimicrobial profiles extracts of the leaves from Trichilia emetica Vahl. (Meliaceae

    Directory of Open Access Journals (Sweden)

    Kiessoun Konaté

    2015-03-01

    Conclusions: The obtained results allow justifying the traditional uses of Trichilia emetica and possess good antidiarrhoeal and antimicrobial activities of EAF from Trichilia emetica. Results of the present study have clearly supported the utilization of Trichilia emetica in Burkina Faso traditional medicine.

  1. Antimicrobial properties of lactic acid bacteria isolated from traditional yogurt and milk against Shigella strains.

    Science.gov (United States)

    Zare Mirzaei, Elnaze; Lashani, Elahe; Davoodabadi, Abolfazl

    2018-01-01

    Background: Lactic acid bacteria (LAB) are normal flora of the mouth, intestines and the female genital tract. They are also frequently found in meat, vegetables, and dairy products. Most of probiotic bacteria belong to the LAB group. Some probiotic LAB are useful in prevention and treatment of diarrheal diseases. The aim of this study was to investigate the antimicrobial properties of LAB isolated from traditional yogurt and milk against Shigella strains. Materials and methods: Forty LAB strains were isolated from traditional yogurt and milk. The antimicrobial activity of LAB against Shigella strains (eight S. flexneri , four S. sonnei ) was examined using the agar-well diffusion assay. LAB strains with antimicrobial effect against all Shigella strains were identified by 16S rRNA gene sequencing. Results: Six LAB strains inhibited the growth of all 12 Shigella strains. Lb. paracasei Y1-3, Lb. paracasei Y8-1 and Lb. fermentum Y2-2 were isolated from yogurt. Lb. paracasei M18-1, Lb. parelimentarius M4-3 and Lb. plantarum M19-1 were isolated from milk. Conclusion: This study showed that Lactobacillus strains with good inhibitory activity against S. flexneri and S. sonnei could be isolated from traditional yogurt and milk.

  2. Improving the antimicrobial properties of titanium condenser material by surface modification using nanotechnology

    International Nuclear Information System (INIS)

    George, Rani P.; Dash, S.; Krishnan, R.; Kamruddin, M.; Kalavathi, S.; Tyagi, A.K.; Manoharan, N.; Dayal, R.K.; Vishwakarma, Vinita; Theresa, Josephine

    2008-01-01

    Biofouling is one of the major problems faced by condenser materials of power plants using seawater for cooling. Fouling control strategies in condensers include a combination of mechanical and chemical treatments like sponge ball cleaning, back washing and chlorination. In general, numerous studies have shown that no routine treatment regime can successfully keep the condenser tube clean over a period extending to years. Surface properties of the substratum influence initial adhesion and growth of bacterial cells on materials, modification of the surface for mitigating microbial attachment is the need of the hour. Metal nanoparticles are known to exhibit enhanced physical and chemical properties when compared to their bulk counter parts because of their high surface to volume ratios. Metals like copper are very toxic to microorganisms and effectively kill most of the microbes by blocking the respiratory enzyme. Copper alloys with their excellent resistance to biofouling are used extensively for marine applications. However, they are prone to localized corrosion initiation and consequently are getting replaced by extremely corrosion resistant titanium. Still, the inertness and biocompatibility of titanium makes it very susceptible to biofouling. Hence, this study attempts to use nano technology methods of surface modification of titanium using thin film of copper and also multilayers and bilayers of copper and nickel. This is aimed at improving the antimicrobial properties of this condenser pipe material. These nano structured thin films have been grown on titanium substrate using pulsed DC magnetron-sputtering and pulsed laser deposition. The thin films were characterized using Atomic Force Microscopy (AFM), Glancing Incidence X-ray Diffraction (GIXRD) and scanning electron microscopy (SEM with EDAX analysis). Antimicrobial properties were evaluated by exposure studies in seawater and bacterial cultures and by post exposure analysis using culture and

  3. Phytochemical and antimicrobial screening of crude extracts ...

    African Journals Online (AJOL)

    The bark and wood parts of the root of Terminalia mollis was investigated for its phytochemical and antimicrobial properties. Phytochemical screening showed the presence of tannins and resins as the major secondary metabolites. Test for antimicrobial activity of the plant crude extracts using the agar diffusion method ...

  4. The Effect of UV Aging on Antimicrobial and Mechanical Properties of PLA Films with Incorporated Zinc Oxide Nanoparticles.

    Science.gov (United States)

    Mizielińska, Małgorzata; Kowalska, Urszula; Jarosz, Michał; Sumińska, Patrycja; Landercy, Nicolas; Duquesne, Emmanuel

    2018-04-18

    The aim of this study was to examine the influence of accelerated UV-aging on the activity against chosen microorganisms and the mechanical properties of poly-lactic acid (PLA) films enhanced with ZnO nanoparticles. The pure PLA films and tri-layered PLAZnO1%/PLA/PLAZnO1% films of 150 µm thickness were extruded. The samples were treated with UV-A and Q-SUN irradiation. After irradiation the antimicrobial activity and mechanical properties of the films were analyzed. The results of the study demonstrated that PLA films did not inhibit the growth of Staphylococcus aureus , Bacillus cereus , Escherichia coli , Bacillus atrophaeus , and Candida albicans cells. PLA films with incorporated zinc oxide nanoparticles decreased the number of analyzed microorganisms. Accelerated UV aging had no negative effect on the activity of the film containing nano-ZnO against Gram-positive bacteria, but it influenced the activity against Gram-negative cells and C. albicans . Q-SUN irradiation decreased the antimicrobial effect of films with incorporated nanoparticles against B. cereus . UV-A and Q-UV irradiation did not influence the mechanical properties of PLA films containing incorporated ZnO nanoparticles.

  5. Antimicrobial efficacy and phytochemical analysis of Indigofera trita ...

    African Journals Online (AJOL)

    ... when compared to antibacterial activity. The result revealed that the antimicrobial properties of I. trita might be associated with the presence of phenolic compounds, flavonoids, tannins, glycosides, saponins, phytosterols and alkaloids. Key words: Inidigofera trita, Phytoconstituents, Antimicrobial activity, Antifungal activity, ...

  6. Antioxidant and antimicrobial properties of wine byproducts and their potential uses in the food industry.

    Science.gov (United States)

    García-Lomillo, Javier; González-SanJosé, M Luisa; Del Pino-García, Raquel; Rivero-Pérez, M Dolores; Muñiz-Rodríguez, Pilar

    2014-12-31

    Wine pomace (WP) is one of the agricultural byproducts that has received most attention from food scientists due to the wide range of interesting compounds that remain after the winemaking process. Different powdered products rich in phenolic compounds, with interesting antioxidant and antimicrobial activities, were obtained from WP by applying processes that are both environmentally friendly and economically affordable for the food industry. The products obtained showed high global antioxidant activities (ABTS assay), successfully delayed the onset of lipid oxidation in the Rancimat test, and showed different antimicrobial properties. Products derived from seed-free WP showed bactericidal effects against total aerobic mesophilic bacteria (TAMB) and lactic acid bacteria (LAB) and inhibited Enterobacteriaceae growth completely. The product derived from whole WP presented bacteriostatic activity against the three microorganism groups tested, whereas the product obtained from grape seed promoted TAMB and LAB growth but delayed Enterobacteriaceae proliferation.

  7. Silver nanoparticle-loaded chitosan-starch based films: Fabrication and evaluation of tensile, barrier and antimicrobial properties

    International Nuclear Information System (INIS)

    Yoksan, Rangrong; Chirachanchai, Suwabun

    2010-01-01

    The fabrication of silver nanoparticles was accomplished by γ-ray irradiation reduction of silver nitrate in a chitosan solution. The obtained nanoparticles were stable in the solution for more than six months, and showed the characteristic surface plasmon band at 411 nm as well as a positively charged surface with 40.4 ± 2.0 mV. The silver nanoparticles presented a spherical shape with an average size of 20-25 nm, as observed by TEM. Minimum inhibitory concentration (MIC) against E. coli, S. aureus and B. cereus of the silver nanoparticles dispersed in the γ-ray irradiated chitosan solution was 5.64 μg/mL. The silver nanoparticle-loaded chitosan-starch based films were prepared by a solution casting method. The incorporation of silver nanoparticles led to a slight improvement of the tensile and oxygen gas barrier properties of the polysaccharide-based films, with diminished water vapor/moisture barrier properties. In addition, silver nanoparticle-loaded films exhibited enhanced antimicrobial activity against E. coli, S. aureus and B. cereus. The results suggest that silver nanoparticle-loaded chitosan-starch based films can be feasibly used as antimicrobial materials for food packaging and/or biomedical applications.

  8. Chemical Composition of Mentha spicata L. subsp. tomentosa and M. pulegium L., and their Antimicrobial Activity on Strong Pathogen Microorganisms

    Directory of Open Access Journals (Sweden)

    Emre SEVİNDİK

    2017-03-01

    Full Text Available Mentha L., recognized as a medical and aromatic plant, is a general name affiliated to mint species and belongs to Labiatae family. Some species are used as fresh vegetables in the Turkish kitchen and they can also be used in salads. In addition, some species have been used as a spice in food. In this study, chemical composition and antimicrobial activity towards some pathogenics (gram + and gram - microorganisms of the essential oils Mentha spicata L. subsp. tomentosa (Briq. Harley, Mentha pulegium L. grown under West Anatolian ecological conditions were investigated. Extractions were carried out with Clevenger apparatus and essential oil composition was determined by Gas Chromatography-Mass Spectrometry (GC-MS. Microorganisms used for the antimicrobial studies were Methicillin-resistant Staphylococcus aureus (MRSA, Staphylococcus aureus ATCC 6538, Pseudomonas aeruginosa, Enterecoccus faecium DSM 13590, Escherichia coli Q157:H7 and Bacillus cereus CCM99.  As a result, M. pulegium and M. spicata subsp. tomentosa were found to be rich in piperitenone oxide: 72.77% and 28.84%, respectively. Each of the oils was found to possess antimicrobial properties against test microorganisms. Essential oils obtained from Mentha species give positive effect on all microorganisms.

  9. Nucleation and Growth of Ordered Arrays of Silver Nanoparticles on Peptide Nanofibers: Hybrid Nanostructures with Antimicrobial Properties.

    Science.gov (United States)

    Pazos, Elena; Sleep, Eduard; Rubert Pérez, Charles M; Lee, Sungsoo S; Tantakitti, Faifan; Stupp, Samuel I

    2016-05-04

    Silver nanoparticles have been of great interest as plasmonic substrates for sensing and imaging, catalysts, or antimicrobial systems. Their physical properties are strongly dependent on parameters that remain challenging to control such as size, chemical composition, and spatial distribution. We report here on supramolecular assemblies of a novel peptide amphiphile containing aldehyde functionality in order to reduce silver ions and subsequently nucleate silver metal nanoparticles in water. This system spontaneously generates monodisperse silver particles at fairly regular distances along the length of the filamentous organic assemblies. The metal-organic hybrid structures exhibited antimicrobial activity and significantly less toxicity toward eukaryotic cells. Metallized organic nanofibers of the type described here offer the possibility to create hydrogels, which integrate the useful functions of silver nanoparticles with controllable metallic content.

  10. Antimicrobial Lemongrass Essential Oil—Copper Ferrite Cellulose Acetate Nanocapsules

    Directory of Open Access Journals (Sweden)

    Ioannis L. Liakos

    2016-04-01

    Full Text Available Cellulose acetate (CA nanoparticles were combined with two antimicrobial agents, namely lemongrass (LG essential oil and Cu-ferrite nanoparticles. The preparation method of CA nanocapsules (NCs, with the two antimicrobial agents, was based on the nanoprecipitation method using the solvent/anti-solvent technique. Several physical and chemical analyses were performed to characterize the resulting NCs and to study their formation mechanism. The size of the combined antimicrobial NCs was found to be ca. 220 nm. The presence of Cu-ferrites enhanced the attachment of LG essential oil into the CA matrix. The magnetic properties of the combined construct were weak, due to the shielding of Cu-ferrites from the polymeric matrix, making them available for drug delivery applications where spontaneous magnetization effects should be avoided. The antimicrobial properties of the NCs were significantly enhanced with respect to CA/LG only. This work opens novel routes for the development of organic/inorganic nanoparticles with exceptional antimicrobial activities.

  11. Antimicrobial Lemongrass Essential Oil-Copper Ferrite Cellulose Acetate Nanocapsules.

    Science.gov (United States)

    Liakos, Ioannis L; Abdellatif, Mohamed H; Innocenti, Claudia; Scarpellini, Alice; Carzino, Riccardo; Brunetti, Virgilio; Marras, Sergio; Brescia, Rosaria; Drago, Filippo; Pompa, Pier Paolo

    2016-04-20

    Cellulose acetate (CA) nanoparticles were combined with two antimicrobial agents, namely lemongrass (LG) essential oil and Cu-ferrite nanoparticles. The preparation method of CA nanocapsules (NCs), with the two antimicrobial agents, was based on the nanoprecipitation method using the solvent/anti-solvent technique. Several physical and chemical analyses were performed to characterize the resulting NCs and to study their formation mechanism. The size of the combined antimicrobial NCs was found to be ca. 220 nm. The presence of Cu-ferrites enhanced the attachment of LG essential oil into the CA matrix. The magnetic properties of the combined construct were weak, due to the shielding of Cu-ferrites from the polymeric matrix, making them available for drug delivery applications where spontaneous magnetization effects should be avoided. The antimicrobial properties of the NCs were significantly enhanced with respect to CA/LG only. This work opens novel routes for the development of organic/inorganic nanoparticles with exceptional antimicrobial activities.

  12. Characterization of essential oil from Citrus aurantium L. flowers: antimicrobial and antioxidant activities.

    Science.gov (United States)

    Ben Hsouna, Anis; Hamdi, Naceur; Ben Halima, Nihed; Abdelkafi, Slim

    2013-01-01

    Citrus aurantium L. essential oil is commonly used as a flavouring agent. In the present study, the essential oil of fresh Citrus aurantium L. (CaEO) flowers cultivated in North East of Tunisia (Nabeul) was analyzed by GC-FID and GC-MS. 33 compounds were identified, representing 99% of the total oil. Limonene (27.5%) was the main component followed by E-nerolidol (17.5%), α-terpineol (14%), α-terpinyl acetate (11.7%) and E. E-farnesol (8%). The antimicrobial activity of the CaEO was evaluated against a panel of 13 bacteria and 8 fungal strains using agar diffusion and broth microdilution methods. Results have shown that the CaEO exhibited moderate to strong antimicrobial activity against the tested species. The investigation of the mode of action of the CaEO by the time-kill curve showed a drastic bactericidal effect after 5 min using a concentration of 624 μg/ml. The antioxidant activities of the CaEO were assayed by DPPH and beta carotene tests. Results showed that CaEO displayed an excellent DPPH scavenging ability with an IC₅₀ of 1.8 μg/ml and a strong Beta-carotene bleaching inhibition after 120 min of incubation with an IC₅₀ of 15.3 μg/ml. The results suggested that the CaEO possesses antimicrobial and antioxidant properties, and is therefore a potential source of active ingredients for food and pharmaceutical industry.

  13. Identification of antimicrobial properties of cashew, Anacardium ...

    African Journals Online (AJOL)

    Michael Horsfall

    3 *Department of. Plant Science and Biotechnology, Faculty of Science, University of Port Harcourt, P.M.B. 5323, Port Harcourt, Rivers State, Nigeria. Email: bionyananyo@yahoo.com. ABSTRACT: The antimicrobial capabilities of plant extract derived from the leaves of the cashew plant,. Anacardium occidentale L. (Family ...

  14. Assessment techniques of antimicrobial properties of natural ...

    African Journals Online (AJOL)

    Medicinal plants have recently received the attention of the pharmaceutical and scientific communities and various publications have documented the therapeutic value of natural compounds in a bid to validate claims of their biological activity. Attention has been drawn to the antimicrobial activity of plants and their ...

  15. Composition, antimicrobial, antioxidant, and antiproliferative activity of Origanum dictamnus (dittany) essential oil.

    Science.gov (United States)

    Mitropoulou, Gregoria; Fitsiou, Eleni; Stavropoulou, Elisavet; Papavassilopoulou, Eleni; Vamvakias, Manolis; Pappa, Aglaia; Oreopoulou, Antigoni; Kourkoutas, Yiannis

    2015-01-01

    attributed to carvacrol. The EC50 value for the essential oil in the 72h SRB assay in HepG2 cells was estimated to be 0.0069±0.00014% (v/v). Among the individual constituents tested, carvacrol was the most bioactive compound and accounted for the observed antiproliferative activity of the essential oil. The results revealed that O. dictamnus essential oil is a noteworthy growth inhibitor against the microbes studied. It also possesses significant antioxidant activity and demonstrated excellent cytotoxicity against HepG2 cells. Taken together, O. dictamnus essential oil may represent an effective and inexpensive source of potent natural antimicrobial agents with health-promoting properties, which may be incorporated in food systems.

  16. An evidence of C16 fatty acid methyl esters extracted from microalga for effective antimicrobial and antioxidant property.

    Science.gov (United States)

    Davoodbasha, MubarakAli; Edachery, Baldev; Nooruddin, Thajuddin; Lee, Sang-Yul; Kim, Jung-Wan

    2018-02-01

    Fatty acid methyl esters (FAME) derived from lipids of microalgae is known to have wide bio-functional materials including antimicrobials. FAME is an ideal super-curator and superior anti-pathogenic. The present study evaluated the efficiency of FAME extracted from microalgae Scenedesmus intermedius as an antimicrobial agent against Gram positive (Staphylococcus aureus, Streptococcus mutans, and Bacillus cereus) Gram negative (Escherichia coli and Pseudomonas aeruginosa) bacteria and Fungi (Aspergillus parasiticus and Candida albicans). The minimal inhibitory concentration (MIC) for the gram negative bacteria was determined as 12-24 μg mL -1 , whereas MIC for gram positive bacteria was 24-48 μg mL -1 . MIC for the fungi was as high as 60-192 μg mL -1 . The FAME profiles determined by gas chromatography showed 18 methyl esters. Among them, pharmacologically active FAME such as palmitic acid methyl ester (C16:0) was detected at high percentage (23.08%), which accounted for the bioactivity. FAME obtained in this study exhibited a strong antimicrobial activity at the lowest MIC than those of recent reports. This result clearly indicated that FAME of S. intermedius has a strong antimicrobial and antioxidant property and that could be used as an effective resource against microbial diseases. Copyright © 2017. Published by Elsevier Ltd.

  17. Effect of mixed antimicrobial agents and flavors in active packaging films.

    Science.gov (United States)

    Gutiérrez, Laura; Escudero, Ana; Batlle, Ramón; Nerín, Cristina

    2009-09-23

    Active packaging is an emerging food technology to improve the quality and safety of food products. Many works have been developed to study the antimicrobial activity of essential oils. Essential oils have been traditionally used as flavorings in food, so they have an important odor impact but they have as well antimicrobial properties that could be used to protect the food. Recent developments in antimicrobial active packaging showed the efficiency of essential oils versus bread and bakery products among other applications. However, one of the main problems to face is the odor and taste they could provide to the packaged food. Using some aromas to mask the odor could be a good approach. That is why the main objective of this paper is to develop an antimicrobial packaging material based on the combination of the most active compounds of essential oils (hydrocinnamaldehyde, oregano essential oil, cinnamaldehyde, thymol, and carvacrol) together with some aromas commonly used in the food industry. A study of the concentration required to get the antimicrobial properties, the organoleptic compatibility with typical aroma present in many food systems (vanilla, banana, and strawberry), and the right combination of both systems has been carried out. Antimicrobial tests of both the mentioned aromas, the main components of some essential oils, and the combination of both groups were carried out against bacteria (Enterococcus faecalis, Listeria monocytogenes, Bacillus cereus, Staphylococcus aureus, Salmonella choleraesuis, Yersinia enterocolitica, Escherichia coli), yeasts (Candida albicans, Debaryomyces hansenii, Zygosaccharomyces rouxii), and molds (Botrytis cinerae, Aspergillus flavus, Penicillium roqueforti, Eurotium repens, Penicillium islandicum, Penicillium commune, Penicillium nalgiovensis). The sensory properties of the combinations were evaluated with a triangular test and classification was by an order test; the odor threshold of the aroma compounds was also

  18. Antimicrobial Carvacrol-Containing Polypropylene Films: Composition, Structure and Function

    Directory of Open Access Journals (Sweden)

    Max Krepker

    2018-01-01

    Full Text Available Significant research has been directed toward the incorporation of bioactive plant extracts or essential oils (EOs into polymers to endow the latter with antimicrobial functionality. EOs offer a unique combination of having broad antimicrobial activity from a natural source, generally recognized as safe (GRAS recognition in the US, and a volatile nature. However, their volatility also presents a major challenge in their incorporation into polymers by conventional high-temperature-processing techniques. Herein, antimicrobial polypropylene (PP cast films were produced by incorporating carvacrol (a model EO or carvacrol, loaded into halloysite nanotubes (HNTs, via melt compounding. We studied the composition-structure-property relationships in these systems, focusing on the effect of carvacrol on the composition of the films, the PP crystalline phase and its morphology and the films’ mechanical and antimicrobial properties. For the first time, molecular dynamics simulations were applied to reveal the complex interactions between the components of these carvacrol-containing systems. We show that strong molecular interactions between PP and carvacrol minimize the loss of this highly-volatile EO during high-temperature polymer processing, enabling semi-industrial scale production. The resulting films exhibit outstanding antimicrobial properties against model microorganisms (Escherichia coli and Alternaria alternata. The PP/(HNTs-carvacrol nanocomposite films, containing the carvacrol-loaded HNTs, display a higher level of crystalline order, superior mechanical properties and prolonged release of carvacrol, in comparison to PP/carvacrol blends. These properties are ascribed to the role of HNTs in these nanocomposites and their effect on the PP matrix and retained carvacrol content.

  19. [The study of antimicrobial properties of silver nanoparticles in the form of a colloidal solution in the matrix of finely dispersed silica].

    Science.gov (United States)

    Korchak, G I; Surmasheva, E V; Mikhienkova, A I; Nikonova, N A; Romanenko, L I; Oliĭnyk, Z A; Gorval', A K; Rosada, M A

    2012-01-01

    In the experimental study obtained with chemical method colloid solution of nanoparticles (NPs) of silver (Ag) and a composite on his base in the matrix of finely dispersed silica with particle size of 8-12 nm and NPs concentration in basic solution of 0,0016% (0,016 mg/cm3) were established to exhibit high antimicrobial activity against the test organisms: E. coli, P. aeruginosa, S. Aureus and C. Albicans, which depended on a set of factors. Antibacterial properties of tissue impregnated with Ag-NPs were studied. As stabilizing substances a mixture of surface-active substance sodium dodecyl sulfate and polymer polyvinylpyrrolidone was used Before the beginning of the study effective neutralizer was tailored. Times of preservation of antimicrobial activity of test samples have been established, and also their stability throughout long term of supervision (24 months) has been shown. Effect of organic pollution on antimicrobal activity of the samples has been studied. Based on obtained results the algorithm of the study of antimicrobial properties of nanopreparations has been elaborated.

  20. phytochemical and antimicrobial properties of solanum macranthum ...

    African Journals Online (AJOL)

    MR J.O. OLAYEMI

    reducing sugars and anthraquinones. The in vitro antimicrobial activity was done using agar well diffusion technique. Six clinical strains of human pathogenic microorganisms, comprising two Gram positive, two Gram negative bacteria and two fungi were utilized in the studies. The various plant extracts varied in their high ...

  1. Photocatalytic properties and selective antimicrobial activity of TiO2(Eu)/CuO nanocomposite

    International Nuclear Information System (INIS)

    Michal, Robert; Dworniczek, Ewa; Caplovicova, Maria; Monfort, Olivier; Lianos, Panagiotis; Caplovic, Lubomir; Plesch, Gustav

    2016-01-01

    Highlights: • Nanocomposites composed of Eu-doped anatase grafted with CuO. • Increase in photocatalytic hydrogen production due to CuO acting as electrons sink. • CuO in composites decreasing the photoinduced total mineralization of phenol. • Selective photoinduced antimicrobial activity against Enterococcus species. - Abstract: TiO 2 (Eu)/CuO nanocomposites were prepared by precipitation method. The anatase nanocrystallites with a size of 26 nm exhibited well crystallized and characteristical dipyramidal morphology and {1 0 1} and {0 0 1} faceting. Transmission electron microscopy photographs with atomic resolution showed that the Eu(III) dopants were bounded on surface of titania. In the composites, the CuO nanocrystals exhibiting a monoclinic tenorite structure with a size in the range from 2 to 5 nm were grafted to the surface of titania. The influence of copper(II) oxide led to distinct selectivity in the photocatalytic and antimicrobial properties of the investigated TiO 2 (Eu)/CuO nanocomposites. While the presence of CuO nanocrystals strongly increased the photocatalytic production of hydrogen by ethanol reforming, it decreased the activity in photoinduced total mineralization of phenol comparing with non-modified TiO 2 (Eu). In investigated TiO 2 (Eu)/CuO powders, the photoinduced antimicrobial activity against membranes of Enterococcus species was influenced by the selective binding of CuO to the surface of the microorganism leading to distinct selectivity in their action. The activity against Enterococcus faecalis was higher than against Enterococcus faecium.

  2. Cytotoxic, antioxidant and antimicrobial properties of red sweet pepper (Capsicum annuum L. var. Llanerón extracts: In vitro study

    Directory of Open Access Journals (Sweden)

    Rosa Raybaudi-Massilia

    2017-10-01

    Full Text Available Alcoholic and aqueous extracts were obtained from red sweet pepper (Capsicum annuum L. by different methodologies to evaluate their cytotoxic, antioxidant and antimicrobial properties. Alcoholic extracts (MFP, MSd, SFP, SDP, SSd from fresh red sweet pepper (FP and dry pulp (DP and seed (Sd were obtained by maceration (M and Soxhlet (S equipment using methanol as extraction solvent; whereas aqueous extracts (LFP, LSd were obtained by decoction followed by lyophilization (L. Human tumoral cell lines from breast (MCF-7 and SKBr3, prostate (PC3 and cervix (HeLa, and fibroblasts (as control were used to determine the cytotoxic properties by the MTT assay. Antioxidant and antimicrobial properties were determined by DPPH and disc diffusion method, respectively. The extracts SDP and SFP showed the higher cytotoxic activity. The SDP extract had a significant (P < 0.05 in-vitro effect on HeLa (1.9 ± 1.4 µg/mL and PC3 (< 1 µg/mL cells with a moderated impact on fibroblasts (26.1 ± 1.2 µg/mL; whereas, SFP had a significant (p < 0.05 effect on MCF-7 cell line (2.1 ± 1.2 µg/mL with a moderated impact on fibroblasts (25.9 ± 1.0 µg/mL. The higher antioxidant activity was found for MFP (80.3 ± 0.2% and SFP extracts (75.5 ± 0.5%. Mild antimicrobial activity was only observed for alcoholic extracts. The results showed the potential of red sweet pepper (C. annuum L. as a source of antioxidant and cytotoxic compounds, and suggest the need of further studies to isolate and characterize the bioactive compounds that impart those properties.

  3. A novel coping metal material CoCrCu alloy fabricated by selective laser melting with antimicrobial and antibiofilm properties.

    Science.gov (United States)

    Ren, Ling; Memarzadeh, Kaveh; Zhang, Shuyuan; Sun, Ziqing; Yang, Chunguang; Ren, Guogang; Allaker, Robert P; Yang, Ke

    2016-10-01

    The aim of this study was to fabricate a novel coping metal CoCrCu alloy using a selective laser melting (SLM) technique with antimicrobial and antibiofilm activities and to investigate its microstructure, mechanical properties, corrosion resistance and biocompatibility. Novel CoCrCu alloy was fabricated using SLM from a mixture of commercial CoCr based alloy and elemental Cu powders. SLM CoCr without Cu served as control. Antibacterial activity was analyzed using standard antimicrobial tests, and antibiofilm properties were investigated using confocal laser scanning microscope. Cu distribution and microstructure were determined using scanning electron microscope, optical microscopy and X-ray diffraction. Corrosion resistance was evaluated by potential dynamic polarization and biocompatibility measured using an MTT assay. SLM CoCrCu alloys were found to be bactericidal and able to inhibit biofilm formation. Other factors such as microstructure, mechanical properties, corrosion resistance and biocompatibility were similar to those of SLM CoCr alloys. The addition of appropriate amounts of Cu not only maintains normal beneficial properties of CoCr based alloys, but also provides SLM CoCrCu alloys with excellent antibacterial and antibiofilm capabilities. This material has the potential to be used as a coping metal for dental applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Properties and antimicrobial susceptibility of Trueperella pyogenes isolated from bovine mastitis in China.

    Science.gov (United States)

    Alkasir, Rashad; Wang, Jianfang; Gao, Jian; Ali, Tariq; Zhang, Limei; Szenci, Ottó; Bajcsy, Árpád Csaba; Han, Bo

    2016-03-01

    Trueperella (T.) pyogenes is an opportunistic pathogen that causes suppurative diseases in domestic animals. In this work, the properties, pathogenesis and phenotypic diversity of T. pyogenes isolates from bovine mastitis were studied. Both pyolysin (plo) and collagen-binding protein (cbp) virulence factor genes were detected by PCR in all T. pyogenes isolates (n = 50). Using the tissue culture plate method, 90% of T. pyogenes isolates were able to form biofilms. The minimum inhibitory concentrations (MICs) of 13 antimicrobials against T. pyogenes isolates were determined. High susceptibility was observed to rifampin (96%), ampicillin (94%), ciprofloxacin (94%), and penicillin (92%), while low susceptibility was found to trimethoprim-sulphamethoxazole (10%) and bacitracin (2%). The intracellular assay revealed that T. pyogenes isolates had different cytopathogenic effects on cells. The high percentage (28.6%) of T. pyogenes isolates suggests that this bacterium is an important contributor to mastitis. Moreover, the high occurrence of multidrug resistance, biofilm production, intracellular survival, and the temporal dynamics of T. pyogenes interactions are key factors for a better understanding of how immunity acts on infections with these bacteria and how they evade immune surveillance, thus highlighting the need for the prudent use of antimicrobial agents in veterinary medicine.

  5. Antioxidant and antimicrobial properties of ethanolic extracts of guarana, boldo, rosemary and cinnamon

    Directory of Open Access Journals (Sweden)

    Jeannine Bonilla

    2017-06-01

    Full Text Available Abstract In this investigation, the ethanolic extracts of two less known plants, little reported in the literature (guarana and boldo leaves were studied in comparison with the ethanolic extracts of two well studied plants (cinnamon and rosemary, regarding their colour, GC-MS profile, phenolic content and their antioxidant and antimicrobial properties. The rosemary (59.20 ± 0.28 and guarana (56.63 ± 0.54 extracts showed the highest values for luminosity (L* and the UV-Vis absorption increased when L* decreased. GC-MS identified a limited number of compounds in the cinnamon and guarana extracts. The cinnamon extract showed the highest value for the total phenolic content (172 mg GA/g extract as compared to the other extracts. The highest antioxidant capacity was observed for the boldo leaves extract in the TEAC (6.66 ± 0.17 mM assay and for the rosemary extract in the DPPH (0.80 ± 0.14 mg/L test. In addition, all the extracts showed antimicrobial activity against the S. aureus strain, indicating that all the extracts studied could be used by food industries to develop new active food packaging materials.

  6. Antimicrobial, Antioxidant, and Wound Healing Properties of Kigelia africana (Lam. Beneth. and Strophanthus hispidus DC.

    Directory of Open Access Journals (Sweden)

    Christian Agyare

    2013-01-01

    Full Text Available Microbial infections of various types of wounds are a challenge to the treatment of wounds and wound healing. The study was to investigate antimicrobial and antioxidant properties of methanol leaf and stem bark extracts of Kigelia africana and methanol leaf and root extracts of Strophanthus hispidus and also to determine wound healing properties of the extracts. The antimicrobial activities of the methanol extracts were determined against two Gram-positive and two Gram-negative bacteria and a fungus using agar diffusion and micro-dilution methods. The antioxidant activity was determined using 1,1-diphenyl-2-picryl–hydrazyl (DPPH method. The influence of the extracts on rate of wound closure was investigated using the excision wound model and histopathological investigation of treated and untreated wound tissues performed. The MICs of leaf extract of K. africana against test organisms were 2.5–7.5 mg/mL and stem bark extract were 2.25–7.5 mg/mL. The leaf extract of S. hispidus had MIC range of 2.5–7.5 mg/mL and 2.5–10 mg/mL for root extract. The IC50 of leaf and stem bark extracts of K. africana were 56.9 and 13.7 μg/mL, respectively and leaf and root of S. hispidus were 49.8 and 45.1 μg/mL, respectively. K. africana extracts (7.5% w/w showed significant ( wound contraction at day 7 with 72% of wound closure whiles significant ( wound contractions were observed on day 11 for stem bark of K. africana, leaf and root extracts of S. hispidus. Wound tissues treated with the extracts showed improved collagenation, re-epitheliazition and rapid granulation formation compared with untreated wound tissues. The extracts were found to contain alkaloids, saponins, tannins, flavonoids, carbohydrates, and sapogenetic glycosides. The HPLC finger-printing of the extracts were developed. The leaf, stem bark and root extracts of K. africana and S. hispidus exhibited antimicrobial, antioxidant, and enhanced wound healing properties and these

  7. Antimicrobial properties of poriferan species from Indian waters

    Digital Repository Service at National Institute of Oceanography (India)

    Mokashe, S.S.; Tulaskar, A.S.; Venkat, K.; Wagh, A.B.

    Poriferan species belonging to Class Demospongiae were collected from the rocky intertidal pools of Ratnagiri (Maharashtra, India) and extracted with methanol. The methanol extracts were tested for antimicrobial activity against six fouling...

  8. Alginate edible films containing microencapsulated lemongrass oil or citral: effect of encapsulating agent and storage time on physical and antimicrobial properties.

    Science.gov (United States)

    Alarcón-Moyano, Jessica K; Bustos, Rubén O; Herrera, María Lidia; Matiacevich, Silvia B

    2017-08-01

    Active edible films have been proposed as an alternative to extend shelf life of fresh foods. Most essential oils have antimicrobial properties; however, storage conditions could reduce their activity. To avoid this effect the essential oil (EO) can be microencapsulated prior to film casting. The aim of this study was to determine the effects of the type of encapsulating agent (EA), type of EO and storage time on physical properties and antimicrobial activity of alginate-based films against Escherichia coli ATCC 25922. Trehalose (TH), Capsul ® (CAP) and Tween 20 (Tw20) were used as EA. Lemongrass essential oil (LMO) and citral were used as active agents. The results showed that the type of EA affected the stability of the film forming-emulsions as well as the changes in opacity and colour of the films during storage but not the antimicrobial activity of them. Both microencapsulated EOs showed a prolonged release from the alginate films during the 28 days of storage. Trehalose was selected to encapsulate both active compounds because the films made with this microencapsulated EA showed the greatest physical stability and the lowest color variation among all the films studied.

  9. Insights into the Antimicrobial Properties of Hepcidins: Advantages and Drawbacks as Potential Therapeutic Agents

    Directory of Open Access Journals (Sweden)

    Lisa Lombardi

    2015-04-01

    Full Text Available The increasing frequency of multi-drug resistant microorganisms has driven research into alternative therapeutic strategies. In this respect, natural antimicrobial peptides (AMPs hold much promise as candidates for the development of novel antibiotics. However, AMPs have some intrinsic drawbacks, such as partial degradation by host proteases or inhibition by host body fluid composition, potential toxicity, and high production costs. This review focuses on the hepcidins, which are peptides produced by the human liver with a known role in iron homeostasis, as well by numerous other organisms (including fish, reptiles, other mammals, and their potential as antibacterial and antifungal agents. Interestingly, the antimicrobial properties of human hepcidins are enhanced at acidic pH, rendering these peptides appealing for the design of new drugs targeting infections that occur in body areas with acidic physiological pH. This review not only considers current research on the direct killing activity of these peptides, but evaluates the potential application of these molecules as coating agents preventing biofilm formation and critically assesses technical obstacles preventing their therapeutic application.

  10. Antioxidant, antimicrobial and synergistic activities of tea polyphenols

    African Journals Online (AJOL)

    Microbial resistance to antibiotics has become an increasing global problem and there is a need to find out novel potent antimicrobial agents with alternative modes of action as accessories to antibiotic therapy. This study investigated the antioxidant, antimicrobial and synergistic properties of tea polyphenols. The tea ...

  11. Are antimicrobial peptides an alternative for conventional antibiotics?

    International Nuclear Information System (INIS)

    Kamysz, W.

    2005-01-01

    Antimicrobial peptides are widespread in living organisms and constitute an important component of innate immunity to microbial infections. By the early 1980' s , more than 800 different antimicrobial peptides had been isolated from mammals, amphibians, fish, insects, plants and bacterial species. In humans, they are produced by granulocytes, macrophages and most epithelial and endothelial cells. Newly discovered antibiotics have antibacterial, antifungal, antiviral and even antiprotozoal activity. Occasionally, a single antibiotic may have a very wide spectrum of activity and may show activity towards various kinds of microorganisms. Although antimicrobial activity is the most typical function of peptides, they are also characterized by numerous other properties. They stimulate the immune system, have anti-neoplastic properties and participate in cell signalling and proliferation regulation. As antimicrobial peptides from higher eukaryotes differ structurally from conventional antibiotics produced by bacteria and fungi, they offer novel templates for pharmaceutical compounds, which could be used effectively against the increasing number of resistant microbes. (author)

  12. Characterization and Antimicrobial Properties of Gamma Irradiated Starch/ Chitosan/ Ag Nano composites

    International Nuclear Information System (INIS)

    Khalil, S.A.; Hassan, M.S.; Ali, N.M.

    2016-01-01

    Composites based on different ratios of starch and chitosan, in the presence of a constant amount of silver nanoparticles (AgNPs), were prepared in the form of thin films by casting solutions. The gamma irradiated composites were characterized in terms of solution viscosity, FTIR, XRD, TGA and SEM. In addition, the antimicrobial activity of the prepared composites against different microorganisms was investigated. The results showed that the increase of irradiation dose more than 5 kGy leads to a decrease in the composite solution viscosity, the overall crystallinity, thermal stability and antimicrobial activity of the prepared films. The prepared starch based composites were applied to cotton samples to demonstrate the antimicrobial finishing. Acceptable antimicrobial results against both the tested pathogenic bacteria and in burial test were obtained.

  13. Screening of some Malay medicated oils for antimicrobial activity

    Directory of Open Access Journals (Sweden)

    Khalid Khalisanni

    2010-01-01

    Full Text Available Oils from six Malay medicated oils, used traditionally in the treatment of infectious and septic diseases in humans, were tested for their antimicrobial property. The aim was to evaluate the antimicrobial properties of six Malay medicated oils against certain microbial isolates. Locally available Malay medicated oils were checked for their antimicrobial activities using six species of bacteria: E. coli, Salmonella spp., Klebsiella pneumoniae, Staphylococcus aureus, Streptococcus, Bacillus subtilis and 2 fungi with 1 yeast (Aspergillus niger, Penicillum spp. and Candida albicans. Clove oil showed the highest antibacterial activity followed, respectively, by 'bunga merah', cajaput, nutmeg, lemon grass and 'gamat' oil. Clove oil and lemon grass showed anticandidal activity. The Malay medicated oil studies did not show any antifungal activity. The study shows that Malay medicated oils, like antibiotics, have antimicrobial activities against some microorganisms.

  14. Antimicrobial and Antiradical Activity of Extracts Obtained from Leaves of Five Species of the Genus Bergenia: Identification of Antimicrobial Compounds.

    Science.gov (United States)

    Żbikowska, Beata; Franiczek, Roman; Sowa, Alina; Połukord, Grażyna; Krzyżanowska, Barbara; Sroka, Zbigniew

    2017-09-01

    An important focus of modern medicine is the search for new substances and strategies to combat infectious diseases, which present an increasing threat due to the growth of bacterial resistance to antibiotics. Another problem concerns free radicals, which in excess can cause several serious diseases. An alternative to chemical synthesis of antimicrobial and antiradical compounds is to find active substances in plant raw materials. We prepared extracts from leaves of five species of the genus Bergenia: B. purpurascens, B. cordifolia, B. ligulata, B. crassifolia, and B. ciliata. Antimicrobial and antiradical features of extracts and raw materials were assessed, and the quantities of phenolic compounds were determined. We also evaluated, using high-performance liquid chromatography, the amounts of arbutin and hydroquinone, compounds related to antimicrobial activity of these raw materials. The strongest antiradical properties were shown by leaves of B. crassifolia and B. cordifolia, the lowest by leaves of B. ciliata. The antiradical activity of extracts showed a strong positive correlation with the amount of phenols. All raw materials have significant antimicrobial properties. Among them, the ethyl acetate extracts were the most active. Antimicrobial activity very weakly correlated with the amount of arbutin, but correlated very strongly with the contents of both hydroquinone and phenolic compounds. Additional experiments using artificially prepared mixtures of phenolic compounds and hydroquinone allowed us to conclude that the most active antimicrobial substance is hydroquinone.

  15. Antimicrobial properties and the influence of temperature on secondary metabolite production in cold environment soil fungi

    Science.gov (United States)

    Yogabaanu, U.; Weber, Jean-Frederic Faizal; Convey, Peter; Rizman-Idid, Mohammed; Alias, Siti Aisyah

    2017-12-01

    The Arctic and Antarctic share environmental extremes. To survive in such environments, microbes such as soil fungi need to compete with or protect themselves effectively from other soil microbiota and to obtain the often scarce nutrients available, and many use secondary metabolites to facilitate this. We therefore (i) screened for antimicrobial properties of cold-environment Arctic and Antarctic soil fungi, and (ii) identified changes in the secreted secondary metabolite profiles of a subset of these strains in response to temperature variation. A total of 40 polar soil fungal strains from King George Island, maritime Antarctic and Hornsund, Svalbard, High Arctic, were obtained from the Malaysian National Antarctic Research Centre culture collections. The plug assay technique was used to screen for antimicrobial potential against Gram-positive and Gram-negative human pathogenic bacteria (Bacillus subtilis, B. cereus, Pseudomonas aeruginosa, Enterococcus faecalis and Escherichia coli). About 45% of the tested fungal strains showed antimicrobial activity against at least one tested microorganism. Three fungal isolates showed good bioactivity and were subjected to secondary metabolite profiling at different temperatures (4, 10, 15 and 28 °C). We observed a range of responses in fungal metabolite production when incubated at varying temperatures, confirming an influence of environmental conditions such as temperature on the production of secondary metabolites.

  16. Production of Antimicrobial Agent by Streptomyces violachromogenes

    International Nuclear Information System (INIS)

    Ahmed, Arwa A.

    2007-01-01

    The isolation of antibiotics from microorganisms improved the discovery of novel antibiotics, which is relatively easy as compared to chemical synthesis of antimicrobial agents. This study starts from isolation and purification of the antimicrobial producing Sterptomycetes obtained from soil habitat of Yemen. The good antimicrobial producing Sterptomycetes isolate was selected from a batch of Sterptomycetes isolates then identified. This isolate has bioactivity against some G+ve and G-ve bacteria. The antimicrobial agent isolated from Streptomyces violachromogenes (isolate no.YA118) was extracted with ethyl acetate at pH 3. The residue was applied to a silica gel column chromatography and eluted stepwise with many solvent systems. The active fractions were tested with B. subtilis NCTC10400. The purification of the antibiotic has been carried out by thin layer chromatography then the physical and chemical properties were studied to identify the antimicrobial agent. The isolated antimicrobial agent is an antibiotic belonging to the neomycin group. (author)

  17. Effect of bee pollen supplement on antimicrobial, chemical, rheological, sensorial properties and probiotic viability of fermented milk beverages

    Directory of Open Access Journals (Sweden)

    Oktay Yerlikaya

    2014-11-01

    Full Text Available In this research, effect of bee pollen supplement on antimicrobial, chemical, rheological, sensorial properties and probiotic viability of fermented milk beverages was studied. Bee pollens were added in the rate of 2.5 mg•mL-1 (B, 5 mg•mL-1 (C, 7.5 mg•mL-1 (D, 10 mg•mL-1 (E, and 20 mg•mL-1 (F. Control sample (A was not supplemented with bee pollen. Control and supplemented milk samples were fermented by a commercial ABT1 starter culture (Chr. Hansen, Hørsholm, Denmark containing Lactobacillus acidophilus La 5, Bifidobacterium animalis subs. lactis Bb 12, and Streptococcus thermophilus. While no antimicrobial impact was observed against L. monocytogenes, S. aureus, P. fluorescens, P. aeruginosa and A. hydrophilia upto 7.5 mg•mL-1 pollen addition, addition between 10 mg•mL-1 to 20 mg•mL-1 resulted in activity, and positive effect only in inhibition rates against bacteria such as S. thyphimurium and E. coli. Bee pollen supplements has shown a positive effect on probiotic viability and occurred on increase apparent viscosity, but their effect on sensorial properties was negative. Furthermore an improvement with increasing concentration of pollen addition that yielded no negative effect on physicochemical properties was detected.

  18. Insights on antimicrobial resistance, biofilms and the use of phytochemicals as new antimicrobial agents.

    Science.gov (United States)

    Borges, Anabela; Saavedra, Maria J; Simões, Manuel

    2015-01-01

    Antimicrobial resistance is one of the most serious public health problems. This is of particular concern when bacteria become resistant to various antimicrobial agents simultaneously and when they form biofilms. Consequently, therapeutic options for the treatment of infections have become limited, leading frequently to recurrent infections, treatment failure and increase of morbidity and mortality. Both, persistence and spread of antibiotic resistance, in combination with decreased effectiveness and increased toxicity of current antibiotics have emphasized the urgent need to search alternative sources of antimicrobial substances. Plants are recognized as a source of unexplored chemical structures with high therapeutic potential, including antimicrobial activity against clinically important microorganisms. Additionally, phytochemicals (plant secondary metabolites) present several advantages over synthetic molecules, including green status and different mechanisms of action from antibiotics which could help to overcome the resistance problem. In this study, an overview of the main classes of phytochemicals with antimicrobial properties and their mode of action is presented. A revision about the application of phytochemicals for biofilm prevention and control is also done. Moreover, the use of phytochemicals as scaffolds of new functional molecules to expand the antibiotics pipeline is reviewed.

  19. Prokaryotic expression of antimicrobial ovine β- defensin-1 in ...

    African Journals Online (AJOL)

    AJB_YOMI

    2011-09-05

    Sep 5, 2011 ... 10213. Table 1. PCR primers for amplification of sBD-1, mature (msBD-1) and .... Antimicrobial properties of recombinant psBD-1 and msBD-1 were .... the structure and function of ovispirin/novispirin antimicrobial peptides.

  20. Antimicrobial, thermoanalytical and viscometric studies of metal based schiff base polymer

    International Nuclear Information System (INIS)

    Mughal, M.A.; Mughal, A.

    2013-01-01

    This study examines the synthesis, characterization, viscosity, thermal behavior and antimicrobial studies of copper(II) and nickel(II), complexes of a synthesized monomer 5,5-methylene bis(2-pyridinecarboxaldehyde) (MBPC) and a Schiff base polymer poly-5,5-methylene bis (2-pyridinecarboxaldehyde) 1,3-propylenedimine (PMBPCPR). The monomer, polymeric ligand and poly metal complexes (PMBPCPRCu) and (PMBPCPRNi) were characterized by C.H.N analysis, FT-IR, UV - Vis spectroscopy, viscometery thermogravimetric (TGA) and differential thermogravimetry (DTA). The monomer MBPC was prepared by the reaction of 2-pyridinecarboxaldehyde with 1, 3, 5-trioxane in the presence of acetic acid and sulphuric acid. The polymeric ligand was prepared by polycondensation of monomer with 1,3-propylenediamine. The biological studies of compounds revealed that they possessed significant antibacterial and antifungal properties, against Micrococcus flavus, Staphylococcus aureus, Bacillus Cirroflgellosus, Shigella flexneri, Escherichia Coli, Candida albicans, Aspergillus flavus, and A. Niger. (author)

  1. Cyclodextrins: A Weapon in the Fight Against Antimicrobial Resistance

    Science.gov (United States)

    Wong, Chew Ee; Dolzhenko, Anton V.; Lee, Sui Mae; Young, David James

    Antimicrobial resistance poses one of the most serious global challenges of our age. Cyclodextrins (CDs) are widely utilized excipients in formulations because of their solubilizing properties, low toxicity, and low inflammatory response. This review summarizes recent investigations of antimicrobial agents involving CDs and CD-based antimicrobial materials. CDs have been employed for antimicrobial applications either through formation of inclusion complexes or by chemical modification of their hydroxyl groups to tailor pharmaceutically active compounds. Applications of these CD inclusion complexes include drug delivery, antimicrobial coatings on materials (e.g., biomedical devices and implants) and antimicrobial dressings that help to prevent wound infections. There are relatively limited studies of chemically modified CDs with antimicrobial activity. The mechanism of action of antimicrobial CD inclusion complexes and derivatives needs further elucidation, but activity of CDs and their derivatives is often associated with their interaction with bacterial cell membranes.

  2. Activation of human mast cells by retrocyclin and protegrin highlight their immunomodulatory and antimicrobial properties.

    Science.gov (United States)

    Gupta, Kshitij; Kotian, Akhil; Subramanian, Hariharan; Daniell, Henry; Ali, Hydar

    2015-10-06

    Preclinical evaluation of Retrocyclins (RC-100, RC-101) and Protegrin-1 (PG-1) antimicrobial peptides (AMPs) is important because of their therapeutic potential against bacterial, fungal and viral infections. Human mast cells (HMCs) play important roles in host defense and wound healing but the abilities of retrocyclins and protegrin-1 to harness these functions have not been investigated. Here, we report that chemically synthesized RC-100 and PG-1 caused calcium mobilization and degranulation in HMCs but these responses were not blocked by an inhibitor of formyl peptide receptor-like 1 (FPRL1), a known receptor for AMPs. However, RC-100 and PG-1 induced degranulation in rat basophilic leukemia (RBL-2H3) cells stably expressing Mas related G protein coupled receptor X2 (MrgX2). Chemical synthesis of these AMPs is prohibitively expensive and post-synthesis modifications (cyclization, disulfide bonds, folding) are inadequate for optimal antimicrobial activity. Indeed, we found that synthetic RC-100, which caused mast cell degranulation via MrgX2, did not display any antimicrobial activity. Green-fluorescent protein (GFP)-tagged RC-101 (analog of RC-100) and GFP-tagged PG-1 purified from transgenic plant chloroplasts killed bacteria and induced mast cell degranulation. Furthermore, GFP-PG1 bound specifically to RBL-2H3 cells expressing MrgX2. These findings suggest that retrocyclins and protegrins activate HMCs independently of FPRL1 but via MrgX2. Harnessing this novel feature of AMPs to activate mast cell's host defense/wound healing properties in addition to their antimicrobial activities expands their clinical potential. Low cost production of AMPs in plants should facilitate their advancement to the clinic overcoming major hurdles in current production systems.

  3. Essential Oils: Sources of Antimicrobials and Food Preservatives

    Science.gov (United States)

    Pandey, Abhay K.; Kumar, Pradeep; Singh, Pooja; Tripathi, Nijendra N.; Bajpai, Vivek K.

    2017-01-01

    Aromatic and medicinal plants produce essential oils in the form of secondary metabolites. These essential oils can be used in diverse applications in food, perfume, and cosmetic industries. The use of essential oils as antimicrobials and food preservative agents is of concern because of several reported side effects of synthetic oils. Essential oils have the potential to be used as a food preservative for cereals, grains, pulses, fruits, and vegetables. In this review, we briefly describe the results in relevant literature and summarize the uses of essential oils with special emphasis on their antibacterial, bactericidal, antifungal, fungicidal, and food preservative properties. Essential oils have pronounced antimicrobial and food preservative properties because they consist of a variety of active constituents (e.g., terpenes, terpenoids, carotenoids, coumarins, curcumins) that have great significance in the food industry. Thus, the various properties of essential oils offer the possibility of using natural, safe, eco-friendly, cost-effective, renewable, and easily biodegradable antimicrobials for food commodity preservation in the near future. PMID:28138324

  4. Antimicrobial potential of a lipopeptide biosurfactant derived from a marine Bacillus circulans.

    Science.gov (United States)

    Das, P; Mukherjee, S; Sen, R

    2008-06-01

    To isolate the biologically active fraction of the lipopeptide biosurfactant produced by a marine Bacillus circulans and study its antimicrobial potentials. The marine isolate B. circulans was cultivated in glucose mineral salts medium and the crude biosurfactant was isolated by chemical isolation method. The crude biosurfactants were solvent extracted with methanol and the methanol extract was subjected to reverse phase high-performance liquid chromatography (HPLC). The crude biosurfactants resolved into six major fractions in HPLC. The sixth HPLC fraction eluting at a retention time of 27.3 min showed the maximum surface tension-reducing property and reduced the surface tension of water from 72 mNm(-1) to 28 mNm(-1). Only this fraction was found to posses bioactivity and showed a pronounced antimicrobial action against a panel of Gram-positive and Gram-negative pathogenic and semi-pathogenic micro-organisms including a few multidrug-resistant (MDR) pathogenic clinical isolates. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of this antimicrobial fraction of the biosurfactant were determined for these test organisms. The biosurfactant was found to be active against Gram-negative bacteria such as Proteus vulgaris and Alcaligens faecalis at a concentration as low as 10 microg ml(-1). The biosurfactant was also active against methicillin-resistant Staphylococcus aureus (MRSA) and other MDR pathogenic strains. The chemical identity of this bioactive biosurfactant fraction was determined by post chromatographic detection using thin layer chromatography (TLC) and also by Fourier transform infrared (FTIR) spectroscopy. The antimicrobial HPLC fraction resolved as a single spot on TLC and showed positive reaction with ninhydrin, iodine and rhodamine-B reagents, indicating its lipopeptide nature. IR absorption by this fraction also showed similar and overlapping patterns with that of other lipopeptide biosurfactants such as surfactin

  5. Three Phoma spp. synthesised novel silver nanoparticles that possess excellent antimicrobial efficacy.

    Science.gov (United States)

    Rai, Mahendra; Ingle, Avinash P; Gade, Aniket K; Duarte, Marta Cristina Teixeira; Duran, Nelson

    2015-10-01

    The authors report extracellular mycosynthesis of silver nanoparticles (AgNPs) by Phoma capsulatum, Phoma putaminum and Phoma citri. The AgNPs thus synthesised were characterised by UV-visible spectrophotometer, Fourier transform infrared spectroscopy, Nanosight LM20 and transmission electron microscopy, which confirmed the synthesis of mostly spherical and polydisperse nanoparticles capped with proteins. The size of AgNPs was found in the range of 10-80 , 5-80 and 5-90 nm with an average size of 31.85, 25.43 and 23.29 nm by P. capsulatum, P. putaminum and P. citri, respectively. Further, potential antimicrobial activity was reported against Aspergillus niger, Candida albicans, Salmonella choleraesuis, Pseudomonas aeruginosa, Staphylococcus aureus and Escherichia coli. The lowest minimal inhibitory concentration (MIC) (0.85 µg/ml) was reported for AgNPs synthesised from P. citri against S. choleraesuis. However, AgNPs synthesised from P. capsulatum showed the highest MIC (10.62 µg/ml) against S. choleraesuis, P. aeruginosa and E. coli (clinical isolate). The same MIC values (10.62 µg/ml) were also reported against P. aeruginosa and both clinical and standard isolates of E. coli for AgNPs synthesised from P. citri. It was also observed that all the silver nanoparticles showed remarkable antifungal and antibacterial activity against these tested pathogens as compared with the commercially available antifungal and antibacterial agents.

  6. Antimicrobial Peptides: A Promising Therapeutic Strategy in Tackling Antimicrobial Resistance.

    Science.gov (United States)

    Nuti, Ramya; Goud, Nerella S; Saraswati, A Prasanth; Alvala, Ravi; Alvala, Mallika

    2017-01-01

    Antimicrobial resistance (AMR) has posed a serious threat to global public health and it requires immediate action, preferably long term. Current drug therapies have failed to curb this menace due to the ability of microbes to circumvent the mechanisms through which the drugs act. From the drug discovery point of view, the majority of drugs currently employed for antimicrobial therapy are small molecules. Recent trends reveal a surge in the use of peptides as drug candidates as they offer remarkable advantages over small molecules. Newer synthetic strategies like organometalic complexes, Peptide-polymer conjugates, solid phase, liquid phase and recombinant DNA technology encouraging the use of peptides as therapeutic agents with a host of chemical functions, and tailored for specific applications. In the last decade, many peptide based drugs have been successfully approved by the Food and Drug Administration (FDA). This success can be attributed to their high specificity, selectivity and efficacy, high penetrability into the tissues, less immunogenicity and less tissue accumulation. Considering the enormity of AMR, the use of Antimicrobial Peptides (AMPs) can be a viable alternative to current therapeutics strategies. AMPs are naturally abundant allowing synthetic chemists to develop semi-synthetics peptide molecules. AMPs have a broad spectrum of activity towards microbes and they possess the ability to bypass the resistance induction mechanisms of microbes. The present review focuses on the potential applications of AMPs against various microbial disorders and their future prospects. Several resistance mechanisms and their strategies have also been discussed to highlight the importance in the current scenario. Breakthroughs in AMP designing, peptide synthesis and biotechnology have shown promise in tackling this challenge and has revived the interest of using AMPs as an important weapon in fighting AMR. Copyright© Bentham Science Publishers; For any queries

  7. Antimicrobial Activity and Toxicity of Zhumeria Majdae Essential Oil and its Capsulated Form

    Directory of Open Access Journals (Sweden)

    Rahil Emami

    2015-03-01

    Conclusion: It was found that in some cases, encapsulation could lead to better antimicrobial property and less toxicity. Because of high antimicrobial activity, both EO and EFEO of Zhumeria majdae may be used as powerfully antimicrobial agents.

  8. Isolation and investigation of antimicrobial effect of 3,4,3'-tri-O ...

    African Journals Online (AJOL)

    3,4,3'-Tri-O-methylflavellagic acid and its glucoside (reported for the first time) were isolated from Anogeissus leocarpus. These compounds were analysed by GC-MS, IR, 1D and 2D-NMR, and also as acetates. Antimicrobial effect of the glucoside on S. aureus, E. coli, Ps. aeruginosa and C. albicans show that it possesses ...

  9. The qualified possession turn into ownership

    Directory of Open Access Journals (Sweden)

    Popov Danica

    2011-01-01

    Full Text Available Possession is prima facie evidence of ownership. Possession is ninetents of the law, means that possession is good against all other, except the true owner. The possession ripens into ownership if it is qualified and by effluxion of time. In Serbian law there are two kinds of adverse possession ripens into ownership. The first one is named ordinary and second one extraordinary adverse possession. Ordinary possession need to be legal, conscientious and genuine. Extraordinary possession is only conscientious, but in a wide sense. Adverse possession destroys the title of the owner and vests it in possessor. An occupation of land inconsistent with the right of the true owner: the possession of those against whom a right action has accured to the true owner. It is actual possession in the absence of possession by the rightful owner and without lawful title. If the adverse possession continues, the effect at the expiration of the prescribed period is that not only the remedy but the title of former owner is extinguished. The person in adverse possession gains a new possessory title which cannot, normally exceed in extent of duration the interest of the former owner.

  10. Antimicrobial properties of clove essential oil on raw hamburger during storage in freezer

    Directory of Open Access Journals (Sweden)

    S.E Hoseini

    2015-05-01

    Full Text Available Providing safe foods resistant to pathogens as well as replacing chemical preservatives with natural compounds including essential oils has attracted great attention in current studies. The purpose of this study was to investigate the antimicrobial properties of clove’s essential oil on hamburger. For this reason, clove essential oil was extracted by Clevenger apparatus method. Minimum Inhibitory Concentration (MIC of Staphylococcus aureus, Escherichia coli, Candida albicans and Aspergillus niger was measured. The antimicrobial effect of the essence in the concentrations of 0.0015%, 0.01%, 0.1% and 0.15% was examined on hamburger. The samples were examined at 0, 7, 30, 60 and 90 days of cold storage. Sensory characteristics of the samples were assessed through Hedonic method. MICs resulted from the test for S. aureus, E. coli, C. albicans and A. niger were 0.1%, 0.065%, 0.03% and 0.01% (V/V, respectively. The results of microbial examinations indicated that with the increasing of the concentration of clove oil essence and also with the progression of storage time, the microbial load was gradually decreased. According to the sensory assays conducted by the consumers, low concentrations of 0.0015% and maximum of 0.01% were found desirable.

  11. Antimicrobial and Thermal Properties of Metal Complexes of Grafted Fabrics with Acrylic Acid by Gamma Irradiation

    International Nuclear Information System (INIS)

    Hassan, M.S.; Attia, R.M.; Zohdy, M.H.

    2008-01-01

    Cotton, cotton/PET blend and PET fabrics were treated against microbial effect by radiation - induced grafting of acrylic acid followed by metal complexation with some divalent transition metal ions Co (II), Ni (II) and Cu (II). The microbial resistance was evaluated by testing the mechanical properties of the treated fabrics after burring for one and two weeks in a moist soil reach with microorganisms. Also, the growth of microorganisms was examined by scanning electron microscope (SEM). Moreover, the effect of this treatment on the thermal decomposition behavior was investigated by thermogravimetric analysis (TGA). On the basis of microbial studies, it was found that the metal complexation of the grafted fabrics with acrylic acid enhanced the antimicrobial resistance of the fabrics and the antimicrobial resistance could be arranged according to the metal ions as follows: copper> nickel> cobalt. Also, the thermal stability of different fabrics could be arranged as follow: grafted fabrics complexed with Cu (II) > grafted fabrics complexed with Ni (II) > grafted fabrics complexed with Co (II)

  12. Unusual structural transition of antimicrobial VP1 peptide.

    Science.gov (United States)

    Shanmugam, Ganesh; Phambu, Nsoki; Polavarapu, Prasad L

    2011-05-01

    VP1 peptide, an active domain of m-calpain enzyme with antimicrobial activity is found to undergo an unusual conformational transition in trifluoroethanol (TFE) solvent. The nature of, and time dependent variations in, circular dichroism associated with the amide I vibrations, suggest that VP1 undergoes self-aggregation forming anti-parallel β-sheet structure in TFE. Transmission electron micrograph (TEM) images revealed that β-sheet aggregates formed by VP1 possess fibril-like assemblies. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Antimicrobial, Rheological, and Thermal Properties of Plasticized Polylactide Films Incorporated with Essential Oils to Inhibit Staphylococcus aureus and Campylobacter jejuni.

    Science.gov (United States)

    Ahmed, Jasim; Hiremath, Nikhil; Jacob, Harsha

    2016-02-01

    Polylactide (PLA) is the most mature biobased and biodegradable polymer. Due to its inherent brittleness, the polymer cannot be used as a packaging material without plasticizer. An attempt was made to develop antimicrobial plasticized PLA film by incorporating polyethylene glycol (PEG) and 3 essential oils (EO), namely cinnamon, garlic, and clove by solvent casting method. Physical, thermal, and rheological properties of those films were evaluated for practical applications whereas the antimicrobial properties were tested against Staphylococcus aureus and Campylobacter jejuni-pathogens related to poultry industry. Both PEG and EOs led to the formation of flexible PLA/PEG/EO films with significant drop in the glass transition temperature (Tg ), and mechanical property. Time-temperature superposition (TTS) principle was employed to melt rheology of EO-based films at selected temperature, and rheological moduli superimposed well in an extended frequency range. Among EOs, cinnamon and clove oil-based films (PLA/PEG/CIN and PLA/PEG/CLO) exhibited a complete zone of inhibition against C. jejuni at the maximum concentration (1.6 mL per 2 g PLA/PEG blend) whereas the garlic oil-based film (PLA/PEG/GAR) had the lowest activity. © 2016 Institute of Food Technologists®

  14. Physical, mechanical and antimicrobial properties of starch films incorporated with ε-poly-L-lysine.

    Science.gov (United States)

    Zhang, Liming; Li, Ruichao; Dong, Feng; Tian, Aiying; Li, Zhengjun; Dai, Yujie

    2015-01-01

    Starch/ε-poly-L-lysine (ε-PL) composite films were prepared by combining 4% (w/v) gelatinized cornstarch and varying the level of ε-PL. The physical, mechanical and antimicrobial properties of these films were investigated. Fourier-transform infrared spectra (FT-IR) showed that the carbonyl group stretching vibration band of the ε-PL molecule shifted from 1646 cm(-1) to 1673 cm(-1) in the composite films. Differential scanning calorimetry (DSC) results indicated that there were sharp endothermal peaks at 215-230 °C for the composite films. These results indicated that there was an intense interaction between the two components. The films incorporated with ε-PL showed a higher tensile strength (TS) and elongation-at-break (E) than those of the starch film alone. These composite films exhibited effective inhibition against Escherichia coli and Bacillus subtilis, films containing 2% (w/w) ε-PL effectively suppressed the growth of the tested microbes (Pstarch/ε-PL films showed a low inhibitory effect on Aspergillus niger. This antimicrobial trend of the composite films was in agreement with the results of free ε-PL. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Photocatalytic properties and selective antimicrobial activity of TiO2(Eu)/CuO nanocomposite

    Science.gov (United States)

    Michal, Robert; Dworniczek, Ewa; Caplovicova, Maria; Monfort, Olivier; Lianos, Panagiotis; Caplovic, Lubomir; Plesch, Gustav

    2016-05-01

    TiO2(Eu)/CuO nanocomposites were prepared by precipitation method. The anatase nanocrystallites with a size of 26 nm exhibited well crystallized and characteristical dipyramidal morphology and {1 0 1} and {0 0 1} faceting. Transmission electron microscopy photographs with atomic resolution showed that the Eu(III) dopants were bounded on surface of titania. In the composites, the CuO nanocrystals exhibiting a monoclinic tenorite structure with a size in the range from 2 to 5 nm were grafted to the surface of titania. The influence of copper(II) oxide led to distinct selectivity in the photocatalytic and antimicrobial properties of the investigated TiO2(Eu)/CuO nanocomposites. While the presence of CuO nanocrystals strongly increased the photocatalytic production of hydrogen by ethanol reforming, it decreased the activity in photoinduced total mineralization of phenol comparing with non-modified TiO2(Eu). In investigated TiO2(Eu)/CuO powders, the photoinduced antimicrobial activity against membranes of Enterococcus species was influenced by the selective binding of CuO to the surface of the microorganism leading to distinct selectivity in their action. The activity against Enterococcus faecalis was higher than against Enterococcus faecium.

  16. Electrospun Nanofibres Containing Antimicrobial Plant Extracts

    Directory of Open Access Journals (Sweden)

    Wanwei Zhang

    2017-02-01

    Full Text Available Over the last 10 years great research interest has been directed toward nanofibrous architectures produced by electrospinning bioactive plant extracts. The resulting structures possess antimicrobial, anti-inflammatory, and anti-oxidant activity, which are attractive for biomedical applications and food industry. This review describes the diverse approaches that have been developed to produce electrospun nanofibres that are able to deliver naturally-derived chemical compounds in a controlled way and to prevent their degradation. The efficacy of those composite nanofibres as wound dressings, scaffolds for tissue engineering, and active food packaging systems will be discussed.

  17. Hoopoes color their eggs with antimicrobial uropygial secretions

    Science.gov (United States)

    Soler, Juan J.; Martín-Vivaldi, M.; Peralta-Sánchez, J. M.; Arco, L.; Juárez-García-Pelayo, N.

    2014-09-01

    Uropygial gland secretions are used as cosmetics by some species of birds to color and enhance properties of feathers and teguments, which may signal individual quality. Uropygial secretions also reach eggshells during incubation and, therefore, may influence the coloration of birds' eggs, a trait that has attracted the attention of evolutionary biologists for more than one century. The color of hoopoe eggs typically changes along incubation, from bluish-gray to greenish-brown. Here, we test experimentally the hypothesis that dark uropygial secretion of females is responsible for such drastic color change. Moreover, since uropygial secretion of hoopoes has antimicrobial properties, we also explore the association between color and antimicrobial activity of the uropygial secretion of females. We found that eggs stayed bluish-gray in nests where female access to the uropygial secretion was experimentally blocked. Furthermore, experimental eggs that were maintained in incubators and manually smeared with uropygial secretion experienced similar color changes that naturally incubated eggs did, while control eggs that were not in contact with the secretions did not experience such color changes. All these results strongly support the hypothesis that female hoopoes use their uropygial gland secretion to color the eggs. Moreover, saturation of the uropygial secretion was associated with antimicrobial activity against Bacillus licheniformis. Given the known antimicrobial potential of uropygial secretions of birds, this finding opens the possibility that in scenarios of sexual selection, hoopoes in particular and birds in general signal antimicrobial properties of their uropygial secretion by mean of changes in egg coloration along incubation.

  18. Porous CS based membranes with improved antimicrobial properties for the treatment of infected wound in veterinary applications

    International Nuclear Information System (INIS)

    Tonda-Turo, C.; Ruini, F.; Argentati, M.; Di Girolamo, N.; Robino, P.; Nebbia, P.; Ciardelli, G.

    2016-01-01

    Recently, much attention has been given to the use of innovative solution for the treatment of infected wounds in animals. Current applied treatments are often un-effective leading to infection propagation and animal death. Novel engineered membranes based on chitosan (CS) can be prepared to combine local antimicrobial effect, high flexibility and easy manipulation. In this work, CS crosslinked porous membranes with improved antimicrobial properties were prepared via freeze-drying technique to promote wound healing and to reduce the bacterial proliferation in infected injuries. Silver nanoparticles (AgNPs) and gentamicin sulfate (GS) were incorporated into the CS matrices to impart antibacterial properties on a wild range of strains. CS based porous membranes were tested for their physicochemical, thermal, mechanical as well as swelling and degradation behavior at physiological condition. Additionally, GS release profile was investigated, showing a moderate burst effect in the first days followed by a decreasing release rate which it was maintained for at least 56 days. Moreover, porous membranes loaded with GS or AgNPs showed good bactericidal activity against both of Gram-positive and Gram-negative bacteria. The bacterial strains used in this work were collected in chelonians after carapace injuries to better mimic the environment after trauma. - Highlights: • Innovative scaffolds for wound healing in veterinary applications • Novel engineered membranes based on chitosan with improved antibacterial properties • Highly flexible and versatile membranes for infected wounds

  19. Porous CS based membranes with improved antimicrobial properties for the treatment of infected wound in veterinary applications

    Energy Technology Data Exchange (ETDEWEB)

    Tonda-Turo, C., E-mail: chiara.tondaturo@polito.it [Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Turin (Italy); Ruini, F. [Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Turin (Italy); Argentati, M. [Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Turin (Italy); Clinic for Exotic Animals, CVS, Via Sandro Giovannini 53, 00137 Rome (Italy); Di Girolamo, N. [Clinic for Exotic Animals, CVS, Via Sandro Giovannini 53, 00137 Rome (Italy); Robino, P.; Nebbia, P. [Department of Veterinary Sciences, University of Turin, Largo Braccini 2, 10095 Grugliasco, Turin (Italy); Ciardelli, G. [Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Turin (Italy)

    2016-03-01

    Recently, much attention has been given to the use of innovative solution for the treatment of infected wounds in animals. Current applied treatments are often un-effective leading to infection propagation and animal death. Novel engineered membranes based on chitosan (CS) can be prepared to combine local antimicrobial effect, high flexibility and easy manipulation. In this work, CS crosslinked porous membranes with improved antimicrobial properties were prepared via freeze-drying technique to promote wound healing and to reduce the bacterial proliferation in infected injuries. Silver nanoparticles (AgNPs) and gentamicin sulfate (GS) were incorporated into the CS matrices to impart antibacterial properties on a wild range of strains. CS based porous membranes were tested for their physicochemical, thermal, mechanical as well as swelling and degradation behavior at physiological condition. Additionally, GS release profile was investigated, showing a moderate burst effect in the first days followed by a decreasing release rate which it was maintained for at least 56 days. Moreover, porous membranes loaded with GS or AgNPs showed good bactericidal activity against both of Gram-positive and Gram-negative bacteria. The bacterial strains used in this work were collected in chelonians after carapace injuries to better mimic the environment after trauma. - Highlights: • Innovative scaffolds for wound healing in veterinary applications • Novel engineered membranes based on chitosan with improved antibacterial properties • Highly flexible and versatile membranes for infected wounds.

  20. Antimicrobial properties of nest volatiles in red imported fire ants, Solenopsis invicta (hymenoptera: formicidae)

    Science.gov (United States)

    Wang, Lei; Elliott, Brad; Jin, Xixuan; Zeng, Ling; Chen, Jian

    2015-12-01

    The antimicrobial property of volatiles produced by red imported fire ants, Solenopsis invicta, against Beauveria bassiana, a common entomopathogenic fungus, was demonstrated. The germination rate of B. bassiana spores was significantly reduced after they were exposed to volatiles within an artificial ant nest. Since the air that contained the same level of O2 and CO2 as that in artificial fire ant nests did not suppress the germination rate of B. bassiana, the observed reduction of germination rate must be caused by the toxicity of nest volatiles. Nest fumigation may be an important component of the social immune system in S. invicta.

  1. Influence of temperature and packaging type on quality parameters and antimicrobial properties during Yateí honey storage

    Directory of Open Access Journals (Sweden)

    Ramón Alejandro MARTÍNEZ

    2017-12-01

    Full Text Available Abstract Tetragonisca fiebrigi, is a bee of the subfamily Meliponidae traditionally known as Yateí. Its honey differs from the honey produced by Apis mellifera because it is less viscous, more acidic, has sweetness and particular aromas. It is important to know the behavior of yatei honey in different storage conditions, in order to preserve the characteristics of the honey and ensure the product as harmless. The objective was to determine the influence of temperature, packaging type and storage time of Yateí honey on antimicrobial properties, microbial (Total Mesophilic Aerobic and Mold and Yeast Count and physicochemical parameters (pH, hydroxymethylfurfural (HMF, acidity, moisture content and diastase, with methodology of national and international standards. The antimicrobial effect was variable against strains of the genus Staphylococcus aureus. The most significant microbiological quality levels were Mold and Yeast counts (> 102 CFU / g. The physicochemical parameters with the most significant values were acidity (to: 42.5 meq acid/kg honey, moisture content (to: 26% and HMF (to: 3.8mg/kg honey. Storage at refrigeration temperature maintained standard values close to Apis mellifera honey during 180 days; whereas at room temperature it was better to maintain antimicrobial power. No significant difference was found between plastic storage containers vs. glass.

  2. Evaluation of the antimicrobial properties of unripe banana ( Musa ...

    African Journals Online (AJOL)

    The antimicrobial activity of these plants was examined using different solvents ... paratyphi, Shigella flexnerii, Escherichia coli ATCC 25922, E. coli, Klebsiella pneumoniae, Bacillus subtilis and Pseudomonas aeruginosa. ... medicinal plants.

  3. PLA/PBAT Bionanocomposites with Antimicrobial Natural Rosin for Green Packaging.

    Science.gov (United States)

    Moustafa, Hesham; El Kissi, Nadia; Abou-Kandil, Ahmed I; Abdel-Aziz, Mohamed S; Dufresne, Alain

    2017-06-14

    The use of biodegradable polymers is of great importance nowadays in many applications. Some of the most commonly used biopolymers are polylactic acid (PLA) and poly(butylene adipate-co-terephthalate) (PBAT) due to their superior properties and availability. In this manuscript, we use a facile and green modification method of organoclay (OC) by antimicrobial natural rosin which is considered as a toxicity-free reinforcing material, thus keeping the green character of the material. It increases the interlayer spacing between the clay platelets. This was proven by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) and found to impart antimicrobial properties to PLA/PBAT blends. The morphology of the resulting blends was conducted using scanning and transmission electron microscopies (SEM and TEM), and evidence of exfoliation and intercalation was observed. The thermal properties of the blends were studied using differential scanning calorimetry (DSC), and a detailed study of the crystallization of both PLA and PBAT was reported showing cold crystallization behavior of PLA. The final effect on mechanical and antimicrobial properties was also investigated. The obtained results reveal excellent possibility of using expanded OC modified PLA/PBAT polymer blends by adding a green material, antimicrobial natural rosin, for food packaging and biomembranes applications.

  4. Composition, antimicrobial, antioxidant, and antiproliferative activity of Origanum dictamnus (dittany essential oil

    Directory of Open Access Journals (Sweden)

    Gregoria Mitropoulou

    2015-05-01

    essential oil was 0.045±0.0042% (v/v and was mainly attributed to carvacrol. The EC50 value for the essential oil in the 72h SRB assay in HepG2 cells was estimated to be 0.0069±0.00014% (v/v. Among the individual constituents tested, carvacrol was the most bioactive compound and accounted for the observed antiproliferative activity of the essential oil. Conclusions: The results revealed that O. dictamnus essential oil is a noteworthy growth inhibitor against the microbes studied. It also possesses significant antioxidant activity and demonstrated excellent cytotoxicity against HepG2 cells. Taken together, O. dictamnus essential oil may represent an effective and inexpensive source of potent natural antimicrobial agents with health-promoting properties, which may be incorporated in food systems.

  5. Antimicrobial applications of nanotechnology: methods and literature.

    Science.gov (United States)

    Seil, Justin T; Webster, Thomas J

    2012-01-01

    The need for novel antibiotics comes from the relatively high incidence of bacterial infection and the growing resistance of bacteria to conventional antibiotics. Consequently, new methods for reducing bacteria activity (and associated infections) are badly needed. Nanotechnology, the use of materials with dimensions on the atomic or molecular scale, has become increasingly utilized for medical applications and is of great interest as an approach to killing or reducing the activity of numerous microorganisms. While some natural antibacterial materials, such as zinc and silver, possess greater antibacterial properties as particle size is reduced into the nanometer regime (due to the increased surface to volume ratio of a given mass of particles), the physical structure of a nanoparticle itself and the way in which it interacts with and penetrates into bacteria appears to also provide unique bactericidal mechanisms. A variety of techniques to evaluate bacteria viability, each with unique advantages and disadvantages, has been established and must be understood in order to determine the effectiveness of nanoparticles (diameter ≤ 100 nm) as antimicrobial agents. In addition to addressing those techniques, a review of select literature and a summary of bacteriostatic and bactericidal mechanisms are covered in this manuscript.

  6. Isothiocyanates: An Overview of Their Antimicrobial Activity against Human Infections

    Directory of Open Access Journals (Sweden)

    Letizia Romeo

    2018-03-01

    Full Text Available The use of plant-derived products as antimicrobial agents has been investigated in depth. Isothiocyanates (ITCs are bioactive products resulting from enzymatic hydrolysis of glucosinolates (GLs, the most abundant secondary metabolites in the botanical order Brassicales. Although the antimicrobial activity of ITCs against foodborne and plant pathogens has been well documented, little is known about their antimicrobial properties against human pathogens. This review collects studies that focus on this topic. Particular focus will be put on ITCs’ antimicrobial properties and their mechanism of action against human pathogens for which the current therapeutic solutions are deficient and therefore of prime importance for public health. Our purpose was the evaluation of the potential use of ITCs to replace or support the common antibiotics. Even though ITCs appear to be effective against the most important human pathogens, including bacteria with resistant phenotypes, the majority of the studies did not show comparable results and thus it is very difficult to compare the antimicrobial activity of the different ITCs. For this reason, a standard method should be used and further studies are needed.

  7. Current Advances in the Antimicrobial Potential of Species of Genus Ganoderma (Higher Basidiomycetes) against Human Pathogenic Microorganisms (Review).

    Science.gov (United States)

    Rai, Mahendra K; Gaikwad, Swapnil; Nagaonkar, Dipali; dos Santos, Carolina Alves

    2015-01-01

    Ganoderma spp. are very important therapeutic mushrooms and have been used traditionally for 4000 years in the treatment of various human disorders. Different species of Ganoderma possess bioactive compounds, which have already demonstrated antiviral, antibacterial, and antifungal activities. Various bioactive compounds such as triterpenoids, colossolactones, and polysaccharides, which are responsible for the antimicrobial potential of the genus, are discussed here in detail. Some Ganoderma spp. have been reported to be potential agents for the synthesis of metal nanoparticles. These nanoparticles have demonstrated antimicrobial activity and also are reviewed herein. The main aim of this review is to discuss the possible use of Ganoderma extracts and their active principles in antimicrobial therapy.

  8. Antimicrobial Properties of Diamond-Like Carbon/Silver Nanocomposite Thin Films Deposited on Textiles: Towards Smart Bandages

    Directory of Open Access Journals (Sweden)

    Tadas Juknius

    2016-05-01

    Full Text Available In the current work, a new antibacterial bandage was proposed where diamond-like carbon with silver nanoparticle (DLC:Ag-coated synthetic silk tissue was used as a building block. The DLC:Ag structure, the dimensions of nanoparticles, the silver concentration and the silver ion release were studied systematically employing scanning electron microscopy, energy dispersive X-ray spectroscopy and atomic absorption spectroscopy, respectively. Antimicrobial properties were investigated using microbiological tests (disk diffusion method and spread-plate technique. The DLC:Ag layer was stabilized on the surface of the bandage using a thin layer of medical grade gelatin and cellulose. Four different strains of Staphylococcus aureus extracted from humans’ and animals’ infected wounds were used. It is demonstrated that the efficiency of the Ag+ ion release to the aqueous media can be increased by further RF oxygen plasma etching of the nanocomposite. It was obtained that the best antibacterial properties were demonstrated by the plasma-processed DLC:Ag layer having a 3.12 at % Ag surface concentration with the dominating linear dimensions of nanoparticles being 23.7 nm. An extra protective layer made from cellulose and gelatin with agar contributed to the accumulation and efficient release of silver ions to the aqueous media, increasing bandage antimicrobial efficiency up to 50% as compared to the single DLC:Ag layer on textile.

  9. Antimicrobial Properties of Diamond-Like Carbon/Silver Nanocomposite Thin Films Deposited on Textiles: Towards Smart Bandages

    Science.gov (United States)

    Juknius, Tadas; Ružauskas, Modestas; Tamulevičius, Tomas; Šiugždinienė, Rita; Juknienė, Indrė; Vasiliauskas, Andrius; Jurkevičiūtė, Aušrinė; Tamulevičius, Sigitas

    2016-01-01

    In the current work, a new antibacterial bandage was proposed where diamond-like carbon with silver nanoparticle (DLC:Ag)-coated synthetic silk tissue was used as a building block. The DLC:Ag structure, the dimensions of nanoparticles, the silver concentration and the silver ion release were studied systematically employing scanning electron microscopy, energy dispersive X-ray spectroscopy and atomic absorption spectroscopy, respectively. Antimicrobial properties were investigated using microbiological tests (disk diffusion method and spread-plate technique). The DLC:Ag layer was stabilized on the surface of the bandage using a thin layer of medical grade gelatin and cellulose. Four different strains of Staphylococcus aureus extracted from humans’ and animals’ infected wounds were used. It is demonstrated that the efficiency of the Ag+ ion release to the aqueous media can be increased by further RF oxygen plasma etching of the nanocomposite. It was obtained that the best antibacterial properties were demonstrated by the plasma-processed DLC:Ag layer having a 3.12 at % Ag surface concentration with the dominating linear dimensions of nanoparticles being 23.7 nm. An extra protective layer made from cellulose and gelatin with agar contributed to the accumulation and efficient release of silver ions to the aqueous media, increasing bandage antimicrobial efficiency up to 50% as compared to the single DLC:Ag layer on textile. PMID:28773494

  10. Study of phytochemical, anti-microbial, anti-oxidant, and anti-cancer properties of Allium wallichii.

    Science.gov (United States)

    Bhandari, Jaya; Muhammad, BushraTaj; Thapa, Pratiksha; Shrestha, Bhupal Govinda

    2017-02-08

    There is growing interest in the use of plants for the treatment and prevention of cancer. Medicinal plants are currently being evaluated as source of promising anticancer agents. In this paper, we have investigated the anticancer potential of plant Allium wallichii, a plant native to Nepal and growing at elevations of 2300-4800 m. This is the first study of its kind for the plant mentioned. The dried plant was extracted in aqueous ethanol. Phytochemical screening, anti-microbial assay, anti-oxidant assay, cytotoxicity assay and the flow-cytometric analysis were done for analyzing different phytochemicals present, anti-microbial activity, anti-oxidant activity and anti-cancer properties of Allium wallichii. We observed the presence of steroids, terpenoids, flavonoids, reducing sugars and glycosides in the plant extract and the plant showed moderate anti-microbial and anti-oxidant activity. The IC 50 values of Allium wallichii in different cancer cell lines are 69.69 μg/ml for Prostate cancer (PC3) cell line, 55.29 μg/ml for Breast Cancer (MCF-7) cell line and 46.51 μg/ml for cervical cancer (HeLa) cell line as compared to Doxorubicin (0.85 μg/ml). The cell viability assay using FACS showed that the IC 50 value of Allium wallichii for Burkitt's lymphoma (B-Lymphoma) cell line was 3.817 ± 1.99 mg/ml. Allium wallichii can be an important candidate to be used as an anticancer agent. Separation of pure compounds with bioassay guided extraction, spectrometric analysis and subsequent cytotoxicity assay of the pure bioactive compounds from Allium wallichii is highly recommended as the crude extract itself showed promising cytotoxicity.

  11. In Vitro Evaluation of the Antimicrobial Effectiveness and Moisture Binding Properties of Wound Dressings

    Directory of Open Access Journals (Sweden)

    Teerapol Srichana

    2010-08-01

    Full Text Available A variety of silver-coated dressings and some impregnated with other chemicals are now available in the market; however, there have been few studies analyzing their comparative efficacies as antimicrobial agents. Moreover, their properties for retaining an appropriate level of moisture that is critical for effective wound healing have never been reported. Five commercially available silver-containing and chlorhexidine dressings, Urgotul SSD®, Bactigras®, Acticoat®, Askina Calgitrol Ag® and Aquacel Ag®, were tested to determine their comparative antimicrobial effectiveness in vitro against five common wound pathogens, namely methicillin-sensitive and -resistant Staphylococcus aureus, Bacillus subtilis, Escherichia coli and Pseudomonas aeruginosa. Mepitel®, a flexible polyamide net coated with soft silicone, was used as a control. The zones of inhibition and both the rapidity and the extent of killing of these pathogens were evaluated. All five antimicrobial dressings investigated exerted some bactericidal activity, particularly against E. coli. The spectrum and rapidity of action ranged widely for the different dressings. Acticoat® had a broad spectrum of action against both Gram-positive and -negative bacteria. Other dressings demonstrated a narrower range of bactericidal activities. Regarding the absorption and release of moisture, Askina Calgitrol Ag® absorbed and released the most moisture from the environment. Aquacel Ag® also exhibited good moisture absorption and moisture release, but to a lower degree. The other tested dressings absorbed or released very little moisture. Askina Calgitrol Ag® and Aquacel Ag® are good alternative dressings for treating wounds with high exudates and pus. An understanding of the characteristics of these dressings will be useful for utilizing them for specific requirements under specified conditions.

  12. Chimeric Peptides as Implant Functionalization Agents for Titanium Alloy Implants with Antimicrobial Properties

    Science.gov (United States)

    Yucesoy, Deniz T.; Hnilova, Marketa; Boone, Kyle; Arnold, Paul M.; Snead, Malcolm L.; Tamerler, Candan

    2015-04-01

    Implant-associated infections can have severe effects on the longevity of implant devices and they also represent a major cause of implant failures. Treating these infections associated with implants by antibiotics is not always an effective strategy due to poor penetration rates of antibiotics into biofilms. Additionally, emerging antibiotic resistance poses serious concerns. There is an urge to develop effective antibacterial surfaces that prevent bacterial adhesion and proliferation. A novel class of bacterial therapeutic agents, known as antimicrobial peptides (AMPs), are receiving increasing attention as an unconventional option to treat septic infection, partly due to their capacity to stimulate innate immune responses and for the difficulty of microorganisms to develop resistance towards them. While host and bacterial cells compete in determining the ultimate fate of the implant, functionalization of implant surfaces with AMPs can shift the balance and prevent implant infections. In the present study, we developed a novel chimeric peptide to functionalize the implant material surface. The chimeric peptide simultaneously presents two functionalities, with one domain binding to a titanium alloy implant surface through a titanium-binding domain while the other domain displays an antimicrobial property. This approach gains strength through control over the bio-material interfaces, a property built upon molecular recognition and self-assembly through a titanium alloy binding domain in the chimeric peptide. The efficiency of chimeric peptide both in-solution and absorbed onto titanium alloy surface was evaluated in vitro against three common human host infectious bacteria, Streptococcus mutans, Staphylococcus epidermidis, and Escherichia coli. In biological interactions such as occur on implants, it is the surface and the interface that dictate the ultimate outcome. Controlling the implant surface by creating an interface composed chimeric peptides may therefore

  13. Essential oils as natural food antimicrobial agents: a review.

    Science.gov (United States)

    Vergis, Jess; Gokulakrishnan, P; Agarwal, R K; Kumar, Ashok

    2015-01-01

    Food-borne illnesses pose a real scourge in the present scenario as the consumerism of packaged food has increased to a great extend. Pathogens entering the packaged foods may survive longer, which needs a check. Antimicrobial agents either alone or in combination are added to the food or packaging materials for this purpose. Exploiting the antimicrobial property, essential oils are considered as a "natural" remedy to this problem other than its flavoring property instead of using synthetic agents. The essential oils are well known for its antibacterial, antiviral, antimycotic, antiparasitic, and antioxidant properties due to the presence of phenolic functional group. Gram-positive organisms are found more susceptible to the action of the essential oils. Essential oils improve the shelf-life of packaged products, control the microbial growth, and unriddle the consumer concerns regarding the use of chemical preservatives. This review is intended to provide an overview of the essential oils and their role as natural antimicrobial agents in the food industry.

  14. Antioxidant, Antimicrobial and Cytotoxic Properties as Well as the Phenolic Content of the Extract from Hancornia speciosa Gomes.

    Directory of Open Access Journals (Sweden)

    Uilson P Santos

    Full Text Available Hancornia speciosa Gomes (Apocynaceae is a fruit tree, popularly known as mangabeira, and it is widely distributed throughout Brazil. Several parts of the plant are used in folk medicine, and the leaf and bark extracts have anti-inflammatory, antihypertensive, antidiabetic, and antimicrobial properties. In this study, we investigated the chemical composition of the ethanolic extract of Hancornia speciosa leaves (EEHS and its antioxidant, antimicrobial, and cytotoxic activities as well as the mechanisms involved in cell death. The chemical compounds were identified by liquid chromatography coupled to mass spectrometry (LC-MS/MS. The antioxidant activity of the EEHS was investigated using the method that involves the scavenging of 2,2-diphenyl-1-picrylhydrazyl free radicals as well as the inhibition of oxidative hemolysis and lipid peroxidation induced by 2,2'-azobis (2-amidinopropane in human erythrocytes. The antimicrobial activity was determined by calculating the minimum inhibitory concentration, minimum bactericidal concentration, minimum fungicidal concentration, and zone of inhibition. Kasumi-1 leukemic cells were used to assess the cytotoxic activity and mechanisms involved in cell death promoted by the EEHS. The chemical compounds identified were quinic acid, chlorogenic acid, catechin, rutin, isoquercitrin, kaempferol-rutinoside, and catechin-pentoside. The EEHS demonstrated antioxidant activity via the sequestration of free radicals, inhibition of hemolysis, and inhibition of lipid peroxidation in human erythrocytes incubated with an oxidizing agent. The antimicrobial activity was observed against American Type Culture Collection (ATCC and hospital strains of bacteria and fungi, filamentous fungi and dermatophytes. The cytotoxic activity of the EEHS was induced by apoptosis, reduction of the mitochondrial membrane potential, and activation of cathepsins. Together, these results indicate the presence of phenolic compounds and flavonoids

  15. Antimicrobial Activity of Resveratrol Analogues

    Directory of Open Access Journals (Sweden)

    Malik Chalal

    2014-06-01

    Full Text Available Stilbenes, especially resveratrol and its derivatives, have become famous for their positive effects on a wide range of medical disorders, as indicated by a huge number of published studies. A less investigated area of research is their antimicrobial properties. A series of 13 trans-resveratrol analogues was synthesized via Wittig or Heck reactions, and their antimicrobial activity assessed on two different grapevine pathogens responsible for severe diseases in the vineyard. The entire series, together with resveratrol, was first evaluated on the zoospore mobility and sporulation level of Plasmopara viticola (the oomycete responsible for downy mildew. Stilbenes displayed a spectrum of activity ranging from low to high. Six of them, including the most active ones, were subsequently tested on the development of Botrytis cinerea (fungus responsible for grey mold. The results obtained allowed us to identify the most active stilbenes against both grapevine pathogens, to compare the antimicrobial activity of the evaluated series of stilbenes, and to discuss the relationship between their chemical structure (number and position of methoxy and hydroxy groups and antimicrobial activity.

  16. Anti-Inflammatory and Antimicrobial Properties of Flavonoids from Heliotropium subulatum Exudate.

    Science.gov (United States)

    Singh, Bharat; Sharma, Ram A

    2015-01-01

    Heliotropium subulatum is an erect or procumbent perennial herb; leaves contain foliar trichomes and its resinous exudate is used in traditional medicine. The anti-inflammatory activity of dichloromethane fraction and isolated flavonoids was evaluated by using carrageenan and CFA-induced paw oedema models. Similarly, the disc diffusion and microdilution methods were used for the assessment of antimicrobial activity. Five isolated flavonoids were investigated for their antiinflammatory and antimicrobial activities. Eriodictyol demonstrated maximum anti-inflammatory activity (53.09%) at 30.0 mg/kg dose on 6(th) h and similarly, it inhibited the CFA-induced arthritis swelling (41.84%) with 30.0 mg/kg dose on 8(th) day respectively. As per disc diffusion and microdilution methods used for antimicrobial activity determination, the pinocembrin was found to be most active against Staphylococcus aureus (IZ=27±0.7 mm, 08 μg/ml dose) and Candida albicans (IZ=17±0.9 mm; 12 μg/ml dose). These investigated results revealed that the eriodictyol and pinocembrin showed significant anti-inflammatory and antimicrobial activities. Further studies which aimed to investigate the mechanism of action of these isolated flavonoids in the treatment of inflammations and various types of infections have been initiated.

  17. C- and N-truncated antimicrobial peptides from LFampin 265 - 284: Biophysical versus microbiology results

    NARCIS (Netherlands)

    Adão, R.; Nazmi, K.; Bolscher, J.G.M.; Bastos, M.

    2011-01-01

    Lactoferrin is a glycoprotein with two globular lobes, each having two domains. Since the discovery of its antimicrobial properties, efforts have been made to find peptides derived from this protein showing antimicrobial properties. Most peptides initially studied were derived from Lactoferricin B,

  18. Engineered Chimeric Peptides as Antimicrobial Surface Coating Agents toward Infection-Free Implants.

    Science.gov (United States)

    Yazici, Hilal; O'Neill, Mary B; Kacar, Turgay; Wilson, Brandon R; Oren, E Emre; Sarikaya, Mehmet; Tamerler, Candan

    2016-03-02

    Prevention of bacterial colonization and consequent biofilm formation remains a major challenge in implantable medical devices. Implant-associated infections are not only a major cause of implant failures but also their conventional treatment with antibiotics brings further complications due to the escalation in multidrug resistance to a variety of bacterial species. Owing to their unique properties, antimicrobial peptides (AMPs) have gained significant attention as effective agents to combat colonization of microorganisms. These peptides have been shown to exhibit a wide spectrum of activities with specificity to a target cell while having a low tendency for developing bacterial resistance. Engineering biomaterial surfaces that feature AMP properties, therefore, offer a promising approach to prevent implant infections. Here, we engineered a chimeric peptide with bifunctionality that both forms a robust solid-surface coating while presenting antimicrobial property. The individual domains of the chimeric peptides were evaluated for their solid-binding kinetics to titanium substrate as well as for their antimicrobial properties in solution. The antimicrobial efficacy of the chimeric peptide on the implant material was evaluated in vitro against infection by a variety of bacteria, including Streptococcus mutans, Staphylococcus. epidermidis, and Escherichia coli, which are commonly found in oral and orthopedic implant related surgeries. Our results demonstrate significant improvement in reducing bacterial colonization onto titanium surfaces below the detectable limit. Engineered chimeric peptides with freely displayed antimicrobial domains could be a potential solution for developing infection-free surfaces by engineering implant interfaces with highly reduced bacterial colonization property.

  19. Evaluation of natural antimicrobials on typical meat spoilage bacteria in vitro and in vacuum-packed pork meat.

    Science.gov (United States)

    Schirmer, Bjørn Christian; Langsrud, Solveig

    2010-03-01

    The aim of this study was to investigate the inhibitory effect of natural antimicrobials on the growth of typical spoilage bacteria from marinated pork. Minimum inhibitory concentrations (MIC) of thymol, cinnamaldehyde, allyl isothiocyanate, citric acid, ascorbic acid, a rosemary extract, and a grapefruit seed extract against Lactobacillus algidus, Leuconostoc mesenteroides, Leuconostoc carnosum, Carnobacterium maltaromaticum, Carnobacterium divergens, Brochothrix thermosphacta, and Serratia proteamaculans were determined in a microplate assay. Combinations of antimicrobials were tested and several combinations showed synergistic effects in inhibiting bacterial growth. Single and combined antimicrobials were added to vacuum-packed pork meat to evaluate preserving effects. Antimicrobial concentrations of up to 10 times the MIC values showed no effect on total bacterial growth in vacuum packed pork meaning that although most antimicrobials inhibited the growth of spoilage bacteria in vitro, results from the microplate assay could not be transferred to the meat system. Most natural antimicrobials possess strong odor and flavor that limit their use as a food preservative. In conclusion, this study showed that the use of natural antimicrobials in meat products is limited and that bacterial quality and shelf life was not enhanced under the chosen conditions.

  20. Antimicrobial activity of some medicinal barks used in Peruvian Amazon.

    Science.gov (United States)

    Kloucek, P; Svobodova, B; Polesny, Z; Langrova, I; Smrcek, S; Kokoska, L

    2007-05-04

    The aim of this study was to evaluate the antimicrobial activity of six barks traditionally used in Callería District (Ucayali Department, Peru) for treating conditions likely to be associated with microorganisms. Ethanol extracts of stem barks of Abuta grandifolia (Menispermaceae), Dipteryx micrantha (Leguminosae), Cordia alliodora (Boraginaceae), Naucleopsis glabra (Moraceae), Pterocarpus rohrii (Leguminosae), and root bark of Maytenus macrocarpa (Celastraceae) were tested against nine bacteria and one yeast using the broth microdilution method. All plants possessed significant antimicrobial effect, however, the extract of Naucleopsis glabra exhibited the strongest activity against Gram-positive bacteria (MICs ranging from 62.5 to 125 microg/ml), while the broadest spectrum of action was shown by the extract of Maytenus macrocarpa, which inhibited all the strains tested with MICs ranging from 125 to 250 microg/ml.

  1. Acid resistance, bile tolerance and antimicrobial properties of ...

    African Journals Online (AJOL)

    Maari is a fermented food condiment obtained by spontaneous fermentation of seeds from the baobab tree (Adansonia digitata). Nine dominant lactic acid bacteria (LAB) strains, isolated from traditional maari fermentation were examined for their resistance to pH 2.5, their tolerance to 0.3% bile and their antimicrobial ...

  2. Antimicrobial properties and chemical compositions of the petroleum ...

    African Journals Online (AJOL)

    The study was designed to investigate the antimicrobial and chemical compositions of the petroleum ether extract of theaerial parts of Rauvolfia vomitoria. The aerial parts of the plant were air dried under shade, pounded using wooden mortar and pestle into coarse powder. The coarse powder was extracted in aSoxhlet ...

  3. Photocatalytic properties and selective antimicrobial activity of TiO{sub 2}(Eu)/CuO nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Michal, Robert [Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, 84215 Bratislava (Slovakia); Dworniczek, Ewa [Department of Microbiology, Wroclaw Medical University, 50368 Wroclaw (Poland); Caplovicova, Maria [STU Centre for Nanodiagnostics, Slovak University of Technology, 81243 Bratislava (Slovakia); Monfort, Olivier [Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, 84215 Bratislava (Slovakia); Lianos, Panagiotis [Department of Chemical Engineering, University of Patras, 26500 Patras (Greece); Caplovic, Lubomir [Institute of Materials Science, Faculty of Materials Science and Technology, Slovak University of Technology, 91724 Trnava (Slovakia); Plesch, Gustav, E-mail: plesch@fns.uniba.sk [Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, 84215 Bratislava (Slovakia)

    2016-05-15

    Highlights: • Nanocomposites composed of Eu-doped anatase grafted with CuO. • Increase in photocatalytic hydrogen production due to CuO acting as electrons sink. • CuO in composites decreasing the photoinduced total mineralization of phenol. • Selective photoinduced antimicrobial activity against Enterococcus species. - Abstract: TiO{sub 2}(Eu)/CuO nanocomposites were prepared by precipitation method. The anatase nanocrystallites with a size of 26 nm exhibited well crystallized and characteristical dipyramidal morphology and {1 0 1} and {0 0 1} faceting. Transmission electron microscopy photographs with atomic resolution showed that the Eu(III) dopants were bounded on surface of titania. In the composites, the CuO nanocrystals exhibiting a monoclinic tenorite structure with a size in the range from 2 to 5 nm were grafted to the surface of titania. The influence of copper(II) oxide led to distinct selectivity in the photocatalytic and antimicrobial properties of the investigated TiO{sub 2}(Eu)/CuO nanocomposites. While the presence of CuO nanocrystals strongly increased the photocatalytic production of hydrogen by ethanol reforming, it decreased the activity in photoinduced total mineralization of phenol comparing with non-modified TiO{sub 2}(Eu). In investigated TiO{sub 2}(Eu)/CuO powders, the photoinduced antimicrobial activity against membranes of Enterococcus species was influenced by the selective binding of CuO to the surface of the microorganism leading to distinct selectivity in their action. The activity against Enterococcus faecalis was higher than against Enterococcus faecium.

  4. ANTIMICROBIAL PROPERTIES OF HYDROXYAPATITE COATINGS CONTAINING OF CHITOSAN AND SILVER ON TITANIUM SUBSTRATES IN RELATION TO MICROORGANISMS E.COLI ATCC 25922

    Directory of Open Access Journals (Sweden)

    Sukhodub LB

    2013-03-01

    Full Text Available In this work it was studied the antibacterial properties of coatings based on HA, with Chitosan and silver ions additions, produced by substrates termodeposition method from aqueous solutions with varying concentrations of Chitosan (0.025 and 0.1 g/l and silver (1 mg/l as the antimicrobial components as well as three-part cover, consisting of a film of Chitosan, HA and silver. Study on antibacterial properties of composite coatings on the pathogen E.coli ATCC 25922 was held by Spectrophotometric measurement and analysis of optical density of suspensions, containing samples. 3 series of measurements data were averaged. The results showed that the concentration of antimicrobial components have indicated a bacteriostatic effect of coatings on the culture of E. coli AS ATCC 25922 in physiological solution at a temperature of 37 °C. The most effective was the three-part cover consisting of a film of chitosan, HA and silver.

  5. Metal oxide nanoparticles as antimicrobial agents: a promise for the future.

    Science.gov (United States)

    Raghunath, Azhwar; Perumal, Ekambaram

    2017-02-01

    Microbial infectious diseases are a global threat to human health. Excess and improper use of antibiotics has created antimicrobial-resistant microbes that can defy clinical treatment. The hunt for safe and alternate antimicrobial agents is on in order to overcome such resistant micro-organisms, and the birth of nanotechnology offers promise to combat infectious organisms. Over the past two decades, metal oxide nanoparticles (MeO-NPs) have become an attractive alternative source to combat microbes that are highly resistant to various classes of antibiotics. Their vast array of physicochemical properties enables MeO-NPs to act as antimicrobial agents through various mechanisms. Apart from exhibiting antimicrobial properties, MeO-NPs also serve as carriers of drugs, thus barely providing a chance for micro-organisms to develop resistance. These immense multiple properties exhibited by MeO-NPs will have an impact on the treatment of deadly infectious diseases. This review discusses the mechanisms of action of MeO-NPs against micro-organisms, safety concerns, challenges and future perspectives. Copyright © 2017 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  6. Antimicrobial Edible Films and Coatings for Meat and Meat Products Preservation

    Directory of Open Access Journals (Sweden)

    Irais Sánchez-Ortega

    2014-01-01

    Full Text Available Animal origin foods are widely distributed and consumed around the world due to their high nutrients availability but may also provide a suitable environment for growth of pathogenic and spoilage microorganisms. Nowadays consumers demand high quality food with an extended shelf life without chemical additives. Edible films and coatings (EFC added with natural antimicrobials are a promising preservation technology for raw and processed meats because they provide good barrier against spoilage and pathogenic microorganisms. This review gathers updated research reported over the last ten years related to antimicrobial EFC applied to meat and meat products. In addition, the films gas barrier properties contribute to extended shelf life because physicochemical changes, such as color, texture, and moisture, may be significantly minimized. The effectiveness showed by different types of antimicrobial EFC depends on meat source, polymer used, film barrier properties, target microorganism, antimicrobial substance properties, and storage conditions. The perspective of this technology includes tailoring of coating procedures to meet industry requirements and shelf life increase of meat and meat products to ensure quality and safety without changes in sensory characteristics.

  7. Antimicrobial properties of Honduran medicinal plants.

    Science.gov (United States)

    Lentz, D L; Clark, A M; Hufford, C D; Meurer-Grimes, B; Passreiter, C M; Cordero, J; Ibrahimi, O; Okunade, A L

    1998-12-01

    Ninety-two plants used in the traditional pharmacopoeia of the Pech and neighboring Mestizo peoples of central Honduras are reported. The results of in vitro antimicrobial screens showed that 19 of the extracts from medicinal plants revealed signs of antifungal activity while 22 demonstrated a measurable inhibitory effect on one or more bacterial cultures. Bioassay-guided fractionation of extracts from Mikania micrantha, Neurolaena lobata and Piper aduncum produced weak to moderately active isolates. The broad spectrum of activity of the extracts helps to explain the widespread use of these plants for wound healing and other applications.

  8. Wound-healing and antimicrobial properties of dichloromethane fraction of Dialium guineense (Wild) fruit coat.

    Science.gov (United States)

    Okeke, Nnadi Charles; Udeani, Theophilus Kc; Onyebuchi, Ugwu Linus

    2016-01-01

    This research established the scientific bases for the folkloric use of the neglected Dialium guineense fruit coat in wound and microbial infection management in Nigeria. The phytochemical analysis of the crude extract, fractions and sub-fractions was performed by standard methods. Agar well diffusion protocol was adopted for the antimicrobial assay while the wound healing properties was determined by full thickness skin excision wound model. Phytochemical analysis showed high relative proportion of alkaloids (6.05 ± 0.98 %), saponins (3.91 ± 0.02 %) and tannins (1.86 ± 0.05 %). The only active fraction (DF) and sub-fraction (DF-5) were effective against Gram-positive (inhibition zone diameters, IZDs, 8-10 mm and 11-15 mm) and Gram-negative (IZDs, 15-19 mm and 16-21 mm) bacteria and fungi (6-8 mm) compared with 20-24 mm and 18-19 mm of the standard (ciprofloxacin) respectively. Fifty mg/kg of the DF-5 showed nearly equal percentage wound healing post-surgery days to Cicatrin®. The 50 mg/kg dose of DF and DF-5 showed more than 50 % wound healing at 10(th) day post-surgery, 50 mg/kg crude extract showed 54 % on day 14 while distilled water showed 56 % wound healing on day 17 with no sign of infection in all animal groups. All the treatments were significantly (P<0.01) different from control (distilled water) in wound healing by the 10(th) and 17(th) post-surgery days. The studies revealed that the fruit coat, which hitherto was treated as wastes could be explored for antimicrobial and wound healing properties against the backdrop of continually emerging antibiotic resistant strains of microorganisms.

  9. Role of the phosphopantetheinyltransferase enzyme, PswP, in the biosynthesis of antimicrobial secondary metabolites by Serratia marcescens Db10.

    Science.gov (United States)

    Gerc, Amy J; Stanley-Wall, Nicola R; Coulthurst, Sarah J

    2014-08-01

    Phosphopantetheinyltransferase (PPTase) enzymes fulfil essential roles in primary and secondary metabolism in prokaryotes, archaea and eukaryotes. PPTase enzymes catalyse the essential modification of the carrier protein domain of fatty acid synthases, polyketide synthases (PKSs) and non-ribosomal peptide synthetases (NRPSs). In bacteria and fungi, NRPS and PKS enzymes are often responsible for the biosynthesis of secondary metabolites with clinically relevant properties; these secondary metabolites include a variety of antimicrobial peptides. We have previously shown that in the Gram-negative bacterium Serratia marcescens Db10, the PPTase enzyme PswP is essential for the biosynthesis of an NRPS-PKS dependent antibiotic called althiomycin. In this work we utilize bioinformatic analyses to classify PswP as belonging to the F/KES subfamily of Sfp type PPTases and to putatively identify additional NRPS substrates of PswP, in addition to the althiomycin NRPS-PKS, in Ser. marcescens Db10. We show that PswP is required for the production of three diffusible metabolites by this organism, each possessing antimicrobial activity against Staphylococcus aureus. Genetic analyses identify the three metabolites as althiomycin, serrawettin W2 and an as-yet-uncharacterized siderophore, which may be related to enterobactin. Our results highlight the use of an individual PPTase enzyme in multiple biosynthetic pathways, each contributing to the ability of Ser. marcescens to inhibit competitor bacteria by the production of antimicrobial secondary metabolites. © 2014 The Authors.

  10. Superhydrophobic PVDF and PVDF-HFP nanofibrous mats with antibacterial and anti-biofouling properties

    Energy Technology Data Exchange (ETDEWEB)

    Spasova, M.; Manolova, N. [Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St, bl. 103A, BG-1113 Sofia (Bulgaria); Markova, N. [Institute of Microbiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St, bl. 26, BG-1113 Sofia (Bulgaria); Rashkov, I., E-mail: rashkov@polymer.bas.bg [Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St, bl. 103A, BG-1113 Sofia (Bulgaria)

    2016-02-15

    Graphical abstract: - Highlights: • New PVDF and PVDF-HFP nanofibers decorated with ZnO nanoparticles and a model drug. • The nanofibrous materials were fabricated by one-pot electrospinning. • The obtained materials are superhybrophobic and possess antibacterial properties. - Abstract: Superhydrophobic nanofibrous materials of poly(vinylidene fluoride) (PVDF) and poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) were prepared by one-pot electrospinning technique. The mats were decorated with ZnO nanoparticles with silanized surface and a model drug – 5-chloro-8-hydroxyquinolinol (5Cl8HQ). The obtained hybrid nanofibrous materials were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), contact angle measurements, mechanical and microbiological tests. The results showed that the incorporation of ZnO nanoparticles into PVDF and PVDF-HFP nanofibers increased the hydrophobicity (contact angle 152°), improved the thermal stability and imparted to the nanofibrous materials anti-adhesive and antimicrobial properties. The mats containing the model drug possessed antibacterial activity against Escherichia coli and Staphylococcus aureus. The results suggested that the obtained hybrid mats could find potential biomedical applications requiring antibacterial and anti-biofouling properties.

  11. Antimicrobial nanomaterials for food packaging applications

    Directory of Open Access Journals (Sweden)

    Radusin Tanja I.

    2016-01-01

    Full Text Available Food packaging industry presents one of the fastest growing industries nowadays. New trends in this industry, which include reducing food as well as packaging waste, improved preservation of food and prolonged shelf-life together with substitution of petrochemical sources with renewable ones are leading to development of this industrial area in diverse directions. This multidisciplinary challenge is set up both in front of food and material scientists. Nanotechnology is recently answering to these challenges, with different solutions-from improvements in materials properties to active packaging solutions, or both at the same time. Incorporation of nanoparticles into polymer matrix and preparation of hybrid materials is one of the methods of modification of polymer properties. Nano scaled materials with antimicrobial properties can act as active components when added into polymer, thereby leading to prolonged protective function of pristine food packaging material. This paper presents a review in the field of antimicrobial nanomaterials for food packaging in turn of technology, application and regulatory issues.

  12. Cultivation Techniques and Medicinal Properties of Pleurotus spp.

    Directory of Open Access Journals (Sweden)

    Andrej Gregori

    2007-01-01

    Full Text Available The genus Pleurotus (oyster mushroom comprises some most popular edible mushrooms due to their favourable organoleptic and medicinal properties, vigorous growth and undemanding cultivation conditions. It can be cultivated on log and a wide variety of agroforestry (by-products, weeds and wastes for the production of food, feed, enzymes and medicinal compounds, or for waste degradation and detoxification. Many different techniques and substrates have been successfully utilized for mushroom cultivation and biomass production by means of solid-state and submerged liquid fermentation. However, in contrast to submerged liquid fermentation, solid-state fermentation is not often used in large scale due to severe engineering problems. Various Pleurotus species have been shown to possess a number of medicinal properties, such as antitumour, immunomodulatory, antigenotoxic, antioxidant, anti-inflammatory, hypocholesterolaemic, antihypertensive, antiplatelet-aggregating, antihyperglycaemic, antimicrobial and antiviral activities. These therapeutic activities are exhibited by extracts or isolated compounds from Pleurotus spp. fermentation broth, mycelia and fruiting bodies. In particular, polysaccharides appear to be potent antitumour and immuno-enhancing substances, besides possessing other beneficial activities. However, the biochemical mechanisms of these therapeutic activities still remain largely unknown. This review focuses on recent advances in the biotechnology of Pleurotus spp., with emphasis on the production of fruiting bodies, the production of mycelium and bioactive compounds by solid-state and submerged liquid fermentation. The medicinal properties of this mushroom are also outlined.

  13. Antimicrobial properties of single-donor-derived, platelet-leukocyte fibrin for fistula occlusion: An in vitro study.

    Science.gov (United States)

    Wu, Xiuwen; Ren, Jianan; Yuan, Yujie; Luan, Jianfeng; Yao, Genhong; Li, Jieshou

    2013-01-01

    Fibrin glue is a promising alternative for low-output enterocutaneous fistula closure. Bacterial flora colonizing inside the fistula tract, however, may limit the glue application. Single-donor-derived, platelet-rich materials were hypothesized in this study to have antimicrobial activity against Gram-negative microorganisms. Platelet-leukocyte fibrin (PLF), platelet-rich plasma (PRP), and platelet-poor plasma (PPP) were obtained from healthy volunteers. The amounts of platelet, leukocyte, and complement/antibody were determined. In vitro laboratory susceptibility to PLF and plasmas was determined by the Kirby-Bauer disc-diffusion method. Antimicrobial activity of PLF, PRP, and PPP against three Gram-negative ATCC strains was determined in a bacterial kill assay. Levels of complement and antibody did not significantly differ among PLF, PRP, and PPP (p > 0.05), while platelet and leukocyte counts in platelet-rich biomaterials were significantly higher than those in PPP (p platelets and leukocytes may play an important role in bacterial defense. This is the first study to demonstrate the antibacterial properties of single-unit PLF for fistula closure, presenting a new opportunity for glue sealing.

  14. Antimicrobial Efficacy of Various Essential Oils at Varying Concentrations against Periopathogen Porphyromonas gingivalis

    Science.gov (United States)

    Grover, Harpreet Singh; Deswal, Himanshu; Agarwal, Preeti

    2016-01-01

    Introduction Porphyromonas gingivalis (P.gingivalis) is a notorious perio-pathogen with the ability to evade host defense mechanism and invade into the periodontal tissues. Many antimicrobial agents have been tested that curb its growth, although these agents tend to produce side effects such as antibiotic resistance and opportunistic infections. Therefore search for naturally occurring anti-microbials with lesser side effects is the need of the hour. Aim The aim of this study was to substantiate the antimicrobial activity of various essential oils; eucalyptus oil, chamomile oil, tea tree oil and turmeric oil against P. gingivalis. Materials and Methods Pure cultures of P. gingivalis were grown on selective blood agar. Antimicrobial efficacy of various concentrations of essential oils (0%, 25%, 50% and 100%) was assessed via disc diffusion test. Zone of inhibition were measured around disc after 48 hours in millimeters. Results Zones of inhibition were directly proportional to the concentration of essential oils tested. At 100% concentration all the tested oils possess antimicrobial activity against P.gingivalis with eucalyptus oil being most effective followed by tea tree oil, chamomile oil and turmeric oil. Conclusion All essential oils tested were effective against P.gingivalis. After testing for their clinical safety they could be developed into local agents to prevent and treat periodontitis. PMID:27790572

  15. Recent Developments in Antimicrobial Polymers: A Review

    Directory of Open Access Journals (Sweden)

    Madson R. E. Santos

    2016-07-01

    Full Text Available Antimicrobial polymers represent a very promising class of therapeutics with unique characteristics for fighting microbial infections. As the classic antibiotics exhibit an increasingly low capacity to effectively act on microorganisms, new solutions must be developed. The importance of this class of materials emerged from the uncontrolled use of antibiotics, which led to the advent of multidrug-resistant microbes, being nowadays one of the most serious public health problems. This review presents a critical discussion of the latest developments involving the use of different classes of antimicrobial polymers. The synthesis pathways used to afford macromolecules with antimicrobial properties, as well as the relationship between the structure and performance of these materials are discussed.

  16. Commercial ampholytes used for isoelectric focusing may interfere with bioactivity based purification of antimicrobial peptides

    OpenAIRE

    Riazi, Shadi; Dover, Sara; Turovskiy, Yevgeniy; Chikindas, Michael L.

    2007-01-01

    BioRad's Rotofor® system has been frequently used for the purification of proteins and smaller peptides such as bacteriocins. In this study, we report that some commercially available ampholytes used with the Rotofor® isoelectric focusing system possess antimicrobial activity, which may interfere with the purification of bacteriocins and bacteriocin-like substances.

  17. Antimicrobial and Biophysical Properties of Surfactant Supplemented with an Antimicrobial Peptide for Treatment of Bacterial Pneumonia

    NARCIS (Netherlands)

    Banaschewski, Brandon J H; Veldhuizen, Edwin J A; Keating, Eleonora; Haagsman, Henk P; Zuo, Yi Y; Yamashita, Cory M; Veldhuizen, Ruud A W

    2015-01-01

    BACKGROUND: Antibiotic resistant bacterial infections represent an emerging health concern in clinical settings, and a lack of novel developments in the pharmaceutical pipeline is creating a "perfect storm" for multi-drug resistant bacterial infections. Antimicrobial peptides (AMPs) have been

  18. Testing methods for antimicrobial activity of TiO2 photocatalyst

    Directory of Open Access Journals (Sweden)

    Markov Siniša L.

    2014-01-01

    Full Text Available In recent years, a lot of commercial TiO2 photocatalyst products have been developed and extensively studied for prospective and safe antimicrobial application in daily life, medicine, laboratories, food and pharmaceutical industry, waste water treatments and in development of new self-cleaning and antimicrobial materials, surfaces and paints. This paper reviews the studies published worldwide on killing microorganisms, methods for testing the antimicrobial activity, light sources and intensities, as well as calculation methods usually used when evaluating the antimicrobial properties of the TiO2-based products. Additionally, some strengths and weaknesses of the available methods for testing the antimicrobial activity of TiO2 photocatalyst products have been pointed out.[Projekat Ministarstva nauke Republike Srbije, br. III45008

  19. Antimicrobial chemical constituents from endophytic fungus Phomasp.

    Institute of Scientific and Technical Information of China (English)

    Hidayat Hussain; Siegfried Draeger; Barbara Schulz; Karsten Krohn; Ines Kock; Ahmed Al-Harrasi; Ahmed Al-Rawahi; Ghulam Abbas; Ivan R Green; Afzal Shah; Amin Badshah; Muhammad Saleem

    2014-01-01

    Objective:To evaluate the antimicrobial potential of different extracts of the endophytic fungus Phomasp. and the tentative identification of their active constituents.Methods:The extract and compounds were screened for antimicrobial activity using theAgarWellDiffusionMethod. Four compounds were purified using column chromatography and their structures were assigned using1H and13CNMR spectra,DEPT,2DCOSY,HMQC andHMBC experiments.Results:The ethyl acetate fraction ofPhomasp. showed good antifungal, antibacterial, and algicidal properties.One new dihydrofuran derivative, named phomafuranol(1), together with three known compounds, phomalacton(2),(3R)-5-hydroxymellein(3) and emodin(4) were isolated from the ethyl acetate fraction ofPhomasp.Preliminary studies indicated that phomalacton(2) displayed strong antibacterial, good antifungal and antialgal activities.Similarly(3R)-5-hydroxymellein (3) and emodin(4) showed good antifungal, antibacterial and algicidal properties.Conclusions:Antimicrobial activities of the ethyl acetate fraction of the endophytic fungusPhomasp. and isolated compounds clearly demonstrate thatPhomasp. and its active compounds represent a great potential for the food, cosmetic and pharmaceutical industries.

  20. Antimicrobial Drugs in Fighting against Antimicrobial Resistance

    OpenAIRE

    Cheng, Guyue; Dai, Menghong; Ahmed, Saeed; Hao, Haihong; Wang, Xu; Yuan, Zonghui

    2016-01-01

    The outbreak of antimicrobial resistance, together with the lack of newly developed antimicrobial drugs, represents an alarming signal for both human and animal healthcare worldwide. Selection of rational dosage regimens for traditional antimicrobial drugs based on pharmacokinetic/pharmacodynamic principles as well as development of novel antimicrobials targeting new bacterial targets or resistance mechanisms are key approaches in tackling AMR. In addition to the cellular level resistance (i....

  1. Preparation and characterization of intelligent starch/PVA films for simultaneous colorimetric indication and antimicrobial activity for food packaging applications.

    Science.gov (United States)

    Liu, Bin; Xu, Han; Zhao, Huiying; Liu, Wei; Zhao, Liyun; Li, Yuan

    2017-02-10

    We have developed an intelligent starch/poly-vinyl alcohol (PVA) film that is capable of monitoring pH changes and inhibiting undesired microbial growth in foods. Starch and PVA polymers in the film were doubly cross-linked by sodium trimetaphosphate and boric acid to improve their water-resistance and mechanical strength. Anthocyanins (ANT) and limonene (LIM) were used to achieve simultaneous colorimetric indication and antimicrobial activity. Firstly, the characterization of surface morphology using SEM confirmed that the starch-PVA-ANT-LIM film possessed a smooth surface. Secondly, the results of the mechanical strength test showed that starch-PVA-ANT-LIM possesses the highest mechanical strength. Additionally, there was a distinguishable change of colors as the film was immersed in solutions of pH ranging from 1.0 to 14.0. Moreover, the film showed excellent antimicrobial activity for three typical undesired microorganisms in foods, Bacillus subtilis, Aspergillus niger, and Staphylococcus aureus. Finally, the film exhibited good color indication and antimicrobial activity on pasteurized milk. The results suggest that the intelligent film reported here shows good capability for both alerting and inhibiting food spoilage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Preparation of antimicrobial MnO4--doped nylon-66 fibers with excellent laundering durability

    Science.gov (United States)

    Zhang, Mingxing; Gao, Qianhong; Yang, Chenguang; Pang, Lijuan; Wang, Honglong; Li, Rong; Xing, Zhe; Hu, Jiangtao; Wu, Guozhong

    2017-11-01

    A highly effective antimicrobial nylon 66 fiber doped with permanganate ions was prepared via a simultaneous irradiation induced graft polymerization. The physicochemical properties of the fibers were carefully characterized by various techniques, including Fourier-transform infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis, and X-ray photoelectron spectroscopy, revealing that permanganate ions (about 1.48 mmol/g) have been successfully loaded onto the surface of the nylon 66 fibers. The antimicrobial activity of the modified nylon 66 fibers against Staphylococcus aureus and Candida albicans were investigated. Accelerated laundering tests and tensile tests were conducted to access the effect of laundering on the antimicrobial activity and the mechanical property of the modified nylon 66 fibers, respectively. All results indicate that we have prepared a new highly effective antimicrobial nylon 66 fiber (almost a 100% reduction in the number of S. aureus and C. albicans colonies). Furthermore, the modified nylon 66 fibers are durable, maintaining antimicrobial resistance after 100 commercial or domestic launderings and retaining its excellent mechanical property during preparation and laundering.

  3. Radiation-grafting of N-vinylimidazole onto silicone rubber for antimicrobial properties

    Science.gov (United States)

    Meléndez-Ortiz, H. Iván; Alvarez-Lorenzo, Carmen; Burillo, Guillermina; Magariños, Beatriz; Concheiro, Angel; Bucio, Emilio

    2015-05-01

    Poly(N-vinylimidazole) (PVIm) was grafted numbers onto silicone rubber (SR) with the aim of providing antimicrobial properties. The grafting was carried out by means of gamma rays using the direct method. The influence on the grafting yield of absorbed dose, monomer concentration, addition of FeSO4 salt, composition and type of solvent (H2O, MeOH, THF, and acetone) was investigated. Grafts onto SR between 10% and 90% were obtained at doses from 20 to 100 kGy and a dose rate 10.9 kGy h-1; grafting yield increased with monomer concentration and dose. The new graft copolymers were confirmed by Fourier transform infrared spectroscopy (FT-IR). Differential scanning calorimeter (DSC) showed glass transition at 149 and 159 °C for 38% and 88% grafting respectively. Thermogravimetry analysis (TGA) presented two decomposition temperatures for SR-g-VIm at 380 (PVIm) and 440 °C (SR). SR-g-VIm showed antibacterial activity against Pseudomonas aeruginosa.

  4. Physicochemical properties and antimicrobial activity of Roselle (Hibiscus sabdariffa L.).

    Science.gov (United States)

    Jung, EunKyung; Kim, YoungJun; Joo, Nami

    2013-12-01

    The therapeutic action of a plant depends on its chemical constituents. In this study, experiments were carried out in order to evaluate the effect of extraction conditions on the antioxidative and antimicrobial activities of Roselle (Hibiscus sabdariffa L.). Roselle was found to be rich in malic acid, anthocyanins, ascorbic acid and minerals, especially Ca and Fe, but low in glucose. More than 18 volatile compounds were identified by gas chromatography and gas chromatography-mass spectrometry. This herb, which is rich in phenolic compounds and displays DPPH radical scavenging activity, could be a good source of natural antioxidants. The antimicrobial activity of the Roselle water and ethanol extracts was tested with Bacillus subtilis (ATCC6633), Staphylococcus aureus (ATCC6538) and Escherichia coli (ATCC 8739). The inhibition of the Roselle ethanol extract against B. subtilis and S. aureus was slightly higher than that of water extract but this difference was not significant. However, E. coli was strongly inhibited by the Roselle water extract at concentrations of 25 and 50 mg mL(-1) as determined by a paper disc method. The obtained results indicated that antioxidant and antimicrobial activity was related to different methods of extraction and Roselle extracts could be a source of therapeutically useful products. © 2013 Society of Chemical Industry.

  5. Antimicrobial fungal endophytes from the botanical medicine goldenseal (Hydrastis canadensis).

    Science.gov (United States)

    Egan, Joseph M; Kaur, Amninder; Raja, Huzefa A; Kellogg, Joshua J; Oberlies, Nicholas H; Cech, Nadja B

    2016-09-01

    The potential of fungal endophytes to alter or contribute to plant chemistry and biology has been the topic of a great deal of recent interest. For plants that are used medicinally, it has been proposed that endophytes might play an important role in biological activity. With this study, we sought to identify antimicrobial fungal endophytes from the medicinal plant goldenseal ( Hydrastis canadensis L., Ranunculaceae), a plant used in traditional medicine to treat infection. A total of 23 fungal cultures were obtained from surface-sterilized samples of H. canadensis roots, leaves and seeds. Eleven secondary metabolites were isolated from these fungal endophytes, five of which had reported antimicrobial activity. Hydrastis canadensis plant material was then analyzed for the presence of fungal metabolites using liquid chromatography coupled to high resolving power mass spectrometry. The antimicrobial compound alternariol monomethyl ether was detected both as a metabolite of the fungal endophyte Alternaria spp. isolated from H. canadensis seeds, and as a component of an extract from the H. canadensis seed material. Notably, fungi of the Alternaria genus were isolated from three separate accessions of H. canadensis plant material collected in a time period spanning 5 years. The concentration of alternariol monomethyl ether (991 mg/kg in dry seed material) was in a similar range to that previously reported for metabolites of ecologically important fungal endophytes. The seed extracts themselves, however, did not possess antimicrobial activity.

  6. Antioxidant and antimicrobial properties of traditional green and purple "Napoletano" basil cultivars (Ocimum basilicum L.) from Campania region (Italy).

    Science.gov (United States)

    Tenore, Gian Carlo; Campiglia, Pietro; Ciampaglia, Roberto; Izzo, Luana; Novellino, Ettore

    2017-09-01

    The present study is the first effort to a comprehensive evaluation of the antioxidant and antimicrobial activities of 'Napoletano' green and purple basil (Ocimum basilicum L.) varieties. The results obtained revealed that the basil sample extracts were characterised by a generally higher polyphenolic concentration than those reported elsewhere for other more conventional and geographically different basil varieties. Napoletano purple basil revealed higher radical-scavenging and ferric-reducing capacities than the green one probably due to its relevant anthocyanin content. As regards the antimicrobial properties, both basil varieties exhibited activity against a broad spectrum of food-borne and human pathogenic micro-organisms, revealing not only a moderate to high natural preserving capacity, but also potentially beneficial influence on human health. Results indicated Napoletano green and purple basils as a good source of antioxidants of potential nutraceutical interest.

  7. ANTIMICROBIAL ACTIVITY OF THE SUBSTANCES RECEIVED FROM RAW MATERIALS OF BIRCH FAMILY PLANTS

    Directory of Open Access Journals (Sweden)

    Fedchenkova Yu.A

    2016-12-01

    tenfold dilution of extracts on meat-peptone broth 1:10 and 1:100 to which there were added the referential cultures which are grown up on appropriate differential diagnostic medium depending on a type of cultures. The crops were incubated in the thermostat at t - 35-37 °C within 24-48 hours. For identification of test-strain growth of E. coli there was used Endo medium, for S. aureus – Chistovich medium, for B. subtilis and B. cereus - meat-peptone agar, for P. аeruginosa - 5% blood agar and for C. albicans – Saburo medium. As the solutions remained muddy after incubation, for the assessment of antimicrobial action of the received fractions, there were being made the cloning on differential and diagnostic mediums. Results and discussion. Data of the conducted researches of antimicrobial activity of various substances of hazel ordinary and black alder leaves – tinctures, lipophilic, spirit and polysacharide fractions are given in the table. The obtained data demonstrate that lipophilic fractions of hazel ordinary and black alder leaves possessed the bactericidal activity when it was diluted in the ratio of 1:10 and 1:100 concerning P. аeruginosa and E. coli. These fractions also have antimycotic activity concerning C. albicans. Concerning E. сoli it is revealed that the spirit fractions from black alder leaves had the bactericidal activity, and concerning P. аeruginosa and C. albicans – all studied spirit fractions possessed. Among polysacharide fractions the antimicrobial activity is revealed only for this substance of hazel ordinary leaves in both dilutions concerning E. coli, S. aureus, P. aeruginosa. As concerning B. subtilis and B. cereus, bacteria of these strains were resistant to all studied fractions. Conclusions. Antimicrobial activity of a number of substances of hazel ordinary and black alder leaves is studied. As a result of the conducted researches it is established that lipophilic and spirit fractions of hazel ordinary and black alder leaves

  8. Efficacy of jatropha curcas plant extract against the survival of salmonella enteritidis

    Science.gov (United States)

    Introduction: The use of plant-derived antimicrobials has shown to be effective at inhibiting microbial growth. Although Jatropha curcas is known to possess antimicrobial properties, its efficacy against Salmonella Enteritidis has not yet been investigated. Purpose: The purpose of this study was...

  9. An in vitro evaluation of antimicrobial activity of five herbal extracts and comparison of their activity with 2.5% sodium hypochlorite against Enterococcus faecalis

    Directory of Open Access Journals (Sweden)

    Divya Saxena

    2015-01-01

    Full Text Available Context: Sodium hypochlorite is the most widely used irrigant in endodontic practice, but it has various disadvantages. Literature has shown that herbal products such as Propolis, Azadirachta indica (AI, Triphala, Curcuma longa, and Morinda citrifolia (MC possess good antimicrobial properties and thus can be used as potential endodontic irrigants. Aim: To evaluate and compare the antimicrobial activity of five herbal extracts, i.e., Propolis, AI, Triphala, C. longa, and MC with that of 2.5% sodium hypochlorite against Enterococcus faecalis. Materials and Methods: E. faecalis American Type Culture Collection 21292 was inoculated onto brain heart infusion agar plate. Discs impregnated with herbal medicaments were placed on the inoculated plates and incubated at 37°C aerobically for 24 h and growth inhibition zones were measured. Statistical Analysis: Mean zone of inhibition in descending order was found as sodium hypochlorite > Propolis > AI > Triphala > C. longa = MC > ethanol. Statistical analysis was performed using one-way analysis of variance which showed a significant difference in the zone of inhibition of sodium hypochlorite and Propolis (P < 0.001. Results: Propolis showed highest zone of inhibition among all the herbal extracts next to sodium hypochlorite. Conclusion: Propolis and AI have significant antimicrobial activity against E. faecalis.

  10. Eco-friendly synthesis of Solanum trilobatum extract-capped silver nanoparticles is compatible with good antimicrobial activities

    Science.gov (United States)

    Ramanathan, Santheraleka; Gopinath, Subash C. B.; Anbu, Periasamy; Lakshmipriya, Thangavel; Kasim, Farizul Hafiz; Lee, Choul-Gyun

    2018-05-01

    This study focused on the evaluation of antimicrobial activity of silver nanoparticles (AgNPs) after their green synthesis by means of a Solanum trilobatum bark extract. The obtained product with an intense surface plasmon resonance band at ∼442 nm with UV-visible spectroscopic analysis indicated the formation of AgNPs. The morphology of AgNPs was observed under transmission electron microscopy and field emission scanning electron microscopy, displayed that the eco-friendly synthesized AgNPs have a spherical shape with an average size of ∼25 nm in diameter. X-ray powder diffraction and selected area electron diffraction analyses confirmed that the AgNPs are crystalline in nature. Fourier transform infrared spectroscopy indicated that the AgNPs capped with active ingredients of the bark extract. X-ray photoelectron spectroscopy revealed elemental composition of the AgNPs. The performance of S. trilobatum bark extract-capped AgNPs in terms of inhibition of microbial growth was studied by disc diffusion and well diffusion assays. Eco-friendly synthesized S. trilobatum extract-capped AgNPs were found to possess enhanced antimicrobial properties: growth inhibition of gram-negative and gram-positive bacteria and of fungal species. These results demonstrated the potential applications of the indigenous medicinal plants to the field of nanotechnology.

  11. Studies on the antimicrobial properties of formulated creams and ...

    African Journals Online (AJOL)

    Their performances were compared with those of standard antiseptic creams and ointments. The results of agar diffusion studies on cream and ointment formulations revealed that the topical bases used to disperse the medicaments could significantly affect the antimicrobial effectiveness of the formulation. Formulations ...

  12. Microbial Load And Antimicrobial Property Of Two Nigerian Herbal ...

    African Journals Online (AJOL)

    Qualitative phytochemical screening of the herbal remedies revealed the presence of saponin, tannins, alkaloids, anthraquinone and cardiac glycosides which suggest possible antimicrobial effect. However, the presence of microbial contaminants in the herbal remedies suggests that they may serve as source of infection to ...

  13. ANTIMICROBIAL PROPERTIES «LIPIN» INHALATION USE IN CHILDREN WITH ASTHMA

    Directory of Open Access Journals (Sweden)

    Chernusky V.G.

    2016-06-01

    Full Text Available Introduction. Problems of modern pharmacotherapy of bronchial asthma (BA in children is largely reduced to the establishment of effective dosage forms that provide the delivery of drugs in the bronchopulmonary system without affecting other organ systems. A promising area in addressing the causal treatment of asthma in children is the use of the formulation «Lipin», which is a liposome, arising by self-assembly of amphiphilic lipid complexes. Material & methods. The study of antimicrobial properties «Lipin» on microorganisms isolated from sputum in 135 children are hospitalized in the pulmonology department of GU «Children's Hospital road» Kharkiv about asthma in the period of exacerbation. Age was surveyed children from 5 to 14 years on average - 11 ± 0,12 years. The diagnosis of bronchial asthma (BA is set according to GINA guidelines. The treatment groups were representative, rondomizirovany by age, sex, severity of the disease. Patients with asthma in all forms (atopic, non-atopic, mixed and severity (mild, moderate, severe received basic asthma treatment according to the Ministry of Health of Ukraine № 4.01.12-8.1178 order dated 14.12.2009, which was supplemented by liposomal formulation «Lipin» inhalation through an ultrasonic nebulizer in age dosage. All drugs used in accordance with instructions for their use, approved by the Ministry of Health of Ukraine. Microbiological examination of sputum was performed by conventional methods: for seeding solid or liquid nutrient medium, followed by isolation and isolates microscopy, biochemical and serological identification. Identification of the isolates was performed according to the position of the Ministry of Health USSR order number 535 and respectively toksonomicheskih determination tests bacteria Burgi. The antimicrobial activity of the preparation «Lipin» was determined by the level of the minimum inhibitory concentration (MIC - twofold serial dilution method in medium Mueller

  14. THE ANTIMICROBIAL ACTIVITY OF SOME EXTRACTS OF FERN GAMETOPHYTES

    Directory of Open Access Journals (Sweden)

    Ionica Deliu

    2013-12-01

    Full Text Available The nature freely offers us many resources for health and beauty. The ferns and their therapeutic properties are less exploit in Romania, except Lycopodium clavatum and Equisetum arvense. Some of the fern properties were demonstrated, like antioxidant, antimicrobial, antiviral, antihelmintic properties. Plants are reasonable alternative to synthetic drugs, avoid the side effect and high cost of synthetic drugs production. Also, the drug resistance bacteria can be controlled using plant derived remedies. In this study the antimicrobial effect of methanolic and ethanolic extracts from three fern species were tested. The extracts were gained from gametophytic stage of ferns obtained in vitro. The most obvious effect was observed for Asplenium trichomanes-ramosum extract. The total polyphenols and flavonoids content were established, too.

  15. Antimicrobial Activity and Modulatory Effect of Essential Oil from the Leaf of Rhaphiodon echinus (Nees & Mart) Schauer on Some Antimicrobial Drugs.

    Science.gov (United States)

    Duarte, Antonia Eliene; de Menezes, Irwin Rose Alencar; Bezerra Morais Braga, Maria Flaviana; Leite, Nadghia Figueiredo; Barros, Luiz Marivando; Waczuk, Emily Pansera; Pessoa da Silva, Maria Arlene; Boligon, Aline; Teixeira Rocha, João Batista; Souza, Diogo Onofre; Kamdem, Jean Paul; Melo Coutinho, Henrique Douglas; Escobar Burger, Marilise

    2016-06-08

    Rhaphiodon echinus is a weed plant used in the Brazilian folk medicinal for the treatment of infectious diseases. In this study, the essential oil of R. echinus leaf was investigated for its antimicrobial properties. The chemical constituents of the essential oil were characterized by GC-MS. The antimicrobial properties were determined by studying by the microdilution method the effect of the oil alone, and in combination with antifungal or antibiotic drugs against the fungi Candida albicans, Candida krusei and Candida tropicalis and the microbes Escherichia coli, Staphylococcus aureus and Pseudomonas. In addition, the iron (II) chelation potential of the oil was determined. The results showed the presence of β-caryophyllene and bicyclogermacrene in major compounds, and revealed a low antifungal and antibacterial activity of the essential oil, but a strong modulatory effect on antimicrobial drugs when associated with the oil. The essential oil showed iron (II) chelation activity. The GC-MS characterization revealed the presence of monoterpenes and sesquiterpenes in the essential oil and metal chelation potential, which may be responsible in part for the modulatory effect of the oil. These findings suggest that essential oil of R. echinus is a natural product capable of enhancing the antibacterial and antifungal activity of antimicrobial drugs.

  16. A split-body, randomized, blinded study to evaluate the efficacy of a topical spray composed of essential oils and essential fatty acids from plant extracts with antimicrobial properties.

    Science.gov (United States)

    Bensignor, Emmanuel; Fabriès, Lionel; Bailleux, Lucie

    2016-12-01

    Bacterial pyoderma is a frequent presentation in dogs. Despite the widespread availability of effective systemic and topical antimicrobial products, good clinical practice currently recommends avoidance of long-term use to mitigate the development of bacterial resistance. To evaluate the speed of resolution of clinical signs of bacterial pyoderma in dogs treated with a systemic antimicrobial agent with or without the use of an adjunctive spray with antimicrobial properties. Twelve dogs with superficial bacterial pyoderma. In this controlled and blinded study, all dogs were treated with oral cefalexin and a topical spray (PYOClean Spray) for 4 weeks. The spray was applied to one half of each dog's body, whereas a placebo spray was applied to the other half. Twelve dogs completed the study. Mean clinical scores were significantly reduced on spray-treated sites, for test product and placebo (respectively), by 47% and 34% at Week 1, 83% and 60% at Week 2, 95% and 82% at Week 3, and 100% and 96% at Week 4. Fifty percent of treated sites were considered clinically and cytologically cured at Week 2, 83% at Week 3, and 100% at Week 4 compared to 8%, 50% and 83% for the placebo sites, respectively. These results demonstrate that use of a topical spray which contains plant-derived essential oils and fatty acids, and compounds with antimicrobial properties (Manuka oil and N-acetyl cysteine) may help to speed resolution of pyoderma and may allow for shorter antimicrobial treatment time. © 2016 ESVD and ACVD.

  17. Gun possession among American youth: a discovery-based approach to understand gun violence.

    Science.gov (United States)

    Ruggles, Kelly V; Rajan, Sonali

    2014-01-01

    To apply discovery-based computational methods to nationally representative data from the Centers for Disease Control and Preventions' Youth Risk Behavior Surveillance System to better understand and visualize the behavioral factors associated with gun possession among adolescent youth. Our study uncovered the multidimensional nature of gun possession across nearly five million unique data points over a ten year period (2001-2011). Specifically, we automated odds ratio calculations for 55 risk behaviors to assemble a comprehensive table of associations for every behavior combination. Downstream analyses included the hierarchical clustering of risk behaviors based on their association "fingerprint" to 1) visualize and assess which behaviors frequently co-occur and 2) evaluate which risk behaviors are consistently found to be associated with gun possession. From these analyses, we identified more than 40 behavioral factors, including heroin use, using snuff on school property, having been injured in a fight, and having been a victim of sexual violence, that have and continue to be strongly associated with gun possession. Additionally, we identified six behavioral clusters based on association similarities: 1) physical activity and nutrition; 2) disordered eating, suicide and sexual violence; 3) weapon carrying and physical safety; 4) alcohol, marijuana and cigarette use; 5) drug use on school property and 6) overall drug use. Use of computational methodologies identified multiple risk behaviors, beyond more commonly discussed indicators of poor mental health, that are associated with gun possession among youth. Implications for prevention efforts and future interdisciplinary work applying computational methods to behavioral science data are described.

  18. Gun possession among American youth: a discovery-based approach to understand gun violence.

    Directory of Open Access Journals (Sweden)

    Kelly V Ruggles

    Full Text Available OBJECTIVE: To apply discovery-based computational methods to nationally representative data from the Centers for Disease Control and Preventions' Youth Risk Behavior Surveillance System to better understand and visualize the behavioral factors associated with gun possession among adolescent youth. RESULTS: Our study uncovered the multidimensional nature of gun possession across nearly five million unique data points over a ten year period (2001-2011. Specifically, we automated odds ratio calculations for 55 risk behaviors to assemble a comprehensive table of associations for every behavior combination. Downstream analyses included the hierarchical clustering of risk behaviors based on their association "fingerprint" to 1 visualize and assess which behaviors frequently co-occur and 2 evaluate which risk behaviors are consistently found to be associated with gun possession. From these analyses, we identified more than 40 behavioral factors, including heroin use, using snuff on school property, having been injured in a fight, and having been a victim of sexual violence, that have and continue to be strongly associated with gun possession. Additionally, we identified six behavioral clusters based on association similarities: 1 physical activity and nutrition; 2 disordered eating, suicide and sexual violence; 3 weapon carrying and physical safety; 4 alcohol, marijuana and cigarette use; 5 drug use on school property and 6 overall drug use. CONCLUSIONS: Use of computational methodologies identified multiple risk behaviors, beyond more commonly discussed indicators of poor mental health, that are associated with gun possession among youth. Implications for prevention efforts and future interdisciplinary work applying computational methods to behavioral science data are described.

  19. Antimicrobial, antiparasitic and anticancer properties of Hibiscus sabdariffa (L.) and its phytochemicals: in vitro and in vivo studies.

    Science.gov (United States)

    Hassan, Sherif T S; Berchová, Kateřina; Šudomová, Miroslava

    In the last few decades, Hibiscus sabdariffa L. (Malvaceae; H. sabdariffa) has gained much attention in research field because of its potentially useful bioactivity as well as a great safety and tolerability. For decades, microbial, parasitic and cancer diseases remain a serious threat to human health and animals as well. To treat such diseases, a search for new sources such as plants that provide various bioactive compounds useful in the treatment of several physiological conditions is urgently needed, since most of the drugs currently used in the therapy have several undesirable side effects, toxicity, and drug resistance. In this paper, we aim to present an updated overview of in vitro and in vivo studies that show the significant therapeutic properties of the crude extracts and phytochemicals derived from H. sabdariffa as antimicrobial, antiparasitic, and anticancer agents. The future directions of the use of H. sabdariffa in clinical trials will be discussed. Hibiscus sabdariffa L. antimicrobial agents cancer preventive agents antiparasitic drugs natural products.

  20. Chitosan preparations for wounds and burns: antimicrobial and wound-healing effects

    Science.gov (United States)

    Dai, Tianhong; Tanaka, Masamitsu; Huang, Ying-Ying; Hamblin, Michael R

    2011-01-01

    Since its discovery approximately 200 years ago, chitosan, as a cationic natural polymer, has been widely used as a topical dressing in wound management owing to its hemostatic, stimulation of healing, antimicrobial, nontoxic, biocompatible and biodegradable properties. This article covers the antimicrobial and wound-healing effects of chitosan, as well as its derivatives and complexes, and its use as a vehicle to deliver biopharmaceuticals, antimicrobials and growth factors into tissue. Studies covering applications of chitosan in wounds and burns can be classified into in vitro, animal and clinical studies. Chitosan preparations are classified into native chitosan, chitosan formulations, complexes and derivatives with other substances. Chitosan can be used to prevent or treat wound and burn infections not only because of its intrinsic antimicrobial properties, but also by virtue of its ability to deliver extrinsic antimicrobial agents to wounds and burns. It can also be used as a slow-release drug-delivery vehicle for growth factors to improve wound healing. The large number of publications in this area suggests that chitosan will continue to be an important agent in the management of wounds and burns. PMID:21810057

  1. ANTIMICROBIAL ACTIVITY OF ROSA CANINA FLOWERS AGAINST SELECTED MICROORGANISMS

    Directory of Open Access Journals (Sweden)

    Katarína Rovná

    2015-02-01

    Full Text Available Rosa canina flowers were screened against various plant pathogenic microbial strains to study the antimicrobial properties of the plant. Ethanolic and methanolic extracts of flowers were screened applying agar well diffusion method against two Gram-negative bacteria including Escherichia coli CCM 3988 and Pseudomonas aeruginosa CCM 1960 and three microscopic filamentous fungi strains Aspergillus niger, Fusarium culmorum and Alternaria alternata, respectively. The best antimicrobial effect of ethanolic extract of Rosa canina flowers was found against Pseudomonas aeruginosa and the best antimicrobial effect of methanolic extract of Rosa canina flowers was found against Escherichia coli.

  2. Chemical analysis of plasma-assisted antimicrobial treatment on cotton

    International Nuclear Information System (INIS)

    Kan, C W; Lam, Y L; Yuen, C W M; Luximon, A; Lau, K W; Chen, K S

    2013-01-01

    This paper explores the use of plasma treatment as a pretreatment process to assist the application of antimicrobial process on cotton fabric with good functional effect. In this paper, antimicrobial finishing agent, Microfresh Liquid Formulation 9200-200 (MF), and a binder (polyurethane dispersion, Microban Liquid Formulation R10800-0, MB) will be used for treating the cotton fabric for improving the antimicrobial property and pre-treatment of cotton fabric by plasma under atmospheric pressure will be employed to improve loading of chemical agents. The chemical analysis of the treated cotton fabric will be conducted by Fourier transform Infrared Spectroscopy.

  3. Antioxidant and antimicrobial activity of capulin (Prunus serotina subsp capuli) extracts

    OpenAIRE

    Jimenez, M.; Castillo, I.; Azuara, E.; Beristain, C.I.

    2011-01-01

    Capulin (Prunus serotina subsp. capuli) is an annual fruit widely used in Mexico for the elaboration of several traditional products, such as medicinal tea, which is considered to present antioxidant and antimicrobial properties. The aim of this work was to evaluate the antioxidant and antimicrobial properties of aqueous, acetone, ethanol and methanol extracts. The ethanol extract presented a high anthocyanin (102±7.70 mg Cyd-3-glu/100 g extract) and polyphenol (1732±43.40 mg GAE /100 g extra...

  4. Essential oil of the leaves of Eugenia uniflora L.: antioxidant and antimicrobial properties.

    Science.gov (United States)

    Victoria, Francine Novack; Lenardão, Eder João; Savegnago, Lucielli; Perin, Gelson; Jacob, Raquel Guimarães; Alves, Diego; da Silva, Wladimir Padilha; da Motta, Amanda de Souza; Nascente, Patricia da Silva

    2012-08-01

    Essential oil (EO) of the leaves of Eugenia uniflora L. (Brazilian cherry tree) was evaluated for its antioxidant, antibacterial and antifungal properties. The acute toxicity of the EO administered by oral route was also evaluated in mice. The EO exhibited antioxidant activity in the DPPH, ABTS and FRAP assays and reduced lipid peroxidation in the kidney of mice. The EO also showed antimicrobial activity against two important pathogenic bacteria, Staphylococcus aureus and Listeria monocytogenes, and against two fungi of the Candida species, C. lipolytica and C. guilliermondii. Acute administration of the EO by the oral route did not cause lethality or toxicological effects in mice. These findings suggest that the EO of the leaves of E. uniflora may have the potential for use in the pharmaceutical industry. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Rapid flow cytometry analysis of antimicrobial properties of nettle powder and cranberry powder

    Science.gov (United States)

    Hattuniemi, Maarit; Korhonen, Johanna; Jaakkola, Mari; Räty, Jarkko; Virtanen, Vesa

    2010-11-01

    Both nettle (Urtica dioica) and cranberry (Vaccinium oxycoccus) are widely known to have good influence on health. The aim of this study was to investigate antimicrobial properties of nettle powder and cranberry powder against Escherichia coli (E. coli) and monitor the growth of the bacteria by a rapid flow cytometry (FCM) method. For FCM measurements samples were stained with fluorescent dyes. The inhibitory effects of plant material on growth of E. coli were estimated by comparing the results of control sample (E. coli) to E. coli samples with plant material. FCM offers both a brilliant tool to investigate the kinetics of the growth of bacterium, since subsamples can be taken from the same liquid medium during the growing period and with fluorescent dyes a rapid method to investigate viability of the bacterium.

  6. Antimicrobial Properties of Mesenchymal Stem Cells: Therapeutic Potential for Cystic Fibrosis Infection, and Treatment

    Directory of Open Access Journals (Sweden)

    Morgan T. Sutton

    2016-01-01

    Full Text Available Cystic fibrosis (CF is a genetic disease in which the battle between pulmonary infection and inflammation becomes the major cause of morbidity and mortality. We have previously shown that human MSCs (hMSCs decrease inflammation and infection in the in vivo murine model of CF. The studies in this paper focus on the specificity of the hMSC antimicrobial effectiveness using Pseudomonas aeruginosa (gram negative bacteria and Staphylococcus aureus (gram positive bacteria. Our studies show that hMSCs secrete bioactive molecules which are antimicrobial in vitro against Pseudomonas aeruginosa, Staphylococcus aureus, and Streptococcus pneumonia, impacting the rate of bacterial growth and transition into colony forming units regardless of the pathogen. Further, we show that the hMSCs have the capacity to enhance antibiotic sensitivity, improving the capacity to kill bacteria. We present data which suggests that the antimicrobial effectiveness is associated with the capacity to slow bacterial growth and the ability of the hMSCs to secrete the antimicrobial peptide LL-37. Lastly, our studies demonstrate that the tissue origin of the hMSCs (bone marrow or adipose tissue derived, the presence of functional cystic fibrosis transmembrane conductance regulator (CFTR: human, Cftr: mouse activity, and response to effector cytokines can impact both hMSC phenotype and antimicrobial potency and efficacy. These studies demonstrate, the unique capacity of the hMSCs to manage different pathogens and the significance of their phenotype in both the antimicrobial and antibiotic enhancing activities.

  7. Evaluation of Antioxidant, Cholinesterase Inhibitory and Antimicrobial Properties of Mentha longifolia subsp. noeana and Its Secondary Metabolites

    Directory of Open Access Journals (Sweden)

    Abdulselam Ertaş

    2015-01-01

    Full Text Available The aim of the present study was to determine the chemical structures of the isolated compounds, the essential oil and fatty acid compositions of Mentha longifolia subsp. noeana with their biological activities. Ursolic acid (1, u vaol (2, stigmast-5-ene-3 b -yl formate (3, stigmast-5-en-3-one (4, b -sitosterol (5, bis(2-ethylhexyl benzene-1,2-dicarboxylate (6,hexacosyl (E-ferulate (7 and 5-hydroxy-6,7,3',4'-tetramethoxy flavone (8 were obtained from the aerial parts. The compounds (2-4, 6, 7 were isolated for the first time from a Mentha species. Palmitic acid (40.8% was the major component of the non-polar fraction obtained from the petroleum ether extract. Pulegone (32.3% was the main constituent of the essential oil which exhibited strong butyrylcholinesterase inhibitory activity (77.36 ± 0.29%, moderate antimicrobial activity against Escherichia coli, Staphylococcus aureus, and Candida albicans. The methanol extract showed 80% inhibition of lipid peroxidation, and the acetone extract possessed moderate DPPH free radical scavenging activity (60% inhibition at 100 m g/mL.

  8. Antimicrobial Properties of Copper Nanoparticles and Amino Acid Chelated Copper Nanoparticles Produced by Using a Soya Extract

    Science.gov (United States)

    DeAlba-Montero, I.; Morales-Sánchez, Elpidio; Araujo-Martínez, Rene

    2017-01-01

    This paper reports a comparison of the antibacterial properties of copper-amino acids chelates and copper nanoparticles against Escherichia coli, Staphylococcus aureus, and Enterococcus faecalis. These copper-amino acids chelates were synthesized by using a soybean aqueous extract and copper nanoparticles were produced using as a starting material the copper-amino acids chelates species. The antibacterial activity of the samples was evaluated by using the standard microdilution method (CLSI M100-S25 January 2015). In the antibacterial activity assays copper ions and copper-EDTA chelates were included as references, so that copper-amino acids chelates can be particularly suitable for acting as an antibacterial agent, so they are excellent candidates for specific applications. Additionally, to confirm the antimicrobial mechanism on bacterial cells, MTT assay (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) was carried out. A significant enhanced antimicrobial activity and a specific strain were found for copper chelates over E. faecalis. Its results would eventually lead to better utilization of copper-amino acids chelate for specific application where copper nanoparticles can be not used. PMID:28286459

  9. Mechanical, physico-chemical, and antimicrobial properties of gelatin-based film incorporated with catechin-lysozyme

    Directory of Open Access Journals (Sweden)

    Rawdkuen Saroat

    2012-11-01

    Full Text Available Abstract Background Microbial activity is a primary cause of deterioration in many foods and is often responsible for reduced quality and safety. Food-borne illnesses associated with E. coli O157:H7, S. aureus, S. enteritidis and L. monocytogenes are a major public health concern throughout the world. A number of methods have been employed to control or prevent the growth of these microorganisms in food. Antimicrobial packaging is one of the most promising active packaging systems for effectively retarding the growth of food spoilage and pathogenic microorganisms. The aim of this study was to determine the mechanical, physico-chemical properties and inhibitory effects of the fish gelatin films against selected food spoilage microorganisms when incorporated with catechin-lysozyme. Results The effect of the catechin-lysozyme combination addition (CLC: 0, 0.125, 0.25, and 0.5%, w/v on fish gelatin film properties was monitored. At the level of 0.5% addition, the CLC showed the greatest elongation at break (EAB at 143.17% with 0.039 mm thickness, and the lowest water vapor permeability (WVP at 6.5 x 10−8 g·mm·h-1·cm-2·Pa-1, whereas the control showed high tensile strength (TS and the highest WVP. Regarding color attributes, the gelatin film without CLC addition gave the highest lightness (L* 91.95 but lowest in redness (a*-1.29 and yellowness (b* 2.25 values. The light transmission of the film did not significantly decrease and nor did film transparency (p>0.05 with increased CLC. Incorporating CLC could not affect the film microstructure. The solubility of the gelatin based film incorporated with CLC was not affected, especially at a high level of addition (p>0.05. Inhibitory activity of the fish gelatin film against E.coli, S.aureus, L. innocua and S. cerevisiae was concentration dependent. Conclusions These findings suggested that CLC incorporation can improve mechanical, physico-chemical, and antimicrobial properties of the resulting films

  10. Human health hazard from antimicrobial-resistant enterococci in animals and food

    DEFF Research Database (Denmark)

    Heuer, Ole Eske; Hammerum, Anette Marie; Collignon, P.

    2006-01-01

    The use of antimicrobial agents in the modern farm industry has created a reservoir of resistant bacteria in food animals. Foods of animal origin are often contaminated with enterococci that are likely to contribute resistance genes, virulence factors, or other properties to enterococci IN humans....... The potential hazard to human health from antimicrobial-resistant enterococci in animals is questioned by some scientists because of evidence of host specificity of enterococci. Similarly, the occurrences of specific nosocomial clones of enterococci in hospitals have lead to the misconception that antimicrobial-resistant...... to change the current view that antimicrobial-resistant enterococci from animals pose a threat to human health. On the contrary, antimicrobial resistance genes appear to spread freely between enterococci from different reservoirs, irrespective of their apparent host association....

  11. Synthesis and characterization of Cu/Ag nanoparticle loaded mullite nanocomposite system: A potential candidate for antimicrobial and therapeutic applications.

    Science.gov (United States)

    Kar, S; Bagchi, B; Kundu, B; Bhandary, S; Basu, R; Nandy, P; Das, S

    2014-11-01

    Microbial resistance to antibiotics has triggered the development of nanoscale materials as an alternative strategy. To stabilize these particles an inert support is needed. Porous nanomullite developed by sol-gel route is loaded with copper and silver nanoparticle by simple adsorption method. These nanocomposites are characterized using XRD, FTIR, TEM, SEM, EDAX and UV-visible spectrophotometer. Antibacterial activity of these nanocomposites against Gram positive and Gram negative bacteria are performed by bactericidal kinetics, flow cytometry and MTT assay. The underlying mechanisms behind the antimicrobial property and cell death are also investigated by EPR spectroscopy, intracellular ROS measurement and β-galactosidase assay. The cytocompatibility of the nanocomposites is investigated by cell viability (MTT), proliferation (Alamar blue) and wound healing assay of mammalian fibroblast cell line. Nanocomposites show a fairly uniform distribution of metal nanoparticle within mullite matrix. They show excellent antibacterial activity. Metal ions/nanoparticle is found to be released from the materials (CM and SM). Treated cells manifested high intracellular oxidative stress and β-galactosidase activity in the growth medium. The effect of nanocomposites on mammalian cell line depends on exposure time and concentration. The scratch assay shows normal cell migration with respect to control. The fabricated nanoparticles possess diverse antimicrobial mechanism and exhibit good cytocompatibility along with wound healing characteristics in mouse fibroblast cell line (L929). The newly synthesized materials are promising candidates for the development of antimicrobial ceramic coatings for biomedical devices and therapeutic applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. An overview of natural antimicrobials role in food.

    Science.gov (United States)

    Pisoschi, Aurelia Magdalena; Pop, Aneta; Georgescu, Cecilia; Turcuş, Violeta; Olah, Neli Kinga; Mathe, Endre

    2018-01-01

    The present paper aims to review the natural food preservatives with antimicrobial properties emphasizing their importance for the future of food manufacturing and consumers' health. The extraction procedures applied to natural antimicrobials will be considered, followed by the description of some natural preservatives' antimicrobial mechanism of action, including (i) membrane rupture with ATP-ase activity inhibition, (ii) leakage of essential biomolecules from the cell, (iii) disruption of the proton motive force and (iiii) enzyme inactivation. Moreover, a provenance-based classification of natural antimicrobials is discussed by considering the sources of origin for the major natural preservative categories: plants, animals, microbes and fungi. As well, the structure influence on the antimicrobial potential is considered. Natural preservatives could also constitute a viable alternative to address the critical problem of microbial resistance, and to hamper the negative side effects of some synthetic compounds, while meeting the requirements for food safety, and exerting no negative impact on nutritional and sensory attributes of foodstuffs. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  13. Genotypic and phenotypic characterization of antimicrobial-resistant Escherichia coli from farm-raised diarrheic sika deer in Northeastern China.

    Directory of Open Access Journals (Sweden)

    Rui Li

    Full Text Available In China, overuse and/or abuse of antimicrobials are common in stockbreeding, which possess high risks of antimicrobial-resistant contaminations. The serogroups, major virulence genes, and antimicrobial resistant patterns of the antimicrobial-resistant Escherichia coli (E. coli were investigated in the feces of diarrheic farm-raised sika deer from 50 farms in three Northeastern provinces of China. A total of 220 E. coli isolates were obtained and characterized. Twenty-eight O serogroups were identified from the obtained E. coli isolates with O2, O26, O128, O142 and O154 being dominant. Nearly all the isolates were resistant to at least four of the tested antimicrobials. More than 90% of the E. coli isolates carried at least one of the tested virulence genes. About 85% of the E. coli isolates carried one or more antimicrobial-resistant genes responsible for resistant phenotypes of sulfonamides, streptomycin/spectionomycin or tetracycline. The antimicrobial resistant level and pathogenic group occurrences of the obtained E. coli isolates were higher than that of livestock and wild animals reported in some developed countries. Thus, the fecal-carrying antimicrobial-resistant E. coli from the farm-raised sika deer is potentially a significant contamination source for freshwater systems and food chain, and may pose great health risks for human and animals in Northeastern China.

  14. Particulate Respirators Functionalized with Silver Nanoparticles Showed Excellent Real-Time Antimicrobial Effects against Pathogens.

    Science.gov (United States)

    Zheng, Clark Renjun; Li, Shuai; Ye, Chengsong; Li, Xinyang; Zhang, Chiqian; Yu, Xin

    2016-07-05

    Particulate respirators designed to filtrate fine particulate matters usually do not possess antimicrobial functions. The current study aimed to functionalize particulate respirators with silver nanoparticles (nanosilver or AgNPs), which have excellent antimicrobial activities, utilizing a straightforward and effective method. We first enhanced the nanosilver-coating ability of nonwoven fabrics from a particulate respirator through surface modification by sodium oleate. The surfactant treatment significantly improved the fabrics' water wet preference where the static water contact angles reduced from 122° to 56°. Both macroscopic agar-plate tests and microscopic scanning electron microscope (SEM) characterization revealed that nanosilver functionalized fabrics could effectively inhibit the growth of two model bacterial strains (i.e., Staphylococcus aureus and Pseudomonas aeruginosa). The coating of silver nanoparticles would not affect the main function of particulate respirators (i.e., filtration of fine air-borne particles). Nanosilver coated particulate respirators with excellent antimicrobial activities can provide real-time protection to people in regions with severe air pollution against air-borne pathogens.

  15. Antimicrobial activity of cream incorporated with silver nanoparticles biosynthesized from Withania somnifera

    Directory of Open Access Journals (Sweden)

    Marslin G

    2015-09-01

    Full Text Available Gregory Marslin,1 Rajendran K Selvakesavan,1 Gregory Franklin,1 Bruno Sarmento,2,3 Alberto CP Dias11Centre for the Research and Technology of Agro-Environment and Biological Sciences (CITAB-UM, AgroBioPlant Group, Department of Biology, University of Minho, Braga, Portugal; 2Instituto de Engenharia Biomédica (INEB, University of Porto, Porto, Portugal; 3CESPU, Instituto Universitário de Ciências da Saúde, Gandra, PortugalAbstract: We report on the antimicrobial activity of a cream formulation of silver nanoparticles (AgNPs, biosynthesized using Withania somnifera extract. Aqueous extracts of leaves promoted efficient green synthesis of AgNPs compared to fruits and root extracts of W. somnifera. Biosynthesized AgNPs were characterized for their size and shape by physical-chemical techniques such as UV-visible spectroscopy, laser Doppler anemometry, transmission electron microscopy, scanning electron microscopy, atomic force microscopy, X-ray diffraction, and X-ray energy dispersive spectroscopy. After confirming the antimicrobial potential of AgNPs, they were incorporated into a cream. Cream formulations of AgNPs and AgNO3 were prepared and compared for their antimicrobial activity against human pathogens (Staphylococcus aureus, Pseudomonas aeruginosa, Proteus vulgaris, Escherichia coli, and Candida albicans and a plant pathogen (Agrobacterium tumefaciens. Our results show that AgNP creams possess significantly higher antimicrobial activity against the tested organisms.Keywords: Withania somnifera, green synthesis, silver nanoparticles cream, antimicrobial activity

  16. Antimicrobial activity of methanolic extracts of Sambucus ebulus and Urtica dioica against clinical isolates of methicillin resistant Staphylococcus aureus.

    Science.gov (United States)

    Salehzadeh, Ali; Asadpour, Leila; Naeemi, Akram Sadat; Houshmand, Elham

    2014-01-01

    Increase in the emergence of drug -resistant pathogens led to the development of natural antimicrobials. In this study the antimicrobial effect of methanolic extracts of Sambucus ebulus and Urtica dioica on 16 skin and wound infections isolates of methicillin resistant S. aureus have been studied. Solvent extraction procedure was done using soxhlet apparatus for extracting antimicrobial agents from freeze dried plants. Antibacterial activity was measured using agar well diffusion method. The MIC of Sambucus ebulus and Urtica dioica extracts against the standard strain of S. aureus ATCC 6538 were determined using the micro dilution method at 15 mg and 20 mg respectively. All the test bacteria were found sensitive to the Sambucus ebulus extract and only one isolate was resistant to Urtica dioica extract. Extracts of Sambucus ebulus and Urtica dioica possess antibacterial potency against MRSA isolates and may be used as a natural antiseptics and antimicrobial agents in medicine.

  17. Antimicrobial properties of nest volatiles in red imported fire ants, Solenopsis invicta (Hymenoptera: Formicidae)

    Science.gov (United States)

    In social insects, antimicrobial secretions are often used collectively for the benefit of the whole colony, which is an important component in social immunity. Many ant species build nests in which air circulation can be controlled. Volatile antimicrobial agents would be ideal in implementing socia...

  18. Effect of stereochemistry, chain length and sequence pattern on antimicrobial properties of short synthetic β-sheet forming peptide amphiphiles.

    Science.gov (United States)

    Ong, Zhan Yuin; Cheng, Junchi; Huang, Yuan; Xu, Kaijin; Ji, Zhongkang; Fan, Weimin; Yang, Yi Yan

    2014-01-01

    In the face of mounting global antibiotics resistance, the identification and development of membrane-active antimicrobial peptides (AMPs) as an alternative class of antimicrobial agent have gained significant attention. The physical perturbation and disruption of microbial membranes by the AMPs have been proposed to be an effective means to overcome conventional mechanisms of drug resistance. Recently, we have reported the design of a series of short synthetic β-sheet folding peptide amphiphiles comprised of recurring (X1Y1X2Y2)n-NH2 sequences where X: hydrophobic amino acids, Y: cationic amino acids and n: number of repeat units. In efforts to investigate the effects of key parameters including stereochemistry, chain length and sequence pattern on antimicrobial effects, systematic d-amino acid substitutions of the lead peptides (IRIK)2-NH2 (IK8-all L) and (IRVK)3-NH2 (IK12-all L) were performed. It was found that the corresponding D-enantiomers exhibited stronger antimicrobial activities with minimal or no change in hemolytic activities, hence translating very high selectivity indices of 407.0 and >9.8 for IK8-all D and IK12-all D respectively. IK8-all D was also demonstrated to be stable to degradation by broad spectrum proteases trypsin and proteinase K. The membrane disrupting bactericidal properties of IK8-all D effectively prevented drug resistance development and inhibited the growth of various clinically isolated MRSA, VRE, Acinetobacter baumanni, Pseudomonas aeruginosa, Cryptococcus. neoformans and Mycobacterium tuberculosis. Significant reduction in intracellular bacteria counts was also observed following treatment with IK8-all D in the Staphylococcus. aureus infected mouse macrophage cell line RAW264.7 (P < 0.01). These results suggest that the d-amino acids substituted β-sheet forming peptide IK8-all D with its enhanced antimicrobial activities and improved protease stability, is a promising therapeutic candidate with potential to combat

  19. In vitro antimicrobial activities of cinnamon bark oil, anethole, carvacrol, eugenol and guaiazulene against Mycoplasma hominis clinical isolates.

    Science.gov (United States)

    Sleha, Radek; Mosio, Petra; Vydrzalova, Marketa; Jantovska, Alexandra; Bostikova, Vanda; Mazurova, Jaroslava

    2014-06-01

    The aim of this study was to evaluate the antimicrobial effects of five natural substances against 50 clinical isolates of Mycoplasma hominis. The in vitro activity of selected natural compounds, cinnamon bark oil, anethole, carvacrol, eugenol and guaiazulene, was investigated against 50 M. hominis isolates cultivated from cervical swabs by the broth dilution method. All showed valuable antimicrobial activity against the tested isolates. Oil from the bark of Cinnamomum zeylanicum (MBC90 = 500 µg/mL) however was found to be the most effective. Carvacrol (MBC90 = 600 µg/mL) and eugenol (MBC90 = 1000 µg/mL) also possessed strong antimycoplasmal activity. The results indicate that cinnamon bark oil, carvacrol and eugenol have strong antimycoplasmal activity and the potential for use as antimicrobial agents in the treatment of mycoplasmal infections.

  20. The role of copper nanoparticles in an etch-and-rinse adhesive on antimicrobial activity, mechanical properties and the durability of resin-dentine interfaces.

    Science.gov (United States)

    Gutiérrez, Mario F; Malaquias, Pamela; Hass, Viviane; Matos, Thalita P; Lourenço, Lucas; Reis, Alessandra; Loguercio, Alessandro D; Farago, Paulo Vitor

    2017-06-01

    To evaluate the effect of addition of copper nanoparticles at different concentrations into an etch-and-rinse adhesive (ER) on antimicrobial activity, Knoop microhardness (KHN), in vitro and in situ degree of conversion (DC), as well as the immediate (IM) and 2-year (2Y) resin-dentine bond strength (μTBS) and nanoleakage (NL). Seven experimental ER adhesives were formulated according to the amount of copper nanoparticles incorporated into the adhesives (0 [control], 0.0075 to 1wt.%). We tested the antimicrobial activity of adhesives against Streptococcus mutans using agar diffusion assay after IM and 2Y. The Knoop microhardness and in vitro DC were tested after IM and 2Y. The adhesives were applied to flat occlusal dentine surfaces after acid etching. After resin build-ups, specimens were longitudinally sectioned to obtain beam-like resin-dentine specimens (0.8mm 2 ), which were used for evaluation of μTBS and nanoleakage at the IM and 2Y periods. In situ DC was evaluated at the IM period in these beam-like specimens. Data were submitted to appropriate statistical analyses (α=0.05). The addition of copper nanoparticles provided antimicrobial activity to the adhesives only in the IM evaluation and slightly reduced the KHN, the in vitro and in situ DC (copper concentrations of 1wt.%). However, KHN increase for all concentrations after 2Y. After 2Y, no significant reductions of μTBS (0.06 to 1% wt.%) and increases of nanoleakage were observed for copper containing adhesives compared to the control group. Copper nanoparticles addition up to 0.5wt.% may provide antimicrobial properties to ER adhesives and prevent the degradation of the adhesive interface, without reducing the mechanical properties of the formulations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Antimicrobial activity of untenospongin B, a metabolic from the marine sponge Hippospongia communis collected from the Atlantic coast of Morocco

    NARCIS (Netherlands)

    Rifai, S.; Kijjoa, A.; van Soest, R.W.M.

    2004-01-01

    (-)-Untenospongin B isolated from the marine sponge Hippospongia communis has been tested for its antimicrobial activity against bacteria and human pathogenic fungi using agar disk method and was found to possess a broad and strong activity toward the test organisms. Its antifungal activity was

  2. Biocomposites of nanofibrillated cellulose, polypyrrole, and silver nanoparticles with electroconductive and antimicrobial properties.

    Science.gov (United States)

    Bober, Patrycja; Liu, Jun; Mikkonen, Kirsi S; Ihalainen, Petri; Pesonen, Markus; Plumed-Ferrer, Carme; von Wright, Atte; Lindfors, Tom; Xu, Chunlin; Latonen, Rose-Marie

    2014-10-13

    In this work, flexible and free-standing composite films of nanofibrillated cellulose/polypyrrole (NFC/PPy) and NFC/PPy-silver nanoparticles (NFC/PPy-Ag) have been synthesized for the first time via in situ one-step chemical polymerization and applied in potential biomedical applications. Incorporation of NFC into PPy significantly improved its film formation ability resulting in composite materials with good mechanical and electrical properties. It is shown that the NFC/PPy-Ag composite films have strong inhibition effect against the growth of Gram-positive bacteria, e.g., Staphylococcus aureus. The electrical conductivity and strong antimicrobial activity makes it possible to use the silver composites in various applications aimed at biomedical treatments and diagnostics. Additionally, we report here the structural and morphological characterization of the composite materials with Fourier-transform infrared spectroscopy, atomic force microscopy, and scanning and transmission electron microscopy techniques.

  3. Flame Retardant and Antimicrobial Jute Textile Using Sodium Metasilicate Nonahydrate

    Directory of Open Access Journals (Sweden)

    Basak S.

    2014-06-01

    Full Text Available Flame retardant and antimicrobial functionalities were imparted in jute textile using sodium metasilicate nonahydrate (SMSN, commonly known as “water glass”. Sodium metasilicate nonahydrate (SMSN was applied in jute fabric in different concentration by padding method followed by drying. Flame retardancy of the fabric was evaluated by Limiting Oxygen Index (LOI and burning behaviour under vertical flammability tester including the char length. Burning rate was found to decrease by almost 10 times after an application of 2% SMSN compared to the control sample. Thermogravimetry (TG and differential scanning calorimetry (DSC analysis of both the control and treated jute fabrics were utilized to understand the mechanism of developed flame retardance in jute fabric. It was observed that the SMSN treated samples showed excellent antimicrobial property against both gram positive and gram negative bacteria. Antimicrobial properties of both the control and treated jute fabrics were also measured quantitatively.

  4. Synthesis and Complete Antimicrobial Characterization of CEOBACTER, an Ag-Based Nanocomposite.

    Directory of Open Access Journals (Sweden)

    O E Jaime-Acuña

    Full Text Available The antimicrobial activity of silver nanoparticles (AgNPs is currently used as an alternative disinfectant with diverse applications, ranging from decontamination of aquatic environments to disinfection of medical devices and instrumentation. However, incorporation of AgNPs to the environment causes collateral damage that should be avoided. In this work, a novel Ag-based nanocomposite (CEOBACTER was successfully synthetized. It showed excellent antimicrobial properties without the spread of AgNPs into the environment. The complete CEOBACTER antimicrobial characterization protocol is presented herein. It is straightforward and reproducible and could be considered for the systematic characterization of antimicrobial nanomaterials. CEOBACTER showed minimal bactericidal concentration of 3 μg/ml, bactericidal action time of 2 hours and re-use capacity of at least five times against E. coli cultures. The bactericidal mechanism is the release of Ag ions. CEOBACTER displays potent bactericidal properties, long lifetime, high stability and re-use capacity, and it does not dissolve in the solution. These characteristics point to its potential use as a bactericidal agent for decontamination of aqueous environments.

  5. Synthesis and Complete Antimicrobial Characterization of CEOBACTER, an Ag-Based Nanocomposite

    Science.gov (United States)

    Vasquez-Peña, M.; Raymond-Herrera, O.; Villavicencio-García, H.; Petranovskii, V.; Vazquez-Duhalt, R.; Huerta-Saquero, A.

    2016-01-01

    The antimicrobial activity of silver nanoparticles (AgNPs) is currently used as an alternative disinfectant with diverse applications, ranging from decontamination of aquatic environments to disinfection of medical devices and instrumentation. However, incorporation of AgNPs to the environment causes collateral damage that should be avoided. In this work, a novel Ag-based nanocomposite (CEOBACTER) was successfully synthetized. It showed excellent antimicrobial properties without the spread of AgNPs into the environment. The complete CEOBACTER antimicrobial characterization protocol is presented herein. It is straightforward and reproducible and could be considered for the systematic characterization of antimicrobial nanomaterials. CEOBACTER showed minimal bactericidal concentration of 3 μg/ml, bactericidal action time of 2 hours and re-use capacity of at least five times against E. coli cultures. The bactericidal mechanism is the release of Ag ions. CEOBACTER displays potent bactericidal properties, long lifetime, high stability and re-use capacity, and it does not dissolve in the solution. These characteristics point to its potential use as a bactericidal agent for decontamination of aqueous environments. PMID:27824932

  6. A critical analysis of debtor’s right to reinstate a credit agreement & resume possession of property

    Directory of Open Access Journals (Sweden)

    Hlako Choma

    2018-03-01

    Full Text Available In terms of section 129(3(a of the South African National Credit Act 34 of 2005 a consumer may reinstate a credit agreement that is in default by paying all the money that is overdue together with default charges incurred by the credit provider and also the costs of enforcing the agreement until the agreement is reinstated. A consumer should pay costs of reinstating agreement if the credit provider has not yet cancelled the agreement. A consumer who paid the required costs will also resume possession of goods that were repossessed by the credit provider pursuant to attachment order. However a consumer is prohibited from reinstating a credit agreement after the property is sold pursuant to attachment order or surrender of property in terms of section 127 (section 129(4. A consumer is also prohibited from reinstating a credit agreement after the execution of court order enforcing that agreement or after termination of agreement in terms of the NCA (section 129(4. Therefore a question arise as to whether a consumer who fell in arrears can reinstate a credit agreement by paying the arrears and preclude a credit provider from proceeding to sell the property. In other words whether a consumer who paid arrears on credit agreement can reinstate such credit agreement and disentitling the credit provider from selling the property. This was the crisp question put to the court in the recent decision in Nkata v Firstrand Bank Limited and Others (CCT73/15 [2016] ZACC 12; 2016 (6 BCLR 794 (CC; 2016 (4 SA 257 (CC (21 April 2016. The purpose this article is to critically analyse the decision in Nkata v Firstrand Bank Limited and Others (CCT73/15 [2016] ZACC 12; 2016 (6 BCLR 794 (CC; 2016 (4 SA 257 (CC (21 April 2016 in view of the application and interpretation of section 129(3 and (4 of the NCA.

  7. Antimicrobial properties of two novel peptides derived from Theobroma cacao osmotin.

    Science.gov (United States)

    Falcao, Loeni L; Silva-Werneck, Joseilde O; Ramos, Alessandra de R; Martins, Natalia F; Bresso, Emmanuel; Rodrigues, Magali A; Bemquerer, Marcelo P; Marcellino, Lucilia H

    2016-05-01

    The osmotin proteins of several plants display antifungal activity, which can play an important role in plant defense against diseases. Thus, this protein can be useful as a source for biotechnological strategies aiming to combat fungal diseases. In this work, we analyzed the antifungal activity of a cacao osmotin-like protein (TcOsm1) and of two osmotin-derived synthetic peptides with antimicrobial features, differing by five amino acids residues at the N-terminus. Antimicrobial tests showed that TcOsm1 expressed in Escherichia coli inhibits the growth of Moniliophthora perniciosa mycelium and Pichia pastoris X-33 in vitro. The TcOsm1-derived peptides, named Osm-pepA (H-RRLDRGGVWNLNVNPGTTGARVWARTK-NH2), located at R23-K49, and Osm-pepB (H-GGVWNLNVNPGTTGARVWARTK-NH2), located at G28-K49, inhibited growth of yeasts (Saccharomyces cerevisiae S288C and Pichia pastoris X-33) and spore germination of the phytopathogenic fungi Fusarium f. sp. glycines and Colletotrichum gossypi. Osm-pepA was more efficient than Osm-pepB for S. cerevisiae (MIC=40μM and MIC=127μM, respectively), as well as for P. pastoris (MIC=20μM and MIC=127μM, respectively). Furthermore, the peptides presented a biphasic performance, promoting S. cerevisiae growth in doses around 5μM and inhibiting it at higher doses. The structural model for these peptides showed that the five amino acids residues, RRLDR at Osm-pepA N-terminus, significantly affect the tertiary structure, indicating that this structure is important for the peptide antimicrobial potency. This is the first report of development of antimicrobial peptides from T. cacao. Taken together, the results indicate that the cacao osmotin and its derived peptides, herein studied, are good candidates for developing biotechnological tools aiming to control phytopathogenic fungi. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. In vitro antimicrobial and phytochemical properties of crude extract ...

    African Journals Online (AJOL)

    The crude extract of the stem bark of the plant exhibited antimicrobial activities at a concentration of 25 mg/ml against twenty-one of the bacterial isolates, (i.e. 72.41% of the tested isolates) comprising both Gram positive and Gram negative strains. The zones of inhibition exhibited by the extract against the test bacterial ...

  9. MUCOADHESIVE GEL WITH IMMOBILIZED LYSOZYME: PREPARATION AND PROPERTIES

    Directory of Open Access Journals (Sweden)

    Dekina S. S.

    2015-08-01

    Full Text Available The study of non-covalent immobilized lysozyme, as well as physico-chemical and biochemical properties of obtained mucoadhesive gel was the aim of the research. Lysozyme activity was determined by bacteriolytic method (Micrococcus lysodeikticus cells acetone powder was a substrate. Lysozyme immobilization was conducted by the method of entrapment in gel. Enzyme carrier interaction was studied by viscometric, spectrophotometric and spectrofluorimetric methods. Mucoadhesive gel with immobilized lysozyme, possessing antiinflammatory and antimicrobial activities, was prepared. Due to immobilization, protein-polymer complex with the original enzymatic activity was formed. The product is characterized by high mucoadhesive properties, quantitative retaining of protein and bacteriolytic activity, prolonged release of the enzyme, improved biochemical characteristics (extended pH-activity profile, stability in acidic medium and during storage for 2 years, and it is perspective for further studies. The proposed method for lysozyme immobilization in the carboxymethyl cellulose sodium salt gel allows to obtain a stable, highly efficient product, with high adhesive properties for attachment to the mucous membranes, that is promising for use in biomedicine.

  10. Analysis of essential oils from Voacanga africana seeds at different hydrodistillation extraction stages: chemical composition, antioxidant activity and antimicrobial activity.

    Science.gov (United States)

    Liu, Xiong; Yang, Dongliang; Liu, Jiajia; Ren, Na

    2015-01-01

    In this study, essential oils from Voacanga africana seeds at different extraction stages were investigated. In the chemical composition analysis, 27 compounds representing 86.69-95.03% of the total essential oils were identified and quantified. The main constituents in essential oils were terpenoids, alcohols and fatty acids accounting for 15.03-24.36%, 21.57-34.43% and 33.06-57.37%, respectively. Moreover, the analysis also revealed that essential oils from different extraction stages possessed different chemical compositions. In the antioxidant evaluation, all analysed oils showed similar antioxidant behaviours, and the concentrations of essential oils providing 50% inhibition of DPPH-scavenging activity (IC50) were about 25 mg/mL. In the antimicrobial experiments, essential oils from different extraction stages exhibited different antimicrobial activities. The antimicrobial activity of oils was affected by extraction stages. By controlling extraction stages, it is promising to obtain essential oils with desired antimicrobial activities.

  11. Synthesis, characterization, x-ray structure and antimicrobial activity ...

    African Journals Online (AJOL)

    Methods: Pyridine-based thiosemicarbazide was synthesized, characterized and evaluated for antimicrobial activity. ... homogeneity of the compounds was checked by. TLC performed ..... properties of novel N-methyl-1,3,4-thiadiazol-2- amine.

  12. Antimicrobial active silver nanoparticles and silver/polystyrene core-shell nanoparticles prepared in room-temperature ionic liquid

    International Nuclear Information System (INIS)

    An Jing; Wang Desong; Luo Qingzhi; Yuan Xiaoyan

    2009-01-01

    Uniform silver nanoparticles and silver/polystyrene core-shell nanoparticles were successfully synthesized in a room temperature ionic liquid, 1-n-butyl-3-methylimidazolium tetrafluoroborate ([BMIM].BF 4 ). [BMIM].BF 4 plays a protective role to prevent the nanoparticles from aggregation during the preparation process. Transmission electron micrographs confirm that both silver nanoparticles and core-shell nanoparticles are regular spheres with the sizes in the range of 5-15 nm and 15-25 nm, respectively. The X-ray diffraction analysis reveals the face-centered cubic geometry of silver nanoparticles. The as-prepared nanoparticles were also characterized by Fourier transform infrared spectroscopy, Raman spectroscopy, UV-vis diffuse reflectance spectroscopy and X-ray photoelectron spectroscopy. In addition, antimicrobial activities against E. coli and S. aureus were studied and the results show that both silver nanoparticles and core-shell nanoparticles possess excellent antimicrobial activities. The antimicrobial mechanism of the as-prepared nanoparticles was discussed.

  13. Anti-Inflammatory Action of an Antimicrobial Model Peptide That Suppresses the TRIF-Dependent Signaling Pathway via Inhibition of Toll-Like Receptor 4 Endocytosis in Lipopolysaccharide-Stimulated Macrophages.

    Directory of Open Access Journals (Sweden)

    Do-Wan Shim

    Full Text Available Antimicrobial peptides (AMPs, also called host defense peptides, particularly those with amphipathic helical structures, are emerging as target molecules for therapeutic development due to their immunomodulatory properties. Although the antimicrobial activity of AMPs is known to be exerted primarily by permeation of the bacterial membrane, the mechanism underlying its anti-inflammatory activity remains to be elucidated. We report potent anti-inflammatory activity of WALK11.3, an antimicrobial model peptide with an amphipathic helical conformation, in lipopolysaccharide (LPS-stimulated RAW264.7 cells. This peptide inhibited the expression of inflammatory mediators, including nitric oxide, COX-2, IL-1β, IL-6, INF-β, and TNF-α. Although WALK11.3 did not exert a major effect on all downstream signaling in the MyD88-dependent pathway, toll-like receptor 4 (TLR4- mediated pro-inflammatory signals were markedly attenuated in the TRIF-dependent pathway due to inhibition of the phosphorylation of STAT1 by attenuation of IRF3 phosphorylation. WALK11.3 specifically inhibited the endocytosis of TLR4, which is essential for triggering TRIF-mediated signaling in macrophage cells. Hence, we suggest that specific interference with TLR4 endocytosis could be one of the major modes of the anti-inflammatory action of AMPs. Our designed WALK11 peptides, which possess both antimicrobial and anti-inflammatory activities, may be promising molecules for the development of therapies for infectious inflammation.

  14. Antimicrobial, Physicochemical, Mechanical, and Barrier Properties of Tapioca Starch Films Incorporated with Eucalyptus Extract

    Directory of Open Access Journals (Sweden)

    M. Rojhan

    2013-11-01

    Full Text Available Starch is found in abundance in nature and it is one of the raw materials used for food packagingbecause of the low price, biodegradability, good mechanical and barrier properties. The recycling ability ofcoating materials was significantly increased by using edible films and coating in comparison to traditionalpackaging and it could be an alternative for synthetic films. In this research, the effect of eucalyptus extract(Aqueous Extract was investigated on tapioca starch films. Tapioca starch films were prepared by castingmethod with addition of eucalyptus extract and a mixture of sorbitol/glycerol (weight ratio of 3 to 1 asplasticizers. Eucalyptus extract incorporated to the tapioca starch films were dried at different concentrations(0, 15, 25, and 35 of total solid under controlled conditions. Physicochemical properties such as waterabsorption capacity (WAC, water vapor permeability (WVP and mechanical properties of the films wereevaluated. Results showed that by increasing the concentration of eucalyptus extract, tensile strength wasincreased from 20.60 to 15.68 (MPa, also elongation was increased from 19.31 to 23.57 (% at break andYoung’s modulus was decreased from 800.31 to 500.32 (MPa. Also incorporation of eucalyptus extract in thestructure of biopolymer increased permeability of water vapor of starch films. Tapioca starch filmsincorporated with eucalyptus extract exhibited excellent antimicrobial activity against E. Coli. In summary,eucalyptus extract improves functional properties of tapioca starch films and this types of films can be used infood packaging.

  15. Evaluation of antipathogenic activity and adherence properties of human Lactobacillus strains for vaginal formulations.

    Science.gov (United States)

    Verdenelli, M C; Coman, M M; Cecchini, C; Silvi, S; Orpianesi, C; Cresci, A

    2014-05-01

    To test different Lactobacillus strains for their antipathogenic activity towards Candida strains and their adhesion properties for the preparation of vaginal ovules and douches to be used in vaginal candidiasis prevention. Five strains of lactobacilli were tested for their antimicrobial potential against different clinically isolated Candida strains. They were also screened for their ability to produce hydrogen peroxide and to coaggregate with pathogens. Adhesion properties of the five different Lactobacillus strains to HeLa cells and the presence of arcA gene were also assessed. The in vitro experiments demonstrated that all the five Lactobacillus strains tested possessed inhibitory action against the Candida strains using the radial streak method, but the effect is strain dependent. The same situation arises with regard to the ability of coaggregation that is present in all the strains into different degrees. Only Lactobacillus rhamnosus IMC 501(®) and Lactobacillus paracasei IMC 502(®) were able to produce H2O2 and none of the strains possess arcA gene. The most adherent strains to HeLa cells were Lact. rhamnosus IMC 501(®), Lact. paracasei IMC 502(®) and also their combination SYNBIO(®). This latter was selected for the preparation of ovules and douches using different matrix. Witepsol(®) ovules have proved the best formulation in terms of probiotic viability. Lactobacillus rhamnosus IMC 501(®), Lact. paracasei IMC 502(®) and SYNBIO(®) were able to produce H2O2, to coaggregate and to exert antimicrobial activity against pathogenic Candida strains and to strongly adhere to HeLa cells. All these properties together with those technological make these strains good candidates for the realization of formulations suitable for vaginal health. To develop new vaginal formulations taking into account the impact of probiotic strains on pathogens as well as the technological properties of the strains to validate their effectiveness in human health. © 2014 The

  16. Electrospun meshes possessing region-wise differences in fiber orientation, diameter, chemistry and mechanical properties for engineering bone-ligament-bone tissues.

    Science.gov (United States)

    Samavedi, Satyavrata; Vaidya, Prasad; Gaddam, Prudhvidhar; Whittington, Abby R; Goldstein, Aaron S

    2014-12-01

    Although bone-patellar tendon-bone (B-PT-B) autografts are the gold standard for repair of anterior cruciate ligament ruptures, they suffer from drawbacks such as donor site morbidity and limited supply. Engineered tissues modeled after B-PT-B autografts are promising alternatives because they have the potential to regenerate connective tissue and facilitate osseointegration. Towards the long-term goal of regenerating ligaments and their bony insertions, the objective of this study was to construct 2D meshes and 3D cylindrical composite scaffolds - possessing simultaneous region-wise differences in fiber orientation, diameter, chemistry and mechanical properties - by electrospinning two different polymers from off-set spinnerets. Using a dual drum collector, 2D meshes consisting of an aligned polycaprolactone (PCL) fiber region, randomly oriented poly(lactide-co-glycolide) (PLGA) fiber region and a transition region (comprised of both PCL and PLGA fibers) were prepared, and region-wise differences were confirmed by microscopy and tensile testing. Bone marrow stromal cells (BMSCs) cultured on these meshes exhibited random orientations and low aspect ratios on the random PLGA regions, and high aspect ratios and alignment on the aligned PCL regions. Next, meshes containing an aligned PCL region flanked by two transition regions and two randomly oriented PLGA regions were prepared and processed into 3D cylindrical composite scaffolds using an interpenetrating photo-crosslinkable polyethylene glycol diacrylate hydrogel to recapitulate the shape of B-PT-B autografts. Tensile testing indicated that cylindrical composites were mechanically robust, and eventually failed due to stress concentration in the aligned PCL region. In summary, this study demonstrates a process to fabricate electrospun meshes possessing region-wise differences in properties that can elicit region-dependent cell responses, and be readily processed into scaffolds with the shape of B-PT-B autografts.

  17. Predicative possession in Medieval Slavic Bible translations Predicative Possession in Early Biblical Slavic

    Directory of Open Access Journals (Sweden)

    Julia McAnallen

    2011-08-01

    Full Text Available Late Proto-Slavic (LPS had an inventory of three constructions for expressing predicative possession. Using the earliest Slavic Bible translations from Old Church Slavic (OCS, and to a lesser degree Old Czech, a number of conclusions can be drawn about the status of predicative possession for LPS. The verb iměti ‘have’ was the most frequent and least syntactically and semantically restricted predicative possessive construction (PPC. Existential PPCs with a dative possessor appear primarily with kinship relations, abstract possessums, and in a number of other fixed construction types; existential PPCs with the possessor in an u + genitive prepositional phrase primarily appear with concrete and countable possessums. Both existential PPCs call for an animate, most often pronominal, possessor. The u + genitive was the rarest type of PPC in LPS, though it had undoubtedly grammaticalized as a PPC.

  18. The protection of possession

    Directory of Open Access Journals (Sweden)

    Popov Danica

    2011-01-01

    Full Text Available Protection in disputes for the protection of possession can be attained through the following actions a for dispossession (interdictum recuperande possessionis and b with an action for the disturbance of possession (interdictum retinendae possessionis. The general feature of these disputes is that there is only discussion on the facts and not a legal matters. Subject matter jurisdiction for the resolution of such disputes belongs to the court of general jurisdiction, while the dispute itself is a litigation. The special rule of proceedings of action for disturbance are: provisionality of the protection of possession; urgency in proceedings; initiation of the proceedings; limiting of objection; prescribing temporary measures; rendering a ruling in the form of order; appeals which may be filed within a short deadline and which does not have suspensive effect (do not delay the execution of the order; revision is not allowed etc.

  19. Antibacterial activity of peritoneal exudate in patients treated with 2 g cefotiam for surgical anti-microbial prophylaxis.

    Science.gov (United States)

    Miglioli, P A; Schoeffel, U; Gabroska, E; Allerberger, F

    1998-01-01

    The objective of this study was to investigate the presence of antibacterial activity in peritoneal exudate (PE) of patients treated with cefotiam (CFT). CFT (2 g) was administered as a 'single-shot' antimicrobial prophylaxis to 6 patients at the beginning of colorectal resection. Samples of PE were collected from each patient on days 1, 2 and 3 after surgery. CFT was detectable in the samples of day 1 for 5 of the 6 patients. The influence of PE on antibacterial activity of the antimicrobial drug was evaluated carrying out the MICs of CFT against Escherichia coli K-12, E. coli (ATCC 10798), Klebsiella pneumoniae (ATCC 1003), Proteus rettgeri (Sanelli) and Staphylococcus aureus (ATCC 29213) with and without the addition of PE. The presence of PE enhanced the antimicrobial activity of CFT against gram-negative strains, but not against S. aureus (ATCC 29213). These results suggest the presence of substances in PE that possess endogenous antibacterial activity. Thus, antimicrobial activity in PE cannot be predicted by evaluating pathogen sensitivity in vitro only.

  20. Chemical Constituents and Evaluation of Antimicrobial and Cytotoxic Activities of Kielmeyera coriacea Mart. & Zucc. Essential Oils

    Directory of Open Access Journals (Sweden)

    Carla de M. Martins

    2015-01-01

    Full Text Available Many essential oils (EOs of different plant species possess interesting antimicrobial effects on buccal microorganisms and cytotoxic properties. EOs of Kielmeyera coriacea Mart. & Zucc. were analyzed by gas chromatography coupled to mass spectrometry (GC-MS. The EO from leaves is rich in sesquiterpenes hydrocarbons and oxygenated sesquiterpenes. The three major compounds identified were germacrene-D (24.2%, (E-caryophyllene (15.5%, and bicyclogermacrene (11.6%. The inner bark EO is composed mainly of sesquiterpenes hydrocarbons and the major components are alpha-copaene (14.9% and alpha-(E-bergamotene (13.0%. The outer bark EO is composed mainly of oxygenated sesquiterpenes and long-chain alkanes, and the major components are alpha-eudesmol (4.2% and nonacosane (5.8%. The wood EO is mainly composed of long-chain alkanes and fatty acids, and the major components are nonacosane (9.7% and palmitic acid (16.2%. The inner bark EO showed the strongest antimicrobial activity against the anaerobic bacteria Prevotella nigrescens (minimum inhibitory concentration-MIC of 50 µg mL−1. The outer bark and wood EOs showed MICs of 100 µg mL−1 for all aerobic microorganisms tested. The EOs presented low toxicity to Vero cells. These results suggest that K. coriacea, a Brazilian plant, provide initial evidence of a new and alternative source of substances with medicinal interest.

  1. Syntheses, Protonation Constants and Antimicrobial Activity of 2 ...

    African Journals Online (AJOL)

    carboxaldehyde and N-alkylimidazole-2-methanol derivatives [alkyl = benzyl, methyl, ethyl, propyl, butyl, heptyl, octyl and decyl] have been synthesized and the protonation constants determined. The antimicrobial properties of the compounds were tested ...

  2. Mechanical, barrier and antimicrobial properties of biodegradable poly(e-caprolactone) nanocomposites

    CSIR Research Space (South Africa)

    Makhado, E

    2015-05-01

    Full Text Available the potential to develop improved barrier packaging materials; however, increasing the antimicrobial activity on composite surfaces is needed for the development of PCL-based advanced packaging materials....

  3. Development and characterization of antimicrobial poly(l-lactic acid) containing trans-2-hexenal trapped in cyclodextrins.

    Science.gov (United States)

    Joo, Min Jung; Merkel, Crispin; Auras, Rafael; Almenar, Eva

    2012-02-15

    Trans-2-hexenal, a naturally occurring plant volatile with antimicrobial capacity, was encapsulated into β-cyclodextrins (β-CDs), enzymatically modified starch, and shown effective to control main microorganisms causing food spoilage (Alternaria solani, Aspergillus niger, Botrytis cinerea, Colletotrichum acutatum, Penicillium sp). Loaded β-CDs were incorporated into a poly(L-lactic acid) (PLA) matrix by extrusion and casting, and yielded antimicrobial polymers made from natural resources. A masterbatch was used prior to sheet casting to improve the dispersion of the antimicrobial agent in the PLA matrix. However, this increased the number of extrusion processes for the material. The concentration of the antimicrobial compound in the polymers and its antimicrobial capacity against one food spoilage microorganism (A. solani) were measured during the different processing operations. Although the concentration of trans-2-hexenal was reduced by processing by about 70 and 99% compared to the loaded β-CDs, for the masterbatch and sheet, respectively, the polymers were still effective in reducing microbial growth. The changes of the polymer properties due to the addition of the antimicrobial agent were investigated, too. It was found that the mechanical and barrier properties of the PLA were changed (decreased by about half the tensile strength and elongation at break and nine-fold increased permeability) while the physical properties remained the same. Based on these results, the developed polymer may be a viable antimicrobial material for applications in food packaging. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Antimicrobials Treatment

    Science.gov (United States)

    Drosinos, Eleftherios H.; Skandamis, Panagiotis N.; Mataragas, Marios

    The use of antimicrobials is a common practice for preservation of foods. Incorporation, in a food recipe, of chemical antimicrobials towards inhibition of spoilage and pathogenic micro-organisms results in the compositional modification of food. This treatment is nowadays undesirable for the consumer, who likes natural products. Scientific community reflecting consumers demand for natural antimicrobials has made efforts to investigate the possibility to use natural antimicrobials such us bacteriocins and essential oils of plant origin to inhibit microbial growth.

  5. Discovery of antimicrobial compounds targeting bacterial type FAD synthetases.

    Science.gov (United States)

    Sebastián, María; Anoz-Carbonell, Ernesto; Gracia, Begoña; Cossio, Pilar; Aínsa, José Antonio; Lans, Isaías; Medina, Milagros

    2018-12-01

    The increase of bacterial strains resistant to most of the available antibiotics shows a need to explore novel antibacterial targets to discover antimicrobial drugs. Bifunctional bacterial FAD synthetases (FADSs) synthesise the flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD). These cofactors act in vital processes as part of flavoproteins, making FADS an essential enzyme. Bacterial FADSs are potential antibacterial targets because of differences to mammalian enzymes, particularly at the FAD producing site. We have optimised an activity-based high throughput screening assay targeting Corynebacterium ammoniagenes FADS (CaFADS) that identifies inhibitors of its different activities. We selected the three best high-performing inhibitors of the FMN:adenylyltransferase activity (FMNAT) and studied their inhibition mechanisms and binding properties. The specificity of the CaFADS hits was evaluated by studying also their effect on the Streptococcus pneumoniae FADS activities, envisaging differences that can be used to discover species-specific antibacterial drugs. The antimicrobial effect of these compounds was also evaluated on C. ammoniagenes, S. pneumoniae, and Mycobacterium tuberculosis cultures, finding hits with favourable antimicrobial properties.

  6. Evaluation of the antimicrobial and physical properties of an orthodontic photo-activated adhesive modified with an antiplaque agent: An in vitro study

    Directory of Open Access Journals (Sweden)

    Chanjyot Singh

    2013-01-01

    Results: The findings indicated that (1 addition of chlorhexidine to the orthodontic composite resin enhanced its antimicrobial properties, (2 there was no significant difference between the bond strengths of the control and the experimental resins tested after 24 h and 25 days and (3 maximum release of chlorhexidine from the modified resin was much higher than the minimum inhibitory concentration level.

  7. Diclofenac-Based Hydrazones and Spirothiazolidinones: Synthesis, Characterization, and Antimicrobial Properties.

    Science.gov (United States)

    Kocabalkanlı, Ayşe; Cihan-Üstündağ, Gökçe; Naesens, Lieve; Mataracı-Kara, Emel; Nassozi, Mebble; Çapan, Gültaze

    2017-05-01

    We report here the synthesis, structural characterization, and biological evaluation of novel diclofenac-based hydrazone (4a-f) and spirothiazolidinone (5a-f, 6a-f) derivatives designed as potential antimicrobial agents. The compounds were evaluated in vitro for their antiviral activity against a wide spectrum of DNA and RNA viruses. They were further screened in vitro against different strains of bacteria and fungi. The hydrazone derivatives, 4a and 4c-f, were found to be active against herpesviruses (HSV-1, HSV-2, and HSV-1 TK - ), vaccinia virus, and Coxsackie B4 virus, with EC 50 values between 6.6 µg/mL and 14.7 μg/mL, and the selectivity index values were greater than 10 for 4a and 4f. The newly synthesized compounds (4-6) were inactive against the bacterial and the fungal strains tested, at levels below 2500, 1250, or 625 μg/mL. Interestingly, the key intermediate 3 with a free hydrazide moiety displayed antifungal properties against Candida albicans and C. parapsilosis at MIC values of 4.88 µg/mL and 78.12 μg/mL, respectively. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Safety characterization and antimicrobial properties of kefir-isolated Lactobacillus kefiri.

    Science.gov (United States)

    Carasi, Paula; Díaz, Mariángeles; Racedo, Silvia M; De Antoni, Graciela; Urdaci, María C; Serradell, María de los Angeles

    2014-01-01

    Lactobacilli are generally regarded as safe; however, certain strains have been associated with cases of infection. Our workgroup has already assessed many functional properties of Lactobacillus kefiri, but parameters regarding safety must be studied before calling them probiotics. In this work, safety aspects and antimicrobial activity of L. kefiri strains were studied. None of the L. kefiri strains tested caused α- or β-hemolysis. All the strains were susceptible to tetracycline, clindamycin, streptomycin, ampicillin, erythromycin, kanamycin, and gentamicin; meanwhile, two strains were resistant to chloramphenicol. On the other hand, all L. kefiri strains were able to inhibit both Gram(+) and Gram(-) pathogens. Regarding the in vitro results, L. kefiri CIDCA 8348 was selected to perform in vivo studies. Mice treated daily with an oral dose of 10(8) CFU during 21 days showed no signs of pain, lethargy, dehydration, or diarrhea, and the histological studies were consistent with those findings. Moreover, no differences in proinflammatory cytokines secretion were observed between treated and control mice. No translocation of microorganisms to blood, spleen, or liver was observed. Regarding these findings, L. kefiri CIDCA 8348 is a microorganism isolated from a dairy product with a great potential as probiotic for human or animal use.

  9. Safety Characterization and Antimicrobial Properties of Kefir-Isolated Lactobacillus kefiri

    Directory of Open Access Journals (Sweden)

    Paula Carasi

    2014-01-01

    Full Text Available Lactobacilli are generally regarded as safe; however, certain strains have been associated with cases of infection. Our workgroup has already assessed many functional properties of Lactobacillus kefiri, but parameters regarding safety must be studied before calling them probiotics. In this work, safety aspects and antimicrobial activity of L. kefiri strains were studied. None of the L. kefiri strains tested caused α- or β-hemolysis. All the strains were susceptible to tetracycline, clindamycin, streptomycin, ampicillin, erythromycin, kanamycin, and gentamicin; meanwhile, two strains were resistant to chloramphenicol. On the other hand, all L. kefiri strains were able to inhibit both Gram(+ and Gram(− pathogens. Regarding the in vitro results, L. kefiri CIDCA 8348 was selected to perform in vivo studies. Mice treated daily with an oral dose of 108 CFU during 21 days showed no signs of pain, lethargy, dehydration, or diarrhea, and the histological studies were consistent with those findings. Moreover, no differences in proinflammatory cytokines secretion were observed between treated and control mice. No translocation of microorganisms to blood, spleen, or liver was observed. Regarding these findings, L. kefiri CIDCA 8348 is a microorganism isolated from a dairy product with a great potential as probiotic for human or animal use.

  10. The structure of the antimicrobial active center of lactoferricin B bound to sodium dodecyl sulfate micelles.

    Science.gov (United States)

    Schibli, D J; Hwang, P M; Vogel, H J

    1999-03-12

    Lactoferricin B (LfcinB) is a 25-residue antimicrobial peptide released from bovine lactoferrin upon pepsin digestion. The antimicrobial center of LfcinB consists of six residues (RRWQWR-NH2), and it possesses similar bactericidal activity to LfcinB. The structure of the six-residue peptide bound to sodium dodecyl sulfate (SDS) micelles has been determined by NMR spectroscopy and molecular dynamics refinement. The peptide adopts a well defined amphipathic structure when bound to SDS micelles with the Trp sidechains separated from the Arg residues. Additional evidence demonstrates that the peptide is oriented in the micelle such that the Trp residues are more deeply buried in the micelle than the Arg and Gln residues.

  11. Antimicrobial resistance in zoonotic nontyphoidal Salmonella: an alarming trend?

    Science.gov (United States)

    Michael, G B; Schwarz, S

    2016-12-01

    Zoonotic bacteria of the genus Salmonella have acquired various antimicrobial resistance properties over the years. The corresponding resistance genes are commonly located on plasmids, transposons, gene cassettes, or variants of the Salmonella Genomic Islands SGI1 and SGI2. Human infections by nontyphoidal Salmonella isolates mainly result from ingestion of contaminated food. The two predominantly found Salmonella enterica subsp. enterica serovars in the USA and in Europe are S. Enteritidis and S. Typhimurium. Many other nontyphoidal Salmonella serovars have been implicated in foodborne Salmonella outbreaks. Summary reports of the antimicrobial susceptibility patterns of nontyphoidal Salmonella isolates over time suggest a moderate to low level of antimicrobial resistance and multidrug-resistance. However, serovar-specific analyses showed in part a steady state, a continuous decline, or a recent increase in resistance to certain antimicrobial agents. Resistance to critically important antimicrobial agents, e.g. third-generation cephalosporins and (fluoro)quinolones is part of many monitoring programmes and the corresponding results confirm that extended-spectrum β-lactamases are still rarely found in nontyphoidal Salmonella serovars, whereas resistance to (fluoro)quinolones is prevalent at variable frequencies among different serovars from humans and animals in different countries. Although it is likely that nontyphoidal Salmonella isolates from animals represent a reservoir for resistance determinants, it is mostly unknown where and when Salmonella isolates acquired resistance properties and which exchange processes have happened since then. Copyright © 2016 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  12. Antimicrobial properties of black grape (Vitis vinifera L.) peel extracts against antibiotic-resistant pathogenic bacteria and toxin producing molds.

    Science.gov (United States)

    Yadav, Devbrat; Kumar, Arvind; Kumar, Pramod; Mishra, Diwaker

    2015-01-01

    Black grape peel possesses a substantial amount of polyphenolic antimicrobial compounds that can be used for controlling the growth of pathogenic microorganisms. The purpose of this study was to assess antibacterial and antifungal activity of black grape peel extracts against antibiotic-resistant pathogenic bacteria and toxin producing molds, respectively. Peel of grape was subjected to polyphenolic extraction using different solvents viz., water, ethanol, acetone, and methanol. Antibiotic-resistant strains of Staphylococcus aureus, Enterococcus faecalis, Enterobacter aerogenes, Salmonella typhimurium, and Escherichia coli were screened for the antibacterial activity of different grape extracts. Antibacterial activity was analyzed using agar well diffusion method. Penicillium chrysogenum, Penicillium expansum, Aspergillus niger and Aspergillus versicolor were screened for the antifungal activity. Antifungal activity was determined by counting nongerminated spores in the presence of peel extracts. As compared to other solvent extracts, methanol extracts possessed high antibacterial and antifungal activity. S. typhimurium and E. coli showed complete resistance against antibacterial action at screened concentrations of grape peel extracts. Maximum zone of inhibition was found in case of S. aureus, i.e., 22 mm followed by E. faecalis and E. aerogenes, i.e., 18 and 21 mm, respectively, at 1080 mg tannic acid equivalent (TAE)/ml. The maximum and minimum percent of growth inhibition was shown by P. expansum and A. niger as 73% and 15% at 1080 TAE/ml concentration of grape peel extract, respectively. Except S. typhimurium and E. coli, growth of all bacterial and mold species were found to be significantly (P < 0.05) inhibited by all the solvent extracts.

  13. Antimicrobial applications of nanotechnology: methods and literature

    Directory of Open Access Journals (Sweden)

    Seil JT

    2012-06-01

    Full Text Available Justin T Seil, Thomas J WebsterLaboratory for Nanomedicine Research, School of Engineering, Brown University, Providence, RI, USAAbstract: The need for novel antibiotics comes from the relatively high incidence of bacterial infection and the growing resistance of bacteria to conventional antibiotics. Consequently, new methods for reducing bacteria activity (and associated infections are badly needed. Nanotechnology, the use of materials with dimensions on the atomic or molecular scale, has become increasingly utilized for medical applications and is of great interest as an approach to killing or reducing the activity of numerous microorganisms. While some natural antibacterial materials, such as zinc and silver, possess greater antibacterial properties as particle size is reduced into the nanometer regime (due to the increased surface to volume ratio of a given mass of particles, the physical structure of a nanoparticle itself and the way in which it interacts with and penetrates into bacteria appears to also provide unique bactericidal mechanisms. A variety of techniques to evaluate bacteria viability, each with unique advantages and disadvantages, has been established and must be understood in order to determine the effectiveness of nanoparticles (diameter ≤100 nm as antimicrobial agents. In addition to addressing those techniques, a review of select literature and a summary of bacteriostatic and bactericidal mechanisms are covered in this manuscript.Keywords: nanomaterial, nanoparticle, nanotechnology, bacteria, antibacterial, biofilm

  14. Determination of antioxidant and antimicrobial properties of Eremurus spectabilis Bieb.

    Directory of Open Access Journals (Sweden)

    Burak Bircan

    2015-11-01

    Full Text Available In this study, in vitro antioxidant and antimicrobial activities of the E. spectabilis Bieb., which is consumed as a vegetable among people, was investigated and Kluyveromyces lactis’s antioxidant activies in anaerobic cultural environment is researched. This purpose; 2,2-diphenyl-1-picrylhydrazyl (DPPH radical scavenging activity, flavonoid, resveratrol, sugar contents, lipid peroxidation (LPO levels, fatty acid level, lipophilic vitamin values, protein and glutathione amounts were measured. In the FeCl group in which FeCl2+ H2O2 is applied, when compared with LPO level control group (K, it was observed that it increase in high amount (p<0.05. LPO level decreases in certain proportions in treatment groups. It is suggested that the lowering effect of the LPO of E. spectabilis extracts are arise from phytochemical like flavonoids that it includes. As a result of the antibacterial activity studies, it was observed that E. spectabilis have different proportional antimicrobial activities against E. coli, S. aureus, Epidermophyton spp. and C. albicans.

  15. Antimicrobial Peptides of Meat Origin - An In silico and In vitro Analysis.

    Science.gov (United States)

    Keska, Paulina; Stadnik, Joanna

    2017-01-01

    The aim of this study was to evaluate the antimicrobial activity of meat protein-derived peptides against selected Gram-positive and Gram-negative bacteria. The in silico and in vitro approach was combined to determine the potency of antimicrobial peptides derived from pig (Sus scrofa) and cow (Bos taurus) proteins. The in silico studies consisted of an analysis of the amino acid composition of peptides obtained from the CAMPR database, their molecular weight and other physicochemical properties (isoelectric point, molar extinction coefficient, instability index, aliphatic index, hydropathy index and net charge). The degree of similarity was estimated between the antimicrobial peptide sequences derived from the slaughtered animals and the main meat proteins. Antimicrobial activity of peptides isolated from dry-cured meat products was analysed (in vitro) against two strains of pathogenic bacteria using the disc diffusion method. There was no evidence of growthinhibitory properties of peptides isolated from dry-cured meat products against Escherichia coli K12 ATCC 10798 and Staphylococcus aureus ATCC 25923. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Characterization of shallot, an antimicrobial extract of allium ascalonicum

    International Nuclear Information System (INIS)

    Amin, M.; Montazeri, E.A.; Mashhadizadeh, M.A.; Sheikh, A.F.

    2009-01-01

    Objective: The objective of this study was characterization of antimicrobial extract of shallot in terms of its stability at different pH, Heat, enzymes and detergents and also determination of its MIC and shelf life. Methodology: Active fraction was determined by column chromatography and agar diffusion test. The amount of carbohydrate and protein in different forms of shallot extract were estimated. Stability of antimicrobial activity of shallot extract at different pH and temperature, solubility in different solvent, determination of shelf life and susceptibility to enzymes and detergents were evaluated. Results: Shallot extract was active against microbes at pH 4-8. Relative activities of shallot extract at temperature -7 to 121 deg. C were 88 to 100 %. Extract of shallot only was soluble in dimethyl sulphoxide, dimethyl formamide and water. The enzymes and detergents used in this study had no effect on antimicrobial activity on water extract of shallot. Relative antimicrobial activity at incubation times of one hour to 6 mounts were 94 to 100 %. Conclusion: In this study antimicrobial properties of shallot were investigated for discovery of a new antibiotic. Based on this the antimicrobial compound can be an effective medicine for treatment of dermatomycosis and other infectious diseases. (author)

  17. Superhydrophobic, Superoleophobic and Antimicrobial Coatings for the Protection of Silk Textiles

    Directory of Open Access Journals (Sweden)

    Dimitra Aslanidou

    2018-03-01

    Full Text Available A method to produce multifunctional coatings for the protection of silk is developed. Aqueous dispersion, free of any organic solvent, containing alkoxy silanes, organic fluoropolymer, silane quaternary ammonium salt, and silica nanoparticles (7 nm in mean diameter is sprayed onto silk which obtains (i superhydrophobic and superoleophobic properties, as evidenced by the high contact angles (>150° of water and oil drops and (ii antimicrobial properties. Potato dextrose agar is used as culture medium for the growth of microorganisms. The protective coating hinders the microbial growth on coated silk which remains almost free of contamination after extensive exposure to the microorganisms. Furthermore, the multifunctional coating induces a moderate reduction in vapor permeability of the treated silk, it shows very good durability against abrasion and has a minor visual effect on the aesthetic appearance of silk. The distinctive roles of the silica nanoparticles and the antimicrobial agent on the aforementioned properties of the coating are investigated. Silica nanoparticles induce surface structures at the micro/nano-meter scale and are therefore responsible for the achieved extreme wetting properties that promote the antimicrobial activity. The latter is further enhanced by adding the silane quaternary ammonium salt in the composition of the protective coating.

  18. Novel method to identify the optimal antimicrobial peptide in a combination matrix, using anoplin as an example

    DEFF Research Database (Denmark)

    Munk, Jens; Ritz, Christian; Fliedner, Frederikke Petrine

    2014-01-01

    retention time data, we construct analysis of variance models that describe the relationship between these properties and structural characteristics of the analogs. We show that the mathematical models derived from the training set data can be used to predict the properties of other analogs in the chemical......Microbial resistance is an increasing health concern and a true danger to human wellbeing. A worldwide search for new compounds is ongoing and antimicrobial peptides are promising lead candidates for tomorrow's antibiotics. The decapeptide anoplin, GLLKRIKTLL-NH2, is an especially interesting...... candidate because of its small size as well as its antimicrobial and nonhemolytic properties. Optimization of the properties of an antimicrobial peptide such as anoplin requires multidimensional searching in a complex chemical space. Typically such optimization is performed by labor-intensive and costly...

  19. Phytochemical Screening and Antimicrobial Properties of a Common Brand of Black Tea (Camellia sinensis Marketed in Nigerian Environment

    Directory of Open Access Journals (Sweden)

    Olosunde O. Funmilayo

    2012-08-01

    Full Text Available Purpose: This study is aimed at determining chemical constituents and antimicrobial activities of a common brand of black tea (Lipton® in Nigeria. Methods: Standard methods were employed for testing carbohydrates, tannins, saponins, flavonoids, alkaloids, steroids and terpenes in the tea. Antimicrobial activities of methanolic and aqueous extracts of the tea on four standard strains of organisms: Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Bacillus subtilis were also determined by standard methods. Results: Results showed that the tea contains tannin and reducing sugar. Concentrations of 1%, 2%, 4%, 6%, 8% and 10% aqueous and methanolic extract of black tea were prepared and their zones of inhibition determined against the four test organisms using the cup plate method. This was compared with zones for standard disc Gentamicin (10 μg and Erythromycin (15 μg. Pseudomonas aeruginosa was sensitive to 2% to 10% aqueous extracts and intermediate to 6%, 8% and 10% methanolic extracts. E. coli was intermediately sensitive to 6%, 8% and 10% aqueous extract and 2% to 10% methanolic extracts. B. subtilis was intermediately sensitive to 4%, 6% and 8% aqueous extract and 4% to 10% methanolic extract but sensitive to 10% aqueous extract. Staph.aureus was intermediately sensitive to 4% to 10% aqueous extracts and 2% to 10% methanolic extracts. B. subtilis had the lowest MIC values of both aqueous and methanolic extracts. Conclusion: In conclusion, this study has shown that Lipton® has antimicrobial properties on E.coli, Staph.aureus, B.subtilis and Ps.aeruginosa and contains tannin and reducing sugar.

  20. Phytochemical and antimicrobial study of an antidiabetic plant: Scoparia dulcis L.

    Science.gov (United States)

    Latha, M; Ramkumar, K M; Pari, L; Damodaran, P N; Rajeshkannan, V; Suresh, T

    2006-01-01

    The antimicrobial and antifungal effects of different concentrations of chloroform/methanol fractions of Scoparia dulcis were investigated. The isolated fractions were tested against different bacteria like Salmonella typhii, Staphylococcus aureus, Escherichia coli, Bacillus subtilis, Pseudomonas aeruginosa, and Proteus vulgaris and fungal strains such as Alternaria macrospora, Candida albicans, Aspergillus niger, and Fusarium oxysporum. The isolated fractions exhibited significant antimicrobial and antifungal activity against all the tested organisms compared with respective reference drugs. The isolated fractions of S. dulcis showed properties like antimicrobial and antifungal activities that will enable researchers in turn to look for application-oriented principles.

  1. Modified lysozymes as novel broad spectrum natural antimicrobial agents in foods.

    Science.gov (United States)

    Aminlari, Ladan; Hashemi, Marjan Mohammadi; Aminlari, Mahmoud

    2014-06-01

    In recent years much attention and interest have been directed toward application of natural antimicrobial agents in foods. Some naturally occurring proteins such as lactoperoxidase, lactoferrin, and lysozyme have received considerable attention and are being considered as potential antimicrobial agents in foods. Lysozyme kills bacteria by hydrolyzing the peptidoglycan layer of the cell wall of certain bacterial species, hence its application as a natural antimicrobial agent has been suggested. However, limitations in the action of lysozyme against only Gram-positive bacteria have prompted scientists to extend the antimicrobial effects of lysozyme by several types of chemical modifications. During the last 2 decades extensive research has been directed toward modification of lysozyme in order to improve its antimicrobial properties. This review will report on the latest information available on lysozyme modifications and examine the applicability of the modified lysozymes in controlling growth of Gram-positive and Gram-negative bacteria in foods. The results of modifications of lysozyme using its conjugation with different small molecule, polysaccharides, as well as modifications using proteolytic enzymes will be reviewed. These types of modifications have not only increased the functional properties of lysozyme (such as solubility and heat stability) but also extended the antimicrobial activity of lysozyme. Many examples will be given to show that modification can decrease the count of Gram-negative bacteria in bacterial culture and in foods by as much as 5 log CFU/mL and in some cases essentially eliminated Escherichia coli. In conclusion this review demonstrates that modified lysozymes are excellent natural food preservatives, which can be used in food industry. The subject described in this review article can lead to the development of methods to produce new broad-spectrum natural antimicrobial agents, based on modification of chicken egg white lysozyme, which

  2. Commercial Essential Oils as Potential Antimicrobials to Treat Skin Diseases

    Science.gov (United States)

    Orchard, Ané

    2017-01-01

    Essential oils are one of the most notorious natural products used for medical purposes. Combined with their popular use in dermatology, their availability, and the development of antimicrobial resistance, commercial essential oils are often an option for therapy. At least 90 essential oils can be identified as being recommended for dermatological use, with at least 1500 combinations. This review explores the fundamental knowledge available on the antimicrobial properties against pathogens responsible for dermatological infections and compares the scientific evidence to what is recommended for use in common layman's literature. Also included is a review of combinations with other essential oils and antimicrobials. The minimum inhibitory concentration dilution method is the preferred means of determining antimicrobial activity. While dermatological skin pathogens such as Staphylococcus aureus have been well studied, other pathogens such as Streptococcus pyogenes, Propionibacterium acnes, Haemophilus influenzae, and Brevibacterium species have been sorely neglected. Combination studies incorporating oil blends, as well as interactions with conventional antimicrobials, have shown that mostly synergy is reported. Very few viral studies of relevance to the skin have been made. Encouragement is made for further research into essential oil combinations with other essential oils, antimicrobials, and carrier oils. PMID:28546822

  3. Antimicrobial stewardship in a Gastroenterology Department: Impact on antimicrobial consumption, antimicrobial resistance and clinical outcome.

    Science.gov (United States)

    Bedini, Andrea; De Maria, Nicola; Del Buono, Mariagrazia; Bianchini, Marcello; Mancini, Mauro; Binda, Cecilia; Brasacchio, Andrea; Orlando, Gabriella; Franceschini, Erica; Meschiari, Marianna; Sartini, Alessandro; Zona, Stefano; Paioli, Serena; Villa, Erica; Gyssens, Inge C; Mussini, Cristina

    2016-10-01

    A major cause of the increase in antimicrobial resistance is the inappropriate use of antimicrobials. To evaluate the impact on antimicrobial consumption and clinical outcome of an antimicrobial stewardship program in an Italian Gastroenterology Department. Between October 2014 and September 2015 (period B), a specialist in infectious diseases (ID) controlled all antimicrobial prescriptions and decided about the therapy in agreement with gastroenterologists. The defined daily doses of antimicrobials (DDDs), incidence of MDR-infections, mean length of stay and overall in-hospital mortality rate were compared with those of the same period in the previous 12-months (period A). During period B, the ID specialist performed 304 consultations: antimicrobials were continued in 44.4% of the cases, discontinued in 13.8%, not recommended in 12.1%, de-escalated 9.9%, escalated in 7.9%, and started in 4.0%. Comparing the 2 periods, we observed a decreased of antibiotics consumption (from 109.81 to 78.45 DDDs/100 patient-days, p=0.0005), antifungals (from 41.28 to 24.75 DDDs/100pd, p=0.0004), carbapenems (from 15.99 to 6.80 DDDsx100pd, p=0.0032), quinolones (from 35.79 to 17.82 DDDsx100pd, p=0.0079). No differences were observed in incidence of MDR-infections, length of hospital stay (LOS), and mortality rate. ASP program had a positive impact on reducing the consumption of antimicrobials, without an increase in LOS and mortality. Copyright © 2016 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  4. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... Animal & Veterinary Safety & Health Antimicrobial Resistance Animation of Antimicrobial Resistance Share Tweet Linkedin Pin it More sharing options ... of Animation of Antimicrobial Resistance More in Antimicrobial ... Antimicrobial Resistance Monitoring System About NARMS 2015 NARMS Integrated ...

  5. Preparation, characterization and antimicrobial property of ag+- nano Chitosan/ZSM-5: novel Hybrid Biocomposites

    Directory of Open Access Journals (Sweden)

    Maasoumeh Khatamiana

    2016-10-01

    Full Text Available Objective(s: Binary hybrids of chitosan-zeolite have many interesting applications in separation and bacteriostatic activity. Materials and Methods: Template free ZSM-5 zeolite was synthesized by hydrothermal method, physical hydrogels of nano chitosan in the colloidal domain were obtained in the absence of toxic organic solvent and then nano chitosan/ZSM-5 hybrid composites with nano chitosan contents of 0.35%, 3.5%, 35% wt.% were prepared. The as prepared hybrid composites were ion-exchanged with Ag cations. Results: XRD and FT-IR results revealed a good crystalinity of as synthesized template frees ZSM-5 with BET surface area of 307 m2g-1. Presence of chitosan in composites was confirmed by XRD patterns and FT-IR spectroscopic analysis, the chitosan content in composite was obtained with TG analysis. SEM analysis of composites shows that chitosan particles were dispersed within the nanometer scale. The antimicrobial activity of different samples was investigated and the results showed that the Ag+-exchanged samples have the highest antibacterial properties. Cancer cell line A549 cell line were cultured in designated medium treated with Ag+-exchanged samples at the concentration of 0.01 to 0.5 mg/ml. After 24 and 48 hours incubation, the efficacy of Ag+-exchanged samples to treat cancer cell lines were measured by means of cell viability test via MTT assay. Concentrations of 0.05 and 0.1 mg/ml of Ag+-exchanged samples induced a very low toxicity. Conclusion: These hybrid composite materials have potential applications on tissue engineering and antimicrobial food packaging.

  6. De novo design and synthesis of ultra-short peptidomimetic antibiotics having dual antimicrobial and anti-inflammatory activities.

    Science.gov (United States)

    Murugan, Ravichandran N; Jacob, Binu; Ahn, Mija; Hwang, Eunha; Sohn, Hoik; Park, Hyo-Nam; Lee, Eunjung; Seo, Ji-Hyung; Cheong, Chaejoon; Nam, Ky-Youb; Hyun, Jae-Kyung; Jeong, Ki-Woong; Kim, Yangmee; Shin, Song Yub; Bang, Jeong Kyu

    2013-01-01

    Much attention has been focused on the design and synthesis of potent, cationic antimicrobial peptides (AMPs) that possess both antimicrobial and anti-inflammatory activities. However, their development into therapeutic agents has been limited mainly due to their large size (12 to 50 residues in length) and poor protease stability. In an attempt to overcome the issues described above, a set of ultra-short, His-derived antimicrobial peptides (HDAMPs) has been developed for the first time. Through systematic tuning of pendant hydrophobic alkyl tails at the N(π)- and N(τ)-positions on His, and the positive charge of Arg, much higher prokaryotic selectivity was achieved, compared to human AMP LL-37. Additionally, the most potent HDAMPs showed promising dual antimicrobial and anti-inflammatory activities, as well as anti-methicillin-resistant Staphylococcus aureus (MRSA) activity and proteolytic resistance. Our results from transmission electron microscopy, membrane depolarization, confocal laser-scanning microscopy, and calcein-dye leakage experiments propose that HDAMP-1 kills microbial cells via dissipation of the membrane potential by forming pore/ion channels on bacterial cell membranes. The combination of the ultra-short size, high-prokaryotic selectivity, potent anti-MRSA activity, anti-inflammatory activity, and proteolytic resistance of the designed HDAMP-1, -3, -5, and -6 makes these molecules promising candidates for future antimicrobial therapeutics.

  7. Skin-Derived C-Terminal Filaggrin-2 Fragments Are Pseudomonas aeruginosa-Directed Antimicrobials Targeting Bacterial Replication.

    Directory of Open Access Journals (Sweden)

    Britta Hansmann

    2015-09-01

    Full Text Available Soil- and waterborne bacteria such as Pseudomonas aeruginosa are constantly challenging body surfaces. Since infections of healthy skin are unexpectedly rare, we hypothesized that the outermost epidermis, the stratum corneum, and sweat glands directly control the growth of P. aeruginosa by surface-provided antimicrobials. Due to its high abundance in the upper epidermis and eccrine sweat glands, filaggrin-2 (FLG2, a water-insoluble 248 kDa S100 fused-type protein, might possess these innate effector functions. Indeed, recombinant FLG2 C-terminal protein fragments display potent antimicrobial activity against P. aeruginosa and other Pseudomonads. Moreover, upon cultivation on stratum corneum, P. aeruginosa release FLG2 C-terminus-containing FLG2 fragments from insoluble material, indicating liberation of antimicrobially active FLG2 fragments by the bacteria themselves. Analyses of the underlying antimicrobial mechanism reveal that FLG2 C-terminal fragments do not induce pore formation, as known for many other antimicrobial peptides, but membrane blebbing, suggesting an alternative mode of action. The association of the FLG2 fragment with the inner membrane of treated bacteria and its DNA-binding implicated an interference with the bacterial replication that was confirmed by in vitro and in vivo replication assays. Probably through in situ-activation by soil- and waterborne bacteria such as Pseudomonads, FLG2 interferes with the bacterial replication, terminates their growth on skin surface and thus may contributes to the skin's antimicrobial defense shield. The apparent absence of FLG2 at certain body surfaces, as in the lung or of burned skin, would explain their higher susceptibility towards Pseudomonas infections and make FLG2 C-terminal fragments and their derivatives candidates for new Pseudomonas-targeting antimicrobials.

  8. Skin-Derived C-Terminal Filaggrin-2 Fragments Are Pseudomonas aeruginosa-Directed Antimicrobials Targeting Bacterial Replication.

    Science.gov (United States)

    Hansmann, Britta; Schröder, Jens-Michael; Gerstel, Ulrich

    2015-09-01

    Soil- and waterborne bacteria such as Pseudomonas aeruginosa are constantly challenging body surfaces. Since infections of healthy skin are unexpectedly rare, we hypothesized that the outermost epidermis, the stratum corneum, and sweat glands directly control the growth of P. aeruginosa by surface-provided antimicrobials. Due to its high abundance in the upper epidermis and eccrine sweat glands, filaggrin-2 (FLG2), a water-insoluble 248 kDa S100 fused-type protein, might possess these innate effector functions. Indeed, recombinant FLG2 C-terminal protein fragments display potent antimicrobial activity against P. aeruginosa and other Pseudomonads. Moreover, upon cultivation on stratum corneum, P. aeruginosa release FLG2 C-terminus-containing FLG2 fragments from insoluble material, indicating liberation of antimicrobially active FLG2 fragments by the bacteria themselves. Analyses of the underlying antimicrobial mechanism reveal that FLG2 C-terminal fragments do not induce pore formation, as known for many other antimicrobial peptides, but membrane blebbing, suggesting an alternative mode of action. The association of the FLG2 fragment with the inner membrane of treated bacteria and its DNA-binding implicated an interference with the bacterial replication that was confirmed by in vitro and in vivo replication assays. Probably through in situ-activation by soil- and waterborne bacteria such as Pseudomonads, FLG2 interferes with the bacterial replication, terminates their growth on skin surface and thus may contributes to the skin's antimicrobial defense shield. The apparent absence of FLG2 at certain body surfaces, as in the lung or of burned skin, would explain their higher susceptibility towards Pseudomonas infections and make FLG2 C-terminal fragments and their derivatives candidates for new Pseudomonas-targeting antimicrobials.

  9. Development of elastin-like recombinamer films with antimicrobial activity

    DEFF Research Database (Denmark)

    Costa, André; Machado, Raul; Ribeiro, Artur

    2015-01-01

    In the present work we explored the ABP-CM4 peptide properties from Bombyx mori for the creation of biopolymers with broad antimicrobial activity. An antimicrobial recombinant protein-based polymer (rPBP) was designed by cloning the DNA sequence coding for ABP-CM4 in frame with the N......-terminus of the elastin-like recombinamer consisting of 200 repetitions of the pentamer VPAVG, here named A200. The new rPBP, named CM4-A200, was purified via a simplified nonchromatographic method, making use of the thermoresponsive behavior of the A200 polymer. ABP-CM4 peptide was also purified through...... the incorporation of a formic acid cleavage site between the peptide and the A200 sequence. In soluble state the antimicrobial activity of both CM4-A200 polymer and ABP-CM4 peptide was poorly effective. However, when the CM4-A200 polymer was processed into free-standing films high antimicrobial activity against...

  10. Cationic antimicrobial peptides inactivate Shiga toxin-encoding bacteriophages

    Science.gov (United States)

    Del Cogliano, Manuel E.; Hollmann, Axel; Martinez, Melina; Semorile, Liliana; Ghiringhelli, Pablo D.; Maffía, Paulo C.; Bentancor, Leticia V.

    2017-12-01

    Shiga toxin (Stx) is the principal virulence factor during Shiga toxin-producing Escherichia coli (STEC) infections. We have previously reported the inactivation of bacteriophage encoding Stx after treatment with chitosan, a linear polysaccharide polymer with cationic properties. Cationic antimicrobial peptides (cAMPs) are short linear aminoacidic sequences, with a positive net charge, which display bactericidal or bacteriostatic activity against a wide range of bacterial species. They are promising novel antibiotics since they have shown bactericidal effects against multiresistant bacteria. To evaluate whether cationic properties are responsible for bacteriophage inactivation, we tested seven cationic peptides with proven antimicrobial activity as anti-bacteriophage agents, and one random sequence cationic peptide with no antimicrobial activity as a control. We observed bacteriophage inactivation after incubation with five cAMPs, but no inactivating activity was observed with the random sequence cationic peptide or with the non alpha helical cAMP Omiganan. Finally, to confirm peptide-bacteriophage interaction, zeta potential was analyzed by following changes on bacteriophage surface charges after peptide incubation. According to our results we could propose that: 1) direct interaction of peptides with phage is a necessary step for bacteriophage inactivation, 2) cationic properties are necessary but not sufficient for bacteriophage inactivation, and 3) inactivation by cationic peptides could be sequence (or structure) specific. Overall our data suggest that these peptides could be considered a new family of molecules potentially useful to decrease bacteriophage replication and Stx expression.

  11. Cationic Antimicrobial Peptides Inactivate Shiga Toxin-Encoding Bacteriophages

    Directory of Open Access Journals (Sweden)

    Manuel E. Del Cogliano

    2017-12-01

    Full Text Available Shiga toxin (Stx is the principal virulence factor during Shiga toxin-producing Escherichia coli (STEC infections. We have previously reported the inactivation of bacteriophage encoding Stx after treatment with chitosan, a linear polysaccharide polymer with cationic properties. Cationic antimicrobial peptides (cAMPs are short linear aminoacidic sequences, with a positive net charge, which display bactericidal or bacteriostatic activity against a wide range of bacterial species. They are promising novel antibiotics since they have shown bactericidal effects against multiresistant bacteria. To evaluate whether cationic properties are responsible for bacteriophage inactivation, we tested seven cationic peptides with proven antimicrobial activity as anti-bacteriophage agents, and one random sequence cationic peptide with no antimicrobial activity as a control. We observed bacteriophage inactivation after incubation with five cAMPs, but no inactivating activity was observed with the random sequence cationic peptide or with the non-alpha helical cAMP Omiganan. Finally, to confirm peptide-bacteriophage interaction, zeta potential was analyzed by following changes on bacteriophage surface charges after peptide incubation. According to our results we could propose that: (1 direct interaction of peptides with phage is a necessary step for bacteriophage inactivation, (2 cationic properties are necessary but not sufficient for bacteriophage inactivation, and (3 inactivation by cationic peptides could be sequence (or structure specific. Overall our data suggest that these peptides could be considered a new family of molecules potentially useful to decrease bacteriophage replication and Stx expression.

  12. Antimicrobial and Antifouling Polymeric Agents for Surface Functionalization of Medical Implants.

    Science.gov (United States)

    Zeng, Qiang; Zhu, Yiwen; Yu, Bingran; Sun, Yujie; Ding, Xiaokang; Xu, Chen; Wu, Yu-Wei; Tang, Zhihui; Xu, Fu-Jian

    2018-05-09

    Combating implant-associated infections is an urgent demand due to the increasing numbers in surgical operations such as joint replacements and dental implantations. Surface functionalization of implantable medical devices with polymeric antimicrobial and antifouling agents is an efficient strategy to prevent bacterial fouling and associated infections. In this work, antimicrobial and antifouling branched polymeric agents (GPEG and GEG) were synthesized via ring-opening reaction involving gentamicin and ethylene glycol species. Due to their rich primary amine groups, they can be readily coated on the polydopamine-modified implant (such as titanium) surfaces. The resultant surface coatings of Ti-GPEG and Ti-GEG produce excellent in vitro antibacterial efficacy toward both Staphylococcus aureus and Escherichia coli, while Ti-GPEG exhibit better antifouling ability. Moreover, the infection model with S. aureus shows that implanted Ti-GPEG possessed excellent antibacterial and antifouling ability in vivo. This study would provide a promising strategy for the surface functionalization of implantable medical devices to prevent implant-associated infections.

  13. CHEMICAL COMPOSITION AND ANTIMICROBIAL PROPERTIES OF DIFFERENT BASIL OILS

    OpenAIRE

    H.C. Srivastava, Pankaj Shukla, Ajay Singh Maurya and Sonia Tripathi*

    2013-01-01

    ABSTRACT: The aerial parts essential oils of Ocimum basilicum (Lamiaceae) from Togo were steam-distilled and investigated for their percentage composition (GC and GC/MS) and in vitro antimicrobial activities. Five oil chemotypes were identified and classified as follows in line with their principal components: estragole type; linalool/estragole type; methyleugenol type; methyleugenol/t-anethole type; tanethole type. The in vitro microbiological experiments revealed that only the methyleugenol...

  14. Antimicrobial and mutagenic activity of some carbono- and thiocarbonohydrazone ligands and their copper(II), iron(II) and zinc(II) complexes.

    Science.gov (United States)

    Bacchi, A; Carcelli, M; Pelagatti, P; Pelizzi, C; Pelizzi, G; Zani, F

    1999-06-15

    Several mono- and bis- carbono- and thiocarbonohydrazone ligands have been synthesised and characterised; the X-ray diffraction analysis of bis(phenyl 2-pyridyl ketone) thiocarbonohydrazone is reported. The coordinating properties of the ligands have been studied towards Cu(II), Fe(II), and Zn(II) salts. The ligands and the metal complexes were tested in vitro against Gram positive and Gram negative bacteria, yeasts and moulds. In general, the bisthiocarbonohydrazones possess the best antimicrobial properties and Gram positive bacteria are the most sensitive microorganisms. Bis(ethyl 2-pyridyl ketone) thiocarbonohydrazone, bis(butyl 2-pyridyl ketone)thiocarbonohydrazone and Cu(H2nft)Cl2 (H2nft, bis(5-nitrofuraldehyde)thiocarbonohydrazone) reveal a strong activity with minimum inhibitory concentrations of 0.7 microgram ml-1 against Bacillus subtilis and of 3 micrograms ml-1 against Staphylococcus aureus. Cu(II) complexes are more effective than Fe(II) and Zn(II) ones. All bisthiocarbono- and carbonohydrazones are devoid of mutagenic properties, with the exception of the compounds derived from 5-nitrofuraldehyde. On the contrary a weak mutagenicity, that disappears in the copper complexes, is exhibited by monosubstituted thiocarbonohydrazones.

  15. Chemical Composition, Antioxidant and Antimicrobial Activity of Pericarpium Citri Reticulatae Essential Oil

    Directory of Open Access Journals (Sweden)

    Bei Gao

    2011-05-01

    Full Text Available The chemical composition, antioxidant and antimicrobial activity of Pericarpium Citri Reticulatae (PCR essential oil obtained using an improved Clevenger type apparatus were studied. Among the five different PCRs examined the highest yield of essential oil was found in Chachi 2004 (harvested and stored in 2004 and the lowest in Chachi 2008 (harvested and stored in 2008. Fifty three different volatile compounds were determined, including terpenic hydrocarbons, alcohols, aldehydes, ketones and esters. D-limonene, one of terpenes, was the major constituent in PCR. The antioxidant capacity of PCR essential oil varied considerably with the duration of storage time, and the oil from Chachi 1994 has the strongest ferric-reducing antioxidant power. In addition, the essential oil possessed varying degrees of antimicrobial activity against Gram-positive bacteria (Staphylococcus aureus, Bacillus subtilis, Bacillus cereus, except Streptococcus faecalis, while had no effect on Gram-negative bacteria (Escherichia coli, Enterobacter cloacae.

  16. Chemical composition, antimicrobial and antioxidant properties of Mentha longifolia (L. Huds. essential oil

    Directory of Open Access Journals (Sweden)

    Haris Nikšić

    2012-12-01

    Full Text Available Introduction: Present study describes the antimicrobial activity and free radical scavenging capacity (RSC of essential oil from Mentha longifolia (L. Huds. Aim of this study to investigate the quality, antimicrobial andantioxidant activity of wild species Mentha longifolia essential oil from Bosnia and Herzegovina.Methods: The chemical profi le of essential oil was evaluated by the means of gas chromatography-mass spectrometry (GC-MS and thin-layer chromatography (TLC. Antimicrobial activity was tested against 6bacterial strains. RSC was assessed by measuring the scavenging activity of essential oils on 2,2- diphenyl-1-picrylhydrazil (DPPH.Results: The main constituents of the essential oil of M. longifoliae folium were oxygenated monoterpenes,piperitone oxide (63.58% and 1,8-cineole (12.03%. Essential oil exhibited very strong antibacterial activity.The most important antibacterial activity essential oil was expressed on Gram negative strains: Escherichia coli, Pseudomonas aerginosa and Salmonella enterica. subsp.enterica serotype ABONY. Antioxidant activity was evaluated as a RSC. Investigated essential oil was able to reduce DPPH radicals into the neutral DPPHH form (IC50=10.5 μg/ml and this activity was dose –dependent.Conclusion: The study revealed signifi cant antimicrobial activity of the investigated essential oil. The examined oil exhibited high RSC, which was found to be in correlation to the content of mainly monoterpeneketones and aldehydes. These results indicate that essential oils could serve as safe antioxidant and antiseptic supplements in pharmaceuticals.

  17. Progress in antimicrobial activities of chitin, chitosan and its oligosaccharides: a systematic study needs for food applications.

    Science.gov (United States)

    Dutta, J; Tripathi, S; Dutta, P K

    2012-02-01

    In recent years, active biomolecules such as chitosan and its derivatives are undergoing a significant and very fast development in food application area. Due to recent outbreaks of contaminations associated with food products, there have been growing concerns regarding the negative environmental impact of packaging materials of antimicrobial biofilms, which have been studied. Chitosan has a great potential for a wide range of applications due to its biodegradability, biocompatibility, antimicrobial activity, nontoxicity and versatile chemical and physical properties. It can be formed into fibers, films, gels, sponges, beads or nanoparticles. Chitosan films have been used as a packaging material for the quality preservation of a variety of foods. Chitosan has high antimicrobial activities against a wide variety of pathogenic and spoilage microorganisms, including fungi, and Gram-positive and Gram-negative bacteria. A tremendous effort has been made over the past decade to develop and test films with antimicrobial properties to improve food safety and shelf-life. This review highlights the preparation, mechanism, antimicrobial activity, optimization of biocide properties of chitosan films and applications including biocatalysts for the improvement of quality and shelf-life of foods.

  18. Formation, thermodynamic properties, microstructures and antimicrobial activity of mixed cationic/non-ionic surfactant microemulsions with isopropyl myristate as oil.

    Science.gov (United States)

    Bardhan, Soumik; Kundu, Kaushik; Das, Sajal; Poddar, Madhumita; Saha, Swapan K; Paul, Bidyut K

    2014-09-15

    Modification of the interface by blending of surfactants produces considerable changes in the elastic rigidity of the interface, which in turn affects the physicochemical properties of w/o microemulsions. Hence, it could be possible to tune the thermodynamic properties, microstructures and antimicrobial activity of microemulsions by using ionic/non-ionic mixed surfactants and polar lipophilic oil, which are widely used in biologically relevant systems. The present report was aimed at precise characterization of mixed cetyltrimethylammonium bromide and polyoxyethylene (23) lauryl ether microemulsions stabilized in 1-pentanol (Pn) and isopropyl myristate at different physicochemical conditions by employing phase studies, the dilution method, conductivity, DLS, FTIR (with HOD probing) and (1)H NMR measurements. Further, microbiological activities at different compositions were examined against two bacterial strains Bacillus subtilis and Escherichia coli at 303 K. The formation of mixed surfactant microemulsions was found to be spontaneous at all compositions, whereas it was endothermic at equimolar composition. FTIR and (1)H NMR measurements showed the existence of bulk-like, bound and trapped water molecules in confined environments. Interestingly, composition dependence of both highest and lowest inhibitory effects was observed against the bacterial strains, whereas similar features in spontaneity of microemulsion formation were also evidenced. These results suggested a close relationship between thermodynamic stability and antimicrobial activities. Such studies on polar lipophilic oil derived mixed surfactant microemulsions have not been reported earlier. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Optimisation of antimicrobial dosing based on pharmacokinetic and pharmacodynamic principles

    Directory of Open Access Journals (Sweden)

    Grace Si Ru Hoo

    2017-01-01

    Full Text Available While suboptimal dosing of antimicrobials has been attributed to poorer clinical outcomes, clinical cure and mortality advantages have been demonstrated when target pharmacokinetic (PK and pharmacodynamic (PD indices for various classes of antimicrobials were achieved to maximise antibiotic activity. Dosing optimisation requires a good knowledge of PK/PD principles. This review serves to provide a foundation in PK/PD principles for the commonly prescribed antibiotics (β-lactams, vancomycin, fluoroquinolones and aminoglycosides, as well as dosing considerations in special populations (critically ill and obese patients. PK principles determine whether an appropriate dose of antimicrobial reaches the intended pathogen(s. It involves the fundamental processes of absorption, distribution, metabolism and elimination, and is affected by the antimicrobial's physicochemical properties. Antimicrobial pharmacodynamics define the relationship between the drug concentration and its observed effect on the pathogen. The major indicator of the effect of the antibiotics is the minimum inhibitory concentration. The quantitative relationship between a PK and microbiological parameter is known as a PK/PD index, which describes the relationship between dose administered and the rate and extent of bacterial killing. Improvements in clinical outcomes have been observed when antimicrobial agents are dosed optimally to achieve their respective PK/PD targets. With the rising rates of antimicrobial resistance and a limited drug development pipeline, PK/PD concepts can foster more rational and individualised dosing regimens, improving outcomes while simultaneously limiting the toxicity of antimicrobials.

  20. Antimicrobial activity of chemically modified dextran derivatives.

    Science.gov (United States)

    Tuchilus, Cristina G; Nichifor, Marieta; Mocanu, Georgeta; Stanciu, Magdalena C

    2017-04-01

    Cationic amphiphilic dextran derivatives with a long alkyl group attached to the reductive end of the polysaccharide chain and quaternary ammonium groups attached as pendent groups to the main dextran backbone were synthesized and tested for their antimicrobial properties against several bacteria and fungi strains. Dependence of antimicrobial activity on both polymer chemical composition (dextran molar mass, length of end alkyl group and chemical structure of ammonium groups) and type of microbes was highlighted by disc-diffusion method (diameter of inhibition zone) and broth microdilution method (minimum inhibitory concentrations). Polymers had antimicrobial activity for all strains studied, except for Pseudomonas aeruginosa ATCC 27853. The best activity against Staphylococcus aureus (Minimun Inhibitory Concentration 60μg/mL) was provided by polymers obtained from dextran with lower molecular mass (Mn=4500), C 12 H 25 or C 18 H 37 end groups, and N,N-dimethyl-N-benzylammonium pendent groups. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. POSSESSION, REVIEW FROM CULTURAL AND PSYCHIATRY

    Directory of Open Access Journals (Sweden)

    Ni Ketut Sri Diniari

    2013-03-01

    Full Text Available Possession is a culture related syndrome, commonly found in Indonesia including Bali. We can see this event in religion and cultural ceremony and at other times at school, home, and in society. This syndrome consist of temporary loss of self identification and environment awareness; in several events a person acts as if he/she was controlled by other being, magic force, spirit or ‘other forces’. There are still several different opinions about trance-possession, whether it is related to certain culture or is a part of mental disorder. DSM-IV-TR and PPDGJ-III defined trance-possession as mental disorder (dissociative for involuntary possession, if it is not a common activity, and if it is not a part of religion or cultural event. (MEDICINA 2012;43:37-40.

  2. Phenolic Composition and Antioxidant and Antimicrobial Activities of Extracts Obtained from Crataegus azarolus L. var. aronia (Willd. Batt. Ovaries Calli

    Directory of Open Access Journals (Sweden)

    Radhia Bahri-Sahloul

    2014-01-01

    Full Text Available Objective. Plant cell culture is an innovative technology to produce a variety of substances. Numerous plants synthesize among their secondary metabolites phenolic compounds which possess antioxidant and antimicrobial effects. Hawthorn (Crataegus is one of these plants which has long been used in folk medicine and is widely utilized in pharmaceutical preparations mainly in neuro- and cardiosedative actions. Methods and Results. The production of polyphenol by fifty-two-week-old Crataegus azarolus var. aronia calli was studied in relation to growth variation and antioxidant and antimicrobial capacity within a subcultured period. The DPPH and ABTS+ assays were used to characterize the antioxidant actions of the callus cultures. Antimicrobial activity was tested by using disc diffusion and dilution assays for the determination of the minimal inhibitory concentration (MIC and the minimal bactericidal concentration (MBC values of each active extract. High TEACDPPH, TEACABTS, and antimicrobial activity was observed when maximal growth was reached. An optimum of total phenol, proanthocyanidins, flavonoid, (−-epicatechin, procyanidin B2, chlorogenic acid, and hyperoside was produced during this period. Conclusion. Antioxidant and antimicrobial activities were strongly correlated with total phenols and total flavonoids. Crataegus azarolus var. aronia cells culture represents an important alternative source of natural antioxidants and antimicrobials.

  3. Development and transmission of antimicrobial resistance among Gram-negative bacteria in animals and their public health impact.

    Science.gov (United States)

    Mukerji, Shewli; O'Dea, Mark; Barton, Mary; Kirkwood, Roy; Lee, Terence; Abraham, Sam

    2017-02-28

    Gram-negative bacteria are known to cause severe infections in both humans and animals. Antimicrobial resistance (AMR) in Gram-negative bacteria is a major challenge in the treatment of clinical infections globally due to the propensity of these organisms to rapidly develop resistance against antimicrobials in use. In addition, Gram-negative bacteria possess highly efficient mechanisms through which the AMR can be disseminated between pathogenic and commensal bacteria of the same or different species. These unique traits of Gram-negative bacteria have resulted in evolution of Gram-negative bacterial strains demonstrating resistance to multiple classes of antimicrobials. The evergrowing resistance issue has not only resulted in limitation of treatment options but also led to increased treatment costs and mortality rates in humans and animals. With few or no new antimicrobials in production to combat severe life-threatening infections, AMR has been described as the one of the most severe, long-term threats to human health. Aside from overuse and misuse of antimicrobials in humans, another factor that has exacerbated the emergence of AMR in Gram-negative bacteria is the veterinary use of antimicrobials that belong to the same classes considered to be critically important for treating serious life-threatening infections in humans. Despite the fact that development of AMR dates back to before the introduction of antimicrobials, the recent surge in the resistance towards all available critically important antimicrobials has emerged as a major public health issue. This review thus focuses on discussing the development, transmission and public health impact of AMR in Gram-negative bacteria in animals. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  4. Effects of dentin on the antimicrobial properties of endodontic medicaments.

    Science.gov (United States)

    Haapasalo, Markus; Qian, Wei; Portenier, Isabelle; Waltimo, Tuomas

    2007-08-01

    Successful treatment of apical periodontitis is dependent on the elimination of the infective microflora from the necrotic root canal system. Antimicrobial irrigating solutions and other locally used disinfecting agents and medicaments have a key role in the eradication of the microbes. While most if not all presently used disinfecting agents rapidly kill even the resistant microbes when tested in vitro in a test tube, the effectiveness of the same agents is clearly weaker in the in vivo conditions. Recent studies have given valuable information about the interaction of endodontic disinfecting agents with dentin and other compounds present in the necrotic root canal. As a result of such interactions the antimicrobial effectiveness of several of our key disinfectants may be weakened, or even eliminated under certain circumstances. Different disinfectants show different sensitivity to the action by the various potential inactivators, such as dentin, serum proteins, hydroxyapatite, collagen derived from different sources, and microbial biomass. This review is a summary of our present knowledge of the mostly negative interactions between endodontic disinfecting agents and the various compounds present in the root canal environment.

  5. Antimicrobial and Cytotoxic Activities of Extracts from Laurus nobilis Leaves

    KAUST Repository

    Felemban, Shaza

    2011-05-01

    The cytotoxic activity and antimicrobial properties of crude extracts from Laurus nobilis were investigated. With the use of the organic solvents, methanol and ethanol, crude extracts were obtained. To determine the availability of active bio‐compounds, an analysis using liquid chromatography was conducted. The crude extract was also tested for antimicrobial activity. The disc diffusion method was used against the bacterium Escherichia coli. The results showed a weak antimicrobial activity against E. coli. For cytotoxicity testing, the crude extract was studied on four cell-­lines: human breast adenocarcinoma, human embryonic kidney, HeLa (human cervical adenocarcinoma), and human lung fibroblast. From the alamarBlue® assay results, the extracts most potently affected the cell-­lines of human breast adenocarcinoma and human embryonic kidney. Using the lactate dehydrogenase (LDH) assay, an effect on human embryonic kidney was most prominent. With these findings, a suggestion that the crude extract of Laurus nobilis may have antiproliferative properties is put forth, with the possibility of this mechanism being induction of apoptosis with the involvement of Nuclear Factor Kappa κB (NF κB).

  6. Evaluation of the Antimicrobial Properties of the Essential Oil of Myrtus communis L. against Clinical Strains of Mycobacterium spp.

    Directory of Open Access Journals (Sweden)

    Stefania Zanetti

    2010-01-01

    Full Text Available Mycobacterium tuberculosis is the etiological agent of tuberculosis. The World Health Organization has estimated that 8 million of people develop active TB every year and the situation is complicated by an increase of Mycobacterium tuberculosis strains resistant to drugs used in antitubercular therapy: MDR and XDR-TB. Myrtle leaf extracts, used as an antiseptic in Sardinian traditional medicine, have strong antibacterial activity as several investigations showed. In this study we investigated the antimicrobial properties of the essential oil of Myrtus communis against clinical strains of M. tuberculosis and M. paratuberculosis.

  7. In vitro antimicrobial activity and antagonistic effect of essential oils from plant species.

    Science.gov (United States)

    Toroglu, Sevil

    2007-07-01

    Kahramanmaras, is a developing city located in the southern part of Turkey Thymus eigii (M. Zohary and RH. Davis) Jalas, Pinus nigraAm. sub sp pallasiana and Cupressus sempervirens L. are the useful plants of the Kahramanmaras province and have been understudy since 2004 for the traditional uses of plants empiric drug, spice, herbal tea industry herbal gum and fuel. The study was designed to examine the antimicrobial activities of essential oils of these plants by the disc diffusion and minimum inhibitory concentration (MIC) methods. In addition, antimicrobial activity of Thymus eigii was researched by effects when it was used together with antibiotics and even when it was combined with other essential oils. When the results of this study were compared with vancomycin (30 mcg) and erytromycin (15 mcg) standards, it was found that Thymus eigii essential oil was particularly found to possess strongerantimicrobial activity whereas other essential oils showed susceptible or moderate activity However, antimicrobial activity changed also by in vitro interactions between antibiotics and Thymus eigii essential oil, also between essential oils of these plants and that of Thymus eigii causing synergic, additive, antagonist effect.

  8. Development of a New Monomer for the Synthesis of Intrinsic Antimicrobial Polymers with Enhanced Material Properties.

    Science.gov (United States)

    Brodkorb, Florian; Fischer, Björn; Kalbfleisch, Katrin; Robers, Oliver; Braun, Carina; Dohlen, Sophia; Kreyenschmidt, Judith; Lorenz, Reinhard; Kreyenschmidt, Martin

    2015-08-24

    The use of biocidal compounds in polymers is steadily increasing because it is one solution to the need for safety and hygiene. It is possible to incorporate an antimicrobial moiety to a polymer. These polymers are referred to as intrinsic antimicrobial. The biocidal action results from contact of the polymer to the microorganisms, with no release of active molecules. This is particularly important in critical fields like food technology, medicine and ventilation technology, where migration or leaching is crucial and undesirable. The isomers N-(1,1-dimethylethyl)-4-ethenyl-benzenamine and N-(1,1-dimethyl-ethyl)-3-ethenyl-benzenamine (TBAMS) are novel (Co-)Monomers for intrinsic anti-microbial polymers. The secondary amines were prepared and polymerized to the corresponding water insoluble polymer. The antimicrobial activity was analyzed by the test method JIS Z 2801:2000. Investigations revealed a high antimicrobial activity against Staphylococcus aureus and Escherichia coli with a reduction level of >4.5 log10 units. Furthermore, scanning electron microscopy (SEM) of E. coli. in contact with the polymer indicates a bactericidal action which is caused by disruption of the bacteria cell membranes, leading to lysis of the cells.

  9. Surface topography of silicon nitride affects antimicrobial and osseointegrative properties of tibial implants in a murine model.

    Science.gov (United States)

    Ishikawa, Masahiro; de Mesy Bentley, Karen L; McEntire, Bryan J; Bal, B Sonny; Schwarz, Edward M; Xie, Chao

    2017-12-01

    While silicon nitride (Si 3 N 4 ) is an antimicrobial and osseointegrative orthopaedic biomaterial, the contribution of surface topography to these properties is unknown. Using a methicillin-resistant strain of Staphylococcus aureus (MRSA), this study evaluated Si 3 N 4 implants in vitro utilizing scanning electron microscopy (SEM) with colony forming unit (CFU) assays, and later in an established in vivo murine tibia model of implant-associated osteomyelitis. In vitro, the "as-fired" Si 3 N 4 implants displayed significant reductions in adherent bacteria versus machined Si 3 N 4 (2.6 × 10 4 vs. 8.7 × 10 4 CFU, respectively; p SEM imaging demonstrated that MRSA cannot directly adhere to native as-fired Si 3 N 4 . Subsequently, a cross-sectional study was completed in which sterile or MRSA contaminated as-fired and machined Si 3 N 4 implants were inserted into the tibiae of 8-week old female Balb/c mice, and harvested on day 1, 3, 5, 7, 10, or 14 post-operatively for SEM. The findings demonstrated that the antimicrobial activity of the as-fired implants resulted from macrophage clearance of the bacteria during biofilm formation on day 1, followed by osseointegration through the apparent recruitment of mesenchymal stem cells on days 3-5, which differentiated into osteoblasts on days 7-14. In contrast, the antimicrobial behavior of the machined Si 3 N 4 was due to repulsion of the bacteria, a phenomenon that also limited osteogenesis, as host cells were also unable to adhere to the machined surface. Taken together, these results suggest that the in vivo biological behavior of Si 3 N 4 orthopaedic implants is driven by critical features of their surface nanotopography. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 3413-3421, 2017. © 2017 Wiley Periodicals, Inc.

  10. Antimicrobial and Cytotoxic Activity of Three Bitter Plants-Enhydra fluctuans, Andrographis Peniculata and Clerodendrum Viscosum.

    Directory of Open Access Journals (Sweden)

    M. Ruhul Amin

    2012-08-01

    Full Text Available Purpose: In this study, three important medicinal plants (Enhydra fluctuans Lour, Clerodendrum viscosum Vent and Andrographis peniculata Wall of Bangladesh were investigated to analyze their antimicrobial and cytotoxic activities against some pathogenic microorganisms and Artemia salina (brine shrimp nauplii. Methods: The coarse powder material of leaves of each plant was extracted separately with methanol and acetone to yield methanol extracts of leaves of Enhydra fluctuans (MLE, Clerodendrum viscosum (MLC and Andrographis peniculata (MLA, and acetone extracts of leaves of Enhydra fluctuans (ALE, Clerodendrum viscosum (ALC and Andrographis peniculata (ALA. The disc diffusion method and the method described by Meyer were used to determine the antimicrobial and cytotoxic activities of each plant extract. Results: Among the test samples, MLE and ALE showed comparatively better antimicrobial activity against a number of bacteria and fungi with inhibition zones in the range of 06-15 mm and according to the intensity of activity, the efficacy against microorganisms were found in the order of Enhydra fluctuans> Andrographi speniculata> Clerodendrum viscosum. In cytotoxicity assay, all samples were found to be active against brine shrimp nauplii (Artemia salina and ALA produced lowest LC50 value (7.03 μg/ml. Conclusion: Enhydra fluctuans and Andrographi speniculata possesses significant antimicrobial and cytotoxic activities.

  11. Individual ball possession in soccer.

    Directory of Open Access Journals (Sweden)

    Daniel Link

    Full Text Available This paper describes models for detecting individual and team ball possession in soccer based on position data. The types of ball possession are classified as Individual Ball Possession (IBC, Individual Ball Action (IBA, Individual Ball Control (IBC, Team Ball Possession (TBP, Team Ball Control (TBC und Team Playmaking (TPM according to different starting points and endpoints and the type of ball control involved. The machine learning approach used is able to determine how long the ball spends in the sphere of influence of a player based on the distance between the players and the ball together with their direction of motion, speed and the acceleration of the ball. The degree of ball control exhibited during this phase is classified based on the spatio-temporal configuration of the player controlling the ball, the ball itself and opposing players using a Bayesian network. The evaluation and application of this approach uses data from 60 matches in the German Bundesliga season of 2013/14, including 69,667 IBA intervals. The identification rate was F = .88 for IBA and F = .83 for IBP, and the classification rate for IBC was κ = .67. Match analysis showed the following mean values per match: TBP 56:04 ± 5:12 min, TPM 50:01 ± 7:05 min and TBC 17:49 ± 8:13 min. There were 836 ± 424 IBC intervals per match and their number was significantly reduced by -5.1% from the 1st to 2nd half. The analysis of ball possession at the player level indicates shortest accumulated IBC times for the central forwards (0:49 ± 0:43 min and the longest for goalkeepers (1:38 ± 0:58 min, central defenders (1:38 ± 1:09 min and central midfielders (1:27 ± 1:08 min. The results could improve performance analysis in soccer, help to detect match events automatically, and allow discernment of higher value tactical structures, which is based on individual ball possession.

  12. Antimicrobial brass coatings prepared on poly(ethylene terephthalate) textile by high power impulse magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ying-Hung, E-mail: tieamo2002@gmail.com; Wu, Guo-Wei; He, Ju-Liang

    2015-03-01

    The goal of this work is to prepare antimicrobial, corrosion-resistant and low-cost Cu65Zn35 brass film on poly(ethylene terephthalate) (PET) fabric by high-power impulse magnetron sputtering (HIPIMS), which is known to provide high-density plasma, so as to generate a strongly adherent film at a reduced substrate temperature. The results reveal that the brass film grows in a layer-plus-island mode. Independent of their deposition time, the obtained films retain a Cu/Zn elemental composition ratio of 1.86 and exhibit primarily an α copper phase structure. Oxygen plasma pre-treatment for 1 min before coating can significantly increase film adhesion such that the brass-coated fabric of Grade 5 or Grade 4–5 can ultimately be obtained under dry and wet rubbing tests, respectively. However, a deposition time of 1 min suffices to provide effective antimicrobial properties for both Staphylococcus aureus and Escherichia coli. As a whole, the feasibility of using such advanced HIPIMS coating technique to develop durable antimicrobial textile was demonstrated. - Highlights: • Prepare antimicrobial, corrosion-resistant and low-cost Cu65Zn35 brass film on PET fabric by HIPIMS • Brass-coated fabric with excellent durability, even undergone rubbing and washing tests • Brass-coated fabric provides effective antimicrobial properties for E. coli and S. aureus. • After brass coating, PET fabric still retained its mechanical property.

  13. Antimicrobial brass coatings prepared on poly(ethylene terephthalate) textile by high power impulse magnetron sputtering

    International Nuclear Information System (INIS)

    Chen, Ying-Hung; Wu, Guo-Wei; He, Ju-Liang

    2015-01-01

    The goal of this work is to prepare antimicrobial, corrosion-resistant and low-cost Cu65Zn35 brass film on poly(ethylene terephthalate) (PET) fabric by high-power impulse magnetron sputtering (HIPIMS), which is known to provide high-density plasma, so as to generate a strongly adherent film at a reduced substrate temperature. The results reveal that the brass film grows in a layer-plus-island mode. Independent of their deposition time, the obtained films retain a Cu/Zn elemental composition ratio of 1.86 and exhibit primarily an α copper phase structure. Oxygen plasma pre-treatment for 1 min before coating can significantly increase film adhesion such that the brass-coated fabric of Grade 5 or Grade 4–5 can ultimately be obtained under dry and wet rubbing tests, respectively. However, a deposition time of 1 min suffices to provide effective antimicrobial properties for both Staphylococcus aureus and Escherichia coli. As a whole, the feasibility of using such advanced HIPIMS coating technique to develop durable antimicrobial textile was demonstrated. - Highlights: • Prepare antimicrobial, corrosion-resistant and low-cost Cu65Zn35 brass film on PET fabric by HIPIMS • Brass-coated fabric with excellent durability, even undergone rubbing and washing tests • Brass-coated fabric provides effective antimicrobial properties for E. coli and S. aureus. • After brass coating, PET fabric still retained its mechanical property

  14. Physical and antimicrobial properties of anise oil loaded nanoemulsions on the survival of foodborne pathogens.

    Science.gov (United States)

    Topuz, Osman Kadir; Özvural, Emin Burçin; Zhao, Qin; Huang, Qingrong; Chikindas, Michael; Gölükçü, Muharrem

    2016-07-15

    The purpose of this research was to investigate antimicrobial effects of nano emulsions of anise oil (AO) on the survival of common food borne pathogens, Listeria monocytogenes and Escherichia coli O157:H7. Series of emulsions containing different level of anise oil as potential antimicrobial delivery systems were prepared. Antimicrobial activities of bulk anise oil and its emulsions (coarse and nano) was tested by the minimum inhibitory concentration and time kill assay. Our results showed that bulk anise oil reduced the population of E. coli O157:H7 and L. monocytogenes by 1.48 and 0.47 log cfu/ml respectively after 6 h of contact time. However, under the same condition anise oil nanoemulsion (AO75) reduced E. coli O157:H7 and L. monocytogenes count by 2.51 and 1.64 log cfu/ml, respectively. Physicochemical and microbial analyses indicated that both nano and coarse emulsions of anise oil showed better and long-term physicochemical stability and antimicrobial activity compared to bulk anise oil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. The Acetone Extract of Sclerocarya birrea (Anacardiaceae) Possesses Antiproliferative and Apoptotic Potential against Human Breast Cancer Cell Lines (MCF-7)

    Science.gov (United States)

    Tanih, Nicoline Fri; Ndip, Roland Ndip

    2013-01-01

    Interesting antimicrobial data from the stem bark of Sclerocarya birrea, which support its use in traditional medicine for the treatment of many diseases, have been delineated. The current study was aimed to further study some pharmacological and toxicological properties of the plant to scientifically justify its use. Anticancer activity of water and acetone extracts of S. birrea was evaluated on three different cell lines, HT-29, HeLa, and MCF-7 using the cell titre blue viability assay in 96-well plates. Apoptosis was evaluated using the acridine orange and propidium iodide staining method, while morphological structure of treated cells was examined using SEM. The acetone extract exhibited remarkable antiproliferative activities on MCF-7 cell lines at dose- and time-dependent manners (24 h and 48 h of incubation). The extract also exerted apoptotic programmed cell death in MCF-7 cells with significant effect on the DNA. Morphological examination also displayed apoptotic characteristics in the treated cells, including clumping, condensation, and culminating to budding of the cells to produce membrane-bound fragmentation, as well as formation of apoptotic bodies. The acetone extract of S. birrea possesses antiproliferative and apoptotic potential against MCF-7-treated cells and could be further exploited as a potential lead in anticancer therapy. PMID:23576913

  16. New antimicrobial contact catalyst killing antibiotic resistant clinical and waterborne pathogens

    Energy Technology Data Exchange (ETDEWEB)

    Guridi, A. [Biophysics Unit (CSIC, UPV/EHU), Department of Biochemistry and Molecular Biology, University of the Basque Country, 48940 Leioa (Spain); Diederich, A.-K. [University Medical Center Freiburg, Division of Infectious Diseases, Hugstetter Strasse 55, 79106 Freiburg (Germany); Biology II, Microbiology, Albert-Ludwigs-University Freiburg, Schänzlestrasse 1, 79104 Freiburg (Germany); Aguila-Arcos, S.; Garcia-Moreno, M. [Biophysics Unit (CSIC, UPV/EHU), Department of Biochemistry and Molecular Biology, University of the Basque Country, 48940 Leioa (Spain); Blasi, R.; Broszat, M. [University Medical Center Freiburg, Division of Infectious Diseases, Hugstetter Strasse 55, 79106 Freiburg (Germany); Biology II, Microbiology, Albert-Ludwigs-University Freiburg, Schänzlestrasse 1, 79104 Freiburg (Germany); Schmieder, W.; Clauss-Lendzian, E. [Biology II, Microbiology, Albert-Ludwigs-University Freiburg, Schänzlestrasse 1, 79104 Freiburg (Germany); Sakinc-Gueler, T. [University Medical Center Freiburg, Division of Infectious Diseases, Hugstetter Strasse 55, 79106 Freiburg (Germany); Andrade, R. [Advanced Research Facilities (SGIker), University of the Basque Country, UPV/EHU, 48940 Leioa (Spain); Alkorta, I. [Biophysics Unit (CSIC, UPV/EHU), Department of Biochemistry and Molecular Biology, University of the Basque Country, 48940 Leioa (Spain); Meyer, C.; Landau, U. [Largentec GmbH, Am Waldhaus 32, 14129 Berlin (Germany); Grohmann, E., E-mail: elisabeth.grohmann@googlemail.com [Biophysics Unit (CSIC, UPV/EHU), Department of Biochemistry and Molecular Biology, University of the Basque Country, 48940 Leioa (Spain); University Medical Center Freiburg, Division of Infectious Diseases, Hugstetter Strasse 55, 79106 Freiburg (Germany); Biology II, Microbiology, Albert-Ludwigs-University Freiburg, Schänzlestrasse 1, 79104 Freiburg (Germany)

    2015-05-01

    Microbial growth on medical and technical devices is a big health issue, particularly when microorganisms aggregate to form biofilms. Moreover, the occurrence of antibiotic-resistant bacteria in the clinical environment is dramatically growing, making treatment of bacterial infections very challenging. In search of an alternative, we studied a novel antimicrobial surface coating based on micro galvanic elements formed by silver and ruthenium with surface catalytic properties. The antimicrobial coating efficiently inhibited the growth of the nosocomial pathogens Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis and Enterococcus faecium as demonstrated by the growth inhibition on agar surface and in biofilms of antibiotic resistant clinical E. faecalis, E. faecium, and S. aureus isolates. It also strongly reduced the growth of Legionella in a drinking water pipeline and of Escherichia coli in urine. We postulate a mode of action of the antimicrobial material, which is independent of the release of silver ions. Thus, the novel antimicrobial coating could represent an alternative to combat microbial growth avoiding the toxic side effects of high levels of silver ions on eukaryotic cells. - Highlights: • The novel antimicrobial inhibits growth of clinical staphylococci and enterococci. • The novel antimicrobial inhibits growth of Legionella in drinking water. • A putative mode of action of the antimicrobial coating is presented.

  17. New antimicrobial contact catalyst killing antibiotic resistant clinical and waterborne pathogens

    International Nuclear Information System (INIS)

    Guridi, A.; Diederich, A.-K.; Aguila-Arcos, S.; Garcia-Moreno, M.; Blasi, R.; Broszat, M.; Schmieder, W.; Clauss-Lendzian, E.; Sakinc-Gueler, T.; Andrade, R.; Alkorta, I.; Meyer, C.; Landau, U.; Grohmann, E.

    2015-01-01

    Microbial growth on medical and technical devices is a big health issue, particularly when microorganisms aggregate to form biofilms. Moreover, the occurrence of antibiotic-resistant bacteria in the clinical environment is dramatically growing, making treatment of bacterial infections very challenging. In search of an alternative, we studied a novel antimicrobial surface coating based on micro galvanic elements formed by silver and ruthenium with surface catalytic properties. The antimicrobial coating efficiently inhibited the growth of the nosocomial pathogens Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis and Enterococcus faecium as demonstrated by the growth inhibition on agar surface and in biofilms of antibiotic resistant clinical E. faecalis, E. faecium, and S. aureus isolates. It also strongly reduced the growth of Legionella in a drinking water pipeline and of Escherichia coli in urine. We postulate a mode of action of the antimicrobial material, which is independent of the release of silver ions. Thus, the novel antimicrobial coating could represent an alternative to combat microbial growth avoiding the toxic side effects of high levels of silver ions on eukaryotic cells. - Highlights: • The novel antimicrobial inhibits growth of clinical staphylococci and enterococci. • The novel antimicrobial inhibits growth of Legionella in drinking water. • A putative mode of action of the antimicrobial coating is presented

  18. 50 CFR 20.38 - Possession of live birds.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Possession of live birds. 20.38 Section 20... WILDLIFE AND PLANTS (CONTINUED) MIGRATORY BIRD HUNTING Possession § 20.38 Possession of live birds. Every migratory game bird wounded by hunting and reduced to possession by the hunter shall be immediately killed...

  19. Characterization of integron mediated antimicrobial resistance in Salmonella isolated from diseased swine

    Science.gov (United States)

    White, David G.; Zhao, Shaohua; McDermott, Patrick F.; Ayers, Sherry; Friedman, Sharon; Sherwood, Julie; Breider-Foley, Missy; Nolan, Lisa K.

    2003-01-01

    Forty-two Salmonella isolates obtained from diseased swine were genetically characterized for the presence of specific antimicrobial resistance mechanisms. Twenty of these isolates were characterized as S. Typhimurium DT104 strains. Pulsed-field gel electrophoresis was used to determine genetic relatedness and revealed 20 distinct genetic patterns among the 42 isolates. However, all DT104 isolates fell within 2 closely related genetic clusters. Other Salmonella isolates were genetically grouped together according to serotype. All DT104 isolates displayed the penta-resistance phenotype to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole, and tetracycline. Resistance to sulfamethoxazole, tetracycline, streptomycin, kanamycin, and ampicillin was most common among the non-DT104 Salmonella isolates. All DT104 strains contained 2 chromosomal integrons of 1000 and 1200 base pairs. The DNA sequencing revealed that the 2 integrons contained genes encoding a resistance to streptomycin and ampicillin, respectively. None of the non-DT104 strains showed the same pattern, although several strains possessed integrons of 1000 base pairs or larger. However, the majority of non-DT104 Salmonella strains did not possess any integrons. Two Salmonella isolates displayed tolerance to the organic solvent cyclohexane, indicating the possibility that they are overexpressing chromosomal regulatory genes marA or soxS or the associated multidrug efflux pump, acrAB. This research suggests that integrons contribute to antimicrobial resistance among specific swine Salmonella serotypes; however, they are not as widely disseminated among non-Typhimurium swine Salmonella serotypes as previously thought. PMID:12528827

  20. Chitosan based metallic nanocomposite scaffolds as antimicrobial wound dressings.

    Science.gov (United States)

    Mohandas, Annapoorna; Deepthi, S; Biswas, Raja; Jayakumar, R

    2018-09-01

    Chitosan based nanocomposite scaffolds have attracted wider applications in medicine, in the area of drug delivery, tissue engineering and wound healing. Chitosan matrix incorporated with nanometallic components has immense potential in the area of wound dressings due to its antimicrobial properties. This review focuses on the different combinations of Chitosan metal nanocomposites such as Chitosan/nAg, Chitosan/nAu, Chitosan/nCu, Chitosan/nZnO and Chitosan/nTiO 2 towards enhancement of healing or infection control with special reference to the antimicrobial mechanism of action and toxicity.

  1. Distinct Profiling of Antimicrobial Peptide Families

    KAUST Repository

    Khamis, Abdullah M.

    2014-11-10

    Motivation: The increased prevalence of multi-drug resistant (MDR) pathogens heightens the need to design new antimicrobial agents. Antimicrobial peptides (AMPs) exhibit broad-spectrum potent activity against MDR pathogens and kills rapidly, thus giving rise to AMPs being recognized as a potential substitute for conventional antibiotics. Designing new AMPs using current in-silico approaches is, however, challenging due to the absence of suitable models, large number of design parameters, testing cycles, production time and cost. To date, AMPs have merely been categorized into families according to their primary sequences, structures and functions. The ability to computationally determine the properties that discriminate AMP families from each other could help in exploring the key characteristics of these families and facilitate the in-silico design of synthetic AMPs. Results: Here we studied 14 AMP families and sub-families. We selected a specific description of AMP amino acid sequence and identified compositional and physicochemical properties of amino acids that accurately distinguish each AMP family from all other AMPs with an average sensitivity, specificity and precision of 92.88%, 99.86% and 95.96%, respectively. Many of our identified discriminative properties have been shown to be compositional or functional characteristics of the corresponding AMP family in literature. We suggest that these properties could serve as guides for in-silico methods in design of novel synthetic AMPs. The methodology we developed is generic and has a potential to be applied for characterization of any protein family.

  2. Distinct Profiling of Antimicrobial Peptide Families

    KAUST Repository

    Khamis, Abdullah M.; Essack, Magbubah; Gao, Xin; Bajic, Vladimir B.

    2014-01-01

    Motivation: The increased prevalence of multi-drug resistant (MDR) pathogens heightens the need to design new antimicrobial agents. Antimicrobial peptides (AMPs) exhibit broad-spectrum potent activity against MDR pathogens and kills rapidly, thus giving rise to AMPs being recognized as a potential substitute for conventional antibiotics. Designing new AMPs using current in-silico approaches is, however, challenging due to the absence of suitable models, large number of design parameters, testing cycles, production time and cost. To date, AMPs have merely been categorized into families according to their primary sequences, structures and functions. The ability to computationally determine the properties that discriminate AMP families from each other could help in exploring the key characteristics of these families and facilitate the in-silico design of synthetic AMPs. Results: Here we studied 14 AMP families and sub-families. We selected a specific description of AMP amino acid sequence and identified compositional and physicochemical properties of amino acids that accurately distinguish each AMP family from all other AMPs with an average sensitivity, specificity and precision of 92.88%, 99.86% and 95.96%, respectively. Many of our identified discriminative properties have been shown to be compositional or functional characteristics of the corresponding AMP family in literature. We suggest that these properties could serve as guides for in-silico methods in design of novel synthetic AMPs. The methodology we developed is generic and has a potential to be applied for characterization of any protein family.

  3. Molecular characterization, technological properties and safety aspects of enterococci from 'Hussuwa', an African fermented sorghum product.

    Science.gov (United States)

    Yousif, N M K; Dawyndt, P; Abriouel, H; Wijaya, A; Schillinger, U; Vancanneyt, M; Swings, J; Dirar, H A; Holzapfel, W H; Franz, C M A P

    2005-01-01

    To identify enterococci from Hussuwa, a Sudanese fermented sorghum product, and determine their technological properties and safety for possible inclusion in a starter culture preparation. Twenty-two Enterococcus isolates from Hussuwa were identified as Enterococcus faecium by using phenotypic and genotypic tests such as 16S rDNA gene sequencing, RAPD-PCR and restriction fragment length polymorphism of the 16S/23S intergenic spacer region fingerprinting. Genotyping revealed that strains were not clonally related and exhibited a considerable degree of genomic diversity. Some strains possessed useful technological properties such as production of bacteriocins and H2O2 or utilization of raffinose and stachyose. None produced alpha-amylase or tannase. A safety investigation revealed that all strains were susceptible to the antibiotics ampicillin, gentamicin, chloramphenicol, tetracycline and streptomycin, but some were resistant to ciprofloxacin, erythromycin, penicillin and vancomycin. Production of biogenic amines or presence of genes encoding virulence determinants occurred in some strains. Enterococcus faecium strains are associated with fermentation of Sudanese Hussuwa. Some strains exhibited useful technological properties such as production of antimicrobial agents and fermentation of indigestible sugars, which may aid in stabilizing and improving the digestibility of the product respectively. Enterococci were shown to play a role in the fermentation of African foods. While beneficial properties of these bacteria are indicated, their presence in this food may also imply a hygienic risk as a result of antimicrobial resistances or presence of virulence determinants.

  4. PRELIMINARY ANTIMICROBIAL AND PHYTOCHEMICAL STUDY OF THE AQUEOUS, ALCHOLIC AND CHLOROFORM EXTRACTS OF THE LEAVES OF NAPOLEONAEA VOGELLI HOOK. AND PLANCH. (LECYTHIDIACEAE

    Directory of Open Access Journals (Sweden)

    Iriagbonse Asowata

    2013-02-01

    Full Text Available The antimicrobial activity and phytochemical analysis of Napoleonaea vogelli P. Beauv. {Lecythidiaceae} was done using aqueous, ethanol, methanol and chloroform leaf extracts to determine its antimicrobial and phytochemical constituents. The antimicrobial activities of the extracts were tested against bacteria and fungi isolates using the agar well diffusion method. Commercial antibiotics were used as positive reference standards to determine the sensitivity of the isolates. The leaf extracts of the plant were subjected to phytochemical analysis using standard experimental procedures. The extracts showed significant inhibitory activity against the test microbial isolates: Escherichia coli, Bacillus subtilis, Staphylococcus aureus, Klebsiella pneumoniae, Proteus mirabilis, Pseudomonas aeruginosa, Penicillum notatum, Aspergillus niger, Fusarium oxysporum, Saccharomyces cerevisiae and Candida albicans. The MIC values obtained using the Agar-dilution test ranged from 0.5-10mg/ml. The results demonstrated that the extracts of the leaves (N. vogelli possess broad spectrum antimicrobial activity. These results suggest that it will be useful in the treatment of microbial infections.

  5. Antioxidant, electrochemical, thermal, antimicrobial and alkane oxidation properties of tridentate Schiff base ligands and their metal complexes

    Science.gov (United States)

    Ceyhan, Gökhan; Çelik, Cumali; Uruş, Serhan; Demirtaş, İbrahim; Elmastaş, Mahfuz; Tümer, Mehmet

    2011-10-01

    In this study, two Schiff base ligands (HL 1 and HL 2) and their Cu(II), Co(II), Ni(II), Pd(II) and Ru(III) metal complexes were synthesized and characterized by the analytical and spectroscopic methods. Alkane oxidation activities of the metal complexes were studied on cyclohexane as substrate. The ligands and their metal complexes were evaluated for their antimicrobial activity against Corynebacterium xerosis, Bacillus brevis, Bacillus megaterium, Bacillus cereus, Mycobacterium smegmatis, Staphylococcus aureus, Micrococcus luteus and Enterococcus faecalis (as Gram-positive bacteria) and Pseudomonas aeruginosa, Klebsiella pneumoniae, Escherichia coli, Yersinia enterocolitica, Klebsiella fragilis, Saccharomyces cerevisiae, and Candida albicans (as Gram-negative bacteria). The antioxidant properties of the Schiff base ligands were evaluated in a series of in vitro tests: 1,1-diphenyl-2-picrylhydrazyl (DPPH rad ) free radical scavenging and reducing power activity of superoxide anion radical generated non-enzymatic systems. Electrochemical and thermal properties of the compounds were investigated.

  6. Phytochemical Characterization of Veronica officinalis L., V. teucrium L. and V. orchidea Crantz from Romania and Their Antioxidant and Antimicrobial Properties

    Directory of Open Access Journals (Sweden)

    Andrei Mocan

    2015-09-01

    Full Text Available Aerial parts of Veronica species are used in Romanian traditional medicine for the treatment of various conditions like kidney diseases, cough, and catarrh, and are known for their wound-healing properties. In the present study, the phenolic and sterolic content and the antioxidant and antimicrobial activities of three Veronica species (Plantaginaceae, V. officinalis L., V. teucrium L. and V. orchidea Crantz, were studied. The identification and quantification of several phenolic compounds and phytosterols were performed using LC/MS techniques and the main components were p-coumaric acid, ferulic acid, luteoline, hispidulin and β-sitosterol. More than that, hispidulin, eupatorin and eupatilin were detected for the first time in the Veronica genus. Nevertheless, representatives of the Veronica genus were never investigated in terms of their phytosterol content. The antioxidant potential investigated by Trolox equivelents antioxidant capacity (TEAC and EPR spectroscopy revealed that V. officinalis and V. orchidea extracts presented similar antioxidant capacities, whilst the values registered for V. teucrium extract are lower. Regarding the antimicrobial activity of the investigated species, Staphylococcus aureus, Listeria monocytogenes and Listeria ivanovii were the most sensitive strains with MIC values between 3.9 and 15.62 mg/mL. The results obtained by this study may serve to promote better use of representatives from the genus Veronica as antioxidant and antimicrobial agents.

  7. Comparative analysis of copper and zinc based agrichemical biocide products: materials characteristics, phytotoxicity and in vitro antimicrobial efficacy

    Directory of Open Access Journals (Sweden)

    Harikishan Kannan

    2016-07-01

    Full Text Available In the past few decades, copper based biocides have been extensively used in food crop protection including citrus, small fruits and in all garden vegetable production facilities. Continuous and rampant use of copper based biocides over decades has led to accumulation of this metal in the soil and the surrounding ecosystem. Toxic levels of copper and its derivatives in both the soil and in the run off pose serious environmental and public health concerns. Alternatives to copper are in great need for the agriculture industry to produce food crops with minimal environmental risks. A combination of copper and zinc metal containing biocide such as Nordox 30/30 or an improved version of zinc-only containing biocide would be a good alternative to copper-only products if the efficacy can be maintained. As of yet there is no published literature on the comparative study of the materials characteristics and phyto-compatibility properties of copper and zinc-based commercial products that would allow us to evaluate the advantages and disadvantages of both versions of pesticides. In this report, we compared copper hydroxide and zinc oxide based commercially available biocides along with suitable control materials to assess their efficacy as biocides. We present a detailed material characterization of the biocides including morphological studies involving electron microscopy, molecular structure studies involving X-ray diffraction, phytotoxicity studies in model plant (tomato and antimicrobial studies involving surrogate plant pathogens (Xanthomonas alfalfae subsp. citrumelonis, Pseudomonas syringae pv. syringae and Clavibacter michiganensis subsp. michiganensis. Zinc based compounds were found to possess comparable to superior antimicrobial properties while exhibiting significantly lower phytotoxicity when compared to copper based products thus suggesting their potential as an alternative.

  8. Assessing the antimicrobial activity of zinc oxide thin films using disk diffusion and biofilm reactor

    International Nuclear Information System (INIS)

    Gittard, Shaun D.; Perfect, John R.; Monteiro-Riviere, Nancy A.; Wei Wei; Jin Chunming; Narayan, Roger J.

    2009-01-01

    The electronic and chemical properties of semiconductor materials may be useful in preventing growth of microorganisms. In this article, in vitro methods for assessing microbial growth on semiconductor materials will be presented. The structural and biological properties of silicon wafers coated with zinc oxide thin films were evaluated using atomic force microscopy, X-ray photoelectron spectroscopy, and MTT viability assay. The antimicrobial properties of zinc oxide thin films were established using disk diffusion and CDC Biofilm Reactor studies. Our results suggest that zinc oxide and other semiconductor materials may play a leading role in providing antimicrobial functionality to the next-generation medical devices

  9. SCREENING OF ANTIMICROBIAL ACTIVITY AND GENES CODING POLYKETIDE SYNTHETASE AND NONRIBOSOMAL PEPTIDE SYNTHETASE OF ACTINOMYCETE ISOLATES

    Directory of Open Access Journals (Sweden)

    Silvia Kovácsová

    2013-12-01

    Full Text Available The aim of this study was to observe antimicrobial activity using agar plate diffusion method and screening genes coding polyketide synthetase (PKS-I and nonribosomal peptide synthetase (NRPS from actinomycetes. A total of 105 actinomycete strains were isolated from arable soil. Antimicrobial activity was demonstrated at 54 strains against at least 1 of total 12 indicator organisms. Antifungal properties were recorded more often than antibacterial properties. The presence of PKS-I and NRPS genes were founded at 61 of total 105 strains. The number of strains with mentioned biosynthetic enzyme gene fragments matching the anticipated length were 19 (18% and 50 (47% respectively. Overall, five actinomycete strains carried all the biosynthetical genes, yet no antimicrobial activity was found against any of tested pathogens. On the other hand, twenty-one strains showed antimicrobial activity even though we were not able to amplify any of the PKS or NRPS genes from them. Combination of the two methods showed broad-spectrum antimicrobial activity of actinomycetes isolated from arable soil, which indicate that actinomycetes are valuable reservoirs of novel bioactive compounds.

  10. Promising approaches to optimize the biological properties of the antimicrobial peptide esculentin-1a(1-21)NH2: Amino acids substitution and conjugation to nanoparticles

    Science.gov (United States)

    Casciaro, Bruno; Cappiello, Floriana; Cacciafesta, Mauro; Mangoni, Maria Luisa

    2017-04-01

    Antimicrobial peptides (AMPs) represent an interesting class of molecules with expanding biological properties which make them a viable alternative for the development of future antibiotic drugs. However, for this purpose, some limitations must be overcome: (i) the poor biostability due to enzymatic degradation; (ii) the cytotoxicity at concentrations slightly higher than the therapeutic dosages; and (iii) the inefficient delivery to the target site at effective concentrations. Recently, a derivative of the frog skin esculentin-1a, named esculentin-1a(1-21)NH2, [Esc(1-21): GIFSKLAGKKIKNLLISGLKG-NH2] has been found to have a potent activity against the Gram-negative bacterium Pseudomonas aeruginosa, a slightly weaker activity against Gram-positive bacteria and interesting immunomodulatory properties. With the aim to optimize the antimicrobial features of Esc(1-21) and to circumvent the limitations described above, two different approaches were followed: (i) substitutions by non-coded amino acids, i.e. α-aminoisobutyric acid or D-amino acids; and (ii) peptide conjugation to gold nanoparticles. In this mini-review, we summarized the structural and functional properties of the resulting Esc(1-21)-derived compounds. Overall, our data may assist researchers in the rational design and optimization of AMPs for the development of future drugs to fight the worldwide problem of antibiotic resistance.

  11. Promising Approaches to Optimize the Biological Properties of the Antimicrobial Peptide Esculentin-1a(1-21)NH2: Amino Acids Substitution and Conjugation to Nanoparticles.

    Science.gov (United States)

    Casciaro, Bruno; Cappiello, Floriana; Cacciafesta, Mauro; Mangoni, Maria Luisa

    2017-01-01

    Antimicrobial peptides (AMPs) represent an interesting class of molecules with expanding biological properties which make them a viable alternative for the development of future antibiotic drugs. However, for this purpose, some limitations must be overcome: (i) the poor biostability due to enzymatic degradation; (ii) the cytotoxicity at concentrations slightly higher than the therapeutic dosages; and (iii) the inefficient delivery to the target site at effective concentrations. Recently, a derivative of the frog skin AMP esculentin-1a, named esculentin-1a(1-21)NH 2 , [Esc(1-21): GIFSKLAGKKIKNLLISGLKG-NH 2 ] has been found to have a potent activity against the Gram-negative bacterium Pseudomonas aeruginosa ; a slightly weaker activity against Gram-positive bacteria and interesting immunomodulatory properties. With the aim to optimize the antimicrobial features of Esc(1-21) and to circumvent the limitations described above, two different approaches were followed: (i) substitutions by non-coded amino acids, i.e., α-aminoisobutyric acid or d-amino acids; and (ii) peptide conjugation to gold nanoparticles. In this mini-review, we summarized the structural and functional properties of the resulting Esc(1-21)-derived compounds. Overall, our data may assist researchers in the rational design and optimization of AMPs for the development of future drugs to fight the worldwide problem of antibiotic resistance.

  12. Chitosan-based nanosystems and their exploited antimicrobial activity.

    Science.gov (United States)

    Perinelli, Diego Romano; Fagioli, Laura; Campana, Raffaella; Lam, Jenny K W; Baffone, Wally; Palmieri, Giovanni Filippo; Casettari, Luca; Bonacucina, Giulia

    2018-05-30

    Chitosan is a biodegradable and biocompatible natural polysaccharide that has a wide range of applications in the field of pharmaceutics, biomedical, chemical, cosmetics, textile and food industry. One of the most interesting characteristics of chitosan is its antibacterial and antifungal activity, and together with its excellent safety profile in human, it has attracted considerable attention in various research disciplines. The antimicrobial activity of chitosan is dependent on a number of factors, including its molecular weight, degree of deacetylation, degree of substitution, physical form, as well as structural properties of the cell wall of the target microorganisms. While the sole use of chitosan may not be sufficient to produce an adequate antimicrobial effect to fulfil different purposes, the incorporation of this biopolymer with other active substances such as drugs, metals and natural compounds in nanosystems is a commonly employed strategy to enhance its antimicrobial potential. In this review, we aim to provide an overview on the different approaches that exploit the antimicrobial activity of chitosan-based nanosystems and their applications, and highlight the latest advances in this field. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Synthetic mimics of antimicrobial peptides.

    Science.gov (United States)

    Som, Abhigyan; Vemparala, Satyavani; Ivanov, Ivaylo; Tew, Gregory N

    2008-01-01

    Infectious diseases and antibiotic resistance are now considered the most imperative global healthcare problem. In the search for new treatments, host defense, or antimicrobial, peptides have attracted considerable attention due to their various unique properties; however, attempts to develop in vivo therapies have been severely limited. Efforts to develop synthetic mimics of antimicrobial peptides (SMAMPs) have increased significantly in the last decade, and this review will focus primarily on the structural evolution of SMAMPs and their membrane activity. This review will attempt to make a bridge between the design of SMAMPs and the fundamentals of SMAMP-membrane interactions. In discussions regarding the membrane interaction of SMAMPs, close attention will be paid to the lipid composition of the bilayer. Despite many years of study, the exact conformational aspects responsible for the high selectivity of these AMPs and SMAMPs toward bacterial cells over mammalian cells are still not fully understood. The ability to design SMAMPs that are potently antimicrobial, yet nontoxic to mammalian cells has been demonstrated with a variety of molecular scaffolds. Initial animal studies show very good tissue distribution along with more than a 4-log reduction in bacterial counts. The results on SMAMPs are not only extremely promising for novel antibiotics, but also provide an optimistic picture for the greater challenge of general proteomimetics.

  14. Brazilian Kefir-Fermented Sheep's Milk, a Source of Antimicrobial and Antioxidant Peptides.

    Science.gov (United States)

    de Lima, Meire Dos Santos Falcão; da Silva, Roberto Afonso; da Silva, Milena Fernandes; da Silva, Paulo Alberto Bezerra; Costa, Romero Marcos Pedrosa Brandão; Teixeira, José António Couto; Porto, Ana Lúcia Figueiredo; Cavalcanti, Maria Taciana Holanda

    2017-12-28

    Fermented milks are a source of bioactive peptides and may be considered as functional foods. Among these, sheep's milk fermented with kefir has not been widely studied and its most relevant properties need to be more thoroughly characterized. This research study is set out to investigate and evaluate the antioxidant and antimicrobial properties of peptides from fermented sheep's milk in Brazil when produced by using kefir. For this, the chemical and microbiological composition of the sheep's milk before and after the fermentation was evaluated. The changes in the fermented milk and the peptides extracted before the fermentation and in the fermented milk during its shelf life were verified. The antimicrobial and antioxidant activities of the peptides from the fermented milk were evaluated and identified according to the literature. The physicochemical properties and mineral profile of the fermented milk were like those of fresh milk. The peptide extract presented antimicrobial activity and it was detected that 13 of the 46 peptides were able to inhibit the growth of pathogenic microorganisms. A high antioxidant activity was observed in the peptides extracted from fermented milk (3.125 mg/mL) on the 28th day of storage. Two fractions displayed efficient radical scavenging properties by DPPH and ABTS methods. At least 11 peptides distributed in the different fractions were identified by tandem mass spectrometry. This sheep's milk fermented by Brazilian kefir grains, which has antioxidant and antimicrobial activities and probiotic microorganisms, is a good candidate for further investigation as a source for bioactive peptides. The fermentation process was thus a means by which to produce potential bioactive peptides.

  15. Mechanisms of bacterial membrane permeabilization by crotalicidin (Ctn) and its fragment Ctn(15-34), antimicrobial peptides from rattlesnake venom.

    Science.gov (United States)

    Pérez-Peinado, Clara; Dias, Susana Almeida; Domingues, Marco M; Benfield, Aurélie H; Freire, João Miguel; Rádis-Baptista, Gandhi; Gaspar, Diana; Castanho, Miguel A R B; Craik, David J; Henriques, Sónia Troeira; Veiga, Ana Salomé; Andreu, David

    2018-02-02

    Crotalicidin (Ctn), a cathelicidin-related peptide from the venom of a South American rattlesnake, possesses potent antimicrobial, antitumor, and antifungal properties. Previously, we have shown that its C-terminal fragment, Ctn(15-34), retains the antimicrobial and antitumor activities but is less toxic to healthy cells and has improved serum stability. Here, we investigated the mechanisms of action of Ctn and Ctn(15-34) against Gram-negative bacteria. Both peptides were bactericidal, killing ∼90% of Escherichia coli and Pseudomonas aeruginosa cells within 90-120 and 5-30 min, respectively. Studies of ζ potential at the bacterial cell membrane suggested that both peptides accumulate at and neutralize negative charges on the bacterial surface. Flow cytometry experiments confirmed that both peptides permeabilize the bacterial cell membrane but suggested slightly different mechanisms of action. Ctn(15-34) permeabilized the membrane immediately upon addition to the cells, whereas Ctn had a lag phase before inducing membrane damage and exhibited more complex cell-killing activity, probably because of two different modes of membrane permeabilization. Using surface plasmon resonance and leakage assays with model vesicles, we confirmed that Ctn(15-34) binds to and disrupts lipid membranes and also observed that Ctn(15-34) has a preference for vesicles that mimic bacterial or tumor cell membranes. Atomic force microscopy visualized the effect of these peptides on bacterial cells, and confocal microscopy confirmed their localization on the bacterial surface. Our studies shed light onto the antimicrobial mechanisms of Ctn and Ctn(15-34), suggesting Ctn(15-34) as a promising lead for development as an antibacterial/antitumor agent. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Beneficial and Harmful Interactions of Antibiotics with Microbial Pathogens and the Host Innate Immune System

    Directory of Open Access Journals (Sweden)

    Ronald Anderson

    2010-05-01

    Full Text Available In general antibiotics interact cooperatively with host defences, weakening and decreasing the virulence of microbial pathogens, thereby increasing vulnerability to phagocytosis and eradication by the intrinsic antimicrobial systems of the host. Antibiotics, however, also interact with host defences by several other mechanisms, some harmful, others beneficial. Harmful activities include exacerbation of potentially damaging inflammatory responses, a property of cell-wall targeted agents, which promotes the release of pro-inflammatory microbial cytotoxins and cell-wall components. On the other hand, inhibitors of bacterial protein synthesis, especially macrolides, possess beneficial anti-inflammatory/cytoprotective activities, which result from interference with the production of microbial virulence factors/cytotoxins. In addition to these pathogen-directed, anti-inflammatory activities, some classes of antimicrobial agent possess secondary anti-inflammatory properties, unrelated to their conventional antimicrobial activities, which target cells of the innate immune system, particularly neutrophils. This is a relatively uncommon, potentially beneficial property of antibiotics, which has been described for macrolides, imidazole anti-mycotics, fluoroquinolones, and tetracyclines. Although of largely unproven significance in the clinical setting, increasing awareness of the pro-inflammatory and anti-inflammatory properties of antibiotics may contribute to a more discerning and effective use of these agents.

  17. Antimicrobial Activities of Dorema Auchri

    Directory of Open Access Journals (Sweden)

    A Sharifi

    2011-01-01

    Full Text Available Introduction & Objective: Due to emerging of resistance of microorganisms to antibiotics, investigations for novel antimicrobial agents have always been one of the major preoccupations of the medical society. Traditional medicine systems have played an important role during human evolution and development. Today, a number of medical herbs around the world have been studied for their medicinal activities. Amongst the several herbal medicine used as a medicine, Dorema auchri is yet another potent herbal medicine which has not been extensively studied for the medicinal uses in comparison with other herbal medicine. Dorema auchri has a long history of use as a sore and food additive in Yasuj, Iran. However, not much scientific work has been conducted on Dorema auchri antimicrobial activities. The present study aimed to study the antimicrobial properties of Dorema auchri on some pathogen microorganisms. Materials & Methods: In the present study was conducted at Yasuj University of Medical Sciences in 2009. After collection and preparation of hydro alcoholic extract of Dorena auchri, the extract was used to study its activities against human pathogen microorganisms (overall 10 microorganisms. The determination of minimal inhibitory concentration (MIC and minimum lethal concentration were evaluated for this extract. The antimicrobial potent of Dorema auchri extract was compared with commercial antibiotics. Each experiment was done three times and collected data were analyzed by SPSS using ANOVA and Chi-Square tests. Results: Findings of this study showed that in 10 mg/ml concentration, all bacteria were resistant to Dorema auchri extract. In 20 mg/ml concentration, only Staphylococcus areus and Staphylococcus epidermis showed zone of inhibition (ZOI 10 mm and 13 mm respectively. In 40 mg/ml concentration, the maximum ZOI was 15 mm in Staphylococcus areus and 80 mg/ml concentration, the maximum ZOI was 20 mm in Staphylococcus areus. The acceptable MIC

  18. In vitro Antimicrobial, Cytotoxic and Radical Scavenging Activities and Chemical Constituents of the Endemic Thymus laevigatus (Vahl

    Directory of Open Access Journals (Sweden)

    Mohamed Al-Fatimi

    2010-01-01

    Full Text Available The leaves of Thymus laevigatus (Vahl, Lamiaceae (Labiatae, an endemic species of Yemen, are traditionally used in the treatment of various disorders including stomach and respiratory system. In a first biological and chemical study of this endemic species we investigated antimicrobial, cytotoxic and antioxidant activities of different extracts of the leaves of this plant. The preliminary phytochemical screening of extracts composition was performed by TLC while the composition of the essential oil was determined by GC-MS. Twelve constituents were detected from the essential oil, which constituted 99.6 % of the total amount. The major constituents of the oil were: carvacrol (84.3 %, p-cymene (4.1 % p-mentha-1, 4-diene (4.0 % and trans-anethole (3.6%. The main active components were identified by TLC as carvacrol and anethole for dichloromethane extract and as non-volatile phenols and flavonoids for the methanol extract. The methanol, dichloromethane and aqueous extracts were tested for their antimicrobial activities against five bacteria strains and six human pathogenic fungi. Both methanol and dichloromethane showed strong activities against most human pathogenic strains. In the contrast, methanol extract showed broader and stronger antibacterial activities than the dichloromethane extract, especially against the Gram-negative bacterium Pseudomonas aeruginosa. The methanol extract showed the same strong radical scavenging activity in the DPPH assay (14.9mg/ml, when compared to the standard antioxidant, ascorbic acid. In contrast, the cytotoxic activity of the methanol against FL cells, a human amniotic epithelial cell line, was only moderate (IC50 298, 8 mg/ml. On the contrary, the water extract did not show any biological activity. Results presented here suggest that the essential oil and extracts of Thymus laevigatus possess strong antimicrobial and antioxidant properties, and therefore, they can be used as a natural preservative ingredient

  19. Prediction of antibacterial activity from physicochemical properties of antimicrobial peptides.

    Directory of Open Access Journals (Sweden)

    Manuel N Melo

    Full Text Available Consensus is gathering that antimicrobial peptides that exert their antibacterial action at the membrane level must reach a local concentration threshold to become active. Studies of peptide interaction with model membranes do identify such disruptive thresholds but demonstrations of the possible correlation of these with the in vivo onset of activity have only recently been proposed. In addition, such thresholds observed in model membranes occur at local peptide concentrations close to full membrane coverage. In this work we fully develop an interaction model of antimicrobial peptides with biological membranes; by exploring the consequences of the underlying partition formalism we arrive at a relationship that provides antibacterial activity prediction from two biophysical parameters: the affinity of the peptide to the membrane and the critical bound peptide to lipid ratio. A straightforward and robust method to implement this relationship, with potential application to high-throughput screening approaches, is presented and tested. In addition, disruptive thresholds in model membranes and the onset of antibacterial peptide activity are shown to occur over the same range of locally bound peptide concentrations (10 to 100 mM, which conciliates the two types of observations.

  20. Chemical composition and antimicrobial activity of the essential oil from Satureja horvatii Šilić (Lamiaceae

    Directory of Open Access Journals (Sweden)

    BRANISLAVA LAKUSIC

    2008-07-01

    Full Text Available The present paper describes the chemical composition and antimicrobial activity of the essential oil of the endemic species Satureja horvatii Šilić, collected in Montenegro. The essential oil was obtained from the aerial parts of the plant by hydrodistillation and analyzed by GC–MS. From the 34 compounds representing 100 % of the oil, the major compound was the phenolic monoterpene thymol (63.37 %. The oil contained smaller amounts of g-terpinene (7.49 %, carvacrol methyl ether (4.92 %, carvacrol (4.67 %, p-cymene (4.52%, a-terpinene (1.81 %, borneol (1.58 %, a-thujene (1.56 %, b-caryophyllene (1.55 % and b-myrcene (1.44 %. The antimicrobial activity of the essential oil of S. horvatii was evaluated using the agar diffusion and broth microdilution methods. The essential oil exhibited antimicrobial activity to varying degrees against all the tested strains. The maximum activity of S. horvatii oil was observed against Gram-positive bacteria (Micrococcus luteus, Staphylococcus epidermidis, Staphylococcus aureus and Enterococcus faecalis and against the yeast (Candida albicans. The oil exhibited moderate activity against the Gram-negative bacteria Escherichia coli and Klebsiella pneumoniae and weak activity against Pseudomonas aeruginosa. This study confirms that the essential oil of S. horvatii possesses antimicrobial activities in vitro against medically important pathogens.

  1. Actinobacterial diversity in limestone deposit sites in Hundung, Manipur (India and their antimicrobial activities

    Directory of Open Access Journals (Sweden)

    Salam eNimaichand

    2015-05-01

    Full Text Available Studies on actinobacterial diversity in limestone habitats are scarce. This paper reports profiling of actinobacteria isolated from Hundung limestone samples in Manipur, India using ARDRA as the molecular tool for preliminary classification. A total of 137 actinobacteria were clustered into 31 phylotypic groups based on the ARDRA pattern generated and representative of each group was subjected to 16S rRNA gene sequencing. Generic diversity of the limestone isolates consisted of Streptomyces (15 phylotypic groups, Micromonospora (4, Amycolatopsis (3, Arthrobacter (3, Kitasatospora (2, Janibacter (1, Nocardia (1, Pseudonocardia (1 and Rhodococcus (1. Considering the antimicrobial potential of these actinobacteria, 19 showed antimicrobial activities against at least one of the bacterial and candidal test pathogens, while 45 exhibit biocontrol activities against at least one of the rice fungal pathogens. Out of the 137 actinobacterial isolates, 118 were found to have at least one of the three biosynthetic gene clusters (PKS-I, PKS-II, NRPS. The results indicate that 86% of the strains isolated from Hundung limestone deposit sites possessed biosynthetic gene clusters of which 40% exhibited antimicrobial activities. It can, therefore, be concluded that limestone habitat is a promising source for search of novel secondary metabolites.

  2. Antimicrobial Peptide Trichokonin VI-Induced Alterations in the Morphological and Nanomechanical Properties of Bacillus subtilis

    OpenAIRE

    Su, Hai-Nan; Chen, Zhi-Hua; Song, Xiao-Yan; Chen, Xiu-Lan; Shi, Mei; Zhou, Bai-Cheng; Zhao, Xian; Zhang, Yu-Zhong

    2012-01-01

    Antimicrobial peptides are promising alternative antimicrobial agents compared to conventional antibiotics. Understanding the mode of action is important for their further application. We examined the interaction between trichokonin VI, a peptaibol isolated from Trichoderma pseudokoningii, and Bacillus subtilis, a representative Gram-positive bacterium. Trichokonin VI was effective against B. subtilis with a minimal inhibitory concentration of 25 µM. Trichokonin VI exhibited a concentration- ...

  3. Alternative Antimicrobial Approach: Nano-Antimicrobial Materials

    OpenAIRE

    Nurit Beyth; Yael Houri-Haddad; Avi Domb; Wahid Khan; Ronen Hazan

    2015-01-01

    Despite numerous existing potent antibiotics and other antimicrobial means, bacterial infections are still a major cause of morbidity and mortality. Moreover, the need to develop additional bactericidal means has significantly increased due to the growing concern regarding multidrug-resistant bacterial strains and biofilm associated infections. Consequently, attention has been especially devoted to new and emerging nanoparticle-based materials in the field of antimicrobial chemotherapy. The ...

  4. In vitro antimicrobial and antioxidant activities of bark extracts of ...

    African Journals Online (AJOL)

    Jane

    2011-07-01

    Jul 1, 2011 ... Key words: Bauhinia purpurea, phytochemical analysis, antimicrobial activity, antioxidant property. INTRODUCTION. The use of ..... Supplement to glossary of ... Turkish flora Bektas Tepe and Atalay Sokmen, (2): 22-25. Cao G ...

  5. Surface modification and properties of Bombyx mori silk fibroin films by antimicrobial peptide

    International Nuclear Information System (INIS)

    Bai Liqiang; Zhu Liangjun; Min Sijia; Liu Lin; Cai Yurong; Yao Juming

    2008-01-01

    The Bombyx mori silk fibroin films (SFFs) were modified by a Cecropin B (CB) antimicrobial peptide, (NH 2 )-NGIVKAGPAIAVLGEAAL-CONH 2 , using the carbodiimide chemistry method. In order to avoid the dissolution of films during the modification procedure, the SFFs were first treated with 60% (v/v) ethanol aqueous solution, resulting a structural transition from unstable silk I to silk II. The investigation of modification conditions showed that the surface-modified SFFs had the satisfied antimicrobial activity and durability when they were activated by EDC.HCl/NHS solution followed by a treatment in CB peptide/PBS buffer (pH 6.5 or 8) solution at ambient temperature for 2 h. Moreover, the surface-modified SFFs showed the smaller contact angle due to the hydrophilic antimicrobial peptides coupled on the film surface, which is essential for the cell adhesion and proliferation. AFM results indicated that the surface roughness of SFFs was considerably increased after the modification by the peptides. The elemental composition analysis results also suggested that the peptides were tightly coupled to the surface of SFFs. This approach may provide a new option to engineer the surface-modified implanted materials preventing the biomaterial-centered infection (BCI)

  6. Surface modification and properties of Bombyx mori silk fibroin films by antimicrobial peptide

    Energy Technology Data Exchange (ETDEWEB)

    Bai Liqiang [Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textile, Zhejiang Sci-Tech University, Xiasha Higher Education Park, Hangzhou 310018 (China); Zhu Liangjun; Min Sijia [College of Animal Sciences, Zhejiang University, Hangzhou 310029 (China); Liu Lin; Cai Yurong [Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textile, Zhejiang Sci-Tech University, Xiasha Higher Education Park, Hangzhou 310018 (China); Yao Juming [Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textile, Zhejiang Sci-Tech University, Xiasha Higher Education Park, Hangzhou 310018 (China)], E-mail: yaoj@zstu.edu.cn

    2008-03-15

    The Bombyx mori silk fibroin films (SFFs) were modified by a Cecropin B (CB) antimicrobial peptide, (NH{sub 2})-NGIVKAGPAIAVLGEAAL-CONH{sub 2}, using the carbodiimide chemistry method. In order to avoid the dissolution of films during the modification procedure, the SFFs were first treated with 60% (v/v) ethanol aqueous solution, resulting a structural transition from unstable silk I to silk II. The investigation of modification conditions showed that the surface-modified SFFs had the satisfied antimicrobial activity and durability when they were activated by EDC.HCl/NHS solution followed by a treatment in CB peptide/PBS buffer (pH 6.5 or 8) solution at ambient temperature for 2 h. Moreover, the surface-modified SFFs showed the smaller contact angle due to the hydrophilic antimicrobial peptides coupled on the film surface, which is essential for the cell adhesion and proliferation. AFM results indicated that the surface roughness of SFFs was considerably increased after the modification by the peptides. The elemental composition analysis results also suggested that the peptides were tightly coupled to the surface of SFFs. This approach may provide a new option to engineer the surface-modified implanted materials preventing the biomaterial-centered infection (BCI)

  7. ANTIMICROBIAL ACTIVITY OF THE ESSENTIAL OIL OF Myrtus ...

    African Journals Online (AJOL)

    2015-02-05

    Feb 5, 2015 ... The essential oil of M communis leaves, growing wild in Iran contains ... The antibacterial properties of the essential oils of myrtle leaves and extracts .... of nutrients, temperature, humidity, soil type, day length, climate, .... composition and antimicrobial effects of essential oils of Eucalyptus globulus, Myrtus.

  8. Nematicidal, larvicidal and antimicrobial activities of some new ...

    African Journals Online (AJOL)

    Purpose: To synthesize Mannich base imidazole derivatives, and evaluate their antimicrobial, nematicidal and larvicidal properties . Methods: Compounds 1a-g and 2a-g were prepared using a Mannich condensation method. The chemical structures of compounds 2a-g were confirmed by Fourier transform infrared ...

  9. Grewia asiatica L., a Food Plant with Multiple Uses

    Directory of Open Access Journals (Sweden)

    Vincenzo De Feo

    2013-02-01

    Full Text Available Grewia asiatica L., is a species native to south Asia from Pakistan, east to Cambodia, cultivated primarily for its edible fruit and well-reputed for its diverse medicinal uses. Fruits are a rich source of nutrients such as proteins, amino acids, vitamins, and minerals and contain various bioactive compounds, like anthocyanins, tannins, phenolics and flavonoids. Different parts of this plant possess different pharmacological properties. Leaves have antimicrobial, anticancer, antiplatelet and antiemetic activities; fruit possess anticancer, antioxidant, radioprotective and antihyperglycemic properties; while stem bark possesses analgesic and anti-inflammatory activities. This review focuses on the botanical description, phytochemistry, nutritional studies and pharmacological properties of this plant.

  10. Antimicrobial activity of Ulopterol isolated from Toddalia asiatica (L.) Lam.: a traditional medicinal plant.

    Science.gov (United States)

    Karunai Raj, M; Balachandran, C; Duraipandiyan, V; Agastian, P; Ignacimuthu, S

    2012-03-06

    The leaves of Toddalia asiatica (L.) Lam. (Rutaceae) are widely used in folk medicine in India to treat various ailments like cough, malaria, indigestion, influenza lung diseases and rheumatism, fever, stomach ailments, cholera and diarrhea. In our earlier communication we have reported the antimicrobial study on the various extracts of the leaves and the isolation and identification of Flindersine, a quinolone alkaloid as the major active principle. In the present study, we report the antibacterial and antifungal activities of Ulopterol, a coumarin isolated as another major active antimicrobial principle. The leaves were successively extracted with hexane, chloroform, ethyl acetate, methanol and water. The extracts were studied for their antimicrobial activity against selected bacteria and fungi by using disc-diffusion method. The ethyl acetate extract which was found to possess highest antimicrobial activity was subjected to activity guided fractionation by column chromatography over silica gel. This resulted in the isolation of the coumarin, Ulopetrol, an active principle besides Flindersine which was reported by us earlier. The structure of the compound was elucidated using physical and spectroscopic data. Flindersine and Ulopterol were quantified by HPLC. Ulopterol showed activity against the bacteria viz. Staphylococcus epidermidis, Enterobacter aerogenes, Shigella flexneri, Klebsiella pneumoniae (ESBL-3967), Escherichia coli (ESBL-3984) and fungi viz. Aspergillus flavus, Candida krusei and Botrytis cinerea. Quantification by HPLC showed the content of Flindersine and Ulopterol to be 0.361% and 0.266% respectively on dry weight basis of the leaves. Ethyl acetate extract (successive extraction) contained Ulopterol, a coumarin, besides Flindersine, a quinolone alkaloid, as a major active principle in the antimicrobial studies. This is the first report of the antimicrobial activity of Ulopterol and also its first report from the plant. Copyright © 2012

  11. Kainari, a Unique Greek Traditional Herbal Tea, from the Island of Lesvos: Chemical Analysis and Antioxidant and Antimicrobial Properties

    Directory of Open Access Journals (Sweden)

    Evangelia Bampali

    2018-01-01

    Full Text Available The chemical composition, as well as the total phenolic content (TPC and the potential antioxidant and antimicrobial activity, of three Kainari-herbal tea samples from different areas of Lesvos Island (Greece was evaluated. The rich aroma of the mixtures was studied through GC-MS, as well as through Headspace Solid-Phase Microextraction (HS-SPME/GC-MS analyses. Cinnamon, clove, nutmeg, pepper, and ginger were identified as main ingredients, while, throughout the chemical analysis of the volatiles of one selected sample, several secondary metabolites have been isolated and identified on the basis of GC-MS as well as spectral evidence as eugenol, cinnamic aldehyde and myristicin, cinnamyl alcohol, alpha-terpinyl acetate, and β-caryophyllene. Furthermore, two food dyes, azorubine and amaranth, were also isolated and identified from the infusions. The total phenolic content was estimated and the free radical scavenging activity was determined by DPPH and ABTS assays and the antimicrobial activity of the extracts was tested showing a very interesting profile against all the assayed microorganisms. Due to its very pleasant aroma and taste properties as well as to its bioactivities, Kainari-herbal tea could be further proposed as functional beverage.

  12. Immunogenic properties of the human gut-associated archaeon Methanomassiliicoccus luminyensis and its susceptibility to antimicrobial peptides.

    Directory of Open Access Journals (Sweden)

    Corinna Bang

    Full Text Available The methanogenic archaeon Methanomassiliicoccus luminyensis strain B10T was isolated from human feces just a few years ago. Due to its remarkable metabolic properties, particularly the degradation of trimethylamines, this strain was supposed to be used as "Archaebiotic" during metabolic disorders of the human intestine. However, there is still no data published regarding adaptations to the natural habitat of M. luminyensis as it has been shown for the other two reported mucosa-associated methanoarchaea. This study aimed at unraveling susceptibility of M. luminyensis to antimicrobial peptides as well as its immunogenicity. By using the established microtiter plate assay adapted to the anaerobic growth requirements of methanogenic archaea, we demonstrated that M. luminyensis is highly sensitive against LL32, a derivative of human cathelicidin (MIC = 2 μM. However, the strain was highly resistant against the porcine lysin NK-2 (MIC = 10 μM and the synthetic antilipopolysaccharide peptide (Lpep (MIC>10 μM and overall differed from the two other methanoarchaea, Methanobrevibacter smithii and Methanosphaera stadtmanae in respect to AMP sensitivity. Moreover, only weak immunogenic potential of M. luminyensis was demonstrated using peripheral blood mononuclear cells (PBMCs and monocyte-derived dendritic cells (moDCs by determining release of pro-inflammatory cytokines. Overall, our findings clearly demonstrate that the archaeal gut inhabitant M. luminyensis is susceptible to the release of human-derived antimicrobial peptides and exhibits low immunogenicity towards human immune cells in vitro-revealing characteristics of a typical commensal gut microbe.

  13. Effect of Encapsulation on Antimicrobial Activity of Herbal Extracts with Lysozyme

    Directory of Open Access Journals (Sweden)

    Petra Matouskova

    2016-01-01

    Full Text Available Resistance of microorganisms to antibiotics has increased. The use of natural components with antimicrobial properties can be of great significance to reduce this problem. The presented work is focused on the study of the effect of encapsulation of selected plant and animal antimicrobial substances (herbs, spices, lysozyme and nisin on their activity and stability. Antimicrobial components were packaged into liposomes and polysaccharide particles (alginate, chitosan and starch. Antimicrobial activity was tested against two Gram-positive (Bacillus subtilis and Micrococcus luteus and two Gram-negative (Escherichia coli and Serratia marcescens bacteria. Encapsulation was successful in all types of polysaccharide particles and liposomes. The prepared particles exhibited very good long-term stability, especially in aqueous conditions. Antimicrobial activity was retained in all types of particles. Liposomes with encapsulated herb and spice extracts exhibited very good inhibitory effect against all tested bacterial strains. Most of herbal extracts had very good antimicrobial effect against the tested Gram-negative bacterial strains, while Gram-positive bacteria were more sensitive to lysozyme particles. Thus, particles with co-encapsulated herbs and lysozyme are more active against different types of bacteria, and more stable and more effective during long-term storage. Particles with encapsulated mixture of selected plant extracts and lysozyme could be used as complex antimicrobial preparation with controlled release in the production of food and food supplements, pharmaceutical and cosmetic industries.

  14. 50 CFR 648.164 - Possession restrictions.

    Science.gov (United States)

    2010-10-01

    ... Atlantic Bluefish Fishery § 648.164 Possession restrictions. (a) No person shall possess more than 15 bluefish in, or harvested from, the EEZ unless that person is the owner or operator of a fishing vessel issued a bluefish commercial permit or is issued a bluefish dealer permit. Persons aboard a vessel that...

  15. Antimicrobial beeswax coated polylactide films with silver control release capacity.

    Science.gov (United States)

    Martínez-Abad, Antonio; Lagarón, Jose Maria; Ocio, María Jose

    2014-03-17

    Although the application of silver based antimicrobial systems is a widespread technology, its implementation in areas such as food packaging is still challenging. The present paper describes the fabrication of poly(lactic acid) (PLA) coated with beeswax with controlled release properties for sustained antimicrobial performance. Release of silver ions from the polymers was monitored voltammetrically under various conditions (surface contact, immersion in various liquid media and at different pH values) throughout at least 7days. A higher release was noted with decreasing pH while surface release was much slower than the release when immersed in liquid medium. While uncoated films demonstrated a high burst release which in some instances implied surpassing some current migration restrictions (food), the addition of a beeswax layer allowed a sustained release of the antimicrobial compound. Increasing the thickness of the beeswax layer resulted in an increase in the water barrier properties of the films while reducing the relatively constant values of sustained release. Antimicrobial performance was correlated with the release of silver ions, indicating threshold concentrations for biocide action of films displayed a strong bactericidal effect against Salmonella enterica. The application of this functional barrier thus offers the possibility of tuning the release profiles of the films to suit a specific application and puts forth the possible suitability of these materials for food packaging or other migration sensitive applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Antimicrobial resistance

    DEFF Research Database (Denmark)

    Llor, Carl; Bjerrum, Lars

    2014-01-01

    Antimicrobial resistance is a global public health challenge, which has accelerated by the overuse of antibiotics worldwide. Increased antimicrobial resistance is the cause of severe infections, complications, longer hospital stays and increased mortality. Overprescribing of antibiotics......-the-counter sale of antibiotics, the use of antimicrobial stewardship programmes, the active participation of clinicians in audits, the utilization of valid rapid point-of-care tests, the promotion of delayed antibiotic prescribing strategies, the enhancement of communication skills with patients with the aid...

  17. Biosynthesis of silver nanoparticles using Ocimum sanctum (Tulsi) leaf extract and screening its antimicrobial activity

    Science.gov (United States)

    Singhal, Garima; Bhavesh, Riju; Kasariya, Kunal; Sharma, Ashish Ranjan; Singh, Rajendra Pal

    2011-07-01

    Development of green nanotechnology is generating interest of researchers toward ecofriendly biosynthesis of nanoparticles. In this study, biosynthesis of stable silver nanoparticles was done using Tulsi ( Ocimum sanctum) leaf extract. These biosynthesized nanoparticles were characterized with the help of UV-vis spectrophotometer, Atomic Absorption Spectroscopy (AAS), Dynamic light scattering (DLS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and Transmission electron microscopy (TEM). Stability of bioreduced silver nanoparticles was analyzed using UV-vis absorption spectra, and their antimicrobial activity was screened against both gram-negative and gram-positive microorganisms. It was observed that O. sanctum leaf extract can reduce silver ions into silver nanoparticles within 8 min of reaction time. Thus, this method can be used for rapid and ecofriendly biosynthesis of stable silver nanoparticles of size range 4-30 nm possessing antimicrobial activity suggesting their possible application in medical industry.

  18. Biosynthesis of silver nanoparticles using Ocimum sanctum (Tulsi) leaf extract and screening its antimicrobial activity

    International Nuclear Information System (INIS)

    Singhal, Garima; Bhavesh, Riju; Kasariya, Kunal; Sharma, Ashish Ranjan; Singh, Rajendra Pal

    2011-01-01

    Development of green nanotechnology is generating interest of researchers toward ecofriendly biosynthesis of nanoparticles. In this study, biosynthesis of stable silver nanoparticles was done using Tulsi (Ocimum sanctum) leaf extract. These biosynthesized nanoparticles were characterized with the help of UV–vis spectrophotometer, Atomic Absorption Spectroscopy (AAS), Dynamic light scattering (DLS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and Transmission electron microscopy (TEM). Stability of bioreduced silver nanoparticles was analyzed using UV–vis absorption spectra, and their antimicrobial activity was screened against both gram-negative and gram-positive microorganisms. It was observed that O. sanctum leaf extract can reduce silver ions into silver nanoparticles within 8 min of reaction time. Thus, this method can be used for rapid and ecofriendly biosynthesis of stable silver nanoparticles of size range 4–30 nm possessing antimicrobial activity suggesting their possible application in medical industry.

  19. Antimicrobial Resistance

    Science.gov (United States)

    ... least 10 countries (Australia, Austria, Canada, France, Japan, Norway, Slovenia, South Africa, Sweden and the United Kingdom ... plan Global report on surveillance Country situation analysis Policy to combat antimicrobial resistance More on antimicrobial resistance ...

  20. Antimicrobial Resistance

    Science.gov (United States)

    ... can prevent and manage antimicrobial resistance. It is collaborating with partners to strengthen the evidence base and ... on the global action plan. WHO has been leading multiple initiatives to address antimicrobial resistance: World Antibiotic ...

  1. Identification of Peptides in Flowers of Sambucus nigra with Antimicrobial Activity against Aquaculture Pathogens.

    Science.gov (United States)

    Álvarez, Claudio Andrés; Barriga, Andrés; Albericio, Fernando; Romero, María Soledad; Guzmán, Fanny

    2018-04-27

    The elder ( Sambucus spp.) tree has a number of uses in traditional medicine. Previous studies have demonstrated the antimicrobial properties of elderberry liquid extract against human pathogenic bacteria and also influenza viruses. These properties have been mainly attributed to phenolic compounds. However, other plant defense molecules, such as antimicrobial peptides (AMPs), may be present. Here, we studied peptide extracts from flowers of Sambucus nigra L. The mass spectrometry analyses determined peptides of 3 to 3.6 kDa, among them, cysteine-rich peptides were identified with antimicrobial activity against various Gram-negative bacteria, including recurrent pathogens of Chilean aquaculture. In addition, membrane blebbing on the bacterial surface after exposure to the cyclotide was visualized by SEM microscopy and SYTOX Green permeabilization assay showed the ability to disrupt the bacterial membrane. We postulate that these peptides exert their action by destroying the bacterial membrane.

  2. Thrombolytic and antimicrobial activities of andrographis paniculata - a preliminary investigation

    Energy Technology Data Exchange (ETDEWEB)

    Amin, M. M.A.; Shohel, M. [North South Univ., Dhaka (Bangladesh). Dept. of Pharmaceutical; Uddin, M. M.N. [University of Chittagong (Bangladesh). Dept. of Pharmacy

    2014-07-15

    An attempt has been made to investigate thrombolytic and antimicrobial activities of ethanolic extracts of Andrographis paniculata whole plant. Phytochemical constituents of A. paniculata were assessed by human erythrocyte and the results were compared with standard streptokinase (SK). Moreover, the plant extracts were compared with the antibiotic kanamycin to investigate antibacterial activity against several microorganisms. Glycosides, steroids, phenols, alkaloid and tannins were found in the ethanol extract of whole plant. Crude ethanol extract (P<0.05) and soluble fraction of ethanol extract (P<0.05) have shown thrombolytic properties. Crude ethanol extract, n-hexane soluble fractions and carbon tetrachloride soluble fraction of ethanol extract of the whole plant have shown antimicrobial activities against common gram positive and gram negative microorganisms. The results of current study justify thrombolytic and antimicrobial activities of A. paniculata. (author)

  3. Thrombolytic and antimicrobial activities of andrographis paniculata - a preliminary investigation

    International Nuclear Information System (INIS)

    Amin, M.M.A.; Shohel, M.; Uddin, M.M.N.

    2014-01-01

    An attempt has been made to investigate thrombolytic and antimicrobial activities of ethanolic extracts of Andrographis paniculata whole plant. Phytochemical constituents of A. paniculata were assessed by human erythrocyte and the results were compared with standard streptokinase (SK). Moreover, the plant extracts were compared with the antibiotic kanamycin to investigate antibacterial activity against several microorganisms. Glycosides, steroids, phenols, alkaloid and tannins were found in the ethanol extract of whole plant. Crude ethanol extract (P<0.05) and soluble fraction of ethanol extract (P<0.05) have shown thrombolytic properties. Crude ethanol extract, n-hexane soluble fractions and carbon tetrachloride soluble fraction of ethanol extract of the whole plant have shown antimicrobial activities against common gram positive and gram negative microorganisms. The results of current study justify thrombolytic and antimicrobial activities of A. paniculata. (author)

  4. Thermal, mechanical, and moisture absorption properties of egg white protein bioplastics with natural rubber and glycerol.

    Science.gov (United States)

    Jones, Alexander; Zeller, Mark Ashton; Sharma, Suraj

    2013-07-03

    Petroleum-based plastics have many drawbacks: the large amount of energy required to produce the plastic, the waste generated as a result of plastic production, and the accumulation of waste due to slow degradation rate. It is because of these negative attributes of conventional plastic use that attention is being focused on environmentally friendly plastics from alternative sources. Albumin protein provides one possible source of raw material, with inherent antimicrobial properties that may make it suitable for medical applications. We conducted this study to investigate the various bioplastic properties of the albumin with the use of three plasticizers - water, glycerol, and natural rubber latex. Based on results, 75:25 albumin-water, 75:25 albumin-glycerol, and 80:20 albumin-natural rubber were the best blending ratios for each plasticizer for a subsequent time study to determine water stability, with the 80:20 albumin-natural rubber blend ratio having possessed the best thermal, tensile, and viscoelastic properties overall.

  5. Antimicrobial nanocapsules: from new solvent-free process to in vitro efficiency

    Directory of Open Access Journals (Sweden)

    Steelandt J

    2014-09-01

    Full Text Available Julie Steelandt,1 Damien Salmon,1,2 Elodie Gilbert,1 Eyad Almouazen,3 François NR Renaud,4 Laurène Roussel,1 Marek Haftek,5 Fabrice Pirot1,2 1University Claude Bernard Lyon 1, Faculty of Pharmacy, Fundamental, Clinical and Therapeutic Aspects of Skin Barrier Function, FRIPharm, Laboratoire de Pharmacie Galénique Industrielle, 2Hospital Pharmacy, FRIPharm, Hospital Edouard Herriot, Hospices Civils de Lyon, 3Laboratoire d’Automatique et de Génie des Procédés, University Claude Bernard Lyon 1, 4University Claude Bernard Lyon 1, UMR CNRS 5510/MATEIS, 5University Claude Bernard Lyon 1, Faculty of Pharmacy, Fundamental, Clinical and Therapeutic Aspects of Skin Barrier Function, FRIPharm, Laboratoire de Dermatologie, Lyon, France Abstract: Skin and mucosal infections constitute recurrent pathologies resulting from either inappropriate antiseptic procedures or a lack of efficacy of antimicrobial products. In this field, nanomaterials offer interesting antimicrobial properties (eg, long-lasting activity; intracellular and tissular penetration as compared to conventional products. The aim of this work was to produce, by a new solvent-free process, a stable and easily freeze-dryable chlorhexidine-loaded polymeric nanocapsule (CHX-NC suspension, and then to assess the antimicrobial properties of nanomaterials. The relevance of the process and the physicochemical properties of the CHX-NCs were examined by the assessment of encapsulation efficiency, stability of the nanomaterial suspension after 1 month of storage, and by analysis of granulometry and surface electric charge of nanocapsules. In vitro antimicrobial activities of the CHX-NCs and chlorhexidine digluconate solution were compared by measuring the inhibition diameters of two bacterial strains (Escherichia coli and Staphylococcus aureus and one fungal strain (Candida albicans cultured onto appropriate media. Based on the findings of this study, we report a new solvent-free process for the

  6. Synthesis and Antimicrobial Evaluation of Some Novel 2-(4-Chlorophenylimino) thiazolidin-4-one Derivatives

    Energy Technology Data Exchange (ETDEWEB)

    B' Bhatt, H.; Sharma, S. [Hemchandracharya North Gujarat Univ., Gujarat (India)

    2012-06-15

    A series of 2-(4-chlorophenylimino)-5-((3-(p-substituted phenyl)-1-phenyl-1H-pyrazol-4-yl) methylene) thiazolidin-4-one (3a-h) compounds were prepared from the 2-(4-chlorophenylimino) thiazolidin-4-one (1) and 1-phenyl-3-(psubstituted phenyl)-1H-pyrazole-4-carbaldehyde (2a-h). All compounds were characterized by elemental (C, H, N) analysis and spectral (FT-IR, {sup 1}H NMR and GC-MS) analysis. These newly synthesized compounds were screened for their antibacterial and antifungal activities. Antimicrobial activity was observed and evaluated against the bacterial strains like Eschericha coli (MTCC 443), Pseudomonas aeruginosa (MTCC 1688), Staphylococcus aureus (MTCC 96), Streptococcus pyogenes (MTCC 442) and against the fungal strains like Candida albicans (MTCC 227), Aspergillus niger (MTCC 282) and Aspergillus clavatus (MTCC 1323). All the synthesized compounds were found to possess moderate to excellent antimicrobial activity against above selected strains.

  7. Antimicrobial and anti-biofilm properties of polypropylene meshes coated with metal-containing DLC thin films.

    Science.gov (United States)

    Cazalini, Elisa M; Miyakawa, Walter; Teodoro, Guilherme R; Sobrinho, Argemiro S S; Matieli, José E; Massi, Marcos; Koga-Ito, Cristiane Y

    2017-06-01

    A promising strategy to reduce nosocomial infections related to prosthetic meshes is the prevention of microbial colonization. To this aim, prosthetic meshes coated with antimicrobial thin films are proposed. Commercial polypropylene meshes were coated with metal-containing diamond-like carbon (Me-DLC) thin films by the magnetron sputtering technique. Several dissimilar metals (silver, cobalt, indium, tungsten, tin, aluminum, chromium, zinc, manganese, tantalum, and titanium) were tested and compositional analyses of each Me-DLC were performed by Rutherford backscattering spectrometry. Antimicrobial activities of the films against five microbial species (Candida albicans, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Enterococcus faecalis) were also investigated by a modified Kirby-Bauer test. Results showed that films containing silver and cobalt have inhibited the growth of all microbial species. Tungsten-DLC, tin-DLC, aluminum-DLC, zinc-DLC, manganese-DLC, and tantalum-DLC inhibited the growth of some strains, while chromium- and titanium-DLC weakly inhibited the growth of only one tested strain. In-DLC film showed no antimicrobial activity. The effects of tungsten-DLC and cobalt-DLC on Pseudomonas aeruginosa biofilm formation were also assessed. Tungsten-DLC was able to significantly reduce biofilm formation. Overall, the experimental results in the present study have shown new approaches to coating polymeric biomaterials aiming antimicrobial effect.

  8. Enhanced antimicrobial properties, cytocompatibility, and corrosion resistance of plasma-modified biodegradable magnesium alloys.

    Science.gov (United States)

    Zhao, Ying; Jamesh, Mohammed Ibrahim; Li, Wing Kan; Wu, Guosong; Wang, Chenxi; Zheng, Yufeng; Yeung, Kelvin W K; Chu, Paul K

    2014-01-01

    Magnesium alloys are potential biodegradable materials and have received increasing attention due to their outstanding biological performance and mechanical properties. However, rapid degradation in the physiological environment and potential toxicity limit clinical applications. Recently, special magnesium-calcium (Mg-Ca) and magnesium-strontium (Mg-Sr) alloys with biocompatible chemical compositions have been reported, but the rapid degradation still does not meet clinical requirements. In order to improve the corrosion resistance, a rough, hydrophobic and ZrO(2)-containing surface film is fabricated on Mg-Ca and Mg-Sr alloys by dual zirconium and oxygen ion implantation. Weight loss measurements and electrochemical corrosion tests show that the corrosion rate of the Mg-Ca and Mg-Sr alloys is reduced appreciably after surface treatment. A systematic investigation of the in vitro cellular response and antibacterial capability of the modified binary magnesium alloys is performed. The amounts of adherent bacteria on the Zr-O-implanted and Zr-implanted samples diminish remarkably compared to the unimplanted control. In addition, significantly enhanced cell adhesion and proliferation are observed from the Zr-O-implanted sample. The results suggest that dual zirconium and oxygen ion implantation, which effectively enhances the corrosion resistance, in vitro biocompatibility and antimicrobial properties of Mg-Ca and Mg-Sr alloys, provides a simple and practical means to expedite clinical acceptance of biodegradable magnesium alloys. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  9. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... video) Animation of Antimicrobial Resistance (text version) Arabic Translation of Animation of Antimicrobial Resistance Chinese Translation of Animation of Antimicrobial Resistance French Translation of ...

  10. Possession States: Approaches to Clinical Evaluation and Classification

    Directory of Open Access Journals (Sweden)

    S. McCormick

    1992-01-01

    Full Text Available The fields of anthropology and sociology have produced a large quantity of literature on possession states, physicians however rarely report on such phenomena. As a result clinical description of possession states has suffered, even though these states may be more common and less deviant than supposed. Both ICD-10 and DSM-IV may include specific criteria for possession disorders. The authors briefly review Western notions about possession and kindred states and present guidelines for evaluation and classification.

  11. Physicochemical and antimicrobial properties of copaiba oil: implications on product quality control.

    Science.gov (United States)

    Fonseca, Renata G; Barros, Francisco M; Apel, Miriam A; Poser, Gilsane L von; Andriolli, Jo O L; Filho, Pedro C Campos; Sousa, Dhierlate F; Lobo, Ivon P; Conceiç O, Aline O

    2015-01-01

    The copaiba oil is a common natural product used in cosmetic industry and as a nutraceutical product. However, lack of quality control and scarce knowledge about its antimicrobial activity is a point of concern. The proposal of this study was to investigate the physicochemical properties and the antimicrobial activity of five commercial brands of copaiba oil. Acidity and ester index, refractory index, solubility in alcohol, and thin layer chromatography were performed to verify the physicochemical properties of five commercial copaiba oils sold in local pharmacies. Ultra performance liquid chromatography coupled with diode-array detection and electrospray ionization quadrupole time-of-flight mass spectrometry (UPLC-DAD/ESI-Q-TOF-MS) was used to investigate diterpene acids while the volatile compounds were analysed by gas chromatography-mass spectrometry (GC-MS). Antibacterial and antifungal activities were also evaluated by agar diffusion technique; and minimal inhibitory concentration and maximal bactericidal concentration were defined for each sample and bacteria. The physical-chemical analysis revealed heterogeneity between all samples analysed. The A1 sample showed characteristics of copaiba oil and was mainly composed by hydrocarbon sesquiterpenes (29.95% β-bisabolene, 25.65% Z-α-bergamotene and 10.27% β-cariophyllene). Among diterpene acids, the UPLCDAD/ESI-Q-TOF-MS data are compatible with presence of copalic and/or kolavenic acid (m/z 305 [M + H]+). Candida albicans was sensitive to almost all samples at high concentration and Saccaromyces. Cerevisiae showed sensitivity to A1 sample at 100 mg/mL. Although variable, all samples showed antibacterial activity. Significant activity was seen for A3 (19.0 ±0 and 15.6 ±0.5 mm), A4 (16.6 ±0.5 and 15.6 ±0 mm), and A5 (17.1 ±0 and 17.1 ±0 mm) on Staphylococcus saprophyticus and S. aureus, respectively. All samples were active against Klebsiella pneumoniae showing ≥15 mm diameter halo inhibition; and only A

  12. Antidiarrhoeal and antimicrobial activity of Calpurnia aurea leaf extract

    Directory of Open Access Journals (Sweden)

    Umer Shemsu

    2013-01-01

    . aurea leaf extract also showed good antimicrobial activity against all tested organisms. Conclusions C. aurea possesses good antidiarrhoeal and antimicrobial activity which support the traditional use of the plant in the treatment of diarrhea in Ethiopia.

  13. Antimicrobial peptides interact with peptidoglycan

    Science.gov (United States)

    Neelay, Om P.; Peterson, Christian A.; Snavely, Mary E.; Brown, Taylor C.; TecleMariam, Ariam F.; Campbell, Jennifer A.; Blake, Allison M.; Schneider, Sydney C.; Cremeens, Matthew E.

    2017-10-01

    Traditional therapeutics are losing effectiveness as bacterial resistance increases, and antimicrobial peptides (AMPs) can serve as an alternative source for antimicrobial agents. Their mode of action is commonly hypothesized to involve pore formation in the lipid membrane, thereby leading to cell death. However, bacterial cell walls are much more complex than just the lipid membrane. A large portion of the wall is comprised of peptidoglycan, yet we did not find any report of AMP-peptidoglycan interactions. Consequently, this work evaluated AMP-peptidoglycan and AMP-phospholipid (multilamellar vesicles) interactions through tryptophan fluorescence. Given that peptidoglycan is insoluble and vesicles are large particles, we took advantage of the unique properties of Trp-fluorescence to use one technique for two very different systems. Interestingly, melittin and cecropin A interacted with peptidoglycan to a degree similar to vancomycin, a positive control. Whether these AMP-peptidoglycan interactions relate to a killing mode of action requires further study.

  14. Antimicrobial Activity of Calcium Hydroxide in Endodontics: A Review

    Science.gov (United States)

    Shalavi, S; Yazdizadeh, M

    2012-01-01

    The purpose of endodontic therapy is to preserve the patient's natural teeth without compromising the patient's local or systemic health. Calcium hydroxide has been included in several materials and antimicrobial formulations that are used in several treatment modalities in endodontics, such as inter-appointment intracanal medicaments. The purpose of this article was to review the antimicrobial properties of calcium hydroxide in endodontics. Calcium hydroxide has a high pH (approximately 12.5-12.8) and is classified chemically as a strong base. The lethal effects of calcium hydroxide on bacterial cells are probably due to protein denaturation and damage to DNA and cytoplasmic membranes. Calcium hydroxide has a wide range of antimicrobial activity against common endodontic pathogens but is less effective against Enterococcus faecalis and Candida albicans. Calcium hydroxide is also a valuable anti-endotoxin agent. However, its effect on microbial biofilms is controversial. PMID:23323217

  15. Synthesis and antimicrobial activity of silver-doped hydroxyapatite nanoparticles.

    Science.gov (United States)

    Ciobanu, Carmen Steluta; Iconaru, Simona Liliana; Chifiriuc, Mariana Carmen; Costescu, Adrian; Le Coustumer, Philippe; Predoi, Daniela

    2013-01-01

    The synthesis of nanosized particles of Ag-doped hydroxyapatite with antibacterial properties is of great interest for the development of new biomedical applications. The aim of this study was the evaluation of Ca(10-x)Ag(x)(PO4)6(OH)2 nanoparticles (Ag:HAp-NPs) for their antibacterial and antifungal activity. Resistance to antimicrobial agents by pathogenic bacteria has emerged in the recent years and became a major health problem. Here, we report a method for synthesizing Ag doped nanocrystalline hydroxyapatite. A silver-doped nanocrystalline hydroxyapatite was synthesized at 100°C in deionised water. Also, in this paper Ag:HAp-NPs are evaluated for their antimicrobial activity against gram-positive and gram-negative bacteria and fungal strains. The specific antimicrobial activity revealed by the qualitative assay is demonstrating that our compounds are interacting differently with the microbial targets, probably due to the differences in the microbial wall structures.

  16. Antimicrobial property of lemongrass (Cymbopogon citratus) oil against pathogenic bacteria isolated from pet turtles.

    Science.gov (United States)

    De Silva, B C J; Jung, Won-Gi; Hossain, Sabrina; Wimalasena, S H M P; Pathirana, H N K S; Heo, Gang-Joon

    2017-06-01

    The usage of essential oils as antimicrobial agents is gaining attention. Besides, pet turtles were known to harbor a range of pathogenic bacteria while the turtle keeping is a growing trend worldwide.The current study examined the antimicrobial activity of lemon grass oil (LGO) against seven species of Gram negative bacteria namely; Aeromonas hydrophila , A. caviae , Citrobacter freundii , Salmonella enterica , Edwardsiella tarda , Pseudomonas aeruginosa , and Proteus mirabilis isolated from three popular species of pet turtles. Along with the results of disc diffusion, minimum inhibitory and minimum bactericidal concentration (MIC and MBC) tests, LGO was detected as effective against 6 species of bacteria excluding P. aeruginosa . MIC of LGO for the strains except P. aeruginosa ranged from 0.016 to 0.5% (V/V). The lowest MIC recorded in the E. tarda strain followed by A. hydrophilla , C. freundii , P. mirabilis , and S. enterica . Interestingly, all the bacterial species except E. tarda were showing high multiple antimicrobial resistance (MAR) index values ranging from 0.36 to 0.91 upon the 11 antibiotics tested although they were sensitive to LGO.

  17. ACVIM Consensus Statement on Therapeutic Antimicrobial Use in Animals and Antimicrobial Resistance

    OpenAIRE

    Weese, J.S.; Gigu?re, S.; Guardabassi, L.; Morley, P.S.; Papich, M.; Ricciuto, D.R.; Sykes, J.E.

    2015-01-01

    The epidemic of antimicrobial resistant infections continues to challenge, compromising animal care, complicating food animal production and posing zoonotic disease risks. While the overall role of therapeutic antimicrobial use in animals in the development AMR in animal and human pathogens is poorly defined, veterinarians must consider the impacts of antimicrobial use in animal and take steps to optimize antimicrobial use, so as to maximize the health benefits to animals while minimizing the...

  18. Bio-inspired crosslinking and matrix-drug interactions for advanced wound dressings with long-term antimicrobial activity.

    Science.gov (United States)

    Dhand, Chetna; Venkatesh, Mayandi; Barathi, Veluchami Amutha; Harini, Sriram; Bairagi, Samiran; Goh Tze Leng, Eunice; Muruganandham, Nandhakumar; Low, Kenny Zhi Wei; Fazil, Mobashar Hussain Urf Turabe; Loh, Xian Jun; Srinivasan, Dinesh Kumar; Liu, Shou Ping; Beuerman, Roger W; Verma, Navin Kumar; Ramakrishna, Seeram; Lakshminarayanan, Rajamani

    2017-09-01

    There is a growing demand for durable advanced wound dressings for the management of persistent infections after deep burn injuries. Herein, we demonstrated the preparation of durable antimicrobial nanofiber mats, by taking advantage of strong interfacial interactions between polyhydroxy antibiotics (with varying number of OH groups) and gelatin and their in-situ crosslinking with polydopamine (pDA) using ammonium carbonate diffusion method. Polydopamine crosslinking did not interfere with the antimicrobial efficacy of the loaded antibiotics. Interestingly, incorporation of antibiotics containing more number of alcoholic OH groups (N OH  ≥ 5) delayed the release kinetics with complete retention of antimicrobial activity for an extended period of time (20 days). The antimicrobials-loaded mats displayed superior mechanical and thermal properties than gelatin or pDA-crosslinked gelatin mats. Mats containing polyhydroxy antifungals showed enhanced aqueous stability and retained nanofibrous morphology under aqueous environment for more than 4 weeks. This approach can be expanded to produce mats with broad spectrum antimicrobial properties by incorporating the combination of antibacterial and antifungal drugs. Direct electrospinning of vancomycin-loaded electrospun nanofibers onto a bandage gauze and subsequent crosslinking produced non-adherent durable advanced wound dressings that could be easily applied to the injured sites and readily detached after treatment. In a partial thickness burn injury model in piglets, the drug-loaded mats displayed comparable wound closure to commercially available silver-based dressings. This prototype wound dressing designed for easy handling and with long-lasting antimicrobial properties represents an effective option for treating life-threatening microbial infections due to thermal injuries. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. The antimicrobial activity of as-prepared silver-loaded phosphate glasses and zirconium phosphate

    International Nuclear Information System (INIS)

    Jing, Wang; Jiang, Ji Zhi; Yang, Yang; Yan, Zhao Chun; Yan, Wang Xiao; He, Shui Zhong

    2016-01-01

    The antimicrobial activities of silver-loaded zirconium phosphate (JDG) and silver-loaded phosphate glasses (ZZB) against Escherichia coli were studied. Although the silver content in JDG was higher than that in ZZB, ZZB suspensions showed better antimicrobial property than JDG suspensions, especially at low concentrations. The antimicrobial activity was analyzed using minimum inhibitory concentrations, bacterial inhibition ring tests, and detection of silver ions in the suspensions. Furthermore, the amounts of silver ions in suspensions with/without bacterial cells were analyzed. Results revealed that only a portion of released silver ions could be adsorbed by E. coli cells, which are critical to cell death. The damaged microstructures of E. coli cells observed by transmission electron microscopy may further prove that the adsorbed silver ions play an important role in the antimicrobial process.

  20. Recent Advances in Antimicrobial Hydrogels Containing Metal Ions and Metals/Metal Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Fazli Wahid

    2017-11-01

    Full Text Available Recently, the rapid emergence of antibiotic-resistant pathogens has caused a serious health problem. Scientists respond to the threat by developing new antimicrobial materials to prevent or control infections caused by these pathogens. Polymer-based nanocomposite hydrogels are versatile materials as an alternative to conventional antimicrobial agents. Cross-linking of polymeric materials by metal ions or the combination of polymeric hydrogels with nanoparticles (metals and metal oxide is a simple and effective approach for obtaining a multicomponent system with diverse functionalities. Several metals and metal oxides such as silver (Ag, gold (Au, zinc oxide (ZnO, copper oxide (CuO, titanium dioxide (TiO2 and magnesium oxide (MgO have been loaded into hydrogels for antimicrobial applications. The incorporation of metals and metal oxide nanoparticles into hydrogels not only enhances the antimicrobial activity of hydrogels, but also improve their mechanical characteristics. Herein, we summarize recent advances in hydrogels containing metal ions, metals and metal oxide nanoparticles with potential antimicrobial properties.