WorldWideScience

Sample records for positron emitting radioisotope

  1. Organic synthesis with short-lived positron-emitting radioisotopes

    International Nuclear Information System (INIS)

    Pike, V.W.

    1988-01-01

    Chemistry with short-lived positron-emitting radioisotopes of the non-metals, principally 11 C, 13 N and 18 F, has burgeoned over the last decade. This has been almost entirely because of the emergence of positron emission tomography (PET) as a powerful non-invasive technique for investigating pathophysiology in living man. PET is essentially an external technique for the rapid serial reconstruction of the spatial distribution of any positron-emitting radioisotope that has been administered in vivo. Such a distribution is primarily governed by the chemical form in which the positron-emitting radioisotope is incorporated, and importantly for clinical research, is often perturbed by physical, biological or clinical factors. Judicious choice of the chemical form enables specific biological information to be obtained. For example, the labelling of glucose with a positron-emitting radioisotope could be expected to provide a radiopharmaceutical for the study of glucose utilisation in both health and disease. (author)

  2. Radiopharmaceuticals labelled with positron-emitting radioisotopes

    International Nuclear Information System (INIS)

    Comar, D.; Berridge, M.; Maziere, B.; Crouzel, C.

    1982-01-01

    This chapter reviews the preparation of radioisotopes for biochemical and physiological studies and the principal methods for their incorporation into radiopharmaceuticals, while pointing out the problems encountered with their use and considering their medical interest in the following areas: distribution and flow of fluids, metabolic and pharmacokinetic studies. Inorganic and organic radiopharmaceuticals presently in use and most probable to be used in the future are reviewed. It is anticipated that three types of products labelled with 15 O, 13 N, 11 C and 18 F will be developed in the future. The first type includes products which trace general phenomena such as fluid movement or metabolism of sugars, fats and proteins. The compromise between physiological accuracy and imaging technology is discussed in relation to the use of 11 C and 18 F. The second type of product is one to measure more specific parameters such as those of molecular transport kinetics, membrane permeability, cellular pH and receptor-ligand interactions, again with particular reference to 11 C and 18 F. The third type of product discussed is that intended for pharmacology studies, particular reference being made to 68 Ga, 82 Rb. Extensive bibliography. (U.K.)

  3. Laser generation of proton beams for the production of short-lived positron emitting radioisotopes

    International Nuclear Information System (INIS)

    Spencer, I.; Ledingham, K.W.D.; Singhal, R.P.; McCanny, T.; McKenna, P.; Clark, E.L.; Krushelnick, K.; Zepf, M.; Beg, F.N.; Tatarakis, M.; Dangor, A.E.; Norreys, P.A.; Clarke, R.J.; Allott, R.M.; Ross, I.N.

    2001-01-01

    Protons of energies up to 37 MeV have been generated when ultra-intense lasers (up to 10 20 W cm -2 ) interact with hydrogen containing solid targets. These protons can be used to induce nuclear reactions in secondary targets to produce β + -emitting nuclei of relevance to the nuclear medicine community, namely 11 C and 13 N via (p, n) and (p,α) reactions. Activities of the order of 200 kBq have been measured from a single laser pulse interacting with a thin solid target. The possibility of using ultra-intense lasers to produce commercial amounts of short-lived positron emitting sources for positron emission tomography (PET) is discussed

  4. Supercritical fluid extraction of positron-emitting radioisotopes from solid target matrices

    International Nuclear Information System (INIS)

    Schlyer, D.

    2000-01-01

    Supercritical fluids are attractive as media for both chemical reactions, as well as process extraction, since their physical properties can be manipulated by small changes in pressure and temperature near the critical point of the fluid. Such changes can result in drastic effects on density-dependent properties such as solubility, refractive index, dielectric constant, viscosity and diffusivity of the fluid. This suggests that pressure tuning of a pure supercritical fluid may be a useful means to manipulate chemical reactions on the basis of a thermodynamic solvent effect. It also means that the solvation properties of the fluid can be precisely controlled to enable selective component extraction from a matrix. In recent years there has been a growing interest in applying supercritical fluid extraction to the selective removal of trace metals from solid samples. Much of the work has been done on simple systems comprised of inert matrices such as silica or cellulose. Recently, this process as been expanded to environmental samples as well. However, very little is understood about the exact mechanism of the extraction process. Of course, the widespread application of this technology is highly dependent on the ability of scientists to model and predict accurate phase equilibria in complex systems. In this project, we plan to explore the feasibility of utilizing supercritical fluids as solvents for reaction and extraction of radioisotopes produced from solid enriched targets. The reason for this work is that many of these enriched target materials used for radioisotope production are expensive

  5. Positron emitting pharmaceuticals

    International Nuclear Information System (INIS)

    Rajan, M.G.R.

    2012-01-01

    Positron Emission Tomography (PET) imaging of physiology at the molecular level bridges the gap between laboratory science and clinical medicine by providing the most specific and sensitive means for imaging molecular pathways and interactions in tissues of man. PET-imaging requires the use Positron Emitting Radiopharmaceuticals (PRPs), which are radioactively labeled 'true metabolites' i.e., sugars, amino acids, fatty acids etc., essentially made of H, C, N and O which the cells in the body can metabolize. The PET-isotopes: 11 C, 15 O, 13 N and 18 F (instead of H) are cyclotron produced and are short-lived, which places several constraints on the synthesis time for the PRPs, quality control and their clinical use as compared to the conventional 99m Tc- and other SPECT-RPs widely used in nuclear medicine. There are large number of published reports showing the utility of several PRPs labeled with 18 F (T 1/2 = 110 min) and 11 C (T 1/2 = 20 min). A few PRPs have been labeled with 13 N (T 1/2 = 10 min). 15 O (T 1/2 = 2min) is used mostly as H 2 15 O, C 15 or C 15 O 2 . 18 F-radiopharmaceuticals can be made at a medical cyclotron facility and sent to PET -imaging centres, which can be reached in a couple of hours. The sensitivity of PET -imaging has encouraged R and D in several other PRPs, labeled with viz., 68 Ga (generator produced, T 1/2 68 min), 124 I (cyclotron, T 1/2 4.2 d), 82 Rb (generator, T 1/2 75s), 64 Cu (cyclotron, T 1/2 12h), and 94m Tc (cyclotron, T 1/2 52 min). Due to its relevance in several diseases, particularly cancer, PET-imaging has made major scientific contribution to drug development, particularly for neurological diseases and cancer treatment. (author)

  6. Cyclotrons and positron emitting radiopharmaceuticals

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, A.P.; Fowler, J.S.

    1984-01-01

    The state of the art of Positron Emission Tomography (PET) technology as related to cyclotron use and radiopharmaceutical production is reviewed. The paper discusses available small cyclotrons, the positron emitters which can be produced and the yields possible, target design, and radiopharmaceutical development and application. 97 refs., 12 tabs. (ACR)

  7. Cyclotrons and positron emitting radiopharmaceuticals

    International Nuclear Information System (INIS)

    Wolf, A.P.; Fowler, J.S.

    1984-01-01

    The state of the art of Positron Emission Tomography (PET) technology as related to cyclotron use and radiopharmaceutical production is reviewed. The paper discusses available small cyclotrons, the positron emitters which can be produced and the yields possible, target design, and radiopharmaceutical development and application. 97 refs., 12 tabs

  8. Positron emitting radionuclides for South Africa

    International Nuclear Information System (INIS)

    Wynchbank, S.; Van der Walt, T.N.; Sharpey-Shafer, J.

    2004-01-01

    Full text: In South Africa there are currently two projects underway to supply and utilise positron emitting radionuclides for imaging in clinical nuclear medicine facilities. The advantages and applications of such radio nuclides are numerous and well known. However the premier initial application will be to employ 1BF, at first in the compound fluorine-18 fluorodeoxyglucose ( 18 F)-FDG, for patients with cancers and neoplasms. The two projects are sited at iThemba LABS, where production of a generator supplying 66 Ga and the provision of ( 18 F]-FDG, are in an advanced state of planning; the former already fully financed by the Innovation Fund of the National Research Foundation. The two positron emitting radionuclides, 18 F and 68 Ge, will be produced using a cyclotron induced reaction on 1802 and Ga, respectively, at iThemba LABS. The 68 Ge/ 68 Ga generator consists of an anion exchanger loaded with 68 Ge, which decays to 68 Ga. The resulting radiopharmaceuticals, ( 18 F]-FDG and 68 Ga citrate, will be produced by the Radionuclide Production Group of iThemba LABS, using well described methods. However the structures and processes to be used in the generator to provide 68 Ga are novel and will be explained. Initially provision of the CBF]-FDG will be to selected clinical medicine facilities in the Western Cape and Gauteng. It should be noted that the logistical problems of providing this radiopharmaceutical (which are much complicated by its short half life of 109.7 min) to Gauteng, were shown to be surmountable in the 1970s, by a regular delivery of 18 F between Gauteng and Cape Town, after the advent of a commercial service using jet aircraft. The obvious requirement that there should be appropriate nuclear medicine facilities to image patients, at the sites to which the positron emitting radiopharmaceuticals will be supplied, has been addressed. Proposed solutions will be outlined, in terms of a dedicated positron emission tomography (PET) camera and a gamma

  9. Positron emitting radionuclides: manufacturing, labelling and examples of medical applications

    International Nuclear Information System (INIS)

    Comar, D.; Maziere, M.; Berger, G.; Crouzel, C.; Soussaline, F.; Kellershohn, C.

    1979-01-01

    The only radioisotopes of carbon, oxygen and nitrogen which can be used in medicine are positrons emitters. They may be incorporated in organic molecules and detected in vivo by quantitative emission tomography. The manufacture of these short lived radioisotopes need a cyclotron to be set up in a hospital. The main procedures for making these radioisotopes are described so as their incorporation in complex molecules. Some medical applications in the field of the brain blood-flow, and oxygen consumption, the cerebral amino-acids metabolism and the brain distribution of psychoactive drugs are described [fr

  10. Positron-emitting raionuclides: present and future status

    International Nuclear Information System (INIS)

    Lambrecht, R.M.

    1979-01-01

    A tabulation of 157 positron-emitting radionuclides that have the physical characteristics deemed appropriate for radiopharmaceutical use in conjunction with positron emission tomography is provided. The most promising radionuclides are within the production capabilities of a variable-energy cyclotron accelerating protons to about 40 MeV and deuterons, helium-3, and helium-4 to compatable energies. To data only 27 positron-emitting radionuclides have been subjected to radiopharmaceutical consideration, whereas only 11 C, 13 N, 15 O, 18 F, 38 K, and 68 Ga have proved to be especially promising. 2 tables

  11. Radiopharmaceuticals in positron emission tomography: Radioisotope productions and radiolabelling procedures at the Austin and Repatriation Medical Centre

    Energy Technology Data Exchange (ETDEWEB)

    Tochon-Danguy, H.J.; Sachinidis, J.I.; Chan, J.G.; Cook, M. [Austin and Repatriation Medical Centre, Melbourne, VIC (Australia). Centre for Positron Emission Tomography

    1997-10-01

    Positron Emission Tomography (PET) is a technique that utilizes positron-emitting radiopharmaceuticals to map the physiology, biochemistry and pharmacology of the human body. Positron-emitting radioisotopes produced in a medical cyclotron are incorporated into compounds that are biologically active in the body. A scanner measures radioactivity emitted from a patient`s body and provides cross-sectional images of the distribution of these radiolabelled compounds in the body. It is the purpose of this paper to review the variety of PET radiopharmaceuticals currently produced at the Austin and Repatriation Medical Centre in Melbourne. Radioisotope production, radiolabelling of molecules and quality control of radiopharmaceuticals will be discussed. A few examples of their clinical applications will be shown as well. During the last five years we achieved a reliable routine production of various radiopharmaceuticals labelled with the four most important positron-emitters: oxygen-15 (t,{sub 1/2}=2min), nitrogen-13 (t{sub 1/2}= 10 min), carbon-11 (t{sub 1/2}=20 min) and fluorine-18 (t{sub 1/2}= 110 min). These radiopharmaceuticals include [{sup 15}O]oxygen, [{sup 15}O]carbon monoxide, [{sup 15}O]carbon dioxide, [{sup 15}O]water, [{sup 13}N]ammonia, [{sup 11}C]flumazenil, [{sup 11}C]SCH23390, [{sup 18}F]fluoromisonidazole and [{sup 18}F]fluoro-deoxy-glucose ([{sup 18}F]FDG). In addition, since the half life of [{sup 18}F] is almost two hours, regional distribution can be done, and the Austin and Repatriation Medical Centre is currently supplying [{sup 18}F]FDG in routine to other hospitals. Future new radiopharmaceuticals development include a [{sup 18}F]thymidine analog to measure cell proliferation and a [{sup 11}C]pyrroloisoquinoline to visualize serotonergic neuron abnormalities. (authors) 23 refs., 2 tabs.

  12. Radiopharmaceuticals in positron emission tomography: Radioisotope productions and radiolabelling procedures at the Austin and Repatriation Medical Centre

    International Nuclear Information System (INIS)

    Tochon-Danguy, H.J.; Sachinidis, J.I.; Chan, J.G.; Cook, M.

    1997-01-01

    Positron Emission Tomography (PET) is a technique that utilizes positron-emitting radiopharmaceuticals to map the physiology, biochemistry and pharmacology of the human body. Positron-emitting radioisotopes produced in a medical cyclotron are incorporated into compounds that are biologically active in the body. A scanner measures radioactivity emitted from a patient's body and provides cross-sectional images of the distribution of these radiolabelled compounds in the body. It is the purpose of this paper to review the variety of PET radiopharmaceuticals currently produced at the Austin and Repatriation Medical Centre in Melbourne. Radioisotope production, radiolabelling of molecules and quality control of radiopharmaceuticals will be discussed. A few examples of their clinical applications will be shown as well. During the last five years we achieved a reliable routine production of various radiopharmaceuticals labelled with the four most important positron-emitters: oxygen-15 (t, 1/2 =2min), nitrogen-13 (t 1/2 = 10 min), carbon-11 (t 1/2 =20 min) and fluorine-18 (t 1/2 = 110 min). These radiopharmaceuticals include [ 15 O]oxygen, [ 15 O]carbon monoxide, [ 15 O]carbon dioxide, [ 15 O]water, [ 13 N]ammonia, [ 11 C]flumazenil, [ 11 C]SCH23390, [ 18 F]fluoromisonidazole and [ 18 F]fluoro-deoxy-glucose ([ 18 F]FDG). In addition, since the half life of [ 18 F] is almost two hours, regional distribution can be done, and the Austin and Repatriation Medical Centre is currently supplying [ 18 F]FDG in routine to other hospitals. Future new radiopharmaceuticals development include a [ 18 F]thymidine analog to measure cell proliferation and a [ 11 C]pyrroloisoquinoline to visualize serotonergic neuron abnormalities. (authors)

  13. Uptake and transport of positron-emitting tracer in plants

    Energy Technology Data Exchange (ETDEWEB)

    Kume, Tamikazu; Matsuhashi, Shinpei; Shimazu, Masamitsu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; and others

    1997-03-01

    The transport of a positron-emitting isotope introduced into a plant was dynamically followed by a special observation apparatus called `Positron-Emitting Tracer Imaging System`. In the system, annihilation {gamma}-rays from the positron emitter are detected with two planer detectors (5 x 6 cm square). The water containing ca. 5 MBq/ml of {sup 18}F was fed to the cut stem of soybean for 2 min and then the images of tracer activity were recorded for 30 - 50 min. When the midrib of a leaf near the petiole was cut just before measurement, the activity in the injured leaf was decreased but detected even at the apex. This result suggests that the damaged leaf recovered the uptake of water through the lamina. Maximum tracer activities in leaves of unirradiated plant were observed within 10 min, whereas those of irradiated plant at 100 Gy were observed after over 25 min. The final activity of irradiated plant after 30 min was lower than that of unirradiated plant. In case of beans, there was a difference in the absorption behavior of the {sup 18}F-labeled water between unirradiated and irradiated samples. These results show that the system is effective to observe the uptake and transportation of water containing positron emitting tracer for the study of damage and recovery functions of plants. (author)

  14. Imaging instrument for positron emitting heavy ion beam injection

    International Nuclear Information System (INIS)

    Llacer, J.; Chatterjee, A.; Jackson, H.C.; Lin, J.C.; Zunzunegui, M.V.

    1978-10-01

    The design and performance of an instrument for the imaging of coincidence annihilation gamma rays emitted from the end point of the trajectories of radioactive high-energy heavy ions is described. The positron-emitting heavy ions are the result of nuclear fragmentation of accelerated heavy ions used in cancer therapy or diagnostic medicine. The instrument constructed is capable of locating the ion beam trajectory end point within 1 mm for an injected activity of 200 nanoCi in a measurement time of 1 sec in some favorable conditions. Limited imaging in three dimensions is also demonstrated

  15. Interaction of measles virus vectors with Auger electron emitting radioisotopes

    International Nuclear Information System (INIS)

    Dingli, David; Peng, K.-W.; Harvey, Mary E.; Vongpunsawad, Sompong; Bergert, Elizabeth R.; Kyle, Robert A.; Cattaneo, Roberto; Morris, John C.; Russell, Stephen J.

    2005-01-01

    A recombinant measles virus (MV) expressing the sodium iodide symporter (NIS) is being considered for therapy of advanced multiple myeloma. Auger electrons selectively damage cells in which the isotope decays. We hypothesized that the Auger electron emitting isotope 125 I can be used to control viral proliferation. MV was engineered to express both carcinoembryonic antigen and NIS (MV-NICE). Cells were infected with MV-NICE and exposed to 125 I with appropriate controls. MV-NICE replication in vitro is inhibited by the selective uptake of 125 I by cells expressing NIS. Auger electron damage is partly mediated by free radicals and abrogated by glutathione. In myeloma xenografts, control of MV-NICE with 125 I was not possible under the conditions of the experiment. MV-NICE does not replicate faster in the presence of radiation. Auger electron emitting isotopes effectively stop propagation of MV vectors expressing NIS in vitro. Additional work is necessary to translate these observations in vivo

  16. Positron-emitting isotopes in nuclear medicine: a new challenge for radiochemistry and radiotherapy

    International Nuclear Information System (INIS)

    Lars, J.; Nilsson, G.; Ehrin, E.; Stone-Elander, S.

    1980-01-01

    Positron emission tomography and the positron camera are described and their applications in medical diagnostics outlined. The incorporation of positron emitting isotopes into other molecules which can participate biochemically in cell metabolisms and accumulate in cells with increased activity, is discussed. (C.F.)

  17. Current Molecular Imaging Positron Emitting Radiotracers in Oncology

    International Nuclear Information System (INIS)

    Zhu, Aizhi; Shim, Hyunsuk

    2011-01-01

    Molecular imaging is one of the fastest growing areas of medical imaging. Positron emission tomography has been widely used in the clinical management of patients with cancer. Nuclear imaging provides biological information at the cellular, subcellular, and molecular level in living subjects with noninvasive procedures. In particular, PET imaging takes advantage of traditional diagnostic imaging techniques and introduces positron emitting probes to determine the expression of indicative molecular targets at different stages of cancer. 18F fluorodeoxyglucose ( 18F FDG), the only FDA approved oncological PET tracer, has been widely utilized in cancer diagnosis, staging, restaging, and even monitoring response to therapy; however, 18F FDG is not a tumor specific PET tracer. Over the last decade, many promising tumor specific PET tracer. Over the last decade, many promising tumor specific PET tracers have been developed and evaluated in preclinical and clinical studies. This review provides an overview of the current non 18F FDG PET tracers in oncology that have been developed based on tumor characteristics such as increased metabolism, hyperproliferation, angiogenesis, hypoxia, apoptosis, and tumor specific antigens and surface receptors

  18. 'Serial review on clinical PET tracers'. Manufacturing and quality control of positron emitting radiopharmaceuticals produced by in-house cyclotron

    International Nuclear Information System (INIS)

    Saji, Hideo

    2009-01-01

    In order to establish PET diagnosis as a routine clinical tool, manufacture's compliance with regulations under the Good Manufacturing Practice (GMP) principle for PET radiopharmaceuticals is necessary. For this purpose, the Sub-committee on Medical Application of Positron Emitting Radionuclides, Medical Science and Pharmaceutical Committee of Japan Radioisotopes Association has proposed 'Standards for Compounds Labeled with Emitting Radionuclides Approved as Established Techniques for Medical Use'. This guideline includes the general notices, general rules for preparations, general tests for the quality control, quality of each PET agents, guideline for manufacturing environment and manufacturing process at manufacturing facilities of PET agents. Each facility should have a committee and establish an internal system to account for manufacturing compounds labeled with positron emitting radionuclides produced in the facility, and compile standards by referring to the 'Established Standard Techniques of Labeling Compounds with Emitting Radionuclides for use as Radiopharmaceuticals: approved by the Subcommittee on Medical Application of Cyclotron-Produced Radionuclides (revised in 2009)', in order to maintain the quality of radiopharmaceuticals. (author)

  19. Development of positron emitting radionuclides for imaging with improved positron detectors

    International Nuclear Information System (INIS)

    Yano, Y.

    1976-10-01

    Recent advances in positron cameras and positron ring detectors for transverse section reconstruction have created renewed interest in positron emitting radionuclides. This paper reports on: generator-produced 82 Rb; cyclotron-produced 62 Zn; and reactor-produced 64 Cu. Investigation of the 82 Sr (25 d)-- 82 Rb (75 s) generator determined the elution characteristics for Bio-Rex 70, a weakly acidic carboxylic cation exchanger, using 2% NaCl as the eluent. The yield of 82 Rb and the breakthrough of 82 Sr were determined for newly prepared columns and for long term elution conditions. Spallation-produced 82 Sr was used to charge a compact 82 Rb generator to obtain multi-millicurie amounts of 82 Rb for myocardial imaging. Zinc accumulates in the islet cells of the pancreas and in the prostate. Zinc-62 was produced by protons on Cu foil and separated by column chromatography. Zinc-62 was administered as the amino acid chelates and as the ZnCl 2 to tumor and normal animals. Tissue distribution was determined for various times after intravenous injection. Pancreas-liver images of 62 Zn-histidine uptake were obtained in animals with the gamma camera and the liver uptake of /sup 99m/Tc sulfur colloid was computer subtracted to image the pancreas alone. The positron camera imaged uptake of 62 Zn-histidine in the prostate of a dog at 20 h. 64 Cu was chelated to asparagine, a requirement of leukemic cells, and administered to lymphoma mice. Uptake in tumor and various tissues was determined and compared with the uptake of 67 Ga citrate under the same conditions. 64 Cu-asparagine had better tumor-to-soft tissue ratios than 67 Ga-citrate

  20. Production and Applications of Long-Lived Positron-Emitting Radionuclides

    Science.gov (United States)

    Graves, Stephen A.

    Positron emission tomography (PET) is a medical imaging modality capable of determining the in vivo spatial distribution of a biologically relevant molecule which has been labeled with a positron-emitting isotope. The use of molecules such as monoclonal antibodies and nanoparticles for therapeutic and diagnostic applications has expanded preclinically in recent years. As these larger molecules tend to have longer circulation times and slow clearance kinetics, positron-emitting isotopes with half-lives longer than conventional medical radioisotopes are required for PET applications. This dissertation details methods for the production of 51Mn (t1/2: 45.4 min), 52gMn (t1/2: 5.59 d), 64Cu (t1/2: 12.7 h), 76Br (t1/2: 16.2 h), 89Zr (t1/2: 3.27 d), and 194Au (t1/2: 38.0 h) on low-energy medical cyclotrons, including targetry considerations, radiochemical separation methods, and analysis of resulting purity. Pursuant to the production of these isotopes, several instrumentation developments have been made including implementation of an automatic nuclide identification library for gamma spectroscopy; development of methods for dead time correction and background estimation in auto-gamma counting; and the creation of a new linearly-filled Derenzo-type PET phantom. Measurement of the radioactive half-lives of 51Mn and 52gMn are presented in addition to their use in a variety of preclinical molecular imaging applications, including immunoPET, stem cell tracking, functional beta-cell mass determination, and probing the impact of isoflurane on acute pancreatic function. An analytic model of effective specific activity is formed and tested against preliminary trace metal analysis results. Measurements of excitation functions for the large-scale production of medically relevant isotopes, including 52gMn, at the Los Alamos National Laboratory Isotope Production Facility (100 MeV p+) are presented. The results described herein have enabled and informed a variety of novel

  1. Cardiac positron emission tomography

    International Nuclear Information System (INIS)

    Eftekhari, M.; Ejmalian, G.

    2003-01-01

    Positron emission tomography is an intrinsically tool that provide a unique and unparalleled approach for clinicians and researchers to interrogate the heart noninvasively. The ability to label substances of physiological interest with positron-emitting radioisotopes has permitted insight into normal blood flow and metabolism and the alterations that occur with disease states. Positron emission tomography of the heart has evolved as a unique, noninvasive approach for the assessment of myocardial perfusion, metabolism, and function. Because of the intrinsic quantitative nature of positron emission tomography measurements as well as the diverse compounds that can be labeled with positron- emitting radioisotopes, studies with positron emission tomography have provided rich insight into the physiology of the heart under diverse conditions

  2. Analytical investigation of energy spectrums of beta rays emitted from 90Sr and 204Tl radioisotopes

    International Nuclear Information System (INIS)

    Yalcin, S.

    2011-01-01

    The energy spectra of beta rays emitted from 90 Sr and 204 Tl radioisotopes were obtained by using a silicon surface barrier detector with a 1000 μm depleted layer and 50 mm 2 effective area. The detector response function is interpreted by making use of range distributions of mono-energetic electrons in matter and by assuming a linear energy loss along the range in the depleted layer of the detector. An analytical expression is given for pulse height distribution obtained in the surface barrier detector. A good agreement is observed between the experimental results and theoretical interpretation. (author)

  3. Minicyclotron-based technology for the production of positron-emitting labelled radiopharmaceuticals

    International Nuclear Information System (INIS)

    Barrio, J.R.; Bida, G.; Satyamurthy, N.; Padgett, H.C.; MacDonald, N.S.; Phelps, M.E.

    1983-01-01

    The use of short-lived positron emitters such as carbon 11, fluorine 18, nitrogen 13, and oxygen 15, together with positron-emission tomography (PET) for probing the dynamics of physiological and biochemical processes in the normal and diseased states in man is presently an active area of research. One of the pivotal elements for the continued growth and success of PET is the routine delivery of the desired positron emitting labelled compounds. To date, the cyclotron remains the accelerator of choice for production of medically useful radionuclides. The development of the technology to bring the use of cyclotrons to a clinical setting is discussed

  4. Minicyclotron-based technology for the production of positron-emitting labelled radiopharmaceuticals

    Energy Technology Data Exchange (ETDEWEB)

    Barrio, J.R.; Bida, G.; Satyamurthy, N.; Padgett, H.C.; MacDonald, N.S.; Phelps, M.E.

    1983-01-01

    The use of short-lived positron emitters such as carbon 11, fluorine 18, nitrogen 13, and oxygen 15, together with positron-emission tomography (PET) for probing the dynamics of physiological and biochemical processes in the normal and diseased states in man is presently an active area of research. One of the pivotal elements for the continued growth and success of PET is the routine delivery of the desired positron emitting labelled compounds. To date, the cyclotron remains the accelerator of choice for production of medically useful radionuclides. The development of the technology to bring the use of cyclotrons to a clinical setting is discussed. (ACR)

  5. Time of flight spectra of electrons emitted from graphite after positron annihilation

    International Nuclear Information System (INIS)

    Gladen, R W; Chirayath, V A; Chrysler, M D; Mcdonald, A D; Fairchild, A J; Shastry, K; Koymen, A R; Weiss, A H

    2017-01-01

    Low energy (∼2 eV) positrons were deposited onto the surface of highly oriented pyrolytic graphite (HOPG) using a positron beam equipped with a time of flight (TOF) spectrometer. The energy of the electrons emitted as a result of various secondary processes due to positron annihilation was measured using the University of Texas at Arlington’s (UTA) TOF spectrometer. The positron annihilation-induced electron spectra show the presence of a carbon KLL Auger peak at ∼263 eV. The use of a very low energy beam allowed us to observe a new feature not previously seen: a broad peak which reached to a maximum intensity at ∼4 eV and extended up to a maximum energy of ∼15 eV. The low energy nature of the peak was confirmed by the finding that the peak was eliminated when a tube in front of the sample was biased at -15 V. The determination that the electrons in the peak are leaving the surface with energies up to 7 times the incoming positron energy indicates that the electrons under the broad peak were emitted as a result of a positron annihilation related process. (paper)

  6. Uptake and transport of positron-emitting tracer (18F) in plants

    International Nuclear Information System (INIS)

    Kume, Tamikazu; Matsuhashi, Shinpei; Shimazu, Masamitsu

    1997-01-01

    The transport of a positron-emitting isotope introduced into a plant was dynamically followed by a special observation apparatus called Positron-Emitting Tracer Imaging System' to observe the damage and recovery functions of plants in vivo. In the system, annihilation γ-rays from the positron emitter are detected with two planar detectors (5 x 6 cm 2 ). The water containing ca. 5 MBq/ml of 18 F was fed to the cut stem of soybean for 2 min and then the images of tracer activity were recorded for 30-50 min. When the midrib of a leaf near the petiole was cut just before measurement, the activity in the injured leaf was decreased but detected even at the apex. This result suggests that the damaged leaf recovered the uptake of water through the lamina. Maximum tracer activities in leaves of unirradiated plant were observed within 10 min, whereas those of irradiated plant at 100 Gy were observed after over 25 min. The final activity of irradiated plant after 30 min was lower than that of unirradiated plant. In case of beans, there was a difference in the absorption behavior of the 18 F-labeled water between unirradiated and irradiated samples. These results show that the system is effective to observe the uptake and transportation of water containing positron emitting tracer for the study of damage and recovery functions of plants. (Author)

  7. A comparison of positron-emitting blood pool imaging agents

    International Nuclear Information System (INIS)

    Hnatowich, D.J.; Kulprathipanja, S.; Evans, G.; Elmaleh, D.

    1979-01-01

    The three agents, 11 C-carboxyhaemoglobin, 68 Ga-transferrin and 68 Ga-labelled red cells have been compared in dogs to assess their relative merits for blood-pool imaging. For 1 h following administration of each agent, periodic blood samples were withdrawn for counting in a NaI (Tl) well counter while conventional two-dimensional images were obtained simultaneously on the Massachusetts General Hospital positron camera. Count rates in regions about the heart, liver and spleen were obtained for each image. The disappearance of blood activity as shown from the results of counting the blood samples and from the counting rates in regions about the heart was found to be identical within experimental error for the three agents. In the liver and spleen regions, the highest count rates were obtained with 68 Ga-transferrin and the lowest with 68 Ga-labelled red cells; count rates in these regions with labelled red cells were virtually constant throughout the 1 h study. It may be concluded that with the exceptions noted above, the three agents are approximately equivalent for blood-pool imaging. (author)

  8. Timing Calibration for Time-of-Flight PET Using Positron-Emitting Isotopes and Annihilation Targets

    Science.gov (United States)

    Li, Xiaoli; Burr, Kent C.; Wang, Gin-Chung; Du, Huini; Gagnon, Daniel

    2016-06-01

    Adding time-of-flight (TOF) technology has been proven to improve image quality in positron emission tomography (PET). In order for TOF information to significantly reduce the statistical noise in reconstructed PET images, good timing resolution is needed across the scanner field of view (FOV). This work proposes an accurate, robust, and practical crystal-based timing calibration method using 18F - FDG positron-emitting sources together with a spatially separated annihilation target. We calibrated a prototype Toshiba TOF PET scanner using this method and then assessed its timing resolution at different locations in the scanner FOV.

  9. A multicrystal positron scanner for quantitative studies with positron-emitting radionuclides

    International Nuclear Information System (INIS)

    Ostertag, H.; Kuebler, W.; Kubesch, R.; Lorenz, W.J.

    1981-01-01

    A non-tomographic multicrystal whole-body scanner for quantitative positron imaging has been designed. The detector system consists of 64 coincidence detector pairs arranged in two opposing detector banks. NaI crystals of 38-mm diameter and 76-mm length are used. The patient moves linearly between the stationary transverse detector banks. The scanning area is 64-cm wide and up to 192-cm long. The spatial resolution is 2 cm at a sampling distance of 1 cm. The plane sensitivity amounts to 6400 counts/s for a pure positron emitter of 1 μCi/cm 2 . The accuracy of quantitative activity measurements is better than +- 15% for activities up to a few μCi/cm 2 . The design of the instrument, and its capabilities and limitations, are discussed. Initial experimental and clinical results are presented. (author)

  10. Application of positron annihilation to polymer and development of a radioisotopes-based pulsed slow positron beam apparatus

    International Nuclear Information System (INIS)

    Suzuki, Takenori

    2004-01-01

    Positrons injected into polymer behave as nanometer probes, which can detect the size and amount of intermolecular spaces among polymer structures. Although positrons can probe the characteristics of polymer, they induce a radiation effect on polymer samples. At low temperature, the radiation effect induces free electrons, which can be trapped in a shallow potential created among intermolecular structures after freezing molecular motions. These trapped electrons can be released after the disappearance of the shallow potential due to the reappearance of molecular motion above the relaxation temperature. Thus, positrons can be used as a probe for relaxation studies. Coincidence of Doppler broadening spectroscopy (CDBS) can improve the S/N ratio to 10 7 , which makes it possible to detect trace elements, since CDBS can separate the high-momentum component of core electrons. A pulsed slow positron beam apparatus is necessary for measuring holes in the polymer film and allows the measurement of the characteristics of thin film coated on semiconductors used widely in electronics industries. (author)

  11. External tandem target system for efficient production of short-lived positron emitting radionuclides

    International Nuclear Information System (INIS)

    Koh, K.; Dwyer, J.; Finn, R.; Sheh, Y.; Sinnreich, J.; Wooten, T.

    1983-01-01

    Recent developments in radiopharmaceutical chemistry allow the incorporation of short-lived, positron-emitting radionuclides into a variety of compounds which when used with a positron emission tomograph provide a means of monitoring physiological disorders by a standard technique. To effectively meet the increased ''in-house'' clinical demands while maintaining a production schedule, a tandem target was designed and has been installed for the simultaneous ''on-line'' preparation of oxygen-15 labelled compounds such as CO 2 15 , H 2 O 15 ; and nitrogen-13 labelled compounds such as 13 NH 3 , 13 N 2 O, and 13 N 2 . The processing time required for the synthesis of the nitrogen-13 products as compared to the essentially instantaneous formation of oxygen-15 labelled compounds has provided the necessary time delay for clinical utilization. The characterisitcs of this external tandem target system as well as the automation for the dual processing are presented

  12. Intelligent control of liquid transfer for the automated synthesis of positron emitting radiopharmaceuticals

    International Nuclear Information System (INIS)

    Iwata, Ren; Ido, Tatsuo; Yamazaki, Shigeki

    1990-01-01

    A method for the intelligent control of liquid transfer, developed for automated synthesis of 2-deoxy-2-[ 18 F]fluoro-D-glucose from [ 18 F]fluoride, is described. A thermal mass flow controller coupled to a personal computer is used to monitor conditions for transferring or passing liquid through a tube or a column. Using this sensor a computer can detect completion of liquid transfer, dispense a stock solution and check the setup conditions of the system. The present feedback control can be readily adapted to other automated syntheses of positron emitting radiopharmaceuticals. (author)

  13. Real-time monitoring and analysis of nutrient transportation in a living plant using a positron emitting tracer imaging system (PETIS)

    International Nuclear Information System (INIS)

    Matsuhashi, Shinpei

    2005-01-01

    We visualized the uptake and transportation of nutrition in a living plant using positron-emitting tracers and mathematical analysis of the data. We have been developing a positron-imaging technique to visualize the uptake and transportation of nutrients in a plant by a positron-emitting tracer-imaging system (PETIS) using positron-emitting nuclide-labeled compounds. The PETIS data is analyzed mathematically to understand the physiological meaning of the physical parameters. In this study, the results on the uptake and transportation of nutrients, which were obtained with the use of a positron-imaging method, are introduced. (author)

  14. Development of a system for real-time measurements of metabolite transport in plants using short-lived positron-emitting radiotracers

    Science.gov (United States)

    Kiser, Matthew R.

    Over the past 200 years, the Earth's atmospheric carbon dioxide (CO 2) concentration has increased by more than 35%, and climate experts predict that CO2 levels may double by the end of this century. Understanding the mechanisms of resource management in plants is fundamental for predicting how plants will respond to the increase in atmospheric CO 2. Plant productivity sustains life on Earth and is a principal component of the planet's system that regulates atmospheric CO2 concentration. As such, one of the central goals of plant science is to understand the regulatory mechanisms of plant growth in a changing environment. Short-lived positron-emitting radiotracer techniques provide time-dependent data that are critical for developing models of metabolite transport and resource distribution in plants and their microenvironments. To better understand the effects of environmental changes on resource transport and allocation in plants, we have developed a system for real-time measurements of rnetabolite transport in plants using short-lived positron-emitting radio-tracers. This thesis project includes the design, construction, and demonstration of the capabilities of this system for performing real-time measurements of metabolite transport in plants. The short-lived radiotracer system described in this dissertation takes advantage of the combined capabilities and close proximity of two research facilities at. Duke University: the Triangle Universities Nuclear Laboratory (TUNL) and the Duke University Phytotron, which are separated by approximately 100 meters. The short-lived positron-emitting radioisotopes are generated using the 10-MV tandem Van de Graaff accelerator located in the main TUNL building, which provides the capability of producing short-lived positron-emitting isotopes such as carbon-11 (11C: 20 minute half-life), nitrogen-13 (13N; 10 minute half-life), fluorine-18 (18F; 110 minute half-life), and oxygen-15 (15O; 2 minute half-life). The radioisotopes may

  15. New calculations of cyclotron production cross sections of some positron emitting radioisotopes in proton induced reactions

    International Nuclear Information System (INIS)

    Tel, E.; Aydin, E.G.; Kaplan, A.; Aydin, A.

    2009-01-01

    In this study, new calculations on the excitation functions of 13 C(p, n) 13 N, 14 N (p, α) 11 C, 15 N(p, n) 15 O, 16 O(p, α) 13 N, 18 O(p, n) 18 F, 62 Ni(p, n) 62 Cu, 68 Zn(p, n) 68 Ga and 72 Ge(p, n) 72 As reactions have been carried out in the 5-40 MeV incident proton energy range. In these calculations, the pre-equilibrium and equilibrium effects have been investigated. The pre-equilibrium calculations involve hybrid model, geometry dependent hybrid model, the cascade exciton model and full exciton model. Equilibrium effects were calculated according to Weisskopf-Ewing model. The calculated results have been compared with experimental data taken from literature. (author)

  16. Outline of research on plant physiological functions using Positron Emitting Tracer

    International Nuclear Information System (INIS)

    Kume, Tamikazu

    2000-01-01

    Application of Positron Emitting Tracer Imaging System (Pets) for the plant has been investigated under JAERI-Universities Joint Research Project. Five university groups are studying a dynamic image of plant transport or a static image of the result of tracer movement using 11 C (half-life 20 min), 13 N (10 min), 18 F (110 min), etc. The Pets consisted of two-dimensional block detectors (48 x 50 mm square) which were composed of a Bi 4 Ge 3 O 12 scintillator array coupled to a position sensitive photomultiplier tube. In the system, the plant samples are placed at the mid position between the two opposing detectors and annihilation γ-rays from the samples are detected in coincidence. The positron emitting tracer images are obtained by accumulating these signals. The spatial resolution was 2.4 mm and images with a good S/N ratio can be obtained in real time. Using TIARA AVF cyclotron, 13 NO 3 - , 13 NH 4 + , 18 F-water, 11 C-methionine, etc. were produced and supplied to the plants. The transport of these labeled compounds introduced into plants was followed dynamically by PETIS. The results show that the system is effective in observing the uptake and transport of nutrients in plants and is useful for the study of physiological functions of plants. (author)

  17. Temperature dependence of the fraction of re-emitted positrons, the positron work function, and the positronium fraction for Cu(III)+S

    International Nuclear Information System (INIS)

    Schultz, P.J.; Lynn, K.G.

    1982-01-01

    A beam of 1 keV positrons incident on a Cu(111)+S surface has been used to study the dependence on temperature of the positron work function (phi/sub +/), the yield of re-emitted positrons (Y) and of the positronium (Ps) fraction. A positive dependence of the slow-positron yield on temperature is found which is attributed in part to a reduction in the magnitude of phi/sub +/ (approx. 25%) at 50 K relative to its value at 300 K. A similar, though weaker, positive dependence on temperature was seen for the Ps fraction down to 40 K. We present a suggestion for the apparent lack of reflection

  18. Transfer function analysis of positron-emitting tracer imaging system (PETIS) data

    International Nuclear Information System (INIS)

    Keutgen, N.; Matsuhashi, S.; Mizuniwa, C.; Ito, T.; Fujimura, T.; Ishioka, N.S.; Watanabe, S.; Sekine, T.; Uchida, H.; Hashimoto, S.

    2002-01-01

    Quantitative analysis of the two-dimensional image data obtained with the positron-emitting tracer imaging system (PETIS) for plant physiology has been carried out using a transfer function analysis method. While a cut leaf base of Chinese chive (Allium tuberosum Rottler) or a cut stem of soybean (Glycine max L.) was immersed in an aqueous solution containing the [ 18 F] F - ion or [ 13 N]NO 3 - ion, tracer images of the leaf of Chinese chive and the trifoliate of soybean were recorded with PETIS. From the time sequence of images, the tracer transfer function was estimated from which the speed of tracer transport and the fraction moved between specified image positions were deduced

  19. Responses of rice to salinity and exogenous glycinebetaine by using positron emitting tracer imaging system

    International Nuclear Information System (INIS)

    Le Xuan Tham; Vo Huy Dang; Noriko, S.

    2002-01-01

    Effect of salinity stress (NaCl) and glycinebetaine on typical non-halophyte plants - rice (Oryza sativa L.) was examined for the growth, net photosynthesis and transpiration functions of seedlings. Using 22 Na, the inhibition of net uptake and translocation of sodium of seedlings stressed at 0.15% NaCl in solution and previously treated with exogenous glycinebetaine was observed by positron-emitting tracer imaging system, namely PETIS for diagnosis of early responses of plants to salt stress. Effects of exogenous glycinebetaine on rice plants stressed with salinity via osmotic protection and particularly stabilization of membrane permeability to inhibit Na uptake and translocation were discussed in connection with promising potentials of PETIS for researches on plants. (Author)

  20. Production and chemical isolation procedure of positron-emitting isotopes of arsenic for environmental and medical applications

    Science.gov (United States)

    Ellison, P. A.; Barnhart, T. E.; Engle, J. W.; Nickles, R. J.; DeJesus, O. T.

    2012-12-01

    The positron-emitting isotopes of arsenic have unique potential for imaging research in medical and environmental applications. The production and purification of radioarsenic from proton-irradiated natural GeO2 targets is reported. The separation procedure utilizes precipitation and anion exchange separation steps. Two anion exchange procedures were investigated. An overall arsenic decay-corrected separation yield of 80% was obtained.

  1. Intra-operative nuclear imaging based on positron-emitting radiotracers

    International Nuclear Information System (INIS)

    Shakir, Dzhoshkun Ismail

    2014-01-01

    Positron-emitting radiotracers are an important part of nuclear medical imaging processes. Besides the very famous glucose analog [ 18 F]FDG, many not so well known ones exist, among them the particularly interesting amino acid-based tracers like [ 18 F]FET. Although peri-operative imaging with positron-emitting radiotracers has become state-of- the-art in cases of many types of cancer, their capability is not fully exploited in the operating room yet. In this thesis we explore two intra-operative nuclear imaging modalities exploiting different aspects of positron radiation towards quality assurance in challenging surgical treatment scenarios. The first modality freehand PET provides a tomographic image of a volume of interest and aims at minimizing invasiveness by assisting the surgeon in pinpointing target structures marked with a radiotracer. The second imaging modality epiphanography generates an image of the radiotracer distribution on a surface of interest and aims at providing a means for improving the control of tumor resection margins. The word epiphanography is a compound of the Greek words επιφανεια (epiphaneia) for surface and ζωγραφια (ographia) for image, and hence means the image of the surface similar to the compound τομοζ (tomos) for slice/volume and ζωγραφια (ographia) for image, meaning the image of the volume, i.e. tomography. To our knowledge this is the first use of the word epiphanography in the context of nuclear medical imaging. In this thesis we present our approach to modeling, developing and calibrating these two novel imaging modalities. In addition, we present our work towards their clinical integration. In the case of freehand PET, we have already acquired the first intra-operative datasets of a patient. We present this first experience in the operating room together with our phantom studies. In the case of epiphanography, we present our phantom studies with neurosurgeons towards the integration of this

  2. Preparation of radiopharmaceuticals labelled with bromine positron emitting isotopes for the study of dopaminergic receptors of the central nervous system using positron emission tomography

    International Nuclear Information System (INIS)

    Loc'h, C.

    1988-04-01

    The in vivo study of dopaminergic receptors of the central nervous system using positron emission tomography requires the preparation of radiopharmaceuticals labelled with β + emitting isotopes. The chemical and pharmacological properties of these ligands are evaluated. Cyclotron produced 75 and 76 bromine β + emitting isotopes are incorporated into dopaminergic ligands by electrophilic substitution using peracetic acid in a no-carrier added form. Purity, lipophilicity and specific activity are analyzed. Pharmacological criteria (specificity, saturability, displacement, localization) required for ligand-receptor binding studies are evaluated in vitro on striatal membranes and in vivo in the rat. Positron emission tomographic studies show that the study of dopaminergic D2 receptors is possible using 75 and 76 bromine labelled bromospiperone and bromolisuride. These ligands are used in physiological and pharmacological studies of the central nervous system [fr

  3. Estimate of S-values for children due to six positron emitting radionuclides used in PET examinations

    Science.gov (United States)

    Belinato, Walmir; Santos, William S.; Perini, Ana P.; Neves, Lucio P.; Caldas, Linda V. E.; Souza, Divanizia N.

    2017-11-01

    Positron emission tomography (PET) has revolutionized the diagnosis of cancer since its conception. When combined with computed tomography (CT), PET/CT performed in children produces highly accurate diagnoses from images of regions affected by malignant tumors. Considering the high risk to children when exposed to ionizing radiation, a dosimetric study for PET/CT procedures is necessary. Specific absorbed fractions (SAF) were determined for monoenergetic photons and positrons, as well as the S-values for six positron emitting radionuclides (11C, 13N, 18F, 68Ga, 82Rb, 15O), and 22 source organs. The study was performed for six pediatric anthropomorphic hybrid models, including the newborn and 1 year hermaphrodite, 5 and 10-year-old male and female, using the Monte Carlo N-Particle eXtended code (MCNPX, version 2.7.0). The results of the SAF in source organs and S-values for all organs showed to be inversely related to the age of the phantoms, which includes the variation of body weight. The results also showed that radionuclides with higher energy peak emission produces larger auto absorbed S-values due to local dose deposition by positron decay. The S-values for the source organs are considerably larger due to the interaction of tissue with non-penetrating particles (electrons and positrons) and present a linear relationship with the phantom body masses. The results of the S-values determined for positron-emitting radionuclides can be used to assess the radiation dose delivered to pediatric patients subjected to PET examination in clinical settings. The novelty of this work is associated with the determination of auto absorbed S-values, in six new pediatric virtual anthropomorphic phantoms, for six emitting positrons, commonly employed in PET exams.

  4. Combined method for the fast determination of pure beta emitting radioisotopes in food samples

    International Nuclear Information System (INIS)

    Kabai, Eva; Savkin, Birgit; Mehlsam, Isabell; Poppitz-Spuhler, Angela

    2017-01-01

    Fast radioanalytical methods are essential for a rapid response of decision makers. A fast method for the simultaneous determination of the pure beta emitting radionuclides 89 Sr/ 90 Sr and 99 Tc in food samples was developed. It includes the precipitation of fat and proteins with trichloroacetic acid for milk and dairy products and microwave digestion for other food products, followed by an anion exchange step to separate strontium from technetium. The purification steps for strontium and technetium are done using Sr-resin and TEVA-resin, respectively. Typical chemical yields are around 70 % for both radionuclides. The whole determination takes only around 20 h. (author)

  5. Application of Monte Carlo simulation to the standardization of positron emitting radionuclides

    International Nuclear Information System (INIS)

    Tongu, Margareth Lika Onishi

    2009-01-01

    Since 1967, the Nuclear Metrology Laboratory (LNM) at the Nuclear and Energy Research (IPEN) in Sao Paulo, Brazil, has developed radionuclide standardization methods and measurements of the Gamma-ray emission probabilities per decay by means of 4πβ-γ coincidence system, a high accuracy primary method for determining disintegration rate of radionuclides of interest. In 2001 the LNM started a research field on modeling, based on Monte Carlo method, of all the system components, including radiation detectors and radionuclide decay processes. This methodology allows the simulation of the detection process in a 4πβ-γ system, determining theoretically the observed activity as a function of the 4πβ detector efficiency, enabling the prediction of the behavior of the extrapolation curve and optimizing a detailed planning of the experiment before starting the measurements. One of the objectives of the present work is the improvement of the 4π proportional counter modeling, presenting a detailed description of the source holder and radioactive source material, as well as absorbers placed around the source. The simulation of radiation transport through the detectors has been carried out using code MCNPX. The main focus of the present work is on Monte Carlo modeling of the standardization of positron emitting radionuclides associated (or not) with electron capture and accompanied (or not) by the emission of Gamma radiation. One difficulty in this modeling is to simulate the detection of the annihilation Gamma ray, which arise in the process of positron absorption within the 4π detector. The methodology was applied to radionuclides 18 F and 22 Na. (author)

  6. Influence of the nuclear electric field on processes of annihilation of positrons emitted at β+-decay

    Directory of Open Access Journals (Sweden)

    S. N. Fedotkin

    2014-12-01

    Full Text Available The process of atomic shell ionization during annihilation of positron, emitted at β+-decay, with K-electron of daughter's atom is considered. The role of nuclear Coulomb field at calculation of the probability of this process is investigated. It is shown that the correct account of the influence of this factor on the states of electron and posi-tron changes the probability of atomic ionization appreciably. The ratio of the probabilities of processes of atom-ic ionization and usual β+- decay is notably changed.

  7. Image reconstruction methods in positron tomography

    International Nuclear Information System (INIS)

    Townsend, D.W.; Defrise, M.

    1993-01-01

    In the two decades since the introduction of the X-ray scanner into radiology, medical imaging techniques have become widely established as essential tools in the diagnosis of disease. As a consequence of recent technological and mathematical advances, the non-invasive, three-dimensional imaging of internal organs such as the brain and the heart is now possible, not only for anatomical investigations using X-ray but also for studies which explore the functional status of the body using positron-emitting radioisotopes. This report reviews the historical and physical basis of medical imaging techniques using positron-emitting radioisotopes. Mathematical methods which enable three-dimensional distributions of radioisotopes to be reconstructed from projection data (sinograms) acquired by detectors suitably positioned around the patient are discussed. The extension of conventional two-dimensional tomographic reconstruction algorithms to fully three-dimensional reconstruction is described in detail. (orig.)

  8. Development of positron emitting radionuclides for imaging with improved positron detectors. [/sup 82/Rb, /sup 62/Zn, /sup 64/Cu, /sup 67/Ga

    Energy Technology Data Exchange (ETDEWEB)

    Yano, Y.

    1976-10-01

    Recent advances in positron cameras and positron ring detectors for transverse section reconstruction have created renewed interest in positron emitting radionuclides. This paper reports on: generator-produced /sup 82/Rb; cyclotron-produced /sup 62/Zn; and reactor-produced /sup 64/Cu. Investigation of the /sup 82/Sr (25 d)--/sup 82/Rb (75 s) generator determined the elution characteristics for Bio-Rex 70, a weakly acidic carboxylic cation exchanger, using 2% NaCl as the eluent. The yield of /sup 82/Rb and the breakthrough of /sup 82/Sr were determined for newly prepared columns and for long term elution conditions. Spallation-produced /sup 82/Sr was used to charge a compact /sup 82/Rb generator to obtain multi-millicurie amounts of /sup 82/Rb for myocardial imaging. Zinc accumulates in the islet cells of the pancreas and in the prostate. Zinc-62 was produced by protons on Cu foil and separated by column chromatography. Zinc-62 was administered as the amino acid chelates and as the ZnCl/sub 2/ to tumor and normal animals. Tissue distribution was determined for various times after intravenous injection. Pancreas-liver images of /sup 62/Zn-histidine uptake were obtained in animals with the gamma camera and the liver uptake of /sup 99m/Tc sulfur colloid was computer subtracted to image the pancreas alone. The positron camera imaged uptake of /sup 62/Zn-histidine in the prostate of a dog at 20 h. /sup 64/Cu was chelated to asparagine, a requirement of leukemic cells, and administered to lymphoma mice. Uptake in tumor and various tissues was determined and compared with the uptake of /sup 67/Ga citrate under the same conditions. /sup 64/Cu-asparagine had better tumor-to-soft tissue ratios than /sup 67/Ga-citrate.

  9. Monte Carlo simulation of different positron emitting radionuclides incorporated in a soft tissue volume

    International Nuclear Information System (INIS)

    Olaya D, H.; Martinez O, S. A.; Sevilla M, A. C.; Vega C, H. R.

    2015-10-01

    Monte Carlo calculations were carried out where compounds with positron-emitters radionuclides, like FDG ( 18 F), Acetate ( 11 C), and Ammonium ( 13 N), were incorporated into a soft tissue volume, in the aim to estimate the type of particles produced their energies, their mean free paths, and the absorbed dose at different distances with respect to the center of the volume. The volume was modeled with a radius larger than the maximum range of positrons in order to produce 0.511 keV annihilation gamma-ray photons. With the obtained results the equivalent dose, in various organs and tissues able to metabolize different radiopharmaceutical drugs, can be estimated. (Author)

  10. Positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Lindback, Stig [GEMS PET Systems AB, Uppsala (Sweden)

    1995-07-15

    Positron Emission Tomography (PET) is an advanced nuclear medicine technique used for research at major centres. Unique diagnostic information is obtained from tomographic measurements of the biochemistry and physiology of tissues and organs. In theory, diseases are related to biochemical changes and these can be observed with PET long before any anatomical changes are detectable. In PET the radioactive component is a positron-emitting isotope or 'tracer'. The positrons annihilate with electrons in the body to produce two gamma rays 180° apart; coincidence detection of these gammas provides a very efficient method of determining the spatial distribution of the radioisotope tracer. Because physiological measurements are usually required in a single imaging session, very short-lived isotopes are used to label the tracer molecules; isotope production and labelling is usually carried out in situ. The most commonly used radionuclides are carbon- 11 (half-life 20 minutes), nitrogen-13 (10 minutes), oxygen-15 (2 minutes), and fluorine-18 (110 minutes). A PET system has three major components: - a particle accelerator with targets for production of the positron-emitting isotopes; - chemistry modules for synthesis and labelling of the desired tracers; - and a PET camera for in-vivo measurements of the distribution of the tracer in the body.

  11. Positron emission tomography

    International Nuclear Information System (INIS)

    Lindback, Stig

    1995-01-01

    Positron Emission Tomography (PET) is an advanced nuclear medicine technique used for research at major centres. Unique diagnostic information is obtained from tomographic measurements of the biochemistry and physiology of tissues and organs. In theory, diseases are related to biochemical changes and these can be observed with PET long before any anatomical changes are detectable. In PET the radioactive component is a positron-emitting isotope or 'tracer'. The positrons annihilate with electrons in the body to produce two gamma rays 180° apart; coincidence detection of these gammas provides a very efficient method of determining the spatial distribution of the radioisotope tracer. Because physiological measurements are usually required in a single imaging session, very short-lived isotopes are used to label the tracer molecules; isotope production and labelling is usually carried out in situ. The most commonly used radionuclides are carbon- 11 (half-life 20 minutes), nitrogen-13 (10 minutes), oxygen-15 (2 minutes), and fluorine-18 (110 minutes). A PET system has three major components: - a particle accelerator with targets for production of the positron-emitting isotopes; - chemistry modules for synthesis and labelling of the desired tracers; - and a PET camera for in-vivo measurements of the distribution of the tracer in the body

  12. Positron Source from Betatron X-rays Emitted in a Plasma Wiggler

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.K.; Clayton, C.E.; Huang, C.; Joshi, C.; Lu, W.; Marsh, K.A.; Mori, W.B.; Zhou, M.; /UCLA; Barnes, C.D.; Decker, F.J.; Hogan, M.J.; Iverson, R.H.; Krejcik, P.; O' Connell, C.L.; Siemann, R.; Walz, D.R.; /SLAC; Deng, S.; Katsouleas, T.C.; Muggli, P.; Oz, E.; /Southern California U.

    2006-04-21

    In the E-167 plasma wakefield accelerator (PWFA) experiments in the Final Focus Test Beam (FFTB) at the Stanford Linear Accelerator Center (SLAC), an ultra-short, 28.5 GeV electron beam field ionizes a neutral column of Lithium vapor. In the underdense regime, all plasma electrons are expelled creating an ion column. The beam electrons undergo multiple betatron oscillations leading to a large flux of broadband synchrotron radiation. With a plasma density of 3 x 10{sup 17}cm{sup -3}, the effective focusing gradient is near 9 MT/m with critical photon energies exceeding 50 MeV for on-axis radiation. A positron source is the initial application being explored for these X-rays, as photo-production of positrons eliminates many of the thermal stress and shock wave issues associated with traditional Bremsstrahlung sources. Photo-production of positrons has been well-studied; however, the brightness of plasma X-ray sources provides certain advantages. In this paper, we present results of the simulated radiation spectra for the E-167 experiments, and compute the expected positron yield.

  13. Development of computational pregnant female and fetus models and assessment of radiation dose from positron-emitting tracers

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Tianwu [Geneva University Hospital, Division of Nuclear Medicine and Molecular Imaging, Geneva (Switzerland); Zaidi, Habib [Geneva University Hospital, Division of Nuclear Medicine and Molecular Imaging, Geneva (Switzerland); Geneva University, Geneva Neuroscience Center, Geneva (Switzerland); University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Groningen (Netherlands); University of Southern Denmark, Department of Nuclear Medicine, Odense (Denmark)

    2016-12-15

    Molecular imaging using PET and hybrid (PET/CT and PET/MR) modalities nowadays plays a pivotal role in the clinical setting for diagnosis and staging, treatment response monitoring, and radiation therapy treatment planning of a wide range of oncologic malignancies. The developing embryo/fetus presents a high sensitivity to ionizing radiation. Therefore, estimation of the radiation dose delivered to the embryo/fetus and pregnant patients from PET examinations to assess potential radiation risks is highly praised. We constructed eight embryo/fetus models at various gestation periods with 25 identified tissues according to reference data recommended by the ICRP publication 89 representing the anatomy of the developing embryo/fetus. The developed embryo/fetus models were integrated into realistic anthropomorphic computational phantoms of the pregnant female and used for estimating, using Monte Carlo calculations, S-values of common positron-emitting radionuclides, organ absorbed dose, and effective dose of a number of positron-emitting labeled radiotracers. The absorbed dose is nonuniformly distributed in the fetus. The absorbed dose of the kidney and liver of the 8-week-old fetus are about 47.45 % and 44.76 % higher than the average absorbed dose of the fetal total body for all investigated radiotracers. For {sup 18}F-FDG, the fetal effective doses are 2.90E-02, 3.09E-02, 1.79E-02, 1.59E-02, 1.47E-02, 1.40E-02, 1.37E-02, and 1.27E-02 mSv/MBq at the 8th, 10th, 15th, 20th, 25th, 30th, 35th, and 38th weeks of gestation, respectively. The developed pregnant female/fetus models matching the ICRP reference data can be exploited by dedicated software packages for internal and external dose calculations. The generated S-values will be useful to produce new standardized dose estimates to pregnant patients and embryo/fetus from a variety of positron-emitting labeled radiotracers. (orig.)

  14. Application of Monte Carlo simulation to the standardization of positron emitting radionuclides; Aplicacao do metodo de Monte Carlo na padronizacao de radionuclideos emissores de positrons

    Energy Technology Data Exchange (ETDEWEB)

    Tongu, Margareth Lika Onishi

    2009-07-01

    Since 1967, the Nuclear Metrology Laboratory (LNM) at the Nuclear and Energy Research (IPEN) in Sao Paulo, Brazil, has developed radionuclide standardization methods and measurements of the Gamma-ray emission probabilities per decay by means of 4{pi}{beta}-{gamma} coincidence system, a high accuracy primary method for determining disintegration rate of radionuclides of interest. In 2001 the LNM started a research field on modeling, based on Monte Carlo method, of all the system components, including radiation detectors and radionuclide decay processes. This methodology allows the simulation of the detection process in a 4{pi}{beta}-{gamma} system, determining theoretically the observed activity as a function of the 4{pi}{beta} detector efficiency, enabling the prediction of the behavior of the extrapolation curve and optimizing a detailed planning of the experiment before starting the measurements. One of the objectives of the present work is the improvement of the 4{pi} proportional counter modeling, presenting a detailed description of the source holder and radioactive source material, as well as absorbers placed around the source. The simulation of radiation transport through the detectors has been carried out using code MCNPX. The main focus of the present work is on Monte Carlo modeling of the standardization of positron emitting radionuclides associated (or not) with electron capture and accompanied (or not) by the emission of Gamma radiation. One difficulty in this modeling is to simulate the detection of the annihilation Gamma ray, which arise in the process of positron absorption within the 4{pi} detector. The methodology was applied to radionuclides {sup 18}F and {sup 22}Na. (author)

  15. Monte Carlo simulation of different positron emitting radionuclides incorporated in a soft tissue volume

    Energy Technology Data Exchange (ETDEWEB)

    Olaya D, H.; Martinez O, S. A. [Universidad Pedagogica y Tecnologica de Colombia, Grupo de Fisica Nuclear Aplicada y Simulacion, Av. Central del Norte 39-115, 150003 Tunja, Boyaca (Colombia); Sevilla M, A. C. [Universidad Nacional de Colombia, Departamento de Fisica, Grupo CRYOMAG, 111321 Bogota D. C. (Colombia); Vega C, H. R., E-mail: grupo.finuas@uptc.edu.co [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98060 Zacatecas, Zac. (Mexico)

    2015-10-15

    Monte Carlo calculations were carried out where compounds with positron-emitters radionuclides, like FDG ({sup 18}F), Acetate ({sup 11}C), and Ammonium ({sup 13}N), were incorporated into a soft tissue volume, in the aim to estimate the type of particles produced their energies, their mean free paths, and the absorbed dose at different distances with respect to the center of the volume. The volume was modeled with a radius larger than the maximum range of positrons in order to produce 0.511 keV annihilation gamma-ray photons. With the obtained results the equivalent dose, in various organs and tissues able to metabolize different radiopharmaceutical drugs, can be estimated. (Author)

  16. Features and applications of positron emission tomography

    International Nuclear Information System (INIS)

    Fan Mingwu

    1997-01-01

    Positron emission tomography, the so-called world's smartest camera, is based on a NaI or BGO detector and imaging of positron-emitting radioisotopes which are introduced as a tracer into the regional tissue or organ of interest. With the aid of a computer visual images of a series of these distributions can be built into a picture of the functional status of the tissue or organ being imaged. This highly accurate imaging technique is already widely used for clinical diagnostics heart disease, brain disorder, tumors and so on

  17. Development of in vitro and ex vivo positron-emitting tracer techniques and their application to neurotrauma

    Energy Technology Data Exchange (ETDEWEB)

    Sihver, Sven

    2000-07-01

    The use of positron-emitting tracers has been extended beyond tomographic facilities in the last few years, giving rise to a general positron-emitting tracing technique. The methodological part of the present thesis involved the evaluation of the performance of storage phosphor (SP) plates, with tracers labeled with high-energy, short-lived, positron-emitting radionuclides, using homogenized tissue specimens and autoradiography with frozen brain sections. The SP plates showed superior sensitivity and a linear response over a wide radioactivity range. Autoradiography provided reliable results due to (a) adequate sensitivity for low radioactivity concentration, (b) an excellent linear range, and (c) satisfactory resolution. Though equilibration time of receptor-ligand interaction was dependent upon section thickness, quantification was possible with thinner sections. An initial finding using frozen section autoradiography of rat brain and spinal cord showed preferential binding of [{sup 11}C]4-NMPB, a muscarinic acetylcholine (mACh) receptor antagonist, to the M4 subtype of mACh receptors. Further work to ascertain this specificity, by use of binding studies on cell membranes from CHO-K1 cells expressing individual subtypes of human mACh receptors, suggested lack of subtype selectivity. With respect to the possible clinical use in glutamatergic neuropathology, [{sup 11}C]cyano-dizocilpine, as a potential PET tracer for the N-methyl-D-aspartate (NMDA) subtype of glutamate receptors, was studied. The in vivo visualization of specific binding could not be achieved, though in vitro binding demonstrated good specificity and preferential binding to the activated form of the NMDA receptors. The use of the glucose analogue [{sup 18}F]fluorodeoxyglucose (FDG) to study glucose utilization was evaluated in experimental traumatic brain injury (TBI). A trauma-induced increased uptake of FDG was seen, whereas the uptake of [1-{sup 14}C]glucose remained unchanged. This discrepancy

  18. Measurement of regional extravascular lung density and of pulmonary blood volume with positron emitting isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Larock, M.P.; Quaglia, L.; Lamotte, D.; De Landsheere, C.; Del Fiore, G.; Chevigne, M.; Peters, J.M.; Rigo, P. (Universite de Liege (Belgium))

    1982-01-01

    Studies of pulmonary blood volume changes with exercise can be performed after labelling of the blood pool by /sup 11/CO inhalation. Positron transaxial tomography permits the quantitative study of density distribution of the chest and of the pulmonary blood volume. This paper represents our preliminary experience with these techniques on models and control patients. We have first verified the linearity of transmission for density distribution below one. The tomographic examination first records a transmission image, then an emission image on the same section. We next normalize emission and transmission values on a region of unit density corresponding to blood: then we substract the emission from the transmission values to measure the extravascular pulmonary density. With crystal probes we record pulmonary blood volume variations before, during and after exercise. Peripheral hemodynamic variations explain the change recorded at the begining and at the end of exercise. Combination of these two techniques should help us to better study the importance of the acute changes in the ''formation'' of pulmonary oedema and its influence on regional pulmonary blood volume.

  19. Dynamic positron emission tomography for study of cerebral hemodynamics in a cross section of the head using positron-emitting 68Ga-EDTA and 77Kr

    International Nuclear Information System (INIS)

    Yamamoto, Y.L.; Thompson, C.J.; Meyer, E.; Robertson, J.S.; Feindel, W.

    1977-01-01

    Dynamic positron emission tomographic studies were performed on over 120 patients with occlusive cerebrovascular disease, arteriovenous malformations, and brain tumors, using the positron section scanner, consisting of a ring of 32 scintillation detectors. The radiopharmaceuticals were nondiffusible 68 Ga-EDTA for transit time and uptake studies and the diffusible tracer, 77 Kr, for quantitative regional cerebral blood flow studies in every square centimeter of the cross section of the head. The results of dynamic positron emission tomography in correlation with the results from the gamma scintillation camera dynamic studies and computed tomography (CT) scans are discussed

  20. Preclinical evaluation of a positron emitting progestin ([18F]fluoro-16 alpha-methyl-19-norprogesterone) for imaging progesterone receptor positive tumours with positron emission tomography

    NARCIS (Netherlands)

    Verhagen, Aalt; Luurtsema, Gert; PESSER, JW; DEGROOT, TJ; OOSTERHUIS, JW; Vaalburg, Willem; Wouda, S.

    Three 21-fluoro-progestins were investigated as potential imaging agents for the in vivo assessment of human progesterone receptor positive neoplasms with positron emission tomography. In competitive binding assays these compounds demonstrated high specificity, competing only for progesterone

  1. Radioisotope instruments

    CERN Document Server

    Cameron, J F; Silverleaf, D J

    1971-01-01

    International Series of Monographs in Nuclear Energy, Volume 107: Radioisotope Instruments, Part 1 focuses on the design and applications of instruments based on the radiation released by radioactive substances. The book first offers information on the physical basis of radioisotope instruments; technical and economic advantages of radioisotope instruments; and radiation hazard. The manuscript then discusses commercial radioisotope instruments, including radiation sources and detectors, computing and control units, and measuring heads. The text describes the applications of radioisotop

  2. Extension of the irradiation system at TIARA for production of radioisotopes to be used in plant physiology

    International Nuclear Information System (INIS)

    Ishioka, N.S.; Watanabe, S.; Fujimaki, S.; Sakamoto, K.; Matsuhashi, S.

    2005-01-01

    A target irradiation system for radioisotope production at the TIARA AVF cyclotron facility has been improved for extending physiological studies of plants. Experiments using a position imaging technique require a variety of positron-emitting radioisotopes and their labelled compounds. Therefore, a compact revolver equipped with six target cambers for gas and liquid targets were newly constructed, in addition to the original target irradiation system consisting of two solid target chambers and one gas target chamber, placed on the movable table. The control system was also reconstructed with a local area network for communication between the control station beside the irradiation port and the hot laboratory. Use of this system enables us to produce routinely positron-emitting tracers for plant physiology. (author)

  3. Harvard--MIT research program in short-lived radiopharmaceuticals. Progress report, September 1, 1977--April 30, 1978. [/sup 99m/Tc, positron-emitting radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Adelstein, S.J.; Brownell, G.L.

    1978-05-01

    Progress is reported on the following studies: chemistry studies designed to achieve a more complete understanding of the fundamental chemistry of technetium in order to facilitate the design of future radiopharmaceuticals incorporating the radionuclide /sup 99m/Tc; the development of new radiopharmaceuticals intended to improve image quality and lower radiation doses by the use of short-lived radionuclides and disease-specific agents; the development of short-lived positron-emitting radionuclides which offer advantages in transverse section imaging of regional physiological processes; and studies of the toxic effects of particulate radiation.

  4. Applications of radioisotopes in medicine

    International Nuclear Information System (INIS)

    Sivaprasad, N.

    2012-01-01

    The application of radioisotopes in medicine is many folds. They can be classified into two main groups. (a) The radioisotope tagged labeled compounds suitable for safe administration in the body for diagnosis of various diseases of vital organs such as brain, kidney, thyroid etc and for treatment known as radiotherapy (b) The sealed source of radioisotopes for utilizing the radiation emitted from the radioisotope for treatment, particularly for radiation therapy of cancer. The former application of radioisotope in the field of medicine has led to the formation of special branch of medicine termed Nuclear Medicine - the branch of medicine deals with the use of radioisotope in the from of radiopharmaceuticals for investigation, diagnosis and treatment of diseases. Radioisotopes in the form of radiolabelled compound and bio-chemicals that are pharmaceutically and radiologically safe for administration in the body for diagnosis and treatment are called radiopharmaceuticals. The radiopharmaceuticals are the results of world-wide effort to bring nuclear energy in a tangible form for diagnosis and treatment. Radioisotopes as radiopharmaceuticals thus constitute one of the key requirements for nuclear medicine investigation and radiotherapy. In the case of sealed radioisotope source the radiation emitted by the radioactive source is utilized for the treatment and this mode of treatment is called radiation therapy where no radioactive substance is administrated into the body. This does not form the part of nuclear medicine

  5. Basic Research and Feasibility Study of Radioisotope Production using 100 MeV Proton Beam

    International Nuclear Information System (INIS)

    Yoo, K. H.; Yoon, K. S.; Cho, W. J.; Park, S. I.; Han, H. S.; Yang, S. D.; Jeon, K. S.; Kim, J. H.; Yang, T. K.

    2010-04-01

    Results of the project are various nuclei, such as 82 Rb, 68 Ga, 67 Cu, 22 Na and so on, can be produced by irradiating 100 MeV proton beam, by irradiating proton beam to the nat Ga target, the 68 Ge, mother nucleus of positron emitting 68 Ga, is produced based on the nat Ga(p,x) 68 Ge reaction, the target system for the high-energy of proton beam can produce more than 2 species of radioisotope at the same time by employing tandem targets, 68 Ge/ 68 Ga generator, 82 Sr(25.34d)/ 82 Rb generator - 67 Cu production method, 70 Zn electroplating technology based on the electrochemistry, the container, whose weight is about 3 ton, is made by depleted uranium and because of the unstable situation for the supply and demand of reactor produced radioisotope, the need for the cyclotron produced radioisotopes is dramatically increased all over the world.

  6. New Developments in Positron Scintigraphy and the Application of Cyclotron-Produced Positron Emitters

    Energy Technology Data Exchange (ETDEWEB)

    Brownell, G. L.; Burnham, C. A.; Wilensky, S.; Aronow, S.; Kazemi, H.; Strieder, D. [Massachusetts General Hospital. Boston, MA (United States)

    1969-01-15

    The use of positron-emitting radioisotopes offers unique advantages inscintigraphy and dynamic function studies. The detection of the two annihilation quanta provides, in principle, the possibility of utilization of all the positron annihilations with good resolution. In practice, very high efficiencies can be achieved with large area annihilation quanta detectors. The use of multi-detector matrices as large area detectors permits high levels o f activity and yields very high data acquisition rates. The independence of attenuation with depth of a source offers marked advantages for quantitative measurement. The use of time-of-flight techniques opens the possibility of true three-dimensional visualization. Finally, a number of very short-lived positron emitting radioisotopes such as {sup 15}O, {sup 19}N and {sup 11}C are available. A hybrid positron scanner has been constructed and is undergoing tests for brain tumour localization using {sup 74}As. The scanner uses two rows of detectors each containing 9 Nal scintillators and phototubes. The detector array moves continuously in the horizontal direction and in steps in the vertical direction, producing a scintigram with no line structure. The data is recorded on tape for replay or for computer processing. In either case, the plane of best focus can be positioned at will. The techniques developed for the hybrid scanner will be used in a stationary device employing two two-dimensional arrays of detectors. The design will emphasize the very rapid collection of data and the sequential production of scintigrams. The advantages and techniques of positron annihilation detection are also applicable to devices for study of dynamic function. We have constructed and are testing a fast six-detector coincidence system for pulmonary function studies. The measurement of time-of-flight offers the possibility of three-dimensional visualization of a distribution of positron-emitting radioisotope. We a re studying systems with

  7. Positron-emitting resin microspheres as surrogates of 90Y SIR-Spheres: a radiolabeling and stability study

    International Nuclear Information System (INIS)

    Avila-Rodriguez, Miguel A.; Selwyn, Reed G.; Hampel, Joseph A.; Thomadsen, Bruce R.; DeJesus, Onofre T.; Converse, Alexander K.; Nickles, Robert J.

    2007-01-01

    Commercially available resin microspheres and SIR-Spheres were labeled with metallic positron emitters and evaluated as positron emission tomography (PET) imaging surrogates of 90 Y SIR-Spheres. Radiolabeling was performed using a batch method, and in vitro stability over 24 h was evaluated in saline at physiological pH at 37 o C. The activity per microsphere distribution, as evaluated by autoradiography, showed the activity per microsphere to be proportional to the square radius of the spheres, suggesting surface binding. The in vivo stability of radiolabeling was evaluated in rats by micro-PET imaging after the intravenous injection of labeled microspheres. The different resin microspheres and radionuclides evaluated in this study all showed good radiolabeling efficiency and in vitro stability. However, only resins labeled with 86 Y and 89 Zr proved to have the in vivo stability required for clinical applications

  8. Preclinical assessment of dopaminergic system in rats by MicroPET using three positron-emitting radiopharmaceuticals

    Energy Technology Data Exchange (ETDEWEB)

    Lara-Camacho, V. M., E-mail: victormlc13@hotmail.com; Ávila-García, M. C., E-mail: victormlc13@hotmail.com; Ávila-Rodríguez, M. A., E-mail: victormlc13@hotmail.com [Unidad PET, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510, México, D.F. (Mexico)

    2014-11-07

    Different diseases associated with dysfunction of dopaminergic system such as Parkinson, Alzheimer, and Schizophrenia are being widely studied with positron emission tomography (PET) which is a noninvasive method useful to assess the stage of these illnesses. In our facility we have recently implemented the production of [{sup 11}C]-DTBZ, [{sup 11}C]-RAC, and [{sup 18}F]-FDOPA, which are among the most common PET radiopharmaceuticals used in neurology applications to get information about the dopamine pathways. In this study two healthy rats were imaged with each of those radiotracers in order to confirm selective striatum uptake as a proof of principle before to release them for human use.

  9. Positron-molecule interactions and corresponding positron attachment to molecules. As a basis for positron emission tomography (PET)

    International Nuclear Information System (INIS)

    Tachikawa, Masanori; Kimura, Mineo; Pichl, Lukas

    2007-01-01

    Through positron and electron interactions, they annihilate emitting primarily two gamma rays with 180-degree opposite directions. Positron spectroscopy using the characteristics of these gamma rays has been employed for analyzing various properties of material as well as for positron emission tomography (PET). However, its fundamental physics of positron-electron interactions and resulting features of emitting gamma rays are not well understood. By obtaining better understanding of positron interactions, it should become possible to provide the firm bases for positron spectroscopy in finer accuracy and quality. Here, we propose a significant mechanism for positron annihilation through positron attachment process, which may help increase the quality of positron spectroscopy. (author)

  10. Biodistribution of a positron-emitting suicide inactivator of monoamine oxidase, carbon-11 pargyline, in mice and a rabbit

    International Nuclear Information System (INIS)

    Ishiwata, K.; Ido, T.; Yanai, K.; Kawashima, K.; Miura, Y.; Monma, M.; Watanuki, S.; Takahashi, T.; Iwata, R.

    1985-01-01

    Carbon-11 ( 11 C) pargyline, which is a suicide inactivator of Type B monoamine oxidase (MAO), was synthesized by the reaction of N-demethylpargyline with 11 CH 3 l. Biodistribution was investigated in mice, and positron tomographic images of the heart and lung in a rabbit were obtained. The distribution of 11 C after administration of [ 11 C]pargyline was measured in several organs and blood at various time intervals. After 30 min its concentrations in the organs were constant. Subcellular distribution studies in the brain, lung, liver, and kidney showed that 59-70% of the 11 C became acid-insoluble and 9-33% was present in the crude mitochondrial fraction at 60 min after injection. The uptakes of the 11 C in each organ except for the kidney and spleen seemed to correlate with the in vitro enzymatic activity of Type B MAO. At high loading dose a nonspecific uptake was observed

  11. Elementary concepts of the radioisotopes uses

    International Nuclear Information System (INIS)

    Pisarev, Mario A.

    2004-01-01

    Endocrinology has been one of the specialties earlier benefited for the radioisotopes uses in the diagnosis and treatment of different affections. These applications are based on the radioisotopes property of biochemical behaving as non- radioactive molecules, and at the same time, radiations emitting that can be detected by suitable means (diagnostic utility) or that have effects on biological systems (therapeutic action). (author) [es

  12. Summary report of consultants' meeting on high-precision beta-intensity measurements and evaluations for specific PET radioisotopes

    International Nuclear Information System (INIS)

    Capote Noy, R.; Nicols, A.L.

    2009-12-01

    A summary is given of a Consultants' Meeting on 'High-precision beta-intensity measurements and evaluations for specific PET radioisotopes'. Participants assessed and reviewed the decay data for close to 50 positron-emitting radionuclides. Technical discussions are described in this report, along with the detailed recommendations and a priority list for future work. Direct positron and X-ray measurements are required to resolve a significant number of outstanding issues associated with the radionuclides reviewed. The following new measurements are recommended: gamma-ray emission probability for Cu-64, positron and Xray emission probabilities for Ni-57, Cu-62, Ga-66, As-72, Se-73, Rb-81,82m, Sr-83, Y-86 and Tc-94m. The following immediate evaluations were also recommended: Br-76 and I-120g.. Participants assessed and reviewed the decay data for close to 50 positron-emitting radionuclides. Technical discussions are described in this report, along with the detailed recommendations and a priority list for future work. Direct positron and X-ray measurements are required to resolve a significant number of outstanding issues associated with the radionuclides reviewed. The following new measurements are recommended: gamma-ray emission probability for Cu-64, positron and Xray emission probabilities for Ni-57, Cu-62, Ga-66, As-72, Se-73, Rb-81,82m, Sr-83, Y-86 and Tc-94m. The following immediate evaluations were also recommended: Br-76 and I-120g. (author)

  13. Reactor-produced therapeutic radioisotopes

    International Nuclear Information System (INIS)

    Knapp, F.F. Jr.

    2002-01-01

    The significant worldwide increase in therapeutic radioisotope applications in nuclear medicine, oncology and interventional cardiology requires the dependable production of sufficient levels of radioisotopes for these applications (Reba, 2000; J. Nucl. Med., 1998; Nuclear News, 1999; Adelstein and Manning, 1994). The issues associated with both accelerator- and reactor-production of therapeutic radioisotopes is important. Clinical applications of therapeutic radioisotopes include the use of both sealed sources and unsealed radiopharmaceutical sources. Targeted radiopharmaceutical agents include those for cancer therapy and palliation of bone pain from metastatic disease, ablation of bone marrow prior to stem cell transplantation, treatment modalities for mono and oligo- and polyarthritis, for cancer therapy (including brachytherapy) and for the inhibition of the hyperplastic response following coronary angioplasty and other interventional procedures (For example, see Volkert and Hoffman, 1999). Sealed sources involve the use of radiolabeled devices for cancer therapy (brachytherapy) and also for the inhibition of the hyperplasia which is often encountered after angioplasty, especially with the exponential increase in the use of coronary stents and stents for the peripheral vasculature and other anatomical applications. Since neutron-rich radioisotopes often decay by beta decay or decay to beta-emitting daughter radioisotopes which serve as the basis for radionuclide generator systems, reactors are expected to play an increasingly important role for the production of a large variety of therapeutic radioisotopes required for these and other developing therapeutic applications. Because of the importance of the availability of reactor-produced radioisotopes for these applications, an understanding of the contribution of neutron spectra for radioisotope production and determination of those cross sections which have not yet been established is important. This

  14. Vanadium uptake and an effect of vanadium treatment on 18F-labeled water movement in a cowpea plant by positron emitting tracer imaging system (PETIS)

    International Nuclear Information System (INIS)

    Furukawa, J.; Yokota, H.; Tanoi, K.; Ueoka, S.; Nakanishi, T.M.; Uchida, H.; Tsuji, A.

    2001-01-01

    Real time vanadate (V 5+ ) uptake imaging in a cowpea plant by positron emitting tracer imaging system (PETIS) is presented. Vanadium-48 was produced by bombarding a Sc foil target with 50 MeV α-particles at Takasaki Ion Accelerators for Advanced Radiation application (TIARA) AVF cyclotron. Then 48 V was added to the culture solution to investigate the V distribution in a cowpea plant. The real time uptake of the 48 V was monitored by PETIS. Distribution of 48 V in a whole plant was measured after 3, 6 and 20 hours of V treatment by Bio-imaging Analyzer System (BAS). After the 20 hour treatment, vanadate was detected at the up-ground part of the plant. To know the effect of V uptake on plant activity, 18 F-labeled water uptake was analyzed by PETIS. When a cowpea plant was treated with V for 20 hours before 18 F-labeled water uptake experiment, the total amount of 18 F-labeled water absorption ws drastically decreased. Results suggest the inhibition of water uptake was mainly caused by the vanadate already moved to the up-ground part of the plant. (author)

  15. Light activates H{sub 2.}{sup 15}0 flow in rice: Detailed monitoring using a positron-emitting tracer imaging system (PETIS)

    Energy Technology Data Exchange (ETDEWEB)

    Kiyomiya, S.; Nakanishi, H.; Mori, S. [The Univ. of Tokyo, Dept. of Applied Biological Chemistry, Tokyo (Japan); Uchida, H.; Nishiyama, S.; Tsukada, H.; Tsuji, A. [Central Res. Lab. Hamamatsu Photonics KK, Shizuoka (Japan); Ishioka, N.S.; Watanabe, S.; Osa, A.; Mizuniwa, C.; Ito, T.; Matsuhashi, S.; Hashimoto, S.; Sekine, T. [Japan Atomic Energy Res. Inst., Takasaki Radation Chemistry Res. Establishment, Gunma (Japan)

    2001-07-01

    Water (H{sub 2}{sup 15}O) translocation from the roots to the top of rice plants (Oryza saliva L. cv. Nipponbare) was visualized over time by a positron-emitting tracer imaging system (PETIS). H{sub 2}{sup 15}O flow was activated 8 min after plants were exposed to bright light (1500 {mu}mol m{sup -2} s{sup -1}). When the light was subsequently removed, the flow gradually slowed and completely stopped after 12 min. In plants exposed to low light (500 {mu}mol m{sup -2} s{sup -1}), H{sub 2}{sup 15}O flow was activated more slowly, and a higher translocation rate of H{sub 2}{sup 15}O was observed in the same low light at the end of the next dark period. NaCl (80 mM) and methylmercury (1 mM) directly suppressed absorption of H{sub 2}{sup 15}O by the roots, while methionine sulfoximine (1 mM), abscisic acid (10 {mu}M) and carbonyl cyanide m-chlorophenylhydrazone (10 mM) were transported to the leaves and enhanced stomatal closure, reducing H{sub 2}{sup 15}O translocation. (au)

  16. Circadian rhythm in ''1''5O-labeled water uptake manner of a soybean plant by PETIS (Positron Emitting Tracer Imaging System)

    International Nuclear Information System (INIS)

    Nakanishi, Tomoko M.; Yokota, Harumi; Tanoi, Keitaro; Furukawa, Jun; Ikeue, Natsuko; Ookuni, Yoko; Uchida, Hiroshi; Tsuji, Atsunori

    2001-01-01

    We present a circadian rhythm of water uptake manner in a soybean plant through realtime imaging of water, labeled with 15 O. Nitrogen gas was irradiated with deuterons accelerated by a cyclotron at Hamamatsu Photonics Co. to produce 15 O-labeled water. Then the 15 O-labeled water was supplied to a soybean plant from the root and the realtime water uptake amount was measured for 20 min by Positron Emitting Tracer Imaging System (PETIS). All the targeting positions for the measurements were stems, two points at an internode between root and the first leaves, between the first leaves and the first trifoliates and between the first trifoliates and the second trifoliates. The water uptake amount was gradually increased and showed its maximum at around 13:00, especially at the basal part of the stem. Then the water uptake activity was gradually decreased until 17:00. The water amount taken up by a plant at 13:00 was about 40% higher than that at 17:00. (author)

  17. Circadian rhythm in ''1''5O-labeled water uptake manner of a soybean plant by PETIS (Positron Emitting Tracer Imaging System)

    Energy Technology Data Exchange (ETDEWEB)

    Nakanishi, Tomoko M.; Yokota, Harumi; Tanoi, Keitaro; Furukawa, Jun; Ikeue, Natsuko; Ookuni, Yoko [Tokyo Univ. (Japan). Graduate School of Agricultural and Life Sciences; Uchida, Hiroshi; Tsuji, Atsunori

    2001-05-01

    We present a circadian rhythm of water uptake manner in a soybean plant through realtime imaging of water, labeled with {sup 15}O. Nitrogen gas was irradiated with deuterons accelerated by a cyclotron at Hamamatsu Photonics Co. to produce {sup 15}O-labeled water. Then the {sup 15}O-labeled water was supplied to a soybean plant from the root and the realtime water uptake amount was measured for 20 min by Positron Emitting Tracer Imaging System (PETIS). All the targeting positions for the measurements were stems, two points at an internode between root and the first leaves, between the first leaves and the first trifoliates and between the first trifoliates and the second trifoliates. The water uptake amount was gradually increased and showed its maximum at around 13:00, especially at the basal part of the stem. Then the water uptake activity was gradually decreased until 17:00. The water amount taken up by a plant at 13:00 was about 40% higher than that at 17:00. (author)

  18. Viability and proliferation potential of adipose-derived stem cells following labeling with a positron-emitting radiotracer

    Energy Technology Data Exchange (ETDEWEB)

    Elhami, Esmat [University of Manitoba, Department of Radiology, Winnipeg (Canada); University of Winnipeg, Department of Physics, Winnipeg, MB (Canada); Goertzen, Andrew L.; Mzengeza, Shadreck [University of Manitoba, Department of Radiology, Winnipeg (Canada); Xiang, Bo; Deng, Jixian; Stillwell, Chris; Tian, Ganghong [National Research Council Canada, Cardiac Studies Group, Institute for Biodiagnostics, Winnipeg (Canada); Arora, Rakesh C.; Freed, Darren [St. Boniface General Hospital, Cardiac Science Program, Winnipeg (Canada)

    2011-07-15

    Adipose-derived stem cells (ASCs) have promising potential in regenerative medicine and cell therapy. Our objective is to examine the biological function of the labeled stem cells following labeling with a readily available positron emission tomography (PET) tracer, {sup 18}F-fluoro-2-deoxy-D-glucose (FDG). In this work we characterize labeling efficiency through assessment of FDG uptake and retention by the ASCs and the effect of FDG on cell viability, proliferation, transdifferentiation, and cell function in vitro using rat ASCs. Samples of 10{sup 5} ASCs (from visceral fat tissue) were labeled with concentrations of FDG (1-55 Bq/cell) in 0.75 ml culture medium. Label uptake and retention, as a function of labeling time, FDG concentration, and efflux period were measured to determine optimum cell labeling conditions. Cell viability, proliferation, DNA structure damage, cell differentiation, and other cell functions were examined. Non-labeled ASC samples were used as a control for all experimental groups. Labeled ASCs were injected via tail vein in several healthy rats and initial cell biodistribution was assessed. Our results showed that FDG uptake and retention by the stem cells did not depend on FDG concentration but on labeling and efflux periods and glucose content of the labeling and efflux media. Cell viability, transdifferentiation, and cell function were not greatly affected. DNA damage due to FDG radioactivity was acute, but reversible; cells managed to repair the damage and continue with cell cycles. Over all, FDG (up to 25 Bq/cell) did not impose severe cytotoxicity in rat ASCs. Initial biodistribution of the FDG-labeled ASCs was 80% + retention in the lungs. In the delayed whole-body images (2-3 h postinjection) there was some activity distribution resembling typical FDG uptake patterns. For in vivo cell tracking studies with PET tracers, the parameter of interest is the amount of radiotracer that is present in the cells being labeled and consequent

  19. Positron probes for mechanical fatigue detection system

    International Nuclear Information System (INIS)

    Holt, W.H.; Mock, W. Jr.

    1976-01-01

    The invention comprises positron-emitting probes for use in testing samples of metals for fatique by positron annihilation techniques comprising a substrate made from the same material as the test sample, positron-emitting material supported by one surface of the substrate, and a cover for the emitting material, the cover is sealed to the substrate and is of such thinness and density as to provide a window through which positron passage is unimpeded

  20. Positron emission tomography

    NARCIS (Netherlands)

    Paans, AMJ

    Positron Emission Tomography (PET) is a method for determining biochemical and physiological processes in vivo in a quantitative way by using radiopharmaceuticals labelled with positron emitting radionuclides as C-11, N-13, O-15 and F-18 and by measuring the annihilation radiation using a

  1. Cyclotron-produced radioisotopes and their clinical use at the Austin PET Centre

    Energy Technology Data Exchange (ETDEWEB)

    Tochon-Danguy, H.J. [Centre for PET, Melbourne, VIC (Australia). Austin and Repatriation Medical Centre

    1997-12-31

    A Centre for Positron Emission Tomography (PET) has been established within the Department of Nuclear Medicine at the Austin and Repatriation Medical Centre in Melbourne. PET is a non-invasive technique based on the use of biologically relevant compounds labelled with short-lived positron-emitting radionuclides such as carbon-11, nitrogen-13, oxygen-15 and fluorine-18. The basic equipment consists of a medical cyclotron (10 MeV proton and 5 MeV deuteron), six lead-shielded hot cells with associated radiochemistry facilities and a whole body PET scanner. During its first five years of operation, the Melbourne PET Centre, has pursued a strong radiolabelling development program, leading to an ambitious clinical program in neurology, oncology and cardiology. This presentation will describe the basic principles of the PET technique and review the cyclotron-produced radioisotopes and radiopharmaceuticals. Radiolabelling development programs and clinical applications are also addressed. 30 refs., 1 tab., 1 fig.

  2. Cyclotron-produced radioisotopes and their clinical use at the Austin PET Centre

    International Nuclear Information System (INIS)

    Tochon-Danguy, H.J.

    1997-01-01

    A Centre for Positron Emission Tomography (PET) has been established within the Department of Nuclear Medicine at the Austin and Repatriation Medical Centre in Melbourne. PET is a non-invasive technique based on the use of biologically relevant compounds labelled with short-lived positron-emitting radionuclides such as carbon-11, nitrogen-13, oxygen-15 and fluorine-18. The basic equipment consists of a medical cyclotron (10 MeV proton and 5 MeV deuteron), six lead-shielded hot cells with associated radiochemistry facilities and a whole body PET scanner. During its first five years of operation, the Melbourne PET Centre, has pursued a strong radiolabelling development program, leading to an ambitious clinical program in neurology, oncology and cardiology. This presentation will describe the basic principles of the PET technique and review the cyclotron-produced radioisotopes and radiopharmaceuticals. Radiolabelling development programs and clinical applications are also addressed

  3. Image-reconstruction methods in positron tomography

    CERN Document Server

    Townsend, David W; CERN. Geneva

    1993-01-01

    Physics and mathematics for medical imaging In the two decades since the introduction of the X-ray scanner into radiology, medical imaging techniques have become widely established as essential tools in the diagnosis of disease. As a consequence of recent technological and mathematical advances, the non-invasive, three-dimensional imaging of internal organs such as the brain and the heart is now possible, not only for anatomical investigations using X-rays but also for studies which explore the functional status of the body using positron-emitting radioisotopes and nuclear magnetic resonance. Mathematical methods which enable three-dimentional distributions to be reconstructed from projection data acquired by radiation detectors suitably positioned around the patient will be described in detail. The lectures will trace the development of medical imaging from simpleradiographs to the present-day non-invasive measurement of in vivo boichemistry. Powerful techniques to correlate anatomy and function that are cur...

  4. Positron emission tomography

    International Nuclear Information System (INIS)

    Paans, A.M.J.

    1981-01-01

    Positron emitting radiopharmaceuticals have special applications in in-vivo studies of biochemical processes. The combination of a cyclotron for the production of radionuclides and a positron emission tomograph for the registration of the distribution of radioactivity in the body enables the measurement of local radioactivity concentration in tissues, and opens up new possibilities in the diagnosis and examination of abnormalities in the metabolism. The principles and procedures of positron emission tomography are described and the necessary apparatus considered, with emphasis on the positron camera. The first clinical applications using 55 Co bloemycine for tumor detection are presented. (C.F.)

  5. Radioisotope techniques used in breast cancer

    International Nuclear Information System (INIS)

    Au-Yong Ting Kun

    2001-01-01

    Breast cancer is one of the commonest cancer in women. Treatment and prognosis of breast cancer depend very much on accurate diagnosis, staging and follow-up of patients. Recently, there are several radioisotope techniques developed and have great impact on management of breast cancer. These include scintimammography, sentinel lymph node detection and positron emission tomography. This article is to review these important techniques

  6. Spectra of electrons emitted as a result of the sticking and annihilation of low energy positrons to the surfaces of graphene and highly oriented pyrolytic graphite (HOPG)

    Science.gov (United States)

    Chrysler, M.; Chirayath, V.; McDonald, A.; Lim, Z.; Shastry, K.; Gladen, R.; Fairchild, A.; Koymen, A.; Weiss, A.

    Positron annihilation induced Auger electron spectroscopy (PAES) was used to study the positron induced low energy electron spectra from HOPG and a sample composed of 6-8 layers of graphene grown on polycrystalline copper. A low energy (~2eV) beam of positrons was used to implant positrons into a surface localized state on the graphene and HOPG samples. Measurements of the energy spectra of the positron induced electrons obtained using a TOF spectrometer indicate the presence of an annihilation induced KLL C Auger peak (at ~263 eV) along with a narrow low energy secondary peak due to an Auger mediated positron sticking (AMPS) process. A broad spectral feature was also observed below ~15 eV which we believe may be due to a VVV C Auger transition not previously observed. The energy dependence of the integrated intensity of the AMPS peak was measured for a series of incident positron kinetic energies ranging from ~1.5 eV up to 11 eV from which the binding energy of the surface localized positron state on graphene and HOPG was estimated. The implication of our results regarding the applicability of AMPS and PAES to the study of graphene surfaces and interfaces will be discussed. This work was supported by NSF Grant No. DMR 1508719 and DMR 1338130.

  7. Radioisotope camera

    International Nuclear Information System (INIS)

    Tausch, L.M.; Kump, R.J.

    1978-01-01

    The electronic ciruit corrects distortions caused by the distance between the individual photomultiplier tubes of the multiple radioisotope camera on one hand and between the tube configuration and the scintillator plate on the other. For this purpose the transmission characteristics of the nonlinear circuits are altered as a function of the energy of the incident radiation. By this means the threshold values between lower and higher amplification are adjusted to the energy level of each scintillation. The correcting circuit may be used for any number of isotopes to be measured. (DG) [de

  8. Positron emitting radiopharmaceuticals for cancer

    International Nuclear Information System (INIS)

    Krohn, K.A.; Graham, M.M.

    1989-01-01

    Cancer is principally a biochemical disease involving abnormal enzymology, gene expression and/or membrane composition. Cytotoxic chemical treatments, including radiation products, are important in controlling cancer. It therefore follows that imaging of the biochemical differences between tumor and normal tissues should lead to more effective therapy. Metabolic imaging should identify the best new treatment protocol for an individual patient and may identify specific causes of resistance to therapy. Methods have been developed for imaging the metabolism of energy substrates (glucose and O 2 ), and DNA precursors (thymidine) and for specifically identifying hormone-dependent tumors (estrogen or testosterone) and hypoxic tissues (bioreductive alkylators). Together these new radiopharmaceuticals are leading to better cancer therapy, not just improving diagnosis, but more by following the different responses of tumor and surrounding normal tissues to cytotoxic therapy

  9. Use of Radioactive Ion Beams for Biomedical Research 2. in-vivo dosimetry using positron emitting rare earth isotopes with the rotating prototype PET scanner at the Geneva Cantonal Hospital

    CERN Multimedia

    2002-01-01

    % IS331 \\\\ \\\\ The use of radioactive metal ions (such as $^{90}$Y, $^{153}$Sm or $^{186}$Re) in cancer therapy has made some progress, but has been hampered by factors that could be addressed at CERN with a greater likelihood of success than at any other installation in the world. The present proposal seeks to use the unique advantage of CERN ISOLDE to get round these problems together with the PET scanners at the Cantonal Hospital Geneva (PET~=~positron emission tomography). Radioisotope production by spallation at ISOLDE makes available a complete range of isotopes having as complete a diversity of types and energy of radiation, of half-life, and of ionic properties as one would wish. Among these isotopes several positron-emitters having clinical relevance are available.\\\\ \\\\Some free rare earth chelatas are used presently in palliation of painful bone metastases. Curative effects are not able for the moment with this kind of radiopharmaceuticals. More and better data on the biokinetics and bio-distribution...

  10. Radioisotope production

    International Nuclear Information System (INIS)

    1988-01-01

    The trial production runs started in the previous report period were continued and have been extended to 67 Ga, 81 Rb/ 81m Kr and 111 In, the production of which will be taken over from the Pretoria cyclotron at the end of this year, when that machine is scheduled to be shut down. After commissioning of the target water cooling system and the helium cooling system for beam foil windows at the beginning of this year, these production runs could also be extended to high beam currents (up to 50 μA). Test consignments of a number of products have been supplied to various potential future users, and 123 I, in the form of Na 123 I capsules as well as 123 I-sodium hippurate, and 52 Fe-citrate have actually been used with success in trial diagnostic studies on patients. A procedure for labelling IPPA and 3-IPMPA with 123 I has been developed, while initial work has also been done on the radioiodination of monoclonal antifibrine antibodies. The last major facility needed for the commencement of the routine radioisotope production programme, namely the multiple-target facility, is now ready for installation in the production vault within the next few weeks, and routine production runs are expected to start in November 1988. 4 figs., 18 refs

  11. High efficiency positron moderation

    International Nuclear Information System (INIS)

    Taqqu, D.

    1990-01-01

    A new positron moderation scheme is proposed. It makes use of electric and magnetic fields to confine the β + emitted by a radioactive source forcing them to slow down within a thin foil. A specific arrangement is described where an intermediary slowed-down beam of energy below 10 keV is produced. By directing it towards a standard moderator optimal conversion into slow positrons is achieved. This scheme is best applied to short lived β + emitters for which a 25% moderation efficiency can be reached. Within the state of the art technology a slow positron source intensity exceeding 2 x 10 10 e + /sec is achievable. (orig.)

  12. Positron emission tomography

    International Nuclear Information System (INIS)

    Wienhard, K.; Heiss, W.D.

    1984-01-01

    The principles and selected clinical applications of positron emission tomography are described. In this technique a chemical compound is labeled with a positron emitting isotope and its biochemical pathway is traced by coincidence detection of the two annihilation photons. The application of the techniques of computed tomography allows to reconstruct the spatial distribution of the radioactivity within a subject. The 18 F-deoxyglucose method for quantitative measurement of local glucose metabolism is discussed in order to illustrate the possibilities of positron emission tomography to record physiological processes in vivo. (orig.) [de

  13. New techniques of positron annihilation

    International Nuclear Information System (INIS)

    1983-02-01

    Studies on new techniques of positron annihilation and its application to various fields are presented. First, production of slow positron and its characteristic features are described. The slow positron can be obtained from radioisotopes by using a positron moderator, proton beam bombardment on a boron target, and pair production by using an electron linear accelerator. Bright enhancement of the slow positron beam is studied. Polarized positron beam can be used for the study of the momentum distribution of an electron in ferromagnetic substances. Production of polarized positrons and measurements of polarization are discussed. Various phases of interaction between slow positrons and atoms (or molecules) are described. A comparative study of electron scavenging effects on luminescence and on positronium formation in cyclohexane is presented. The positron annihilation phenomena are applicable for the surface study. The microscopic information on the surface of porous material may be obtained. The slow positrons are also useful for the surface study. Production and application of slow muon (positive and negative) are presented in this report. (Kato, T.)

  14. Visualization of Radioisotope Detectability Over Time.

    Energy Technology Data Exchange (ETDEWEB)

    Huynh, Brady [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-02-01

    A radioactive isotope is an atom that has an unstable nucleus. The isotope can undergo radioactive decay, the process in which excessive nuclear energy is emitted from the nucleus in many different forms, such as gamma radiation, alpha particles, or beta particles. The important thing to note is that these emissions act as a signature for the isotope. Each radioisotope has a particular emission spectrum, emitting radiation at different energies and at different rates.

  15. Positron Emission Tomography: Current Challenges and Opportunities for Technological Advances in Clinical and Preclinical Imaging Systems

    Science.gov (United States)

    Vaquero, Juan José; Kinahan, Paul

    2017-01-01

    Positron emission tomography (PET) imaging is based on detecting two time-coincident high-energy photons from the emission of a positron-emitting radioisotope. The physics of the emission, and the detection of the coincident photons, give PET imaging unique capabilities for both very high sensitivity and accurate estimation of the in vivo concentration of the radiotracer. PET imaging has been widely adopted as an important clinical modality for oncological, cardiovascular, and neurological applications. PET imaging has also become an important tool in preclinical studies, particularly for investigating murine models of disease and other small-animal models. However, there are several challenges to using PET imaging systems. These include the fundamental trade-offs between resolution and noise, the quantitative accuracy of the measurements, and integration with X-ray computed tomography and magnetic resonance imaging. In this article, we review how researchers and industry are addressing these challenges. PMID:26643024

  16. Positron Emission Tomography: Current Challenges and Opportunities for Technological Advances in Clinical and Preclinical Imaging Systems.

    Science.gov (United States)

    Vaquero, Juan José; Kinahan, Paul

    2015-01-01

    Positron emission tomography (PET) imaging is based on detecting two time-coincident high-energy photons from the emission of a positron-emitting radioisotope. The physics of the emission, and the detection of the coincident photons, give PET imaging unique capabilities for both very high sensitivity and accurate estimation of the in vivo concentration of the radiotracer. PET imaging has been widely adopted as an important clinical modality for oncological, cardiovascular, and neurological applications. PET imaging has also become an important tool in preclinical studies, particularly for investigating murine models of disease and other small-animal models. However, there are several challenges to using PET imaging systems. These include the fundamental trade-offs between resolution and noise, the quantitative accuracy of the measurements, and integration with X-ray computed tomography and magnetic resonance imaging. In this article, we review how researchers and industry are addressing these challenges.

  17. Radioisotope detection with accelerators

    International Nuclear Information System (INIS)

    Mast, T.S.; Muller, R.A.; Tans, P.P.

    1979-12-01

    High energy mass spectrometry is a new and very sensitive technique of measuring rare radioisotopes. This paper describes the techniques used to select and identify the individual radioisotope atoms in a sample and the status of the radioisotope measurements and their applications

  18. Positron emission tomography

    CERN Document Server

    Paans, A M J

    2006-01-01

    Positron Emission Tomography (PET) is a method for measuring biochemical and physiological processes in vivo in a quantitative way by using radiopharmaceuticals labelled with positron emitting radionuclides such as 11C, 13N, 15O and 18F and by measuring the annihilation radiation using a coincidence technique. This includes also the measurement of the pharmacokinetics of labelled drugs and the measurement of the effects of drugs on metabolism. Also deviations of normal metabolism can be measured and insight into biological processes responsible for diseases can be obtained. At present the combined PET/CT scanner is the most frequently used scanner for whole-body scanning in the field of oncology.

  19. Notification determining details of technical standards concerning transport of radioisotopes or goods contaminated by radioisotopes outside works or enterprises

    International Nuclear Information System (INIS)

    1981-01-01

    This rule is established under the provisions of the regulation for the execution of the law on the prevention of radiation injuries by radioisotopes. Terms are used in this rule for the same meanings as in the regulation. The concentration of radioisotopes to which the technical standards for transport outside enterprises are not applied is 0.002 micro-curie per gram. The radioisotopes which can be transported as L type transported goods are defined in detail, excluding explosive or spontaneously igniting radioisotopes. The quantity limit of radioisotopes which can be transported as A type transported goods is the values A 1 and A 2 defined in this rule. The permissible surface density defined by the Director General of the Science and Technology Agency are 1/100,000 micro-curie per cm 2 for the radioisotopes emitting alpha-ray, and 1/10,000 micro-curie per cm 2 for the radioisotopes which do not emit alpha-ray. The leak quantity of radioisotopes specified by the Director General is 1/1,000,000 of A 2 value for BM type transported goods and 1/1,000 of A 2 value for BU type goods. The test conditions for each type of transported goods, dangerous goods, the limit of the number of transported goods and signs are stipulated, respectively. Permissible exposure dose is 1.5 rem a year for persons other than radiation workers. (Okada, K.)

  20. Seven Things to Know about Radioisotopes

    International Nuclear Information System (INIS)

    Henriques, Sasha

    2014-01-01

    Each atomic element knows exactly how many protons and neutrons it needs at its centre (nucleus) in order to be stable (stay in its elemental form). Radioisotopes are atomic elements that do not have the correct proton to neutron ratio to remain stable. With an unbalanced number of protons and neutrons, energy is given off by the atom in an attempt to become stable. For example, a stable carbon atom has six protons and six neutrons. Whereas its unstable (and therefore radioactive) isotope carbon-14, has six protons and eight neutrons. Carbon-14 and all other unstable elements are called radioisotopes. This movement towards stability, which involves emitting energy from the atom in the form of radiation, is known as radioactive decay. This radiation can be tracked and measured, making radioisotopes very useful in industry, agriculture and medicine

  1. Transport of radioisotopes

    International Nuclear Information System (INIS)

    Aoki, Shigefumi

    1978-01-01

    Presently the amount of radioisotopes increased very much and the application spread to wide fields in Japan. Since facilities using radioisotopes are distributed to every place in the country, every transport means such as airplanes, automobiles, railways, ships and mail are employed. The problems in the transport of radioisotopes include too much difference in the recognition of criticality among the persons concerning the transportation and treatment, knowledges of shielding and energy difference in the types of radiation and handling of sealed and unsealed sources and the casks for transport. IAEA established the latest regulation on the package of radioisotopes in 1973, and in Japan, the related regulations will be revised according to the IAEA's regulation in near future. The present status in the inspection at the time of shipment, supervision, and the measures to the accidents are described for the transport means of airplanes, ships and automobiles. Finally, concerning the insurance for cargo, the objects of the insurance for radioisotopes include either the radioisotopes contained in casks for transportation or radioisotopes only. Generally, radioisotopes are accepted in all-risk condition including casks and limited to the useful radioisotopes for peaceful use. (Wakatsuki, Y

  2. Radioisotopes production and applications

    International Nuclear Information System (INIS)

    Dash, Ashutosh

    2015-01-01

    Application of radioisotopes for both medical and industrial applications constitutes one of the most important peaceful uses of atomic energy. The striking diffusion and the exciting perspective of radioisotope for a plethora of medical and industrial applications are mainly attributable to the penetrating and ionization properties of radiation emanating from radioisotopes. The revolutionary medical applications of radioisotopes for the diagnosis and treatment of a multitude of diseases are causing a rapid expansion of the nuclear medicine field. While the industrial uses of radioisotopes are not expanding as quickly, also require large amounts of radioisotopes. Production of radioisotopes is not only the first step, but also the most crucial for the success as well as sustainable growth of radioisotope applications. With the rapid growth and expanding areas of applications, the demands for isotopes have increased several folds. A number of radioisotopes of different physical half-life, energy of the particle or gamma emission, specific activity and chemistry are now regularly produced both at commercial centers as well as at selected nuclear science research institutes utilizing reactors and cyclotrons to meet the ever growing need

  3. Developments in radioisotope production and labelling of radiopharmaceuticals

    International Nuclear Information System (INIS)

    Lambrecht, R.M.

    1998-01-01

    Recent developments in both reactor and accelerator production of radioisotopes finding applications in nuclear medicine and in biomedical research are summarised. The priorities for the production of 48 different cyclotron radioisotopes; and for 42 reactor produced radioisotopes finding biomedical applications are identified. Each includes 5 generator systems. The rapid expansion of cyclotron based radioisotope production and automated synthesis of short-lived radiopharmaceuticals with the position-emitting radionuclides continues to gain momentum. Recent feasibility studies of the cyclotron production of 186 Re, 99m Tc and of 99 Mo are cited as examples of motivation to develop accelerator alternatives to use of nuclear reactors for medical radioisotope production. Examples of SPET and PET radiopharmaceuticals labelled with 131 I, 123 I, 124 I, 18 F, and with therapeutic radionuclides are highlighted. (author)

  4. Radioisotope conveyor ash meter

    International Nuclear Information System (INIS)

    Savelov, V.D.

    1994-01-01

    Radioisotope conveyor ash meter realizes persistent measuring of ashiness of coal and products of its enrichment on the belt conveyor without contact. The principle of ash meter acting is based on functional dependence of the gamma radiation flows backscattering intensity of radioisotope sources from the ash volume content in the controlled fuel. Facility consists from the ashiness transducer and the processing and control device

  5. Positron emission tomography

    International Nuclear Information System (INIS)

    Yamamoto, Y.L.; Thompson, C.J.; Diksic, M.; Meyer, E.; Feindel, W.H.

    1984-01-01

    One of the most exciting new technologies introduced in the last 10 yr is positron emission tomography (PET). PET provides quantitative, three-dimensional images for the study of specific biochemical and physiological processes in the human body. This approach is analogous to quantitative in-vivo autoradiography but has the added advantage of permitting non-invasive in vivo studies. PET scanning requires a small cyclotron to produce short-lived positron emitting isotopes such as oxygen-15, carbon-11, nitrogen-13 and fluorine-18. Proper radiochemical facilities and advanced computer equipment are also needed. Most important, PET requires a multidisciplinary scientific team of physicists, radiochemists, mathematicians, biochemists and physicians. The most recent trends are reviewed in the imaging technology, radiochemistry, methodology and clinical applications of positron emission tomography. (author)

  6. Micro-battery Development using beta radioisotope

    International Nuclear Information System (INIS)

    Jung, H. K.; Cheong, Y. M.; Lee, N. H.; Choi, Y. S.; Joo, Y. S.; Lee, J. S.; Jeon, B. H.

    2007-06-01

    Nuclear battery which use the beta radiation sources emitting the low penetration radiation energy from radioisotope can be applied as the long term (more than 10 years) micro power source in MEMS and nano components. This report describes the basic concept and principles of nuclear micro-battery and its fabrication in space and military field. In particular direct conversion method is described by investigating the electron-hole generation and recombination in p-n junction of silicon betavoltaics with beta radiation

  7. Lethality of radioisotopes in early mouse embryos

    International Nuclear Information System (INIS)

    Macqueen, H.A.

    1979-01-01

    The development of pre-implantation mouse embryos was found to be prevented by exposure of the embryos to [ 35 S]methionine, but not to [ 3 H]methionine. Such embryos have also been shown to be highly sensitive to [ 3 H]thymidine. These observations are discussed with reference to the path lengths and energies of electrons emitted from the different radioisotopes. (author)

  8. The cryogenic source of slow monochromatic positrons

    International Nuclear Information System (INIS)

    Meshkov, I.N.; Pavlov, V.N.; Sidorin, A.O.; Yakovenko, S.L.

    2008-01-01

    The cryogenic source of slow monochromatic positrons based on the 22 Na isotope has been designed and constructed at JINR. Positrons emitted from radioactive source 22 Na have a very broad energy spectrum up to 0.5 MeV. To generate monochromatic beam of slow positrons the solid neon is used as a moderator. The solid neon allows forming slow positron beam of the energy of 1.2 eV at the spectrum width of 1 eV. The efficiency of moderation is 1 % of total positron flux

  9. Application of positron emission tomography in the lung

    International Nuclear Information System (INIS)

    Valind, S.O.; Wollmer, P.E.; Rhodes, C.G.

    1985-01-01

    The early application of positron emission tomography in the lung was mainly concerned with the investigation of the regional volume of the vascular and extravascular compartments, using measurements of fractional blood volume and lung density. However, in addition to its passive role in the exchange of oxygen and carbon dioxide, the lung exerts a number of active, metabolic functions such as the inactivation of circulating vasoactive compounds and the synthesis and release of biologically active substances. Furthermore, many of the pulmonary disorders originate at a cellular or metabolic level, or have metabolic consequences. Many of the substrates of biochemical reactions and the biologically active compounds, or their analogs, can be labeled with positron-emitting radioisotopes without disturbing their biological or biochemical characteristics. In combination with the development of the appropriate physiological and biochemical models, the quantitative measurements possible with PET provide a unique opportunity of regionally studying the metabolic processes of the lung of man in vivo. Hence, a range of different expressions of metabolism and of lung function can be evaluated and their interdependence can be studied regionally

  10. Radioisotope measurement system

    International Nuclear Information System (INIS)

    Villanueva Ruibal, Jose

    2007-01-01

    A radioisotope measurement system installed at L.M.R. (Ezeiza Atomic Center of CNEA) allows the measurement of nuclear activity from a wide range of radioisotopes. It permits to characterize a broad range of radioisotopes at several activity levels. The measurement hardware as well as the driving software have been developed and constructed at the Dept. of Instrumentation and Control. The work outlines the system's conformation and its operating concept, describes design characteristics, construction and the error treatment, comments assay results and supplies use advices. Measuring tests carried out employing different radionuclides confirmed the system performing satisfactorily and with friendly operation. (author) [es

  11. Radioisotopic Studies of Brain Uptake

    International Nuclear Information System (INIS)

    Oldendorf, W. H.

    1970-01-01

    Measurements of the uptake of radioactive substances in the brain tissues after their administration by injection or inhalation provide an a traumatic approach to the study of blood flow and metabolic processes in the brain. This paper reviews the anatomical,physiological and physical problems arising in the measurement of radioactivity in the brain. The factors governing the passage of various classes of substances through the brain capillaries and their transport through the brain tissues are first considered. The physical problems arising in the measurement of radioactivity in the brain are then discussed. The main difficulties in such measurements is shown to arise from the contribution to the observed counting rate from radioactivity in the scalp and skull. This contribution can be minimized by the use of special collimators designed to view only a part of the brain but to include in their field of view a minimum of non-neural tissue. A further possibility arises with radioisotopes such as 113 In m which emit characteristic X radiation as well as y radiation since the contribution of the former to the total observed counting rate is almost entirely due to radioactivity in the superficial tissues whereas that of the latter is due to radioactivity in the superficial tissues and the brain. By recording the counting rates in appropriate channels of the photon spectrum it is thus possible to correct the results for radioactivity in the scalp and skull. With radioisotopes such as 75 Sc which emit two or more photons in cascade, coincidence counting techniques offer still a further possibility to minimize the contribution from radioactivity in the superficial tissues. Various potential applications of these techniques are described. (author)

  12. Production and utilization of radioisotopes

    International Nuclear Information System (INIS)

    Sekine, Toshiaki; Matsuoka, Hiromitsu

    1999-01-01

    A plan of developing radioisotopes with a high power proton accelerator of the Neutron Science Project is presented. The status of production and utilization of radioisotopes in Japan is briefly discussed. The radioisotopes to be produced for biomedical use are discussed together with the facility for production of those radioisotopes and for research with the products. (author)

  13. Positron sources

    International Nuclear Information System (INIS)

    Chehab, R.

    1994-01-01

    A tentative survey of positron sources is given. Physical processes on which positron generation is based are indicated and analyzed. Explanation of the general features of electromagnetic interactions and nuclear β + decay makes it possible to predict the yield and emittance for a given optical matching system between the positron source and the accelerator. Some kinds of matching systems commonly used - mainly working with solenoidal field - are studied and the acceptance volume calculated. Such knowledge is helpful in comparing different matching systems. Since for large machines, a significant distance exists between the positron source and the experimental facility, positron emittance has to be preserved during beam transfer over large distances and methods used for that purpose are indicated. Comparison of existing positron sources leads to extrapolation to sources for future linear colliders. Some new ideas associated with these sources are also presented. (orig.)

  14. Positron sources

    International Nuclear Information System (INIS)

    Chehab, R.

    1989-01-01

    A tentative survey of positron sources is given. Physical processes on which positron generation is based are indicated and analyzed. Explanation of the general features of electromagnetic interactions and nuclear β + decay makes it possible to predict the yield and emittance for a given optical matching system between the positron source and the accelerator. Some kinds of matching systems commonly used - mainly working with solenoidal fields - are studied and the acceptance volume calculated. Such knowledge is helpful in comparing different matching systems. Since for large machines, a significant distance exists between the positron source and the experimental facility, positron emittance has to be preserved during beam transfer over large distances and methods used for that purpose are indicated. Comparison of existing positron sources leads to extrapolation to sources for future linear colliders

  15. Economical Radioisotope Power

    Data.gov (United States)

    National Aeronautics and Space Administration — Almost all robotic space exploration missions and all Apollo missions to the moon used Radioisotopic Thermoelectric Generators (RTGs) to provide electrical power to...

  16. Radioisotopes in industry

    International Nuclear Information System (INIS)

    Popple, B.N.

    1977-01-01

    The author explains clearly what is radiography, enumerates four major factors in considering a practical source to use namely half-life, penetrating power, half value layer and specific activity and also the advantages and disadvantages in using isotopes. Common radioisotopes used in industrial radiography are iridium, cesium, cobalt and thulium. Main uses of the radioisotopes are for radiographic testing like welding castings, forgoings etc.; thickness, level or density measurement and tracing. (RTD)

  17. In-situ positron emission of CO oxidation

    NARCIS (Netherlands)

    Vonkeman, K.A.; Jonkers, G.; Wal, van der S.W.A.; Santen, van R.A.

    1993-01-01

    Using a Neuro ECAT positron tomog., the Positron Emission computed Tomog. (PET) was utilized to image the catalytic oxidn. of CO by using CO and CO2, labeled with short lived positron emitting nuclides. Studies were performed over highly dispersed CeO2/g-Al2O3 supported Pt and Rh catalysts. With a

  18. Tailoring medium energy proton beam to induce low energy nuclear reactions in ⁸⁶SrCl₂ for production of PET radioisotope ⁸⁶Y.

    Science.gov (United States)

    Medvedev, Dmitri G; Mausner, Leonard F; Pile, Philip

    2015-07-01

    This paper reports results of experiments at Brookhaven Linac Isotope Producer (BLIP) aiming to investigate effective production of positron emitting radioisotope (86)Y by the low energy (86)Sr(p,n) reaction. BLIP is a facility at Brookhaven National Laboratory designed for the proton irradiation of the targets for isotope production at high and intermediate proton energies. The proton beam is delivered by the Linear Accelerator (LINAC) whose incident energy is tunable from 200 to 66 MeV in approximately 21 MeV increments. The array was designed to ensure energy degradation from 66 MeV down to less than 20 MeV. Aluminum slabs were used to degrade the proton energy down to the required range. The production yield of (86)Y (1.2+/-0.1 mCi (44.4+/-3.7) MBq/μAh) and ratio of radioisotopic impurities was determined by assaying an aliquot of the irradiated (86)SrCl2 solution by gamma spectroscopy. The analysis of energy dependence of the (86)Y production yield and the ratios of radioisotopic impurities has been used to adjust degrader thickness. Experimental data showed substantial discrepancies in actual energy propagation compared to energy loss calculations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Generation and application of slow positrons based on a electron LINAC

    International Nuclear Information System (INIS)

    Kurihara, Toshikazu

    2002-01-01

    History of slow positron in Institute of Materials Structure Science High Energy Accelerator Research Organization is explained. The principle of generation and application of intense positron beam is mentioned. Two sources of intense positron are radioactive decay of radioactive isotopes emitting positron and electron-positron pair creation. The radioactive decay method uses 58 Co, 64 Cu, 11 C, 13 N, 15 O and 18 F. The electron-positron pair creation method uses nuclear reactor or electron linear accelerator (LINAC). The positron experimental facility in this organization consists of electron LINAC, slow positron beam source, positron transport and experimental station. The outline of this facility is started. The intense slow positron beam is applied to research positronium work function, electron structure of surface. New method such as combination of positron lifetime measurement and slow positron beam or Auger electron spectroscopy by positron annihilation excitation and positron reemission microscope are developed. (S.Y.)

  20. A real-time positron monitor for the estimation of stack effluent releases from PET medical cyclotron facilities

    International Nuclear Information System (INIS)

    Mukherjee, Bhaskar.

    2002-01-01

    Large activities of short-lived positron emitting radiopharmaceuticals are routinely manufactured by modern Medical Cyclotron facilities for positron emission tomography (PET) applications. During radiochemical processing, a substantial fraction of the volatile positron emitting radiopharmaceuticals are released into the atmosphere. An inexpensive, fast response positron detector using a simple positron-annihilation chamber has been developed for real-time assessment of the stack release of positron emitting effluents at the Australian National Medical Cyclotron. The positron detector was calibrated by using a 3.0 ml (1.50 MBq) aliquot of 18 FDG and interfaced to an industrial standard datalogger for the real-time acquisition of stack release data

  1. Positron emission tomography. Positronemisionstomografi

    Energy Technology Data Exchange (ETDEWEB)

    Bolwig, T G; Haunsoe, S; Dahlgaard Hove, J; Hesse, B; Hoejgard, L; Jensen, M; Paulson, O B; Hastrup Svendsen, J; Soelvsten Soerensen, S

    1994-10-01

    Positron emission tomography (PET) is a method for quantitative imaging of regional physiological and biochemical parameters. Positron emitting radioactive isotopes can be produced by a cyclotron, eg. the biologically important carbon ([sup 11]C), oxygen ([sup 15]O), and nitrogen ([sup 13]N) elements. With the tomographic principles of the PET scanner the quantitative distribution of the administered isotopes can be determined and images can be provided as well as dynamic information on blood flow, metabolism and receptor function. In neurology PET has been used for investigations on numerous physiological processes in the brain: circulation, metabolism and receptor studies. In Parkinson's disease PET studies have been able to localize the pathology specifically, and in early stroke PET technique can outline focal areas with living but non-functioning cells, and this could make it possible to intervene in this early state. With positron emission tomography a quantitative evaluation of myocardial blood flow, glucose and fatty acid metabolism can be made as well as combined assessments of blood flow and metabolism. Combined studies of blood flow and metabolism can determine whether myocardial segments with abnormal motility consist of necrotic or viable tissue, thereby delineating effects of revascularisation. In the future it will probably be possible to characterize the myocardial receptor status in different cardiac diseases. The PET technique is used in oncology for clinical as well as more basic research on tumor perfusion and metabolism. Further, tumor uptake of positron labelled cytotoxic drugs might predict the clinical benefit of treatment. (au) (19 refs.).

  2. Cardiac positron tomography

    International Nuclear Information System (INIS)

    Geltmann, E.M.; Roberts, R.; Sobel, B.E.

    1980-01-01

    Positron emission tomography (PET) performed after the administration of the positron-emitting radionuclides carbon-11 ( 11 C), nitrogen-13 ( 13 N), oxygen-15 ( 15 O) and fluorine-18 ( 18 F) has permitted the improved noninvasive assessment of the regional myocardial metabolism of normal physiologic substrates and intermediates and their cogeners. In experimental animals, the rate of oxidation of 11 C-palmitate correlates closely with other indexes of oxygen consumption, and the extraction of 11 C-palmitate (like that of 18 F-fatty acids and 18 F-fluoredoxyglucose) ist markedly diminished in regions of myocardial ischemia. In both experimental animals and in patients, myocardial infarct site and size, determined by positron emission tomography after the intravenous injection of 11 C-palmitate, correlate closely with the electrocardiographic infarct locus and enzymatically estimated infarct size as well as with the location and extent of regional left ventricular wall motion abnormalities. PET offers promise for assessment of flow as well despite the complexities involved. PET with 13 NH 3 appears to provide one useful qualitative index, although this tracer ist actively metabolized. Because of the quantitative capabilities of positron emission tomography and the rapid progress which is being made in the development of fast scan, multi-slice, and gated instrumentation, this technique is likely to facilitate improved understanding and characterization of regional myocardial metabolism and blood flow in man under physiological and pathophysiological conditions. (orig.) [de

  3. Positron emission tomography

    International Nuclear Information System (INIS)

    Bolwig, T.G.; Haunsoe, S.; Dahlgaard Hove, J.; Hesse, B.; Hoejgard, L.; Jensen, M.; Paulson, O.B.; Hastrup Svendsen, J.; Soelvsten Soerensen, S.

    1994-01-01

    Positron emission tomography (PET) is a method for quantitative imaging of regional physiological and biochemical parameters. Positron emitting radioactive isotopes can be produced by a cyclotron, eg. the biologically important carbon ( 11 C), oxygen ( 15 O), and nitrogen ( 13 N) elements. With the tomographic principles of the PET scanner the quantitative distribution of the administered isotopes can be determined and images can be provided as well as dynamic information on blood flow, metabolism and receptor function. In neurology PET has been used for investigations on numerous physiological processes in the brain: circulation, metabolism and receptor studies. In Parkinson's disease PET studies have been able to localize the pathology specifically, and in early stroke PET technique can outline focal areas with living but non-functioning cells, and this could make it possible to intervene in this early state. With positron emission tomography a quantitative evaluation of myocardial blood flow, glucose and fatty acid metabolism can be made as well as combined assessments of blood flow and metabolism. Combined studies of blood flow and metabolism can determine whether myocardial segments with abnormal motility consist of necrotic or viable tissue, thereby delineating effects of revascularisation. In the future it will probably be possible to characterize the myocardial receptor status in different cardiac diseases. The PET technique is used in oncology for clinical as well as more basic research on tumor perfusion and metabolism. Further, tumor uptake of positron labelled cytotoxic drugs might predict the clinical benefit of treatment. (au) (19 refs.)

  4. FEASIBILITY OF POSITRON EMISSION TOMOGRAPHY OF DOSE DISTRIBUTION IN PROTON BEAM CANCER THERAPY

    International Nuclear Information System (INIS)

    BEEBE-WANG, J.J.; DILMANIAN, F.A.; PEGGS, S.G.; SCHLYEER, D.J.; VASKA, P.

    2002-01-01

    Proton therapy is a treatment modality of increasing utility in clinical radiation oncology mostly because its dose distribution conforms more tightly to the target volume than x-ray radiation therapy. One important feature of proton therapy is that it produces a small amount of positron-emitting isotopes along the beam-path through the non-elastic nuclear interaction of protons with target nuclei such as 12 C, 14 N, and 16 O. These radioisotopes, mainly 11 C, 13 N and 15 O, allow imaging the therapy dose distribution using positron emission tomography (PET). The resulting PET images provide a powerful tool for quality assurance of the treatment, especially when treating inhomogeneous organs such as the lungs or the head-and-neck, where the calculation of the dose distribution for treatment planning is more difficult. This paper uses Monte Carlo simulations to predict the yield of positron emitters produced by a 250 MeV proton beam, and to simulate the productions of the image in a clinical PET scanner

  5. Positron emission tomography now and in the future

    International Nuclear Information System (INIS)

    Vaalburg, W.

    1987-01-01

    A survey is given of positron emission tomography used in nuclear medicine. The production of positron emitting radionuclides is discussed. The development of positron detectors is described. The application of positron emission tomography in cardiology, oncology and neurology is treated. The authors conclude that PET is a unique method to examine metabolic processes, although the method is still in its infancy. 7 refs.; 1 table

  6. Radioisotope Power Sources

    International Nuclear Information System (INIS)

    Culwell, J. P.

    1963-01-01

    The radioisotope power programme of the US Atomic Energy Commission has brought forth a whole new technology of the use of radioisotopes as energy sources in electric power generators. Radioisotope power systems are particularly suited for remote applications where long-lived, compact, reliable power is needed. Able to perform satisfactorily under extreme environmental conditions of temperature, sunlight and electromagnetic radiations, these ''atomic batteries'' are attractive power sources for remote data collecting devices, monitoring systems, satellites and other space missions. Radioisotopes used as fuels generally are either alpha or beta emitters. Alpha emitters are the preferable fuels but are more expensive and less available than beta fuels and are generally reserved for space applications. Beta fuels separated from reactor fission wastes are being used exclusively in land and sea applications at the present. It can be expected, however, that beta emitters such as stiontium-90 eventually will be used in space. Development work is being carried out on generators which will use mixed fission products as fuel. This fuel will be less expensive than the pure radioisotopes since the costs of isotope separation and purification are eliminated. Prototype thermoelectric generators, fuelled with strontium-90 and caesium-137, are now in operation or being developed for use in weather stations, marine navigation aids and deep sea monitoring devices. A plutonium-238 thermoelectric generator is in orbit operating as electric power source in a US Navy TRANSIT satellite. Generators are under development for use on US National Aeronautics and Space Administration missions. The large quantities of radioactivity involved in radioisotope power sources require that special attention be given to safety aspects of the units. Rigid safety requirements have been established and extensive tests have been conducted to insure that these systems can be employed without creating undue

  7. Modular Stirling Radioisotope Generator

    Science.gov (United States)

    Schmitz, Paul C.; Mason, Lee S.; Schifer, Nicholas A.

    2016-01-01

    High-efficiency radioisotope power generators will play an important role in future NASA space exploration missions. Stirling Radioisotope Generators (SRGs) have been identified as a candidate generator technology capable of providing mission designers with an efficient, high-specific-power electrical generator. SRGs high conversion efficiency has the potential to extend the limited Pu-238 supply when compared with current Radioisotope Thermoelectric Generators (RTGs). Due to budgetary constraints, the Advanced Stirling Radioisotope Generator (ASRG) was canceled in the fall of 2013. Over the past year a joint study by NASA and the Department of Energy (DOE) called the Nuclear Power Assessment Study (NPAS) recommended that Stirling technologies continue to be explored. During the mission studies of the NPAS, spare SRGs were sometimes required to meet mission power system reliability requirements. This led to an additional mass penalty and increased isotope consumption levied on certain SRG-based missions. In an attempt to remove the spare power system, a new generator architecture is considered, which could increase the reliability of a Stirling generator and provide a more fault-tolerant power system. This new generator called the Modular Stirling Radioisotope Generator (MSRG) employs multiple parallel Stirling convertor/controller strings, all of which share the heat from the General Purpose Heat Source (GPHS) modules. For this design, generators utilizing one to eight GPHS modules were analyzed, which provided about 50 to 450 W of direct current (DC) to the spacecraft, respectively. Four Stirling convertors are arranged around each GPHS module resulting in from 4 to 32 Stirling/controller strings. The convertors are balanced either individually or in pairs, and are radiatively coupled to the GPHS modules. Heat is rejected through the housing/radiator, which is similar in construction to the ASRG. Mass and power analysis for these systems indicate that specific

  8. Radioisotopic indicators in microbiology

    International Nuclear Information System (INIS)

    Isamov, N.N.

    1976-01-01

    The book comprises data obtained by the laboratory of radiobiology (Uzbek Research Veterinary Institute) for 15 years and sums up data of domestic and foreign scientists; it discusses problems of the utilization of radioactive isotopes of sulphur, cadmium, phosphorus and other chemical elements by microorganisms; indicates the specificity of the utilization of radioisotopes in microbiology. The influence is considered of external factors on the inclusion of radioisotopes into microorganisms, methods are discussed of obtaining labelled microorganisms and their antigens, radioactivity of bacteria is considered as affected by the consistency and composition of the nutritive medium and other problems

  9. Radioisotope clocks in archaeology

    Energy Technology Data Exchange (ETDEWEB)

    Hedges, R E.M. [Oxford Univ. (UK). Research Lab. for Archaeology

    1979-09-06

    Methods of absolute dating which use the rate of disintegration of a radioactive nucleus as the clock, are reviewed. The use of the abundant radioisotopes (/sup 40/K, Th and U) and of the rare radioisotopes (/sup 14/C, /sup 10/Be, /sup 26/Al, /sup 32/Si, /sup 36/Cl, /sup 41/Ca, /sup 53/Mn) is discussed and radiation integration techniques (fission track dating, thermoluminescence and related techniques) are considered. Specific fields of use of the various methods and their accuracy are examined.

  10. Radioisotopes in soil science

    International Nuclear Information System (INIS)

    Kotur, S.C.

    2004-01-01

    Soils form a thin veneer of the Earth that sustain the entire flora and fauna of the terra firma. To that extent the soil as a natural resource is very precious and needs to be managed in a sustainable manner. The fate of degradation of pesticides in soil and build-up of heavy metals in the overall biosafety scenario is also studied gainfully using radioisotopes. Radioisotopes are a very potent tool in the hands of the Soil Scientists, perhaps, the most important among the peaceful applications in service of the mankind

  11. Radioisotope Power Supply, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Between 1998 and 2003, Hi-Z Technology developed and built a 40 mW radioisotope power supply (RPS) that used a 1 watt radioisotope heater unit (RHU) as the energy...

  12. Positron emitting tracers for studies of cocaine

    International Nuclear Information System (INIS)

    Fowler, J.S.; Gatley, S.J.; MacGregor, R.R.; Wolf, A.P.; Yu, D.W.; Dewey, S.L.; Schlyer, D.J.; Volkow, N.D.; Bendriem, B.; Logan, J.

    1990-01-01

    The use of PET to study the behavior and mechanism of action of therapeutic drugs and substances of abuse can be approached from a number of perspectives. The most common approach is to measure the effect of a drug on some aspect of metabolism and requires well characterized radiotracers whose behavior in vivo can be related to a discrete biochemical transformation. A second approach is to study the labeled drug itself. This provides information on the drug's regional distribution and kinetics as well as its pharmacological profile and metabolism. Cocaine has been labeled in different positions with carbon-11 and with fluorine-18 and the stereoisomers of cocaine have also been labeled to characterize its binding and metabolism in human and baboon brain. Regional cocaine binding as measured by PET is consistent with reversible binding to striatal dopamine reuptake sites and its time course parallels the behavioral activation of cocaine. The behaviorally inactive enantiomer (+)-cocaine is rapidly metabolized in serum preventing its entry into the brain. These PET tracers are useful in understanding the neurochemical basis of cocaine's action

  13. Generation and application of slow positrons based on a electron LINAC

    CERN Document Server

    Kurihara, T

    2002-01-01

    History of slow positron in Institute of Materials Structure Science High Energy Accelerator Research Organization is explained. The principle of generation and application of intense positron beam is mentioned. Two sources of intense positron are radioactive decay of radioactive isotopes emitting positron and electron-positron pair creation. The radioactive decay method uses sup 5 sup 8 Co, sup 6 sup 4 Cu, sup 1 sup 1 C, sup 1 sup 3 N, sup 1 sup 5 O and sup 1 sup 8 F. The electron-positron pair creation method uses nuclear reactor or electron linear accelerator (LINAC). The positron experimental facility in this organization consists of electron LINAC, slow positron beam source, positron transport and experimental station. The outline of this facility is started. The intense slow positron beam is applied to research positronium work function, electron structure of surface. New method such as combination of positron lifetime measurement and slow positron beam or Auger electron spectroscopy by positron annihil...

  14. Polymeric membrane studied using slow positron beam

    International Nuclear Information System (INIS)

    Hung, W.-S.; Lo, C.-H.; Cheng, M.-L.; Chen Hongmin; Liu Guang; Chakka, Lakshmi; Nanda, D.; Tung, K.-L.; Huang, S.-H.; Lee, Kueir-Rarn; Lai, J.-Y.; Sun Yiming; Yu Changcheng; Zhang Renwu; Jean, Y.C.

    2008-01-01

    A radioisotope slow positron beam has been built at the Chung Yuan Christian University in Taiwan for the research and development in membrane science and technology. Doppler broadening energy spectra and positron annihilation lifetime have been measured as a function of positron energy up to 30 keV in a polyamide membrane prepared by the interfacial polymerization between triethylenetetraamine (TETA) and trimesoyl chloride (TMC) on modified porous polyacrylonitrile (PAN) asymmetric membrane. The multilayer structures and free-volume depth profile for this asymmetric membrane system are obtained. Positron annihilation spectroscopy coupled with a slow beam could provide new information about size selectivity of transporting molecules and guidance for molecular designs in polymeric membranes

  15. Radioisotopic heat source

    Science.gov (United States)

    Jones, G.J.; Selle, J.E.; Teaney, P.E.

    1975-09-30

    Disclosed is a radioisotopic heat source and method for a long life electrical generator. The source includes plutonium dioxide shards and yttrium or hafnium in a container of tantalum-tungsten-hafnium alloy, all being in a nickel alloy outer container, and subjected to heat treatment of from about 1570$sup 0$F to about 1720$sup 0$F for about one h. (auth)

  16. Radioisotopes in Industry

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Philip S. [Oak Ridge National Laboratory; Fuccillo, Jr., Domenic A. [Oak Ridge National Laboratory; Gerrard, Martha W. [Oak Ridge National Laboratory; Lafferty, Jr., Robert H. [Oak Ridge National Laboratory

    1967-05-01

    Radioisotopes, man-made radioactive elements, are used in industry primarily for measuring, testing and processing. How and why they are useful is the subject of this booklet. The booklet discusses their origin, their properties, their uses, and how they may be used in the future.

  17. Radio-isotope generator

    International Nuclear Information System (INIS)

    Benjamins, H.M.

    1983-01-01

    A device is claimed for interrupting an elution process in a radioisotope generator before an elution vial is entirely filled. The generator is simultaneously exposed to sterile air both in the direction of the generator column and of the elution vial

  18. Manual of radioisotope production

    International Nuclear Information System (INIS)

    1966-01-01

    The Manual of Radioisotope Production has been compiled primarily to help small reactor establishments which need a modest programme of radioisotope production for local requirements. It is not comprehensive, but gives guidance on essential preliminary considerations and problems that may be met in the early stages of production. References are included as an aid to the reader who wishes to seek further in the extensive literature on the subject. In preparing the Manual, which is in two parts, the Agency consulted several Member States which already have long experience in radioisotope production. An attempt has been made to condense this experience, firstly, by setting out the technical and economic considerations which govern the planning and execution of an isotope programme and, secondly, by providing experimental details of isotope production processes. Part I covers topics common to all radioisotope processing, namely, laboratory design, handling and dispensing of radioactive solutions, quality control, measurement and radiological safety. Part II contains information on the fifteen radioisotopes in most common use. These are bromine-82, cobalt-58, chromium-51, copper-64, fluorine-18, gold-198, iodine-131, iron-59, magnesium-28, potassium-42, sodium-24, phosphorus-32, sulphur-35, yttrium-90 and zinc-65. Their nuclear properties are described, references to typical applications are given and published methods of production are reviewed; also included are descriptions in detail of the production processes used at several national atomic energy organizations. No attempt has been made to distinguish the best values for nuclear data or to comment on the relative merits of production processes. Each process is presented essentially as it was described by the contributor on the understanding that critical comparisons are not necessary for processes which have been well tried in practical production for many years. The information is presented as a guide to enable

  19. Radioisotope battery for particular application

    International Nuclear Information System (INIS)

    Shen Tianjian; Liang Daihua; Cai Jianhua; Dai Zhimin; Xia Huihao; Wang Jianhua; Sun Sen; Yu Guojun; Wang Xiao; Wang Dongxing; Liu Xin

    2010-01-01

    Radioisotope battery, as a new type of power source, was developed in 1960s. It is advantageous in terms of long working life, high reliability, flexibility to rugged environment, maintenance free, and high capacity rate, hence its unique applications in space, isolated terrestrial or ocean spots, deep waters, and medicine. In this paper, we analysz the primary performances and classification of radioisotope thermoelectric generator, as well as characteristic, basic principle,and structure of radioisotope thermoelectric generator (RTG), which is the most popular in application of radioisotope battery in space, undersea, terrestrial and medicine. A prospect for development and application of radioisotope battery in the 21 st century is given, too. (authors)

  20. Potential medical applications of the plasma focus in the radioisotope production for PET imaging

    International Nuclear Information System (INIS)

    Roshan, M.V.; Razaghi, S.; Asghari, F.; Rawat, R.S.; Springham, S.V.; Lee, P.; Lee, S.; Tan, T.L.

    2014-01-01

    Devices other than the accelerators are desired to be investigated for generating high energy particles to induce nuclear reaction and positron emission tomography (PET) producing radioisotopes. The experimental data of plasma focus devices (PF) are studied and the activity scaling law for External Solid Target (EST) activation is established. Based on the scaling law and the techniques to enhance the radioisotopes production, the feasibility of generating the required activity for PET imaging is studied. - Highlights: • Short lived radioisotopes for PET imaging are produced in plasma focus device. • The scaling law of the activity induced with plasma focus energy is established. • The potential medical applications of plasma focus are studied

  1. Application of radioisotopes in entomology

    International Nuclear Information System (INIS)

    Saour, G.

    1995-01-01

    Radioisotope techniques are effective in entomology and studies on insects physiology. The study presents the use of radioisotopes in pest control programs: Methods of insects irradiation and the concept of biological half-life of the radioisotopes in comparison with physical half-life are explained. Main radioisotopes used in entomology are: 3 H, 14 Ca, 32 P, 35 S, 38 Cl. Other radioisotopes contributing to studies on insects are: 198 Au, 134 Cs, 131 I, 86 Rb, 65 Zn, 59 Fe, 45 Ca, 24 Na, 22 Na. Radiation doses specific to each radioisotopes are given in tables. As an example of the application of radioisotopes in pest control: the determination of insects population density by means of releasing irradiated male insects than chasing them; studying of reproduction activity of Agrotis ipsilon; studying of egg laying of Heliocoverpa armigera moth. 15 refs. 2 figs. 2 tabs

  2. Application of radioisotopes in entomology

    Energy Technology Data Exchange (ETDEWEB)

    Saour, G [Atomic Energy Commission, Damascus (Syrian Arab Republic). Dept. of Radiation Agriculture

    1995-10-01

    Radioisotope techniques are effective in entomology and studies on insects physiology. The study presents the use of radioisotopes in pest control programs: Methods of insects irradiation and the concept of biological half-life of the radioisotopes in comparison with physical half-life are explained. Main radioisotopes used in entomology are:{sup 3}H, {sup 14}Ca, {sup 32}P, {sup 35}S, {sup 38}Cl. Other radioisotopes contributing to studies on insects are: {sup 198}Au, {sup 134}Cs, {sup 131}I, {sup 86}Rb, {sup 65}Zn, {sup 59}Fe, {sup 45}Ca, {sup 24}Na, {sup 22}Na. Radiation doses specific to each radioisotopes are given in tables. As an example of the application of radioisotopes in pest control: the determination of insects population density by means of releasing irradiated male insects than chasing them; studying of reproduction activity of Agrotis ipsilon; studying of egg laying of Heliocoverpa armigera moth. 15 refs. 2 figs. 2 tabs.

  3. Present status of radioisotope production in JAERI

    International Nuclear Information System (INIS)

    Yamabayashi, Hisamichi

    1994-01-01

    Since 1962, the technology for producing a wide variety of processed radioisotopes and sealed radiation sources has been developed by using the reactors, JRR-1, JRR-2, JRR-3, JRR-4 and JMTR, and the products have been offered to domestic users. At present, 31 products of 29 nuclides are on the list of processed radioisotopes. Some of those isotopes such as P-32, S-35, Cr-51 and short lived nuclides are produced for regular distribution, but the rest are produced upon request. The radiation sources of Co-60 needles for industrial use, Ir-192 pellets for the nondestructive inspection of pipelines, Gd-153 pellets for the diagnosis of born mineral and seven kinds of brachy therapy Ir-192 and Au-198 grains are produced and distributed regularly. The organic compounds labeled with H-3 and C-14 are widely used. In fiscal year 1992, 34 batches and total amount 12 TBq of processed radioisotopes and 100 batches, 1.2 PBq of radiation sources were produced as scheduled. The development of the techniques for producing the sources emitting high energy β ray used for the diagnosis and treatment of cancer is in progress. The method of producing new isotopes is developed. (K.I.)

  4. Radioisotopes and radiopharmaceuticals catalogue

    International Nuclear Information System (INIS)

    2002-01-01

    The Chilean Nuclear Energy Commission (CCHEN) presents its radioisotopes and radiopharmaceuticals 2002 catalogue. In it we found physical characteristics of 9 different reactor produced radioisotopes ( Tc-99m, I-131, Sm-153, Ir-192, P-32, Na-24, K-42, Cu-64, Rb-86 ), 7 radiopharmaceuticals ( MDP, DTPA, DMSA, Disida, Phitate, S-Coloid, Red Blood Cells In-Vivo, Red Blood Cells In-Vitro) and 4 labelled compounds ( DMSA-Tc99m, DTPA-Tc99m, MIBG-I131, EDTMP-Sm153 ). In the near future the number of items will be increased with new reactor and cyclotron products. Our production system will be certified by ISO 9000 on March 2003. CCHEN is interested in being a national and an international supplier of these products (RS)

  5. Radioisotope production linac

    International Nuclear Information System (INIS)

    Stovall, J.E.; Hansborough, L.D.; O'Brien, H.A.

    1981-01-01

    A 70-MeV proton beam would open a new family of medical radioisotopes (including the important 123 I) to wide application. A 70-MeV, 500-μA linac is described, based on recent innovations in accelerator technology. It would be 27.3 m long, cost approx. $6 million, and the cost of power deposited in the radioisotope-production target is comparable to existing cyclotrons. By operating the rf-power system to its full capability, the same accelerator is capable of producing a 1140-μA beam, and the cost per beam watt on the target is less than half that of comparable cyclotrons. The technology to build such a linac is in a mature stage of developmnt, ready for use by industry

  6. NTP Radioisotopes SOC Ltd

    International Nuclear Information System (INIS)

    Letule, T.

    2017-01-01

    NTP Radioisotopes SOC Ltd, a wholly owned subsidiary of the South African Nuclear Energy Corporation (NECSA). Supplies around 20% of the world's medical radioisotopes used. NTP is a pioneer in the introduction and growth of nuclear medicine as in South Africa. Nuclear medicine is the medical specialty that involves the use of radioactive isotopes in the diagnosis and treatment of diseases. Nuclear medicine contributes to enhancing the lives of the society. There is a compelling need for nuclear medicine to be promoted and utilized in the rest of Africa, due to the increasing prevalence of cancer. Cancer is rapidly becoming a public health crisis in low-income and middle-income countries. In sub-Saharan Africa, patients often present with advanced disease

  7. Comparison of fluorine-18 and bromine-76 imaging in positron emission tomography

    International Nuclear Information System (INIS)

    Ribeiro, M.J.; Ferreira, N.; Almeida, P.; Strul, D.; Loc'h, C.; Brulon, V.; Trebossen, R.; Maziere, B.; Bendriem, B.

    1999-01-01

    analysis of images obtained using a 3D Hoffman phantom showed that image resolution and image contrast between different regions are radioisotope dependent and clearly better when using 18 F. Linear profiles taken on these images confirmed the visual assessment. For a given scanner, the k 1 values obtained with 18 F were systematically higher than those measured using 76 Br in the same machine (especially for the smaller spheres) when using the same ROI. For a sphere of a particular diameter, the use of a wider ROI resulted in lower quantitative accuracy when using the same isotope and the same camera. Lower quantitative accuracy was found for smaller spheres for all ROI sizes used in image analysis. For the same scanner and for a similar imaging situation (same sphere and same ROI), it was found that k 1 and k 2 values depend on the radioisotope used. For the same isotope and tomograph, the k 1 values obtained decreased with the size of the structures imaged, as well as with the increase in ROI size. The use of a tomograph with better spatial resolution (HR+, rather than ECAT 953B) greatly increased the k 1 values for 18 F while only a mild improvement in these values was observed for 76 Br. The use of 76 Br led to k 2 values that were slightly higher than those measured using 18 F. These differences may have been due to the difference in the range of the positrons emitted by the radioisotopes used in this study. The measurements performed in this study show that the comparison of studies obtained on the same camera depends on the radioisotope used and may require the adaptation of ROI size between examinations. Marked differences are visible if the positron ranges of such radioisotopes are very different. Therefore, when employing commercially available tomographs and imaging protocols used in clinical routine, the effects of differences in positron range on image quality and quantitation are noticeable and correction for these effects may be of importance. With the

  8. Applications of Beta Particle Detection for Synthesis and Usage of Radiotracers Developed for Positron Emission Tomography

    Science.gov (United States)

    Dooraghi, Alex Abreu

    Positron Emission Tomography (PET) is a noninvasive molecular imaging tool that requires the use of a radioactive compound or radiotracer which targets a molecular pathway of interest. We have developed and employed three beta particle radiation detection systems to advance PET. Specifically, the goals of these systems are to: 1. Automate dispensing of solutions containing a positron emitting isotope. 2. Monitor radioactivity on-chip during synthesis of a positron emitting radiotracer. 3. Assay cellular uptake on-chip of a positron emitting radiotracer. Automated protocols for measuring and dispensing solutions containing radioisotopes are essential not only for providing an optimum environment for radiation workers, but also to ensure a quantitatively accurate workflow. For the first project, we describe the development and performance of a system for automated radioactivity distribution of beta particle emitting radioisotopes such as fluorine-18 (F-18). Key to the system is a radiation detector in-line with a peristaltic pump. The system demonstrates volume accuracy within 5 % for volumes of 20 muL or greater. When considering volumes of 20 muL or greater, delivered radioactivity is in agreement with the requested radioactivity as measured with the dose calibrator. The integration of the detector and pump leads to a flexible system that can accurately dispense solutions containing F-18 in radioactivity concentrations directly produced from a cyclotron (~ 0.1-1 mCi/muL), to low activity concentrations intended for preclinical mouse scans (~ 1-10 muCi/muL), and anywhere in between. Electrowetting on dielectric (EWOD) is an attractive microfluidic platform for batch synthesis of PET radiotracers. Visualization of radioisotopes on-chip is critical for synthesis optimization and technological development. For the second project, we describe the development and performance of a Cerenkov/real-time imaging system for PET radiotracer synthesis on EWOD. We also investigate

  9. Radioisotope laboratory in Turkey

    International Nuclear Information System (INIS)

    1961-01-01

    The Turkish Government formally requested that the Agency provide for one year the services of an expert in the agricultural applications of radioisotopes. Specifically, they wanted this expert first of all to assist in setting up and equipping a pioneer laboratory for the utilization of radioisotopes in agricultural research. Once the laboratory was in operation, the expert was to initiate various research projects using isotope techniques, and to train personnel to carry on this work. The Agency was also asked to supply various specialized equipment for the laboratory, including some radioisotopes. On 10 December 1960 the first phase was complete - the new laboratory was formally opened. It is foreseen that the research projects which will be initiated at the laboratory will include the following: determination of the effect of fertilizers upon yield and quality of field crops and fruit trees, soil fertility studies, studies of mineral element uptake and localization of nutrients in plant body, studies of the folar application of mineral nutrients, especially in fruit trees, investigation of microelements in field crops and fruit trees, investigation of pollination problems, study of the distribution of mineral elements in different fruit seedlings, study of the uptake of nutrients by fruit trees during the rest period, dispersal studies on insects, insecticide studies

  10. Radioisotopes for medical applications

    International Nuclear Information System (INIS)

    Carr, S.

    1998-01-01

    For more than 3 decades, the Australian Nuclear Science and Technology Organisation has been the country's main supplier of radioisotopes for medical applications. The use of radioisotopes in medicine has revolutionised the diagnosis, management and treatment of many serious diseases such as cancer, heart disease and stroke. It is also beginning to play a key role in neurological disorders such as Parkinson and Alzheimers disease and epilepsy. More recently there has been considerable growth in the application of nuclear medicine to treat sport-related injuries - especially wrist, ankle and knees where more common techniques do not always enable accurate diagnosis. Australia is a recognised leader in nuclear medicine. This can be partially attributed to the close relationship between ANSTO and the medical community in providing opportunities to develop and evaluate new agents to support more effective patient care. A list of commercial isotopes produced in the reactor or the cyclotron and used in medical applications is given. Nuclear medicine plays an important role in the clinical environment and the timely supply of radioisotopes is a key element. ANSTO will continue to be the premier supplier of currently available and developing isotopes to support the health and well being of the Australian community

  11. Radioisotope laboratory in Turkey

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1961-04-15

    The Turkish Government formally requested that the Agency provide for one year the services of an expert in the agricultural applications of radioisotopes. Specifically, they wanted this expert first of all to assist in setting up and equipping a pioneer laboratory for the utilization of radioisotopes in agricultural research. Once the laboratory was in operation, the expert was to initiate various research projects using isotope techniques, and to train personnel to carry on this work. The Agency was also asked to supply various specialized equipment for the laboratory, including some radioisotopes. On 10 December 1960 the first phase was complete - the new laboratory was formally opened. It is foreseen that the research projects which will be initiated at the laboratory will include the following: determination of the effect of fertilizers upon yield and quality of field crops and fruit trees, soil fertility studies, studies of mineral element uptake and localization of nutrients in plant body, studies of the folar application of mineral nutrients, especially in fruit trees, investigation of microelements in field crops and fruit trees, investigation of pollination problems, study of the distribution of mineral elements in different fruit seedlings, study of the uptake of nutrients by fruit trees during the rest period, dispersal studies on insects, insecticide studies.

  12. Radioisotopes for medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Carr, S. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia). Radiopharmaceuticals Division

    1998-03-01

    For more than 3 decades, the Australian Nuclear Science and Technology Organisation has been the country`s main supplier of radioisotopes for medical applications. The use of radioisotopes in medicine has revolutionised the diagnosis, management and treatment of many serious diseases such as cancer, heart disease and stroke. It is also beginning to play a key role in neurological disorders such as Parkinson and Alzheimers disease and epilepsy. More recently there has been considerable growth in the application of nuclear medicine to treat sport-related injuries - especially wrist, ankle and knees where more common techniques do not always enable accurate diagnosis. Australia is a recognised leader in nuclear medicine. This can be partially attributed to the close relationship between ANSTO and the medical community in providing opportunities to develop and evaluate new agents to support more effective patient care. A list of commercial isotopes produced in the reactor or the cyclotron and used in medical applications is given. Nuclear medicine plays an important role in the clinical environment and the timely supply of radioisotopes is a key element. ANSTO will continue to be the premier supplier of currently available and developing isotopes to support the health and well being of the Australian community 2 tabs., 1 fig.

  13. Production of radioisotopes for medical use

    International Nuclear Information System (INIS)

    Ido, Tatsuo

    1977-01-01

    As problems in the process of production of short-lived radioisotopes for medical use and in clinical application of them, the following three items were mentioned: 1. separation and purification in a short time, 2. devices to decrease exposure dose in workers, and 3. preservation of radiochemical purity and chemical purity, and avoidance of mixture of impurities. In consideration of these problems, an outline of on-line production system of radioactive gases (from irradiation by accelerated particles to separation, purification, and administration of them), which was exploited in National Institute of Radiological Sciences, was described. Production of 13 NH 3 , the aqueous solution of 18 F, and 123 I was also given an outline. Simultaneous production method of many nuclides by means of laminated target and compounds labelled with positron emitter were also described. (Tsunoda, M.)

  14. Positron emitter labeled enzyme inhibitors

    International Nuclear Information System (INIS)

    Fowler, J.S.; MacGregor, R.R.; Wolf, A.P.; Langstrom, B.

    1990-01-01

    This invention involves a new strategy for imagining and mapping enzyme activity in the living human and animal body using positron emitter-labeled suicide enzyme inactivators or inhibitors which become covalently bound to the enzyme as a result of enzymatic catalysis. Two such suicide inactivators for monoamine oxidase have been labeled with carbon-11 and used to map the enzyme subtypes in the living human and animal body using PET. By using positron emission tomography to image the distribution of radioactivity produced by the body penetrating radiation emitted by carbon-11, a map of functionally active monoamine oxidase activity is obtained. Clorgyline and L-deprenyl are suicide enzyme inhibitors and irreversibly inhibit monoamine oxidase. When these inhibitors are labeled with carbon-11 they provide selective probes for monoamine oxidase localization and reactivity in vivo using positron emission tomography

  15. Production of radioisotopes using accelerators

    International Nuclear Information System (INIS)

    Qaim, S.M.

    1990-01-01

    Accelerator produced radioisotopes find applications in many fields. Most of them are ideally suited for in-vivo studies of physiological functions. A brief review of various types of accelerators used for radioisotope production is given. The 'state of art' technology relevant to the production of radioisotopes is briefly discussed. Some of the recent advances in nuclear data measurements, target development, chemical processing and quality control are described. There appears to be a definite shift from multipurpose accelerators to dedicated machines, and greater emphasis is placed now on the production of radioisotopes with high radionuclidic purity by choosing a suitable nuclear reaction in a proper energy range. (author)

  16. Production of 68Ge, 64Cu, 86Y, 89Zr, 73Se, 77Br and 124I positron emitting radionuclides through future laser-accelerated proton beams at ELI-Beamlines for innovative PET diagnostics

    OpenAIRE

    Italiano, Antonio; Amato, Ernesto; Minutoli, Fabio; Margarone, Daniele; Baldari, Sergio

    2016-01-01

    The development of innovative production pathways for high-Z positron emitters is of great interest to enlarge the applicability of PET diagnostics, especially in view of the continuous development of new radiopharmaceuticals. We evaluated the theoretical yields of 64Cu, 86Y, 89Zr, 73Se, 77Br and 124I PET isotopes, plus the 68Ge isotope, parent of the 68Ga positron emitter, in the hypothesis of production through laser-accelerated proton sources expected at the ELI-Beamlines facility. By mean...

  17. Planned Positron Factory project

    International Nuclear Information System (INIS)

    Okada, Sohei

    1990-01-01

    The Japan Atomic Energy Research Institute, JAERI, has started, drafting a construction plan for the 'Positron Factory', in which intense energy-controllable monoenergetic positron beams are produced from pair-production reactions caused by high-energy electrons from a linac. The JAERI organized a planning committee to provide a basic picture for the Positron Factory. This article presents an overview of the interactions of positrons, intense positron sources and the research program and facilities planned for the project. The interactions of positrons and intense positron sources are discussed focusing on major characteristics of positrons in different energy ranges. The research program for the Positron Factory is then outlined, focusing on advanced positron annihilation techniques, positron spectroscopy (diffraction, scattering, channeling, microscopy), basic positron physics (exotic particle science), and positron beam technology. Discussion is also made of facilities required for the Positron Factory. (N.K.)

  18. Positron emission tomography studies of brain receptors

    International Nuclear Information System (INIS)

    Maziere, B.; Maziere, M.

    1991-01-01

    Probing the regional distribution and affinity of receptors in the brain, in vivo, in human and non human primates has become possible with the use of selective ligands labelled with positron emitting radionuclides and positron emission tomography (PET). After describing the techniques used in positron emission tomography to characterize a ligand receptor binding and discussing the choice of the label and the limitations and complexities of the in vivo approach, the results obtained in the PET studies of various neurotransmission systems: dopaminergic, opiate, benzodiazepine, serotonin and cholinergic systems are reviewed

  19. Small radioisotope powered batteries

    International Nuclear Information System (INIS)

    Myatt, J.

    1975-06-01

    Various methods of converting the large amounts of energy stored in radioisotopes are described. These are based on:- (a) the Seebeck effect; (b) thermionic emission of electrons from a hot body; (c) the Stirling Cycle; and (d) radiovoltaic charge separation in 'p-n' junctions. Small generators in the range 0 to 100 W(e) developed using these effects are described and typical applications for each of these systems are given. These include data collection and transmission from remote sites, implantable medical devices, lighthouses, radio beacons, and space power supplies. (author)

  20. Administration of radioisotope production

    International Nuclear Information System (INIS)

    1964-01-01

    Current developments in atomic energy, and the administrative problems to which they give rise, were surveyed in a seminar on 'Atomic Energy for Atomic Energy Administrators' held at IAEA headquarters from 30 September to 4 October 1963. The ground covered included protection against radiation, isotopes and radiation sources, research reactors, nuclear power, legal matters, technical and scientific administration, the role of the universities, and the Agency's part in assistance to developing countries. The possibilities and limitations of radioisotope production from research reactors were discussed by Dr. G. B. Cook, of the Division of Research and Laboratories, IAEA in this paper.

  1. Administration of radioisotope production

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1964-01-15

    Current developments in atomic energy, and the administrative problems to which they give rise, were surveyed in a seminar on 'Atomic Energy for Atomic Energy Administrators' held at IAEA headquarters from 30 September to 4 October 1963. The ground covered included protection against radiation, isotopes and radiation sources, research reactors, nuclear power, legal matters, technical and scientific administration, the role of the universities, and the Agency's part in assistance to developing countries. The possibilities and limitations of radioisotope production from research reactors were discussed by Dr. G. B. Cook, of the Division of Research and Laboratories, IAEA in this paper.

  2. Radioisotope relay instrument

    International Nuclear Information System (INIS)

    Pozdnyakov, V.N.; Sazonov, O.L.; Taksar, I.M.; Tesnavs, Eh.R.; Yanushkovskij, V.A.

    1974-01-01

    The paper describes a radioisotope relay device containing a radiation source, a detector, an electronic relay block with a comparative threshold mechanism. The device differs from previously known ones in that, for the purpose of increasing stability and speed of action, the electronic relay block is a separate unit and contains two threshold pulse generators which are joined up, across series-connected ''and'' and ''or'' elements, with one of the inputs of the comparative threshold mechanism, whose second input is connected with a detector and whose outputs are connected with a relay element connected by feedback with the above-mentioned ''and'' elements. (author)

  3. High temperature radioisotope capsule

    International Nuclear Information System (INIS)

    Bradshaw, G.B.

    1976-01-01

    A high temperature radioisotope capsule made up of three concentric cylinders, with the isotope fuel located within the innermost cylinder is described. The innermost cylinder has hemispherical ends and is constructed of a tantalum alloy. The intermediate cylinder is made of a molybdenum alloy and is capable of withstanding the pressure generated by the alpha particle decay of the fuel. The outer cylinder is made of a platinum alloy of high resistance to corrosion. A gas separates the innermost cylinder from the intermediate cylinder and the intermediate cylinder from the outer cylinder

  4. New applications of radioisotopes

    International Nuclear Information System (INIS)

    Beddoes, J.M.

    1982-06-01

    The Radiochemical Company of Atomic Energy of Canada Ltd. is developing new uses for radioisotpes. This paper discusses three of them. The first is positron emission tomography. AECL, together with the Montreal Neurological Institute, has developed a new PET scanner, the Therascan 3128. A second area of interest is radiopharmaceuticals, which AECL is beginning to produce in patient-ready form. Finally, investigations are being carried out into the use of cobalt 60 gamma sources as food and waste irradiators

  5. Radioisotopes and radiation technology

    International Nuclear Information System (INIS)

    Ramamoorthy, N.

    2011-01-01

    The field of radioisotopes and radiation processing has grown enormously all over the world with India being no exception. The chemistry and radiochemistry related inputs to the overall technology development and achievements have been, and will continue to be, of considerable value and importance in this multi-disciplinary and multi-specialty field. Harnessing further benefits as well as sustaining proven applications should be the goal in planning for the future. An objective analysis of the socio-economic impact and benefits from this field to the society at large will undoubtedly justify assigning continued high priority, and providing adequate resources and support, to relevant new projects and programmes on the anvil in the area of radioisotopes and radiation technology. It is necessary to nurture and strengthen inter-disciplinary and multi-specialty collaborations and cooperation - at both national and international level as a rule (not as exception) - for greater efficiency, cost-effectiveness and success of ongoing endeavors and future developments in this important field

  6. Safe Handling of Radioisotopes

    International Nuclear Information System (INIS)

    1958-01-01

    Under its Statute the International Atomic Energy Agency is empowered to provide for the application of standards of safety for protection against radiation to its own operations and to operations making use of assistance provided by it or with which it is otherwise directly associated. To this end authorities receiving such assistance are required to observe relevant health and safety measures prescribed by the Agency. As a first step, it has been considered an urgent task to provide users of radioisotopes with a manual of practice for the safe handling of these substances. Such a manual is presented here and represents the first of a series of manuals and codes to be issued by the Agency. It has been prepared after careful consideration of existing national and international codes of radiation safety, by a group of international experts and in consultation with other international bodies. At the same time it is recommended that the manual be taken into account as a basic reference document by Member States of the Agency in the preparation of national health and safety documents covering the use of radioisotopes.

  7. Status and prospects on radioisotope production in Korea

    International Nuclear Information System (INIS)

    Han, H. S.; Cho, W. K.; Park, U. J.; Hong, Y. D.; Park, K. B.

    2002-01-01

    In Korea, radioisotopes has been produced using small-sized research reactors (TRIGA Mark II, III) from 1961 to 1995. The Korea Atomic Energy Research Institute (KAERI) completed the High-flux Advanced Neutron Application Reactor (HANARO) in 1995 and a radioisotope production facilities (RIPF) in 1997. Medical and industrial radionuclides such as 131 I, 99m Tc, 166 Ho, 192 Ir and 60 Co, are routinely produced utilizing HANARO. Several hundreds kilo curies of these nuclides were supplied to domestic users in 2001. The Korea Cancer Center Hospital (KCCH) first installed a cyclotron (MC-50) for neutron therapy and RI production in 1984. At present, the cyclotron routinely produced radionuclides such as 201 TI, 67 Ga, 123 I and 18 F. Also, it is capable of producing several radionuclides, including 111 In, 51 Cr, 124 I, 54 Mn, 22 Na, etc. Baby cyclotrons were installed in Seoul National University Hospital, Sam sung Medical Center and Asan Medical Center. The main purpose of the introduction of baby cyclotrons was to produce short-lived positron emitters such as 18 F, 15 O and 11 C for PET. Radioisotope production facilities were imported and installed as subsidiaries of cyclotron. In Korea, more than 60 kinds of radioisotopes are currently used in the field of their applications and most of them are imported form foreign vendors. For the quality assurance of final products such as radiopharmaceuticals and industrial sources, facilities for production should be installed and maintained in accordance with regulation rules and also the production system should be operated under quality management system. Since 1992 the Korean government has been encouraging Mid and Long Term Nuclear R and D Programs to enhance capability in nuclear technology development. In order to actively promote the utilization, research and development of technology applying radiation and RI, the Korean government established 'a comprehensive promotion plan for utilization, research and development

  8. The safe handling of radioisotopes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1964-12-31

    A narrative account of a minor contamination accident in a laboratory is used to demonstrate the important role of radiation protection measures in radioisotope work and the necessity of giving proper regard to such measures. It is primarily directed towards the research scientists and medical workers using radioisotopes on a relatively small scale

  9. Support housing for radioisotope generation

    International Nuclear Information System (INIS)

    Fries, B.A.

    1976-01-01

    A support housing for on-site radioisotope generation is disclosed in which the formation of a short-lived daughter radioisotope from its longer-lived parent features countercurrent batch flow of the eluting reagent interior of the housing. 6 claims, 4 drawing figures

  10. Application of positron emitters to studies on plants

    Energy Technology Data Exchange (ETDEWEB)

    Ishioka, N S; Matsuoka, H [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Sekine, T [and others

    1998-10-01

    A newly developed positron emitting tracer imaging system enables us to study dynamically the physiological function of plants, although this system covers, at present, a limited area in a plant. Production of the positron emitters {sup 11}C, {sup 13}N, {sup 18}F and {sup 48}V for this application, using an AVF cyclotron, is described. (author)

  11. Positron emission tomography in drug development and drug evaluation

    NARCIS (Netherlands)

    Paans, AMJ; Vaalburg, W

    2000-01-01

    Positron Emission Tomography (PET) is an imaging modality which can determine biochemical and physiological processes in vivo in a quantitative way by using radiopharmaceuticals labeled with positron emitting radionuclides as C-11, N-13, O-15 and F-18 and by measuring the annihilation radiation

  12. Radioisotope Concentration in Lake Sediments of Maracaibo, Venezuela

    International Nuclear Information System (INIS)

    Salas, A. Rangel; Viloria, T.; Sajo-Bohus, L.; Barros, H.; Greaves, E. D.; Palacios, D.

    2007-01-01

    Maracaibo Lake is one of the most important water basing and oil producing regions in Venezuela. Changes in the local environment have been monitored for chemical pollution in the past. For this study we selected a set of sediment samples collected in the shore and analyzed for its radioisotope content. Results show the gamma emitting isotopes distribution. Isotopes concentrations have been determined within the natural K, Th and U families

  13. Application of radiation and radioisotopes in life science

    International Nuclear Information System (INIS)

    Nakanishi, Tomoko M.

    2005-01-01

    Radiation and Radioisotopes have been played an important role in the wide range of life science, from the field study, such as fertilizer or pesticide development or production of new species, to gene engineering researches. Many mutants through radiation have been provided to the market and the usage of radioactive tracers was an effective tool to study plant physiology. It has been granted that the contribution of radioisotopes has been accelerated the development of the gene engineering technology, which is now overwhelming all the other usages of radiation or radioisotopes. However, because of the difficulty to get social acceptance for gene modified plants, the orientation of the life science is now changing towards, so called ''post genome era''. Therefore, from the point of radiation or radioisotope usage, new application methods are needed to develop new type of researches. We present how (1) neutron activation analysis, (2) neutron radiography and (3) positron emission tomography are promising to study living plant physiology. Some of these techniques are not necessarily new methods but with a little modification, they show new aspects of plant activity. (author)

  14. Characterization of front-end electronics for CZT based handheld radioisotope identifier

    Energy Technology Data Exchange (ETDEWEB)

    Lombigit, L., E-mail: lojius@nm.gov.my [Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor (Malaysia); Rahman, Nur Aira Abd; Mohamad, Glam Hadzir Patai; Ibrahim, Maslina Mohd; Yussup, Nolida; Yazid, Khairiah; Jaafar, Zainudin

    2016-01-22

    A radioisotope identifier device based on large volume Co-planar grid CZT detector is current under development at Malaysian Nuclear Agency. This device is planned to be used for in-situ identification of radioisotopes based on their unique energies. This work reports on electronics testing performed on the front-end electronics (FEE) analog section comprising charge sensitive preamplifier-pulse shaping amplifier chain. This test involves measurement of charge sensitivity, pulse parameters and electronics noise. This report also present some preliminary results on the spectral measurement obtained from gamma emitting radioisotopes.

  15. Production of 68Ge, 64Cu, 86Y, 89Zr, 73Se, 77Br and 124I positron emitting radionuclides through future laser-accelerated proton beams at ELI-Beamlines for innovative PET diagnostics

    Directory of Open Access Journals (Sweden)

    Antonio Italiano

    2016-05-01

    Full Text Available The development of innovative production pathways for high-Z positron emitters is of great interest to enlarge the applicability of PET diagnostics, especially in view of the continuous development of new radiopharmaceuticals. We evaluated the theoretical yields of 64Cu, 86Y, 89Zr, 73Se, 77Br and 124I PET isotopes, plus the 68Ge isotope, parent of the 68Ga positron emitter, in the hypothesis of production through laser-accelerated proton sources expected at the ELI-Beamlines facility. By means of the TALYS software we simulated the nuclear reactions leading to the above radionuclides, hypothesizing three possible scenarios of broad proton spectra, with maximum energies of about 9, 40 and 100 MeV. The production yields of the studied radionuclides, within the expected fluences, appear to be suitable for pre-clinical applications.

  16. Agricultural application of radioisotopes

    International Nuclear Information System (INIS)

    Agrawal, H.M.

    2001-01-01

    The radiations and isotopic tracers laboratory (R.I.T.L.) is duly approved B-class laboratory for handling radioactivity and functions as a central research facility of our university which has played a very significant role in ushering green revolution in the country. Radiolabelled fertilizers, insecticides and isotopes mostly supplied by Board of Radiation and Isotope Technology, (BRIT) Department of Atomic Energy (DAE) are being used in our university for the last three decades to study the uptake of fertilizers, micro nutrients, photosynthesis and photorespiration studies in different crop plants, soil-water-plant relations and roots activity, pesticides and herbicides mode of action, plants physiology and microbiology. Main emphasis of research so far has been concentrated on the agricultural productivity. The present talk is an attempt to highlight the enormous potential of radioisotopes to evolve better management of crop system for eco-friendly and sustainable agriculture in the next century. (author)

  17. Cardiovascular: radioisotopic angiocardiography

    International Nuclear Information System (INIS)

    Kriss, J.P.

    1975-01-01

    Radioisotopic angiocardiography, performed after the intravenous injection of 99 /sup m/Tc-labeled pertechnetate or albumin, is a simple, rapid, and safe procedure which permits identification and physiologic assessment of a wide variety of congenital and acquired cardiovascular lesions in infants and children. These include atrial and ventricular septal defect, tetralogy of Fallot, pulmonic stenosis, aortopulmonary window, transposition of the great vessels, valvular stenosis and/or insufficiency, myocardial lesions, and lesions of the great vessels. The simplicity of the procedure lends itself to repeated measurements to assess the effects of therapy or to follow the course of the disease. A wide spectrum of congenital and acquired cardiovascular diseases have been studied which have particular application to the pediatric age group. (auth)

  18. Radioisotope production in Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Wan Awang, Wan Anuar [Medical Technology Div., Malaysian Inst. for Nuclear Technology Research (MINT) (Malaysia)

    1998-10-01

    Production of Mo-99 by neutron activation of Mo-99 in Malaysia began as early as 1984. Regular supply of the Tc-99m extracted from it to the hospitals began in early 1988 after going through formal registration with the Malaysian Ministry of Health. Initially, the weekly demand was about 1.2 Ci of Mo-99 which catered the needs of 3 nuclear medicine centres. Sensitive to the increasing demand of Tc-99m, we have producing our own Tc-99m generator from imported TeO{sub 2} because irradiation TeO{sub 2} with our reactor give low yield of I-131. We have established the production of radioisotope for industrial use. By next year, Sm-153 EDTMP will be produce after we have license from our competent authority. (author)

  19. Radioisotopes in sedimentology

    International Nuclear Information System (INIS)

    Courtois, G.

    1967-01-01

    Radioisotopes have two main uses in sedimentology: they are used for the study of sediment movements in rivers and seas, and for continuous measurements of the amount of sediment suspended in a given medium. These two uses are considered in detail, and brief accounts given of some other uses. Study of sediment movements. After describing the basic technique used in sediment movement studies (injection of a labelled sediment or a simulator into the current, followed by tracking the radioactivity), the author enumerates as fully as possible the problems that can be solved with the help of this technique. Essentially, these problems fall into two groups: 1. Problems related to civil engineering works in coastal areas: the siltation of harbour channels and docks, the formation of banks and bars, the choice of sites for disposing of dredged sediment, the siting of ports, coastline protection, etc. Problems associated with civil engineering works in and near rivers; siting of the water intakes of hydroelectric and nuclear power stations, the effects of construction work on the transport of solids, the construction of dams, the protection of river banks, the construction of jetties, the siltation of lakes, etc. Problems common to these include the transport of effluent and the calibration of hydraulic models. The bibliography is based mainly on fairly recent references and on current research work. 2. Problems related to basic or applied research conducted mainly by universities and research centres: the study of the Quarternary of a particular region, pure sedimentology, the investigation of major sediment transport currents, the confirmation or refutation of transport theories, research into fundamental transport phenomena associated with channel experiments. After referring to the possible exploitation of natural tracers (contained in radioactive waste and fallout), the author discusses the technical aspects of using artificial tracers: the choice of radioisotope

  20. Radio-isotopic tracers

    International Nuclear Information System (INIS)

    Wolfangel, R.G.

    1976-01-01

    The invention concerns the dispersions that may be used for preparing radio-isotopic tracers, technetium labelled dispersions, processes for preparing these dispersions and their use as tracers. Technetium 99m sulphur colloids are utilized as scintillation tracers to give a picture of the reticulo-endothelial system, particularly the liver and spleen. A dispersion is provided which only requires the addition of a radioactive nuclide to form a radioactively labelled dispersion that can be injected as a tracer. It is formed of a colloid of tin sulphur dispersed in an aqueous buffer solution. Such a reagent has the advantage of being safe and reliable and is easier to use. The colloid can be prepared more quickly since additions of several different reagents are avoided. There is no need to heat up and no sulphuretted hydrogen, which is a toxic gas, is used [fr

  1. Generation of radioisotopes

    International Nuclear Information System (INIS)

    Panek-Finda, H.

    1984-01-01

    A method of producing radioisotopes for radiopharmaceutical applications is claimed. A physiological solution is used to elute a radioactive daughter isotope from a fission-produced parent isotope adsorbed on an adsorbent. The eluate containing the daughter isotope is purified with a cation-exchange material. In separate claims: the parent isotope is molybdenum-99; aluminium oxide which contains fully or partly hydrated manganese dioxide is used as the adsorbent for the parent isotope; a resin is used as the cation-exchange material; a strongly acid cation-exchange resin which has been neutralized is used as a resin; and a strongly acid cation-exchange resin which has been converted into the Na + , K + or NH 4 + form is used as a resin; an isotope generator system is also claimed

  2. Dose point kernels for beta-emitting radioisotopes

    International Nuclear Information System (INIS)

    Prestwich, W.V.; Chan, L.B.; Kwok, C.S.; Wilson, B.

    1986-01-01

    Knowledge of the dose point kernel corresponding to a specific radionuclide is required to calculate the spatial dose distribution produced in a homogeneous medium by a distributed source. Dose point kernels for commonly used radionuclides have been calculated previously using as a basis monoenergetic dose point kernels derived by numerical integration of a model transport equation. The treatment neglects fluctuations in energy deposition, an effect which has been later incorporated in dose point kernels calculated using Monte Carlo methods. This work describes new calculations of dose point kernels using the Monte Carlo results as a basis. An analytic representation of the monoenergetic dose point kernels has been developed. This provides a convenient method both for calculating the dose point kernel associated with a given beta spectrum and for incorporating the effect of internal conversion. An algebraic expression for allowed beta spectra has been accomplished through an extension of the Bethe-Bacher approximation, and tested against the exact expression. Simplified expression for first-forbidden shape factors have also been developed. A comparison of the calculated dose point kernel for 32 P with experimental data indicates good agreement with a significant improvement over the earlier results in this respect. An analytic representation of the dose point kernel associated with the spectrum of a single beta group has been formulated. 9 references, 16 figures, 3 tables

  3. Radio-isotope powered light source

    International Nuclear Information System (INIS)

    Spottiswoode, N.L.; Ryden, D.J.

    1979-01-01

    The light source described comprises a radioisotope fuel source, thermal insulation against heat loss, a biological shield against the escape of ionizing radiation and a material having a surface which attains incandescence when subject to isotope decay heat. There is then a means for transferring this heat to produce incandescence of the surface and thus emit light. A filter associated with the surface permits a relatively high transmission of visible radiation but has a relatively high reflectance in the infra red spectrum. Such light sources require the minimum of attention and servicing and are therefore suitable for use in navigational aids such as lighthouses and lighted buoys. The isotope fuel sources and thus the insulation and shielding and the incandescent material can be chosen for the use required and several sources, materials, means of housing etc. are detailed. Operation and efficiency are discussed. (U.K.)

  4. 22 Na positron source for annihilation positron spectroscopy

    International Nuclear Information System (INIS)

    Cimpeanu, Catalina; Craciun, L.; Dragulescu, E.; Dudu, D.; Racolta, P.M.; Voiculescu, Dana; Miron, N.

    2002-01-01

    To extend the nuclear physics applications and to perform the study of vacancy - type defects in metals, semiconductors, polymers etc., we decided to promote positron annihilation techniques. In order to achieve this goal we started a project of dedicated positron sources produced at the IFIN-HH U-120 Cyclotron. We have used the nuclear reaction 24 Mg(d,α) 22 Na and deuterons of 13 MeV energy. The paper presents the main steps of this procedure like: general conditions required for 22 NaCl sources, reactive chamber and characteristics of Mg target, parameters for the irradiation, radiochemical procedures to separate Na from Mg after the irradiation and geometrical or mechanical requirements for dedicated NaCl source for positron annihilation spectrometry. In the e + lifetime measurements the e + 'death - stop' signals are always provided by γ - quanta generated by the e + e - annihilation and the 'birth - start' signals may be obtained from 'prompt' γ - quanta emitted from the NaCl source (the 1.275 MeV photons). The 22 NaCl stock solution obtained by radiochemical separation will be kept in the sealed quartz vials in dry places and will be dropped between the studied materials before use in positron spectrometry. (authors)

  5. 22 Na positron source for annihilation positron spectroscopy

    International Nuclear Information System (INIS)

    Cimpeanu, Catalina; Craciun, L.; Dragulescu, E.; Dudu, D.; Racolta, P. M.; Voiculescu, Dana; Miron, N.

    2003-01-01

    To extend the nuclear physics applications and to perform the study of vacancy - type defects in metals, semiconductors, polymers etc., we decided to promote positron annihilation techniques. In order to achieve this goal we started a project of dedicated positron sources produced at the IFIN-HH U-120 Cyclotron. We have used the nuclear reaction: 24 Mg(d,α) 22 Na with deuterons of 13 MeV energy. The paper presents the main characteristics of this procedure, as follows: general conditions asked for 22 NaCl sources, reactive chamber and characteristics of Mg target, parameters for the irradiation, radiochemical procedures for separating Na from Mg after the irradiation and geometrical or mechanical requirements for dedicated NaCl source for positron annihilation spectrometry. In the e + lifetime measurements, the e + end - start signals may be obtained from prompt γ -quanta emitted from the NaCl source (1. 275 MeV photons). The 22 NaCl stock solution obtained by radiochemical separation will be kept in quartz sealed ampoules in dry places and will be dropped between the study materials before the use in positron spectrometry. (authors)

  6. Status and prospects of radioisotope supply and utilization in Canada

    International Nuclear Information System (INIS)

    Ratz, R.G.

    1982-01-01

    The status and prospects of radioisotope utilization in Canada was reviewed. It consisted of the history of 60 Co utilization in the past 30-year period and the increase in the annual export of 60 Co in a period 1965-80 and the areas of utilization, such as food irradiation, radiation treatment of human and animal waste, and radiation inactivation of bacteria and viruses in the bioeffluent. The progress of application to nuclear medicine was described in reference to the use of RI including 60 Co and recently developed Canadian positron ECT and Therascan 3128. (Chiba, N.)

  7. Studies of radioisotope production with an AVF cyclotron in TIARA

    Energy Technology Data Exchange (ETDEWEB)

    Sekine, Toshiaki [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1997-03-01

    The production of radioisotopes to be used mainly for nuclear medicine and biology is studied with an AVF cyclotron in TIARA. A production method of no-carrier-added {sup 186}Re with the {sup 186}W(p,n){sup 186}Re reaction has been developed; this product may be used as a therapeutic agent in radioimmunotherapy due to the adequate nuclear and chemical properties. For the study of the function of plants using a positron-emitter two-dimensional imaging system, a simple method of producing the positron emitter {sup 18}F in water was developed by taking advantage of a highly-energetic {alpha} beam from the AVF cyclotron. (author)

  8. New Possibilities of Positron-Emission Tomography

    Science.gov (United States)

    Volobuev, A. N.

    2018-01-01

    The reasons for the emergence of the angular distribution of photons generated as a result of annihilation of an electron and a positron in a positron-emission tomograph are investigated. It is shown that the angular distribution of the radiation intensity (i.e., the probability of photon emission at different angles) is a consequence of the Doppler effect in the center-of-mass reference system of the electron and the positron. In the reference frame attached to the electron, the angular distribution of the number of emitted photons does not exists but is replaced by the Doppler shift of the frequency of photons. The results obtained in this study make it possible to extend the potentialities of the positron-emission tomograph in the diagnostics of diseases and to obtain additional mechanical characteristics of human tissues, such as density and viscosity.

  9. Radioisotope Power Systems Technology Development

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of the RPS's technology portfolio is to advance performance of radioisotope power systems through new and novel innovations being developed and transitioned...

  10. Radioisotope indicator, type BETA 2

    International Nuclear Information System (INIS)

    Duszanski, M.; Pankow, A.; Skwarczynski, B.

    1975-01-01

    The authors describe a radioisotope indicator, type BETA 2, constructed in the ZKMPW Works to be employed in mines for counting, checking, signalling the presence and positioning of cars, as well as monitoring the state of some other equipment. (author)

  11. Industrial applications of radioisotope tracers

    International Nuclear Information System (INIS)

    Easey, J.F.

    1985-01-01

    Radioisotope tracing techniques are powerful tools for analysing the behaviour of large systems and investigating industrially or economically important processes. The results of radioisotope experiments can yield important information, for example, on parameters such as flow rates, mixing phenomena, flow abnormalities and leaks. Some examples of current AAEC research are described, covering studies on hearth drainage in blast furnaces, flow behaviour in waste-water treatment ponds, and sediment transport in marine environments

  12. Medical application of radioisotopes

    International Nuclear Information System (INIS)

    Choi, Chang Woon; Lim, S. M.; Kim, E. H.

    2000-05-01

    In this project, we studied following subjects: 1. Clinical research for radionuclide therapy 2. Development of in vitro assay method with radioisotope 3. Development of binary therapy; Boron neutron capture therapy and photodynamic therapy 4. Development of diagnostic methods in radionuclide imaging. The results can be applied for the following objectives: 1) Radionuclide therapy will be applied in clinical practice to treat the cancer patients or other diseases in multi-center trial 2) The newly developed monoclonal antibodies and biomolecules can be used in biology, chemistry or other basic life science research 3) The new methods for the analysis of therapeutic effects, such as dosimetry, and quantitative analysis methods of radioactivity, can be applied in basic research, such as radiation oncology and radiation biology 4) The result of the project will be expected to develop the new radioimmunoassay for drug monitoring following the clinical experiments 5) Boron porphyrin has been successfully labeled with iodine. This enables the pharmacodynamic study of the boron compound in human body 6) A method to evaluate the biological effect of neutrons on tumor cells has been developed 7) The establishment of macro- and microscopic dose assessment using alpha-track autoradiography 8) Clinical application of PDT in bladder cancers, oropharyngeal cancer and skin cancer 9) Radionuclide imaging of estrogen receptor in breast cancer, lipid metabolism, gene therapy, cancers, brain function and heart disease

  13. Radioisotope waste processing systems

    International Nuclear Information System (INIS)

    Machida, Tadashi

    1978-01-01

    The Atomic Energy Safety Bureau established the policy entitled ''On Common Processing System of Radioactive Wastes'' consulting with the Liaison Committee of Radioactive Waste Processing. Japan Atomic Energy Research Institute (JAERI) and Japan Radioisotope Association (JRIA) had been discussing the problems required for the establishment of the common disposal facilities based on the above policy, and they started the organization in spring, 1978. It is a foundation borrowing equipments from JAERI though installing newly some of them not available from JAERI, and depending the fund on JRIA. The operation expenses will be borne by those who want to dispose the wastes produced. The staffs are sent out from JAERI and JRIA. For animal wastes contaminated with RI, formaldehyde dipping should be abolished, but drying and freezing procedures will be taken before they are burnt up in a newly planned exclusive furnace with disposing capacity of 50 kg/hour. To settle the problems of other wastes, enough understanding and cooperation of users are to be requested. (Kobatake, H.)

  14. Medical application of radioisotopes

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Chang Woon; Lim, S M; Kim, E H [and others

    2000-05-01

    In this project, we studied following subjects: 1. Clinical research for radionuclide therapy 2. Development of in vitro assay method with radioisotope 3. Development of binary therapy; Boron neutron capture therapy and photodynamic therapy 4. Development of diagnostic methods in radionuclide imaging. The results can be applied for the following objectives: (1) Radionuclide therapy will be applied in clinical practice to treat the cancer patients or other diseases in multi-center trial (2) The newly developed monoclonal antibodies and biomolecules can be used in biology, chemistry or other basic life science research (3) The new methods for the analysis of therapeutic effects, such as dosimetry, and quantitative analysis methods of radioactivity, can be applied in basic research, such as radiation oncology and radiation biology (4) The result of the project will be expected to develop the new radioimmunoassay for drug monitoring following the clinical experiments (5) Boron porphyrin has been successfully labeled with iodine. This enables the pharmacodynamic study of the boron compound in human body (6) A method to evaluate the biological effect of neutrons on tumor cells has been developed (7) The establishment of macro- and microscopic dose assessment using alpha-track autoradiography (8) Clinical application of PDT in bladder cancers, oropharyngeal cancer and skin cancer (9) Radionuclide imaging of estrogen receptor in breast cancer, lipid metabolism, gene therapy, cancers, brain function and heart disease.

  15. Manual for reactor produced radioisotopes

    International Nuclear Information System (INIS)

    2003-01-01

    Radioisotopes find extensive applications in several fields including medicine, industry, agriculture and research. Radioisotope production to service different sectors of economic significance constitutes an important ongoing activity of many national nuclear programmes. Radioisotopes, formed by nuclear reactions on targets in a reactor or cyclotron, require further processing in almost all cases to obtain them in a form suitable for use. Specifications for final products and testing procedures for ensuring quality are also an essential part of a radioisotope production programme. The International Atomic Energy Agency (IAEA) has compiled and published such information before for the benefit of laboratories of Member States. The first compilation, entitled Manual of Radioisotope Production, was published in 1966 (Technical Reports Series No. 63). A more elaborate and comprehensive compilation, entitled Radioisotope Production and Quality Control, was published in 1971 (Technical Reports Series No. 128). Both served as useful reference sources for scientists working in radioisotope production worldwide. The 1971 publication has been out of print for quite some time. The IAEA convened a consultants meeting to consider the need for compiling an updated manual. The consultants recommended the publication of an updated manual taking the following into consideration: significant changes have taken place since 1971 in many aspects of radioisotope production; many radioisotopes have been newly introduced while many others have become gradually obsolete; considerable experience and knowledge have been gained in production of important radioisotopes over the years, which can be preserved through compilation of the manual; there is still a need for a comprehensive manual on radioisotope production methods for new entrants to the field, and as a reference. It was also felt that updating all the subjects covered in the 1971 manual at a time may not be practical considering the

  16. Positron emission tomography. Present status and Romanian perspectives

    International Nuclear Information System (INIS)

    Constantinescu, B.; Lungu, V.

    1995-01-01

    Basic principles of the positron emission tomography (PET) are summarised. The main PET methods using short-lived radioisotopes (i.e. 11 C, 13 N, 15 O, 18 F) are briefly reviewed. Three types of particle accelerators for radioisotopes production and medical uses (including radiotherapy), corresponding to the proton energy (E p p p < 200 MeV) are presented. PET imaging equipment and procedures are discussed. Main radiopharmaceuticals based on beta decay for PET studies and their role in medicine is also described. Finally, perspectives for a PET program in Romania (Cyclotron + Radiochemistry + Tomograph ) are discussed. (author)

  17. Standardization and improvement of safety for radioisotope equipped instruments

    International Nuclear Information System (INIS)

    Sumi, Tetsuo

    1980-01-01

    The safety for radioisotope-equipped instruments is considered. The one is the safety for the source assembly. The radioisotopes employed for radioisotope-equipped instruments are sealed sources which are used in the state of being contained in the enclosures. Many of the enclosures are provided with shutter mechanism for the purpose of emitting radiation only during the period required. If the possible troubles that might lead to the accidents are sampled out of the results of field operation of radiation instruments, and the safety measures for source enclosures are considered in connection with these troubles, it is no exaggeration to say that the safety for source enclosures has been maintained by preventing the critical accidents by the management of users and the cooperation of manufactures though there were the chance for investigating the safety in the common field and the establishment of JIS Z 4614 standard. Another consideration is concerned with the measures to improve the safety. No accident in the past never guarantees no accident in the future. Accumulation of experience is most effective for those measures, and the more experiences the better. It may be most effective that the manufacturers disclose their experiences each other from the wide outlook overcoming the barrier of trade secret. Fortunately, such consciousness has risen since a few years ago, and the investigation group is doing the works in the Japan Radioisotope Association. On the other hand, the reasonable revision of the radiation injury prevention law is desired. (Wakatsuki, Y.)

  18. Investigation of positron moderator materials for electron-linac-based slow positron beamlines

    International Nuclear Information System (INIS)

    Suzuki, Ryoichi; Ohdaira, Toshiyuki; Uedono, Akira

    1998-01-01

    Positron re-emission properties were studied on moderator materials in order to improve the positron moderation system of electron-linac-based intense slow positron beamlines. The re-emitted positron fraction was measured on tungsten, SiC, GaN, SrTiO 3 , and hydrogen-terminated Si with a variable-energy pulsed positron beam. The results suggested that tungsten is the best material for the primary moderator of the positron beamlines while epitaxially grown n-type 6H-SiC is the best material for the secondary moderator. Defect characterization by monoenergetic positron beams and surface characterization by Auger electron spectroscopy were carried out to clarify the mechanism of tungsten moderator degradation induced by high-energy electron irradiation. The characterization experiments revealed that the degradation is due to both radiation-induced vacancy clusters and surface carbon impurities. For the restoration of degraded tungsten moderators, oxygen treatment at ∼900degC is effective. Furthermore, it was found that oxygen at the tungsten surface inhibits positronium formation; as a result, it can increase the positron re-emission fraction. (author)

  19. Contribution of positron emission tomography in neurology

    International Nuclear Information System (INIS)

    Salmon, E.; Franck, G.

    1992-01-01

    Positron Emission Tomography (PET) is a scanner technique using tracers labelled with shortlived radioisotopes which allows to study and quantify human metabolic processes or drug pharmacology in vivo. The technique is first applied in physiological studies. Sleep, normal brain metabolism or cerebral activations have been studied. The pharmacological approach concerns both drug distribution in the human brain and blood flow or metabolic variations under treatment. Main neurological applications in pathology are cerebrovascular disorders, diseases leading to dementia, epilepsy, movement disorders, and brain tumors. In each field of application, PET gives unique and frequently early informations. It nicely combines both dynamic informations and measurement precision. (author)

  20. Transmission positron microscopes

    International Nuclear Information System (INIS)

    Doyama, Masao; Kogure, Yoshiaki; Inoue, Miyoshi; Kurihara, Toshikazu; Yoshiie, Toshimasa; Oshima, Ryuichiro; Matsuya, Miyuki

    2006-01-01

    Immediate and near-future plans for transmission positron microscopes being built at KEK, Tsukuba, Japan, are described. The characteristic feature of this project is remolding a commercial electron microscope to a positron microscope. A point source of electrons kept at a negative high voltage is changed to a point source of positrons kept at a high positive voltage. Positional resolution of transmission microscopes should be theoretically the same as electron microscopes. Positron microscopes utilizing trapping of positrons have always positional ambiguity due to the diffusion of positrons

  1. Radioisotope programme in India: past, present and future

    International Nuclear Information System (INIS)

    Kohli, A.K.

    2012-01-01

    One of the major discoveries of the 20th century is the discovery of artificial radioactivity. This distinctive discovery in human history transformed atoms of one element to another. Until then, chemical reactions used to be concerned only with changes occurring outside the nucleus. The field of nuclear science came into existence with discovery of X-rays by Wilhelm Roentgen in 1895, radioactivity emitted by Uranium salt by Henri Becquerel in 1896 and pioneering work carried out by Madame Curie and Pierre Curie. India's atomic energy programme was envisaged, founded and developed by the great visionary Dr. Homi Jehangir Bhabha. Since then Department of Atomic Energy (DAE) of Government of India has been engaged in developing technologies for use of radiation in all possible fields for the benefit of society. The most common sources of radiation are radioisotopes. Radioisotopes are produced by nuclear reactors either by utilizing available excess neutrons for activation of stable elements or by separating useful fission products from the spent fuel. In India, the production of radioisotopes started with the commissioning of APSARA reactor in 1956. Initially, APSARA was operated at low power, and radioisotopes could be produced only on a small scale. All these operations had to be called out with remote handling or in the safe glove boxes keeping in view the radiation levels associated with the samples. In due course, the reactor reached full power and remotely operated processing equipment required for handling the radioisotopes were set up. Isotopes such as Iodine-131, Phosphorous-32, Gold-198 and Sodium-24 were produced and extracted in purified form in small quantities. These were given to KEM Hospital and Bombay Hospital at Mumbai, Vallabhbhai Patel Chest Institute and Safdarjung Hospital in Delhi, mainly for exploratory experiments

  2. Radioisotope production in fusion reactors

    International Nuclear Information System (INIS)

    Engholm, B.A.; Cheng, E.T.; Schultz, K.R.

    1986-01-01

    Radioisotope production in fusion reactors is being investigated as part of the Fusion Applications and Market Evaluation (FAME) study. /sup 60/Co is the most promising such product identified to date, since the /sup 60/Co demand for medical and food sterilization is strong and the potential output from a fusion reactor is high. Some of the other radioisotopes considered are /sup 99/Tc, /sup 131/l, several Eu isotopes, and /sup 210/Po. Among the stable isotopes of interest are /sup 197/Au, /sup 103/Rh and Os. In all cases, heat or electricity can be co-produced from the fusion reactor, with overall attractive economics

  3. Radioisotope techniques in oil wells

    International Nuclear Information System (INIS)

    Jain, Prabuddha

    1998-01-01

    Radioisotope techniques are quite useful in oil exploration and exploitation. Nuclear logging offers a way of gathering information on porosity, permeability, fluid saturations, hydrocarbon types and lithology. Some of the interesting applications in well drilling are determining depth of filtrate invasion, detection of lost circulation, drill-bit erosion control; primary cement measurements and well completions such as permanent tubular markers, perforation position marking, detection of channeling behind casing and gravel pack operations. Radioisotopes have been successfully used in optimizing production processes such as production profiling injection profiling, corrosion measurements and well to well tracer tests. (author)

  4. Radioisotope-powered photovoltaic generator

    International Nuclear Information System (INIS)

    McKlveen, J.W.; Uselman, J.

    1979-01-01

    Disposing of radioactive wastes from nuclear power plants has become one of the most important issues facing the nuclear industry. In a new concept, called a radioisotope photovoltaic generator, a portion of this waste would be used in conjunction with a scintillation material to produce light, with subsequent conversion into electricity via photovoltaic cells. Three types of scintillators and two types of silicon cells were tested in six combinations using 32 P as the radioisotope. The highest system efficiency, determined to be 0.5% when the light intensity was normalized to 100 mW/cm 2 , was obtained using a CsI crystal scintillator and a Helios photovoltaic cell

  5. Radiation damage of polymers studied by positron annihilation. Positron and gamma-ray irradiation effects

    International Nuclear Information System (INIS)

    Suzuki, T.; Oki, Y.; Numajiri, M.; Miura, T.; Kondo, K.; Ito, Y.

    1995-01-01

    Positron irradiation effects on polypropylene (PP) have been studied using positron sources ( 22 Na) during positron annihilation (PA) experiments. The irradiation effect was measured by the intensity (I 3 ) of the long-lived component of positronium (Ps). At a low temperature of around 100 K, I 3 for unirradiated PP samples increased due to a termination of the thermal motion of the -CH 3 groups. However, the increase in I 3 for γ-ray irradiated samples was reduced in inverse proportion to the amount of irradiation. Although no increase in I 3 was observed for 1 MGy-irradiated PP with γ-rays, an increase was observed again after a 48 h irradiation by positrons emitted from 22 Na. This may be due to a reconstructing of the polymer chains. (author)

  6. Pseudo-random generator to allow to an electronic pulse simulator the ability to emulate radioisotopes spectra

    International Nuclear Information System (INIS)

    Lucianna F A; Carrillo M A; Mangussi M J

    2012-01-01

    The present work describes the development of a pseudo-random system to provide to a simulator pulse of radiation detectors the ability to emit pulses patterns similar to those recorded when measuring actual radioisotope. The idea is that the system can emulate characteristic spectral distributions of known radioisotopes, as well as creating individual spectra for specific purposes. This design is based on an improvement in terms of software from earlier development that only supplied predefined amplitude pulses at constant intervals (author)

  7. Power output and efficiency of beta-emitting microspheres

    International Nuclear Information System (INIS)

    Cheneler, David; Ward, Michael

    2015-01-01

    Current standard methods to calculate the dose of radiation emitted during medical applications by beta-minus emitting microspheres rely on an over-simplistic formalism. This formalism is a function of the average activity of the radioisotope used and the physiological dimensions of the patient only. It neglects the variation in energy of the emitted beta particle due to self-attenuation, or self-absorption, effects related to the finite size of the sphere. Here it is assumed the sphere is comprised of a pure radioisotope with beta particles being emitted isotropically throughout the material. The full initial possible kinetic energy distribution of a beta particle is taken into account as well as the energy losses due to scattering by other atoms in the microsphere and bremsstrahlung radiation. By combining Longmire’s theory of the mean forward range of charged particles and the Rayleigh distribution to take into account the statistical nature of scattering and energy straggling, the linear attenuation, or self-absorption, coefficient for beta-emitting radioisotopes has been deduced. By analogy with gamma radiation transport in spheres, this result was used to calculate the rate of energy emitted by a beta-emitting microsphere and its efficiency. Comparisons to standard point dose kernel formulations generated using Monte Carlo data show the efficacy of the proposed method. Yttrium-90 is used as a specific example throughout, as a medically significant radioisotope, frequently used in radiation therapy for treating cancer. - Highlights: • Range-energy relationship for the beta particles in yttrium-90 is calculated. • Formalism for the semi-analytical calculation of self-absorption coefficients. • Energy-dependent self-absorption coefficient calculated for yttrium-90. • Flux rate of beta particles from a self-attenuating radioactive sphere is shown. • The efficiency of beta particle emitting radioactive microspheres is calculated

  8. Excitation functions and production of arsenic radioisotopes for environmental toxicology and biomedical purposes

    International Nuclear Information System (INIS)

    Basile, D.; Birattari, C.; Bonard, M.; Salomone, A.; Goetz, L.; Sabbioni, E.

    1981-01-01

    Many arsenic radionuclides have come to be used as tracers in biology and in the study of environmental pollution of both water and soil. In nuclear medicine, radioactive 74 As has been employed as a positron emitter for the localization of brain tumors, cerebral occlusive vascular lesions, arterious-venous malformations, etc. The aim of the work described was to study the excitation functions for the production of the arsenic radioisotopes from targets of natural germanium via nuclear reactions (p, xn). (author)

  9. Positron emission tomography

    International Nuclear Information System (INIS)

    Iio, Masahiro

    1982-01-01

    Utilization of positron emission tomography was reviewed in relation to construction and planned construction of small-size medical cyclotrons, planned construction of positron cameras and utilization of short-lived radionuclides. (Chiba, N.)

  10. Three dimensional positron-CT: 3D-PET

    International Nuclear Information System (INIS)

    Ishii, K.

    2000-01-01

    Positron-CT, namely the positron emission tomograph (PET) provides us the metabolism images obtained by the administration of the drug labeled by the positron emission nuclide in the human body. For example, the carbohydrate metabolism image is obtained by the administration of glucose labelled by 18 F-radioisotopes, and it can be applied to early detection of the cancer and research of high-order function of the brain. As well as X-ray CT, the examine receives the exposure in the positron CT. 3D-PET is based on the solid measurement of γ-rays, therefore, the detection sensitivity of 3D-PET becomes very high and it is possible to drastically reduce the dose of the positron emission nuclide. Because the exposure is reduced to the utmost, the positron CT diagnosis would be possible for the child and the exposure of positron CT doctor in charge can be also reduced. This ideal functional diagnostic imaging equipment, namely, 3D-PET is introduced here. (author)

  11. Radioisotope detection and dating with accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Mast, T S; Muller, R A [California Univ., Berkeley (USA). Lawrence Berkeley Lab.

    1980-07-01

    The status of the new technique of high energy mass spectrometry is reviewed. This sensitive method of measuring isotope concentrations has been applied to the detection of rare radioisotopes used for age estimation. The techniques used to select and identify the individual radioisotope atoms in a sample are described and then the status of the radioisotope measurements and their applications is reviewed.

  12. Packaging and transport of radioisotopes

    International Nuclear Information System (INIS)

    Taylor, C.B.G.

    1976-01-01

    The importance of radioisotope traffic is emphasized. More than a million packages are being transported each year, mostly for medical uses. The involvement of public transport services and the incidental dose to the public (which is very small) are appreciably greater than for movements connected with the nuclear fuel cycle. Modern isotope packages are described, and an outline given of the problems of a large radioisotope manufacturer who has to package many different types of product. Difficulties caused by recent uncoordinated restrictions on the use of passenger aircraft are mentioned. Some specific problems relating to radioisotope packaging are discussed. These include the crush resistance of Type A packages, the closure of steel drums, the design of secure closures for large containers, the Type A packaging of liquids, leak tightness criteria of Type B packages, and the use of 'unit load' overpacks to consign a group of individually approved packages together as a single shipment. Reference is made to recent studies of the impact of radioisotope shipments on the environment. Cost/benefit analysis is important in this field - an important public debate is only just beginning. (author)

  13. Radioisotope study of Eustachian tube

    International Nuclear Information System (INIS)

    De Rossi, G.; Campioni, P.; Vaccaro, A.

    1988-01-01

    Radioisotope studies of Eustachian tube are suggested in the preoperative phase of tympanoplasty, in order to assess tubal drainage and secretion. The use of gamma camera fitted to a computer allowed the AA, to calculate some semi-quantitative parameters for an exact assessment of the radioactivity transit from the tympanic cass up to the pharyngeal cavity, throughout the Eustachian tube. (orig.) [de

  14. Radioisotopes in engineering and industry

    International Nuclear Information System (INIS)

    Castagnet, A.C.G.

    1986-01-01

    The applications of radioisotope techniques in engineering and materials quality control are shown. The inventory of mercury in electrolytical cells, the transit and residence time measurements in several processes and radiotracer control are studied. The radioactive tracers in hydrologycal problems is evaluated. (M.J.C.) [pt

  15. Radioisotopes point the way ahead

    International Nuclear Information System (INIS)

    Evans, E.A.; Oldham, K.G.

    1988-01-01

    The use of radiochemicals as tracers in medicine is discussed, with particular reference to the choice of radioisotope to be used, its properties, quality control and its detection and measurement in tracer experiments. The development of autoradiography is discussed. (U.K.)

  16. Uses of radioisotopes in Sudan

    International Nuclear Information System (INIS)

    Elradi, E. A. M.

    2013-07-01

    In this research project, an inventory for the different radioisotopes that were imported by public and private sectors of Sudan in the period between ( 2007-2011) has been set up. These organizations import the appropriates for different but in general we classify them into these applications: Medical, Industrial, Agricultural and Research. However, each broad discipline is subdivided into subgroups. This inventory will help those who are willing to establish research reactors in Sudan on the type and power of the reactors to be purchases according to the actual needs of Sudan with forecasting of the near and for future needs. Also the expenditure that has been spent by these organizations have been estimated for most of the radioisotopes. It was observed that almost 50% of the expenditure went for the fright charges as these radioisotopes need special handling and care by installing a research reactor in Sudan, the cost of purchasing will be cut down several folds. Also it will help in availability of the radioisotopes with very short half lives (hours to days). This will be reflected in the cut down the cost of tests and provision of new tests.(Author)

  17. Efficient Cryosolid Positron Moderators

    Science.gov (United States)

    2012-08-01

    table layout Figure 21 shows the integration of the IR spectroscopy optics with the positron Moderation and Annihilation vacuum chambers on the...Characterization of Cryogenic Moderators The application of Matrix Isolation Spectroscopy (MIS) to characterizing cryogenic solid positron ...Matrix Isolation Spectroscopy capability into our Positron Moderation apparatus, which enables spectroscopic characterization of the cryogenic

  18. Positron emission tomography

    International Nuclear Information System (INIS)

    Reivich, M.; Alavi, A.

    1985-01-01

    This book contains 24 selections. Some of the titles are: Positron Emission Tomography Instrumentation, Generator Systems for Positron Emitters, Reconstruction Algorithms, Cerebral Glucose Consumption: Methodology and Validation, Cerebral Blood Flow Tomography Using Xenon-133 Inhalation: Methods and Clinical Applications, PET Studies of Stroke, Cardiac Positron Emission Tomography, and Use of PET in Oncology

  19. Radioisotope methodology course radioprotection aspects

    International Nuclear Information System (INIS)

    Bergoc, R.M.; Caro, R.A.; Menossi, C.A.

    1996-01-01

    The advancement knowledge in molecular and cell biology, biochemistry, medicine and pharmacology, which has taken place during the last 50 years, after World War II finalization, is really outstanding. It can be safely said that this fact is principally due to the application of radioisotope techniques. The research on metabolisms, biodistribution of pharmaceuticals, pharmacodynamics, etc., is mostly carried out by means of techniques employing radioactive materials. Radioisotopes and radiation are frequently used in medicine both as diagnostic and therapeutic tools. The radioimmunoanalysis is today a routine method in endocrinology and in general clinical medicine. The receptor determination and characterization is a steadily growing methodology used in clinical biochemistry, pharmacology and medicine. The use of radiopharmaceuticals and radiation of different origins, for therapeutic purposes, should not be overlooked. For these reasons, the importance to teach radioisotope methodology is steadily growing. This is principally the case for specialization at the post-graduate level but at the pre graduate curriculum it is worthwhile to give some elementary theoretical and practical notions on this subject. These observations are justified by a more than 30 years teaching experience at both levels at the School of Pharmacy and Biochemistry of the University of Buenos Aires, Argentina. In 1960 we began to teach Physics III, an obligatory pregraduate course for biochemistry students, in which some elementary notions of radioactivity and measurement techniques were given. Successive modifications of the biochemistry pregraduate curriculum incorporated radiochemistry as an elective subject and since 1978, radioisotope methodology, as obligatory subject for biochemistry students. This subject is given at the radioisotope laboratory during the first semester of each year and its objective is to provide theoretical and practical knowledge to the biochemistry students, even

  20. Positron emission tomographic imaging of tumors using monoclonal antibodies

    Energy Technology Data Exchange (ETDEWEB)

    Zalutsky, M.R.

    1992-08-01

    This research project is developing methods for utilizing positron emission tomography (PET) to increase the clinical potential of radiolabeled monoclonal antibodies (MAbs). This report describes the development of methods for labeling MAbs and their fragments with positron-emitting halogen nuclides, fluorine-18 and iodine-124. These nulides were selected because of the widespread availability of F-18 and because of our extensive experience in the development of new protein radiohalogenation methods.

  1. Determination of details of regulations concerning transportation of radioisotopes by vehicles

    International Nuclear Information System (INIS)

    1979-01-01

    The determination is defined under the regulation concerning transportation of radioactive materials by vehicles. Permissible surface density shall be 1/100,000 micro-curie per centi-meter 2 for radioisotopes emitting alpha rays and 1/10,000 micro-curie per centi-meter 2 for radioisotopes not emitting alpha rays. Radioisotope loads are classified to types of L, A, BM and BU. Quantity of radioactivity or radioisotope is stipulated for each type of loads respectively with tables attached. Radioactivity quantity of solid L load is 1/1,000 of Al value in the appendix table. For tritium water of fluid L load radioactivity quantity is 1,000 curie, 100 curie and 1 curie respectively according to the water radioactivity per litre of less than 0.1 curie, less than 1 curie and more than 0.1 curie, and more than 1 curie. Conditions concerning A, BM and BU loads are provided for in detail in the bylaw annexed. Quantity of leaking specified for BM load is 1/1,000,000 of A2 value and in other particular cases A2 value, etc. Leaking quantity for BU load is 1/1,000 of A2 value. Radioactive concentration of radioisotopes to be transferred not as radioactive goods is 1/10,000 of A2 value per gram. (Okada, K.)

  2. Positron emission tomography of the lung

    International Nuclear Information System (INIS)

    Wollmer, P.

    1984-01-01

    Positron emission tomography enables the distribution of positron emitting isotopes to be imaged in a transverse plane through the body and the regional concentration of the isotope to be measured quantitatively. This thesis reports some applications of positron emission tomography to studies of pulmonary pathophysiology. Measurements in lung phantoms showed that regional lung density could be measured from a transmission tomogram obtained with an external source of positron emitting isotope. The regional, fractional blood volume was measured after labelling the blood with carbon-11-monoxide. Regional extravascular lung density (lung tissue and interstitial water per unit thoracic volume) was obtained by subtracting fractional blood volume from lung density. Measurements in normal subjects revealed large regional variations in lung density and fractional blood volume in the supine posture. Extravascular lung density showed a more uniform distribution. The technique has been used to study patients with chronic interstitial pulmonary oedema, pulmonary sarcoidosis and fibrosis, pulmonary arterial hypertension and patients with intracardiac, left-to-right shunt. Tomographic measurements of pulmonary tissue concentration of radionuclides are difficult, since corrections for the blood content and the inflation of the lung must be applied. A simultaneous measurement of lung density and fractional blood volume allows such corrections to be made and the extravascular tracer concentration to be calculated. This has been applied to measurements of the tissue penetration of carbon-11-labelled erythromycin in patients with lobar pneumonia. (author)

  3. Present status of OAP radioisotope production

    International Nuclear Information System (INIS)

    Charoen, Sakda

    2006-01-01

    Radioisotope Production Program (RP), Office of Atoms for Peace (OAP) is a non-profit government organization which responsible for research development and service of radioisotopes. Several research works on radioisotope production have been carried on at OAP. The radioisotope products of successful R and D have been routinely produced to supply for medical, agriculture and research application. The main products are 131 I (solution and capsule), 131 I-MIBG, 131 I-Hippuran, 153 Sm-EDTMP, 153 Sm-HA, and 99m Tc-radiopharmaceutical kits to serve local users. Radioisotopes are very beneficial for science and human welfare so as almost of our products and services are mainly utilized for medical purpose for both diagnosis and therapy. OAP has a policy to serve and response to that community by providing radioisotopes and services with high quality but reasonable price. This policy will give the opportunity to the community to utilize these radioisotopes for their healthcare. (author)

  4. Bremsstrahlung Based Positron Annihilation Spectroscopy for Material Defect Analysis

    International Nuclear Information System (INIS)

    Selim, F.A.; Wells, D.P.; Harmon, F.; Kwofie, J.; Lancaster, G.; Jones, J.L.

    2003-01-01

    The Idaho Accelerator Center (IAC) has developed new techniques for Positron Annihilation Spectroscopy (PAS) using highly penetrating γ-rays to create positrons inside the material via pair production. γ-Ray induced positron annihilation spectroscopy can provide highly penetrating probes for material characterization and defect analysis. Bremsstrahlung beams from small, pulsed electron Linacs (6 MeV) have been used to bombard the materials to generate positrons, which annihilate with the material electrons emitting 511 keV radiation. We have also synchronized bremsstrahlung pulses with laser irradiation pulses to study dynamic structural changes in material. In addition, we have developed another method using (p,γ) reactions from a 2 MeV proton beam, which induce coincident γ-rays to perform positron life-time spectroscopy. We have showed the feasibility of extending PAS into thick samples and a wide variety of materials and industrial applications

  5. Developments on positron scattering experiments including beam production and detection

    International Nuclear Information System (INIS)

    Selim, F.A.; Golovchenko, J.A.

    2001-01-01

    Positron scattering and channeling experiments require high quality (low emittance) beams. A new electrostatic optics system for extracting positrons from a moderator is presented. The system features improved efficiency of focusing and beam transport of moderated positrons emitted with angular spreads up to ± 30 , with good phase space characteristics. The presented optics also provides a high degree of freedom in controlling exit beam trajectories. The system has been installed in the LLNL Pelletron accelerator and showed great enhancement on the beam quality. On the detection side, image plates were used to measure the angular distributions of positrons transmitted through the gold crystals. The measurements demonstrate the advantages of image plates as quantitative position sensitive detectors for positrons. (orig.)

  6. Coincidence scanning with positron-emitting arsenic or copper in the diagnosis of focal intracranial disease; Exploration par coincidences avec l'Arsenic ou le Cuivre Emetteurs de Positrons dans le Diagnostic des Maladies intracraniennes localisees; Raspoznavanie ochagovykh vnutricherepnykh zabolevanij putem podscheta (skanirovaniya) sovpralenij s primeneniem mysh'yaka ili medi, vydelyayushchikh pozitrony; Exploracion por coincidencia con arsenico o cobre emisores de positrones en el diagnostico de enfermedades intracraneanas localizadas

    Energy Technology Data Exchange (ETDEWEB)

    Sweet, William H; Mealey, John Jr; Brownell, Gordon L; Aronow, Saul [Departments of Surgery and Medicine, Harvard Medical School, and Neurosurgical Service and Physics Research Laboratory of Massachusetts General Hospital, Boston, MA (United States)

    1959-07-01

    This is a report on coincidence counting in man of the paired annihilation gamma rays from positron-emitting copper or arsenic. We discuss the relevant biological behavior of inorganic arsenate and arsenite, of copper versenate, and the results of using these substances during automatic scanning to localize intracranial masses. Radioassay of biopsies of the principal normal cephalic tissues, of various types of neoplasms, of hematomas, abscesses and zones of demyelination were carried out. With arsenic the ratios of concentrations of tumor to normal brain were up to 30 for meningiomas. The remaining main tumor types, in order of decreasing concentrations of isotope, were acoustic neuroma, glioblastoma, metastatic malignancy and astro-cytoma. The high tumor uptake with arsenic persists long enough so that repeat scans one day after injection are valuable. The muscle : brain ratio of concentrations of circa 3 is high enough to interfere with the accuracy of diagnosis in lesions beneath the lower temporal and especially the upper nuchal masses of muscle. Hematomas, abscesses and zones of demyelination also have high enough ratios to permit localization in the majority of patients. The results on biopsies containing copper versenate showed similar ratios insofar as ascertainable from fewer samples. The meningiomas are a probable exception, yielding lower ratios with the copper. On the basis of radioassay both of urinary excretion and of the full range of tissues obtainable at autopsy we compute the local whole-body radiation with As{sup 74} to be about 3.2 rads after the usual scanning dose of 2.3 mC/70 kg. The kidney receives about 12.7 and the liver 9.7 rads. The corresponding figures for Cu{sup 64} are 0.325 rads to the whole body, but with a dose to the liver of 3.2 rads because this organ takes up about half of the administered versenate. The automatic scan includes in 2 simultaneously evolving side views a coincidence count or positrocephalogra m (PCG) and a plot

  7. Positron production in heavy ion-atom collisions

    International Nuclear Information System (INIS)

    Kienle, P.

    1985-08-01

    Following an introduction into the concept of an atom with an overcritical field, established by a nucleus with a charge larger than 173, the spontaneous positron emission from such an atom with an 1s binding energy exceeding 2mc 2 is presented. Such a process, in which an electron is bound and a monoenergetic positron emitted turns the neutral into a charged vacuum. In a U-U di-nuclear system (Z=184) the spontaneous positron emission proceeds with an energy of about 300 keV corresponding to a decay time of 3x10 -19 sec. (orig./WL)

  8. In-situ positron emission of CO oxidation

    OpenAIRE

    Vonkeman, K.A.; Jonkers, G.; Wal, van der, S.W.A.; Santen, van, R.A.

    1993-01-01

    Using a Neuro ECAT positron tomog., the Positron Emission computed Tomog. (PET) was utilized to image the catalytic oxidn. of CO by using CO and CO2, labeled with short lived positron emitting nuclides. Studies were performed over highly dispersed CeO2/g-Al2O3 supported Pt and Rh catalysts. With a math. model of the reaction kinetics, based on the elementary steps of the catalytic reaction and partially on literature surface science data, the effect of CeO2 promotion and the presence of NO we...

  9. Positron imaging in the evaluation of ischemia and myocardial infarction

    International Nuclear Information System (INIS)

    Goldstein, R.A.

    1985-01-01

    Positron emission tomography (PET) is a unique imaging approach since it allows quantification of regional myocardial radioactivity by virtue of its decay characteristics. Studies of regional myocardial metabolism are possible since there are positron emitting isotopes of carbon, oxygen and nitrogen that can be used to synthesize labeled fatty acids, amino acids or carbohydrate. Recent studies from the author's group have focused on Rb-82, a diffusible cation with a short half-life that is obtained from a generator and thus, has the potential for routine clinical use without a cyclotron. In this chapter, the basic principles of positron imaging and their application to imaging of acute myocardial infarction are discussed

  10. Radioisotope handling facilities and automation of radioisotope production

    International Nuclear Information System (INIS)

    2004-12-01

    If a survey is made of the advances in radioisotope handling facilities, as well as the technical conditions and equipment used for radioisotope production, it can be observed that no fundamental changes in the design principles and technical conditions of conventional manufacture have happened over the last several years. Recent developments are mainly based on previous experience aimed at providing safer and more reliable operations, more sophisticated maintenance technology and radioactive waste disposal. In addition to the above observation, significant improvements have been made in the production conditions of radioisotopes intended for medical use, by establishing aseptic conditions with clean areas and isolators, as well as by introducing quality assurance as governing principle in the production of pharmaceutical grade radioactive products. Requirements of the good manufacturing practice (GMP) are increasingly complied with by improving the technical and organizational conditions, as well as data registration and documentation. Technical conditions required for the aseptic production of pharmaceuticals and those required for radioactive materials conflicting in some aspects are because of the contrasting contamination mechanisms and due consideration of the radiation safety. These can be resolved by combining protection methods developed for pharmaceuticals and radioactive materials, with the necessary compromise in some cases. Automation serves to decrease the radiation dose to the operator and environment as well as to ensure more reliable and precise radiochemical processing. Automation has mainly been introduced in the production of sealed sources and PET radiopharmaceuticals. PC controlled technologies ensure high reliability for the production and product quality, whilst providing automatic data acquisition and registration required by quality assurance. PC control is also useful in the operation of measuring instruments and in devices used for

  11. The radioisotopes and radiations program

    International Nuclear Information System (INIS)

    1982-01-01

    This program of the National Atomic Energy Commission of Argentina refers to the application and production of radionuclides, their compounds and sealed sources. The applications are carried out in the medical, agricultural, cattle raising and industrial areas and in other engineering branches. The sub-program corresponding to the production of radioactive materials includes the production of radioisotopes and of sealed sources, and an engineering service for radioactive materials production and handling facilities. The sub-program of applications is performed through several groups or laboratories in charge of the biological and technological applications, intensive radiation sources, radiation dosimetry and training of personnel or of potential users of radioactive material. Furthermore, several aspects about technology transfer, technical assistance, manpower training courses and scholarships are analyzed. Finally, some legal aspects about the use of radioisotopes and radiations in Argentina are pointed out. (M.E.L.) [es

  12. Some results of radioisotope studies

    Energy Technology Data Exchange (ETDEWEB)

    Isamov, N.N.

    1974-10-01

    The accumulation of radioisotopes by brucellae depends on the consistency of the feed medium on which they are grown. The uptake of P-32 is a factor of 5 to 16 greater, and that of sulfur-35 in the form of sodium sulfate is a factor of 30 to 100 greater when grown on a complex solid agar than in a bouillion solution of the same ingredients. Brucellae are readily tagged with /sup 32/P and /sup 35/S simultaneously. These tagged brucellae were used to study in vitro storage under various temperature regimes. Brucellae actively incorporate iron. The uptake of methionine and cystine tagged with sulfur-35 by brucellae was investigated. Methionine is absorbed directly for the most part by brucellae, while the sulfur-35 in sodium sulfate is primarily transformed to cystine and cysteine. The uptake of various radioisotopes can be used to type various strains of brucellae. Isotopes are used to trace the course of various diseases in animals. (SJR)

  13. Radioisotopes in Burmese agricultural research

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1961-07-15

    The Burmese authorities decided to start a laboratory for the use of radioisotope techniques in agricultural r e search. The laboratory was set up at the Agricultural Research Institute at Gyogon, on the outskirts of Rangoon. Under its technical assistance program, IAEA assigned an expert in the agricultural applications of radioisotopes for this project. Discussions were held with regional representatives of the Food and Agriculture Organization on the best lines of research to be adopted at the laboratory in its early stages. As the most important crop in Burma is rice, a series of experiments were planned for a study of the nutrition of rice, particularly its phosphorus uptake, with special reference to comparative responses on a range of typical paddy soils. The experiments began last year and are being continued.

  14. Use of radioisotopes in Japan

    International Nuclear Information System (INIS)

    Foeldiak, G.

    1974-01-01

    A survey of the following general data on the use of radioisotopes in Japan is given (from the material of the 11th Japan Conference on Radioisotopes): 1. number of the organizations using radioactive isotopes, grouped according to special working fields and instruments; 2. amount of the unsealed sources (Ci) used in the different special working fields in 1971, 4. amount of the sealed sources (Ci) used between 1966 and 1971. 5. number of the institutions using sealed sources, grouped according to special working fields (March, 1972), 6. number of the accelerators applied, grouped according to special working fields (March, 1972), 7. number of the nuclear instruments in the education and research institutes (March, 1972), 8. amount of the collected radioactive waste material between 1960 and 1971 (number of containers). (K.A.)

  15. Physical aspects of radioisotope brachytherapy

    International Nuclear Information System (INIS)

    1967-01-01

    The present report represents an attempt to provide, within a necessarily limited compass, an authoritative guide to all important physical aspects of the use of sealed gamma sources in radiotherapy. Within the report, reference is made wherever necessary to the more extensive but scattered literature on this subject. While this report attempts to cover all the physical aspects of radioisotope 'brachytherapy' it does not, of course, deal exhaustively with any one part of the subject. 384 refs, 3 figs, 6 tabs

  16. Improvement of radioisotope production technology

    International Nuclear Information System (INIS)

    Li Yongjian

    1987-01-01

    The widespreading and deepgoing applications of radioisotopes results the increasing demands on both quality and quantity. This in turn stimulating the production technology to be improved unceasingly to meet the different requirements on availability, variety, facility, purity, specific activity and specificity. The major approaches of achieving these improvements including: optimizing mode of production; enhancing irradiation conditions; amelioration target arrangement; adapting nuclear process and inventing chemical processing. (author)

  17. Background current of radioisotope manometer

    International Nuclear Information System (INIS)

    Vydrik, A.A.

    1987-01-01

    The technique for calculating the main component of the background current of radioisotopic monometers, current from direct collision of ionizing particles and a collector, is described. The reasons for appearance of background photoelectron current are clarified. The most effective way of eliminating background current components is collector protection from the source by a screen made of material with a high gamma-quanta absorption coefficient, such as lead, for example

  18. Utilization of radioisotopes in medical field

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Yasuhito [National Inst. of Radiological Sciences, Chiba (Japan)

    2000-03-01

    The establishment and advance of nuclear medicine was briefly described here and the present situations and recent topics on clinical nuclear medicine were summarized as well as its prospects for the future. A labeling method to monitor dynamic changes of living substances using radioisotope (RI) was established by Hevesy using radionuclides. The radiotracing method has been applied to chemical field. The numbers of yearly application in 1982, 1987, 1992 and 1997 were reported in respects of in vivo assays (scintigram, SPECT, PET), the treatments with unsealed RI, PET and in vitro examination (RIA, IRMA). The data show that the application of in vivo examination greatly increased for the last 5 years. Bone scintigram was most frequent (26.9%) followed by myocardial scintigram (19.6%). On the other hand, application of in vitro radioassay is gradually decreasing now after the peak in 1992 (241,000 cases per day). The determination of blood concentrations of various tumor markers such as CEA, CA19-9, CA15-3 ar3, etc. became able using radioimmunodetection (RID). Positron emission computed tomography (PET) is valuable for detection of malignant tumor especially for postoperative recurrence or metastasis, evaluation of myocardial viability and identification of epileptic focus. PET using {sup 15}O labeled H{sub 2}O is thought useful for the study on higher functions of human brain such as language, thinking, and prognostic evaluation of damages in the brain. Nuclear medicinal examination, which has been used for diagnosis would be utilized for designing of clinical therapy and evaluation of its effects and prognosis. (M.N.)

  19. Radioisotopes for therapy: an overview

    International Nuclear Information System (INIS)

    Venkatesh, Meera

    2006-01-01

    Radionuclides made great impact in the history of nuclear sciences both at the end of 19th century with the discoveries of Becquerel and madame Curie and later in 1934, when Frederic Joliet and Irene Curie demonstrated the production of the first artificial radioisotopes, 30 P, by bombardment of 27 Al by alpha particles. The subsequent invention of cyclotron and setting up of nuclear reactor opened the floodgate for production of artificial radionuclides. Currently, majority of radionuclides are made artificially by transforming a stable nuclide into an unstable state and thus far over 2500 radionuclides have been produced artificially. Use of radionuclides in various fields immediately followed their production and last century has witnessed tremendous growth in the applications of radiation and radioisotopes, in diverse fields such as medicine, industry, agriculture, food preservation, water resource management, environmental studies, etc. While radiation and radioisotopes are used both for diagnosis as well as for therapy in the field of medicine, therapeutic applications are among the earliest, which began as an empirical science in the beginning and developed into a well structured modality with time. (author)

  20. Positron-containing systems and positron diagnostics

    International Nuclear Information System (INIS)

    1978-01-01

    The results of the experimental and theoretical investigations are presented. Considered are quantum-mechanical calculations of wave functions describing the states of positron-containing atomic systems and of cross-sections of the processes characterizing different interactions, and also the calculations of the behaviour of positrons in gases in the presence of an electric field. The results of experimental tests are presented by the data describing the behaviour of positrons and positronium in liquids, polymers and elastomers, complex oxides and in different solids. New equipment and systems developed on the basis of current studies are described. Examined is a possibility of applying the methods of model and effective potentials for studying the bound states of positron systems and for calculating cross-sections of elementary processes of elastic and inelastic collisions with a positron involved. The experimental works described indicate new possibilities of the positron diagnosis method: investigation of thin layers and films of semiconductor materials, defining the nature of chemical bonds in semiconductors, determination of the dislocation density in deformed semiconductors, derivation of important quantitative information of the energy states of radiation defects in them

  1. Scintillation crystals for positron emission tomography having a non reflecting band

    International Nuclear Information System (INIS)

    Thompson, C.J.

    1992-01-01

    This invention relates generally to positron emission tomography, a sub-field of the class of medical imaging techniques using ionizing radiation and image reconstruction techniques; and more particularly to devices which use an array of scintillation detectors to detect the annihilation radiation from positron disintegration and use this information to reconstruct an image of the distribution of positron emitting isotope within a body section. 6 figs

  2. Novel targets for positron emission tomography (PET) radiopharmaceutical tracers for visualization of neuroinflammation

    Science.gov (United States)

    Shchepetkin, I.; Shvedova, M.; Anfinogenova, Y.; Litvak, M.; Atochin, D.

    2017-08-01

    Non-invasive molecular imaging techniques can enhance diagnosis of neurological diseases to achieve their successful treatment. Positron emission tomography (PET) imaging can identify activated microglia and provide detailed functional information based on molecular biology. This imaging modality is based on detection of isotope labeled tracers, which emit positrons. The review summarizes the developments of various radiolabeled ligands for PET imaging of neuroinflammation.

  3. Positron emission computed tomography

    International Nuclear Information System (INIS)

    Grover, M.; Schelbert, H.R.

    1985-01-01

    Regional mycardial blood flow and substrate metabolism can be non-invasively evaluated and quantified with positron emission computed tomography (Positron-CT). Tracers of exogenous glucose utilization and fatty acid metabolism are available and have been extensively tested. Specific tracer kinetic models have been developed or are being tested so that glucose and fatty acid metabolism can be measured quantitatively by Positron-CT. Tracers of amino acid and oxygen metabolism are utilized in Positron-CT studies of the brain and development of such tracers for cardiac studies are in progress. Methods to quantify regional myocardial blood flow are also being developed. Previous studies have demonstrated the ability of Positron-/CT to document myocardial infarction. Experimental and clinical studies have begun to identify metabolic markers of reversibly ischemic myocardium. The potential of Positron-CT to reliably detect potentially salvageable myocardium and, hence, to identify appropriate therapeutic interventions is one of the most exciting applications of the technique

  4. 22 Na positron source for annihilation positron spectroscopy

    International Nuclear Information System (INIS)

    Cimpeanu, Catalina; Craciun, Liviu; Dragulescu, Emilian; Dudu, Dorin; Racolta, Petre Mihai; Voiculescu, Dana; Miron, N.

    2005-01-01

    To extend the nuclear physics applications and to perform the study of vacancy - type defects in metals, semiconductors, polymers, etc., we developed new positron annihilation techniques. In line with this goal we started a project for production of positron sources at the IFIN-HH U-120 Cyclotron. We made use of the nuclear reaction: 24 Mg(d,α) 22 Na with deuterons of 13 MeV energy. The paper present the main steps of this procedure which are: establishing the conditions required for 22 NaCl sources, for the parameters of reaction chamber and the characteristics of Mg target, parameters for the irradiation, radiochemical procedures for separation of Na from Mg after irradiation as well as the geometrical and mechanical requirements for the NaCl source. In the e + lifetime measurements the e + 'stop' signals are always provided by gamma - quanta generated by the e + e - annihilation and the 'start' signals are obtained from 'prompt' gamma - quanta emitted by the NaCl source (1.275 MeV photons). The 22 NaCl stock solution obtained by radiochemical separation will be kept in quartz sealed ampoules. (authors)

  5. High resolution positron tomography

    International Nuclear Information System (INIS)

    Brownell, G.L.; Burnham, C.A.

    1982-01-01

    The limits of spatial resolution in practical positron tomography are examined. The four factors that limit spatial resolution are: positron range; small angle deviation; detector dimensions and properties; statistics. Of these factors, positron range may be considered the fundamental physical limitation since it is independent of instrument properties. The other factors are to a greater or lesser extent dependent on the design of the tomograph

  6. High energy positron imaging

    International Nuclear Information System (INIS)

    Chen Shengzu

    2003-01-01

    The technique of High Energy Positron Imaging (HEPI) is the new development and extension of Positron Emission Tomography (PET). It consists of High Energy Collimation Imaging (HECI), Dual Head Coincidence Detection Imaging (DHCDI) and Positron Emission Tomography (PET). We describe the history of the development and the basic principle of the imaging methods of HEPI in details in this paper. Finally, the new technique of the imaging fusion, which combined the anatomical image and the functional image together are also introduced briefly

  7. BEPC II positron source

    International Nuclear Information System (INIS)

    Pei Guoxi; Sun Yaolin; Liu Jintong; Chi Yunlong; Liu Yucheng; Liu Nianzong

    2006-01-01

    BEPC II-an upgrade project of the Beijing Electron Positron Collider (BEPC) is a factory type of e + e - collider. The fundamental requirements for its injector linac are the beam energy of 1.89 GeV for on-energy injection and a 40 mA positron beam current at the linac end with a low beam emittance of 1.6 μm and a low energy spread of ±0.5% so as to guarantee a higher injection rate (≥50 mA/min) to the storage ring. Since the positron flux is proportional to the primary electron beam power on the target, the authors will increase the electron gun current from 4A to 10A by using a new electron gun system and increase the primary electron energy from 120 MeV to 240 MeV. The positron source itself is an extremely important system for producing more positrons, including a positron converter target chamber, a 12kA flux modulator, the 7m focusing module with DC power supplies and the support. The new positron production linac from the electron gun to the positron source has been installed into the tunnel. In what follows, the authors will emphasize the positron source design, manufacture and tests. (authors)

  8. Positron-atom collisions

    International Nuclear Information System (INIS)

    Drachman, R.J.

    1984-01-01

    The past decade has seen the field of positron-atom collisions mature into an important sub-field of atomic physics. Increasingly intense positron sources are leading towards a situation in which electron and positron collision experiments will be on almost an equal footing, challenging theory to analyze their similarities and differences. The author reviews the advances made in theory, including dispersion theory, resonances, and inelastic processes. A survey of experimental progress and a brief discussion of astrophysical positronics is also included. (Auth.)

  9. Positrons and positronium

    International Nuclear Information System (INIS)

    Jean, Y.C.; Lambrecht, R.M.

    1988-01-01

    This bibliography includes articles, proceedings, abstracts, reports and patents published between 1930 and 1984 on the subject of positrons, positron annihilation and positronium. The subject covers experimental and theoretical results in the areas of physics and chemistry of low and intermediate energy (< 0.6 MeV) positrons and positronium. The topics of interest are: fundamental properties, interactions with matter, nuclear technology, the history and philosophy of antimatter, the theory of the universe, and the applications of positrons in the chemical, physical, and biomedical sciences

  10. Radioisotopes and their applications in highway testings

    International Nuclear Information System (INIS)

    Saxena, S.C.

    1974-01-01

    Applications of radioisotopes in highway testing are described. Radioisotopic methods have been used to determine : (1) moisture and density of soil and base materials for compaction control, (2) magnesium oxide content of cement, (3) permeability of bituminous coverings and (4) field density of freshly laid hot bituminous concrete surface. Possible uses of nuclear explosives for production of aggregates and of radioisotopes for determination of deflection in the design of flexible pavements are indicated. (M.G.B.)

  11. Polarization Study for NLC Positron Source Using EGS4

    Energy Technology Data Exchange (ETDEWEB)

    Liu, James C

    2000-09-20

    SLAC is exploring a polarized positron source to study new physics for the NLC project. The positron source envisioned in this paper consists of a polarized electron source, a 50-MeV electron accelerator, a thin target less-than-or-equal-to 0.2 radiation length for positron production, and a capture system for high-energy, small angular divergence positrons. The EGS4 code was used to study the yield, energy spectra, emission-angle distribution, and the mean polarization of the positrons emanating from W-Re and Ti targets hit by longitudinally polarized electron and photon beams. To account for polarization within the EGS4 code a method devised by Flottmann was used, which takes into account polarization transfer for pair production, bremsstrahlung, and Compton interactions. A mean polarization of 0.85 for positrons with energies greater than 25 MeV was obtained. Most of the high-energy positrons were emitted within a forward angle of 20 degrees. The yield of positrons above 25 MeV per incident photon was 0.034, which was about 70 times higher than that obtained with an electron beam.

  12. Simulation of the annihilation emission of galactic positrons

    International Nuclear Information System (INIS)

    Gillard, W.

    2008-01-01

    Positrons annihilate in the central region of our Galaxy. This has been known since the detection of a strong emission line centered on an energy of 511 keV in the direction of the Galactic center. This gamma-ray line is emitted during the annihilation of positrons with electrons from the interstellar medium. The spectrometer SPI, onboard the INTEGRAL observatory, performed spatial and spectral analyses of the positron annihilation emission. This thesis presents a study of the Galactic positron annihilation emission based on models of the different interactions undergone by positrons in the interstellar medium. The models are relied on our present knowledge of the properties of the interstellar medium in the Galactic bulge, where most of the positrons annihilate, and of the physics of positrons (production, propagation and annihilation processes). In order to obtain constraints on the positrons sources and physical characteristics of the annihilation medium, we compared the results of the models to measurements provided by the SPI spectrometer. (author)

  13. Production ampersand marketing of radioisotopes: A vital market for rare earths ampersand specialty metals

    International Nuclear Information System (INIS)

    Fox, C.J.

    1996-01-01

    Isotopes that spontaneously emit alpha (α) or beta (β) particles, or gamma rays (γ), are said to be radioactive. The emission process, called open-quotes decay,close quotes is precisely what makes radioactive isotopes, known as open-quotes radioisotopes,close quotes useful in a variety of applications, including nuclear medicine, commercial sterilization, manufacturing, geophysics, agriculture, and research programs in these and various other fields. Until 1960, radioisotope production was limited to government-owned nuclear reactors and particle accelerators in universities and government laboratories, primarily because the enormous cost of building these facilities could only be supported by government budgets. During this time, a few private companies managed to secure commercial rights to exploit the production capabilities of these facilities. Today, these companies and a few government agencies still provide the basis of global commercial radioisotope supply

  14. Research trends in radioisotopes: a scientometric analysis

    International Nuclear Information System (INIS)

    Sagar, Anil; Kademani, B.S.; Bhanumurthy, K.; Ramamoorthy, N.

    2014-01-01

    Radioisotopes or radionuclides are radioactive forms of elements and are usually produced in research reactors and accelerators. They have wide ranging applications in healthcare, industry, food and agriculture, and environmental monitoring. Following over five decades of vast experience accumulated, radioisotope technology has developed to a high degree of sophistication and it is estimated that about 200 radioisotopes are in regular use. This paper attempts to highlight the publication status and growth of radioisotope research across the world and make quantitative and qualitative assessment by way of analyzing the following features of research output based on Web of Science database during the period 1993-2012. (author)

  15. Medical radioisotopes for the next century

    International Nuclear Information System (INIS)

    Carr, S.W.

    1999-01-01

    Radioisotopes are widely used in medicine (Nuclear Medicine) for diagnosis, palliation and therapy of heart disease, cancer, muscoskeletal and neurological conditions. The radioisotopes used are both reactor and cyclotron produced. The utilisation is currently growing and is expected to continue to grow over the next 10-20 years. The combination of radioisotope and delivery vehicle can be designed to meet the intended end use. This paper will deal with the main approaches to the use of radioisotopes for Nuclear medicine ad future prospects for the area

  16. Image-quality assessment for several positron emitters using the nema nu 4-2009 standards in the siemens inveon small-animal pet scanner

    NARCIS (Netherlands)

    Disselhorst, J.A.; Brom, M.; Laverman, P.; Slump, Cornelis H.; Boerman, O.C.; Oyen, W.J.G.; Gotthardt, M.; Visser, E.P.

    2010-01-01

    The positron emitters 18F, 68Ga, 124I, and 89Zr are all relevant in small-animal PET. Each of these radionuclides has different positron energies and ranges and a different fraction of single photons emitted. Average positron ranges larger than the intrinsic spatial resolution of the scanner (for

  17. Image-quality assessment for several positron emitters using the NEMA NU 4-2008 standards in the Siemens Inveon small-animal PET scanner.

    NARCIS (Netherlands)

    Disselhorst, J.A.; Brom, M.; Laverman, P.; Slump, C.H.; Boerman, O.C.; Oyen, W.J.G.; Gotthardt, M.; Visser, E.P.

    2010-01-01

    The positron emitters (18)F, (68)Ga, (124)I, and (89)Zr are all relevant in small-animal PET. Each of these radionuclides has different positron energies and ranges and a different fraction of single photons emitted. Average positron ranges larger than the intrinsic spatial resolution of the scanner

  18. List of DOE radioisotope customers with summary of radioisotope shipments, FY 1985

    Energy Technology Data Exchange (ETDEWEB)

    Baker, D.A.

    1986-08-01

    This document describes radioisotope distribution from DOE facilities to private firms including foreign and other DOE facilities. The information is divided into five sections: (1) isotope suppliers, facility contacts, and isotopes or services supplied; (2) customers, suppliers, and isotopes purchased; (3) isotopes purchased cross-referenced with customer numbers; (4) geographic locations of radioisotope customers; and (5) radioisotope sales and transfer - FY 1985.

  19. List of DOE radioisotope customers with summary of radioisotope shipments, FY 1985

    International Nuclear Information System (INIS)

    Baker, D.A.

    1986-08-01

    This document describes radioisotope distribution from DOE facilities to private firms including foreign and other DOE facilities. The information is divided into five sections: (1) isotope suppliers, facility contacts, and isotopes or services supplied; (2) customers, suppliers, and isotopes purchased; (3) isotopes purchased cross-referenced with customer numbers; (4) geographic locations of radioisotope customers; and (5) radioisotope sales and transfer - FY 1985

  20. Simulation of the annihilation emission of galactic positrons; Modelisation de l'emission d'annihilation des positrons Galactiques

    Energy Technology Data Exchange (ETDEWEB)

    Gillard, W

    2008-01-15

    Positrons annihilate in the central region of our Galaxy. This has been known since the detection of a strong emission line centered on an energy of 511 keV in the direction of the Galactic center. This gamma-ray line is emitted during the annihilation of positrons with electrons from the interstellar medium. The spectrometer SPI, onboard the INTEGRAL observatory, performed spatial and spectral analyses of the positron annihilation emission. This thesis presents a study of the Galactic positron annihilation emission based on models of the different interactions undergone by positrons in the interstellar medium. The models are relied on our present knowledge of the properties of the interstellar medium in the Galactic bulge, where most of the positrons annihilate, and of the physics of positrons (production, propagation and annihilation processes). In order to obtain constraints on the positrons sources and physical characteristics of the annihilation medium, we compared the results of the models to measurements provided by the SPI spectrometer. (author)

  1. Positron emission tomography: a new paradigm in cancer management

    International Nuclear Information System (INIS)

    Paez Gutierrez, Diana Isabel; De los Reyes, Amelia; Llamas Olier, Augusto

    2007-01-01

    The National Cancer Institute (NCI) is currently building a positron emission tomography facility that will house a cyclotron and a PET fusion scanner. lt should be operational as of december 2007, being a cancer dedicated national referral center, the NCI should provide both positron-emitting radiopharmaceuticals and medical services to institutions and patients nationwide. PET technology provides metabolic information that has been documented to be useful in patient care. The properties of positron decay allow accurate imaging of the in vivo distribution of positron-emitting radiopharmaceuticals. a wide array of positron-emitting radiopharmaceuticals has been used to characterize multiple physiologic and pathologic states. The major clinical PET applications are in cancer patients using fluorine-18 fluorodeoxyglucose (FDG). FDG, an analogue of glucose, accumulates in most tumors in a greater amount than it does in normal tissue. PET is being used in diagnosis and follow-up of several malignancies, and the list of articles supporting its use continues to grow. in this article, the instrumentation aspects of PET are described and most of the clinical applications in oncology are described

  2. Survey of industrial radioisotope savings

    International Nuclear Information System (INIS)

    1965-01-01

    Only three decades after the discovery of artificial radioactivity and two after radioisotopes became available in quantity, methods employing these as sources or tracers have found widespread use, not only in scientific research, but also in industrial process and product control. The sums spent by industry on these new techniques amount to millions of dollars a year. Realizing the overall attitude of industry to scientific progress - to accept only methods that pay relatively quickly - one can assume that the economic benefits must be of a still larger order of magnitude. In order to determine the extent to which radioisotopes are in daily use and to evaluate the economic benefits derived from such use, IAEA decided to make an 'International Survey on the Use of Radioisotopes in Industry'. In 1962, the Agency invited a number of its highly industrialized Member States to participate in this Survey. Similar surveys had been performed in various countries in the 1950's. However, the approaches and also the definition of the economic benefits differed greatly from one survey to another. Hence, the Agency's approach was to try to persuade all countries to conduct surveys at the same time, concerning the same categories of industries and using the same terms of costs, savings, etc. In total, 24 Member States of the Agency agreed to participate in the survey and in due course they submitted contributions. The national reports were discussed at a 'Study Group Meeting on Radioisotope Economics', convened in Vienna in March 1964. Based upon these discussions, the national reports have been edited and summarized. A publication showing the administration of the Survey and providing all details is now published by the Agency. From the publication it is evident that in general the return of technical information was quite high, of the order of 90%, but, unfortunately the economic response was much lower. However, most of the reports had some bearing on the economic aspects

  3. The industrial application of radioisotopes

    International Nuclear Information System (INIS)

    Frevert, E.

    1991-01-01

    In this paper the two main fields of the industrial application of radioisotopes are introduced. In the field of process controlling device and control first about the transmission and the backscattering methods is reported. Then the x-ray fluorescence method and the moisture gauging with neutrons are mentioned. Also the measuring of depth of charge. In the field of tracer investigations about all kinds of flow and intermixture measurements is reported. And investigations of corrosion, wear and lubrication and precise location of nonmetallic pipe lines are mentioned. (Author)

  4. Radioisotope Sources of Electric Power

    Science.gov (United States)

    1973-09-20

    u) watt/cm-3 O) specific activity f) curia/watt (curie/a) a) half-life c) specific power output h) years (capacity) 1) days d) watt/p Polonium - 210 ...AD/A-001 210 RADIOISOTOPE SOURCES OF ELECTRIC POWER G. M. Fradkin, et al Army Foreign Science and Technology Center Charlottesville, Virginia 20...narticularlv for nurninn and irocess~ino of wastg.Sheatinc food , conversion of liruld oxtoner to des, and also for removal of imnurities and reula:tion

  5. Radioisotope studies on coconut nutrition

    International Nuclear Information System (INIS)

    Ray, P.K.

    1979-01-01

    Studies on coconut nutrition using radioisotopes are reviewed. Methods of soil placement and plant injection techniques for feeding nutrients to coconut have been studied, and irrigation practices for efficient uptake and utilization of nutrients are suggested. The absorption, distribution and translocation pattern of radioactive phosphorus and its incorporation into the nucleic acid fraction in healthy and root (wilt) diseased coconut palms have been studied. Carbon assimilation rates (using carbon-14) in spherical, semispherical and erect canopied coconut palms having different yield characteristics are reviewed and discussed. (author)

  6. Artificial radioisotopes in hydrological investigation

    International Nuclear Information System (INIS)

    Plata-Bedmar, A.

    1988-01-01

    Radioisotope techniques have an important part in hydrological investigations. Sealed radiation sources have been used for measurements of sediments transported by river water, of thickness and density of sediment layers. X-ray fluorescence analysis and well-logging are widely applied in hydrological research. Tracer techniques have been useful in flow rate and river dynamics research, sediments tracing, irrigation and ground water problems, infiltration rate evaluation etc. The IAEA is supporting several projects involving the use of radioactive tracers in hydrological investigations p.e. in Guatemala, Romania, South East Asia, Brazil, Chile and Nicaragua

  7. Positron annihilation microprobe

    Energy Technology Data Exchange (ETDEWEB)

    Canter, K F [Brandeis Univ., Waltham, MA (United States)

    1997-03-01

    Advances in positron annihilation microprobe development are reviewed. The present resolution achievable is 3 {mu}m. The ultimate resolution is expected to be 0.1 {mu}m which will enable the positron microprobe to be a valuable tool in the development of 0.1 {mu}m scale electronic devices in the future. (author)

  8. Positrons in ionic crystals

    International Nuclear Information System (INIS)

    Pareja, R.

    1988-01-01

    Positron annihilation experiments in ionic crystals are reviewed and their results are arranged. A discussion about the positron states in these materials is made in the light of these results and the different proposed models. The positronium in alkali halides is specially considered. (Author)

  9. PF slow positron source

    International Nuclear Information System (INIS)

    Shirakawa, A.; Enomoto, A.; Kurihara, T.

    1993-01-01

    A new slow-positron source is under construction at the Photon Factory. Positrons are produced by bombarding a tantalum rod with high-energy electrons; they are moderated in multiple tungsten vanes. We report here the present status of this project. (author)

  10. Radiation from channeled positrons in a hypersonic wave field

    International Nuclear Information System (INIS)

    Mkrtchyan, A.R.; Gasparyan, R.A.; Gabrielyan, R.G.

    1987-01-01

    The radiation emitted by channeled positrons in a longitudinal or transverse standing hypersonic wave field is considered. In the case of plane channeling the spectral distribution of the radiation intensity is shown to be of a resonance nature depending on the hypersound frequency

  11. The order for enforcing the law concerning prevention from radiation hazards due to radioisotopes

    International Nuclear Information System (INIS)

    1981-01-01

    This rule is established under the provisions of the law on the prevention of radiation injuries by radioisotopes, and the former ordinance No. 14, 1958, is hereby totally amended. Radioisotopes under the law are the isotopes which emit radiation, and of which the concentration exceeds the levels defined by the Director General of the Science and Technology Agency, their compounds or the substances containing these compounds, excluding those defined in the atomic energy act and other particular laws. The apparatuses fitted with radioisotopes under the law are electron capture detectors for gas chromatography. The radiation emitting installations under the law are cyclotron, synchrotron, synchro-cyclotron, linear accelerator, betatron, Van de Graaff accelerator, Cockcroft-Walton's accelerator, etc. The permission of usage under the law shall be obtained for each works or enterprise. Persons who intend to get the permission shall file the application for them attaching the documents describing expected period of usage and other papers specified by the Director General. The total quantity of radioisotopes sealed tightly for each works or enterprise under the law shall be 100 milli-curie. The design of apparatus for the prevention of radiation injuries, the capacities of storage facilities regularly inspected, the period of regular inspection, the confirmation of transport and disposal and fees to be paid, etc. are defined, respectively. (Okada, K.)

  12. Positron Factory project

    Energy Technology Data Exchange (ETDEWEB)

    Okada, Sohei; Sunaga, Hiromi; Kaneko, Hirohisa; Kawasuso, Atsuo; Masuno, Shin-ichi; Takizawa, Haruki; Yotsumoto, Keiichi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1997-03-01

    We have started drafting a construction program for the Positron Factory, in which linac-based intense monoenergetic positron beams are planned to be applied for materials science, biotechnology and basic physics and chemistry. A technical survey study confirmed the feasibility of manufacturing a dedicated electron linac of 100 kW class with a beam energy of 100 MeV, which will produce a world-highest monoenergetic positron beam of more than 10{sup 10}/sec in intensity. A self-driven rotating converter (electrons to positrons and photons) suitable for the high power electron beam was devised and successfully tested. The practicability of simultaneous extraction of multi-channel monoenergetic positron beams with multiple moderator assemblies, which had been originated on the basis of a Monte Carlo simulation, was demonstrated by an experiment using an electron linac. An efficient moderator structure, which is composed of honeycomb-like assembled moderator foils and reflectors, is also proposed. (author)

  13. Positron-Induced Luminescence

    Science.gov (United States)

    Stenson, E. V.; Hergenhahn, U.; Stoneking, M. R.; Pedersen, T. Sunn

    2018-04-01

    We report on the observation that low-energy positrons incident on a phosphor screen produce significantly more luminescence than electrons do. For two different wide-band-gap semiconductor phosphors (ZnS:Ag and ZnO:Zn), we compare the luminescent response to a positron beam with the response to an electron beam. For both phosphors, the positron response is significantly brighter than the electron response, by a factor that depends strongly on incident energy (0-5 keV). Positrons with just a few tens of electron-volts of energy (for ZnS:Ag) or less (for ZnO:Zn) produce as much luminescence as is produced by electrons with several kilo-electron-volts. We attribute this effect to valence band holes and excited electrons produced by positron annihilation and subsequent Auger processes. These results demonstrate a valuable approach for addressing long-standing questions about luminescent materials.

  14. Development of Radioisotope Tracer Technology

    International Nuclear Information System (INIS)

    Jung, Sung Hee; Jin, Joon Ha; Kim, Jong Bum; Kim, Jin Seop; Kim, Jae Jo; Park, Soon Chul; Lim, Don Soon; Choi, Byung Jong; Jang, Dong Soon; Kim, Hye Sook

    2007-06-01

    The project is aimed to develop the radiotracer technology for process optimization and trouble-shooting to establish the environmental and industrial application of radiation and radioisotopes. The advanced equipment and software such as high speed data acquisition system, RTD model and high pressure injection tool have developed. Based on the various field application to the refinery/petrochemical industries, the developed technology was transfer to NDT company for commercial service. For the environmental application of radiotracer technology, injector, detector sled, core sampler, RI and GPS data logging system are developed and field tests were implemented successfully at Wolsung and Haeundae beach. Additionally tracer technology were also used for the performance test of the clarifier in a wastewater treatment plant and for the leak detection in reservoirs. From the experience of case studies on radiotracer experiment in waste water treatment facilities, 'The New Excellent Technology' is granted from the ministry of environment. For future technology, preliminary research for industrial gamma transmission and emission tomography which are new technology combined with radioisotope and image reconstruction are carried out

  15. Decontamination of radioisotope production facility

    International Nuclear Information System (INIS)

    Daryoko, M.; Yatim, S.; Suseno, H.; Wiratmo, M.

    1998-01-01

    The strippable coating method use phosphoric glycerol and irradiated latex as supporting agents have been investigated. The investigation used some decontaminating agents: EDTA, citric acid, oxalic acid and potassium permanganate were combined with phosphoric glycerol supporting agent, then EDTA Na 2 , sodium citric, sodium oxalic and potassium permanganate were combined with irradiated latex supporting agent. The study was needed to obtain the representative operating data, will be implemented to decontamination the Hot Cell for radioisotope production. The experiment used 50x50x1 mm stainless steel samples and contaminated by Cs-137 about 1.1x10 -3 μCi/cm 2 . This samples according to inner cover of Hot Cell material, and Hot Cell activities. The decontamination factor results of the investigation were: phosphoric glycerol as supporting agent, about 20 (EDTA as decontaminating agent) to 47 (oxalic acid as decontaminating agent), and irradiated latex as supporting agent, about 11.5 (without decontamination agent) to 27 (KMnO 4 as decontaminating agent). All composition of the investigation have been obtained the good results, and can be implemented for decontamination of Hot Cell for radioisotope production. The irradiated latex could be recommended as supporting agent without decontaminating agent, because it is very easy to operate and very cheap cost. (author)

  16. A Review of the Production of ''Special'' Radioisotopes

    International Nuclear Information System (INIS)

    Stang, L.G. Jr.

    1963-01-01

    Six useful characteristics of radioisotopes and advantages which may be taken of them are cited briefly, with examples. The Information Sheet announcing this Seminar listed four advantages of short-lived over long-lived isotopes. Two other reasons why owners of small research reactors should concern themselves with short half- life isotopes are economy and particular suitability for production, the latter being due to the pronounced effect of half-life on the net rate of production. Besides short half-life, type and energy of emitted radiation should be of concern to producers of isotopes. Nine advantages of a nuclear reactor over a particle accelerator for radioisotope production are outlined. Following this general orientation, a survey of unusual or less frequently used production techniques is presented. These include: (n, p) reactions and secondary reactions such as (t, n) and (t, p) induced by thermal neutrons, various techniques for obtaining useful fluxes of fast neutrons with which to effect other reactions, recoil techniques including classic Szilard-Chalmers reactions, use of charged wires to collect short-lived daughters of gaseous parents, parent-daughter milking system, parasitic irradiations, possible use of ''knocked- on'' protons or deuterons (from the moderator) as a means of effecting reactions such as (p,n), (d,n), etc. and the possible use of circulating ''loops'' in reactors with which to utilize the radiation from ultra-short-lived radioisotopes such as Ag 110 , In 114 , 116 , Dy 155m , etc. Although not a production technique, the possibility of using certain stable isotopes (e. g. of silver) as tracers which can be readily detected via subsequent activation is mentioned. Production figures for Brookhaven's ''special'' radioisotopes are cited to show differences in long- and short-term fluctuations among these isotopes, which are also compared as a class to those in heavier demand supplied by Oak Ridge. Present production methods of all

  17. Development of Kabila rocket: A radioisotope heated thermionic plasma rocket engine

    Directory of Open Access Journals (Sweden)

    Kalomba Mboyi

    2015-04-01

    Full Text Available A new type of plasma rocket engine, the Kabila rocket, using a radioisotope heated thermionic heating chamber instead of a conventional combustion chamber or catalyst bed is introduced and it achieves specific impulses similar to the ones of conventional solid and bipropellant rockets. Curium-244 is chosen as a radioisotope heat source and a thermal reductive layer is also used to obtain precise thermionic emissions. The self-sufficiency principle is applied by simultaneously heating up the emitting material with the radioisotope decay heat and by powering the different valves of the plasma rocket engine with the same radioisotope decay heat using a radioisotope thermoelectric generator. This rocket engine is then benchmarked against a 1 N hydrazine thruster configuration operated on one of the Pleiades-HR-1 constellation spacecraft. A maximal specific impulse and power saving of respectively 529 s and 32% are achieved with helium as propellant. Its advantages are its power saving capability, high specific impulses and simultaneous ease of storage and restart. It can however be extremely voluminous and potentially hazardous. The Kabila rocket is found to bring great benefits to the existing spacecraft and further research should optimize its geometric characteristics and investigate the physical principals of its operation.

  18. Aspects of radioisotopes utilization in clinical medicine

    International Nuclear Information System (INIS)

    Rocha, A.F.G.; Lima e Forti, C.A. de; Cunha, M. da C.; Souza Maciel, O. de

    1973-01-01

    A revision concerning radioisotope use in Medicine have been dow. Harmless and effeciency of radioisotopes are shown. Techniques and advantages of tracers used for brain scintiscanning, lung scintiscanning, liver scintinscanning, spleen scintiscanning, bone scintiscanning and thyroid scintiscanning are described and images of them are presented [pt

  19. Trends in the development of radioisotope batteries

    International Nuclear Information System (INIS)

    Goeldner, R.; Leonhardt, J.W.; Radmaneche, R.; Schlegel, H.

    1978-01-01

    Improved methods for producing radioisotopes by nuclear fuel reprocessing and the rapid development of microelectronics offer new possibilities for utilizing radioisotope batteries. A review is given of the main principles of conversion of decay energy into electric power. The current state of such energy sources is evaluated. Finally, new fields of application and further trends in the development are indicated. (author)

  20. List of DOE radioisotope customers with summary of radioisotope shipments, FY 1986

    International Nuclear Information System (INIS)

    Lamar, D.A.

    1988-01-01

    Data were collected and compiled on radioisotopes produced and sold by Department of Energy (DOE) facilities, and on services rendered by DOE facilities. Compiled data were published and distributed in the document list of DOE Radioisotope Customers with Summary of Radioisotope Shipments, FY 1986, PNL-6361, October 1987. The DOE facilities that supplied information for the compilation were Argonne National Laboratory, Brookhaven National Laboratory, Hanford Engineering Development Laboratory, Idaho National Engineering Laboratory, Los Alamos National Laboratory, Oak Ridge National Laboratory, Pacific Northwest Laboratory, Savannah River Plant, and UNC Nuclear Industries, Inc. (Hanford). The data provided were reported in several different ways: (1) a list of radioisotopes and services provided by each facility; (2) a list of radioisotope customers, the supplying DOE facility, and the radioisotope or service provided to each customer; and (3) a list of the quantity and value of each radioisotope or service sold by each DOE facility. The sales information covered foreign customers, domestic private customers, and domestic DOE customers

  1. Role of radioisotopes in the study of insect pests

    International Nuclear Information System (INIS)

    Mansour, M.

    2013-01-01

    Although the use of nuclear techniques, particularly radioisotopes, in entomological research is less than a century old, the contribution of radioisotopes to the science of studying insects (Entomology) is indispensable. In fact, radioisotopes provided a very important and sometimes a unique tool for solving many research problems in entomology. This article discusses the most important and widely used applications of radioisotopes in studying insect pests. In particular, it concentrates on the subject of radioisotopes used in entomological research, methods of labeling insect with radioisotopes, half life of radioisotopes, and the role of radioisotopes in physiological, ecological, biological and behavioral studies of insects. (author)

  2. Positron spectroscopy of 2D materials using an advanced high intensity positron beam

    Science.gov (United States)

    McDonald, A.; Chirayath, V.; Lim, Z.; Gladen, R.; Chrysler, M.; Fairchild, A.; Koymen, A.; Weiss, A.

    An advanced high intensity variable energy positron beam(~1eV to 20keV) has been designed, tested and utilized for the first coincidence Doppler broadening (CDB) measurements on 6-8 layers graphene on polycrystalline Cu sample. The system is capable of simultaneous Positron annihilation induced Auger electron Spectroscopy (PAES) and CDB measurements giving it unparalleled sensitivity to chemical structure at external surfaces, interfaces and internal pore surfaces. The system has a 3m flight path up to a micro channel plate (MCP) for the Auger electrons emitted from the sample. This gives a superior energy resolution for PAES. A solid rare gas(Neon) moderator was used for the generation of the monoenergetic positron beam. The positrons were successfully transported to the sample chamber using axial magnetic field generated with a series of Helmholtz coils. We will discuss the PAES and coincidence Doppler broadening measurements on graphene -Cu sample and present an analysis of the gamma spectra which indicates that a fraction of the positrons implanted at energies 7-60eV can become trapped at the graphene/metal interface. This work was supported by NSF Grant No. DMR 1508719 and DMR 1338130.

  3. Design of radioisotope power systems facility

    International Nuclear Information System (INIS)

    Eschenbaum, R.C.; Wiemers, M.J.

    1991-01-01

    Radioisotope power systems currently produced for the U.S. Department of Energy Office of Special Applications by the Mound Laboratory at Miamisburg, Ohio, have been used in a variety of configurations by the Department of Defense and the National Aeronautics and Space Administration. A forecast of fugure radioisotope power systems requirements showed a need for an increased production rate beyond the capability of the existing Mound Laboratory. Westinghouse Hanford Company is modifying the Fuels and Materials Examination Facility on the Hanford Site near Richland, Washington, to install the new Radioisotope Power Systems Facility for assembling future radioisotope power systems. The facility is currently being prepared to assemble the radioisotope thermoelectric generators required by the National Aeronautics and Space Administration missions for Comet Rendezvous Asteroid Flyby in 1995 and Cassini, an investigation of Saturn and its moons, in 1996

  4. Activity calculation of radioisotopes in HFETR

    International Nuclear Information System (INIS)

    Liu Shuiqing

    1996-12-01

    The activity calculating method and formulas of seven kinds of radioisotopes for High Flux Engineering Test REactor (HFETR) are given. The perturbation of targets to neutron fluence rate is considered while targets are put into the neutron fluence rate field of reactor core. All perturbing factors of seven kinds of radioisotopes being used in HFETR are presented. After considering the perturbation, the calculating accuracy of radioisotope activity has been raised 10%. The given method and formulas have ended the history of all activities estimated by experiences, except for that of 60 Co, in the radioisotope production of HFETR. The conclusions are also useful and instructive for the production of radioisotopes in HFETR. (8 tabs.)

  5. Physical and technical basis of positron emission tomography (PET)

    International Nuclear Information System (INIS)

    Bauer, R.

    1994-01-01

    Positron emission tomography utilizes the annihilation of positrons, generating pairs of gamma quanta which are emitted in opposing directions. 'Electronic collimation' is performed by coincident detection of both quanta. Thus, there is no need for mechanical collimators and no limiting connection between sensitivity and spatial resolution. Transversal tomograms are reconstructed from the projection data by means of highly sophisticated data processing. The half life of the most positron emitters used in medical applications is short and of the order of some minutes. Therefore, many positron emitters have to be produced on-side by means of a cyclotron. PET is superior to SPECT with respect to physical and technical aspects, but the high costs of PET limit its wide-spread use up to now. (orig.) [de

  6. Application of radioisotopes in pharmaceutical research

    International Nuclear Information System (INIS)

    Khujaev, S.

    2004-01-01

    Full text: To use of radioisotopes in the processes of receiving radiopharmaceutical diagnostic means it is widely know [1]. Radioactivity labeled chemical compounds, pharmacological kinetics of which allows one solving a concrete diagnostic problem in an organism are used in radio pharmaceutics. In spite of this choice of the radioisotope, possessing the most favorable nuclei-physical characteristics for it to be detected and minimization of beam loadings, be of great importance. Development of a method of introduction of a radioisotope also has important value, as it is included into chemical structure of a radiopharmaceutical preparation. One more way of use of radioisotopes in pharmaceutics is their use as a radioactive mark at a stage of creation of a new medical product. And in this case, all those moments, which are listed above, take place. Preparations labeling by radioisotopes are used basically for their studying pharmacological kinetics. In Institute of nuclear physics AS RU, in recent years, works are done on studying pharmacological kinetics of some new medical products, which have been synthesized in the Tashkent pharmaceutical institute. These preparations are on the basis of microelements with a complex set of properties possessing expressed biological activity and have great value in pharmaceutical science of Republic of Uzbekistan. Reception of labeled compounds of all preparations was carried out by a method of introduction of a radioisotope at a stage of their synthesis. The work presents the results of researches on synthesis and study of pharmacological kinetics of radioactively labeled preparations - PIRACIN, labeled by radioisotope 69m Zn; FERAMED, labeled by radioisotope 59 Fe; COBAVIT, labeled by radioisotope 57 Co; VUC, labeled by radioisotope 57 Co

  7. Tomography by positrons: methodology and applications

    International Nuclear Information System (INIS)

    Kellershohn, C.; Comar, D.

    1979-01-01

    Whereas gamma tomography (single photon) provides a new and fruitful dimension to conventional nuclear medicine, tomography by positrons makes possible a novel approach to the in-vivo analysis of fundamental and biological processes. The main object of both is the cross sectional representation of the distribution of a radioactive marker injected into the organism and in comparison with conventional detectors (gamma cameras and scintigraphs) they afford a much improved accuracy in position finding. The characteristics of these two methods may be represented diagrammatically by comparing their respective advantages and drawbacks. The method of fabricating positron emitting radioelements, the preparation of the radopharmeutics and the detection appliances are then examined in turn. To conclude, the medical uses: anatomical autoradiographs, as well as physiological, metabolic and pharmacological autoradiographs are described [fr

  8. Production of gallium-66, positron emitting nuclide for radioimmumotherapy

    International Nuclear Information System (INIS)

    Mirzadeh, S.; Chu, Yung Yee

    1991-01-01

    Excitation functions for production of 66 Ga via α-induced nuclear reactions on enriched 66 Zn have been measured with E α ≤27.3 MeV and E α ≤43.7 MeV employing the stack-thin target technique. In addition, the induced activity of 67 Ga in the same sets of targets allowed an evaluation of the excitation functions of the corresponding nuclear reactions. 17 refs., 2 figs., 2 tabs

  9. Rabbit hindlimb glucose uptake assessed with positron-emitting fluorodeoxyglucose

    International Nuclear Information System (INIS)

    Mossberg, K.A.; Rowe, R.W.; Tewson, T.J.; Taegtmeyer, H.

    1989-01-01

    The feasibility of estimating skeletal muscle glucose uptake in vivo was examined by using the glucose analogue 2-[ 18 F]deoxy-2-fluoro-D-glucose (2-[ 18 F]FDG) in the rabbit hindlimb. A pair of collimated coincidence gamma photon detectors was used to monitor the accumulation of tracer in the tissue after 2-[ 18 F]FDG injection. Time-activity curves were generated on a second-by-second basis under control conditions, during increased contractile activity, or hyperinsulinemia. The arterial input of 2-[ 18 F]FDG, plasma glucose, lactate, free fatty acids, and insulin were determined. A graphical (Patlak plot) procedure was used to determine the fractional rate of tracer phosphorylation and therefore trapping in the muscle. From the graphical analysis, the estimated rate of glucose phosphorylation (R) in the unperturbed state was calculated to be 0.037 mumol.min-1.ml-1 of tissue. During perturbation by electrical stimulation, an increase in the rate of tracer phosphorylation (K) was observed. No change in the rate of tracer phosphorylation was observed during hyperinsulinemia. The results support the use of 2-[ 18 F]FDG and the graphical procedure for the noninvasive assessment of glucose uptake by skeletal muscle in vivo. The method described is sensitive to changes in the rate of tracer uptake with respect to time and physiological interventions

  10. Positron emitting nuclides and their synthetic incorporation in radiopharmaceuticals

    International Nuclear Information System (INIS)

    Fowler, J.S.

    1976-01-01

    11 C, 13 N, and 15 O has potential applicability to the study of metabolism in humans. Problems in the synthesis of radiopharmaceuticals labeled with 11 C, 13 N, and 18 F are described: quality control, radiation exposure, carboxylic acids, glucose, amines, amino acids, nitrosources, fluoroethanol. 54 references

  11. Radioisotopic studies in renal transplantation

    International Nuclear Information System (INIS)

    Levasseur, A.; Robillard, R.; Lemieux, R.; Dandavino, R.; Girard, R.

    1981-01-01

    Radioisotopic evaluation of kidney graft function has greatly reduced the need for more invasive studies such as arteriography, retrograde pyelograpy and graft biopsy. The schedule of sequential studies beginning the day after transplant may be modified according to the patient's clinical or biochemical status. The combined use of I 131 Hippuran and sup(99m)Tc DTPA allows early detection of graft rejection and its differentiation from tubular necrosis. Scintigraphic images may have a characteristic appearance in cases of arterial, venous or urinary obstruction, urinary fistule, infarction, abcess and lymphocele. This non-invasive diagnostic study requiring only an intravenous injection is simple, rapid, accurate and may be repeated as often as necessary. (auth) [fr

  12. Radioisotope studies under pathologic conditions

    International Nuclear Information System (INIS)

    DeRossi; Salvatori, M.; Valenza, V.

    1987-01-01

    This article presents a general discussion on salivary pathology, before dealing with the various salivary gland diseases which can draw real advantage from radioisotope studies. Clinical problems related to the salivary glands first concern diffuse or focal glandular swelling. Focal swelling includes inflammatory or metastatic deposits in preauricular or submandibular lymph nodes, cysts, abscesses, foci of inflammation, benign and malignant neoplasms of the salivary glands themselves or of surrounding blood or lymph vessels, nerves, connective tissue, and oral mucosa. Primary tumors of the salivary glands are rare and usually benign. The combination of a systemic disease with dry mouth and dry eyes due to inflamed conjunctiva and cornea because of decreased fluid production, forms Sjogren syndrome. It may also cause diffuse glandular swelling. Chronic alcoholism, cirrhosis, diabetes mellitus, hyperlipoproteinemia, and malnutrition are other pathologic conditions sometimes associated with diffuse salivary gland swelling

  13. Linear accelerator for radioisotope production

    International Nuclear Information System (INIS)

    Hansborough, L.D.; Hamm, R.W.; Stovall, J.E.

    1982-02-01

    A 200- to 500-μA source of 70- to 90-MeV protons would be a valuable asset to the nuclear medicine program. A linear accelerator (linac) can achieve this performance, and it can be extended to even higher energies and currents. Variable energy and current options are available. A 70-MeV linac is described, based on recent innovations in linear accelerator technology; it would be 27.3 m long and cost approx. $6 million. By operating the radio-frequency (rf) power system at a level necessary to produce a 500-μA beam current, the cost of power deposited in the radioisotope-production target is comparable with existing cyclotrons. If the rf-power system is operated at full power, the same accelerator is capable of producing an 1140-μA beam, and the cost per beam watt on the target is less than half that of comparable cyclotrons

  14. Radioisotope tracer applications in industry

    International Nuclear Information System (INIS)

    Rao, S.M.

    1987-01-01

    Radioisotope tracers have many advantages in industrial trouble-shooting and studies on process kinetics. The applications are mainly of two types: one leading to qualitative (Yes or No type) information and the other to quantitative characterisation of flow processes through mass balance considerations and flow models. ''Yes or No'' type methods are mainly used for leakage and blockage locations in pipelines and in other industrial systems and also for location of water seepage zones in oil wells. Flow measurements in pipelines and mercury inventory in electrolytic cells are good examples of tracer methods using the mass balance approach. Axial dispersion model and Tanks-in-Series model are the two basic flow models commonly used with tracer methods for the characterisation of kinetic processes. Examples include studies on flow processes in sugar crystallisers as well as in a precalcinator in a cement plant. (author). 18 figs

  15. US Department of Energy radioisotope customers with summary of radioisotope shipments, FY 1988

    International Nuclear Information System (INIS)

    Van Houten, N.C.

    1989-06-01

    Pacific Northwest Laboratory (PNL) prepared this edition of the radioisotope customer list at the request of the Office of Health and Environmental Research (ER-73), Office of Energy Research, US Department of Energy (DOE). This is the 25th report in a series dating from 1964. This report covers DOE radioisotope sales and distribution activities by its facilities to domestic, foreign and other DOE facilities for FY 1988. The report is divided into five sections: radioisotope suppliers, facility contacts, and radioisotopes or services supplied; a list of customers, suppliers, and radioisotopes purchased; a list of radioisotopes purchased cross-referenced to customer numbers; geographic locations of radioisotope customers; and radioisotope sales and transfers -- FY 1988. Radioisotopes not previously reported in this series of reports were argon-37, arsenic-72, arsenic-73, bismuth-207, gadolinium-151, rhenium-188, rhodium-101, selenium-72, xenon-123 and zirconium-88. The total value of DOE radioisotope sales for FY 1988 was $11.1 million, an increase of 3% from FY 1987

  16. US Department of Energy radioisotope customers with summary of radioisotope shipments, FY 1988

    Energy Technology Data Exchange (ETDEWEB)

    Van Houten, N.C.

    1989-06-01

    Pacific Northwest Laboratory (PNL) prepared this edition of the radioisotope customer list at the request of the Office of Health and Environmental Research (ER-73), Office of Energy Research, US Department of Energy (DOE). This is the 25th report in a series dating from 1964. This report covers DOE radioisotope sales and distribution activities by its facilities to domestic, foreign and other DOE facilities for FY 1988. The report is divided into five sections: radioisotope suppliers, facility contacts, and radioisotopes or services supplied; a list of customers, suppliers, and radioisotopes purchased; a list of radioisotopes purchased cross-referenced to customer numbers; geographic locations of radioisotope customers; and radioisotope sales and transfers -- FY 1988. Radioisotopes not previously reported in this series of reports were argon-37, arsenic-72, arsenic-73, bismuth-207, gadolinium-151, rhenium-188, rhodium-101, selenium-72, xenon-123 and zirconium-88. The total value of DOE radioisotope sales for FY 1988 was $11.1 million, an increase of 3% from FY 1987.

  17. Positron reemission microscopy

    International Nuclear Information System (INIS)

    Brandes, G.F.; Canter, K.F.; Mills, A.P. Jr.

    1991-01-01

    The positron reemission microscope (PRM), originally proposed by Hulett, Dale and Pendyala, operates on principles fundamentally different from those utilized in existing microscopes and offers sensitivity and contrast not available in conventional microscopes

  18. Solvated Positron Chemistry. II

    DEFF Research Database (Denmark)

    Mogensen, O. E.

    1979-01-01

    The reaction of the hydrated positron, eaq+ with Cl−, Br−, and I− ions in aqueous solutions was studied by means of positron The measured angular correlation curves for [Cl−, e+], [Br−, e+, and [I−, e+] bound states were in good agreement with th Because of this agreement and the fact...... that the calculated positron wavefunctions penetrate far outside the X− ions in the [X−, e+] sta propose that a bubble is formed around the [X−, e+] state, similar to the Ps bubble found in nearly all liquids. F−ions did not react w Preliminary results showed that CN− ions react with eaq+ while OH−ions are non...... in the Cl− case) at higher concentrations. This saturation and the high-concentration effects-in the angular correlation results were interpreted as caused by rather complicated spur effects, wh It is proposed that spur electrons may pick off the positron from the [X−, e+ states with an efficiency which...

  19. Validation of radioisotopic labelling techniques in gastric emptying studies

    International Nuclear Information System (INIS)

    Corinaldesi, R.; Stanghellini, V.; Raiti, C.; Calamelli, R.; Salgemini, R.; Barbara, L.; Zarabini, G.E.

    1987-01-01

    Several techniques are currently employed to label solid and liquid foods with gamma-emitting radioisotopes in order to carry out gamma-camera gastric emptying studies. The present study describes an in vitro technique for evaluating the labelling stability of some of the most commonly employed radiomarkers of both the solid and liquid phases. Technetium-99m-sulphur colloid ( 99m Tc-SC) in vivo and in vitro labelled liver of chickens and other animal species appears to be almost ideal marker of the solid phase (97% of radioactivity still bound to the solid phase after incubation in gastric juice for 90 minutes). On the contrary, 51 CrCl 3 -beef ground meat (81%) and 99m Tc-SC egg white (69%) are unsatisfactory markers of the solid phase. Likewise, 99m Tc-DTPA and 111 In-DTPA cannot be considered satisfactory fluid-phase agents, because of the high proportion of radioactivity that leaves the liquid phase to become bound to the solid phase (respectively 76% and 49% after 90 minutes of incubation). This validation technique appears to be simple, feasible and reprodicible, and can be applied in any Nuclear Medicine Department to evaluate the validity of the labelling procedures, in order to improve the accuracy of the results of radioisotopic gastric emptying studies

  20. Positron annihilation spectroscopy

    International Nuclear Information System (INIS)

    Sundar, C.S.; Viswanathan, B.

    1996-01-01

    An overview of positron annihilation spectroscopy, the experimental techniques and its application to studies on defects and electronic structure of materials is presented. The scope of this paper is to present the requisite introductory material, that will enable a better appreciation of the subsequent specialized articles on the applications of positron annihilation spectroscopy to investigate various problems in materials science. (author). 31 refs., 3 figs

  1. Positron emission tomography

    International Nuclear Information System (INIS)

    Chandrasekhar, Preethi; Himabindu, Pucha

    2000-01-01

    Positron Emission Tomography (PET) is a non-invasive nuclear imaging technique used to study different molecular pathways and anatomical structures. PET has found extensive applications in various fields of medicine viz. cardiology, oncology, psychiatry/psychology, neuro science and pulmonology. This study paper basically deals with the physics, chemistry and biology behind the PET technique. It discusses the methodology for generation of the radiotracers responsible for emission of positrons and the annihilation and detection techniques. (author)

  2. Positron emission tomography

    International Nuclear Information System (INIS)

    Dvorak, O.

    1989-01-01

    The principle is briefly described of positron emission tomography, and its benefits and constraints are listed. It is emphasized that positron emission tomography (PET) provides valuable information on metabolic changes in the organism that are otherwise only very difficult to obtain, such as brain diagnosis including relationships between mental disorders and the physiology and pathophysiology of the brain. A PET machine is to be installed in Czechoslovakia in the near future. (L.O.)

  3. Positron emission tomography (PET) in psychiatry

    International Nuclear Information System (INIS)

    Buchsbaum, M.S.

    1984-01-01

    In the past the approach to the brain has been necessarily indirect, employing peripheral fluids to assess central and regional neurochemical processes. Blood, urine, skin and muscle biopsy, and cerebrospinal fluid are valuable reflectors of the neurochemical and neuropharmacological activity of the brain, but are removed in time and place from disordered thought processes and diluted by the products of both functional and dysfunctional brain systems. Biopsy studies have helped in studying the functional disorders of organs like the liver, but they are destructive to the brain and less useful because unlike these organs, the brain has a regional variation in its chemistry. The experimental insights from animal studies focusing on the pharmacology of individual cell groups - in striatum or locus coeruleus, for example - cannot easily or unambigiously be applied to clinical populations. Positron emission tomography (PET) is a versatile approach utilizing the mathematics of x-ray transmission scanning (CT scanning) to produce slice images of radioisotope distribution. PET makes possible a wide range of metabolic studies. Positron emitters such as carbon-11 or fluorine-18 can be used to label glucose, amino acids, drugs, neurotransmitter precursors, and many other molecules and examine their distribution and fate in discrete cell groups

  4. The production and application of radioisotopes

    International Nuclear Information System (INIS)

    O'Neill, W.P.; Evans, D.J.R.

    1987-01-01

    This paper outlines the historical evolution of radioisotopes from first concepts and discoveries to significant milestones in their production and the development of applications throughout the world. Regarding production, it addresses the methods that have been used at various stages during this evolution outlining the important findings that have led to further developments. With respect to radioisotope applications, the paper addresses the development of markets in industry, medicine, and agriculture and comments on the size of these markets and their rate of growth. Throughout, the paper highlights the Canadian experience and it also presents a Canadian view of emerging prospects and a forecast of how the future for radioisotopes might develop. (author)

  5. Twenty years of Korea radioisotope association history

    International Nuclear Information System (INIS)

    2005-09-01

    This contents has two parts. The first part describes the present and post of Korea radioisotope association which are about the foundation of the association, organization, main projects and vision of the association. The second part is about the use and the prospect of radiation and radioisotope in Korea, which shows the plan of expansion of use of radiation and radioisotope, the prospect and present condition in fields such as medical, industry and farming, product and distribution, research and development of human resources, system and management of safety of radiation.

  6. Nuclear medicine and positron emission tomography: An overview

    International Nuclear Information System (INIS)

    McCarthy, T.J.; Schwarz, S.W.; Welch, M.J.

    1994-01-01

    Nuclear medicine is the field of medical practice that involves the oral or intravenous administration of radioactive materials for use in diagnosis and therapy. The majority of radiopharmaceutical available are used for diagnostic purposes. These involve the determination of organ function, shape, or position from an image of the radioactivity distribution within an organ or at a location within the body. After administration, the radiopharmaceutical localizes within an organ or target tissue due to its biological or physiologic characteristics. This diagnostic capability is usually the result of the emission of gamma radiation from the radiopharmaceutical localized within an organ. This allows for external detection and imaging using a special type of camera known as a gamma camera. When a positron-emitting radionuclide decays, a positron (positive electron) is emitted from the nucleus. The positron then annihilates with an electron, resulting in the release of energy in the form of two 511-KeV γ-rays at 180 degree to one another. The energy of these photons is sufficient to pass through tissue. Thus, placing a series of detectors around the patient allows technicians to monitor the emission of both of the photons that result from a single positron annihilation. this ultimately allows an accurate quantification of the distribution of radioactivity in the body not possible when only a single γ-ray is emitted

  7. Abstracts of the third conference on radioisotopes and their applications

    International Nuclear Information System (INIS)

    2002-10-01

    The Third Uzbekistan Conference on radioisotopes and their applications was held on 8-10 October, 2002 in Tashkent, Uzbekistan. The specialists discussed various aspects of modern problems of radiochemistry, radioisotope production, technology of radioisotopes and compounds, activations analysis applications, radionuclides, radioimmunoassays, application of radioisotopes in industry, medicine, biology and agriculture. More than 80 talks were presented in the meeting

  8. Abstracts of the second conference on radioisotopes and their applications

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-10-01

    The Second Uzbekistan Conference on radioisotopes and their applications was held on 3-5 October, 2000 in Tashkent, Uzbekistan. The specialists discussed various aspects of modern problems of radiochemistry, radioisotope production, technology of radioisotopes and compounds, activations analysis applications, radionuclides, radioimmunoassays, application of radioisotopes in industry, medicine, biology and agriculture. More than 80 talks were presented in the meeting. (A.A.D.)

  9. List of DOE radioisotope customers with summary of radioisotope shipments, FY 1983

    International Nuclear Information System (INIS)

    Baker, D.A.

    1984-08-01

    This document lists DOE's radioisotope production and distribution activities by its facilities at Argonne National Laboratory; Pacific Northwest Laboratory; Idaho Operations Office; Los Alamos National Laboratory; Oak Ridge National Laboratory; Savannah River Plant; and UNC Nuclear Industries, Inc. The information is divided into five sections: isotope suppliers, facility contacts, and isotopes or services supplied; lists of customers, suppliers and isotopes purchased; list of isotopes purchased cross-referenced to customer codes; geographic locations of radioisotope customers; and radioisotope sales and transfers - FY 1983

  10. List of DOE radioisotope customers with summary of radioisotope shipments, FY 1986

    International Nuclear Information System (INIS)

    Lamar, D.A.

    1987-10-01

    This document describes radioisotope distribution from DOE facilities to private firms including foreign and other DOE facilities. The information is divided into five sections: (1)isotope suppliers, facility contact, and isotopes or services supplied; (2) customers, suppliers, and isotopes purchased; (3) isotopes purchased cross-referenced with customer numbers; (4) geographic locations of radioisotope customers; and (5) radioisotope sales and transfers for fiscal year 1986

  11. List of DOE radioisotope customers with summary of radioisotope shipments, FY 1984

    Energy Technology Data Exchange (ETDEWEB)

    Baker, D.A.

    1985-08-01

    This edition of the radioisotope customer list was prepared at the request of the Office of Health and Environmental Research (ER-73), Office of Energy Research, Department of Energy (DOE). This document describes radioisotope distribution from DOE facilities to private firms including foreign and other DOE facilities. The information is divided into five sections: (1) isotope suppliers, facility contacts, and isotopes or services supplied; (2) customers, suppliers, and isotopes purchased; (3) isotopes purchased cross-referenced with customer numbers; (4) geographic locations of radioisotope customers; and (5) radioisotope sales and transfers - FY 1984.

  12. List of DOE radioisotope customers with summary of radioisotope shipments, FY 1984

    International Nuclear Information System (INIS)

    Baker, D.A.

    1985-08-01

    This edition of the radioisotope customer list was prepared at the request of the Office of Health and Environmental Research (ER-73), Office of Energy Research, Department of Energy (DOE). This document describes radioisotope distribution from DOE facilities to private firms including foreign and other DOE facilities. The information is divided into five sections: (1) isotope suppliers, facility contacts, and isotopes or services supplied; (2) customers, suppliers, and isotopes purchased; (3) isotopes purchased cross-referenced with customer numbers; (4) geographic locations of radioisotope customers; and (5) radioisotope sales and transfers - FY 1984

  13. Radioisotopes: problems of responsibility arising from medicine

    International Nuclear Information System (INIS)

    Dupon, Michel.

    1978-09-01

    Radioisotopes have brought about great progress in the battle against illnesses of mainly tumoral origin, whether in diagnosis (nuclear medicine) or in treatment (medical radiotherapy). They are important enough therefore to warrant investigation. Such a study is attempted here, with special emphasis, at a time when medical responsibility proceedings are being taken more and more often on the medicolegal problems arising from their medical use. It is hoped that this study on medical responsibility in the use of radioisotopes will have shown: that the use of radioisotopes for either diagnosis or therapy constitutes a major banch of medicine; that this importance implies an awareness by the practitioner of a vast responsibility, especially in law where legislation to ensure protection as strict as in the field of ionizing radiations is lacking. The civil responsibility of doctors who use radioisotopes remains to be defined, since for want of adequate jurisprudence we are reduced to hypotheses based on general principles [fr

  14. Radioisotope production at PUSPATI - five year programme

    International Nuclear Information System (INIS)

    Yusof Azuddin Ali; Abdul Rahman Mohamad Ali.

    1983-01-01

    Most of the basic laboratory facilities for radioisotopes production at PUSPATI will be commissioned by September 1983. Work on setting up of production and dispensing facilities is in progress as the nuclides being worked on are those that are commonly used in medical applications, such as Tc-99m, I-131, P-32 and other nuclides such as Na-24 and K-42. Kits for compounds labelled with Tc-99m such as Stannous Pyrophosphate, Sulfur Colloid and Stannous Glucoheptonate are being prepared. The irradiation facilities available now for radioisotope production at the PUSPATI TRIGA Reactor include a central thimble (flux density 1 x 10 13 n.cm -2 S -1 ) and a rotary specimen rack (flux density 0.2 x 10 13 n.cm -1 S -1 ). Irradiation schedules and target handling techniqes are discussed. Plans for radioisotope production at PUSPATI over the period of 1983-1987, based on present demand for radioisotope, are also explained. (author)

  15. Practical applications of short-lived radioisotopes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1963-01-15

    The advantages of the use of short-lived radioisotopes in agriculture, food industry and medicine as well as some industrial uses are discussed. Methods for isotope production in small research reactors and laboratories are presented

  16. Development of a cone-geometry positron moderator

    International Nuclear Information System (INIS)

    Lynn, K.G.; Gramsch, E.; Usmar, S.G.; Sferlazzo, P.

    1989-01-01

    Results are presented on a new cone-shaped positron moderator which shows a high moderator efficiency (i.e., conversion of beta decay to emitted slow positrons). The moderator efficiencies for the cone moderators studied were found to be up to 0.14% compared to thin-foil measurements of 0.06% in the same experimental system including identical source and holder. These moderators are rugged and easily fabricated, however, they have a lower brightness than single-crystal foil moderators. Comparison of various geometries is presented as well as suggestions for further improvements to increase the total efficiencies

  17. Observation of the undulator radiation from the positron beam

    International Nuclear Information System (INIS)

    Maezawa, Hideki.

    1986-02-01

    A spectral measurement of the 1st harmonic of the undulator radiation emitted from positron beam was made on Dec. 21, 1985 during a test operation of the Photon Factory storage ring with the 2.5 GeV positron beam which was stored up to 5.5 mA. In comparison to the same measurement performed with the electron beam, no appreciable difference in the spectral properties of the undulator radiation was found between the two cases under the condition of the low beam current of a few mA. (author)

  18. Positron Emission Tomography Particle tracking using cluster analysis

    International Nuclear Information System (INIS)

    Gundogdu, O.

    2004-01-01

    Positron Emission Particle Tracking was successfully used in a wide range of industrial applications. This technique primarily uses a single positron emitting tracer particle. However, using multiple particles would provide more comparative information about the physical processes taking place in a system such as mixing or fluidised beds. In this paper, a unique method that enables us to track more than one particle is presented. This method is based on the midpoint of the closest distance between two trajectories or coincidence vectors. The technique presented in this paper employs a clustering method

  19. Positron Emission Tomography Particle tracking using cluster analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gundogdu, O. [University of Birmingham, School of Physics and Astronomy, Birmingham, B15 2TT (United Kingdom)]. E-mail: o.gundogdu@surrey.ac.uk

    2004-12-01

    Positron Emission Particle Tracking was successfully used in a wide range of industrial applications. This technique primarily uses a single positron emitting tracer particle. However, using multiple particles would provide more comparative information about the physical processes taking place in a system such as mixing or fluidised beds. In this paper, a unique method that enables us to track more than one particle is presented. This method is based on the midpoint of the closest distance between two trajectories or coincidence vectors. The technique presented in this paper employs a clustering method.

  20. Production of radioisotopes with BR2 facilities

    International Nuclear Information System (INIS)

    Fallais, C.J.; Morel de Westfaver, A.; Heeren, L.; Baugnet, J.M.; Gandolfo, J.M.; Boeykens, W.

    1978-01-01

    After a brief account on the isotopes production evolution in the industrialized countries the irradiation devices and the types of standardized capsules used in the BR2 reactor are described as well as the thermal neutron flux. Production of most important radioisotopes like 131 Iodine, 60 Cobalt, 192 Iridium and 99 Molybdenum and their main utilizations (uses)are described. The mean specific activities and the limit of use for different radioisotopes are reported. (A.F.)

  1. Advanced Radioisotope Power Systems Segmented Thermoelectric Research

    Science.gov (United States)

    Caillat, Thierry

    2004-01-01

    Flight times are long; - Need power systems with >15 years life. Mass is at an absolute premium; - Need power systems with high specific power and scalability. 3 orders of magnitude reduction in solar irradiance from Earth to Pluto. Nuclear power sources preferable. The Overall objective is to develop low mass, high efficiency, low-cost Advanced Radioisotope Power System with double the Specific Power and Efficiency over state-of-the-art Radioisotope Thermoelectric Generators (RTGs).

  2. Studies on application of radiation and radioisotopes

    International Nuclear Information System (INIS)

    Kim, Jae Rok; Lee, Ji Bok; Lee, Yeong Iil; Jin, Joon Ha; Beon, Myeong Uh; Park, Kyeong Bae; Han, Heon Soo; Jeong, Yong Sam; Uh, Jong Seop; Kang, Kyeong Cheol; Cho, Han Ok; Song, Hui Seop; Yoon, Byeong Mok; Jeon, Byeong Jin; Park, Hong Sik; Kim, Jae Seong; Jeong, Un Soo; Baek, Sam Tae; Cho, Seong Won; Jeon, Yeong Keon; Kim, Joon Yeon; Kwon, Joong Ho; Kim, Ki Yeop; Yang, Jae Seung; No, Yeong Chang; Lee, Yeong Keun; Shin, Byeong Cheol; Park, Sang Joon; Hong, Kwang Pyo; Cho, Seung Yeon; Kang, Iil Joon; Cho, Seong Ki; Jeong, Yeong Joo; Park, Chun Deuk; Lee, Yeong Koo; Seo, Chun Ha; Han, Kwang Hui; Shin, Hyeon Young; Kim, Jong Kuk; Park, Soon Chul; Shin, In Cheol; Lee, Sang Jae; Lee, Ki Un; Lim, Yong Taek; Park, Eung Uh; Kim, Dong Soo; Jeon, Sang Soo

    1993-05-01

    With the completion of construction of KMRR, the facility and technology of radiation application will be greatly improved. This study was performed as follows; (1) Studies on the production and application of radioisotopes. (2) The development of radiation processing technology. (3) The application of Irradiation techniques for food preservation and process improvement. (4) Studies on the radiation application for the development of genetic resources (5) Development of the radioisotope (RI) production facilities for Korea Multipurpose Research Reactor (KMRR)

  3. Technical diagnosis of industrial plants with radioisotopes

    International Nuclear Information System (INIS)

    Hartmann, G.

    1984-01-01

    A survey is given of the application of radioisotopes in technical diagnosis of industrial plants. Proceeding from the economic importance and the state of the art of radioisotope applications, the principles of tracer techniques are outlined including topical examples of application such as passage of coal through a steam generator, wear in impact crashing of coal, wear and corrosion in pipelines, testing the effective cross section of pipes, and investigations of microstructures. Limits and restrictions of applications are briefly discussed

  4. Radioisotope applications in petroleum and gas industries

    International Nuclear Information System (INIS)

    Castagnet, A.C.; Agudo, E.G.; Duarte, U.

    1974-01-01

    The principal radioisotopic technique used for studying and /or controling the drilling, completion, treatment and oil well secondary recovery operations are described. In this cases the radioisotopes are employed almost exclusively as 'markers', in the form of localized and dispersed tracers. The growing acceptance of these techniques is essentially, a consequence of the confidence in the reliability of the data and conclusions derived from their application

  5. Cost-benefit aspects of radioisotope methods

    International Nuclear Information System (INIS)

    Jankowski, L.

    1986-01-01

    The cost-benefit relations in the complex application of radioisotpe techniques increased in the last years to up to 1/10 to 1/15. The most essential cause of this trend is the increase of the capacity of production processes, controlled and automatized by means of radioisotopes, and the solution of qualitatively new technological problems of a high economic relevance. A collection of statistical data about the expediture and benefit of different radioisotopes techniques is presented. (author)

  6. Radioisotope tracers in industrial flow studies

    International Nuclear Information System (INIS)

    Easey, J.F.

    1987-01-01

    The scope of radioisotope tracer work carried out by ANSTO has involved most sectors of Australian industry including iron and steel coal, chemical, petrochemical, natural gas, metallurgical, mineral, power generation, liquified air plant, as well as port authorities, water and sewerage instrumentalities, and environmental agencies. A major class of such studies concerns itself with flow and wear studies involving industrial equipment. Some examples are discussed which illustrate the utility of radioisotope tracer techniques in these applications

  7. Positron studies in catalysis research

    International Nuclear Information System (INIS)

    1994-01-01

    During the past eight months, the authors have made progress in several areas relevant to the eventual use of positron techniques in catalysis research. They have come closer to the completion of their positron microscope, and at the same time have performed several studies in their non-microscopic positron spectrometer which should ultimately be applicable to catalysis. The current status of the efforts in each of these areas is summarized in the following sections: Construction of the positron microscope (optical element construction, data collection software, and electronic sub-assemblies); Doppler broadening spectroscopy of metal silicide; Positron lifetime spectroscopy of glassy polymers; and Positron lifetime measurements of pore-sizes in zeolites

  8. Medical Radioisotopes Production Without A Nuclear Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Van der Keur, H.

    2010-05-15

    This report is answering the key question: Is it possible to ban the use of research reactors for the production of medical radioisotopes? Chapter 2 offers a summarized overview on the history of nuclear medicine. Chapter 3 gives an overview of the basic principles and understandings of nuclear medicine. The production of radioisotopes and its use in radiopharmaceuticals as a tracer for imaging particular parts of the inside of the human body (diagnosis) or as an agent in radiotherapy. Chapter 4 lists the use of popular medical radioisotopes used in nuclear imaging techniques and radiotherapy. Chapter 5 analyses reactor-based radioisotopes that can be produced by particle accelerators on commercial scale, other alternatives and the advantages of the cyclotron. Chapter 6 gives an overview of recent developments and prospects in worldwide radioisotopes production. Chapter 7 presents discussion, conclusions and recommendations, and is answering the abovementioned key question of this report: Is it possible to ban the use of a nuclear reactor for the production of radiopharmaceuticals? Is a safe and secure production of radioisotopes possible?.

  9. Early radioisotope uses in Mexico

    International Nuclear Information System (INIS)

    Segovia, N.; Tejera, A.; Bulbulian, S.; Palma, F.

    1991-10-01

    Mexico is traditionally a mining country and the first information about the presence of uranium is related to mine exploitation. Around 1945 when uranium became economically important, a rumor had spread that large amounts of black ceramics from Oaxaca were being purchased and sent abroad because of its assumed high uranium content. It was only in 1949 when minerals containing thorium and uranium were declared by law as 'National Reserves'. In those years a radium emanation plant was installed at the 'Hospital General' in Mexico City with the main purpose of carrying out radon seed implantation in tumors. In the fifties a radium dial painting facility was operating in the city of Toluca some 70 km from Mexico City. In 1955, when the National Commission of Nuclear Energy (CNEN) was founded by a government decree, two main activities were in sight: a training program on 'Radioisotope Techniques and Nuclear Instrumentation' and the creation of specialized laboratories. In this paper a general description of these events and undertakings spanning the decades 1940 to 1970 is given. (Author)

  10. Radioisotopes In Animal Production Research

    International Nuclear Information System (INIS)

    Eduvie, L.O.

    1994-05-01

    Animal productivity may be measured among others, in terms of two important physiological processes of reproduction and growth each of which involves a number of integrated disciplines. Both physiological processes are controlled by interactions of genotype and environment. Reproduction essentially involves complex physiological processes controlled by secretions of endocrine glands known as hormones. On the other hand growth is determined largely by availabilty of essential nutrients. In order to achieve good reproductive and growth rates adequate and constant nutrition for livestock include pasture, cereals, tubers and their by-products as well as industrial by-products. While reproduction is essential to provide the required number and replacement of livestock, growth guarantees availability of meat. Another aspect of livestock production is disease control. An animal needs a good health to adequately express its genetic make up and utilize available nutrition. Research in animal production is aimed at improving all aspects of productivity of livestock which include reproduction, growth, milk production, egg production, good semen etc. of livestock. In order to achieve this an understanding of the biochemical and physiological processes occurring in the animal itself, and in the feedstuff fed to the animal as well as the aetiology and control of diseases affecting the animal among other factors, is desirable. A number of methods of investigation have evolved with time. These include colorimetry, spectrophotometry, chromatography, microscopy and raidoisotopic tracer methods. While most of these methods are cumbersome and use equipment with low precision, radioisotopic tracer methods utilize equipment with relatively high precision

  11. Artificial radioisotopes in food chains

    International Nuclear Information System (INIS)

    Binnerts, W.T.; Faber, K.; Klijn, N.; Lemmens, C.; Wissink, M.

    1986-01-01

    Use of uranium for nuclear fission involves the risk of environmental contamination by radiation during the processes of mining, concentration, peaceful and military application and storage, reprocessing and waste disposal. Three of the most dangerous radioisotopes have been followed here as they move through four different food chains. The main bottlenecks for fast and massive transfer are for 131 I its rather short half life, for 137 Cs the defective plant uptake from soil (and much less so also the pathway through the animal body), and for 90 Sr its discrimination relative to calcium in several transport processes in the animal body, and its preference for the bone mass. Hence it is often of advantage for man to use animals as an additional food chain. Known exceptions are discussed: the reindeer and karibou living entirely on lichens during the winter and thereby acquiring for 137 Cs nearly identical specific activity as plant food, and cow's milk for iodine during a short period after contamination. 15 refs.; 1 figure; 4 tabs

  12. Development of radioisotope tracer technology

    International Nuclear Information System (INIS)

    Jin, Joon Ha; Lee, Myun Joo; Jung, Sung Hee; Park, Soon Chul; Lim, Dong Soon; Kim, Jae Ho; Lee, Jae Choon; Lee, Doo Sung; Cho, Yong Suk; Shin, Sung Kuan

    2000-04-01

    The purpose of this study is to develop the radioisotope tracer technology, which can be used in solving industrial and environmental problems and to build a strong tracer group to support the local industries. In relation to the tracer technology in 1999, experiments to estimate the efficiencies of a sludge digester of a waste water treatment plant and a submerged biological reactor of a dye industry were conducted. As a result, the tracer technology for optimization of facilities related to wastewater treatment has been developed and is believed to contribute to improve their operation efficiency. The quantification of the experimental result was attempted to improve the confidence of tracer technology by ECRIN program which basically uses the MCNP simulation principle. Using thin layer activation technique, wear of tappet shim was estimated. Thin layer surface of a tappet shim was irradiated by proton beam and the correlation between the measured activity loss and the amount of wear was established. The equipment was developed to adjust the energy of proton which collides with the surface of tappet. The tracer project team has participated into the tracer test for estimating the efficiency of RFCC system in SK cooperation. From the experiment the tracer team has obtained the primary elements to be considered for judging the efficiency of RFCC unit. By developing the tracer techniques to test huge industrial units like RFCC, the tracer team will be able to support the local industries that require technical services to solve any urgent trouble. (author)

  13. Early radioisotope uses in Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Segovia, N; Tejera, A; Bulbulian, S; Palma, F

    1991-10-15

    Mexico is traditionally a mining country and the first information about the presence of uranium is related to mine exploitation. Around 1945 when uranium became economically important, a rumor had spread that large amounts of black ceramics from Oaxaca were being purchased and sent abroad because of its assumed high uranium content. It was only in 1949 when minerals containing thorium and uranium were declared by law as 'National Reserves'. In those years a radium emanation plant was installed at the 'Hospital General' in Mexico City with the main purpose of carrying out radon seed implantation in tumors. In the fifties a radium dial painting facility was operating in the city of Toluca some 70 km from Mexico City. In 1955, when the National Commission of Nuclear Energy (CNEN) was founded by a government decree, two main activities were in sight: a training program on 'Radioisotope Techniques and Nuclear Instrumentation' and the creation of specialized laboratories. In this paper a general description of these events and undertakings spanning the decades 1940 to 1970 is given. (Author)

  14. Probing the positron moderation process using high-intensity, highly polarized slow-positron beams

    Science.gov (United States)

    Van House, J.; Zitzewitz, P. W.

    1984-01-01

    A highly polarized (P = 0.48 + or - 0.02) intense (500,000/sec) beam of 'slow' (Delta E = about 2 eV) positrons (e+) is generated, and it is shown that it is possible to achieve polarization as high as P = 0.69 + or - 0.04 with reduced intensity. The measured polarization of the slow e+ emitted by five different positron moderators showed no dependence on the moderator atomic number (Z). It is concluded that only source positrons with final kinetic energy below 17 keV contribute to the slow-e+ beam, in disagreement with recent yield functions derived from low-energy measurements. Measurements of polarization and yield with absorbers of different Z between the source and moderator show the effects of the energy and angular distributions of the source positrons on P. The depolarization of fast e+ transmitted through high-Z absorbers has been measured. Applications of polarized slow-e+ beams are discussed.

  15. First image from a combined positron emission tomography and field-cycled MRI system.

    Science.gov (United States)

    Bindseil, Geron A; Gilbert, Kyle M; Scholl, Timothy J; Handler, William B; Chronik, Blaine A

    2011-07-01

    Combining positron emission tomography and MRI modalities typically requires using either conventional MRI with a MR-compatible positron emission tomography system or a modified MR system with conventional positron emission tomography. A feature of field-cycled MRI is that all magnetic fields can be turned off rapidly, enabling the use of conventional positron emission tomography detectors based on photomultiplier tubes. In this demonstration, two photomultiplier tube-based positron emission tomography detectors were integrated with a field-cycled MRI system (0.3 T/4 MHz) by placing them into a 9-cm axial gap. A positron emission tomography-MRI phantom consisting of a triangular arrangement of positron-emitting point sources embedded in an onion was imaged in a repeating interleaved sequence of ∼1 sec MRI then 1 sec positron emission tomography. The first multimodality images from the combined positron emission tomography and field-cycled MRI system show no additional artifacts due to interaction between the systems and demonstrate the potential of this approach to combining positron emission tomography and MRI. Copyright © 2010 Wiley-Liss, Inc.

  16. Characterization of a transmission positron/positronium converter for antihydrogen production

    Science.gov (United States)

    Aghion, S.; Amsler, C.; Ariga, T.; Bonomi, G.; Brusa, R. S.; Caccia, M.; Caravita, R.; Castelli, F.; Cerchiari, G.; Comparat, D.; Consolati, G.; Demetrio, A.; Di Noto, L.; Doser, M.; Ereditato, A.; Evans, C.; Ferragut, R.; Fesel, J.; Fontana, A.; Gerber, S.; Giammarchi, M.; Gligorova, A.; Guatieri, F.; Haider, S.; Hinterberger, A.; Holmestad, H.; Kellerbauer, A.; Krasnický, D.; Lagomarsino, V.; Lansonneur, P.; Lebrun, P.; Malbrunot, C.; Mariazzi, S.; Matveev, V.; Mazzotta, Z.; Müller, S. R.; Nebbia, G.; Nedelec, P.; Oberthaler, M.; Pacifico, N.; Pagano, D.; Penasa, L.; Petracek, V.; Povolo, L.; Prelz, F.; Prevedelli, M.; Ravelli, L.; Resch, L.; Rienäcker, B.; Robert, J.; Røhne, O. M.; Rotondi, A.; Sacerdoti, M.; Sandaker, H.; Santoro, R.; Scampoli, P.; Simon, M.; Smestad, L.; Sorrentino, F.; Testera, G.; Tietje, I. C.; Widmann, E.; Yzombard, P.; Zimmer, C.; Zmeskal, J.; Zurlo, N.; Andersen, S. L.; Chevallier, J.; Uggerhøj, U. I.; Lyckegaard, F.

    2017-09-01

    In this work a characterization study of forward emission from a thin, meso-structured silica positron/positronium (Ps) converter following implantation of positrons in light of possible antihydrogen production is presented. The target consisted of a ∼1 μm thick ultraporous silica film e-gun evaporated onto a 20 nm carbon foil. The Ps formation and emission was studied via Single Shot Positron Annihilation Lifetime Spectroscopy measurements after implantation of pulses with 3 - 4 ·107 positrons and 10 ns temporal width. The forward emission of implanted positrons and secondary electrons was investigated with a micro-channel plate - phosphor screen assembly, connected either to a CCD camera for imaging of the impinging particles, or to a fast photomultiplier tube to extract information about their time of flight. The maximum Ps formation fraction was estimated to be ∼10%. At least 10% of the positrons implanted with an energy of 3.3 keV are forward-emitted with a scattering angle smaller than 50° and maximum kinetic energy of 1.2 keV. At least 0.1-0.2 secondary electrons per implanted positron were also found to be forward-emitted with a kinetic energy of a few eV. The possible application of this kind of positron/positronium converter for antihydrogen production is discussed.

  17. Digital positron annihilation spectrometer

    International Nuclear Information System (INIS)

    Cheng Bin; Weng Huimin; Han Rongdian; Ye Bangjiao

    2010-01-01

    With the high speed development of digital signal process, the technique of the digitization and processing of signals was applied in the domain of a broad class of nuclear technique. The development of digital positron lifetime spectrometer (DPLS) is more promising than the conventional positron lifetime spectrometer equipped with nuclear instrument modules. And digital lifetime spectrometer has many advantages, such as low noise, long term stability, flexible online or offline digital processing, simple setup, low expense, easy to setting, and more physical information. Digital constant fraction discrimination is for timing. And a new method of optimizing energy windows setting for digital positron lifetime spectrometer is also developed employing the simulated annealing for the convenient use. The time resolution is 220ps and the count rate is 200cps. (authors)

  18. 50 years of positrons

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    This year marks the 50th anniversary of one of the major landmarks of modern physics - the discovery of the positron, the antimatter counterpart of the electron. This provided the first evidence for antimatter, and it was also unprecedented for the existence of a new particle to have been predicted by theory. The positron and the concepts behind it were to radically change our picture of Nature. It led to the rapid advancement or our understanding, culminating some fifteen years later with the formulation of quantum electrodynamics as we now know it. (orig./HSI).

  19. The MEG positron spectrometer

    International Nuclear Information System (INIS)

    Nishiguchi, Hajime

    2007-01-01

    We have been developing an innovative spectrometer for the MEG experiment at the Paul Scherrer Institute (PSI) in Switzerland. This experiment searches for a lepton flavour violating decay μ + →e + γ with a sensitivity of 10 -13 in order to explore the region predicted by supersymmetric extensions of the standard model. The MEG positron spectrometer consists of a specially designed superconducting solenoidal magnet with a highly graded field, an ultimate low-mass drift chamber system, and a precise time measuring counter system. This innovative positron spectrometer is described here focusing on the drift chamber system

  20. Angular correlation in positron annihilation

    International Nuclear Information System (INIS)

    Arponen, J.; Pajanne, E.

    1978-01-01

    The angular correlation of the two gamma quanta emitted when a thermalized positron annihilates with metallic conduction electrons is investigated by applying the newly developed theory of electron gas as a system of interacting collective excitations. The method leads in a natural way to the appearance of high-momentum components (i.e. pair momentum p>psub(F) in the annihilation radiation already in the case of annihilation with conduction electrons only. The amount of these components is significant approximately (10 %) in a dilute electron gas (like alkali metals), but fairly irrelevant for higher densities. The momentum-dependence of the enhancement factor for a dense system (with rsub(s) approximately equal to 2) agrees well both with the earlier theories due to Kahana and others, and also with recent accurate experimental observations. As rsub(s) increases into the alkali-metal region, the enhancement factor for p< psub(F) becomes relatively more and more constant, in contrast with the trend in the Kahana theory. In this density regime the experimental results seem to vary widely, although most of them desagree with the present prediction. We discuss the possible discrepancy and try to account for the effects of the core annihilation by a simple model. (author)

  1. What can radioisotopes do for man? Medicine and biology

    International Nuclear Information System (INIS)

    Knisele, R.M.

    1974-01-01

    This year marks the 40th anniversary of the first use of man-made radioactive isotopes for medical purposes. In 1934, the first working cyclotron at the University of California had produced small amounts of radioactive phosphorus, iodine, and sodium; but widespread applications appeared only after the second world war when nuclear reactors began making large amounts of radioisotopes, and new detectors and electronic equipment emerged for measuring the radiation that they emit. To exploit isotopes in biology and medicine, workers use the unique properties of radioactive decay, whereby energy is released in the form of nuclear particles such as electrons, or electromagnetic radiations such as gamma rays. Because the emissions can be detected with great sensitivity and measured with precision, harmlessly small quantities can be administered to delineate organs or tumors, or to measure bodily function or cellular metabolic processes. The destructive potential of the emitted energy must always be reckoned with, and the doses kept to a safe, low level. Yet this same energy can be exploited when a destructive effect is desired. (author)

  2. Radioisotope Production for Medical and Physics Applications

    Science.gov (United States)

    Mausner, Leonard

    2012-10-01

    Radioisotopes are critical to the science and technology base of the US. Discoveries and applications made as a result of the availability of radioisotopes span widely from medicine, biology, physics, chemistry and homeland security. The clinical use of radioisotopes for medical diagnosis is the largest sector of use, with about 16 million procedures a year in the US. The use of ^99Mo/^99mTc generator and ^18F make up the majority, but ^201Tl, ^123I, ^111In, and ^67Ga are also used routinely to perform imaging of organ function. Application of radioisotopes for therapy is dominated by use of ^131I for thyroid malignancies, ^90Y for some solid tumors, and ^89Sr for bone cancer, but production of several more exotic species such as ^225Ac and ^211At are of significant current research interest. In physics ^225Ra is of interest for CP violation studies, and the actinides ^242Am, ^249Bk, and ^254Es are needed as targets for experiments to create superheavy elements. Large amounts of ^252Cf are needed as a fission source for the CARIBU experiment at ANL. The process of radioisotope production is multidisciplinary. Nuclear physics input based on nuclear reaction excitation function data is needed to choose an optimum target/projectile in order to maximize desired isotope production and minimize unwanted byproducts. Mechanical engineering is needed to address issues of target heating, induced mechanical stress and material compatibility of target and claddings. Radiochemists are involved as well since chemical separation to purify the desired final radioisotope product from the bulk target and impurities is also usually necessary. Most neutron rich species are produced at a few government and university reactors. Other radioisotopes are produced in cyclotrons in the commercial sector, university/hospital based facilities, and larger devices at the DOE labs. The landscape of US facilities, the techniques involved, and current supply challenges will be reviewed.

  3. LLNL pure positron plasma program

    International Nuclear Information System (INIS)

    Hartley, J.H.; Beck, B.R.; Cowan, T.E.; Howell, R.H.; McDonald, J.L.; Rohatgi, R.R.; Fajans, J.; Gopalan, R.

    1995-01-01

    Assembly and initial testing of the Positron Time-of-Flight Trap at the Lawrence Livermore National Laboratory (LLNL) Increase Pulsed Positron Facility has been completed. The goal of the project is to accumulate at high-density positron plasma in only a few seconds., in order to facilitate study that may require destructive diagnostics. To date, densities of at least 6 x 10 6 positrons per cm 3 have been achieved

  4. Positron annihilation near fractal surfaces

    International Nuclear Information System (INIS)

    Lung, C.W.; Deng, K.M.; Xiong, L.Y.

    1991-07-01

    A model for positron annihilation in the sub-surface region near a fractal surface is proposed. It is found that the power law relationship between the mean positron implantation depth and incident positron energy can be used to measure the fractal dimension of the fractal surface in materials. (author). 10 refs, 2 figs

  5. Modeling and prototyping of a flux concentrator for positron capture

    International Nuclear Information System (INIS)

    Liu, W.; Gai, W.; Wang, H.; Wong, T.

    2008-01-01

    An adiabatic matching device (AMD) generates a tapered high-strength magnetic field to capture positrons emitted from a positron target to a downstream accelerating structure. The AMD is a key component of a positron source and represents a technical challenge. The International Linear Collider collaboration is proposing to employ a pulsed, normal-conducting, flux-concentrator to generate a 5 Tesla initial magnetic field. The flux-concentrator structure itself and the interactions between the flux-concentrator and the external power supply circuits give rise to a nontrivial system. In this paper, we present a recently developed equivalent circuit model for a flux concentrator, along with the characteristics of a prototype fabricated for validating the model. Using the model, we can obtain the transient response of the pulsed magnetic field and the field profile. Calculations based on the model and the results of measurements made on the prototype are in good agreement.

  6. Physical design of the positron induced auger electron spectrometer

    International Nuclear Information System (INIS)

    Qin Xiubo; Jiang Xiaopan; Wang Ping; Yu Runsheng; Wang Baoyi; Wei Long

    2009-01-01

    Positron Annihilation Induced Auger Electron Spectroscopy (PAES) has several advantages over those excited by X-rays, high energy electrons or neutrons, such as excellent surface selectivity, high signal-to-noise ratio, low radiation damage,etc. A physical design of time of flight PAES (TOF-PAES) apparatus based on the Beijing Intense Slow Positron Beam (BIPB) is described in this paper. The positrons and electrons are transported in a 4 x 10 -3 T uniform magnetic field, and the gradient of magnetic field is designed to pluralize the Auger electrons emitted with 2π angle. The Auger electron energy is adjusted by a Faraday cage to optimize the energy resolution,which can be better than 2 eV. (authors)

  7. Radioisotopes production for applications on the health

    International Nuclear Information System (INIS)

    Monroy G, F.; Alanis M, J.

    2010-01-01

    In the Radioactive Materials Department of the Instituto Nacional de Investigaciones Nucleares (ININ) processes have been studied and developed for the radioisotopes production of interest in the medicine, research, industry and agriculture. In particular five new processes have been developed in the last 10 years by the group of the Radioactive Materials Research Laboratory to produce: 99 Mo/ 99m Tc and 188 W/ 188 Re generators, the radio lanthanides: 151 Pm, 147 Pm, 161 Tb, 166 Ho, 177 Lu, 131 I and the 32 P. All these radioisotopes are artificial and they can be produced in nuclear reactors and some of them in particle accelerators. The radioisotope generators are of particular interest, as those of 99 Mo/ 99m Tc and 188 W/ 188 Re presented in this work, because they are systems that allow to produce an artificial radioisotope of interest continually, in these cases the 99m Tc and the 188 Re, without the necessity of having a nuclear reactor or an particle accelerator. They are compact systems armored and sure perfectly of manipulating that, once the radioactive material has decayed, they do not present radiological risk some for the environment and the population. These systems are therefore of supreme utility in places where it is not had nuclear reactors or with a continuous radioisotope supply, due to their time of decaying, for its cost or for logistical problems in their supply, like it is the case of many hospital centers, of research or industries in our country. (Author)

  8. Radioisotope thermoelectric generators for implanted pacemakers

    Energy Technology Data Exchange (ETDEWEB)

    Pustovalov, A.A.; Bovin, A.V.; Fedorets, V.I.; Shapovalov, V.P.

    1986-08-01

    This paper discusses the development and application of long-life lithium batteries and the problems associated with miniature radioisotope thermoelectric generators (RITEG) with service lives of 10 years or longer. On eof the main problems encountered when devising a radioisotope heat source (RHS) for an RITEG is to obtain biomedical /sup 238/PuO/sub 2/ with a specific neutron yield of 3.10/sup 3/-4.10/sup 3/ (g /SUP ./ sec)/sup -1/, equivalent to metallic Pu 238, and with a content of gamma impurities sufficient to ensure a permissible exposure a permissible exposure does rate (EDR) of a mixture of neutron and gamma radiation. After carrying out the isotope exchange and purifying the initial sample of its gamma impurity elements, the authors obtain biomedical Pu 238 satisfying the indicated requirements king suitable for use in the power packs of medical devices. Taking the indicated specifications into account, the Ritm-1o and gamma radioisotope heat sources were designed, built, tested in models and under natural conditions, and then into production as radioisotope thermoelectric generators designed to power the electronic circuits of implanted pacemakers. The Ritm-MT and Gemma radioisotope thermoelectric generators described are basic units, which can be used as self-contained power supplies for electronic equipment with power requirements in the micromilliwatt range.

  9. Positron depth profiling

    International Nuclear Information System (INIS)

    Coleman, P.

    2001-01-01

    Wide-ranging studies of defects below the surface of semiconductor structures have been performed at the University of Bath, in collaboration with the University of Surrey Centre for Ion Beam Applications and with members of research teams at a number of UK universities. Positron implantation has been used in conjunction with other spectroscopies such as RBS-channeling and SIMS, and electrical characterisation methods. Research has ranged from the development of a positron-based technique to monitor the in situ annealing of near-surface open-volume defects to the provision of information on defects to comprehensive diagnostic investigations of specific device structures. We have studied Si primarily but not exclusively; e.g., we have investigated ion-implanted SiC and SiO 2 /GaAs structures. Of particular interest are the applications of positron annihilation spectroscopy to ion-implanted semiconductors, where by linking ion dose to vacancy-type defect concentration one can obtain information on ion dose and uniformity with a sensitivity not achievable by standard techniques. A compact, user-friendly positron beam system is currently being developed at Bath, in collaboration with SCRIBA, with the intention of application in an industrial environment. (orig.)

  10. Positron emission tomography

    International Nuclear Information System (INIS)

    Pavuk, M.

    2003-12-01

    The aim of this project is to provide a simple summary of new trends in positron emission tomography and its basic physical principles. It provides thereby compendious introduction of the trends of the present development in diagnostics using PET systems. A review of available literature was performed. (author)

  11. Cosmic-ray positron fraction measurement from 1 to 30 GeV with AMS-01

    CERN Document Server

    Aguilar, M; Allaby, James V; Alpat, B; Ambrosi, G; Anderhub, H; Ao, L; Arefev, A; Azzarello, P; Baldini, L; Basile, M; Barancourt, D; Barão, F; Barbier, G; Barreira, G; Battiston, R; Becker, R; Becker, U; Bellagamba, L; Bene, P; Berdugo, J; Berges, P; Bertucci, B; Biland, A; Blasko, S; Bölla, G; Boschini, M; Bourquin, M; Brocco, L; Bruni, G; Buénerd, M; Burger, J D; Burger, W J; Cai, X D; Camps, C; Cannarsa, P; Capell, M; Cardano, F; Casadei, D; Casaus, J; Castellini, G; Chang, Y H; Chen, H F; Chen, H S; Chen, Z G; Chernoplekov, N A; Tzi Hong Chiueh; Cho, K; Choi, M J; Choi, Y Y; Cindolo, F; Commichau, V; Contin, A; Cortina, E; Cristinziani, M; Dai, T S; Delgado, C; Difalco, S; Djambazov, L; D'Antone, I; Dong, Z R; Emonet, P; Engelberg, J; Eppling, F J; Eronen, T; Esposito, G; Extermann, P; Favier, Jean; Fiandrini, E; Fisher, P H; Flügge, G; Fouque, N; Galaktionov, Yu; Gast, H; Gervasi, M; Giusti, P; Grandi, D; Grimm, O; Gu, W Q; Hangarter, K; Hasan, A; Hermel, V; Hofer, H; Hungerford, W; Jongmanns, M; Karlamaa, K; Karpinski, W; Kenney, G; Kim, D H; Kim, G N; Kim, K S; Kim, M Y; Klimentov, A; Kossakowski, R; Kounine, A; Koutsenko, V F; Kraeber, M; Laborie, G; Laitinen, T; Lamanna, G; Lanciotti, E; Laurenti, G; Lebedev, A; Lechanoine-Leluc, C; Lee, M W; Lee, S C; Levi, G; Liu, C L; Liu, H T; Lu, G; Lü, Y S; Lübelsmeyer, K; Luckey, D; Lustermann, W; Maña, C; Margotti, A; Mayet, F; McNeil, R R; Meillon, B; Menichelli, M; Mihul, A; Mujunen, A; Oliva, A; Olzem, J; Palmonari, F; Park, H B; Park, W H; Pauluzzi, M; Pauss, F; Perrin, E; Pesci, A; Pevsner, A; Pilo, F; Pimenta, M; Plyaskin, V; Pozhidaev, V; Pohl, M; Produit, N; Rancoita, P G; Rapin, D; Raupach, F; Ren, D; Ren, Z; Ribordy, M; Richeux, J P; Riihonen, E; Ritakari, J; Ro, S; Röser, U; Rossin, C; Sagdeev, R; Santos, D; Sartorelli, G; Sbarra, C; Schael, S; Schultzvon Dratzig, A; Schwering, G; Seo, E S; Shin, J W; Shoumilov, E; Shoutko, V; Siedenburg, T; Siedling, R; Son, D; Song, T; Spinella, F; Steuer, M; Sun, G S; Suter, H; Tang, X W; Ting, Samuel C C; Ting, S M; Tornikoski, M; Torsti, J; Trumper, J; Ulbricht, J; Urpo, S; Valtonen, E; Vandenhirtz, J; Velikhov, E P; Verlaat, B; Vetlitskii, I; Vezzu, F; Vialle, J P; Viertel, G; Vite, D; Von Gunten, H; Waldmeier-Wicki, S; Wallraff, W; Wang, B C; Wang, J Z; Wiik, K; Williams, C; Wu, S X; Xia, P C; Xu, S; Yan, J L; Yan, L G; Yang, C G; Yang, J; Yang, M; Ye, S W; Xu, Z Z; Zhang, H Y; Zhang, Z P; Zhao, D X; Zhou, Y; Zhu, G Y; Zhu, W Z; Zhuang, H L; Zichichi, A; Zimmermann, B; Zuccon, P

    2007-01-01

    A measurement of the cosmic ray positron fraction e+/(e+ + e-) in the energy range of 1-30 GeV is presented. The measurement is based on data taken by the AMS-01 experiment during its 10 day Space Shuttle flight in June 1998. A proton background suppression on the order of 10^6 is reached by identifying converted bremsstrahlung photons emitted from positrons.

  12. Potentials of positron emission tomography for regional cerebral blood flow evaluation

    International Nuclear Information System (INIS)

    Depresseux, J.C.

    1982-01-01

    A general overview of the potentials of positron emission tomography and of positron-emitting radiopharmaceuticals for the evaluation of regional cerebral blood flow is proposed and discussed. Specific characteristics of this technique are described, with special stress on conceptual and methodological implications. Four different approaches to the problem of the determination of cerebral blood flow are distinguished: trapping equilibrium methods, steady state equilibrium methods, clearance methods and convoluted kinetic methods [fr

  13. Cosmic-ray positron fraction measurement from 1 to 30 GeV with AMS-01

    International Nuclear Information System (INIS)

    Aguilar, M.; Alcaraz, J.; Allaby, J.

    2007-01-01

    A measurement of the cosmic ray positron fraction e + /(e + +e - ) in the energy range of 1-30 GeV is presented. The measurement is based on data taken by the AMS-01 experiment during its 10 day Space Shuttle flight in June 1998. A proton background suppression on the order of 10 6 is reached by identifying converted bremsstrahlung photons emitted from positrons

  14. Annihilation of positrons with the electrons of chemical bonds of the superconducting CuO-polyhedrons in the HTSC materials

    International Nuclear Information System (INIS)

    Arutyunov, N.Yu.; Trashchakov, V.Yu.

    1989-01-01

    Angular distribution parameters of annihilation photon pairs emitted from R-Ba 2 Cu 3 O 7-x (x≤0.2; R=Y, Nd, Lu) specimens after injection and subsequent annihilation of positrons in them. It is shown that annihilation of thermalized positrons proceeds advantageously with electrons of chemical bonds of O(4)-Cu(I)-O(I) polyhedrons in R-Ba-Cu-O oxides. In an orthorhombic phase positrons are mostly delocalized in rows of ordered stoichiometric vacancies. The result obtained provides to recommend the methods of positron diagnostics for studying parameters of electron state density in superconducting structural groups of high-temperature superconductors. 2 refs.; 1 fig

  15. Positron effective mass in silicon

    International Nuclear Information System (INIS)

    Panda, B.K.; Shan, Y.Y.; Fung, S.; Beling, C.D.

    1995-01-01

    The positron effective mass in Si is obtained from the first-principles calculations along various crystallographic directions. The effect of electron-positron correlation on the band mass is examined in this work. A positron pseudopotential scheme is worked out to calculate the isotropic band mass without explicitly solving the band energy. The effective mass 1.46m obtained as a sum of band mass and the positron-plasmon interaction compares very well with 1.5m obtained from the positron mobility data

  16. High current pulsed positron microprobe

    International Nuclear Information System (INIS)

    Howell, R.H.; Stoeffl, W.; Kumar, A.; Sterne, P.A.; Cowan, T.E.; Hartley, J.

    1997-01-01

    We are developing a low energy, microscopically focused, pulsed positron beam for defect analysis by positron lifetime spectroscopy to provide a new defect analysis capability at the 10 10 e + s -l beam at the Lawrence Livermore National Laboratory electron linac. When completed, the pulsed positron microprobe will enable defect specific, 3-dimensional maps of defect concentrations with sub-micron resolution of defect location. By coupling these data with first principles calculations of defect specific positron lifetimes and positron implantation profiles we will both map the identity and concentration of defect distributions

  17. RADIOISOTOPE INVENTORY FOR TSPA-SR

    International Nuclear Information System (INIS)

    Leigh, C.; Rechard, R.

    2001-01-01

    The total system performance assessment for site recommendation (TSPA-SR), on Yucca Mountain, as a site (if suitable) for disposal of radioactive waste, consists of several models. The Waste Form Degradation Model (i.e, source term) of the TSPA-SR, in turn, consists of several components. The Inventory Component, discussed here, defines the inventory of 26 radioisotopes for three representative waste categories: (1) commercial spent nuclear fuel (CSNF), (2) US Department of Energy (DOE) spent nuclear fuel (DSNF), and (3) high-level waste (HLW). These three categories are contained and disposed of in two types of waste packages (WPs)--CSNF WPs and co-disposal WPs, with the latter containing both DSNF and HLW. Three topics are summarized in this paper: first, the transport of radioisotopes evaluated in the past; second, the development of the inventory for the two WP types; and third, the selection of the most important radioisotopes to track in TSPA-SR

  18. Diffusion of Implanted Radioisotopes in Solids

    CERN Multimedia

    2002-01-01

    Implantation of radioisotopes into metal and semiconductor samples is performed. The implanted isotope or its decay-product should have a half-life long enough for radiotracer diffusion experiments. Such radioisotopes are utilized to investigate basic diffusion properties in semiconductors and metals and to improve our understanding of the atomic mechanisms of diffusion. For suitably chosen systems the combination of on-line production and clean implantation of radioisotopes at the ISOLDE facility opens new possibilities for diffusion studies in solids. \\\\ \\\\ The investigations are concentrated on diffusion studies of $^{195}$Au in amorphous materials. The isotope $^{195}$Au was obtained from the mass 195 of the mercury beam. $^{195}$Hg decays into $^{195}$Au which is a very convenient isotope for diffusion experiments. \\\\ \\\\ It was found that $^{195}$Au is a slow diffusor in amorphous Co-Zr alloys, whereas Co is a fast diffusor in the same matrix. The ``asymmetry'' in the diffusion behaviour is of considerab...

  19. Safety regulations for radioisotopes, etc. (interim report)

    International Nuclear Information System (INIS)

    1980-01-01

    An (interim) report by an ad hoc expert committee to the Nuclear Safety Commission, on the safety regulations for radioisotopes, etc., was presented. For the utilization of radioisotopes, etc., there is the Law Concerning Prevention of Radiation Injury Due to Radioisotopes, etc. with the advances in this field and the improvement in international standards, the regulations by the law have been examined. After explaining the basic ideas of the regulations, the problems and countermeasures in the current regulations are described: legal system, rationalization in permission procedures and others, inspection on RI management, the system of the persons in charge of radiation handling, RI transport, low-level radioactive wastes, consumer goods, definitions of RIs, radiation and sealed sources, regulations by group partitioning, RI facilities, system of personnel exposure registration, entrusting of inspection, etc. to private firms, and reduction in the works for permission among governmental offices. (author)

  20. Measurement of positron reemission from thin single-crystal W(100) films

    International Nuclear Information System (INIS)

    Chen, D.M.; Lynn, K.G.; Pareja, R.; Nielsen, B.

    1985-01-01

    Epitaxial thin single-crystal (100) tungsten films 1000, 2500, and 5000 A thick have been fabricated by high-vacuum electron-beam evaporation. These films were subsequently used as thin-film moderators for the study of the positron-transmission-reemission process with a variable-energy (0--80 keV) monoenergetic positron beam in an ultrahigh-vacuum system. The films were shown to be routinely cleanable by heating first in oxygen (10 -6 Torr) and then in vacuum (10 -9 Torr). Transmission and back reemission of slow positrons from these surfaces was observed. The positron work function, phi/sub +/ has been determined to be approx. =3.0 eV ( +- 0.3 eV). The transmission slow positrons were emitted in a narrow cone with a full width at half maximum of approx. =30 0 consistent with the angular distribution of back-reemission positrons. The reemitted yields as a function of incident positron energy were found to be very different between forward reemission and back reemission. The maximum forward-reemission yields were 18% for 1000-A-thick W film and 12% for 2500-A-thick W film at 5 and 10 keV optimum incident positron energies, respectively. These results show that one can use thin single-crystal tungsten films as positron moderators or remoderators

  1. Simulation of the annihilation emission of galactic positrons; Modelisation de l'emission d'annihilation des positrons Galactiques

    Energy Technology Data Exchange (ETDEWEB)

    Gillard, W

    2008-01-15

    Positrons annihilate in the central region of our Galaxy. This has been known since the detection of a strong emission line centered on an energy of 511 keV in the direction of the Galactic center. This gamma-ray line is emitted during the annihilation of positrons with electrons from the interstellar medium. The spectrometer SPI, onboard the INTEGRAL observatory, performed spatial and spectral analyses of the positron annihilation emission. This thesis presents a study of the Galactic positron annihilation emission based on models of the different interactions undergone by positrons in the interstellar medium. The models are relied on our present knowledge of the properties of the interstellar medium in the Galactic bulge, where most of the positrons annihilate, and of the physics of positrons (production, propagation and annihilation processes). In order to obtain constraints on the positrons sources and physical characteristics of the annihilation medium, we compared the results of the models to measurements provided by the SPI spectrometer. (author)

  2. Applications of radioisotopes for studying refractory wear-out in Bhilai Steel Plant

    International Nuclear Information System (INIS)

    Dubey, R.S.; Bose, U.P.; Shipstone, A.J.

    1979-01-01

    In Bhilai Steel Plant, investigations were carried out to study the refractory wear-out of (i) hearth bottom of blast furnaces, (ii) roof of open hearth furnaces, and (iii) hot metal mixer lining, by using radioisotope tracer techniques with a view to evaluate the life of the refractory lining at various locations and to help in planning its timely hot and cold repairs. The life of the refractory lining has the effective bearing on the overall production and hence on the economy of the plant. The two radiometric methods employed for studying the erosion of the refractory lining, by using isotope inserted bricks at various positions without damaging the lining are (i) based on recording the penetration of gamma rays emitting from the radioactive isotopes inserted at definite points of the brick lining and, (ii) by detecting the radioactivity of the pig iron or steel arising due to washing away of the respective radioactive isotopes previously inserted in the lining. In hot mixers also radioisotope sources were placed in the critical location of refractory lining and the washing out of radioisotope due to refractory brick wear out was detected by radiogauging at site. It has been found that radiotracer technique with periodic radiogauging is very useful method for tracing the radioisotope source if more than one refractory brick with isotope is placed, as in the case of open hearth furnaces. The results of radioanalysis revealed that radioactivity coming alongwith hot metal steel has been far below the permissible limit of concentration i.e. 20 micro-curie per ton of metal. Further, during dismantling of the residual refractory lining of open hearth furnaces or hot metal mixers, bricks containing radioisotopes have been successfully retrieved for safe disposal. (auth.)

  3. Radioisotopes in non-destructive testing

    International Nuclear Information System (INIS)

    Domanus, J.C.

    1976-12-01

    After defining nondestructive testing (NDT) and comparing this concept with destructive testing, a short description is given of NDT methods other than radiologic. The basic concepts of radiologic methods are discussed and the principles of radiography are explained. Radiation sources and gamma radiography machines are next reviewed and radiographic inspection of weldings and castings is described. A brief description is given of the radiographic darkroom and accessories. Other radioisotope methods, such as neutron radiography, are shortly reviewed. Cost estimations for radioisotopic equipment conclude the report. (author)

  4. Random-process excursions in radioisotope instruments

    International Nuclear Information System (INIS)

    Galochkin, D.V.; Polovko, S.A.

    1984-01-01

    Approximate expressions are derived for the mathematical expectation, variance, and distribution of the durations of the excursions of the output signal from a ratemeter in a radioisotope relay instrument. The tabulated comparison of results from Monte Carlo simulation and analytical calculation shows good agreement over the mean value and the variance of the excursion duration for T 0.2 sec as calculated and as obtained by Monte Carlo simulation with a computer using 5000 realizations. It is suggested that the results should be used in choosing the optimum parameters of radioisotope relay instruments

  5. Industrial applications of radioisotope techniques in Poland

    International Nuclear Information System (INIS)

    Michalik, J.St.

    1985-01-01

    A general review of applications of radioisotope techniques in the Polish industry for about 25 years is given. The radiotracer methods used in metallurgy, hydrometallurgy, glass industry, oil and petroleum industries, in material testing and in other industries are described. Neutron activation analysis methods as well as nuclear gauges for industry (thickness meters, density meters, conveyer belt weigher, acid concentration meters and others) are also presented. The economic advantages of industrial applications of radioisotope techniques are described too. 42 refs., 43 figs., 11 tabs. (author)

  6. Radioisotopic control and automation of food mills

    International Nuclear Information System (INIS)

    Pertsovskij, E.S.; Sakharov, Eh.V.; Dolinin, V.A.

    1980-01-01

    Domestic and foreign experience in application of radioisotope devices to process control in fool industry, is described. The diagrams of devices to block and account the production in systems of process monitoring and control are considered. The methods of determining chemical composition of substances are discussed, as sell as the devices used for those purposes and based on recording β-and γ-radiation absorption by substance. The methods for determining dust and smoke content in premises using radioisotope devices. Level indicators, moisture gages and densitimeters usedf ctol level humidity, density and concentration of food products in the process of production are described [ru

  7. Thyroiditis: Radioisotope Scan Findings and Clinical Significance

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Chae; Han, Duck Sup; Park, Jung Suck; Kim, Se Jong; Park, Byung Lan; Kim, Byoung Geun [Kwangju Christian Hospital, Kwangju (Korea, Republic of)

    1991-07-15

    We analyzed Radioisotope scan findings of 46 patients of thyroiditis which were proven pathologically at K.C.H. The results were as follows 1) 45 patients were female, one was male and average age of patients was 37 years old. 2) The lesion site was predominant in both lobe (67%) Hashimoto's thyroiditis showed enlarged thyroid (85%) with cold nodule (20%), diffuse decreased activity (10%), while subacute thyroiditis was presented absent activity (53%), poor visualization (20%) or cold nodule (7%). 4) Radioisotope scan was valuable in evaluating function of thyroid gland and detection of lesion but there was a limit of pathological nature.

  8. Clinical evaluation of radioisotope examination in oncology

    Energy Technology Data Exchange (ETDEWEB)

    Yasukochi, H [National Konodai Hospital (Japan)

    1979-07-01

    Although many approaches are tried for the diagnoses of malignant tumor, radiological examinations act surely main parts. Among the radiological examinations, radioisotope techniques are not well evaluated instead of their usefulness in this field. The reason may depend on the complexity and difficulty in legal limitations, however, the lack of knowledge in this field is also a main reason. In this paper, the present status of the evaluation of radioisotope techniques is discussed in selected region of the body and some characteristic cases are demonstrated.

  9. Description of the intense, low energy, monoenergetic positron beam at Brookhaven

    International Nuclear Information System (INIS)

    Lynn, K.G.; Mills, A.P. Jr.; Roellig, L.O.; Weber, M.

    1985-01-01

    An intense (4 x 10 7 s -1 ), low energy (approx. =1.0 eV), monoenergetic (ΔE approx. = 75 MeV) beam of positrons has been built at the Brookhaven National Laboratory. This flux is more than 10 times greater than any existing beam from radioactive sources. Plans are underway to increase further the flux by more than an order of magnitude. The intense low energy positron beam is made by utilizing the High Flux Beam Reactor at Brookhaven to produce the isotope 64 Cu with an activity of 40 curies of positrons. Source moderation techniques are utilized to produce the low energy positron beam from the high energy positrons emitted from 64 Cu. 31 refs., 7 figs

  10. Positron emission computerized tomography: a potential tool for in vivo quantitation of the distribution of radiopharmaceuticals

    International Nuclear Information System (INIS)

    Huebner, K.F.; King, P.; Gibbs, W.D.; Washburn, L.C.; Hayes, R.L.

    1981-01-01

    The principles and some of the difficulties in quantitative positron emission computerized tomography have been discussed. We have shown that randoms and scattered events are a major cause of noise and counting errors in positron emission computerized tomography. The noise has been identified as a convoluting process and a mathematical solution has been presented. Examples of phantom studies and in vivo measurements have demonstrated that the distribution of positron emitting radiopharmaceuticals can be quantitated with much improved accuracy using the deconvolution equation to remove undesired noise

  11. List of DOE radioisotope customers with summary of radioisotope shipments, FY 1982

    International Nuclear Information System (INIS)

    Richards, M.P.

    1983-08-01

    The radioisotope production and distribution activities by facilities at Argonne National Laboratory, Pacific Northwest Laboratory, Brookhaven National Laboratory, Hanford Engineering Development Laboratory, Idaho Operations Office, Los Alamos Scientific Laboratory, Oak Ridge National Laboratory, Savannah River Laboratory, and UNC Nuclear Industries, Inc. are listed. The information is divided into five sections: isotope suppliers, facility, contacts, and isotopes or services supplied; alphabetical list of customers, and isotopes purchased; alphabetical list of isotopes cross-referenced to customs numbers; geographical location of radioisotope customers; and radioisotope sales and transfers-FY 1982

  12. Use of radioisotopes and nuclear methods in metallurgy

    International Nuclear Information System (INIS)

    Trehber, K.

    1976-01-01

    Some kinds of using radioisotope methods and instruments for regulation and control of metallurgical processes are reviewed. Computized data processing is described as well. The efficiency of industrial application of radioisotopes is remarked

  13. Calculation correlations for radioisotope level gages with relay tracing systems

    International Nuclear Information System (INIS)

    Krejndlin, I.I.; Pakhunkov, Yu.I.

    1978-01-01

    The interrelationship was examined between the operational and instrumental parameters of radioisotope tracking level indicators. The relationships were obtained permitting to check the reliability of the tracking regime, and also of the equilibrium state of the radioisotope tracking level indicator

  14. Development of accelerator-based γ-ray-induced positron annihilation spectroscopy technique

    International Nuclear Information System (INIS)

    Selim, F.A.; Wells, D.P.; Harmon, J. F.; Williams, J.

    2005-01-01

    Accelerator-based γ-ray-induced positron annihilation spectroscopy performs positron annihilation spectroscopy by utilizing MeV bremsstrahlung radiation generated from an accelerator (We have named the technique 'accelerator-based γ-ray-induced PAS', even though 'bremsstrahlung' is more correct here than 'γ rays'. The reason for that is to make the name of the technique more general, since PAS may be performed by utilizing MeV γ rays emitted from nuclei through the use of accelerators as described later in this article and as in the case of positron lifetime spectroscopy [F.A. Selim, D.P. Wells, and J.F. Harmon, Rev. Sci. Instrum. 76, 033905 (2005)].) instead of using positrons from radioactive sources or positron beams. MeV γ rays create positrons inside the materials by pair production. The induced positrons annihilate with the material electrons emitting a 511-keV annihilation radiation. Doppler broadening spectroscopy of the 511-keV radiation provides information about open-volume defects and plastic deformation in solids. The high penetration of MeV γ rays allows probing of defects at high depths in thick materials up to several centimeters, which is not possible with most of the current nondestructive techniques. In this article, a detailed description of the technique will be presented, including its benefits and limitations relative to the other nondestructive methods. Its application on the investigation of plastic deformation in thick steel alloys will be shown

  15. Electron-positron interactions

    International Nuclear Information System (INIS)

    Wiik, B.; Wolf, G.

    1979-01-01

    This book is an introduction into the physics of electron-positron interactions. After a description of electron-positron storage rings pure electromagnetic e + e - interactions, and the total cross section are considered. Then low energy processes, the production of the J/psi and psi' particles including their radiative decay as well as the search for other narrow vector states are described. Then after the quark model interpretation of J/psi and psi' charmed mesons, the heavy lepton t, and the upsilon resonances are described. Thereafter inclusive hadron production and jet formation is discussed. Finally the next generation of e + e - colliding rings is described, and the first results from PETRA are presented. This book is suited for all physicists, who want to get a general review about e + e - physics. (HSI) 891 HSI/HSI 892 RKD

  16. Tomography by positrons emission

    International Nuclear Information System (INIS)

    Mosconi, Sergio L.

    1999-01-01

    The tomography by positrons emission is a technology that allows to measure the concentration of positrons emission in a tri dimensional body through external measurements. Among the isotope emissions have carbon isotopes are ( 11 C), of the oxygen ( 15 O), of the nitrogen ( 13 N) that are three the element that constitute the base of the organic chemistry. Theses have on of the PET's most important advantages, since many biological interesting organic molecules can be tracer with these isotopes for the metabolism studies 'in vivo' through PET, without using organic tracers that modify the metabolism. The mentioned isotopes, also possess the characteristic of having short lifetime, that constitute on of PET's advantages from the dosimetric point of view. Among 11 C, 15 O, and 13 N, other isotopes that can be obtained of a generator as the 68 Ga and 82 Rb

  17. Positron emission tomography camera

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    A positron emission tomography camera having a plurality of detector rings positioned side-by-side or offset by one-half of the detector cross section around a patient area to detect radiation therefrom. Each ring contains a plurality of scintillation detectors which are positioned around an inner circumference with a septum ring extending inwardly from the inner circumference along each outer edge of each ring. An additional septum ring is positioned in the middle of each ring of detectors and parallel to the other septa rings, whereby the inward extent of all the septa rings may be reduced by one-half and the number of detectors required in each ring is reduced. The additional septa reduces the costs of the positron camera and improves its performance

  18. Positron emission tomography camera

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    A positron emission tomography camera having a plurality of detector rings positioned side-by-side or offset by one-half of the detector cross section around a patient area to detect radiation therefrom. Each detector ring or offset ring includes a plurality of photomultiplier tubes and a plurality of scintillation crystals are positioned relative to the photomultiplier tubes whereby each tube is responsive to more than one crystal. Each alternate crystal in the ring is offset by one-half or less of the thickness of the crystal such that the staggered crystals are seen by more than one photomultiplier tube. This sharing of crystals and photomultiplier tubes allows identification of the staggered crystal and the use of smaller detectors shared by larger photomultiplier tubes thereby requiring less photomultiplier tubes, creating more scanning slices, providing better data sampling, and reducing the cost of the camera. The offset detector ring geometry reduces the costs of the positron camera and improves its performance

  19. Microstructural probing of ferritic/martensitic steels using internal transmutation-based positron source

    Science.gov (United States)

    Krsjak, Vladimir; Dai, Yong

    2015-10-01

    This paper presents the use of an internal 44Ti/44Sc radioisotope source for a direct microstructural characterization of ferritic/martensitic (f/m) steels after irradiation in targets of spallation neutron sources. Gamma spectroscopy measurements show a production of ∼1MBq of 44Ti per 1 g of f/m steels irradiated at 1 dpa (displaced per atom) in the mixed proton-neutron spectrum at the Swiss spallation neutron source (SINQ). In the decay chain 44Ti → 44Sc → 44Ca, positrons are produced together with prompt gamma rays which enable the application of different positron annihilation spectroscopy (PAS) analyses, including lifetime and Doppler broadening spectroscopy. Due to the high production yield, long half-life and relatively high energy of positrons of 44Ti, this methodology opens up new potential for simple, effective and inexpensive characterization of radiation induced defects in f/m steels irradiated in a spallation target.

  20. Radiation emitting devices act

    International Nuclear Information System (INIS)

    1970-01-01

    This Act, entitled the Radiation Emitting Devices Act, is concerned with the sale and importation of radiation emitting devices. Laws relating to the sale, lease or import, labelling, advertising, packaging, safety standards and inspection of these devices are listed as well as penalties for any person who is convicted of breaking these laws

  1. Structure and manual of radioisotope-production data base, ISOP

    International Nuclear Information System (INIS)

    Hata, Kentaro; Terunuma, Kusuo

    1994-02-01

    We planned on collecting the information of radioisotope production which was obtained from research works and tasks at the Department of Radioisotopes in JAERI, and constructed a proto-type data base ISOP after discussion of the kinds and properties of the information available for radioisotope production. In this report the structure and the manual of ISOP are described. (author)

  2. Generation of monoenergetic positrons

    International Nuclear Information System (INIS)

    Hulett, L.D. Jr.; Dale, J.M.; Miller, P.D. Jr.; Moak, C.D.; Pendyala, S.; Triftshaeuser, W.; Howell, R.H.; Alvarez, R.A.

    1983-01-01

    Many experiments have been performed in the generation and application of monoenergetic positron beams using annealed tungsten moderators and fast sources of 58 Co, 22 Na, 11 C, and LINAC bremstrahlung. This paper will compare the degrees of success from our various approaches. Moderators made from both single crystal and polycrystal tungsten have been tried. Efforts to grow thin films of tungsten to be used as transmission moderators and brightness enhancement devices are in progress

  3. Positron emission tomography

    International Nuclear Information System (INIS)

    Marchenkov, N.S.

    2000-01-01

    The foundations of the positron emission tomography (PET), widely used for the medical diagnostics, are considered. The brief description of the cyclotron for production of radionuclides, applied in the PET, the target devices for manufacturing the position emitters, the moduli for the radiopharmaceuticals synthesis (RPS) for the PET is presented. The necessity and concept of complete automation of the RPS for the PET are discussed [ru

  4. Positrons as imaging agents and probes in nanotechnology

    International Nuclear Information System (INIS)

    Smith, Suzanne V

    2009-01-01

    Positron emission tomography (PET) tracks a positron emitting radiopharmaceutical injected into the body and generates a 3-dimensional image of its location. Introduced in the early 70s, it has now developed into a powerful medical diagnostic tool for routine clinical use as well as in drug development. Unrivalled as a highly sensitive, specific and non-invasive imaging tool, PET unfortunately lacks the resolution of Computer Tomography (CT) and Magnetic Resonance Imaging (MRI). As the resolution of PET depends significantly on the energy of the positron incorporated in the radiopharmaceutical and its interaction with its surrounding tissue, there is growing interest in expanding our understanding of how positrons interact at the atomic and molecular level. A better understanding of these interactions will contribute to improving the resolution of PET and assist in the design of better imaging agents. Positrons are also used in Positron Annihilation Lifetime Spectroscopy (PALS) to determine electron density and or presence and incidence of micro- and mesopores (0.1 to 10 nm) in materials. The control of porosity in engineered materials is crucial for applications such as controlled release or air and water resistant films. Equally important to the design of nano and microtechnologies, is our understanding of the microenvironments within these pores and on surfaces. Hence as radiopharmaceuticals are designed to track disease, nuclear probes (radioactive molecules) are synthesized to investigate the chemical properties within these pores. This article will give a brief overview of the present role of positrons in imaging as well as explore its potential to contribute in the engineering of new materials to the marketplace.

  5. Proposal for an intense slow positron beam facility at PSI

    International Nuclear Information System (INIS)

    Waeber, W.B.; Taqqu, D.; Zimmermann, U.; Solt, G.

    1990-05-01

    In the domain of condensed matter physics and materials sciences monoenergetic slow positrons in the form of highest intensity beams are demonstrated to be extreamly useful and considered to be highly needed. This conclusion has been reached and the scientific relevance of the positron probe has been highlighted at an international workshop in November 1989 at PSI, where the state of the art and the international situation on slow positron beams, the fields of application of intense beams and the technical possibilities at PSI for installing intense positron sources have been evaluated. The participants agreed that a high intensity beam as a large-scale user facility at PSI would serve fundamental and applied research. The analysis of responses given by numerous members of a widespread positron community has revealed a large research potential in the domain of solid-state physics, atomic physics and surface, thin-film and defect physics, for example. The excellent feature of slow positron beams to be a suitable probe also for lattice defects near surfaces or interfaces has attracted the interest not only of science but also of industry.In this report we propose the installation of an intense slow positron beam facility at PSI including various beam lines of different qualities and based on the Cyclotron production of β + emitting source material and on a highest efficiency moderation scheme which exceeds standard moderation efficiencies by two orders of magnitude. In its proposed form, the project is estimated to be realizable in the nineties and costs will amount to between 15 and 20 MSFr. (author) 10 figs., 6 tabs., 78 refs

  6. Alternative positron emission tomography with non-conventional positron emitters: effects of their physical properties on image quality and potential clinical applications

    International Nuclear Information System (INIS)

    Pagani, M.; Stone-Elander, S.; Larsson, S.A.

    1997-01-01

    The increasing amount of clinically relevant information obtained by positron emission tomography (PET), primarily with fluorine-18 labelled 2-deoxy-2-fluoro-d-glucose, has generated a demand for new routes for the widespread and cost-efficient use of positron-emitting radiopharmaceuticals. New dual-head single-photon emission tomography (SPET) cameras are being developed which offer coincidence detection with camera heads lacking a collimator or SPET imaging with specially designed collimators and additional photon shielding. Thus, not only satellite PET imaging units but also nuclear medicine units investing in these new SPET/PET systems need to examine all available alternatives for rational radionuclide supplies from host cyclotrons. This article examines 25 ''alternative'' positron-emitting radionuclides, discusses the impact of their decay properties on image quality and reviews methods for their production as well as for their application in imaging techniques. (orig.)

  7. List of DOE radioisotope customers with summary of radioisotope shipments, FY 1979

    International Nuclear Information System (INIS)

    Burlison, J.S.

    1980-06-01

    The fifteenth edition of the radioisotope customer list was prepared at the request of the Division of Financial Services, Office of the Assistant Secretary for Environment, Department of Energy (DOE). This document lists DOE's radioisotope production and distribution activities by its facilities at Argonne National Laboratory; Pacific Northwest Laboratory; Brookhaven National Laboratory; Hanford Engineering Development Laboratory; Idaho Operations Office; Los Alamos Scientific Laboratory; Mound Facility; Oak Ridge National Laboratory; Rocky Flats Area Office; Savannah River Laboratory; and UNC Nuclear Industries, Inc. The information is divided into five sections: Isotope suppliers, facility, contracts and isotopes or services supplied; alphabetical list of customers, and isotopes purchased; alphabetical list of isotopes cross-referenced to customer numbers; geographical location of radioisotope customers; and radioisotope sales and transfers-FY 1979

  8. List of DOE radioisotope customers with summary of radioisotope shipments, FY 1981

    International Nuclear Information System (INIS)

    Burlison, J.S.

    1982-09-01

    The seventeenth edition of the radioisotope customer list was prepared at the request of the Office of Health and Environmental Research, Office of Energy Research, Department of Energy (DOE). This document lists DOE's radioisotope production and distribution activities by its facilities at Argonne National Laboratory: Pacific Northwest Laboratory; Brookhaven National Laboratory; Hanford Engineering Development Laboratory; Idaho Operations Office; Los Alamos Scientific Laboratory; Mound Facility; Oak Ridge National Laboratory; Savannah River Laboratory; and UNC Nuclear Industries, Inc. The information is divided into five sections: (1) isotope suppliers, facility, contracts and isotopes or services supplied; (2) alphabetical list of customers, and isotopes purchased; (3) alphabetical list of isotopes cross-referenced to customer numbers; (4) geographical location of radioisotope customers; and (5) radioisotope sales and transfers-FY 1980

  9. List of DOE radioisotope customers with summary of radioisotope shipments, FY 1980

    International Nuclear Information System (INIS)

    Burlison, J.S.

    1981-08-01

    The sixteenth edition of the radioisotope customer list was prepared at the request of the Office of Health and Environmental Research, Office of energy Research, Department of Energy (DOE). This document lists DOE's radioisotope production and distribution activities by its facilities at Argonne National Laboratory; Pacific Northwest Laboratory; Brookhaven National Laboraory; Hanford Engineering Development Laboratory; Idaho Operations Office; Los Alamos Scientific Laboratory; Mound Facility; Oak Ridge National Laboratory; Savannah River Laboratory; and UNC Nuclear Industries, Inc. The information is divided into five sections: (1) isotope suppliers, facility, contracts and isotopes or services supplied; (2) alphabetical list of customers, and isotopes purchased; (3) alphabetical list of isotopes cross-referenced to customer numbers; (4) geographical location of radioisotope customers; and (5) radioisotope sales and transfers-FY 1980

  10. The industrial application of radioisotopes in Australia

    International Nuclear Information System (INIS)

    Easey, J.F.

    1987-01-01

    Over the past 10 years, the Australian Atomic Energy Commission has conducted a wide-ranging program of radioisotope applications to solve industrial problems of local, regional or national importance. Most of the investigations have been concerned with the behaviour of large complex systems. Broadly, the work covers such economically important fields as flow studies, environmental studies and coastal engineering studies. (author)

  11. How to find out in radioisotope methodology

    International Nuclear Information System (INIS)

    Evers, C.

    1976-01-01

    The subject is dealt with in sections entitled: tracing books by topic; radioisotope methodology cross reference structure; finding a review; journals and how to trace journal articles; abstract; theses and dissertations; research and development reports; critical reviews and information summaries; data books; dictionaries and encyclopedias; guides to the literature; whom to contact; expert advice, research in progress, institutions. (U.K.)

  12. Fuel selection for radioisotope thermoelectric generators

    International Nuclear Information System (INIS)

    Menezes, A.

    1988-06-01

    The availability of Radioisotope Thermoeletric Generator fuels is evaluated based on the amount of fuel discharged from selected power reactors. In general, the best alternatives are either to use Plutonium-238 produced by irradiation of Neptunium-237 generated in typical thermal reactors or to use Curium-244 directly separated from the discharged fuels of fast or thermal reactors. (author) [pt

  13. Radioisotopes as Political Instruments, 1946–1953

    Science.gov (United States)

    Creager, Angela N. H.

    2009-01-01

    The development of nuclear “piles,” soon called reactors, in the Manhattan Project provided a new technology for manufacturing radioactive isotopes. Radioisotopes, unstable variants of chemical elements that give off detectable radiation upon decay, were available in small amounts for use in research and therapy before World War II. In 1946, the U.S. government began utilizing one of its first reactors, dubbed X-10 at Oak Ridge, as a production facility for radioisotopes available for purchase to civilian institutions. This program of the U.S. Atomic Energy Commission was meant to exemplify the peacetime dividends of atomic energy. The numerous requests from scientists outside the United States, however, sparked a political debate about whether the Commission should or even could export radioisotopes. This controversy manifested the tension in U.S. politics between scientific internationalism as a tool of diplomacy, associated with the aims of the Marshall Plan, and the desire to safeguard the country’s atomic monopoly at all costs, linked to American anti-Communism. This essay examines the various ways in which radioisotopes were used as political instruments—both by the U.S. federal government in world affairs, and by critics of the civilian control of atomic energy—in the early Cold War. PMID:20725612

  14. Radioisotopes as Political Instruments, 1946-1953.

    Science.gov (United States)

    Creager, Angela N H

    2009-01-01

    The development of nuclear "piles," soon called reactors, in the Manhattan Project provided a new technology for manufacturing radioactive isotopes. Radioisotopes, unstable variants of chemical elements that give off detectable radiation upon decay, were available in small amounts for use in research and therapy before World War II. In 1946, the U.S. government began utilizing one of its first reactors, dubbed X-10 at Oak Ridge, as a production facility for radioisotopes available for purchase to civilian institutions. This program of the U.S. Atomic Energy Commission was meant to exemplify the peacetime dividends of atomic energy. The numerous requests from scientists outside the United States, however, sparked a political debate about whether the Commission should or even could export radioisotopes. This controversy manifested the tension in U.S. politics between scientific internationalism as a tool of diplomacy, associated with the aims of the Marshall Plan, and the desire to safeguard the country's atomic monopoly at all costs, linked to American anti-Communism. This essay examines the various ways in which radioisotopes were used as political instruments-both by the U.S. federal government in world affairs, and by critics of the civilian control of atomic energy-in the early Cold War.

  15. Radioisotopes - their applications in industrial radiography

    International Nuclear Information System (INIS)

    Rao, H.R.S.

    1977-01-01

    The nature of radioisotopes and their industrial applications with special reference to industrial radiography are outlined. The various aspects of industrial radiography such as source size, source containers, films, density of radiography, radiographic quality and applications are discussed in brief. (M.G.B.)

  16. Development of radioisotope production in the Philippines

    Energy Technology Data Exchange (ETDEWEB)

    Cabalfin, E G [Philippine Nuclear Research Institute, Quezon (Philippines)

    1998-10-01

    The Philippine Nuclear Research Institute (PNRI) started its activities on radioisotope production more than three decades ago, when the Philippine Research Reactor (PRR-1) started operating at its full rated power of 1 MW. Since then, several radionuclides in different chemical forms, were routinely produced and supplied for use in nuclear medicine, industry, agriculture, research and training, until the conversion of the PRR-1 to a 3 MW TRIGA type reactor. After the criticality test of the upgraded reactor, a leak was discovered in the pool liner. With the repair of the reactor still ongoing, routine radioisotope production activities have been reduced to dispensing of imported bulk {sup 131}I. In the Philippines, radioisotopes are widely used in nuclear medicine, with {sup 131}I and {sup 99m}Tc as the major radionuclides of interest. Thus the present radioisotope production program of PNRI is directed to meet this demand. With the technical assistance of the International Atomic Energy Agency (IAEA), PNRI is setting up a new {sup 131}I production facility. The in-cell equipment have been installed and tested using both inactive and active target, obtained from BATAN, Indonesia. In order to meet the need of producing {sup 99}Mo-{sup 99m}Tc generators, based on low specific activity reactor-produced {sup 99}Mo, research and development work on the preparation of {sup 99m}Tc gel generators is ongoing. (author)

  17. Radioisotopes and food preservation against insects

    International Nuclear Information System (INIS)

    Hachem Ahmad, M.S.

    1998-01-01

    The book describes how to preserve food from harmful insects by using radioisotopes. It focusses on the impact of ionized radiation on the different stages of insect growth and on its metabolism and immunity. It also discusses the relationship between radiation doses and insect reproduction. It explains the various methods to detect the irradiated foods

  18. Radioisotope licence application: Fixed nuclear gauges

    International Nuclear Information System (INIS)

    1995-09-01

    This guide will assist you in completing and filing an application for a new licence or licence renewal for fixed nuclear gauges in accordance with the Atomic Energy Control Regulations and radioisotope licensing policies. It also provides some of the background information that you will require in order to safely use radioactive materials

  19. Application of artificial radioisotopes in hydrological studies

    International Nuclear Information System (INIS)

    Jacob, Noble; Shivanna, K.

    2009-01-01

    In this article, various applications of the artificial radioisotopes in surface water and groundwater investigations are briefly reviewed with a few recent case studies. They are found to be extremely useful in understanding the hydrological processes and obtaining pertinent parameters such as dilution factors, dispersion coefficients, rate of sediment transport in surface waters and recharge rate, velocity and flow direction in groundwater systems. (author)

  20. The control of radioisotopes in Canada

    International Nuclear Information System (INIS)

    Hamel, P.E.

    1980-01-01

    The Regulations applicable to the control of radioisotopes in Canada are reviewed. The administrative procedures are described, the definition of atomic radiation workers clarified and the means for inspections and compliance indicated. An outline is provided of the main revisions currently under consideration. (author) [fr

  1. List of ERDA radioisotope (customers with summary of radioisotope shipments FY 1975

    International Nuclear Information System (INIS)

    Simmons, J.L.; Gano, S.R.

    1976-01-01

    The twelfth edition of the ERDA radioisotope customer list has been prepared at the request of the Division of Biomedical and Environmental Research. The purpose of this document is to list the FY 1975 commercial radioisotope production and distribution activities of USERDA facilities at Argonne National Laboratory, Battelle, Pacific Northwest Laboratories, Brookhaven National Laboratory, United Nuclear Inc., Idaho Operations Office, Hanford Engineering Development Laboratory, Mound Laboratory, Oak Ridge National Laboratory, and Savannah River Plant

  2. List of ERDA radioisotope customers with summary of radioisotope shipments, FY 1976

    International Nuclear Information System (INIS)

    Simmons, J.L.

    1977-03-01

    The thirteenth edition of the ERDA radioisotope customer list has been prepared at the request of the Office of Program Coordination, Office of the Assistant Administrator. The purpose of the document is to list the FY 1976 commercial radioisotope production and distribution activities of ERDA facilities at Argonne National Laboratory, Battelle, Pacific Northwest Laboratories, Brookhaven National Laboratory, Hanford Engineering Development Laboratory, Idaho Operations Office, Los Alamos Scientific Laboratory, Mound Laboratory, Oak Ridge National Laboratory, Savannah River Laboratory, and United Nuclear Industries, Inc

  3. Determination of elemental tissue composition following proton treatment using positron emission tomography

    International Nuclear Information System (INIS)

    Cho, Jongmin; Ibbott, Geoffrey; Gillin, Michael; Gonzalez-Lepera, Carlos; Min, Chul Hee; Zhu, Xuping; El Fakhri, Georges; Paganetti, Harald; Mawlawi, Osama

    2013-01-01

    Positron emission tomography (PET) has been suggested as an imaging technique for in vivo proton dose and range verification after proton induced-tissue activation. During proton treatment, irradiated tissue is activated and decays while emitting positrons. In this paper, we assessed the feasibility of using PET imaging after proton treatment to determine tissue elemental composition by evaluating the resultant composite decay curve of activated tissue. A phantom consisting of sections composed of different combinations of 1 H, 12 C, 14 N, and 16 O was irradiated using a pristine Bragg peak and a 6 cm spread-out Bragg-peak (SOBP) proton beam. The beam ranges defined at 90% distal dose were 10 cm; the delivered dose was 1.6 Gy for the near monoenergetic beam and 2 Gy for the SOBP beam. After irradiation, activated phantom decay was measured using an in-room PET scanner for 30 min in list mode. Decay curves from the activated 12 C and 16 O sections were first decomposed into multiple simple exponential decay curves, each curve corresponding to a constituent radioisotope, using a least-squares method. The relative radioisotope fractions from each section were determined. These fractions were used to guide the decay curve decomposition from the section consisting mainly of 12 C + 16 O and calculate the relative elemental composition of 12 C and 16 O. A Monte Carlo simulation was also used to determine the elemental composition of the 12 C + 16 O section. The calculated compositions of the 12 C + 16 O section using both approaches (PET and Monte Carlo) were compared with the true known phantom composition. Finally, two patients were imaged using an in-room PET scanner after proton therapy of the head. Their PET data and the technique described above were used to construct elemental composition ( 12 C and 16 O) maps that corresponded to the proton-activated regions. We compared the 12 C and 16 O compositions of seven ROIs that corresponded to the vitreous humor, adipose

  4. Positrons annihilation and the Galactic center

    International Nuclear Information System (INIS)

    Wallyn, Pierre

    1992-01-01

    The Galactic center has been observed in gamma rays, many times since more than two decades and we do not still have a full comprehensive picture of this region. It is fairly well established that the 511 keV annihilation line has two origins: a steady diffuse emission, which follows more or less the type I supernovae distribution along the Galactic plane and a variable emission coming from the positrons emitted by (at least) one compact object and annihilating in a nearby cold molecular cloud. We present here an analysis of the profiles and intensifies of the 511 keV annihilation line observed in the direction of the Galactic center. We find that a warm medium (temperature of 8000 K) can describe the annihilation of positrons from the diffuse component of the line. The high state observations of the 511 keV line can be explained if the time-variable component is coming from the annihilation of the positrons in a cold medium (temperature around 80 K). This constraint on the annihilation medium temperature supports the association with the molecular cloud G-0.86-0.08 in the direction of 1E1740.7-2942. On may 22, 1989, HEXAGONE detected a narrow 511 keV line and also a broad emission around 170 keV in the direction of the Galactic center. Two weeks before, EXITE observed in the same direction a new transient source EXS 1737.9-2952 which showed a bump around 102 keV. We propose a simple semi-quantitative model which can mimic the bumps as well as its time variations and emphasize the strong similarities between EXS1737.9-2952 and Nova Muscae. We study the behaviour of positron annihilation by charge exchange in the cold phase of the interstellar medium. We calculate formula for the slowing-down time before thermalization of positrons of a given initial energy, for different medium densities. Our scenario explains the lack of detection of the recombination lines from positronium and gives new constraints on their possible observation. (author) [fr

  5. Positron Annihilation in Insulating Materials

    International Nuclear Information System (INIS)

    Asoka-Kumar, P; Sterne, PA

    2002-01-01

    We describe positron results from a wide range of insulating materials. We have completed positron experiments on a range of zeolite-y samples, KDP crystals, alkali halides and laser damaged SiO 2 . Present theoretical understanding of positron behavior in insulators is incomplete and our combined theoretical and experimental approach is aimed at developing a predictive understanding of positrons and positronium annihilation characteristics in insulators. Results from alkali halides and alkaline-earth halides show that positrons annihilate with only the halide ions, with no apparent contribution from the alkali or alkaline-earth cations. This contradicts the results of our existing theory for metals, which predicts roughly equal annihilation contributions from cation and anion. We also present result obtained using Munich positron microprobe on laser damaged SiO 2 samples

  6. Applications of positron depth profiling

    International Nuclear Information System (INIS)

    Hakvoort, R.A.

    1993-01-01

    In this thesis some contributions of the positron-depth profiling technique to materials science have been described. Following studies are carried out: Positron-annihilation measurements on neon-implanted steel; Void creation in silicon by helium implantation; Density of vacancy-type defects present in amorphous silicon prepared by ion implantation; Measurements of other types of amorphous silicon; Epitaxial cobalt disilicide prepared by cobalt outdiffusion. Positron-annihilation experiments on low-pressure CVD silicon-nitride films. (orig./MM)

  7. Nonlinear positron acoustic solitary waves

    International Nuclear Information System (INIS)

    Tribeche, Mouloud; Aoutou, Kamel; Younsi, Smain; Amour, Rabia

    2009-01-01

    The problem of nonlinear positron acoustic solitary waves involving the dynamics of mobile cold positrons is addressed. A theoretical work is presented to show their existence and possible realization in a simple four-component plasma model. The results should be useful for the understanding of the localized structures that may occur in space and laboratory plasmas as new sources of cold positrons are now well developed.

  8. Applications of positron depth profiling

    Energy Technology Data Exchange (ETDEWEB)

    Hakvoort, R A

    1993-12-23

    In this thesis some contributions of the positron-depth profiling technique to materials science have been described. Following studies are carried out: Positron-annihilation measurements on neon-implanted steel; Void creation in silicon by helium implantation; Density of vacancy-type defects present in amorphous silicon prepared by ion implantation; Measurements of other types of amorphous silicon; Epitaxial cobalt disilicide prepared by cobalt outdiffusion. Positron-annihilation experiments on low-pressure CVD silicon-nitride films. (orig./MM).

  9. Positron emission tomography. Basic principles

    International Nuclear Information System (INIS)

    Rodriguez, Jose Luis; Massardo, Teresa; Gonzalez, Patricio

    2001-01-01

    The basic principles of positron emission tomography (PET) technique are reviewed. lt allows to obtain functional images from gamma rays produced by annihilation of a positron, a positive beta particle. This paper analyzes positron emitters production in a cyclotron, its general mechanisms, and the various detection systems. The most important clinical applications are also mentioned, related to oncological uses of fluor-l8-deoxyglucose

  10. Novel Radioisotope Applications in Industry Promoted by the IAEA

    International Nuclear Information System (INIS)

    Thereska, J.

    2001-01-01

    Presently, there is a lively activity in further development and use of radioisotope technology. Novel radioisotope applications in industry are promoted by the IAEA. Radioisotope technology is contributing significantly to improving and optimising process performance bringing an annual economic benefit to world-wide industry of several billion US$. Probably, an average benefit to cost ratio of 40:1 is reasonably representative of radioisotope applications in industry. There are few short-term investments, which will give a return of this magnitude. The cost effectiveness of radioisotope applications should be widely promulgated to encourage industrialists to take full advantage of the technology. (author)

  11. Mining the bulk positron lifetime

    International Nuclear Information System (INIS)

    Aourag, H.; Guittom, A.

    2009-01-01

    We introduce a new approach to investigate the bulk positron lifetimes of new systems based on data-mining techniques. Through data mining of bulk positron lifetimes, we demonstrate the ability to predict the positron lifetimes of new semiconductors on the basis of available semiconductor data already studied. Informatics techniques have been applied to bulk positron lifetimes for different tetrahedrally bounded semiconductors in order to discover computational design rules. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Positron implantation profile in kapton

    International Nuclear Information System (INIS)

    Plotkowski, K.; Panek, T.J.; Kansj, J.

    1988-01-01

    Measurements of positrons' implantation profile were made with geometry as in the majority of PAT experiments, making use of the difference in values of mean lifetimes of positrons in the absorber and in the detector. The function describing the absorption of positrons in the absorber taking into account measurement geometry was fitted to the experimental data. The correction to the exponential relation occurring in this function is the dominating factor for small thicknesses of the absorber. In this analysis various values of positrons' backscatter coefficients of the nickel and of the kapton were also taken into account

  13. Positron lifetimes in deformed copper

    International Nuclear Information System (INIS)

    Hinode, Kenji; Tanigawa, Shoichiro; Doyama, Masao

    1976-01-01

    Positron lifetime measurements were performed for Cu samples with different densities of lattice defects. The lifetime spectra were successfully resolved into two components with the help of the well established analysis program. Obtained results were quite consistent with those expected from the trapping model. The positron trapping mechanism from free to trapped states and the initial condition of the model were especially checked. Deduced values obtained for tau sub(c) (lifetime of free positrons) and tau sub(t) (lifetime of trapped positrons) were 122+-5 psec and 176+-5 psec, respectively. (auth.)

  14. Positron emitters for in vivo plant research

    International Nuclear Information System (INIS)

    Fares, Y.; Goeschl, J.D.; Emran, A.M.; Drew, M.C.; McKinney, C.E.; Musser, R.L.; Strain, B.R.; Jaeger, C.H.

    1993-01-01

    Adopting a systems approach in analysis of the behavior of a biological system is a prime importance because all factors are considered simultaneously. Feedback is an important phenomenon occurring in dynamic biological systems, enabling appropriate regulatory and control functions to be maintained. In plants, the question whether photosynthesis or translocation controls carbon partitioning and hence productivity is of great agronomic importance, because many efforts are directed at selecting plant varieties with high rates of photosynthesis via genetic engineering and/or selective breeding. By use of short-lived positron emitting isotopes, such as C-11 and N-13, coupled with time-dependent and steady-state compartmental kinetic models, such dynamic biophysical plant problems are being unravelled. Questions such as: (i) source-sink complexities, (ii) experimental tests of the Munich-Horwitz theory of phloem transport (iii) uptake, transport and kinetics of nitrate and ammonium ions, and (iv) effects of ecological factors on growth rates were answered

  15. Small Radioisotope Power System Testing at NASA Glenn Research Center

    Science.gov (United States)

    Dugala, Gina; Bell, Mark; Oriti, Salvatore; Fraeman, Martin; Frankford, David; Duven, Dennis

    2013-01-01

    In April 2009, NASA Glenn Research Center (GRC) formed an integrated product team (IPT) to develop a Small Radioisotope Power System (SRPS) utilizing a single Advanced Stirling Convertor (ASC) with passive balancer. A single ASC produces approximately 80 We making this system advantageous for small distributed lunar science stations. The IPT consists of Sunpower, Inc., to provide the single ASC with a passive balancer, The Johns Hopkins University Applied Physics Laboratory (JHUAPL) to design an engineering model Single Convertor Controller (SCC) for an ASC with a passive balancer, and NASA GRC to provide technical support to these tasks and to develop a simulated lunar lander test stand. The single ASC with a passive balancer, simulated lunar lander test stand, and SCC were delivered to GRC and were tested as a system. The testing sequence at GRC included SCC fault tolerance, integration, electromagnetic interference (EMI), vibration, and extended operation testing. The SCC fault tolerance test characterized the SCCs ability to handle various fault conditions, including high or low bus power consumption, total open load or short circuit, and replacing a failed SCC card while the backup maintains control of the ASC. The integrated test characterized the behavior of the system across a range of operating conditions, including variations in cold-end temperature and piston amplitude, including the emitted vibration to both the sensors on the lunar lander and the lunar surface. The EMI test characterized the AC and DC magnetic and electric fields emitted by the SCC and single ASC. The vibration test confirms the SCCs ability to control the single ASC during launch. The extended operation test allows data to be collected over a period of thousands of hours to obtain long term performance data of the ASC with a passive balancer and the SCC. This paper will discuss the results of each of these tests.

  16. Positron-annihilation-radiation transmission gauge

    International Nuclear Information System (INIS)

    Padawer, G.M.

    1984-01-01

    A radiographic method and apparatus for nondestructively monitoring a specimen for density variations are disclosed. A positron-annihilation-radiation-emitting point source is situated approximately midway along the axis separating two detectors sensitive to positron-annihilation (0.511-MeV photon) radiation. The outputs of the two detectors are fed to an electronic circuit that reckons only time-coincident events that are sensed simultaneously in the two detectors. The specimen to be measured is positioned between the source and one of the detectors such that the cone of detected, i.e., coincident, photons intercepts the region of interest. The number of coincidences that are counted in a preset time interval are recorded, or, alternatively, the coincidence count rate is monitored directly with a ratemeter. A linear scan of the region of interest is performed by the sequential displacing of the source/detectors axis with respect to the measured specimen, or the specimen with respect to the source/detectors axis. The number of coincidence counts accumulated within a preset time interval are recorded for each displacement. The spatial variation of density within the specimen is inferred from corresponding variations in the coincidence count rate

  17. Does antimatter emit a new light?

    International Nuclear Information System (INIS)

    Santilli, Ruggero Maria

    1997-01-01

    Contemporary theories of antimatter have a number of insufficiencies which stimulated the recent construction of the new isodual theory based on a certain anti-isomorphic map of all (classical and quantum) formulations of matter called isoduality. In this note we show that the isodual theory predicts that antimatter emits a new light, called isodual light, which can be distinguished from the ordinary light emitted by matter via gravitational interactions (only). In particular, the isodual theory predicts that all stable antiparticles such as the isodual photon, the positron and the antiproton experience antigravity in the field of matter (defined as the reversal of the sign of the curvature tensor). The antihydrogen atom is therefore predicted to: experience antigravity in the field of Earth; emit the isodual photon; and have the same spectroscopy of the hydrogen atom, although subjected to an anti-isomorphic isodual map. In this note we also show that the isodual theory predicts that bound states of elementary particles and antiparticles (such as the positronium) experience ordinary gravitation in both fields of matter and antimatter, thus bypassing known objections against antigravity. A number of intriguing and fundamental, open theoretical and experimental problems of 'the new physics of antimatter' are pointed out

  18. Does antimatter emit a new light?

    Energy Technology Data Exchange (ETDEWEB)

    Santilli, Ruggero Maria [Instituto per la Ricerca di Base (Italy)

    1997-08-15

    Contemporary theories of antimatter have a number of insufficiencies which stimulated the recent construction of the new isodual theory based on a certain anti-isomorphic map of all (classical and quantum) formulations of matter called isoduality. In this note we show that the isodual theory predicts that antimatter emits a new light, called isodual light, which can be distinguished from the ordinary light emitted by matter via gravitational interactions (only). In particular, the isodual theory predicts that all stable antiparticles such as the isodual photon, the positron and the antiproton experience antigravity in the field of matter (defined as the reversal of the sign of the curvature tensor). The antihydrogen atom is therefore predicted to: experience antigravity in the field of Earth; emit the isodual photon; and have the same spectroscopy of the hydrogen atom, although subjected to an anti-isomorphic isodual map. In this note we also show that the isodual theory predicts that bound states of elementary particles and antiparticles (such as the positronium) experience ordinary gravitation in both fields of matter and antimatter, thus bypassing known objections against antigravity. A number of intriguing and fundamental, open theoretical and experimental problems of 'the new physics of antimatter' are pointed out.

  19. Does antimatter emit a new light?

    International Nuclear Information System (INIS)

    Santilli, R.M.

    1996-01-01

    Contemporary theories of antimatter have a number of insufficiencies which stimulated the recent construction of the new isodual theory based on a certain anti-isomorphic map of all (classical and quantum) formulations of matter called isoduality. In this note we show that the isodual theory predicts that antimatter emits a new light, called isodual light, which can be distinguished from the ordinary light emitted by matter via gravitational interactions (only). In particular, the isodual theory predicts that all stable antiparticles such as the isodual photon, the positron and the antiproton experience antigravity in the field of matter (defined as the reversal of the sign of the curvature tensor). The antihydrogen atom is therefore predicted to: experience antigravity in the field of Earth; emit the isodual photon; and have the same spectroscopy of the hydrogen atom, although subjected to an anti-isomorphic isodual map. In this note we also show that the isodual theory predicts that bound states of elementary particle sand antiparticles (such as the positronium) experience ordinary gravitation in both fields of matter and antimatter, thus by passing known objections against antigravity. A number of intriguing and fundamental, open theoretical and experimental problems of 'the new physics of antimatter' are pointed out. 16 refs

  20. Radioisotopes in Hydrology. Proceedings of a Symposium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1963-08-15

    The increasing emphasis on the development of water resources poses problems which are of interest to all countries, both developing and advanced, where the demand for water is continuously rising. There is no doubt that greater efforts must be made to evaluate, control and develop water resources using all scientific means available and during recent years increasing attention has been directed to the supplementation of hydrological methods with radioisotope techniques. These techniques have already been applied to a number of problems and their potential usefulness demonstrated. Radioisotopes can be used for stream discharge measurements with an accuracy as good as that obtainable with conventional methods. They are also finding increasing application in the measurement of groundwater direction and velocity, the study of suspected interconnections between different sources of water, and the investigation of mixing processes in rivers and lakes. Radioisotope techniques have been used in different parts of the world for studying the transport of silt in rivers and harbours. Present research is directed towards making these investigations on a quantitative basis which, if successful, would be of great importance in the design of hydraulic structures. The method of finding out the age of groundwater by measuring its natural tritium content can be applied to the determination of the recharge rate of groundwater bodies, so enabling a more rational use of the groundwater reserves without fear of overexploitation. Current research is aimed at using carbon-14 for groundwater-dating to extend the age measurable by tritium. A Symposium on the use of radioisotopes in hydrology was organized by the Agency and held in March 1963 in Tokyo in co-operation with the Japanese Government, for whose material and other assistance and generous hospitality the Agency wishes to record its grateful appreciation. The Symposium was attended by about 100 participants from 14 countries and 5

  1. In-vivo assessment of whole-body radioisotope burdens at the Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Vasilik, D.G.; Aikin, I.C.

    1983-08-01

    The Los Alamos National Laboratory program for in-vivo measurements includes the capability for the whole-body assessment of body burdens for x-ray or gamma-ray emitting radioisotopes. This capability is an important part of the health and safety program at Los Alamos where a wide variety of radioisotopes are utilized. This report addresses the whole body portion of our in-vivo measurement capabilities. Whole-body measurements at Los Alamos make use of a hyperpure germanium (HpGe) detector and a lithium-drifted germanium [Ge(Li)] detector for identification and quantification of radioisotopes. Analysis results are interpreted in terms of two basic statistical measures of detection limits. One measure is called the minimum significant measured activity (MSMA), which is interpreted as meaning that there is some activity in the body. The second measure is called the minimum detectable true activity (MDTA), which is defined as the smallest amount of activity required to be in the body in order that a measurement of an individual can be expected to imply correctly the presence of activity with a predetermined degree of confidence. 7 references, 8 figures

  2. Technical Reviews on the Radioisotope Application for Leak Detection in Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Seop; Jung, Sung Hee; Kim, Jong Bum; Kim, Jae Ho

    2006-02-15

    The previous techniques on the detection of leaks from reservoirs are difficult to identify the leak points and leak pathways in reservoirs. Additionally the complexity and ambiguity of data analysis resulted from them can increase the failures of leak detection. While, The technique using radioisotope as a tracer is considered to be very promising. In the same context, systematic studies led by IAEA are being practiced by organizing the task force team. The detection technique using natural tracer can give information about the age of ground water and the interconnection between ground water and reservoir water and the seepage origin. On the other hand, the one using artificial tracer can identify the leak point in reservoirs directly, in which radioactive cloud migration method and radioactive tracer adsorption method are included. The former is using hydrophilic radioisotope tracer, and the latter adsorptive radioisotope tracer which is emitting gamma ray. The radiotracer are injected at a point of the reservoir near to the bottom. Afterwards, the migration of the radioactive tracer is followed by means of submerged scintillation detectors suspended from boats. Usually {sup 131}I, {sup 82}Br, {sup 46}Sc, and {sup 198}Au etc. can be used as tracer. The point reaching the maximum concentration of tracer corresponds to the leak point in reservoirs.

  3. Technical Reviews on the Radioisotope Application for Leak Detection in Reservoirs

    International Nuclear Information System (INIS)

    Kim, Jin Seop; Jung, Sung Hee; Kim, Jong Bum; Kim, Jae Ho

    2006-02-01

    The previous techniques on the detection of leaks from reservoirs are difficult to identify the leak points and leak pathways in reservoirs. Additionally the complexity and ambiguity of data analysis resulted from them can increase the failures of leak detection. While, The technique using radioisotope as a tracer is considered to be very promising. In the same context, systematic studies led by IAEA are being practiced by organizing the task force team. The detection technique using natural tracer can give information about the age of ground water and the interconnection between ground water and reservoir water and the seepage origin. On the other hand, the one using artificial tracer can identify the leak point in reservoirs directly, in which radioactive cloud migration method and radioactive tracer adsorption method are included. The former is using hydrophilic radioisotope tracer, and the latter adsorptive radioisotope tracer which is emitting gamma ray. The radiotracer are injected at a point of the reservoir near to the bottom. Afterwards, the migration of the radioactive tracer is followed by means of submerged scintillation detectors suspended from boats. Usually 131 I, 82 Br, 46 Sc, and 198 Au etc. can be used as tracer. The point reaching the maximum concentration of tracer corresponds to the leak point in reservoirs

  4. Positron Emission Tomography (PET)

    International Nuclear Information System (INIS)

    Welch, M.J.

    1990-01-01

    Positron emission tomography (PET) assesses biochemical processes in the living subject, producing images of function rather than form. Using PET, physicians are able to obtain not the anatomical information provided by other medical imaging techniques, but pictures of physiological activity. In metaphoric terms, traditional imaging methods supply a map of the body's roadways, its, anatomy; PET shows the traffic along those paths, its biochemistry. This document discusses the principles of PET, the radiopharmaceuticals in PET, PET research, clinical applications of PET, the cost of PET, training of individuals for PET, the role of the United States Department of Energy in PET, and the futures of PET. 22 figs

  5. Positron Emission Tomography (PET)

    Energy Technology Data Exchange (ETDEWEB)

    Welch, M.J.

    1990-01-01

    Positron emission tomography (PET) assesses biochemical processes in the living subject, producing images of function rather than form. Using PET, physicians are able to obtain not the anatomical information provided by other medical imaging techniques, but pictures of physiological activity. In metaphoric terms, traditional imaging methods supply a map of the body's roadways, its, anatomy; PET shows the traffic along those paths, its biochemistry. This document discusses the principles of PET, the radiopharmaceuticals in PET, PET research, clinical applications of PET, the cost of PET, training of individuals for PET, the role of the United States Department of Energy in PET, and the futures of PET. 22 figs.

  6. Positron Emission Tomography (PET)

    Science.gov (United States)

    Welch, M. J.

    1990-01-01

    Positron emission tomography (PET) assesses biochemical processes in the living subject, producing images of function rather than form. Using PET, physicians are able to obtain not the anatomical information provided by other medical imaging techniques, but pictures of physiological activity. In metaphoric terms, traditional imaging methods supply a map of the body's roadways, its, anatomy; PET shows the traffic along those paths, its biochemistry. This document discusses the principles of PET, the radiopharmaceuticals in PET, PET research, clinical applications of PET, the cost of PET, training of individuals for PET, the role of the United States Department of Energy in PET, and the futures of PET.

  7. Monitoring of noble gas radioisotopes in nuclear power plant effluents

    International Nuclear Information System (INIS)

    Kabat, M.J.

    1985-01-01

    Monitoring of gaseous radionuclides in the effluents of nuclear facilities is an essential requirement in effluent management programs. Since there is no practical way of removing noble gas radioisotopes from air at release pathways, their accurate monitoring is essential for providing appropriate environmental protection. Emitted γ dose-rate is the limiting factor for concentration-time integral of noble gas in gaseous effluents of reactor facilities. The external exposure to the public from a semi-infinite cloud is directly proportional to both the noble gas isotope concentration and the integrated γ energy per disintegration. Both can be directly measured in gaseous effluent pathways with a suitable detector. The capability of NaI(T1), CaF 2 (Eu) and plastic scintillation detectors to measure the γ-Ci.MeV content of noble gas releases was experimentally evaluated. The combination of CaF 2 (Eu) detector in a pressurized through-flow chamber, with a charge integrating scaler well complied with both γ energy response and detection sensitivity requirements. Noble gas source terms and effluent monitoring criteria are discussed, theoretical and experimental results are presented and a practical, on-line noble gas monitoring system is described

  8. Comparative analysis of 11 different radioisotopes for palliative treatment of bone metastases by computational methods

    Energy Technology Data Exchange (ETDEWEB)

    Guerra Liberal, Francisco D. C., E-mail: meb12020@fe.up.pt, E-mail: adriana-tavares@msn.com; Tavares, Adriana Alexandre S., E-mail: meb12020@fe.up.pt, E-mail: adriana-tavares@msn.com; Tavares, João Manuel R. S., E-mail: tavares@fe.up.pt [Instituto de Engenharia Mecânica e Gestão Industrial, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, Porto 4200-465 (Portugal)

    2014-11-01

    Purpose: Throughout the years, the palliative treatment of bone metastases using bone seeking radiotracers has been part of the therapeutic resources used in oncology, but the choice of which bone seeking agent to use is not consensual across sites and limited data are available comparing the characteristics of each radioisotope. Computational simulation is a simple and practical method to study and to compare a variety of radioisotopes for different medical applications, including the palliative treatment of bone metastases. This study aims to evaluate and compare 11 different radioisotopes currently in use or under research for the palliative treatment of bone metastases using computational methods. Methods: Computational models were used to estimate the percentage of deoxyribonucleic acid (DNA) damage (fast Monte Carlo damage algorithm), the probability of correct DNA repair (Monte Carlo excision repair algorithm), and the radiation-induced cellular effects (virtual cell radiobiology algorithm) post-irradiation with selected particles emitted by phosphorus-32 ({sup 32}P), strontium-89 ({sup 89}Sr), yttrium-90 ({sup 90}Y ), tin-117 ({sup 117m}Sn), samarium-153 ({sup 153}Sm), holmium-166 ({sup 166}Ho), thulium-170 ({sup 170}Tm), lutetium-177 ({sup 177}Lu), rhenium-186 ({sup 186}Re), rhenium-188 ({sup 188}Re), and radium-223 ({sup 223}Ra). Results: {sup 223}Ra alpha particles, {sup 177}Lu beta minus particles, and {sup 170}Tm beta minus particles induced the highest cell death of all investigated particles and radioisotopes. The cell survival fraction measured post-irradiation with beta minus particles emitted by {sup 89}Sr and {sup 153}Sm, two of the most frequently used radionuclides in the palliative treatment of bone metastases in clinical routine practice, was higher than {sup 177}Lu beta minus particles and {sup 223}Ra alpha particles. Conclusions: {sup 223}Ra and {sup 177}Lu hold the highest potential for palliative treatment of bone metastases of all

  9. Comparative analysis of 11 different radioisotopes for palliative treatment of bone metastases by computational methods

    International Nuclear Information System (INIS)

    Guerra Liberal, Francisco D. C.; Tavares, Adriana Alexandre S.; Tavares, João Manuel R. S.

    2014-01-01

    Purpose: Throughout the years, the palliative treatment of bone metastases using bone seeking radiotracers has been part of the therapeutic resources used in oncology, but the choice of which bone seeking agent to use is not consensual across sites and limited data are available comparing the characteristics of each radioisotope. Computational simulation is a simple and practical method to study and to compare a variety of radioisotopes for different medical applications, including the palliative treatment of bone metastases. This study aims to evaluate and compare 11 different radioisotopes currently in use or under research for the palliative treatment of bone metastases using computational methods. Methods: Computational models were used to estimate the percentage of deoxyribonucleic acid (DNA) damage (fast Monte Carlo damage algorithm), the probability of correct DNA repair (Monte Carlo excision repair algorithm), and the radiation-induced cellular effects (virtual cell radiobiology algorithm) post-irradiation with selected particles emitted by phosphorus-32 ( 32 P), strontium-89 ( 89 Sr), yttrium-90 ( 90 Y ), tin-117 ( 117m Sn), samarium-153 ( 153 Sm), holmium-166 ( 166 Ho), thulium-170 ( 170 Tm), lutetium-177 ( 177 Lu), rhenium-186 ( 186 Re), rhenium-188 ( 188 Re), and radium-223 ( 223 Ra). Results: 223 Ra alpha particles, 177 Lu beta minus particles, and 170 Tm beta minus particles induced the highest cell death of all investigated particles and radioisotopes. The cell survival fraction measured post-irradiation with beta minus particles emitted by 89 Sr and 153 Sm, two of the most frequently used radionuclides in the palliative treatment of bone metastases in clinical routine practice, was higher than 177 Lu beta minus particles and 223 Ra alpha particles. Conclusions: 223 Ra and 177 Lu hold the highest potential for palliative treatment of bone metastases of all radioisotopes compared in this study. Data reported here may prompt future in vitro and in vivo

  10. Top emitting white OLEDs

    Energy Technology Data Exchange (ETDEWEB)

    Freitag, Patricia; Luessem, Bjoern; Leo, Karl [Technische Universitaet Dresden, Institut fuer Angewandte Photophysik, George-Baehr-Strasse 1, 01069 Dresden (Germany)

    2009-07-01

    Top emitting organic light emitting diodes (TOLEDs) provide a number of interesting opportunities for new applications, such as the opportunity to fabricate ITO-free devices by using opaque substrates. This makes it possible to manufacture low cost OLEDs for signage and lighting applications. A general top emitting device consists of highly reflecting metal contacts as anode and semitransparent cathode, the latter one for better outcouling reasons. In between several organic materials are deposited as charge transporting, blocking, and emission layers. Here, we show a top emitting white organic light emitting diode with silver electrodes arranged in a p-i-n structure with p- and n-doped charge transport layers. The centrical emission layer consists of two phosphorescent (red and green) and one fluorescent (blue) emitter systems separated by an ambipolar interlayer to avoid mutual exciton quenching. By adding an additional dielectric capping layer on top of the device stack, we achieve a reduction of the strong microcavity effects which appear due to the high reflection of both metal electrodes. Therefore, the outcoupled light shows broad and nearly angle-independent emission spectra, which is essential for white light emitting diodes.

  11. Radioisotopes for nuclear medicine: the future

    International Nuclear Information System (INIS)

    Carr, S.W.

    1998-01-01

    Full text: Nuclear medicine occupies an important niche in the spectrum of medical capability. Since its initial application on a routine basis over 30 years ago its importance has continued to grow. For example, it is expected that over 430,000 Australians will have a nuclear medicine procedure in 1998. Current procedures using nuclear medicine are mainly concerned with diagnosis of oncology, cardiology and neurology. The main radioisotope used in nuclear medicine is Tc 99m, which is produced by a 'so called' Mo-Tc 99m generator. Other isotopes which currently find routine use are Ga-67, Th-201 and I-131. The selective uptakes by particular organs or structures is facilitated by the use of 'cold kits' which after the chemistry of the radioisotope many of the recent advances have been concerned with increasing the selectivity for a particular organ structure. Several of these new agents show increased selectivity using antibody a peptide recognition units

  12. Application state of radioisotopes for medical use

    International Nuclear Information System (INIS)

    Nakajima, Tomoyoshi

    1979-01-01

    Application of unsealed radioisotopes as radiopharmaceuticals has been increasing year by year with the development of nuclear medicine. As for the radioisotopes for in vivo use which are internally administered and are detected by external scanning, the consumption of Tc-99 m drugs has increased rapidly. The sales of radiopharmaceuticals for in vivo use including 131 I, etc. amounted to four billion Yen in 1977. The consumption of the isotopes used in vitro for radioimmunoassay has made more rapid increase, and the sales of radiopharmaceuticals for in vitro use amounted to seven billion Yen in 1977. Radiopharmaceuticals have been used in 1,134 institutes all over Japan in 1978. 534 among them have applied radiopharmaceuticals to both in vivo and in vitro uses. Radioactive wastes have been increasing with the application of these unsealed radiopharmaceuticals, and their disposal method should be examined as there is a limit in their storage. (Kobatake, H.)

  13. Radioisotope thermionic converters for space applications

    International Nuclear Information System (INIS)

    Miskolczy, G.; Lieb, D.P.

    1990-01-01

    The recent history of radioisotope thermionics is reviewed, with emphasis on the U.S. programs, and the prospects for the future are assessed. In radioisotope thermionic converters the emitter heat is generated by the decay of a radioactive isotope. The thermionic converter emitter is mounted directly on a capsule containing the isotope. The rest of the capsule is generally insulated to reduce thermal loss. The development of isotope-fueled thermionic power systems for space application has been pursued since the late 1950's. The U.S. effort was concentrated on modular systems with alpha emitters as the isotope heat source. In the SNAP-13 program, the heat sources were Cerium isotopes and each module produced about 100 watts. The converters were planar diodes and the capsule was insulated with multi-foil insulation

  14. Medical radioisotope production - the Australian experience

    Energy Technology Data Exchange (ETDEWEB)

    Druce, M. [Australian Nuclear Science and Technology Organisation, Menai (Australia)

    1996-12-31

    The Australian government, through its instrumentality, the Australian Nuclear Science and Technology Organization (ANSTO), owns and operates a 10-MW Dido-class research reactor at Lucas Heights on the southern outskirts of Sydney. This is the only operating nuclear reactor in Australia. It was built in 1958 and has a maximum flux of 1 x 10{sup 14} n/cm{sup 2}{center_dot}s. ANSTO also jointly owns and operates a 30-MeV IBA negative ion cyclotron at Camperdown in central Sydney, which began operation in 1992. ANSTO is predominantly a research organization; however, radioisotopes are commercially produced through Australian Radioisotopes (ARI), an ANSTO business entity. Seventy-four people are employed by ARI, which is a vertically integrated organization, i.e., everything from target preparation to sale of products is undertaken.

  15. Cosmogenic radioisotopes in Gebel Kamil meteorite

    Science.gov (United States)

    Taricco, C.; Colombetti, P.; Bhandari, N.; Sinha, N.; Di Martino, M.; Vivaldo, G.

    2012-04-01

    Recently a small (45 m in diameter) and very young (radioisotope activity generated by cosmic rays in the meteoroids as they travel through the interplanetary space before falling on the Earth. From the 26Al activity measurement and its depth production profiles, we infer (i) that the radius of the meteoroid should be about 1 m, constraining to 30-40 ton the range of pre-atmospheric mass previously proposed and (ii) that the fragment should have been located deeply inside the meteoroid, at a depth > 0.7 m. The 44Ti activity is under the detection threshold of the apparatus; using the depth production profiles of this radioisotope and its half-life T1/2 = 59.2 y, we deduce an upper limit to the date of fall.

  16. Health problems of industrial applications of radioisotopes

    International Nuclear Information System (INIS)

    Kudrna, J.

    1976-01-01

    Radiation hygiene problems of industrial radioisotope applications are discussed. The observance of regulations is emphasised. Radiation protection is based on the principle of preventing early radiation damage and limiting late radiation damage to an acceptable level. The basic requirement is that the cumulated dose should be as low as possible, i.e., as low as is practically feasible in considering economic and social aspects. Notices 59/72 and 65/72, Collection of Laws, rule that if the limit of 3/10 of the maximum permissible dose is likely to be reached, control zones should be defined and marked at places of work where radioisotopes are handled. The characteristics of such a control zone are listed and the measures to be taken in case of accident are outlined. (B.S.)

  17. Modern radioisotope production technologies for medicine

    International Nuclear Information System (INIS)

    Bechtold, V.; Schweickert, H.

    1989-01-01

    The advantages of the accelerator production of radioisotopes for medical purposes, are, above all, the high specific activity attainable as well as the possibility of the generation of nuclei with only a few neutrons which disintegrate due to β + emission or electron capture. It is, for example, possible to diagnostically utilize the developing long-range γ quanta by means of computerized tomography. The production of I-123 at the cyclotron of Karlsruhe (nuclear reaction, target, irradiation arrangement) as well as of ultra-pure I-123 with the help of compact cyclotrons, and the plant developed for this are described in brief. As another radioisotope which can be produced with the help of the compact cyclotron, Rb-81 is mentioned, the disintegration product Kr-81m of which is used in pulmonary diagnostics. (RB) [de

  18. The future of medical radioisotope supply

    International Nuclear Information System (INIS)

    Peykov, Pavel

    2014-01-01

    The NEA and its High-level Group on the Security of Supply of Medical Radioisotopes (HLG-MR) have been actively examining the causes of supply shortages of the most widely used isotope in medical diagnostic imaging, technetium-99m ( 99m Tc), and its parent isotope molybdenum-99 ( 99 Mo). As a result of this examination, the HLG-MR has developed a policy approach that includes principles and supporting recommendations to address the causes of these supply shortages. Six policy principles were agreed by the HLG-MR in March 2011. These are implementation of full-cost recovery and outage reserve capacity (ORC) for 99 Mo production, a government role in the market, conversion to low-enriched uranium targets, international collaboration and periodic reviews of the supply chain. This article describes progress made in the implementation of the six principles and examines the projected global capacity for medical radioisotope production in the near future. (author)

  19. Development of radioisotope production in JAERI

    International Nuclear Information System (INIS)

    Yamabayashi, H.; Kato, H.; Umezawa, H.

    1992-01-01

    Since 1962, we have been developing methods and technology for producing a wide variety of processed radioisotopes and sealed radiation sources by using the JAERI's reactors, JRR-2, JRR-3, JRR-4 and JMTR, and providing the products to domestic users. At present, 29 nuclides and 31 products are on our list of processed radioisotopes. Some of those isotopes such as P-32, S-35, Cr-51 and short-lived nuclides are being produced regularly for distribution, but most of the rest are produced upon request. The radiation sources of Co-60 needles and Ir-192 pellets for industrial use and Gd-153 pellet, 7 kinds of Ir-192 and Au-198 grain for medical applications are produced and distributed routinely. (author)

  20. Mathematical models and accuracy of radioisotope gauges

    International Nuclear Information System (INIS)

    Urbanski, P.

    1989-01-01

    Mathematical expressions relating the variance and mean value of the intrinsic error with the parameters of one and multi-dimensional mathematical models of radioisotope gauges are given. Variance of the intrinsic error at the model's output is considered as a sum of the variances of the random error which is created in the first stages of the measuring chain and the random error of calibration procedure. The mean value of the intrinsic error (systematic error) appears always for nonlinear models. It was found that the optimal model of calibration procedure not always corresponds to the minimal value of the intrinsic error. The derived expressions are applied for the assessment of the mathematical models of some of the existing gauges (radioisotope belt weigher, XRF analyzer and coating thickness gauge). 7 refs., 5 figs., 1 tab. (author)

  1. Advanced Stirling Radioisotope Generator Life Certification Plan

    Science.gov (United States)

    Rusick, Jeffrey J.; Zampino, Edward J.

    2013-01-01

    An Advanced Stirling Radioisotope Generator (ASRG) power supply is being developed by the Department of Energy (DOE) in partnership with NASA for potential future deep space science missions. Unlike previous radioisotope power supplies for space exploration, such as the passive MMRTG used recently on the Mars Curiosity rover, the ASRG is an active dynamic power supply with moving Stirling engine mechanical components. Due to the long life requirement of 17 years and the dynamic nature of the Stirling engine, the ASRG project faced some unique challenges trying to establish full confidence that the power supply will function reliably over the mission life. These unique challenges resulted in the development of an overall life certification plan that emphasizes long-term Stirling engine test and inspection when analysis is not practical. The ASRG life certification plan developed is described.

  2. Research and development for the application of radioisotope technology in SINR

    International Nuclear Information System (INIS)

    Zhang Jiahua

    1987-01-01

    A brief systematic account on the research and development for the application of radioisotope technology in Shanghai Institute of Nuclear Research (SINR) is presented. It comprehensively covers the following categories: 1. Radioisotopes produced by cyclotron; 2. Radioisotope-labelled compounds; 3. Radioisotope as source of energy converter; 4. Induced-radioisotope generation as a means for elemental analysis--the activation analysis; 5. Radioisotope equipped with electronic instrument for various application; and 6. Special usage of some radioisotopes

  3. Radioisotopes in the treatment of cancer

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1962-01-15

    Radiation treatment of malignant growths is not, of course, a novel procedure; both radium implants and X-rays generated at medium voltages (up to 250 kV) have been used all over the world for many years. However, large scale production of radioisotopes in atomic reactors has made radiotherapy available for the first time in less developed areas of the world. Moreover, the treatment has been simplified and, in many cases, made more effective

  4. Radiation protection at radioisotope processing facilities

    International Nuclear Information System (INIS)

    Hillier, L.R.; Decaire, R.

    2002-01-01

    MDS Inc. is Canada's largest diversified health and life sciences company and provides health care services and products to prevent, diagnose and treat disease. MDS Nordion Inc. is a subsidiary of MDS Inc. and is located in Ottawa, Ontario. It provides much of the world's supply of radioisotopes used in nuclear medicine primarily to diagnose, but also to treat disease. MDS Nordion is composed of three major production divisions at its Ottawa location and serves customers in three major markets. These are primarily: radioisotopes used in nuclear medicine (Nuclear Medicine Division), radiation processing for sterilization of medical equipment and supplies, and food (Ion Technologies Division), and teletherapy equipment used in cancer treatment (Therapy Systems Division). MDS Nordion supplies customers in over 100 countries, exporting more than 95 percent of its product processed in Canada. Every year, 15 to 20 million diagnostic imaging tests are carried out in hospitals around the world, using radioisotopes supplied by MDS Nordion. In addition, 150 to 200 million cubic feet (that's enough to cover an entire CFL field - including the end zones - stacked over half a kilometer high) of single use medical products are sterilized using MDS Nordion supplied equipment. MDS Nordion receives medical isotopes from AECL, Chalk River Laboratories and processes the material to purify and quantify the radioisotope product. Sealed sources, comprised of cobalt 60, are supplied from CANDU reactors. Production processes include ventilated shielded cells with remote manipulators, gloveboxes and fumehoods, to effectively control the safety of the workplace and the environment, and to prevent contamination of the products. The facilities are highly regulated by the Canadian Nuclear Safety Commission (CNSC) for safety and environmental protection. Products are also regulated by Health Canada and the US-Food and Drug Administration (FDA). (author)

  5. Utilization of radioisotopes in the agriculture

    International Nuclear Information System (INIS)

    Cerri, C.C.

    1987-01-01

    Some aspects of radioisotopes utilization in the agriculture, such as, the use of gamma radiation for genetic improvement of plants; the use of C 14 as tracer for comprehension of the vegetable physiology; the use of nitrogen and phosphorus isotopes in soil fertilization and plant nutrition; the use of radiation for inset sterelization and, measurement of the humidity and density of soils by neutron moderation and attenuation of gamma radiation, are presented. (M.C.K.) [pt

  6. The efficient importation and distribution of radioisotopes. Suggestions for the most economic importation of radioisotopes

    International Nuclear Information System (INIS)

    1963-01-01

    In the course of their work in many Member States, IAEA technical assistance experts have sometimes encountered difficulties in connection with the importation of radioactive isotopes. In some countries they have been consulted as to the possible improvement of import procedures. The purpose of this publication is to summarize the experience that has been gained in the hope that it may be useful both to scientists who wish to import radioisotopes for their work and to public officials who are concerned with the administrative and financial aspects of the problem. This question is of considerable importance because many countries have only limited resources of scientific man-power and foreign exchange and hence it is essential, if these resources are to be utilized fully, that efficient importing procedures be established. Furthermore, the success or failure of technical assistance activities may depend on whether radioisotopes needed for the project can be efficiently imported. Although the data summarized in this publication are based mainly on the experience of medical users of radioisotopes, they are equally applicable to their uses in other fields such as agriculture and hydrology. This publication covers the subject of importation and distribution of radioisotopes, and concludes with a brief section on the domestic production of short-lived radioisotopes in research reactors

  7. The efficient importation and distribution of radioisotopes. Suggestions for the most economic importation of radioisotopes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1963-08-01

    In the course of their work in many Member States, IAEA technical assistance experts have sometimes encountered difficulties in connection with the importation of radioactive isotopes. In some countries they have been consulted as to the possible improvement of import procedures. The purpose of this publication is to summarize the experience that has been gained in the hope that it may be useful both to scientists who wish to import radioisotopes for their work and to public officials who are concerned with the administrative and financial aspects of the problem. This question is of considerable importance because many countries have only limited resources of scientific man-power and foreign exchange and hence it is essential, if these resources are to be utilized fully, that efficient importing procedures be established. Furthermore, the success or failure of technical assistance activities may depend on whether radioisotopes needed for the project can be efficiently imported. Although the data summarized in this publication are based mainly on the experience of medical users of radioisotopes, they are equally applicable to their uses in other fields such as agriculture and hydrology. This publication covers the subject of importation and distribution of radioisotopes, and concludes with a brief section on the domestic production of short-lived radioisotopes in research reactors.

  8. Medical Radioisotope Scanning. Proceedings of a Seminar

    International Nuclear Information System (INIS)

    1959-01-01

    Of the many and varied uses of radioactive isotopes which have been developed in the past twenty years, their applications in medicine are among the most important. All over the world medical scientists have added radioisotopes to their armament in clinical research, diagnosis and radiotherapy. It is significant that the first scientific meeting organized by the International Atomic Energy Agency was devoted to a medical subject. It is not less significant as a symbol of the close co-operation which has been established between the Agency and other agencies of the United Nations family, that this first seminar was a joint undertaking with the World Health Organization. The determination of the distribution of a radioisotope within the human body - radioisotope scanning - is a technique which has made very rapid progress in the last few years in various medical centres throughout the world, and the necessity of providing an opportunity for an organized exchange of results, experience and opinions was clearly recognised. The value of such an exchange is demonstrated by the extensive discussions which took place and which are recorded in this volume, together with the original papers presented by those who have made such noteworthy contributions to progress in this field.

  9. Radioisotope labelling of several major insect pest

    International Nuclear Information System (INIS)

    Sutrisno, Singgih

    1981-01-01

    Radioisotope uptake by insects could take place through various parts i.e. mouth, cuticula, intersegmental, secretion and excretion organs. Usually insects are labelled internally by feeding them on an artificial diet containing radioisotope solution. Labelling of several insect pests of cabbage (Crocidolomia binotalis) Zell and Plutella maculipennis Curt and rice (Chilo suppressalis Walker) by dipping of the pupae in 32 P solution showed a promising result. Pupae of Crocidolomia binotalis Zell dipped in 3 ml solution of 32 P with specific activities of 1, 3, 5 and 7 μCi/ml had developed labelled adults of sufficiently high radioactivity levels for ecological studies. Similar results were also obtained with Plutella maculipennis Curt and Chilo suppressalis Walker with doses of 1, 3, 5, 7 and 9 μCi/ml 32 P solution. The best doses for radioisotope labelling by dipping of the insects Crocidolomia binotalis Zell, Plutella maculipennis Curt, and Chilo suppressalis Walker were 1, 9, and 7 μCi/ml respectivelly. (author)

  10. Steps of radioisotope separation in Japan

    International Nuclear Information System (INIS)

    Nakane, Ryohei; Kitamoto, Asashi; Shimizu, Masami

    1998-03-01

    The Extraordinary Specialist Committee on Radioisotope Separation of the Atomic Energy Society of Japan has supported various actions on foundation, application and industrialization of the radioisotope separation over past 30 years to continue wide range of actions at a standpoint of specialist, since established in Showa 44 (1969). On June 1993 (Heisei 5), a memorial lecture meeting, as the 100th committee was held at the Institute of Physical and Chemical Research (RIKEN) of Wako-city in Saitama prefecture. At that time, a planning to publish an impressive memorial issue, to prepare orbits and episodes of actions, painful stories and fault examples of developments, and so forth like novels and to use for a future foundation, was determined. For its writing principle, it was settled to the base not to use mathematical equation as possible, to collect the essence like a tale, to collect actual and historical reports, and so on. And, for its writing content, it was determined to report on actual, painful and fault experiences in research and development, on data, topics and human relation, and on what to be remained for references. This book can be used not only for data collected on traces from fundamental to applied studies, technical development for industrialization, and so forth on radioisotope concentration, but also for a knowledge bag to give some hints to a man aiming to overcome a new problem. (G.K.)

  11. New Directions In Radioisotope Spectrum Identification

    International Nuclear Information System (INIS)

    Salaymeh, S.; Jeffcoat, R.

    2010-01-01

    Recent studies have found the performance of commercial handheld detectors with automatic RIID software to be less than acceptable. Previously, we have explored approaches rooted in speech processing such as cepstral features and information-theoretic measures. Scientific advances are often made when researchers identify mathematical or physical commonalities between different fields and are able to apply mature techniques or algorithms developed in one field to another field which shares some of the same challenges. The authors of this paper have identified similarities between the unsolved problems faced in gamma-spectroscopy for automated radioisotope identification and the challenges of the much larger body of research in speech processing. Our research has led to a probabilistic framework for describing and solving radioisotope identification problems. Many heuristic approaches to classification in current use, including for radioisotope classification, make implicit probabilistic assumptions which are not clear to the users and, if stated explicitly, might not be considered desirable. Our framework leads to a classification approach with demonstrable improvements using standard feature sets on proof-of-concept simulated and field-collected data.

  12. Medical Radioisotope Scanning. Proceedings of a Seminar

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1959-07-01

    Of the many and varied uses of radioactive isotopes which have been developed in the past twenty years, their applications in medicine are among the most important. All over the world medical scientists have added radioisotopes to their armament in clinical research, diagnosis and radiotherapy. It is significant that the first scientific meeting organized by the International Atomic Energy Agency was devoted to a medical subject. It is not less significant as a symbol of the close co-operation which has been established between the Agency and other agencies of the United Nations family, that this first seminar was a joint undertaking with the World Health Organization. The determination of the distribution of a radioisotope within the human body - radioisotope scanning - is a technique which has made very rapid progress in the last few years in various medical centres throughout the world, and the necessity of providing an opportunity for an organized exchange of results, experience and opinions was clearly recognised. The value of such an exchange is demonstrated by the extensive discussions which took place and which are recorded in this volume, together with the original papers presented by those who have made such noteworthy contributions to progress in this field.

  13. Radioisotope applications on fluidized catalytic cracking units

    International Nuclear Information System (INIS)

    Charlton, J.S.

    1997-01-01

    Radioisotopes are used to trace the flow of all the phases of Fluidized Catalytic Cracking process in oil refineries. The gaseous phases, steam, hydrocarbon vapour and air, are generally traced using a noble-gas isotope, 41 Ar, 79 Kr or 85 Kr. An appropriate tracer for the catalyst is produced by irradiating a catalyst sample in a nuclear reactor. The activation products, 140 La and 24 Na provide appropriate radioactive 'labels' for the catalyst, which is reinjected into the FCC. An advantage of this approach is that it facilitates the study of the behaviour of different particle size fractions. Radioisotopes as sealed sources of gamma radiation are used to measure catalyst density variations and density distributions in critical parts of the unit. An important trend in radioisotope applications is the increasing use of the information they produce as inputs to or as validation of, mathematical process models. In line with the increasing sophistication of the models, the technology is undergoing continuous refinement. Developments include the investigation of more efficient, more convenient tracers, the introduction of systems to facilitate more rapid and comprehensive data acquisition and software refinements for enhanced data analysis

  14. A Southern African positron beam

    International Nuclear Information System (INIS)

    Britton, D.T.; Haerting, M.; Teemane, M.R.B.; Mills, S.; Nortier, F.M.; Van der Walt, T.N.

    1997-01-01

    The first stage of a state of the art positron beam, being constructed at the University of Cape Town, is currently being brought into operation. This is the first positron beam on the African continent, as well as being the first positron beam dedicated to solid and surface studies in the southern hemisphere. The project also contains a high proportion of local development, including the encapsulated 22 Na positron source developed by our collaboration. Novel features in the design include a purely magnetic in-line deflector, working in the solenoidal guiding field, to eliminate unmoderated positrons and block the direct line of sight to the source. A combined magnetic projector and single pole probe forming lens is being implemented in the second phase of construction to achieve a spot size of 10 μm without remoderation

  15. Studies of Positron Generation from Ultraintense Laser-Matter Interactions

    Science.gov (United States)

    Williams, Gerald Jackson

    Laser-produced pair jets possess unique characteristics that offer great potential for their use in laboratory-astrophysics experiments to study energetic phenomenon such as relativistic shock accelerations. High-flux, high-energy positron sources may also be used to study relativistic pair plasmas and useful as novel diagnostic tools for high energy density conditions. Copious amounts of positrons are produced with MeV energies from directly irradiating targets with ultraintense lasers where relativistic electrons, accelerated by the laser field, drive positron-electron pair production. Alternatively, laser wakefield accelerated electrons can produce pairs by the same mechanisms inside a secondary converter target. This dissertation describes a series of novel experiments that investigate the characteristics and scaling of pair production from ultraintense lasers, which are designed to establish a robust platform for laboratory-based relativistic pair plasmas. Results include a simple power-law scaling to estimate the effective positron yield for elemental targets for any Maxwellian electron source, typical of direct laser-target interactions. To facilitate these measurements, a solenoid electromagnetic coil was constructed to focus emitted particles, increasing the effective collection angle of the detector and enabling the investigation of pair production from thin targets and low-Z materials. Laser wakefield electron sources were also explored as a compact, high repetition rate platform for the production of high energy pairs with potential applications to the creation of charge-neutral relativistic pair plasmas. Plasma accelerators can produce low-divergence electron beams with energies approaching a GeV at Hz frequencies. It was found that, even for high-energy positrons, energy loss and scattering mechanisms in the target create a fundamental limit to the divergence and energy spectrum of the emitted positrons. The potential future application of laser

  16. Isolated working heart: description of models relevant to radioisotopic and pharmacological assessments

    International Nuclear Information System (INIS)

    Depre, Christophe

    1998-01-01

    Isolated heart preparations are used to study physiological and metabolic parameters of the heart independently of its environment. Several preparations of isolated perfused heart are currently used, mainly the retrograde perfusion system and the working heart model. Both models allow investigations of the metabolic regulation of the heart in various physiological conditions (changes in workload, hormonal influences, substrate competition). These systems may also reproduce different pathological conditions, such as ischemia, reperfusion and hypoxia. Quantitation of metabolic activity can be performed with specific radioactive tracers. Finally, the effects of various drugs on cardiac performance and resistance to ischemia can be studied as well. Heart perfusion also revealed efficient methods to determine the tracer/tracee relation for radioisotopic analogues used with Positron Emission Tomography

  17. Proton linac for hospital-based fast neutron therapy and radioisotope production

    International Nuclear Information System (INIS)

    Lennox, A.J.; Hendrickson, F.R.; Swenson, D.A.; Winje, R.A.; Young, D.E.

    1989-09-01

    Recent developments in linac technology have led to the design of a hospital-based proton linac for fast neutron therapy. The 180 microamp average current allows beam to be diverted for radioisotope production during treatments while maintaining an acceptable dose rate. During dedicated operation, dose rates greater than 280 neutron rads per minute are achievable at depth, DMAX = 1.6 cm with source to axis distance, SAD = 190 cm. Maximum machine energy is 70 MeV and several intermediate energies are available for optimizing production of isotopes for Positron Emission Tomography and other medical applications. The linac can be used to produce a horizontal or a gantry can be added to the downstream end of the linac for conventional patient positioning. The 70 MeV protons can also be used for proton therapy for ocular melanomas. 17 refs., 1 fig., 1 tab

  18. Transmission factors for neutrons produced by radioisotopes production used in PET

    International Nuclear Information System (INIS)

    Hernandez G, D.; Cruzate, J.A.

    1996-01-01

    The dose transmission factor for normal concrete and the neutrons produced in the 18 O(p,n) 18 F and 13 C(p,n) 13 N reactions are presented in this paper. These transmission factors permit to simplify the calculation of the necessary accelerator shielding to be used in the radioisotope production for positron emission tomography. The energy distributions of the neutrons resulting from the irradiation of thick targets, with 10 to 13 MeV protons, were determined using the thin target cross sections, the energy loss per path length and the energy balance of the reaction (Q-equation). The one dimensional discrete ordinate transport code ANISN and the conversion coefficients from fluence to dose, presented in the ICRP Publication 51 were employed to obtain the transmission factors. (authors). 12 refs., 3 figs., 2 tabs

  19. Development of new organometallic species for the labelling of radiotracers with short half-lives radioisotopes

    International Nuclear Information System (INIS)

    Huet-Dales, A.

    2003-11-01

    The reactivity of clean organotins have been studied in the Stille coupling reaction in fast conditions, witch can be used with short half-life radioisotope. In a first part, development of the reaction conditions have been studied for the transfer of a methyl group by the Stille coupling reaction, via the synthesis of the correspond mono-organotin. The reaction time was optimized onto model compounds in 12-carbon and 11-carbon chemistry. In a second part, this methodology was applied to the synthesis of NK3 receptors radioligands, in 12-carbon and 11-carbon chemistry. Biological studies showed that these ligands have a good affinity with NK3 receptors, and are potential positron emission tomography tracers. (author)

  20. Positron emission tomographic imaging of tumors using monoclonal antibodies. Progress report, April 15, 1992--October 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Zalutsky, M.R.

    1992-08-01

    This research project is developing methods for utilizing positron emission tomography (PET) to increase the clinical potential of radiolabeled monoclonal antibodies (MAbs). This report describes the development of methods for labeling MAbs and their fragments with positron-emitting halogen nuclides, fluorine-18 and iodine-124. These nulides were selected because of the widespread availability of F-18 and because of our extensive experience in the development of new protein radiohalogenation methods.

  1. Improved Slow-Positron Yield using a Single Crystal Tungsten Moderator

    DEFF Research Database (Denmark)

    Vehanen, A.; Lynn, K. G.; Schultz, P. J.

    1983-01-01

    A well-annealed W(110) single crystal was used as a fast-to-slow positron moderator. The measured moderator efficiency at room temperature using a58Co positron source in the backscattering geometry isɛ =(3.2±0.4)×10−3, roughly a factor of three better thanɛ for the best previously reported Cu(111......)+S moderator. We find a stable positron moderation efficiency over a period of several weeks when maintained at pressures around 10−9 Torr and an energy spreadΔE = 0.7 eV of the emitted slow positrons. An initial attempt was made to fabricate a hybrid Cu on W(110) moderator, which yieldedɛ of about 1...

  2. Radiation emitting devices regulations

    International Nuclear Information System (INIS)

    1970-01-01

    The Radiation Emitting Devices Regulations are the regulations referred to in the Radiation Emitting Devices Act and relate to the operation of devices. They include standards of design and construction, standards of functioning, warning symbol specifications in addition to information relating to the seizure and detention of machines failing to comply with the regulations. The radiation emitting devices consist of the following: television receivers, extra-oral dental x-ray equipment, microwave ovens, baggage inspection x-ray devices, demonstration--type gas discharge devices, photofluorographic x-ray equipment, laser scanners, demonstration lasers, low energy electron microscopes, high intensity mercury vapour discharge lamps, sunlamps, diagnostic x-ray equipment, ultrasound therapy devices, x-ray diffraction equipment, cabinet x-ray equipment and therapeutic x-ray equipment

  3. Positrons in amorphous alloys

    International Nuclear Information System (INIS)

    Moser, Pierre.

    1981-07-01

    Positron annihilation techniques give interesting informations about ''empty spaces'' in amorphous alloys. The results of an extensive research work on the properties of either pre-existing or irradiation induced ''empty spaces'' in four amorphous alloys are presented. The pre-existing empty spaces appear to be small vacancy-like defects. The irradiation induced defects are ''close pairs'' with widely distributed configurations. There is a strong interaction between vacancy like and interstitial like components. A model is proposed, which explains the radiation resistance mechanism of the amorphous alloys. An extensive joint research work to study four amorphous alloys, Fe 80 B 20 ,Fe 40 Ni 40 P 14 B 6 , Cu 50 Ti 50 , Pd 80 Si 20 , is summarized

  4. Positron emission tomography camera

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    A positron emission tomography camera having a plurality of detector planes positioned side-by-side around a patient area to detect radiation. Each plane includes a plurality of photomultiplier tubes and at least two rows of scintillation crystals on each photomultiplier tube extend across to adjacent photomultiplier tubes for detecting radiation from the patient area. Each row of crystals on each photomultiplier tube is offset from the other rows of crystals, and the area of each crystal on each tube in each row is different than the area of the crystals on the tube in other rows for detecting which crystal is actuated and allowing the detector to detect more inter-plane slides. The crystals are offset by an amount equal to the length of the crystal divided by the number of rows. The rows of crystals on opposite sides of the patient may be rotated 90 degrees relative to each other

  5. Defect identification using positrons

    International Nuclear Information System (INIS)

    Beling, C.D.; Fung, S.

    2001-01-01

    The current use of the lifetime and Doppler broadening techniques in defect identification is demonstrated with two studies, the first being the identification of carbon vacancy in n-6H SiC through lifetime spectroscopy, and the second the production of de-hydrogenated voids in α-Si:H through light soaking. Some less conventional ideas are presented for more specific defect identification, namely (i) the amalgamation of lifetime and Doppler techniques with conventional deep level transient spectroscopy in what may be called ''positron-deep level transient spectroscopy'', and (ii) the extraction of more spatial information on vacancy defects by means of what may be called ''Fourier transform Doppler broadening of annihilation radiation spectroscopy'' (orig.)

  6. Design Studies for Flux and Polarization Measurements of Photons and Positrons for SLAC Proposal E166: An experiment to test polarized positron production in the FFTB (LCC-0107)

    Energy Technology Data Exchange (ETDEWEB)

    Woods, M

    2003-10-02

    We present results from design studies carried out to investigate measurements of the flux, spectrum and polarization of undulator photons for SLAC Proposal E166. A transmission Compton polarimeter is considered for measuring the photon circular polarization. We also present results for measuring the flux and spectrum of positrons produced by the undulator photons in an 0.5X{sub 0} Titanium target. And we present some considerations for use of a transmission Compton polarimeter to measure the circular polarization of bremsstrahlung photons emitted by the polarized positrons in a thin radiator.

  7. Radioisotope techniques for problem-solving on refineries

    International Nuclear Information System (INIS)

    Charlton, J.S.; Webb, M.

    1994-01-01

    Increasingly, refineries worldwide are recognizing the value of radioisotope technology in studying the operation of on-line plant. Using case studies, this paper illustrates the versatility of radioisotope techniques in a wide range of investigations: the density-profiling of distillation columns; the investigation of leaks on feed/effluent exchangers; on-line flowrate measurement; underground leakage detection. The economic benefits deriving from radioisotope applications are indicated

  8. HAC and production of radioisotopes and labelled compounds

    International Nuclear Information System (INIS)

    Nozaki, T.

    1984-01-01

    In this paper, the author reviews different methods for the production of radioisotopes and labelled compounds that make use of hot atom reactions. Subsequently he discusses the production of radioisotopes for radiopharmaceuticals; enrichment of (n,γ) products, recoil labelling and related methods (neutron reaction products, cyclotron production, excitation labelling, radiation and discharge induced labelling). The final section offers a survey of radioisotope production using accelerators. Only a selection of the various conditions used in practical RI production is considered. (Auth.)

  9. A report on the extent of radioisotope usage in Malaysia

    International Nuclear Information System (INIS)

    1983-04-01

    A market survey was carried out to study the extent of radioisotope usage in Malaysia. From the survey, the radioisotopes and their activities/quantities that are used in Industry, Medicine and Research were identified. The radioisotopes that are frequently needed or routinely used were also determined and this formed the basis of the recommendations put forward in this report. It is proposed that PUSPATI adopt the concept of a Distribution Centre in order to provide a service to the Malaysian community. (author)

  10. The Research and Development of the Radioisotope Energy Conversion System

    International Nuclear Information System (INIS)

    Steinfelds, E.V.; Ghosh, T.K.; Prelas, M.A.; Tompson, R.V.; Loyalka, S.K.

    2001-01-01

    The project of developing radioisotope energy conversion system (RECS) involves analytical computational assisted design and modeling and also laboratory research. The computational analysis consists of selecting various geometries and materials for the main RECS container and the internally located radioisotope, computing the fluxes of the beta (-) particles and of the visible (or ultraviolet) photons produced by the beta (-) s, computing the transport of these photons to the photovoltaic cells, and computing the overall efficiency of useful conversion of the radioisotope power

  11. Contribution of radioisotopic techniques to identify sentinel lymph-nodes (SLN) in breast cancer

    International Nuclear Information System (INIS)

    Zarlenga, Ana C.; Katz, Lidia; Armesto, Amparo; Noblia, Cristina; Gorostidi, Susana; Perez, Juan; Parma, Patricia

    2009-01-01

    The SLN (one or several) is the first to receive lymph from a tumor. When a cancer cell comes off the tumor and circulates along the outgoing lymph, it meets a barrier, the SLN that intercepts and destroys it. If not, the cancer cell can stay and reproduce in the SLN making a metastasis which can affect other nodes in the same way. It has been shown that if the original tumor is small there is little chance that the SLN could be invaded and therefore little chance of dissemination to other lymph-nodes. Nowadays due to early detection, breast tumors are smaller than one cm, therefore with such size there is little chance of axillary lymph-nodes being affected. If it is confirmed by histological study that the SLN is free of metastasis, it is not necessary to perform a axillary emptying. This identification of SLNs has been achieved because of the advances of Radioisotopic Techniques, which has been carried out in our Hospital since 1997. We have been adapting this technique to the national supply of equipment and radio compounds always under a reliable and secure way. The aim of this presentation is to highlight the radioisotopic identification of SLNs in clinical investigation in 'Angel H. Roffo Institute', and its daily practice compare with Positron Emission Tomography (PET). By combining Radioisotopic Lymphography, Lymphochromography and intra surgical detection of the SN with Gamma Probe, we have obtained a true negative value of 95% of the SN, with 5% false negative. Due to this method we have included SN study in daily practice breast tumor patients with tumor up to 5 cm of diameter. Comparing this methods result (5% false negative), with the PET results, using 18 F-FDG, that has 33% false negatives, we conclude that a negative result can not replace this method of SN detection. (author)

  12. Positron-acoustic waves in an electron-positron plasma with an electron beam

    International Nuclear Information System (INIS)

    Nejoh, Y.N.

    1996-01-01

    The nonlinear wave structures of large-amplitude positron-acoustic waves are studied in an electron-positron plasma in the presence of an electron beam with finite temperature and hot electrons and positrons. The region where positron-acoustic waves exist is presented by analysing the structure of the pseudopotential. The region depends sensitively on the positron density, the positron temperature and the electron beam temperature. It is shown that the maximum amplitude of the wave decreases as the positron temperature increases, and the region of positron-acoustic waves spreads as the positron temperature increases. 11 refs., 5 figs

  13. Improved High Current Liquid and Gas Targets for Cyclotron Produced Radioisotopes (Turkey)

    Energy Technology Data Exchange (ETDEWEB)

    Kivrakdal, Deniz; Ustaoğlu, Özgur; Soylu, Ayfer [Eczacibasi Nuclear Products Inc. (Turkey)

    2009-07-01

    As positron emitting radiopharmaceuticals gain interest in nuclear medicine, more and more baby cyclotrons are installed. The number of cyclotrons in Turkey went up to nine whereas the number of PET or PET/CT cameras increased more than 50% within a year. At the moment there are 65 positron imaging cameras serving a population of around 70 million. Eczacıbası - Monrol Nuclear Products Industry and Trade Inc. has five cyclotrons three of them being of different brands. In this report production data collected with these cyclotrons using high current liquid targets of silver, tantalum and niobium will be presented. The data presented here covers the whole duration of the project. Another topic which will be discussed here is the work carried out about purification and analysis of used O-18 water for re-use purposes. (author)

  14. Improved High Current Liquid and Gas Targets for Cyclotron Produced Radioisotopes (Turkey)

    International Nuclear Information System (INIS)

    Kivrakdal, Deniz; Ustaoğlu, Özgur; Soylu, Ayfer

    2009-01-01

    As positron emitting radiopharmaceuticals gain interest in nuclear medicine, more and more baby cyclotrons are installed. The number of cyclotrons in Turkey went up to nine whereas the number of PET or PET/CT cameras increased more than 50% within a year. At the moment there are 65 positron imaging cameras serving a population of around 70 million. Eczacıbası - Monrol Nuclear Products Industry and Trade Inc. has five cyclotrons three of them being of different brands. In this report production data collected with these cyclotrons using high current liquid targets of silver, tantalum and niobium will be presented. The data presented here covers the whole duration of the project. Another topic which will be discussed here is the work carried out about purification and analysis of used O-18 water for re-use purposes. (author)

  15. Study of surface layer assessment of solids by ultra-slow and short-pulsed positron beams

    International Nuclear Information System (INIS)

    Suzuki, Ryouichi; Ohdaira, Toshiyuki; Mikado, Tomohisa; Yamada, Kawakatsu

    2004-01-01

    Thin films of insulators with low dielectric constant, as a candidate for next generation LSI (large scale integration), were assessed by two dimensional positron life time and wave height measurements using variable incident energy and also short pulsed positron beams. Linkages and openness of nano-scale voids in the films were evaluated by the measurements. Amorphous SiO 2 films were compared with SiCOH films synthesized by plasma CVD (Chemical Vapor Deposition) by measurements of the correlation between positron lifetime and momentum using short-pulsed positron beams. From the measurements, many hydrocarbons were found on void surface of SiCOH films. Positron lifetime measurement gives information about void sizes, and Doppler broadening due to annihilation γ-rays offers electron momentum distribution, which is a counterpart of positron annihilation. Two γ-rays are emitted on the positron annihilation. Coincident measurements of these two γ-rays provide the correlation spectra between positron lifetime and momentum. An instrument for positron annihilation excitation Auger electron spectroscopy (PAES) was improved, and a time-of-flight (TOF) PAES instrument was developed. Double counting rate and high resolution, compared with a conventional Auger electron spectrometer, were attained in elementary analysis using above TOF-PAES instrument. (Y. Kazumata)

  16. Defect characterization with positron annihilation

    International Nuclear Information System (INIS)

    Granatelli, L.; Lynn, K.G.

    1980-01-01

    Positron annihilation in metal crystals is reviewed. A brief introduction to the positron annihilation technique is presented first. Then the ability of the positron technique to perform microstructural characterization of four types of lattice defects (vacancies, voids, dislocations, grain boundaries) is discussed. It is frequently not possible to obtain samples that contain only one type of defect in nonnegligible concentrations. Such situations exist for some alloys and for fatigued metal samples. Finally, the current limitations and some future prospects of the technique are presented. 79 references, 14 figures, 1 table

  17. Fundamentals of positron emission tomography

    International Nuclear Information System (INIS)

    Ostertag, H.

    1989-01-01

    Positron emission tomography is a modern radionuclide method of measuring physiological quantities or metabolic parameters in vivo. The methods is based on: (1) Radioactive labelling with positron emitters; (2) the coincidence technique for the measurement of the annihilation radiation following positron decay; (3) analysis of the data measured using biological models. The basic aspects and problems of the method are discussed. The main fields of future research are the synthesis of new labelled compounds and the development of mathematical models of the biological processes to be investigated. (orig.) [de

  18. Cosmic Ray Positrons from Pulsars

    Science.gov (United States)

    Harding, Alice K.

    2010-01-01

    Pulsars are potential Galactic sources of positrons through pair cascades in their magnetospheres. There are, however, many uncertainties in establishing their contribution to the local primary positron flux. Among these are the local density of pulsars, the cascade pair multiplicities that determine the injection rate of positrons from the pulsar, the acceleration of the injected particles by the pulsar wind termination shock, their rate of escape from the pulsar wind nebula, and their propagation through the interstellar medium. I will discuss these issues in the context of what we are learning from the new Fermi pulsar detections and discoveries.

  19. Atomic collisions involving pulsed positrons

    DEFF Research Database (Denmark)

    Merrison, J. P.; Bluhme, H.; Field, D.

    2000-01-01

    Conventional slow positron beams have been widely and profitably used to study atomic collisions and have been instrumental in understanding the dynamics of ionization. The next generation of positron atomic collision studies are possible with the use of charged particle traps. Not only can large...... instantaneous intensities be achieved with in-beam accumulation, but more importantly many orders of magnitude improvement in energy and spatial resolution can be achieved using positron cooling. Atomic collisions can be studied on a new energy scale with unprecedented precion and control. The use...

  20. The law concerning prevention from radiation hazards due to radioisotopes

    International Nuclear Information System (INIS)

    1984-01-01

    The law regulates uses, sales and disposal of radioisotopes, uses of radiation generating apparatuses, disposal of materials contaminated with radioisotopes, and so on, in accordance with the Atomic Energy Fundamental Act, for public safety. Covered are the following: permission for and notification of the uses and permission for businesses selling and disposing of radioisotopes, and approval of designs concerning radiation hazard prevention mechanisms, obligations of the users and business enterprises selling and disposing of radioisotopes, the licensed engineers of radiation, organs, etc. for confirmation of the mechanisms, punitive provisions, and so on. (Mori, K.)

  1. Markets for reactor-produced non-fission radioisotopes

    International Nuclear Information System (INIS)

    Bennett, R.G.

    1995-01-01

    Current market segments for reactor produced radioisotopes are developed and reported from a review of current literature. Specific radioisotopes studied in is report are the primarily selected from those with major medical or industrial markets, or those expected to have strongly emerging markets. Relative market sizes are indicated. Special emphasis is given to those radioisotopes that are best matched to production in high flux reactors such as the Advanced Test Reactor (ATR) at the Idaho National Engineering Laboratory or the High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory. A general bibliography of medical and industrial radioisotope applications, trends, and historical notes is included

  2. Efficient, Long-Lived Radioisotope Power Generator, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Radiation Monitoring Devices, Inc., (RMD) proposes to develop an alternative very long term, radioisotope power source with thermoelectric power conversion with...

  3. Vitrified chemically bonded phosphate ceramics for immobilization of radioisotopes

    Science.gov (United States)

    Wagh, Arun S.

    2016-04-05

    A method of immobilizing a radioisotope and vitrified chemically bonded phosphate ceramic (CBPC) articles formed by the method are described. The method comprises combining a radioisotope-containing material, MgO, a source of phosphate, and optionally, a reducing agent, in water at a temperature of less than 100.degree. C. to form a slurry; curing the slurry to form a solid intermediate CBPC article comprising the radioisotope therefrom; comminuting the intermediate CBPC article, mixing the comminuted material with glass frits, and heating the mixture at a temperature in the range of about 900 to about 1500.degree. C. to form a vitrified CBPC article comprising the radioisotope immobilized therein.

  4. Technical and economical availability of radioisotopes production in Brazil

    International Nuclear Information System (INIS)

    Lima, J.O.V.

    1981-10-01

    The technical and economical availability of radioisotopes production in Brazil by a low power research reactor, are done. The importance of radioisotope utilization and controled radiations, in areas such as medicine, industry and cost evaluation for the production in nuclear reactors. In the cost evaluation of a radioisotope production reactor, the studies developed by the Department of Nuclear Engineering of Universidade Federal de Minas Gerais - DEN/UFMG were used. The information analysis justify the technical and economical availability and the necessity of the radioisotopes production in Brazil. (E.G.) [pt

  5. Production and application of radioisotopes in Asian Countries

    International Nuclear Information System (INIS)

    He Youfeng

    1997-01-01

    Production and application of radioisotopes in some Asian countries including Bangladesh, India, Indonesia, Iran, Japan, Republic of Korea, Malaysia, Pakistan, Philippines, Thailand, Uzbekistan, and Viet Nam are introduced

  6. Activity concentrations and mean annual effective dose from gamma-emitting radionuclides in the Lebanese diet

    International Nuclear Information System (INIS)

    Nasreddine, L.; Hwalla, N.; El Samad, O.; Baydoun, R.; Hamze, M.; Parent-Massin, D.

    2008-01-01

    Since the primary factor contributing to the internal effective dose in the human organism is contaminated food, the control of radionuclides in food represents the most important means of protection. This study was conducted to determine the levels of the dietary exposure of the Lebanese population to gamma-emitting radioisotopes. The activity concentrations of gamma-emitting radioisotopes have been measured in food samples that represent the market basket of an adult urban population in Lebanon. The artificial radionuclide 137 Cs was measured above detection limits in only fish, meat and milk-based deserts. The most abundant natural radionuclide was 40 K (31-121 Bq kg -1 ), with the highest content in fish and meat samples. The annual mean effective dose contributed by 40 K in the reference typical diet was estimated equal to 186 μSv y -1 , a value reasonably consistent with findings reported by several other countries. (authors)

  7. Application of the 4 pigammaMethod to the Absolute Standardization of Radioactive Sources of Positron Emitters

    International Nuclear Information System (INIS)

    Peyres Medina, V.; Garcia-Torano Martinez, E.; Roteta Ibarra, M.

    2006-01-01

    We discuss the application of the method known as 4 p i g amma c ounting t o the standardization of positron emitters. Monte Carlo simulations are used to calculate the detection efficiency of positrons emitted by the nuclides 22Na and 18F. Two experimental setups are used, both based on a NaI(Tl) well detector. The results of the standardizations are in good agreement with those obtained by other methods. It is shown that the 4 p i g amma m ethod can be successfully used for the absolute standardization of sources of positron emitters. (Author) 23 refs

  8. Light-Emitting Pickles

    Science.gov (United States)

    Vollmer, M.; Mollmann, K-P.

    2015-01-01

    We present experiments giving new insights into the classical light-emitting pickle experiment. In particular, measurements of the spectra and temperatures, as well as high-speed recordings, reveal that light emission is connected to the polarity of the electrodes and the presence of hydrogen.

  9. Development of radioisotope preparation and application technology

    Energy Technology Data Exchange (ETDEWEB)

    Han, Hyon Soo; Park, K. B.; Bang, H. S. [and others

    2000-04-01

    The purpose of this project is to develop RI production technology utility 'HANARO' and to construct a sound infra-structure for mass production and supply to domestic users. The developed contents and results are as follows: two types of rig for irradiation in reactor core were designed and manufactured. The safety of OR rig during irradiation was identified through various test and it is used for RI production. The prepared IR rig will be used to performance tests for safety. We prepared two welders and welding jigs for production of sealed sources, and equipments for quality control of the welded materials. Production processes and apparatus Cr-51, P-32, I-125 and Sr-89, were developed. Developed results would be used for routine production and supply of radioisotopes. The automatic Tc-99m extraction apparatus was supplied to Libya under IAEA support. For approval on special form radioactive material of the developed Ir-192 source assembly and projector documents were prepared and submitted to MOST. The high dose rate Ir-192 source(diameter 1.1 mm, length 5.2 mm) for RALS and the laser welding system for its fabrication were developed. Production technologies of Ir-192 sources for destructive test and medical therapy were transferred to private company for commercial supply. The chemical immobilization method based on the self-assemble monolayer of {omega}-functionalized thiol and the sensing scheme based on the beta-emitter labeling method were developed for the fabrication radioimmuno-sensors. Results of this study will be applied to mass production of radioisotopes 'HANARO' and are to contribute the advance of domestic medicine and industry related to radioisotopes.

  10. A new radioisotope facility for Thailand

    International Nuclear Information System (INIS)

    Horlock, K.

    1997-01-01

    The Thai Office of Atomic Energy for Peace (OAEP) is planning a new Nuclear Research Centre which will be located at Ongkharak, a greenfield site some 100 km North of Bangkok. General Atomics (GA) has submitted a bid for a turnkey contract for the core facilities comprising a Reactor to be supplied by GA, an Isotope Production Facility supplied by ANSTO and a Waste Processing and Storage Facility to be supplied by Hitachi through Marubeni. The buildings for these facilities will be provided by Raytheon, the largest constructor of nuclear facilities in the USA. The proposed Isotope Facility will consist of a 3000 m 2 building adjacent to the reactor with a pneumatic radioisotope transfer system. Hot cells, process equipment and clean rooms will be provided, as well as the usual maintenance and support services required for processing radiopharmaceutical and industrial products. To ensure the highest standards of product purity the processing areas will be supplied with clean air and operated at slightly positive pressure. The radioisotopes to be manufactured include Phosphorus 32 (S-32 [n,p]P-32), I-131(Te-130 [n,g]Te-131[p]I-131) for bulk, diagnostic capsules and therapeutic capsules, Iridium 192 (Ir-191[n,g]Ir-192) wire for radiotherapy and discs for industrial radiography sources and bulk Iodine 125 (Xe-124[n,g]Xe-125[β]I-125 for radioimmunoassay. The bid includes proposals for training OAEP staff during design and development at ANSTO's radioisotope facilities, and during construction and commissioning in Thailand. The entire project is planned to take four years with commencement anticipated in early 1997. The paper will describe the development of the design of the hot-cells, process equipment, building layout and ventilation and other services

  11. Recent progress in radioisotope production in Vietnam

    Energy Technology Data Exchange (ETDEWEB)

    So, Le Van [Radioisotope Dept., Nuclear Research Institute, Dalat (Viet Nam)

    1998-10-01

    This is a report on the recent progress in radioisotope production in Vietnam. Using a nuclear research reactor of 500 KW with continuous operation cycles of 100 hours a month, the production of some important radioisotopes used in nuclear medicine and research was routinely carried out. More than 80 per cent of irradiation capacity of reactor for radioisotope production were exploited. The radioactivity of more than 150 Ci of {sup 131}I, {sup 99}Mo-{sup 99m}Tc, {sup 32}P, {sup 51}Cr, {sup 153}Sm, {sup 46}Sc, {sup 192}Ir was produced annually. Radiopharmaceuticals such as {sup 131}I-Hippuran and in-vivo Kits for {sup 99m}Tc labelling were also prepared routinely and regularly. More than 10 in-vivo Kits including modern radiopharmaceuticals such as HmPAO kit were supplied to hospitals in Vietnam. The research on the improvement of dry distillation technology for production of {sup 131}I was carried out. As a result obtained a new distillation apparatus made from glass was successfully put to routine use in place of expensive quartz distillation furnace. We have also continued the research programme on the development of {sup 99m}Tc generators using low power research reactors. Gel technology using Zr- and Ti- molybdate gel columns for {sup 99m}Tc generator production was developed and improved continually. Portable {sup 99m}Tc generator using Zr-({sup 99}Mo) molybdate gel column and ZISORB adsorbent column for {sup 99m}Tc concentration were developed. The ZISORB adsorbent of high adsorption capacity for {sup 99}Mo and other parent radionuclides was also studied for the development purpose of alternative technology of {sup 99m}Tc and other different radionuclide generator systems. The studies on the preparation of therapeutic radiopharmaceuticals labelling with {sup 153}Sm and {sup 131}I such as {sup 153}Sm-EDTMP, {sup 131}I-MIBG were carried out. (author)

  12. Development of radioisotope preparation and application technology

    International Nuclear Information System (INIS)

    Han, Hyon Soo; Park, K. B.; Bang, H. S. and others

    2000-04-01

    The purpose of this project is to develop RI production technology utility 'HANARO' and to construct a sound infra-structure for mass production and supply to domestic users. The developed contents and results are as follows: two types of rig for irradiation in reactor core were designed and manufactured. The safety of OR rig during irradiation was identified through various test and it is used for RI production. The prepared IR rig will be used to performance tests for safety. We prepared two welders and welding jigs for production of sealed sources, and equipments for quality control of the welded materials. Production processes and apparatus Cr-51, P-32, I-125 and Sr-89, were developed. Developed results would be used for routine production and supply of radioisotopes. The automatic Tc-99m extraction apparatus was supplied to Libya under IAEA support. For approval on special form radioactive material of the developed Ir-192 source assembly and projector documents were prepared and submitted to MOST. The high dose rate Ir-192 source(diameter 1.1 mm, length 5.2 mm) for RALS and the laser welding system for its fabrication were developed. Production technologies of Ir-192 sources for destructive test and medical therapy were transferred to private company for commercial supply. The chemical immobilization method based on the self-assemble monolayer of ω-functionalized thiol and the sensing scheme based on the beta-emitter labeling method were developed for the fabrication radioimmuno-sensors. Results of this study will be applied to mass production of radioisotopes 'HANARO' and are to contribute the advance of domestic medicine and industry related to radioisotopes

  13. Miniaturized radioisotope solid state power sources

    Science.gov (United States)

    Fleurial, J.-P.; Snyder, G. J.; Patel, J.; Herman, J. A.; Caillat, T.; Nesmith, B.; Kolawa, E. A.

    2000-01-01

    Electrical power requirements for the next generation of deep space missions cover a wide range from the kilowatt to the milliwatt. Several of these missions call for the development of compact, low weight, long life, rugged power sources capable of delivering a few milliwatts up to a couple of watts while operating in harsh environments. Advanced solid state thermoelectric microdevices combined with radioisotope heat sources and energy storage devices such as capacitors are ideally suited for these applications. By making use of macroscopic film technology, microgenrators operating across relatively small temperature differences can be conceptualized for a variety of high heat flux or low heat flux heat source configurations. Moreover, by shrinking the size of the thermoelements and increasing their number to several thousands in a single structure, these devices can generate high voltages even at low power outputs that are more compatible with electronic components. Because the miniaturization of state-of-the-art thermoelectric module technology based on Bi2Te3 alloys is limited due to mechanical and manufacturing constraints, we are developing novel microdevices using integrated-circuit type fabrication processes, electrochemical deposition techniques and high thermal conductivity substrate materials. One power source concept is based on several thermoelectric microgenerator modules that are tightly integrated with a 1.1W Radioisotope Heater Unit. Such a system could deliver up to 50mW of electrical power in a small lightweight package of approximately 50 to 60g and 30cm3. An even higher degree of miniaturization and high specific power values (mW/mm3) can be obtained when considering the potential use of radioisotope materials for an alpha-voltaic or a hybrid thermoelectric/alpha-voltaic power source. Some of the technical challenges associated with these concepts are discussed in this paper. .

  14. List of DOE radioisotope customers with summary of radioisotope shipments FY 1978

    International Nuclear Information System (INIS)

    Burlison, J.S.; Laidler, R.I.

    1979-05-01

    The purpose of the document is to list DOE's radioisotopes production and distribution activities by its facilities at Argonne National Laboratory; Pacific Northwest Laboratory; Brookhaven National Laboratory; Hanford Engineering Development Laboratory; Idaho Operations Office; Los Alamos Scientific Laboratory; Mound Facility; Oak Ridge National Laboratory; Savannah River Laboratory; and UNC Nuclear Industries, Inc

  15. Medical Radioisotope Data Survey: 2002 Preliminary Results

    Energy Technology Data Exchange (ETDEWEB)

    Siciliano, Edward R.

    2004-06-23

    A limited, but accurate amount of detailed information about the radioactive isotopes used in the U.S. for medical procedures was collected from a local hospital and from a recent report on the U.S. Radiopharmaceutical Markets. These data included the total number of procedures, the specific types of procedures, the specific radioisotopes used in these procedures, and the dosage administered per procedure. The information from these sources was compiled, assessed, pruned, and then merged into a single, comprehensive and consistent set of results presented in this report. (PIET-43471-TM-197)

  16. Digital radioisotope moisture-density meter

    International Nuclear Information System (INIS)

    Bychvarov, N.; Vankov, I.; Dimitrov, L.

    1982-01-01

    The primary information from the detectors of a combined radioisotope moisture-density meter is obtained as pulses, their counting rate being functionally dependent on the humidity per unit volume and the wet density. However, most practical cases demand information on the moisture per unit weight and the mass density of the dry skeleton. The paper describes how the proposed electronic circuit processes the input primary information to obtain the moisture in weight % and the mass density of the dry skeleton in g/cm 3 . (authors)

  17. Industrial measurement instruments that use radioisotopes

    International Nuclear Information System (INIS)

    Monno, Asao

    2004-01-01

    An example of a large-scale system for controlling hot rolling, and recent developments for a gamma-ray thickness gauge for the inner-mill housing of a plate and a thickness gauge for a hot seamless tube mill are introduced. The dramatically higher speed response, versatile intelligent elements, larger data capacity and formation of a database are advantages of these instruments over conventional devices. Moreover, Fuji Electric's industrial measuring instruments that use radioisotopes are manufactured and marketed to be compatible with those of Hitachi, and we have already compiled a track record of many deliveries. (author)

  18. Radioisotope Thermoelectric Generator Transport Trailer System

    International Nuclear Information System (INIS)

    Ard, K.E.; King, D.A.; Leigh, H.; Satoh, J.A.

    1994-01-01

    The Radioisotope Thermoelectric Generator (RTG) Transportation System, designated as System 100, comprises four major systems. The four major systems are designated as the Packaging System (System 120), Trailer System (System 140), Operations and Ancillary Equipment System system 160), and Shipping and Receiving Facility Transport System (System 180). Packaging System (System 120), including the RTG packaging is licensed (regulatory) hardware; it is certified by the US Department of Energy to be in accordance with Title 10, Code of federal Regulations, Part 71 (10 CFR 71). System 140, System 160, and System 180 are nonlicensed (nonregulatory) hardware

  19. Parkinson disease and positron tomography

    International Nuclear Information System (INIS)

    Baron, J.C.

    1984-10-01

    Physiopathologic investigations of Parkinson disease and parkinsonian syndrome using positron tomography are briefly reviewed: study of cerebral blood flow and metabolism; effects of L-DOPA; study of dopaminergic receptors and of 18 F-Fluoro-L-DOPA incorporation [fr

  20. Deconvolution of Positrons' Lifetime spectra

    International Nuclear Information System (INIS)

    Calderin Hidalgo, L.; Ortega Villafuerte, Y.

    1996-01-01

    In this paper, we explain the iterative method previously develop for the deconvolution of Doppler broadening spectra using the mathematical optimization theory. Also, we start the adaptation and application of this method to the deconvolution of positrons' lifetime annihilation spectra