WorldWideScience

Sample records for positive selection alleles

  1. Directional Positive Selection on an Allele of Arbitrary Dominance

    OpenAIRE

    Teshima, Kosuke M.; Przeworski, Molly

    2006-01-01

    Most models of positive directional selection assume codominance of the beneficial allele. We examine the importance of this assumption by implementing a coalescent model of positive directional selection with arbitrary dominance. We find that, for a given mean fixation time, a beneficial allele has a much weaker effect on diversity at linked neutral sites when the allele is recessive.

  2. Widespread signatures of positive selection in common risk alleles associated to autism spectrum disorder.

    Directory of Open Access Journals (Sweden)

    Renato Polimanti

    2017-02-01

    Full Text Available The human brain is the outcome of innumerable evolutionary processes; the systems genetics of psychiatric disorders could bear their signatures. On this basis, we analyzed five psychiatric disorders, attention deficit hyperactivity disorder, autism spectrum disorder (ASD, bipolar disorder, major depressive disorder, and schizophrenia (SCZ, using GWAS summary statistics from the Psychiatric Genomics Consortium. Machine learning-derived scores were used to investigate two natural-selection scenarios: complete selection (loci where a selected allele reached fixation and incomplete selection (loci where a selected allele has not yet reached fixation. ASD GWAS results positively correlated with incomplete-selection (p = 3.53*10-4. Variants with ASD GWAS p<0.1 were shown to have a 19%-increased probability to be in the top-5% for incomplete-selection score (OR = 1.19, 95%CI = 1.11-1.8, p = 9.56*10-7. Investigating the effect directions of minor alleles, we observed an enrichment for positive associations in SNPs with ASD GWAS p<0.1 and top-5% incomplete-selection score (permutation p<10-4. Considering the set of these ASD-positive-associated variants, we observed gene-expression enrichments for brain and pituitary tissues (p = 2.3*10-5 and p = 3*10-5, respectively and 53 gene ontology (GO enrichments, such as nervous system development (GO:0007399, p = 7.57*10-12, synapse organization (GO:0050808, p = 8.29*10-7, and axon guidance (GO:0007411, p = 1.81*10-7. Previous genetic studies demonstrated that ASD positively correlates with childhood intelligence, college completion, and years of schooling. Accordingly, we hypothesize that certain ASD risk alleles were under positive selection during human evolution due to their involvement in neurogenesis and cognitive ability.

  3. Signatures of positive selection: from selective sweeps at individual loci to subtle allele frequency changes in polygenic adaptation.

    Science.gov (United States)

    Stephan, Wolfgang

    2016-01-01

    In the past 15 years, numerous methods have been developed to detect selective sweeps underlying adaptations. These methods are based on relatively simple population genetic models, including one or two loci at which positive directional selection occurs, and one or two marker loci at which the impact of selection on linked neutral variation is quantified. Information about the phenotype under selection is not included in these models (except for fitness). In contrast, in the quantitative genetic models of adaptation, selection acts on one or more phenotypic traits, such that a genotype-phenotype map is required to bridge the gap to population genetics theory. Here I describe the range of population genetic models from selective sweeps in a panmictic population of constant size to evolutionary traffic when simultaneous sweeps at multiple loci interfere, and I also consider the case of polygenic selection characterized by subtle allele frequency shifts at many loci. Furthermore, I present an overview of the statistical tests that have been proposed based on these population genetics models to detect evidence for positive selection in the genome. © 2015 John Wiley & Sons Ltd.

  4. Positive selection of deleterious alleles through interaction with a sex-ratio suppressor gene in African Buffalo: a plausible new mechanism for a high frequency anomaly.

    Directory of Open Access Journals (Sweden)

    Pim van Hooft

    Full Text Available Although generally rare, deleterious alleles can become common through genetic drift, hitchhiking or reductions in selective constraints. Here we present a possible new mechanism that explains the attainment of high frequencies of deleterious alleles in the African buffalo (Syncerus caffer population of Kruger National Park, through positive selection of these alleles that is ultimately driven by a sex-ratio suppressor. We have previously shown that one in four Kruger buffalo has a Y-chromosome profile that, despite being associated with low body condition, appears to impart a relative reproductive advantage, and which is stably maintained through a sex-ratio suppressor. Apparently, this sex-ratio suppressor prevents fertility reduction that generally accompanies sex-ratio distortion. We hypothesize that this body-condition-associated reproductive advantage increases the fitness of alleles that negatively affect male body condition, causing genome-wide positive selection of these alleles. To investigate this we genotyped 459 buffalo using 17 autosomal microsatellites. By correlating heterozygosity with body condition (heterozygosity-fitness correlations, we found that most microsatellites were associated with one of two gene types: one with elevated frequencies of deleterious alleles that have a negative effect on body condition, irrespective of sex; the other with elevated frequencies of sexually antagonistic alleles that are negative for male body condition but positive for female body condition. Positive selection and a direct association with a Y-chromosomal sex-ratio suppressor are indicated, respectively, by allele clines and by relatively high numbers of homozygous deleterious alleles among sex-ratio suppressor carriers. This study, which employs novel statistical techniques to analyse heterozygosity-fitness correlations, is the first to demonstrate the abundance of sexually-antagonistic genes in a natural mammal population. It also has

  5. Positive selection within the Schizophrenia-associated GABA(A receptor beta(2 gene.

    Directory of Open Access Journals (Sweden)

    Wing-Sze Lo

    Full Text Available The gamma-aminobutyric acid type-A (GABA(A receptor plays a major role in inhibitory neurotransmissions. Intronic SNPs and haplotypes in GABRB2, the gene for GABA(A receptor beta(2 subunit, are associated with schizophrenia and correlated with the expression of two alternatively spliced beta(2 isoforms. In the present study, using chimpanzee as an ancestral reference, high frequencies were observed for the derived (D alleles of the four SNPs rs6556547, rs187269, rs1816071 and rs1816072 in GABRB2, suggesting the occurrence of positive selection for these derived alleles. Coalescence-based simulation showed that the population frequency spectra and the frequencies of H56, the haplotype having all four D alleles, significantly deviated from neutral-evolution expectation in various demographic models. Haplotypes containing the derived allele of rs1816072 displayed significantly less diversity compared to haplotypes containing its ancestral allele, further supporting positive selection. The variations in DD-genotype frequencies in five human populations provided a snapshot of the evolutionary history, which suggested that the positive selections of the D alleles are recent and likely ongoing. The divergence between the DD-genotype profiles of schizophrenic and control samples pointed to the schizophrenia-relevance of positive selections, with the schizophrenic samples showing weakened selections compared to the controls. These DD-genotypes were previously found to increase the expression of beta(2, especially its long isoform. Electrophysiological analysis showed that this long beta(2 isoform favored by the positive selections is more sensitive than the short isoform to the inhibition of GABA(A receptor function by energy depletion. These findings represent the first demonstration of positive selection in a schizophrenia-associated gene.

  6. Analysis of HLA class II haplotypes in the Cayapa indians of ecuador: A novel DRBI allele reveals evidence for convergent evolution and balancing selection at position 86

    Energy Technology Data Exchange (ETDEWEB)

    Titus-Trachtenberg, E.A.; Erlich, H. (Roche Molecular Systems, Alameda, CA (United States)); Rickards, O.; De Stefano, G.F. (Universita di Roma, Rome (Italy))

    1994-07-01

    PCR amplification, oligonucleotide probe typing, and sequencing were used to analyze the HLA class II loci (DRB1, DQA1, DAB1, and DPB1) of an isolated South Amerindian tribe. Here the authors report HLA class II variation, including the identification of a new DRB1 allele, several novel DR/DQ haplotypes, and an unusual distribution of DPB1 alleles, among the Cayapa Indians (N=100) of Ecuador. A general reduction of HLA class II allelic variation in the Cayapa is consistent with a population bottleneck during the colonization of the Americas. The new Cayapa DRB1 allele, DRB1[sup *]08042, which arose by a G[yields]T point mutation in the parental DRB1[sup *]0802, contains a novel Val codon (GTT) at position 86. The generation of DRB1[sup *]08042 (Val-86) from DRB1[sup *]0802 (Gly-86) in the Cayapa, by a different mechanism than the (GT[yields]TG) change in the creation of DRB1[sub *]08041 (Val-86) from DRB1[sup *]0802 in Africa, implicates selection in the convergent evolution of position 86 DR[beta] variants. The DRB1[sup *]08042 allele has not been found in >1,800 Amerindian haplotypes and thus presumably arose after the Cayapa separated from other South American Amerindians. Selection pressure for increased haplotype diversity can be inferred in the generation and maintenance of three new DRB1[sup *]08042 haplotypes and several novel DR/DQ haplotypes in this population. The DPB1 allelic distribution in the Cayapa is also extraordinary, with two alleles, DPB1[sup *]1401, a very rare allele in North American Amerindian populations, and DPB1[sup *]0402, the most common Amerindian DPB1 allele, constituting 89% of the Cayapa DPB1. These data are consistent with the postulated rapid rate of evolution as noted for the class I HLA-B locus of other South American Indians. 34 refs., 2 figs., 2 tabs.

  7. A modified Janus cassette (Sweet Janus to improve allelic replacement efficiency by high-stringency negative selection in Streptococcus pneumoniae.

    Directory of Open Access Journals (Sweden)

    Yuan Li

    Full Text Available The Janus cassette permits marker-free allelic replacement or knockout in streptomycin-resistant Streptococcus pneumoniae (pneumococcus through sequential positive and negative selection. Spontaneous revertants of Janus can lead to high level of false-positives during negative selection, which necessitate a time-consuming post-selection screening process. We hypothesized that an additional counter-selectable marker in Janus would decrease the revertant frequency and reduce false-positives, since simultaneous reversion of both counter-selectable makers is much less likely. Here we report a modified cassette, Sweet Janus (SJ, in which the sacB gene from Bacillus subtilis conferring sucrose sensitivity is added to Janus. By using streptomycin and sucrose simultaneously as selective agents, the frequency of SJ double revertants was about 105-fold lower than the frequency of Janus revertants. Accordingly, the frequency of false-positives in the SJ-mediated negative selection was about 100-fold lower than what was seen for Janus. Thus, SJ enhances negative selection stringency and can accelerate allelic replacement in pneumococcus, especially when transformation frequency is low due to strain background or suboptimal transformation conditions. Results also suggested the sacB gene alone can function as a counter-selectable marker in the Gram-positive pneumococcus, which will have the advantage of not requiring a streptomycin-resistant strain for allelic replacement.

  8. Allele frequency changes due to hitch-hiking in genomic selection programs

    DEFF Research Database (Denmark)

    Liu, Huiming; Sørensen, Anders Christian; Meuwissen, Theo H E

    2014-01-01

    of inbreeding due to changes in allele frequencies and hitch-hiking. This study aimed at understanding the impact of using long-term genomic selection on changes in allele frequencies, genetic variation and the level of inbreeding. Methods Selection was performed in simulated scenarios with a population of 400......-BLUP, Genomic BLUP and Bayesian Lasso. Changes in allele frequencies at QTL, markers and linked neutral loci were investigated for the different selection criteria and different scenarios, along with the loss of favourable alleles and the rate of inbreeding measured by pedigree and runs of homozygosity. Results...

  9. Evidence for Very Recent Positive Selection in Mongolians.

    Science.gov (United States)

    Nakayama, Kazuhiro; Ohashi, Jun; Watanabe, Kazuhisa; Munkhtulga, Lkagvasuren; Iwamoto, Sadahiko

    2017-08-01

    Mongols, the founders of the largest continental empire in history, successfully adapted to the harsh environments of Inner Asia through nomadic pastoralism. Considerable interest exists in ascertaining whether genetic adaptation also contributed to the Mongols' success, and dissecting the genome diversity of present-day populations in Mongolia can help address this question. To this end, we determined the genotypes of nearly 2.4 million single nucleotide polymorphisms (SNPs) of 96 unrelated Mongolian individuals in Ulaanbaatar city, and performed genome-wide scans for population-specific positive selection. We discovered signatures of Mongolian-specific positive selection at the chromosomal region 3p12.1, in which hits in genome-wide association studies were reported for medical and biological traits related to energy metabolism and reproduction. The top SNP, rs117799927, showed a distinctive geographic distribution: the frequency of the derived allele, rs117799927 G, was extremely low among worldwide populations (0.005) but exceptionally high in Mongolians (0.247). Approximate Bayesian computation-based age estimation showed that the rs117799927 G allele emerged or positive selection began to operate 50 generations before the present, near the age of the climate anomaly named Late Antique Little Ice Age. Furthermore, rs117799927 showed significant associations with multiple adiposity-related traits in Mongolians and allelic difference in enhancer activity in cells of adipocyte lineage, suggesting that positive selection at 3p12.1 might be related to adaptation in the energy metabolism system. These findings provide novel evidence for a very recent positive-selection event in Homo sapiens and offer insights into the roles of genes in 3p12.1 in the adaptive evolution of our species. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Red Queen Processes Drive Positive Selection on Major Histocompatibility Complex (MHC Genes.

    Directory of Open Access Journals (Sweden)

    Maciej Jan Ejsmond

    2015-11-01

    Full Text Available Major Histocompatibility Complex (MHC genes code for proteins involved in the incitation of the adaptive immune response in vertebrates, which is achieved through binding oligopeptides (antigens of pathogenic origin. Across vertebrate species, substitutions of amino acids at sites responsible for the specificity of antigen binding (ABS are positively selected. This is attributed to pathogen-driven balancing selection, which is also thought to maintain the high polymorphism of MHC genes, and to cause the sharing of allelic lineages between species. However, the nature of this selection remains controversial. We used individual-based computer simulations to investigate the roles of two phenomena capable of maintaining MHC polymorphism: heterozygote advantage and host-pathogen arms race (Red Queen process. Our simulations revealed that levels of MHC polymorphism were high and driven mostly by the Red Queen process at a high pathogen mutation rate, but were low and driven mostly by heterozygote advantage when the pathogen mutation rate was low. We found that novel mutations at ABSs are strongly favored by the Red Queen process, but not by heterozygote advantage, regardless of the pathogen mutation rate. However, while the strong advantage of novel alleles increased the allele turnover rate, under a high pathogen mutation rate, allelic lineages persisted for a comparable length of time under Red Queen and under heterozygote advantage. Thus, when pathogens evolve quickly, the Red Queen is capable of explaining both positive selection and long coalescence times, but the tension between the novel allele advantage and persistence of alleles deserves further investigation.

  11. The signature of positive selection at randomly chosen loci.

    Science.gov (United States)

    Przeworski, Molly

    2002-03-01

    In Drosophila and humans, there are accumulating examples of loci with a significant excess of high-frequency-derived alleles or high levels of linkage disequilibrium, relative to a neutral model of a random-mating population of constant size. These are features expected after a recent selective sweep. Their prevalence suggests that positive directional selection may be widespread in both species. However, as I show here, these features do not persist long after the sweep ends: The high-frequency alleles drift to fixation and no longer contribute to polymorphism, while linkage disequilibrium is broken down by recombination. As a result, loci chosen without independent evidence of recent selection are not expected to exhibit either of these features, even if they have been affected by numerous sweeps in their genealogical history. How then can we explain the patterns in the data? One possibility is population structure, with unequal sampling from different subpopulations. Alternatively, positive selection may not operate as is commonly modeled. In particular, the rate of fixation of advantageous mutations may have increased in the recent past.

  12. Positive Selection of Deleterious Alleles through Interaction with a Sex-Ratio Suppressor Gene in African Buffalo: A Plausible New Mechanism for a High Frequency Anomaly

    NARCIS (Netherlands)

    Hooft, van W.F.; Greyling, B.J.; Getz, W.M.; Helden, P.D.; Zwaan, B.J.; Bastos, A.D.S.

    2015-01-01

    Although generally rare, deleterious alleles can become common through genetic drift, hitchhiking or reductions in selective constraints. Here we present a possible new mechanism that explains the attainment of high frequencies of deleterious alleles in the African buffalo (Syncerus caffer)

  13. Positive Selection of Deleterious Alleles through Interaction with a Sex-Ratio Suppressor Gene in African Buffalo: A Plausible New Mechanism for a High Frequency Anomaly

    NARCIS (Netherlands)

    Hooft, van W.F.; Greyling, B.J.; Getz, W.M.; Helden, van P.D.; Zwaan, B.J.; Bastos, A.D.S.

    2014-01-01

    Although generally rare, deleterious alleles can become common through genetic drift, hitchhiking or reductions in selective constraints. Here we present a possible new mechanism that explains the attainment of high frequencies of deleterious alleles in the African buffalo (Syncerus caffer)

  14. Genome-wide detection and characterization of positive selection in human populations.

    Science.gov (United States)

    Sabeti, Pardis C; Varilly, Patrick; Fry, Ben; Lohmueller, Jason; Hostetter, Elizabeth; Cotsapas, Chris; Xie, Xiaohui; Byrne, Elizabeth H; McCarroll, Steven A; Gaudet, Rachelle; Schaffner, Stephen F; Lander, Eric S; Frazer, Kelly A; Ballinger, Dennis G; Cox, David R; Hinds, David A; Stuve, Laura L; Gibbs, Richard A; Belmont, John W; Boudreau, Andrew; Hardenbol, Paul; Leal, Suzanne M; Pasternak, Shiran; Wheeler, David A; Willis, Thomas D; Yu, Fuli; Yang, Huanming; Zeng, Changqing; Gao, Yang; Hu, Haoran; Hu, Weitao; Li, Chaohua; Lin, Wei; Liu, Siqi; Pan, Hao; Tang, Xiaoli; Wang, Jian; Wang, Wei; Yu, Jun; Zhang, Bo; Zhang, Qingrun; Zhao, Hongbin; Zhao, Hui; Zhou, Jun; Gabriel, Stacey B; Barry, Rachel; Blumenstiel, Brendan; Camargo, Amy; Defelice, Matthew; Faggart, Maura; Goyette, Mary; Gupta, Supriya; Moore, Jamie; Nguyen, Huy; Onofrio, Robert C; Parkin, Melissa; Roy, Jessica; Stahl, Erich; Winchester, Ellen; Ziaugra, Liuda; Altshuler, David; Shen, Yan; Yao, Zhijian; Huang, Wei; Chu, Xun; He, Yungang; Jin, Li; Liu, Yangfan; Shen, Yayun; Sun, Weiwei; Wang, Haifeng; Wang, Yi; Wang, Ying; Xiong, Xiaoyan; Xu, Liang; Waye, Mary M Y; Tsui, Stephen K W; Xue, Hong; Wong, J Tze-Fei; Galver, Luana M; Fan, Jian-Bing; Gunderson, Kevin; Murray, Sarah S; Oliphant, Arnold R; Chee, Mark S; Montpetit, Alexandre; Chagnon, Fanny; Ferretti, Vincent; Leboeuf, Martin; Olivier, Jean-François; Phillips, Michael S; Roumy, Stéphanie; Sallée, Clémentine; Verner, Andrei; Hudson, Thomas J; Kwok, Pui-Yan; Cai, Dongmei; Koboldt, Daniel C; Miller, Raymond D; Pawlikowska, Ludmila; Taillon-Miller, Patricia; Xiao, Ming; Tsui, Lap-Chee; Mak, William; Song, You Qiang; Tam, Paul K H; Nakamura, Yusuke; Kawaguchi, Takahisa; Kitamoto, Takuya; Morizono, Takashi; Nagashima, Atsushi; Ohnishi, Yozo; Sekine, Akihiro; Tanaka, Toshihiro; Tsunoda, Tatsuhiko; Deloukas, Panos; Bird, Christine P; Delgado, Marcos; Dermitzakis, Emmanouil T; Gwilliam, Rhian; Hunt, Sarah; Morrison, Jonathan; Powell, Don; Stranger, Barbara E; Whittaker, Pamela; Bentley, David R; Daly, Mark J; de Bakker, Paul I W; Barrett, Jeff; Chretien, Yves R; Maller, Julian; McCarroll, Steve; Patterson, Nick; Pe'er, Itsik; Price, Alkes; Purcell, Shaun; Richter, Daniel J; Sabeti, Pardis; Saxena, Richa; Schaffner, Stephen F; Sham, Pak C; Varilly, Patrick; Altshuler, David; Stein, Lincoln D; Krishnan, Lalitha; Smith, Albert Vernon; Tello-Ruiz, Marcela K; Thorisson, Gudmundur A; Chakravarti, Aravinda; Chen, Peter E; Cutler, David J; Kashuk, Carl S; Lin, Shin; Abecasis, Gonçalo R; Guan, Weihua; Li, Yun; Munro, Heather M; Qin, Zhaohui Steve; Thomas, Daryl J; McVean, Gilean; Auton, Adam; Bottolo, Leonardo; Cardin, Niall; Eyheramendy, Susana; Freeman, Colin; Marchini, Jonathan; Myers, Simon; Spencer, Chris; Stephens, Matthew; Donnelly, Peter; Cardon, Lon R; Clarke, Geraldine; Evans, David M; Morris, Andrew P; Weir, Bruce S; Tsunoda, Tatsuhiko; Johnson, Todd A; Mullikin, James C; Sherry, Stephen T; Feolo, Michael; Skol, Andrew; Zhang, Houcan; Zeng, Changqing; Zhao, Hui; Matsuda, Ichiro; Fukushima, Yoshimitsu; Macer, Darryl R; Suda, Eiko; Rotimi, Charles N; Adebamowo, Clement A; Ajayi, Ike; Aniagwu, Toyin; Marshall, Patricia A; Nkwodimmah, Chibuzor; Royal, Charmaine D M; Leppert, Mark F; Dixon, Missy; Peiffer, Andy; Qiu, Renzong; Kent, Alastair; Kato, Kazuto; Niikawa, Norio; Adewole, Isaac F; Knoppers, Bartha M; Foster, Morris W; Clayton, Ellen Wright; Watkin, Jessica; Gibbs, Richard A; Belmont, John W; Muzny, Donna; Nazareth, Lynne; Sodergren, Erica; Weinstock, George M; Wheeler, David A; Yakub, Imtaz; Gabriel, Stacey B; Onofrio, Robert C; Richter, Daniel J; Ziaugra, Liuda; Birren, Bruce W; Daly, Mark J; Altshuler, David; Wilson, Richard K; Fulton, Lucinda L; Rogers, Jane; Burton, John; Carter, Nigel P; Clee, Christopher M; Griffiths, Mark; Jones, Matthew C; McLay, Kirsten; Plumb, Robert W; Ross, Mark T; Sims, Sarah K; Willey, David L; Chen, Zhu; Han, Hua; Kang, Le; Godbout, Martin; Wallenburg, John C; L'Archevêque, Paul; Bellemare, Guy; Saeki, Koji; Wang, Hongguang; An, Daochang; Fu, Hongbo; Li, Qing; Wang, Zhen; Wang, Renwu; Holden, Arthur L; Brooks, Lisa D; McEwen, Jean E; Guyer, Mark S; Wang, Vivian Ota; Peterson, Jane L; Shi, Michael; Spiegel, Jack; Sung, Lawrence M; Zacharia, Lynn F; Collins, Francis S; Kennedy, Karen; Jamieson, Ruth; Stewart, John

    2007-10-18

    With the advent of dense maps of human genetic variation, it is now possible to detect positive natural selection across the human genome. Here we report an analysis of over 3 million polymorphisms from the International HapMap Project Phase 2 (HapMap2). We used 'long-range haplotype' methods, which were developed to identify alleles segregating in a population that have undergone recent selection, and we also developed new methods that are based on cross-population comparisons to discover alleles that have swept to near-fixation within a population. The analysis reveals more than 300 strong candidate regions. Focusing on the strongest 22 regions, we develop a heuristic for scrutinizing these regions to identify candidate targets of selection. In a complementary analysis, we identify 26 non-synonymous, coding, single nucleotide polymorphisms showing regional evidence of positive selection. Examination of these candidates highlights three cases in which two genes in a common biological process have apparently undergone positive selection in the same population:LARGE and DMD, both related to infection by the Lassa virus, in West Africa;SLC24A5 and SLC45A2, both involved in skin pigmentation, in Europe; and EDAR and EDA2R, both involved in development of hair follicles, in Asia.

  15. The signature of positive selection at randomly chosen loci.

    OpenAIRE

    Przeworski, Molly

    2002-01-01

    In Drosophila and humans, there are accumulating examples of loci with a significant excess of high-frequency-derived alleles or high levels of linkage disequilibrium, relative to a neutral model of a random-mating population of constant size. These are features expected after a recent selective sweep. Their prevalence suggests that positive directional selection may be widespread in both species. However, as I show here, these features do not persist long after the sweep ends: The high-frequ...

  16. Extreme MHC class I diversity in the sedge warbler (Acrocephalus schoenobaenus); selection patterns and allelic divergence suggest that different genes have different functions.

    Science.gov (United States)

    Biedrzycka, Aleksandra; O'Connor, Emily; Sebastian, Alvaro; Migalska, Magdalena; Radwan, Jacek; Zając, Tadeusz; Bielański, Wojciech; Solarz, Wojciech; Ćmiel, Adam; Westerdahl, Helena

    2017-07-05

    Recent work suggests that gene duplications may play an important role in the evolution of immunity genes. Passerine birds, and in particular Sylvioidea warblers, have highly duplicated major histocompatibility complex (MHC) genes, which are key in immunity, compared to other vertebrates. However, reasons for this high MHC gene copy number are yet unclear. High-throughput sequencing (HTS) allows MHC genotyping even in individuals with extremely duplicated genes. This HTS data can reveal evidence of selection, which may help to unravel the putative functions of different gene copies, i.e. neofunctionalization. We performed exhaustive genotyping of MHC class I in a Sylvioidea warbler, the sedge warbler, Acrocephalus schoenobaenus, using the Illumina MiSeq technique on individuals from a wild study population. The MHC diversity in 863 genotyped individuals by far exceeds that of any other bird species described to date. A single individual could carry up to 65 different alleles, a large proportion of which are expressed (transcribed). The MHC alleles were of three different lengths differing in evidence of selection, diversity and divergence within our study population. Alleles without any deletions and alleles containing a 6 bp deletion showed characteristics of classical MHC genes, with evidence of multiple sites subject to positive selection and high sequence divergence. In contrast, alleles containing a 3 bp deletion had no sites subject to positive selection and had low divergence. Our results suggest that sedge warbler MHC alleles that either have no deletion, or contain a 6 bp deletion, encode classical antigen presenting MHC molecules. In contrast, MHC alleles containing a 3 bp deletion may encode molecules with a different function. This study demonstrates that highly duplicated MHC genes can be characterised with HTS and that selection patterns can be useful for revealing neofunctionalization. Importantly, our results highlight the need to consider the

  17. Alleles versus genotypes: Genetic interactions and the dynamics of selection in sexual populations

    Science.gov (United States)

    Neher, Richard

    2010-03-01

    Physical interactions between amino-acids are essential for protein structure and activity, while protein-protein interactions and regulatory interactions are central to cellular function. As a consequence of these interactions, the combined effect of two mutations can differ from the sum of the individual effects of the mutations. This phenomenon of genetic interaction is known as epistasis. However, the importance of epistasis and its effects on evolutionary dynamics are poorly understood, especially in sexual populations where recombination breaks up existing combinations of alleles to produce new ones. Here, we present a computational model of selection dynamics involving many epistatic loci in a recombining population. We demonstrate that a large number of polymorphic interacting loci can, despite frequent recombination, exhibit cooperative behavior that locks alleles into favorable genotypes leading to a population consisting of a set of competing clones. As the recombination rate exceeds a certain critical value this ``genotype selection'' phase disappears in an abrupt transition giving way to ``allele selection'' - the phase where different loci are only weakly correlated as expected in sexually reproducing populations. Clustering of interacting sets of genes on a chromosome leads to the emergence of an intermediate regime, where localized blocks of cooperating alleles lock into genetic modules. Large populations attain highest fitness at a recombination rate just below critical, suggesting that natural selection might tune recombination rates to balance the beneficial aspect of exploration of genotype space with the breaking up of synergistic allele combinations.

  18. Natural Selection and Origin of a Melanistic Allele in North American Gray Wolves.

    Science.gov (United States)

    Schweizer, Rena M; Durvasula, Arun; Smith, Joel; Vohr, Samuel H; Stahler, Daniel R; Galaverni, Marco; Thalmann, Olaf; Smith, Douglas W; Randi, Ettore; Ostrander, Elaine A; Green, Richard E; Lohmueller, Kirk E; Novembre, John; Wayne, Robert K

    2018-05-01

    Pigmentation is often used to understand how natural selection affects genetic variation in wild populations since it can have a simple genetic basis, and can affect a variety of fitness-related traits (e.g., camouflage, thermoregulation, and sexual display). In gray wolves, the K locus, a β-defensin gene, causes black coat color via a dominantly inherited KB allele. The allele is derived from dog-wolf hybridization and is at high frequency in North American wolf populations. We designed a DNA capture array to probe the geographic origin, age, and number of introgression events of the KB allele in a panel of 331 wolves and 20 dogs. We found low diversity in KB, but not ancestral ky, wolf haplotypes consistent with a selective sweep of the black haplotype across North America. Further, North American wolf KB haplotypes are monophyletic, suggesting that a single adaptive introgression from dogs to wolves most likely occurred in the Northwest Territories or Yukon. We use a new analytical approach to date the origin of the KB allele in Yukon wolves to between 1,598 and 7,248 years ago, suggesting that introgression with early Native American dogs was the source. Using population genetic simulations, we show that the K locus is undergoing natural selection in four wolf populations. We find evidence for balancing selection, specifically in Yellowstone wolves, which could be a result of selection for enhanced immunity in response to distemper. With these data, we demonstrate how the spread of an adaptive variant may have occurred across a species' geographic range.

  19. Diversity Outbred Mice at 21: Maintaining Allelic Variation in the Face of Selection

    Directory of Open Access Journals (Sweden)

    Elissa J. Chesler

    2016-12-01

    Full Text Available Multi-parent populations (MPPs capture and maintain the genetic diversity from multiple inbred founder strains to provide a resource for high-resolution genetic mapping through the accumulation of recombination events over many generations. Breeding designs that maintain a large effective population size with randomized assignment of breeders at each generation can minimize the impact of selection, inbreeding, and genetic drift on allele frequencies. Small deviations from expected allele frequencies will have little effect on the power and precision of genetic analysis, but a major distortion could result in reduced power and loss of important functional alleles. We detected strong transmission ratio distortion in the Diversity Outbred (DO mouse population on chromosome 2, caused by meiotic drive favoring transmission of the WSB/EiJ allele at the R2d2 locus. The distorted region harbors thousands of polymorphisms derived from the seven non-WSB founder strains and many of these would be lost if the sweep was allowed to continue. To ensure the utility of the DO population to study genetic variation on chromosome 2, we performed an artificial selection against WSB/EiJ alleles at the R2d2 locus. Here, we report that we have purged the WSB/EiJ allele from the drive locus while preserving WSB/EiJ alleles in the flanking regions. We observed minimal disruption to allele frequencies across the rest of the autosomal genome. However, there was a shift in haplotype frequencies of the mitochondrial genome and an increase in the rate of an unusual sex chromosome aneuploidy. The DO population has been restored to genome-wide utility for genetic analysis, but our experience underscores that vigilant monitoring of similar genetic resource populations is needed to ensure their long-term utility.

  20. The effect of subdivision on variation at multi-allelic loci under balancing selection

    DEFF Research Database (Denmark)

    Schierup, M H; Vekemans, X; Charlesworth, D

    2000-01-01

    Simulations are used to investigate the expected pattern of variation at loci under different forms of multi-allelic balancing selection in a finite island model of a subdivided population. The objective is to evaluate the effect of restricted migration among demes on the distribution of polymorp......Simulations are used to investigate the expected pattern of variation at loci under different forms of multi-allelic balancing selection in a finite island model of a subdivided population. The objective is to evaluate the effect of restricted migration among demes on the distribution...

  1. Altered Ca2+ kinetics associated with α-actinin-3 deficiency may explain positive selection for ACTN3 null allele in human evolution.

    Directory of Open Access Journals (Sweden)

    Stewart I Head

    Full Text Available Over 1.5 billion people lack the skeletal muscle fast-twitch fibre protein α-actinin-3 due to homozygosity for a common null polymorphism (R577X in the ACTN3 gene. α-Actinin-3 deficiency is detrimental to sprint performance in elite athletes and beneficial to endurance activities. In the human genome, it is very difficult to find single-gene loss-of-function variants that bear signatures of positive selection, yet intriguingly, the ACTN3 null variant has undergone strong positive selection during recent evolution, appearing to provide a survival advantage where food resources are scarce and climate is cold. We have previously demonstrated that α-actinin-3 deficiency in the Actn3 KO mouse results in a shift in fast-twitch fibres towards oxidative metabolism, which would be more "energy efficient" in famine, and beneficial to endurance performance. Prolonged exposure to cold can also induce changes in skeletal muscle similar to those observed with endurance training, and changes in Ca2+ handling by the sarcoplasmic reticulum (SR are a key factor underlying these adaptations. On this basis, we explored the effects of α-actinin-3 deficiency on Ca2+ kinetics in single flexor digitorum brevis muscle fibres from Actn3 KO mice, using the Ca2+-sensitive dye fura-2. Compared to wild-type, fibres of Actn3 KO mice showed: (i an increased rate of decay of the twitch transient; (ii a fourfold increase in the rate of SR Ca2+ leak; (iii a threefold increase in the rate of SR Ca2+ pumping; and (iv enhanced maintenance of tetanic Ca2+ during fatigue. The SR Ca2+ pump, SERCA1, and the Ca2+-binding proteins, calsequestrin and sarcalumenin, showed markedly increased expression in muscles of KO mice. Together, these changes in Ca2+ handling in the absence of α-actinin-3 are consistent with cold acclimatisation and thermogenesis, and offer an additional explanation for the positive selection of the ACTN3 577X null allele in populations living in cold environments

  2. Selection on alleles affecting human longevity and late-life disease: the example of apolipoprotein E.

    Directory of Open Access Journals (Sweden)

    Fotios Drenos

    2010-04-01

    Full Text Available It is often claimed that genes affecting health in old age, such as cardiovascular and Alzheimer diseases, are beyond the reach of natural selection. We show in a simulation study based on known genetic (apolipoprotein E and non-genetic risk factors (gender, diet, smoking, alcohol, exercise that, because there is a statistical distribution of ages at which these genes exert their influence on morbidity and mortality, the effects of selection are in fact non-negligible. A gradual increase with each generation of the epsilon2 and epsilon3 alleles of the gene at the expense of the epsilon4 allele was predicted from the model. The epsilon2 allele frequency was found to increase slightly more rapidly than that for epsilon3, although there was no statistically significant difference between the two. Our result may explain the recent evolutionary history of the epsilon 2, 3 and 4 alleles of the apolipoprotein E gene and has wider relevance for genes affecting human longevity.

  3. Short alleles, bigger smiles? The effect of 5-HTTLPR on positive emotional expressions.

    Science.gov (United States)

    Haase, Claudia M; Beermann, Ursula; Saslow, Laura R; Shiota, Michelle N; Saturn, Sarina R; Lwi, Sandy J; Casey, James J; Nguyen, Nguyen K; Whalen, Patrick K; Keltner, Dacher; Levenson, Robert W

    2015-08-01

    The present research examined the effect of the 5-HTTLPR polymorphism in the serotonin transporter gene on objectively coded positive emotional expressions (i.e., laughing and smiling behavior objectively coded using the Facial Action Coding System). Three studies with independent samples of participants were conducted. Study 1 examined young adults watching still cartoons. Study 2 examined young, middle-aged, and older adults watching a thematically ambiguous yet subtly amusing film clip. Study 3 examined middle-aged and older spouses discussing an area of marital conflict (that typically produces both positive and negative emotion). Aggregating data across studies, results showed that the short allele of 5-HTTLPR predicted heightened positive emotional expressions. Results remained stable when controlling for age, gender, ethnicity, and depressive symptoms. These findings are consistent with the notion that the short allele of 5-HTTLPR functions as an emotion amplifier, which may confer heightened susceptibility to environmental conditions. (c) 2015 APA, all rights reserved).

  4. Positive selection on MHC class II DRB and DQB genes in the bank vole (Myodes glareolus).

    Science.gov (United States)

    Scherman, Kristin; Råberg, Lars; Westerdahl, Helena

    2014-05-01

    The major histocompatibility complex (MHC) class IIB genes show considerable sequence similarity between loci. The MHC class II DQB and DRB genes are known to exhibit a high level of polymorphism, most likely maintained by parasite-mediated selection. Studies of the MHC in wild rodents have focused on DRB, whilst DQB has been given much less attention. Here, we characterised DQB genes in Swedish bank voles Myodes glareolus, using full-length transcripts. We then designed primers that specifically amplify exon 2 from DRB (202 bp) and DQB (205 bp) and investigated molecular signatures of natural selection on DRB and DQB alleles. The presence of two separate gene clusters was confirmed using BLASTN and phylogenetic analysis, where our seven transcripts clustered according to either DQB or DRB homologues. These gene clusters were again confirmed on exon 2 data from 454-amplicon sequencing. Our DRB primers amplify a similar number of alleles per individual as previously published DRB primers, though our reads are longer. Traditional d N/d S analyses of DRB sequences in the bank vole have not found a conclusive signal of positive selection. Using a more advanced substitution model (the Kumar method) we found positive selection in the peptide binding region (PBR) of both DRB and DQB genes. Maximum likelihood models of codon substitutions detected positively selected sites located in the PBR of both DQB and DRB. Interestingly, these analyses detected at least twice as many positively selected sites in DQB than DRB, suggesting that DQB has been under stronger positive selection than DRB over evolutionary time.

  5. Fluorinated Nucleotide Modifications Modulate Allele Selectivity of SNP-Targeting Antisense Oligonucleotides

    Directory of Open Access Journals (Sweden)

    Michael E. Østergaard

    2017-06-01

    Full Text Available Antisense oligonucleotides (ASOs have the potential to discriminate between subtle RNA mismatches such as SNPs. Certain mismatches, however, allow ASOs to bind at physiological conditions and result in RNA cleavage mediated by RNase H. We showed that replacing DNA nucleotides in the gap region of an ASO with other chemical modification can improve allele selectivity. Herein, we systematically substitute every position in the gap region of an ASO targeting huntingtin gene (HTT with fluorinated nucleotides. Potency is determined in cell culture against mutant HTT (mtHTT and wild-type HTT (wtHTT mRNA and RNase H cleavage intensities, and patterns are investigated. This study profiled five different fluorinated nucleotides and showed them to have predictable, site-specific effects on RNase H cleavage, and the cleavage patterns were rationalized from a published X-ray structure of human RNase H1. The results herein can be used as a guide for future projects where ASO discrimination of SNPs is important.

  6. Marker-Assisted Selection for Recognizing Wheat Mutant Genotypes Carrying HMW Glutenin Alleles Related to Baking Quality

    OpenAIRE

    Zamani, Mohammad Javad; Bihamta, Mohammad Reza; Naserian Khiabani, Behnam; Tahernezhad, Zahra; Hallajian, Mohammad Taher; Shamsi, Marzieh Varasteh

    2014-01-01

    Allelic diversity of HMW glutenin loci in several studies revealed that allelic combinations affect dough quality. Dx5 + Dy10 subunits are related to good baking quality and Dx2 + Dy12 are related to undesirable baking quality. One of the most regular methods to evaluate the baking quality is SDS-PAGE which is used to improve baking quality labs. Marker-assisted selection is the method which can recognize the alleles related to baking quality and this method is based on polymerase chain reac...

  7. HLA-DQBl*0402 alleles polymorphisms detected in Javanese HIV patients with positive anti-Toxoplasma gondii IgM

    Science.gov (United States)

    Sari, Yulia; Haryati, Sri; Prasetyo, Afiono Agung; Hartono, Adnan, Zainal Arifin

    2017-02-01

    The human leukocyte antigen (HLA)-DQB1 gene polymorphisms may associated with the infection risk of Toxoplasma gondii in HIV patients. The HLA-DQB1*0402 in HIV-1-positive patients could be considered risk factors for developing neurological opportunistic infections, mainly Toxoplasma encephalitis. However, the HLA-DQB1*0402 gene polymorphisms status in the Javanese HIV patients is unknown. This study evaluated the prevalence of HLA-DQB*0402 alleles polymorphisms in Javanese HIV patients with positive anti-Toxoplasma gondii IgM status. Since 2009 our research group performing a molecular epidemiology of blood borne viruses in Central Java Indonesia, by collecting the epidemiological and clinical data from the high risk communities. All blood samples were screened for blood borne pathogens by serological and molecular assays including for HIV and Toxoplasma gondii. The genomic DNA was isolated from the whole blood samples. Genetic polymorphisms of HLA-DQB1*0402 alleles were detected with polymerase chain reaction-sequence-specific primers (PCR-SSPs) technique. The genotypes were defined according to generated fragment patterns in the agarose gel electrophoresis analysis of PCR products. All of the samples were tested at least in duplicate. HLA-DQB1*0402 alleles were detected in 20.8% (16/77) patients and not detected in all HIV positive samples with negative anti-Toxoplasma gondii IgM status (n= 200). The HLA-DQB1*0402 alleles polymorphisms were detected in Javanese HIV patients with positive anti-Toxoplasma gondii IgM. The polymorphisms found may have association with the infection risk of Toxoplasma gondii in HIV patients.

  8. Correlation between carboxylesterase alleles and insecticide resistance in Culex pipiens complex from China

    Directory of Open Access Journals (Sweden)

    Liu Yangyang

    2011-12-01

    Full Text Available Abstract Background In China, large amounts of chemical insecticides are applied in fields or indoors every year, directly or indirectly bringing selection pressure on vector mosquitoes. Culex pipiens complex has evolved to be resistant to all types of chemical insecticides, especially organophosphates, through carboxylesterases. Six resistant carboxylesterase alleles (Ester were recorded previously and sometimes co-existed in one field population, representing a complex situation for the evolution of Ester genes. Results In order to explore the evolutionary scenario, we analyzed the data from an historical record in 2003 and a recent investigation on five Culex pipiens pallens populations sampled from north China in 2010. Insecticide bioassays showed that these five populations had high resistance to pyrethroids, medium resistance to organophosphates, and low resistance to carbamates. Six types of Ester alleles, EsterB1, Ester2, Ester8, Ester9, EsterB10, and Ester11 were identified, and the overall pattern of their frequencies in geographic distribution was consistent with the report seven years prior to this study. Statistical correlation analysis indicated that Ester8 and Ester9 positively correlated with resistance to four insecticides, and EsterB10 to one insecticide. The occurrences of these three alleles were positively correlated, while the occurrence of EsterB1 was negatively correlated with Ester8, indicating an allelic competition. Conclusion Our analysis suggests that one insecticide can select multiple Ester alleles and one Ester allele can work on multiple insecticides. The evolutionary scenario of carboxylesterases under insecticide selection is possibly "one to many".

  9. A and MdMYB1 allele-specific markers controlling apple (Malus x domestica Borkh.) skin color and suitability for marker-assisted selection.

    Science.gov (United States)

    Zhang, X J; Wang, L X; Chen, X X; Liu, Y L; Meng, R; Wang, Y J; Zhao, Z Y

    2014-10-31

    Pre-selection for fruit skin color at the seedling stage would be highly advantageous, with marker-assisted selection offering a potential method for apple pre-selection. A and MdMYB1 alleles are allele-specific DNA markers that are potentially associated with apple skin color, and co-segregate with the Rf and Rni loci, respectively. Here, we assessed the potential application of these 2 alleles for marker-assisted breeding across 30 diverse cultivars and 2 apple seedling progenies. The red skin color phenotype was usually associated with the MdMYB1-1 allele and A(1) allele, respectively, while the 2 molecular markers provided approximately 91% predictability in the 'Fuji' x 'Cripps Pink' and 'Fuji' x 'Gala' progenies. The results obtained from the 30 cultivars and 2 progenies were consistent for the 2 molecular markers. Hence, the results supported that Rf and Rni could be located in a gene cluster, or even correspond to alleles of the same gene. Our results are consistent with the hypothesis that red/yellow dimorphism is controlled by a monogenic system, with the presence of the red anthocyanin pigmentation being dominant. In addition, our results supported that the practical utilization of the 2 function markers to efficiently and accurately select red-skinned apple cultivars in apple scion breeding programs.

  10. Hitchhiking and Selective Sweeps of Plasmodium falciparum Sulfadoxine and Pyrimethamine Resistance Alleles in a Population from Central Africa▿ †

    Science.gov (United States)

    McCollum, Andrea M.; Basco, Leonardo K.; Tahar, Rachida; Udhayakumar, Venkatachalam; Escalante, Ananias A.

    2008-01-01

    Sulfadoxine-pyrimethamine (SP) resistance in Plasmodium falciparum is encoded by a number of mutations in the dihydrofolate reductase (dhfr) and dihydropteroate synthetase (dhps) genes. Here, we have characterized point mutations in dhfr and dhps and microsatellite loci around dhfr on chromosome 4 and dhps on chromosome 8 as well as neutral markers on chromosomes 2 and 3 in 332 samples from Yaoundé, Cameroon. The triple mutant dhfr haplotype that originated in Southeast Asia is the most predominant in this sample set, but we also find additional independent haplotypes at low frequency and an incipient process of genetic differentiation among alleles of Southeast Asian origin. As reported for other African populations, we find evidence of a selective sweep for resistant dhfr mutants in this Cameroonian population due to drug selection. Although we find evidence for a selective sweep in dhps mutants associated with SP resistance, the dynamics of dhps mutants appear different than those observed for dhfr mutants. Overall, our results yield support for the use of microsatellite markers to track resistant parasites; however, the detection of resistant dhfr alleles in low frequency, the evidence of divergence among dhfr alleles that share a common evolutionary origin, and the distinct dynamics of resistant dhps alleles emphasize the importance of comprehensive, population-based investigations to evaluate the effects of drug selection on parasite populations. PMID:18765692

  11. Efficient generation of long-distance conditional alleles using recombineering and a dual selection strategy in replicate plates

    Directory of Open Access Journals (Sweden)

    Liang Hong-Erh

    2009-07-01

    Full Text Available Abstract Background Conditional knockout mice are a useful tool to study the function of gene products in a tissue-specific or inducible manner. Classical approaches to generate targeting vectors for conditional alleles are often limited by the availability of suitable restriction sites. Furthermore, plasmid-based targeting vectors can only cover a few kB of DNA which precludes the generation of targeting vectors where the two loxP sites are placed far apart. These limitations have been overcome in the recent past by using homologous recombination of bacterial artificial chromosomes (BACs in Escherichia coli to produce large targeting vector containing two different loxP-flanked selection cassettes so that a single targeting event is sufficient to introduce loxP-sites a great distances into the mouse genome. However, the final targeted allele should be free of selection cassettes and screening for correct removal of selection cassettes can be a laborious task. Therefore, we developed a new strategy to rapidly identify ES cells containing the desired allele. Results Using BAC recombineering we generated a single targeting vector which contained two different selection cassettes that were flanked by loxP-loxP sites or by FRT-FRT/loxP sites so that they could be deleted sequentially by Cre- and FLPe-recombinases, respectively. Transfected ES cells were first selected in the presence of both antibiotics in vitro before correctly targeted clones were identified by Southern blot. After transfection of a Cre recombinase expression plasmid ES cell clones were selected on replicate plates to identify those clones which maintained the FRT-FRT/loxP flanked cassette and lost the loxP-loxP flanked cassette. Using this strategy facilitated the identification of ES cell clones containing the desired allele before blastocyst injection. Conclusion The strategy of ES cell cultures in replicate plates proved to be very efficient in identifying ES cells that had

  12. Ancient and recent positive selection transformed opioid cis-regulation in humans.

    Directory of Open Access Journals (Sweden)

    Matthew V Rockman

    2005-12-01

    Full Text Available Changes in the cis-regulation of neural genes likely contributed to the evolution of our species' unique attributes, but evidence of a role for natural selection has been lacking. We found that positive natural selection altered the cis-regulation of human prodynorphin, the precursor molecule for a suite of endogenous opioids and neuropeptides with critical roles in regulating perception, behavior, and memory. Independent lines of phylogenetic and population genetic evidence support a history of selective sweeps driving the evolution of the human prodynorphin promoter. In experimental assays of chimpanzee-human hybrid promoters, the selected sequence increases transcriptional inducibility. The evidence for a change in the response of the brain's natural opioids to inductive stimuli points to potential human-specific characteristics favored during evolution. In addition, the pattern of linked nucleotide and microsatellite variation among and within modern human populations suggests that recent selection, subsequent to the fixation of the human-specific mutations and the peopling of the globe, has favored different prodynorphin cis-regulatory alleles in different parts of the world.

  13. Estimated allele substitution effects underlying genomic evaluation models depend on the scaling of allele counts

    NARCIS (Netherlands)

    Bouwman, Aniek C.; Hayes, Ben J.; Calus, Mario P.L.

    2017-01-01

    Background: Genomic evaluation is used to predict direct genomic values (DGV) for selection candidates in breeding programs, but also to estimate allele substitution effects (ASE) of single nucleotide polymorphisms (SNPs). Scaling of allele counts influences the estimated ASE, because scaling of

  14. Ancient DNA Investigation of a Medieval German Cemetery Confirms Long-Term Stability of CCR5-Δ32 Allele Frequencies in Central Europe.

    Science.gov (United States)

    Bouwman, Abigail; Shved, Natallia; Akgül, Gülfirde; Rühli, Frank; Warinner, Christina

    2017-04-01

    The CCR5-Δ32 mutation present in European populations is among the most prominently debated cases of recent positive selection in humans. This allele, a 32-bp deletion that renders the T-cell CCR5 receptor nonfunctional, has important epidemiological and public health significance, as homozygous carriers are resistant to several HIV strains. However, although the function of this allele in preventing HIV infection is now well described, its human evolutionary origin is poorly understood. Initial attempts to determine the emergence of the CCR5-Δ32 allele pointed to selection during the 14th-century Black Death pandemic; however, subsequent analyses suggest that the allele rose in frequency more than 5,000 years ago, possibly through drift. Recently, three studies have identified populations predating the 14th century CE that are positive for the CCR5-Δ32 allele, supporting the claim for a more ancient origin. However, these studies also suggest poorly understood regional differences in the recent evolutionary history of the CCR5-Δ32 allele. Here a new hydrolysis-probe-based real-time PCR assay was designed to ascertain CCR5 allele frequency in 53 individuals from a 10th- to 12th-century CE church and convent complex in central Germany that predates outbreaks of the Black Death pandemic. High-confidence genotypes were obtained for 32 individuals, and results show that CCR5-Δ32 allele frequency has remained unchanged in this region of Central Europe over the last millennium, suggesting that there has been no strong positive selective pressure over this time period and confirming a more ancient origin for the allele.

  15. Peripheral subnuclear positioning suppresses Tcrb recombination and segregates Tcrb alleles from RAG2.

    Science.gov (United States)

    Chan, Elizabeth A W; Teng, Grace; Corbett, Elizabeth; Choudhury, Kingshuk Roy; Bassing, Craig H; Schatz, David G; Krangel, Michael S

    2013-11-26

    Allelic exclusion requires that the two alleles at antigen-receptor loci attempt to recombine variable (V), diversity (D), and joining (J) gene segments [V(D)J recombination] asynchronously in nuclei of developing lymphocytes. It previously was shown that T-cell receptor β (Tcrb) alleles frequently and stochastically associate with the nuclear lamina and pericentromeric heterochromatin in CD4(-)CD8(-) thymocytes. Moreover, rearranged alleles were underrepresented at these locations. Here we used 3D immunofluorescence in situ hybridization to identify recently rearranged Tcrb alleles based on the accumulation of the DNA-repair protein 53BP1. We found that Tcrb alleles recombine asynchronously in double-negative thymocytes and that V(D)J recombination is suppressed on peripheral as compared with central Tcrb alleles. Moreover, the recombination events that did take place at the nuclear periphery preferentially occurred on Tcrb alleles that were partially dissociated from the nuclear lamina. To understand better the mechanism by which V(D)J recombination is suppressed at the nuclear periphery, we evaluated the subnuclear distribution of recombination-activating gene 2 (RAG2) protein. We found that RAG2 abundance was reduced at the nuclear periphery. Moreover, RAG2 was distributed differently from RNA polymerase II and histone H3K4 trimethylation. Our data suggest that the nuclear periphery suppresses V(D)J recombination, at least in part, by segregating Tcrb alleles from RAG proteins.

  16. Allele Workbench: transcriptome pipeline and interactive graphics for allele-specific expression.

    Directory of Open Access Journals (Sweden)

    Carol A Soderlund

    Full Text Available Sequencing the transcriptome can answer various questions such as determining the transcripts expressed in a given species for a specific tissue or condition, evaluating differential expression, discovering variants, and evaluating allele-specific expression. Differential expression evaluates the expression differences between different strains, tissues, and conditions. Allele-specific expression evaluates expression differences between parental alleles. Both differential expression and allele-specific expression have been studied for heterosis (hybrid vigor, where the hybrid has improved performance over the parents for one or more traits. The Allele Workbench software was developed for a heterosis study that evaluated allele-specific expression for a mouse F1 hybrid using libraries from multiple tissues with biological replicates. This software has been made into a distributable package, which includes a pipeline, a Java interface to build the database, and a Java interface for query and display of the results. The required input is a reference genome, annotation file, and one or more RNA-Seq libraries with optional replicates. It evaluates allelic imbalance at the SNP and transcript level and flags transcripts with significant opposite directional allele-specific expression. The Java interface allows the user to view data from libraries, replicates, genes, transcripts, exons, and variants, including queries on allele imbalance for selected libraries. To determine the impact of allele-specific SNPs on protein folding, variants are annotated with their effect (e.g., missense, and the parental protein sequences may be exported for protein folding analysis. The Allele Workbench processing results in transcript files and read counts that can be used as input to the previously published Transcriptome Computational Workbench, which has a new algorithm for determining a trimmed set of gene ontology terms. The software with demo files is available

  17. PSP: rapid identification of orthologous coding genes under positive selection across multiple closely related prokaryotic genomes.

    Science.gov (United States)

    Su, Fei; Ou, Hong-Yu; Tao, Fei; Tang, Hongzhi; Xu, Ping

    2013-12-27

    With genomic sequences of many closely related bacterial strains made available by deep sequencing, it is now possible to investigate trends in prokaryotic microevolution. Positive selection is a sub-process of microevolution, in which a particular mutation is favored, causing the allele frequency to continuously shift in one direction. Wide scanning of prokaryotic genomes has shown that positive selection at the molecular level is much more frequent than expected. Genes with significant positive selection may play key roles in bacterial adaption to different environmental pressures. However, selection pressure analyses are computationally intensive and awkward to configure. Here we describe an open access web server, which is designated as PSP (Positive Selection analysis for Prokaryotic genomes) for performing evolutionary analysis on orthologous coding genes, specially designed for rapid comparison of dozens of closely related prokaryotic genomes. Remarkably, PSP facilitates functional exploration at the multiple levels by assignments and enrichments of KO, GO or COG terms. To illustrate this user-friendly tool, we analyzed Escherichia coli and Bacillus cereus genomes and found that several genes, which play key roles in human infection and antibiotic resistance, show significant evidence of positive selection. PSP is freely available to all users without any login requirement at: http://db-mml.sjtu.edu.cn/PSP/. PSP ultimately allows researchers to do genome-scale analysis for evolutionary selection across multiple prokaryotic genomes rapidly and easily, and identify the genes undergoing positive selection, which may play key roles in the interactions of host-pathogen and/or environmental adaptation.

  18. Shared epitope alleles remain a risk factor for anti-citrullinated proteins antibody (ACPA--positive rheumatoid arthritis in three Asian ethnic groups.

    Directory of Open Access Journals (Sweden)

    Too Chun-Lai

    Full Text Available BACKGROUND: To investigate the associations between HLA-DRB1 shared epitope (SE alleles and rheumatoid arthritis in subsets of rheumatoid arthritis defined by autoantibodies in three Asian populations from Malaysia. METHODS: 1,079 rheumatoid arthritis patients and 1,470 healthy controls were included in the study. Levels of antibodies to citrullinated proteins (ACPA and rheumatoid factors were assessed and the PCR-SSO method was used for HLA-DRB1 genotyping. RESULTS: The proportion of ACPA positivity among Malay, Chinese and Indian rheumatoid arthritis patients were 62.9%, 65.2% and 68.6%, respectively. An increased frequency of SE alleles was observed in ACPA-positive rheumatoid arthritis among the three Asian ethnic groups. HLA-DRB1*10 was highly associated with rheumatoid arthritis susceptibility in these Asian populations. HLA-DRB1*0405 was significantly associated with susceptibility to rheumatoid arthritis in Malays and Chinese, but not in Indians. HLA-DRB1*01 did not show any independent effect as a risk factor for rheumatoid arthritis in this study and HLA-DRB1*1202 was protective in Malays and Chinese. There was no association between SE alleles and ACPA- negative rheumatoid arthritis in any of the three Asian ethnic groups. CONCLUSION: The HLA-DRB1 SE alleles increase the risk of ACPA-positive rheumatoid arthritis in all three Asian populations from Malaysia.

  19. Quantitative threefold allele-specific PCR (QuanTAS-PCR) for highly sensitive JAK2 V617F mutant allele detection

    International Nuclear Information System (INIS)

    Zapparoli, Giada V; Jorissen, Robert N; Hewitt, Chelsee A; McBean, Michelle; Westerman, David A; Dobrovic, Alexander

    2013-01-01

    The JAK2 V617F mutation is the most frequent somatic change in myeloproliferative neoplasms, making it an important tumour-specific marker for diagnostic purposes and for the detection of minimal residual disease. Sensitive quantitative assays are required for both applications, particularly for the monitoring of minimal residual disease, which requires not only high sensitivity but also very high specificity. We developed a highly sensitive probe-free quantitative mutant-allele detection method, Quantitative Threefold Allele-Specific PCR (QuanTAS-PCR), that is performed in a closed-tube system, thus eliminating the manipulation of PCR products. QuantTAS-PCR uses a threefold approach to ensure allele-specific amplification of the mutant sequence: (i) a mutant allele-specific primer, (ii) a 3′dideoxy blocker to suppress false-positive amplification from the wild-type template and (iii) a PCR specificity enhancer, also to suppress false-positive amplification from the wild-type template. Mutant alleles were quantified relative to exon 9 of JAK2. We showed that the addition of the 3′dideoxy blocker suppressed but did not eliminate false-positive amplification from the wild-type template. However, the addition of the PCR specificity enhancer near eliminated false-positive amplification from the wild-type allele. Further discrimination between true and false positives was enabled by using the quantification cycle (Cq) value of a single mutant template as a cut-off point, thus enabling robust distinction between true and false positives. As 10,000 JAK2 templates were used per replicate, the assay had a sensitivity of 1/10 -4 per replicate. Greater sensitivity could be reached by increasing the number of replicates analysed. Variation in replicates when low mutant-allele templates were present necessitated the use of a statistics-based approach to estimate the load of mutant JAK2 copies. QuanTAS-PCR showed comparable quantitative results when validated against a

  20. Soft sweeps III: the signature of positive selection from recurrent mutation.

    Directory of Open Access Journals (Sweden)

    Pleuni S Pennings

    2006-12-01

    Full Text Available Polymorphism data can be used to identify loci at which a beneficial allele has recently gone to fixation, given that an accurate description of the signature of selection is available. In the classical model that is used, a favored allele derives from a single mutational origin. This ignores the fact that beneficial alleles can enter a population recurrently by mutation during the selective phase. In this study, we present a combination of analytical and simulation results to demonstrate the effect of adaptation from recurrent mutation on summary statistics for polymorphism data from a linked neutral locus. We also analyze the power of standard neutrality tests based on the frequency spectrum or on linkage disequilibrium (LD under this scenario. For recurrent beneficial mutation at biologically realistic rates, we find substantial deviations from the classical pattern of a selective sweep from a single new mutation. Deviations from neutrality in the level of polymorphism and in the frequency spectrum are much less pronounced than in the classical sweep pattern. In contrast, for levels of LD, the signature is even stronger if recurrent beneficial mutation plays a role. We suggest a variant of existing LD tests that increases their power to detect this signature.

  1. Population genetic evidence for positive and purifying selection acting at the human IFN-γ locus in Africa.

    Science.gov (United States)

    Campbell, Michael C; Smith, Lunden T; Harvey, Jayla

    2018-03-29

    Despite its critical role in the defense against microbial infection and tumor development, little is known about the range of nucleotide and haplotype variation at IFN-γ, or the evolutionary forces that have shaped patterns of diversity at this locus. To address this gap in knowledge, we examined sequence data from the IFN-γ gene in 1461 individuals from 15 worldwide populations. Our analyses uncovered novel patterns of variation in distinct African populations, including an excess of high frequency-derived alleles, unusually long haplotype structure surrounding the IFN-γ gene, and a "star-like" genealogy of African-specific haplotypes carrying variants previously associated with infectious disease. We also inferred a deep time to coalescence of variation at IFN-γ (~ 0.8 million years ago) and ancient ages for common polymorphisms predating the evolution of modern humans. Taken together, these results are congruent with a model of positive selection on standing variation in African populations. Furthermore, we inferred that common variants in intron 3 of IFN-γ are the likely targets of selection. In addition, we observed a paucity of non-synonymous substitutions relative to synonymous changes in the exons of IFN-γ in African and non-African populations, suggestive of strong purifying selection. Therefore, we contend that positive and purifying selection have influenced levels of diversity in different regions of IFN-γ, implying that these distinct genic regions are, or have been, functionally important. Overall, this study provides additional insights into the evolutionary events that have contributed to the frequency and distribution of alleles having a role in human health and disease.

  2. Worldwide distribution of the MYH9 kidney disease susceptibility alleles and haplotypes: evidence of historical selection in Africa.

    Directory of Open Access Journals (Sweden)

    Taras K Oleksyk

    2010-07-01

    Full Text Available MYH9 was recently identified as renal susceptibility gene (OR 3-8, p or = 60% than in European Americans (< 4%, revealing a genetic basis for a major health disparity. The population distributions of MYH9 risk alleles and the E-1 risk haplotype and the demographic and selective forces acting on the MYH9 region are not well explored. We reconstructed MYH9 haplotypes from 4 tagging single nucleotide polymorphisms (SNPs spanning introns 12-23 using available data from HapMap Phase II, and by genotyping 938 DNAs from the Human Genome Diversity Panel (HGDP. The E-1 risk haplotype followed a cline, being most frequent within sub-Saharan African populations (range 50-80%, less frequent in populations from the Middle East (9-27% and Europe (0-9%, and rare or absent in Asia, the Americas, and Oceania. The fixation indexes (F(ST for pairwise comparisons between the risk haplotypes for continental populations were calculated for MYH9 haplotypes; F(ST ranged from 0.27-0.40 for Africa compared to other continental populations, possibly due to selection. Uniquely in Africa, the Yoruba population showed high frequency extended haplotype length around the core risk allele (C compared to the alternative allele (T at the same locus (rs4821481, iHs = 2.67, as well as high population differentiation (F(ST(CEU vs. YRI = 0.51 in HapMap Phase II data, also observable only in the Yoruba population from HGDP (F(ST = 0.49, pointing to an instance of recent selection in the genomic region. The population-specific divergence in MYH9 risk allele frequencies among the world's populations may prove important in risk assessment and public health policies to mitigate the burden of kidney disease in vulnerable populations.

  3. Site-specific antibodies distinguish single amino acid substitutions in position 57 in HLA-DQ beta-chain alleles associated with insulin-dependent diabetes

    DEFF Research Database (Denmark)

    Atar, D; Dyrberg, T; Michelsen, Birgitte

    1989-01-01

    The HLA-DQ beta-chain gene shows a close association with susceptibility or resistance to autoimmune insulin-dependent diabetes mellitus (IDDM) and it has been suggested that the amino acid in position 57 may be of pathogenetic importance. To study the expression of the IDDM associated HLA-DQ beta......-chain alleles, we immunized rabbits with 12 to 13 amino acid long peptides representing HLA-DQw7 and -DQw8 allelic sequences, differing only by one amino acid in position 57 being aspartic acid (Asp) and alanine (Ala), respectively. Immunoblot analysis of lymphoblastoid cells showed that several antisera...

  4. Identification, genetic localization, and allelic diversity of selectively amplified microsatellite polymorphic loci in lettuce and wild relatives (Lactuca spp.).

    Science.gov (United States)

    Witsenboer, H; Michelmore, R W; Vogel, J

    1997-12-01

    Selectively amplified microsatellite polymorphic locus (SAMPL) analysis is a method of amplifying microsatellite loci using generic PCR primers. SAMPL analysis uses one AFLP primer in combination with a primer complementary to microsatellite sequences. SAMPL primers based on compound microsatellite sequences provided the clearest amplification patterns. We explored the potential of SAMPL analysis in lettuce to detect PCR-based codominant microsatellite markers. Fifty-eight SAMPLs were identified and placed on the genetic map. Seventeen were codominant. SAMPLs were dispersed with RFLP markers on 11 of the 12 main linkage groups in lettuce, indicating that they have a similar genomic distribution. Some but not all fragments amplified by SAMPL analysis were confirmed to contain microsatellite sequences by Southern hybridization. Forty-five cultivars of lettuce and five wild species of Lactuca were analyzed to determine the allelic diversity for codominant SAMPLs. From 3 to 11 putative alleles were found for each SAMPL; 2-6 alleles were found within Lactuca sativa and 1-3 alleles were found among the crisphead genotypes, the most genetically homogeneous plant type of L. sativa. This allelic diversity is greater than that found for RFLP markers. Numerous new alleles were observed in the wild species; however, there were frequent null alleles. Therefore, SAMPL analysis is more applicable to intraspecific than to interspecific comparisons. A phenetic analysis based on SAMPLs resulted in a dendrogram similar to those based on RFLP and AFLP markers.

  5. Association of selected human leukocyte antigen alleles (HLA-DQA1*0102, HLA-DQA1*0103 and HLA–DQB1*0301 with Helicobacter pylori infection among dyspeptic patients

    Directory of Open Access Journals (Sweden)

    Piyumali Sandareka Arachchi

    2016-11-01

    Full Text Available Background: Helicobacter pylori has been identified as a group I carcinogenic bacteria that infect the gastric mucosa leading to gastritis, peptic ulcer disease, lymphoma and gastric cancer. Pathogenesis of H. pylori depends on the virulence of the strain, host immune response and modulating factors like smoking and diet. Objective: This study aimed to assess the association of selected HLA (Human Leukocyte Antigen alleles; HLA-DQA1*0102, HLA-DQA1*0103 and HLA-DQB1*0301, with the presence of H. pylori infection and disease severity among dyspeptic patients. Methods: Gastric tissue samples from 100 dyspeptic patients, who underwent upper gastrointestinal endoscopy at a tertiary care hospital, were collected. Presence of HLA alleles was confirmed using Polymerase Chain Reaction (PCR. H. pylori infection was determined using PCR and Histology. The histological interpretation was done according to the ‘Sydney classification’. Statistical analysis was done with the Statistical Package of Social Sciences (SPSS (version 22; SPSS, Inc., Chicago, Illinois, USA. Results: Respective percentages of HLA-DQA1*0102, HLA-DQA1*0103 and HLA-DQB1*0301 were 39%, 31% and 20%. Of the 25 samples positive for H. pylori infection respectively 56% (14/25, 36% (9/25 and 12% (3/25 were positive for HLA-DQA1*0102, HLA-DQA1*0103 and HLA-DQB1*0301 alleles. Considering the association with H. pylori infection, only HLA-DQA1*0102 showed significant association (p=0.044. No significant association was found between the HLA alleles and the histological severity among the H. pylori infected patients. Conclusion: In conclusion, HLA-DQA1*0102 allele has a significant association with H. pylori infection while HLA-DQA1*0103 and HLA-DQB1*0301 shows no significant association in a Sri Lankan dyspeptic patient population.

  6. Allele-Selective Transcriptome Recruitment to Polysomes Primed for Translation: Protein-Coding and Noncoding RNAs, and RNA Isoforms.

    Directory of Open Access Journals (Sweden)

    Roshan Mascarenhas

    Full Text Available mRNA translation into proteins is highly regulated, but the role of mRNA isoforms, noncoding RNAs (ncRNAs, and genetic variants remains poorly understood. mRNA levels on polysomes have been shown to correlate well with expressed protein levels, pointing to polysomal loading as a critical factor. To study regulation and genetic factors of protein translation we measured levels and allelic ratios of mRNAs and ncRNAs (including microRNAs in lymphoblast cell lines (LCL and in polysomal fractions. We first used targeted assays to measure polysomal loading of mRNA alleles, confirming reported genetic effects on translation of OPRM1 and NAT1, and detecting no effect of rs1045642 (3435C>T in ABCB1 (MDR1 on polysomal loading while supporting previous results showing increased mRNA turnover of the 3435T allele. Use of high-throughput sequencing of complete transcript profiles (RNA-Seq in three LCLs revealed significant differences in polysomal loading of individual RNA classes and isoforms. Correlated polysomal distribution between protein-coding and non-coding RNAs suggests interactions between them. Allele-selective polysome recruitment revealed strong genetic influence for multiple RNAs, attributable either to differential expression of RNA isoforms or to differential loading onto polysomes, the latter defining a direct genetic effect on translation. Genes identified by different allelic RNA ratios between cytosol and polysomes were enriched with published expression quantitative trait loci (eQTLs affecting RNA functions, and associations with clinical phenotypes. Polysomal RNA-Seq combined with allelic ratio analysis provides a powerful approach to study polysomal RNA recruitment and regulatory variants affecting protein translation.

  7. Inferring Allele Frequency Trajectories from Ancient DNA Indicates That Selection on a Chicken Gene Coincided with Changes in Medieval Husbandry Practices.

    Science.gov (United States)

    Loog, Liisa; Thomas, Mark G; Barnett, Ross; Allen, Richard; Sykes, Naomi; Paxinos, Ptolemaios D; Lebrasseur, Ophélie; Dobney, Keith; Peters, Joris; Manica, Andrea; Larson, Greger; Eriksson, Anders

    2017-08-01

    Ancient DNA provides an opportunity to infer the drivers of natural selection by linking allele frequency changes to temporal shifts in environment or cultural practices. However, analyses have often been hampered by uneven sampling and uncertainties in sample dating, as well as being confounded by demographic processes. Here, we present a Bayesian statistical framework for quantifying the timing and strength of selection using ancient DNA that explicitly addresses these challenges. We applied this method to time series data for two loci: TSHR and BCDO2, both hypothesised to have undergone strong and recent selection in domestic chickens. The derived variant in TSHR, associated with reduced aggression to conspecifics and faster onset of egg laying, shows strong selection beginning around 1,100 years ago, coincident with archaeological evidence for intensified chicken production and documented changes in egg and chicken consumption. To our knowledge, this is the first example of preindustrial domesticate trait selection in response to a historically attested cultural shift in food preference. For BCDO2, we find support for selection, but demonstrate that the recent rise in allele frequency could also have been driven by gene flow from imported Asian chickens during more recent breed formations. Our findings highlight that traits found ubiquitously in modern domestic species may not necessarily have originated during the early stages of domestication. In addition, our results demonstrate the importance of precise estimation of allele frequency trajectories through time for understanding the drivers of selection. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  8. Natural Selection in Virulence Genes of Francisella tularensis.

    Science.gov (United States)

    Gunnell, Mark K; Robison, Richard A; Adams, Byron J

    2016-06-01

    A fundamental tenet of evolution is that alleles that are under negative selection are often deleterious and confer no evolutionary advantage. Negatively selected alleles are removed from the gene pool and are eventually extinguished from the population. Conversely, alleles under positive selection do confer an evolutionary advantage and lead to an increase in the overall fitness of the organism. These alleles increase in frequency until they eventually become fixed in the population. Francisella tularensis is a zoonotic pathogen and a potential biothreat agent. The most virulent type of F. tularensis, Type A, is distributed across North America with Type A.I occurring mainly in the east and Type A.II appearing mainly in the west. F. tularensis is thought to be a genome in decay (losing genes) because of the relatively large number of pseudogenes present in its genome. We hypothesized that the observed frequency of gene loss/pseudogenes may be an artifact of evolution in response to a changing environment, and that genes involved in virulence should be under strong positive selection. To test this hypothesis, we sequenced and compared whole genomes of Type A.I and A.II isolates. We analyzed a subset of virulence and housekeeping genes from several F. tularensis subspecies genomes to ascertain the presence and extent of positive selection. Eleven previously identified virulence genes were screened for positive selection along with 10 housekeeping genes. Analyses of selection yielded one housekeeping gene and 7 virulence genes which showed significant evidence of positive selection at loci implicated in cell surface structures and membrane proteins, metabolism and biosynthesis, transcription, translation and cell separation, and substrate binding and transport. Our results suggest that while the loss of functional genes through disuse could be accelerated by negative selection, the genome decay in Francisella could also be the byproduct of adaptive evolution

  9. Prediction of Genes Related to Positive Selection Using Whole-Genome Resequencing in Three Commercial Pig Breeds

    Directory of Open Access Journals (Sweden)

    HyoYoung Kim

    2015-12-01

    Full Text Available Selective sweep can cause genetic differentiation across populations, which allows for the identification of possible causative regions/genes underlying important traits. The pig has experienced a long history of allele frequency changes through artificial selection in the domestication process. We obtained an average of 329,482,871 sequence reads for 24 pigs from three pig breeds: Yorkshire (n = 5, Landrace (n = 13, and Duroc (n = 6. An average read depth of 11.7 was obtained using whole-genome resequencing on an Illumina HiSeq2000 platform. In this study, cross-population extended haplotype homozygosity and cross-population composite likelihood ratio tests were implemented to detect genes experiencing positive selection for the genome-wide resequencing data generated from three commercial pig breeds. In our results, 26, 7, and 14 genes from Yorkshire, Landrace, and Duroc, respectively were detected by two kinds of statistical tests. Significant evidence for positive selection was identified on genes ST6GALNAC2 and EPHX1 in Yorkshire, PARK2 in Landrace, and BMP6, SLA-DQA1, and PRKG1 in Duroc.These genes are reportedly relevant to lactation, reproduction, meat quality, and growth traits. To understand how these single nucleotide polymorphisms (SNPs related positive selection affect protein function, we analyzed the effect of non-synonymous SNPs. Three SNPs (rs324509622, rs80931851, and rs80937718 in the SLA-DQA1 gene were significant in the enrichment tests, indicating strong evidence for positive selection in Duroc. Our analyses identified genes under positive selection for lactation, reproduction, and meat-quality and growth traits in Yorkshire, Landrace, and Duroc, respectively.

  10. The allele-frequency spectrum in a decoupled Moran model with mutation, drift, and directional selection, assuming small mutation rates.

    Science.gov (United States)

    Vogl, Claus; Clemente, Florian

    2012-05-01

    We analyze a decoupled Moran model with haploid population size N, a biallelic locus under mutation and drift with scaled forward and backward mutation rates θ(1)=μ(1)N and θ(0)=μ(0)N, and directional selection with scaled strength γ=sN. With small scaled mutation rates θ(0) and θ(1), which is appropriate for single nucleotide polymorphism data in highly recombining regions, we derive a simple approximate equilibrium distribution for polymorphic alleles with a constant of proportionality. We also put forth an even simpler model, where all mutations originate from monomorphic states. Using this model we derive the sojourn times, conditional on the ancestral and fixed allele, and under equilibrium the distributions of fixed and polymorphic alleles and fixation rates. Furthermore, we also derive the distribution of small samples in the diffusion limit and provide convenient recurrence relations for calculating this distribution. This enables us to give formulas analogous to the Ewens-Watterson estimator of θ for biased mutation rates and selection. We apply this theory to a polymorphism dataset of fourfold degenerate sites in Drosophila melanogaster. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. S-allele diversity in Sorbus aucuparia and Crataegus monogyna (Rosaceae: Maloideae).

    Science.gov (United States)

    Raspé, O; Kohn, J R

    2002-06-01

    RT-PCR was used to obtain the first estimates from natural populations of allelic diversity at the RNase-based gametophytic self-incompatibility locus in the Rosaceae. A total of 20 alleles were retrieved from 20 Sorbus aucuparia individuals, whereas 17 alleles were found in 13 Crataegus monogyna samples. Estimates of population-level allele numbers fall within the range observed in the Solanaceae, the only other family with RNase-based incompatibility for which estimates are available. The nucleotide diversity of S-allele sequences was found to be much lower in the two Rosaceae species as compared with the Solanaceae. This was not due to a lower sequence divergence among most closely related alleles. Rather, it is the depth of the entire genealogy that differs markedly in the two families, with Rosaceae S-alleles exhibiting more recent apparent coalescence. We also investigated patterns of selection at the molecular level by comparing nucleotide diversity at synonymous and nonsynonymous sites. Stabilizing selection was inferred for the 5' region of the molecule, while evidence of diversifying selection was present elsewhere.

  12. Natural selection affects multiple aspects of genetic variation at putatively neutral sites across the human genome.

    Science.gov (United States)

    Lohmueller, Kirk E; Albrechtsen, Anders; Li, Yingrui; Kim, Su Yeon; Korneliussen, Thorfinn; Vinckenbosch, Nicolas; Tian, Geng; Huerta-Sanchez, Emilia; Feder, Alison F; Grarup, Niels; Jørgensen, Torben; Jiang, Tao; Witte, Daniel R; Sandbæk, Annelli; Hellmann, Ines; Lauritzen, Torsten; Hansen, Torben; Pedersen, Oluf; Wang, Jun; Nielsen, Rasmus

    2011-10-01

    A major question in evolutionary biology is how natural selection has shaped patterns of genetic variation across the human genome. Previous work has documented a reduction in genetic diversity in regions of the genome with low recombination rates. However, it is unclear whether other summaries of genetic variation, like allele frequencies, are also correlated with recombination rate and whether these correlations can be explained solely by negative selection against deleterious mutations or whether positive selection acting on favorable alleles is also required. Here we attempt to address these questions by analyzing three different genome-wide resequencing datasets from European individuals. We document several significant correlations between different genomic features. In particular, we find that average minor allele frequency and diversity are reduced in regions of low recombination and that human diversity, human-chimp divergence, and average minor allele frequency are reduced near genes. Population genetic simulations show that either positive natural selection acting on favorable mutations or negative natural selection acting against deleterious mutations can explain these correlations. However, models with strong positive selection on nonsynonymous mutations and little negative selection predict a stronger negative correlation between neutral diversity and nonsynonymous divergence than observed in the actual data, supporting the importance of negative, rather than positive, selection throughout the genome. Further, we show that the widespread presence of weakly deleterious alleles, rather than a small number of strongly positively selected mutations, is responsible for the correlation between neutral genetic diversity and recombination rate. This work suggests that natural selection has affected multiple aspects of linked neutral variation throughout the human genome and that positive selection is not required to explain these observations.

  13. Origin and differential selection of allelic variation at TAS2R16 associated with salicin bitter taste sensitivity in Africa.

    Science.gov (United States)

    Campbell, Michael C; Ranciaro, Alessia; Zinshteyn, Daniel; Rawlings-Goss, Renata; Hirbo, Jibril; Thompson, Simon; Woldemeskel, Dawit; Froment, Alain; Rucker, Joseph B; Omar, Sabah A; Bodo, Jean-Marie; Nyambo, Thomas; Belay, Gurja; Drayna, Dennis; Breslin, Paul A S; Tishkoff, Sarah A

    2014-02-01

    Bitter taste perception influences human nutrition and health, and the genetic variation underlying this trait may play a role in disease susceptibility. To better understand the genetic architecture and patterns of phenotypic variability of bitter taste perception, we sequenced a 996 bp region, encompassing the coding exon of TAS2R16, a bitter taste receptor gene, in 595 individuals from 74 African populations and in 94 non-Africans from 11 populations. We also performed genotype-phenotype association analyses of threshold levels of sensitivity to salicin, a bitter anti-inflammatory compound, in 296 individuals from Central and East Africa. In addition, we characterized TAS2R16 mutants in vitro to investigate the effects of polymorphic loci identified at this locus on receptor function. Here, we report striking signatures of positive selection, including significant Fay and Wu's H statistics predominantly in East Africa, indicating strong local adaptation and greater genetic structure among African populations than expected under neutrality. Furthermore, we observed a "star-like" phylogeny for haplotypes with the derived allele at polymorphic site 516 associated with increased bitter taste perception that is consistent with a model of selection for "high-sensitivity" variation. In contrast, haplotypes carrying the "low-sensitivity" ancestral allele at site 516 showed evidence of strong purifying selection. We also demonstrated, for the first time, the functional effect of nonsynonymous variation at site 516 on salicin phenotypic variance in vivo in diverse Africans and showed that most other nonsynonymous substitutions have weak or no effect on cell surface expression in vitro, suggesting that one main polymorphism at TAS2R16 influences salicin recognition. Additionally, we detected geographic differences in levels of bitter taste perception in Africa not previously reported and infer an East African origin for high salicin sensitivity in human populations.

  14. ACTN3 allele frequency in humans covaries with global latitudinal gradient.

    Directory of Open Access Journals (Sweden)

    Scott M Friedlander

    Full Text Available A premature stop codon in ACTN3 resulting in α-actinin-3 deficiency (the ACTN3 577XX genotype is common in humans and reduces strength, muscle mass, and fast-twitch fiber diameter, but increases the metabolic efficiency of skeletal muscle. Linkage disequilibrium data suggest that the ACTN3 R577X allele has undergone positive selection during human evolution. The allele has been hypothesized to be adaptive in environments with scarce resources where efficient muscle metabolism would be selected. Here we test this hypothesis by using recently developed comparative methods that account for evolutionary relatedness and gene flow among populations. We find evidence that the ACTN3 577XX genotype evolved in association with the global latitudinal gradient. Our results suggest that environmental variables related to latitudinal variation, such as species richness and mean annual temperature, may have influenced the adaptive evolution of ACTN3 577XX during recent human history.

  15. Procedures for identifying S-allele genotypes of Brassica.

    Science.gov (United States)

    Wallace, D H

    1979-11-01

    Procedures are described for efficient selection of: (1) homozygous and heterozygous S-allele genotypes; (2) homozygous inbreds with the strong self- and sib-incompatibility required for effective seed production of single-cross F1 hybrids; (3) heterozygous genotypes with the high self- and sib-incompatibility required for effective seed production of 3- and 4-way hybrids.From reciprocal crosses between two first generation inbred (I1) plants there are three potential results: both crosses are incompatible; one is incompatible and the other compatible; and both are compatible. Incompatibility of both crosses is useful information only when combined with data from other reciprocal crosses. Each compatible cross, depending on whether its reciprocal is incompatible or compatible, dictates alternative reasoning and additional reciprocal crosses for efficiently and simultaneously identifying: (A) the S-allele genotype of all individual I1 plants, and (B) the expressions of dominance or codominance in pollen and stigma (sexual organs) of an S-allele heterozygous genotype. Reciprocal crosses provide the only efficient means of identifying S-allele genotypes and also the sexual-organ x S-allele-interaction types.Fluorescent microscope assay of pollen tube penetration into the style facilitates quantitation within 24-48 hours of incompatibility and compatibility of the reciprocal crosses. A procedure for quantitating the reciprocal difference is described that maximizes informational content of the data about interactions between S alleles in pollen and stigma of the S-allele-heterozygous genotype.Use of the non-inbred Io generation parent as a 'known' heterozygous S-allele genotype in crosses with its first generation selfed (I1) progeny usually reduces at least 7 fold the effort required for achieving objectives 1, 2, and 3, compared to the method of making reciprocal crosses only among I1 plants.Identifying the heterozygous and both homozygous S-allele genotypes during

  16. The geographic spread of the CCR5 Delta32 HIV-resistance allele.

    Directory of Open Access Journals (Sweden)

    John Novembre

    2005-11-01

    Full Text Available The Delta32 mutation at the CCR5 locus is a well-studied example of natural selection acting in humans. The mutation is found principally in Europe and western Asia, with higher frequencies generally in the north. Homozygous carriers of the Delta32 mutation are resistant to HIV-1 infection because the mutation prevents functional expression of the CCR5 chemokine receptor normally used by HIV-1 to enter CD4+ T cells. HIV has emerged only recently, but population genetic data strongly suggest Delta32 has been under intense selection for much of its evolutionary history. To understand how selection and dispersal have interacted during the history of the Delta32 allele, we implemented a spatially explicit model of the spread of Delta32. The model includes the effects of sampling, which we show can give rise to local peaks in observed allele frequencies. In addition, we show that with modest gradients in selection intensity, the origin of the Delta32 allele may be relatively far from the current areas of highest allele frequency. The geographic distribution of the Delta32 allele is consistent with previous reports of a strong selective advantage (>10% for Delta32 carriers and of dispersal over relatively long distances (>100 km/generation. When selection is assumed to be uniform across Europe and western Asia, we find support for a northern European origin and long-range dispersal consistent with the Viking-mediated dispersal of Delta32 proposed by G. Lucotte and G. Mercier. However, when we allow for gradients in selection intensity, we estimate the origin to be outside of northern Europe and selection intensities to be strongest in the northwest. Our results describe the evolutionary history of the Delta32 allele and establish a general methodology for studying the geographic distribution of selected alleles.

  17. Selection, trans-species polymorphism, and locus identification of major histocompatibility complex class IIβ alleles of New World ranid frogs

    Science.gov (United States)

    Kiemnec-Tyburczy, Karen M.; Richmond, Jonathan Q.; Savage, Anna E.; Zamudio, Kelly R.

    2010-01-01

    Genes encoded by the major histocompatibility complex (MHC) play key roles in the vertebrate immune system. However, our understanding of the evolutionary processes and underlying genetic mechanisms shaping these genes is limited in many taxa, including amphibians, a group currently impacted by emerging infectious diseases. To further elucidate the evolution of the MHC in frogs (anurans) and develop tools for population genetics, we surveyed allelic diversity of the MHC class II ??1 domain in both genomic and complementary DNA of seven New World species in the genus Rana (Lithobates). To assign locus affiliation to our alleles, we used a "gene walking" technique to obtain intron 2 sequences that flanked MHC class II?? exon 2. Two distinct intron sequences were recovered, suggesting the presence of at least two class II?? loci in Rana. We designed a primer pair that successfully amplified an orthologous locus from all seven Rana species. In total, we recovered 13 alleles and documented trans-species polymorphism for four of the alleles. We also found quantitative evidence of selection acting on amino acid residues that are putatively involved in peptide binding and structural stability of the ??1 domain of anurans. Our results indicated that primer mismatch can result in polymerase chain reaction (PCR) bias, which influences the number of alleles that are recovered. Using a single locus may minimize PCR bias caused by primer mismatch, and the gene walking technique was an effective approach for generating single-copy orthologous markers necessary for future studies of MHC allelic variation in natural amphibian populations. ?? 2010 Springer-Verlag.

  18. Selection, diversity and evolutionary patterns of the MHC class II DAB in free-ranging Neotropical marsupials

    Directory of Open Access Journals (Sweden)

    Otten Celine

    2008-06-01

    Full Text Available Abstract Background Research on the genetic architecture and diversity of the MHC has focused mainly on eutherian mammals, birds and fish. So far, studies on model marsupials used in laboratory investigations indicated very little or even no variation in MHC class II genes. However, natural levels of diversity and selection are unknown in marsupials as studies on wild populations are virtually absent. We used two endemic South American mouse opossums, Gracilinanus microtarsus and Marmosops incanus, to investigate characteristic features of MHC selection. This study is the first investigation of MHC selection in free-ranging Neotropical marsupials. In addition, the evolutionary history of MHC lineages within the group of marsupials was examined. Results G. microtarsus showed extensive levels of MHC diversity within and among individuals as 47 MHC-DAB alleles and high levels of sequence divergence were detected at a minimum of four loci. Positively selected codon sites were identified, of which most were congruent with human antigen binding sites. The diversity in M. incanus was rather low with only eight observed alleles at presumably two loci. However, these alleles also revealed high sequence divergence. Again, positive selection was identified on specific codon sites, all congruent with human ABS and with positively selected sites observed in G. microtarsus. In a phylogenetic comparison alleles of M. incanus interspersed widely within alleles of G. microtarsus with four alleles being present in both species. Conclusion Our investigations revealed extensive MHC class II polymorphism in a natural marsupial population, contrary to previous assumptions. Furthermore, our study confirms for the first time in marsupials the presence of three characteristic features common at MHC loci of eutherian mammals, birds and fish: large allelic sequence divergence, positive selection on specific sites and trans-specific polymorphism.

  19. Marker-assisted selection for recognizing wheat mutant genotypes carrying HMW glutenin alleles related to baking quality.

    Science.gov (United States)

    Zamani, Mohammad Javad; Bihamta, Mohammad Reza; Naserian Khiabani, Behnam; Tahernezhad, Zahra; Hallajian, Mohammad Taher; Shamsi, Marzieh Varasteh

    2014-01-01

    Allelic diversity of HMW glutenin loci in several studies revealed that allelic combinations affect dough quality. Dx5 + Dy10 subunits are related to good baking quality and Dx2 + Dy12 are related to undesirable baking quality. One of the most regular methods to evaluate the baking quality is SDS-PAGE which is used to improve baking quality labs. Marker-assisted selection is the method which can recognize the alleles related to baking quality and this method is based on polymerase chain reaction. 10 pairs of specific primers related to Dx2, Dx2.1, Dx5, Dy10, and Dy12 subunits were used for recognizing baking quality of some wheat varieties and some mutant genotypes. Only 5 pairs of them could show the specific bands. All subunits were recognized by the primers except Dx2.1. Some of the primers were extracted from previous studies and the others were designed based on D genome subunits of wheat. SDS-PAGE method accomplished having confidence in these marker's results. To realize the effect of mutation, seed storage proteins were measured. It showed that mutation had effect on the amount of seed storage protein on the mutant seeds (which showed polymorphism).

  20. Marker-Assisted Selection for Recognizing Wheat Mutant Genotypes Carrying HMW Glutenin Alleles Related to Baking Quality

    Directory of Open Access Journals (Sweden)

    Mohammad Javad Zamani

    2014-01-01

    Full Text Available Allelic diversity of HMW glutenin loci in several studies revealed that allelic combinations affect dough quality. Dx5 + Dy10 subunits are related to good baking quality and Dx2 + Dy12 are related to undesirable baking quality. One of the most regular methods to evaluate the baking quality is SDS-PAGE which is used to improve baking quality labs. Marker-assisted selection is the method which can recognize the alleles related to baking quality and this method is based on polymerase chain reaction. 10 pairs of specific primers related to Dx2, Dx2.1, Dx5, Dy10, and Dy12 subunits were used for recognizing baking quality of some wheat varieties and some mutant genotypes. Only 5 pairs of them could show the specific bands. All subunits were recognized by the primers except Dx2.1. Some of the primers were extracted from previous studies and the others were designed based on D genome subunits of wheat. SDS-PAGE method accomplished having confidence in these marker’s results. To realize the effect of mutation, seed storage proteins were measured. It showed that mutation had effect on the amount of seed storage protein on the mutant seeds (which showed polymorphism.

  1. Self-incompatibility of Prunus tenella and evidence that reproductively isolated species of Prunus have different SFB alleles coupled with an identical S-RNase allele.

    Science.gov (United States)

    Surbanovski, Nada; Tobutt, Kenneth R; Konstantinović, Miroslav; Maksimović, Vesna; Sargent, Daniel J; Stevanović, Vladimir; Bosković, Radovan I

    2007-05-01

    Many species of Prunus display an S-RNase-based gametophytic self-incompatibility (SI), controlled by a single highly polymorphic multigene complex termed the S-locus. This comprises tightly linked stylar- and pollen-expressed genes that determine the specificity of the SI response. We investigated SI of Prunus tenella, a wild species found in small, isolated populations on the Balkan peninsula, initially by pollination experiments and identifying stylar-expressed RNase alleles. Nine P. tenella S-RNase alleles (S(1)-S(9)) were cloned; their sequence analysis showed a very high ratio of non-synonymous to synonymous nucleotide substitutions (K(a)/K(s)) and revealed that S-RNase alleles of P. tenella, unlike those of Prunus dulcis, show positive selection in all regions except the conserved regions and that between C2 and RHV. Remarkably, S(8)-RNase, was found to be identical to S(1)-RNase from Prunus avium, a species that does not interbreed with P. tenella and, except for just one amino acid, to S(11) of P. dulcis. However, the corresponding introns and S-RNase-SFB intergenic regions showed considerable differences. Moreover, protein sequences of the pollen-expressed SFB alleles were not identical, harbouring 12 amino-acid replacements between those of P. tenella SFB(8) and P. avium SFB(1). Implications of this finding for hypotheses about the evolution of new S-specificities are discussed.

  2. Relative frequencies of DRB1*11 alleles and their DRB3 associations in five major population groups in a United States bone marrow registry.

    Science.gov (United States)

    Tang, T F; Huang, A Y; Pappas, A; Slack, R; Ng, J; Hartzman, R J; Hurley, C K

    2000-08-01

    One hundred sixty-one individuals from each of five US population groups, Caucasians (CAU), African Americans (AFA), Asians/Pacific Islanders (API), Hispanics (HIS), and Native Americans (NAT), were randomly selected from a volunteer bone marrow registry database consisting of 14,452 HLA-DRB1*11 positive individuals. This sampling provided at least an 80% probability of detecting a rare allele that occurred at 1% in the DRB1*11 positive population. Samples were typed for DRB1*11 alleles by polymerase chain reaction-sequence specific oligonucleotide probe typing (PCR-SSOP). A total of 10 DRB1*11 alleles out of 27 possible alleles were detected. The distribution and diversity of DRB1*11 alleles varied among populations although DRB1*1101 was the predominant DRB1*11 allele in all populations. Caucasians were the least diversified; only four common alleles (DRB1*1101-*1104) were observed. As well as the four common alleles, other groups also carried one or two other less frequent alleles including DRB1*1105 (API), *1106 (API), *1110 (AFA), *1114 (HIS), *1115 (NAT), and *1117 (AFA). A subset (418) of these individuals were also typed for DRB3 alleles. Most (97.6%) showed a strong association of DRB1*11 with DRB3*0202.

  3. Utilization of a ts-sacB selection system for the generation of a Mycobacterium avium serovar-8 specific glycopeptidolipid allelic exchange mutant

    Science.gov (United States)

    Irani, Vida R; Lee, Sun-Hwa; Eckstein, Torsten M; Inamine, Julia M; Belisle, John T; Maslow, Joel N

    2004-01-01

    Background Mycobacterium avium are ubiquitous environmental organisms and a cause of disseminated infection in patients with end-stage AIDS. The glycopeptidolipids (GPL) of M. avium are proposed to participate in the pathogenesis of this organism, however, establishment of a clear role for GPL in disease production has been limited by the inability to genetically manipulate M. avium. Methods To be able to study the role of the GPL in M. avium pathogenesis, a ts-sacB selection system, not previously used in M. avium, was employed as a means to achieve homologous recombination for the rhamnosyltransferase (rtfA) gene of a pathogenic serovar 8 strain of M. avium to prevent addition of serovar-specific sugars to rhamnose of the fatty acyl-peptide backbone of GPL. The genotype of the resultant rtfA mutant was confirmed by polymerase chain reaction and southern hybridization. Disruption in the proximal sugar of the haptenic oligosaccharide resulted in the loss of serovar specific GPL with no change in the pattern of non-serovar specific GPL moieties as shown by thin layer chromatography and gas chromatography/mass spectrometry. Complementation of wild type (wt) rtfA in trans through an integrative plasmid restored serovar-8 specific GPL expression identical to wt serovar 8 parent strain. Results In this study, we affirm our results that rtfA encodes an enzyme responsible for the transfer of Rha to 6d-Tal and provide evidence of a second allelic exchange mutagenesis system suitable for M. avium. Conclusion We report the second allelic exchange system for M. avium utilizing ts-sacB as double-negative and xylE as positive counter-selection markers, respectively. This system of allelic exchange would be especially useful for M. avium strains that demonstrate significant isoniazid (INH) resistance despite transformation with katG. Through the construction of mutants in GPL or other mycobacterial components, their roles in M. avium pathogenesis, biosynthesis, or drug

  4. Utilization of a ts-sacB selection system for the generation of a Mycobacterium avium serovar-8 specific glycopeptidolipid allelic exchange mutant

    Directory of Open Access Journals (Sweden)

    Belisle John T

    2004-09-01

    Full Text Available Abstract Background Mycobacterium avium are ubiquitous environmental organisms and a cause of disseminated infection in patients with end-stage AIDS. The glycopeptidolipids (GPL of M. avium are proposed to participate in the pathogenesis of this organism, however, establishment of a clear role for GPL in disease production has been limited by the inability to genetically manipulate M. avium. Methods To be able to study the role of the GPL in M. avium pathogenesis, a ts-sacB selection system, not previously used in M. avium, was employed as a means to achieve homologous recombination for the rhamnosyltransferase (rtfA gene of a pathogenic serovar 8 strain of M. avium to prevent addition of serovar-specific sugars to rhamnose of the fatty acyl-peptide backbone of GPL. The genotype of the resultant rtfA mutant was confirmed by polymerase chain reaction and southern hybridization. Disruption in the proximal sugar of the haptenic oligosaccharide resulted in the loss of serovar specific GPL with no change in the pattern of non-serovar specific GPL moieties as shown by thin layer chromatography and gas chromatography/mass spectrometry. Complementation of wild type (wt rtfA in trans through an integrative plasmid restored serovar-8 specific GPL expression identical to wt serovar 8 parent strain. Results In this study, we affirm our results that rtfA encodes an enzyme responsible for the transfer of Rha to 6d-Tal and provide evidence of a second allelic exchange mutagenesis system suitable for M. avium. Conclusion We report the second allelic exchange system for M. avium utilizing ts-sacB as double-negative and xylE as positive counter-selection markers, respectively. This system of allelic exchange would be especially useful for M. avium strains that demonstrate significant isoniazid (INH resistance despite transformation with katG. Through the construction of mutants in GPL or other mycobacterial components, their roles in M. avium pathogenesis

  5. Tracking human migrations by the analysis of the distribution of HLA alleles, lineages and haplotypes in closed and open populations

    Science.gov (United States)

    Vina, Marcelo A. Fernandez; Hollenbach, Jill A.; Lyke, Kirsten E.; Sztein, Marcelo B.; Maiers, Martin; Klitz, William; Cano, Pedro; Mack, Steven; Single, Richard; Brautbar, Chaim; Israel, Shosahna; Raimondi, Eduardo; Khoriaty, Evelyne; Inati, Adlette; Andreani, Marco; Testi, Manuela; Moraes, Maria Elisa; Thomson, Glenys; Stastny, Peter; Cao, Kai

    2012-01-01

    The human leucocyte antigen (HLA) system shows extensive variation in the number and function of loci and the number of alleles present at any one locus. Allele distribution has been analysed in many populations through the course of several decades, and the implementation of molecular typing has significantly increased the level of diversity revealing that many serotypes have multiple functional variants. While the degree of diversity in many populations is equivalent and may result from functional polymorphism(s) in peptide presentation, homogeneous and heterogeneous populations present contrasting numbers of alleles and lineages at the loci with high-density expression products. In spite of these differences, the homozygosity levels are comparable in almost all of them. The balanced distribution of HLA alleles is consistent with overdominant selection. The genetic distances between outbred populations correlate with their geographical locations; the formal genetic distance measurements are larger than expected between inbred populations in the same region. The latter present many unique alleles grouped in a few lineages consistent with limited founder polymorphism in which any novel allele may have been positively selected to enlarge the communal peptide-binding repertoire of a given population. On the other hand, it has been observed that some alleles are found in multiple populations with distinctive haplotypic associations suggesting that convergent evolution events may have taken place as well. It appears that the HLA system has been under strong selection, probably owing to its fundamental role in varying immune responses. Therefore, allelic diversity in HLA should be analysed in conjunction with other genetic markers to accurately track the migrations of modern humans. PMID:22312049

  6. Enhancement of allele discrimination by introduction of nucleotide mismatches into siRNA in allele-specific gene silencing by RNAi.

    Directory of Open Access Journals (Sweden)

    Yusuke Ohnishi

    Full Text Available Allele-specific gene silencing by RNA interference (RNAi is therapeutically useful for specifically inhibiting the expression of disease-associated alleles without suppressing the expression of corresponding wild-type alleles. To realize such allele-specific RNAi (ASP-RNAi, the design and assessment of small interfering RNA (siRNA duplexes conferring ASP-RNAi is vital; however, it is also difficult. In a previous study, we developed an assay system to assess ASP-RNAi with mutant and wild-type reporter alleles encoding the Photinus and Renilla luciferase genes. In line with experiments using the system, we realized that it is necessary and important to enhance allele discrimination between mutant and corresponding wild-type alleles. Here, we describe the improvement of ASP-RNAi against mutant alleles carrying single nucleotide variations by introducing base substitutions into siRNA sequences, where original variations are present in the central position. Artificially mismatched siRNAs or short-hairpin RNAs (shRNAs against mutant alleles of the human Prion Protein (PRNP gene, which appear to be associated with susceptibility to prion diseases, were examined using this assessment system. The data indicates that introduction of a one-base mismatch into the siRNAs and shRNAs was able to enhance discrimination between the mutant and wild-type alleles. Interestingly, the introduced mismatches that conferred marked improvement in ASP-RNAi, appeared to be largely present in the guide siRNA elements, corresponding to the 'seed region' of microRNAs. Due to the essential role of the 'seed region' of microRNAs in their association with target RNAs, it is conceivable that disruption of the base-pairing interactions in the corresponding seed region, as well as the central position (involved in cleavage of target RNAs, of guide siRNA elements could influence allele discrimination. In addition, we also suggest that nucleotide mismatches at the 3'-ends of sense

  7. Temporal dynamics of attentional selection in adult male carriers of the fragile X premutation allele and adult controls

    Directory of Open Access Journals (Sweden)

    Ling Mei Wong

    2015-02-01

    Full Text Available Carriers of the fragile X premutation allele (fXPCs have an expanded CGG trinucleotide repeat size within the emph{FMR1} gene and are at increased risk of developing Fragile X-associated Tremor Ataxia Syndrome (FXTAS. Previous research has shown that male fXPCs with FXTAS exhibit cognitive decline, predominantly in executive functions such as inhibitory control and working memory. Recent evidence suggests fXPCs may also exhibit impairments in processing temporal information. The attentional blink (AB task is often used to examine the dynamics of attentional selection, but disagreements exist as to whether the AB is due to excessive or insufficient attentional control. In this study, we used a variant of the AB task and neuropsychological testing to explore the dynamics of attentional selection, relate AB performance to attentional control, and determine whether fXPCs exhibited temporal and/or attentional control impairments. Participants were adult male fXPCs, aged 18--48 years and asymptomatic for FXTAS (emph{n} = 19 and age-matched male controls (emph{n} = 20. We found that fXPCs did not differ from controls in the AB task, indicating that the temporal dynamics of attentional selection were intact. However, they were impaired in the letter-number sequencing task, a test of attentional control. In the combined fXPC and control group, letter-number sequencing performance correlated positively with AB magnitude. This finding supports models that posit the AB is due to excess attentional control. In our two-pronged analysis approach, we contribute to the theoretical literature in controls by extending the AB literature, and we enhance our understanding of fXPCs by demonstrating that at least some aspects of temporal processing may be spared.

  8. High amino acid diversity and positive selection at a putative coral immunity gene (tachylectin-2

    Directory of Open Access Journals (Sweden)

    Hellberg Michael E

    2010-05-01

    Full Text Available Abstract Background Genes involved in immune functions, including pathogen recognition and the activation of innate defense pathways, are among the most genetically variable known, and the proteins that they encode are often characterized by high rates of amino acid substitutions, a hallmark of positive selection. The high levels of variation characteristic of immunity genes make them useful tools for conservation genetics. To date, highly variable immunity genes have yet to be found in corals, keystone organisms of the world's most diverse marine ecosystem, the coral reef. Here, we examine variation in and selection on a putative innate immunity gene from Oculina, a coral genus previously used as a model for studies of coral disease and bleaching. Results In a survey of 244 Oculina alleles, we find high nonsynonymous variation and a signature of positive selection, consistent with a putative role in immunity. Using computational protein structure prediction, we generate a structural model of the Oculina protein that closely matches the known structure of tachylectin-2 from the Japanese horseshoe crab (Tachypleus tridentatus, a protein with demonstrated function in microbial recognition and agglutination. We also demonstrate that at least three other genera of anthozoan cnidarians (Acropora, Montastrea and Nematostella possess proteins structurally similar to tachylectin-2. Conclusions Taken together, the evidence of high amino acid diversity, positive selection and structural correspondence to the horseshoe crab tachylectin-2 suggests that this protein is 1 part of Oculina's innate immunity repertoire, and 2 evolving adaptively, possibly under selective pressure from coral-associated microorganisms. Tachylectin-2 may serve as a candidate locus to screen coral populations for their capacity to respond adaptively to future environmental change.

  9. Specific Silencing of L392V PSEN1 Mutant Allele by RNA Interference

    Directory of Open Access Journals (Sweden)

    Malgorzata Sierant

    2011-01-01

    Full Text Available RNA interference (RNAi technology provides a powerful molecular tool to reduce an expression of selected genes in eukaryotic cells. Short interfering RNAs (siRNAs are the effector molecules that trigger RNAi. Here, we describe siRNAs that discriminate between the wild type and mutant (1174 C→G alleles of human Presenilin1 gene (PSEN1. This mutation, resulting in L392V PSEN1 variant, contributes to early onset familial Alzheimer's disease. Using the dual fluorescence assay, flow cytometry and fluorescent microscopy we identified positions 8th–11th, within the central part of the antisense strand, as the most sensitive to mismatches. 2-Thiouridine chemical modification introduced at the 3′-end of the antisense strand improved the allele discrimination, but wobble base pairing adjacent to the mutation site abolished the siRNA activity. Our data indicate that siRNAs can be designed to discriminate between the wild type and mutant alleles of genes that differ by just a single nucleotide.

  10. Allele Age Under Non-Classical Assumptions is Clarified by an Exact Computational Markov Chain Approach.

    Science.gov (United States)

    De Sanctis, Bianca; Krukov, Ivan; de Koning, A P Jason

    2017-09-19

    Determination of the age of an allele based on its population frequency is a well-studied problem in population genetics, for which a variety of approximations have been proposed. We present a new result that, surprisingly, allows the expectation and variance of allele age to be computed exactly (within machine precision) for any finite absorbing Markov chain model in a matter of seconds. This approach makes none of the classical assumptions (e.g., weak selection, reversibility, infinite sites), exploits modern sparse linear algebra techniques, integrates over all sample paths, and is rapidly computable for Wright-Fisher populations up to N e  = 100,000. With this approach, we study the joint effect of recurrent mutation, dominance, and selection, and demonstrate new examples of "selective strolls" where the classical symmetry of allele age with respect to selection is violated by weakly selected alleles that are older than neutral alleles at the same frequency. We also show evidence for a strong age imbalance, where rare deleterious alleles are expected to be substantially older than advantageous alleles observed at the same frequency when population-scaled mutation rates are large. These results highlight the under-appreciated utility of computational methods for the direct analysis of Markov chain models in population genetics.

  11. GWA Mapping of Anthocyanin Accumulation Reveals Balancing Selection of MYB90 in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Johanna A Bac-Molenaar

    Full Text Available Induction of anthocyanin accumulation by osmotic stress was assessed in 360 accessions of Arabidopsis thaliana. A wide range of natural variation, with phenotypes ranging from green to completely red/purple rosettes, was observed. A genome wide association (GWA mapping approach revealed that sequence diversity in a small 15 kb region on chromosome 1 explained 40% of the variation observed. Sequence and expression analyses of alleles of the candidate gene MYB90 identified a causal polymorphism at amino acid (AA position 210 of this transcription factor of the anthocyanin biosynthesis pathway. This amino acid discriminates the two most frequent alleles of MYB90. Both alleles are present in a substantial part of the population, suggesting balancing selection between these two alleles. Analysis of the geographical origin of the studied accessions suggests that the macro climate is not the driving force behind positive or negative selection for anthocyanin accumulation. An important role for local climatic conditions is, therefore, suggested. This study emphasizes that GWA mapping is a powerful approach to identify alleles that are under balancing selection pressure in nature.

  12. Analysis of S-RNase alleles of almond (Prunus dulcis): characterization of new sequences, resolution of synonyms and evidence of intragenic recombination.

    Science.gov (United States)

    Ortega, Encarnación; Bosković, Radovan I; Sargent, Daniel J; Tobutt, Kenneth R

    2006-11-01

    Cross-compatibility relationships in almond are controlled by a gametophytically expressed incompatibility system partly mediated by stylar RNases, of which 29 have been reported. To resolve possible synonyms and to provide data for phylogenetic analysis, 21 almond S-RNase alleles were cloned and sequenced from SP (signal peptide region) or C1 (first conserved region) to C5, except for the S29 allele, which could be cloned only from SP to C1. Nineteen sequences (S4, S6, S11-S22, S25-S29)) were potentially new whereas S10 and S24 had previously been published but with different labels. The sequences for S16 and S17 were identical to that for S1, published previously; likewise, S15 was identical to S5. In addition, S4 and S20 were identical, as were S13 and S19. A revised version of the standard table of almond incompatibility genotypes is presented. Several alleles had AT or GA tandem repeats in their introns. Sequences of the 23 distinct newly cloned or already published alleles were aligned. Sliding windows analysis of Ka/Ks identified regions where positive selection may operate; in contrast to the Maloideae, most of the region from the beginning of C3 to the beginning of RC4 appeared not to be under positive selection. Phylogenetic analysis indicated four pairs of alleles had "bootstrap" support > 80%: S5/S10, S4/S8, S11/S24, and S3/S6. Various motifs up to 19 residues long occurred in at least two alleles, and their distributions were consistent with intragenic recombination, as were separate phylogenetic analyses of the 5' and 3' sections. Sequence comparison of phylogenetically related alleles indicated the significance of the region between RC4 and C5 in defining specificity.

  13. Validation of candidate gene markers for marker-assisted selection of potato cultivars with improved tuber quality.

    Science.gov (United States)

    Li, Li; Tacke, Eckhard; Hofferbert, Hans-Reinhardt; Lübeck, Jens; Strahwald, Josef; Draffehn, Astrid M; Walkemeier, Birgit; Gebhardt, Christiane

    2013-04-01

    Tuber yield, starch content, starch yield and chip color are complex traits that are important for industrial uses and food processing of potato. Chip color depends on the quantity of reducing sugars glucose and fructose in the tubers, which are generated by starch degradation. Reducing sugars accumulate when tubers are stored at low temperatures. Early and efficient selection of cultivars with superior yield, starch yield and chip color is hampered by the fact that reliable phenotypic selection requires multiple year and location trials. Application of DNA-based markers early in the breeding cycle, which are diagnostic for superior alleles of genes that control natural variation of tuber quality, will reduce the number of clones to be evaluated in field trials. Association mapping using genes functional in carbohydrate metabolism as markers has discovered alleles of invertases and starch phosphorylases that are associated with tuber quality traits. Here, we report on new DNA variants at loci encoding ADP-glucose pyrophosphorylase and the invertase Pain-1, which are associated with positive or negative effect with chip color, tuber starch content and starch yield. Marker-assisted selection (MAS) and marker validation were performed in tetraploid breeding populations, using various combinations of 11 allele-specific markers associated with tuber quality traits. To facilitate MAS, user-friendly PCR assays were developed for specific candidate gene alleles. In a multi-parental population of advanced breeding clones, genotypes were selected for having different combinations of five positive and the corresponding negative marker alleles. Genotypes combining five positive marker alleles performed on average better than genotypes with four negative alleles and one positive allele. When tested individually, seven of eight markers showed an effect on at least one quality trait. The direction of effect was as expected. Combinations of two to three marker alleles were

  14. Selection of Phototransduction Genes in Homo sapiens.

    Science.gov (United States)

    Christopher, Mark; Scheetz, Todd E; Mullins, Robert F; Abràmoff, Michael D

    2013-08-13

    We investigated the evidence of recent positive selection in the human phototransduction system at single nucleotide polymorphism (SNP) and gene level. SNP genotyping data from the International HapMap Project for European, Eastern Asian, and African populations was used to discover differences in haplotype length and allele frequency between these populations. Numeric selection metrics were computed for each SNP and aggregated into gene-level metrics to measure evidence of recent positive selection. The level of recent positive selection in phototransduction genes was evaluated and compared to a set of genes shown previously to be under recent selection, and a set of highly conserved genes as positive and negative controls, respectively. Six of 20 phototransduction genes evaluated had gene-level selection metrics above the 90th percentile: RGS9, GNB1, RHO, PDE6G, GNAT1, and SLC24A1. The selection signal across these genes was found to be of similar magnitude to the positive control genes and much greater than the negative control genes. There is evidence for selective pressure in the genes involved in retinal phototransduction, and traces of this selective pressure can be demonstrated using SNP-level and gene-level metrics of allelic variation. We hypothesize that the selective pressure on these genes was related to their role in low light vision and retinal adaptation to ambient light changes. Uncovering the underlying genetics of evolutionary adaptations in phototransduction not only allows greater understanding of vision and visual diseases, but also the development of patient-specific diagnostic and intervention strategies.

  15. In Vivo-Selected Compensatory Mutations Restore the Fitness Cost of Mosaic penA Alleles That Confer Ceftriaxone Resistance in Neisseria gonorrhoeae.

    Science.gov (United States)

    Vincent, Leah R; Kerr, Samuel R; Tan, Yang; Tomberg, Joshua; Raterman, Erica L; Dunning Hotopp, Julie C; Unemo, Magnus; Nicholas, Robert A; Jerse, Ann E

    2018-04-03

    Resistance to ceftriaxone in Neisseria gonorrhoeae is mainly conferred by mosaic penA alleles that encode penicillin-binding protein 2 (PBP2) variants with markedly lower rates of acylation by ceftriaxone. To assess the impact of these mosaic penA alleles on gonococcal fitness, we introduced the mosaic penA alleles from two ceftriaxone-resistant (Cro r ) clinical isolates (H041 and F89) into a Cro s strain (FA19) by allelic exchange and showed that the resultant Cro r mutants were significantly outcompeted by the Cro s parent strain in vitro and in a murine infection model. Four Cro r compensatory mutants of FA19 penA41 were isolated independently from mice that outcompeted the parent strain both in vitro and in vivo One of these compensatory mutants (LV41C) displayed a unique growth profile, with rapid log growth followed by a sharp plateau/gradual decline at stationary phase. Genome sequencing of LV41C revealed a mutation (G348D) in the acnB gene encoding the bifunctional aconitate hydratase 2/2 methylisocitrate dehydratase. Introduction of the acnB G348D allele into FA19 penA41 conferred both a growth profile that phenocopied that of LV41C and a fitness advantage, although not as strongly as that exhibited by the original compensatory mutant, suggesting the existence of additional compensatory mutations. The mutant aconitase appears to be a functional knockout with lower activity and expression than wild-type aconitase. Transcriptome sequencing (RNA-seq) analysis of FA19 penA41 acnB G348D revealed a large set of upregulated genes involved in carbon and energy metabolism. We conclude that compensatory mutations can be selected in Cro r gonococcal strains that increase metabolism to ameliorate their fitness deficit. IMPORTANCE The emergence of ceftriaxone-resistant (Cro r ) Neisseria gonorrhoeae has led to the looming threat of untreatable gonorrhea. Whether Cro resistance is likely to spread can be predicted from studies that compare the relative fitnesses of

  16. A genome-wide signature of positive selection in ancient and recent invasive expansions of the honey bee Apis mellifera.

    Science.gov (United States)

    Zayed, Amro; Whitfield, Charles W

    2008-03-04

    Apis mellifera originated in Africa and extended its range into Eurasia in two or more ancient expansions. In 1956, honey bees of African origin were introduced into South America, their descendents admixing with previously introduced European bees, giving rise to the highly invasive and economically devastating "Africanized" honey bee. Here we ask whether the honey bee's out-of-Africa expansions, both ancient and recent (invasive), were associated with a genome-wide signature of positive selection, detected by contrasting genetic differentiation estimates (F(ST)) between coding and noncoding SNPs. In native populations, SNPs in protein-coding regions had significantly higher F(ST) estimates than those in noncoding regions, indicating adaptive evolution in the genome driven by positive selection. This signal of selection was associated with the expansion of honey bees from Africa into Western and Northern Europe, perhaps reflecting adaptation to temperate environments. We estimate that positive selection acted on a minimum of 852-1,371 genes or approximately 10% of the bee's coding genome. We also detected positive selection associated with the invasion of African-derived honey bees in the New World. We found that introgression of European-derived alleles into Africanized bees was significantly greater for coding than noncoding regions. Our findings demonstrate that Africanized bees exploited the genetic diversity present from preexisting introductions in an adaptive way. Finally, we found a significant negative correlation between F(ST) estimates and the local GC content surrounding coding SNPs, suggesting that AT-rich genes play an important role in adaptive evolution in the honey bee.

  17. Population based allele frequencies of disease associated polymorphisms in the Personalized Medicine Research Project.

    Science.gov (United States)

    Cross, Deanna S; Ivacic, Lynn C; Stefanski, Elisha L; McCarty, Catherine A

    2010-06-17

    There is a lack of knowledge regarding the frequency of disease associated polymorphisms in populations and population attributable risk for many populations remains unknown. Factors that could affect the association of the allele with disease, either positively or negatively, such as race, ethnicity, and gender, may not be possible to determine without population based allele frequencies.Here we used a panel of 51 polymorphisms previously associated with at least one disease and determined the allele frequencies within the entire Personalized Medicine Research Project population based cohort. We compared these allele frequencies to those in dbSNP and other data sources stratified by race. Differences in allele frequencies between self reported race, region of origin, and sex were determined. There were 19544 individuals who self reported a single racial category, 19027 or (97.4%) self reported white Caucasian, and 11205 (57.3%) individuals were female. Of the 11,208 (57%) individuals with an identifiable region of origin 8337 or (74.4%) were German.41 polymorphisms were significantly different between self reported race at the 0.05 level. Stratification of our Caucasian population by self reported region of origin revealed 19 polymorphisms that were significantly different (p = 0.05) between individuals of different origins. Further stratification of the population by gender revealed few significant differences in allele frequencies between the genders. This represents one of the largest population based allele frequency studies to date. Stratification by self reported race and region of origin revealed wide differences in allele frequencies not only by race but also by region of origin within a single racial group. We report allele frequencies for our Asian/Hmong and American Indian populations; these two minority groups are not typically selected for population allele frequency detection. Population wide allele frequencies are important for the design and

  18. EOMES-positive CD4+ T cells are increased in PTPN22 (1858T) risk allele carriers.

    Science.gov (United States)

    Chemin, Karine; Ramsköld, Daniel; Diaz-Gallo, Lina-Marcela; Herrath, Jessica; Houtman, Miranda; Tandre, Karolina; Rönnblom, Lars; Catrina, Anca; Malmström, Vivianne

    2018-04-01

    The presence of the PTPN22 risk allele (1858T) is associated with several autoimmune diseases including rheumatoid arthritis (RA). Despite a number of studies exploring the function of PTPN22 in T cells, the exact impact of the PTPN22 risk allele on T-cell function in humans is still unclear. In this study, using RNA sequencing, we show that, upon TCR-activation, naïve human CD4 + T cells homozygous for the PTPN22 risk allele overexpress a set of genes including CFLAR and 4-1BB, which are important for cytotoxic T-cell differentiation. Moreover, the protein expression of the T-box transcription factor Eomesodermin (EOMES) was increased in T cells from healthy donors homozygous for the PTPN22 risk allele and correlated with a decreased number of naïve CD4 + T cells. There was no difference in the frequency of other CD4 + T-cell subsets (Th1, Th17, Tfh, Treg). Finally, an accumulation of EOMES + CD4 + T cells was observed in synovial fluid of RA patients with a more pronounced production of Perforin-1 in PTPN22 risk allele carriers. Altogether, we propose a novel mechanism of action of PTPN22 risk allele through the generation of cytotoxic CD4 + T cells and identify EOMES + CD4 + T cells as a relevant T-cell subset in RA pathogenesis. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Genes under positive selection in Escherichia coli

    DEFF Research Database (Denmark)

    Petersen, Lise; Bollback, Jonathan P; Dimmic, Matt

    2007-01-01

    We used a comparative genomics approach to identify genes that are under positive selection in six strains of Escherichia coli and Shigella flexneri, including five strains that are human pathogens. We find that positive selection targets a wide range of different functions in the E. coli genome......, including cell surface proteins such as beta barrel porins, presumably because of the involvement of these genes in evolutionary arms races with other bacteria, phages, and/or the host immune system. Structural mapping of positively selected sites on trans-membrane beta barrel porins reveals...... that the residues under positive selection occur almost exclusively in the extracellular region of the proteins that are enriched with sites known to be targets of phages, colicins, or the host immune system. More surprisingly, we also find a number of other categories of genes that show very strong evidence...

  20. Identification of contemporary selection signatures using composite log likelihood and their associations with marbling score in Korean cattle.

    Science.gov (United States)

    Ryu, Jihye; Lee, Chaeyoung

    2014-12-01

    Positive selection not only increases beneficial allele frequency but also causes augmentation of allele frequencies of sequence variants in close proximity. Signals for positive selection were detected by the statistical differences in subsequent allele frequencies. To identify selection signatures in Korean cattle, we applied a composite log-likelihood (CLL)-based method, which calculates a composite likelihood of the allelic frequencies observed across sliding windows of five adjacent loci and compares the value with the critical statistic estimated by 50,000 permutations. Data for a total of 11,799 nucleotide polymorphisms were used with 71 Korean cattle and 209 foreign beef cattle. As a result, 147 signals were identified for Korean cattle based on CLL estimates (P selected. Further genetic association analysis with 41 intragenic variants in the selection signatures with the greatest CLL for each chromosome revealed that marbling score was associated with five variants. Intensive association studies with all the selection signatures identified in this study are required to exclude signals associated with other phenotypes or signals falsely detected and thus to identify genetic markers for meat quality. © 2014 Stichting International Foundation for Animal Genetics.

  1. Genetic mapping, marker assisted selection and allelic relationships for the Pu 6 gene conferring rust resistance in sunflower.

    Science.gov (United States)

    Bulos, Mariano; Vergani, Pablo Nicolas; Altieri, Emiliano

    2014-09-01

    Rust resistance in the sunflower line P386 is controlled by Pu 6 , a gene which was reported to segregate independently from other rust resistant genes, such as R 4 . The objectives of this work were to map Pu 6 , to provide and validate molecular tools for its identification, and to determine the linkage relationship of Pu 6 and R 4 . Genetic mapping of Pu 6 with six markers covered 24.8 cM of genetic distance on the lower end of linkage Group 13 of the sunflower consensus map. The marker most closely linked to Pu 6 was ORS316 at 2.5 cM in the distal position. ORS316 presented five alleles when was assayed with a representative set of resistant and susceptible lines. Allelism test between Pu 6 and R 4 indicated that both genes are linked at a genetic distance of 6.25 cM. This is the first confirmation based on an allelism test that at least two members of the R adv /R 4 /R 11 / R 13a /R 13b /Pu 6 cluster of genes are at different loci. A fine elucidation of the architecture of this complex locus will allow designing and constructing completely new genomic regions combining genes from different resistant sources and the elimination of the linkage drag around each resistant gene.

  2. Three-dimensional structure discrepancy between HLA alleles for effective prediction of aGVHD severity and optimal selection of recipient-donor pairs: a proof-of-concept study.

    Science.gov (United States)

    Han, Hongxing; Yuan, Fang; Sun, Yuying; Liu, Jinfeng; Liu, Shuguang; Luo, Yuan; Liang, Fei; Liu, Nan; Long, Juan; Zhao, Xiao; Kong, Fanhua; Xi, Yongzhi

    2015-11-24

    The optimal selection of recipient-donor pair and accurate prediction of acute graft-versus-host disease (aGVHD) severity are always the two most crucial works in allogeneic hematopoietic stem cell transplantation (allo-HSCT), which currently rests mostly with HLA compatibility, the most polymorphic loci in the human genome, in clinic. Thus, there is an urgent need for a rapid and reliable quantitative system for optimal recipient-donor pairs selection and accurate prediction of aGVHD severity prior to allo-HSCT. For these reasons, we have developed a new selection/prediction system for optimal recipient-donor selection and effective prediction of aGVHD severity based on HLA three-dimensional (3D) structure modeling (HLA-TDSM) discrepancy, and applied this system in a pilot randomized clinical allo-HSCT study. The 37 patient-donor pairs in the study were typed at low- and high-resolution levels for HLA-A/-B/-DRB1/-DQB1 loci. HLA-TDSM system covering the 10000 alleles in HLA class I and II consists of the revised local and coordinate root-mean-square deviation (RMSD) values for each locus. Its accuracy and reliability were confirmed using stably transfected Hmy2.CIR-HLA-B cells, TCR Vβ gene scan, and antigen-specific alloreactive cytotoxic lymphocytes. Based on the preliminary results, we theoretically defined all HLA acceptable versus unacceptable mismatched alleles. More importantly, HLA-TDSM enabled a successful retrospective verification and prospective prediction for aGVHD severity in a pilot randomized clinical allo-HSCT study of 32 recipient-donor transplant pairs. There was a strong direct correlation between single/total revised RMSD and aGVHD severity (92% in retrospective group vs 95% in prospective group). These results seem to be closely related to the 3D structure discrepancy of mismatched HLA-alleles, but not the number or loci of mismatched HLA-alleles. Our data first provide the proof-of-concept that HLA-TDSM is essential for optimal selection of

  3. Natural selection on MHC IIβ in parapatric lake and stream stickleback: Balancing, divergent, both or neither?

    Science.gov (United States)

    Stutz, William E; Bolnick, Daniel I

    2017-09-01

    Major histocompatibility complex (MHC) genes encode proteins that play a central role in vertebrates' adaptive immunity to parasites. MHC loci are among the most polymorphic in vertebrates' genomes, inspiring many studies to identify evolutionary processes driving MHC polymorphism within populations and divergence between populations. Leading hypotheses include balancing selection favouring rare alleles within populations, and spatially divergent selection. These hypotheses do not always produce diagnosably distinct predictions, causing many studies of MHC to yield inconsistent or ambiguous results. We suggest a novel strategy to distinguish balancing vs. divergent selection on MHC, taking advantage of natural admixture between parapatric populations. With divergent selection, individuals with immigrant alleles will be more infected and less fit because they are susceptible to novel parasites in their new habitat. With balancing selection, individuals with locally rare immigrant alleles will be more fit (less infected). We tested these contrasting predictions using three-spine stickleback from three replicate pairs of parapatric lake and stream habitats. We found numerous positive and negative associations between particular MHC IIβ alleles and particular parasite taxa. A few allele-parasite comparisons supported balancing selection, and others supported divergent selection between habitats. But, there was no overall tendency for fish with immigrant MHC alleles to be more or less heavily infected. Instead, locally rare MHC alleles (not necessarily immigrants) were associated with heavier infections. Our results illustrate the complex relationship between MHC IIβ allelic variation and spatially varying multispecies parasite communities: different hypotheses may be concurrently true for different allele-parasite combinations. © 2017 John Wiley & Sons Ltd.

  4. Positive selection in the chromosome 16 VKORC1 genomic region has contributed to the variability of anticoagulant response in humans.

    Directory of Open Access Journals (Sweden)

    Blandine Patillon

    Full Text Available VKORC1 (vitamin K epoxide reductase complex subunit 1, 16p11.2 is the main genetic determinant of human response to oral anticoagulants of antivitamin K type (AVK. This gene was recently suggested to be a putative target of positive selection in East Asian populations. In this study, we genotyped the HGDP-CEPH Panel for six VKORC1 SNPs and downloaded chromosome 16 genotypes from the HGDP-CEPH database in order to characterize the geographic distribution of footprints of positive selection within and around this locus. A unique VKORC1 haplotype carrying the promoter mutation associated with AVK sensitivity showed especially high frequencies in all the 17 HGDP-CEPH East Asian population samples. VKORC1 and 24 neighboring genes were found to lie in a 505 kb region of strong linkage disequilibrium in these populations. Patterns of allele frequency differentiation and haplotype structure suggest that this genomic region has been submitted to a near complete selective sweep in all East Asian populations and only in this geographic area. The most extreme scores of the different selection tests are found within a smaller 45 kb region that contains VKORC1 and three other genes (BCKDK, MYST1 (KAT8, and PRSS8 with different functions. Because of the strong linkage disequilibrium, it is not possible to determine if VKORC1 or one of the three other genes is the target of this strong positive selection that could explain present-day differences among human populations in AVK dose requirement. Our results show that the extended region surrounding a presumable single target of positive selection should be analyzed for genetic variation in a wide range of genetically diverse populations in order to account for other neighboring and confounding selective events and the hitchhiking effect.

  5. Fixation Probability in a Two-Locus Model by the Ancestral Recombination–Selection Graph

    Science.gov (United States)

    Lessard, Sabin; Kermany, Amir R.

    2012-01-01

    We use the ancestral influence graph (AIG) for a two-locus, two-allele selection model in the limit of a large population size to obtain an analytic approximation for the probability of ultimate fixation of a single mutant allele A. We assume that this new mutant is introduced at a given locus into a finite population in which a previous mutant allele B is already segregating with a wild type at another linked locus. We deduce that the fixation probability increases as the recombination rate increases if allele A is either in positive epistatic interaction with B and allele B is beneficial or in no epistatic interaction with B and then allele A itself is beneficial. This holds at least as long as the recombination fraction and the selection intensity are small enough and the population size is large enough. In particular this confirms the Hill–Robertson effect, which predicts that recombination renders more likely the ultimate fixation of beneficial mutants at different loci in a population in the presence of random genetic drift even in the absence of epistasis. More importantly, we show that this is true from weak negative epistasis to positive epistasis, at least under weak selection. In the case of deleterious mutants, the fixation probability decreases as the recombination rate increases. This supports Muller’s ratchet mechanism to explain the accumulation of deleterious mutants in a population lacking recombination. PMID:22095080

  6. Delimiting Allelic Imbalance of TYMS by Allele-Specific Analysis.

    Science.gov (United States)

    Balboa-Beltrán, Emilia; Cruz, Raquel; Carracedo, Angel; Barros, Francisco

    2015-07-01

    Allelic imbalance of thymidylate synthase (TYMS) is attributed to polymorphisms in the 5'- and 3'-untranslated region (UTR). These polymorphisms have been related to the risk of suffering different cancers, for example leukemia, breast or gastric cancer, and response to different drugs, among which are methotrexate glutamates, stavudine, and specifically 5-fluorouracil (5-FU), as TYMS is its direct target. A vast literature has been published in relation to 5-FU, even suggesting the sole use of these polymorphisms to effectively manage 5-FU dosage. Estimates of the extent to which these polymorphisms influence in TYMS expression have in the past been based on functional analysis by luciferase assays and quantification of TYMS mRNA, but both these studies, as the association studies with cancer risk or with toxicity or response to 5-FU, are very contradictory. Regarding functional assays, the artificial genetic environment created in luciferase assay and the problems derived from quantitative polymerase chain reactions (qPCRs), for example the use of a reference gene, may have distorted the results. To avoid these sources of interference, we have analyzed the allelic imbalance of TYMS by allelic-specific analysis in peripheral blood mononuclear cells (PBMCs) from patients.Allelic imbalance in PBMCs, taken from 40 patients with suspected myeloproliferative haematological diseases, was determined by fluorescent fragment analysis (for the 3'-UTR polymorphism), Sanger sequencing and allelic-specific qPCR in multiplex (for the 5'-UTR polymorphisms).For neither the 3'- nor the 5'-UTR polymorphisms did the observed allelic imbalance exceed 1.5 fold. None of the TYMS polymorphisms is statistically associated with allelic imbalance.The results acquired allow us to deny the previously established assertion of an influence of 2 to 4 fold of the rs45445694 and rs2853542 polymorphisms in the expression of TYMS and narrow its allelic imbalance to 1.5 fold, in our population

  7. The number of self-incompatibility alleles in a finite, subdivided population

    DEFF Research Database (Denmark)

    Schierup, M H

    1998-01-01

    The actual and effective number of gametophytic self-incompatibility alleles maintained at mutation-drift-selection equilibrium in a finite population subdivided as in the island model is investigated by stochastic simulations. The existing theory founded by Wright predicts that for a given...... population size the number of alleles maintained increases monotonically with decreasing migration as is the case for neutral alleles. The simulation results here show that this is not true. At migration rates above Nm = 0.01-0.1, the actual and effective number of alleles is lower than for an undivided...... of individuals in the population but it underestimates the neutral effective size of the subdivided population. Udgivelsesdato: 1998-Jun...

  8. A Novel Variant with Positive Natural Selection Influenced Hb A2 Levels in Chinese Individuals with β-Thalassemia.

    Science.gov (United States)

    Yu, Shanjuan; Chen, Yang; Lai, Ketong; Dewan, Roma Kajal; He, Yunyan

    2017-05-01

    β-Thalassemia (β-thal) is the most common inherited hemolytic anemia worldwide. Elevated Hb A 2 is a mark of β-thal carriers. The aim of this study was to identify the pathogenic variants associated with the Hb A 2 levels. One thousand and thirty β-thal carriers were recruited for this study. Using positive natural expression quantitative trait loci (eQTL) analysis, a significant variant was selected. Genotyping for the rs231841 polymorphism was performed by the Sequenom MassARRAY IPLEX platform. All genetic association analyses were performed with the PLINK program. The linear regression analysis showed that rs231841 in the intron region of the potassium voltage-gated channel subfamily Q member 1 (KCNQ1) gene on chromosome 11p15 was significantly associated with Hb A 2 levels. The presence of the C allele was associated with elevated Hb A 2 levels. Our results suggest that rs231841 on the KCNQ1 gene with positive natural selection is related to Hb A 2 levels in Chinese β-thal carriers, and KCNQ1 is probably associated with the expression of the β-like globin gene cluster.

  9. An informational view of accession rarity and allele specificity in germplasm banks for management and conservation.

    Science.gov (United States)

    Reyes-Valdés, M Humberto; Burgueño, Juan; Singh, Sukhwinder; Martínez, Octavio; Sansaloni, Carolina Paola

    2018-01-01

    Germplasm banks are growing in their importance, number of accessions and amount of characterization data, with a large emphasis on molecular genetic markers. In this work, we offer an integrated view of accessions and marker data in an information theory framework. The basis of this development is the mutual information between accessions and allele frequencies for molecular marker loci, which can be decomposed in allele specificities, as well as in rarity and divergence of accessions. In this way, formulas are provided to calculate the specificity of the different marker alleles with reference to their distribution across accessions, accession rarity, defined as the weighted average of the specificity of its alleles, and divergence, defined by the Kullback-Leibler formula. Albeit being different measures, it is demonstrated that average rarity and divergence are equal for any collection. These parameters can contribute to the knowledge of the structure of a germplasm collection and to make decisions about the preservation of rare variants. The concepts herein developed served as the basis for a strategy for core subset selection called HCore, implemented in a publicly available R script. As a proof of concept, the mathematical view and tools developed in this research were applied to a large collection of Mexican wheat accessions, widely characterized by SNP markers. The most specific alleles were found to be private of a single accession, and the distribution of this parameter had its highest frequencies at low levels of specificity. Accession rarity and divergence had largely symmetrical distributions, and had a positive, albeit non-strictly linear relationship. Comparison of the HCore approach for core subset selection, with three state-of-the-art methods, showed it to be superior for average divergence and rarity, mean genetic distance and diversity. The proposed approach can be used for knowledge extraction and decision making in germplasm collections of

  10. In Vivo-Selected Compensatory Mutations Restore the Fitness Cost of Mosaic penA Alleles That Confer Ceftriaxone Resistance in Neisseria gonorrhoeae

    Directory of Open Access Journals (Sweden)

    Leah R. Vincent

    2018-04-01

    Full Text Available Resistance to ceftriaxone in Neisseria gonorrhoeae is mainly conferred by mosaic penA alleles that encode penicillin-binding protein 2 (PBP2 variants with markedly lower rates of acylation by ceftriaxone. To assess the impact of these mosaic penA alleles on gonococcal fitness, we introduced the mosaic penA alleles from two ceftriaxone-resistant (Cror clinical isolates (H041 and F89 into a Cros strain (FA19 by allelic exchange and showed that the resultant Cror mutants were significantly outcompeted by the Cros parent strain in vitro and in a murine infection model. Four Cror compensatory mutants of FA19 penA41 were isolated independently from mice that outcompeted the parent strain both in vitro and in vivo. One of these compensatory mutants (LV41C displayed a unique growth profile, with rapid log growth followed by a sharp plateau/gradual decline at stationary phase. Genome sequencing of LV41C revealed a mutation (G348D in the acnB gene encoding the bifunctional aconitate hydratase 2/2 methylisocitrate dehydratase. Introduction of the acnBG348D allele into FA19 penA41 conferred both a growth profile that phenocopied that of LV41C and a fitness advantage, although not as strongly as that exhibited by the original compensatory mutant, suggesting the existence of additional compensatory mutations. The mutant aconitase appears to be a functional knockout with lower activity and expression than wild-type aconitase. Transcriptome sequencing (RNA-seq analysis of FA19 penA41 acnBG348D revealed a large set of upregulated genes involved in carbon and energy metabolism. We conclude that compensatory mutations can be selected in Cror gonococcal strains that increase metabolism to ameliorate their fitness deficit.

  11. Recombinational micro-evolution of functionally different metallothionein promoter alleles from Orchesella cincta

    Directory of Open Access Journals (Sweden)

    van Straalen Nico M

    2007-06-01

    Full Text Available Abstract Background Metallothionein (mt transcription is elevated in heavy metal tolerant field populations of Orchesella cincta (Collembola. This suggests that natural selection acts on transcriptional regulation of mt in springtails at sites where cadmium (Cd levels in soil reach toxic values This study investigates the nature and the evolutionary origin of polymorphisms in the metallothionein promoter (pmt and their functional significance for mt expression. Results We sequenced approximately 1600 bp upstream the mt coding region by genome walking. Nine pmt alleles were discovered in NW-European populations. They differ in the number of some indels, consensus transcription factor binding sites and core promoter elements. Extensive recombination events between some of the alleles can be inferred from the alignment. A deviation from neutral expectations was detected in a cadmium tolerant population, pointing towards balancing selection on some promoter stretches. Luciferase constructs were made from the most abundant alleles, and responses to Cd, paraquat (oxidative stress inducer and moulting hormone were studied in cell lines. By using paraquat we were able to dissect the effect of oxidative stress from the Cd specific effect, and extensive differences in mt induction levels between these two stressors were observed. Conclusion The pmt alleles evolved by a number of recombination events, and exhibited differential inducibilities by Cd, paraquat and molting hormone. In a tolerant population from a metal contaminated site, promoter allele frequencies differed significantly from a reference site and nucleotide polymorphisms in some promoter stretches deviated from neutral expectations, revealing a signature of balancing selection. Our results suggest that the structural differences in the Orchesella cincta metallothionein promoter alleles contribute to the metallothionein -over-expresser phenotype in cadmium tolerant populations.

  12. Strong selection during the last millennium for African ancestry in the admixed population of Madagascar.

    Science.gov (United States)

    Pierron, Denis; Heiske, Margit; Razafindrazaka, Harilanto; Pereda-Loth, Veronica; Sanchez, Jazmin; Alva, Omar; Arachiche, Amal; Boland, Anne; Olaso, Robert; Deleuze, Jean-Francois; Ricaut, Francois-Xavier; Rakotoarisoa, Jean-Aimé; Radimilahy, Chantal; Stoneking, Mark; Letellier, Thierry

    2018-03-02

    While admixed populations offer a unique opportunity to detect selection, the admixture in most of the studied populations occurred too recently to produce conclusive signals. By contrast, Malagasy populations originate from admixture between Asian and African populations that occurred ~27 generations ago, providing power to detect selection. We analyze local ancestry across the genomes of 700 Malagasy and identify a strong signal of recent positive selection, with an estimated selection coefficient >0.2. The selection is for African ancestry and affects 25% of chromosome 1, including the Duffy blood group gene. The null allele at this gene provides resistance to Plasmodium vivax malaria, and previous studies have suggested positive selection for this allele in the Malagasy population. This selection event also influences numerous other genes implicated in immunity, cardiovascular diseases, and asthma and decreases the Asian ancestry genome-wide by 10%, illustrating the role played by selection in recent human history.

  13. Differential strengths of selection on S-RNases from Physalis and Solanum (Solanaceae

    Directory of Open Access Journals (Sweden)

    Kohn Joshua R

    2011-08-01

    Full Text Available Abstract Background The S-RNases of the Solanaceae are highly polymorphic self-incompatibility (S- alleles subject to strong balancing selection. Relatively recent diversification of S-alleles has occurred in the genus Physalis following a historical restriction of S-allele diversity. In contrast, the genus Solanum did not undergo a restriction of S-locus diversity and its S-alleles are generally much older. Because recovery from reduced S-locus diversity should involve increased selection, we employ a statistical framework to ask whether S-locus selection intensities are higher in Physalis than Solanum. Because different S-RNase lineages diversify in Physalis and Solanum, we also ask whether different sites are under selection in different lineages. Results Maximum-likelihood and Bayesian coalescent methods found higher intensities of selection and more sites under significant positive selection in the 48 Physalis S-RNase alleles than the 49 from Solanum. Highest posterior densities of dN/dS (ω estimates show that the strength of selection is greater for Physalis at 36 codons. A nested maximum likelihood method was more conservative, but still found 16 sites with greater selection in Physalis. Neither method found any codons under significantly greater selection in Solanum. A random effects likelihood method that examines data from both taxa jointly confirmed higher selection intensities in Physalis, but did not find different proportions of sites under selection in the two datasets. The greatest differences in strengths of selection were found in the most variable regions of the S-RNases, as expected if these regions encode self-recognition specificities. Clade-specific likelihood models indicated some codons were under greater selection in background Solanum lineages than in specific lineages of Physalis implying that selection on sites may differ among lineages. Conclusions Likelihood and Bayesian methods provide a statistical approach to

  14. A strategy to discover genes that carry multi-allelic or mono-allelic risk for common diseases: A cohort allelic sums test (CAST)

    International Nuclear Information System (INIS)

    Morgenthaler, Stephan; Thilly, William G.

    2007-01-01

    A method is described to discover if a gene carries one or more allelic mutations that confer risk for any specified common disease. The method does not depend upon genetic linkage of risk-conferring mutations to high frequency genetic markers such as single nucleotide polymorphisms. Instead, the sums of allelic mutation frequencies in case and control cohorts are determined and a statistical test is applied to discover if the difference in these sums is greater than would be expected by chance. A statistical model is presented that defines the ability of such tests to detect significant gene-disease relationships as a function of case and control cohort sizes and key confounding variables: zygosity and genicity, environmental risk factors, errors in diagnosis, limits to mutant detection, linkage of neutral and risk-conferring mutations, ethnic diversity in the general population and the expectation that among all exonic mutants in the human genome greater than 90% will be neutral with regard to any effect on disease risk. Means to test the null hypothesis for, and determine the statistical power of, each test are provided. For this 'cohort allelic sums test' or 'CAST', the statistical model and test are provided as an Excel (TM) program, CASTAT (C) at http://epidemiology.mit.edu. Based on genetics, technology and statistics, a strategy of enumerating the mutant alleles carried in the exons and splice sites of the estimated ∼25,000 human genes in case cohort samples of 10,000 persons for each of 100 common diseases is proposed and evaluated: A wide range of possible conditions of multi-allelic or mono-allelic and monogenic, multigenic or polygenic (including epistatic) risk are found to be detectable using the statistical criteria of 1 or 10 ''false positive'' gene associations per 25,000 gene-disease pair-wise trials and a statistical power of >0.8. Using estimates of the distribution of both neutral and gene-inactivating nondeleterious mutations in humans and

  15. An improved assay for the determination of Huntington`s disease allele size

    Energy Technology Data Exchange (ETDEWEB)

    Reeves, C.; Klinger, K.; Miller, G. [Intergrated Genetics, Framingham, MA (United States)

    1994-09-01

    The hallmark of Huntington`s disease (HD) is the expansion of a polymorphic (CAG)n repeat. Several methods have been published describing PCR amplification of this region. Most of these assays require a complex PCR reaction mixture to amplify this GC-rich region. A consistent problem with trinucleotide repeat PCR amplification is the presence of a number of {open_quotes}stutter bands{close_quotes} which may be caused by primer or amplicon slippage during amplification or insufficient polymerase processivity. Most assays for HD arbitrarily select a particular band for diagnostic purposes. Without a clear choice for band selection such an arbitrary selection may result in inconsistent intra- or inter-laboratory findings. We present an improved protocol for the amplification of the HD trinucleotide repeat region. This method simplifies the PCR reaction buffer and results in a set of easily identifiable bands from which to determine allele size. HD alleles were identified by selecting bands of clearly greater signal intensity. Stutter banding was much reduced thus permitting easy identification of the most relevant PCR product. A second set of primers internal to the CCG polymorphism was used in selected samples to confirm allele size. The mechanism of action of N,N,N trimethylglycine in the PCR reaction is not clear. It may be possible that the minimal isostabilizing effect of N,N,N trimethylglycine at 2.5 M is significant enough to affect primer specificity. The use of N,N,N trimethylglycine in the PCR reaction facilitated identification of HD alleles and may be appropriate for use in other assays of this type.

  16. Melting curve analysis after T allele enrichment (MelcaTle as a highly sensitive and reliable method for detecting the JAK2V617F mutation.

    Directory of Open Access Journals (Sweden)

    Soji Morishita

    Full Text Available Detection of the JAK2V617F mutation is essential for diagnosing patients with classical myeloproliferative neoplasms (MPNs. However, detection of the low-frequency JAK2V617F mutation is a challenging task due to the necessity of discriminating between true-positive and false-positive results. Here, we have developed a highly sensitive and accurate assay for the detection of JAK2V617F and named it melting curve analysis after T allele enrichment (MelcaTle. MelcaTle comprises three steps: 1 two cycles of JAK2V617F allele enrichment by PCR amplification followed by BsaXI digestion, 2 selective amplification of the JAK2V617F allele in the presence of a bridged nucleic acid (BNA probe, and 3 a melting curve assay using a BODIPY-FL-labeled oligonucleotide. Using this assay, we successfully detected nearly a single copy of the JAK2V617F allele, without false-positive signals, using 10 ng of genomic DNA standard. Furthermore, MelcaTle showed no positive signals in 90 assays screening healthy individuals for JAK2V617F. When applying MelcaTle to 27 patients who were initially classified as JAK2V617F-positive on the basis of allele-specific PCR analysis and were thus suspected as having MPNs, we found that two of the patients were actually JAK2V617F-negative. A more careful clinical data analysis revealed that these two patients had developed transient erythrocytosis of unknown etiology but not polycythemia vera, a subtype of MPNs. These findings indicate that the newly developed MelcaTle assay should markedly improve the diagnosis of JAK2V617F-positive MPNs.

  17. Assessment of the myostatin Q204X allele using an allelic discrimination assay

    OpenAIRE

    Sifuentes-Rincón,Ana M.; Puentes-Montiel,Herlinda E.; Moreno-Medina,Víctor R.; Rosa-Reyna,Xóchitl F. de la

    2006-01-01

    An allelic discrimination assay was designed and used to determine the genotypic and allelic frequencies of the myostatin (MSTN) gene Q204X allele from two Mexican Full-French herds. The assay is a simple high throughput genotyping method that could be applied to investigate the effect of the Q204X allele on the Charolais breed.

  18. Sex-specific allelic transmission bias suggests sexual conflict at MC1R.

    Science.gov (United States)

    Ducret, Valérie; Gaigher, Arnaud; Simon, Céline; Goudet, Jérôme; Roulin, Alexandre

    2016-09-01

    Sexual conflict arises when selection in one sex causes the displacement of the other sex from its phenotypic optimum, leading to an inevitable tension within the genome - called intralocus sexual conflict. Although the autosomal melanocortin-1-receptor gene (MC1R) can generate colour variation in sexually dichromatic species, most previous studies have not considered the possibility that MC1R may be subject to sexual conflict. In the barn owl (Tyto alba), the allele MC1RWHITE is associated with whitish plumage coloration, typical of males, and the allele MC1RRUFOUS is associated with dark rufous coloration, typical of females, although each sex can express any phenotype. Because each colour variant is adapted to specific environmental conditions, the allele MC1RWHITE may be more strongly selected in males and the allele MC1RRUFOUS in females. We therefore investigated whether MC1R genotypes are in excess or deficit in male and female fledglings compared with the expected Hardy-Weinberg proportions. Our results show an overall deficit of 7.5% in the proportion of heterozygotes in males and of 12.9% in females. In males, interannual variation in assortative pairing with respect to MC1R explained the year-specific deviations from Hardy-Weinberg proportions, whereas in females, the deficit was better explained by the interannual variation in the probability of inheriting the MC1RWHITE or MC1RRUFOUS allele. Additionally, we observed that sons inherit the MC1RRUFOUS allele from their fathers on average slightly less often than expected under the first Mendelian law. Transmission ratio distortion may be adaptive in this sexually dichromatic species if males and females are, respectively, selected to display white and rufous plumages. © 2016 John Wiley & Sons Ltd.

  19. Allelic variant in the anti-Müllerian hormone gene leads to autosomal and temperature-dependent sex reversal in a selected Nile tilapia line.

    Directory of Open Access Journals (Sweden)

    Stephan Wessels

    Full Text Available Owing to the demand for sustainable sex-control protocols in aquaculture, research in tilapia sex determination is gaining momentum. The mutual influence of environmental and genetic factors hampers disentangling the complex sex determination mechanism in Nile tilapia (Oreochromis niloticus. Previous linkage analyses have demonstrated quantitative trait loci for the phenotypic sex on linkage groups 1, 3, and 23. Quantitative trait loci for temperature-dependent sex reversal similarly reside on linkage group 23. The anti-Müllerian hormone gene (amh, located in this genomic region, is important for sexual fate in higher vertebrates, and shows sexually dimorphic expression in Nile tilapia. Therefore this study aimed at detecting allelic variants and marker-sex associations in the amh gene. Sequencing identified six allelic variants. A significant effect on the phenotypic sex for SNP ss831884014 (p<0.0017 was found by stepwise logistic regression. The remaining variants were not significantly associated. Functional annotation of SNP ss831884014 revealed a non-synonymous amino acid substitution in the amh protein. Consequently, a fluorescence resonance energy transfer (FRET based genotyping assay was developed and validated with a representative sample of fish. A logistic linear model confirmed a highly significant effect of the treatment and genotype on the phenotypic sex, but not for the interaction term (treatment: p<0.0001; genotype: p<0.0025. An additive genetic model proved a linear allele substitution effect of 12% in individuals from controls and groups treated at high temperature, respectively. Moreover, the effect of the genotype on the male proportion was significantly higher in groups treated at high temperature, giving 31% more males on average of the three genotypes. In addition, the groups treated at high temperature showed a positive dominance deviation (+11.4% males. In summary, marker-assisted selection for amh variant ss831884014

  20. Detecting loci under recent positive selection in dairy and beef cattle by combining different genome-wide scan methods.

    Directory of Open Access Journals (Sweden)

    Yuri Tani Utsunomiya

    Full Text Available As the methodologies available for the detection of positive selection from genomic data vary in terms of assumptions and execution, weak correlations are expected among them. However, if there is any given signal that is consistently supported across different methodologies, it is strong evidence that the locus has been under past selection. In this paper, a straightforward frequentist approach based on the Stouffer Method to combine P-values across different tests for evidence of recent positive selection in common variations, as well as strategies for extracting biological information from the detected signals, were described and applied to high density single nucleotide polymorphism (SNP data generated from dairy and beef cattle (taurine and indicine. The ancestral Bovinae allele state of over 440,000 SNP is also reported. Using this combination of methods, highly significant (P<3.17×10(-7 population-specific sweeps pointing out to candidate genes and pathways that may be involved in beef and dairy production were identified. The most significant signal was found in the Cornichon homolog 3 gene (CNIH3 in Brown Swiss (P = 3.82×10(-12, and may be involved in the regulation of pre-ovulatory luteinizing hormone surge. Other putative pathways under selection are the glucolysis/gluconeogenesis, transcription machinery and chemokine/cytokine activity in Angus; calpain-calpastatin system and ribosome biogenesis in Brown Swiss; and gangliosides deposition in milk fat globules in Gyr. The composite method, combined with the strategies applied to retrieve functional information, may be a useful tool for surveying genome-wide selective sweeps and providing insights in to the source of selection.

  1. RHD alleles in the Tunisian population

    Science.gov (United States)

    Ouchari, Mouna; Jemni-Yaacoub, Saloua; Chakroun, Taher; Abdelkefi, Saida; Houissa, Batoul; Hmida, Slama

    2013-01-01

    Background: A comprehensive survey of RHD alleles in Tunisia population was lacking. The aim of this study was to use a multiplex RHD typing assay for simultaneous detection of partial D especially with RHD/RHCE deoxyribonucleic acid (DNA) sequence exchange mechanism and some weak D alleles. Materials and Methods: Six RHD specific primer sets were designed to amplify RHD exons 3, 4, 5, 6, 7 and 9. DNA from 2000 blood donors (1777 D+ and 223 D-) from several regions was selected for RHD genotyping using a PCR multiplex assay. Further molecular investigations were done to characterize the RHD variants that were identified by the PCR multiplex assay. Results: In the 1777 D+ samples, only 10 individuals showed the absence of amplification of exons 4 and 5 that were subsequently identified by PCR-SSP as weak D type 4 variants. No hybrid allele was detected. In the 223 D-, RHD amplification of some exons was observed only in 5 samples: 4 individuals expressed only RHD exon 9, and one subject lacking exons 4 and 5. These samples were then screened by PCR-SSPs on d(C) ces and weak D type 4, respectively. Conclusion: The weak D type 4 appears to be the most common D variant allele. We have not found any partial D variant. Findings also indicated that RHD gene deletion is the most prevalent cause of the D- phenotype in the Tunisian population. PMID:24014941

  2. Exploring new alleles for frost tolerance in winter rye.

    Science.gov (United States)

    Erath, Wiltrud; Bauer, Eva; Fowler, D Brian; Gordillo, Andres; Korzun, Viktor; Ponomareva, Mira; Schmidt, Malthe; Schmiedchen, Brigitta; Wilde, Peer; Schön, Chris-Carolin

    2017-10-01

    Rye genetic resources provide a valuable source of new alleles for the improvement of frost tolerance in rye breeding programs. Frost tolerance is a must-have trait for winter cereal production in northern and continental cropping areas. Genetic resources should harbor promising alleles for the improvement of frost tolerance of winter rye elite lines. For frost tolerance breeding, the identification of quantitative trait loci (QTL) and the choice of optimum genome-based selection methods are essential. We identified genomic regions involved in frost tolerance of winter rye by QTL mapping in a biparental population derived from a highly frost tolerant selection from the Canadian cultivar Puma and the European elite line Lo157. Lines per se and their testcrosses were phenotyped in a controlled freeze test and in multi-location field trials in Russia and Canada. Three QTL on chromosomes 4R, 5R, and 7R were consistently detected across environments. The QTL on 5R is congruent with the genomic region harboring the Frost resistance locus 2 (Fr-2) in Triticeae. The Puma allele at the Fr-R2 locus was found to significantly increase frost tolerance. A comparison of predictive ability obtained from the QTL-based model with different whole-genome prediction models revealed that besides a few large, also small QTL effects contribute to the genomic variance of frost tolerance in rye. Genomic prediction models assigning a high weight to the Fr-R2 locus allow increasing the selection intensity for frost tolerance by genome-based pre-selection of promising candidates.

  3. Distribution of coat-color-associated alleles in the domestic horse population and Przewalski's horse.

    Science.gov (United States)

    Reissmann, Monika; Musa, Lutfi; Zakizadeh, Sonia; Ludwig, Arne

    2016-11-01

    Considering the hidden mode of inheritance of some coat-color-associated alleles, we investigated the presence/absence of coat-color-associated alleles in 1093 domestic horses of 55 breeds and 20 specimens of Przewalski's horse. For coat-color genotyping, allele specific PCR, pyrosequencing and Li-Cor analyses were conducted on 12 coat-color-associated alleles of five genes. Our data provide deep insight into the distribution of coat-color-associated alleles within breeds. We found that the alleles for the basic colorations (bay, black, and chestnut) are widely distributed and occur in nearly all breeds. Alleles leading to dilutions or patterns are rare in domestic breeds and were not found in Przewalski's horse. Higher frequencies of these alleles are only found in breeds that are selected for their expressed phenotypes (e.g., Kinsky horse, Lewitzer, Tinker). Nevertheless, our study produced strong evidence that molecular testing of the coat color is necessary for well-defined phenotyping to avoid unexpected colorations of offspring that can result in legal action.

  4. Balancing selection and recombination as evolutionary forces caused population genetic variations in golden pheasant MHC class I genes.

    Science.gov (United States)

    Zeng, Qian-Qian; He, Ke; Sun, Dan-Dan; Ma, Mei-Ying; Ge, Yun-Fa; Fang, Sheng-Guo; Wan, Qiu-Hong

    2016-02-18

    The major histocompatibility complex (MHC) genes are vital partners in the acquired immune processes of vertebrates. MHC diversity may be directly associated with population resistance to infectious pathogens. Here, we screened for polymorphisms in exons 2 and 3 of the IA1 and IA2 genes in 12 golden pheasant populations across the Chinese mainland to characterize their genetic variation levels, to understand the effects of historical positive selection and recombination in shaping class I diversity, and to investigate the genetic structure of wild golden pheasant populations. Among 339 individual pheasants, we identified 14 IA1 alleles in exon 2 (IA1-E2), 11 IA1-E3 alleles, 27 IA2-E2 alleles, and 28 IA2-E3 alleles. The non-synonymous substitution rate was significantly greater than the synonymous substitution rate at sequences in the IA2 gene encoding putative peptide-binding sites but not in the IA1 gene; we also found more positively selected sites in IA2 than in IA1. Frequent recombination events resulted in at least 9 recombinant IA2 alleles, in accordance with the intermingling pattern of the phylogenetic tree. Although some IA alleles are widely shared among studied populations, large variation occurs in the number of IA alleles across these populations. Allele frequency analysis across 2 IA loci showed low levels of genetic differentiation among populations on small geographic scales; however, significant genetic differentiation was observed between pheasants from the northern and southern regions of the Yangtze River. Both STRUCTURE analysis and F-statistic (F ST ) value comparison classified those populations into 2 major groups: the northern region of the Yangtze River (NYR) and the southern region of the Yangtze River (SYR). More extensive polymorphisms in IA2 than IA1 indicate that IA2 has undergone much stronger positive-selection pressure during evolution. Moreover, the recombination events detected between the genes and the intermingled phylogenetic

  5. Analysis of nucleotide diversity among alleles of the major bacterial blight resistance gene Xa27 in cultivars of rice (Oryza sativa) and its wild relatives.

    Science.gov (United States)

    Bimolata, Waikhom; Kumar, Anirudh; Sundaram, Raman Meenakshi; Laha, Gouri Shankar; Qureshi, Insaf Ahmed; Reddy, Gajjala Ashok; Ghazi, Irfan Ahmad

    2013-08-01

    Xa27 is one of the important R-genes, effective against bacterial blight disease of rice caused by Xanthomonas oryzae pv. oryzae (Xoo). Using natural population of Oryza, we analyzed the sequence variation in the functionally important domains of Xa27 across the Oryza species. DNA sequences of Xa27 alleles from 27 rice accessions revealed higher nucleotide diversity among the reported R-genes of rice. Sequence polymorphism analysis revealed synonymous and non-synonymous mutations in addition to a number of InDels in non-coding regions of the gene. High sequence variation was observed in the promoter region including the 5'UTR with 'π' value 0.00916 and 'θ w ' = 0.01785. Comparative analysis of the identified Xa27 alleles with that of IRBB27 and IR24 indicated the operation of both positive selection (Ka/Ks > 1) and neutral selection (Ka/Ks ≈ 0). The genetic distances of alleles of the gene from Oryza nivara were nearer to IRBB27 as compared to IR24. We also found the presence of conserved and null UPT (upregulated by transcriptional activator) box in the isolated alleles. Considerable amino acid polymorphism was localized in the trans-membrane domain for which the functional significance is yet to be elucidated. However, the absence of functional UPT box in all the alleles except IRBB27 suggests the maintenance of single resistant allele throughout the natural population.

  6. Marker-assisted selection for improving quantitative traits of forage crops

    International Nuclear Information System (INIS)

    Dolstra, O.; Denneboom, C.; Vos, Ab L.F. de; Loo, E.N. van

    2007-01-01

    This chapter provides an example of using marker-assisted selection (MAS) for breeding perennial ryegrass (Lolium perenne), a pasture species. A mapping study had shown the presence of quantitative trait loci (QTL) for seven component traits of nitrogen use efficiency (NUE). The NUE-related QTL clustered in five chromosomal regions. These QTL were validated through divergent marker selection in an F 2 population. The criterion used for plant selection was a summation index based on the number of positive QTL alleles. The evaluation studies showed a strong indirect response of marker selection on NUE. Marker selection using a summation index such as applied here proved to be very effective for difficult and complex quantitative traits such as NUE. The strategy is easily applicable in outbreeding crops to raise the frequency of several desirable alleles simultaneously. (author)

  7. The case for selection at CCR5-Delta32.

    Directory of Open Access Journals (Sweden)

    2005-11-01

    Full Text Available The C-C chemokine receptor 5, 32 base-pair deletion (CCR5-Delta32 allele confers strong resistance to infection by the AIDS virus HIV. Previous studies have suggested that CCR5-Delta32 arose within the past 1,000 y and rose to its present high frequency (5%-14% in Europe as a result of strong positive selection, perhaps by such selective agents as the bubonic plague or smallpox during the Middle Ages. This hypothesis was based on several lines of evidence, including the absence of the allele outside of Europe and long-range linkage disequilibrium at the locus. We reevaluated this evidence with the benefit of much denser genetic maps and extensive control data. We find that the pattern of genetic variation at CCR5-Delta32 does not stand out as exceptional relative to other loci across the genome. Moreover using newer genetic maps, we estimated that the CCR5-Delta32 allele is likely to have arisen more than 5,000 y ago. While such results can not rule out the possibility that some selection may have occurred at C-C chemokine receptor 5 (CCR5, they imply that the pattern of genetic variation seen atCCR5-Delta32 is consistent with neutral evolution. More broadly, the results have general implications for the design of future studies to detect the signs of positive selection in the human genome.

  8. The case for selection at CCR5-Delta32.

    Directory of Open Access Journals (Sweden)

    Pardis C Sabeti

    2005-11-01

    Full Text Available The C-C chemokine receptor 5, 32 base-pair deletion (CCR5-Delta32 allele confers strong resistance to infection by the AIDS virus HIV. Previous studies have suggested that CCR5-Delta32 arose within the past 1,000 y and rose to its present high frequency (5%-14% in Europe as a result of strong positive selection, perhaps by such selective agents as the bubonic plague or smallpox during the Middle Ages. This hypothesis was based on several lines of evidence, including the absence of the allele outside of Europe and long-range linkage disequilibrium at the locus. We reevaluated this evidence with the benefit of much denser genetic maps and extensive control data. We find that the pattern of genetic variation at CCR5-Delta32 does not stand out as exceptional relative to other loci across the genome. Moreover using newer genetic maps, we estimated that the CCR5-Delta32 allele is likely to have arisen more than 5,000 y ago. While such results can not rule out the possibility that some selection may have occurred at C-C chemokine receptor 5 (CCR5, they imply that the pattern of genetic variation seen at CCR5-Delta32 is consistent with neutral evolution. More broadly, the results have general implications for the design of future studies to detect the signs of positive selection in the human genome.

  9. Selection, subdivision and extinction and recolonization.

    Science.gov (United States)

    Cherry, Joshua L

    2004-02-01

    In a subdivided population, the interaction between natural selection and stochastic change in allele frequency is affected by the occurrence of local extinction and subsequent recolonization. The relative importance of selection can be diminished by this additional source of stochastic change in allele frequency. Results are presented for subdivided populations with extinction and recolonization where there is more than one founding allele after extinction, where these may tend to come from the same source deme, where the number of founding alleles is variable or the founders make unequal contributions, and where there is dominance for fitness or local frequency dependence. The behavior of a selected allele in a subdivided population is in all these situations approximately the same as that of an allele with different selection parameters in an unstructured population with a different size. The magnitude of the quantity N(e)s(e), which determines fixation probability in the case of genic selection, is always decreased by extinction and recolonization, so that deleterious alleles are more likely to fix and advantageous alleles less likely to do so. The importance of dominance or frequency dependence is also altered by extinction and recolonization. Computer simulations confirm that the theoretical predictions of both fixation probabilities and mean times to fixation are good approximations.

  10. Tri-allelic SNP markers enable analysis of mixed and degraded DNA samples.

    Science.gov (United States)

    Westen, Antoinette A; Matai, Anuska S; Laros, Jeroen F J; Meiland, Hugo C; Jasper, Mandy; de Leeuw, Wiljo J F; de Knijff, Peter; Sijen, Titia

    2009-09-01

    For the analysis of degraded DNA in disaster victim identification (DVI) and criminal investigations, single nucleotide polymorphisms (SNPs) have been recognized as promising markers mainly because they can be analyzed in short sized amplicons. Most SNPs are bi-allelic and are thereby ineffective to detect mixtures, which may lead to incorrect genotyping. We developed an algorithm to find non-binary (i.e. tri-allelic or tetra-allelic) SNPs in the NCBI dbSNP database. We selected 31 potential tri-allelic SNPs with a minor allele frequency of at least 10%. The tri-allelic nature was confirmed for 15 SNPs residing on 14 different chromosomes. Multiplex SNaPshot assays were developed, and the allele frequencies of 16 SNPs were determined among 153 Dutch and 111 Netherlands Antilles reference samples. Using these multiplex SNP assays, the presence of a mixture of two DNA samples in a ratio up to 1:8 could be recognized reliably. Furthermore, we compared the genotyping efficiency of the tri-allelic SNP markers and short tandem repeat (STR) markers by analyzing artificially degraded DNA and DNA from 30 approximately 500-year-old bone and molar samples. In both types of degraded DNA samples, the larger sized STR amplicons failed to amplify whereas the tri-allelic SNP markers still provided valuable information. In conclusion, tri-allelic SNP markers are suited for the analysis of degraded DNA and enable the detection of a second DNA source in a sample.

  11. Patterns of positive selection in six Mammalian genomes

    DEFF Research Database (Denmark)

    Kosiol, Carolin; Vinar, Tomás; da Fonseca, Rute R

    2008-01-01

    Genome-wide scans for positively selected genes (PSGs) in mammals have provided insight into the dynamics of genome evolution, the genetic basis of differences between species, and the functions of individual genes. However, previous scans have been limited in power and accuracy owing to small...... several new lineage- and clade-specific tests to be applied. Of approximately 16,500 human genes with high-confidence orthologs in at least two other species, 400 genes showed significant evidence of positive selection (FDR... showed evidence of positive selection on particular lineages or clades. As in previous studies, the identified PSGs were enriched for roles in defense/immunity, chemosensory perception, and reproduction, but enrichments were also evident for more specific functions, such as complement-mediated immunity...

  12. Reduced Height (Rht) Alleles Affect Wheat Grain Quality.

    Science.gov (United States)

    Casebow, Richard; Hadley, Caroline; Uppal, Rajneet; Addisu, Molla; Loddo, Stefano; Kowalski, Ania; Griffiths, Simon; Gooding, Mike

    2016-01-01

    The effects of dwarfing alleles (reduced height, Rht) in near isogenic lines on wheat grain quality are characterised in field experiments and related to effects on crop height, grain yield and GA-sensitivity. Alleles included those that conferred GA-insensitivity (Rht-B1b, Rht-B1c, Rht-D1b, Rht-D1c) as well as those that retained GA-sensitivity (rht(tall), Rht8, Rht8 + Ppd-D1a, Rht12). Full characterisation was facilitated by including factors with which the effects of Rht alleles are known to interact for grain yield (i.e. system, [conventional or organic]; tillage intensity [plough-based, minimum or zero]; nitrogen fertilizer level [0-450 kg N/ha]; and genetic backgrounds varying in height [cvs Maris Huntsman, Maris Widgeon, and Mercia]. Allele effects on mean grain weight and grain specific weight were positively associated with final crop height: dwarfing reduced these quality criteria irrespective of crop management or GA-sensitivity. In all but two experiments the effects of dwarfing alleles on grain nitrogen and sulphur concentrations were closely and negatively related to effects on grain yield, e.g. a quadratic relationship between grain yield and crop height manipulated by the GA-insensitive alleles was mirrored by quadratic relationships for nitrogen and sulphur concentrations: the highest yields and most dilute concentrations occurred around 80cm. In one of the two exceptional experiments the GA-insensitive Rht-B1b and Rht-B1c significantly (Pgrain nitrogen concentration in the absence of an effect on yield, and in the remaining experiment the GA-sensitive Rht8 significantly reduced both grain yield and grain nitrogen concentration simultaneously. When Rht alleles diluted grain nitrogen concentration, N:S ratios and SDS-sedimentation volumes were often improved. Hagberg falling number (HFN) was negatively related to crop height but benefits from dwarfing were only seen for GA-insensitive alleles. For HFN, therefore, there was the strongest evidence for

  13. Allele coding in genomic evaluation

    Directory of Open Access Journals (Sweden)

    Christensen Ole F

    2011-06-01

    Full Text Available Abstract Background Genomic data are used in animal breeding to assist genetic evaluation. Several models to estimate genomic breeding values have been studied. In general, two approaches have been used. One approach estimates the marker effects first and then, genomic breeding values are obtained by summing marker effects. In the second approach, genomic breeding values are estimated directly using an equivalent model with a genomic relationship matrix. Allele coding is the method chosen to assign values to the regression coefficients in the statistical model. A common allele coding is zero for the homozygous genotype of the first allele, one for the heterozygote, and two for the homozygous genotype for the other allele. Another common allele coding changes these regression coefficients by subtracting a value from each marker such that the mean of regression coefficients is zero within each marker. We call this centered allele coding. This study considered effects of different allele coding methods on inference. Both marker-based and equivalent models were considered, and restricted maximum likelihood and Bayesian methods were used in inference. Results Theoretical derivations showed that parameter estimates and estimated marker effects in marker-based models are the same irrespective of the allele coding, provided that the model has a fixed general mean. For the equivalent models, the same results hold, even though different allele coding methods lead to different genomic relationship matrices. Calculated genomic breeding values are independent of allele coding when the estimate of the general mean is included into the values. Reliabilities of estimated genomic breeding values calculated using elements of the inverse of the coefficient matrix depend on the allele coding because different allele coding methods imply different models. Finally, allele coding affects the mixing of Markov chain Monte Carlo algorithms, with the centered coding being

  14. Structural Analysis of Insulin Minisatellite Alleles Reveals Unusually Large Differences in Diversity between Africans and Non-Africans

    Science.gov (United States)

    Stead, John D. H.; Jeffreys, Alec J.

    2002-01-01

    The insulin minisatellite (INS VNTR) associates with susceptibility to a variety of diseases. We have developed a high-resolution system for analyzing variant repeat distributions applicable to all known minisatellite alleles, irrespective of size, which allows lineages of related alleles to be identified. This system has previously revealed extremely low structural diversity in the minisatellite among northern Europeans from the United Kingdom, with all alleles belonging to one of only three highly diverged lineages called “I,” “IIIA,” and “IIIB.” To explore the origins of this remarkably limited lineage diversity, we have characterized an additional 780 alleles from three non-African and three African populations. In total, 22 highly diverged lineages were identified, with structural intermediates absent from extant populations, suggesting a bottleneck within the ancestry of all humans. The difference between levels of diversity in Africans and non-Africans is unusually large, with all 22 lineages identified in Africa compared with only three lineages seen not only in the United Kingdom but also in the other non-African populations. We also find evidence for overrepresentation of lineage I chromosomes in non-Africans. These data are consistent with a common out-of-Africa origin and an unusually tight bottleneck within the ancestry of all non-African populations, possibly combined with differential and positive selection for lineage I alleles in non-Africans. The important implications of these data for future disease-association studies are discussed. PMID:12404181

  15. allelic variation of hmw glutenin subunits of ethiopian bread wheat

    African Journals Online (AJOL)

    journal

    High molecular weight glutenins are often effective in identifying wheat (Triticum ... There were highly significant differences between genotypes and banding ... was without deliberate selection pressure towards high Glu-1 scoring alleles ...

  16. Allelic sequence variations in the hypervariable region of a T-cell receptor β chain: Correlation with restriction fragment length polymorphism in human families and populations

    International Nuclear Information System (INIS)

    Robinson, M.A.

    1989-01-01

    Direct sequence analysis of the human T-cell antigen receptor (TCR) V β1 variable gene identified a single base-pair allelic variation (C/G) located within the coding region. This change results in substitution of a histidine (CAC) for a glutamine (CAG) at position 48 of the TCR β chain, a position predicted to be in the TCR antigen binding site. The V β1 polymorphism was found by DNA sequence analysis of V β1 genes from seven unrelated individuals; V β1 genes were amplified by the polymerase chain reaction, the amplified fragments were cloned into M13 phage vectors, and sequences were determined. To determined the inheritance patterns of the V β1 substitution and to test correlation with V β1 restriction fragment length polymorphism detected with Pvu II and Taq I, allele-specific oligonucleotides were constructed and used to characterize amplified DNA samples. Seventy unrelated individuals and six families were tested for both restriction fragment length polymorphism and for the V β1 substitution. The correlation was also tested using amplified, size-selected, Pvu II- and Taq I-digested DNA samples from heterozygotes. Pvu II allele 1 (61/70) and Taq I allele 1 (66/70) were found to be correlated with the substitution giving rise to a histidine at position 48. Because there are exceptions to the correlation, the use of specific probes to characterize allelic forms of TCR variable genes will provide important tools for studies of basic TCR genetics and disease associations

  17. Reference satellite selection method for GNSS high-precision relative positioning

    Directory of Open Access Journals (Sweden)

    Xiao Gao

    2017-03-01

    Full Text Available Selecting the optimal reference satellite is an important component of high-precision relative positioning because the reference satellite directly influences the strength of the normal equation. The reference satellite selection methods based on elevation and positional dilution of precision (PDOP value were compared. Results show that all the above methods cannot select the optimal reference satellite. We introduce condition number of the design matrix in the reference satellite selection method to improve structure of the normal equation, because condition number can indicate the ill condition of the normal equation. The experimental results show that the new method can improve positioning accuracy and reliability in precise relative positioning.

  18. Favorable Alleles for Stem Water-Soluble Carbohydrates Identified by Association Analysis Contribute to Grain Weight under Drought Stress Conditions in Wheat

    Science.gov (United States)

    Li, Runzhi; Chang, Xiaoping; Jing, Ruilian

    2015-01-01

    Drought is a major environmental constraint to crop distribution and productivity. Stem water-soluble carbohydrates (WSC) buffer wheat grain yield against conditions unfavorable for photosynthesis during the grain filling stage. In this study, 262 winter wheat accessions and 209 genome-wide SSR markers were collected and used to undertake association analysis based on a mixed linear model (MLM). The WSC in different internodes at three growth stages and 1000-grain weight (TGW) were investigated under four environmental regimes (well-watered, drought stress during the whole growth period, and two levels of terminal drought stress imposed by chemical desiccation under the well-watered and drought stress during the whole growth period conditions). Under diverse drought stress conditions, WSC in lower internodes showed significant positive correlations with TGW, especially at the flowering stage under well-watered conditions and at grain filling under drought stress. Sixteen novel WSC-favorable alleles were identified, and five of them contributed to significantly higher TGW. In addition, pyramiding WSC favorable alleles was not only effective for obtaining accessions with higher WSC, but also for enhancing TGW under different water regimes. During the past fifty years of wheat breeding, WSC was selected incidentally. The average number of favorable WSC alleles increased from 1.13 in the pre-1960 period to 4.41 in the post-2000 period. The results indicate a high potential for using marker-assisted selection to pyramid WSC favorable alleles in improving WSC and TGW in wheat. PMID:25768726

  19. A new classification of HLA-DRB1 alleles based on acid-base properties of the amino acids located at positions 13, 70 and 71: impact on ACPA status or structural progression, and meta-analysis on 1235 patients with rheumatoid from two cohorts (ESPOIR and EAC cohort).

    Science.gov (United States)

    Ruyssen-Witrand, Adeline; van Steenbergen, Hanna W; van Heemst, Jurgen; Gourraud, Pierre-Antoine; Nigon, Delphine; Lukas, Cédric; Miceli-Richard, Corinne; Jamard, Bénédicte; Cambon-Thomsen, Anne; Cantagrel, Alain; Dieudé, Philippe; van der Helm-van Mil, Annette H M; Constantin, Arnaud

    2015-01-01

    To group HLA-DRB1 alleles based on acid-base properties of amino acids at positions 13, 70 and 71 and analyse their association with the presence of anticitrullinated peptide antibodies (ACPA) and structural progression in 2 cohorts of early rheumatoid arthritis (RA). Patients with RA (N=612) from ESPOIR cohort and from EAC cohort (n=624) were genotyped for HLA-DRB1 alleles. The alleles containing the RAA sequence at positions 72-74 were classified into 3 groups according to the amino acid at positions 13, 70 and 71: BB encoding basic amino acids at positions 13, 70 and 71; A encoding acidic amino acids at positions 70 and 71; and BN encoding either neutral amino acids at position 13 and basic amino acids at positions 70 and 71, or basic amino acid at position 13 and neutral amino acids at positions 70 and 71. The associations between the different alleles and (1) the ACPA presence, and (2) the structural progression were assessed by χ(2) test; a meta-analysis was performed on the 2 cohorts using the Mantel-Haenszel method. After meta-analysis, BB alleles were significantly associated with ACPA presence (OR (95% CI) 4.08 (3.14 to 5.31)) and structural progression (OR (95% CI) 2.33 (1.76 to 3.09)). The alleles protected significantly against ACPA presence (OR (95% CI) 0.37 (0.28 to 0.50)) and structural progression (OR (95% CI) 0.34 (0.23 to 0.50)). This acid-base classification allowed to separate another group BN with an intermediate risk of ACPA production (OR (95% CI) 1.14 (0.91 to 1.44)) and structural progression (OR (95% CI) 1.01 (0.77 to 1.33)). This new classification permitted to make a hierarchy of HLA-DRB1 alleles in terms of association with ACPA presence or structural progression in early RA.

  20. Selective control of attention supports the positivity effect in aging.

    Science.gov (United States)

    Sasse, Laura K; Gamer, Matthias; Büchel, Christian; Brassen, Stefanie

    2014-01-01

    There is emerging evidence for a positivity effect in healthy aging, which describes an age-specific increased focus on positive compared to negative information. Life-span researchers have attributed this effect to the selective allocation of cognitive resources in the service of prioritized emotional goals. We explored the basic principles of this assumption by assessing selective attention and memory for visual stimuli, differing in emotional content and self-relevance, in young and old participants. To specifically address the impact of cognitive control, voluntary attentional selection during the presentation of multiple-item displays was analyzed and linked to participants' general ability of cognitive control. Results revealed a positivity effect in older adults' selective attention and memory, which was particularly pronounced for self-relevant stimuli. Focusing on positive and ignoring negative information was most evident in older participants with a generally higher ability to exert top-down control during visual search. Our findings highlight the role of controlled selectivity in the occurrence of a positivity effect in aging. Since the effect has been related to well-being in later life, we suggest that the ability to selectively allocate top-down control might represent a resilience factor for emotional health in aging.

  1. Characterization of ROP18 alleles in human toxoplasmosis.

    Science.gov (United States)

    Sánchez, Víctor; de-la-Torre, Alejandra; Gómez-Marín, Jorge Enrique

    2014-04-01

    The role of the virulent gene ROP18 polymorphisms is not known in human toxoplasmosis. A total of 320 clinical samples were analyzed. In samples positive for ROP18 gene, we determined by an allele specific PCR, if patients got the upstream insertion positive ROP18 sequence Toxoplasma strain (mouse avirulent strain) or the upstream insertion negative ROP18 sequence Toxoplasma strain (mouse virulent strain). We designed an ELISA assay for antibodies against ROP18 derived peptides from the three major clonal lineages of Toxoplasma. 20 clinical samples were of quality for ROP18 allele analysis. In patients with ocular toxoplasmosis, a higher inflammatory reaction on eye was associated to a PCR negative result for the upstream region of ROP18. 23.3%, 33% and 16.6% of serums from individuals with ocular toxoplasmosis were positive for type I, type II and type III ROP18 derived peptides, respectively but this assay was affected by cross reaction. The absence of Toxoplasma ROP18 promoter insertion sequence in ocular toxoplasmosis was correlated with severe ocular inflammatory response. Determination of antibodies against ROP18 protein was not useful for serotyping in human toxoplasmosis. © 2013.

  2. Reduced Height (Rht Alleles Affect Wheat Grain Quality.

    Directory of Open Access Journals (Sweden)

    Richard Casebow

    Full Text Available The effects of dwarfing alleles (reduced height, Rht in near isogenic lines on wheat grain quality are characterised in field experiments and related to effects on crop height, grain yield and GA-sensitivity. Alleles included those that conferred GA-insensitivity (Rht-B1b, Rht-B1c, Rht-D1b, Rht-D1c as well as those that retained GA-sensitivity (rht(tall, Rht8, Rht8 + Ppd-D1a, Rht12. Full characterisation was facilitated by including factors with which the effects of Rht alleles are known to interact for grain yield (i.e. system, [conventional or organic]; tillage intensity [plough-based, minimum or zero]; nitrogen fertilizer level [0-450 kg N/ha]; and genetic backgrounds varying in height [cvs Maris Huntsman, Maris Widgeon, and Mercia]. Allele effects on mean grain weight and grain specific weight were positively associated with final crop height: dwarfing reduced these quality criteria irrespective of crop management or GA-sensitivity. In all but two experiments the effects of dwarfing alleles on grain nitrogen and sulphur concentrations were closely and negatively related to effects on grain yield, e.g. a quadratic relationship between grain yield and crop height manipulated by the GA-insensitive alleles was mirrored by quadratic relationships for nitrogen and sulphur concentrations: the highest yields and most dilute concentrations occurred around 80cm. In one of the two exceptional experiments the GA-insensitive Rht-B1b and Rht-B1c significantly (P<0.05 reduced grain nitrogen concentration in the absence of an effect on yield, and in the remaining experiment the GA-sensitive Rht8 significantly reduced both grain yield and grain nitrogen concentration simultaneously. When Rht alleles diluted grain nitrogen concentration, N:S ratios and SDS-sedimentation volumes were often improved. Hagberg falling number (HFN was negatively related to crop height but benefits from dwarfing were only seen for GA-insensitive alleles. For HFN, therefore, there

  3. Lineage dynamics and mutation-selection balance in non-adapting asexual populations

    Science.gov (United States)

    Pénisson, Sophie; Sniegowski, Paul D.; Colato, Alexandre; Gerrish, Philip J.

    2013-02-01

    In classical population genetics, mutation-selection balance refers to the equilibrium frequency of a deleterious allele established and maintained under two opposing forces: recurrent mutation, which tends to increase the frequency of the allele; and selection, which tends to decrease its frequency. In a haploid population, if μ denotes the per capita rate of production of the deleterious allele by mutation and s denotes the selective disadvantage of carrying the allele, then the classical mutation-selection balance frequency of the allele is approximated by μ/s. This calculation assumes that lineages carrying the mutant allele in question—the ‘focal allele’—do not accumulate deleterious mutations linked to the focal allele. In principle, indirect selection against the focal allele caused by such additional mutations can decrease the frequency of the focal allele below the classical mutation-selection balance. This effect of indirect selection will be strongest in an asexual population, in which the entire genome is in linkage. Here, we use an approach based on a multitype branching process to investigate this effect, analyzing lineage dynamics under mutation, direct selection, and indirect selection in a non-adapting asexual population. We find that the equilibrium balance between recurrent mutation to the focal allele and the forces of direct and indirect selection against the focal allele is closely approximated by γμ/(s + U) (s = 0 if the focal allele is neutral), where γ ≈ eθθ-(ω+θ)(ω + θ)(Γ(ω + θ) - Γ(ω + θ,θ)), \\theta =U/\\tilde {s}, and \\omega =s/\\tilde {s}; U denotes the genomic deleterious mutation rate and \\tilde {s} denotes the geometric mean selective disadvantage of deleterious mutations elsewhere on the genome. This mutation-selection balance for asexual populations can remain surprisingly invariant over wide ranges of the mutation rate.

  4. Selective control of attention supports the positivity effect in aging.

    Directory of Open Access Journals (Sweden)

    Laura K Sasse

    Full Text Available There is emerging evidence for a positivity effect in healthy aging, which describes an age-specific increased focus on positive compared to negative information. Life-span researchers have attributed this effect to the selective allocation of cognitive resources in the service of prioritized emotional goals. We explored the basic principles of this assumption by assessing selective attention and memory for visual stimuli, differing in emotional content and self-relevance, in young and old participants. To specifically address the impact of cognitive control, voluntary attentional selection during the presentation of multiple-item displays was analyzed and linked to participants' general ability of cognitive control. Results revealed a positivity effect in older adults' selective attention and memory, which was particularly pronounced for self-relevant stimuli. Focusing on positive and ignoring negative information was most evident in older participants with a generally higher ability to exert top-down control during visual search. Our findings highlight the role of controlled selectivity in the occurrence of a positivity effect in aging. Since the effect has been related to well-being in later life, we suggest that the ability to selectively allocate top-down control might represent a resilience factor for emotional health in aging.

  5. Examination of Signatures of Recent Positive Selection on Genes Involved in Human Sialic Acid Biology.

    Science.gov (United States)

    Moon, Jiyun M; Aronoff, David M; Capra, John A; Abbot, Patrick; Rokas, Antonis

    2018-03-28

    Sialic acids are nine carbon sugars ubiquitously found on the surfaces of vertebrate cells and are involved in various immune response-related processes. In humans, at least 58 genes spanning diverse functions, from biosynthesis and activation to recycling and degradation, are involved in sialic acid biology. Because of their role in immunity, sialic acid biology genes have been hypothesized to exhibit elevated rates of evolutionary change. Consistent with this hypothesis, several genes involved in sialic acid biology have experienced higher rates of non-synonymous substitutions in the human lineage than their counterparts in other great apes, perhaps in response to ancient pathogens that infected hominins millions of years ago (paleopathogens). To test whether sialic acid biology genes have also experienced more recent positive selection during the evolution of the modern human lineage, reflecting adaptation to contemporary cosmopolitan or geographically-restricted pathogens, we examined whether their protein-coding regions showed evidence of recent hard and soft selective sweeps. This examination involved the calculation of four measures that quantify changes in allele frequency spectra, extent of population differentiation, and haplotype homozygosity caused by recent hard and soft selective sweeps for 55 sialic acid biology genes using publicly available whole genome sequencing data from 1,668 humans from three ethnic groups. To disentangle evidence for selection from confounding demographic effects, we compared the observed patterns in sialic acid biology genes to simulated sequences of the same length under a model of neutral evolution that takes into account human demographic history. We found that the patterns of genetic variation of most sialic acid biology genes did not significantly deviate from neutral expectations and were not significantly different among genes belonging to different functional categories. Those few sialic acid biology genes that

  6. Fitness differences due to allelic variation at Esterase-4 locus in ...

    Indian Academy of Sciences (India)

    KAVITA KRISHNAMOORTI

    2017-08-31

    Aug 31, 2017 ... Keywords. esterases; null allele; reproductive fitness; natural selection; Drosophila ananassae. .... cific substrate (1-naphthylacetate AR) and stain (fast blue. RR). On the ... transferred to fresh food vials and eggs were counted.

  7. Mannose-binding lectin variant alleles and HLA-DR4 alleles are associated with giant cell arteritis

    DEFF Research Database (Denmark)

    Jacobsen, Soren; Baslund, Bo; Madsen, Hans O.

    2002-01-01

    /GCA, MBL variant alleles were associated with signs of increased inflammatory activity and clinical signs of arteritic manifestations. This was not found for HLA-DR4 alleles. These findings indicate that HLA-DR4 and MBL are contributing to the pathophysiology of GCA at different levels in the disease...... alleles in controls, patients with PMR only, and patients with GCA was 37, 32, and 53% (p = 0.01), respectively. HLA-DRB1*04 was found in 47% of patients with PMR only and in 54% of patients with GCA, which differed significantly from the 35% found in controls (p = 0.01). HLA-DR4 alleles were...... not associated with any clinical phenotypes of PMR/GCA, whereas MBL variant alleles were associated with cranial arteritis, high erythrocyte sedimentation rate, and low B-hemoglobin. CONCLUSION: We found MBL variant alleles and HLA-DR4 alleles to be weak susceptibility markers for GCA. In patients with PMR...

  8. Positive selection on the killer whale mitogenome

    DEFF Research Database (Denmark)

    Foote, Andrew David; Morin, Phillip A.; Durban, John W.

    2011-01-01

    Mitochondria produce up to 95 per cent of the eukaryotic cell's energy. The coding genes of the mitochondrial DNA may therefore evolve under selection owing to metabolic requirements. The killer whale, Orcinus orca, is polymorphic, has a global distribution and occupies a range of ecological niches....... It is therefore a suitable organism for testing this hypothesis. We compared a global dataset of the complete mitochondrial genomes of 139 individuals for amino acid changes that were associated with radical physico-chemical property changes and were influenced by positive selection. Two such selected non...

  9. The genealogy of samples in models with selection.

    Science.gov (United States)

    Neuhauser, C; Krone, S M

    1997-02-01

    We introduce the genealogy of a random sample of genes taken from a large haploid population that evolves according to random reproduction with selection and mutation. Without selection, the genealogy is described by Kingman's well-known coalescent process. In the selective case, the genealogy of the sample is embedded in a graph with a coalescing and branching structure. We describe this graph, called the ancestral selection graph, and point out differences and similarities with Kingman's coalescent. We present simulations for a two-allele model with symmetric mutation in which one of the alleles has a selective advantage over the other. We find that when the allele frequencies in the population are already in equilibrium, then the genealogy does not differ much from the neutral case. This is supported by rigorous results. Furthermore, we describe the ancestral selection graph for other selective models with finitely many selection classes, such as the K-allele models, infinitely-many-alleles models. DNA sequence models, and infinitely-many-sites models, and briefly discuss the diploid case.

  10. Deletion mutant defines DQ beta variants with DR4 positive DQw3 positive haplotypes

    International Nuclear Information System (INIS)

    Nepom, B.S.; Kim, S.J.; Nepom, G.T.

    1986-01-01

    We describe the production of an HLA deletion mutation by radiation mutagenesis of a DR4- and DQw3-homozygous, Dw4- and Dw14-heterozygous cell line designed to analyze polymorphisms associated with DR4 and DQw3. Southern blot analysis confirms a deletion of class I and class II genes on one haplotype. Variation in DQ beta alleles associated with DQw3 was previously described by characteristic RFLP patterns for a DQ beta bene. One pattern, which correlated precisely with A-10-83 monoclonal antibody reactivity (TA10), defined an allele which we call DQ''3.1''. The mutant cell line has lost the polymorphic bands on Southern blots corresponding to the DQ''3.1'' allele, while the intact Dw14 haplotype retains the alternate allele at DQ beta which is DQw-3 positive. TA10-negative. These data demonstrate the segregation of two DQw3 positive DQ beta allelic variants, both associated with DR4, which can be distinguished on the basis of both RFLP and monoclonal antibody reactivity

  11. Functional divergence caused by ancient positive selection of a Drosophila hybrid incompatibility locus.

    Directory of Open Access Journals (Sweden)

    Daniel A Barbash

    2004-06-01

    Full Text Available Interspecific hybrid lethality and sterility are a consequence of divergent evolution between species and serve to maintain the discrete identities of species. The evolution of hybrid incompatibilities has been described in widely accepted models by Dobzhansky and Muller where lineage-specific functional divergence is the essential characteristic of hybrid incompatibility genes. Experimentally tractable models are required to identify and test candidate hybrid incompatibility genes. Several Drosophila melanogaster genes involved in hybrid incompatibility have been identified but none has yet been shown to have functionally diverged in accordance with the Dobzhansky-Muller model. By introducing transgenic copies of the X-linked Hybrid male rescue (Hmr gene into D. melanogaster from its sibling species D. simulans and D. mauritiana, we demonstrate that Hmr has functionally diverged to cause F1 hybrid incompatibility between these species. Consistent with the Dobzhansky-Muller model, we find that Hmr has diverged extensively in the D. melanogaster lineage, but we also find extensive divergence in the sibling-species lineage. Together, these findings implicate over 13% of the amino acids encoded by Hmr as candidates for causing hybrid incompatibility. The exceptional level of divergence at Hmr cannot be explained by neutral processes because we use phylogenetic methods and population genetic analyses to show that the elevated amino-acid divergence in both lineages is due to positive selection in the distant past-at least one million generations ago. Our findings suggest that multiple substitutions driven by natural selection may be a general phenomenon required to generate hybrid incompatibility alleles.

  12. Population Genetics and Natural Selection in Rheumatic Disease.

    Science.gov (United States)

    Ramos, Paula S

    2017-08-01

    Human genetic diversity is the result of population genetic forces. This genetic variation influences disease risk and contributes to health disparities. Natural selection is an important influence on human genetic variation. Because immune and inflammatory function genes are enriched for signals of positive selection, the prevalence of rheumatic disease-risk alleles seen in different populations is partially the result of differing selective pressures (eg, due to pathogens). This review summarizes the genetic regions associated with susceptibility to different rheumatic diseases and concomitant evidence for natural selection, including known agents of selection exerting selective pressure in these regions. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Allele coding in genomic evaluation

    DEFF Research Database (Denmark)

    Standen, Ismo; Christensen, Ole Fredslund

    2011-01-01

    Genomic data are used in animal breeding to assist genetic evaluation. Several models to estimate genomic breeding values have been studied. In general, two approaches have been used. One approach estimates the marker effects first and then, genomic breeding values are obtained by summing marker...... effects. In the second approach, genomic breeding values are estimated directly using an equivalent model with a genomic relationship matrix. Allele coding is the method chosen to assign values to the regression coefficients in the statistical model. A common allele coding is zero for the homozygous...... genotype of the first allele, one for the heterozygote, and two for the homozygous genotype for the other allele. Another common allele coding changes these regression coefficients by subtracting a value from each marker such that the mean of regression coefficients is zero within each marker. We call...

  14. Sexual selection, germline mutation rate and sperm competition

    Directory of Open Access Journals (Sweden)

    Møller AP

    2003-04-01

    Full Text Available Abstract Background An important component of sexual selection arises because females obtain viability benefits for their offspring from their mate choice. Females choosing extra-pair fertilization generally favor males with exaggerated secondary sexual characters, and extra-pair paternity increases the variance in male reproductive success. Furthermore, females are assumed to benefit from 'good genes' from extra-pair sires. How additive genetic variance in such viability genes is maintained despite strong directional selection remains an evolutionary enigma. We propose that sexual selection is associated with elevated mutation rates, changing the balance between mutation and selection, thereby increasing variance in fitness and hence the benefits to be obtained from good genes sexual selection. Two hypotheses may account for such elevated mutation: (1 Increased sperm production associated with sperm competition may increase mutation rate. (2 Mutator alleles increase mutation rates that are revealed by the expression of condition-dependent secondary sexual characters used by choosy females during their mate choice. M Petrie has independently developed the idea that mutator alleles may account for the maintenance of genetic variation in viability despite strong directional selection. Results A comparative study of birds revealed a positive correlation between mutation rate at minisatellite loci and extra-pair paternity, but not between mutation rate and relative testes mass which is a measure of relative sperm production. Minisatellite mutation rates were not related to longevity, suggesting a meiotic rather than a mitotic origin of mutations. Conclusion We found evidence of increased mutation rate in species with more intense sexual selection. Increased mutation was not associated with increased sperm production, and we suggest that species with intense sexual selection may maintain elevated mutation rates because sexual selection continuously

  15. The Adaptive Change of HLA-DRB1 Allele Frequencies Caused by Natural Selection in a Mongolian Population That Migrated to the South of China.

    Directory of Open Access Journals (Sweden)

    Hao Sun

    Full Text Available Pathogen-driven balancing selection determines the richness of human leukocyte antigen (HLA alleles. Changes in the pathogen spectrum may cause corresponding changes in HLA loci. Approximately 700 years ago, a Mongolian population moved from the north of China to the Yunnan region in the south of China. The pathogen spectrum in the south of China differs from that in the north. In this study, changes in the HLA genes in the Yunnan Mongolian population, as well as the underlying mechanism, were investigated. A sequence-based typing method (SBT was used to genotype HLA-DRB1 in 470 individuals from two Mongolian populations and another five ethnic groups. Meanwhile, 10 autosomal short tandem repeats (STRs were genotyped to assess the influence of genetic background on HLA-DRB1 frequencies. The frequencies of certain alleles changed significantly in the Mongolian population that migrated to Yunnan. For example, DRB1*12:02:01 increased from 6.1% to 35.4%. STR analysis excluded the possibility of a recent bottleneck and indicated that 50% of the genetic consistency between northern and southern Mongolians; Tajima's D value for HLA-DRB1 exon2 and dN/dS analysis showed that the HLA-DRB1 genes in both Mongolian populations were under balancing selection. However, the sites under natural selection changed. We proposed that the dramatically change of HLA frequencies in southern Mongolian was caused by a combination of inter-population gene flow and natural selection. Certain diseases specific to the south of China, such as malaria, may be the driving force behind the enhanced DRB1*12:02:01 frequency.

  16. Estimating the probability of allelic drop-out of STR alleles in forensic genetics

    DEFF Research Database (Denmark)

    Tvedebrink, Torben; Eriksen, Poul Svante; Mogensen, Helle Smidt

    2009-01-01

    In crime cases with available DNA evidence, the amount of DNA is often sparse due to the setting of the crime. In such cases, allelic drop-out of one or more true alleles in STR typing is possible. We present a statistical model for estimating the per locus and overall probability of allelic drop......-out using the results of all STR loci in the case sample as reference. The methodology of logistic regression is appropriate for this analysis, and we demonstrate how to incorporate this in a forensic genetic framework....

  17. Ecological interactions and the fitness effect of water-use efficiency: Competition and drought alter the impact of natural MPK12 alleles in Arabidopsis.

    Science.gov (United States)

    Campitelli, Brandon E; Des Marais, David L; Juenger, Thomas E

    2016-04-01

    The presence of substantial genetic variation for water-use efficiency (WUE) suggests that natural selection plays a role in maintaining alleles that affect WUE. Soil water deficit can reduce plant survival, and is likely to impose selection to increase WUE, whereas competition for resources may select for decreased WUE to ensure water acquisition. We tested the fitness consequences of natural allelic variation in a single gene (MPK12) that influences WUE in Arabidopsis, using transgenic lines contrasting in MPK12 alleles, under four treatments; drought/competition, drought/no competition, well-watered/competition, well-watered/no competition. Results revealed an allele × environment interaction: Low WUE plants performed better in competition, resulting from increased resource consumption. Contrastingly, high WUE individuals performed better in no competition, irrespective of water availability, presumably from enhanced water conservation and nitrogen acquisition. Our findings suggest that selection can influence MPK12 evolution, and represents the first assessment of plant fitness resulting from natural allelic variation at a single locus affecting WUE. © 2016 John Wiley & Sons Ltd/CNRS.

  18. A common mutation associated with the Duarte galactosemia allele

    Energy Technology Data Exchange (ETDEWEB)

    Elsas, L.J.; Dembure, P.P.; Langley, S.; Paulk, E.M.; Hjelm, L.N.; Fridovich-Keil, J. (Emory Univ. School of Medicine, Atlanta, GA (United States))

    1994-06-01

    The human cDNA and gene for galactose-1-phosphate uridyl transferase (GALT) have been cloned and sequenced. A prevalant mutation (Q188R) is known to cause classic galactosemia (G/G). G/G galactosemia has an incidence of 1/38,886 in 1,396,766 Georgia live-born infants, but a more common variant of galactosemia, Duarte, has an unknown incidence. The proposed Duarte biochemical phenotypes of GALT are as follows: D/N, D/D, and D/G, which have [approximately]75%, 50%, and 25% of normal GALT activity, respectively. In addition, the D allele has isoforms of its enzyme that have more acidic pI than normal. Here the authors systematically determine (a) the prevalence of an A-to-G transition at base pair 2744 of exon 10 in the GALT gene, a transition that produces a codon change converting asparagine to aspartic acid at position 314 (N314D), and (b) the association of this mutation with the Duarte biochemical phenotype. The 2744G nucleotide change adds an AvaII (SinI) cut site, which was identified in PCR-amplified DNA. In 111 biochemically unphenotyped controls with no history of galactosemia, 13 N314D alleles were identified (prevalence 5.9%). In a prospective study, 40 D alleles were biochemically phenotyped, and 40 N314D alleles were found. By contrast, in 36 individuals known not to have the Duarte biochemical phenotype, no N314D alleles were found. The authors conclude that the N314D mutation is a common allele that probably causes the Duarte GALT biochemical phenotype and occurs in a predominantly Caucasian, nongalactosemic population, with a prevalence of 5.9%. 36 refs., 3 figs., 2 tabs.

  19. The Microcephalin Ancestral Allele in a Neanderthal Individual

    Science.gov (United States)

    Lari, Martina; Rizzi, Ermanno; Milani, Lucio; Corti, Giorgio; Balsamo, Carlotta; Vai, Stefania; Catalano, Giulio; Pilli, Elena; Longo, Laura; Condemi, Silvana; Giunti, Paolo; Hänni, Catherine; De Bellis, Gianluca; Orlando, Ludovic; Barbujani, Guido; Caramelli, David

    2010-01-01

    Background The high frequency (around 0.70 worlwide) and the relatively young age (between 14,000 and 62,000 years) of a derived group of haplotypes, haplogroup D, at the microcephalin (MCPH1) locus led to the proposal that haplogroup D originated in a human lineage that separated from modern humans >1 million years ago, evolved under strong positive selection, and passed into the human gene pool by an episode of admixture circa 37,000 years ago. The geographic distribution of haplogroup D, with marked differences between Africa and Eurasia, suggested that the archaic human form admixing with anatomically modern humans might have been Neanderthal. Methodology/Principal Findings Here we report the first PCR amplification and high- throughput sequencing of nuclear DNA at the microcephalin (MCPH1) locus from Neanderthal individual from Mezzena Rockshelter (Monti Lessini, Italy). We show that a well-preserved Neanderthal fossil dated at approximately 50,000 years B.P., was homozygous for the ancestral, non-D, allele. The high yield of Neanderthal mtDNA sequences of the studied specimen, the pattern of nucleotide misincorporation among sequences consistent with post-mortem DNA damage and an accurate control of the MCPH1 alleles in all personnel that manipulated the sample, make it extremely unlikely that this result might reflect modern DNA contamination. Conclusions/Significance The MCPH1 genotype of the Monti Lessini (MLS) Neanderthal does not prove that there was no interbreeding between anatomically archaic and modern humans in Europe, but certainly shows that speculations on a possible Neanderthal origin of what is now the most common MCPH1 haplogroup are not supported by empirical evidence from ancient DNA. PMID:20498832

  20. The microcephalin ancestral allele in a Neanderthal individual.

    Directory of Open Access Journals (Sweden)

    Martina Lari

    Full Text Available BACKGROUND: The high frequency (around 0.70 worldwide and the relatively young age (between 14,000 and 62,000 years of a derived group of haplotypes, haplogroup D, at the microcephalin (MCPH1 locus led to the proposal that haplogroup D originated in a human lineage that separated from modern humans >1 million years ago, evolved under strong positive selection, and passed into the human gene pool by an episode of admixture circa 37,000 years ago. The geographic distribution of haplogroup D, with marked differences between Africa and Eurasia, suggested that the archaic human form admixing with anatomically modern humans might have been Neanderthal. METHODOLOGY/PRINCIPAL FINDINGS: Here we report the first PCR amplification and high-throughput sequencing of nuclear DNA at the microcephalin (MCPH1 locus from Neanderthal individual from Mezzena Rockshelter (Monti Lessini, Italy. We show that a well-preserved Neanderthal fossil dated at approximately 50,000 years B.P., was homozygous for the ancestral, non-D, allele. The high yield of Neanderthal mtDNA sequences of the studied specimen, the pattern of nucleotide misincorporation among sequences consistent with post-mortem DNA damage and an accurate control of the MCPH1 alleles in all personnel that manipulated the sample, make it extremely unlikely that this result might reflect modern DNA contamination. CONCLUSIONS/SIGNIFICANCE: The MCPH1 genotype of the Monti Lessini (MLS Neanderthal does not prove that there was no interbreeding between anatomically archaic and modern humans in Europe, but certainly shows that speculations on a possible Neanderthal origin of what is now the most common MCPH1 haplogroup are not supported by empirical evidence from ancient DNA.

  1. Angiotensin-converting enzyme (ACE) alleles in the Quechua, a high altitude South American native population.

    Science.gov (United States)

    Rupert, J L; Devine, D V; Monsalve, M V; Hochachka, P W

    1999-01-01

    Recently it was reported that an allelic variant of the gene encoding angiotensin-converting enzyme (ACE) was significantly over-represented in a cohort of elite British mountaineers. It was proposed that this may be evidence for a specific genetic factor influencing the human capacity for physical performance. The implication that this allele could enhance performance at high altitude prompted us to determine its frequency in Quechua speaking natives living at altitudes greater than 3000m on the Andean Altiplano in South America. We found that the frequency of the putative performance allele in the Quechuas, although significantly higher than in Caucasians, was not different from lowland Native American populations. This observation suggests that, although the higher frequency of the 'performance allele' may have facilitated the migration of the ancestral Quechua to the highlands, the ACE insertion allele has not been subsequently selected for in this high altitude population.

  2. Evolution of the complementary sex-determination gene of honey bees: balancing selection and trans-species polymorphisms.

    Science.gov (United States)

    Cho, Soochin; Huang, Zachary Y; Green, Daniel R; Smith, Deborah R; Zhang, Jianzhi

    2006-11-01

    The mechanism of sex determination varies substantively among evolutionary lineages. One important mode of genetic sex determination is haplodiploidy, which is used by approximately 20% of all animal species, including >200,000 species of the entire insect order Hymenoptera. In the honey bee Apis mellifera, a hymenopteran model organism, females are heterozygous at the csd (complementary sex determination) locus, whereas males are hemizygous (from unfertilized eggs). Fertilized homozygotes develop into sterile males that are eaten before maturity. Because homozygotes have zero fitness and because common alleles are more likely than rare ones to form homozygotes, csd should be subject to strong overdominant selection and negative frequency-dependent selection. Under these selective forces, together known as balancing selection, csd is expected to exhibit a high degree of intraspecific polymorphism, with long-lived alleles that may be even older than the species. Here we sequence the csd genes as well as randomly selected neutral genomic regions from individuals of three closely related species, A. mellifera, Apis cerana, and Apis dorsata. The polymorphic level is approximately seven times higher in csd than in the neutral regions. Gene genealogies reveal trans-species polymorphisms at csd but not at any neutral regions. Consistent with the prediction of rare-allele advantage, nonsynonymous mutations are found to be positively selected in csd only in early stages after their appearances. Surprisingly, three different hypervariable repetitive regions in csd are present in the three species, suggesting variable mechanisms underlying allelic specificities. Our results provide a definitive demonstration of balancing selection acting at the honey bee csd gene, offer insights into the molecular determinants of csd allelic specificities, and help avoid homozygosity in bee breeding.

  3. Natural Selection in the Great Apes.

    Science.gov (United States)

    Cagan, Alexander; Theunert, Christoph; Laayouni, Hafid; Santpere, Gabriel; Pybus, Marc; Casals, Ferran; Prüfer, Kay; Navarro, Arcadi; Marques-Bonet, Tomas; Bertranpetit, Jaume; Andrés, Aida M

    2016-12-01

    Natural selection is crucial for the adaptation of populations to their environments. Here, we present the first global study of natural selection in the Hominidae (humans and great apes) based on genome-wide information from population samples representing all extant species (including most subspecies). Combining several neutrality tests we create a multi-species map of signatures of natural selection covering all major types of natural selection. We find that the estimated efficiency of both purifying and positive selection varies between species and is significantly correlated with their long-term effective population size. Thus, even the modest differences in population size among the closely related Hominidae lineages have resulted in differences in their ability to remove deleterious alleles and to adapt to changing environments. Most signatures of balancing and positive selection are species-specific, with signatures of balancing selection more often being shared among species. We also identify loci with evidence of positive selection across several lineages. Notably, we detect signatures of positive selection in several genes related to brain function, anatomy, diet and immune processes. Our results contribute to a better understanding of human evolution by putting the evidence of natural selection in humans within its larger evolutionary context. The global map of natural selection in our closest living relatives is available as an interactive browser at http://tinyurl.com/nf8qmzh. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  4. A scan for positively selected genes in the genomes of humans and chimpanzees.

    Directory of Open Access Journals (Sweden)

    Rasmus Nielsen

    2005-06-01

    Full Text Available Since the divergence of humans and chimpanzees about 5 million years ago, these species have undergone a remarkable evolution with drastic divergence in anatomy and cognitive abilities. At the molecular level, despite the small overall magnitude of DNA sequence divergence, we might expect such evolutionary changes to leave a noticeable signature throughout the genome. We here compare 13,731 annotated genes from humans to their chimpanzee orthologs to identify genes that show evidence of positive selection. Many of the genes that present a signature of positive selection tend to be involved in sensory perception or immune defenses. However, the group of genes that show the strongest evidence for positive selection also includes a surprising number of genes involved in tumor suppression and apoptosis, and of genes involved in spermatogenesis. We hypothesize that positive selection in some of these genes may be driven by genomic conflict due to apoptosis during spermatogenesis. Genes with maximal expression in the brain show little or no evidence for positive selection, while genes with maximal expression in the testis tend to be enriched with positively selected genes. Genes on the X chromosome also tend to show an elevated tendency for positive selection. We also present polymorphism data from 20 Caucasian Americans and 19 African Americans for the 50 annotated genes showing the strongest evidence for positive selection. The polymorphism analysis further supports the presence of positive selection in these genes by showing an excess of high-frequency derived nonsynonymous mutations.

  5. A map of recent positive selection in the human genome.

    Directory of Open Access Journals (Sweden)

    Benjamin F Voight

    2006-03-01

    Full Text Available The identification of signals of very recent positive selection provides information about the adaptation of modern humans to local conditions. We report here on a genome-wide scan for signals of very recent positive selection in favor of variants that have not yet reached fixation. We describe a new analytical method for scanning single nucleotide polymorphism (SNP data for signals of recent selection, and apply this to data from the International HapMap Project. In all three continental groups we find widespread signals of recent positive selection. Most signals are region-specific, though a significant excess are shared across groups. Contrary to some earlier low resolution studies that suggested a paucity of recent selection in sub-Saharan Africans, we find that by some measures our strongest signals of selection are from the Yoruba population. Finally, since these signals indicate the existence of genetic variants that have substantially different fitnesses, they must indicate loci that are the source of significant phenotypic variation. Though the relevant phenotypes are generally not known, such loci should be of particular interest in mapping studies of complex traits. For this purpose we have developed a set of SNPs that can be used to tag the strongest approximately 250 signals of recent selection in each population.

  6. Deducing the pathogenic contribution of recessive ABCA4 alleles in an outbred population.

    Science.gov (United States)

    Schindler, Emily I; Nylen, Erik L; Ko, Audrey C; Affatigato, Louisa M; Heggen, Andrew C; Wang, Kai; Sheffield, Val C; Stone, Edwin M

    2010-10-01

    Accurate prediction of the pathogenic effects of specific genotypes is important for the design and execution of clinical trials as well as for meaningful counseling of individual patients. However, for many autosomal recessive diseases, it can be difficult to deduce the relative pathogenic contribution of individual alleles because relatively few affected individuals share the same two disease-causing variations. In this study, we used multiple regression analysis to estimate the pathogenicity of specific alleles of ABCA4 in patients with retinal phenotypes ranging from Stargardt disease to retinitis pigmentosa. This analysis revealed quantitative allelic effects on two aspects of the visual phenotype, visual acuity (P disease and will also aid in the optimal selection of subjects for clinical trials of new therapies.

  7. CAPN1, CAST, and DGAT1 genetic effects on preweaning performance, carcass quality traits, and residual variance of tenderness in a beef cattle population selected for haplotype and allele equalization

    Science.gov (United States)

    Genetic marker effects and type of inheritance are estimated with poor precision when minor marker allele frequencies are low. A stable composite population (MARC III) was subjected to marker assisted selection for multiple years to equalize specific marker frequencies to 1) estimate effect size an...

  8. Estimation of 2N(e)s from temporal allele frequency data

    DEFF Research Database (Denmark)

    Bollback, Jonathan Paul; York, Thomas L.; Nielsen, Rasmus

    2008-01-01

    We develop a new method for estimating effective population sizes, Ne, and selection coefficients, s, from time-series data of allele frequencies sampled from a single diallelic locus. The method is based on calculating transition probabilities, using a numerical solution of the diffusion process...

  9. Association between diabetes type 1 and DQB1 alleles in a case-control study conducted in Montevideo, Uruguay.

    Science.gov (United States)

    Mimbacas, Adriana; Pérez-Bravo, Francisco; Hidalgo, Pedro C; Javiel, Gerardo; Pisciottano, Carmen; Grignola, Rosario; Jorge, Ana María; Gallino, Juan Pablo; Gasagoite, Jackeline; Cardoso, Horacio

    2003-03-31

    We studied HLA DQB1 allele frequencies and the relative risk (RR) of various genotypes in 72 type 1 diabetic patients and 40 control individuals in Uruguay. This is a tri-racial (Caucasian, Black and Indo-American) mixed population. The products of the polymerase chain reaction amplifications were hybridized with oligonucleotides by allele-specific oligonucleotide reverse or dot blot methods. Significant differences between these two groups were observed only for allele DQB1*0302 (35%, RR = 7.34, P<0.001). The frequency of the alleles carrying a non-aspartic acid residue at position 57 was significantly higher in the diabetic patients (85 vs 53%, P<0.001). In contrast, the frequency of Asp alleles was negatively associated with type 1 diabetes (RR = 0.20, P<0.001). The genotype DQB1*0302/DQB1*0201 (33%, RR = 5.41, P<0.05) was positively associated with this disease. The genotype frequencies associated with type 1 diabetes in our population were significantly different from what is known for Caucasian and Black populations as well as compared with another admixed population, from Chile.

  10. Quantifying selection in evolving populations using time-resolved genetic data

    Science.gov (United States)

    Illingworth, Christopher J. R.; Mustonen, Ville

    2013-01-01

    Methods which uncover the molecular basis of the adaptive evolution of a population address some important biological questions. For example, the problem of identifying genetic variants which underlie drug resistance, a question of importance for the treatment of pathogens, and of cancer, can be understood as a matter of inferring selection. One difficulty in the inference of variants under positive selection is the potential complexity of the underlying evolutionary dynamics, which may involve an interplay between several contributing processes, including mutation, recombination and genetic drift. A source of progress may be found in modern sequencing technologies, which confer an increasing ability to gather information about evolving populations, granting a window into these complex processes. One particularly interesting development is the ability to follow evolution as it happens, by whole-genome sequencing of an evolving population at multiple time points. We here discuss how to use time-resolved sequence data to draw inferences about the evolutionary dynamics of a population under study. We begin by reviewing our earlier analysis of a yeast selection experiment, in which we used a deterministic evolutionary framework to identify alleles under selection for heat tolerance, and to quantify the selection acting upon them. Considering further the use of advanced intercross lines to measure selection, we here extend this framework to cover scenarios of simultaneous recombination and selection, and of two driver alleles with multiple linked neutral, or passenger, alleles, where the driver pair evolves under an epistatic fitness landscape. We conclude by discussing the limitations of the approach presented and outlining future challenges for such methodologies.

  11. Identification, genealogical structure and population genetics of S-alleles in Malus sieversii, the wild ancestor of domesticated apple.

    Science.gov (United States)

    Ma, X; Cai, Z; Liu, W; Ge, S; Tang, L

    2017-09-01

    The self-incompatibility (SI) gene that is specifically expressed in pistils encodes the SI-associated ribonuclease (S-RNase), functioning as the female-specificity determinant of a gametophytic SI system. Despite extensive surveys in Malus domestica, the S-alleles have not been fully investigated for Malus sieversii, the primary wild ancestor of the domesticated apple. Here we screened the M. sieversii S-alleles via PCR amplification and sequencing, and identified 14 distinct alleles in this species. By contrast, nearly 40 are present in its close wild relative, Malus sylvestris. We further sequenced 8 nuclear genes to provide a neutral reference, and investigated the evolution of S-alleles via genealogical and population genetic analyses. Both shared ancestral polymorphism and an excess of non-synonymous substitution were detected in the S-RNases of the tribe Maleae in Rosaceae, indicating the action of long-term balancing selection. Approximate Bayesian Computations based on the reference neutral loci revealed a severe bottleneck in four of the six studied M. sieversii populations, suggesting that the low number of S-alleles found in this species is mainly the result of diversity loss due to a drastic population contraction. Such a bottleneck may lead to ambiguous footprints of ongoing balancing selection detected at the S-locus. This study not only elucidates the constituents and number of S-alleles in M. sieversii but also illustrates the potential utility of S-allele number shifts in demographic inference for self-incompatible plant species.

  12. Characterization of the peptide binding specificity of the HLA class I alleles B*38:01 and B*39:06.

    Science.gov (United States)

    Sidney, John; Schloss, Jennifer; Moore, Carrie; Lindvall, Mikaela; Wriston, Amanda; Hunt, Donald F; Shabanowitz, Jeffrey; DiLorenzo, Teresa P; Sette, Alessandro

    2016-03-01

    B*38:01 and B*39:06 are present with phenotypic frequencies 39:06 is the B allele most associated with type 1 diabetes susceptibility and 38:01 is most protective. A previous study derived putative main anchor motifs for both alleles based on peptide elution data. The present study has utilized panels of single amino acid substitution peptide libraries to derive detailed quantitative motifs accounting for both primary and secondary influences on peptide binding. From these analyses, both alleles were confirmed to utilize the canonical position 2/C-terminus main anchor spacing. B*38:01 preferentially bound peptides with the positively charged or polar residues H, R, and Q in position 2 and the large hydrophobic residues I, F, L, W, and M at the C-terminus. B*39:06 had a similar preference for R in position 2, but also well-tolerated M, Q, and K. A more dramatic contrast between the two alleles was noted at the C-terminus, where the specificity of B*39:06 was clearly for small residues, with A as most preferred, followed by G, V, S, T, and I. Detailed position-by-position and residue-by-residue coefficient values were generated from the panels to provide detailed quantitative B*38:01 and B*39:06 motifs. It is hoped that these detailed motifs will facilitate the identification of T cell epitopes recognized in the context of two class I alleles associated with dramatically different dispositions towards type 1 diabetes, offering potential avenues for the investigation of the role of CD8 T cells in this disease.

  13. Abnormal segregation of alleles in CEPH pedigree DNAs arising from allele loss in lymphoblastoid DNA.

    Science.gov (United States)

    Royle, N J; Armour, J A; Crosier, M; Jeffreys, A J

    1993-01-01

    Somatic events that result in the reduction to hemi- or homozygosity at all loci affected by the event have been identified in lymphoblastoid DNA from mothers of two CEPH families. Using suitably informative probes, the allele deficiencies were detected by the abnormal transmission of alleles from grandparents to grandchildren, with the apparent absence of the alleles from the parent. Undetected somatic deficiencies in family DNAs could result in misscoring of recombination events and consequently introduce errors into linkage analysis.

  14. Prospective identification of malaria parasite genes under balancing selection.

    Directory of Open Access Journals (Sweden)

    Kevin K A Tetteh

    Full Text Available Endemic human pathogens are subject to strong immune selection, and interrogation of pathogen genome variation for signatures of balancing selection can identify important target antigens. Several major antigen genes in the malaria parasite Plasmodium falciparum have shown such signatures in polymorphism-versus-divergence indices (comparing with the chimpanzee parasite P. reichenowi, and in allele frequency based indices.To compare methods for prospective identification of genes under balancing selection, 26 additional genes known or predicted to encode surface-exposed proteins of the invasive blood stage merozoite were first sequenced from a panel of 14 independent P. falciparum cultured lines and P. reichenowi. Six genes at the positive extremes of one or both of the Hudson-Kreitman-Aguade (HKA and McDonald-Kreitman (MK indices were identified. Allele frequency based analysis was then performed on a Gambian P. falciparum population sample for these six genes and three others as controls. Tajima's D (TjD index was most highly positive for the msp3/6-like PF10_0348 (TjD = 1.96 as well as the positive control ama1 antigen gene (TjD = 1.22. Across the genes there was a strong correlation between population TjD values and the relative HKA indices (whether derived from the population or the panel of cultured laboratory isolates, but no correlation with the MK indices.Although few individual parasite genes show significant evidence of balancing selection, analysis of population genomic and comparative sequence data with the HKA and TjD indices should discriminate those that do, and thereby identify likely targets of immunity.

  15. Genetic Diversity and Elite Allele Mining for Grain Traits in Rice (Oryza sativa L.) by Association Mapping.

    Science.gov (United States)

    Edzesi, Wisdom M; Dang, Xiaojing; Liang, Lijun; Liu, Erbao; Zaid, Imdad U; Hong, Delin

    2016-01-01

    Mining elite alleles for grain size and weight is of importance for the improvement of cultivated rice and selection for market demand. In this study, association mapping for grain traits was performed on a selected sample of 628 rice cultivars using 262 SSRs. Grain traits were evaluated by grain length (GL), grain width (GW), grain thickness (GT), grain length to width ratio (GL/GW), and 1000-grain weight (TGW) in 2013 and 2014. Our result showed abundant phenotypic and genetic diversities found in the studied population. In total, 2953 alleles were detected with an average of 11.3 alleles per locus. The population was divided into seven subpopulations and the levels of linkage disequilibrium (LD) ranged from 34 to 84 cM. Genome-wide association mapping detected 10 marker trait association (MTAs) loci for GL, 1MTAs locus for GW, 7 MTAs loci for GT, 3 MTAs loci for GL/GW, and 1 MTAs locus for TGW. Twenty-nine, 2, 10, 5, and 3 elite alleles were found for the GL, GW, GT, GL/GW, and TGW, respectively. Optimal cross designs were predicted for improving the target traits. The accessions containing elite alleles for grain traits mined in this study could be used for breeding rice cultivars and cloning the candidate genes.

  16. Natural selection affects multiple aspects of genetic variation at putatively peutral sites across the human genome

    DEFF Research Database (Denmark)

    Lohmueller, Kirk E; Albrechtsen, Anders; Li, Yingrui

    2011-01-01

    A major question in evolutionary biology is how natural selection has shaped patterns of genetic variation across the human genome. Previous work has documented a reduction in genetic diversity in regions of the genome with low recombination rates. However, it is unclear whether other summaries...... these questions by analyzing three different genome-wide resequencing datasets from European individuals. We document several significant correlations between different genomic features. In particular, we find that average minor allele frequency and diversity are reduced in regions of low recombination...... and that human diversity, human-chimp divergence, and average minor allele frequency are reduced near genes. Population genetic simulations show that either positive natural selection acting on favorable mutations or negative natural selection acting against deleterious mutations can explain these correlations...

  17. Quantitative disease resistance: to better understand parasite-mediated selection on major histocompatibility complex.

    Science.gov (United States)

    Westerdahl, Helena; Asghar, Muhammad; Hasselquist, Dennis; Bensch, Staffan

    2012-02-07

    We outline a descriptive framework of how candidate alleles of the immune system associate with infectious diseases in natural populations of animals. Three kinds of alleles can be separated when both prevalence of infection and infection intensity are measured--qualitative disease resistance, quantitative disease resistance and susceptibility alleles. Our descriptive framework demonstrates why alleles for quantitative resistance and susceptibility cannot be separated based on prevalence data alone, but are distinguishable on infection intensity. We then present a case study to evaluate a previous finding of a positive association between prevalence of a severe avian malaria infection (GRW2, Plasmodium ashfordi) and a major histocompatibility complex (MHC) class I allele (B4b) in great reed warblers Acrocephalus arundinaceus. Using the same dataset, we find that individuals with allele B4b have lower GRW2 infection intensities than individuals without this allele. Therefore, allele B4b provides quantitative resistance rather than increasing susceptibility to infection. This implies that birds carrying B4b can mount an immune response that suppresses the acute-phase GRW2 infection, while birds without this allele cannot and may die. We argue that it is important to determine whether MHC alleles related to infections are advantageous (quantitative and qualitative resistance) or disadvantageous (susceptibility) to obtain a more complete picture of pathogen-mediated balancing selection.

  18. Selection in a subdivided population with local extinction and recolonization.

    Science.gov (United States)

    Cherry, Joshua L

    2003-01-01

    In a subdivided population, local extinction and subsequent recolonization affect the fate of alleles. Of particular interest is the interaction of this force with natural selection. The effect of selection can be weakened by this additional source of stochastic change in allele frequency. The behavior of a selected allele in such a population is shown to be equivalent to that of an allele with a different selection coefficient in an unstructured population with a different size. This equivalence allows use of established results for panmictic populations to predict such quantities as fixation probabilities and mean times to fixation. The magnitude of the quantity N(e)s(e), which determines fixation probability, is decreased by extinction and recolonization. Thus deleterious alleles are more likely to fix, and advantageous alleles less likely to do so, in the presence of extinction and recolonization. Computer simulations confirm that the theoretical predictions of both fixation probabilities and mean times to fixation are good approximations. PMID:12807797

  19. [Geographic variability of Adh-F allele frequency in populations of Drosophila melanogaster].

    Science.gov (United States)

    Bubliĭ, O A; Imasheva, A G

    1997-07-01

    Variation of Adh-F allele frequency in seven regions of North and South America, Eurasia, Africa, and Australia was analyzed on the basis of published data. In six regions, regression of Adh-F frequency on latitude was positive; in four regions, slopes of the regression curves were identical. Regression on the average lowest temperature of the coldest month was negative in six regions. No definite trends in regression on the highest temperature of the hottest month and on rainfall in the most humid month and the driest months were found. Geographic differentiation of populations was independent of climatic parameters. Examination of variation in various climatic zones revealed that tropical populations were distinctly different from those from other climatic zones. No climatic differentiation of fixation index FST was detected. These results indicate that Adh polymorphism is maintained by natural selection.

  20. Consequences for diversity when animals are prioritized for conservation of the whole genome or of one specific allele

    NARCIS (Netherlands)

    Engelsma, K.A.; Veerkamp, R.F.; Calus, M.P.L.; Windig, J.J.

    2014-01-01

    When animals are selected for one specific allele, for example for inclusion in a gene bank, this may result in the loss of diversity in other parts of the genome. The aim of this study was to quantify the risk of losing diversity across the genome when targeting a single allele for conservation

  1. Effect of APOE ε4 allele on survival and fertility in an adverse environment.

    Directory of Open Access Journals (Sweden)

    Eric van Exel

    Full Text Available The apolipoprotein-ε4 allele (APOE-ε4 is strongly associated with detrimental outcomes in affluent populations including atherosclerotic disease, Alzheimer's disease, and reduced lifespan. Despite these detrimental outcomes, population frequencies of APOE-ε4 are high. We hypothesize that the high frequency of APOE-ε4 was maintained because of beneficial effects during evolution when infectious pathogens were more prevalent and a major cause of mortality. We examined a rural Ghanaian population with a high pathogen exposure for selective advantages of APOE-ε4, to survival and or fertility.This rural Ghanaian population (n = 4311 has high levels of mortality from widespread infectious diseases which are the main cause of death. We examined whether APOE-ε4 was associated with survival (total follow-up time was 30,262 years and fertility after stratifying by exposure to high or low pathogen levels. Households drawing water from open wells and rivers were classified as exposed to high pathogen levels while low pathogen exposure was classified as those drawing water from borehole wells. We found a non-significant, but positive survival benefit, i.e. the hazard ratio per APOE-ε4 allele was 0.80 (95% confidence interval: 0.69 to 1.05, adjusted for sex, tribe, and socioeconomic status. Among women aged 40 years and older (n = 842, APOE-ε4 was not associated with the lifetime number of children. However, APOE-ε4 was associated with higher fertility in women exposed to high pathogen levels. Compared with women not carrying an APOE-ε4 allele, those carrying one APOE-ε4 allele had on average one more child and those carrying two APOE-ε4 alleles had 3.5 more children (p = 0.018.Contrary to affluent modern-day populations, APOE-ε4 did not carry a survival disadvantage in this rural Ghanaian population. Moreover, APOE-ε4 promotes fertility in highly infectious environments. Our findings suggest that APOE-ε4 may be considered as evolutionarily

  2. Effect of APOE ε4 allele on survival and fertility in an adverse environment.

    Science.gov (United States)

    van Exel, Eric; Koopman, Jacob J E; Bodegom, David van; Meij, Johannes J; Knijff, Peter de; Ziem, Juventus B; Finch, Caleb E; Westendorp, Rudi G J

    2017-01-01

    The apolipoprotein-ε4 allele (APOE-ε4) is strongly associated with detrimental outcomes in affluent populations including atherosclerotic disease, Alzheimer's disease, and reduced lifespan. Despite these detrimental outcomes, population frequencies of APOE-ε4 are high. We hypothesize that the high frequency of APOE-ε4 was maintained because of beneficial effects during evolution when infectious pathogens were more prevalent and a major cause of mortality. We examined a rural Ghanaian population with a high pathogen exposure for selective advantages of APOE-ε4, to survival and or fertility. This rural Ghanaian population (n = 4311) has high levels of mortality from widespread infectious diseases which are the main cause of death. We examined whether APOE-ε4 was associated with survival (total follow-up time was 30,262 years) and fertility after stratifying by exposure to high or low pathogen levels. Households drawing water from open wells and rivers were classified as exposed to high pathogen levels while low pathogen exposure was classified as those drawing water from borehole wells. We found a non-significant, but positive survival benefit, i.e. the hazard ratio per APOE-ε4 allele was 0.80 (95% confidence interval: 0.69 to 1.05), adjusted for sex, tribe, and socioeconomic status. Among women aged 40 years and older (n = 842), APOE-ε4 was not associated with the lifetime number of children. However, APOE-ε4 was associated with higher fertility in women exposed to high pathogen levels. Compared with women not carrying an APOE-ε4 allele, those carrying one APOE-ε4 allele had on average one more child and those carrying two APOE-ε4 alleles had 3.5 more children (p = 0.018). Contrary to affluent modern-day populations, APOE-ε4 did not carry a survival disadvantage in this rural Ghanaian population. Moreover, APOE-ε4 promotes fertility in highly infectious environments. Our findings suggest that APOE-ε4 may be considered as evolutionarily adaptive. Its

  3. Selection of Plasmodium falciparum multidrug resistance gene 1 alleles in asexual stages and gametocytes by artemether-lumefantrine in Nigerian children with uncomplicated falciparum malaria.

    Science.gov (United States)

    Happi, C T; Gbotosho, G O; Folarin, O A; Sowunmi, A; Hudson, T; O'Neil, M; Milhous, W; Wirth, D F; Oduola, A M J

    2009-03-01

    We assessed Plasmodium falciparum mdr1 (Pfmdr1) gene polymorphisms and copy numbers as well as P. falciparum Ca(2+) ATPase (PfATPase6) gene polymorphisms in 90 Nigerian children presenting with uncomplicated falciparum malaria and enrolled in a study of the efficacy of artemether-lumefantrine (AL). The nested PCR-restriction fragment length polymorphism and the quantitative real-time PCR methodologies were used to determine the alleles of the Pfmdr1 and PfATPase6 genes and the Pfmdr1 copy number variation, respectively, in patients samples collected prior to treatment and at the reoccurrence of parasites during a 42-day follow-up. The Pfmdr1 haplotype 86N-184F-1246D was significantly associated (P copy of the Pfmdr1 gene and the wild-type allele (L89) at codon 89 of the PfATPase6 gene. These findings suggest that polymorphisms in the Pfmdr1 gene are under AL selection pressure. Pfmdr1 polymorphisms may result in reduction in the therapeutic efficacy of this newly adopted combination treatment for uncomplicated falciparum malaria in Saharan countries of Africa.

  4. Extreme Population Differences in the Human Zinc Transporter ZIP4 (SLC39A4) Are Explained by Positive Selection in Sub-Saharan Africa

    Science.gov (United States)

    Pybus, Marc; Andrews, Glen K.; Lalueza-Fox, Carles; Comas, David; Sekler, Israel; de la Rasilla, Marco; Rosas, Antonio; Stoneking, Mark; Valverde, Miguel A.; Vicente, Rubén; Bosch, Elena

    2014-01-01

    Extreme differences in allele frequency between West Africans and Eurasians were observed for a leucine-to-valine substitution (Leu372Val) in the human intestinal zinc uptake transporter, ZIP4, yet no further evidence was found for a selective sweep around the ZIP4 gene (SLC39A4). By interrogating allele frequencies in more than 100 diverse human populations and resequencing Neanderthal DNA, we confirmed the ancestral state of this locus and found a strong geographical gradient for the derived allele (Val372), with near fixation in West Africa. In extensive coalescent simulations, we show that the extreme differences in allele frequency, yet absence of a classical sweep signature, can be explained by the effect of a local recombination hotspot, together with directional selection favoring the Val372 allele in Sub-Saharan Africans. The possible functional effect of the Leu372Val substitution, together with two pathological mutations at the same codon (Leu372Pro and Leu372Arg) that cause acrodermatitis enteropathica (a disease phenotype characterized by extreme zinc deficiency), was investigated by transient overexpression of human ZIP4 protein in HeLa cells. Both acrodermatitis mutations cause absence of the ZIP4 transporter cell surface expression and nearly absent zinc uptake, while the Val372 variant displayed significantly reduced surface protein expression, reduced basal levels of intracellular zinc, and reduced zinc uptake in comparison with the Leu372 variant. We speculate that reduced zinc uptake by the ZIP4-derived Val372 isoform may act by starving certain pathogens of zinc, and hence may have been advantageous in Sub-Saharan Africa. Moreover, these functional results may indicate differences in zinc homeostasis among modern human populations with possible relevance for disease risk. PMID:24586184

  5. Extreme population differences in the human zinc transporter ZIP4 (SLC39A4 are explained by positive selection in Sub-Saharan Africa.

    Directory of Open Access Journals (Sweden)

    Johannes Engelken

    2014-02-01

    Full Text Available Extreme differences in allele frequency between West Africans and Eurasians were observed for a leucine-to-valine substitution (Leu372Val in the human intestinal zinc uptake transporter, ZIP4, yet no further evidence was found for a selective sweep around the ZIP4 gene (SLC39A4. By interrogating allele frequencies in more than 100 diverse human populations and resequencing Neanderthal DNA, we confirmed the ancestral state of this locus and found a strong geographical gradient for the derived allele (Val372, with near fixation in West Africa. In extensive coalescent simulations, we show that the extreme differences in allele frequency, yet absence of a classical sweep signature, can be explained by the effect of a local recombination hotspot, together with directional selection favoring the Val372 allele in Sub-Saharan Africans. The possible functional effect of the Leu372Val substitution, together with two pathological mutations at the same codon (Leu372Pro and Leu372Arg that cause acrodermatitis enteropathica (a disease phenotype characterized by extreme zinc deficiency, was investigated by transient overexpression of human ZIP4 protein in HeLa cells. Both acrodermatitis mutations cause absence of the ZIP4 transporter cell surface expression and nearly absent zinc uptake, while the Val372 variant displayed significantly reduced surface protein expression, reduced basal levels of intracellular zinc, and reduced zinc uptake in comparison with the Leu372 variant. We speculate that reduced zinc uptake by the ZIP4-derived Val372 isoform may act by starving certain pathogens of zinc, and hence may have been advantageous in Sub-Saharan Africa. Moreover, these functional results may indicate differences in zinc homeostasis among modern human populations with possible relevance for disease risk.

  6. AllelicImbalance: An R/ bioconductor package for detecting, managing, and visualizing allele expression imbalance data from RNA sequencing

    DEFF Research Database (Denmark)

    Gådin, Jesper R.; van't Hooft, Ferdinand M.; Eriksson, Per

    2015-01-01

    the possible biases. Results: We present AllelicImblance, a software program that is designed to detect, manage, and visualize allelic imbalances comprehensively. The purpose of this software is to allow users to pose genetic questions in any RNA sequencing experiment quickly, enhancing the general utility...... of RNA sequencing. The visualization features can reveal notable, non-trivial allelic imbalance behavior over specific regions, such as exons. Conclusions: The software provides a complete framework to perform allelic imbalance analyses of aligned RNA sequencing data, from detection to visualization...

  7. Lower Frequency of HLA-DRB1 Type 1 Diabetes Risk Alleles in Pediatric Patients with MODY.

    Science.gov (United States)

    Urrutia, Inés; Martínez, Rosa; López-Euba, Tamara; Velayos, Teresa; Martínez de LaPiscina, Idoia; Bilbao, José Ramón; Rica, Itxaso; Castaño, Luis

    2017-01-01

    The aim of this study was to determine the frequency of susceptible HLA-DRB1 alleles for type 1 diabetes in a cohort of pediatric patients with a confirmed genetic diagnosis of MODY. 160 families with a proband diagnosed with type 1 diabetes and 74 families with a molecular diagnosis of MODY (61 GCK-MODY and 13 HNF1A-MODY) were categorized at high definition for HLA-DRB1 locus. According to the presence or absence of the susceptible HLA-DRB1 alleles for type 1 diabetes, we considered three different HLA-DRB1 genotypes: 0 risk alleles (no DR3 no DR4); 1 risk allele (DR3 or DR4); 2 risk alleles (DR3 and/or DR4). Compared with type 1 diabetes, patients with MODY carried higher frequency of 0 risk alleles, OR 22.7 (95% CI: 10.7-48.6) and lower frequency of 1 or 2 risk alleles, OR 0.53 (95% CI: 0.29-0.96) and OR 0.06 (95% CI: 0.02-0.18), respectively. The frequency of HLA-DRB1 risk alleles for type 1 diabetes is significantly lower in patients with MODY. In children and adolescents with diabetes, the presence of 2 risk alleles (DR3 and/or DR4) reduces the probability of MODY diagnosis, whereas the lack of risk alleles increases it. Therefore, we might consider that HLA-DRB1 provides additional information for the selection of patients with high probability of monogenic diabetes.

  8. Lower Frequency of HLA-DRB1 Type 1 Diabetes Risk Alleles in Pediatric Patients with MODY.

    Directory of Open Access Journals (Sweden)

    Inés Urrutia

    Full Text Available The aim of this study was to determine the frequency of susceptible HLA-DRB1 alleles for type 1 diabetes in a cohort of pediatric patients with a confirmed genetic diagnosis of MODY.160 families with a proband diagnosed with type 1 diabetes and 74 families with a molecular diagnosis of MODY (61 GCK-MODY and 13 HNF1A-MODY were categorized at high definition for HLA-DRB1 locus. According to the presence or absence of the susceptible HLA-DRB1 alleles for type 1 diabetes, we considered three different HLA-DRB1 genotypes: 0 risk alleles (no DR3 no DR4; 1 risk allele (DR3 or DR4; 2 risk alleles (DR3 and/or DR4.Compared with type 1 diabetes, patients with MODY carried higher frequency of 0 risk alleles, OR 22.7 (95% CI: 10.7-48.6 and lower frequency of 1 or 2 risk alleles, OR 0.53 (95% CI: 0.29-0.96 and OR 0.06 (95% CI: 0.02-0.18, respectively.The frequency of HLA-DRB1 risk alleles for type 1 diabetes is significantly lower in patients with MODY. In children and adolescents with diabetes, the presence of 2 risk alleles (DR3 and/or DR4 reduces the probability of MODY diagnosis, whereas the lack of risk alleles increases it. Therefore, we might consider that HLA-DRB1 provides additional information for the selection of patients with high probability of monogenic diabetes.

  9. A functional ABCA1 gene variant is associated with low HDL-cholesterol levels and shows evidence of positive selection in Native Americans

    Science.gov (United States)

    Acuña-Alonzo, Víctor; Flores-Dorantes, Teresa; Kruit, Janine K.; Villarreal-Molina, Teresa; Arellano-Campos, Olimpia; Hünemeier, Tábita; Moreno-Estrada, Andrés; Ortiz-López, Ma Guadalupe; Villamil-Ramírez, Hugo; León-Mimila, Paola; Villalobos-Comparan, Marisela; Jacobo-Albavera, Leonor; Ramírez-Jiménez, Salvador; Sikora, Martin; Zhang, Lin-Hua; Pape, Terry D.; de Ángeles Granados-Silvestre, Ma; Montufar-Robles, Isela; Tito-Alvarez, Ana M.; Zurita-Salinas, Camilo; Bustos-Arriaga, José; Cedillo-Barrón, Leticia; Gómez-Trejo, Celta; Barquera-Lozano, Rodrigo; Vieira-Filho, Joao P.; Granados, Julio; Romero-Hidalgo, Sandra; Huertas-Vázquez, Adriana; González-Martín, Antonio; Gorostiza, Amaya; Bonatto, Sandro L.; Rodríguez-Cruz, Maricela; Wang, Li; Tusié-Luna, Teresa; Aguilar-Salinas, Carlos A.; Lisker, Ruben; Moises, Regina S.; Menjivar, Marta; Salzano, Francisco M.; Knowler, William C.; Bortolini, M. Cátira; Hayden, Michael R.; Baier, Leslie J.; Canizales-Quinteros, Samuel

    2010-01-01

    It has been suggested that the higher susceptibility of Hispanics to metabolic disease is related to their Native American heritage. A frequent cholesterol transporter ABCA1 (ATP-binding cassette transporter A1) gene variant (R230C, rs9282541) apparently exclusive to Native American individuals was associated with low high-density lipoprotein cholesterol (HDL-C) levels, obesity and type 2 diabetes in Mexican Mestizos. We performed a more extensive analysis of this variant in 4405 Native Americans and 863 individuals from other ethnic groups to investigate genetic evidence of positive selection, to assess its functional effect in vitro and to explore associations with HDL-C levels and other metabolic traits. The C230 allele was found in 29 of 36 Native American groups, but not in European, Asian or African individuals. C230 was observed on a single haplotype, and C230-bearing chromosomes showed longer relative haplotype extension compared with other haplotypes in the Americas. Additionally, single-nucleotide polymorphism data from the Human Genome Diversity Panel Native American populations were enriched in significant integrated haplotype score values in the region upstream of the ABCA1 gene. Cells expressing the C230 allele showed a 27% cholesterol efflux reduction (P< 0.001), confirming this variant has a functional effect in vitro. Moreover, the C230 allele was associated with lower HDL-C levels (P = 1.77 × 10−11) and with higher body mass index (P = 0.0001) in the combined analysis of Native American populations. This is the first report of a common functional variant exclusive to Native American and descent populations, which is a major determinant of HDL-C levels and may have contributed to the adaptive evolution of Native American populations. PMID:20418488

  10. Fine Mapping Seronegative and Seropositive Rheumatoid Arthritis to Shared and Distinct HLA Alleles by Adjusting for the Effects of Heterogeneity

    NARCIS (Netherlands)

    Han, Buhm; Diogo, Dorothee; Eyre, Steve; Kallberg, Henrik; Zhernakova, Alexandra; Bowes, John; Padyukov, Leonid; Okada, Yukinori; Gonzalez-Gay, Miguel A.; Rantapaa-Dahlqvist, Solbritt; Martin, Javier; Huizinga, Tom W. J.; Plenge, Robert M.; Worthington, Jane; Gregersen, Peter K.; Klareskog, Lars; de Bakker, Paul I. W.; Raychaudhuri, Soumya

    2014-01-01

    Despite progress in defining human leukocyte antigen (HLA) alleles for anti-citrullinated-protein-autoantibody-positive (ACPA(+)) rheumatoid arthritis (RA), identifying HLA alleles for ACPA-negative (ACPA(-)) RA has been challenging because of clinical heterogeneity within clinical cohorts. We

  11. Allelic frequencies of two microsatellite loci in four populations of brown trout (Salmo trutta)

    OpenAIRE

    EDIT VARDHAMI; ANILA HODA; ADIOLA BIBA; MANUELA GUALTIERI; MASSIMO MECATTI; AGIM REXHEPI

    2014-01-01

    Two microsatellite loci, Str60Inra and Ssa197, were PCR amplified on 30 individuals for each populations of brown trout (Salmo trutta). A total of 120 individuals were selected from rivers of the Florence province (Italy), Valbona and Cen (Albania), Lepenci (Kosovo). There were identified 32 different alleles for Str60Inra and 41 for the locus Ssa197. Mean number of alleles ranged from 9 (Cen) to 20.5 (Florence). The mean observed and expected heterosygosities values were 0.329 and 0.755, res...

  12. Positive Selection and Centrality in the Yeast and Fly Protein-Protein Interaction Networks

    Directory of Open Access Journals (Sweden)

    Sandip Chakraborty

    2016-01-01

    Full Text Available Proteins within a molecular network are expected to be subject to different selective pressures depending on their relative hierarchical positions. However, it is not obvious what genes within a network should be more likely to evolve under positive selection. On one hand, only mutations at genes with a relatively high degree of control over adaptive phenotypes (such as those encoding highly connected proteins are expected to be “seen” by natural selection. On the other hand, a high degree of pleiotropy at these genes is expected to hinder adaptation. Previous analyses of the human protein-protein interaction network have shown that genes under long-term, recurrent positive selection (as inferred from interspecific comparisons tend to act at the periphery of the network. It is unknown, however, whether these trends apply to other organisms. Here, we show that long-term positive selection has preferentially targeted the periphery of the yeast interactome. Conversely, in flies, genes under positive selection encode significantly more connected and central proteins. These observations are not due to covariation of genes’ adaptability and centrality with confounding factors. Therefore, the distribution of proteins encoded by genes under recurrent positive selection across protein-protein interaction networks varies from one species to another.

  13. RNA-Seq using two populations reveals genes and alleles controlling wood traits and growth in Eucalyptus nitens.

    Directory of Open Access Journals (Sweden)

    Saravanan Thavamanikumar

    Full Text Available Eucalyptus nitens is a perennial forest tree species grown mainly for kraft pulp production in many parts of the world. Kraft pulp yield (KPY is a key determinant of plantation profitability and increasing the KPY of trees grown in plantations is a major breeding objective. To speed up the breeding process, molecular markers that can predict KPY are desirable. To achieve this goal, we carried out RNA-Seq studies on trees at extremes of KPY in two different trials to identify genes and alleles whose expression correlated with KPY. KPY is positively correlated with growth measured as diameter at breast height (DBH in both trials. In total, six RNA bulks from two treatments were sequenced on an Illumina HiSeq platform. At 5% false discovery rate level, 3953 transcripts showed differential expression in the same direction in both trials; 2551 (65% were down-regulated and 1402 (35% were up-regulated in low KPY samples. The genes up-regulated in low KPY trees were largely involved in biotic and abiotic stress response reflecting the low growth among low KPY trees. Genes down-regulated in low KPY trees mainly belonged to gene categories involved in wood formation and growth. Differential allelic expression was observed in 2103 SNPs (in 1068 genes and of these 640 SNPs (30% occurred in 313 unique genes that were also differentially expressed. These SNPs may represent the cis-acting regulatory variants that influence total gene expression. In addition we also identified 196 genes which had Ka/Ks ratios greater than 1.5, suggesting that these genes are under positive selection. Candidate genes and alleles identified in this study will provide a valuable resource for future association studies aimed at identifying molecular markers for KPY and growth.

  14. The ancestral selection graph under strong directional selection.

    Science.gov (United States)

    Pokalyuk, Cornelia; Pfaffelhuber, Peter

    2013-08-01

    The ancestral selection graph (ASG) was introduced by  Neuhauser and Krone (1997) in order to study populations of constant size which evolve under selection. Coalescence events, which occur at rate 1 for every pair of lines, lead to joint ancestry. In addition, splitting events in the ASG at rate α, the scaled selection coefficient, produce possible ancestors, such that the real ancestor depends on the ancestral alleles. Here, we use the ASG in the case without mutation in order to study fixation of a beneficial mutant. Using our main tool, a reversibility property of the ASG, we provide a new proof of the fact that a beneficial allele fixes roughly in time (2logα)/α if α is large. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Beta2-adrenergic receptor allele frequencies in the Quechua, a high altitude native population.

    Science.gov (United States)

    Rupert, J L; Monsalve, M V; Devine, D V; Hochachka, P W

    2000-03-01

    The beta2-adrenergic receptor is involved in the control of numerous physiological processes and, as the primary catecholamine receptor in the lungs, is of particular importance in the regulation of pulmonary function. There are several polymorphic loci in the beta2-adrenergic receptor gene that have alleles that alter receptor function, including two (A/G46, G/C79) that increase agonist sensitivity. As such a phenotype may increase vaso and bronchial dilation, thereby facilitating air and blood flow through the lungs, we hypothesized that selection may have favoured these alleles in high altitude populations as part of an adaptive strategy to deal with the hypoxic conditions characteristic of such environments. We tested this hypothesis by determining the allele frequencies for these two polymorphisms, as well one additional missense mutation (C/T491) and two silent mutations (G/A252 and C/A523) in 63 Quechua speaking natives from communities located between 3200 and 4200 m on the Peruvian altiplano. These frequencies were compared with those of two lowland populations, one native American (Na-Dene from the west coast of Canada) and one Caucasian of Western European descent. The Quechua manifest many of the pulmonary characteristics of high altitude populations and differences in allele frequencies between the Quechua and lowlanders could be indicative of a selective advantage conferred by certain genotypes in high altitude environments. Allele frequencies varied between populations at some loci and patterns of linkage disequilibrium differed between the old-world and new-world samples; however, as these populations are not closely related, significant variation would be expected due to stochastic effects alone. Neither of the alleles associated with increased receptor sensitivity (A46, G79) was significantly over-represented in the Quechua compared with either lowland group. The Quechua were monomorphic for the C allele at base 79. This variant has been

  16. Signatures of environmental genetic adaptation pinpoint pathogens as the main selective pressure through human evolution.

    Directory of Open Access Journals (Sweden)

    Matteo Fumagalli

    2011-11-01

    Full Text Available Previous genome-wide scans of positive natural selection in humans have identified a number of non-neutrally evolving genes that play important roles in skin pigmentation, metabolism, or immune function. Recent studies have also shown that a genome-wide pattern of local adaptation can be detected by identifying correlations between patterns of allele frequencies and environmental variables. Despite these observations, the degree to which natural selection is primarily driven by adaptation to local environments, and the role of pathogens or other ecological factors as selective agents, is still under debate. To address this issue, we correlated the spatial allele frequency distribution of a large sample of SNPs from 55 distinct human populations to a set of environmental factors that describe local geographical features such as climate, diet regimes, and pathogen loads. In concordance with previous studies, we detected a significant enrichment of genic SNPs, and particularly non-synonymous SNPs associated with local adaptation. Furthermore, we show that the diversity of the local pathogenic environment is the predominant driver of local adaptation, and that climate, at least as measured here, only plays a relatively minor role. While background demography by far makes the strongest contribution in explaining the genetic variance among populations, we detected about 100 genes which show an unexpectedly strong correlation between allele frequencies and pathogenic environment, after correcting for demography. Conversely, for diet regimes and climatic conditions, no genes show a similar correlation between the environmental factor and allele frequencies. This result is validated using low-coverage sequencing data for multiple populations. Among the loci targeted by pathogen-driven selection, we found an enrichment of genes associated to autoimmune diseases, such as celiac disease, type 1 diabetes, and multiples sclerosis, which lends credence to the

  17. Positive selection at codon 38 of the human KCNE1 (= minK gene and sporadic absence of 38Ser-coding mRNAs in Gly38Ser heterozygotes

    Directory of Open Access Journals (Sweden)

    Pfeufer Arne

    2009-08-01

    Full Text Available Abstract Background KCNE1 represents the regulatory beta-subunit of the slowly activating delayed rectifier potassium channel (IKs. Variants of KCNE1 have repeatedly been linked to the long-QT syndrome (LQTS, a disorder which predisposes to deafness, ventricular tachyarrhythmia, syncope, and sudden cardiac death. Results We here analyze the evolution of the common Gly38Ser variant (rs1805127, using genomic DNAs, complementary DNAs, and HEK293-expressed variants of altogether 19 mammalian species. The between species comparison reveals that the human-specific Gly38Ser polymorphism evolved under strong positive Darwinian selection, probably in adaptation to specific challenges in the fine-tuning of IKs channels. The involved amino acid exchanges (Asp > Gly, Gly > Ser are moderately radical and do not induce apparent changes in posttranslational modification. According to population genetic analyses (HapMap phase II a heterozygote advantage accounts for the maintenance of the Gly38Ser polymorphism in humans. On the other hand, the expression of the 38Ser allele seems to be disadvantageous under certain conditions, as suggested by the sporadic deficiency of 38Ser-coding mRNAs in heterozygote Central Europeans and the depletion of homozygotes 38Ser in the Yoruban sample. Conclusion We speculate that individual differences in genomic imprinting or genomic recoding might have contributed to conflicting results of recent association studies between Gly38Ser polymorphism and QT phenotype. The findings thus highlight the relevance of mRNA data in future association studies of genotypes and clinical disorders. To the best of our knowledge, they moreover provide first time evidence for a unique pattern; i.e. coincidence of positive Darwinian selection and polymorphism with a sporadically suppressed expression of one allele.

  18. The loss-of-allele assay for ES cell screening and mouse genotyping.

    Science.gov (United States)

    Frendewey, David; Chernomorsky, Rostislav; Esau, Lakeisha; Om, Jinsop; Xue, Yingzi; Murphy, Andrew J; Yancopoulos, George D; Valenzuela, David M

    2010-01-01

    Targeting vectors used to create directed mutations in mouse embryonic stem (ES) cells consist, in their simplest form, of a gene for drug selection flanked by mouse genomic sequences, the so-called homology arms that promote site-directed homologous recombination between the vector and the target gene. The VelociGene method for the creation of targeted mutations in ES cells employs targeting vectors, called BACVecs, that are based on bacterial artificial chromosomes. Compared with conventional short targeting vectors, BacVecs provide two major advantages: (1) their much larger homology arms promote high targeting efficiencies without the need for isogenicity or negative selection strategies; and (2) they enable deletions and insertions of up to 100kb in a single targeting event, making possible gene-ablating definitive null alleles and other large-scale genomic modifications. Because of their large arm sizes, however, BACVecs do not permit screening by conventional assays, such as long-range PCR or Southern blotting, that link the inserted targeting vector to the targeted locus. To exploit the advantages of BACVecs for gene targeting, we inverted the conventional screening logic in developing the loss-of-allele (LOA) assay, which quantifies the number of copies of the native locus to which the mutation was directed. In a correctly targeted ES cell clone, the LOA assay detects one of the two native alleles (for genes not on the X or Y chromosome), the other allele being disrupted by the targeted modification. We apply the same principle in reverse as a gain-of-allele assay to quantify the copy number of the inserted targeting vector. The LOA assay reveals a correctly targeted clone as having lost one copy of the native target gene and gained one copy of the drug resistance gene or other inserted marker. The combination of these quantitative assays makes LOA genotyping unequivocal and amenable to automated scoring. We use the quantitative polymerase chain reaction

  19. Recent adaptive events in human brain revealed by meta-analysis of positively selected genes.

    Directory of Open Access Journals (Sweden)

    Yue Huang

    Full Text Available BACKGROUND AND OBJECTIVES: Analysis of positively-selected genes can help us understand how human evolved, especially the evolution of highly developed cognitive functions. However, previous works have reached conflicting conclusions regarding whether human neuronal genes are over-represented among genes under positive selection. METHODS AND RESULTS: We divided positively-selected genes into four groups according to the identification approaches, compiling a comprehensive list from 27 previous studies. We showed that genes that are highly expressed in the central nervous system are enriched in recent positive selection events in human history identified by intra-species genomic scan, especially in brain regions related to cognitive functions. This pattern holds when different datasets, parameters and analysis pipelines were used. Functional category enrichment analysis supported these findings, showing that synapse-related functions are enriched in genes under recent positive selection. In contrast, immune-related functions, for instance, are enriched in genes under ancient positive selection revealed by inter-species coding region comparison. We further demonstrated that most of these patterns still hold even after controlling for genomic characteristics that might bias genome-wide identification of positively-selected genes including gene length, gene density, GC composition, and intensity of negative selection. CONCLUSION: Our rigorous analysis resolved previous conflicting conclusions and revealed recent adaptation of human brain functions.

  20. Whole-genome sequencing of two North American Drosophila melanogaster populations reveals genetic differentiation and positive selection.

    Science.gov (United States)

    Campo, D; Lehmann, K; Fjeldsted, C; Souaiaia, T; Kao, J; Nuzhdin, S V

    2013-10-01

    The prevailing demographic model for Drosophila melanogaster suggests that the colonization of North America occurred very recently from a subset of European flies that rapidly expanded across the continent. This model implies a sudden population growth and range expansion consistent with very low or no population subdivision. As flies adapt to new environments, local adaptation events may be expected. To describe demographic and selective events during North American colonization, we have generated a data set of 35 individual whole-genome sequences from inbred lines of D. melanogaster from a west coast US population (Winters, California, USA) and compared them with a public genome data set from Raleigh (Raleigh, North Carolina, USA). We analysed nuclear and mitochondrial genomes and described levels of variation and divergence within and between these two North American D. melanogaster populations. Both populations exhibit negative values of Tajima's D across the genome, a common signature of demographic expansion. We also detected a low but significant level of genome-wide differentiation between the two populations, as well as multiple allele surfing events, which can be the result of gene drift in local subpopulations on the edge of an expansion wave. In contrast to this genome-wide pattern, we uncovered a 50-kilobase segment in chromosome arm 3L that showed all the hallmarks of a soft selective sweep in both populations. A comparison of allele frequencies within this divergent region among six populations from three continents allowed us to cluster these populations in two differentiated groups, providing evidence for the action of natural selection on a global scale. © 2013 John Wiley & Sons Ltd.

  1. Allele frequencies of AVPR1A and MAOA in the Afrikaner population

    Directory of Open Access Journals (Sweden)

    J. Christoff Erasmus

    2015-07-01

    Full Text Available The Afrikaner population was founded mainly by European immigrants that arrived in South Africa from 1652. However, female slaves from Asia and Africa and local KhoeSan women may have contributed as much as 7% to this population’s genes. We quantified variation at two tandem repeats to see if this historical founder effect and/or admixture could be detected. The two loci were chosen because they are in the promoters of genes of neurotransmitters that are known to be correlated with social behaviour. Specifically, arginine vasopressin receptor 1A’s (AVPR1A RS3 locus has been shown to correlate with age of sexual onset and happiness in monogamous relationships while the tandem repeat in the promoter of the monoamine oxidase A (MAOA gene correlates with reactive aggression. The Afrikaner population contained more AVPR1A RS3 alleles than other Caucasoid populations, potentially reflecting a history of admixture. Even though Afrikaners have one of the lowest recorded non-paternity rates in the world, the population did not differ at AVPR1A RS3 locus form other European populations, suggesting a non-genetic explanation, presumably religion, for the low non-paternity rate. By comparing population allele-frequency spectra it was found that different studies have confused AVPR1A RS3 alleles and we make some suggestions to rectify these mistakes in future studies. While MAOA allele frequencies differed between racial groups, the Afrikaner population showed no evidence of admixture. In fact, Afrikaners had more 4-repeat alleles than other populations of European origin, not fewer. The 4-repeat allele may have been selected for during colonisation.

  2. Positive Selection on Hemagglutinin and Neuraminidase Genes of H1N1 Influenza Viruses

    LENUS (Irish Health Repository)

    Li, Wenfu

    2011-04-21

    Abstract Background Since its emergence in March 2009, the pandemic 2009 H1N1 influenza A virus has posed a serious threat to public health. To trace the evolutionary path of these new pathogens, we performed a selection-pressure analysis of a large number of hemagglutinin (HA) and neuraminidase (NA) gene sequences of H1N1 influenza viruses from different hosts. Results Phylogenetic analysis revealed that both HA and NA genes have evolved into five distinct clusters, with further analyses indicating that the pandemic 2009 strains have experienced the strongest positive selection. We also found evidence of strong selection acting on the seasonal human H1N1 isolates. However, swine viruses from North America and Eurasia were under weak positive selection, while there was no significant evidence of positive selection acting on the avian isolates. A site-by-site analysis revealed that the positively selected sites were located in both of the cleaved products of HA (HA1 and HA2), as well as NA. In addition, the pandemic 2009 strains were subject to differential selection pressures compared to seasonal human, North American swine and Eurasian swine H1N1 viruses. Conclusions Most of these positively and\\/or differentially selected sites were situated in the B-cell and\\/or T-cell antigenic regions, suggesting that selection at these sites might be responsible for the antigenic variation of the viruses. Moreover, some sites were also associated with glycosylation and receptor-binding ability. Thus, selection at these positions might have helped the pandemic 2009 H1N1 viruses to adapt to the new hosts after they were introduced from pigs to humans. Positive selection on position 274 of NA protein, associated with drug resistance, might account for the prevalence of drug-resistant variants of seasonal human H1N1 influenza viruses, but there was no evidence that positive selection was responsible for the spread of the drug resistance of the pandemic H1N1 strains.

  3. Positive Selection Linked with Generation of Novel Mammalian Dentition Patterns.

    Science.gov (United States)

    Machado, João Paulo; Philip, Siby; Maldonado, Emanuel; O'Brien, Stephen J; Johnson, Warren E; Antunes, Agostinho

    2016-09-11

    A diverse group of genes are involved in the tooth development of mammals. Several studies, focused mainly on mice and rats, have provided a detailed depiction of the processes coordinating tooth formation and shape. Here we surveyed 236 tooth-associated genes in 39 mammalian genomes and tested for signatures of selection to assess patterns of molecular adaptation in genes regulating mammalian dentition. Of the 236 genes, 31 (∼13.1%) showed strong signatures of positive selection that may be responsible for the phenotypic diversity observed in mammalian dentition. Mammalian-specific tooth-associated genes had accelerated mutation rates compared with older genes found across all vertebrates. More recently evolved genes had fewer interactions (either genetic or physical), were associated with fewer Gene Ontology terms and had faster evolutionary rates compared with older genes. The introns of these positively selected genes also exhibited accelerated evolutionary rates, which may reflect additional adaptive pressure in the intronic regions that are associated with regulatory processes that influence tooth-gene networks. The positively selected genes were mainly involved in processes like mineralization and structural organization of tooth specific tissues such as enamel and dentin. Of the 236 analyzed genes, 12 mammalian-specific genes (younger genes) provided insights on diversification of mammalian teeth as they have higher evolutionary rates and exhibit different expression profiles compared with older genes. Our results suggest that the evolution and development of mammalian dentition occurred in part through positive selection acting on genes that previously had other functions. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  4. Disparities in allele frequencies and population differentiation for 101 disease-associated single nucleotide polymorphisms between Puerto Ricans and non-Hispanic whites

    Directory of Open Access Journals (Sweden)

    Arnett Donna

    2009-08-01

    Full Text Available Abstract Background Variations in gene allele frequencies can contribute to differences in the prevalence of some common complex diseases among populations. Natural selection modulates the balance in allele frequencies across populations. Population differentiation (FST can evidence environmental selection pressures. Such genetic information is limited in Puerto Ricans, the second largest Hispanic ethnic group in the US, and a group with high prevalence of chronic disease. We determined allele frequencies and population differentiation for 101 single nucleotide polymorphisms (SNPs in 30 genes involved in major metabolic and disease-relevant pathways in Puerto Ricans (n = 969, ages 45–75 years and compared them to similarly aged non-Hispanic whites (NHW (n = 597. Results Minor allele frequency (MAF distributions for 45.5% of the SNPs assessed in Puerto Ricans were significantly different from those of NHW. Puerto Ricans carried risk alleles in higher frequency and protective alleles in lower frequency than NHW. Patterns of population differentiation showed that Puerto Ricans had SNPs with exceptional FST values in intronic, non-synonymous and promoter regions. NHW had exceptional FST values in intronic and promoter region SNPs only. Conclusion These observations may serve to explain and broaden studies on the impact of gene polymorphisms on chronic diseases affecting Puerto Ricans.

  5. Position paper - peer review and design verification of selected activities

    International Nuclear Information System (INIS)

    Stine, M.D.

    1994-09-01

    Position Paper to develop and document a position on the performance of independent peer reviews on selected design and analysis components of the Title I (preliminary) and Title II (detailed) design phases of the Multi-Function Waste Tank Facility project

  6. Selection of Plasmodium falciparum Multidrug Resistance Gene 1 Alleles in Asexual Stages and Gametocytes by Artemether-Lumefantrine in Nigerian Children with Uncomplicated Falciparum Malaria ▿

    Science.gov (United States)

    Happi, C. T.; Gbotosho, G. O.; Folarin, O. A.; Sowunmi, A.; Hudson, T.; O'Neil, M.; Milhous, W.; Wirth, D. F.; Oduola, A. M. J.

    2009-01-01

    We assessed Plasmodium falciparum mdr1 (Pfmdr1) gene polymorphisms and copy numbers as well as P. falciparum Ca2+ ATPase (PfATPase6) gene polymorphisms in 90 Nigerian children presenting with uncomplicated falciparum malaria and enrolled in a study of the efficacy of artemether-lumefantrine (AL). The nested PCR-restriction fragment length polymorphism and the quantitative real-time PCR methodologies were used to determine the alleles of the Pfmdr1 and PfATPase6 genes and the Pfmdr1 copy number variation, respectively, in patients samples collected prior to treatment and at the reoccurrence of parasites during a 42-day follow-up. The Pfmdr1 haplotype 86N-184F-1246D was significantly associated (P copy of the Pfmdr1 gene and the wild-type allele (L89) at codon 89 of the PfATPase6 gene. These findings suggest that polymorphisms in the Pfmdr1 gene are under AL selection pressure. Pfmdr1 polymorphisms may result in reduction in the therapeutic efficacy of this newly adopted combination treatment for uncomplicated falciparum malaria in Saharan countries of Africa. PMID:19075074

  7. Comparison between subjects with long- and short-allele carriers in the BOLD signal within amygdala during emotional tasks

    Science.gov (United States)

    Hadi, Shamil; Siadat, Mohamad R.; Babajani-Feremi, Abbas

    2012-03-01

    Emotional tasks may result in a strong blood oxygen level-dependent (BOLD) signal in the amygdala in 5- HTTLRP short-allele. Reduced anterior cingulate cortex (ACC)-amygdala connectivity in short-allele provides a potential mechanistic account for the observed increase in amygdala activity. In our study, fearful and threatening facial expressions were presented to two groups of 12 subjects with long- and short-allele carriers. The BOLD signals of the left amygdala of each group were averaged to increase the signal-to-noise ratio. A Bayesian approach was used to estimate the model parameters to elucidate the underlying hemodynamic mechanism. Our results showed a positive BOLD signal in the left amygdala for short-allele individuals, and a negative BOLD signal in the same region for long-allele individuals. This is due to the fact that short-allele is associated with lower availability of serotonin transporter (5-HTT) and this leads to an increase of serotonin (5-HT) concentration in the cACC-amygdala synapse.

  8. How to Make a Dolphin: Molecular Signature of Positive Selection in Cetacean Genome.

    Directory of Open Access Journals (Sweden)

    Mariana F Nery

    Full Text Available Cetaceans are unique in being the only mammals completely adapted to an aquatic environment. This adaptation has required complex changes and sometimes a complete restructuring of physiology, behavior and morphology. Identifying genes that have been subjected to selection pressure during cetacean evolution would greatly enhance our knowledge of the ways in which genetic variation in this mammalian order has been shaped by natural selection. Here, we performed a genome-wide scan for positive selection in the dolphin lineage. We employed models of codon substitution that account for variation of selective pressure over branches on the tree and across sites in a sequence. We analyzed 7,859 nuclear-coding ortholog genes and using a series of likelihood ratio tests (LRTs, we identified 376 genes (4.8% with molecular signatures of positive selection in the dolphin lineage. We used the cow as the sister group and compared estimates of selection in the cetacean genome to this using the same methods. This allowed us to define which genes have been exclusively under positive selection in the dolphin lineage. The enrichment analysis found that the identified positively selected genes are significantly over-represented for three exclusive functional categories only in the dolphin lineage: segment specification, mesoderm development and system development. Of particular interest for cetacean adaptation to an aquatic life are the following GeneOntology targets under positive selection: genes related to kidney, heart, lung, eye, ear and nervous system development.

  9. The link between some alleles on human leukocyte antigen system and autism in children.

    Science.gov (United States)

    Mostafa, Gehan A; Shehab, Abeer A; Al-Ayadhi, Laila Y

    2013-02-15

    The reason behind the initiation of autoimmunity to brain in some patients with autism is not well understood. There is an association between some autoimmune disorders and specific alleles of human leukocyte antigen (HLA) system. Thus, we examined the frequency of some HLA-DRB1 alleles in 100 autistic children and 100 healthy matched-children by differential hybridization with sequence-specific oligonucleotide probes. The risk of association between acquisition or absence of these alleles and autism and also a history of autoimmune diseases in autistic relatives was studied. Autistic children had significantly higher frequency of HLA-DRB1*11 allele than controls (P<0.001). In contrast, autistic children had significantly lower frequency of HLA-DRB1*03 allele than controls (P<0.001). Acquisition of HLA-DRB1*011 and absence of HLA-DRB1*3 had significant risk for association with autism (odds ratio: 3.21 and 0.17, respectively; 95% CI: 1.65-6.31 and 0.06-0.45, respectively). HLA-DRB1*11 had a significant risk for association with a family history of autoimmunity in autistic children (odds ratio: 5.67; 95% CI: 2.07-16.3). In conclusions, the link of some HLA alleles to autism and to family history of autoimmunity indicates the possible contributing role of these alleles to autoimmunity in some autistic children. Despite a relatively small sample size, we are the first to report a probable protective association of HLA-DRB1*03 allele with autism. It warrants a replication study of a larger sample to validate the HLA-DRB1 genetic association with autism. This is important to determine whether therapeutic modulations of the immune function are legitimate avenues for novel therapy in selected cases of autism. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Pyramiding of transgenic Pm3 alleles in wheat results in improved powdery mildew resistance in the field.

    Science.gov (United States)

    Koller, Teresa; Brunner, Susanne; Herren, Gerhard; Hurni, Severine; Keller, Beat

    2018-04-01

    The combined effects of enhanced total transgene expression level and allele-specificity combination in transgenic allele-pyramided Pm3 wheat lines result in improved powdery mildew field resistance without negative pleiotropic effects. Allelic Pm3 resistance genes of wheat confer race-specific resistance to powdery mildew (Blumeria graminis f. sp. tritici, Bgt) and encode nucleotide-binding domain, leucine-rich repeat (NLR) receptors. Transgenic wheat lines overexpressing alleles Pm3a, b, c, d, f, and g have previously been generated by transformation of cultivar Bobwhite and tested in field trials, revealing varying degrees of powdery mildew resistance conferred by the transgenes. Here, we tested four transgenic lines each carrying two pyramided Pm3 alleles, which were generated by crossbreeding of lines transformed with single Pm3 alleles. All four allele-pyramided lines showed strongly improved powdery mildew resistance in the field compared to their parental lines. The improved resistance results from the two effects of enhanced total transgene expression levels and allele-specificity combinations. In contrast to leaf segment tests on greenhouse-grown seedlings, no allelic suppression was observed in the field. Plant development and yield scores of the pyramided lines were similar to the mean scores of the corresponding parental lines, and thus, the allele pyramiding did not cause any negative effects. On the contrary, in pyramided line, Pm3b × Pm3f normal plant development was restored compared to the delayed development and reduced seed set of parental line Pm3f. Allele-specific RT qPCR revealed additive transgene expression levels of the two Pm3 alleles in the pyramided lines. A positive correlation between total transgene expression level and powdery mildew field resistance was observed. In summary, allele pyramiding of Pm3 transgenes proved to be successful in enhancing powdery mildew field resistance.

  11. Comparison of identical and functional Igh alleles reveals a nonessential role for Eμ in somatic hypermutation and class-switch recombination.

    Science.gov (United States)

    Li, Fubin; Yan, Yi; Pieretti, Joyce; Feldman, Danielle A; Eckhardt, Laurel A

    2010-11-15

    Somatic hypermutation (SHM), coupled with Ag selection, provides a mechanism for generating Abs with high affinity for invading pathogens. Class-switch recombination (CSR) ensures that these Abs attain pathogen-appropriate effector functions. Although the enzyme critical to both processes, activation-induced cytidine deaminase, has been identified, it remains unclear which cis-elements within the Ig loci are responsible for recruiting activation-induced cytidine deaminase and promoting its activity. Studies showed that Ig gene-transcription levels are positively correlated with the frequency of SHM and CSR, making the intronic, transcriptional enhancer Eμ a likely contributor to both processes. Tests of this hypothesis yielded mixed results arising, in part, from the difficulty in studying B cell function in mice devoid of Eμ. In Eμ's absence, V(H) gene assembly is dramatically impaired, arresting B cell development. The current study circumvented this problem by modifying the murine Igh locus through simultaneous insertion of a fully assembled V(H) gene and deletion of Eμ. The behavior of this allele was compared with that of a matched allele carrying the same V(H) gene but with Eμ intact. Although IgH transcription was as great or greater on the Eμ-deficient allele, CSR and SHM were consistently, but modestly, reduced relative to the allele in which Eμ remained intact. We conclude that Eμ contributes to, but is not essential for, these complex processes and that its contribution is not as a transcriptional enhancer but, rather, is at the level of recruitment and/or activation of the SHM/CSR machinery.

  12. Genotype distribution and allele frequencies of the genes associated with body composition and locomotion traits in Myanmar native horses.

    Science.gov (United States)

    Okuda, Yu; Moe, Hla Hla; Moe, Kyaw Kyaw; Shimizu, Yuki; Nishioka, Kenji; Shimogiri, Takeshi; Mannen, Hideyuki; Kanemaki, Misao; Kunieda, Tetsuo

    2017-08-01

    Myanmar native horses are small horses used mainly for drafting carts or carriages in rural areas and packing loads in mountainy areas. In the present study, we investigated genotype distributions and allele frequencies of the LCORL/NCAPG, MSTN and DMRT3 genes, which are associated with body composition and locomotion traits of horses, in seven local populations of Myanmar native horses. The genotyping result of LCORL/NCAPG showed that allele frequencies of C allele associated with higher withers height ranged from 0.08 to 0.27, and 0.13 in average. For MSTN, allele frequencies of C allele associated with higher proportion of Type 2B muscular fiber ranged from 0.05 to 0.23, and 0.09 in average. For DMRT3, allele frequencies of A allele associated with ambling gait ranged from 0 to 0.04, and 0.01 in average. The presences of the minor alleles of these genes at low frequencies suggest a possibility that these horse populations have not been under strong selection pressure for particular locomotion traits and body composition. Our findings of the presence of these minor alleles in Southeast Asian native horses are also informative for considering the origins of these minor alleles associated with body composition and locomotion traits in horse populations. © 2016 Japanese Society of Animal Science.

  13. TRPV6 alleles do not influence prostate cancer progression

    OpenAIRE

    Kessler, Thorsten; Wissenbach, Ulrich; Grobholz, Rainer; Flockerzi, Veit

    2009-01-01

    Abstract Background The transient receptor potential, subfamily V, member 6 (TRPV6) is a Ca2+ selective cation channel. Several studies have shown that TRPV6 transcripts are expressed in locally advanced prostatic adenocarcinoma, metastatic and androgen-insensitive prostatic lesions but are undetectable in healthy prostate tissue and benign prostatic hyperplasia. Two allelic variants of the human trpv6 gene have been identified which are transcribed into two independent mRNAs, TRPV6a and TRPV...

  14. Genome-wide analysis of positively selected genes in seasonal and non-seasonal breeding species.

    Directory of Open Access Journals (Sweden)

    Yuhuan Meng

    Full Text Available Some mammals breed throughout the year, while others breed only at certain times of year. These differences in reproductive behavior can be explained by evolution. We identified positively-selected genes in two sets of species with different degrees of relatedness including seasonal and non-seasonal breeding species, using branch-site models. After stringent filtering by sum of pairs scoring, we revealed that more genes underwent positive selection in seasonal compared with non-seasonal breeding species. Positively-selected genes were verified by cDNA mapping of the positive sites with the corresponding cDNA sequences. The design of the evolutionary analysis can effectively lower the false-positive rate and thus identify valid positive genes. Validated, positively-selected genes, including CGA, DNAH1, INVS, and CD151, were related to reproductive behaviors such as spermatogenesis and cell proliferation in non-seasonal breeding species. Genes in seasonal breeding species, including THRAP3, TH1L, and CMTM6, may be related to the evolution of sperm and the circadian rhythm system. Identification of these positively-selected genes might help to identify the molecular mechanisms underlying seasonal and non-seasonal reproductive behaviors.

  15. Plasminogen alleles influence susceptibility to invasive aspergillosis.

    Directory of Open Access Journals (Sweden)

    Aimee K Zaas

    2008-06-01

    Full Text Available Invasive aspergillosis (IA is a common and life-threatening infection in immunocompromised individuals. A number of environmental and epidemiologic risk factors for developing IA have been identified. However, genetic factors that affect risk for developing IA have not been clearly identified. We report that host genetic differences influence outcome following establishment of pulmonary aspergillosis in an exogenously immune suppressed mouse model. Computational haplotype-based genetic analysis indicated that genetic variation within the biologically plausible positional candidate gene plasminogen (Plg; Gene ID 18855 correlated with murine outcome. There was a single nonsynonymous coding change (Gly110Ser where the minor allele was found in all of the susceptible strains, but not in the resistant strains. A nonsynonymous single nucleotide polymorphism (Asp472Asn was also identified in the human homolog (PLG; Gene ID 5340. An association study within a cohort of 236 allogeneic hematopoietic stem cell transplant (HSCT recipients revealed that alleles at this SNP significantly affected the risk of developing IA after HSCT. Furthermore, we demonstrated that plasminogen directly binds to Aspergillus fumigatus. We propose that genetic variation within the plasminogen pathway influences the pathogenesis of this invasive fungal infection.

  16. Human minisatellite alleles detectable only after PCR amplification.

    Science.gov (United States)

    Armour, J A; Crosier, M; Jeffreys, A J

    1992-01-01

    We present evidence that a proportion of alleles at two human minisatellite loci is undetected by standard Southern blot hybridization. In each case the missing allele(s) can be identified after PCR amplification and correspond to tandem arrays too short to detect by hybridization. At one locus, there is only one undetected allele (population frequency 0.3), which contains just three repeat units. At the second locus, there are at least five undetected alleles (total population frequency 0.9) containing 60-120 repeats; they are not detected because these tandem repeats give very poor signals when used as a probe in standard Southern blot hybridization, and also cross-hybridize with other sequences in the genome. Under these circumstances only signals from the longest tandemly repeated alleles are detectable above the nonspecific background. The structures of these loci have been compared in human and primate DNA, and at one locus the short human allele containing three repeat units is shown to be an intermediate state in the expansion of a monomeric precursor allele in primates to high copy number in the longer human arrays. We discuss the implications of such loci for studies of human populations, minisatellite isolation by cloning, and the evolution of highly variable tandem arrays.

  17. Repeated adaptive introgression at a gene under multiallelic balancing selection.

    Directory of Open Access Journals (Sweden)

    Vincent Castric

    2008-08-01

    Full Text Available Recently diverged species typically have incomplete reproductive barriers, allowing introgression of genetic material from one species into the genomic background of the other. The role of natural selection in preventing or promoting introgression remains contentious. Because of genomic co-adaptation, some chromosomal fragments are expected to be selected against in the new background and resist introgression. In contrast, natural selection should favor introgression for alleles at genes evolving under multi-allelic balancing selection, such as the MHC in vertebrates, disease resistance, or self-incompatibility genes in plants. Here, we test the prediction that negative, frequency-dependent selection on alleles at the multi-allelic gene controlling pistil self-incompatibility specificity in two closely related species, Arabidopsis halleri and A. lyrata, caused introgression at this locus at a higher rate than the genomic background. Polymorphism at this gene is largely shared, and we have identified 18 pairs of S-alleles that are only slightly divergent between the two species. For these pairs of S-alleles, divergence at four-fold degenerate sites (K = 0.0193 is about four times lower than the genomic background (K = 0.0743. We demonstrate that this difference cannot be explained by differences in effective population size between the two types of loci. Rather, our data are most consistent with a five-fold increase of introgression rates for S-alleles as compared to the genomic background, making this study the first documented example of adaptive introgression facilitated by balancing selection. We suggest that this process plays an important role in the maintenance of high allelic diversity and divergence at the S-locus in flowering plant families. Because genes under balancing selection are expected to be among the last to stop introgressing, their comparison in closely related species provides a lower-bound estimate of the time since the

  18. Allelic Variation of Cytochrome P450s Drives Resistance to Bednet Insecticides in a Major Malaria Vector.

    Science.gov (United States)

    Ibrahim, Sulaiman S; Riveron, Jacob M; Bibby, Jaclyn; Irving, Helen; Yunta, Cristina; Paine, Mark J I; Wondji, Charles S

    2015-10-01

    Scale up of Long Lasting Insecticide Nets (LLINs) has massively contributed to reduce malaria mortality across Africa. However, resistance to pyrethroid insecticides in malaria vectors threatens its continued effectiveness. Deciphering the detailed molecular basis of such resistance and designing diagnostic tools is critical to implement suitable resistance management strategies. Here, we demonstrated that allelic variation in two cytochrome P450 genes is the most important driver of pyrethroid resistance in the major African malaria vector Anopheles funestus and detected key mutations controlling this resistance. An Africa-wide polymorphism analysis of the duplicated genes CYP6P9a and CYP6P9b revealed that both genes are directionally selected with alleles segregating according to resistance phenotypes. Modelling and docking simulations predicted that resistant alleles were better metabolizers of pyrethroids than susceptible alleles. Metabolism assays performed with recombinant enzymes of various alleles confirmed that alleles from resistant mosquitoes had significantly higher activities toward pyrethroids. Additionally, transgenic expression in Drosophila showed that flies expressing resistant alleles of both genes were significantly more resistant to pyrethroids compared with those expressing the susceptible alleles, indicating that allelic variation is the key resistance mechanism. Furthermore, site-directed mutagenesis and functional analyses demonstrated that three amino acid changes (Val109Ile, Asp335Glu and Asn384Ser) from the resistant allele of CYP6P9b were key pyrethroid resistance mutations inducing high metabolic efficiency. The detection of these first DNA markers of metabolic resistance to pyrethroids allows the design of DNA-based diagnostic tools to detect and track resistance associated with bednets scale up, which will improve the design of evidence-based resistance management strategies.

  19. Genomic structural variation-mediated allelic suppression causes hybrid male sterility in rice.

    Science.gov (United States)

    Shen, Rongxin; Wang, Lan; Liu, Xupeng; Wu, Jiang; Jin, Weiwei; Zhao, Xiucai; Xie, Xianrong; Zhu, Qinlong; Tang, Huiwu; Li, Qing; Chen, Letian; Liu, Yao-Guang

    2017-11-03

    Hybrids between divergent populations commonly show hybrid sterility; this reproductive barrier hinders hybrid breeding of the japonica and indica rice (Oryza sativa L.) subspecies. Here we show that structural changes and copy number variation at the Sc locus confer japonica-indica hybrid male sterility. The japonica allele, Sc-j, contains a pollen-essential gene encoding a DUF1618-domain protein; the indica allele, Sc-i, contains two or three tandem-duplicated ~ 28-kb segments, each carrying an Sc-j-homolog with a distinct promoter. In Sc-j/Sc-i hybrids, the high-expression of Sc-i in sporophytic cells causes suppression of Sc-j expression in pollen and selective abortion of Sc-j-pollen, leading to transmission ratio distortion. Knocking out one or two of the three Sc-i copies by CRISPR/Cas9 rescues Sc-j expression and male fertility. Our results reveal the gene dosage-dependent allelic suppression as a mechanism of hybrid incompatibility, and provide an effective approach to overcome the reproductive barrier for hybrid breeding.

  20. Knockdown resistance, Rdl alleles, and the annual entomological Inoculation rate of wild mosquito populations from Lower Moshi, Northern Tanzania

    Directory of Open Access Journals (Sweden)

    Aneth M Mahande

    2012-01-01

    Full Text Available Aim: Understanding vector behavioral response due to ecological factors is important in the control of disease vectors. This study was conducted to determine the knockdown resistance (kdr alleles, dieldrin resistance alleles, and entomological inoculation rates (EIRs of malaria vectors in lower Moshi irrigation schemes for the mitigation of disease transmission. Materials and Methods: The study was longitudinal design conducted for 14 months. Mosquitoes were collected fortnightly by using a CDC miniature light trap in 20 houses. Mosquitoes were identified morphologically in the field, of which 10% of this population was identified to species level by using molecular techniques. Samples from this study population were taken for kdr and resistance to dieldrin (rdl genes detection. Results: A total of 6220 mosquitoes were collected by using a light trap, of which 86.0% (n=5350 were Anopheles gambiae sensu lato and 14.0% (n=870 were Culex quinquefasciatus. Ten percent of the An. gambiae s.l. (n=535 collected were taken for species identification, of which 99.8% (n=534 were identified as An. arabiensis while 0.2% (n=1 were An. gambiae sensu stricto. Of the selected mosquitoes, 3.5% (n=19 were sporozoite positive. None of the mosquitoes tested had the kdr gene. The rdl resistant allele was detected at a frequency of 0.48 throughout the year. EIR was determined to be 0.54 ib/trap/year. Conclusion: The findings of this study suggest that the homozygous and the heterozygous resistance present in rdl genes demonstrated the effect of pesticide residues on resistance selection pressure in mosquitoes. A better insecticide usage protocol needs to be developed for farmers to use in order to avoid excessive use of pesticides. Key words: An. arabiensis, EIR, Knockdown mutation, Moshi, rdl locus, Tanzania

  1. Allelic genealogies in sporophytic self-incompatibility systems in plants

    DEFF Research Database (Denmark)

    Schierup, Mikkel Heide; Vekemans, Xavier; Christiansen, Freddy Bugge

    1998-01-01

    , alleles act codominantly in both pollen and style, in the SSIdom model, alleles form a dominance hierarchy, and in SSIdomcod, alleles are codominant in the style and show a dominance hierarchy in the pollen. Coalescence times of alleles rarely differ more than threefold from those under gametophytic self...

  2. Genome-scale detection of positive selection in nine primates predicts human-virus evolutionary conflicts.

    Science.gov (United States)

    van der Lee, Robin; Wiel, Laurens; van Dam, Teunis J P; Huynen, Martijn A

    2017-10-13

    Hotspots of rapid genome evolution hold clues about human adaptation. We present a comparative analysis of nine whole-genome sequenced primates to identify high-confidence targets of positive selection. We find strong statistical evidence for positive selection in 331 protein-coding genes (3%), pinpointing 934 adaptively evolving codons (0.014%). Our new procedure is stringent and reveals substantial artefacts (20% of initial predictions) that have inflated previous estimates. The final 331 positively selected genes (PSG) are strongly enriched for innate and adaptive immunity, secreted and cell membrane proteins (e.g. pattern recognition, complement, cytokines, immune receptors, MHC, Siglecs). We also find evidence for positive selection in reproduction and chromosome segregation (e.g. centromere-associated CENPO, CENPT), apolipoproteins, smell/taste receptors and mitochondrial proteins. Focusing on the virus-host interaction, we retrieve most evolutionary conflicts known to influence antiviral activity (e.g. TRIM5, MAVS, SAMHD1, tetherin) and predict 70 novel cases through integration with virus-human interaction data. Protein structure analysis further identifies positive selection in the interaction interfaces between viruses and their cellular receptors (CD4-HIV; CD46-measles, adenoviruses; CD55-picornaviruses). Finally, primate PSG consistently show high sequence variation in human exomes, suggesting ongoing evolution. Our curated dataset of positive selection is a rich source for studying the genetics underlying human (antiviral) phenotypes. Procedures and data are available at https://github.com/robinvanderlee/positive-selection. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. Isolation and genetic characterization of mother-of-snow-white, a maternal effect allele affecting laterality and lateralized behaviors in zebrafish.

    Directory of Open Access Journals (Sweden)

    Alice Domenichini

    Full Text Available In the present work we report evidence compatible with a maternal effect allele affecting left-right development and functional lateralization in vertebrates. Our study demonstrates that the increased frequency of reversed brain asymmetries in a zebrafish line isolated through a behavioral assay is due to selection of mother-of-snow-white (msw, a maternal effect allele involved in early stages of left-right development in zebrafish. msw homozygous females could be identified by screening of their progeny for the position of the parapineal organ because in about 50% of their offspring we found an altered, either bilateral or right-sided, expression of lefty1 and spaw. Deeper investigations at earlier stages of development revealed that msw is involved in the specification and differentiation of precursors of the Kupffer's vesicle, a structure homologous to the mammalian node. To test the hypothesis that msw, by controlling Kupffer's vesicle morphogenesis, controls lateralized behaviors related to diencephalic asymmetries, we analyzed left- and right-parapineal offspring in a "viewing test". As a result, left- and right-parapineal individuals showed opposite and complementary eye preference when scrutinizing a model predator, and a different degree of lateralization when scrutinizing a virtual companion. As maternal effect genes are expected to evolve more rapidly when compared to zygotic ones, our results highlight the driving force of maternal effect alleles in the evolution of vertebrates behaviors.

  4. Identification of SSR and RAPD markers linked to a resistance allele for angular leaf spot in the common bean (Phaseolus vulgaris line ESAL 550

    Directory of Open Access Journals (Sweden)

    Gilvan Ferreira da Silva

    2003-12-01

    Full Text Available The objective of this study was to identify RAPD and SSR markers associated with a resistant allele for angular leaf spot (Phaeoisariopsis griseola from the line 'ESAL 550', derived from the Andean 'Jalo EEP 558' cultivar, to assist selection of resistant genotypes. The resistant line 'ESAL 550' and the susceptible cultivar 'Carioca MG' were crossed to generate F1 and F2 populations. One hundred and twenty F2:3 families were evaluated. The DNA of the 12 most resistant families was bulked and the same was done with the DNA of the 10 most susceptible, generating two contrasting bulks. One RAPD and one SSR marker was found to be linked in coupling phase to the resistant allele. The SSR marker was amplified by the primer PV-atct001(282C, and its distance from the resistant allele was 7.6 cM. This is the most useful marker for indirect selection of resistant plants in segregating populations. The RAPD marker was amplified by the primer OPP07(857C linked in coupling phase to the resistant allele, and distant 24.4 cM. Therefore, this RAPD marker is not so useful in assisting selection because it is too far from the resistant allele.

  5. pfmdr1 Amplification and Fixation of pfcrt Chloroquine Resistance Alleles in Plasmodium falciparum in Venezuela ▿ †

    Science.gov (United States)

    Griffing, Sean; Syphard, Luke; Sridaran, Sankar; McCollum, Andrea M.; Mixson-Hayden, Tonya; Vinayak, Sumiti; Villegas, Leopoldo; Barnwell, John W.; Escalante, Ananias A.; Udhayakumar, Venkatachalam

    2010-01-01

    Molecular tools are valuable for determining evolutionary history and the prevalence of drug-resistant malaria parasites. These tools have helped to predict decreased sensitivity to antimalarials and fixation of multidrug resistance genotypes in some regions. In order to assess how historical drug policies impacted Plasmodium falciparum in Venezuela, we examined molecular changes in genes associated with drug resistance. We examined pfmdr1 and pfcrt in samples from Sifontes, Venezuela, and integrated our findings with earlier work describing dhfr and dhps in these samples. We characterized pfmdr1 genotypes and copy number variation, pfcrt genotypes, and proximal microsatellites in 93 samples originating from surveillance from 2003 to 2004. Multicopy pfmdr1 was found in 12% of the samples. Two pfmdr1 alleles, Y184F/N1042D/D1246Y (37%) and Y184F/S1034C/N1042D/D1246Y (63%), were found. These alleles share ancestry, and no evidence of strong selective pressure on mutations was found. pfcrt chloroquine resistance alleles are fixed with two alleles: StctVMNT (91%) and SagtVMNT (9%). These alleles are associated with strong selection. There was also an association between pfcrt, pfmdr1, dhfr, and dhps genotypes/haplotypes. Duplication of pfmdr1 suggests a potential shift in mefloquine sensitivity in this region, which warrants further study. A bottleneck occurred in P. falciparum in Sifontes, Venezuela, and multidrug resistance genotypes are present. This population could be targeted for malaria elimination programs to prevent the possible spread of multidrug-resistant parasites. PMID:20145087

  6. Positive diversifying selection is a pervasive adaptive force throughout the Drosophila radiation

    DEFF Research Database (Denmark)

    Cicconardi, Francesco; Marcatili, Paolo; Arthofer, Wolfgang

    2017-01-01

    The growing genomic information on non-model organisms eases exploring the evolutionary history of biodiversity. This is particularly true for Drosophila flies, in which the number of sequenced species doubled recently. Because of its outstanding diversity of species, Drosophila has become one....... grimshawi, a strong putative signal of positive diversifying selection was found related to cell, morphological, neuronal, and sensorial development and function. A recurrent signal of positive diversifying selection was found on genes related to aging and lifespan, suggesting that selection had shaped...

  7. Development of allele-specific multiplex PCR to determine the length of poly-T in intron 8 of CFTR

    Directory of Open Access Journals (Sweden)

    Neng Chen

    2014-07-01

    Full Text Available Cystic fibrosis transmembrane conductance regulator (CFTR gene mutation analysis has been implemented for Cystic Fibrosis (CF carrier screening, and molecular diagnosis of CF and congenital bilateral absence of the vas deferens (CBAVD. Although poly-T allele analysis in intron 8 of CFTR is required when a patient is positive for R117H, it is not recommended for routine carrier screening. Therefore, commercial kits for CFTR mutation analysis were designed either to mask the poly-T allele results, unless a patient is R117H positive, or to have the poly-T analysis as a standalone reflex test using the same commercial platform. There are other standalone assays developed to detect poly-T alleles, such as heteroduplex analysis, High Resolution Melting (HRM curve analysis, allele-specific PCR (AS-PCR and Sanger sequencing. In this report, we developed a simple and easy-to-implement multiplex AS-PCR assay using unlabeled standard length primers, which can be used as a reflex or standalone test for CFTR poly-T track analysis. Out of 115 human gDNA samples tested, results from our new AS-PCR matched to the previous known poly-T results or results from Sanger sequencing.

  8. Allelic frequencies and association with carcass traits of six genes in local subpopulations of Japanese Black cattle.

    Science.gov (United States)

    Nishimaki, Takahiro; Ibi, Takayuki; Siqintuya; Kobayashi, Naohiko; Matsuhashi, Tamako; Akiyama, Takayuki; Yoshida, Emi; Imai, Kazumi; Matsui, Mayu; Uemura, Keiichi; Eto, Hisayoshi; Watanabe, Naoto; Fujita, Tatsuo; Saito, Yosuke; Komatsu, Tomohiko; Hoshiba, Hiroshi; Mannen, Hideyuki; Sasazaki, Shinji; Kunieda, Tetsuo

    2016-04-01

    Marker-assisted selection (MAS) is expected to accelerate the genetic improvement of Japanese Black cattle. However, verification of the effects of the genes for MAS in different subpopulations is required prior to the application of MAS. In this study, we investigated the allelic frequencies and genotypic effects for carcass traits of six genes, which can be used in MAS, in eight local subpopulations. These genes are SCD, FASN and SREBP1, which are associated with the fatty acid composition of meat, and NCAPG, MC1R and F11, which are associated with carcass weight, coat color and blood coagulation abnormality, respectively. The frequencies of desirable alleles of SCD and FASN were relatively high and that of NCAPG was relatively low, and NCAPG was significantly associated with several carcass traits, including carcass weight. The proportions of genotypic variance explained by NCAPG to phenotypic variance were 4.83 for carcass weight. We thus confirmed that NCAPG is a useful marker for selection of carcass traits in these subpopulations. In addition, we found that the desirable alleles of six genes showed no negative effects on carcass traits. Therefore, selection using these genes to improve target traits should not have negative impacts on carcass traits. © 2015 Japanese Society of Animal Science.

  9. TRPV6 alleles do not influence prostate cancer progression

    International Nuclear Information System (INIS)

    Kessler, Thorsten; Wissenbach, Ulrich; Grobholz, Rainer; Flockerzi, Veit

    2009-01-01

    The transient receptor potential, subfamily V, member 6 (TRPV6) is a Ca 2+ selective cation channel. Several studies have shown that TRPV6 transcripts are expressed in locally advanced prostatic adenocarcinoma, metastatic and androgen-insensitive prostatic lesions but are undetectable in healthy prostate tissue and benign prostatic hyperplasia. Two allelic variants of the human trpv6 gene have been identified which are transcribed into two independent mRNAs, TRPV6a and TRPV6b. We now asked, whether the trpv6a allele is correlated with the onset of prostate cancer, with the Gleason score and the tumour stage. Genomic DNA of prostate cancer patients and control individuals was isolated from resections of prostatic adenocarcinomas and salivary fluid respectively. Genotyping of SNPs of the TRPV6 gene was performed by restriction length polymorphism or by sequencing analysis. RNA used for RT-PCR was isolated from prostate tissue. Data sets were analyzed by Chi-Square test. We first characterized in detail the five polymorphisms present in the protein coding exons of the trpv6 gene and show that these polymorphisms are coupled and are underlying the TRPV6a and the TRPV6b variants. Next we analysed the frequencies of the two TRPV6 alleles using genomic DNA from saliva samples of 169 healthy individuals. The homozygous TRPV6b genotype predominated with 86%, whereas no homozygous TRPV6a carriers could be identified. The International HapMap Project identified a similar frequency for an Utah based population whereas in an African population the a-genotype prevailed. The incidence of prostate cancer is several times higher in African populations than in non-African and we then investigated the TRPV6a/b frequencies in 141 samples of prostatic adenocarcinoma. The TRPV6b allele was found in 87% of the samples without correlation with Gleason score and tumour stage. Our results show that the frequencies of trpv6 alleles in healthy control individuals and prostate cancer patients

  10. TRPV6 alleles do not influence prostate cancer progression.

    Science.gov (United States)

    Kessler, Thorsten; Wissenbach, Ulrich; Grobholz, Rainer; Flockerzi, Veit

    2009-10-26

    The transient receptor potential, subfamily V, member 6 (TRPV6) is a Ca(2+) selective cation channel. Several studies have shown that TRPV6 transcripts are expressed in locally advanced prostatic adenocarcinoma, metastatic and androgen-insensitive prostatic lesions but are undetectable in healthy prostate tissue and benign prostatic hyperplasia. Two allelic variants of the human trpv6 gene have been identified which are transcribed into two independent mRNAs, TRPV6a and TRPV6b. We now asked, whether the trpv6a allele is correlated with the onset of prostate cancer, with the Gleason score and the tumour stage. Genomic DNA of prostate cancer patients and control individuals was isolated from resections of prostatic adenocarcinomas and salivary fluid respectively. Genotyping of SNPs of the TRPV6 gene was performed by restriction length polymorphism or by sequencing analysis. RNA used for RT-PCR was isolated from prostate tissue. Data sets were analyzed by Chi-Square test. We first characterized in detail the five polymorphisms present in the protein coding exons of the trpv6 gene and show that these polymorphisms are coupled and are underlying the TRPV6a and the TRPV6b variants. Next we analysed the frequencies of the two TRPV6 alleles using genomic DNA from saliva samples of 169 healthy individuals. The homozygous TRPV6b genotype predominated with 86%, whereas no homozygous TRPV6a carriers could be identified. The International HapMap Project identified a similar frequency for an Utah based population whereas in an African population the a-genotype prevailed. The incidence of prostate cancer is several times higher in African populations than in non-African and we then investigated the TRPV6a/b frequencies in 141 samples of prostatic adenocarcinoma. The TRPV6b allele was found in 87% of the samples without correlation with Gleason score and tumour stage. Our results show that the frequencies of trpv6 alleles in healthy control individuals and prostate cancer patients

  11. TRPV6 alleles do not influence prostate cancer progression

    Directory of Open Access Journals (Sweden)

    Flockerzi Veit

    2009-10-01

    Full Text Available Abstract Background The transient receptor potential, subfamily V, member 6 (TRPV6 is a Ca2+ selective cation channel. Several studies have shown that TRPV6 transcripts are expressed in locally advanced prostatic adenocarcinoma, metastatic and androgen-insensitive prostatic lesions but are undetectable in healthy prostate tissue and benign prostatic hyperplasia. Two allelic variants of the human trpv6 gene have been identified which are transcribed into two independent mRNAs, TRPV6a and TRPV6b. We now asked, whether the trpv6a allele is correlated with the onset of prostate cancer, with the Gleason score and the tumour stage. Methods Genomic DNA of prostate cancer patients and control individuals was isolated from resections of prostatic adenocarcinomas and salivary fluid respectively. Genotyping of SNPs of the TRPV6 gene was performed by restriction length polymorphism or by sequencing analysis. RNA used for RT-PCR was isolated from prostate tissue. Data sets were analyzed by Chi-Square test. Results We first characterized in detail the five polymorphisms present in the protein coding exons of the trpv6 gene and show that these polymorphisms are coupled and are underlying the TRPV6a and the TRPV6b variants. Next we analysed the frequencies of the two TRPV6 alleles using genomic DNA from saliva samples of 169 healthy individuals. The homozygous TRPV6b genotype predominated with 86%, whereas no homozygous TRPV6a carriers could be identified. The International HapMap Project identified a similar frequency for an Utah based population whereas in an African population the a-genotype prevailed. The incidence of prostate cancer is several times higher in African populations than in non-African and we then investigated the TRPV6a/b frequencies in 141 samples of prostatic adenocarcinoma. The TRPV6b allele was found in 87% of the samples without correlation with Gleason score and tumour stage. Conclusion Our results show that the frequencies of trpv6

  12. Genetical polymorphism of acc synthase and ACC oxidase in Apple selections bred in Čačak

    Directory of Open Access Journals (Sweden)

    Marić Slađana

    2005-01-01

    Full Text Available The work on breeding new apple cultivars, of improved quality and longer storage life has been going on for a long time at the Fruit and Grape Research Centre in Čačak. As a result nine promising apple selections, that show the range of fruit storage capability (J/l/7, J/l/20, J/2/12, J/2/14, J/ll/31, J/54/53/59, J/60/7/63, Šumatovka 1 O.P. and Šumatovka 2 O.P., were singled out. Fruit ripening is genetically programmed, complex physiological process with the important role of plant hormone ethylene. Allelic polymorphism of the genes encoding ACC synthase and ACC oxidase, enzymes on ethylene biosynthetic pathway, was studied in promising apple selections and compared to their storage life. Polymorphism was detected by the polymerase chain reaction (PCR method and restriction analysis with 6 restriction enzymes. Two alleles of the gene encoding ACC synthase (ACS1-1 and ACS1-2, three alleles of the ACC oxidase gene (a, b and n were identified and a positive test for early seedling selection, the fruits of which will be characterized by long storage life, was indicated.

  13. Positive selection neighboring functionally essential sites and disease-implicated regions of mammalian reproductive proteins.

    LENUS (Irish Health Repository)

    Morgan, Claire C

    2010-01-01

    ABSTRACT: BACKGROUND: Reproductive proteins are central to the continuation of all mammalian species. The evolution of these proteins has been greatly influenced by environmental pressures induced by pathogens, rival sperm, sexual selection and sexual conflict. Positive selection has been demonstrated in many of these proteins with particular focus on primate lineages. However, the mammalia are a diverse group in terms of mating habits, population sizes and germ line generation times. We have examined the selective pressures at work on a number of novel reproductive proteins across a wide variety of mammalia. RESULTS: We show that selective pressures on reproductive proteins are highly varied. Of the 10 genes analyzed in detail, all contain signatures of positive selection either across specific sites or in specific lineages or a combination of both. Our analysis of SP56 and Col1a1 are entirely novel and the results show positively selected sites present in each gene. Our findings for the Col1a1 gene are suggestive of a link between positive selection and severe disease type. We find evidence in our dataset to suggest that interacting proteins are evolving in symphony: most likely to maintain interacting functionality. CONCLUSION: Our in silico analyses show positively selected sites are occurring near catalytically important regions suggesting selective pressure to maximize efficient fertilization. In those cases where a mechanism of protein function is not fully understood, the sites presented here represent ideal candidates for mutational study. This work has highlighted the widespread rate heterogeneity in mutational rates across the mammalia and specifically has shown that the evolution of reproductive proteins is highly varied depending on the species and interacting partners. We have shown that positive selection and disease are closely linked in the Col1a1 gene.

  14. Selective Strolls: Fixation and Extinction in Diploids Are Slower for Weakly Selected Mutations Than for Neutral Ones.

    Science.gov (United States)

    Mafessoni, Fabrizio; Lachmann, Michael

    2015-12-01

    In finite populations, an allele disappears or reaches fixation due to two main forces, selection and drift. Selection is generally thought to accelerate the process: a selected mutation will reach fixation faster than a neutral one, and a disadvantageous one will quickly disappear from the population. We show that even in simple diploid populations, this is often not true. Dominance and recessivity unexpectedly slow down the evolutionary process for weakly selected alleles. In particular, slightly advantageous dominant and mildly deleterious recessive mutations reach fixation slightly more slowly than neutral ones (at most 5%). This phenomenon determines genetic signatures opposite to those expected under strong selection, such as increased instead of decreased genetic diversity around the selected site. Furthermore, we characterize a new phenomenon: mildly deleterious recessive alleles, thought to represent a wide fraction of newly arising mutations, on average survive in a population slightly longer than neutral ones, before getting lost. Consequently, these mutations are on average slightly older than neutral ones, in contrast with previous expectations. Furthermore, they slightly increase the amount of weakly deleterious polymorphisms, as a consequence of the longer unconditional sojourn times compared to neutral mutations. Copyright © 2015 by the Genetics Society of America.

  15. Assigning breed origin to alleles in crossbred animals.

    Science.gov (United States)

    Vandenplas, Jérémie; Calus, Mario P L; Sevillano, Claudia A; Windig, Jack J; Bastiaansen, John W M

    2016-08-22

    For some species, animal production systems are based on the use of crossbreeding to take advantage of the increased performance of crossbred compared to purebred animals. Effects of single nucleotide polymorphisms (SNPs) may differ between purebred and crossbred animals for several reasons: (1) differences in linkage disequilibrium between SNP alleles and a quantitative trait locus; (2) differences in genetic backgrounds (e.g., dominance and epistatic interactions); and (3) differences in environmental conditions, which result in genotype-by-environment interactions. Thus, SNP effects may be breed-specific, which has led to the development of genomic evaluations for crossbred performance that take such effects into account. However, to estimate breed-specific effects, it is necessary to know breed origin of alleles in crossbred animals. Therefore, our aim was to develop an approach for assigning breed origin to alleles of crossbred animals (termed BOA) without information on pedigree and to study its accuracy by considering various factors, including distance between breeds. The BOA approach consists of: (1) phasing genotypes of purebred and crossbred animals; (2) assigning breed origin to phased haplotypes; and (3) assigning breed origin to alleles of crossbred animals based on a library of assigned haplotypes, the breed composition of crossbred animals, and their SNP genotypes. The accuracy of allele assignments was determined for simulated datasets that include crosses between closely-related, distantly-related and unrelated breeds. Across these scenarios, the percentage of alleles of a crossbred animal that were correctly assigned to their breed origin was greater than 90 %, and increased with increasing distance between breeds, while the percentage of incorrectly assigned alleles was always less than 2 %. For the remaining alleles, i.e. 0 to 10 % of all alleles of a crossbred animal, breed origin could not be assigned. The BOA approach accurately assigns

  16. Signatures of positive selection in Toll-like receptor (TLR genes in mammals

    Directory of Open Access Journals (Sweden)

    Areal Helena

    2011-12-01

    Full Text Available Abstract Background Toll-like receptors (TLRs are a major class of pattern recognition receptors (PRRs expressed in the cell surface or membrane compartments of immune and non-immune cells. TLRs are encoded by a multigene family and represent the first line of defense against pathogens by detecting foreigner microbial molecular motifs, the pathogen-associated molecular patterns (PAMPs. TLRs are also important by triggering the adaptive immunity in vertebrates. They are characterized by the presence of leucine-rich repeats (LRRs in the ectodomain, which are associated with the PAMPs recognition. The direct recognition of different pathogens by TLRs might result in different evolutionary adaptations important to understand the dynamics of the host-pathogen interplay. Ten mammal TLR genes, viral (TLR3, 7, 8, 9 and non-viral (TLR1-6, 10, were selected to identify signatures of positive selection that might have been imposed by interacting pathogens and to clarify if viral and non-viral TLRs might display different patterns of molecular evolution. Results By using Maximum Likelihood approaches, evidence of positive selection was found in all the TLRs studied. The number of positively selected codons (PSC ranged between 2-26 codons (0.25%-2.65% with the non-viral TLR4 as the receptor with higher percentage of positively selected codons (2.65%, followed by the viral TLR8 (2.50%. The results indicated that viral and non-viral TLRs are similarly under positive selection. Almost all TLRs have at least one PSC located in the LRR ectodomain which underlies the importance of the pathogen recognition by this region. Conclusions Our results are not in line with previous studies on primates and birds that identified more codons under positive selection in non-viral TLRs. This might be explained by the fact that both primates and birds are homogeneous groups probably being affected by only a restricted number of related viruses with equivalent motifs to be

  17. Frequency of the CCRD32 allele in Brazilians: a study in colorectal cancer and in HTLV-I infection

    Directory of Open Access Journals (Sweden)

    Pereira Rinaldo W.

    2000-01-01

    Full Text Available The identification of a 32-bp deletion in the cc-chemokine receptor-5 gene (CCR5delta32 allele that renders homozygous individuals highly resistant to HIV infection has prompted worldwide investigations of the frequency of the CCR5delta32 allele in regional populations. It is important to ascertain if CCR5delta32 is a factor to be considered in the overall epidemiology of HIV in individual populations. With this in mind we determined the CCR5delta32 allele frequency in a large sample (907 individuals of the southeastern Brazilian urban population, stratified as follows: 322 healthy unrelated individuals, 354 unselected colorectal cancer patients, and 229 blood donors. The three groups displayed essentially identical allelic frequencies of CCR5delta32 and pairwise comparisons did not show significant differences. Thus, our results can be pooled to provide a reliable estimate of the CCR5delta32 allele frequency in the southeastern Brazil of 0.053 ± 0.005. The blood donors comprised 50 HTLV-I serologically negative individuals, 115 non-symptomatic individuals HTLV-I positive by ELISA but with indeterminate Western blot results, 49 healthy blood donors HTLV-I positive both at ELISA and Western blot and 15 patients with clinical spinal cord disease (HAM. A suggestive trend was observed, with the CCR5delta32 frequencies decreasing progressively in these four categories. However, when we applied Fischer's exact test no significant differences emerged. We believe that further studies in larger cohorts should be performed to ascertain whether the CCR5delta32 allele influences the chance of becoming infected or developing clinical symptoms of HTLV-I infection.

  18. ALEA: a toolbox for allele-specific epigenomics analysis.

    Science.gov (United States)

    Younesy, Hamid; Möller, Torsten; Heravi-Moussavi, Alireza; Cheng, Jeffrey B; Costello, Joseph F; Lorincz, Matthew C; Karimi, Mohammad M; Jones, Steven J M

    2014-04-15

    The assessment of expression and epigenomic status using sequencing based methods provides an unprecedented opportunity to identify and correlate allelic differences with epigenomic status. We present ALEA, a computational toolbox for allele-specific epigenomics analysis, which incorporates allelic variation data within existing resources, allowing for the identification of significant associations between epigenetic modifications and specific allelic variants in human and mouse cells. ALEA provides a customizable pipeline of command line tools for allele-specific analysis of next-generation sequencing data (ChIP-seq, RNA-seq, etc.) that takes the raw sequencing data and produces separate allelic tracks ready to be viewed on genome browsers. The pipeline has been validated using human and hybrid mouse ChIP-seq and RNA-seq data. The package, test data and usage instructions are available online at http://www.bcgsc.ca/platform/bioinfo/software/alea CONTACT: : mkarimi1@interchange.ubc.ca or sjones@bcgsc.ca Supplementary information: Supplementary data are available at Bioinformatics online. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Database for the ampC alleles in Acinetobacter baumannii.

    Directory of Open Access Journals (Sweden)

    Nabil Karah

    Full Text Available Acinetobacter baumannii is a troublesome opportunistic pathogen with a high capacity for clonal dissemination. We announce the establishment of a database for the ampC locus in A. baumannii, in which novel ampC alleles are differentiated based on the occurrence of ≥ 1 nucleotide change, regardless of whether it is silent or missense. The database is openly accessible at the pubmlst platform for A. baumannii (http://pubmlst.org/abaumannii/. Forty-eight distinctive alleles of the ampC locus have so far been identified and deposited in the database. Isolates from clonal complex 1 (CC1, according to the Pasteur multilocus sequence typing scheme, had a variety of the ampC locus alleles, including alleles 1, 3, 4, 5, 6, 7, 8, 13, 14, 17, and 18. On the other hand, isolates from CC2 had the ampC alleles 2, 3, 19, 20, 21, 22, 23, 24, 26, 27, 28, and 46. Allele 3 was characteristic for sequence types ST3 or ST32. The ampC alleles 10, 16, and 25 were characteristic for CC10, ST16, and CC25, respectively. Our study points out that novel gene databases, in which alleles are numbered based on differences in their nucleotide identities, should replace traditional records that use amino acid substitutions to define new alleles.

  20. Recruitment and selection for the packer position in a supermarket network

    Directory of Open Access Journals (Sweden)

    Lucila Moraes Cardoso

    2013-06-01

    Full Text Available The method of personnel recruitment and selection is a common practice to hire people in organizations. The goal of this study is to report and to reflect about this process in a supermarket chain, which operates in food and non-food retail in the state of Sao Paulo. The purpose of the present intervention was to facilitate the recruitment and selection process for the packer position. After the intervention, we noticed an improvement on the hiring process, on the working conditions and a turnover reduction in this position.

  1. Evaluation of an Improved Branch-Site Likelihood Method for Detecting Positive Selection at the Molecular Level

    DEFF Research Database (Denmark)

    Zhang, Jianzhi; Nielsen, Rasmus; Yang, Ziheng

    2005-01-01

    of interest, while test 2 had acceptable false-positive rates and appeared robust against violations of model assumptions. As test 2 is a direct test of positive selection on the lineages of interest, it is referred to as the branch-site test of positive selection and is recommended for use in real data......Detecting positive Darwinian selection at the DNA sequence level has been a subject of considerable interest. However, positive selection is difficult to detect because it often operates episodically on a few amino acid sites, and the signal may be masked by negative selection. Several methods have...... been developed to test positive selection that acts on given branches (branch methods) or on a subset of sites (site methods). Recently, Yang, Z., and R. Nielsen (2002. Codon-substitution models for detecting molecular adaptation at individual sites along specific lineages. Mol. Biol. Evol. 19...

  2. Genetic signature of strong recent positive selection at interleukin-32 gene in goat

    Directory of Open Access Journals (Sweden)

    Akhtar Rasool Asif

    2017-07-01

    Full Text Available Objective Identification of the candidate genes that play key roles in phenotypic variations can provide new information about evolution and positive selection. Interleukin (IL-32 is involved in many biological processes, however, its role for the immune response against various diseases in mammals is poorly understood. Therefore, the current investigation was performed for the better understanding of the molecular evolution and the positive selection of single nucleotide polymorphisms in IL-32 gene. Methods By using fixation index (FST based method, IL-32 (9375 gene was found to be outlier and under significant positive selection with the provisional combined allocation of mean heterozygosity and FST. Using nucleotide sequences of 11 mammalian species from National Center for Biotechnology Information database, the evolutionary selection of IL-32 gene was determined using Maximum likelihood model method, through four models (M1a, M2a, M7, and M8 in Codeml program of phylogenetic analysis by maximum liklihood. Results IL-32 is detected under positive selection using the FST simulations method. The phylogenetic tree revealed that goat IL-32 was in close resemblance with sheep IL-32. The coding nucleotide sequences were compared among 11 species and it was found that the goat IL-32 gene shared identity with sheep (96.54%, bison (91.97%, camel (58.39%, cat (56.59%, buffalo (56.50%, human (56.13%, dog (50.97%, horse (54.04%, and rabbit (53.41% respectively. Conclusion This study provides evidence for IL-32 gene as under significant positive selection in goat.

  3. Allele specific expression and methylation in the bumblebee, Bombus terrestris

    Directory of Open Access Journals (Sweden)

    Zoë Lonsdale

    2017-09-01

    Full Text Available The social hymenoptera are emerging as models for epigenetics. DNA methylation, the addition of a methyl group, is a common epigenetic marker. In mammals and flowering plants methylation affects allele specific expression. There is contradictory evidence for the role of methylation on allele specific expression in social insects. The aim of this paper is to investigate allele specific expression and monoallelic methylation in the bumblebee, Bombus terrestris. We found nineteen genes that were both monoallelically methylated and monoallelically expressed in a single bee. Fourteen of these genes express the hypermethylated allele, while the other five express the hypomethylated allele. We also searched for allele specific expression in twenty-nine published RNA-seq libraries. We found 555 loci with allele-specific expression. We discuss our results with reference to the functional role of methylation in gene expression in insects and in the as yet unquantified role of genetic cis effects in insect allele specific methylation and expression.

  4. Endogamia, fixação de alelos e limite de seleção em populações selecionadas por métodos tradicionais e associados a marcadores moleculares Inbreeding, alleles fixation and selection limit in populations under traditional or marker assisted selection methods

    Directory of Open Access Journals (Sweden)

    Paulo Luiz Souza Carneiro

    2007-04-01

    Full Text Available Objetivou-se avaliar o coeficiente de endogamia, a fixação de alelos e o limite de seleção em populações selecionadas durante 20 gerações. A seleção foi baseada nos valores genéticos preditos pelo BLUP clássico (BLUP e pelo BLUP marcadores (BLUPM e na seleção individual (SI utilizando diferentes sistemas de acasalamento. Para se obter a matriz de similaridade genética utilizada no BLUPM, foram simulados 100 marcadores moleculares do tipo microssatélite, por meio de um coeficiente de similaridade correspondente à distância euclidiana média para dados quantitativos. Para comparar os diferentes métodos de seleção, utilizaram-se populações com tamanho efetivo de 66,66 e média de 30 repetições. Observou-se maior incremento de endogamia para o BLUPM, seguido pelo BLUP e SI. Os métodos baseados no BLUP levaram a maior fixação de alelos favoráveis e desfavoráveis. O BLUPM foi o método que proporcionou maior redução no limite de seleção nas 20 gerações avaliadas. Os acasalamentos dos reprodutores selecionados que excluíram o acasalamento entre irmãos resultaram em menor taxa de incremento de endogamia, menores perdas pela fixação de alelos desfavoráveis e menor redução no limite da seleção.This study aimed to evaluate the inbreeding coefficient, alleles fixation and selection limit in a population selected during 20 generations. Selection was based on breeding values predicted by classical best linear unbiased prediction (BLUP, BLUP associated with molecular markers (BLUPM and individual selection (IS using different mating designs. The genetic similarity matrix used in BLUPM was obtained by simulating 100 micro satellite markers (simple sequence repeats using a similarity coefficient corresponding to the mean Euclidean distance between quantitative data. The selection methods were compared using populations with an effective size of 66.66 and a mean of 30 repetitions. The largest increase in inbreeding was

  5. A genome scan for positive selection in thoroughbred horses.

    Science.gov (United States)

    Gu, Jingjing; Orr, Nick; Park, Stephen D; Katz, Lisa M; Sulimova, Galina; MacHugh, David E; Hill, Emmeline W

    2009-06-02

    Thoroughbred horses have been selected for exceptional racing performance resulting in system-wide structural and functional adaptations contributing to elite athletic phenotypes. Because selection has been recent and intense in a closed population that stems from a small number of founder animals Thoroughbreds represent a unique population within which to identify genomic contributions to exercise-related traits. Employing a population genetics-based hitchhiking mapping approach we performed a genome scan using 394 autosomal and X chromosome microsatellite loci and identified positively selected loci in the extreme tail-ends of the empirical distributions for (1) deviations from expected heterozygosity (Ewens-Watterson test) in Thoroughbred (n = 112) and (2) global differentiation among four geographically diverse horse populations (F(ST)). We found positively selected genomic regions in Thoroughbred enriched for phosphoinositide-mediated signalling (3.2-fold enrichment; PThoroughbred athletic phenotype. We report for the first time candidate athletic-performance genes within regions targeted by selection in Thoroughbred horses that are principally responsible for fatty acid oxidation, increased insulin sensitivity and muscle strength: ACSS1 (acyl-CoA synthetase short-chain family member 1), ACTA1 (actin, alpha 1, skeletal muscle), ACTN2 (actinin, alpha 2), ADHFE1 (alcohol dehydrogenase, iron containing, 1), MTFR1 (mitochondrial fission regulator 1), PDK4 (pyruvate dehydrogenase kinase, isozyme 4) and TNC (tenascin C). Understanding the genetic basis for exercise adaptation will be crucial for the identification of genes within the complex molecular networks underlying obesity and its consequential pathologies, such as type 2 diabetes. Therefore, we propose Thoroughbred as a novel in vivo large animal model for understanding molecular protection against metabolic disease.

  6. Does the parasite-mediated selection drive the MHC class IIB diversity in wild populations of European chub (Squalius cephalus)?

    Science.gov (United States)

    Seifertová, Mária; Jarkovský, Jiří; Šimková, Andrea

    2016-04-01

    The genes of major histocompatibility complex (MHC) provide an excellent opportunity to study host-parasite relationships because they are expected to evolve in response to parasites and variation in parasite communities. In this study, we investigated the potential role of parasite-mediated selection acting on MHC class IIB (DAB) genes in European chub (Squalius cephalus) natural populations. We found significant differences between populations in metazoan parasites, neutral and adaptive genetic diversities. The analyses based on pairwise data revealed that populations with dissimilar MHC allelic profiles were geographically distant populations with significantly different diversity in microsatellites and a dissimilar composition of parasite communities. The results from the generalized estimating equations method (GEE) on the level of individuals revealed that metazoan parasite load in European chub was influenced by the diversity of DAB alleles as well as by the diversity of neutral genetic markers and host traits reflecting condition and immunocompetence. The multivariate co-inertia analysis showed specific associations between DAB alleles and parasite species. DAB1-like alleles were more involved in associations with ectoparasites, while DAB3-like alleles were positively associated with endoparasites which could suggest potential differences between DAB genes caused by different selection pressure. Our study revealed that parasite-mediated selection is not the only variable affecting MHC diversity in European chub; however, we strongly support the role of neutral processes as the main driver of DAB diversity across populations. In addition, our study contributes to the understanding of the evolution of MHC genes in wild living fish.

  7. HLA Dr beta 1 alleles in Pakistani patients with rheumatoid arthritis

    International Nuclear Information System (INIS)

    Naqi, N.; Ahmed, T.A.; Bashir, M.M.

    2011-01-01

    Objective: To determine frequencies of HLA DR beta 1 alleles in rheumatoid arthritis in Pakistani patients. Study Design: Cross sectional / analytical study. Place and Duration of Study: Department of Immunology, Armed Forces Institute of Pathology, Rawalpindi in collaboration with Rheumatology departments of Military Hospital, Rawalpindi and Fauji Foundation Hospital, Rawalpindi, from January 2009 to January 2010. Methodology: HLA DR beta 1 genotyping of one hundred Pakistani patients, diagnosed as having RA as per American College of Rheumatology revised criteria 1987, was done. HLA DR beta 1 genotyping was carried out at allele group level (DR beta 1*01-DR beta 1*16) by sequence specific primers in RA patients. Comparison of HLA DR beta 1 allele frequencies between patients and control groups was made using Pearson's chi-square test to find possible association of HLA DR?1 alleles with RA in Pakistani rheumatoid patients. Results: HLA DR beta 1*04 was expressed with significantly increased frequency in patients with rheumatoid arthritis (p <0.05). HLA DR?1*11 was expressed statistically significantly more in control group as compared to rheumatoid patients indicating a possible protective effect. There was no statistically significant difference observed in frequencies of HLA DR beta 1 allele *01, DR beta 1 allele *03, DR beta 1 allele *07, DR beta 1 allele *08, DR beta 1 allele *09, DR beta 1 allele *10, DR beta 1 allele *12, DR beta 1 allele *13, DR beta 1 allele *14, DR?1 allele *15 and DR beta 1 allele *16 between patients and control groups. Conclusion: The identification of susceptible HLA DR beta 1 alleles in Pakistani RA patients may help physicians to make early decisions regarding initiation of early intensive therapy with disease modifying anti rheumatic medicines and biological agents decreasing disability in RA patients. (author)

  8. Genome patterns of selection and introgression of haplotypes in natural populations of the house mouse (Mus musculus.

    Directory of Open Access Journals (Sweden)

    Fabian Staubach

    Full Text Available General parameters of selection, such as the frequency and strength of positive selection in natural populations or the role of introgression, are still insufficiently understood. The house mouse (Mus musculus is a particularly well-suited model system to approach such questions, since it has a defined history of splits into subspecies and populations and since extensive genome information is available. We have used high-density single-nucleotide polymorphism (SNP typing arrays to assess genomic patterns of positive selection and introgression of alleles in two natural populations of each of the subspecies M. m. domesticus and M. m. musculus. Applying different statistical procedures, we find a large number of regions subject to apparent selective sweeps, indicating frequent positive selection on rare alleles or novel mutations. Genes in the regions include well-studied imprinted loci (e.g. Plagl1/Zac1, homologues of human genes involved in adaptations (e.g. alpha-amylase genes or in genetic diseases (e.g. Huntingtin and Parkin. Haplotype matching between the two subspecies reveals a large number of haplotypes that show patterns of introgression from specific populations of the respective other subspecies, with at least 10% of the genome being affected by partial or full introgression. Using neutral simulations for comparison, we find that the size and the fraction of introgressed haplotypes are not compatible with a pure migration or incomplete lineage sorting model. Hence, it appears that introgressed haplotypes can rise in frequency due to positive selection and thus can contribute to the adaptive genomic landscape of natural populations. Our data support the notion that natural genomes are subject to complex adaptive processes, including the introgression of haplotypes from other differentiated populations or species at a larger scale than previously assumed for animals. This implies that some of the admixture found in inbred strains of mice

  9. JAK2V617F mutation is associated with special alleles in essential thrombocythemia.

    Science.gov (United States)

    Hsiao, Hui-Hua; Liu, Yi-Chang; Tsai, Hui-Jen; Lee, Ching-Ping; Hsu, Jui-Feng; Lin, Sheng-Fung

    2011-03-01

    Janus kinase 2 mutation (JAK2V617F) has been identified in myeloproliferative neoplasms. Furthermore, special single nucleoside polymorphisms (SNPs) have been found to be associated with the JAK2V617F mutation. Therefore, the associations among JAK2V617F and special SNPs and the allelic location between them were investigated in patients with essential thrombocythemia (ET). A total of 61 patients with ET and 106 healthy individuals were enrolled. The PCR-RFLP method was applied to investigate the pattern of three SNPs, rs10974944, rs12343867, and rs12340895. Allele-specific PCR was used to examine the allelic location between rs10974944 and JAK2V617F. Among the patients with ET, 34 (55.7%, 34/61) were JAK2V617F positive (heterozygous) while the other 27 (44.3%, 27/61) were negative, and there were no MPLW515L/K mutations noted. The pattern of special SNPs in JAK2V617F(+) was significantly different from that in normal individuals (p <0.05), while there was no difference between JAK2V617F(-) patients and normal individuals. Allele-specific PCR showed high association of a cis-location between the special G-allele of rs10974944 and JAK2V617F(+). Based on this small numbered study, the results show the association between special SNPs and JAK2V617F mutation and a cis-location between the special G-allelic form of rs10974944 and the JAK2V617F mutation. These data highlight a close relationship between them in patients with ET.

  10. Drop-out probabilities of IrisPlex SNP alleles

    DEFF Research Database (Denmark)

    Andersen, Jeppe Dyrberg; Tvedebrink, Torben; Mogensen, Helle Smidt

    2013-01-01

    In certain crime cases, information about a perpetrator's phenotype, including eye colour, may be a valuable tool if no DNA profile of any suspect or individual in the DNA database matches the DNA profile found at the crime scene. Often, the available DNA material is sparse and allelic drop-out...... of true alleles is possible. As part of the validation of the IrisPlex assay in our ISO17025 accredited, forensic genetic laboratory, we estimated the probability of drop-out of specific SNP alleles using 29 and 30 PCR cycles and 25, 50 and 100 Single Base Extension (SBE) cycles. We observed no drop-out...... when the amount of DNA was greater than 125 pg for 29 cycles of PCR and greater than 62 pg for 30 cycles of PCR. With the use of a logistic regression model, we estimated the allele specific probability of drop-out in heterozygote systems based on the signal strength of the observed allele...

  11. Common breast cancer risk alleles and risk assessment

    DEFF Research Database (Denmark)

    Näslund-Koch, C; Nordestgaard, B G; Bojesen, S E

    2017-01-01

    general population were followed in Danish health registries for up to 21 years after blood sampling. After genotyping 72 breast cancer risk loci, each with 0-2 alleles, the sum for each individual was calculated. We used the simple allele sum instead of the conventional polygenic risk score......, as it is likely more sensitive in detecting associations with risks of other endpoints than breast cancer. RESULTS: Breast cancer incidence in the 19,010 women was increased across allele sum quintiles (log-rank trend test; p=1*10(-12)), but not incidence of other cancers (p=0.41). Age- and study-adjusted hazard...... ratio for the 5(th) vs. 1(st) allele sum quintile was 1.82(95% confidence interval;1.53-2.18). Corresponding hazard ratios per allele were 1.04(1.03-1.05) and 1.05(1.02-1.08) for breast cancer incidence and mortality, similar across risk factors. In 50-year old women, the starting age for screening...

  12. Trans-species polymorphism and selection in the MHC class II DRA genes of domestic sheep.

    Directory of Open Access Journals (Sweden)

    Keith T Ballingall

    Full Text Available Highly polymorphic genes with central roles in lymphocyte mediated immune surveillance are grouped together in the major histocompatibility complex (MHC in higher vertebrates. Generally, across vertebrate species the class II MHC DRA gene is highly conserved with only limited allelic variation. Here however, we provide evidence of trans-species polymorphism at the DRA locus in domestic sheep (Ovis aries. We describe variation at the Ovar-DRA locus that is far in excess of anything described in other vertebrate species. The divergent DRA allele (Ovar-DRA*0201 differs from the sheep reference sequences by 20 nucleotides, 12 of which appear non-synonymous. Furthermore, DRA*0201 is paired with an equally divergent DRB1 allele (Ovar-DRB1*0901, which is consistent with an independent evolutionary history for the DR sub-region within this MHC haplotype. No recombination was observed between the divergent DRA and B genes in a range of breeds and typical levels of MHC class II DR protein expression were detected at the surface of leukocyte populations obtained from animals homozygous for the DRA*0201, DRB1*0901 haplotype. Bayesian phylogenetic analysis groups Ovar-DRA*0201 with DRA sequences derived from species within the Oryx and Alcelaphus genera rather than clustering with other ovine and caprine DRA alleles. Tests for Darwinian selection identified 10 positively selected sites on the branch leading to Ovar-DRA*0201, three of which are predicted to be associated with the binding of peptide antigen. As the Ovis, Oryx and Alcelaphus genera have not shared a common ancestor for over 30 million years, the DRA*0201 and DRB1*0901 allelic pair is likely to be of ancient origin and present in the founding population from which all contemporary domestic sheep breeds are derived. The conservation of the integrity of this unusual DR allelic pair suggests some selective advantage which is likely to be associated with the presentation of pathogen antigen to T

  13. Allele-Specific Chromatin Recruitment and Therapeutic Vulnerabilities of ESR1 Activating Mutations.

    Science.gov (United States)

    Jeselsohn, Rinath; Bergholz, Johann S; Pun, Matthew; Cornwell, MacIntosh; Liu, Weihan; Nardone, Agostina; Xiao, Tengfei; Li, Wei; Qiu, Xintao; Buchwalter, Gilles; Feiglin, Ariel; Abell-Hart, Kayley; Fei, Teng; Rao, Prakash; Long, Henry; Kwiatkowski, Nicholas; Zhang, Tinghu; Gray, Nathanael; Melchers, Diane; Houtman, Rene; Liu, X Shirley; Cohen, Ofir; Wagle, Nikhil; Winer, Eric P; Zhao, Jean; Brown, Myles

    2018-02-12

    Estrogen receptor α (ER) ligand-binding domain (LBD) mutations are found in a substantial number of endocrine treatment-resistant metastatic ER-positive (ER + ) breast cancers. We investigated the chromatin recruitment, transcriptional network, and genetic vulnerabilities in breast cancer models harboring the clinically relevant ER mutations. These mutants exhibit both ligand-independent functions that mimic estradiol-bound wild-type ER as well as allele-specific neomorphic properties that promote a pro-metastatic phenotype. Analysis of the genome-wide ER binding sites identified mutant ER unique recruitment mediating the allele-specific transcriptional program. Genetic screens identified genes that are essential for the ligand-independent growth driven by the mutants. These studies provide insights into the mechanism of endocrine therapy resistance engendered by ER mutations and potential therapeutic targets. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Allelic Diversity and Geographical Distribution of the Gene Encoding Plasmodium falciparum Merozoite Surface Protein-3 in Thailand.

    Science.gov (United States)

    Sawaswong, Vorthon; Simpalipan, Phumin; Siripoon, Napaporn; Harnyuttanakorn, Pongchai; Pattaradilokrat, Sittiporn

    2015-04-01

    Merozoite surface proteins (MSPs) of malaria parasites play critical roles during the erythrocyte invasion and so are potential candidates for malaria vaccine development. However, because MSPs are often under strong immune selection, they can exhibit extensive genetic diversity. The gene encoding the merozoite surface protein-3 (MSP-3) of Plasmodium falciparum displays 2 allelic types, K1 and 3D7. In Thailand, the allelic frequency of the P. falciparum msp-3 gene was evaluated in a single P. falciparum population in Tak at the Thailand and Myanmar border. However, no study has yet looked at the extent of genetic diversity of the msp-3 gene in P. falciparum populations in other localities. Here, we genotyped the msp-3 alleles of 63 P. falciparum samples collected from 5 geographical populations along the borders of Thailand with 3 neighboring countries (Myanmar, Laos, and Cambodia). Our study indicated that the K1 and 3D7 alleles coexisted, but at different proportions in different Thai P. falciparum populations. K1 was more prevalent in populations at the Thailand-Myanmar and Thailand-Cambodia borders, whilst 3D7 was more prevalent at the Thailand-Laos border. Global analysis of the msp-3 allele frequencies revealed that proportions of K1 and 3D7 alleles of msp-3 also varied in different continents, suggesting the divergence of malaria parasite populations. In conclusion, the variation in the msp-3 allelic patterns of P. falciparum in Thailand provides fundamental knowledge for inferring the P. falciparum population structure and for the best design of msp-3 based malaria vaccines.

  15. Association of gliadin antibodies, HLA alleles, and schizophrenia in Cuban population patients

    Directory of Open Access Journals (Sweden)

    José A. Galván

    2016-05-01

    Full Text Available Introduction: Several lines of evidence have suggested an interesting link between gluten ingestion and schizophrenia. For example, increased levels of gliadin and transglutaminase antibodies have been observed in patients with schizophrenia. Methods: To verify these observations we compared the prevalence of gliadin and transglutaminse antibodies, as well as the presence of the HLA alleles, HLA DQA1*0501-DQB1*02 (DQ2 and HLA-DQA1*0301-DQB1*0302 (DQ8, among patients with schizophrenia and healthy controls. A total of 108 patients with schizophrenia and 60 healthy controls were evaluated. Gliadin antibodies were determined by a visual semiquantitative assay and tissue transglutaminase antibodies were determined both by one-step immunochromatografic assay and ELISA. HLA typing was performed by PCR amplification using sequence-specific primers for each allele. Results: We found a strong association between the presence of gliadin antibodies and schizophrenia (OR 3.488; 95% CI, 1.43-8.44. However, tissue transglutaminase antibodies were not detected in either group neither by immunochromatograpic or ELISA. No significant association was found for the DQ2 or DQ8 heterodimer and the disease, but a significant positive association between schizophrenia and HLA alleles DQA1*0301 and DQB1*02 was present (OR = 2.80; 95% CI, 1.27-6.17, and OR = 2.37, 95% CI, 1.24-4.53, respectively. Conclusions: The present study showed that the presence of gliadin antibodies was not correlated with the presence of HLA DQA1*0301 or DQB1*02 alleles within the group of patients with schizophrenia. Our study replicates the findings that anti-gliadin antibodies are associated with schizophrenia but also suggests that the presence of these antibodies and the HLA alleles DQB1*02 and DQA1*0301 are independently associated with susceptibility to schizophrenia.

  16. Performance of Molecular Inversion Probes (MIP) in Allele CopyNumber Determination

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuker; Moorhead, Martin; Karlin-Neumann, George; Wang,Nicolas J.; Ireland, James; Lin, Steven; Chen, Chunnuan; Heiser, LauraM.; Chin, Koei; Esserman, Laura; Gray, Joe W.; Spellman, Paul T.; Faham,Malek

    2007-05-14

    We have developed a new protocol for using MolecularInversion Probes (MIP) to accurately and specifically measure allele copynumber (ACN). The new protocol provides for significant improvementsincluding the reduction of input DNA (from 2?g) by more than 25 fold (to75ng total genomic DNA), higher overall precision resulting in one orderof magnitude lower false positive rate, and greater dynamic range withaccurate absolute copy number up to 60 copies.

  17. Novel optimum contribution selection methods accounting for conflicting objectives in breeding programs for livestock breeds with historical migration.

    Science.gov (United States)

    Wang, Yu; Bennewitz, Jörn; Wellmann, Robin

    2017-05-12

    Optimum contribution selection (OCS) is effective for increasing genetic gain, controlling the rate of inbreeding and enables maintenance of genetic diversity. However, this diversity may be caused by high migrant contributions (MC) in the population due to introgression of genetic material from other breeds, which can threaten the conservation of small local populations. Therefore, breeding objectives should not only focus on increasing genetic gains but also on maintaining genetic originality and diversity of native alleles. This study aimed at investigating whether OCS was improved by including MC and modified kinships that account for breed origin of alleles. Three objective functions were considered for minimizing kinship, minimizing MC and maximizing genetic gain in the offspring generation, and we investigated their effects on German Angler and Vorderwald cattle. In most scenarios, the results were similar for Angler and Vorderwald cattle. A significant positive correlation between MC and estimated breeding values of the selection candidates was observed for both breeds, thus traditional OCS would increase MC. Optimization was performed under the condition that the rate of inbreeding did not exceed 1% and at least 30% of the maximum progress was achieved for all other criteria. Although traditional OCS provided the highest breeding values under restriction of classical kinship, the magnitude of MC in the progeny generation was not controlled. When MC were constrained or minimized, the kinship at native alleles increased compared to the reference scenario. Thus, in addition to constraining MC, constraining kinship at native alleles is required to ensure that native genetic diversity is maintained. When kinship at native alleles was constrained, the classical kinship was automatically lowered in most cases and more sires were selected. However, the average breeding value in the next generation was also lower than that obtained with traditional OCS. For local

  18. Trait-specific long-term consequences of genomic selection in beef cattle.

    Science.gov (United States)

    de Rezende Neves, Haroldo Henrique; Carvalheiro, Roberto; de Queiroz, Sandra Aidar

    2018-02-01

    Simulation studies allow addressing consequences of selection schemes, helping to identify effective strategies to enable genetic gain and maintain genetic diversity. The aim of this study was to evaluate the long-term impact of genomic selection (GS) in genetic progress and genetic diversity of beef cattle. Forward-in-time simulation generated a population with pattern of linkage disequilibrium close to that previously reported for real beef cattle populations. Different scenarios of GS and traditional pedigree-based BLUP (PBLUP) selection were simulated for 15 generations, mimicking selection for female reproduction and meat quality. For GS scenarios, an alternative selection criterion was simulated (wGBLUP), intended to enhance long-term gains by attributing more weight to favorable alleles with low frequency. GS allowed genetic progress up to 40% greater than PBLUP, for female reproduction and meat quality. The alternative criterion wGBLUP did not increase long-term response, although allowed reducing inbreeding rates and loss of favorable alleles. The results suggest that GS outperforms PBLUP when the selected trait is under less polygenic background and that attributing more weight to low-frequency favorable alleles can reduce inbreeding rates and loss of favorable alleles in GS.

  19. Incomplete dominance of deleterious alleles contributes substantially to trait variation and heterosis in maize.

    Directory of Open Access Journals (Sweden)

    Jinliang Yang

    2017-09-01

    Full Text Available Deleterious alleles have long been proposed to play an important role in patterning phenotypic variation and are central to commonly held ideas explaining the hybrid vigor observed in the offspring of a cross between two inbred parents. We test these ideas using evolutionary measures of sequence conservation to ask whether incorporating information about putatively deleterious alleles can inform genomic selection (GS models and improve phenotypic prediction. We measured a number of agronomic traits in both the inbred parents and hybrids of an elite maize partial diallel population and re-sequenced the parents of the population. Inbred elite maize lines vary for more than 350,000 putatively deleterious sites, but show a lower burden of such sites than a comparable set of traditional landraces. Our modeling reveals widespread evidence for incomplete dominance at these loci, and supports theoretical models that more damaging variants are usually more recessive. We identify haplotype blocks using an identity-by-decent (IBD analysis and perform genomic prediction analyses in which we weigh blocks on the basis of complementation for segregating putatively deleterious variants. Cross-validation results show that incorporating sequence conservation in genomic selection improves prediction accuracy for grain yield and other fitness-related traits as well as heterosis for those traits. Our results provide empirical support for an important role for incomplete dominance of deleterious alleles in explaining heterosis and demonstrate the utility of incorporating functional annotation in phenotypic prediction and plant breeding.

  20. Incomplete dominance of deleterious alleles contributes substantially to trait variation and heterosis in maize.

    Science.gov (United States)

    Yang, Jinliang; Mezmouk, Sofiane; Baumgarten, Andy; Buckler, Edward S; Guill, Katherine E; McMullen, Michael D; Mumm, Rita H; Ross-Ibarra, Jeffrey

    2017-09-01

    Deleterious alleles have long been proposed to play an important role in patterning phenotypic variation and are central to commonly held ideas explaining the hybrid vigor observed in the offspring of a cross between two inbred parents. We test these ideas using evolutionary measures of sequence conservation to ask whether incorporating information about putatively deleterious alleles can inform genomic selection (GS) models and improve phenotypic prediction. We measured a number of agronomic traits in both the inbred parents and hybrids of an elite maize partial diallel population and re-sequenced the parents of the population. Inbred elite maize lines vary for more than 350,000 putatively deleterious sites, but show a lower burden of such sites than a comparable set of traditional landraces. Our modeling reveals widespread evidence for incomplete dominance at these loci, and supports theoretical models that more damaging variants are usually more recessive. We identify haplotype blocks using an identity-by-decent (IBD) analysis and perform genomic prediction analyses in which we weigh blocks on the basis of complementation for segregating putatively deleterious variants. Cross-validation results show that incorporating sequence conservation in genomic selection improves prediction accuracy for grain yield and other fitness-related traits as well as heterosis for those traits. Our results provide empirical support for an important role for incomplete dominance of deleterious alleles in explaining heterosis and demonstrate the utility of incorporating functional annotation in phenotypic prediction and plant breeding.

  1. Evidences for balancing selection from PAH-BglII and PAH-EcoRI polymorphisms in Isfahan population

    Directory of Open Access Journals (Sweden)

    Zahra Fazeli Attar

    2010-01-01

    Full Text Available Two polymorphic markers including BglII and EcoRI, were identified at intron 1 and intron 5 of PAH gene. In order to test whether these polymorphisms are behaving as neutral alleles or are being subjected to selective pressures in Isfahan population, 110 individuals were genotyped by PCR-RFLP. The Arlequin input file was prepared by use of phase-known haplotype data and Neutrality tests (Tajima D test and Fu’s Fs test were done using Arlequin program. 42 individuals were found heterozygous for both polymorphisms whose haplotype phase remained unknown. The BglII-EcoRI haplotype phase was known only at 68 individuals who were used for preparation of input file. Tajima's D value and Fs value at Isfahan population were 1.7 and 1.02, respectively. Positive values of Fs and D>0 indicated that these polymorphisms are under selection pressure at Isfahan population. Although these polymorphisms were in the non-coding region of PAH gene, but these were not neutral alleles and positive values of these tests provided evidence for balancing selection of these polymorphisms at Isfahan population. The results of this study could improve our understanding of evolutionary history and structure of Isfahan population.

  2. HLA-DR alleles among Pakistani patients of coeliac disease

    International Nuclear Information System (INIS)

    Saleem, N.; Ahmed, T.A.; Bashir, M.; Ali, S.; Iqbal, M.

    2013-01-01

    Objectives: To investigate whether certain DR alleles might also contribute to the genetic susceptibility among Coeliac disease patients in Pakistan. Methods: The case-control study was conducted at the Military Hospital, Rawalpindi, from October 2011 to January 2012, and analysed 25 children diagnosed to have coeliac disease as per the criteria set by the European Society of Paediatric Gastroenterology and Nutrition, which included histopathological alterations in duodenal biopsies, clinical response to gluten withdrawal, and presence of anti-endomyseal antibodies. Patients were compared with a group of 150 healthy subjects. Dioxyribonucleic acid was extracted from peripheral blood collected in ethylenediaminetetraacetic acid.K3. Human leukocyte antigen DRB1 typing was carried out on allele level (DRB1*01 - DRB1*16) using sequence specific primers. Human leukocyte antigen type was determined by agarose gel electrophoresis and results were recorded. Phenotype frequency of various alleles among the patient group and the control group was calculated by direct counting, and significance of their association was determined by Fisher Exact Test. Results: A total of 11 (44%) female paediatric coeliac patients in age range 1-9 (mean 7.2+-4.8 years) and 14 (56%) male paediatric patients in the age range 6-14 (mean 8.6+-5.1 years) were genotyped for HLA-DRB1 loci. A statistically significant positive association of the disease with HLA-DRB1*03 (n=23; 92% versus n=31; 21% in controls, p <0.01) was observed. Conclusion: HLA-DRB1*03 is associated with increased risk of developing coeliac disease. (author)

  3. Evidence for positive selection in putative virulence factors within the Paracoccidioides brasiliensis species complex.

    Directory of Open Access Journals (Sweden)

    Daniel R Matute

    Full Text Available Paracoccidioides brasiliensis is a dimorphic fungus that is the causative agent of paracoccidioidomycosis, the most important prevalent systemic mycosis in Latin America. Recently, the existence of three genetically isolated groups in P. brasiliensis was demonstrated, enabling comparative studies of molecular evolution among P. brasiliensis lineages. Thirty-two gene sequences coding for putative virulence factors were analyzed to determine whether they were under positive selection. Our maximum likelihood-based approach yielded evidence for selection in 12 genes that are involved in different cellular processes. An in-depth analysis of four of these genes showed them to be either antigenic or involved in pathogenesis. Here, we present evidence indicating that several replacement mutations in gp43 are under positive balancing selection. The other three genes (fks, cdc42 and p27 show very little variation among the P. brasiliensis lineages and appear to be under positive directional selection. Our results are consistent with the more general observations that selective constraints are variable across the genome, and that even in the genes under positive selection, only a few sites are altered. We present our results within an evolutionary framework that may be applicable for studying adaptation and pathogenesis in P. brasiliensis and other pathogenic fungi.

  4. The Study of Morphological Traits and Identification of Self-incompatibility Alleles in Almond Cultivars and Genotypes

    Directory of Open Access Journals (Sweden)

    Mousa Rasouli

    2017-12-01

    Full Text Available The evaluation of an almond collection using morphological variables and identification of self-incompatibility genotype  is useful for selecting pollinizers and for the design of crossing in almond breeding programs. In this study, important morphological traits and self-incompatibilities in 71 almond cultivars and genotypes were studied. Simple and multiplex specific PCR analyses were used in order to identify self-incompatibility alleles. Based on the results, cultivars and genotypes including ‘Dir Ras–e-Savojbolagh’, ‘D-124’, ‘D-99’, ‘Shahrood 12’, ‘Tuono’, ‘Nonpareil’, ‘Price’, ‘Mirpanj-e-Tehran’, ‘Pakotahe-e- Taleghan’, ‘V-13-34’, ‘V-16-8, ‘V-11-10’, ‘Zarghan 10’, ‘Uromiyeh 68’, ‘Barg dorosht-e-Hamedan’ and ‘Yazd 60’ were late flowering and had the highest quality of nut and kernel characters. The result of the PCR method using combined primers AS1II and AmyC5R showed amplification of ten self-incompatibility alleles (S1, S2, S3, S5, S6, S7, S8, S10, S12,and S unknown allele and three Sfalleles. Moreover, S1 had the highest frequencies in comparison with other known S-alleles. Also, unknown alleles with different sizes were detected and 58 new bands were found in some cultivars.

  5. Albinism and disease causing pathogens in Tanzania: are alleles that are associated with OCA2 being maintained by balancing selection?

    Science.gov (United States)

    Tuli, Abbas M; Valenzuela, Robert K; Kamugisha, Erasmus; Brilliant, Murray H

    2012-12-01

    Oculocutaneous albinism type 2 (OCA2) is present at significantly higher frequencies in sub-Saharan African populations compared to populations in other regions of the world. In Tanzania and other sub-Saharan countries, most OCA2 is associated with a common 2.7kb deletion allele. Leprosy is also in high prevalence in sub-Saharan African populations. The infectious agent of leprosy, Mycobacterium leprae, contains a gene, 38L, that is similar to OCA2. Hypopigmented patches of skin are early symptoms that present with infection of leprosy. In consideration of both the genetic similarity of OCA2 and the 38L gene of M. leprae and the involvement of pigmentation in both disorders, we hypothesized that the high rates of OCA2 may be due to heterozygote advantage. Hence, we hypothesized that carriers of the 2.7kb deletion allele of OCA2 may provide a protective advantage from infection with leprosy. We tested this hypothesis by determining the carrier frequency of the 2.7kb deletion allele from a sample of 240 individuals with leprosy from Tanzania. The results were inconclusive due to the small sample size; however, they enabled us to rule out a large protective effect, but perhaps not a small advantage. Mycobacterium tuberculosis is another infectious organism prevalent in sub-Saharan Africa that contains a gene, arsenic-transport integral membrane protein that is also similar to OCA2. Interestingly, chromosomal region 15q11-13, which also contains OCA2, was reported to be linked to tuberculosis susceptibility. Although variants within OCA2 were tested for association, the 2.7kb deletion allele of OCA2 was not tested. This led us to hypothesize that the deletion allele may confer resistance to susceptibility. Confirmation of our hypothesis would enable development of novel pharmocogenetic therapies for the treatment of tuberculosis, which in turn, may enable development of drugs that target other pathogens that utilize a similar infection mechanism as M. tuberculosis

  6. Combined linkage and association analyses of the 124-bp allele of marker D2S2944 with anxiety, depression, neuroticism and major depression

    NARCIS (Netherlands)

    Beem, A. Leo; Geus, Eco J. C. de; Hottenga, Jouke-Jan; Sullivan, Patrick F.; Willemsen, Gonneke; Slagboom, P. Eline; Boomsma, Dorret I.

    2006-01-01

    A central issue in psychiatric genetics is whether positive findings replicate. Zubenko et al. (2002b, Mol. Psychiatry 7:460-467) reported an association of the 124-bp allele of D2S2944 with recurrent early-onset major depression for females. We tested for association of this allele to continuous

  7. Multimer Formation Explains Allelic Suppression of PRDM9 Recombination Hotspots.

    Science.gov (United States)

    Baker, Christopher L; Petkova, Pavlina; Walker, Michael; Flachs, Petr; Mihola, Ondrej; Trachtulec, Zdenek; Petkov, Petko M; Paigen, Kenneth

    2015-09-01

    Genetic recombination during meiosis functions to increase genetic diversity, promotes elimination of deleterious alleles, and helps assure proper segregation of chromatids. Mammalian recombination events are concentrated at specialized sites, termed hotspots, whose locations are determined by PRDM9, a zinc finger DNA-binding histone methyltransferase. Prdm9 is highly polymorphic with most alleles activating their own set of hotspots. In populations exhibiting high frequencies of heterozygosity, questions remain about the influences different alleles have in heterozygous individuals where the two variant forms of PRDM9 typically do not activate equivalent populations of hotspots. We now find that, in addition to activating its own hotspots, the presence of one Prdm9 allele can modify the activity of hotspots activated by the other allele. PRDM9 function is also dosage sensitive; Prdm9+/- heterozygous null mice have reduced numbers and less active hotspots and increased numbers of aberrant germ cells. In mice carrying two Prdm9 alleles, there is allelic competition; the stronger Prdm9 allele can partially or entirely suppress chromatin modification and recombination at hotspots of the weaker allele. In cell cultures, PRDM9 protein variants form functional heteromeric complexes which can bind hotspots sequences. When a heteromeric complex binds at a hotspot of one PRDM9 variant, the other PRDM9 variant, which would otherwise not bind, can still methylate hotspot nucleosomes. We propose that in heterozygous individuals the underlying molecular mechanism of allelic suppression results from formation of PRDM9 heteromers, where the DNA binding activity of one protein variant dominantly directs recombination initiation towards its own hotspots, effectively titrating down recombination by the other protein variant. In natural populations with many heterozygous individuals, allelic competition will influence the recombination landscape.

  8. Allele-specific MMP-3 transcription under in vivo conditions

    Energy Technology Data Exchange (ETDEWEB)

    Chaoyong, Zhu [Atherosclerosis Research Unit, King Gustav V Research Institute, Department of Medicine, Karolinska Institute, Stockholm (Sweden); Odeberg, Jacob [Atherosclerosis Research Unit, King Gustav V Research Institute, Department of Medicine, Karolinska Institute, Stockholm (Sweden); Department of Biotechnology, AlbaNova University Center, Royal Institute of Technology, Stockholm (Sweden); Hamsten, Anders [Atherosclerosis Research Unit, King Gustav V Research Institute, Department of Medicine, Karolinska Institute, Stockholm (Sweden); Eriksson, Per [Atherosclerosis Research Unit, King Gustav V Research Institute, Department of Medicine, Karolinska Institute, Stockholm (Sweden)

    2006-09-29

    A common matrix metalloproteinases-3 (MMP-3) -1612 5A/6A promoter polymorphism is associated with risk for cardiovascular disease, rheumatoid arthritis, and other diseases. Here we used the haplotype chromatin immunoprecipitation method to study allele-specific MMP-3 expression under in vivo conditions in heterozygous THP-1 cells. Pyrosequencing was used to analyse the ratio of 5A-allele to 6A-allele after chromatin immunoprecipitation using an antibody against phosphorylated active RNA polymerase II. There was no allele-specific difference in transcriptional activity during basal conditions, i.e., in unstimulated monocytic THP-1 cells. However, after stimulation of MMP-3 expression by monocyte differentiation or incubation with IL-1{beta}, the haplotype containing the 5A-allele was associated with higher transcriptional activity compared with the 6A-containing haplotype. Electromobility shift assay demonstrated increased binding of nuclear proteins to the 5A-allele after monocyte differentiation. In conclusion, the common MMP-3 5A/6A promoter polymorphism appears to be functional only during specific environmental conditions involving inflammation.

  9. Divergent Hd1, Ghd7, and DTH7 Alleles Control Heading Date and Yield Potential of Japonica Rice in Northeast China.

    Science.gov (United States)

    Ye, Jing; Niu, Xiaojun; Yang, Yaolong; Wang, Shan; Xu, Qun; Yuan, Xiaoping; Yu, Hanyong; Wang, Yiping; Wang, Shu; Feng, Yue; Wei, Xinghua

    2018-01-01

    The heading date is a vital factor in achieving a full rice yield. Cultivars with particular flowering behaviors have been artificially selected to survive in the long-day and low-temperature conditions of Northeast China. To dissect the genetic mechanism responsible for heading date in rice populations from Northeast China, association mapping was performed to identify major controlling loci. A genome-wide association study (GWAS) identified three genetic loci, Hd1 , Ghd7 , and DTH7 , using general and mixed linear models. The three genes were sequenced to analyze natural variations and identify their functions. Loss-of-function alleles of these genes contributed to early rice heading dates in the northern regions of Northeast China, while functional alleles promoted late rice heading dates in the southern regions of Northeast China. Selecting environmentally appropriate allele combinations in new varieties is recommended during breeding. Introducing the early indica rice's genetic background into Northeast japonica rice is a reasonable strategy for improving genetic diversity.

  10. Human leucocyte antigens class II allele and haplotype association with Type 1 Diabetes in Madeira Island (Portugal).

    Science.gov (United States)

    Spínola, H; Lemos, A; Couto, A R; Parreira, B; Soares, M; Dutra, I; Bruges-Armas, J; Brehm, A; Abreu, S

    2017-12-01

    This study confirms for Madeira Island (Portugal) population the Type 1 Diabetes (T1D) susceptible and protective Human leucocyte antigens (HLA) markers previously reported in other populations and adds some local specificities. Among the strongest T1D HLA associations, stands out, as susceptible, the alleles DRB1*04:05 (OR = 7.3), DQB1*03:02 (OR = 6.1) and DQA1*03:03 (OR = 4.5), as well as the haplotypes DRB1*04:05-DQA1*03:03-DQB1*03:02 (OR = 100.9) and DRB1*04:04-DQA1*03:01-DQB1*03:02 (OR = 22.1), and DQB1*06:02 (OR = 0.07) and DRB1*15:01-DQA1*01:02-DQB1*06:02 (OR = 0.04) as protective. HLA-DQA1 positive for Arginine at position 52 (Arg52) (OR = 15.2) and HLA-DQB1 negative for Aspartic acid at the position 57 (Asp57) (OR = 9.0) alleles appear to be important genetic markers for T1D susceptibility, with higher odds ratio values than any single allele and than most of the haplotypes. Genotypes generated by the association of markers Arg52 DQA1 positive and Asp57 DQB1 negative increase T1D susceptibility much more than one would expected by a simple additive effect of those markers separately (OR = 26.9). This study also confirms an increased risk for DRB1*04/DRB1*03 heterozygote genotypes (OR = 16.8) and also a DRB1*04-DQA1*03:01-DQB1*03:02 haplotype susceptibility dependent on the DRB1*04 allele (DRB1*04:01, OR = 7.9; DRB1*04:02, OR = 3.2; DRB1*04:04, OR = 22.1). © 2017 John Wiley & Sons Ltd.

  11. SSR allelic variation in almond (Prunus dulcis Mill.).

    Science.gov (United States)

    Xie, Hua; Sui, Yi; Chang, Feng-Qi; Xu, Yong; Ma, Rong-Cai

    2006-01-01

    Sixteen SSR markers including eight EST-SSR and eight genomic SSRs were used for genetic diversity analysis of 23 Chinese and 15 international almond cultivars. EST- and genomic SSR markers previously reported in species of Prunus, mainly peach, proved to be useful for almond genetic analysis. DNA sequences of 117 alleles of six of the 16 SSR loci were analysed to reveal sequence variation among the 38 almond accessions. For the four SSR loci with AG/CT repeats, no insertions or deletions were observed in the flanking regions of the 98 alleles sequenced. Allelic size variation of these loci resulted exclusively from differences in the structures of repeat motifs, which involved interruptions or occurrences of new motif repeats in addition to varying number of AG/CT repeats. Some alleles had a high number of uninterrupted repeat motifs, indicating that SSR mutational patterns differ among alleles at a given SSR locus within the almond species. Allelic homoplasy was observed in the SSR loci because of base substitutions, interruptions or compound repeat motifs. Substitutions in the repeat regions were found at two SSR loci, suggesting that point mutations operate on SSRs and hinder the further SSR expansion by introducing repeat interruptions to stabilize SSR loci. Furthermore, it was shown that some potential point mutations in the flanking regions are linked with new SSR repeat motif variation in almond and peach.

  12. Discovery of a Novel er1 Allele Conferring Powdery Mildew Resistance in Chinese Pea (Pisum sativum L.) Landraces

    Science.gov (United States)

    Sun, Suli; Fu, Haining; Wang, Zhongyi; Duan, Canxing; Zong, Xuxiao; Zhu, Zhendong

    2016-01-01

    Pea powdery mildew, caused by Erysiphe pisi D.C., is an important disease worldwide. Deployment of resistant varieties is the main way to control this disease. This study aimed to screen Chinese pea (Pisum sativum L.) landraces resistant to E. pisi, and to characterize the resistance gene(s) at the er1 locus in the resistant landraces, and to develop functional marker(s) specific to the novel er1 allele. The 322 landraces showed different resistance levels. Among them, 12 (3.73%), 4 (1.24%) and 17 (5.28%) landraces showed immunity, high resistance and resistance to E. pisi, respectively. The other landraces appeared susceptible or highly susceptible to E. pisi. Most of the immune and highly resistant landraces were collected from Yunnan province. To characterize the resistance gene at the er1 locus, cDNA sequences of PsMLO1 gene were determined in 12 immune and four highly resistant accessions. The cDNAs of PsMLO1 from the immune landrace G0005576 produced three distinct transcripts, characterized by a 129-bp deletion, and 155-bp and 220-bp insertions, which were consistent with those of er1-2 allele. The PsMLO1 cDNAs in the other 15 resistant landraces produced identical transcripts, which had a new point mutation (T→C) at position 1121 of PsMLO1, indicating a novel er1 allele, designated as er1-6. This mutation caused a leucine to proline change in the amino acid sequence. Subsequently, the resistance allele er1-6 in landrace G0001778 was confirmed by resistance inheritance analysis and genetic mapping on the region of the er1 locus using populations derived from G0001778 × Bawan 6. Finally, a functional marker specific to er1-6, SNP1121, was developed using the high-resolution melting technique, which could be used in pea breeding via marker-assisted selection. The results described here provide valuable genetic information for Chinese pea landraces and a powerful tool for pea breeders. PMID:26809053

  13. A new electrophoresis technique to separate microsatellite alleles ...

    African Journals Online (AJOL)

    A new electrophoresis technique to separate microsatellite alleles* ... African Journal of Biotechnology ... with the CEQTM 8000 Genetic Analysis System and ABI 3130xl DNA Sequencer easily separated products and determined allelic size, ...

  14. Allelic diversity of the MHC class II DRB genes in brown bears (Ursus arctos) and a comparison of DRB sequences within the family Ursidae.

    Science.gov (United States)

    Goda, N; Mano, T; Kosintsev, P; Vorobiev, A; Masuda, R

    2010-11-01

    The allelic diversity of the DRB locus in major histocompatibility complex (MHC) genes was analyzed in the brown bear (Ursus arctos) from the Hokkaido Island of Japan, Siberia, and Kodiak of Alaska. Nineteen alleles of the DRB exon 2 were identified from a total of 38 individuals of U. arctos and were highly polymorphic. Comparisons of non-synonymous and synonymous substitutions in the antigen-binding sites of deduced amino acid sequences indicated evidence for balancing selection on the bear DRB locus. The phylogenetic analysis of the DRB alleles among three genera (Ursus, Tremarctos, and Ailuropoda) in the family Ursidae revealed that DRB allelic lineages were not separated according to species. This strongly shows trans-species persistence of DRB alleles within the Ursidae. © 2010 John Wiley & Sons A/S.

  15. Geographic differences in allele frequencies of susceptibility SNPs for cardiovascular disease

    Directory of Open Access Journals (Sweden)

    Kullo Iftikhar J

    2011-04-01

    Full Text Available Abstract Background We hypothesized that the frequencies of risk alleles of SNPs mediating susceptibility to cardiovascular diseases differ among populations of varying geographic origin and that population-specific selection has operated on some of these variants. Methods From the database of genome-wide association studies (GWAS, we selected 36 cardiovascular phenotypes including coronary heart disease, hypertension, and stroke, as well as related quantitative traits (eg, body mass index and plasma lipid levels. We identified 292 SNPs in 270 genes associated with a disease or trait at P -8. As part of the Human Genome-Diversity Project (HGDP, 158 (54.1% of these SNPs have been genotyped in 938 individuals belonging to 52 populations from seven geographic areas. A measure of population differentiation, FST, was calculated to quantify differences in risk allele frequencies (RAFs among populations and geographic areas. Results Large differences in RAFs were noted in populations of Africa, East Asia, America and Oceania, when compared with other geographic regions. The mean global FST (0.1042 for 158 SNPs among the populations was not significantly higher than the mean global FST of 158 autosomal SNPs randomly sampled from the HGDP database. Significantly higher global FST (P FST of 2036 putatively neutral SNPs. For four of these SNPs, additional evidence of selection was noted based on the integrated Haplotype Score. Conclusion Large differences in RAFs for a set of common SNPs that influence risk of cardiovascular disease were noted between the major world populations. Pairwise comparisons revealed RAF differences for at least eight SNPs that might be due to population-specific selection or demographic factors. These findings are relevant to a better understanding of geographic variation in the prevalence of cardiovascular disease.

  16. Erasure and reestablishment of random allelic expression imbalance after epigenetic reprogramming.

    Science.gov (United States)

    Jeffries, Aaron Richard; Uwanogho, Dafe Aghogho; Cocks, Graham; Perfect, Leo William; Dempster, Emma; Mill, Jonathan; Price, Jack

    2016-10-01

    Clonal level random allelic expression imbalance and random monoallelic expression provides cellular heterogeneity within tissues by modulating allelic dosage. Although such expression patterns have been observed in multiple cell types, little is known about when in development these stochastic allelic choices are made. We examine allelic expression patterns in human neural progenitor cells before and after epigenetic reprogramming to induced pluripotency, observing that loci previously characterized by random allelic expression imbalance (0.63% of expressed genes) are generally reset to a biallelic state in induced pluripotent stem cells (iPSCs). We subsequently neuralized the iPSCs and profiled isolated clonal neural stem cells, observing that significant random allelic expression imbalance is reestablished at 0.65% of expressed genes, including novel loci not found to show allelic expression imbalance in the original parental neural progenitor cells. Allelic expression imbalance was associated with altered DNA methylation across promoter regulatory regions, with clones characterized by skewed allelic expression being hypermethylated compared to their biallelic sister clones. Our results suggest that random allelic expression imbalance is established during lineage commitment and is associated with increased DNA methylation at the gene promoter. © 2016 Jeffries et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  17. Efficient simulation and likelihood methods for non-neutral multi-allele models.

    Science.gov (United States)

    Joyce, Paul; Genz, Alan; Buzbas, Erkan Ozge

    2012-06-01

    Throughout the 1980s, Simon Tavaré made numerous significant contributions to population genetics theory. As genetic data, in particular DNA sequence, became more readily available, a need to connect population-genetic models to data became the central issue. The seminal work of Griffiths and Tavaré (1994a , 1994b , 1994c) was among the first to develop a likelihood method to estimate the population-genetic parameters using full DNA sequences. Now, we are in the genomics era where methods need to scale-up to handle massive data sets, and Tavaré has led the way to new approaches. However, performing statistical inference under non-neutral models has proved elusive. In tribute to Simon Tavaré, we present an article in spirit of his work that provides a computationally tractable method for simulating and analyzing data under a class of non-neutral population-genetic models. Computational methods for approximating likelihood functions and generating samples under a class of allele-frequency based non-neutral parent-independent mutation models were proposed by Donnelly, Nordborg, and Joyce (DNJ) (Donnelly et al., 2001). DNJ (2001) simulated samples of allele frequencies from non-neutral models using neutral models as auxiliary distribution in a rejection algorithm. However, patterns of allele frequencies produced by neutral models are dissimilar to patterns of allele frequencies produced by non-neutral models, making the rejection method inefficient. For example, in some cases the methods in DNJ (2001) require 10(9) rejections before a sample from the non-neutral model is accepted. Our method simulates samples directly from the distribution of non-neutral models, making simulation methods a practical tool to study the behavior of the likelihood and to perform inference on the strength of selection.

  18. Stress-related methylation of the catechol-O-methyltransferase Val 158 allele predicts human prefrontal cognition and activity.

    Science.gov (United States)

    Ursini, Gianluca; Bollati, Valentina; Fazio, Leonardo; Porcelli, Annamaria; Iacovelli, Luisa; Catalani, Assia; Sinibaldi, Lorenzo; Gelao, Barbara; Romano, Raffaella; Rampino, Antonio; Taurisano, Paolo; Mancini, Marina; Di Giorgio, Annabella; Popolizio, Teresa; Baccarelli, Andrea; De Blasi, Antonio; Blasi, Giuseppe; Bertolino, Alessandro

    2011-05-04

    DNA methylation at CpG dinucleotides is associated with gene silencing, stress, and memory. The catechol-O-methyltransferase (COMT) Val(158) allele in rs4680 is associated with differential enzyme activity, stress responsivity, and prefrontal activity during working memory (WM), and it creates a CpG dinucleotide. We report that methylation of the Val(158) allele measured from peripheral blood mononuclear cells (PBMCs) of Val/Val humans is associated negatively with lifetime stress and positively with WM performance; it interacts with stress to modulate prefrontal activity during WM, such that greater stress and lower methylation are related to reduced cortical efficiency; and it is inversely related to mRNA expression and protein levels, potentially explaining the in vivo effects. Finally, methylation of COMT in prefrontal cortex and that in PBMCs of rats are correlated. The relationship of methylation of the COMT Val(158) allele with stress, gene expression, WM performance, and related brain activity suggests that stress-related methylation is associated with silencing of the gene, which partially compensates the physiological role of the high-activity Val allele in prefrontal cognition and activity. Moreover, these results demonstrate how stress-related DNA methylation of specific functional alleles impacts directly on human brain physiology beyond sequence variation.

  19. Tracing evolutionary relicts of positive selection on eight malaria-related immune genes in mammals.

    Science.gov (United States)

    Huang, Bing-Hong; Liao, Pei-Chun

    2015-07-01

    Plasmodium-induced malaria widely infects primates and other mammals. Multiple past studies have revealed that positive selection could be the main evolutionary force triggering the genetic diversity of anti-malaria resistance-associated genes in human or primates. However, researchers focused most of their attention on the infra-generic and intra-specific genome evolution rather than analyzing the complete evolutionary history of mammals. Here we extend previous research by testing the evolutionary link of natural selection on eight candidate genes associated with malaria resistance in mammals. Three of the eight genes were detected to be affected by recombination, including TNF-α, iNOS and DARC. Positive selection was detected in the rest five immunogenes multiple times in different ancestral lineages of extant species throughout the mammalian evolution. Signals of positive selection were exposed in four malaria-related immunogenes in primates: CCL2, IL-10, HO1 and CD36. However, selection signals of G6PD have only been detected in non-primate eutherians. Significantly higher evolutionary rates and more radical amino acid replacement were also detected in primate CD36, suggesting its functional divergence from other eutherians. Prevalent positive selection throughout the evolutionary trajectory of mammalian malaria-related genes supports the arms race evolutionary hypothesis of host genetic response of mammalian immunogenes to infectious pathogens. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  20. HLA-DRB1 allele association with rheumatoid arthritis susceptibility and severity in Syria.

    Science.gov (United States)

    Mourad, Jamil; Monem, Fawza

    2013-02-01

    Rheumatoid arthritis (RA) is a complex multifactorial chronic disease. The importance of human leukocyte antigen as a major genetic risk factor for RA was studied worldwide. Although it is widely distributed in different Syrian areas, studies of human leukocyte antigen (HLA) alleles' role are absent. The aim of our study was to determine the association of HLA-DRB1 alleles with the susceptibility and severity of RA in Syria. Eighty-six RA patients and 200 healthy controls from Syria were genotyped using polymerase chain reaction with sequence-specific primer (PCR-SSP). Anti-CCP antibodies were measured by ELISA. Rheumatoid factor (RF), C-reactive protein (CRP), erythrocyte sedimentation rate (ESR), and disease activity score 28 (DAS-28) values were obtained from patients' medical records. DAS-28 was used to assess the clinical severity of the patients. The HLA-DRB1*01, *04, and *10 frequencies showed a strong association with the disease susceptibility (OR = 2.29, 95% CI = 1.11-4.75, P = 0.022; OR = 3.16, 95% CI = 2.0 -4.8, P < 0.0001; OR = 2.43, 95% CI = 1.07-5.51, P = 0.029 respectively), while the frequencies of HLA-DRB1*11, and *13 were significantly lower in RA patients than in controls (OR = 0.49, 95% CI = 0.3-0.8, P = 0.004; OR = 0.32, 95% CI = 0.15-0.69, P = 0.002, respectively). The other HLA-DRB1 alleles showed no significant difference. The frequency of anti-CCP antibodies was higher in shared epitope (SE) positive patients compared with SE-negative patients (OR = 5.5, 95% CI = 2-15.1, P = 0.00054). DAS-28 of RA patients didn't show significant difference between the SE negative and the SE positive groups. Our results indicate that HLA-DRB1*01, *04, and *10 alleles are related with RA, while HLA-DRB1*11 and *13 protect against RA in the Syrian population.

  1. Marker Assisted Selection can Reduce True as well as Pedigree Estimated Inbreeding

    DEFF Research Database (Denmark)

    Pedersen, L D; Sørensen, A C; Berg, P

    2009-01-01

    This study investigated whether selection using genotype information reduced the rate and level of true inbreeding, that is, identity by descent, at a selectively neutral locus as well as a locus under selection compared with traditional BLUP selection. In addition, the founder representation...... each of 40 herds. Selection was performed using BLUP, marker-assisted, or gene-assisted selection for a trait with low heritability (h2 = 0.04) only expressed in females, mimicking a health trait. The simulated genome consisted of 2 chromosomes. One biallelic quantitative trait loci (QTL......) with an initial frequency of the favorable allele of 0.1, and initially explaining 25% of the genetic variance as well as 4 markers were simulated in linkage disequilibrium, all positioned at chromosome 1. Chromosome 2 was selectively neutral, and consisted of a single neutral locus. The results showed...

  2. Dynamics of leaf and spikelet primordia initiation in wheat as affected by Ppd-1a alleles under field conditions.

    Science.gov (United States)

    Ochagavía, Helga; Prieto, Paula; Savin, Roxana; Griffiths, Simon; Slafer, GustavoA

    2018-04-27

    Wheat adaptation is affected by Ppd genes, but the role of these alleles in the rates of leaf and spikelet initiation has not been properly analysed. Twelve near isogenic lines (NILs) combining Ppd-1a alleles from different donors introgressed in A, B, and/or D genomes were tested under field conditions during two growing seasons together with the wild type, Paragon. Leaf initiation rate was unaffected by Ppd-1a alleles so the final leaf number (FLN) was reduced in parallel with reductions in the duration of the vegetative phase. Spikelet primordia initiation was accelerated and consequently the effect on spikelets per spike was less than proportional to the effect on the duration of spikelet initiation. The magnitude of these effects on spikelet plastochron depended on the doses of Ppd-1 homoeoalleles and the specific insensitivity alleles carried. Double ridge was consistently later than floral initiation, but the difference between them was not affected by Ppd-1a alleles. These findings have potential for selecting the best combinations from the Ppd-1 homoeoallelic series for manipulating adaptation taking into consideration particular effects on spikelet number.

  3. Simultaneous SNP identification and assessment of allele-specific bias from ChIP-seq data

    Directory of Open Access Journals (Sweden)

    Ni Yunyun

    2012-09-01

    Full Text Available Abstract Background Single nucleotide polymorphisms (SNPs have been associated with many aspects of human development and disease, and many non-coding SNPs associated with disease risk are presumed to affect gene regulation. We have previously shown that SNPs within transcription factor binding sites can affect transcription factor binding in an allele-specific and heritable manner. However, such analysis has relied on prior whole-genome genotypes provided by large external projects such as HapMap and the 1000 Genomes Project. This requirement limits the study of allele-specific effects of SNPs in primary patient samples from diseases of interest, where complete genotypes are not readily available. Results In this study, we show that we are able to identify SNPs de novo and accurately from ChIP-seq data generated in the ENCODE Project. Our de novo identified SNPs from ChIP-seq data are highly concordant with published genotypes. Independent experimental verification of more than 100 sites estimates our false discovery rate at less than 5%. Analysis of transcription factor binding at de novo identified SNPs revealed widespread heritable allele-specific binding, confirming previous observations. SNPs identified from ChIP-seq datasets were significantly enriched for disease-associated variants, and we identified dozens of allele-specific binding events in non-coding regions that could distinguish between disease and normal haplotypes. Conclusions Our approach combines SNP discovery, genotyping and allele-specific analysis, but is selectively focused on functional regulatory elements occupied by transcription factors or epigenetic marks, and will therefore be valuable for identifying the functional regulatory consequences of non-coding SNPs in primary disease samples.

  4. Molecular footprints reveal the impact of the protective HLA-A*03 allele in hepatitis C virus infection.

    LENUS (Irish Health Repository)

    Fitzmaurice, Karen

    2012-02-01

    BACKGROUND AND AIMS: CD8 T cells are central to the control of hepatitis C virus (HCV) although the key features of a successful CD8 T cell response remain to be defined. In a cohort of Irish women infected by a single source, a strong association between viral clearance and the human lecucocyte (HLA)-A*03 allele has been described, and the aim of this study was to define the protective nature of the associated CD8 T cell response. METHODS: A sequence-led approach was used to identify HLA-A*03-restricted epitopes. We examine the CD8 T cell response associated with this gene and address the likely mechanism underpinning this protective effect in this special cohort, using viral sequencing, T cell assays and analysis of fitness of viral mutants. RESULTS: A strong \\'HLA footprint\\' in a novel NS3 epitope (TVYHGAGTK) was observed. A lysine (K) to arginine (R) substitution at position 9 (K1088R) was seen in a significant number of A*03-positive patients (9\\/12) compared with the control group (1\\/33, p=0.0003). Threonine (T) was also substituted with alanine (A) at position 8 (T1087A) more frequently in A*03-positive patients (6\\/12) compared with controls (2\\/33, p=0.01), and the double substitution of TK to AR was also observed predominantly in HLA-A*03-positive patients (p=0.004). Epitope-specific CD8 T cell responses were observed in 60% of patients three decades after exposure and the mutants selected in vivo impacted on recognition in vitro. Using HCV replicons matched to the viral sequences, viral fitness was found to be markedly reduced by the K1088R substitution but restored by the second substitution T1087A. CONCLUSIONS: It is proposed that at least part of the protective effect of HLA-A*03 results from targeting of this key epitope in a functional site: the requirement for two mutations to balance fitness and escape provides an initial host advantage. This study highlights the potential protective impact of common HLA-A alleles against persistent

  5. The role of positive selection in determining the molecular cause of species differences in disease

    Directory of Open Access Journals (Sweden)

    Foord Steven M

    2008-10-01

    Full Text Available Abstract Background Related species, such as humans and chimpanzees, often experience the same disease with varying degrees of pathology, as seen in the cases of Alzheimer's disease, or differing symptomatology as in AIDS. Furthermore, certain diseases such as schizophrenia, epithelial cancers and autoimmune disorders are far more frequent in humans than in other species for reasons not associated with lifestyle. Genes that have undergone positive selection during species evolution are indicative of functional adaptations that drive species differences. Thus we investigate whether biomedical disease differences between species can be attributed to positively selected genes. Results We identified genes that putatively underwent positive selection during the evolution of humans and four mammals which are often used to model human diseases (mouse, rat, chimpanzee and dog. We show that genes predicted to have been subject to positive selection pressure during human evolution are implicated in diseases such as epithelial cancers, schizophrenia, autoimmune diseases and Alzheimer's disease, all of which differ in prevalence and symptomatology between humans and their mammalian relatives. In agreement with previous studies, the chimpanzee lineage was found to have more genes under positive selection than any of the other lineages. In addition, we found new evidence to support the hypothesis that genes that have undergone positive selection tend to interact with each other. This is the first such evidence to be detected widely among mammalian genes and may be important in identifying molecular pathways causative of species differences. Conclusion Our dataset of genes predicted to have been subject to positive selection in five species serves as an informative resource that can be consulted prior to selecting appropriate animal models during drug target validation. We conclude that studying the evolution of functional and biomedical disease differences

  6. Natural host genetic resistance to lentiviral CNS disease: a neuroprotective MHC class I allele in SIV-infected macaques.

    Directory of Open Access Journals (Sweden)

    Joseph L Mankowski

    Full Text Available Human immunodeficiency virus (HIV infection frequently causes neurologic disease even with anti-retroviral treatment. Although associations between MHC class I alleles and acquired immunodeficiency syndrome (AIDS have been reported, the role MHC class I alleles play in restricting development of HIV-induced organ-specific diseases, including neurologic disease, has not been characterized. This study examined the relationship between expression of the MHC class I allele Mane-A*10 and development of lentiviral-induced central nervous system (CNS disease using a well-characterized simian immunodeficiency (SIV/pigtailed macaque model. The risk of developing CNS disease (SIV encephalitis was 2.5 times higher for animals that did not express the MHC class I allele Mane-A*10 (P = 0.002; RR = 2.5. Animals expressing the Mane-A*10 allele had significantly lower amounts of activated macrophages, SIV RNA, and neuronal dysfunction in the CNS than Mane-A*10 negative animals (P<0.001. Mane-A*10 positive animals with the highest CNS viral burdens contained SIV gag escape mutants at the Mane-A*10-restricted KP9 epitope in the CNS whereas wild type KP9 sequences dominated in the brain of Mane-A*10 negative animals with comparable CNS viral burdens. These concordant findings demonstrate that particular MHC class I alleles play major neuroprotective roles in lentiviral-induced CNS disease.

  7. Improvements to a Markerless Allelic Exchange System for Bacillus anthracis.

    Directory of Open Access Journals (Sweden)

    Roger D Plaut

    Full Text Available A system was previously developed for conducting I-SceI-mediated allelic exchange in Bacillus anthracis. In this system, recombinational loss of a chromosomally-integrated allelic exchange vector is stimulated by creation of a double-stranded break within the vector by the homing endonuclease I-SceI. Although this system is reasonably efficient and represents an improvement in the tools available for allelic exchange in B. anthracis, researchers are nonetheless required to "pick and patch" colonies in order to identify candidate "exchangeants." In the present study, a number of improvements have been made to this system: 1 an improved I-SceI-producing plasmid includes oriT so that both plasmids can now be introduced by conjugation, thus avoiding the need for preparing electro-competent cells of each integration intermediate; 2 antibiotic markers have been changed to allow the use of the system in select agent strains; and 3 both plasmids have been marked with fluorescent proteins, allowing the visualization of plasmid segregation on a plate and obviating the need for "picking and patching." These modifications have made the process easier, faster, and more efficient, allowing for parallel construction of larger numbers of mutant strains. Using this improved system, the genes encoding the tripartite anthrax toxin were deleted singly and in combination from plasmid pXO1 of Sterne strain 34F2. In the course of this study, we determined that DNA transfer to B. anthracis could be accomplished by conjugation directly from a methylation-competent E. coli strain.

  8. Genes of the unfolded protein response pathway harbor risk alleles for primary open angle glaucoma.

    Directory of Open Access Journals (Sweden)

    Mary Anna Carbone

    Full Text Available The statistical power of genome-wide association (GWA studies to detect risk alleles for human diseases is limited by the unfavorable ratio of SNPs to study subjects. This multiple testing problem can be surmounted with very large population sizes when common alleles of large effects give rise to disease status. However, GWA approaches fall short when many rare alleles may give rise to a common disease, or when the number of subjects that can be recruited is limited. Here, we demonstrate that this multiple testing problem can be overcome by a comparative genomics approach in which an initial genome-wide screen in a genetically amenable model organism is used to identify human orthologues that may harbor risk alleles for adult-onset primary open angle glaucoma (POAG. Glaucoma is a major cause of blindness, which affects over 60 million people worldwide. Several genes have been associated with juvenile onset glaucoma, but genetic factors that predispose to adult onset primary open angle glaucoma (POAG remain largely unknown. Previous genome-wide analysis in a Drosophila ocular hypertension model identified transcripts with altered regulation and showed induction of the unfolded protein response (UPR upon overexpression of transgenic human glaucoma-associated myocilin (MYOC. We selected 16 orthologous genes with 62 polymorphic markers and identified in two independent human populations two genes of the UPR that harbor POAG risk alleles, BIRC6 and PDIA5. Thus, effectiveness of the UPR in response to accumulation of misfolded or aggregated proteins may contribute to the pathogenesis of POAG and provide targets for early therapeutic intervention.

  9. Genes of the unfolded protein response pathway harbor risk alleles for primary open angle glaucoma.

    Science.gov (United States)

    Carbone, Mary Anna; Chen, Yuhong; Hughes, Guy A; Weinreb, Robert N; Zabriskie, Norman A; Zhang, Kang; Anholt, Robert R H

    2011-01-01

    The statistical power of genome-wide association (GWA) studies to detect risk alleles for human diseases is limited by the unfavorable ratio of SNPs to study subjects. This multiple testing problem can be surmounted with very large population sizes when common alleles of large effects give rise to disease status. However, GWA approaches fall short when many rare alleles may give rise to a common disease, or when the number of subjects that can be recruited is limited. Here, we demonstrate that this multiple testing problem can be overcome by a comparative genomics approach in which an initial genome-wide screen in a genetically amenable model organism is used to identify human orthologues that may harbor risk alleles for adult-onset primary open angle glaucoma (POAG). Glaucoma is a major cause of blindness, which affects over 60 million people worldwide. Several genes have been associated with juvenile onset glaucoma, but genetic factors that predispose to adult onset primary open angle glaucoma (POAG) remain largely unknown. Previous genome-wide analysis in a Drosophila ocular hypertension model identified transcripts with altered regulation and showed induction of the unfolded protein response (UPR) upon overexpression of transgenic human glaucoma-associated myocilin (MYOC). We selected 16 orthologous genes with 62 polymorphic markers and identified in two independent human populations two genes of the UPR that harbor POAG risk alleles, BIRC6 and PDIA5. Thus, effectiveness of the UPR in response to accumulation of misfolded or aggregated proteins may contribute to the pathogenesis of POAG and provide targets for early therapeutic intervention.

  10. A genome scan for positive selection in thoroughbred horses.

    Directory of Open Access Journals (Sweden)

    Jingjing Gu

    2009-06-01

    Full Text Available Thoroughbred horses have been selected for exceptional racing performance resulting in system-wide structural and functional adaptations contributing to elite athletic phenotypes. Because selection has been recent and intense in a closed population that stems from a small number of founder animals Thoroughbreds represent a unique population within which to identify genomic contributions to exercise-related traits. Employing a population genetics-based hitchhiking mapping approach we performed a genome scan using 394 autosomal and X chromosome microsatellite loci and identified positively selected loci in the extreme tail-ends of the empirical distributions for (1 deviations from expected heterozygosity (Ewens-Watterson test in Thoroughbred (n = 112 and (2 global differentiation among four geographically diverse horse populations (F(ST. We found positively selected genomic regions in Thoroughbred enriched for phosphoinositide-mediated signalling (3.2-fold enrichment; P<0.01, insulin receptor signalling (5.0-fold enrichment; P<0.01 and lipid transport (2.2-fold enrichment; P<0.05 genes. We found a significant overrepresentation of sarcoglycan complex (11.1-fold enrichment; P<0.05 and focal adhesion pathway (1.9-fold enrichment; P<0.01 genes highlighting the role for muscle strength and integrity in the Thoroughbred athletic phenotype. We report for the first time candidate athletic-performance genes within regions targeted by selection in Thoroughbred horses that are principally responsible for fatty acid oxidation, increased insulin sensitivity and muscle strength: ACSS1 (acyl-CoA synthetase short-chain family member 1, ACTA1 (actin, alpha 1, skeletal muscle, ACTN2 (actinin, alpha 2, ADHFE1 (alcohol dehydrogenase, iron containing, 1, MTFR1 (mitochondrial fission regulator 1, PDK4 (pyruvate dehydrogenase kinase, isozyme 4 and TNC (tenascin C. Understanding the genetic basis for exercise adaptation will be crucial for the identification of genes

  11. A Demonstration of Regression False Positive Selection in Data Mining

    Science.gov (United States)

    Pinder, Jonathan P.

    2014-01-01

    Business analytics courses, such as marketing research, data mining, forecasting, and advanced financial modeling, have substantial predictive modeling components. The predictive modeling in these courses requires students to estimate and test many linear regressions. As a result, false positive variable selection ("type I errors") is…

  12. Positive selection for unpreferred codon usage in eukaryotic genomes

    Directory of Open Access Journals (Sweden)

    Galagan James E

    2007-07-01

    Full Text Available Abstract Background Natural selection has traditionally been understood as a force responsible for pushing genes to states of higher translational efficiency, whereas lower translational efficiency has been explained by neutral mutation and genetic drift. We looked for evidence of directional selection resulting in increased unpreferred codon usage (and presumably reduced translational efficiency in three divergent clusters of eukaryotic genomes using a simple optimal-codon-based metric (Kp/Ku. Results Here we show that for some genes natural selection is indeed responsible for causing accelerated unpreferred codon substitution, and document the scope of this selection. In Cryptococcus and to a lesser extent Drosophila, we find many genes showing a statistically significant signal of selection for unpreferred codon usage in one or more lineages. We did not find evidence for this type of selection in Saccharomyces. The signal of positive selection observed from unpreferred synonymous codon substitutions is coincident in Cryptococcus and Drosophila with the distribution of upstream open reading frames (uORFs, another genic feature known to reduce translational efficiency. Functional enrichment analysis of genes exhibiting low Kp/Ku ratios reveals that genes in regulatory roles are particularly subject to this type of selection. Conclusion Through genome-wide scans, we find recent selection for unpreferred codon usage at approximately 1% of genetic loci in a Cryptococcus and several genes in Drosophila. Unpreferred codons can impede translation efficiency, and we find that genes with translation-impeding uORFs are enriched for this selection signal. We find that regulatory genes are particularly likely to be subject to selection for unpreferred codon usage. Given that expression noise can propagate through regulatory cascades, and that low translational efficiency can reduce expression noise, this finding supports the hypothesis that translational

  13. Positive selection on gene expression in the human brain

    DEFF Research Database (Denmark)

    Khaitovich, Philipp; Tang, Kun; Franz, Henriette

    2006-01-01

    Recent work has shown that the expression levels of genes transcribed in the brains of humans and chimpanzees have changed less than those of genes transcribed in other tissues [1] . However, when gene expression changes are mapped onto the evolutionary lineage in which they occurred, the brain...... shows more changes than other tissues in the human lineage compared to the chimpanzee lineage [1] , [2] and [3] . There are two possible explanations for this: either positive selection drove more gene expression changes to fixation in the human brain than in the chimpanzee brain, or genes expressed...... in the brain experienced less purifying selection in humans than in chimpanzees, i.e. gene expression in the human brain is functionally less constrained. The first scenario would be supported if genes that changed their expression in the brain in the human lineage showed more selective sweeps than other genes...

  14. The immunogenetics of multiple sclerosis. The frequency of HLA-alleles class 1 and 2 is lower in Southern Brazil than in the European population.

    Science.gov (United States)

    Werneck, Lineu Cesar; Lorenzoni, Paulo José; Arndt, Raquel Cristina; Kay, Cláudia Suemi Kamoi; Scola, Rosana Herminia

    2016-08-01

    To study the HLA of class 1and 2 in a multiple sclerosis (MS) population to verify the susceptibility for the disease in the Southern Brazil. We analyzed patients with MS and controls, by direct sequencing of the genes related to HLA DRB1, DQB1, DPB1, A, B and C alleles with high resolution techniques. We found a lower frequency of all HLA alleles class 1 and 2 in MS and controls comparing to the European population. Several alleles had statistical correlation, but after Bonferroni correction, the only allele with significance was the HLA-DQB1*02:03, which has a positive association with MS. Our data have different frequency of HLA-alleles than the previous published papers in the Southeast Brazil and European population, possible due to several ethnic backgrounds.

  15. Forensic genetic informativeness of an SNP panel consisting of 19 multi-allelic SNPs.

    Science.gov (United States)

    Gao, Zehua; Chen, Xiaogang; Zhao, Yuancun; Zhao, Xiaohong; Zhang, Shu; Yang, Yiwen; Wang, Yufang; Zhang, Ji

    2018-05-01

    Current research focusing on forensic personal identification, phenotype inference and ancestry information on single-nucleotide polymorphisms (SNPs) has been widely reported. In the present study, we focused on tetra-allelic SNPs in the Chinese Han population. A total of 48 tetra-allelic SNPs were screened out from the Chinese Han population of the 1000 Genomes Database, including Chinese Han in Beijing (CHB) and Chinese Han South (CHS). Considering the forensic genetic requirement for the polymorphisms, only 11 tetra-allelic SNPs with a heterozygosity >0.06 were selected for further multiplex panel construction. In order to meet the demands of personal identification and parentage identification, an additional 8 tri-allelic SNPs were combined into the final multiplex panel. To ensure application in the degraded DNA analysis, all the PCR products were designed to be 87-188 bp. Employing multiple PCR reactions and SNaPshot minisequencing, 511 unrelated Chinese Han individuals from Sichuan were genotyped. The combined match probability (CMP), combined discrimination power (CDP), and cumulative probability of exclusion (CPE) of the panel were 6.07 × 10 -11 , 0.9999999999393 and 0.996764, respectively. Based on the population data retrieved from the 1000 Genomes Project, Fst values between Chinese Han in Sichuan (SCH) and all the populations included in the 1000 Genomes Project were calculated. The results indicated that two SNPs in this panel may contain ancestry information and may be used as markers of forensic biogeographical ancestry inference. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Positively selected sites in cetacean myoglobins contribute to protein stability

    DEFF Research Database (Denmark)

    Dasmeh, Pouria; Serohijos, Adrian W R; Kepp, Kasper P

    2013-01-01

    Since divergence ∼50 Ma ago from their terrestrial ancestors, cetaceans underwent a series of adaptations such as a ∼10-20 fold increase in myoglobin (Mb) concentration in skeletal muscle, critical for increasing oxygen storage capacity and prolonging dive time. Whereas the O2-binding affinity...... between Mb folding stability and protein abundance, suggesting that a selection pressure for stability acts proportionally to higher expression. We also identify a major divergence event leading to the common ancestor of whales, during which major stabilization occurred. Most of the positively selected...

  17. Identification of physicochemical selective pressure on protein encoding nucleotide sequences

    Directory of Open Access Journals (Sweden)

    Sainudiin Raazesh

    2006-03-01

    Full Text Available Abstract Background Statistical methods for identifying positively selected sites in protein coding regions are one of the most commonly used tools in evolutionary bioinformatics. However, they have been limited by not taking the physiochemical properties of amino acids into account. Results We develop a new codon-based likelihood model for detecting site-specific selection pressures acting on specific physicochemical properties. Nonsynonymous substitutions are divided into substitutions that differ with respect to the physicochemical properties of interest, and those that do not. The substitution rates of these two types of changes, relative to the synonymous substitution rate, are then described by two parameters, γ and ω respectively. The new model allows us to perform likelihood ratio tests for positive selection acting on specific physicochemical properties of interest. The new method is first used to analyze simulated data and is shown to have good power and accuracy in detecting physicochemical selective pressure. We then re-analyze data from the class-I alleles of the human Major Histocompatibility Complex (MHC and from the abalone sperm lysine. Conclusion Our new method allows a more flexible framework to identify selection pressure on particular physicochemical properties.

  18. Continental-scale footprint of balancing and positive selection in a small rodent (Microtus arvalis.

    Directory of Open Access Journals (Sweden)

    Martin C Fischer

    Full Text Available Genetic adaptation to different environmental conditions is expected to lead to large differences between populations at selected loci, thus providing a signature of positive selection. Whereas balancing selection can maintain polymorphisms over long evolutionary periods and even geographic scale, thus leads to low levels of divergence between populations at selected loci. However, little is known about the relative importance of these two selective forces in shaping genomic diversity, partly due to difficulties in recognizing balancing selection in species showing low levels of differentiation. Here we address this problem by studying genomic diversity in the European common vole (Microtus arvalis presenting high levels of differentiation between populations (average F ST = 0.31. We studied 3,839 Amplified Fragment Length Polymorphism (AFLP markers genotyped in 444 individuals from 21 populations distributed across the European continent and hence over different environmental conditions. Our statistical approach to detect markers under selection is based on a Bayesian method specifically developed for AFLP markers, which treats AFLPs as a nearly codominant marker system, and therefore has increased power to detect selection. The high number of screened populations allowed us to detect the signature of balancing selection across a large geographic area. We detected 33 markers potentially under balancing selection, hence strong evidence of stabilizing selection in 21 populations across Europe. However, our analyses identified four-times more markers (138 being under positive selection, and geographical patterns suggest that some of these markers are probably associated with alpine regions, which seem to have environmental conditions that favour adaptation. We conclude that despite favourable conditions in this study for the detection of balancing selection, this evolutionary force seems to play a relatively minor role in shaping the genomic

  19. Origin of allelic diversity in antirrhinum S locus RNases.

    Science.gov (United States)

    Xue, Y; Carpenter, R; Dickinson, H G; Coen, E S

    1996-01-01

    In many plant species, self-incompatibility (SI) is genetically controlled by a single multiallelic S locus. Previous analysis of S alleles in the Solanaceae, in which S locus ribonucleases (S RNases) are responsible for stylar expression of SI, has demonstrated that allelic diversity predated speciation within this family. To understand how allelic diversity has evolved, we investigated the molecular basis of gametophytic SI in Antirrhinum, a member of the Scrophulariaceae, which is closely related to the Solanaceae. We have characterized three Antirrhinum cDNAs encoding polypeptides homologous to S RNases and shown that they are encoded by genes at the S locus. RNA in situ hybridization revealed that the Antirrhinum S RNase are primarily expressed in the stylar transmitting tissue. This expression is consistent with their proposed role in arresting the growth of self-pollen tubes. S alleles from the Scrophulariaceae form a separate group from those of the Solanaceae, indicating that new S alleles have been generated since these families separated (approximately 40 million years). We propose that the recruitment of an ancestral RNase gene into SI occurred during an early stage of angiosperm evolution and that, since that time, new alleles subsequently have arisen at a low rate. PMID:8672882

  20. Identification of a new defective SERPINA1 allele (PI*Zla palma) encoding an alpha-1-antitrypsin with altered glycosylation pattern.

    Science.gov (United States)

    Hernández-Pérez, José M; Ramos-Díaz, Ruth; Pérez, José A

    2017-10-01

    Alpha-1-antitrypsin (AAT) deficiency is a genetic condition that arises from mutations in the SERPINA1 gene and predisposes to develop pulmonary emphysema and, less frequently, liver disease. Occasionally, new defective SERPINA1 alleles are detected as an outcome of targeted-screening programs or case-findings. This study began with a female patient showing bronchial hyperreactivity. Serum level and phenotype for AAT was analysed by immunonephelometry and isoelectric focusing electrophoresis. The SERPINA1 gene of the proband was genotyped by PCR amplification and DNA sequencing. Analysis of AAT deficiency was extended to the proband's family. An abnormal AAT variant that migrated to a more cathodal position than PiZ AAT was detected in the proband's serum. Genetic analysis demonstrated that proband is heterozygous for a new defective SERPINA1 allele (PI*Z la palma ) characterized by the c.321C > A (p.Asn83Lys) mutation in the M1Val213 background. This mutation abolishes the N-glycosylation site in position 83 of the mature AAT. Eight relatives of the proband are carriers of the PI*Z la palma allele and four of them have shown symptoms of bronchial asthma or bronchial hyperreactivity. The mean α1AT level in the serum of PI*MZ la palma individuals was 87.1 mg/dl. The reduction in circulating AAT levels associated to the PI*Z la palma allele was similar to that of PI*Z allele, representing a risk of impairment in lung function. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Positive selection on D-lactate dehydrogenases of Lactobacillus delbrueckii subspecies bulgaricus.

    Science.gov (United States)

    Zhang, Jifeng; Gong, Guangyu; Wang, Xiao; Zhang, Hao; Tian, Weidong

    2015-08-01

    Lactobacillus delbrueckii has been widely used for yogurt fermentation. It has genes encoding both D- and L-type lactate dehydrogenases (LDHs) that catalyse the production of L(+) or D(-) stereoisomer of lactic acid. D-lactic acid is the primary lactate product by L. delbrueckii, yet it cannot be metabolised by human intestine. Since it has been domesticated for long time, an interesting question arises regarding to whether the selection pressure has affected the evolution of both L-LDH and D-LDH genes in the genome. To answer this question, in this study the authors first investigated the evolution of these two genes by constructing phylogenetic trees. They found that D-LDH-based phylogenetic tree could better represent the phylogenetic relationship in the acidophilus complex than L-LDH-based tree. They next investigated the evolutions of LDH genes of L. delbrueckii at amino acid level, and found that D-LDH gene in L. delbrueckii is positively selected, possibly a consequence of long-term domestication. They further identified four amino acids that are under positive selection. One of them, V261, is located at the centre of three catalytic active sites, indicating likely functional effects on the enzyme activity. The selection from the domestication process thus provides direction for future engineering of D-LDH.

  2. A matching-allele model explains host resistance to parasites.

    Science.gov (United States)

    Luijckx, Pepijn; Fienberg, Harris; Duneau, David; Ebert, Dieter

    2013-06-17

    The maintenance of genetic variation and sex despite its costs has long puzzled biologists. A popular idea, the Red Queen Theory, is that under rapid antagonistic coevolution between hosts and their parasites, the formation of new rare host genotypes through sex can be advantageous as it creates host genotypes to which the prevailing parasite is not adapted. For host-parasite coevolution to lead to an ongoing advantage for rare genotypes, parasites should infect specific host genotypes and hosts should resist specific parasite genotypes. The most prominent genetics capturing such specificity are matching-allele models (MAMs), which have the key feature that resistance for two parasite genotypes can reverse by switching one allele at one host locus. Despite the lack of empirical support, MAMs have played a central role in the theoretical development of antagonistic coevolution, local adaptation, speciation, and sexual selection. Using genetic crosses, we show that resistance of the crustacean Daphnia magna against the parasitic bacterium Pasteuria ramosa follows a MAM. Simulation results show that the observed genetics can explain the maintenance of genetic variation and contribute to the maintenance of sex in the facultatively sexual host as predicted by the Red Queen Theory. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Detection of MPL mutations by a novel allele-specific PCR-based strategy.

    Science.gov (United States)

    Furtado, Larissa V; Weigelin, Helmut C; Elenitoba-Johnson, Kojo S J; Betz, Bryan L

    2013-11-01

    MPL mutation testing is recommended in patients with suspected primary myelofibrosis or essential thrombocythemia who lack the JAK2 V617F mutation. MPL mutations can occur at allelic levels below 15%, which may escape detection by commonly used mutation screening methods such as Sanger sequencing. We developed a novel multiplexed allele-specific PCR assay capable of detecting most recurrent MPL exon 10 mutations associated with primary myelofibrosis and essential thrombocythemia (W515L, W515K, W515A, and S505N) down to a sensitivity of 2.5% mutant allele. Test results were reviewed from 15 reference cases and 1380 consecutive specimens referred to our laboratory for testing. Assay performance was compared to Sanger sequencing across a series of 58 specimens with MPL mutations. Positive cases consisted of 45 with W515L, 6 with S505N, 5 with W515K, 1 with W515A, and 1 with both W515L and S505N. Seven cases had mutations below 5% that were undetected by Sanger sequencing. Ten additional cases had mutation levels between 5% and 15% that were not consistently detected by sequencing. All results were easily interpreted in the allele-specific test. This assay offers a sensitive and reliable solution for MPL mutation testing. Sanger sequencing appears insufficiently sensitive for robust MPL mutation detection. Our data also suggest the relative frequency of S505N mutations may be underestimated, highlighting the necessity for inclusion of this mutation in MPL test platforms. Copyright © 2013 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  4. Parasite-mediated selection drives an immunogenetic trade-off in plains zebras (Equus quagga).

    Science.gov (United States)

    Kamath, Pauline L; Turner, Wendy C; Küsters, Martina; Getz, Wayne M

    2014-05-22

    Pathogen evasion of the host immune system is a key force driving extreme polymorphism in genes of the major histocompatibility complex (MHC). Although this gene family is well characterized in structure and function, there is still much debate surrounding the mechanisms by which MHC diversity is selectively maintained. Many studies have investigated relationships between MHC variation and specific pathogens, and have found mixed support for and against the hypotheses of heterozygote advantage, frequency-dependent or fluctuating selection. Few, however, have focused on the selective effects of multiple parasite types on host immunogenetic patterns. Here, we examined relationships between variation in the equine MHC gene, ELA-DRA, and both gastrointestinal (GI) and ectoparasitism in plains zebras (Equus quagga). Specific alleles present at opposing population frequencies had antagonistic effects, with rare alleles associated with increased GI parasitism and common alleles with increased tick burdens. These results support a frequency-dependent mechanism, but are also consistent with fluctuating selection. Maladaptive GI parasite 'susceptibility alleles' were reduced in frequency, suggesting that these parasites may play a greater selective role at this locus. Heterozygote advantage, in terms of allele mutational divergence, also predicted decreased GI parasite burden in genotypes with a common allele. We conclude that an immunogenetic trade-off affects resistance/susceptibility to parasites in this system. Because GI and ectoparasites do not directly interact within hosts, our results uniquely show that antagonistic parasite interactions can be indirectly modulated through the host immune system. This study highlights the importance of investigating the role of multiple parasites in shaping patterns of host immunogenetic variation.

  5. Mathematical Optimization Algorithm for Minimizing the Cost Function of GHG Emission in AS/RS Using Positive Selection Based Clonal Selection Principle

    Science.gov (United States)

    Mahalakshmi; Murugesan, R.

    2018-04-01

    This paper regards with the minimization of total cost of Greenhouse Gas (GHG) efficiency in Automated Storage and Retrieval System (AS/RS). A mathematical model is constructed based on tax cost, penalty cost and discount cost of GHG emission of AS/RS. A two stage algorithm namely positive selection based clonal selection principle (PSBCSP) is used to find the optimal solution of the constructed model. In the first stage positive selection principle is used to reduce the search space of the optimal solution by fixing a threshold value. In the later stage clonal selection principle is used to generate best solutions. The obtained results are compared with other existing algorithms in the literature, which shows that the proposed algorithm yields a better result compared to others.

  6. Allele and genotype frequencies of -β lactoglobulin gene in Iranian ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-08-04

    Aug 4, 2009 ... Blood samples were supplied from 80 Najdi cattle and 80 buffalo from different cities of Khouzestan province. ... The allele B of β-Lactoglobulin occurred at a higher frequency than the allele A in both. Najdi cattle and buffalo. .... that of the B allele in both groups of animals studied. Expected heterozygosity ...

  7. Evidence for positive selection on the leptin gene in Cetacea and Pinnipedia.

    Directory of Open Access Journals (Sweden)

    Li Yu

    Full Text Available The leptin gene has received intensive attention and scientific investigation for its importance in energy homeostasis and reproductive regulation in mammals. Furthermore, study of the leptin gene is of crucial importance for public health, particularly for its role in obesity, as well as for other numerous physiological roles that it plays in mammals. In the present work, we report the identification of novel leptin genes in 4 species of Cetacea, and a comparison with 55 publicly available leptin sequences from mammalian genome assemblies and previous studies. Our study provides evidence for positive selection in the suborder Odontoceti (toothed whales of the Cetacea and the family Phocidae (earless seals of the Pinnipedia. We also detected positive selection in several leptin gene residues in these two lineages. To test whether leptin and its receptor evolved in a coordinated manner, we analyzed 24 leptin receptor gene (LPR sequences from available mammalian genome assemblies and other published data. Unlike the case of leptin, our analyses did not find evidence of positive selection for LPR across the Cetacea and Pinnipedia lineages. In line with this, positively selected sites identified in the leptin genes of these two lineages were located outside of leptin receptor binding sites, which at least partially explains why co-evolution of leptin and its receptor was not observed in the present study. Our study provides interesting insights into current understanding of the evolution of mammalian leptin genes in response to selective pressures from life in an aquatic environment, and leads to a hypothesis that new tissue specificity or novel physiologic functions of leptin genes may have arisen in both odontocetes and phocids. Additional data from other species encompassing varying life histories and functional tests of the adaptive role of the amino acid changes identified in this study will help determine the factors that promote the adaptive

  8. The fate of chromosomes and alleles in an allohexaploid Brassica population.

    Science.gov (United States)

    Mason, Annaliese S; Nelson, Matthew N; Takahira, Junko; Cowling, Wallace A; Alves, Gustavo Moreira; Chaudhuri, Arkaprava; Chen, Ning; Ragu, Mohana E; Dalton-Morgan, Jessica; Coriton, Olivier; Huteau, Virginie; Eber, Frédérique; Chèvre, Anne-Marie; Batley, Jacqueline

    2014-05-01

    Production of allohexaploid Brassica (2n = AABBCC) is a promising goal for plant breeders due to the potential for hybrid heterosis and useful allelic contributions from all three of the Brassica genomes present in the cultivated diploid (2n = AA, 2n = BB, 2n = CC) and allotetraploid (2n = AABB, 2n = AACC, and 2n = BBCC) crop species (canola, cabbages, mustards). We used high-throughput SNP molecular marker assays, flow cytometry, and fluorescent in situ hybridization (FISH) to characterize a population of putative allohexaploids derived from self-pollination of a hybrid from the novel cross (B. napus × B. carinata) × B. juncea to investigate whether fertile, stable allohexaploid Brassica can be produced. Allelic segregation in the A and C genomes generally followed Mendelian expectations for an F2 population, with minimal nonhomologous chromosome pairing. However, we detected no strong selection for complete 2n = AABBCC chromosome complements, with weak correlations between DNA content and fertility (r(2) = 0.11) and no correlation between missing chromosomes or chromosome segments and fertility. Investigation of next-generation progeny resulting from one highly fertile F2 plant using FISH revealed general maintenance of high chromosome numbers but severe distortions in karyotype, as evidenced by recombinant chromosomes and putative loss/duplication of A- and C-genome chromosome pairs. Our results show promise for the development of meiotically stable allohexaploid lines, but highlight the necessity of selection for 2n = AABBCC karyotypes.

  9. Polymorphic genes of major effect: consequences for variation, selection and evolution in Arabidopsis thaliana.

    Science.gov (United States)

    Stinchcombe, John R; Weinig, Cynthia; Heath, Katy D; Brock, Marcus T; Schmitt, Johanna

    2009-07-01

    The importance of genes of major effect for evolutionary trajectories within and among natural populations has long been the subject of intense debate. For example, if allelic variation at a major-effect locus fundamentally alters the structure of quantitative trait variation, then fixation of a single locus can have rapid and profound effects on the rate or direction of subsequent evolutionary change. Using an Arabidopsis thaliana RIL mapping population, we compare G-matrix structure between lines possessing different alleles at ERECTA, a locus known to affect ecologically relevant variation in plant architecture. We find that the allele present at ERECTA significantly alters G-matrix structure-in particular the genetic correlations between branch number and flowering time traits-and may also modulate the strength of natural selection on these traits. Despite these differences, however, when we extend our analysis to determine how evolution might differ depending on the ERECTA allele, we find that predicted responses to selection are similar. To compare responses to selection between allele classes, we developed a resampling strategy that incorporates uncertainty in estimates of selection that can also be used for statistical comparisons of G matrices.

  10. A study of the association of childhood asthma with HLA alleles in the population of Siliguri, West Bengal, India.

    Science.gov (United States)

    Lama, M; Chatterjee, M; Chaudhuri, T K

    2014-09-01

    Asthma is a heterogeneous disease for which a strong genetic basis is firmly established. It is a complex disorder influenced by gene-environment interaction. Human leukocyte antigen (HLA) genes have been shown to be consistently associated with asthma and its related phenotypes in various populations. The aim of this study was to determine the frequency of the selected HLA classes I and II allelic groups in asthmatic and control groups. HLA typing was performed using polymerase chain reaction-sequence-specific typing (PCR-SSP) method. The allele frequency was estimated by direct counting. Frequency of each HLA allelic group was compared between asthmatic group and control group using χ(2) test. P-value was corrected by multiplying with the number of the allelic groups studied. Odds ratio (OR) and its corresponding 95% confidence interval (CI) for each allelic group were calculated using graphpad instat 3.10. The results of this study showed a significantly higher frequency of HLA-DRB1*03 in asthmatics than in controls (11.43% vs 3.64%, OR = 3.78, 95% CI = 1.61-8.85, P = 0.0025, Pcorr  population. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Allele-specific Gene Silencing of Mutant mRNA Restores Cellular Function in Ullrich Congenital Muscular Dystrophy Fibroblasts

    Directory of Open Access Journals (Sweden)

    Satoru Noguchi

    2014-01-01

    Full Text Available Ullrich congenital muscular dystrophy (UCMD is an inherited muscle disorder characterized clinically by muscle weakness, distal joint hyperlaxity, and proximal joint contractures. Sporadic and recessive mutations in the three collagen VI genes, COL6A1, COL6A2, and COL6A3, are reported to be causative. In the sporadic forms, a heterozygous point mutation causing glycine substitution in the triple helical domain has been identified in higher rate. In this study, we examined the efficacy of siRNAs, which target point mutation site, on specific knockdown toward transcripts from mutant allele and evaluated consequent cellular phenotype of UCMD fibroblasts. We evaluated the effect of siRNAs targeted to silence-specific COL6A1 alleles in UCMD fibroblasts, where simultaneous expression of both wild-type and mutant collagen VI resulted in defective collagen localization. Addition of mutant-specific siRNAs allowed normal extracellular localization of collagen VI surrounding fibroblasts, suggesting selective inhibition of mutant collagen VI. Targeting the single-nucleotide COL6A1 c.850G>A (p.G284R mutation responsible a sporadic autosomal dominant form of UCMD can potently and selectively block expression of mutant collagen VI. These results suggest that allele-specific knockdown of the mutant mRNA can potentially be considered as a therapeutic procedure in UCMD due to COL6A1 point mutations.

  12. Spatial and temporal variation in selection of genes associated with pearl millet varietal quantitative traits in situ

    Directory of Open Access Journals (Sweden)

    Cedric Mariac

    2016-07-01

    Full Text Available Ongoing global climate changes imply new challenges for agriculture. Whether plants and crops can adapt to such rapid changes is still a widely debated question. We previously showed adaptation in the form of earlier flowering in pearl millet at the scale of a whole country over three decades. However, this analysis did not deal with variability of year to year selection. To understand and possibly manage plant and crop adaptation, we need more knowledge of how selection acts in situ. Is selection gradual, abrupt, and does it vary in space and over time? In the present study, we tracked the evolution of allele frequency in two genes associated with pearl millet phenotypic variation in situ. We sampled 17 populations of cultivated pearl millet over a period of two years. We tracked changes in allele frequencies in these populations by genotyping more than seven thousand individuals. We demonstrate that several allele frequencies changes are compatible with selection, by correcting allele frequency changes associated with genetic drift. We found marked variation in allele frequencies from year to year, suggesting a variable selection effect in space and over time. We estimated the strength of selection associated with variations in allele frequency. Our results suggest that the polymorphism maintained at the genes we studied is partially explained by the spatial and temporal variability of selection. In response to environmental changes, traditional pearl millet varieties could rapidly adapt thanks to this available functional variability.

  13. A Scan for Positively Selected Genes in the Genomes of Humans and Chimpanzees

    DEFF Research Database (Denmark)

    Nielsen, Rasmus; Bustamente, Carlos; Clark, Andrew G.

    2005-01-01

    Since the divergence of humans and chimpanzees about 5 million years ago, these species have undergone a remarkable evolution with drastic divergence in anatomy and cognitive abilities. At the molecular level, despite the small overall magnitude of DNA sequence divergence, we might expect...... such evolutionary changes to leave a noticeable signature throughout the genome. We here compare 13,731 annotated genes from humans to their chimpanzee orthologs to identify genes that show evidence of positive selection. Many of the genes that present a signature of positive selection tend to be involved...

  14. Tests of selection in pooled case-control data: an empirical study.

    Science.gov (United States)

    Udpa, Nitin; Zhou, Dan; Haddad, Gabriel G; Bafna, Vineet

    2011-01-01

    For smaller organisms with faster breeding cycles, artificial selection can be used to create sub-populations with different phenotypic traits. Genetic tests can be employed to identify the causal markers for the phenotypes, as a precursor to engineering strains with a combination of traits. Traditional approaches involve analyzing crosses of inbred strains to test for co-segregation with genetic markers. Here we take advantage of cheaper next generation sequencing techniques to identify genetic signatures of adaptation to the selection constraints. Obtaining individual sequencing data is often unrealistic due to cost and sample issues, so we focus on pooled genomic data. We explore a series of statistical tests for selection using pooled case (under selection) and control populations. The tests generally capture skews in the scaled frequency spectrum of alleles in a region, which are indicative of a selective sweep. Extensive simulations are used to show that these approaches work well for a wide range of population divergence times and strong selective pressures. Control vs control simulations are used to determine an empirical False Positive Rate, and regions under selection are determined using a 1% FPR level. We show that pooling does not have a significant impact on statistical power. The tests are also robust to reasonable variations in several different parameters, including window size, base-calling error rate, and sequencing coverage. We then demonstrate the viability (and the challenges) of one of these methods in two independent Drosophila populations (Drosophila melanogaster) bred under selection for hypoxia and accelerated development, respectively. Testing for extreme hypoxia tolerance showed clear signals of selection, pointing to loci that are important for hypoxia adaptation. Overall, we outline a strategy for finding regions under selection using pooled sequences, then devise optimal tests for that strategy. The approaches show promise for

  15. Association mapping and favourable QTL alleles for fibre quality ...

    Indian Academy of Sciences (India)

    Cheng-Guang Dong

    A total of 201 markers were polymorphic and generated 394 allele loci, and 403 ... identified as containing favourable allele loci related to fibre quality traits. The identified .... environment. Field management followed respective local practices.

  16. Comparison of allele frequencies of Plasmodium falciparum merozoite antigens in malaria infections sampled in different years in a Kenyan population.

    Science.gov (United States)

    Ochola-Oyier, Lynette Isabella; Okombo, John; Wagatua, Njoroge; Ochieng, Jacob; Tetteh, Kevin K; Fegan, Greg; Bejon, Philip; Marsh, Kevin

    2016-05-06

    Plasmodium falciparum merozoite antigens elicit antibody responses in malaria-endemic populations, some of which are clinically protective, which is one of the reasons why merozoite antigens are the focus of malaria vaccine development efforts. Polymorphisms in several merozoite antigen-encoding genes are thought to arise as a result of selection by the human immune system. The allele frequency distribution of 15 merozoite antigens over a two-year period, 2007 and 2008, was examined in parasites obtained from children with uncomplicated malaria. In the same population, allele frequency changes pre- and post-anti-malarial treatment were also examined. Any gene which showed a significant shift in allele frequencies was also assessed longitudinally in asymptomatic and complicated malaria infections. Fluctuating allele frequencies were identified in codons 147 and 148 of reticulocyte-binding homologue (Rh) 5, with a shift from HD to YH haplotypes over the two-year period in uncomplicated malaria infections. However, in both the asymptomatic and complicated malaria infections YH was the dominant and stable haplotype over the two-year and ten-year periods, respectively. A logistic regression analysis of all three malaria infection populations between 2007 and 2009 revealed, that the chance of being infected with the HD haplotype decreased with time from 2007 to 2009 and increased in the uncomplicated and asymptomatic infections. Rh5 codons 147 and 148 showed heterogeneity at both an individual and population level and may be under some degree of immune selection.

  17. Allele Frequency - JSNP | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available nd 39 SNPs are assayed in three (POP_*) and two (RIKEN_japanese_*) panels, respectively. Derived from Flat f... assay (JBIC-allele and RIKEN_japanese_*), TaqMan assay (RIKEN-allele) or direct sequencing / allelic discri...unteers under informed consent RIKEN_japanese_normal_weight - 711 unrelated japanese normal weight volunteer...s ( body mass index RIKEN_japanese_obese - 796 unrelated japanese obese patients

  18. Haplotype block structure study of the CFTR gene. Most variants are associated with the M470 allele in several European populations.

    Science.gov (United States)

    Pompei, Fiorenza; Ciminelli, Bianca Maria; Bombieri, Cristina; Ciccacci, Cinzia; Koudova, Monika; Giorgi, Silvia; Belpinati, Francesca; Begnini, Angela; Cerny, Milos; Des Georges, Marie; Claustres, Mireille; Ferec, Claude; Macek, Milan; Modiano, Guido; Pignatti, Pier Franco

    2006-01-01

    An average of about 1700 CFTR (cystic fibrosis transmembrane conductance regulator) alleles from normal individuals from different European populations were extensively screened for DNA sequence variation. A total of 80 variants were observed: 61 coding SNSs (results already published), 13 noncoding SNSs, three STRs, two short deletions, and one nucleotide insertion. Eight DNA variants were classified as non-CF causing due to their high frequency of occurrence. Through this survey the CFTR has become the most exhaustively studied gene for its coding sequence variability and, though to a lesser extent, for its noncoding sequence variability as well. Interestingly, most variation was associated with the M470 allele, while the V470 allele showed an 'extended haplotype homozygosity' (EHH). These findings make us suggest a role for selection acting either on the M470V itself or through an hitchhiking mechanism involving a second site. The possible ancient origin of the V allele in an 'out of Africa' time frame is discussed.

  19. Positive selection on a bacterial oncoprotein associated with gastric cancer

    Directory of Open Access Journals (Sweden)

    Delgado-Rosado Gisela

    2011-11-01

    Full Text Available Background Helicobacter pylori is a vertically inherited gut commensal that is carcinogenic if it possesses the cag pathogenicity island (cag PaI; infection with H.pylori is the major risk factor for gastric cancer, the second leading cause of death from cancer worldwide (WHO. The cag PaI locus encodes the cagA gene, whose protein product is injected into stomach epithelial cells via a Type IV secretion system, also encoded by the cag PaI. Once there, the cagA protein binds to various cellular proteins, resulting in dysregulation of cell division and carcinogenesis. For this reason, cagA may be described as an oncoprotein. A clear understanding of the mechanism of action of cagA and its benefit to the bacteria is lacking. Results Here, we reveal that the cagA gene displays strong signatures of positive selection in bacteria isolated from amerindian populations, using the Ka/Ks ratio. Weaker signatures are also detected in the gene from bacteria isolated from asian populations, using the Ka/Ks ratio and the more sensitive branches-sites model of the PAML package. When the cagA gene isolated from amerindian populations was examined in more detail it was found that the region under positive selection contains the EPIYA domains, which are known to modulate the carcinogenicity of the gene. This means that the carcinogenicity modulating region of the gene is undergoing adaptation. The results are discussed in relation to the high incidences of stomach cancer in some latin american and asian populations. Conclusion Positive selection on cagA indicates antagonistic coevolution between host and bacteria, which appears paradoxical given that cagA is detrimental to the human host upon which the bacteria depends. This suggests several non-exclusive possibilities; that gastric cancer has not been a major selective pressure on human populations, that cagA has an undetermined benefit to the human host, or that horizontal transmission of H.pylori between hosts

  20. TrueAllele casework on Virginia DNA mixture evidence: computer and manual interpretation in 72 reported criminal cases.

    Directory of Open Access Journals (Sweden)

    Mark W Perlin

    Full Text Available Mixtures are a commonly encountered form of biological evidence that contain DNA from two or more contributors. Laboratory analysis of mixtures produces data signals that usually cannot be separated into distinct contributor genotypes. Computer modeling can resolve the genotypes up to probability, reflecting the uncertainty inherent in the data. Human analysts address the problem by simplifying the quantitative data in a threshold process that discards considerable identification information. Elevated stochastic threshold levels potentially discard more information. This study examines three different mixture interpretation methods. In 72 criminal cases, 111 genotype comparisons were made between 92 mixture items and relevant reference samples. TrueAllele computer modeling was done on all the evidence samples, and documented in DNA match reports that were provided as evidence for each case. Threshold-based Combined Probability of Inclusion (CPI and stochastically modified CPI (mCPI analyses were performed as well. TrueAllele's identification information in 101 positive matches was used to assess the reliability of its modeling approach. Comparison was made with 81 CPI and 53 mCPI DNA match statistics that were manually derived from the same data. There were statistically significant differences between the DNA interpretation methods. TrueAllele gave an average match statistic of 113 billion, CPI averaged 6.68 million, and mCPI averaged 140. The computer was highly specific, with a false positive rate under 0.005%. The modeling approach was precise, having a factor of two within-group standard deviation. TrueAllele accuracy was indicated by having uniformly distributed match statistics over the data set. The computer could make genotype comparisons that were impossible or impractical using manual methods. TrueAllele computer interpretation of DNA mixture evidence is sensitive, specific, precise, accurate and more informative than manual

  1. Positive allometry and the prehistory of sexual selection.

    Science.gov (United States)

    Tomkins, Joseph L; LeBas, Natasha R; Witton, Mark P; Martill, David M; Humphries, Stuart

    2010-08-01

    The function of the exaggerated structures that adorn many fossil vertebrates remains largely unresolved. One recurrent hypothesis is that these elaborated traits had a role in thermoregulation. This orthodoxy persists despite the observation that traits exaggerated to the point of impracticality in extant organisms are almost invariably sexually selected. We use allometric scaling to investigate the role of sexual selection and thermoregulation in the evolution of exaggerated traits of the crested pterosaur Pteranodon longiceps and the sail-backed eupelycosaurs Dimetrodon and Edaphosaurus. The extraordinarily steep positive allometry of the head crest of Pteranodon rules out all of the current hypotheses for this trait's main function other than sexual signaling. We also find interspecific patterns of allometry and sexual dimorphism in the sails of Dimetrodon and patterns of elaboration in Edaphosaurus consistent with a sexually selected function. Furthermore, small ancestral, sail-backed pelycosaurs would have been too small to need adaptations to thermoregulation. Our results question the popular view that the elaborated structures of these fossil species evolved as thermoregulatory organs and provide evidence in support of the hypothesis that Pteranodon crests and eupelycosaur sails are among the earliest and most extreme examples of elaborate sexual signals in the evolution of terrestrial vertebrates.

  2. Maximizing Crossbred Performance through Purebred Genomic Selection

    DEFF Research Database (Denmark)

    Esfandyari, Hadi; Sørensen, Anders Christian; Bijma, Pieter

    Genomic selection (GS) can be used to select purebreds for crossbred performance (CP). As dominance is the likely genetic basis of heterosis, explicitly including dominance in the GS model may be beneficial for selection of purebreds for CP, when estimating allelic effects from pure line data. Th...

  3. [Positional clonage and characterization of the bovine myostatin gene].

    Science.gov (United States)

    Grobet, L

    2000-01-01

    The double-muscled condition has been intensively selected for in the Belgian Blue cattle breed, where segregation studies have demonstrated the monogenic, autosomal and recessive determinism. This has been confirmed by genetic linkage which located the gene to the centromeric tip of chromosome 2. Our positional cloning strategy, and the discovery of a positional candidate in the mouse, led us to the identification of the causative gene now referred to as the Myostatin gene, since its product downregulates skeletal muscle mass. Disruptive mutations of the gene in cattle have been shown to be responsible for the muscular hypertrophy found in eight european beef breeds. A 15 Kilobases genomic region, including the myostatin gene, has been sequenced and compared in cattle and mice. The murine gene has undergone a complex genetic engineering in order to test different allelic variants in vivo after gene targeting transgenesis.

  4. Allelic inhibition of displacement activity: a simplified one tube allele-specific PCR for evaluation of ITPA polymorphisms.

    Science.gov (United States)

    Galmozzi, E; Facchetti, F; Degasperi, E; Aghemo, A; Lampertico, P

    2013-02-01

    Recently, genome-wide association studies (GWAS) in patients with chronic hepatitis C virus (HCV) infection have identified two functional single nucleotide polymorphisms (SNPs) in the inosine triphosphatase (ITPA) gene, that are associated strongly and independently with hemolytic anemia in patients exposed to pegylated-interferon (Peg-IFN) plus ribavirin (RBV) combined therapy. Here has been developed a simplified allele discrimination polymerase chain reaction (PCR) assay named allelic inhibition of displacement activity (AIDA) for evaluation of ITPA polymorphisms. AIDA system relies on three unlabeled primers only, two outer common primers and one inner primer with allele-specific 3' terminus mismatch. DNA samples from 192 patients with chronic HCV infection were used to validate the AIDA system and results were compared with the gold standard TaqMan(®) SNP genotyping assay. Concordant data were obtained for all samples, granting for high specificity of the method. In conclusion, AIDA is a practical one-tube method to reproducibly and to assess accurately rs7270101 and rs1127354 ITPA SNPs. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Isoenzymatic variability in tropical maize populations under reciprocal recurrent selection

    Directory of Open Access Journals (Sweden)

    Pinto Luciana Rossini

    2003-01-01

    Full Text Available Maize (Zea mays L. is one of the crops in which the genetic variability has been extensively studied at isoenzymatic loci. The genetic variability of the maize populations BR-105 and BR-106, and the synthetics IG-3 and IG-4, obtained after one cycle of a high-intensity reciprocal recurrent selection (RRS, was investigated at seven isoenzymatic loci. A total of twenty alleles were identified, and most of the private alleles were found in the BR-106 population. One cycle of reciprocal recurrent selection (RRS caused reductions of 12% in the number of alleles in both populations. Changes in allele frequencies were also observed between populations and synthetics, mainly for the Est 2 locus. Populations presented similar values for the number of alleles per locus, percentage of polymorphic loci, and observed and expected heterozygosities. A decrease of the genetic variation values was observed for the synthetics as a consequence of genetic drift effects and reduction of the effective population sizes. The distribution of the genetic diversity within and between populations revealed that most of the diversity was maintained within them, i.e. BR-105 x BR-106 (G ST = 3.5% and IG-3 x IG-4 (G ST = 4.0%. The genetic distances between populations and synthetics increased approximately 21%. An increase in the genetic divergence between the populations occurred without limiting new selection procedures.

  6. Readressing the role of Toll-like receptor-4 alleles in inflammatory bowel disease: colitis, smoking, and seroreactivity.

    Science.gov (United States)

    Manolakis, Anastassios C; Kapsoritakis, Andreas N; Kapsoritaki, Anastasia; Tiaka, Elisavet K; Oikonomou, Konstantinos A; Lotis, Vassilis; Vamvakopoulou, Dimitra; Davidi, Ioanna; Vamvakopoulos, Nikolaos; Potamianos, Spyros P

    2013-02-01

    Toll-like receptor (TLR) polymorphisms, and especially TLR-4 Asp299Gly and TLR-4 Thr399Ile, have been linked with Crohn's disease (CD) and to a lesser extent with ulcerative colitis (UC), CD behavior, and compromised seroreactivity to microbial antigens. Available data, however, are conflicting. To address these issues, the distribution of TLR-4 polymorphic alleles was assessed in patients with UC, CD, and healthy controls (HC), considering patient and disease characteristics as well as related serological markers. TLR-4 Asp299Gly and TLR-4 Thr399Ile polymorphisms were determined in 187 UC and 163 CD patients and 274 randomly selected HC. C reactive protein, anti-Saccharomyces cerevisiae mannan antibodies, anti-mannobioside carbohydrate antibodies, anti-laminariobioside carbohydrate antibodies IgG, and anti-chitobioside carbohydrate antibodies (ACCA) IgA levels were also assessed. UC and especially pancolitis patients carried the mutant alleles more frequently compared to CD patients and HC or UC patients with different disease extents (P = 0.002 and P ACCA IgA were lower in inflammatory bowel disease (IBD) patients carrying the mutant compared to those with wild-type alleles (0.075 ACCA IgA levels. Smoking reduces the extent of UC, even in the presence of mutant alleles.

  7. The role of positive selection in hepatitis C virus.

    Science.gov (United States)

    Cuevas, José M; Gonzalez, Michael; Torres-Puente, Manuela; Jiménez-Hernández, Nuria; Bracho, María A; García-Robles, Inmaculada; González-Candelas, Fernando; Moya, Andrés

    2009-09-01

    Hepatitis C virus (HCV) is a major health problem worldwide, infecting an estimated 170 million people. In this study, we have employed a large data set of sequences (14,654 sequences from between 25 and 100 clone sequences per analyzed region and per patient) from 67 patients infected with HCV genotype 1 (23 subtype 1a and 44 subtype 1b). For all patients, a sample prior to combined therapy with alpha interferon plus ribavirin was available, whereas for some patients additional samples after 6 or 12 months of treatment were also available. Twenty-seven patients responded to treatment (12 subtype 1a and 15 subtype 1b) and forty patients did not respond to treatment (11 subtype 1a vs. 29 subtype 1b). Two regions of the HCV genome were analyzed, one compressing the hypervariable regions (HVR1, HVR2 and HVR3) of the envelope 2 glycoprotein and another one including the interferon sensitive determining region (ISDR) and the V3 domain of the NS5A protein. Previously (Cuevas, J.M., Torres-Puente, M., Jiménez-Hernández, N., Bracho, M.A., García-Robles, I., Wrobel, B., Carnicer, F., del Olmo, J., Ortega, E., Moya, A., González-Candelas, F., 2008b. Genetic variability of hepatitis C virus before and after combined therapy of interferon plus ribavirin. Plos One 3 (8), e3058), several amino acid positions in both regions analyzed were detected to be under positive selection. Here, we have compared the amino acid composition of each positively selected position between responder and non-responder patients for both subtypes. If we exclude some non-conclusive cases, no clear differences were detected in any case. In conclusion, identifying specific positions as completely discriminatory of treatment response seems to be a difficult task. Our results, in concordance with previous studies, suggest that HCV evasion strategies are more likely based on a global increased variability, which would yield combinations of mutations with an increased resistance, than on the fixation of

  8. Standing genetic variation as a major contributor to adaptation in the Virginia chicken lines selection experiment.

    Science.gov (United States)

    Sheng, Zheya; Pettersson, Mats E; Honaker, Christa F; Siegel, Paul B; Carlborg, Örjan

    2015-10-01

    Artificial selection provides a powerful approach to study the genetics of adaptation. Using selective-sweep mapping, it is possible to identify genomic regions where allele-frequencies have diverged during selection. To avoid false positive signatures of selection, it is necessary to show that a sweep affects a selected trait before it can be considered adaptive. Here, we confirm candidate, genome-wide distributed selective sweeps originating from the standing genetic variation in a long-term selection experiment on high and low body weight of chickens. Using an intercross between the two divergent chicken lines, 16 adaptive selective sweeps were confirmed based on their association with the body weight at 56 days of age. Although individual additive effects were small, the fixation for alternative alleles across the loci contributed at least 40 % of the phenotypic difference for the selected trait between these lines. The sweeps contributed about half of the additive genetic variance present within and between the lines after 40 generations of selection, corresponding to a considerable portion of the additive genetic variance of the base population. Long-term, single-trait, bi-directional selection in the Virginia chicken lines has resulted in a gradual response to selection for extreme phenotypes without a drastic reduction in the genetic variation. We find that fixation of several standing genetic variants across a highly polygenic genetic architecture made a considerable contribution to long-term selection response. This provides new fundamental insights into the dynamics of standing genetic variation during long-term selection and adaptation.

  9. The CFTR Met 470 allele is associated with lower birth rates in fertile men from a population isolate.

    Directory of Open Access Journals (Sweden)

    Gülüm Kosova

    2010-06-01

    Full Text Available Although little is known about the role of the cystic fibrosis transmembrane regulator (CFTR gene in reproductive physiology, numerous variants in this gene have been implicated in etiology of male infertility due to congenital bilateral absence of the vas deferens (CBAVD. Here, we studied the fertility effects of three CBAVD-associated CFTR polymorphisms, the (TGm and polyT repeat polymorphisms in intron 8 and Met470Val in exon 10, in healthy men of European descent. Homozygosity for the Met470 allele was associated with lower birth rates, defined as the number of births per year of marriage (P = 0.0029. The Met470Val locus explained 4.36% of the phenotypic variance in birth rate, and men homozygous for the Met470 allele had 0.56 fewer children on average compared to Val470 carrier men. The derived Val470 allele occurs at high frequencies in non-African populations (allele frequency = 0.51 in HapMap CEU, whereas it is very rare in African population (Fst = 0.43 between HapMap CEU and YRI. In addition, haplotypes bearing Val470 show a lack of genetic diversity and are thus longer than haplotypes bearing Met470 (measured by an integrated haplotype score [iHS] of -1.93 in HapMap CEU. The fraction of SNPs in the HapMap Phase2 data set with more extreme Fst and iHS measures is 0.003, consistent with a selective sweep outside of Africa. The fertility advantage conferred by Val470 relative to Met470 may provide a selective mechanism for these population genetic observations.

  10. CYP3A4 allelic variants with amino acid substitutions in exons 7 and 12: evidence for an allelic variant with altered catalytic activity.

    Science.gov (United States)

    Sata, F; Sapone, A; Elizondo, G; Stocker, P; Miller, V P; Zheng, W; Raunio, H; Crespi, C L; Gonzalez, F J

    2000-01-01

    To determine the existence of mutant and variant CgammaP3A4 alleles in three racial groups and to assess functions of the variant alleles by complementary deoxyribonucleic acid (cDNA) expression. A bacterial artificial chromosome that contains the complete CgammaP3A4 gene was isolated and the exons and surrounding introns were directly sequenced to develop primers to polymerase chain reaction (PCR) amplify and sequence the gene from lymphocyte DNA. DNA samples from Chinese, black, and white subjects were screened. Mutating the affected amino acid in the wild-type cDNA and expressing the variant enzyme with use of the baculovirus system was used to functionally evaluate the variant allele having a missense mutation. To investigate the existence of mutant and variant CgammaP3A4 alleles in humans, all 13 exons and the 5'-flanking region of the human CgammaP3A4 gene in three racial groups were sequenced and four alleles were identified. An A-->G point mutation in the 5'-flanking region of the human CgammaP3A4 gene, designated CgammaP3A4*1B, was found in the three different racial groups. The frequency of this allele in a white population was 4.2%, whereas it was 66.7% in black subjects. The CgammaP3A4*1B allele was not found in Chinese subjects. A second variant allele, designated CgammaP3A4*2, having a Ser222Pro change, was found at a frequency of 2.7% in the white population and was absent in the black subjects and Chinese subjects analyzed. Baculovirus-directed cDNA expression revealed that the CYP3A4*2 P450 had a lower intrinsic clearance for the CYP3A4 substrate nifedipine compared with the wild-type enzyme but was not significantly different from the wild-type enzyme for testosterone 6beta-hydroxylation. Another rare allele, designated CgammaP3A4*3, was found in a single Chinese subject who had a Met445Thr change in the conserved heme-binding region of the P450. These are the first examples of potential function polymorphisms resulting from missense mutations in

  11. Parasites and parallel divergence of the number of individual MHC alleles between sympatric three-spined stickleback Gasterosteus aculeatus morphs in Iceland.

    Science.gov (United States)

    Natsopoulou, M E; Pálsson, S; Ólafsdóttir, G Á

    2012-10-01

    Two pairs of sympatric three-spined stickleback Gasterosteus aculeatus morphs and two single morph populations inhabiting mud and lava or rocky benthic habitats in four Icelandic lakes were screened for parasites and genotyped for MHC class IIB diversity. Parasitic infection differed consistently between G. aculeatus from different benthic habitats. Gasterosteus aculeatus from the lava or rocky habitats were more heavily infected in all lakes. A parallel pattern was also found in individual MHC allelic variation with lava G. aculeatus morphs exhibiting lower levels of variation than the mud morphs. Evidence for selective divergence in MHC allele number is ambiguous but supported by two findings in addition to the parallel pattern observed. MHC allele diversity was not consistent with diversity reported at neutral markers (microsatellites) and in Þingvallavatn the most common number of alleles in each morph was associated with lower infection levels. In the Þingvallavatn lava morph, lower infection levels by the two most common parasites, Schistocephalus solidus and Diplostomum baeri, were associated with different MHC allele numbers. © 2012 The Authors. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.

  12. Fixation probability in a two-locus intersexual selection model.

    Science.gov (United States)

    Durand, Guillermo; Lessard, Sabin

    2016-06-01

    We study a two-locus model of intersexual selection in a finite haploid population reproducing according to a discrete-time Moran model with a trait locus expressed in males and a preference locus expressed in females. We show that the probability of ultimate fixation of a single mutant allele for a male ornament introduced at random at the trait locus given any initial frequency state at the preference locus is increased by weak intersexual selection and recombination, weak or strong. Moreover, this probability exceeds the initial frequency of the mutant allele even in the case of a costly male ornament if intersexual selection is not too weak. On the other hand, the probability of ultimate fixation of a single mutant allele for a female preference towards a male ornament introduced at random at the preference locus is increased by weak intersexual selection and weak recombination if the female preference is not costly, and is strong enough in the case of a costly male ornament. The analysis relies on an extension of the ancestral recombination-selection graph for samples of haplotypes to take into account events of intersexual selection, while the symbolic calculation of the fixation probabilities is made possible in a reasonable time by an optimizing algorithm. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Comparison of bovine lymphocyte antigen DRB3.2 allele ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-08-04

    Aug 4, 2008 ... The bovine lymphocyte antigen (BoLA-DRB3) gene encodes cell ... alleles were more resistant to clinical mastitis. ... DRB3.2 allele pattern in two Iranian Holstein cow .... observed and the number of immune parameters with.

  14. The genealogy of sequences containing multiple sites subject to strong selection in a subdivided population.

    Science.gov (United States)

    Nordborg, Magnus; Innan, Hideki

    2003-03-01

    A stochastic model for the genealogy of a sample of recombining sequences containing one or more sites subject to selection in a subdivided population is described. Selection is incorporated by dividing the population into allelic classes and then conditioning on the past sizes of these classes. The past allele frequencies at the selected sites are thus treated as parameters rather than as random variables. The purpose of the model is not to investigate the dynamics of selection, but to investigate effects of linkage to the selected sites on the genealogy of the surrounding chromosomal region. This approach is useful for modeling strong selection, when it is natural to parameterize the past allele frequencies at the selected sites. Several models of strong balancing selection are used as examples, and the effects on the pattern of neutral polymorphism in the chromosomal region are discussed. We focus in particular on the statistical power to detect balancing selection when it is present.

  15. A high-throughput method for genotyping S-RNase alleles in apple

    DEFF Research Database (Denmark)

    Larsen, Bjarne; Ørgaard, Marian; Toldam-Andersen, Torben Bo

    2016-01-01

    We present a new efficient screening tool for detection of S-alleles in apple. The protocol using general and multiplexed primers for PCR reaction and fragment detection on an automatized capillary DNA sequencer exposed a higher number of alleles than any previous studies. Analysis of alleles...

  16. Flexible selection process based on skills applied to the communication manager position

    Directory of Open Access Journals (Sweden)

    Rita Jácome López

    2016-03-01

    Full Text Available The Communication Manager position is relevant to the reputation of an organization, because it influences through its own personal image and reputation; therefore, the selection of this manager has to be painstaking. In this paper we propose a flexible selection process based on fuzzy logic, to fit the skills of candidates for the job and to support decision making. We present two techniques:one that selects the best applicant and another one that compares candidates with an ideal constructed with information provided by Spanish managers.

  17. Cytotoxic T lymphocyte-Associated Antigen +49G Variant Confers Risk for Anti-CCP- and Rheumatoid Factor-Positive Type of Rheumatoid Arthritis Only in Combination with CT60∗G Allele

    Directory of Open Access Journals (Sweden)

    Bernadett Farago

    2010-01-01

    Full Text Available Controversial observations have been published on the association of the cytotoxic T lymphocyte associated antigen gene's variants with rheumatoid arthritis (RA. After genotyping 428 patients and 230 matched controls, the prevalence of the CT60∗G allele was more frequent in RF- and/or anti-CCP-seropositive RApatients, compared to the healthy controls (P<.001. Regression analysis revealed that the CT60∗G allele is a possible predisposing factor for RA in these subgroups. No accumulation of the +49∗G allele was found among patients, and this variant was not found to correlate with RA. Assaying the possible genotype variations, the +49∗G-CT60∗G allelic combination was accumulated in seropositive RA-subtypes, and was associated with the risk of RA (OR=1.73, P=.001 for the whole RA-population. Although the +49∗G allele did not mean a predisposition to RA alone, in combination with CT60∗G it, also conferred risk, suggesting that the +49A/G variant is associated with the risk of RA only in certain haplotypes.

  18. Allele-dependent differences in quorum-sensing dynamics result in variant expression of virulence genes in Staphylococcus aureus.

    Science.gov (United States)

    Geisinger, Edward; Chen, John; Novick, Richard P

    2012-06-01

    Agr is an autoinducing, quorum-sensing system that functions in many Gram-positive species and is best characterized in the pathogen Staphylococcus aureus, in which it is a global regulator of virulence gene expression. Allelic variations in the agr genes have resulted in the emergence of four quorum-sensing specificity groups in S. aureus, which correlate with different strain pathotypes. The basis for these predilections is unclear but is hypothesized to involve the phenomenon of quorum-sensing interference between strains of different agr groups, which may drive S. aureus strain isolation and divergence. Whether properties intrinsic to each agr allele directly influence virulence phenotypes within S. aureus is unknown. In this study, we examined group-specific differences in agr autoinduction and virulence gene regulation by utilizing congenic strains, each harboring a unique S. aureus agr allele, enabling a dissection of agr locus-dependent versus genotype-dependent effects on quorum-sensing dynamics and virulence factor production. Employing a reporter fusion to the principal agr promoter, P3, we observed allele-dependent differences in the timing and magnitude of agr activation. These differences were mediated by polymorphisms within the agrBDCA genes and translated to significant variations in the expression of a key transcriptional regulator, Rot, and of several important exoproteins and surface factors involved in pathogenesis. This work uncovers the contribution of divergent quorum-sensing alleles to variant expression of virulence determinants within a bacterial species.

  19. Ovine progressive pneumonia provirus levels are unaffected by the prion 171R allele in an Idaho sheep flock.

    Science.gov (United States)

    Harrington, Robert D; Herrmann-Hoesing, Lynn M; White, Stephen N; O'Rourke, Katherine I; Knowles, Donald P

    2009-01-22

    Selective breeding of sheep for arginine (R) at prion gene (PRNP) codon 171 confers resistance to classical scrapie. However, other effects of 171R selection are uncertain. Ovine progressive pneumonia/Maedi-Visna virus (OPPV) may infect up to 66% of a flock thus any affect of 171R selection on OPPV susceptibility or disease progression could have major impact on the sheep industry. Hypotheses that the PRNP 171R allele is 1) associated with the presence of OPPV provirus and 2) associated with higher provirus levels were tested in an Idaho ewe flock. OPPV provirus was found in 226 of 358 ewes by quantitative PCR. The frequency of ewes with detectable provirus did not differ significantly among the 171QQ, 171QR, and 171RR genotypes (p > 0.05). Also, OPPV provirus levels in infected ewes were not significantly different among codon 171 genotypes (p > 0.05). These results show that, in the flock examined, the presence of OPPV provirus and provirus levels are not related to the PRNP 171R allele. Therefore, a genetic approach to scrapie control is not expected to increase or decrease the number of OPPV infected sheep or the progression of disease. This study provides further support to the adoption of PRNP 171R selection as a scrapie control measure.

  20. Incipient balancing selection through adaptive loss of aquaporins in natural Saccharomyces cerevisiae populations.

    Directory of Open Access Journals (Sweden)

    Jessica L Will

    2010-04-01

    Full Text Available A major goal in evolutionary biology is to understand how adaptive evolution has influenced natural variation, but identifying loci subject to positive selection has been a challenge. Here we present the adaptive loss of a pair of paralogous genes in specific Saccharomyces cerevisiae subpopulations. We mapped natural variation in freeze-thaw tolerance to two water transporters, AQY1 and AQY2, previously implicated in freeze-thaw survival. However, whereas freeze-thaw-tolerant strains harbor functional aquaporin genes, the set of sensitive strains lost aquaporin function at least 6 independent times. Several genomic signatures at AQY1 and/or AQY2 reveal low variation surrounding these loci within strains of the same haplotype, but high variation between strain groups. This is consistent with recent adaptive loss of aquaporins in subgroups of strains, leading to incipient balancing selection. We show that, although aquaporins are critical for surviving freeze-thaw stress, loss of both genes provides a major fitness advantage on high-sugar substrates common to many strains' natural niche. Strikingly, strains with non-functional alleles have also lost the ancestral requirement for aquaporins during spore formation. Thus, the antagonistic effect of aquaporin function-providing an advantage in freeze-thaw tolerance but a fitness defect for growth in high-sugar environments-contributes to the maintenance of both functional and nonfunctional alleles in S. cerevisiae. This work also shows that gene loss through multiple missense and nonsense mutations, hallmarks of pseudogenization presumed to emerge after loss of constraint, can arise through positive selection.

  1. Incipient balancing selection through adaptive loss of aquaporins in natural Saccharomyces cerevisiae populations.

    Science.gov (United States)

    Will, Jessica L; Kim, Hyun Seok; Clarke, Jessica; Painter, John C; Fay, Justin C; Gasch, Audrey P

    2010-04-01

    A major goal in evolutionary biology is to understand how adaptive evolution has influenced natural variation, but identifying loci subject to positive selection has been a challenge. Here we present the adaptive loss of a pair of paralogous genes in specific Saccharomyces cerevisiae subpopulations. We mapped natural variation in freeze-thaw tolerance to two water transporters, AQY1 and AQY2, previously implicated in freeze-thaw survival. However, whereas freeze-thaw-tolerant strains harbor functional aquaporin genes, the set of sensitive strains lost aquaporin function at least 6 independent times. Several genomic signatures at AQY1 and/or AQY2 reveal low variation surrounding these loci within strains of the same haplotype, but high variation between strain groups. This is consistent with recent adaptive loss of aquaporins in subgroups of strains, leading to incipient balancing selection. We show that, although aquaporins are critical for surviving freeze-thaw stress, loss of both genes provides a major fitness advantage on high-sugar substrates common to many strains' natural niche. Strikingly, strains with non-functional alleles have also lost the ancestral requirement for aquaporins during spore formation. Thus, the antagonistic effect of aquaporin function-providing an advantage in freeze-thaw tolerance but a fitness defect for growth in high-sugar environments-contributes to the maintenance of both functional and nonfunctional alleles in S. cerevisiae. This work also shows that gene loss through multiple missense and nonsense mutations, hallmarks of pseudogenization presumed to emerge after loss of constraint, can arise through positive selection.

  2. DRD4 dopamine receptor allelic diversity in various primate species

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, M.; Higley, D. [NIAAA, Rockville, MD (United States); O`Brien, S. [NCI, Frederick, MD (United States)] [and others

    1994-09-01

    The DRD4 dopamine receptor is uniquely characterized by a 48 bp repeating segment within the coding region, located in exon III. Different DRD4 alleles are produced by the presence of additional 48 bp repeats, each of which adds 16 amino acids to the length of the 3rd intracytoplasmic loop of the receptor. The DRD4 receptor is therefore an intriguing candidate gene for behaviors which are influenced by dopamine function. In several human populations, DRD4 alleles with 2-8 and 10 repeats have previously been identified, and the 4 and 7 repeat alleles are the most abundant. We have determined DRD4 genotypes in the following nonhuman primate species: chimpanzee N=2, pygmy chimpanzee N=2, gorilla N=4, siamang N=2, Gelada baboon N=1, gibbon N=1, orangutan (Bornean and Sumatran) N=62, spider monkey N=4, owl monkey N=1, Colobus monkey N=1, Patas monkey N=1, ruffed lemur N=1, rhesus macaque N=8, and vervet monkey N=28. The degree of DRD4 polymorphism and which DRD4 alleles were present both showed considerable variation across primate species. In contrast to the human, rhesus macaque monkeys were monomorphic. The 4 and 7 repeat allels, highly abundant in the human, may not be present in certain other primates. For example, the four spider monkeys we studied showed the 7, 8 and 9 repeat length alleles and the only gibbon we analyzed was homozygous for the 9 repeat allele (thus far not observed in the human). Genotyping of other primate species and sequencing of the individual DRD4 repeat alleles in different species may help us determine the ancestral DRD4 repeat length and identify connections between DRD4 genotype and phenotype.

  3. Persistent HPV16/18 infection in Indian women with the A-allele (rs6457617) of HLA-DQB1 and T-allele (rs16944) of IL-1β -511 is associated with development of cervical carcinoma.

    Science.gov (United States)

    Dutta, Sankhadeep; Chakraborty, Chandraditya; Mandal, Ranajit Kumar; Basu, Partha; Biswas, Jaydip; Roychoudhury, Susanta; Panda, Chinmay Kumar

    2015-07-01

    The aim of this study was to understand the association of human papillomavirus (HPV) type 16/18 infection and polymorphisms in the HLA-DQB1 (rs6457617) and IL-1β -511 (rs16944) loci with the development of uterine cervical cancer (CaCx). The distribution of HLA-DQB1 G > A and IL-1β -511 C/T polymorphisms was determined in HPV-negative cervical swabs from normal women (N = 111) and compared with cervical swabs of HPV-cleared normal women (once HPV infected followed by natural clearance of the infection, N = 86), HPV16/18-positive cervical intraepithelial neoplasia (CIN, N = 41) and CaCx biopsies (N = 107). The A-allele containing genotypes (i.e. G/A and A/A) of HLA-DQB1 was significantly associated with CaCx compared with HPV-negative [OR = 2.56(1.42-4.62), p = 0.001] or HPV-cleared [OR = 2.07(1.12-3.87), p = 0.01] normal women, whereas the T-allele containing genotypes (i.e. C/T and T/T) of IL-1β showed increased risk of CIN [OR = 3.68(0.97-16.35), p = 0.03; OR = 3.59(0.92-16.38), p = 0.03] and CaCx development [OR = 2.03(1.03-5.2), p = 0.02; OR = 2.25(0.96-5.31), p = 0.04] compared with HPV-negative or HPV-cleared normal women. Considering these two loci together, it was evident that the T- and A-alleles rendered significantly increased susceptibility for development of CIN and CaCx compared with HPV-negative and HPV-cleared normal women. Moreover, the T-allele of IL-1β showed increased susceptibility for CIN [OR = 3.62(0.85-17.95), p = 0.04] and CaCx [OR = 2.39(0.91-6.37), p = 0.05] development compared with the HPV-cleared women, even in the presence of the HLA-DQB1 G-allele. Thus, our data suggest that persistent HPV16/18 infection in the cervix due to the presence of the HLA-DQB1 A-allele and chronic inflammation due to the presence of the IL-1β -511 T-allele might predispose women to CaCx development.

  4. Identification of common bean alleles resistant to anthracnose using RAPD

    Directory of Open Access Journals (Sweden)

    Ana L.M. Castanheira

    1999-12-01

    Full Text Available RAPD markers were identified close to common bean alleles responsible for resistance to the fungus Colletotrichum lindemuthianum and may be useful in selecting plants resistant to this pathogen. DNA from F2 plants of the crosses Carioca 300V x P45, Carioca 300V x Ouro and P24 x Ouro was amplified by RAPD. Line P45 has the Co.4 allele for resistance, and the Ouro cultivar has the Co.5 allele. The primer OPC08 amplified a DNA fragment of about 1059 bp linked to the Co.4 allele. The recombination frequency was 0.133 (SE = 0.039; 95% CI = 0.056-0.211. Using the primer OPF10 a DNA fragment of about 912 bp was amplified and found to be associated with the Co.5 allele. The recombination frequency was 0.115 (SE = 0.038; 95% CI = 0.041-0.189. A second marker (1122 pb amplified by the OPR03 primer was identified in the population P24 x Ouro. The recombination frequency for this marker was 0.363 (SE = 0.081; 95% CI = 0.205-0.522. Both these markers flanked the Co.5 allele. The markers identified in this study may be useful in identifying lines with the Co.4 and Co.5 alleles.Marcadores RAPD foram identificados próximos de alelos do feijão responsáveis pela resistência ao Colletotrichum lindemuthianum, visando auxiliar na seleção de plantas resistentes ao patógeno. Empregou-se o método dos bulks segregantes de DNA extraídos de plantas F2 dos seguintes cruzamentos: Carioca 300V x P45, Carioca 300V x Ouro e P24 x Ouro. A linhagem P45 é portadora do alelo Co.4 de resistência e o cultivar Ouro é portador do alelo Co.5, os quais foram marcados. Procedeu-se à reação RAPD dos bulks e foi identificado o iniciador OPC08 que amplificou um fragmento de DNA com cerca de 1059 pb, ligado ao alelo Co.4. A freqüência de recombinação foi de 0,133 (erro padrão 0,039 e o intervalo de confiança foi 0,056 e 0,211, com 95% de probabilidade. Em relação ao alelo Co.5 foi identificado um fragmento de DNA amplificado pelo iniciador OPF10 com cerca de 912 pb, na

  5. Parasite-mediated selection drives an immunogenetic tradeoff in plains zebra (Equus quagga)

    Science.gov (United States)

    Kamath, Pauline L.; Turner, Wendy C.; Küsters, Martina; Getz, Wayne M.

    2014-01-01

    Pathogen evasion of the host immune system is a key force driving extreme polymorphism in genes of the major histocompatibility complex (MHC). Although this gene family is well characterized in structure and function, there is still much debate surrounding the mechanisms by which MHC diversity is selectively maintained. Many studies have investigated relationships between MHC variation and specific pathogens, and have found mixed support for and against the hypotheses of heterozygote advantage, frequency-dependent or fluctuating selection. Few, however, have focused on the selective effects of multiple parasite types on host immunogenetic patterns. Here, we examined relationships between variation in the equine MHC gene, ELA-DRA, and both gastrointestinal (GI) and ectoparasitism in plains zebras (Equus quagga). Specific alleles present at opposing population frequencies had antagonistic effects, with rare alleles associated with increased GI parasitism and common alleles with increased tick burdens. These results support a frequency-dependent mechanism, but are also consistent with fluctuating selection. Maladaptive GI parasite ‘susceptibility alleles’ were reduced in frequency, suggesting that these parasites may play a greater selective role at this locus. Heterozygote advantage, in terms of allele mutational divergence, also predicted decreased GI parasite burden in genotypes with a common allele. We conclude that an immunogenetic trade-off affects resistance/susceptibility to parasites in this system. Because GI and ectoparasites do not directly interact within hosts, our results uniquely show that antagonistic parasite interactions can be indirectly modulated through the host immune system. This study highlights the importance of investigating the role of multiple parasites in shaping patterns of host immunogenetic variation.

  6. Adaptive evolution of the spike gene of SARS coronavirus: changes in positively selected sites in different epidemic groups

    Directory of Open Access Journals (Sweden)

    He Shao-Heng

    2006-10-01

    Full Text Available Abstract Background It is believed that animal-to-human transmission of severe acute respiratory syndrome (SARS coronavirus (CoV is the cause of the SARS outbreak worldwide. The spike (S protein is one of the best characterized proteins of SARS-CoV, which plays a key role in SARS-CoV overcoming species barrier and accomplishing interspecies transmission from animals to humans, suggesting that it may be the major target of selective pressure. However, the process of adaptive evolution of S protein and the exact positively selected sites associated with this process remain unknown. Results By investigating the adaptive evolution of S protein, we identified twelve amino acid sites (75, 239, 244, 311, 479, 609, 613, 743, 765, 778, 1148, and 1163 in the S protein under positive selective pressure. Based on phylogenetic tree and epidemiological investigation, SARS outbreak was divided into three epidemic groups: 02–04 interspecies, 03-early-mid, and 03-late epidemic groups in the present study. Positive selection was detected in the first two groups, which represent the course of SARS-CoV interspecies transmission and of viral adaptation to human host, respectively. In contrast, purifying selection was detected in 03-late group. These indicate that S protein experiences variable positive selective pressures before reaching stabilization. A total of 25 sites in 02–04 interspecies epidemic group and 16 sites in 03-early-mid epidemic group were identified under positive selection. The identified sites were different between these two groups except for site 239, which suggests that positively selected sites are changeable between groups. Moreover, it was showed that a larger proportion (24% of positively selected sites was located in receptor-binding domain (RBD than in heptad repeat (HR1-HR2 region in 02–04 interspecies epidemic group (p = 0.0208, and a greater percentage (25% of these sites occurred in HR1–HR2 region than in RBD in 03-early

  7. Increased mental slowing associated with the APOE epsilon4 allele after trihexyphenidyl oral anticholinergic challenge in healthy elderly.

    Science.gov (United States)

    Pomara, Nunzio; Belzer, Ken; Hernando, Raymundo; De La Pena, Corazon; Sidtis, John J

    2008-02-01

    The objectives of this study were to examine the relationship between APOE epsilon4 and subjective effects of trihexyphenidyl on measures reflecting sedation and confusion and to investigate the relationship between trihexyphenidyl-induced subjective effects and objective memory performance. This study comprised 24 cognitively intact, health elderly adults (12 APOE epsilon4 carriers) at an outpatient geriatric psychiatry research clinic. This was a randomized, double blind, placebo-controlled, three-way, crossover experimental design. All participants received 1.0 mg or 2.0 mg trihexyphenidyl or placebo administered in counterbalanced sequences over a period of three consecutive weeks. Bond and Lader's visual analog scales and alternate versions of the Buschke Selective Reminding Test were administered in a repeated measures design at baseline, 1, 2.5, and 5 hours postdrug administration. A 2.0-mg oral dose of trihexyphenidyl resulted in increased subjective ratings of mental slowness in carriers of the APOE epsilon4 allele only. Drug effects as determined by difference scores between 2.0 mg trihexyphenidyl and placebo on ratings of mental slowness significantly correlated with total and delayed recall on the Buschke Selective Reminding Test in carriers of the APOE epsilon4 allele only. However, no significant effects were found with other visual analog scales reflecting subjective sedation and clear-headedness. The epsilon4 allele in healthy elderly was associated with increased subjective mental slowing after trihexyphenidyl anticholinergic challenge.

  8. Seasonal Changes in Brain Serotonin Transporter Binding in Short Serotonin Transporter Linked Polymorphic Region-Allele Carriers but Not in Long-Allele Homozygotes

    DEFF Research Database (Denmark)

    Kalbitzer, Jan; Erritzoe, David; Holst, Klaus K

    2010-01-01

    of the short 5-HTTLPR allele but not in homozygote carriers of the long allele. Conclusions: Our findings are in line with S-carriers having an increased response in neural circuits involved in emotional processing to stressful environmental stimuli but here demonstrated as a endophenotype with dynamic changes...

  9. Could FIV zoonosis responsible of the breakdown of the pathocenosis which has reduced the European CCR5-Delta32 allele frequencies?

    Science.gov (United States)

    Faure, Eric

    2008-01-01

    Background In Europe, the north-south downhill cline frequency of the chemokine receptor CCR5 allele with a 32-bp deletion (CCR5-Δ32) raises interesting questions for evolutionary biologists. We had suggested first that, in the past, the European colonizers, principally Romans, might have been instrumental of a progressively decrease of the frequencies southwards. Indeed, statistical analyses suggested strong negative correlations between the allele frequency and historical parameters including the colonization dates by Mediterranean civilisations. The gene flows from colonizers to native populations were extremely low but colonizers are responsible of the spread of several diseases suggesting that the dissemination of parasites in naive populations could have induced a breakdown rupture of the fragile pathocenosis changing the balance among diseases. The new equilibrium state has been reached through a negative selection of the null allele. Results Most of the human diseases are zoonoses and cat might have been instrumental in the decrease of the allele frequency, because its diffusion through Europe was a gradual process, due principally to Romans; and that several cat zoonoses could be transmitted to man. The possible implication of a feline lentivirus (FIV) which does not use CCR5 as co-receptor is discussed. This virus can infect primate cells in vitro and induces clinical signs in macaque. Moreover, most of the historical regions with null or low frequency of CCR5-Δ32 allele coincide with historical range of the wild felid species which harbor species-specific FIVs. Conclusion We proposed the hypothesis that the actual European CCR5 allelic frequencies are the result of a negative selection due to a disease spreading. A cat zoonosis, could be the most plausible hypothesis. Future studies could provide if CCR5 can play an antimicrobial role in FIV pathogenesis. Moreover, studies of ancient DNA could provide more evidences regarding the implications of

  10. Implication of HLA-DMA Alleles in Corsican IDDM

    Directory of Open Access Journals (Sweden)

    P. Cucchi-Mouillot

    1998-01-01

    Full Text Available The HLA-DM molecule catalyses the CLIP/antigen peptide exchange in the classical class II peptide-binding groove. As such, DM is an antigen presentation regulator and may be linked to autoimmune diseases. Using PCR derived methods, a relationship was revealed between DM gene polymorphism and IDDM, in a Corsican population. The DMA*0101 allele was observed to confer a significant predisposition to this autoimmune disease while the DMA*0102 allele protected significantly. Experiments examining polymorphism of the HLA-DRB1 gene established that these relationships are not a consequence of linkage disequilibrium with HLA-DRB1 alleles implicated in this pathology. The study of the DMA gene could therefore be an additional tool for early IDDM diagnosis in the Corsican population.

  11. Positive Selection or Free to Vary? Assessing the Functional Significance of Sequence Change Using Molecular Dynamics.

    Directory of Open Access Journals (Sweden)

    Jane R Allison

    Full Text Available Evolutionary arms races between pathogens and their hosts may be manifested as selection for rapid evolutionary change of key genes, and are sometimes detectable through sequence-level analyses. In the case of protein-coding genes, such analyses frequently predict that specific codons are under positive selection. However, detecting positive selection can be non-trivial, and false positive predictions are a common concern in such analyses. It is therefore helpful to place such predictions within a structural and functional context. Here, we focus on the p19 protein from tombusviruses. P19 is a homodimer that sequesters siRNAs, thereby preventing the host RNAi machinery from shutting down viral infection. Sequence analysis of the p19 gene is complicated by the fact that it is constrained at the sequence level by overprinting of a viral movement protein gene. Using homology modeling, in silico mutation and molecular dynamics simulations, we assess how non-synonymous changes to two residues involved in forming the dimer interface-one invariant, and one predicted to be under positive selection-impact molecular function. Interestingly, we find that both observed variation and potential variation (where a non-synonymous change to p19 would be synonymous for the overprinted movement protein does not significantly impact protein structure or RNA binding. Consequently, while several methods identify residues at the dimer interface as being under positive selection, MD results suggest they are functionally indistinguishable from a site that is free to vary. Our analyses serve as a caveat to using sequence-level analyses in isolation to detect and assess positive selection, and emphasize the importance of also accounting for how non-synonymous changes impact structure and function.

  12. Evidence of cryptic introgression in tomato (Solanum lycopersicum L.) based on wild tomato species alleles.

    Science.gov (United States)

    Labate, Joanne A; Robertson, Larry D

    2012-08-07

    Many highly beneficial traits (e.g. disease or abiotic stress resistance) have been transferred into crops through crosses with their wild relatives. The 13 recognized species of tomato (Solanum section Lycopersicon) are closely related to each other and wild species genes have been extensively used for improvement of the crop, Solanum lycopersicum L. In addition, the lack of geographical barriers has permitted natural hybridization between S. lycopersicum and its closest wild relative Solanum pimpinellifolium in Ecuador, Peru and northern Chile. In order to better understand patterns of S. lycopersicum diversity, we sequenced 47 markers ranging in length from 130 to 1200 bp (total of 24 kb) in genotypes of S. lycopersicum and wild tomato species S. pimpinellifolium, Solanum arcanum, Solanum peruvianum, Solanum pennellii and Solanum habrochaites. Between six and twelve genotypes were comparatively analyzed per marker. Several of the markers had previously been hypothesized as carrying wild species alleles within S. lycopersicum, i.e., cryptic introgressions. Each marker was mapped with high confidence (etomato whole genome shotgun chromosomes (SL2.40) database. Neighbor-joining trees showed high mean bootstrap support (86.8 ± 2.34%) for distinguishing red-fruited from green-fruited taxa for 38 of the markers. Hybridization and parsimony splits networks, genomic map positions of markers relative to documented introgressions, and historical origins of accessions were used to interpret evolutionary patterns at nine markers with putatively introgressed alleles. Of the 47 genetic markers surveyed in this study, four were involved in linkage drag on chromosome 9 during introgression breeding, while alleles at five markers apparently originated from natural hybridization with S. pimpinellifolium and were associated with primitive genotypes of S. lycopersicum. The positive identification of introgressed genes within crop species such as S. lycopersicum will help

  13. Role of the B Allele of Influenza A Virus Segment 8 in Setting Mammalian Host Range and Pathogenicity.

    Science.gov (United States)

    Turnbull, Matthew L; Wise, Helen M; Nicol, Marlynne Q; Smith, Nikki; Dunfee, Rebecca L; Beard, Philippa M; Jagger, Brett W; Ligertwood, Yvonne; Hardisty, Gareth R; Xiao, Haixia; Benton, Donald J; Coburn, Alice M; Paulo, Joao A; Gygi, Steven P; McCauley, John W; Taubenberger, Jeffery K; Lycett, Samantha J; Weekes, Michael P; Dutia, Bernadette M; Digard, Paul

    2016-10-15

    burden on farming and health care sectors. Host adaptation likely involves multiple viral factors. Here, we investigated the role of IAV segment 8. Segment 8 has evolved into two distinct clades: the A and B alleles. The B-allele genes have previously been suggested to be restricted to avian virus species. We introduced a selection of avian virus A- and B-allele segment 8s into human H1N1 and H3N2 virus backgrounds and found that these reassortant viruses were fully competent in mammalian host systems. We also analyzed the currently available public data on the segment 8 gene distribution and found surprisingly little evidence for specific avian host restriction of the B-clade segment. We conclude that B-allele segment 8 genes are, in fact, capable of supporting infection in mammals and that they should be considered during the assessment of the pandemic risk of zoonotic influenza A viruses. Copyright © 2016 Turnbull et al.

  14. Expression and loss of alleles in cultured mouse embryonic fibroblasts and stem cells carrying allelic fluorescent protein genes

    Directory of Open Access Journals (Sweden)

    Stringer Saundra L

    2006-10-01

    Full Text Available Abstract Background Loss of heterozygosity (LOH contributes to many cancers, but the rate at which these events occur in normal cells of the body is not clear. LOH would be detectable in diverse cell types in the body if this event were to confer an obvious cellular phenotype. Mice that carry two different fluorescent protein genes as alleles of a locus would seem to be a useful tool for addressing this issue because LOH would change a cell's phenotype from dichromatic to monochromatic. In addition, LOH caused by mitotic crossing over might be discernable in tissues because this event produces a pair of neighboring monochromatic cells that are different colors. Results As a step in assessing the utility of this approach, we derived primary embryonic fibroblast populations and embryonic stem cell lines from mice that carried two different fluorescent protein genes as alleles at the chromosome 6 locus, ROSA26. Fluorescence activated cell sorting (FACS showed that the vast majority of cells in each line expressed the two marker proteins at similar levels, and that populations exhibited expression noise similar to that seen in bacteria and yeast. Cells with a monochromatic phenotype were present at frequencies on the order of 10-4 and appeared to be produced at a rate of approximately 10-5 variant cells per mitosis. 45 of 45 stably monochromatic ES cell clones exhibited loss of the expected allele at the ROSA26 locus. More than half of these clones retained heterozygosity at a locus between ROSA26 and the centromere. Other clones exhibited LOH near the centromere, but were disomic for chromosome 6. Conclusion Allelic fluorescent markers allowed LOH at the ROSA26 locus to be detected by FACS. LOH at this locus was usually not accompanied by LOH near the centromere, suggesting that mitotic recombination was the major cause of ROSA26 LOH. Dichromatic mouse embryonic cells provide a novel system for studying genetic/karyotypic stability and factors

  15. Linkage disequilibrium in the insulin gene region: Size variation at the 5{prime} flanking polymorphism and bimodality among {open_quotes}Class I{close_quotes} alleles

    Energy Technology Data Exchange (ETDEWEB)

    McGinnis, R.E.; Spielman, R.S. [Univ. of Pennsylvania School of Medicine, Philadelphia, PA (United States)

    1994-09-01

    The 5{prime} flanking polymorphism (5{prime}FP), a hypervariable region at the 5{prime} end of the insulin gene, has {open_quotes}class 1{close_quotes} alleles (650-900 bp long) that are in positive linkage disequilibrium with insulin-dependent diabetes mellitus (IDDM). The authors report that precise sizing of the 5{prime}FP yields a bimodal frequency distribution of class 1 allele lengths. Class 1 alleles belonging to the lower component (650-750 bp) of the bimodal distribution were somewhat more highly associated with IDDM than were alleles from the upper component (760-900 bp), but the difference was not statistically significant. They also examined 5{prime}FP length variation in relation to allelic variation at nearby polymorphisms. At biallelic RFLPs on both sides of the 5{prime}FP, they found that one allele exhibits near-total association with the upper component of the 5FP class 1 distribution. Such associations represent a little-known but potentially wide-spread form of linkage disequilibrium. In this type of disequilibrium, a flanking allele has near-complete association with a single mode of VNTR alleles whose lengths represent consecutive numbers of tandem repeats (CNTR). Such extreme disequilibrium between a CNTR mode and flanking alleles may originate and persist because length mutations at some VNTR loci usually add or delete only one or two repeat units. 22 refs., 5 figs., 6 tabs.

  16. Distinct Niemann-Pick Disease Type C Clinical, Cytological, and Biochemical Phenotype in an Adult Patient With 1 Mutated, Overexpressed Allele

    Directory of Open Access Journals (Sweden)

    Julia Jecel MD

    2015-11-01

    Full Text Available Niemann-Pick disease type C (NP-C is a rare autosomal-recessive neurovisceral lysosomal storage disease. We report on a juvenile onset, now 25-year-old female patient with typical neurologic symptoms, including vertical gaze palsy, of NP-C. The diagnosis was supported by a positive filipin test (“variant biochemical phenotype” of cholesterol accumulation in cultured fibroblasts, high numbers of “Niemann-Pick cells” in the bone marrow, and 1 positive out of 3 NP-C biomarkers tested, but NP-C was not definitely confirmed genetically. She showed only 1 known NPC1 variant (3 bp deletion in exon 18; p.N916del; this allele, however, being distinctly overexpressed at the messenger RNA level as compared to the wild-type allele, as a not as yet clarified (copathogenic? phenomenon. The patient’s mother, also carrying the p.N916del allele but without overexpression, has a chronic inflammatory disease of the central nervous system classified as multiple sclerosis. However, her severe clinical phenotype includes some signs also consistent with NP-C. The laboratory diagnosis of NP-C can be challenging in detecting novel disease constellations.

  17. Systematic differences in the response of genetic variation to pedigree and genome-based selection methods.

    Science.gov (United States)

    Heidaritabar, M; Vereijken, A; Muir, W M; Meuwissen, T; Cheng, H; Megens, H-J; Groenen, M A M; Bastiaansen, J W M

    2014-12-01

    Genomic selection (GS) is a DNA-based method of selecting for quantitative traits in animal and plant breeding, and offers a potentially superior alternative to traditional breeding methods that rely on pedigree and phenotype information. Using a 60 K SNP chip with markers spaced throughout the entire chicken genome, we compared the impact of GS and traditional BLUP (best linear unbiased prediction) selection methods applied side-by-side in three different lines of egg-laying chickens. Differences were demonstrated between methods, both at the level and genomic distribution of allele frequency changes. In all three lines, the average allele frequency changes were larger with GS, 0.056 0.064 and 0.066, compared with BLUP, 0.044, 0.045 and 0.036 for lines B1, B2 and W1, respectively. With BLUP, 35 selected regions (empirical P selected regions were identified. Empirical thresholds for local allele frequency changes were determined from gene dropping, and differed considerably between GS (0.167-0.198) and BLUP (0.105-0.126). Between lines, the genomic regions with large changes in allele frequencies showed limited overlap. Our results show that GS applies selection pressure much more locally than BLUP, resulting in larger allele frequency changes. With these results, novel insights into the nature of selection on quantitative traits have been gained and important questions regarding the long-term impact of GS are raised. The rapid changes to a part of the genetic architecture, while another part may not be selected, at least in the short term, require careful consideration, especially when selection occurs before phenotypes are observed.

  18. When a Fly Has to Fly to Reproduce: Selection against Conditional Recessive Lethals in "Drosophila"

    Science.gov (United States)

    Plunkett, Andrea D.; Yampolsky, Lev Y.

    2010-01-01

    We propose an experimental model suitable for demonstrating allele frequency change in Drosophila melanogaster populations caused by selection against an easily scorable conditional lethal, namely recessive flightless alleles such as apterous and vestigial. Homozygotes for these alleles are excluded from reproduction because the food source used…

  19. Sardinians genetic background explained by runs of homozygosity and genomic regions under positive selection.

    Directory of Open Access Journals (Sweden)

    Cornelia Di Gaetano

    Full Text Available The peculiar position of Sardinia in the Mediterranean sea has rendered its population an interesting biogeographical isolate. The aim of this study was to investigate the genetic population structure, as well as to estimate Runs of Homozygosity and regions under positive selection, using about 1.2 million single nucleotide polymorphisms genotyped in 1077 Sardinian individuals. Using four different methods--fixation index, inflation factor, principal component analysis and ancestry estimation--we were able to highlight, as expected for a genetic isolate, the high internal homogeneity of the island. Sardinians showed a higher percentage of genome covered by RoHs>0.5 Mb (F(RoH%0.5 when compared to peninsular Italians, with the only exception of the area surrounding Alghero. We furthermore identified 9 genomic regions showing signs of positive selection and, we re-captured many previously inferred signals. Other regions harbor novel candidate genes for positive selection, like TMEM252, or regions containing long non coding RNA. With the present study we confirmed the high genetic homogeneity of Sardinia that may be explained by the shared ancestry combined with the action of evolutionary forces.

  20. Background Selection in Partially Selfing Populations

    Science.gov (United States)

    Roze, Denis

    2016-01-01

    Self-fertilizing species often present lower levels of neutral polymorphism than their outcrossing relatives. Indeed, selfing automatically increases the rate of coalescence per generation, but also enhances the effects of background selection and genetic hitchhiking by reducing the efficiency of recombination. Approximations for the effect of background selection in partially selfing populations have been derived previously, assuming tight linkage between deleterious alleles and neutral loci. However, loosely linked deleterious mutations may have important effects on neutral diversity in highly selfing populations. In this article, I use a general method based on multilocus population genetics theory to express the effect of a deleterious allele on diversity at a linked neutral locus in terms of moments of genetic associations between loci. Expressions for these genetic moments at equilibrium are then computed for arbitrary rates of selfing and recombination. An extrapolation of the results to the case where deleterious alleles segregate at multiple loci is checked using individual-based simulations. At high selfing rates, the tight linkage approximation underestimates the effect of background selection in genomes with moderate to high map length; however, another simple approximation can be obtained for this situation and provides accurate predictions as long as the deleterious mutation rate is not too high. PMID:27075726

  1. QTL detection and elite alleles mining for stigma traits in Oryza sativa by association mapping

    Directory of Open Access Journals (Sweden)

    Xiaojing Dang

    2016-08-01

    Full Text Available Stigma traits are very important for hybrid seed production in Oryza sativa, which is a self-pollinated crop; however, the genetic mechanism controlling the traits is poorly understood. In this study, we investigated the phenotypic data of 227 accessions across two years and assessed their genotypic variation with 249 simple sequence repeat (SSR markers. By combining phenotypic and genotypic data, a genome-wide association (GWA map was generated. Large phenotypic variations in stigma length (STL, stigma brush-shaped part length (SBPL and stigma non-brush-shaped part length (SNBPL were found. Significant positive correlations were identified among stigma traits. In total, 2,072 alleles were detected among 227 accessions, with an average of 8.3 alleles per SSR locus. GWA mapping detected 6 quantitative trait loci (QTLs for the STL, 2 QTLs for the SBPL and 7 QTLs for the SNBPL. Eleven, 5, and 12 elite alleles were found for the STL, SBPL and SNBPL, respectively. Optimal cross designs were predicted for improving the target traits. The detected genetic variation in stigma traits and QTLs provides helpful information for cloning candidate STL genes and breeding rice cultivars with longer STLs in the future.

  2. Identification and Genetic Diversity of Etambutol Resistant Strains of Mycobacterium Tuberculosis by Allelic-Specific PCR and Spologiotyping

    Directory of Open Access Journals (Sweden)

    Zahra Derakhshani Nezhad

    2012-09-01

    Full Text Available Background & Objectives: Ethambutol is one of the four main drugs in treatment of tuberculosis. The most common mutation associated with this drug resistance usually occurs in codon 306 of embB. The aim of this study was to detect ethambutol resistance using Allele-Specific PCR and Spoligotyping in various subtypes of Mycobacterium tuberculosis.   Methods : 140 sputum specimens were collected from suspected TB patients. They were digested and decontaminated using Pettrof method before culturing them on LJ medium. Drug susceptibility testing was performed on 106 culture positive specimens using proportional method. DNA was extracted from the isolated organisms and subsequently subjected to Allele-Specific PCR to detect any mutationin embB306. Spoligotyping was then used to determine the subtypes.   Results: Out of 106 cultures positive samples, 36 samples (33.9% showed resistance to ethambutol using proportional method. Allele-Specific PCR assay identified 93 as sensitive and 13 (27.6% as resistant strains. The results of PCR were in agreement with result of proportional method. The PCR method revealed that 61.5% of mutation occurred in the first and 38.5% in third nucleotides. Spoligotyping differentiated Mycobacterium tuberculosis strains into Beijing (10 9.4%, Bovis (2 1.8%, CAS (24 22.6%, EAI (1 0.9%, Haarlem (27 25.4%, LAM (5 4.7%, Manu (5 4.7%, T (27 25.4% and U( 2 1,8% families. The high frequency of mutation in embB gene was belonged to Haarlem, CAS and T subfamilies.   Conclusion: Based on results current study, mutations in the genes other than embB might have occurred in the resistant strains that gave negative result in Allele-Specific PCR assay. Therefore other mechanisms of resistance to this antibiotic should be investigated.

  3. Evolution of the proportions of two sigma viral types in experimental populations of Drosophila melanogaster in the absence of the allele that is restrictive of viral multiplication.

    Science.gov (United States)

    Fleuriet, A

    1999-12-01

    A minority of flies in natural populations of Drosophila melanogaster are endemically infected by a rhabdovirus, sigma. The virus is vertically transmitted through male and female gametes. Two alleles of a fly locus, the ref(2)P locus, are present as a polymorphism in all populations: O permissive, and P restrictive for viral multiplication and transmission. Two viral types are known, Type I, which is very sensitive to the P allele, and Type II, which is more resistant. Previous observations have shown that, in presence of the P allele, viral Type II is selected for, in both natural and experimental populations. The aim of the present study was to determine whether, in the absence of P, Type I is selected for, or whether the two types are equivalent. For this purpose, experimental populations deprived of the P allele and differing in the initial proportions of the two viral types were established. After several generations, and despite a possible bias toward Type I, the frequencies of Type I and Type II clones differed in the various populations, depending on their initial values. These findings do not rule out selective advantage of viral Type I in the absence of P, but suggest that, if any, this advantage is in no way comparable to that displayed by viral Type II in the presence of P.

  4. Detecting imbalanced expression of SNP alleles by minisequencing on microarrays

    Directory of Open Access Journals (Sweden)

    Dahlgren Andreas

    2004-10-01

    Full Text Available Abstract Background Each of the human genes or transcriptional units is likely to contain single nucleotide polymorphisms that may give rise to sequence variation between individuals and tissues on the level of RNA. Based on recent studies, differential expression of the two alleles of heterozygous coding single nucleotide polymorphisms (SNPs may be frequent for human genes. Methods with high accuracy to be used in a high throughput setting are needed for systematic surveys of expressed sequence variation. In this study we evaluated two formats of multiplexed, microarray based minisequencing for quantitative detection of imbalanced expression of SNP alleles. We used a panel of ten SNPs located in five genes known to be expressed in two endothelial cell lines as our model system. Results The accuracy and sensitivity of quantitative detection of allelic imbalance was assessed for each SNP by constructing regression lines using a dilution series of mixed samples from individuals of different genotype. Accurate quantification of SNP alleles by both assay formats was evidenced for by R2 values > 0.95 for the majority of the regression lines. According to a two sample t-test, we were able to distinguish 1–9% of a minority SNP allele from a homozygous genotype, with larger variation between SNPs than between assay formats. Six of the SNPs, heterozygous in either of the two cell lines, were genotyped in RNA extracted from the endothelial cells. The coefficient of variation between the fluorescent signals from five parallel reactions was similar for cDNA and genomic DNA. The fluorescence signal intensity ratios measured in the cDNA samples were compared to those in genomic DNA to determine the relative expression levels of the two alleles of each SNP. Four of the six SNPs tested displayed a higher than 1.4-fold difference in allelic ratios between cDNA and genomic DNA. The results were verified by allele-specific oligonucleotide hybridisation and

  5. Evolutionary dynamics of sporophytic self-incompatibility alleles in plants

    DEFF Research Database (Denmark)

    Schierup, Mikkel Heide; Vekemans, Xavier; Christiansen, Freddy Bugge

    1997-01-01

    codominantly in both pollen and style (SSIcod), in the second, alleles form a dominance hierarchy in pollen and style (SSIdom). In the third model, alleles interact codominantly in the style and form a dominance hierarchy in the pollen (SSIdomcod). The SSIcod model behaves similarly to the model...

  6. Whole genome detection of signature of positive selection in African cattle reveals selection for thermotolerance.

    Science.gov (United States)

    Taye, Mengistie; Lee, Wonseok; Caetano-Anolles, Kelsey; Dessie, Tadelle; Hanotte, Olivier; Mwai, Okeyo Ally; Kemp, Stephen; Cho, Seoae; Oh, Sung Jong; Lee, Hak-Kyo; Kim, Heebal

    2017-12-01

    As African indigenous cattle evolved in a hot tropical climate, they have developed an inherent thermotolerance; survival mechanisms include a light-colored and shiny coat, increased sweating, and cellular and molecular mechanisms to cope with high environmental temperature. Here, we report the positive selection signature of genes in African cattle breeds which contribute for their heat tolerance mechanisms. We compared the genomes of five indigenous African cattle breeds with the genomes of four commercial cattle breeds using cross-population composite likelihood ratio (XP-CLR) and cross-population extended haplotype homozygosity (XP-EHH) statistical methods. We identified 296 (XP-EHH) and 327 (XP-CLR) positively selected genes. Gene ontology analysis resulted in 41 biological process terms and six Kyoto Encyclopedia of Genes and Genomes pathways. Several genes and pathways were found to be involved in oxidative stress response, osmotic stress response, heat shock response, hair and skin properties, sweat gland development and sweating, feed intake and metabolism, and reproduction functions. The genes and pathways identified directly or indirectly contribute to the superior heat tolerance mechanisms in African cattle populations. The result will improve our understanding of the biological mechanisms of heat tolerance in African cattle breeds and opens an avenue for further study. © 2017 Japanese Society of Animal Science.

  7. Allele-specific characterization of alanine: glyoxylate aminotransferase variants associated with primary hyperoxaluria.

    Directory of Open Access Journals (Sweden)

    Melissa D Lage

    Full Text Available Primary Hyperoxaluria Type 1 (PH1 is a rare autosomal recessive kidney stone disease caused by deficiency of the peroxisomal enzyme alanine: glyoxylate aminotransferase (AGT, which is involved in glyoxylate detoxification. Over 75 different missense mutations in AGT have been found associated with PH1. While some of the mutations have been found to affect enzyme activity, stability, and/or localization, approximately half of these mutations are completely uncharacterized. In this study, we sought to systematically characterize AGT missense mutations associated with PH1. To facilitate analysis, we used two high-throughput yeast-based assays: one that assesses AGT specific activity, and one that assesses protein stability. Approximately 30% of PH1-associated missense mutations are found in conjunction with a minor allele polymorphic variant, which can interact to elicit complex effects on protein stability and trafficking. To better understand this allele interaction, we functionally characterized each of 34 mutants on both the major (wild-type and minor allele backgrounds, identifying mutations that synergize with the minor allele. We classify these mutants into four distinct categories depending on activity/stability results in the different alleles. Twelve mutants were found to display reduced activity in combination with the minor allele, compared with the major allele background. When mapped on the AGT dimer structure, these mutants reveal localized regions of the protein that appear particularly sensitive to interactions with the minor allele variant. While the majority of the deleterious effects on activity in the minor allele can be attributed to synergistic interaction affecting protein stability, we identify one mutation, E274D, that appears to specifically affect activity when in combination with the minor allele.

  8. Effect of N fertilisation, year and prolamin alleles on gluten quality in durum wheat (Triticum turgidum L. ssp. turgidum) landraces from Spain

    Energy Technology Data Exchange (ETDEWEB)

    Aguiriano, E.; Ruiz, M.; Fite, R.; Carrillo, J. M.

    2009-07-01

    A subset of durum wheat Spanish land races, previously evaluated for yield at low and high nitrogen (N) levels, was analysed for quality, protein content (P) and sodium dodecyl sulphate sedimentation (SDSS) test. The evaluation was carried out at the two N rates and in two years. The influence of prolamine alleles at the Glu-1, Glu-3, Glu-B2 and Gli- 1 loci on quality parameters was also studied. The non significant Variety-by-Year or Variety-by-N interactions suggested that year and N affected all the varieties in a similar manner. Year and N effects were larger than variety effect for P, which increased with N. In contrast, variety genotype exhibited a stronger influence on SDSS test, which was not affected by year and fertilizer. Variety effects on P did not reflect the variety differences for SDSS test. A high positive influence of some prolamin alleles on quality parameters was detected, mainly for SDSS values. No correlation between yield and P was detected in the landraces adapted to low N. Based on the results of yield and quality evaluations, four landraces with high yield and high gluten strength were pre-selected for low N production. (Author)

  9. Comparative anatomy of chromosomal domains with imprinted and non-imprinted allele-specific DNA methylation.

    Science.gov (United States)

    Paliwal, Anupam; Temkin, Alexis M; Kerkel, Kristi; Yale, Alexander; Yotova, Iveta; Drost, Natalia; Lax, Simon; Nhan-Chang, Chia-Ling; Powell, Charles; Borczuk, Alain; Aviv, Abraham; Wapner, Ronald; Chen, Xiaowei; Nagy, Peter L; Schork, Nicholas; Do, Catherine; Torkamani, Ali; Tycko, Benjamin

    2013-08-01

    Allele-specific DNA methylation (ASM) is well studied in imprinted domains, but this type of epigenetic asymmetry is actually found more commonly at non-imprinted loci, where the ASM is dictated not by parent-of-origin but instead by the local haplotype. We identified loci with strong ASM in human tissues from methylation-sensitive SNP array data. Two index regions (bisulfite PCR amplicons), one between the C3orf27 and RPN1 genes in chromosome band 3q21 and the other near the VTRNA2-1 vault RNA in band 5q31, proved to be new examples of imprinted DMRs (maternal alleles methylated) while a third, between STEAP3 and C2orf76 in chromosome band 2q14, showed non-imprinted haplotype-dependent ASM. Using long-read bisulfite sequencing (bis-seq) in 8 human tissues we found that in all 3 domains the ASM is restricted to single differentially methylated regions (DMRs), each less than 2kb. The ASM in the C3orf27-RPN1 intergenic region was placenta-specific and associated with allele-specific expression of a long non-coding RNA. Strikingly, the discrete DMRs in all 3 regions overlap with binding sites for the insulator protein CTCF, which we found selectively bound to the unmethylated allele of the STEAP3-C2orf76 DMR. Methylation mapping in two additional genes with non-imprinted haplotype-dependent ASM, ELK3 and CYP2A7, showed that the CYP2A7 DMR also overlaps a CTCF site. Thus, two features of imprinted domains, highly localized DMRs and allele-specific insulator occupancy by CTCF, can also be found in chromosomal domains with non-imprinted ASM. Arguing for biological importance, our analysis of published whole genome bis-seq data from hES cells revealed multiple genome-wide association study (GWAS) peaks near CTCF binding sites with ASM.

  10. Comparative anatomy of chromosomal domains with imprinted and non-imprinted allele-specific DNA methylation.

    Directory of Open Access Journals (Sweden)

    Anupam Paliwal

    2013-08-01

    Full Text Available Allele-specific DNA methylation (ASM is well studied in imprinted domains, but this type of epigenetic asymmetry is actually found more commonly at non-imprinted loci, where the ASM is dictated not by parent-of-origin but instead by the local haplotype. We identified loci with strong ASM in human tissues from methylation-sensitive SNP array data. Two index regions (bisulfite PCR amplicons, one between the C3orf27 and RPN1 genes in chromosome band 3q21 and the other near the VTRNA2-1 vault RNA in band 5q31, proved to be new examples of imprinted DMRs (maternal alleles methylated while a third, between STEAP3 and C2orf76 in chromosome band 2q14, showed non-imprinted haplotype-dependent ASM. Using long-read bisulfite sequencing (bis-seq in 8 human tissues we found that in all 3 domains the ASM is restricted to single differentially methylated regions (DMRs, each less than 2kb. The ASM in the C3orf27-RPN1 intergenic region was placenta-specific and associated with allele-specific expression of a long non-coding RNA. Strikingly, the discrete DMRs in all 3 regions overlap with binding sites for the insulator protein CTCF, which we found selectively bound to the unmethylated allele of the STEAP3-C2orf76 DMR. Methylation mapping in two additional genes with non-imprinted haplotype-dependent ASM, ELK3 and CYP2A7, showed that the CYP2A7 DMR also overlaps a CTCF site. Thus, two features of imprinted domains, highly localized DMRs and allele-specific insulator occupancy by CTCF, can also be found in chromosomal domains with non-imprinted ASM. Arguing for biological importance, our analysis of published whole genome bis-seq data from hES cells revealed multiple genome-wide association study (GWAS peaks near CTCF binding sites with ASM.

  11. Apolipoprotein E4 allele does not influence serum triglyceride ...

    African Journals Online (AJOL)

    This study investigated how the APOε4 allele affects the serum triglyceride response after a fatmeal in apparently healthy black South African young adults. Sixty students were successfully screened for APOE genotype using Restriction Fragment Length Polymorphism (RFLP) and were divided into four groups; the ε2 allele ...

  12. Allelic Variation of Risk for Anxiety Symptoms Moderates the Relation Between Adolescent Safety Behaviors and Social Anxiety Symptoms

    Science.gov (United States)

    Thomas, Sarah A.; Weeks, Justin W.; Dougherty, Lea R.; Lipton, Melanie F.; Daruwala, Samantha E.; Kline, Kathryn

    2015-01-01

    Social anxiety often develops in adolescence, and precedes the onset of depression and substance use disorders. The link between social anxiety and use of behaviors to minimize distress in social situations (i.e., safety behaviors) is strong and for some patients, this link poses difficulty for engaging in, and benefiting from, exposure-based treatment. Yet, little is known about whether individual differences may moderate links between social anxiety and safety behaviors, namely variations in genetic alleles germane to anxiety. We examined the relation between adolescent social anxiety and expressions of safety behaviors, and whether allelic variation for anxiety moderates this relation. Adolescents (n=75; ages 14–17) were recruited from two larger studies investigating measurement of family relationships or adolescent social anxiety. Adolescents completed self-report measures about social anxiety symptoms and use of safety behaviors. They also provided saliva samples to assess allelic variations for anxiety from two genetic polymorphisms (BDNF rs6265; TAQ1A rs1800497). Controlling for adolescent age and gender, we observed a significant interaction between social anxiety symptoms and allelic variation (β=0.37, t=2.41, p=.02). Specifically, adolescents carrying allelic variations for anxiety evidenced a statistically significant and relatively strong positive relation between social anxiety symptoms and safety behaviors (β=0.73), whereas adolescents not carrying allelic variation evidenced a statistically non-significant and relatively weak relation (β=0.22). These findings have important implications for treating adolescent social anxiety, in that we identified an individual difference variable that can be used to identify people who evidence a particularly strong link between use of safety behaviors and expressing social anxiety. PMID:26692635

  13. Novel deletion alleles carrying CYP21A1P/A2 chimeric genes in Brazilian patients with 21-hydroxylase deficiency

    Directory of Open Access Journals (Sweden)

    Guerra-Júnior Gil

    2010-06-01

    Full Text Available Abstract Background Congenital adrenal hyperplasia due to 21-hydroxylase deficiency is caused by deletions, large gene conversions or mutations in CYP21A2 gene. The human gene is located at 6p21.3 within a locus containing the genes for putative serine/threonine Kinase RP, complement C4, steroid 21-hydroxylase CYP21 tenascin TNX, normally, in a duplicated cluster known as RCCX module. The CYP21 extra copy is a pseudogene (CYP21A1P. In Brazil, 30-kb deletion forming monomodular alleles that carry chimeric CYP21A1P/A2 genes corresponds to ~9% of disease-causing alleles. Such alleles are considered to result from unequal crossovers within the bimodular C4/CYP21 locus. Depending on the localization of recombination breakpoint, different alleles can be generated conferring the locus high degree of allelic variability. The purpose of the study was to investigate the variability of deleted alleles in patients with 21-hydroxylase deficiency. Methods We used different techniques to investigate the variability of 30-kb deletion alleles in patients with 21-hydroxylase deficiency. Alleles were first selected after Southern blotting. The composition of CYP21A1P/A2 chimeric genes was investigated by ASO-PCR and MLPA analyses followed by sequencing to refine the location of recombination breakpoints. Twenty patients carrying at least one allele with C4/CYP21 30-kb deletion were included in the study. Results An allele carrying a CYP21A1P/A2 chimeric gene was found unusually associated to a C4B/C4A Taq I 6.4-kb fragment, generally associated to C4B and CYP21A1P deletions. A novel haplotype bearing both p.P34L and p.H62L, novel and rare mutations, respectively, was identified in exon 1, however p.P30L, the most frequent pseudogene-derived mutation in this exon, was absent. Four unrelated patients showed this haplotype. Absence of p.P34L in CYP21A1P of normal controls indicated that it is not derived from pseudogene. In addition, the combination of different

  14. Balancing selection and heterogeneity across the classical human leukocyte antigen loci: a meta-analytic review of 497 population studies.

    Science.gov (United States)

    Solberg, Owen D; Mack, Steven J; Lancaster, Alex K; Single, Richard M; Tsai, Yingssu; Sanchez-Mazas, Alicia; Thomson, Glenys

    2008-07-01

    This paper presents a meta-analysis of high-resolution human leukocyte antigen (HLA) allele frequency data describing 497 population samples. Most of the datasets were compiled from studies published in eight journals from 1990 to 2007; additional datasets came from the International Histocompatibility Workshops and from the AlleleFrequencies.net database. In all, these data represent approximately 66,800 individuals from throughout the world, providing an opportunity to observe trends that may not have been evident at the time the data were originally analyzed, especially with regard to the relative importance of balancing selection among the HLA loci. Population genetic measures of allele frequency distributions were summarized across populations by locus and geographic region. A role for balancing selection maintaining much of HLA variation was confirmed. Further, the breadth of this meta-analysis allowed the ranking of the HLA loci, with DQA1 and HLA-C showing the strongest balancing selection and DPB1 being compatible with neutrality. Comparisons of the allelic spectra reported by studies since 1990 indicate that most of the HLA alleles identified since 2000 are very-low-frequency alleles. The literature-based allele-count data, as well as maps summarizing the geographic distributions for each allele, are available online.

  15. Inference of directional selection and mutation parameters assuming equilibrium.

    Science.gov (United States)

    Vogl, Claus; Bergman, Juraj

    2015-12-01

    In a classical study, Wright (1931) proposed a model for the evolution of a biallelic locus under the influence of mutation, directional selection and drift. He derived the equilibrium distribution of the allelic proportion conditional on the scaled mutation rate, the mutation bias and the scaled strength of directional selection. The equilibrium distribution can be used for inference of these parameters with genome-wide datasets of "site frequency spectra" (SFS). Assuming that the scaled mutation rate is low, Wright's model can be approximated by a boundary-mutation model, where mutations are introduced into the population exclusively from sites fixed for the preferred or unpreferred allelic states. With the boundary-mutation model, inference can be partitioned: (i) the shape of the SFS distribution within the polymorphic region is determined by random drift and directional selection, but not by the mutation parameters, such that inference of the selection parameter relies exclusively on the polymorphic sites in the SFS; (ii) the mutation parameters can be inferred from the amount of polymorphic and monomorphic preferred and unpreferred alleles, conditional on the selection parameter. Herein, we derive maximum likelihood estimators for the mutation and selection parameters in equilibrium and apply the method to simulated SFS data as well as empirical data from a Madagascar population of Drosophila simulans. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Allelic state at the microsatellite locus Xgwm261 marking the dwarfing gene Rht8 in Egyptian bread wheat (Triticum aestivum L. genotypes released from 1947 to 2004

    Directory of Open Access Journals (Sweden)

    Salem Khaled F.M.

    2015-01-01

    Full Text Available Rht8 is widely used in dry environments such as Mediterranean regions where it increases plant adaptability. Variation at the Gatersleben wheat microsatellite Xgwm261 locus, whose 192-bp allele closely linked to the dwarfing gene Rht8, on chromosome 2D within 0.6 cM, was used to screen thirty Egyptian bread wheat genotypes released from (1947-2004 to assess the variation at this locus. There were three microsatellite allelic variants based on size. Screening of this wheat collection showed that the three alleles Xgwm261-165, Xgwm261-174 and Xgwm261-192 bp were the most frequent. The highest allele frequency was observed for a Xgwm261-165 bp fragment (65.52% followed by a Xgwm261-174 bp fragment (24.14%. However, the allele frequency of a Xgwm261-192 bp fragment among these wheat genotypes was 10.34%. The percentage distribution of dwarfing alleles for the microsatellite locus Xgwm261 in the Egyptian wheat breeding programs was 30, 20, 20 and 30% for the wheat breeding program Giza, Sakha, Gemmiza and Sids, respectively. PIC for Xgwm261 was 0.527. Genetic heritage of Egyptian genotypes at the microsatellite locus Xgwm261 is consequence of new parental components usage, carriers short plant and early maturity attributes and consequent selection progeny with these traits in breeding programs. The present study will be helpful in characterization Egyptian wheat genotypes, as well as in accurate selection of parents for wheat breeding program in Egypt.

  17. Determination of allele frequencies in nine short tandem repeat loci ...

    African Journals Online (AJOL)

    SERVER

    2008-04-17

    Apr 17, 2008 ... the normal cellular process of replication of DNA molecules. ... probability of a certain genetic variant (alleles) occuring in ... have preservatives that hinder spoilage and are easily packaged .... Allele distribution at Nine STR.

  18. DQB1*06:02 allele-specific expression varies by allelic dosage, not narcolepsy status

    DEFF Research Database (Denmark)

    Weiner Lachmi, Karin; Lin, Ling; Kornum, Birgitte Rahbek

    2012-01-01

    The association of narcolepsy-cataplexy, a sleep disorder caused by the loss of hypocretin/orexin neurons in the hypothalamus, with DQA1*01:02-DQB1*06:02 is one of the tightest known single-allele human leukocyte antigen (HLA) associations. In this study, we explored genome-wide expression...

  19. Study of Cytochrome P450 2E1 and its allele Variants in Liver Injury of Nondiabetic, Nonalcoholic Steatohepatitis Obese Women

    Directory of Open Access Journals (Sweden)

    NELSON M VARELA

    2008-01-01

    Full Text Available CYP2E1 enzyme is related to nonalcoholic steatohepatitis (NASH due to its ability for reactive oxygen species production, which can be influenced by polymorphisms in the gene. The aim of this study was to investigate hepatic levels, activity, and polymorphisms of the CYP2E1 gene to correlate it with clinical and histological features in 48 female obese NASH patients. Subjects were divided into three groups: (i normal; (ii steatosis; and (iii steatohepatitis. CYP2E1 protein level was assayed in microsomes from liver biopsies, and in vivo chlorzoxazone hydroxylation was determined by HPLC. Genomic DNA was isolated for genotype analysis through PCR. The results showed that liver CYP2E1 content was significantly higher in the steatohepatitis (45%; p=0.024 and steatosis (22%; p=0.032 group compared with normal group. Chlorzoxazone hydroxylase activity showed significant enhancement in the steatohepatitis group (15%, p=0.027 compared with the normal group. c2 rare allele of RsallPstl polymorphisms but no C allele of Dral polymorphism was positively associated with CHZ hydroxylation, which in turn is correlated with liver CYP2E1 content (r=0.59; p=0.026. In conclusion, c2 allele is positively associated with liver injury in NASH. This allele may determine a higher transcriptional activity of the gene, with consequent enhancement in pro-oxidant activity of CYP2E1 thus affording liver toxicity

  20. Hybrid male sterility in rice controlled by interaction between divergent alleles of two adjacent genes.

    Science.gov (United States)

    Long, Yunming; Zhao, Lifeng; Niu, Baixiao; Su, Jing; Wu, Hao; Chen, Yuanling; Zhang, Qunyu; Guo, Jingxin; Zhuang, Chuxiong; Mei, Mantong; Xia, Jixing; Wang, Lan; Wu, Haibin; Liu, Yao-Guang

    2008-12-02

    Sterility is common in hybrids between divergent populations, such as the indica and japonica subspecies of Asian cultivated rice (Oryza sativa). Although multiple loci for plant hybrid sterility have been identified, it remains unknown how alleles of the loci interact at the molecular level. Here we show that a locus for indica-japonica hybrid male sterility, Sa, comprises two adjacent genes, SaM and SaF, encoding a small ubiquitin-like modifier E3 ligase-like protein and an F-box protein, respectively. Most indica cultivars contain a haplotype SaM(+)SaF(+), whereas all japonica cultivars have SaM(-)SaF(-) that diverged by nucleotide variations in wild rice. Male semi-sterility in this heterozygous complex locus is caused by abortion of pollen carrying SaM(-). This allele-specific gamete elimination results from a selective interaction of SaF(+) with SaM(-), a truncated protein, but not with SaM(+) because of the presence of an inhibitory domain, although SaM(+) is required for this male sterility. Lack of any one of the three alleles in recombinant plants does not produce male sterility. We propose a two-gene/three-component interaction model for this hybrid male sterility system. The findings have implications for overcoming male sterility in inter-subspecific hybrid rice breeding.

  1. High-efficiency genome editing and allele replacement in prototrophic and wild strains of Saccharomyces.

    Science.gov (United States)

    Alexander, William G; Doering, Drew T; Hittinger, Chris Todd

    2014-11-01

    Current genome editing techniques available for Saccharomyces yeast species rely on auxotrophic markers, limiting their use in wild and industrial strains and species. Taking advantage of the ancient loss of thymidine kinase in the fungal kingdom, we have developed the herpes simplex virus thymidine kinase gene as a selectable and counterselectable marker that forms the core of novel genome engineering tools called the H: aploid E: ngineering and R: eplacement P: rotocol (HERP) cassettes. Here we show that these cassettes allow a researcher to rapidly generate heterogeneous populations of cells with thousands of independent chromosomal allele replacements using mixed PCR products. We further show that the high efficiency of this approach enables the simultaneous replacement of both alleles in diploid cells. Using these new techniques, many of the most powerful yeast genetic manipulation strategies are now available in wild, industrial, and other prototrophic strains from across the diverse Saccharomyces genus. Copyright © 2014 by the Genetics Society of America.

  2. QuASAR: quantitative allele-specific analysis of reads.

    Science.gov (United States)

    Harvey, Chris T; Moyerbrailean, Gregory A; Davis, Gordon O; Wen, Xiaoquan; Luca, Francesca; Pique-Regi, Roger

    2015-04-15

    Expression quantitative trait loci (eQTL) studies have discovered thousands of genetic variants that regulate gene expression, enabling a better understanding of the functional role of non-coding sequences. However, eQTL studies are costly, requiring large sample sizes and genome-wide genotyping of each sample. In contrast, analysis of allele-specific expression (ASE) is becoming a popular approach to detect the effect of genetic variation on gene expression, even within a single individual. This is typically achieved by counting the number of RNA-seq reads matching each allele at heterozygous sites and testing the null hypothesis of a 1:1 allelic ratio. In principle, when genotype information is not readily available, it could be inferred from the RNA-seq reads directly. However, there are currently no existing methods that jointly infer genotypes and conduct ASE inference, while considering uncertainty in the genotype calls. We present QuASAR, quantitative allele-specific analysis of reads, a novel statistical learning method for jointly detecting heterozygous genotypes and inferring ASE. The proposed ASE inference step takes into consideration the uncertainty in the genotype calls, while including parameters that model base-call errors in sequencing and allelic over-dispersion. We validated our method with experimental data for which high-quality genotypes are available. Results for an additional dataset with multiple replicates at different sequencing depths demonstrate that QuASAR is a powerful tool for ASE analysis when genotypes are not available. http://github.com/piquelab/QuASAR. fluca@wayne.edu or rpique@wayne.edu Supplementary Material is available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. Gene transfer preferentially selects MHC class I positive tumour cells and enhances tumour immunogenicity.

    Science.gov (United States)

    Hacker, Ulrich T; Schildhauer, Ines; Barroso, Margarita Céspedes; Kofler, David M; Gerner, Franz M; Mysliwietz, Josef; Buening, Hildegard; Hallek, Michael; King, Susan B S

    2006-05-01

    The modulated expression of MHC class I on tumour tissue is well documented. Although the effect of MHC class I expression on the tumorigenicity and immunogenicity of MHC class I negative tumour cell lines has been rigorously studied, less is known about the validity of gene transfer and selection in cell lines with a mixed MHC class I phenotype. To address this issue we identified a C26 cell subline that consists of distinct populations of MHC class I (H-2D/K) positive and negative cells. Transient transfection experiments using liposome-based transfer showed a lower transgene expression in MHC class I negative cells. In addition, MHC class I negative cells were more sensitive to antibiotic selection. This led to the generation of fully MHC class I positive cell lines. In contrast to C26 cells, all transfectants were rejected in vivo and induced protection against the parental tumour cells in rechallenge experiments. Tumour cell specificity of the immune response was demonstrated in in vitro cytokine secretion and cytotoxicity assays. Transfectants expressing CD40 ligand and hygromycin phosphotransferase were not more immunogenic than cells expressing hygromycin resistance alone. We suggest that the MHC class I positive phenotype of the C26 transfectants had a bearing on their immunogenicity, because selected MHC class I positive cells were more immunogenic than parental C26 cells and could induce specific anti-tumour immune responses. These data demonstrate that the generation of tumour cell transfectants can lead to the selection of subpopulations that show an altered phenotype compared to the parental cell line and display altered immunogenicity independent of selection marker genes or other immune modulatory genes. Our results show the importance of monitoring gene transfer in the whole tumour cell population, especially for the evaluation of in vivo therapies targeted to heterogeneous tumour cell populations.

  4. A general population genetic framework for antagonistic selection that accounts for demography and recurrent mutation.

    Science.gov (United States)

    Connallon, Tim; Clark, Andrew G

    2012-04-01

    Antagonistic selection--where alleles at a locus have opposing effects on male and female fitness ("sexual antagonism") or between components of fitness ("antagonistic pleiotropy")--might play an important role in maintaining population genetic variation and in driving phylogenetic and genomic patterns of sexual dimorphism and life-history evolution. While prior theory has thoroughly characterized the conditions necessary for antagonistic balancing selection to operate, we currently know little about the evolutionary interactions between antagonistic selection, recurrent mutation, and genetic drift, which should collectively shape empirical patterns of genetic variation. To fill this void, we developed and analyzed a series of population genetic models that simultaneously incorporate these processes. Our models identify two general properties of antagonistically selected loci. First, antagonistic selection inflates heterozygosity and fitness variance across a broad parameter range--a result that applies to alleles maintained by balancing selection and by recurrent mutation. Second, effective population size and genetic drift profoundly affect the statistical frequency distributions of antagonistically selected alleles. The "efficacy" of antagonistic selection (i.e., its tendency to dominate over genetic drift) is extremely weak relative to classical models, such as directional selection and overdominance. Alleles meeting traditional criteria for strong selection (N(e)s > 1, where N(e) is the effective population size, and s is a selection coefficient for a given sex or fitness component) may nevertheless evolve as if neutral. The effects of mutation and demography may generate population differences in overall levels of antagonistic fitness variation, as well as molecular population genetic signatures of balancing selection.

  5. Ovine progressive pneumonia provirus levels are unaffected by the prion 171R allele in an Idaho sheep flock

    Directory of Open Access Journals (Sweden)

    Herrmann-Hoesing Lynn M

    2009-01-01

    Full Text Available Abstract Selective breeding of sheep for arginine (R at prion gene (PRNP codon 171 confers resistance to classical scrapie. However, other effects of 171R selection are uncertain. Ovine progressive pneumonia/Maedi-Visna virus (OPPV may infect up to 66% of a flock thus any affect of 171R selection on OPPV susceptibility or disease progression could have major impact on the sheep industry. Hypotheses that the PRNP 171R allele is 1 associated with the presence of OPPV provirus and 2 associated with higher provirus levels were tested in an Idaho ewe flock. OPPV provirus was found in 226 of 358 ewes by quantitative PCR. The frequency of ewes with detectable provirus did not differ significantly among the 171QQ, 171QR, and 171RR genotypes (p > 0.05. Also, OPPV provirus levels in infected ewes were not significantly different among codon 171 genotypes (p > 0.05. These results show that, in the flock examined, the presence of OPPV provirus and provirus levels are not related to the PRNP 171R allele. Therefore, a genetic approach to scrapie control is not expected to increase or decrease the number of OPPV infected sheep or the progression of disease. This study provides further support to the adoption of PRNP 171R selection as a scrapie control measure.

  6. Widespread Positive Selection Drives Differentiation of Centromeric Proteins in the Drosophila melanogaster subgroup.

    Science.gov (United States)

    Beck, Emily A; Llopart, Ana

    2015-11-25

    Rapid evolution of centromeric satellite repeats is thought to cause compensatory amino acid evolution in interacting centromere-associated kinetochore proteins. Cid, a protein that mediates kinetochore/centromere interactions, displays particularly high amino acid turnover. Rapid evolution of both Cid and centromeric satellite repeats led us to hypothesize that the apparent compensatory evolution may extend to interacting partners in the Condensin I complex (i.e., SMC2, SMC4, Cap-H, Cap-D2, and Cap-G) and HP1s. Missense mutations in these proteins often result in improper centromere formation and aberrant chromosome segregation, thus selection for maintained function and coevolution among proteins of the complex is likely strong. Here, we report evidence of rapid evolution and recurrent positive selection in seven centromere-associated proteins in species of the Drosophila melanogaster subgroup, and further postulate that positive selection on these proteins could be a result of centromere drive and compensatory changes, with kinetochore proteins competing for optimal spindle attachment.

  7. HLA DNA sequence variation among human populations: molecular signatures of demographic and selective events.

    Directory of Open Access Journals (Sweden)

    Stéphane Buhler

    2011-02-01

    Full Text Available Molecular differences between HLA alleles vary up to 57 nucleotides within the peptide binding coding region of human Major Histocompatibility Complex (MHC genes, but it is still unclear whether this variation results from a stochastic process or from selective constraints related to functional differences among HLA molecules. Although HLA alleles are generally treated as equidistant molecular units in population genetic studies, DNA sequence diversity among populations is also crucial to interpret the observed HLA polymorphism. In this study, we used a large dataset of 2,062 DNA sequences defined for the different HLA alleles to analyze nucleotide diversity of seven HLA genes in 23,500 individuals of about 200 populations spread worldwide. We first analyzed the HLA molecular structure and diversity of these populations in relation to geographic variation and we further investigated possible departures from selective neutrality through Tajima's tests and mismatch distributions. All results were compared to those obtained by classical approaches applied to HLA allele frequencies.Our study shows that the global patterns of HLA nucleotide diversity among populations are significantly correlated to geography, although in some specific cases the molecular information reveals unexpected genetic relationships. At all loci except HLA-DPB1, populations have accumulated a high proportion of very divergent alleles, suggesting an advantage of heterozygotes expressing molecularly distant HLA molecules (asymmetric overdominant selection model. However, both different intensities of selection and unequal levels of gene conversion may explain the heterogeneous mismatch distributions observed among the loci. Also, distinctive patterns of sequence divergence observed at the HLA-DPB1 locus suggest current neutrality but old selective pressures on this gene. We conclude that HLA DNA sequences advantageously complement HLA allele frequencies as a source of data used

  8. Population differentiation in allele frequencies of obesity-associated SNPs.

    Science.gov (United States)

    Mao, Linyong; Fang, Yayin; Campbell, Michael; Southerland, William M

    2017-11-10

    Obesity is emerging as a global health problem, with more than one-third of the world's adult population being overweight or obese. In this study, we investigated worldwide population differentiation in allele frequencies of obesity-associated SNPs (single nucleotide polymorphisms). We collected a total of 225 obesity-associated SNPs from a public database. Their population-level allele frequencies were derived based on the genotype data from 1000 Genomes Project (phase 3). We used hypergeometric model to assess whether the effect allele at a given SNP is significantly enriched or depleted in each of the 26 populations surveyed in the 1000 Genomes Project with respect to the overall pooled population. Our results indicate that 195 out of 225 SNPs (86.7%) possess effect alleles significantly enriched or depleted in at least one of the 26 populations. Populations within the same continental group exhibit similar allele enrichment/depletion patterns whereas inter-continental populations show distinct patterns. Among the 225 SNPs, 15 SNPs cluster in the first intron region of the FTO gene, which is a major gene associated with body-mass index (BMI) and fat mass. African populations exhibit much smaller blocks of LD (linkage disequilibrium) among these15 SNPs while European and Asian populations have larger blocks. To estimate the cumulative effect of all variants associated with obesity, we developed the personal composite genetic risk score for obesity. Our results indicate that the East Asian populations have the lowest averages of the composite risk scores, whereas three European populations have the highest averages. In addition, the population-level average of composite genetic risk scores is significantly correlated (R 2 = 0.35, P = 0.0060) with obesity prevalence. We have detected substantial population differentiation in allele frequencies of obesity-associated SNPs. The results will help elucidate the genetic basis which may contribute to population

  9. Distribution of a pseudodeficiency allele among Tay-Sachs carriers

    Energy Technology Data Exchange (ETDEWEB)

    Tomczak, J.; Grebner, E.E. (Thomas Jefferson Univ., Philadelphia, PA (United States)); Boogen, C. (Univ. of Essen Medical School (Germany))

    1993-08-01

    Recently Triggs-Raine et al. (1992) identified a new mutation in the gene coding for the [alpha]-subunit of [beta]-hexosaminidase A (hex A), the enzyme whose deficiency causes Tay-Sachs disease. This mutation, a C[sub 739]-to-T transition in exon 7, results in an altered enzyme that is active (albeit at reduced levels) in cells but that has essentially no activity in serum. This so-called pseudodeficient allele was first detected in compound heterozygotes who also carried a Tay-Sachs disease allele and therefore had no detectable hex A in their serum but who were in good health. Carriers of this apparently benign mutation are generally indistinguishable from carriers of a lethal mutation by means of routine enzyme-based screening tests, because the product of the pseudodeficient allele is not detectable in serum and has decreased activity in cells. This suggests that some individuals who have been classified as Tay-Sachs carriers are actually carriers of the pseudodeficient allele and are not at risk to have a child affected with Tay-Sachs disease. The pseudodeficient allele may also be responsible for some inconclusive diagnoses, where leukocyte values fall below the normal range but are still above the carrier range. The fact that there are now two mutant alleles (the psuedodeficient and the adult) that are indistinguishable from the lethal infantile mutations by means of enzyme assay yet that are phenotypically very different and that together may account for as much as 12% of enzyme-defined carriers on the basis of the data here suggests that DNA analysis should be part of a comprehensive screening program. It will be particularly useful to identify the mutations in couples at risk, before they undergo prenatal diagnosis. DNA analysis will also resolve some inconclusive diagnoses.

  10. Clonal Ordering of 17p and 5q Allelic Losses in Barrett Dysplasia and Adenocarcinoma

    Science.gov (United States)

    Blount, Patricia L.; Meltzer, Stephen J.; Yin, Jing; Huang, Ying; Krasna, Mark J.; Reid, Brian J.

    1993-04-01

    Both 17p and 5q allelic losses appear to be involved in the pathogenesis or progression of many human solid tumors. In colon carcinogenesis, there is strong evidence that the targets of the 17p and 5q allelic losses are TP53, the gene encoding p53, and APC, respectively. It is widely accepted that 5q allelic losses precede 17p allelic losses in the progression to colonic carcinoma. The data, however, supporting this proposed order are largely based on the prevalence of 17p and 5q allelic losses in adenomas and unrelated adenocarcinomas from different patients. We investigated the order in which 17p and 5q allelic losses developed during neoplastic progression in Barrett esophagus by evaluating multiple aneuploid cell populations from the same patient. Using DNA content flow cytometric cell sorting and polymerase chain reaction, 38 aneuploid cell populations from 14 patients with Barrett esophagus who had high grade dysplasia, cancer or both were evaluated for 17p and 5q allelic losses. 17p allelic losses preceded 5q allelic losses in 7 patients, both 17p and 5q allelic losses were present in all aneuploid populations of 4 patients, and only 17p (without 5q) allelic losses were present in the aneuploid populations of 3 patients. In no patient did we find that a 5q allelic loss preceded a 17p allelic loss. Our data suggest that 17p allelic losses typically occur before 5q allelic losses during neoplastic progression in Barrett esophagus.

  11. Positive-negative-selection-mediated gene targeting in rice

    Directory of Open Access Journals (Sweden)

    Zenpei eShimatani

    2015-01-01

    Full Text Available Gene targeting (GT refers to the designed modification of genomic sequence(s through homologous recombination (HR. GT is a powerful tool both for the study of gene function and for molecular breeding. However, in transformation of higher plants, non-homologous end joining (NHEJ occurs overwhelmingly in somatic cells, masking HR-mediated GT. Positive-negative selection (PNS is an approach for finding HR-mediated GT events because it can eliminate NHEJ effectively by expression of a negative-selection marker gene. In rice—a major crop worldwide—reproducible PNS-mediated GT of endogenous genes has now been successfully achieved. The procedure is based on strong PNS using diphtheria toxin A-fragment as a negative marker, and has succeeded in the directed modification of several endogenous rice genes in various ways. In addition to gene knock-outs and knock-ins, a nucleotide substitution in a target gene was also achieved recently. This review presents a summary of the development of the rice PNS system, highlighting its advantages. Different types of gene modification and gene editing aimed at developing new plant breeding technology (NPBT based on PNS are discussed.

  12. Overdispersion in allelic counts and θ-correction in forensic genetics

    DEFF Research Database (Denmark)

    Tvedebrink, Torben

    2010-01-01

    We present a statistical model for incorporating the extra variability in allelic counts due to subpopulation structures. In forensic genetics, this effect is modelled by the identical-by-descent parameter θ, which measures the relationship between pairs of alleles within a population relative...... with computation of the profile log-likelihood, confidence intervals and hypothesis testing. In order to compare our method with existing methods, we reanalysed FBI data from Budowle and Moretti (1999) with allele counts in six US subpopulations. Furthermore, we investigate properties of our methodology from...

  13. Allele specific expression in worker reproduction genes in the bumblebee Bombus terrestris

    Directory of Open Access Journals (Sweden)

    Harindra E. Amarasinghe

    2015-07-01

    Full Text Available Methylation has previously been associated with allele specific expression in ants. Recently, we found methylation is important in worker reproduction in the bumblebee Bombus terrestris. Here we searched for allele specific expression in twelve genes associated with worker reproduction in bees. We found allele specific expression in Ecdysone 20 monooxygenase and IMP-L2-like. Although we were unable to confirm a genetic or epigenetic cause for this allele specific expression, the expression patterns of the two genes match those predicted for imprinted genes.

  14. Comparative frequency and allelic distribution of ABO and Rh (D ...

    African Journals Online (AJOL)

    Gourab Dewan

    2015-02-18

    Feb 18, 2015 ... desh and having borders with India and Myanmar (Fig. 1). It is a hilly area with ..... calculated allelic frequencies for ABO/Rh systems previously. Therefore, allelic .... in backward caste population of Uttar Pradesh, India. Not Sci.

  15.  Molecular evolution and positive selection of the symbiotic gene NORK in Medicago truncatula

    DEFF Research Database (Denmark)

    De Mita, Stephane; Santoni, Sylvain; Hochu, Isabelle

    2006-01-01

     Understanding the selective constraints of partner specificity in mutually beneficial symbiosis is a significant, yet largely unexplored, prospect of evolutionary biology. These selective constraints can be explored through the study of nucleotide polymorphism at loci controlling specificity...... domain of the protein, evolved under the regime of positive selection. Further research should focus on the rate and direction of molecular coevolution between microorganisms' signaling molecules and legumes' receptors....

  16. An Updated Collection of Sequence Barcoded Temperature-Sensitive Alleles of Yeast Essential Genes.

    Science.gov (United States)

    Kofoed, Megan; Milbury, Karissa L; Chiang, Jennifer H; Sinha, Sunita; Ben-Aroya, Shay; Giaever, Guri; Nislow, Corey; Hieter, Philip; Stirling, Peter C

    2015-07-14

    Systematic analyses of essential gene function using mutant collections in Saccharomyces cerevisiae have been conducted using collections of heterozygous diploids, promoter shut-off alleles, through alleles with destabilized mRNA, destabilized protein, or bearing mutations that lead to a temperature-sensitive (ts) phenotype. We previously described a method for construction of barcoded ts alleles in a systematic fashion. Here we report the completion of this collection of alleles covering 600 essential yeast genes. This resource covers a larger gene repertoire than previous collections and provides a complementary set of strains suitable for single gene and genomic analyses. We use deep sequencing to characterize the amino acid changes leading to the ts phenotype in half of the alleles. We also use high-throughput approaches to describe the relative ts behavior of the alleles. Finally, we demonstrate the experimental usefulness of the collection in a high-content, functional genomic screen for ts alleles that increase spontaneous P-body formation. By increasing the number of alleles and improving the annotation, this ts collection will serve as a community resource for probing new aspects of biology for essential yeast genes. Copyright © 2015 Kofoed et al.

  17. Effects of Favorable Alleles for Water-Soluble Carbohydrates at Grain Filling on Grain Weight under Drought and Heat Stresses in Wheat

    Science.gov (United States)

    Chang, Xiaoping; Li, Runzhi; Jing, Ruilian

    2014-01-01

    Drought, heat and other abiotic stresses during grain filling can result in reductions in grain weight. Conserved water-soluble carbohydrates (WSC) at early grain filling play an important role in partial compensation of reduced carbon supply. A diverse population of 262 historical winter wheat accessions was used in the present study. There were significant correlations between 1000-grain weight (TGW) and four types of WSC, viz. (1) total WSC at the mid-grain filling stage (14 days after flowering) produced by leaves and non-leaf organs; (2) WSC contributed by current leaf assimilation during the mid-grain filling; (3) WSC in non-leaf organs at the mid-grain filling, excluding the current leaf assimilation; and (4) WSC used for respiration and remobilization during the mid-grain filling. Association and favorable allele analyses of 209 genome-wide SSR markers and the four types of WSC were conducted using a mixed linear model. Seven novel favorable WSC alleles exhibited positive individual contributions to TGW, which were verified under 16 environments. Dosage effects of pyramided favorable WSC alleles and significantly linear correlations between the number of favorable WSC alleles and TGW were observed. Our results suggested that pyramiding more favorable WSC alleles was effective for improving both WSC and grain weight in future wheat breeding programs. PMID:25036550

  18. The allele frequency of two single nucleotide polymorphisms in the von Hippel-Lindau (VHL) tumor suppressor gene in the Taiwanese population.

    Science.gov (United States)

    Wang, Wen-Chung; Chen, Hui-Ju; Shu, Wei-Pang; Tsai, Yi-Chang; Lai, Yen-Chein

    2011-10-01

    The von Hippel-Lindau (VHL) tumor suppressor gene located on chromosome 3p25-26 is implicated in VHL disease. Two informative single nucleotide polymorphisms are at positions 19 and 1149 on the nucleotide sequence from Gene Bank NM_000551. In this study we examined the allele frequencies at these two loci in the Taiwanese population and compared the results to those from European ethnic populations. The allele frequency was examined in 616 healthy individuals including 301 university students and 315 neonates. Both A/G polymorphisms were investigated using restriction fragment length polymorphism analysis created by restriction enzymes, BsaJ I and Acc I. Among these subjects, the allele frequencies at 19 SNP and 1149 SNP for variant G were 0.130 and 0.133, respectively. And these results were significant differences from those of the Caucasian populations. In addition, 90% of the tested subjects had identical genotypes at these two loci suggesting the existence of nonrandom association of alleles. We found that the G allele frequency at these two loci in the Taiwanese population is much lower than that in people from Western countries. This phenomenon may be attributed to ethnic effects. Copyright © 2011. Published by Elsevier B.V.

  19. Allelic heterogeneity and trade-off shape natural variation for response to soil micronutrient.

    Directory of Open Access Journals (Sweden)

    Seifollah Poormohammad Kiani

    Full Text Available As sessile organisms, plants have to cope with diverse environmental constraints that may vary through time and space, eventually leading to changes in the phenotype of populations through fixation of adaptive genetic variation. To fully comprehend the mechanisms of evolution and make sense of the extensive genotypic diversity currently revealed by new sequencing technologies, we are challenged with identifying the molecular basis of such adaptive variation. Here, we have identified a new variant of a molybdenum (Mo transporter, MOT1, which is causal for fitness changes under artificial conditions of both Mo-deficiency and Mo-toxicity and in which allelic variation among West-Asian populations is strictly correlated with the concentration of available Mo in native soils. In addition, this association is accompanied at different scales with patterns of polymorphisms that are not consistent with neutral evolution and show signs of diversifying selection. Resolving such a case of allelic heterogeneity helps explain species-wide phenotypic variation for Mo homeostasis and potentially reveals trade-off effects, a finding still rarely linked to fitness.

  20. Positive and purifying selection influence the evolution of doublesex in the Anastrepha fraterculus species group.

    Directory of Open Access Journals (Sweden)

    Iderval S Sobrinho

    Full Text Available The gene doublesex (dsx is considered to be under strong selective constraint along its evolutionary history because of its central role in somatic sex differentiation in insects. However, previous studies of dsx used global estimates of evolutionary rates to investigate its molecular evolution, which potentially miss signals of adaptive changes in generally conserved genes. In this work, we investigated the molecular evolution of dsx in the Anastrepha fraterculus species group (Diptera, Tephritidae, and test the hypothesis that this gene evolved solely by purifying selection using divergence-based and population-based methods. In the first approach, we compared sequences from Anastrepha and other Tephritidae with other Muscomorpha species, analyzed variation in nonsynonymous to synonymous rate ratios (dN/dS in the Tephritidae, and investigated radical and conservative changes in amino acid physicochemical properties. We show a general selective constraint on dsx, but with signs of positive selection mainly in the common region. Such changes were localized in alpha-helices previously reported to be involved in dimer formation in the OD2 domain and near the C-terminal of the OD1 domain. In the population-based approach, we amplified a region of 540 bp that spanned almost all of the region common to both sexes from 32 different sites in Brazil. We investigated patterns of selection using neutrality tests based on the frequency spectrum and locations of synonymous and nonsynonymous mutations in a haplotype network. As in the divergence-based approach, these analyses showed that dsx has evolved under an overall selective constraint, but with some events of positive selection. In contrast to previous studies, our analyses indicate that even though dsx has indeed evolved as a conserved gene, the common region of dsx has also experienced bouts of positive selection, perhaps driven by sexual selection, during its evolution.

  1. Convergent Balancing Selection on an Antimicrobial Peptide in Drosophila.

    Science.gov (United States)

    Unckless, Robert L; Howick, Virginia M; Lazzaro, Brian P

    2016-01-25

    Genes of the immune system often evolve rapidly and adaptively, presumably driven by antagonistic interactions with pathogens [1-4]. Those genes encoding secreted antimicrobial peptides (AMPs), however, have failed to exhibit conventional signatures of strong adaptive evolution, especially in arthropods (e.g., [5, 6]) and often segregate for null alleles and gene deletions [3, 4, 7, 8]. Furthermore, quantitative genetic studies have failed to associate naturally occurring polymorphism in AMP genes with variation in resistance to infection [9-11]. Both the lack of signatures of positive selection in AMPs and lack of association between genotype and immune phenotypes have yielded an interpretation that AMP genes evolve under relaxed evolutionary constraint, with enough functional redundancy that variation in, or even loss of, any particular peptide would have little effect on overall resistance [12, 13]. In stark contrast to the current paradigm, we identified a naturally occurring amino acid polymorphism in the AMP Diptericin that is highly predictive of resistance to bacterial infection in Drosophila melanogaster [13]. The identical amino acid polymorphism arose in parallel in the sister species D. simulans, by independent mutation with equivalent phenotypic effect. Convergent substitutions at the same amino acid residue have evolved at least five times across the Drosophila genus. We hypothesize that the alternative alleles are maintained by balancing selection through context-dependent or fluctuating selection. This pattern of evolution appears to be common in AMPs but is invisible to conventional screens for adaptive evolution that are predicated on elevated rates of amino acid divergence. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Intrinsic MYH7 expression regulation contributes to tissue level allelic imbalance in hypertrophic cardiomyopathy.

    Science.gov (United States)

    Montag, Judith; Syring, Mandy; Rose, Julia; Weber, Anna-Lena; Ernstberger, Pia; Mayer, Anne-Kathrin; Becker, Edgar; Keyser, Britta; Dos Remedios, Cristobal; Perrot, Andreas; van der Velden, Jolanda; Francino, Antonio; Navarro-Lopez, Francesco; Ho, Carolyn Yung; Brenner, Bernhard; Kraft, Theresia

    2017-08-01

    HCM, the most common inherited cardiac disease, is mainly caused by mutations in sarcomeric genes. More than a third of the patients are heterozygous for mutations in the MYH7 gene encoding for the β-myosin heavy chain. In HCM-patients, expression of the mutant and the wildtype allele can be unequal, thus leading to fractions of mutant and wildtype mRNA and protein which deviate from 1:1. This so-called allelic imbalance was detected in whole tissue samples but also in individual cells. There is evidence that the severity of HCM not only depends on the functional effect of the mutation itself, but also on the fraction of mutant protein in the myocardial tissue. Allelic imbalance has been shown to occur in a broad range of genes. Therefore, we aimed to examine whether the MYH7-alleles are intrinsically expressed imbalanced or whether the allelic imbalance is solely associated with the disease. We compared the expression of MYH7-alleles in non-HCM donors and in HCM-patients with different MYH7-missense mutations. In the HCM-patients, we identified imbalanced as well as equal expression of both alleles. Also at the protein level, allelic imbalance was determined. Most interestingly, we also discovered allelic imbalance and balance in non-HCM donors. Our findings therefore strongly indicate that apart from mutation-specific mechanisms, also non-HCM associated allelic-mRNA expression regulation may account for the allelic imbalance of the MYH7 gene in HCM-patients. Since the relative amount of mutant mRNA and protein or the extent of allelic imbalance has been associated with the severity of HCM, individual analysis of the MYH7-allelic expression may provide valuable information for the prognosis of each patient.

  3. MUC1 gene polymorphism in three Nelore lines selected for growth and its association with growth and carcass traits.

    Science.gov (United States)

    de Souza, Fabio Ricardo Pablos; Maione, Sandra; Sartore, Stefano; Soglia, Dominga; Spalenza, Veronica; Cauvin, Elsa; Martelli, Lucia Regina; Mercadante, Maria Eugênia Zerlotti; Sacchi, Paola; de Albuquerque, Lucia Galvão; Rasero, Roberto

    2012-02-01

    The objective of this study was to describe the VNTR polymorphism of the mucin 1 gene (MUC1) in three Nelore lines selected for yearling weight to determine whether allele and genotype frequencies of this polymorphism were affected by selection for growth. In addition, the effects of the polymorphism on growth and carcass traits were evaluated. Birth, weaning and yearling weights, rump height, Longissimus muscle area, backfat thickness, and rump fat thickness, were analyzed. A total of 295 Nelore heifers from the Beef Cattle Research Center, Instituto de Zootecnia de Sertãozinho, were used, including 41 of the control line, 102 of the selection line and 152 of the traditional. The selection and traditional lines comprise animals selected for higher yearling weight, whereas control line animals are selected for yearling weight close to the average. Five alleles were identified, with allele 1 being the most frequent in the three lines, especially in the lines selected for higher means for yearling weight. Heterozygosity was significantly higher in the control line. Association analyses showed significant effects of allele 1 on birth weight and weaning weight while the allele 3 exert significant effects on yearling weight and back fat thickness. Despite these findings, application of this marker to marker-assisted selection requires more consistent results based on the genotyping of a larger number of animals in order to increase the accuracy of the statistical analyses.

  4. Development of a High Resolution Virulence Allelic Profiling (HReVAP) Approach Based on the Accessory Genome of Escherichia coli to Characterize Shiga-Toxin Producing E. coli (STEC)

    Science.gov (United States)

    Michelacci, Valeria; Orsini, Massimiliano; Knijn, Arnold; Delannoy, Sabine; Fach, Patrick; Caprioli, Alfredo; Morabito, Stefano

    2016-01-01

    Shiga-toxin producing Escherichia coli (STEC) strains possess a large accessory genome composed of virulence genes existing in multiple allelic variants, which sometimes segregate with specific STEC subpopulations. We analyzed the allelic variability of 91 virulence genes of STEC by Real Time PCR followed by melting curves analysis in 713 E. coli strains including 358 STEC. The 91 genes investigated were located on the locus of enterocyte effacement (LEE), OI-57, and OI-122 pathogenicity islands and displayed a total of 476 alleles in the study population. The combinations of the 91 alleles of each strain were termed allelic signatures and used to perform cluster analyses. We termed such an approach High Resolution Virulence Allelic Profiling (HReVAP) and used it to investigate the phylogeny of STEC of multiple serogroups. The dendrograms obtained identified groups of STEC segregating approximately with the serogroups and allowed the identification of subpopulations within the single groups. The study of the allelic signatures provided further evidence of the coevolution of the LEE and OI-122, reflecting the occurrence of their acquisition through a single event. The HReVAP analysis represents a sensitive tool for studying the evolution of LEE-positive STEC. PMID:26941726

  5. Investigating the relationship between FMR1 allele length and cognitive ability in children: a subtle effect of the normal allele range on the normal ability range?

    Science.gov (United States)

    Loat, C S; Craig, G; Plomin, R; Craig, I W

    2006-09-01

    The FMR1 gene contains a trinucleotide repeat tract which can expand from a normal size of around 30 repeats to over 200 repeats, causing mental retardation (Fragile X Syndrome). Evidence suggests that premutation males (55-200 repeats) are susceptible to a late-onset tremor/ataxia syndrome and females to premature ovarian failure, and that intermediate alleles ( approximately 41-55 repeats) and premutations may be in excess in samples with special educational needs. We explored the relationship between FMR1 allele length and cognitive ability in 621 low ability and control children assessed at 4 and 7 years, as well as 122 students with high IQ. The low and high ability and control samples showed no between-group differences in incidence of longer alleles. In males there was a significant negative correlation between allele length and non-verbal ability at 4 years (p = 0.048), academic achievement in maths (p = 0.003) and English (p = 0.011) at 7 years, and IQ in the high ability group (p = 0.018). There was a significant negative correlation between allele length and a standardised score for IQ and general cognitive ability at age 7 in the entire male sample (p = 0.002). This suggests that, within the normal spectrum of allele length, increased repeat numbers may have a limiting influence on cognitive performance.

  6. Improved methods in Agrobacterium-mediated transformation of almond using positive (mannose/pmi) or negative (kanamycin resistance) selection-based protocols.

    Science.gov (United States)

    Ramesh, Sunita A; Kaiser, Brent N; Franks, Tricia; Collins, Graham; Sedgley, Margaret

    2006-08-01

    A protocol for Agrobacterium-mediated transformation with either kanamycin or mannose selection was developed for leaf explants of the cultivar Prunus dulcis cv. Ne Plus Ultra. Regenerating shoots were selected on medium containing 15 muM kanamycin (negative selection), while in the positive selection strategy, shoots were selected on 2.5 g/l mannose supplemented with 15 g/l sucrose. Transformation efficiencies based on PCR analysis of individual putative transformed shoots from independent lines relative to the initial numbers of leaf explants tested were 5.6% for kanamycin/nptII and 6.8% for mannose/pmi selection, respectively. Southern blot analysis on six randomly chosen PCR-positive shoots confirmed the presence of the nptII transgene in each, and five randomly chosen lines identified to contain the pmi transgene by PCR showed positive hybridisation to a pmi DNA probe. The positive (mannose/pmi) and the negative (kanamycin) selection protocols used in this study have greatly improved transformation efficiency in almond, which were confirmed with PCR and Southern blot. This study also demonstrates that in almond the mannose/pmi selection protocol is appropriate and can result in higher transformation efficiencies over that of kanamycin/nptII selection protocols.

  7. AFLP genome scans suggest divergent selection on colour patterning in allopatric colour morphs of a cichlid fish.

    Science.gov (United States)

    Mattersdorfer, Karin; Koblmüller, Stephan; Sefc, Kristina M

    2012-07-01

    Genome scan-based tests for selection are directly applicable to natural populations to study the genetic and evolutionary mechanisms behind phenotypic differentiation. We conducted AFLP genome scans in three distinct geographic colour morphs of the cichlid fish Tropheus moorii to assess whether the extant, allopatric colour pattern differentiation can be explained by drift and to identify markers mapping to genomic regions possibly involved in colour patterning. The tested morphs occupy adjacent shore sections in southern Lake Tanganyika and are separated from each other by major habitat barriers. The genome scans revealed significant genetic structure between morphs, but a very low proportion of loci fixed for alternative AFLP alleles in different morphs. This high level of polymorphism within morphs suggested that colour pattern differentiation did not result exclusively from neutral processes. Outlier detection methods identified six loci with excess differentiation in the comparison between a bluish and a yellow-blotch morph and five different outlier loci in comparisons of each of these morphs with a red morph. As population expansions and the genetic structure of Tropheus make the outlier approach prone to false-positive signals of selection, we examined the correlation between outlier locus alleles and colour phenotypes in a genetic and phenotypic cline between two morphs. Distributions of allele frequencies at one outlier locus were indeed consistent with linkage to a colour locus. Despite the challenges posed by population structure and demography, our results encourage the cautious application of genome scans to studies of divergent selection in subdivided and recently expanded populations. © 2012 Blackwell Publishing Ltd.

  8. Infrequent detection of germline allele-specific expression of TGFBR1 in lymphoblasts and tissues of colon cancer patients.

    LENUS (Irish Health Repository)

    Guda, Kishore

    2009-06-15

    Recently, germline allele-specific expression (ASE) of the gene encoding for transforming growth factor-beta type I receptor (TGFBR1) has been proposed to be a major risk factor for cancer predisposition in the colon. Germline ASE results in a lowered expression of one of the TGFBR1 alleles (>1.5-fold), and was shown to occur in approximately 20% of informative familial and sporadic colorectal cancer (CRC) cases. In the present study, using the highly quantitative pyrosequencing technique, we estimated the frequency of ASE in TGFBR1 in a cohort of affected individuals from familial clusters of advanced colon neoplasias (cancers and adenomas with high-grade dysplasia), and also from a cohort of individuals with sporadic CRCs. Cases were considered positive for the presence of ASE if demonstrating an allelic expression ratio <0.67 or >1.5. Using RNA derived from lymphoblastoid cell lines, we find that of 46 informative Caucasian advanced colon neoplasia cases with a family history, only 2 individuals display a modest ASE, with allelic ratios of 1.65 and 1.73, respectively. Given that ASE of TGFBR1, if present, would likely be more pronounced in the colon compared with other tissues, we additionally determined the allele ratios of TGFBR1 in the RNA derived from normal-appearing colonic mucosa of sporadic CRC cases. We, however, found no evidence of ASE in any of 44 informative sporadic cases analyzed. Taken together, we find that germline ASE of TGFBR1, as assayed in lymphoblastoid and colon epithelial cells of colon cancer patients, is a relatively rare event.

  9. Systematic detection of positive selection in the human-pathogen interactome and lasting effects on infectious disease susceptibility.

    Directory of Open Access Journals (Sweden)

    Erik Corona

    Full Text Available Infectious disease has shaped the natural genetic diversity of humans throughout the world. A new approach to capture positive selection driven by pathogens would provide information regarding pathogen exposure in distinct human populations and the constantly evolving arms race between host and disease-causing agents. We created a human pathogen interaction database and used the integrated haplotype score (iHS to detect recent positive selection in genes that interact with proteins from 26 different pathogens. We used the Human Genome Diversity Panel to identify specific populations harboring pathogen-interacting genes that have undergone positive selection. We found that human genes that interact with 9 pathogen species show evidence of recent positive selection. These pathogens are Yersenia pestis, human immunodeficiency virus (HIV 1, Zaire ebolavirus, Francisella tularensis, dengue virus, human respiratory syncytial virus, measles virus, Rubella virus, and Bacillus anthracis. For HIV-1, GWAS demonstrate that some naturally selected variants in the host-pathogen protein interaction networks continue to have functional consequences for susceptibility to these pathogens. We show that selected human genes were enriched for HIV susceptibility variants (identified through GWAS, providing further support for the hypothesis that ancient humans were exposed to lentivirus pandemics. Human genes in the Italian, Miao, and Biaka Pygmy populations that interact with Y. pestis show significant signs of selection. These results reveal some of the genetic footprints created by pathogens in the human genome that may have left lasting marks on susceptibility to infectious disease.

  10. De novo transcriptome assembly and positive selection analysis of an individual deep-sea fish.

    Science.gov (United States)

    Lan, Yi; Sun, Jin; Xu, Ting; Chen, Chong; Tian, Renmao; Qiu, Jian-Wen; Qian, Pei-Yuan

    2018-05-24

    High hydrostatic pressure and low temperatures make the deep sea a harsh environment for life forms. Actin organization and microtubules assembly, which are essential for intracellular transport and cell motility, can be disrupted by high hydrostatic pressure. High hydrostatic pressure can also damage DNA. Nucleic acids exposed to low temperatures can form secondary structures that hinder genetic information processing. To study how deep-sea creatures adapt to such a hostile environment, one of the most straightforward ways is to sequence and compare their genes with those of their shallow-water relatives. We captured an individual of the fish species Aldrovandia affinis, which is a typical deep-sea inhabitant, from the Okinawa Trough at a depth of 1550 m using a remotely operated vehicle (ROV). We sequenced its transcriptome and analyzed its molecular adaptation. We obtained 27,633 protein coding sequences using an Illumina platform and compared them with those of several shallow-water fish species. Analysis of 4918 single-copy orthologs identified 138 positively selected genes in A. affinis, including genes involved in microtubule regulation. Particularly, functional domains related to cold shock as well as DNA repair are exposed to positive selection pressure in both deep-sea fish and hadal amphipod. Overall, we have identified a set of positively selected genes related to cytoskeleton structures, DNA repair and genetic information processing, which shed light on molecular adaptation to the deep sea. These results suggest that amino acid substitutions of these positively selected genes may contribute crucially to the adaptation of deep-sea animals. Additionally, we provide a high-quality transcriptome of a deep-sea fish for future deep-sea studies.

  11. 5-HTTLPR polymorphism is linked to neural mechanisms of selective attention in preschoolers from lower socioeconomic status backgrounds

    Directory of Open Access Journals (Sweden)

    Elif Isbell

    2016-12-01

    Full Text Available While a growing body of research has identified experiential factors associated with differences in selective attention, relatively little is known about the contribution of genetic factors to the skill of sustained selective attention, especially in early childhood. Here, we assessed the association between the serotonin transporter linked polymorphic region (5-HTTLPR genotypes and the neural mechanisms of selective attention in young children from lower socioeconomic status (SES backgrounds. Event-related potentials (ERPs were recorded during a dichotic listening task from 121 children (76 females, aged 40–67 months, who were also genotyped for the short and long allele of 5-HTTLPR. The effect of selective attention was measured as the difference in ERP mean amplitudes elicited by identical probe stimuli embedded in stories when they were attended versus unattended. Compared to children homozygous for the long allele, children who carried at least one copy of the short allele showed larger effects of selective attention on neural processing. These findings link the short allele of the 5-HTTLPR to enhanced neural mechanisms of selective attention and lay the groundwork for future studies of gene-by-environment interactions in the context of key cognitive skills.

  12. Whole-gene positive selection, elevated synonymous substitution rates, duplication, and indel evolution of the chloroplast clpP1 gene.

    Directory of Open Access Journals (Sweden)

    Per Erixon

    Full Text Available BACKGROUND: Synonymous DNA substitution rates in the plant chloroplast genome are generally relatively slow and lineage dependent. Non-synonymous rates are usually even slower due to purifying selection acting on the genes. Positive selection is expected to speed up non-synonymous substitution rates, whereas synonymous rates are expected to be unaffected. Until recently, positive selection has seldom been observed in chloroplast genes, and large-scale structural rearrangements leading to gene duplications are hitherto supposed to be rare. METHODOLOGY/PRINCIPLE FINDINGS: We found high substitution rates in the exons of the plastid clpP1 gene in Oenothera (the Evening Primrose family and three separate lineages in the tribe Sileneae (Caryophyllaceae, the Carnation family. Introns have been lost in some of the lineages, but where present, the intron sequences have substitution rates similar to those found in other introns of their genomes. The elevated substitution rates of clpP1 are associated with statistically significant whole-gene positive selection in three branches of the phylogeny. In two of the lineages we found multiple copies of the gene. Neighboring genes present in the duplicated fragments do not show signs of elevated substitution rates or positive selection. Although non-synonymous substitutions account for most of the increase in substitution rates, synonymous rates are also markedly elevated in some lineages. Whereas plant clpP1 genes experiencing negative (purifying selection are characterized by having very conserved lengths, genes under positive selection often have large insertions of more or less repetitive amino acid sequence motifs. CONCLUSIONS/SIGNIFICANCE: We found positive selection of the clpP1 gene in various plant lineages to correlated with repeated duplication of the clpP1 gene and surrounding regions, repetitive amino acid sequences, and increase in synonymous substitution rates. The present study sheds light on the

  13. HLA-DRB1 shared epitope alleles in patients with rheumatoid arthritis: relation to autoantibodies and disease severity in a south Indian population.

    Science.gov (United States)

    Konda Mohan, Vasanth; Ganesan, Nalini; Gopalakrishnan, Rajasekhar; Venkatesan, Vettriselvi

    2017-10-01

    To investigate the presence of the 'shared epitope' (SE) in the HLA-DRB1 alleles in patients with RA and to ascertain the frequency of the HLA-DRB1 alleles with autoantibodies (anti-cyclic citrullinated peptide [anti-CCP] rheumatoid factor [RF]) and disease severity. A total of 200 RA patients and 200 apparently healthy subjects participated in the study. HLA-DRB1 were genotyped using polymerase chain reaction with sequence-specific primer (PCR-SSP). Anti-CCP and RF in serum were determined by in vitro quantitative enzyme-linked immunosorbent assay (ELISA) method. Erythrocyte sedimentation rate (ESR) was measured by Westergren method. Disease activity was assessed by using the disease activity score-28 (DAS-28). Chi-square test and Student's t-test were used in the statistical analysis. A significant increase in the frequency of HLA-DRB1*01, *04, *10 and *14 were identified in RA patients and showed a strong association with the disease susceptibility. While the frequencies of HLA-DRB1*03, *07, *11 and *13 were significantly lower in RA patients than in controls. The other HLA-DRB1 alleles *08, *09, *12, *15 and *16 showed no significant difference. The frequency of anti-CCP and RF antibodies did not showed significant difference in SE-positive patients compared with SE-negative patients. DAS-28 values of RA patients showed no significant difference between SE-positive and SE-negative groups. Our results indicate that HLA-DRB1*01, *04, *10 and *14 alleles are related with RA, while HLA-DRB1*03, *07, *11 and *13 protect against RA in our population. On the other hand, we failed to provide evidence for the association of the autoantibodies and DAS-28 with SE-positive RA patients. © 2016 Asia Pacific League of Associations for Rheumatology and John Wiley & Sons Australia, Ltd.

  14. Superoxide dismutase 1 is positively selected to minimize protein aggregation in great apes

    DEFF Research Database (Denmark)

    Dasmeh, Pouria; Kepp, Kasper Planeta

    2017-01-01

    Positive (adaptive) selection has recently been implied in human superoxide dismutase 1 (SOD1), a highly abundant antioxidant protein with energy signaling and antiaging functions, one of very few examples of direct selection on a human protein product (exon); the molecular drivers...... and SOD1 aggregates and triggered by aging. Our study thus marks an example of direct selection for a particular chemical phenotype (high net charge and stability) in a single human protein with possible implications for the evolution of aging....... of this selection are unknown. We mapped 30 extant SOD1 sequences to the recently established mammalian species tree and inferred ancestors, key substitutions, and signatures of selection during the protein's evolution. We detected elevated substitution rates leading to great apes (Hominidae) at ~1 per 2 million...

  15. The protease inhibitor PI*S allele and COPD

    DEFF Research Database (Denmark)

    Hersh, C P; Ly, N P; Berkey, C S

    2005-01-01

    In many countries, the protease inhibitor (SERPINA1) PI*S allele is more common than PI*Z, the allele responsible for most cases of chronic obstructive pulmonary disease (COPD) due to severe alpha 1-antitrypsin deficiency. However, the risk of COPD due to the PI*S allele is not clear. The current...... authors located studies that addressed the risk of COPD or measured lung function in individuals with the PI SZ, PI MS and PI SS genotypes. A separate meta-analysis for each genotype was performed. Aggregating data from six studies, the odds ratio (OR) for COPD in PI SZ compound heterozygotes compared...... with PI MM (normal) individuals was significantly increased at 3.26 (95% confidence intervals (CI): 1.24-8.57). In 17 cross-sectional and case-control studies, the OR for COPD in PI MS heterozygotes was 1.19 (95%CI: 1.02-1.38). However, PI MS genotype was not associated with COPD risk after correcting...

  16. Growth of non-Campylobacter, oxidase-positive bacteria on selective Campylobacter agar.

    OpenAIRE

    Moskowitz, L B; Chester, B

    1982-01-01

    A total of 67 oxidase-positive, gram-negative bacteria were tested for growth on selective Campylobacter agar (Blaser formulation, BBL Microbiology Systems, Cockeysville, Md.) at 42 degrees C under microaerophilic conditions. Although the growth of most of these bacteria was prevented, all strains of Achromobacter xylosoxidans, Pseudomonas aeruginosa, Pseudomonas putrefaciens, Pseudomonas alcaligenes, and Pseudomonas pseudoalcaligenes grew as well as Campylobacter fetus subsp. jejuni.

  17. Common Atrial Fibrillation Risk Alleles at 4q25 Predict Recurrence after Catheter-based Atrial Fibrillation Ablation

    Science.gov (United States)

    Shoemaker, M. Benjamin; Muhammad, Raafia; Parvez, Babar; White, Brenda W.; Streur, Megan; Song, Yanna; Stubblefield, Tanya; Kucera, Gayle; Blair, Marcia; Rytlewski, Jason; Parvathaneni, Sunthosh; Nagarakanti, Rangadham; Saavedra, Pablo; Ellis, Christopher; Whalen, S. Patrick; Roden, Dan M; Darbar, Dawood

    2012-01-01

    Background Common single nucleotide polymorphisms (SNPs) at chromosome 4q25 (rs2200733, rs10033464) are associated with both lone and typical AF. Risk alleles at 4q25 have recently been shown to predict recurrence of AF after ablation in a population of predominately lone AF, but lone AF represents only 5–30% of AF cases. Objective To test the hypothesis that 4q25 AF risk alleles can predict response to AF ablation in the majority of AF cases. Methods Patients enrolled in the Vanderbilt AF Registry underwent 378 catheter-based AF ablations (median age 60 years, 71% male, 89% typical AF) between 2004 and 2011. The primary endpoint was time to recurrence of any non-sinus atrial tachyarrhythmia (atrial tachycardia, atrial flutter, or AF; [AT/AF]). Results Two-hundred AT/AF recurrences (53%) were observed. In multivariable analysis, the rs2200733 risk allele predicted a 24% shorter recurrence-free time (survival time ratio 0.76 95% confidence interval [CI] 0.6–0.95, P=0.016) compared with wild-type. The heterozygous haplotype demonstrated a 21% shorter recurrence-free time (survival time ratio = 0.79, 95% CI 0.62–0.99) and the homozygous risk allele carriers a 39% shorter recurrence-free time (survival time ratio = 0.61, 95% CI 0.37–1.0) (P=0.037). Conclusion Risk alleles at the 4q25 loci predict impaired clinical response to AF ablation in a population of predominately typical AF patients. Our findings suggest the rs2200733 polymorphism may hold promise as an as an objectively measured patient characteristic that can used as a clinical tool for selection of patients for AF ablation. PMID:23178686

  18. Genome-wide association study identifies HLA 8.1 ancestral haplotype alleles as major genetic risk factors for myositis phenotypes.

    Science.gov (United States)

    Miller, F W; Chen, W; O'Hanlon, T P; Cooper, R G; Vencovsky, J; Rider, L G; Danko, K; Wedderburn, L R; Lundberg, I E; Pachman, L M; Reed, A M; Ytterberg, S R; Padyukov, L; Selva-O'Callaghan, A; Radstake, T R; Isenberg, D A; Chinoy, H; Ollier, W E R; Scheet, P; Peng, B; Lee, A; Byun, J; Lamb, J A; Gregersen, P K; Amos, C I

    2015-10-01

    Autoimmune muscle diseases (myositis) comprise a group of complex phenotypes influenced by genetic and environmental factors. To identify genetic risk factors in patients of European ancestry, we conducted a genome-wide association study (GWAS) of the major myositis phenotypes in a total of 1710 cases, which included 705 adult dermatomyositis, 473 juvenile dermatomyositis, 532 polymyositis and 202 adult dermatomyositis, juvenile dermatomyositis or polymyositis patients with anti-histidyl-tRNA synthetase (anti-Jo-1) autoantibodies, and compared them with 4724 controls. Single-nucleotide polymorphisms showing strong associations (Pmyositis phenotypes together, as well as for the four clinical and autoantibody phenotypes studied separately. Imputation and regression analyses found that alleles comprising the human leukocyte antigen (HLA) 8.1 ancestral haplotype (AH8.1) defined essentially all the genetic risk in the phenotypes studied. Although the HLA DRB1*03:01 allele showed slightly stronger associations with adult and juvenile dermatomyositis, and HLA B*08:01 with polymyositis and anti-Jo-1 autoantibody-positive myositis, multiple alleles of AH8.1 were required for the full risk effects. Our findings establish that alleles of the AH8.1 comprise the primary genetic risk factors associated with the major myositis phenotypes in geographically diverse Caucasian populations.

  19. Fine mapping of dominant X-linked incompatibility alleles in Drosophila hybrids.

    Science.gov (United States)

    Matute, Daniel R; Gavin-Smyth, Jackie

    2014-04-01

    Sex chromosomes have a large effect on reproductive isolation and play an important role in hybrid inviability. In Drosophila hybrids, X-linked genes have pronounced deleterious effects on fitness in male hybrids, which have only one X chromosome. Several studies have succeeded at locating and identifying recessive X-linked alleles involved in hybrid inviability. Nonetheless, the density of dominant X-linked alleles involved in interspecific hybrid viability remains largely unknown. In this report, we study the effects of a panel of small fragments of the D. melanogaster X-chromosome carried on the D. melanogaster Y-chromosome in three kinds of hybrid males: D. melanogaster/D. santomea, D. melanogaster/D. simulans and D. melanogaster/D. mauritiana. D. santomea and D. melanogaster diverged over 10 million years ago, while D. simulans (and D. mauritiana) diverged from D. melanogaster over 3 million years ago. We find that the X-chromosome from D. melanogaster carries dominant alleles that are lethal in mel/san, mel/sim, and mel/mau hybrids, and more of these alleles are revealed in the most divergent cross. We then compare these effects on hybrid viability with two D. melanogaster intraspecific crosses. Unlike the interspecific crosses, we found no X-linked alleles that cause lethality in intraspecific crosses. Our results reveal the existence of dominant alleles on the X-chromosome of D. melanogaster which cause lethality in three different interspecific hybrids. These alleles only cause inviability in hybrid males, yet have little effect in hybrid females. This suggests that X-linked elements that cause hybrid inviability in males might not do so in hybrid females due to differing sex chromosome interactions.

  20. Estimating and testing the effect of allelic recombination on the ...

    African Journals Online (AJOL)

    Jane

    2011-01-21

    Jan 21, 2011 ... The significance of the correlation coefficient as well as the fitted regression model was obtained using. Analysis of Variance method. Key words: Allele, genotype, regression, correlation, F-ratio, analysis of variance. INTRODUCTION .... while if the allelic replacement is being made on an Aa individual the ...

  1. Comparative frequency and allelic distribution of ABO and Rh (D ...

    African Journals Online (AJOL)

    Background: Allelic distribution of major blood groups (ABO and rhesus) has not been defined in Bangladeshi population. Determinants of blood group frequency in this region have not been studied properly. Aim: To determine ABO and rhesus blood group frequency and allelic distribution in a multiethnic area of ...

  2. Allelic Tests and Sequence Analysis of Three Genes for Resistance to Xanthomonas perforans Race T3 in Tomato

    Institute of Scientific and Technical Information of China (English)

    ZHAO Baimei; CAO Haipeng; DUAN Junjie; YANG Wencai

    2015-01-01

    Three crosses,Hawaii7981×PI128216,Hawaii7981×LA1589,and PI128216×LA1589,were made to develop F2 populations for testing allelism among three genes Xv3,Rx4,and RxLA1589 conferring resistance to bacterial spot caused by Xanthomonas perforans race T3 in tomato. Each population consisted of 535–1 655 individuals. An infiltration method was used to inoculate the leaves of the parental and F2 plants as well as the susceptible control OH88119 for detecting hypersensitive resistance(HR). The results showed that all the tomato plants except OH88119 had HR to race T3,indicating that Xv3,Rx4,and RxLA1589 were allelic genes. Genomic DNA fragments of the Rx4 alleles from Hawaii7981,PI128216,and LA1589 were amplified using gene-specific primers and sequenced. No sequence variation was observed in the coding region of Rx4 in the three resistant lines. Based on the published map positions of these loci as well as the allelic tests and sequence data obtained in this study,we speculated that Xv3,Rx4,and RxLA1589 were the same gene. The results will provide useful information for understanding the mechanism of resistance to race T3 and developing resistant tomato varieties.

  3. The effect of sexual selection on adaptation and extinction under increasing temperatures.

    Science.gov (United States)

    Parrett, Jonathan M; Knell, Robert J

    2018-04-25

    Strong sexual selection has been reported to both enhance and hinder the adaptive capacity and persistence of populations when exposed to novel environments. Consequently, how sexual selection influences population adaption and persistence under stress remains widely debated. Here, we present two empirical investigations of the fitness consequences of sexual selection on populations of the Indian meal moth, Plodia interpunctella, exposed to stable or gradually increasing temperatures. When faced with increasing temperatures, strong sexual selection was associated with both increased fecundity and offspring survival compared with populations experiencing weak sexual selection, suggesting sexual selection acts to drive adaptive evolution by favouring beneficial alleles. Strong sexual selection did not, however, delay extinction when the temperature became excessively high. By manipulating individuals' mating opportunities during fitness assays, we were able to assess the effect of multiple mating independently from the effect of population-level sexual selection, and found that polyandry has a positive effect on both fecundity and offspring survival under increasing temperatures in those populations evolving with weak sexual selection. Within stable temperatures, there were some benefits from strong sexual selection but these were not consistent across the entire experiment, possibly reflecting changing costs and benefits of sexual selection under stabilizing and directional selection. These results indicate that sexual selection can provide a buffer against climate change and increase adaptation rates within a continuously changing environment. These positive effects of sexual selection may, however, be too small to protect populations and delay extinction when environmental changes are relatively rapid. © 2018 The Author(s).

  4. Evidence of positive selection associated with placental loss in tiger sharks.

    Science.gov (United States)

    Swift, Dominic G; Dunning, Luke T; Igea, Javier; Brooks, Edward J; Jones, Catherine S; Noble, Leslie R; Ciezarek, Adam; Humble, Emily; Savolainen, Vincent

    2016-06-14

    All vertebrates initially feed their offspring using yolk reserves. In some live-bearing species these yolk reserves may be supplemented with extra nutrition via a placenta. Sharks belonging to the Carcharhinidae family are all live-bearing, and with the exception of the tiger shark (Galeocerdo cuvier), develop placental connections after exhausting yolk reserves. Phylogenetic relationships suggest the lack of placenta in tiger sharks is due to secondary loss. This represents a dramatic shift in reproductive strategy, and is likely to have left a molecular footprint of positive selection within the genome. We sequenced the transcriptome of the tiger shark and eight other live-bearing shark species. From this data we constructed a time-calibrated phylogenetic tree estimating the tiger shark lineage diverged from the placental carcharhinids approximately 94 million years ago. Along the tiger shark lineage, we identified five genes exhibiting a signature of positive selection. Four of these genes have functions likely associated with brain development (YWHAE and ARL6IP5) and sexual reproduction (VAMP4 and TCTEX1D2). Our results indicate the loss of placenta in tiger sharks may be associated with subsequent adaptive changes in brain development and sperm production.

  5. Low Penetrance Alleles in Colorectal Cancer: the arachidonic acid pathway

    NARCIS (Netherlands)

    C.L.E. Siezen

    2006-01-01

    textabstractIn summary, we can conclude that we have successfully identified low penetrance alleles in the PPAR., PLA2G2A and ALOX15 genes, conferring differential colorectal adenoma risk, and two such alleles in the PTGS2 gene, one of which is also involved in colorectal cancer risk. These

  6. Low frequency of the scrapile resistance-associated allele and presence of lysine-171 allele of the prion protein gene in Italian Biellese ovine breed

    NARCIS (Netherlands)

    Acutis, P.L.; Sbaiz, L.; Verburg, F.J.; Riina, M.V.; Ru, G.; Moda, G.; Caramelli, M.; Bossers, A.

    2004-01-01

    Frequencies of polymorphisms at codons 136, 154 and 171 of the prion protein (PrP) gene were studied in 1207 pure-bred and cross-bred Italian Biellese rams, a small ovine breed of about 65 000 head in Italy. Aside from the five most common alleles (VRQ, ARQ, ARR, AHQ and ARH), the rare ARK allele

  7. Genetic consequences of selection cutting on sugar maple (Acer saccharum Marshall).

    Science.gov (United States)

    Graignic, Noémie; Tremblay, Francine; Bergeron, Yves

    2016-07-01

    Selection cutting is a treatment that emulates tree-by-tree replacement for forests with uneven-age structures. It creates small openings in large areas and often generates a more homogenous forest structure (fewer large leaving trees and defective trees) that differs from old-growth forest. In this study, we evaluated whether this type of harvesting has an impact on genetic diversity of sugar maple (Acer saccharum Marshall). Genetic diversity among seedlings, saplings, and mature trees was compared between selection cut and old-growth forest stands in Québec, Canada. We found higher observed heterozygosity and a lower inbreeding coefficient in mature trees than in younger regeneration cohorts of both forest types. We detected a recent bottleneck in all stands undergoing selection cutting. Other genetic indices of diversity (allelic richness, observed and expected heterozygosity, and rare alleles) were similar between forest types. We concluded that the effect of selection cutting on the genetic diversity of sugar maple was recent and no evidence of genetic erosion was detectable in Québec stands after one harvest. However, the cumulative effect of recurring applications of selection cutting in bottlenecked stands could lead to fixation of deleterious alleles, and this highlights the need for adopting better forest management practices.

  8. A risk allele for nicotine dependence in CHRNA5 is a protective allele for cocaine dependence.

    Science.gov (United States)

    Grucza, Richard A; Wang, Jen C; Stitzel, Jerry A; Hinrichs, Anthony L; Saccone, Scott F; Saccone, Nancy L; Bucholz, Kathleen K; Cloninger, C Robert; Neuman, Rosalind J; Budde, John P; Fox, Louis; Bertelsen, Sarah; Kramer, John; Hesselbrock, Victor; Tischfield, Jay; Nurnberger, John I; Almasy, Laura; Porjesz, Bernice; Kuperman, Samuel; Schuckit, Marc A; Edenberg, Howard J; Rice, John P; Goate, Alison M; Bierut, Laura J

    2008-12-01

    A nonsynonymous coding polymorphism, rs16969968, of the CHRNA5 gene that encodes the alpha-5 subunit of the nicotinic acetylcholine receptor (nAChR) has been found to be associated with nicotine dependence. The goal of this study was to examine the association of this variant with cocaine dependence. Genetic association analysis was performed in two independent samples of unrelated case and control subjects: 1) 504 European Americans participating in the Family Study on Cocaine Dependence (FSCD) and 2) 814 European Americans participating in the Collaborative Study on the Genetics of Alcoholism (COGA). In the FSCD, there was a significant association between the CHRNA5 variant and cocaine dependence (odds ratio = .67 per allele, p = .0045, assuming an additive genetic model), but in the reverse direction compared with that previously observed for nicotine dependence. In multivariate analyses that controlled for the effects of nicotine dependence, both the protective effect for cocaine dependence and the previously documented risk effect for nicotine dependence were statistically significant. The protective effect for cocaine dependence was replicated in the COGA sample. In COGA, effect sizes for habitual smoking, a proxy phenotype for nicotine dependence, were consistent with those observed in FSCD. The minor (A) allele of rs16969968, relative to the major G allele, appears to be both a risk factor for nicotine dependence and a protective factor for cocaine dependence. The biological plausibility of such a bidirectional association stems from the involvement of nAChRs with both excitatory and inhibitory modulation of dopamine-mediated reward pathways.

  9. Evidence of recombination and positive selection in cetacean papillomaviruses

    International Nuclear Information System (INIS)

    Robles-Sikisaka, Refugio; Rivera, Rebecca; Nollens, Hendrik H.; St Leger, Judy; Durden, Wendy N.; Stolen, Megan; Burchell, Jennifer; Wellehan, James F.X.

    2012-01-01

    Papillomaviruses (PVs) are small DNA viruses that have been associated with increased epithelial proliferation. Over one hundred PV types have been identified in humans; however, only three have been identified in bottlenose dolphins (Tursiops truncatus) to date. Using rolling circle amplification and degenerate PCR, we identified four novel PV genomes of bottlenose dolphins. TtPV4, TtPV5 and TtPV6 were identified in genital lesions while TtPV7 was identified in normal genital mucosa. Bayesian analysis of the full-length L1 genes found that TtPV4 and TtPV7 group within the Upsilonpapillomavirus genus while TtPV5 and TtPV6 group with Omikronpapillomavirus. However, analysis of the E1 gene did not distinguish these genera, implying that these genes may not share a common history, consistent with recombination. Recombination analyses identified several probable events. Signals of positive selection were found mostly in the E1 and E2 genes. Recombination and diversifying selection pressures constitute important driving forces of cetacean PV evolution.

  10. Evidence of recombination and positive selection in cetacean papillomaviruses

    Energy Technology Data Exchange (ETDEWEB)

    Robles-Sikisaka, Refugio, E-mail: refugio.robles1@gmail.com [Hubbs-SeaWorld Research Institute, Center for Marine Veterinary Virology, 2595 Ingraham Street, San Diego, CA 92109 (United States); Rivera, Rebecca, E-mail: RRivera@hswri.org [Hubbs-SeaWorld Research Institute, Center for Marine Veterinary Virology, 2595 Ingraham Street, San Diego, CA 92109 (United States); Nollens, Hendrik H., E-mail: Hendrik.Nollens@SeaWorld.com [Hubbs-SeaWorld Research Institute, Center for Marine Veterinary Virology, 2595 Ingraham Street, San Diego, CA 92109 (United States); College of Veterinary Medicine, University of Florida, PO Box 110885, Gainesville, FL 32611 (United States); SeaWorld San Diego, 500 SeaWorld Drive, San Diego, CA 92109 (United States); St Leger, Judy, E-mail: Judy.St.Leger@SeaWorld.com [SeaWorld San Diego, 500 SeaWorld Drive, San Diego, CA 92109 (United States); Durden, Wendy N., E-mail: WNoke@hswri.org [Hubbs-SeaWorld Research Institute, 3830 South Highway A1A 4-181, Melbourne Beach, FL 32951 (United States); Stolen, Megan, E-mail: MStolen@hswri.org [Hubbs-SeaWorld Research Institute, 3830 South Highway A1A 4-181, Melbourne Beach, FL 32951 (United States); Burchell, Jennifer, E-mail: JBurchell@hswri.org [Hubbs-SeaWorld Research Institute, Center for Marine Veterinary Virology, 2595 Ingraham Street, San Diego, CA 92109 (United States); Wellehan, James F.X., E-mail: WellehanJ@ufl.edu [College of Veterinary Medicine, University of Florida, PO Box 110885, Gainesville, FL 32611 (United States)

    2012-06-05

    Papillomaviruses (PVs) are small DNA viruses that have been associated with increased epithelial proliferation. Over one hundred PV types have been identified in humans; however, only three have been identified in bottlenose dolphins (Tursiops truncatus) to date. Using rolling circle amplification and degenerate PCR, we identified four novel PV genomes of bottlenose dolphins. TtPV4, TtPV5 and TtPV6 were identified in genital lesions while TtPV7 was identified in normal genital mucosa. Bayesian analysis of the full-length L1 genes found that TtPV4 and TtPV7 group within the Upsilonpapillomavirus genus while TtPV5 and TtPV6 group with Omikronpapillomavirus. However, analysis of the E1 gene did not distinguish these genera, implying that these genes may not share a common history, consistent with recombination. Recombination analyses identified several probable events. Signals of positive selection were found mostly in the E1 and E2 genes. Recombination and diversifying selection pressures constitute important driving forces of cetacean PV evolution.

  11. Construction and application of a Korean reference panel for imputing classical alleles and amino acids of human leukocyte antigen genes.

    Science.gov (United States)

    Kim, Kwangwoo; Bang, So-Young; Lee, Hye-Soon; Bae, Sang-Cheol

    2014-01-01

    Genetic variations of human leukocyte antigen (HLA) genes within the major histocompatibility complex (MHC) locus are strongly associated with disease susceptibility and prognosis for many diseases, including many autoimmune diseases. In this study, we developed a Korean HLA reference panel for imputing classical alleles and amino acid residues of several HLA genes. An HLA reference panel has potential for use in identifying and fine-mapping disease associations with the MHC locus in East Asian populations, including Koreans. A total of 413 unrelated Korean subjects were analyzed for single nucleotide polymorphisms (SNPs) at the MHC locus and six HLA genes, including HLA-A, -B, -C, -DRB1, -DPB1, and -DQB1. The HLA reference panel was constructed by phasing the 5,858 MHC SNPs, 233 classical HLA alleles, and 1,387 amino acid residue markers from 1,025 amino acid positions as binary variables. The imputation accuracy of the HLA reference panel was assessed by measuring concordance rates between imputed and genotyped alleles of the HLA genes from a subset of the study subjects and East Asian HapMap individuals. Average concordance rates were 95.6% and 91.1% at 2-digit and 4-digit allele resolutions, respectively. The imputation accuracy was minimally affected by SNP density of a test dataset for imputation. In conclusion, the Korean HLA reference panel we developed was highly suitable for imputing HLA alleles and amino acids from MHC SNPs in East Asians, including Koreans.

  12. Construction and application of a Korean reference panel for imputing classical alleles and amino acids of human leukocyte antigen genes.

    Directory of Open Access Journals (Sweden)

    Kwangwoo Kim

    Full Text Available Genetic variations of human leukocyte antigen (HLA genes within the major histocompatibility complex (MHC locus are strongly associated with disease susceptibility and prognosis for many diseases, including many autoimmune diseases. In this study, we developed a Korean HLA reference panel for imputing classical alleles and amino acid residues of several HLA genes. An HLA reference panel has potential for use in identifying and fine-mapping disease associations with the MHC locus in East Asian populations, including Koreans. A total of 413 unrelated Korean subjects were analyzed for single nucleotide polymorphisms (SNPs at the MHC locus and six HLA genes, including HLA-A, -B, -C, -DRB1, -DPB1, and -DQB1. The HLA reference panel was constructed by phasing the 5,858 MHC SNPs, 233 classical HLA alleles, and 1,387 amino acid residue markers from 1,025 amino acid positions as binary variables. The imputation accuracy of the HLA reference panel was assessed by measuring concordance rates between imputed and genotyped alleles of the HLA genes from a subset of the study subjects and East Asian HapMap individuals. Average concordance rates were 95.6% and 91.1% at 2-digit and 4-digit allele resolutions, respectively. The imputation accuracy was minimally affected by SNP density of a test dataset for imputation. In conclusion, the Korean HLA reference panel we developed was highly suitable for imputing HLA alleles and amino acids from MHC SNPs in East Asians, including Koreans.

  13. Characterization of an Integrated Active Glu-1Ay Allele in Common Wheat from Wild Emmer and Its Potential Role in Flour Improvement

    Directory of Open Access Journals (Sweden)

    Zhenzhen Wang

    2018-03-01

    Full Text Available Glu-1Ay, one of six genes encoding a high molecular weight glutenin subunit (HMW-GS, is frequently silenced in hexaploid common wheat. Here, an active allele of Glu-1Ay was integrated from wild emmer wheat (Triticum turgidum ssp. dicoccoides accession D97 into the common wheat (Triticum aestivum cultivar Chuannong 16 via the repeated self-fertilization of the pentaploid interspecific hybrid, culminating in the selection of a line TaAy7-40 shown to express the wild emmer Glu-1Ay allele. The open reading frame of this allele was a 1830 bp long sequence, demonstrated by its heterologous expression in Escherichia coli to encode a 608-residue polypeptide. Its nucleotide sequence was 99.2% identical to that of the sequence within the wild emmer parent. The TaAy7-40 introgression line containing the active Glu-1Ay allele showed higher protein content, higher sodium dodecyl sulfate (SDS sedimentation value, higher content of wet gluten in the flour, higher grain weight, and bigger grain size than Chuannong 16. The end-use quality parameters of the TaAy7-40 were superior to those of the medium gluten common wheat cultivars Mianmai 37 and Neimai 9. Thus, the active Glu-1Ay allele might be of potential value in breeding programs designed to improve wheat flour quality.

  14. Diminished levels of allelic losses by homologous recombination in radiation-hypersensitive cells

    International Nuclear Information System (INIS)

    Tatsumi, K.; Abe, M.; Hoki, Y.; Kubo, E.; Muto, M.; Araki, R.; Sato, K.

    2003-01-01

    Mitotic recombination (MR) due to somatic crossing-over is a predominant mechanism for allelic losses in mammalian cells either spontaneous or radiation-induced. A selectable mutation assay accompanying real-time detection PCR was developed to analyze the second step in loss-of-function mutations employing a human lympho-blastoid cell line derived from an obligate heterozygote of 2,8-dihydroxyadenine urolithiasis, adenine phosphoribosyltransferase (APRT) deficiency with a nonsense mutation at exon 3 of the gene. 68 % of spontaneously arising 2,6-diaminopurine resistance (DAP r ) mutant clones were associated with loss of heterozygosity (LOH), while 92 % of 2 Gy gamma-ray induced mutant clones were so associated. Investigation of gene dosage revealed that about one half of the spontaneously arising mutant clones and two-thirds of those induced by gamma-rays showed reduction to homozygosity of the constitutionally inactivated APRT allele. In an ataxia telangiectasia (AT) cell subline in which a new inactivation mutation had been introduced into one APRT allele by ICR-191, MR rarely occurred and exclusively deletions predominated in both spontaneous and X-ray induced DAP r mutants with LOH. A similar assay system was also developed with C3H mouse FM3A mammary tumor cells, SR-1, carrying a C .T transition at exon 5 of an APRT allele. In an XRCC7 (DNA-PKcs) deficient subline of SR-1, SX9 , spontaneous mutation frequencies for the Aprt locus (8AA r ) was 10 -3 , which was about 10 times higher than that in parental SR-1 cells. Mutation frequencies induced by X-rays comparably increased in a dose-dependent manner for the Aprt locus in both cell lines. Against our expectation, the lack of an NHEJ pathway of DNA double strand break repair resulted in a lower proportion (11.1 %) of MR with deletions (77.8 %) as the molecular cause for 8AA r mutations following X-irradiation, while virtually all of X-ray induced 8AA r mutant clones were MR in the control SR-1 cells. Factors

  15. Somatic mutations, allele loss, and DNA methylation of the Cub and Sushi Multiple Domains 1 (CSMD1 gene reveals association with early age of diagnosis in colorectal cancer patients.

    Directory of Open Access Journals (Sweden)

    Austin Y Shull

    Full Text Available The Cub and Sushi Multiple Domains 1 (CSMD1 gene, located on the short arm of chromosome 8, codes for a type I transmembrane protein whose function is currently unknown. CSMD1 expression is frequently lost in many epithelial cancers. Our goal was to characterize the relationships between CSMD1 somatic mutations, allele imbalance, DNA methylation, and the clinical characteristics in colorectal cancer patients.We sequenced the CSMD1 coding regions in 54 colorectal tumors using the 454FLX pyrosequencing platform to interrogate 72 amplicons covering the entire coding sequence. We used heterozygous SNP allele ratios at multiple CSMD1 loci to determine allelic balance and infer loss of heterozygosity. Finally, we performed methylation-specific PCR on 76 colorectal tumors to determine DNA methylation status for CSMD1 and known methylation targets ALX4, RUNX3, NEUROG1, and CDKN2A.Using 454FLX sequencing and confirming with Sanger sequencing, 16 CSMD1 somatic mutations were identified in 6 of the 54 colorectal tumors (11%. The nonsynonymous to synonymous mutation ratio of the 16 somatic mutations was 15:1, a ratio significantly higher than the expected 2:1 ratio (p = 0.014. This ratio indicates a presence of positive selection for mutations in the CSMD1 protein sequence. CSMD1 allelic imbalance was present in 19 of 37 informative cases (56%. Patients with allelic imbalance and CSMD1 mutations were significantly younger (average age, 41 years than those without somatic mutations (average age, 68 years. The majority of tumors were methylated at one or more CpG loci within the CSMD1 coding sequence, and CSMD1 methylation significantly correlated with two known methylation targets ALX4 and RUNX3. C:G>T:A substitutions were significantly overrepresented (47%, suggesting extensive cytosine methylation predisposing to somatic mutations.Deep amplicon sequencing and methylation-specific PCR reveal that CSMD1 alterations can correlate with earlier clinical

  16. Detecting Signatures of Positive Selection along Defined Branches of a Population Tree Using LSD.

    Science.gov (United States)

    Librado, Pablo; Orlando, Ludovic

    2018-06-01

    Identifying the genomic basis underlying local adaptation is paramount to evolutionary biology, and bears many applications in the fields of conservation biology, crop, and animal breeding, as well as personalized medicine. Although many approaches have been developed to detect signatures of positive selection within single populations and population pairs, the increasing wealth of high-throughput sequencing data requires improved methods capable of handling multiple, and ideally large number of, populations in a single analysis. In this study, we introduce LSD (levels of exclusively shared differences), a fast and flexible framework to perform genome-wide selection scans, along the internal and external branches of a given population tree. We use forward simulations to demonstrate that LSD can identify branches targeted by positive selection with remarkable sensitivity and specificity. We illustrate a range of potential applications by analyzing data from the 1000 Genomes Project and uncover a list of adaptive candidates accompanying the expansion of anatomically modern humans out of Africa and their spread to Europe.

  17. Semiparametric Allelic Tests for Mapping Multiple Phenotypes: Binomial Regression and Mahalanobis Distance.

    Science.gov (United States)

    Majumdar, Arunabha; Witte, John S; Ghosh, Saurabh

    2015-12-01

    Binary phenotypes commonly arise due to multiple underlying quantitative precursors and genetic variants may impact multiple traits in a pleiotropic manner. Hence, simultaneously analyzing such correlated traits may be more powerful than analyzing individual traits. Various genotype-level methods, e.g., MultiPhen (O'Reilly et al. []), have been developed to identify genetic factors underlying a multivariate phenotype. For univariate phenotypes, the usefulness and applicability of allele-level tests have been investigated. The test of allele frequency difference among cases and controls is commonly used for mapping case-control association. However, allelic methods for multivariate association mapping have not been studied much. In this article, we explore two allelic tests of multivariate association: one using a Binomial regression model based on inverted regression of genotype on phenotype (Binomial regression-based Association of Multivariate Phenotypes [BAMP]), and the other employing the Mahalanobis distance between two sample means of the multivariate phenotype vector for two alleles at a single-nucleotide polymorphism (Distance-based Association of Multivariate Phenotypes [DAMP]). These methods can incorporate both discrete and continuous phenotypes. Some theoretical properties for BAMP are studied. Using simulations, the power of the methods for detecting multivariate association is compared with the genotype-level test MultiPhen's. The allelic tests yield marginally higher power than MultiPhen for multivariate phenotypes. For one/two binary traits under recessive mode of inheritance, allelic tests are found to be substantially more powerful. All three tests are applied to two different real data and the results offer some support for the simulation study. We propose a hybrid approach for testing multivariate association that implements MultiPhen when Hardy-Weinberg Equilibrium (HWE) is violated and BAMP otherwise, because the allelic approaches assume HWE

  18. [Analysis of allele dropout at TH01 locus in paternity testing].

    Science.gov (United States)

    Lai, Li; Shen, Xiao-li; Xue, Shi-jie; Hu, Jie

    2013-10-01

    To analyze allele dropout at TH01 locus in paternity testing in order to determine the accurate genotype. To use a two STR loci genotyping system to verify an abnormal genotype for the TH01 locus with PCR using specific primers, cloning and DNA sequencing. A rare allele at TH01 locus named 5.2, which was undetectable with PowerPlex 21 system, was detected with an Identifiler system. Genetic variations may result in rare alleles and loci loss. To avoid misjudgment, laboratories should have a variety of methods for detecting loci loss.

  19. BRAF Gene Copy Number and Mutant Allele Frequency Correlate with Time to Progression in Metastatic Melanoma Patients Treated with MAPK Inhibitors.

    Science.gov (United States)

    Stagni, Camilla; Zamuner, Carolina; Elefanti, Lisa; Zanin, Tiziana; Bianco, Paola Del; Sommariva, Antonio; Fabozzi, Alessio; Pigozzo, Jacopo; Mocellin, Simone; Montesco, Maria Cristina; Chiarion-Sileni, Vanna; De Nicolo, Arcangela; Menin, Chiara

    2018-06-01

    Metastatic melanoma is characterized by complex genomic alterations, including a high rate of mutations in driver genes and widespread deletions and amplifications encompassing various chromosome regions. Among them, chromosome 7 is frequently gained in BRAF -mutant melanoma, inducing a mutant allele-specific imbalance. Although BRAF amplification is a known mechanism of acquired resistance to therapy with MAPK inhibitors, it is still unclear if BRAF copy-number variation and BRAF mutant allele imbalance at baseline can be associated with response to treatment. In this study, we used a multimodal approach to assess BRAF copy number and mutant allele frequency in pretreatment melanoma samples from 46 patients who received MAPK inhibitor-based therapy, and we analyzed the association with progression-free survival. We found that 65% patients displayed BRAF gains, often supported by chromosome 7 polysomy. In addition, we observed that 64% patients had a balanced BRAF -mutant/wild-type allele ratio, whereas 14% and 23% patients had low and high BRAF mutant allele frequency, respectively. Notably, a significantly higher risk of progression was observed in patients with a diploid BRAF status versus those with BRAF gains [HR, 2.86; 95% confidence interval (CI), 1.29-6.35; P = 0.01] and in patients with low percentage versus those with a balanced BRAF mutant allele percentage (HR, 4.54; 95% CI, 1.33-15.53; P = 0.016). Our data suggest that quantitative analysis of the BRAF gene could be useful to select the melanoma patients who are most likely to benefit from therapy with MAPK inhibitors. Mol Cancer Ther; 17(6); 1332-40. ©2018 AACR . ©2018 American Association for Cancer Research.

  20. Positive Selection Driving Cytoplasmic Genome Evolution of the Medicinally Important Ginseng Plant Genus Panax.

    Science.gov (United States)

    Jiang, Peng; Shi, Feng-Xue; Li, Ming-Rui; Liu, Bao; Wen, Jun; Xiao, Hong-Xing; Li, Lin-Feng

    2018-01-01

    Panax L. (the ginseng genus) is a shade-demanding group within the family Araliaceae and all of its species are of crucial significance in traditional Chinese medicine. Phylogenetic and biogeographic analyses demonstrated that two rounds of whole genome duplications accompanying with geographic and ecological isolations promoted the diversification of Panax species. However, contributions of the cytoplasmic genomes to the adaptive evolution of Panax species remained largely uninvestigated. In this study, we sequenced the chloroplast and mitochondrial genomes of 11 accessions belonging to seven Panax species. Our results show that heterogeneity in nucleotide substitution rate is abundant in both of the two cytoplasmic genomes, with the mitochondrial genome possessing more variants at the total level but the chloroplast showing higher sequence polymorphisms at the genic regions. Genome-wide scanning of positive selection identified five and 12 genes from the chloroplast and mitochondrial genomes, respectively. Functional analyses further revealed that these selected genes play important roles in plant development, cellular metabolism and adaptation. We therefore conclude that positive selection might be one of the potential evolutionary forces that shaped nucleotide variation pattern of these Panax species. In particular, the mitochondrial genes evolved under stronger selective pressure compared to the chloroplast genes.

  1. Mouse survival motor neuron alleles that mimic SMN2 splicing and are inducible rescue embryonic lethality early in development but not late.

    Directory of Open Access Journals (Sweden)

    Suzan M Hammond

    Full Text Available Spinal muscular atrophy (SMA is caused by low survival motor neuron (SMN levels and patients represent a clinical spectrum due primarily to varying copies of the survival motor neuron-2 (SMN2 gene. Patient and animals studies show that disease severity is abrogated as SMN levels increase. Since therapies currently being pursued target the induction of SMN, it will be important to understand the dosage, timing and cellular requirements of SMN for disease etiology and potential therapeutic intervention. This requires new mouse models that can induce SMN temporally and/or spatially. Here we describe the generation of two hypomorphic Smn alleles, Smn(C-T-Neo and Smn(2B-Neo. These alleles mimic SMN2 exon 7 splicing, titre Smn levels and are inducible. They were specifically designed so that up to three independent lines of mice could be generated, herein we describe two. In a homozygous state each allele results in embryonic lethality. Analysis of these mutants indicates that greater than 5% of Smn protein is required for normal development. The severe hypomorphic nature of these alleles is caused by inclusion of a loxP-flanked neomycin gene selection cassette in Smn intron 7, which can be removed with Cre recombinase. In vitro and in vivo experiments demonstrate these as inducible Smn alleles. When combined with an inducible Cre mouse, embryonic lethality caused by low Smn levels can be rescued early in gestation but not late. This provides direct genetic evidence that a therapeutic window for SMN inductive therapies may exist. Importantly, these lines fill a void for inducible Smn alleles. They also provide a base from which to generate a large repertoire of SMA models of varying disease severities when combined with other Smn alleles or SMN2-containing mice.

  2. Genetic dissection of the Drosophila melanogaster female head transcriptome reveals widespread allelic heterogeneity.

    Science.gov (United States)

    King, Elizabeth G; Sanderson, Brian J; McNeil, Casey L; Long, Anthony D; Macdonald, Stuart J

    2014-05-01

    Modern genetic mapping is plagued by the "missing heritability" problem, which refers to the discordance between the estimated heritabilities of quantitative traits and the variance accounted for by mapped causative variants. One major potential explanation for the missing heritability is allelic heterogeneity, in which there are multiple causative variants at each causative gene with only a fraction having been identified. The majority of genome-wide association studies (GWAS) implicitly assume that a single SNP can explain all the variance for a causative locus. However, if allelic heterogeneity is prevalent, a substantial amount of genetic variance will remain unexplained. In this paper, we take a haplotype-based mapping approach and quantify the number of alleles segregating at each locus using a large set of 7922 eQTL contributing to regulatory variation in the Drosophila melanogaster female head. Not only does this study provide a comprehensive eQTL map for a major community genetic resource, the Drosophila Synthetic Population Resource, but it also provides a direct test of the allelic heterogeneity hypothesis. We find that 95% of cis-eQTLs and 78% of trans-eQTLs are due to multiple alleles, demonstrating that allelic heterogeneity is widespread in Drosophila eQTL. Allelic heterogeneity likely contributes significantly to the missing heritability problem common in GWAS studies.

  3. Mode Selection Rules for a Two-Delay System with Positive and Negative Feedback Loops

    Science.gov (United States)

    Takahashi, Kin'ya; Kobayashi, Taizo

    2018-04-01

    The mode selection rules for a two-delay system, which has negative feedback with a short delay time t1 and positive feedback with a long delay time t2, are studied numerically and theoretically. We find two types of mode selection rules depending on the strength of the negative feedback. When the strength of the negative feedback |α1| (α1 0), 2m + 1-th harmonic oscillation is well sustained in a neighborhood of t1/t2 = even/odd, i.e., relevant condition. In a neighborhood of the irrelevant condition given by t1/t2 = odd/even or t1/t2 = odd/odd, higher harmonic oscillations are observed. However, if |α1| is slightly less than α2, a different mode selection rule works, where the condition t1/t2 = odd/even is relevant and the conditions t1/t2 = odd/odd and t1/t2 = even/odd are irrelevant. These mode selection rules are different from the mode selection rule of the normal two-delay system with two positive feedback loops, where t1/t2 = odd/odd is relevant and the others are irrelevant. The two types of mode selection rules are induced by individually different mechanisms controlling the Hopf bifurcation, i.e., the Hopf bifurcation controlled by the "boosted bifurcation process" and by the "anomalous bifurcation process", which occur for |α1| below and above the threshold value αth, respectively.

  4. 5-HTTLPR polymorphism is linked to neural mechanisms of selective attention in preschoolers from lower socioeconomic status backgrounds.

    Science.gov (United States)

    Isbell, Elif; Stevens, Courtney; Hampton Wray, Amanda; Bell, Theodore; Neville, Helen J

    2016-12-01

    While a growing body of research has identified experiential factors associated with differences in selective attention, relatively little is known about the contribution of genetic factors to the skill of sustained selective attention, especially in early childhood. Here, we assessed the association between the serotonin transporter linked polymorphic region (5-HTTLPR) genotypes and the neural mechanisms of selective attention in young children from lower socioeconomic status (SES) backgrounds. Event-related potentials (ERPs) were recorded during a dichotic listening task from 121 children (76 females, aged 40-67 months), who were also genotyped for the short and long allele of 5-HTTLPR. The effect of selective attention was measured as the difference in ERP mean amplitudes elicited by identical probe stimuli embedded in stories when they were attended versus unattended. Compared to children homozygous for the long allele, children who carried at least one copy of the short allele showed larger effects of selective attention on neural processing. These findings link the short allele of the 5-HTTLPR to enhanced neural mechanisms of selective attention and lay the groundwork for future studies of gene-by-environment interactions in the context of key cognitive skills. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Enhanced low-template DNA analysis conditions and investigation of allele dropout patterns.

    Science.gov (United States)

    Hedell, Ronny; Dufva, Charlotte; Ansell, Ricky; Mostad, Petter; Hedman, Johannes

    2015-01-01

    Forensic DNA analysis applying PCR enables profiling of minute biological samples. Enhanced analysis conditions can be applied to further push the limit of detection, coming with the risk of visualising artefacts and allele imbalances. We have evaluated the consecutive increase of PCR cycles from 30 to 35 to investigate the limitations of low-template (LT) DNA analysis, applying the short tandem repeat (STR) analysis kit PowerPlex ESX 16. Mock crime scene DNA extracts of four different quantities (from around 8-84 pg) were tested. All PCR products were analysed using 5, 10 and 20 capillary electrophoresis (CE) injection seconds. Bayesian models describing allele dropout patterns, allele peak heights and heterozygote balance were developed to assess the overall improvements in EPG quality with altered PCR/CE settings. The models were also used to evaluate the impact of amplicon length, STR marker and fluorescent label on the risk for allele dropout. The allele dropout probability decreased for each PCR cycle increment from 30 to 33 PCR cycles. Irrespective of DNA amount, the dropout probability was not affected by further increasing the number of PCR cycles. For the 42 and 84 pg samples, mainly complete DNA profiles were generated applying 32 PCR cycles. For the 8 and 17 pg samples, the allele dropouts decreased from 100% using 30 cycles to about 75% and 20%, respectively. The results for 33, 34 and 35 PCR cycles indicated that heterozygote balance and stutter ratio were mainly affected by DNA amount, and not directly by PCR cycle number and CE injection settings. We found 32 and 33 PCR cycles with 10 CE injection seconds to be optimal, as 34 and 35 PCR cycles did not improve allele detection and also included CE saturation problems. We find allele dropout probability differences between several STR markers. Markers labelled with the fluorescent dyes CXR-ET (red in electropherogram) and TMR-ET (shown as black) generally have higher dropout risks compared with those

  6. Genome-wide survey of allele-specific splicing in humans

    Directory of Open Access Journals (Sweden)

    Scheffler Konrad

    2008-06-01

    Full Text Available Abstract Background Accurate mRNA splicing depends on multiple regulatory signals encoded in the transcribed RNA sequence. Many examples of mutations within human splice regulatory regions that alter splicing qualitatively or quantitatively have been reported and allelic differences in mRNA splicing are likely to be a common and important source of phenotypic diversity at the molecular level, in addition to their contribution to genetic disease susceptibility. However, because the effect of a mutation on the efficiency of mRNA splicing is often difficult to predict, many mutations that cause disease through an effect on splicing are likely to remain undiscovered. Results We have combined a genome-wide scan for sequence polymorphisms likely to affect mRNA splicing with analysis of publicly available Expressed Sequence Tag (EST and exon array data. The genome-wide scan uses published tools and identified 30,977 SNPs located within donor and acceptor splice sites, branch points and exonic splicing enhancer elements. For 1,185 candidate splicing polymorphisms the difference in splicing between alternative alleles was corroborated by publicly available exon array data from 166 lymphoblastoid cell lines. We developed a novel probabilistic method to infer allele-specific splicing from EST data. The method uses SNPs and alternative mRNA isoforms mapped to EST sequences and models both regulated alternative splicing as well as allele-specific splicing. We have also estimated heritability of splicing and report that a greater proportion of genes show evidence of splicing heritability than show heritability of overall gene expression level. Our results provide an extensive resource that can be used to assess the possible effect on splicing of human polymorphisms in putative splice-regulatory sites. Conclusion We report a set of genes showing evidence of allele-specific splicing from an integrated analysis of genomic polymorphisms, EST data and exon array

  7. Selection on crop-derived traits and QTL in sunflower (Helianthus annuus) crop-wild hybrids under water stress.

    Science.gov (United States)

    Owart, Birkin R; Corbi, Jonathan; Burke, John M; Dechaine, Jennifer M

    2014-01-01

    Locally relevant conditions, such as water stress in irrigated agricultural regions, should be considered when assessing the risk of crop allele introgression into wild populations following hybridization. Although research in cultivars has suggested that domestication traits may reduce fecundity under water stress as compared to wild-like phenotypes, this has not been investigated in crop-wild hybrids. In this study, we examine phenotypic selection acting on, as well as the genetic architecture of vegetative, reproductive, and physiological characteristics in an experimental population of sunflower crop-wild hybrids grown under wild-like low water conditions. Crop-derived petiole length and head diameter were favored in low and control water environments. The direction of selection differed between environments for leaf size and leaf pressure potential. Interestingly, the additive effect of the crop-derived allele was in the direction favored by selection for approximately half the QTL detected in the low water environment. Selection favoring crop-derived traits and alleles in the low water environment suggests that a subset of these alleles would be likely to spread into wild populations under water stress. Furthermore, differences in selection between environments support the view that risk assessments should be conducted under multiple locally relevant conditions.

  8. ADH1B*2 allele is protective against alcoholism but not chronic liver disease in the Hungarian population.

    Science.gov (United States)

    Toth, Reka; Pocsai, Zsuzsa; Fiatal, Szilvia; Szeles, Gyorgy; Kardos, Laszlo; Petrovski, Beata; McKee, Martin; Adany, Roza

    2010-05-01

    Standardized death rates from chronic liver diseases (CLDs) in Hungary are much higher than the European Union average. Carrying the alcohol dehydrogenase 1B 48His allele (rs1229984 or ADH1B*2) could decrease the risk of alcoholism, but with persistent drinking may confer a greater risk of CLDs. The aim of this study was to assess the prevalence of this polymorphism in the Hungarian population and its association with alcohol consumption and with CLDs. A total of 278 cases with diagnosed CLDs and 752 controls without any alterations in liver function, all males aged 45-64, were screened for ADH1B Arg48His polymorphism. ADH1B*2 allele frequencies in controls and cases were 8.31% and 4.50%, respectively (chi(2) = 9.2; P = 0.01). Carrying the ADH1B*2 allele was associated with significantly lower odds ratio (OR) for drinking frequency (OR = 0.63; P = 0.003), the number of positive answers on CAGE (Cut-down, Annoyed, Guilt, Eye-opener) assessment (OR = 0.58; P = 0.005) and a positive CAGE status (OR = 0.55; P = 0.007). There was a significant association between ADH1B*2 and CLDs (OR = 0.50; P = 0.003), but it disappeared after adjusting for CAGE status and scores (OR = 0.67 P = 0.134; OR = 0.67 P = 0.148, respectively) and weakened after adjusting for drinking frequency (OR = 0.61; P = 0.045). Among heavy drinkers the presence of ADH1B*2 did not increase the risk of cirrhosis but there was a significant interaction between genotype and CAGE status (P = 0.003, P = 0.042), with ADH1B*2 conferring reduced risk of CLDs in CAGE negatives. In Hungarians, the ADH1B 48His allele reduces the risk of alcoholism, but not the risk of chronic liver disease among heavy drinkers.

  9. Segregation of male-sterility alleles across a species boundary.

    Science.gov (United States)

    Weller, S G; Sakai, A K; Culley, T M; Duong, L; Danielson, R E

    2014-02-01

    Hybrid zones may serve as bridges permitting gene flow between species, including alleles influencing the evolution of breeding systems. Using greenhouse crosses, we assessed the likelihood that a hybrid zone could serve as a conduit for transfer of nuclear male-sterility alleles between a gynodioecious species and a hermaphroditic species with very rare females in some populations. Segregation patterns in progeny of crosses between rare females of hermaphroditic Schiedea menziesii and hermaphroditic plants of gynodioecious Schiedea salicaria heterozygous at the male-sterility locus, and between female S. salicaria and hermaphroditic plants from the hybrid zone, were used to determine whether male-sterility was controlled at the same locus in the parental species and the hybrid zone. Segregations of females and hermaphrodites in approximately equal ratios from many of the crosses indicate that the same nuclear male-sterility allele occurs in the parent species and the hybrid zone. These rare male-sterility alleles in S. menziesii may result from gene flow from S. salicaria through the hybrid zone, presumably facilitated by wind pollination in S. salicaria. Alternatively, rare male-sterility alleles might result from a reversal from gynodioecy to hermaphroditism in S. menziesii, or possibly de novo evolution of male sterility. Phylogenetic analysis indicates that some species of Schiedea have probably evolved separate sexes independently, but not in the lineage containing S. salicaria and S. menziesii. High levels of selfing and expression of strong inbreeding depression in S. menziesii, which together should favour females in populations, argue against a reversal from gynodioecy to hermaphroditism in S. menziesii. © 2014 The Authors. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  10. Detecting Site-Specific Physicochemical Selective Pressures: Applications to the Class I HLA of the Human Major Histocompatibility Complex and the SRK of the Plant Sporophytic Self-Incompatibility System

    DEFF Research Database (Denmark)

    Sainudiin, Raazesh; Wong, Wendy Shuk Wan; Yogeeswaran, Krithika

    2005-01-01

    :transversion biases. Here, we apply this method to two positively selected receptors involved in ligand-recognition: the class I alleles of the human major histocompatibility complex (MHC) of known structure and the S-locus receptor kinase (SRK) of the sporophytic self-incompatibility system (SSI) in cruciferous...... Bayes approach is used to identify sites that may be important for ligand recognition in these proteins....

  11. Deleterious alleles in the human genome are on average younger than neutral alleles of the same frequency

    NARCIS (Netherlands)

    Kiezun, Adam; Pulit, Sara L.; Francioli, Laurent C.; van Dijk, Freerk; Swertz, Morris; Boomsma, Dorret I.; van Duijn, Cornelia M.; Slagboom, P. Eline; van Ommen, G. J. B.; Wijmenga, Cisca; de Bakker, Paul I. W.; Sunyaev, Shamil R.

    Large-scale population sequencing studies provide a complete picture of human genetic variation within the studied populations. A key challenge is to identify, among the myriad alleles, those variants that have an effect on molecular function, phenotypes, and reproductive fitness. Most non-neutral

  12. Large deviations for the Fleming-Viot process with neutral mutation and selection

    OpenAIRE

    Dawson, Donald; Feng, Shui

    1998-01-01

    Large deviation principles are established for the Fleming-Viot processes with neutral mutation and selection, and the corresponding equilibrium measures as the sampling rate goes to 0. All results are first proved for the finite allele model, and then generalized, through the projective limit technique, to the infinite allele model. Explicit expressions are obtained for the rate functions.

  13. Allele frequency distribution for 21 autosomal STR loci in Nepal.

    Science.gov (United States)

    Kraaijenbrink, T; van Driem, G L; Opgenort, J R M L; Tuladhar, N M; de Knijff, P

    2007-05-24

    The allele frequency distributions of 21 autosomal loci contained in the AmpFlSTR Identifiler, the Powerplex 16 and the FFFL multiplex PCR kits, was studied in 953 unrelated individuals from Nepal. Several new alleles (i.e. not yet reported in the NIST Short Tandem Repeat DNA Internet DataBase [http://www.cstl.nist.gov/biotech/strbase/]) have been detected in the process.

  14. Selective bowel decontamination results in gram-positive translocation.

    Science.gov (United States)

    Jackson, R J; Smith, S D; Rowe, M I

    1990-05-01

    Colonization by enteric gram-negative bacteria with subsequent translocation is believed to be a major mechanism for infection in the critically ill patient. Selective bowel decontamination (SBD) has been used to control gram-negative infections by eliminating these potentially pathogenic bacteria while preserving anaerobic and other less pathogenic organisms. Infection with gram-positive organisms and anaerobes in two multivisceral transplant patients during SBD led us to investigate the effect of SBD on gut colonization and translocation. Twenty-four rats received enteral polymixin E, tobramycin, amphotericin B, and parenteral cefotaxime for 7 days (PTA + CEF); 23 received parenteral cefotaxime alone (CEF), 19 received the enteral antibiotics alone (PTA), 21 controls received no antibiotics. Cecal homogenates, mesenteric lymph node (MLN), liver, and spleen were cultured. Only 8% of the PTA + CEF group had gram-negative bacteria in cecal culture vs 52% CEF, 84% PTA, and 100% in controls. Log Enterococcal colony counts were higher in the PTA + CEF group (8.0 + 0.9) vs controls (5.4 + 0.4) P less than 0.01. Translocation of Enterococcus to the MLN was significantly increased in the PTA + CEF group (67%) vs controls (0%) P less than 0.01. SBD effectively eliminates gram-negative organisms from the gut in the rat model. Overgrowth and translocation of Enterococcus suggests that infection with gram-positive organisms may be a limitation of SBD.

  15. Genetic dissection of the Drosophila melanogaster female head transcriptome reveals widespread allelic heterogeneity.

    Directory of Open Access Journals (Sweden)

    Elizabeth G King

    2014-05-01

    Full Text Available Modern genetic mapping is plagued by the "missing heritability" problem, which refers to the discordance between the estimated heritabilities of quantitative traits and the variance accounted for by mapped causative variants. One major potential explanation for the missing heritability is allelic heterogeneity, in which there are multiple causative variants at each causative gene with only a fraction having been identified. The majority of genome-wide association studies (GWAS implicitly assume that a single SNP can explain all the variance for a causative locus. However, if allelic heterogeneity is prevalent, a substantial amount of genetic variance will remain unexplained. In this paper, we take a haplotype-based mapping approach and quantify the number of alleles segregating at each locus using a large set of 7922 eQTL contributing to regulatory variation in the Drosophila melanogaster female head. Not only does this study provide a comprehensive eQTL map for a major community genetic resource, the Drosophila Synthetic Population Resource, but it also provides a direct test of the allelic heterogeneity hypothesis. We find that 95% of cis-eQTLs and 78% of trans-eQTLs are due to multiple alleles, demonstrating that allelic heterogeneity is widespread in Drosophila eQTL. Allelic heterogeneity likely contributes significantly to the missing heritability problem common in GWAS studies.

  16. A model-based approach for identifying signatures of ancient balancing selection in genetic data.

    Science.gov (United States)

    DeGiorgio, Michael; Lohmueller, Kirk E; Nielsen, Rasmus

    2014-08-01

    While much effort has focused on detecting positive and negative directional selection in the human genome, relatively little work has been devoted to balancing selection. This lack of attention is likely due to the paucity of sophisticated methods for identifying sites under balancing selection. Here we develop two composite likelihood ratio tests for detecting balancing selection. Using simulations, we show that these methods outperform competing methods under a variety of assumptions and demographic models. We apply the new methods to whole-genome human data, and find a number of previously-identified loci with strong evidence of balancing selection, including several HLA genes. Additionally, we find evidence for many novel candidates, the strongest of which is FANK1, an imprinted gene that suppresses apoptosis, is expressed during meiosis in males, and displays marginal signs of segregation distortion. We hypothesize that balancing selection acts on this locus to stabilize the segregation distortion and negative fitness effects of the distorter allele. Thus, our methods are able to reproduce many previously-hypothesized signals of balancing selection, as well as discover novel interesting candidates.

  17. A model-based approach for identifying signatures of ancient balancing selection in genetic data.

    Directory of Open Access Journals (Sweden)

    Michael DeGiorgio

    2014-08-01

    Full Text Available While much effort has focused on detecting positive and negative directional selection in the human genome, relatively little work has been devoted to balancing selection. This lack of attention is likely due to the paucity of sophisticated methods for identifying sites under balancing selection. Here we develop two composite likelihood ratio tests for detecting balancing selection. Using simulations, we show that these methods outperform competing methods under a variety of assumptions and demographic models. We apply the new methods to whole-genome human data, and find a number of previously-identified loci with strong evidence of balancing selection, including several HLA genes. Additionally, we find evidence for many novel candidates, the strongest of which is FANK1, an imprinted gene that suppresses apoptosis, is expressed during meiosis in males, and displays marginal signs of segregation distortion. We hypothesize that balancing selection acts on this locus to stabilize the segregation distortion and negative fitness effects of the distorter allele. Thus, our methods are able to reproduce many previously-hypothesized signals of balancing selection, as well as discover novel interesting candidates.

  18. Filaggrin compound heterozygous patients carry mutations in trans position

    DEFF Research Database (Denmark)

    Carlsen, Berit C; Meldgaard, Michael; Johansen, Jeanne D

    2013-01-01

    by means of allele-specific PCR amplification and analysis of PCR products by agarose gel electrophoresis. All R501X/2282del4 compound heterozygous samples collected over a 4-year period of routine FLG mutation testing were investigated. In total, 37 samples were tested. All thirty-seven R501X/2282del4......More than 40 null mutations in the filaggrin (FLG) gene are described. It is therefore possible to find two different null mutations in one individual (compound heterozygosity). It has been generally perceived that homozygous and compound heterozygous individuals were genotypically comparable......; however, this has not been scientifically investigated. Two different FLG null mutations in the same individual may be in trans position, meaning that each mutation locates to a different allele functionally equivalent to homozygosity, or may be in cis position, meaning that both mutations locate...

  19. APOL1 Risk Alleles Are Associated With More Severe Arteriosclerosis in Renal Resistance Vessels With Aging and Hypertension

    Directory of Open Access Journals (Sweden)

    Michael D. Hughson

    2016-05-01

    Discussion: With the limitation of the small number of subjects contributing to the positive results, the findings imply that APOL1 risk alleles recessively augment small-vessel arteriosclerosis in conjunction with age and hypertension. Focal segmental glomerulosclerosis was not a significant finding, indicating that in the early stages of arterionephrosclerosis, the primary pathologic influence of APOL1 genotype is vascular rather than glomerular.

  20. Bayes Empirical Bayes Inference of Amino Acid Sites Under Positive Selection

    DEFF Research Database (Denmark)

    Yang, Ziheng; Wong, Wendy Shuk Wan; Nielsen, Rasmus

    2005-01-01

    , with > 1 indicating positive selection. Statistical distributions are used to model the variation in among sites, allowing a subset of sites to have > 1 while the rest of the sequence may be under purifying selection with ... probabilities that a site comes from the site class with > 1. Current implementations, however, use the naive EB (NEB) approach and fail to account for sampling errors in maximum likelihood estimates of model parameters, such as the proportions and ratios for the site classes. In small data sets lacking...... information, this approach may lead to unreliable posterior probability calculations. In this paper, we develop a Bayes empirical Bayes (BEB) approach to the problem, which assigns a prior to the model parameters and integrates over their uncertainties. We compare the new and old methods on real and simulated...

  1. QuASAR-MPRA: accurate allele-specific analysis for massively parallel reporter assays.

    Science.gov (United States)

    Kalita, Cynthia A; Moyerbrailean, Gregory A; Brown, Christopher; Wen, Xiaoquan; Luca, Francesca; Pique-Regi, Roger

    2018-03-01

    The majority of the human genome is composed of non-coding regions containing regulatory elements such as enhancers, which are crucial for controlling gene expression. Many variants associated with complex traits are in these regions, and may disrupt gene regulatory sequences. Consequently, it is important to not only identify true enhancers but also to test if a variant within an enhancer affects gene regulation. Recently, allele-specific analysis in high-throughput reporter assays, such as massively parallel reporter assays (MPRAs), have been used to functionally validate non-coding variants. However, we are still missing high-quality and robust data analysis tools for these datasets. We have further developed our method for allele-specific analysis QuASAR (quantitative allele-specific analysis of reads) to analyze allele-specific signals in barcoded read counts data from MPRA. Using this approach, we can take into account the uncertainty on the original plasmid proportions, over-dispersion, and sequencing errors. The provided allelic skew estimate and its standard error also simplifies meta-analysis of replicate experiments. Additionally, we show that a beta-binomial distribution better models the variability present in the allelic imbalance of these synthetic reporters and results in a test that is statistically well calibrated under the null. Applying this approach to the MPRA data, we found 602 SNPs with significant (false discovery rate 10%) allele-specific regulatory function in LCLs. We also show that we can combine MPRA with QuASAR estimates to validate existing experimental and computational annotations of regulatory variants. Our study shows that with appropriate data analysis tools, we can improve the power to detect allelic effects in high-throughput reporter assays. http://github.com/piquelab/QuASAR/tree/master/mpra. fluca@wayne.edu or rpique@wayne.edu. Supplementary data are available online at Bioinformatics. © The Author (2017). Published by

  2. Selection of microsatellite markers for bladder cancer diagnosis without the need for corresponding blood.

    Directory of Open Access Journals (Sweden)

    Angela A G van Tilborg

    Full Text Available Microsatellite markers are used for loss-of-heterozygosity, allelic imbalance and clonality analyses in cancers. Usually, tumor DNA is compared to corresponding normal DNA. However, normal DNA is not always available and can display aberrant allele ratios due to copy number variations in the genome. Moreover, stutter peaks may complicate the analysis. To use microsatellite markers for diagnosis of recurrent bladder cancer, we aimed to select markers without stutter peaks and a constant ratio between alleles, thereby avoiding the need for a control DNA sample. We investigated 49 microsatellite markers with tri- and tetranucleotide repeats in regions commonly lost in bladder cancer. Based on analysis of 50 blood DNAs the 12 best performing markers were selected with few stutter peaks and a constant ratio between peaks heights. Per marker upper and lower cut off values for allele ratios were determined. LOH of the markers was observed in 59/104 tumor DNAs. We then determined the sensitivity of the marker panel for detection of recurrent bladder cancer by assaying 102 urine samples of these patients. Sensitivity was 63% when patients were stratified for LOH in their primary tumors. We demonstrate that up-front selection of microsatellite markers obliterates the need for a corresponding blood sample. For diagnosis of bladder cancer recurrences in urine this significantly reduces costs. Moreover, this approach facilitates retrospective analysis of archival tumor samples for allelic imbalance.

  3. Transcriptome-based phylogeny of endemic Lake Baikal amphipod species flock: fast speciation accompanied by frequent episodes of positive selection.

    Science.gov (United States)

    Naumenko, Sergey A; Logacheva, Maria D; Popova, Nina V; Klepikova, Anna V; Penin, Aleksey A; Bazykin, Georgii A; Etingova, Anna E; Mugue, Nikolai S; Kondrashov, Alexey S; Yampolsky, Lev Y

    2017-01-01

    Endemic species flocks inhabiting ancient lakes, oceanic islands and other long-lived isolated habitats are often interpreted as adaptive radiations. Yet molecular evidence for directional selection during species flocks radiation is scarce. Using partial transcriptomes of 64 species of Lake Baikal (Siberia, Russia) endemic amphipods and two nonendemic outgroups, we report a revised phylogeny of this species flock and analyse evidence for positive selection within the endemic lineages. We confirm two independent invasions of amphipods into Baikal and demonstrate that several morphological features of Baikal amphipods, such as body armour and reduction in appendages and sensory organs, evolved in several lineages in parallel. Radiation of Baikal amphipods has been characterized by short phylogenetic branches and frequent episodes of positive selection which tended to be more frequent in the early phase of the second invasion of amphipods into Baikal when the most intensive diversification occurred. Notably, signatures of positive selection are frequent in genes encoding mitochondrial membrane proteins with electron transfer chain and ATP synthesis functionality. In particular, subunits of both the membrane and substrate-level ATP synthases show evidence of positive selection in the plankton species Macrohectopus branickii, possibly indicating adaptation to active plankton lifestyle and to survival under conditions of low temperature and high hydrostatic pressures known to affect membranes functioning. Other functional categories represented among genes likely to be under positive selection include Ca-binding muscle-related proteins, possibly indicating adaptation to Ca-deficient low mineralization Baikal waters. © 2016 John Wiley & Sons Ltd.

  4. Cas9/sgRNA selective targeting of the P23H Rhodopsin mutant allele for treating retinitis pigmentosa by intravitreal AAV9.PHP.B-based delivery.

    Science.gov (United States)

    Giannelli, Serena G; Luoni, Mirko; Castoldi, Valerio; Massimino, Luca; Cabassi, Tommaso; Angeloni, Debora; Demontis, Gian Carlo; Leocani, Letizia; Andreazzoli, Massimiliano; Broccoli, Vania

    2018-03-01

    P23H is the most common mutation in the RHODOPSIN (RHO) gene leading to a dominant form of retinitis pigmentosa (RP), a rod photoreceptor degeneration that invariably causes vision loss. Specific disruption of the disease P23H RHO mutant while preserving the wild-type (WT) functional allele would be an invaluable therapy for this disease. However, various technologies tested in the past failed to achieve effective changes and consequently therapeutic benefits. We validated a CRISPR/Cas9 strategy to specifically inactivate the P23H RHO mutant, while preserving the WT allele in vitro. We, then, translated this approach in vivo by delivering the CRISPR/Cas9 components in murine Rho+/P23H mutant retinae. Targeted retinae presented a high rate of cleavage in the P23H but not WT Rho allele. This gene manipulation was sufficient to slow photoreceptor degeneration and improve retinal functions. To improve the translational potential of our approach, we tested intravitreal delivery of this system by means of adeno-associated viruses (AAVs). To this purpose, the employment of the AAV9-PHP.B resulted the most effective in disrupting the P23H Rho mutant. Finally, this approach was translated successfully in human cells engineered with the homozygous P23H RHO gene mutation. Overall, this is a significant proof-of-concept that gene allele specific targeting by CRISPR/Cas9 technology is specific and efficient and represents an unprecedented tool for treating RP and more broadly dominant genetic human disorders affecting the eye, as well as other tissues.

  5. Genomic Features That Predict Allelic Imbalance in Humans Suggest Patterns of Constraint on Gene Expression Variation

    Science.gov (United States)

    Fédrigo, Olivier; Haygood, Ralph; Mukherjee, Sayan; Wray, Gregory A.

    2009-01-01

    Variation in gene expression is an important contributor to phenotypic diversity within and between species. Although this variation often has a genetic component, identification of the genetic variants driving this relationship remains challenging. In particular, measurements of gene expression usually do not reveal whether the genetic basis for any observed variation lies in cis or in trans to the gene, a distinction that has direct relevance to the physical location of the underlying genetic variant, and which may also impact its evolutionary trajectory. Allelic imbalance measurements identify cis-acting genetic effects by assaying the relative contribution of the two alleles of a cis-regulatory region to gene expression within individuals. Identification of patterns that predict commonly imbalanced genes could therefore serve as a useful tool and also shed light on the evolution of cis-regulatory variation itself. Here, we show that sequence motifs, polymorphism levels, and divergence levels around a gene can be used to predict commonly imbalanced genes in a human data set. Reduction of this feature set to four factors revealed that only one factor significantly differentiated between commonly imbalanced and nonimbalanced genes. We demonstrate that these results are consistent between the original data set and a second published data set in humans obtained using different technical and statistical methods. Finally, we show that variation in the single allelic imbalance-associated factor is partially explained by the density of genes in the region of a target gene (allelic imbalance is less probable for genes in gene-dense regions), and, to a lesser extent, the evenness of expression of the gene across tissues and the magnitude of negative selection on putative regulatory regions of the gene. These results suggest that the genomic distribution of functional cis-regulatory variants in the human genome is nonrandom, perhaps due to local differences in evolutionary

  6. Microangiopathic complications related to different alleles of ...

    African Journals Online (AJOL)

    Egyptian Journal of Biochemistry and Molecular Biology. Journal Home ... Microangiopathic complications related to different alleles of manganese superoxide dismutase gene in diabetes mellitus type 1. TM EL Masry ... 23(2) 2005: 155-167 ...

  7. The C allele of JAK2 rs4495487 is an additional candidate locus that contributes to myeloproliferative neoplasm predisposition in the Japanese population

    Directory of Open Access Journals (Sweden)

    Ohyashiki Junko H

    2012-01-01

    Full Text Available Abstract Background Polycythemia vera (PV, essential thrombocythemia (ET, and primary myelofibrosis (PMF are myeloproliferative neoplasms (MPNs characterized in most cases by a unique somatic mutation, JAK2 V617F. Recent studies revealed that JAK2 V617F occurs more frequently in a specific JAK2 haplotype, named JAK2 46/1 or GGCC haplotype, which is tagged by rs10974944 (C/G and/or rs12343867 (T/C. This study examined the impact of single nucleotide polymorphisms (SNPs of the JAK2 locus on MPNs in a Japanese population. Methods We sequenced 24 JAK2 SNPs in Japanese patients with PV. We then genotyped 138 MPN patients (33 PV, 96 ET, and 9 PMF with known JAK2 mutational status and 107 controls for a novel SNP, in addition to two SNPs known to be part of the 46/1 haplotype (rs10974944 and rs12343867. Associations with risk of MPN were estimated by odds ratios and their 95% confidence intervals using logistic regression. Results A novel locus, rs4495487 (T/C, with a mutated T allele was significantly associated with PV. Similar to rs10974944 and rs12343867, rs4495487 in the JAK2 locus is significantly associated with JAK2-positive MPN. Based on the results of SNP analysis of the three JAK2 locus, we defined the "GCC genotype" as having at least one minor allele in each SNP (G allele in rs10974944, C allele in rs4495487, and C allele in rs12343867. The GCC genotype was associated with increased risk of both JAK2 V617F-positive and JAK2 V617F-negative MPN. In ET patients, leukocyte count and hemoglobin were significantly associated with JAK2 V617F, rather than the GCC genotype. In contrast, none of the JAK2 V617F-negative ET patients without the GCC genotype had thrombosis, and splenomegaly was frequently seen in this subset of ET patients. PV patients without the GCC genotype were significantly associated with high platelet count. Conclusions Our results indicate that the C allele of JAK2 rs4495487, in addition to the 46/1 haplotype, contributes

  8. Looking on the bright side: biased attention and the human serotonin transporter gene.

    Science.gov (United States)

    Fox, Elaine; Ridgewell, Anna; Ashwin, Chris

    2009-05-22

    Humans differ in terms of biased attention for emotional stimuli and these biases can confer differential resilience and vulnerability to emotional disorders. Selective processing of positive emotional information, for example, is associated with enhanced sociability and well-being while a bias for negative material is associated with neuroticism and anxiety. A tendency to selectively avoid negative material might also be associated with mental health and well-being. The neurobiological mechanisms underlying these cognitive phenotypes are currently unknown. Here we show for the first time that allelic variation in the promotor region of the serotonin transporter gene (5-HTTLPR) is associated with differential biases for positive and negative affective pictures. Individuals homozygous for the long allele (LL) showed a marked bias to selectively process positive affective material alongside selective avoidance of negative affective material. This potentially protective pattern was absent among individuals carrying the short allele (S or SL). Thus, allelic variation on a common genetic polymorphism was associated with the tendency to selectively process positive or negative information. The current study is important in demonstrating a genotype-related alteration in a well-established processing bias, which is a known risk factor in determining both resilience and vulnerability to emotional disorders.

  9. Power analysis of QTL detection in half-sib families using selective DNA pooling

    Directory of Open Access Journals (Sweden)

    López Teresa

    2001-05-01

    Full Text Available Abstract Individual loci of economic importance (QTL can be detected by comparing the inheritance of a trait and the inheritance of loci with alleles readily identifiable by laboratory methods (genetic markers. Data on allele segregation at the individual level are costly and alternatives have been proposed that make use of allele frequencies among progeny, rather than individual genotypes. Among the factors that may affect the power of the set up, the most important are those intrinsic to the QTL: the additive effect of the QTL, and its dominance, and distance between markers and QTL. Other factors are relative to the choice of animals and markers, such as the frequency of the QTL and marker alleles among dams and sires. Data collection may affect the detection power through the size of half-sib families, selection rate within families, and the technical error incurred when estimating genetic frequencies. We present results for a sensitivity analysis for QTL detection using pools of DNA from selected half-sibs. Simulations showed that conclusive detection may be achieved with families of at least 500 half-sibs if sires are chosen on the criteria that most of their marker alleles are either both missing, or one is fixed, among dams.

  10. Association of breast cancer risk with genetic variants showing differential allelic expression: Identification of a novel breast cancer susceptibility locus at 4q21

    Science.gov (United States)

    Adoue, Véronique; Michailidou, Kyriaki; Canisius, Sander; Lemaçon, Audrey; Droit, Arnaud; Andrulis, Irene L; Anton-Culver, Hoda; Arndt, Volker; Baynes, Caroline; Blomqvist, Carl; Bogdanova, Natalia V.; Bojesen, Stig E.; Bolla, Manjeet K.; Bonanni, Bernardo; Borresen-Dale, Anne-Lise; Brand, Judith S.; Brauch, Hiltrud; Brenner, Hermann; Broeks, Annegien; Burwinkel, Barbara; Chang-Claude, Jenny; Couch, Fergus J.; Cox, Angela; Cross, Simon S.; Czene, Kamila; Darabi, Hatef; Dennis, Joe; Devilee, Peter; Dörk, Thilo; Dos-Santos-Silva, Isabel; Eriksson, Mikael; Fasching, Peter A.; Figueroa, Jonine; Flyger, Henrik; García-Closas, Montserrat; Giles, Graham G.; Goldberg, Mark S.; González-Neira, Anna; Grenaker-Alnæs, Grethe; Guénel, Pascal; Haeberle, Lothar; Haiman, Christopher A.; Hamann, Ute; Hallberg, Emily; Hooning, Maartje J.; Hopper, John L.; Jakubowska, Anna; Jones, Michael; Kabisch, Maria; Kataja, Vesa; Lambrechts, Diether; Marchand, Loic Le; Lindblom, Annika; Lubinski, Jan; Mannermaa, Arto; Maranian, Mel; Margolin, Sara; Marme, Frederik; Milne, Roger L.; Neuhausen, Susan L.; Nevanlinna, Heli; Neven, Patrick; Olswold, Curtis; Peto, Julian; Plaseska-Karanfilska, Dijana; Pylkäs, Katri; Radice, Paolo; Rudolph, Anja; Sawyer, Elinor J.; Schmidt, Marjanka K.; Shu, Xiao-Ou; Southey, Melissa C.; Swerdlow, Anthony; Tollenaar, Rob A.E.M.; Tomlinson, Ian; Torres, Diana; Truong, Thérèse; Vachon, Celine; Van Den Ouweland, Ans M. W.; Wang, Qin; Winqvist, Robert; Investigators, kConFab/AOCS; Zheng, Wei; Benitez, Javier; Chenevix-Trench, Georgia; Dunning, Alison M.; Pharoah, Paul D. P.; Kristensen, Vessela; Hall, Per; Easton, Douglas F.; Pastinen, Tomi; Nord, Silje; Simard, Jacques

    2016-01-01

    There are significant inter-individual differences in the levels of gene expression. Through modulation of gene expression, cis-acting variants represent an important source of phenotypic variation. Consequently, cis-regulatory SNPs associated with differential allelic expression are functional candidates for further investigation as disease-causing variants. To investigate whether common variants associated with differential allelic expression were involved in breast cancer susceptibility, a list of genes was established on the basis of their involvement in cancer related pathways and/or mechanisms. Thereafter, using data from a genome-wide map of allelic expression associated SNPs, 313 genetic variants were selected and their association with breast cancer risk was then evaluated in 46,451 breast cancer cases and 42,599 controls of European ancestry ascertained from 41 studies participating in the Breast Cancer Association Consortium. The associations were evaluated with overall breast cancer risk and with estrogen receptor negative and positive disease. One novel breast cancer susceptibility locus on 4q21 (rs11099601) was identified (OR = 1.05, P = 5.6x10-6). rs11099601 lies in a 135 kb linkage disequilibrium block containing several genes, including, HELQ, encoding the protein HEL308 a DNA dependant ATPase and DNA Helicase involved in DNA repair, MRPS18C encoding the Mitochondrial Ribosomal Protein S18C and FAM175A (ABRAXAS), encoding a BRCA1 BRCT domain-interacting protein involved in DNA damage response and double-strand break (DSB) repair. Expression QTL analysis in breast cancer tissue showed rs11099601 to be associated with HELQ (P = 8.28x10-14), MRPS18C (P = 1.94x10-27) and FAM175A (P = 3.83x10-3), explaining about 20%, 14% and 1%, respectively of the variance inexpression of these genes in breast carcinomas. PMID:27792995

  11. Association of breast cancer risk with genetic variants showing differential allelic expression: Identification of a novel breast cancer susceptibility locus at 4q21.

    Science.gov (United States)

    Hamdi, Yosr; Soucy, Penny; Adoue, Véronique; Michailidou, Kyriaki; Canisius, Sander; Lemaçon, Audrey; Droit, Arnaud; Andrulis, Irene L; Anton-Culver, Hoda; Arndt, Volker; Baynes, Caroline; Blomqvist, Carl; Bogdanova, Natalia V; Bojesen, Stig E; Bolla, Manjeet K; Bonanni, Bernardo; Borresen-Dale, Anne-Lise; Brand, Judith S; Brauch, Hiltrud; Brenner, Hermann; Broeks, Annegien; Burwinkel, Barbara; Chang-Claude, Jenny; Couch, Fergus J; Cox, Angela; Cross, Simon S; Czene, Kamila; Darabi, Hatef; Dennis, Joe; Devilee, Peter; Dörk, Thilo; Dos-Santos-Silva, Isabel; Eriksson, Mikael; Fasching, Peter A; Figueroa, Jonine; Flyger, Henrik; García-Closas, Montserrat; Giles, Graham G; Goldberg, Mark S; González-Neira, Anna; Grenaker-Alnæs, Grethe; Guénel, Pascal; Haeberle, Lothar; Haiman, Christopher A; Hamann, Ute; Hallberg, Emily; Hooning, Maartje J; Hopper, John L; Jakubowska, Anna; Jones, Michael; Kabisch, Maria; Kataja, Vesa; Lambrechts, Diether; Le Marchand, Loic; Lindblom, Annika; Lubinski, Jan; Mannermaa, Arto; Maranian, Mel; Margolin, Sara; Marme, Frederik; Milne, Roger L; Neuhausen, Susan L; Nevanlinna, Heli; Neven, Patrick; Olswold, Curtis; Peto, Julian; Plaseska-Karanfilska, Dijana; Pylkäs, Katri; Radice, Paolo; Rudolph, Anja; Sawyer, Elinor J; Schmidt, Marjanka K; Shu, Xiao-Ou; Southey, Melissa C; Swerdlow, Anthony; Tollenaar, Rob A E M; Tomlinson, Ian; Torres, Diana; Truong, Thérèse; Vachon, Celine; Van Den Ouweland, Ans M W; Wang, Qin; Winqvist, Robert; Zheng, Wei; Benitez, Javier; Chenevix-Trench, Georgia; Dunning, Alison M; Pharoah, Paul D P; Kristensen, Vessela; Hall, Per; Easton, Douglas F; Pastinen, Tomi; Nord, Silje; Simard, Jacques

    2016-12-06

    There are significant inter-individual differences in the levels of gene expression. Through modulation of gene expression, cis-acting variants represent an important source of phenotypic variation. Consequently, cis-regulatory SNPs associated with differential allelic expression are functional candidates for further investigation as disease-causing variants. To investigate whether common variants associated with differential allelic expression were involved in breast cancer susceptibility, a list of genes was established on the basis of their involvement in cancer related pathways and/or mechanisms. Thereafter, using data from a genome-wide map of allelic expression associated SNPs, 313 genetic variants were selected and their association with breast cancer risk was then evaluated in 46,451 breast cancer cases and 42,599 controls of European ancestry ascertained from 41 studies participating in the Breast Cancer Association Consortium. The associations were evaluated with overall breast cancer risk and with estrogen receptor negative and positive disease. One novel breast cancer susceptibility locus on 4q21 (rs11099601) was identified (OR = 1.05, P = 5.6x10-6). rs11099601 lies in a 135 kb linkage disequilibrium block containing several genes, including, HELQ, encoding the protein HEL308 a DNA dependant ATPase and DNA Helicase involved in DNA repair, MRPS18C encoding the Mitochondrial Ribosomal Protein S18C and FAM175A (ABRAXAS), encoding a BRCA1 BRCT domain-interacting protein involved in DNA damage response and double-strand break (DSB) repair. Expression QTL analysis in breast cancer tissue showed rs11099601 to be associated with HELQ (P = 8.28x10-14), MRPS18C (P = 1.94x10-27) and FAM175A (P = 3.83x10-3), explaining about 20%, 14% and 1%, respectively of the variance inexpression of these genes in breast carcinomas.

  12. DISCRIMINATIVE MODEL OF CERTAIN MOTOR INDICATORS OF FOOTBALL PLAYERS AS SELECTION CRITERIA FOR TEAM POSITION

    Directory of Open Access Journals (Sweden)

    Goran Vučković

    2013-07-01

    Full Text Available Well-designed and implemented selection is one of the important prerequisites for achieving the expected results in the modern competitive sport at all levels. The aim of this work was to determine how the selection was made for Serbian League players, on the basis of their certain motor parameters and the positions in the team. A sample of 25 senior players of a football team competing in the Serbian League is divided into four sub-samples, based on team positions. For assessment of motor characteristics following tests were used: long jump (LJ, Abalac test (AT; 10 seconds push-ups (PU, 30 seconds trunk bends (TB, 20 meter flying start running (20FSR, 20 meter high start running (20HSR, 50 meter high start running (50HSR and Cooper test (CT . Based on the obtained results it can be concluded that there are significant differences for variable 20FSR and variable CT (F = 3754, 9835, p = .027, .000, respectively. Three canonical discriminant functions were singled out, where the first explained even 84.6%, the second 14.5% and the third only 1% of the total variance, or in summary first two functions explained 99.0% of the variance. It can be concluded that the selected players, in terms of the position in the team, distinguished first by performing on the Cooper test, followed by the result of 20 meter flying start running, 20 meter high start running, 50 meter high start running, trunk bends, and finally by Abalac test, push-ups and long jump. Observed as a function of certain motor characteristics, it could be concluded that in the selection of players in terms of the playing position confidence level was 72.0% in general level, with the most reliable for goalkeepers (100%, midfielders (71.4% and defensive players (70.0%, while the smallest was at strikers (50%.

  13. Positive selection rather than relaxation of functional constraint drives the evolution of vision during chicken domestication.

    Science.gov (United States)

    Wang, Ming-Shan; Zhang, Rong-Wei; Su, Ling-Yan; Li, Yan; Peng, Min-Sheng; Liu, He-Qun; Zeng, Lin; Irwin, David M; Du, Jiu-Lin; Yao, Yong-Gang; Wu, Dong-Dong; Zhang, Ya-Ping

    2016-05-01

    As noted by Darwin, chickens have the greatest phenotypic diversity of all birds, but an interesting evolutionary difference between domestic chickens and their wild ancestor, the Red Junglefowl, is their comparatively weaker vision. Existing theories suggest that diminished visual prowess among domestic chickens reflect changes driven by the relaxation of functional constraints on vision, but the evidence identifying the underlying genetic mechanisms responsible for this change has not been definitively characterized. Here, a genome-wide analysis of the domestic chicken and Red Junglefowl genomes showed significant enrichment for positively selected genes involved in the development of vision. There were significant differences between domestic chickens and their wild ancestors regarding the level of mRNA expression for these genes in the retina. Numerous additional genes involved in the development of vision also showed significant differences in mRNA expression between domestic chickens and their wild ancestors, particularly for genes associated with phototransduction and photoreceptor development, such as RHO (rhodopsin), GUCA1A, PDE6B and NR2E3. Finally, we characterized the potential role of the VIT gene in vision, which experienced positive selection and downregulated expression in the retina of the village chicken. Overall, our results suggest that positive selection, rather than relaxation of purifying selection, contributed to the evolution of vision in domestic chickens. The progenitors of domestic chickens harboring weaker vision may have showed a reduced fear response and vigilance, making them easier to be unconsciously selected and/or domesticated.

  14. The Combinational Use of CRISPR/Cas9 and Targeted Toxin Technology Enables Efficient Isolation of Bi-Allelic Knockout Non-Human Mammalian Clones

    Directory of Open Access Journals (Sweden)

    Satoshi Watanabe

    2018-04-01

    Full Text Available Recent advances in genome editing systems such as clustered regularly interspaced short palindromic repeats/CRISPR-associated protein-9 nuclease (CRISPR/Cas9 have facilitated genomic modification in mammalian cells. However, most systems employ transient treatment with selective drugs such as puromycin to obtain the desired genome-edited cells, which often allows some untransfected cells to survive and decreases the efficiency of generating genome-edited cells. Here, we developed a novel targeted toxin-based drug-free selection system for the enrichment of genome-edited cells. Cells were transfected with three expression vectors, each of which carries a guide RNA (gRNA, humanized Cas9 (hCas9 gene, or Clostridium perfringens-derived endo-β-galactosidase C (EndoGalC gene. Once EndoGalC is expressed in a cell, it digests the cell-surface α-Gal epitope, which is specifically recognized by BS-I-B4 lectin (IB4. Three days after transfection, these cells were treated with cytotoxin saporin-conjugated IB4 (IB4SAP for 30 min at 37 °C prior to cultivation in a normal medium. Untransfected cells and those weakly expressing EndoGalC will die due to the internalization of saporin. Cells transiently expressing EndoGalC strongly survive, and some of these surviving clones are expected to be genome-edited bi-allelic knockout (KO clones due to their strong co-expression of gRNA and hCas9. When porcine α-1,3-galactosyltransferase gene, which can synthesize the α-Gal epitope, was attempted to be knocked out, 16.7% and 36.7% of the surviving clones were bi-allelic and mono-allelic knockout (KO cells, respectively, which was in contrast to the isolation of clones in the absence of IB4SAP treatment. Namely, 0% and 13.3% of the resulting clones were bi-allelic and mono-allelic KO cells, respectively. A similar tendency was seen when other target genes such as DiGeorge syndrome critical region gene 2 and transforming growth factor-β receptor type 1 gene were

  15. The TGFBR1*6A allele is not associated with susceptibility to colorectal cancer in a Spanish population: a case-control study

    International Nuclear Information System (INIS)

    Castillejo, Adela; Guillén-Ponce, Carmen; Carrato, Alfredo; Soto, José-Luís; Mata-Balaguer, Trinidad; Montenegro, Paola; Ochoa, Enrique; Lázaro, Rafael; Martínez-Cantó, Ana; Castillejo, María-Isabel; Guarinos, Carla; Barberá, Víctor-Manuel

    2009-01-01

    TGF-β receptor type I is a mediator of growth inhibitory signals. TGFBR1*6A (rs11466445) is a common polymorphic variant of the TGF-β receptor I gene and has been associated with tumour susceptibility. Nevertheless, the role of this polymorphism as a risk factor for colorectal cancer is controversial. The aim of this study was to assess the association between TGFBR1*6A and colorectal cancer, age, sex, tumour location and tumour stage in a Spanish population. The case-control study involved 800 Spanish subjects: 400 sporadic colorectal cancer patients and 400 age-, sex-, and ethnic-matched controls. The odds ratio (OR) and 95% confidence interval (95% CI) for the TGFBR1*6A polymorphism were calculated using unconditional logistic regression adjusted for age and sex. Analysis of somatic mutations at the GCG repeat of TGFBR1 exon 1 and germline allele-specific expression were also conducted to obtain further information on the contribution of the TGFBR1*6A allele to CRC susceptibility. There was no statistically significant association between the TGFBR1*6A allele and CRC (p > 0.05). The OR was 1.147 (95% CI: 0.799–1.647) for carriers of the TGFBR1*6A allele and 0.878 (95% CI: 0.306–2.520) for homozygous TGFBR1*6A individuals compared with the reference. The frequency of the polymorphism was not affected by age, sex or tumour stage. The TGFBR1*6A allele was more prevalent among colon tumour patients than among rectal tumour patients. Tumour somatic mutations were found in only two of 69 cases (2.9%). Both cases involved a GCG deletion that changed genotype 9A/9A in normal DNA to genotype 9A/8A. Interestingly, these two tumours were positive for microsatellite instability, suggesting that these mutations originated because of a deficient DNA mismatch repair system. Allele-specific expression of the 9A allele was detected in seven of the 14 heterozygous 9A/6A tumour cases. This could have been caused by linkage disequilibrium of the TGFBR1*6A allele with

  16. Tumor transcriptome sequencing reveals allelic expression imbalances associated with copy number alterations.

    Directory of Open Access Journals (Sweden)

    Brian B Tuch

    Full Text Available Due to growing throughput and shrinking cost, massively parallel sequencing is rapidly becoming an attractive alternative to microarrays for the genome-wide study of gene expression and copy number alterations in primary tumors. The sequencing of transcripts (RNA-Seq should offer several advantages over microarray-based methods, including the ability to detect somatic mutations and accurately measure allele-specific expression. To investigate these advantages we have applied a novel, strand-specific RNA-Seq method to tumors and matched normal tissue from three patients with oral squamous cell carcinomas. Additionally, to better understand the genomic determinants of the gene expression changes observed, we have sequenced the tumor and normal genomes of one of these patients. We demonstrate here that our RNA-Seq method accurately measures allelic imbalance and that measurement on the genome-wide scale yields novel insights into cancer etiology. As expected, the set of genes differentially expressed in the tumors is enriched for cell adhesion and differentiation functions, but, unexpectedly, the set of allelically imbalanced genes is also enriched for these same cancer-related functions. By comparing the transcriptomic perturbations observed in one patient to his underlying normal and tumor genomes, we find that allelic imbalance in the tumor is associated with copy number mutations and that copy number mutations are, in turn, strongly associated with changes in transcript abundance. These results support a model in which allele-specific deletions and duplications drive allele-specific changes in gene expression in the developing tumor.

  17. Analysis of FBN1 allele expression by dermal fibroblasts from Marfan syndrome patients

    Energy Technology Data Exchange (ETDEWEB)

    Putman, E.A.; Cao, S.N.; Milewicz, D.M. [Univ. of Texas Medical School, Houston, TX (United States)

    1994-09-01

    Screening for mutations in the FBN1 cDNA from Marfan patient cell strains has detected mutations in only 10-15% of patients. In an attempt to explain this poor detection rate, we examined FBN1 allele expression and fibrillin synthesis by 26 cell strains from Marfan patients. DNA from the patients and 10 controls was assessed for the presence of a polymorphic Rsa I restriction site in the 3{prime} untranslated region of the FBN1 gene. Twelve of 26 patient and 5 of 10 control DNAs were heterozygous. Fibroblast RNA from the heterozygous cell strains was reverse-transcribed and subsequently PCR amplified using a [{sup 32}P]-labelled primer, digested with Rsa I and analyzed. Although 3 samples showed no transcript from one allele by ethidium bromide staining, a Betagen scanner detected low levels (10-15%) of that allele. In addition, there was unequal expression of the two alleles in three other patients; for example, only 30% expression from one allele. The remaining patients and the controls had equal expression of each allele. Fibrillin protein synthesis by fibroblasts from these heterozygous patients was also examined. After a 30 minute pulse with [{sup 35}S]-cysteine, cell lysates were collected and proteins analyzed by SDS-PAGE. The amount of fibrillin produced relative to a reference protein was determined using a Betagen scanner. Fibrillin protein synthesis was reduced in 2 of the 3 patients with very low RNA production from one of the FBN1 alleles. All other Marfan and control cell strains showed normal amounts of fibrillin synthesized. The low expression levels from one allele may contribute to, but not fully account for, the low detection rate of FBN1 mutations. Interestingly, protein synthesis levels were not affected in 4 of 6 cell strains demonstrating low levels of RNA expression.

  18. A WIDE DISTRIBUTION OF A NEW VRN-B1c ALLELE OF WHEAT TRITICUM AESTIVUM L. IN RUSSIA, UKRAINE AND ADJACENT REGIONS: A LINK WITH THE HEADING TIME AND ADAPTIVE POTENTIAL

    Directory of Open Access Journals (Sweden)

    Shcherban A.

    2012-08-01

    Full Text Available The adaptation of common wheat (T. aestivum L. to diverse environmental conditions is greatly under the control of genes involved in determination of vernalization response (Vrn-1 genes. It was found that the variation in common wheat heading time is affected not only by combination of Vrn-1 homoeoalleles but also by multiple alleles at a separate Vrn-1 locus. Previously, we described the Vrn-B1c allele from T.aestivum cv. 'Saratovskaya 29' and found significant differences in the structure of the first (1st intron of this allele when compared to another highly abundant Vrn-B1a allele, specifically, the deletion of 0.8 kb coupled with the duplication of 0.4 kb. We suggested that the changes in the intron 1 of Vrn-B1c allele caused earlier ear emergence in the near-isogenic line and cultivars, carrying this allele. In this study we investigate the distribution of the Vrn-B1c allele in a wide set of spring wheat cultivars from Russia, Ukraine and adjacent regions. The analysis revealed that 40% of Russian and 53% of Ukranian spring wheat cultivars contain the Vrn-B1c allele. The high distribution of the Vrn-B1c allele can be explained by a frequent using of 'Saratovskaya 29' in the breeding process inside the studied area. From the other hand, the predominance of the Vrn-B1c allele among cultivars cultivated in West Siberia and Kazakhstan may be due to the selective advantage of this allele for the region where there is a high risk of early fall frosts.

  19. Positive selection and propeptide repeats promote rapid interspecific divergence of a gastropod sperm protein.

    Science.gov (United States)

    Hellberg, M E; Moy, G W; Vacquier, V D

    2000-03-01

    Male-specific proteins have increasingly been reported as targets of positive selection and are of special interest because of the role they may play in the evolution of reproductive isolation. We report the rapid interspecific divergence of cDNA encoding a major acrosomal protein of unknown function (TMAP) of sperm from five species of teguline gastropods. A mitochondrial DNA clock (calibrated by congeneric species divided by the Isthmus of Panama) estimates that these five species diverged 2-10 MYA. Inferred amino acid sequences reveal a propeptide that has diverged rapidly between species. The mature protein has diverged faster still due to high nonsynonymous substitution rates (> 25 nonsynonymous substitutions per site per 10(9) years). cDNA encoding the mature protein (89-100 residues) shows evidence of positive selection (Dn/Ds > 1) for 4 of 10 pairwise species comparisons. cDNA and predicted secondary-structure comparisons suggest that TMAP is neither orthologous nor paralogous to abalone lysin, and thus marks a second, phylogenetically independent, protein subject to strong positive selection in free-spawning marine gastropods. In addition, an internal repeat in one species (Tegula aureotincta) produces a duplicated cleavage site which results in two alternatively processed mature proteins differing by nine amino acid residues. Such alternative processing may provide a mechanism for introducing novel amino acid sequence variation at the amino-termini of proteins. Highly divergent TMAP N-termini from two other tegulines (Tegula regina and Norrisia norrisii) may have originated by such a mechanism.

  20. Impact of selection and demography on the diffusion of lactase persistence.

    Science.gov (United States)

    Gerbault, Pascale; Moret, Céline; Currat, Mathias; Sanchez-Mazas, Alicia

    2009-07-24

    The lactase enzyme allows lactose digestion in fresh milk. Its activity strongly decreases after the weaning phase in most humans, but persists at a high frequency in Europe and some nomadic populations. Two hypotheses are usually proposed to explain the particular distribution of the lactase persistence phenotype. The gene-culture coevolution hypothesis supposes a nutritional advantage of lactose digestion in pastoral populations. The calcium assimilation hypothesis suggests that carriers of the lactase persistence allele(s) (LCT*P) are favoured in high-latitude regions, where sunshine is insufficient to allow accurate vitamin-D synthesis. In this work, we test the validity of these two hypotheses on a large worldwide dataset of lactase persistence frequencies by using several complementary approaches. We first analyse the distribution of lactase persistence in various continents in relation to geographic variation, pastoralism levels, and the genetic patterns observed for other independent polymorphisms. Then we use computer simulations and a large database of archaeological dates for the introduction of domestication to explore the evolution of these frequencies in Europe according to different demographic scenarios and selection intensities. Our results show that gene-culture coevolution is a likely hypothesis in Africa as high LCT*P frequencies are preferentially found in pastoral populations. In Europe, we show that population history played an important role in the diffusion of lactase persistence over the continent. Moreover, selection pressure on lactase persistence has been very high in the North-western part of the continent, by contrast to the South-eastern part where genetic drift alone can explain the observed frequencies. This selection pressure increasing with latitude is highly compatible with the calcium assimilation hypothesis while the gene-culture coevolution hypothesis cannot be ruled out if a positively selected lactase gene was carried at

  1. Impact of selection and demography on the diffusion of lactase persistence.

    Directory of Open Access Journals (Sweden)

    Pascale Gerbault

    Full Text Available BACKGROUND: The lactase enzyme allows lactose digestion in fresh milk. Its activity strongly decreases after the weaning phase in most humans, but persists at a high frequency in Europe and some nomadic populations. Two hypotheses are usually proposed to explain the particular distribution of the lactase persistence phenotype. The gene-culture coevolution hypothesis supposes a nutritional advantage of lactose digestion in pastoral populations. The calcium assimilation hypothesis suggests that carriers of the lactase persistence allele(s (LCT*P are favoured in high-latitude regions, where sunshine is insufficient to allow accurate vitamin-D synthesis. In this work, we test the validity of these two hypotheses on a large worldwide dataset of lactase persistence frequencies by using several complementary approaches. METHODOLOGY: We first analyse the distribution of lactase persistence in various continents in relation to geographic variation, pastoralism levels, and the genetic patterns observed for other independent polymorphisms. Then we use computer simulations and a large database of archaeological dates for the introduction of domestication to explore the evolution of these frequencies in Europe according to different demographic scenarios and selection intensities. CONCLUSIONS: Our results show that gene-culture coevolution is a likely hypothesis in Africa as high LCT*P frequencies are preferentially found in pastoral populations. In Europe, we show that population history played an important role in the diffusion of lactase persistence over the continent. Moreover, selection pressure on lactase persistence has been very high in the North-western part of the continent, by contrast to the South-eastern part where genetic drift alone can explain the observed frequencies. This selection pressure increasing with latitude is highly compatible with the calcium assimilation hypothesis while the gene-culture coevolution hypothesis cannot be ruled out

  2. Lost P1 allele in sh2 sweet corn: quantitative effects of p1 and a1 genes on concentrations of maysin, apimaysin, methoxymaysin, and chlorogenic acid in maize silk.

    Science.gov (United States)

    Guo, B Z; Zhang, Z J; Butrón, A; Widstrom, N W; Snook, M E; Lynch, R E; Plaisted, D

    2004-12-01

    In the United States, insecticide is used extensively in the production of sweet corn due to consumer demand for zero damage to ears and to a sweet corn genetic base with little or no resistance to ear-feeding insects. Growers in the southern United States depend on scheduled pesticide applications to control ear-feeding insects. In a study of quantitative genetic control over silk maysin, AM-maysin (apimaysin and methoxymaysin), and chlorogenic acid contents in an F2 population derived from GE37 (dent corn, P1A1) and 565 (sh2 sweet corn, p1a1), we demonstrate that the P1 allele from field corn, which was selected against in the development of sweet corn, has a strong epistatic interaction with the a1 allele in sh2 sweet corn. We detected that the p1 gene has significant effects (P silk maysin concentrations but also on AM-maysin, and chlorogenic acid concentrations. The a1 gene also has significant (P silk antibiotic chemicals. Successful selection from the fourth and fifth selfed backcrosses for high-maysin individuals of sweet corn homozygous for the recessive a1 allele (tightly linked to sh2) and the dominant P1 allele has been demonstrated. These selected lines have much higher (2 to 3 times) concentrations of silk maysin and other chemicals (AM-maysin and chlorogenic acid) than the donor parent GE37 and could enhance sweet corn resistance to corn earworm and reduce the number of applications of insecticide required to produce sweet corn.

  3. Prevalence of Huntington's disease gene CAG trinucleotide repeat alleles in patients with bipolar disorder.

    Science.gov (United States)

    Ramos, Eliana Marisa; Gillis, Tammy; Mysore, Jayalakshmi S; Lee, Jong-Min; Alonso, Isabel; Gusella, James F; Smoller, Jordan W; Sklar, Pamela; MacDonald, Marcy E; Perlis, Roy H

    2015-06-01

    Huntington's disease is a neurodegenerative disorder characterized by motor, cognitive, and psychiatric symptoms that are caused by huntingtin gene (HTT) CAG trinucleotide repeat alleles of 36 or more units. A greater than expected prevalence of incompletely penetrant HTT CAG repeat alleles observed among individuals diagnosed with major depressive disorder raises the possibility that another mood disorder, bipolar disorder, could likewise be associated with Huntington's disease. We assessed the distribution of HTT CAG repeat alleles in a cohort of individuals with bipolar disorder. HTT CAG allele sizes from 2,229 Caucasian individuals diagnosed with DSM-IV bipolar disorder were compared to allele sizes in 1,828 control individuals from multiple cohorts. We found that HTT CAG repeat alleles > 35 units were observed in only one of 4,458 chromosomes from individuals with bipolar disorder, compared to three of 3,656 chromosomes from control subjects. These findings do not support an association between bipolar disorder and Huntington's disease. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Mutation intolerant genes and targets of FMRP are enriched for nonsynonymous alleles in schizophrenia.

    Science.gov (United States)

    Leonenko, Ganna; Richards, Alexander L; Walters, James T; Pocklington, Andrew; Chambert, Kimberly; Al Eissa, Mariam M; Sharp, Sally I; O'Brien, Niamh L; Curtis, David; Bass, Nicholas J; McQuillin, Andrew; Hultman, Christina; Moran, Jennifer L; McCarroll, Steven A; Sklar, Pamela; Neale, Benjamin M; Holmans, Peter A; Owen, Michael J; Sullivan, Patrick F; O'Donovan, Michael C

    2017-10-01

    Risk of schizophrenia is conferred by alleles occurring across the full spectrum of frequencies from common SNPs of weak effect through to ultra rare alleles, some of which may be moderately to highly penetrant. Previous studies have suggested that some of the risk of schizophrenia is attributable to uncommon alleles represented on Illumina exome arrays. Here, we present the largest study of exomic variation in schizophrenia to date, using samples from the United Kingdom and Sweden (10,011 schizophrenia cases and 13,791 controls). Single variants, genes, and gene sets were analyzed for association with schizophrenia. No single variant or gene reached genome-wide significance. Among candidate gene sets, we found significant enrichment for rare alleles (minor allele frequency [MAF] schizophrenia by excluding a role for uncommon exomic variants (0.01 ≤ MAF ≥ 0.001) that confer a relatively large effect (odds ratio [OR] > 4). We also show risk alleles within this frequency range exist, but confer smaller effects and should be identified by larger studies. © 2017 Wiley Periodicals, Inc.

  5. A synbio approach for selection of highly expressed gene variants in Gram-positive bacteria

    DEFF Research Database (Denmark)

    Ferro, Roberto; Rennig, Maja; Hernández Rollán, Cristina

    2018-01-01

    with a long history in food fermentation. We have developed a synbio approach for increasing gene expression in two Gram-positive bacteria. First of all, the gene of interest was coupled to an antibiotic resistance gene to create a growth-based selection system. We then randomised the translation initiation...... region (TIR) preceding the gene of interest and selected clones that produced high protein titres, as judged by their ability to survive on high concentrations of antibiotic. Using this approach, we were able to significantly increase production of two industrially relevant proteins; sialidase in B....... subtilis and tyrosine ammonia lyase in L. lactis. Gram-positive bacteria are widely used to produce industrial enzymes. High titres are necessary to make the production economically feasible. The synbio approach presented here is a simple and inexpensive way to increase protein titres, which can be carried...

  6. An efficient method for generation of bi-allelic null mutant mouse embryonic stem cells and its application for investigating epigenetic modifiers.

    Science.gov (United States)

    Fisher, Cynthia L; Marks, Hendrik; Cho, Lily Ting-Yin; Andrews, Robert; Wormald, Sam; Carroll, Thomas; Iyer, Vivek; Tate, Peri; Rosen, Barry; Stunnenberg, Hendrik G; Fisher, Amanda G; Skarnes, William C

    2017-12-01

    Mouse embryonic stem (ES) cells are a popular model system to study biological processes, though uncovering recessive phenotypes requires inactivating both alleles. Building upon resources from the International Knockout Mouse Consortium (IKMC), we developed a targeting vector for second allele inactivation in conditional-ready IKMC 'knockout-first' ES cell lines. We applied our technology to several epigenetic regulators, recovering bi-allelic targeted clones with a high efficiency of 60% and used Flp recombinase to restore expression in two null cell lines to demonstrate how our system confirms causality through mutant phenotype reversion. We designed our strategy to select against re-targeting the 'knockout-first' allele and identify essential genes in ES cells, including the histone methyltransferase Setdb1. For confirmation, we exploited the flexibility of our system, enabling tamoxifen inducible conditional gene ablation while controlling for genetic background and tamoxifen effects. Setdb1 ablated ES cells exhibit severe growth inhibition, which is not rescued by exogenous Nanog expression or culturing in naive pluripotency '2i' media, suggesting that the self-renewal defect is mediated through pluripotency network independent pathways. Our strategy to generate null mutant mouse ES cells is applicable to thousands of genes and repurposes existing IKMC Intermediate Vectors. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. Positive selection and ancient duplications in the evolution of class B floral homeotic genes of orchids and grasses

    Directory of Open Access Journals (Sweden)

    Koch Marcus A

    2009-04-01

    Full Text Available Abstract Background Positive selection is recognized as the prevalence of nonsynonymous over synonymous substitutions in a gene. Models of the functional evolution of duplicated genes consider neofunctionalization as key to the retention of paralogues. For instance, duplicate transcription factors are specifically retained in plant and animal genomes and both positive selection and transcriptional divergence appear to have played a role in their diversification. However, the relative impact of these two factors has not been systematically evaluated. Class B MADS-box genes, comprising DEF-like and GLO-like genes, encode developmental transcription factors essential for establishment of perianth and male organ identity in the flowers of angiosperms. Here, we contrast the role of positive selection and the known divergence in expression patterns of genes encoding class B-like MADS-box transcription factors from monocots, with emphasis on the family Orchidaceae and the order Poales. Although in the monocots these two groups are highly diverse and have a strongly canalized floral morphology, there is no information on the role of positive selection in the evolution of their distinctive flower morphologies. Published research shows that in Poales, class B-like genes are expressed in stamens and in lodicules, the perianth organs whose identity might also be specified by class B-like genes, like the identity of the inner tepals of their lily-like relatives. In orchids, however, the number and pattern of expression of class B-like genes have greatly diverged. Results The DEF-like genes from Orchidaceae form four well-supported, ancient clades of orthologues. In contrast, orchid GLO-like genes form a single clade of ancient orthologues and recent paralogues. DEF-like genes from orchid clade 2 (OMADS3-like genes are under less stringent purifying selection than the other orchid DEF-like and GLO-like genes. In comparison with orchids, purifying selection

  8. Are Humans Still Evolving? A Natural Selection Discussion Lesson

    Science.gov (United States)

    Shields, Martin

    2004-01-01

    A study is conducted to develop sound comprehension of natural selection theory by prompting students to use its concept to explain the evolutionary status of humans. In relation to the current existence of human it is stated that human populations currently undergo microevolutionary changes in allele frequencies due to natural selection and other…

  9. Association between the CCR5 32-bp deletion allele and late onset of schizophrenia

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Berg; Timm, Sally; Wang, August G

    2006-01-01

    OBJECTIVE: The 32-bp deletion allele in chemokine receptor CCR5 has been associated with several immune-mediated diseases and might be implicated in schizophrenia as well. METHOD: The authors genotyped DNA samples from 268 schizophrenia patients and 323 healthy subjects. Age at first admission...... of the deletion allele in the latter subgroup of patients. CONCLUSIONS: These findings suggest that the CCR5 32-bp deletion allele is a susceptibility factor for schizophrenia with late onset. Alternatively, the CCR5 32-bp deletion allele may act as a modifier by delaying the onset of schizophrenia without...

  10. Association between the CCR5 32-bp deletion allele and late onset of schizophrenia

    DEFF Research Database (Denmark)

    Rasmussen, H.B.; Timm, S.; Wang, A.G.

    2006-01-01

    OBJECTIVE: The 32-bp deletion allele in chemokine receptor CCR5 has been associated with several immune-mediated diseases and might be implicated in schizophrenia as well. METHOD: The authors genotyped DNA samples from 268 schizophrenia patients and 323 healthy subjects. Age at first admission...... to a psychiatric hospital department served as a measure of disease onset. RESULTS: Patients and comparison subjects differed marginally in their genotype distribution, with a slightly higher frequency of the deletion allele seen in the patients. The authors found the deletion allele to be associated with higher......-onset schizophrenia) and healthy subjects differed significantly. This was reflected in an increased frequency of the deletion allele in the patient subgroup. Patients with ages at first admission below and above 40 years significantly differed in distribution of genotypes and alleles, with an overrepresentation...

  11. Rapid detection of the CYP2A6*12 hybrid allele by Pyrosequencing® technology

    Directory of Open Access Journals (Sweden)

    Gallagher Margaret L

    2009-08-01

    Full Text Available Abstract Background Identification of CYP2A6 alleles associated with reduced enzyme activity is important in the study of inter-individual differences in drug metabolism. CYP2A6*12 is a hybrid allele that results from unequal crossover between CYP2A6 and CYP2A7 genes. The 5' regulatory region and exons 1–2 are derived from CYP2A7, and exons 3–9 are derived from CYP2A6. Conventional methods for detection of CYP2A6*12 consist of two-step PCR protocols that are laborious and unsuitable for high-throughput genotyping. We developed a rapid and accurate method to detect the CYP2A6*12 allele by Pyrosequencing technology. Methods A single set of PCR primers was designed to specifically amplify both the CYP2A6*1 wild-type allele and the CYP2A6*12 hybrid allele. An internal Pyrosequencing primer was used to generate allele-specific sequence information, which detected homozygous wild-type, heterozygous hybrid, and homozygous hybrid alleles. We first validated the assay on 104 DNA samples that were also genotyped by conventional two-step PCR and by cycle sequencing. CYP2A6*12 allele frequencies were then determined using the Pyrosequencing assay on 181 multi-ethnic DNA samples from subjects of African American, European Caucasian, Pacific Rim, and Hispanic descent. Finally, we streamlined the Pyrosequencing assay by integrating liquid handling robotics into the workflow. Results Pyrosequencing results demonstrated 100% concordance with conventional two-step PCR and cycle sequencing methods. Allele frequency data showed slightly higher prevalence of the CYP2A6*12 allele in European Caucasians and Hispanics. Conclusion This Pyrosequencing assay proved to be a simple, rapid, and accurate alternative to conventional methods, which can be easily adapted to the needs of higher-throughput studies.

  12. Distribution of events of positive selection and population differentiation in a metabolic pathway: the case of asparagine N-glycosylation

    Directory of Open Access Journals (Sweden)

    Dall’Olio Giovanni

    2012-06-01

    Full Text Available Abstract Background Asparagine N-Glycosylation is one of the most important forms of protein post-translational modification in eukaryotes. This metabolic pathway can be subdivided into two parts: an upstream sub-pathway required for achieving proper folding for most of the proteins synthesized in the secretory pathway, and a downstream sub-pathway required to give variability to trans-membrane proteins, and involved in adaptation to the environment and innate immunity. Here we analyze the nucleotide variability of the genes of this pathway in human populations, identifying which genes show greater population differentiation and which genes show signatures of recent positive selection. We also compare how these signals are distributed between the upstream and the downstream parts of the pathway, with the aim of exploring how forces of population differentiation and positive selection vary among genes involved in the same metabolic pathway but subject to different functional constraints. Results Our results show that genes in the downstream part of the pathway are more likely to show a signature of population differentiation, while events of positive selection are equally distributed among the two parts of the pathway. Moreover, events of positive selection are frequent on genes that are known to be at bifurcation points, and that are identified as being in key position by a network-level analysis such as MGAT3 and GCS1. Conclusions These findings indicate that the upstream part of the Asparagine N-Glycosylation pathway has lower diversity among populations, while the downstream part is freer to tolerate diversity among populations. Moreover, the distribution of signatures of population differentiation and positive selection can change between parts of a pathway, especially between parts that are exposed to different functional constraints. Our results support the hypothesis that genes involved in constitutive processes can be expected to show

  13. Allele-specific cytokine responses at the HLA-C locus, implications for psoriasis

    Science.gov (United States)

    Hundhausen, Christian; Bertoni, Anna; Mak, Rose K; Botti, Elisabetta; Di Meglio, Paola; Clop, Alex; Laggner, Ute; Chimenti, Sergio; Hayday, Adrian C; Barker, Jonathan N; Trembath, Richard C; Capon, Francesca; Nestle, Frank O

    2011-01-01

    Psoriasis is an inflammatory skin disorder that is inherited as a complex trait. Genetic studies have repeatedly highlighted HLA-C as the major determinant for psoriasis susceptibility, with the Cw*0602 allele conferring significant disease risk in a wide-range of populations. Despite the potential importance of HLA-C variation in psoriasis, either via an effect on peptide presentation or immuno-inhibitory activity, allele-specific expression patterns have not been investigated. Here, we used reporter assays to characterize two regulatory variants, which virtually abolished the response to TNF-α (rs2524094) and IFN-γ (rs10657191) in HLA-Cw*0602 and a cluster of related alleles. We validated these findings through the analysis of HLA-Cw*0602 expression in primary keratinocytes treated with TNF-α and IFN-γ. Finally, we showed that HLA-Cw*0602 transcripts are not increased in psoriatic skin lesions, despite highly elevated TNF-α levels. Thus, our findings demonstrate the presence of allele-specific differences in HLA-C expression and indicate that HLA-Cw*0602 is unresponsive to up-regulation by key pro-inflammatory cytokines in psoriasis. These data pave the way for functional studies into the pathogenic role of the major psoriasis susceptibility allele. PMID:22113476

  14. Allele-specific cytokine responses at the HLA-C locus: implications for psoriasis.

    Science.gov (United States)

    Hundhausen, Christian; Bertoni, Anna; Mak, Rose K; Botti, Elisabetta; Di Meglio, Paola; Clop, Alex; Laggner, Ute; Chimenti, Sergio; Hayday, Adrian C; Barker, Jonathan N; Trembath, Richard C; Capon, Francesca; Nestle, Frank O

    2012-03-01

    Psoriasis is an inflammatory skin disorder that is inherited as a complex trait. Genetic studies have repeatedly highlighted HLA-C as the major determinant for psoriasis susceptibility, with the Cw*0602 allele conferring significant disease risk in a wide range of populations. Despite the potential importance of HLA-C variation in psoriasis, either via an effect on peptide presentation or immuno-inhibitory activity, allele-specific expression patterns have not been investigated. Here, we used reporter assays to characterize two regulatory variants, which virtually abolished the response to tumor necrosis factor (TNF)-α (rs2524094) and IFN-γ (rs10657191) in HLA-Cw*0602 and a cluster of related alleles. We validated these findings through the analysis of HLA-Cw*0602 expression in primary keratinocytes treated with TNF-α and IFN-γ. Finally, we showed that HLA-Cw*0602 transcripts are not increased in psoriatic skin lesions, despite highly elevated TNF-α levels. Thus, our findings demonstrate the presence of allele-specific differences in HLA-C expression and indicate that HLA-Cw*0602 is unresponsive to upregulation by key proinflammatory cytokines in psoriasis. These data pave the way for functional studies into the pathogenic role of the major psoriasis susceptibility allele.

  15. Selection of microsatellite markers for bladder cancer diagnosis without the need for corresponding blood

    DEFF Research Database (Denmark)

    van Tilborg, Angela A G; Kompier, Lucie C; Lurkin, Irene

    2012-01-01

    . Moreover, stutter peaks may complicate the analysis. To use microsatellite markers for diagnosis of recurrent bladder cancer, we aimed to select markers without stutter peaks and a constant ratio between alleles, thereby avoiding the need for a control DNA sample. We investigated 49 microsatellite markers...... with tri- and tetranucleotide repeats in regions commonly lost in bladder cancer. Based on analysis of 50 blood DNAs the 12 best performing markers were selected with few stutter peaks and a constant ratio between peaks heights. Per marker upper and lower cut off values for allele ratios were determined...

  16. Preferential Allele Expression Analysis Identifies Shared Germline and Somatic Driver Genes in Advanced Ovarian Cancer

    Science.gov (United States)

    Halabi, Najeeb M.; Martinez, Alejandra; Al-Farsi, Halema; Mery, Eliane; Puydenus, Laurence; Pujol, Pascal; Khalak, Hanif G.; McLurcan, Cameron; Ferron, Gwenael; Querleu, Denis; Al-Azwani, Iman; Al-Dous, Eman; Mohamoud, Yasmin A.; Malek, Joel A.; Rafii, Arash

    2016-01-01

    Identifying genes where a variant allele is preferentially expressed in tumors could lead to a better understanding of cancer biology and optimization of targeted therapy. However, tumor sample heterogeneity complicates standard approaches for detecting preferential allele expression. We therefore developed a novel approach combining genome and transcriptome sequencing data from the same sample that corrects for sample heterogeneity and identifies significant preferentially expressed alleles. We applied this analysis to epithelial ovarian cancer samples consisting of matched primary ovary and peritoneum and lymph node metastasis. We find that preferentially expressed variant alleles include germline and somatic variants, are shared at a relatively high frequency between patients, and are in gene networks known to be involved in cancer processes. Analysis at a patient level identifies patient-specific preferentially expressed alleles in genes that are targets for known drugs. Analysis at a site level identifies patterns of site specific preferential allele expression with similar pathways being impacted in the primary and metastasis sites. We conclude that genes with preferentially expressed variant alleles can act as cancer drivers and that targeting those genes could lead to new therapeutic strategies. PMID:26735499

  17. Effects of the APOE ε2 Allele on Mortality and Cognitive Function in the Oldest Old

    DEFF Research Database (Denmark)

    Lindahl-Jacobsen, Rune; Tan, Qihua; Mengel-From, Jonas

    2013-01-01

    Some studies indicate that the APOE ε2 allele may have a protective effect on mortality and mental health among the elderly adults. We investigated the effect of the APOE ε2 allele on cognitive function and mortality in 1651 members of the virtually extinct Danish 1905 birth cohort. We found...... no protective effect of the APOE ε2 allele on mortality compared with the APOE ε3 allele. The point estimates indicated an increased protection against cognitive decline over time for persons with the APOE ε2 allele. Cognitive score did not significantly modify the mortality risk of the various APOE genotypes....... We did not find a protective effect of the APOE ε2 allele on mortality among the oldest old, but in agreement with our previous findings, we found a 22% increased mortality risk for APOE ε4 carriers. The APOE ε2 allele may be protective on cognitive decline among the oldest old....

  18. Evidence of Positive Selection of Aquaporins Genes from Pontoporia blainvillei during the Evolutionary Process of Cetaceans.

    Directory of Open Access Journals (Sweden)

    Simone Lima São Pedro

    Full Text Available Marine mammals are well adapted to their hyperosmotic environment. Several morphological and physiological adaptations for water conservation and salt excretion are known to be present in cetaceans, being responsible for regulating salt balance. However, most previous studies have focused on the unique renal physiology of marine mammals, but the molecular bases of these mechanisms remain poorly explored. Many genes have been identified to be involved in osmotic regulation, including the aquaporins. Considering that aquaporin genes were potentially subject to strong selective pressure, the aim of this study was to analyze the molecular evolution of seven aquaporin genes (AQP1, AQP2, AQP3, AQP4, AQP6, AQP7, and AQP9 comparing the lineages of cetaceans and terrestrial mammals.Our results demonstrated strong positive selection in cetacean-specific lineages acting only in the gene for AQP2 (amino acids 23, 83, 107,179, 180, 181, 182, whereas no selection was observed in terrestrial mammalian lineages. We also analyzed the changes in the 3D structure of the aquaporin 2 protein. Signs of strong positive selection in AQP2 sites 179, 180, 181, and 182 were unexpectedly identified only in the baiji lineage, which was the only river dolphin examined in this study. Positive selection in aquaporins AQP1 (45, AQP4 (74, AQP7 (342, 343, 356 was detected in cetaceans and artiodactyls, suggesting that these events are not related to maintaining water and electrolyte homeostasis in seawater.Our results suggest that the AQP2 gene might reflect different selective pressures in maintaining water balance in cetaceans, contributing to the passage from the terrestrial environment to the aquatic. Further studies are necessary, especially those including other freshwater dolphins, who exhibit osmoregulatory mechanisms different from those of marine cetaceans for the same essential task of maintaining serum electrolyte balance.

  19. Discovery of novel MHC-class I alleles and haplotypes in Filipino cynomolgus macaques (Macaca fascicularis) by pyrosequencing and Sanger sequencing: Mafa-class I polymorphism.

    Science.gov (United States)

    Shiina, Takashi; Yamada, Yukiho; Aarnink, Alice; Suzuki, Shingo; Masuya, Anri; Ito, Sayaka; Ido, Daisuke; Yamanaka, Hisashi; Iwatani, Chizuru; Tsuchiya, Hideaki; Ishigaki, Hirohito; Itoh, Yasushi; Ogasawara, Kazumasa; Kulski, Jerzy K; Blancher, Antoine

    2015-10-01

    Although the low polymorphism of the major histocompatibility complex (MHC) transplantation genes in the Filipino cynomolgus macaque (Macaca fascicularis) is expected to have important implications in the selection and breeding of animals for medical research, detailed polymorphism information is still lacking for many of the duplicated class I genes. To better elucidate the degree and types of MHC polymorphisms and haplotypes in the Filipino macaque population, we genotyped 127 unrelated animals by the Sanger sequencing method and high-resolution pyrosequencing and identified 112 different alleles, 28 at cynomolgus macaque MHC (Mafa)-A, 54 at Mafa-B, 12 at Mafa-I, 11 at Mafa-E, and seven at Mafa-F alleles, of which 56 were newly described. Of them, the newly discovered Mafa-A8*01:01 lineage allele had low nucleotide similarities (Filipino macaque population would identify these and other high-frequency Mafa-class I haplotypes that could be used as MHC control animals for the benefit of biomedical research.

  20. Type 2 diabetes risk alleles demonstrate extreme directional differentiation among human populations, compared to other diseases.

    Directory of Open Access Journals (Sweden)

    Rong Chen

    Full Text Available Many disease-susceptible SNPs exhibit significant disparity in ancestral and derived allele frequencies across worldwide populations. While previous studies have examined population differentiation of alleles at specific SNPs, global ethnic patterns of ensembles of disease risk alleles across human diseases are unexamined. To examine these patterns, we manually curated ethnic disease association data from 5,065 papers on human genetic studies representing 1,495 diseases, recording the precise risk alleles and their measured population frequencies and estimated effect sizes. We systematically compared the population frequencies of cross-ethnic risk alleles for each disease across 1,397 individuals from 11 HapMap populations, 1,064 individuals from 53 HGDP populations, and 49 individuals with whole-genome sequences from 10 populations. Type 2 diabetes (T2D demonstrated extreme directional differentiation of risk allele frequencies across human populations, compared with null distributions of European-frequency matched control genomic alleles and risk alleles for other diseases. Most T2D risk alleles share a consistent pattern of decreasing frequencies along human migration into East Asia. Furthermore, we show that these patterns contribute to disparities in predicted genetic risk across 1,397 HapMap individuals, T2D genetic risk being consistently higher for individuals in the African populations and lower in the Asian populations, irrespective of the ethnicity considered in the initial discovery of risk alleles. We observed a similar pattern in the distribution of T2D Genetic Risk Scores, which are associated with an increased risk of developing diabetes in the Diabetes Prevention Program cohort, for the same individuals. This disparity may be attributable to the promotion of energy storage and usage appropriate to environments and inconsistent energy intake. Our results indicate that the differential frequencies of T2D risk alleles may

  1. Multifragment alleles in DNA fingerprints of the parrot, Amazona ventralis

    Science.gov (United States)

    Brock, M.K.; White, B.N.

    1991-01-01

    Human DNA probes that identify variable numbers of tandem repeat loci are being used to generate DNA fingerprints in many animal and plant species. In most species the majority of the sc rable autoradiographic bands of the DNA fingerprint represent alleles from numerous unlinked loci. This study was initiated to use DNA fingerprints to determine the amount of band-sharing among captive Hispaniolan parrots (Amazona ventralis) with known genetic relationships. This would form the data base to examine DNA fingerprints of the closely related and endangered Puerto Rican parrot (A. vittata) and to estimate the degree of inbreeding in the relic population. We found by segregation analysis of the bands scored in the DNA fingerprints of the Hispaniolan parrots that there may be as few as two to five loci identified by the human 33.15 probe. Furthermore, at one locus we identified seven alleles, one of which is represented by as many as 19 cosegregating bands. It is unknown how common multiband alleles might be in natural populations, and their existence will cause problems in the assessment of relatedness by band-sharing analysis. We believe, therefore, that a pedigree analysis should be included in all DNA fingerprinting studies, where possible, in order to estimate the number of loci identified by a minisatellite DNA probe and to examine the nature of their alleles.

  2. Natural selection against a circadian clock gene mutation in mice.

    Science.gov (United States)

    Spoelstra, Kamiel; Wikelski, Martin; Daan, Serge; Loudon, Andrew S I; Hau, Michaela

    2016-01-19

    Circadian rhythms with an endogenous period close to or equal to the natural light-dark cycle are considered evolutionarily adaptive ("circadian resonance hypothesis"). Despite remarkable insight into the molecular mechanisms driving circadian cycles, this hypothesis has not been tested under natural conditions for any eukaryotic organism. We tested this hypothesis in mice bearing a short-period mutation in the enzyme casein kinase 1ε (tau mutation), which accelerates free-running circadian cycles. We compared daily activity (feeding) rhythms, survivorship, and reproduction in six replicate populations in outdoor experimental enclosures, established with wild-type, heterozygous, and homozygous mice in a Mendelian ratio. In the release cohort, survival was reduced in the homozygote mutant mice, revealing strong selection against short-period genotypes. Over the course of 14 mo, the relative frequency of the tau allele dropped from initial parity to 20%. Adult survival and recruitment of juveniles into the population contributed approximately equally to the selection for wild-type alleles. The expression of activity during daytime varied throughout the experiment and was significantly increased by the tau mutation. The strong selection against the short-period tau allele observed here contrasts with earlier studies showing absence of selection against a Period 2 (Per2) mutation, which disrupts internal clock function, but does not change period length. These findings are consistent with, and predicted by the theory that resonance of the circadian system plays an important role in individual fitness.

  3. HLA-DRB1 alleles associated with polymyalgia rheumatica in northern Italy: correlation with disease severity

    Science.gov (United States)

    Salvarani, C.; Boiardi, L.; Mantovani, V.; Ranzi, A.; Cantini, F.; Olivieri, I.; Bragliani, M.; Collina, E.; Macchioni, P.

    1999-01-01

    OBJECTIVE—To examine the association of HLA-DRB1 alleles with polymyalgia rheumatica (PMR) in a Mediterranean country and to explore the role of HLA-DRB1 genes in determining disease severity.
METHODS—A five year prospective follow up study of 92 consecutive PMR patients diagnosed by the secondary referral centre of rheumatology of Reggio Emilia, Italy was conducted. HLA-DRB1 alleles were determined in the 92 patients, in 29 DR4 positive rheumatoid arthritis (RA) patients, and in 148 controls from the same geographical area by polymerase chain reaction amplification and oligonucleotide hybridisation.
RESULTS—No significant differences were observed in the frequencies of HLA-DRB1 types and in the expression of HLA-DRB 70-74 shared motif between PMR and controls. The frequency of the patients with double dose of epitope was low and not significantly different in PMR and in controls. No significant differences in the distribution of HLA-DR4 subtypes were observed between DR4+ PMR, DR+ RA, and DR4+ controls. Results of the univariate analysis indicated that an erythrocyte sedimentation rate (ESR) at diagnosis > 72 mm 1st h, the presence of HLA-DR1, DR10, rheumatoid epitope, and the type of rheumatoid epitope were significant risk factors associated with relapse/recurrence. Cox proportional hazards modelling identified two variables that independently increased the risk of relapse/recurrence: ESR at diagnosis > 72 mm 1st h (RR=1.5) and type 2 (encoded by a non-DR4 allele) rheumatoid epitope (RR=2.7).
CONCLUSION—These data from a Mediterranean country showed no association of rheumatoid epitope with PMR in northern Italian patients. A high ESR at diagnosis and the presence of rheumatoid epitope encoded by a non-DR4 allele are independent valuable markers of disease severity.

 PMID:10225816

  4. Risk allelic load in Th2 and Th3 cytokines genes as biomarker of susceptibility to HPV-16 positive cervical cancer: a case control study

    International Nuclear Information System (INIS)

    Torres-Poveda, K.; Burguete-García, A. I.; Bahena-Román, M.; Méndez-Martínez, R.; Zurita-Díaz, M. A.; López-Estrada, G.; Delgado-Romero, K.; Peralta-Zaragoza, O.; Bermúdez-Morales, V. H.; Cantú, D.; García-Carrancá, A.; Madrid-Marina, V.

    2016-01-01

    Alterations in the host cellular immune response allow persistent infections with High-Risk Human Papillomavirus (HR-HPV) and development of premalignant cervical lesions and cervical cancer (CC). Variations of immunosuppressive cytokine levels in cervix are associated with the natural history of CC. To assess the potential role of genetic host immunity and cytokines serum levels in the risk of developing CC, we conducted a case–control study paired by age. Peripheral blood samples from patients with CC (n = 200) and hospital controls (n = 200), were used to evaluate nine biallelic SNPs of six cytokine genes of the adaptive immune system by allelic discrimination and cytokines serum levels by ELISA. After analyzing the SNP association by multivariate logistic regression adjusted by age, CC history and smoking history, three Th2 cytokines (IL-4, IL-6 and IL-10) and one Th3 (TGFB1) cytokine were significantly associated with CC. Individuals with at least one copy of the following risk alleles: T of SNP (−590C > T IL-4), C of SNP (−573G > C IL-6), A of SNP (−592C > A IL-10), T of SNP (−819C > T IL-10) and T of SNP (−509C > T TGFB1), had an adjusted odds ratio (OR) of 2.08 (95 % CI 1.475–2.934, p = 0.0001), an OR of 1.70 (95 % CI 1.208–2.404, p = 0.002), an OR of 1.87 (95 % CI 1.332–2.630, p = 0.0001), an OR of 1.67 (95 % CI 1.192–2.353, p = 0.003) and an OR of 1.91 (95 % CI 1.354–2.701, p = 0.0001), respectively, for CC. The burden of carrying two or more of these risk alleles was found to have an additive effect on the risk of CC (p trend = 0.0001). Finally, the serum levels of Th2 and Th3 cytokines were higher in CC cases than the controls; whereas IFNG levels, a Th1 cytokine, were higher in controls than CC cases. The significant associations of five SNPs with CC indicate that these polymorphisms are potential candidates for predicting the risk of development of CC, representing a risk allelic load for CC and can be used as a biomarker of

  5. siRNA-mediated Allele-specific Silencing of a COL6A3 Mutation in a Cellular Model of Dominant Ullrich Muscular Dystrophy

    Directory of Open Access Journals (Sweden)

    Véronique Bolduc

    2014-01-01

    Full Text Available Congenital muscular dystrophy type Ullrich (UCMD is a severe disorder of early childhood onset for which currently there is no effective treatment. UCMD commonly is caused by dominant-negative mutations in the genes coding for collagen type VI, a major microfibrillar component of the extracellular matrix surrounding the muscle fibers. To explore RNA interference (RNAi as a potential therapy for UCMD, we designed a series of small interfering RNA (siRNA oligos that specifically target the most common mutations resulting in skipping of exon 16 in the COL6A3 gene and tested them in UCMD-derived dermal fibroblasts. Transcript analysis by semiquantitative and quantitative reverse transcriptase PCR showed that two of these siRNAs were the most allele-specific, i.e., they efficiently knocked down the expression from the mutant allele, without affecting the normal allele. In HEK293T cells, these siRNAs selectively suppressed protein expression from a reporter construct carrying the mutation, with no or minimal suppression of the wild-type (WT construct, suggesting that collagen VI protein levels are as also reduced in an allele-specific manner. Furthermore, we found that treating UCMD fibroblasts with these siRNAs considerably improved the quantity and quality of the collagen VI matrix, as assessed by confocal microscopy. Our current study establishes RNAi as a promising molecular approach for treating dominant COL6-related dystrophies.

  6. Introgressive hybridization: brown bears as vectors for polar bear alleles.

    Science.gov (United States)

    Hailer, Frank

    2015-03-01

    The dynamics and consequences of introgression can inform about numerous evolutionary processes. Biologists have therefore long been interested in hybridization. One challenge, however, lies in the identification of nonadmixed genotypes that can serve as a baseline for accurate quantification of admixture. In this issue of Molecular Ecology, Cahill et al. (2015) analyse a genomic data set of 28 polar bears, eight brown bears and one American black bear. Polar bear alleles are found to be introgressed into brown bears not only near a previously identified admixture zone on the Alaskan Admiralty, Baranof and Chichagof (ABC) Islands, but also far into the North American mainland. Elegantly contrasting admixture levels at autosomal and X chromosomal markers, Cahill and colleagues infer that male-biased dispersal has spread these introgressed alleles away from the Late Pleistocene contact zone. Compared to a previous study on the ABC Island population in which an Alaskan brown bear served as a putatively admixture-free reference, Cahill et al. (2015) utilize a newly sequenced Swedish brown bear as admixture baseline. This approach reveals that brown bears have been impacted by introgression from polar bears to a larger extent (up to 8.8% of their genome), than previously known, including the bear that had previously served as admixture baseline. No evidence for introgression of brown bear into polar bear is found, which the authors argue could be a consequence of selection. Besides adding new exciting pieces to the puzzle of polar/brown bear evolutionary history, the study by Cahill and colleagues highlights that wildlife genomics is moving from analysing single genomes towards a landscape genomics approach. © 2015 John Wiley & Sons Ltd.

  7. Parallel selection on TRPV6 in human populations

    OpenAIRE

    Hughes, David A; Tang, Kun; Strotmann, Rainer; Schöneberg, Torsten; Prenen, Jean; Nilius, Bernd; Stoneking, Mark

    2008-01-01

    We identified and examined a candidate gene for local directional selection in Europeans, TRPV6, and conclude that selection has acted on standing genetic variation at this locus, creating parallel soft sweep events in humans. A novel modification of the extended haplotype homozygosity (EHH) test was utilized, which compares EHH for a single allele across populations, to investigate the signature of selection at TRPV6 and neighboring linked loci in published data sets for Europeans, Asians an...

  8. Association of apolipoprotein E allele {epsilon}4 with late-onset sporadic Alzheimer`s disease

    Energy Technology Data Exchange (ETDEWEB)

    Lucotte, G.; David, F.; Berriche, S. [Regional Center of Neurogenetics, Reims (France)] [and others

    1994-09-15

    Apolipoprotein E, type {epsilon}4 allele (ApoE {epsilon}4), is associated with late-onset sporadic Alzheimer`s disease (AD) in French patients. The association is highly significant (0.45 AD versus 0.12 controls for {epsilon}4 allele frequencies). These data support the involvement of ApoE {epsilon}4 allele as a very important risk factor for the clinical expression of AD. 22 refs., 1 fig., 3 tabs.

  9. Distinguishing between Selective Sweeps from Standing Variation and from a De Novo Mutation

    Science.gov (United States)

    Peter, Benjamin M.; Huerta-Sanchez, Emilia; Nielsen, Rasmus

    2012-01-01

    An outstanding question in human genetics has been the degree to which adaptation occurs from standing genetic variation or from de novo mutations. Here, we combine several common statistics used to detect selection in an Approximate Bayesian Computation (ABC) framework, with the goal of discriminating between models of selection and providing estimates of the age of selected alleles and the selection coefficients acting on them. We use simulations to assess the power and accuracy of our method and apply it to seven of the strongest sweeps currently known in humans. We identify two genes, ASPM and PSCA, that are most likely affected by selection on standing variation; and we find three genes, ADH1B, LCT, and EDAR, in which the adaptive alleles seem to have swept from a new mutation. We also confirm evidence of selection for one further gene, TRPV6. In one gene, G6PD, neither neutral models nor models of selective sweeps fit the data, presumably because this locus has been subject to balancing selection. PMID:23071458

  10. Distinguishing between selective sweeps from standing variation and from a de novo mutation.

    Directory of Open Access Journals (Sweden)

    Benjamin M Peter

    Full Text Available An outstanding question in human genetics has been the degree to which adaptation occurs from standing genetic variation or from de novo mutations. Here, we combine several common statistics used to detect selection in an Approximate Bayesian Computation (ABC framework, with the goal of discriminating between models of selection and providing estimates of the age of selected alleles and the selection coefficients acting on them. We use simulations to assess the power and accuracy of our method and apply it to seven of the strongest sweeps currently known in humans. We identify two genes, ASPM and PSCA, that are most likely affected by selection on standing variation; and we find three genes, ADH1B, LCT, and EDAR, in which the adaptive alleles seem to have swept from a new mutation. We also confirm evidence of selection for one further gene, TRPV6. In one gene, G6PD, neither neutral models nor models of selective sweeps fit the data, presumably because this locus has been subject to balancing selection.

  11. A General Model of Negative Frequency Dependent Selection Explains Global Patterns of Human ABO Polymorphism.

    Directory of Open Access Journals (Sweden)

    Fernando A Villanea

    Full Text Available The ABO locus in humans is characterized by elevated heterozygosity and very similar allele frequencies among populations scattered across the globe. Using knowledge of ABO protein function, we generated a simple model of asymmetric negative frequency dependent selection and genetic drift to explain the maintenance of ABO polymorphism and its loss in human populations. In our models, regardless of the strength of selection, models with large effective population sizes result in ABO allele frequencies that closely match those observed in most continental populations. Populations must be moderately small to fall out of equilibrium and lose either the A or B allele (N(e ≤ 50 and much smaller (N(e ≤ 25 for the complete loss of diversity, which nearly always involved the fixation of the O allele. A pattern of low heterozygosity at the ABO locus where loss of polymorphism occurs in our model is consistent with small populations, such as Native American populations. This study provides a general evolutionary model to explain the observed global patterns of polymorphism at the ABO locus and the pattern of allele loss in small populations. Moreover, these results inform the range of population sizes associated with the recent human colonization of the Americas.

  12. Design and optimization of selective azaindole amide M1 positive allosteric modulators.

    Science.gov (United States)

    Davoren, Jennifer E; O'Neil, Steven V; Anderson, Dennis P; Brodney, Michael A; Chenard, Lois; Dlugolenski, Keith; Edgerton, Jeremy R; Green, Michael; Garnsey, Michelle; Grimwood, Sarah; Harris, Anthony R; Kauffman, Gregory W; LaChapelle, Erik; Lazzaro, John T; Lee, Che-Wah; Lotarski, Susan M; Nason, Deane M; Obach, R Scott; Reinhart, Veronica; Salomon-Ferrer, Romelia; Steyn, Stefanus J; Webb, Damien; Yan, Jiangli; Zhang, Lei

    2016-01-15

    Selective activation of the M1 receptor via a positive allosteric modulator (PAM) is a new approach for the treatment of the cognitive impairments associated with schizophrenia and Alzheimer's disease. A novel series of azaindole amides and their key pharmacophore elements are described. The nitrogen of the azaindole core is a key design element as it forms an intramolecular hydrogen bond with the amide N-H thus reinforcing the bioactive conformation predicted by published SAR and our homology model. Representative compound 25 is a potent and selective M1 PAM that has well aligned physicochemical properties, adequate brain penetration and pharmacokinetic (PK) properties, and is active in vivo. These favorable properties indicate that this series possesses suitable qualities for further development and studies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Identification of Ppd-B1 alleles in common wheat cultivars by CAPS marker.

    Science.gov (United States)

    Okoń, S; Kowalczyk, K; Miazga, D

    2012-05-01

    Photoperiod response is a major determinant of the duration of growth stages in common wheat. In common wheat, many genes play a role in determining flowering time, but the Ppd genes located on the homoeologous group 2 play a major role. Of these Ppd-B1 is located on the short arm of 2B. In 107 common wheat cultivars grown in Poland and neighboring countries, the identification of Ppd-B1 alleles using in-del analysis by using a CAPS markers was investigated. 87 cultivars were shown to carry dominant Ppd-B1 alleles. This shows that Ppd-B1 alleles is have been widely used in common wheat breeding programme in these countries. Recessive ppd-B1 alleles were found only in 20 cultivars (12 Polish, 5 former Soviet Union, 2 German, 1 Swedish).

  14. Real-time PCR genotyping assay for canine progressive rod-cone degeneration and mutant allele frequency in Toy Poodles, Chihuahuas and Miniature Dachshunds in Japan.

    Science.gov (United States)

    Kohyama, Moeko; Tada, Naomi; Mitsui, Hiroko; Tomioka, Hitomi; Tsutsui, Toshihiko; Yabuki, Akira; Rahman, Mohammad Mahbubur; Kushida, Kazuya; Mizukami, Keijiro; Yamato, Osamu

    2016-03-01

    Canine progressive rod-cone degeneration (PRCD) is a middle- to late-onset, autosomal recessive, inherited retinal disorder caused by a substitution (c.5G>A) in the canine PRCD gene that has been identified in 29 or more purebred dogs. In the present study, a TaqMan probe-based real-time PCR assay was developed and evaluated for rapid genotyping and large-scale screening of the mutation. Furthermore, a genotyping survey was carried out in a population of the three most popular breeds in Japan (Toy Poodles, Chihuahuas and Miniature Dachshunds) to determine the current mutant allele frequency. The assay separated all the genotypes of canine PRCD rapidly, indicating its suitability for large-scale surveys. The results of the survey showed that the mutant allele frequency in Toy Poodles was high enough (approximately 0.09) to allow the establishment of measures for the prevention and control of this disorder in breeding kennels. The mutant allele was detected in Chihuahuas for the first time, but the frequency was lower (approximately 0.02) than that in Toy Poodles. The mutant allele was not detected in Miniature Dachshunds. This assay will allow the selective breeding of dogs from the two most popular breeds (Toy Poodle and Chihuahua) in Japan and effective prevention or control of the disorder.

  15. Genetic structure, diversity, and allelic richness in composite collection and reference set in chickpea (Cicer arietinum L.

    Directory of Open Access Journals (Sweden)

    Gowda Cholenahalli LL

    2008-10-01

    Full Text Available Abstract Background Plant genetic resources (PGR are the basic raw materials for future genetic progress and an insurance against unforeseen threats to agricultural production. An extensive characterization of PGR provides an opportunity to dissect structure, mine allelic variations, and identify diverse accessions for crop improvement. The Generation Challenge Program http://www.generationcp.org conceptualized the development of "composite collections" and extraction of "reference sets" from these for more efficient tapping of global crop-related genetic resources. In this study, we report the genetic structure, diversity and allelic richness in a composite collection of chickpea using SSR markers, and formation of a reference set of 300 accessions. Results The 48 SSR markers detected 1683 alleles in 2915 accessions, of which, 935 were considered rare, 720 common and 28 most frequent. The alleles per locus ranged from 14 to 67, averaged 35, and the polymorphic information content was from 0.467 to 0.974, averaged 0.854. Marker polymorphism varied between groups of accessions in the composite collection and reference set. A number of group-specific alleles were detected: 104 in Kabuli, 297 in desi, and 69 in wild Cicer; 114 each in Mediterranean and West Asia (WA, 117 in South and South East Asia (SSEA, and 10 in African region accessions. Desi and kabuli shared 436 alleles, while wild Cicer shared 17 and 16 alleles with desi and kabuli, respectively. The accessions from SSEA and WA shared 74 alleles, while those from Mediterranean 38 and 33 alleles with WA and SSEA, respectively. Desi chickpea contained a higher proportion of rare alleles (53% than kabuli (46%, while wild Cicer accessions were devoid of rare alleles. A genotype-based reference set captured 1315 (78% of the 1683 composite collection alleles of which 463 were rare, 826 common, and 26 the most frequent alleles. The neighbour-joining tree diagram of this reference set represents

  16. Negative BOLD response and serotonin concentration within rostral subgenual portion of the anterior cingulate cortex for long-allele carriers during perceptual processing of emotional tasks

    Science.gov (United States)

    Hadi, Shamil M.; Siadat, Mohamad R.; Babajani-Feremi, Abbas

    2012-03-01

    We investigated the effect of synaptic serotonin concentration on hemodynamic responses. The stimuli paradigm involved the presentation of fearful and threatening facial expressions to a set of 24 subjects who were either5HTTLPR long- or short-allele carriers (12 of each type in each group). The BOLD signals of the rACC from subjects of each group were averaged to increase the signal-to-noise ratio. We used a Bayesian approach to estimate the parameters of the underlying hemodynamic model. Our results, during this perceptual processing of emotional task, showed a negative BOLD signal in the rACC in the subjects with long-alleles. In contrast, the subjects with short-alleles showed positive BOLD signals in the rACC. These results suggest that high synaptic serotonin concentration in the rACC inhibits neuronal activity in a fashion similar to GABA, and a consequent negative BOLD signal ensues.

  17. Simulation of selected genealogies.

    Science.gov (United States)

    Slade, P F

    2000-02-01

    Algorithms for generating genealogies with selection conditional on the sample configuration of n genes in one-locus, two-allele haploid and diploid models are presented. Enhanced integro-recursions using the ancestral selection graph, introduced by S. M. Krone and C. Neuhauser (1997, Theor. Popul. Biol. 51, 210-237), which is the non-neutral analogue of the coalescent, enables accessible simulation of the embedded genealogy. A Monte Carlo simulation scheme based on that of R. C. Griffiths and S. Tavaré (1996, Math. Comput. Modelling 23, 141-158), is adopted to consider the estimation of ancestral times under selection. Simulations show that selection alters the expected depth of the conditional ancestral trees, depending on a mutation-selection balance. As a consequence, branch lengths are shown to be an ineffective criterion for detecting the presence of selection. Several examples are given which quantify the effects of selection on the conditional expected time to the most recent common ancestor. Copyright 2000 Academic Press.

  18. Short, natural, and extended photoperiod response in BC2F4 lines of bread wheat with different photoperiod-1 (Ppd-1) alleles.

    Science.gov (United States)

    Bentley, A R; Horsnell, R; Werner, C P; Turner, A S; Rose, G A; Bedard, C; Howell, P; Wilhelm, E P; Mackay, I J; Howells, R M; Greenland, A; Laurie, D A; Gosman, N

    2013-04-01

    Flowering is a critical period in the life cycle of flowering plant species, resulting in an irreversible commitment of significant resources. Wheat is photoperiod sensitive, flowering only when daylength surpasses a critical length; however, photoperiod insensitivity (PI) has been selected by plant breeders for >40 years to enhance yield in certain environments. Control of flowering time has been greatly facilitated by the development of molecular markers for the Photoperiod-1 (Ppd-1) homeoloci, on the group 2 chromosomes. In the current study, an allelic series of BC2F4 lines in the winter wheat cultivars 'Robigus' and 'Alchemy' was developed to elucidate the influence on flowering of eight gene variants from the B- and D-genomes of bread wheat and the A-genome of durum wheat. Allele effects were tested in short, natural, and extended photoperiods in the field and controlled environments. Across genetic background and treatment, the D-genome PI allele, Ppd-D1a, had a more potent effect on reducing flowering time than Ppd-B1a. However, there was significant donor allele effect for both Ppd-D1a and Ppd-B1a, suggesting the presence of linked modifier genes and/or additional sources of latent sensitivity. Development of Ppd-A1a BC2F4 lines derived from synthetic hexaploid wheat provided an opportunity to compare directly the flowering time effect of the A-genome allele from durum with the B- and D-genome variants from bread wheat for the first time. Analyses indicated that the reducing effect of Ppd-A1a is comparable with that of Ppd-D1a, confirming it as a useful alternative source of PI.

  19. Inferring the Mode of Selection from the Transient Response to Demographic Perturbations

    Science.gov (United States)

    Balick, Daniel; Do, Ron; Reich, David; Sunyaev, Shamil

    2014-03-01

    Despite substantial recent progress in theoretical population genetics, most models work under the assumption of a constant population size. Deviations from fixed population sizes are ubiquitous in natural populations, many of which experience population bottlenecks and re-expansions. The non-equilibrium dynamics introduced by a large perturbation in population size are generally viewed as a confounding factor. In the present work, we take advantage of the transient response to a population bottleneck to infer features of the mode of selection and the distribution of selective effects. We develop an analytic framework and a corresponding statistical test that qualitatively differentiates between alleles under additive and those under recessive or more general epistatic selection. This statistic can be used to bound the joint distribution of selective effects and dominance effects in any diploid sexual organism. We apply this technique to human population genetic data, and severely restrict the space of allowed selective coefficients in humans. Additionally, one can test a set of functionally or medically relevant alleles for the primary mode of selection, or determine the local regional variation in dominance coefficients along the genome.

  20. Ground Receiving Station Reference Pair Selection Technique for a Minimum Configuration 3D Emitter Position Estimation Multilateration System

    Directory of Open Access Journals (Sweden)

    Abdulmalik Shehu Yaro

    2017-01-01

    Full Text Available Multilateration estimates aircraft position using the Time Difference Of Arrival (TDOA with a lateration algorithm. The Position Estimation (PE accuracy of the lateration algorithm depends on several factors which are the TDOA estimation error, the lateration algorithm approach, the number of deployed GRSs and the selection of the GRS reference used for the PE process. Using the minimum number of GRSs for 3D emitter PE, a technique based on the condition number calculation is proposed to select the suitable GRS reference pair for improving the accuracy of the PE using the lateration algorithm. Validation of the proposed technique was performed with the GRSs in the square and triangular GRS configuration. For the selected emitter positions, the result shows that the proposed technique can be used to select the suitable GRS reference pair for the PE process. A unity condition number is achieved for GRS pair most suitable for the PE process. Monte Carlo simulation result, in comparison with the fixed GRS reference pair lateration algorithm, shows a reduction in PE error of at least 70% for both GRS in the square and triangular configuration.