WorldWideScience

Sample records for positive electrostatic potential

  1. Electrostatic beam-position monitor

    CERN Multimedia

    CERN PhotoLab

    1969-01-01

    Electrostatic beam-position monitor installed in its final location (bake-out cover removed). The ISR will contain about 110 of these monitors. Their accuracy is better than 1 mm, their band width about 1 MHz.

  2. Electrostatic potential map modelling with COSY Infinity

    International Nuclear Information System (INIS)

    Maloney, J.A.; Baartman, R.; Planche, T.; Saminathan, S.

    2016-01-01

    COSY Infinity (Makino and Berz, 2005) is a differential-algebra based simulation code which allows accurate calculation of transfer maps to arbitrary order. COSY’s existing internal procedures were modified to allow electrostatic elements to be specified using an array of field potential data from the midplane. Additionally, a new procedure was created allowing electrostatic elements and their fringe fields to be specified by an analytic function. This allows greater flexibility in accurately modelling electrostatic elements and their fringe fields. Applied examples of these new procedures are presented including the modelling of a shunted electrostatic multipole designed with OPERA, a spherical electrostatic bender, and the effects of different shaped apertures in an electrostatic beam line.

  3. The Contribution of Surface Potential to Diverse Problems in Electrostatics

    International Nuclear Information System (INIS)

    Horenstein, M

    2015-01-01

    Electrostatics spans many different subject areas. Some comprise “good electrostatics,” where charge is used for desirable purposes. Such areas include industrial manufacturing, electrophotography, surface modification, precipitators, aerosol control, and MEMS. Other areas comprise “bad electrostatics,” where charge is undesirable. Such areas include hazardous discharges, ESD, health effects, nuisance triboelectrification, particle contamination, and lightning. Conference proceedings such as this one inevitably include papers grouped around these topics. One common thread throughout is the surface potential developed when charge resides on an insulator surface. Often, the charged insulator will be in intimate contact with a ground plane. At other times, the charged insulator will be isolated. In either case, the resulting surface potential is important to such processes as propagating brush discharges, charge along a moving web, electrostatic biasing effects in MEMS, non-contacting voltmeters, field-effect transistor sensors, and the maximum possible charge on a woven fabric. (paper)

  4. Linear electrostatic micromotors for nano- and micro-positioning

    Science.gov (United States)

    Baginsky, I. L.; Kostsov, Edvard G.

    2004-05-01

    The functioning of the linear step electrostatic film micromotors with the short controlling pulse (less then 100-200 ´s) is studied to create nano- and micro-positioners. The theoretical study of the step movement of the given mass in this time frame is carried out. The results of the experimental studies of the multipetal reciprocal micromotors created on the basis of La modified Ba0.5Sr0.5Nb2O6 ferroelectric films with 1-3 μm thickness are shown. The petals were made of beryllium bronze. It is shown that the electrostatic rolling can last less than 50 μs, and the process of separating two surfaces (the metal and the ferroelectric) can last less than 1 μs. These parameters allow one to operate the micromotor at 1-10 kHz frequency, and the propulsion force in the beginning (the first 20-100 μs) of the electrostatic rolling can be as high as 1-10 N per 1 mm2 of the rolling surface with the voltage pulse amplitude of 40-50 V. The possibility of obtaining moving plate (MP) step in the nanometer range is studied, as well as the precision of these steps during the continuous MP movement with the different clock frequencies and durations of the voltage pulses. The recommendations are given to improve the accuracy and the speed of the positioning in the nano- and micro-movement range. Possible fields of micromotor application are micromechanics, including precision micromechanics, microelectronics, microrobots, microoptics, microscanners, micropumps (e.g. in the jet printers), micro flying vehicles etc.

  5. Design, test, and calibration of an electrostatic beam position monitor

    Directory of Open Access Journals (Sweden)

    Maurice Cohen-Solal

    2010-03-01

    Full Text Available The low beta of proton or ion beams favors an electrostatic pickup to measure the transverse beam centroid position. Often papers on beam position monitors (BPM are focused on a particular aspect of the problem; however, it is important to consider all various issues of a position measurement system. Based on our experience at the IPHI (high intensity injector proton facility at CEA-Saclay, this paper will address all aspects to design, test, and calibrate a BPM for proton linear accelerators, while emphasizing the determination of the absolute beam position. We present details of the readout electronics, and describe the calibration of the BPM using a test station. For calculation and simulation of the electrical signals we developed a Mathematica script. The error analysis presented, on the basis of six BPMs installed in the high energy section of IPHI, demonstrates the expected accuracy of the position measurement. These studies also identify the parameters that could improve the performance of the beam position control. The experience from these developments is currently being used for the BPM design and test stand dedicated to the Spiral2 accelerator at Ganil-Caen which will deliver heavy ion beams.

  6. Design, test, and calibration of an electrostatic beam position monitor

    Science.gov (United States)

    Cohen-Solal, Maurice

    2010-03-01

    The low beta of proton or ion beams favors an electrostatic pickup to measure the transverse beam centroid position. Often papers on beam position monitors (BPM) are focused on a particular aspect of the problem; however, it is important to consider all various issues of a position measurement system. Based on our experience at the IPHI (high intensity injector proton) facility at CEA-Saclay, this paper will address all aspects to design, test, and calibrate a BPM for proton linear accelerators, while emphasizing the determination of the absolute beam position. We present details of the readout electronics, and describe the calibration of the BPM using a test station. For calculation and simulation of the electrical signals we developed a Mathematica script. The error analysis presented, on the basis of six BPMs installed in the high energy section of IPHI, demonstrates the expected accuracy of the position measurement. These studies also identify the parameters that could improve the performance of the beam position control. The experience from these developments is currently being used for the BPM design and test stand dedicated to the Spiral2 accelerator at Ganil-Caen which will deliver heavy ion beams.

  7. Realistic electrostatic potentials in a neutron star crust

    International Nuclear Information System (INIS)

    Ebel, Claudio; Mishustin, Igor; Greiner, Walter

    2015-01-01

    We study the electrostatic properties of inhomogeneous nuclear matter which can be formed in the crusts of neutron stars or in supernova explosions. Such matter is represented by Wigner–Seitz cells of different geometries (spherical, cylindrical, cartesian), which contain nuclei, free neutrons and electrons under the conditions of electrical neutrality. Using the Thomas–Fermi approximation, we have solved the Poisson equation for the electrostatic potential and calculated the corresponding electron density distributions in individual cells. The calculations are done for different shapes and sizes of the cells and different average baryon densities. The electron-to-baryon fraction was fixed at 0.3. Using realistic electron distributions leads to a significant reduction in electrostatic energy and electron chemical potential. (paper)

  8. Potential well formation in electrostatic confinement devices. Technical summary report

    International Nuclear Information System (INIS)

    Cherrington, B.E.; Verdeyen, J.T.

    1978-01-01

    The experimental and theoretical studies on Inertial Electrostatic Plasma Confinement that have been performed in the Gaseous Electronics Laboratory of the University of Illinois are reviewed. There has been experimental confirmation of the production of a multiple potential structure in both small and large spherical devices and the theoretical analysis has indicated the parameter range that is necessary in order to explain such results. Further experimental and theoretical approaches to testing the IEPC concept are suggested

  9. Potential well formation in electrostatic confinement devices. Technical progress report

    International Nuclear Information System (INIS)

    Cherrington, B.E.; Verdeyen, J.T.

    1975-01-01

    A large (2' diameter) spherical electrostatic confinement device has been constructed to test the feasibility of using inertial electrostatic forces to confine energetic plasmas capable of sustaining fusion reactions. Electron injection under high vacuum has produced negative wells that completely depress the potential in the center and approach the classical Langmuir virtual cathode. Electron injection into low pressure deuterium reproduces our previous results of an ion rich region within the negative well. Additional theoretical studies incorporating electrons with very narrow angular momentum (corresponding to trapped electrons in the center) has shown that an additional electron rich region (or ion rich if the polarities are reversed) can be produced within the ion rich region for presumably realistic ranges of parameters

  10. Atom-partitioned multipole expansions for electrostatic potential boundary conditions

    Energy Technology Data Exchange (ETDEWEB)

    Lee, M., E-mail: michael.s.lee131.civ@mail.mil [Simulation Sciences Branch, U.S. Army Research Laboratory, Aberdeen Proving Ground, MD 21005 (United States); Leiter, K. [Simulation Sciences Branch, U.S. Army Research Laboratory, Aberdeen Proving Ground, MD 21005 (United States); Eisner, C. [Secure Mission Solutions, a Parsons Company (United States); Simulation Sciences Branch, U.S. Army Research Laboratory, Aberdeen Proving Ground, MD 21005 (United States); Knap, J. [Simulation Sciences Branch, U.S. Army Research Laboratory, Aberdeen Proving Ground, MD 21005 (United States)

    2017-01-01

    Applications such as grid-based real-space density functional theory (DFT) use the Poisson equation to compute electrostatics. However, the expected long tail of the electrostatic potential requires either the use of a large and costly outer domain or Dirichlet boundary conditions estimated via multipole expansion. We find that the oft-used single-center spherical multipole expansion is only appropriate for isotropic mesh domains such as spheres and cubes. In this work, we introduce a method suitable for high aspect ratio meshes whereby the charge density is partitioned into atomic domains and multipoles are computed for each domain. While this approach is moderately more expensive than a single-center expansion, it is numerically stable and still a small fraction of the overall cost of a DFT calculation. The net result is that when high aspect ratio systems are being studied, form-fitted meshes can now be used in lieu of cubic meshes to gain computational speedup.

  11. Spherical ion oscillations in a positive polarity gridded inertial-electrostatic confinement device

    Energy Technology Data Exchange (ETDEWEB)

    Bandara, R.; Khachan, J. [Plasma Physics, School of Physics, University of Sydney, Camperdown, New South Wales 2006 (Australia)

    2013-07-15

    A pulsed, positive polarity gridded inertial electrostatic confinement device has been investigated experimentally, using a differential emissive probe and potential traces as primary diagnostics. Large amplitude oscillations in the plasma current and plasma potential were observed within a microsecond of the discharge onset, which are indicative of coherent ion oscillations about a temporarily confined excess of recirculating electron space charge. The magnitude of the depth of the potential well in the established virtual cathode was determined using a differential emissive Langmuir probe, which correlated well to the potential well inferred from the ion oscillation frequency for both hydrogen and argon experiments. It was found that the timescale for ion oscillation dispersion is strongly dependent on the neutral gas density, and weakly dependent on the peak anode voltage. The cessation of the oscillations was found to be due to charge exchange processes converting ions to high velocity neutrals, causing the abrupt de-coherence of the oscillations through an avalanche dispersion in phase space.

  12. Spherical ion oscillations in a positive polarity gridded inertial-electrostatic confinement device

    Science.gov (United States)

    Bandara, R.; Khachan, J.

    2013-07-01

    A pulsed, positive polarity gridded inertial electrostatic confinement device has been investigated experimentally, using a differential emissive probe and potential traces as primary diagnostics. Large amplitude oscillations in the plasma current and plasma potential were observed within a microsecond of the discharge onset, which are indicative of coherent ion oscillations about a temporarily confined excess of recirculating electron space charge. The magnitude of the depth of the potential well in the established virtual cathode was determined using a differential emissive Langmuir probe, which correlated well to the potential well inferred from the ion oscillation frequency for both hydrogen and argon experiments. It was found that the timescale for ion oscillation dispersion is strongly dependent on the neutral gas density, and weakly dependent on the peak anode voltage. The cessation of the oscillations was found to be due to charge exchange processes converting ions to high velocity neutrals, causing the abrupt de-coherence of the oscillations through an avalanche dispersion in phase space.

  13. Power consumption in positive ion beam converter with electrostatic electron suppressor

    International Nuclear Information System (INIS)

    Hashimoto, Kiyoshi; Sugawara, Tohru

    1985-01-01

    The power recovery characteristics of an in-line direct beam converter provided with electrostatic electron suppressor were studied numerically by tracing the orbits of fast primary ions and secondary charged particles generated along their beam path by collision with background gas molecules. It is shown that, in reference to the electrostatic field potential at the point of impact, the energy distribution of secondary ions impinging on the suppressor has two peaks-one corresponding to a zone of high positive potential surrounding the collector and the other to one of slightly negative potential around the electron suppressor. Secondary electron emission from the suppressor is ascribed mainly to the latter peak, associated with impingement of slower secondary ions. Far much power consumed in secondary particle acceleration is spent for emitting electrons from the suppressor than for secondary ions generated by beam-gas collision. The upper limit of background pressure is discussed on the basis of criteria prescribed for restricting the power consumed in this secondary particle acceleration, as for practical convenience of electrode cooling. Numerical examples are given of calculations based on particle trajectory analysis of both primary ions and secondary particles, for the case of a 100 keV-proton sheet beam 10 cm thick of 35 mA/cm 2 current density. (author)

  14. High precision electrostatic potential calculations for cylindrically symmetric lenses

    International Nuclear Information System (INIS)

    Edwards, David Jr.

    2007-01-01

    A method is developed for a potential calculation within cylindrically symmetric electrostatic lenses using mesh relaxation techniques, and it is capable of considerably higher accuracies than currently available. The method involves (i) creating very high order algorithms (orders of 6, 8, and 10) for determining the potentials at points in the net using surrounding point values, (ii) eliminating the effect of the large errors caused by singular points, and (iii) reducing gradients in the high gradient regions of the geometry, thereby allowing the algorithms used in these regions to achieve greater precisions--(ii) and (iii) achieved by the use of telescopic multiregions. In addition, an algorithm for points one unit from a metal surface is developed, allowing general mesh point algorithms to be used in these situations, thereby taking advantage of the enhanced precision of the latter. A maximum error function dependent on a sixth order gradient of the potential is defined. With this the single point algorithmic errors are able to be viewed over the entire net. Finally, it is demonstrated that by utilizing the above concepts and procedures, the potential of a point in a reasonably high gradient region of a test geometry can realize a precision of less than 10 -10

  15. Massive calculations of electrostatic potentials and structure maps of biopolymers in a distributed computing environment

    International Nuclear Information System (INIS)

    Akishina, T.P.; Ivanov, V.V.; Stepanenko, V.A.

    2013-01-01

    Among the key factors determining the processes of transcription and translation are the distributions of the electrostatic potentials of DNA, RNA and proteins. Calculations of electrostatic distributions and structure maps of biopolymers on computers are time consuming and require large computational resources. We developed the procedures for organization of massive calculations of electrostatic potentials and structure maps for biopolymers in a distributed computing environment (several thousands of cores).

  16. Towards quantitative electrostatic potential mapping of working semiconductor devices using off-axis electron holography

    DEFF Research Database (Denmark)

    Yazdi, Sadegh; Kasama, Takeshi; Beleggia, Marco

    2015-01-01

    Pronounced improvements in the understanding of semiconductor device performance are expected if electrostatic potential distributions can be measured quantitatively and reliably under working conditions with sufficient sensitivity and spatial resolution. Here, we employ off-axis electron...... holography to characterize an electrically-biased Si p-. n junction by measuring its electrostatic potential, electric field and charge density distributions under working conditions. A comparison between experimental electron holographic phase images and images obtained using three-dimensional electrostatic...

  17. Calculations of the electrostatic potential adjacent to model phospholipid bilayers.

    Science.gov (United States)

    Peitzsch, R M; Eisenberg, M; Sharp, K A; McLaughlin, S

    1995-03-01

    We used the nonlinear Poisson-Boltzmann equation to calculate electrostatic potentials in the aqueous phase adjacent to model phospholipid bilayers containing mixtures of zwitterionic lipids (phosphatidylcholine) and acidic lipids (phosphatidylserine or phosphatidylglycerol). The aqueous phase (relative permittivity, epsilon r = 80) contains 0.1 M monovalent salt. When the bilayers contain equipotential surfaces are discrete domes centered over the negatively charged lipids and are approximately twice the value calculated using Debye-Hückel theory. When the bilayers contain > 25% acidic lipid, the -25 mV equipotential profiles are essentially flat and agree well with the values calculated using Gouy-Chapman theory. When the bilayers contain 100% acidic lipid, all of the equipotential surfaces are flat and agree with Gouy-Chapman predictions (including the -100 mV surface, which is located only 1 A from the outermost atoms). Even our model bilayers are not simple systems: the charge on each lipid is distributed over several atoms, these partial charges are non-coplanar, there is a 2 A ion-exclusion region (epsilon r = 80) adjacent to the polar headgroups, and the molecular surface is rough. We investigated the effect of these four factors using smooth (or bumpy) epsilon r = 2 slabs with embedded point charges: these factors had only minor effects on the potential in the aqueous phase.

  18. Molecular electrostatic potential analysis of non-covalent complexes

    Indian Academy of Sciences (India)

    Chemical Sciences and Technology Division and Academy of Scientific & Innovative Research (AcSIR), ... workers proposed the electrostatic-covalent model of hydrogen bonding. ..... tain degree of electron donation and acceptance occurs.

  19. Noncontact measurement of electrostatic fields: Verification of modeled potentials within ion mobility spectrometer drift tube designs

    International Nuclear Information System (INIS)

    Scott, Jill R.; Tremblay, Paul L.

    2007-01-01

    The heart of an ion mobility spectrometer is the drift region where ion separation occurs. While the electrostatic potentials within a drift tube design can be modeled, no method for independently validating the electrostatic field has previously been reported. Two basic drift tube designs were modeled using SIMION 7.0 to reveal the expected electrostatic fields: (1) A traditional alternating set of electrodes and insulators and (2) a truly linear drift tube. One version of the alternating electrode/insulator drift tube and two versions of linear drift tubes were then fabricated. The stacked alternating electrodes/insulators were connected through a resistor network to generate the electrostatic gradient in the drift tube. The two linear drift tube designs consisted of two types of resistive drift tubes with one tube consisting of a resistive coating within an insulating tube and the other tube composed of resistive ferrites. The electrostatic fields within each type of drift tube were then evaluated by a noncontact method using a Kelvin-Zisman type electrostatic voltmeter and probe (results for alternative measurement methods provided in supplementary material). The experimental results were then compared with the electrostatic fields predicted by SIMION. Both the modeling and experimental measurements reveal that the electrostatic fields within a stacked ion mobility spectrometer drift tube are only pseudo-linear, while the electrostatic fields within a resistive drift tube approach perfect linearity

  20. Study on the electrostatic and piezoelectric properties of positive polypropylene electret cyclosporine A patch

    International Nuclear Information System (INIS)

    Guo, X; Liang, Y Y; Jiang, J; Liu, H Y; Cui, L L

    2013-01-01

    Corona charged electrets at voltages of +500 V, +1000 V and +1500 V were prepared for manufacturing polypropylene (PP) electret blank patches and PP electret drug patches. The stability of external electrostatic field of the electret patch and the polarization of the drug in patch under the internal electrostatic field of the electret were studied. The results indicate that all the electret drug patches had good charge storage stabilities. However, the non-electrode coated electret drug patch had better stability in the external electrostatic field than that of the electrode coated electret drug patch. The higher the charging voltage of the electret, the faster the surface potential of the electret drug patch decayed, and the worse the stability of the external electrostatic field. All the electrets used in this study could result in the polarization of the model drug in patch. The piezoelectric properties of non-electrode coated electret drug patch increased with the charging voltage of the electret. However, excessively higher charging voltage could result in the decreased polarization of the drug in patch. Both the stability of the external electrostatic field of electret and the polarization of drug were the key factors for controlled drug release and skin permeation.

  1. Electrostatic potential of human immunodeficiency virus type 2 and rhesus macaque simian immunodeficiency virus capsid proteins

    Directory of Open Access Journals (Sweden)

    Katarzyna eBozek

    2012-06-01

    Full Text Available Human immunodeficiency virus type 2 (HIV-2 and simian immunodeficiency virus isolated from a macaque monkey (SIVmac are assumed to have originated from simian immunodeficiency virus isolated from sooty mangabey (SIVsm. Despite their close similarity in genome structure, HIV-2 and SIVmac show different sensitivities to TRIM5α, a host restriction factor against retroviruses. The replication of HIV-2 strains is potently restricted by rhesus (Rh monkey TRIM5α, while that of SIVmac strain 239 (SIVmac239 is not. Viral capsid protein is the determinant of this differential sensitivity to TRIM5α, as the HIV-2 mutant carrying SIVmac239 capsid protein evaded Rh TRIM5α-mediated restriction. However, the molecular determinants of this restriction mechanism are unknown. Electrostatic potential on the protein-binding site is one of the properties regulating protein-protein interactions. In this study, we investigated the electrostatic potential on the interaction surface of capsid protein of HIV-2 strain GH123 and SIVmac239. Although HIV-2 GH123 and SIVmac239 capsid proteins share more than 87% amino acid identity, we observed a large difference between the two molecules with the HIV-2 GH123 molecule having predominantly positive and SIVmac239 predominantly negative electrostatic potential on the surface of the loop between α-helices 4 and 5 (L4/5. As L4/5 is one of the major determinants of Rh TRIM5α sensitivity of these viruses, the present results suggest that the binding site of the Rh TRIM5α may show complementarity to the HIV-2 GH123 capsid surface charge distribution.

  2. A new infusion pathway monitoring system utilizing electrostatic induced potential.

    Science.gov (United States)

    Maki, Hiromichi; Yonezawa, Yoshiharu; Ogawa, Hidekuni; Ninomiya, Ishio; Sada, Kouji; Hamada, Shingo; Hahn, Alien W; Caldwell, W Morton

    2006-01-01

    We have developed a new infusion pathway monitoring system employing linear integrated circuits and a low-power 8-bit single chip microcomputer. The system is available for hospital and home use and it constantly monitors the intactness of the pathway. The sensor is an electro-conductive polymer electrode wrapped around the infusion polyvinyl chloride infusion tube. This records an AC (alternating current) voltage induced on the patient's body by electrostatic coupling from the normal 100 volt, 60 Hz AC power line wiring field in the patient's room. If the injection needle or infusion tube becomes detached, then the system detects changes in the induced AC voltage and alerts the nursing station, via the nurse call system or PHS (personal handy phone System).

  3. Effects of the positioning force of electrostatic levitators on viscosity measurements

    International Nuclear Information System (INIS)

    Ishikawa, Takehiko; Paradis, Paul-Francois; Koike, Noriyuki; Watanabe, Yuki

    2009-01-01

    Electrostatic levitators use strong electric fields to levitate and accurately position a sample against gravity. In this study, the effects of the electric field are investigated with regard to viscosity measurements conducted with the oscillating drop method. The effects of the external field on viscosity measurements are experimentally confirmed by changing the sample size. Moreover, a numerical simulation based on a simple mass-spring-damper system can reproduce the experimental observations. Based on the above results, measurement procedures are improved. These help to minimize the effect of the positioning force and to increase the accuracy of the viscosity measurements.

  4. Real-Time Hand Position Sensing Technology Based on Human Body Electrostatics

    Directory of Open Access Journals (Sweden)

    Kai Tang

    2018-05-01

    Full Text Available Non-contact human-computer interactions (HCI based on hand gestures have been widely investigated. Here, we present a novel method to locate the real-time position of the hand using the electrostatics of the human body. This method has many advantages, including a delay of less than one millisecond, low cost, and does not require a camera or wearable devices. A formula is first created to sense array signals with five spherical electrodes. Next, a solving algorithm for the real-time measured hand position is introduced and solving equations for three-dimensional coordinates of hand position are obtained. A non-contact real-time hand position sensing system was established to perform verification experiments, and the principle error of the algorithm and the systematic noise were also analyzed. The results show that this novel technology can determine the dynamic parameters of hand movements with good robustness to meet the requirements of complicated HCI.

  5. On stochastic heating of electrons by intense laser radiation in the presence of electrostatic potential well

    International Nuclear Information System (INIS)

    Krasheninnikov, S. I.

    2014-01-01

    A simple model developed by Paradkar et al. [Phys. Plasmas 19, 060703 (2012)] for the study of synergistic effects of electrostatic potential well and laser radiation is extended for the case where electric field of the well is accelerating electrons moving in the direction of the laser field propagation. It was found that in these cases, the rate of stochastic heating of energetic electrons remains virtually the same as in Paradkar et al. [Phys. Plasmas 19, 060703 (2012)], where electric field in electrostatic potential was slowing down electrons moving in the direction of the laser field propagation. However, the heating of electrons with relatively low energy can be sensitive to the orientation of the electrostatic potential well with respect to the direction of the laser radiation propagation

  6. Effect of the Curved Spacetime on the Electrostatic Potential Energy Distribution of Strange Stars

    Institute of Scientific and Technical Information of China (English)

    陈次星; 张家铝

    2001-01-01

    The effect of the strong gravitational field of the strange core of a strange star on its surface electrostatic potential energy distribution is discussed. We present the general-relativistic hydrodynamics equations of fluids in the presence of the electric fields and investigate the surface electrostatic potential distribution of the strange core of a strange star in hydrostatic equilibrium to correct Alcock and coworker's result [Astrophys. J. 310 (1986) 261]. Also, we discuss the temperature distribution of the bare strange star surface and give the related formulae, which may be useful if we are concerned further about the physical processes near the quark atter surfaces of strange stars.

  7. Split-illumination electron holography for improved evaluation of electrostatic potential associated with electrophotography

    Energy Technology Data Exchange (ETDEWEB)

    Tanigaki, Toshiaki, E-mail: tanigaki-toshiaki@riken.jp; Aizawa, Shinji; Soon Park, Hyun [Center for Emergent Matter Science (CEMS), RIKEN, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); Sato, Kuniaki; Akase, Zentaro [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Sendai 980-8577 (Japan); Matsuda, Tsuyoshi [Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012 (Japan); Murakami, Yasukazu; Shindo, Daisuke [Center for Emergent Matter Science (CEMS), RIKEN, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Sendai 980-8577 (Japan); Kawase, Hiromitsu [Product Environment Technology Development Department, Environment and Energy Technology Development Center R and D Group, RICOH Co., Ltd., Shinei-cho, Tsuzuki-ku, Yokohama, Kanagawa 224-0035 (Japan)

    2014-03-31

    Precise evaluation of the electrostatic potential distributions of and around samples with multiple charges using electron holography has long been a problem due to unknown perturbation of the reference wave. Here, we report the first practical application of split-illumination electron holography (SIEH) to tackle this problem. This method enables the use of a non-perturbed reference wave distant from the sample. SIEH revealed the electrostatic potential distributions at interfaces of the charged particles used for development in electrophotography and should lead to dramatic improvements in electrophotography.

  8. Split-illumination electron holography for improved evaluation of electrostatic potential associated with electrophotography

    International Nuclear Information System (INIS)

    Tanigaki, Toshiaki; Aizawa, Shinji; Soon Park, Hyun; Sato, Kuniaki; Akase, Zentaro; Matsuda, Tsuyoshi; Murakami, Yasukazu; Shindo, Daisuke; Kawase, Hiromitsu

    2014-01-01

    Precise evaluation of the electrostatic potential distributions of and around samples with multiple charges using electron holography has long been a problem due to unknown perturbation of the reference wave. Here, we report the first practical application of split-illumination electron holography (SIEH) to tackle this problem. This method enables the use of a non-perturbed reference wave distant from the sample. SIEH revealed the electrostatic potential distributions at interfaces of the charged particles used for development in electrophotography and should lead to dramatic improvements in electrophotography

  9. Grid-based lattice summation of electrostatic potentials by assembled rank-structured tensor approximation

    Science.gov (United States)

    Khoromskaia, Venera; Khoromskij, Boris N.

    2014-12-01

    Our recent method for low-rank tensor representation of sums of the arbitrarily positioned electrostatic potentials discretized on a 3D Cartesian grid reduces the 3D tensor summation to operations involving only 1D vectors however retaining the linear complexity scaling in the number of potentials. Here, we introduce and study a novel tensor approach for fast and accurate assembled summation of a large number of lattice-allocated potentials represented on 3D N × N × N grid with the computational requirements only weakly dependent on the number of summed potentials. It is based on the assembled low-rank canonical tensor representations of the collected potentials using pointwise sums of shifted canonical vectors representing the single generating function, say the Newton kernel. For a sum of electrostatic potentials over L × L × L lattice embedded in a box the required storage scales linearly in the 1D grid-size, O(N) , while the numerical cost is estimated by O(NL) . For periodic boundary conditions, the storage demand remains proportional to the 1D grid-size of a unit cell, n = N / L, while the numerical cost reduces to O(N) , that outperforms the FFT-based Ewald-type summation algorithms of complexity O(N3 log N) . The complexity in the grid parameter N can be reduced even to the logarithmic scale O(log N) by using data-sparse representation of canonical N-vectors via the quantics tensor approximation. For justification, we prove an upper bound on the quantics ranks for the canonical vectors in the overall lattice sum. The presented approach is beneficial in applications which require further functional calculus with the lattice potential, say, scalar product with a function, integration or differentiation, which can be performed easily in tensor arithmetics on large 3D grids with 1D cost. Numerical tests illustrate the performance of the tensor summation method and confirm the estimated bounds on the tensor ranks.

  10. Finite element simulations of electrostatic dopant potentials in thin semiconductor specimens for electron holography

    Energy Technology Data Exchange (ETDEWEB)

    Somodi, P.K.; Twitchett-Harrison, A.C.; Midgley, P.A. [Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ (United Kingdom); Kardynał, B.E. [Peter Grünberg Institute 9, Forschungszentrum Jülich, D-52425 Jülich (Germany); Barnes, C.H.W. [Department of Physics, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Dunin-Borkowski, R.E., E-mail: rafaldb@gmail.com [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute 5, Forschungszentrum Jülich, D-52425 Jülich (Germany)

    2013-11-15

    Two-dimensional finite element simulations of electrostatic dopant potentials in parallel-sided semiconductor specimens that contain p–n junctions are used to assess the effect of the electrical state of the surface of a thin specimen on projected potentials measured using off-axis electron holography in the transmission electron microscope. For a specimen that is constrained to have an equipotential surface, the simulations show that the step in the projected potential across a p–n junction is always lower than would be predicted from the properties of the bulk device, but is relatively insensitive to the value of the surface state energy, especially for thicker specimens and higher dopant concentrations. The depletion width measured from the projected potential, however, has a complicated dependence on specimen thickness. The results of the simulations are of broader interest for understanding the influence of surfaces and interfaces on electrostatic potentials in nanoscale semiconductor devices. - Highlights: • Finite element simulations are performed to calculate electrostatic dopant potentials in TEM specimens that contain p–n junctions. • The effect of the electrical state of the specimen surface on the projected potential is assessed for equipotential specimen surfaces. • The step in projected potential is always found to be lower than the step in potential in the bulk device. • The step in projected potential is least sensitive to surface state energy for thicker specimens and higher dopant concentrations. • The depletion width measured from the projected potential has a complicated dependence on specimen thickness.

  11. Finite element simulations of electrostatic dopant potentials in thin semiconductor specimens for electron holography

    International Nuclear Information System (INIS)

    Somodi, P.K.; Twitchett-Harrison, A.C.; Midgley, P.A.; Kardynał, B.E.; Barnes, C.H.W.; Dunin-Borkowski, R.E.

    2013-01-01

    Two-dimensional finite element simulations of electrostatic dopant potentials in parallel-sided semiconductor specimens that contain p–n junctions are used to assess the effect of the electrical state of the surface of a thin specimen on projected potentials measured using off-axis electron holography in the transmission electron microscope. For a specimen that is constrained to have an equipotential surface, the simulations show that the step in the projected potential across a p–n junction is always lower than would be predicted from the properties of the bulk device, but is relatively insensitive to the value of the surface state energy, especially for thicker specimens and higher dopant concentrations. The depletion width measured from the projected potential, however, has a complicated dependence on specimen thickness. The results of the simulations are of broader interest for understanding the influence of surfaces and interfaces on electrostatic potentials in nanoscale semiconductor devices. - Highlights: • Finite element simulations are performed to calculate electrostatic dopant potentials in TEM specimens that contain p–n junctions. • The effect of the electrical state of the specimen surface on the projected potential is assessed for equipotential specimen surfaces. • The step in projected potential is always found to be lower than the step in potential in the bulk device. • The step in projected potential is least sensitive to surface state energy for thicker specimens and higher dopant concentrations. • The depletion width measured from the projected potential has a complicated dependence on specimen thickness

  12. Electrostatic potential profile and nonlinear current in an interacting ...

    Indian Academy of Sciences (India)

    Unknown

    Since the Poisson distribution crucially depends on charge densities ... formedon a large number of systems using semi-empirical to first-principles ... known by now that the current in these systems is a nonlinear function of the voltage and ..... the middle of the molecule and the potential drop is smaller near the interfaces.

  13. Accelerating electrostatic surface potential calculation with multi-scale approximation on graphics processing units.

    Science.gov (United States)

    Anandakrishnan, Ramu; Scogland, Tom R W; Fenley, Andrew T; Gordon, John C; Feng, Wu-chun; Onufriev, Alexey V

    2010-06-01

    Tools that compute and visualize biomolecular electrostatic surface potential have been used extensively for studying biomolecular function. However, determining the surface potential for large biomolecules on a typical desktop computer can take days or longer using currently available tools and methods. Two commonly used techniques to speed-up these types of electrostatic computations are approximations based on multi-scale coarse-graining and parallelization across multiple processors. This paper demonstrates that for the computation of electrostatic surface potential, these two techniques can be combined to deliver significantly greater speed-up than either one separately, something that is in general not always possible. Specifically, the electrostatic potential computation, using an analytical linearized Poisson-Boltzmann (ALPB) method, is approximated using the hierarchical charge partitioning (HCP) multi-scale method, and parallelized on an ATI Radeon 4870 graphical processing unit (GPU). The implementation delivers a combined 934-fold speed-up for a 476,040 atom viral capsid, compared to an equivalent non-parallel implementation on an Intel E6550 CPU without the approximation. This speed-up is significantly greater than the 42-fold speed-up for the HCP approximation alone or the 182-fold speed-up for the GPU alone. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  14. Accelerating Electrostatic Surface Potential Calculation with Multiscale Approximation on Graphics Processing Units

    Science.gov (United States)

    Anandakrishnan, Ramu; Scogland, Tom R. W.; Fenley, Andrew T.; Gordon, John C.; Feng, Wu-chun; Onufriev, Alexey V.

    2010-01-01

    Tools that compute and visualize biomolecular electrostatic surface potential have been used extensively for studying biomolecular function. However, determining the surface potential for large biomolecules on a typical desktop computer can take days or longer using currently available tools and methods. Two commonly used techniques to speed up these types of electrostatic computations are approximations based on multi-scale coarse-graining and parallelization across multiple processors. This paper demonstrates that for the computation of electrostatic surface potential, these two techniques can be combined to deliver significantly greater speed-up than either one separately, something that is in general not always possible. Specifically, the electrostatic potential computation, using an analytical linearized Poisson Boltzmann (ALPB) method, is approximated using the hierarchical charge partitioning (HCP) multiscale method, and parallelized on an ATI Radeon 4870 graphical processing unit (GPU). The implementation delivers a combined 934-fold speed-up for a 476,040 atom viral capsid, compared to an equivalent non-parallel implementation on an Intel E6550 CPU without the approximation. This speed-up is significantly greater than the 42-fold speed-up for the HCP approximation alone or the 182-fold speed-up for the GPU alone. PMID:20452792

  15. Including diverging electrostatic potential in 3D-RISM theory: The charged wall case

    Science.gov (United States)

    Vyalov, Ivan; Rocchia, Walter

    2018-03-01

    Although three-dimensional site-site molecular integral equations of liquids are a powerful tool of the modern theoretical chemistry, their applications to the problem of characterizing the electrical double layer originating at the solid-liquid interface with a macroscopic substrate are severely limited by the fact that an infinitely extended charged plane generates a divergent electrostatic potential. Such potentials cannot be treated within the standard 3D-Reference Interaction Site Model equation solution framework since it leads to functions that are not Fourier transformable. In this paper, we apply a renormalization procedure to overcome this obstacle. We then check the validity and numerical accuracy of the proposed computational scheme on the prototypical gold (111) surface in contact with water/alkali chloride solution. We observe that despite the proposed method requires, to achieve converged charge densities, a higher spatial resolution than that suited to the estimation of biomolecular solvation with either 3D-RISM or continuum electrostatics approaches, it still is computationally efficient. Introducing the electrostatic potential of an infinite wall, which is periodic in 2 dimensions, we avoid edge effects, permit a robust integration of Poisson's equation, and obtain the 3D electrostatic potential profile for the first time in such calculations. We show that the potential within the electrical double layer presents oscillations which are not grasped by the Debye-Hückel and Gouy-Chapman theories. This electrostatic potential deviates from its average of up to 1-2 V at small distances from the substrate along the lateral directions. Applications of this theoretical development are relevant, for example, for liquid scanning tunneling microscopy imaging.

  16. Prediction of Reduction Potentials of Copper Proteins with Continuum Electrostatics and Density Functional Theory.

    Science.gov (United States)

    Fowler, Nicholas J; Blanford, Christopher F; Warwicker, Jim; de Visser, Sam P

    2017-11-02

    Blue copper proteins, such as azurin, show dramatic changes in Cu 2+ /Cu + reduction potential upon mutation over the full physiological range. Hence, they have important functions in electron transfer and oxidation chemistry and have applications in industrial biotechnology. The details of what determines these reduction potential changes upon mutation are still unclear. Moreover, it has been difficult to model and predict the reduction potential of azurin mutants and currently no unique procedure or workflow pattern exists. Furthermore, high-level computational methods can be accurate but are too time consuming for practical use. In this work, a novel approach for calculating reduction potentials of azurin mutants is shown, based on a combination of continuum electrostatics, density functional theory and empirical hydrophobicity factors. Our method accurately reproduces experimental reduction potential changes of 30 mutants with respect to wildtype within experimental error and highlights the factors contributing to the reduction potential change. Finally, reduction potentials are predicted for a series of 124 new mutants that have not yet been investigated experimentally. Several mutants are identified that are located well over 10 Å from the copper center that change the reduction potential by more than 85 mV. The work shows that secondary coordination sphere mutations mostly lead to long-range electrostatic changes and hence can be modeled accurately with continuum electrostatics. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  17. Charged patchy particle models in explicit salt: Ion distributions, electrostatic potentials, and effective interactions.

    Science.gov (United States)

    Yigit, Cemil; Heyda, Jan; Dzubiella, Joachim

    2015-08-14

    We introduce a set of charged patchy particle models (CPPMs) in order to systematically study the influence of electrostatic charge patchiness and multipolarity on macromolecular interactions by means of implicit-solvent, explicit-ion Langevin dynamics simulations employing the Gromacs software. We consider well-defined zero-, one-, and two-patched spherical globules each of the same net charge and (nanometer) size which are composed of discrete atoms. The studied mono- and multipole moments of the CPPMs are comparable to those of globular proteins with similar size. We first characterize ion distributions and electrostatic potentials around a single CPPM. Although angle-resolved radial distribution functions reveal the expected local accumulation and depletion of counter- and co-ions around the patches, respectively, the orientation-averaged electrostatic potential shows only a small variation among the various CPPMs due to space charge cancellations. Furthermore, we study the orientation-averaged potential of mean force (PMF), the number of accumulated ions on the patches, as well as the CPPM orientations along the center-to-center distance of a pair of CPPMs. We compare the PMFs to the classical Derjaguin-Verwey-Landau-Overbeek theory and previously introduced orientation-averaged Debye-Hückel pair potentials including dipolar interactions. Our simulations confirm the adequacy of the theories in their respective regimes of validity, while low salt concentrations and large multipolar interactions remain a challenge for tractable theoretical descriptions.

  18. Calculation of the electrostatic potential of lipid bilayers from molecular dynamics simulations: methodological issues

    DEFF Research Database (Denmark)

    Gurtovenko, Andrey A; Vattulainen, Ilpo

    2009-01-01

    of the electrostatic potential from atomic-scale molecular dynamics simulations of lipid bilayers. We discuss two slightly different forms of Poisson equation that are normally used to calculate the membrane potential: (i) a classical form when the potential and the electric field are chosen to be zero on one...... systems). For symmetric bilayers we demonstrate that both approaches give essentially the same potential profiles, provided that simulations are long enough (a production run of at least 100 ns is required) and that fluctuations of the center of mass of a bilayer are properly accounted for. In contrast...

  19. Positively charged microporous ceramic membrane for the removal of Titan Yellow through electrostatic adsorption.

    Science.gov (United States)

    Cheng, Xiuting; Li, Na; Zhu, Mengfu; Zhang, Lili; Deng, Yu; Deng, Cheng

    2016-06-01

    To develop a depth filter based on the electrostatic adsorption principle, positively charged microporous ceramic membrane was prepared from a diatomaceous earth ceramic membrane. The internal surface of the highly porous ceramic membrane was coated with uniformly distributed electropositive nano-Y2O3 coating. The dye removal performance was evaluated through pressurized filtration tests using Titan Yellow aqueous solution. It showed that positively charged microporous ceramic membrane exhibited a flow rate of 421L/(m(2)·hr) under the trans-membrane pressure of 0.03bar. Moreover it could effectively remove Titan Yellow with feed concentration of 10mg/L between pH3 to 8. The removal rate increased with the enhancement of the surface charge properties with a maximum rejection of 99.6%. This study provides a new and feasible method of removing organic dyes in wastewater. It is convinced that there will be a broad market for the application of charged ceramic membrane in the field of dye removal or recovery from industry wastewater. Copyright © 2016. Published by Elsevier B.V.

  20. Electrostatic Charge on Flying Hummingbirds and Its Potential Role in Pollination.

    Directory of Open Access Journals (Sweden)

    Marc Badger

    Full Text Available Electrostatic phenomena are known to enhance both wind- and insect-mediated pollination, but have not yet been described for nectar-feeding vertebrates. Here we demonstrate that wild Anna's Hummingbirds (Calypte anna can carry positive charges up to 800 pC while in flight (mean ± s.d.: 66 ± 129 pC. Triboelectric charging obtained by rubbing an isolated hummingbird wing against various plant structures generated charges up to 700 pC. A metal hummingbird model charged to 400 pC induced bending of floral stamens in four plants (Nicotiana, Hemerocallis, Penstemon, and Aloe spp., and also attracted falling Lycopodium spores at distances of < 2 mm. Electrostatic forces may therefore influence pollen transfer onto nectar-feeding birds.

  1. Electrostatic Charge on Flying Hummingbirds and Its Potential Role in Pollination.

    Science.gov (United States)

    Badger, Marc; Ortega-Jimenez, Victor Manuel; von Rabenau, Lisa; Smiley, Ashley; Dudley, Robert

    2015-01-01

    Electrostatic phenomena are known to enhance both wind- and insect-mediated pollination, but have not yet been described for nectar-feeding vertebrates. Here we demonstrate that wild Anna's Hummingbirds (Calypte anna) can carry positive charges up to 800 pC while in flight (mean ± s.d.: 66 ± 129 pC). Triboelectric charging obtained by rubbing an isolated hummingbird wing against various plant structures generated charges up to 700 pC. A metal hummingbird model charged to 400 pC induced bending of floral stamens in four plants (Nicotiana, Hemerocallis, Penstemon, and Aloe spp.), and also attracted falling Lycopodium spores at distances of < 2 mm. Electrostatic forces may therefore influence pollen transfer onto nectar-feeding birds.

  2. A simple derivation for amplitude and time period of charged particles in an electrostatic bathtub potential

    International Nuclear Information System (INIS)

    Prathap Reddy, K

    2016-01-01

    An ‘electrostatic bathtub potential’ is defined and analytical expressions for the time period and amplitude of charged particles in this potential are obtained and compared with simulations. These kinds of potentials are encountered in linear electrostatic ion traps, where the potential along the axis appears like a bathtub. Ion traps are used in basic physics research and mass spectrometry to store ions; these stored ions make oscillatory motion within the confined volume of the trap. Usually these traps are designed and studied using ion optical software, but in this work the bathtub potential is reproduced by making two simple modifications to the harmonic oscillator potential. The addition of a linear ‘ k 1 | x |’ potential makes the simple harmonic potential curve steeper with a sharper turn at the origin, while the introduction of a finite-length zero potential region at the centre reproduces the flat region of the bathtub curve. This whole exercise of modelling a practical experimental situation in terms of a well-known simple physics problem may generate interest among readers. (paper)

  3. Characterization of Electrostatic Potential and Trapped Charge in Semiconductor Nanostructures using Off-Axis Electron Holography

    Science.gov (United States)

    Gan, Zhaofeng

    Off-axis electron holography (EH) has been used to characterize electrostatic potential, active dopant concentrations and charge distribution in semiconductor nanostructures, including ZnO nanowires (NWs) and thin films, ZnTe thin films, Si NWs with axial p-n junctions, Si-Ge axial heterojunction NWs, and Ge/Li xGe core/shell NW. The mean inner potential (MIP) and inelastic mean free path (IMFP) of ZnO NWs have been measured to be 15.3V+/-0.2V and 55+/-3nm, respectively, for 200keV electrons. These values were then used to characterize the thickness of a ZnO nano-sheet and gave consistent values. The MIP and IMFP for ZnTe thin films were measured to be 13.7+/-0.6V and 46+/-2nm, respectively, for 200keV electrons. A thin film expected to have a p-n junction was studied, but no signal due to the junction was observed. The importance of dynamical effects was systematically studied using Bloch wave simulations. The built-in potentials in Si NWs across the doped p-n junction and the Schottky junction due to Au catalyst were measured to be 1.0+/-0.3V and 0.5+/-0.3V, respectively. Simulations indicated that the dopant concentrations were ~1019cm-3 for donors and ~1017 cm-3 for acceptors. The effects of positively charged Au catalyst, a possible n+-n --p junction transition region and possible surface charge, were also systematically studied using simulations. Si-Ge heterojunction NWs were studied. Dopant concentrations were extracted by atom probe tomography. The built-in potential offset was measured to be 0.4+/-0.2V, with the Ge side lower. Comparisons with simulations indicated that Ga present in the Si region was only partially activated. In situ EH biasing experiments combined with simulations indicated the B dopant in Ge was mostly activated but not the P dopant in Si. I-V characteristic curves were measured and explained using simulations. The Ge/LixGe core/shell structure was studied during lithiation. The MIP for LixGe decreased with time due to increased Li

  4. Parallel computation of electrostatic potentials and fields in technical geometries on SUPRENUM

    International Nuclear Information System (INIS)

    Alef, M.

    1990-02-01

    The programs EPOTZR und EFLDZR have been developed in order to compute electrostatic potentials and the corresponding fields in technical geometries (example: Diode geometry for optimum focussing of ion beams in pulsed high-current ion diodes). The Poisson equation is discretized in a two-dimensional boundary-fitted grid in the (r,z)-plane and solved using multigrid methods. The z- and r-components of the field are determined by numerical differentiation of the potential. This report contains the user's guide of the SUPRENUM versions EPOTZR-P and EFLDZR-P. (orig./HP) [de

  5. Atomic resolution electrostatic potential mapping of graphene sheets by off-axis electron holography

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, David, E-mail: david.cooper@cea.fr [University Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38054, Grenoble (France); Pan, Cheng-Ta; Haigh, Sarah [School of Materials, The University of Manchester, Manchester M13 9PL (United Kingdom)

    2014-06-21

    Off-axis electron holography has been performed at atomic resolution with the microscope operated at 80 kV to provide electrostatic potential maps from single, double, and triple layer graphene. These electron holograms have been reconstructed in order to obtain information about atomically resolved and mean inner potentials. We propose that off-axis electron holography can now be used to measure the electrical properties in a range of two-dimensional semiconductor materials and three dimensional devices comprising stacked layers of films to provide important information about their electrical properties.

  6. Atomic resolution electrostatic potential mapping of graphene sheets by off-axis electron holography

    International Nuclear Information System (INIS)

    Cooper, David; Pan, Cheng-Ta; Haigh, Sarah

    2014-01-01

    Off-axis electron holography has been performed at atomic resolution with the microscope operated at 80 kV to provide electrostatic potential maps from single, double, and triple layer graphene. These electron holograms have been reconstructed in order to obtain information about atomically resolved and mean inner potentials. We propose that off-axis electron holography can now be used to measure the electrical properties in a range of two-dimensional semiconductor materials and three dimensional devices comprising stacked layers of films to provide important information about their electrical properties.

  7. Electrostatic potential of mean force between two curved surfaces in the presence of counterion connectivity

    Science.gov (United States)

    Zhou, Shiqi

    2015-11-01

    In this paper, we investigate effects of counterion connectivity (i.e., association of the counterions into a chain molecule) on the electrostatic potential of mean force (EPMF) between two similarly charged cylinder rods in a primitive model electrolyte solution by solving a classical density functional theory. The main findings include the following: (i) The counterion connectivity helps in inducing a like-charge-attractionlike (LCA-like) phenomenology even in a monovalent counterion solution wherein the LCA-like observation generally does not occur without the counterion connectivity. (ii) For divalent counterion solutions, the counterion connectivity can reinforce or weaken the LCA-like observation depending on the chain length N , and simply increases the equilibrium nearest surface separation of the rods corresponding to the minimum EPMF to nearly three times the counterion site diameter, whether N is large or small. (iii) If N is large enough, the LCA-like strength tends to be negatively correlated with the electrolyte concentration c over the entire range of the rod surface charge magnitude | σ*| considered; whereas if N drops, the correlation tends to become positive with decrease of the | σ*| value, and particularly for modest | σ*| values, the correlation relationship exhibits an extreme value phenomenon. (iv) In the case of a 1:1 electrolyte, the EPMF effects of the diameters of counterion and coion sites are similar in both situations with and without the counterion connectivity. All of these findings can be explained self-consistently by a recently proposed hydrogen-bonding style mechanism reinforced by one additional concept: flexibility of the counterion chain and the factors affecting it, like N and counterion site valence.

  8. Electrostatics Explains the Position-Dependent Effect of G⋅U Wobble Base Pairs on the Affinity of RNA Kissing Complexes.

    Science.gov (United States)

    Abi-Ghanem, Josephine; Rabin, Clémence; Porrini, Massimiliano; Dausse, Eric; Toulmé, Jean-Jacques; Gabelica, Valérie

    2017-10-06

    In the RNA realm, non-Watson-Crick base pairs are abundant and can affect both the RNA 3D structure and its function. Here, we investigated the formation of RNA kissing complexes in which the loop-loop interaction is modulated by non-Watson-Crick pairs. Mass spectrometry, surface plasmon resonance, and UV-melting experiments show that the G⋅U wobble base pair favors kissing complex formation only when placed at specific positions. We tried to rationalize this effect by molecular modeling, including molecular mechanics Poisson-Boltzmann surface area (MMPBSA) thermodynamics calculations and PBSA calculations of the electrostatic potential surfaces. Modeling reveals that the G⋅U stabilization is due to a specific electrostatic environment defined by the base pairs of the entire loop-loop region. The loop is not symmetric, and therefore the identity and position of each base pair matters. Predicting and visualizing the electrostatic environment created by a given sequence can help to design specific kissing complexes with high affinity, for potential therapeutic, nanotechnology or analytical applications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Finite element simulations of electrostatic dopant potentials in thin semiconductor specimens for electron holography.

    Science.gov (United States)

    Somodi, P K; Twitchett-Harrison, A C; Midgley, P A; Kardynał, B E; Barnes, C H W; Dunin-Borkowski, R E

    2013-11-01

    Two-dimensional finite element simulations of electrostatic dopant potentials in parallel-sided semiconductor specimens that contain p-n junctions are used to assess the effect of the electrical state of the surface of a thin specimen on projected potentials measured using off-axis electron holography in the transmission electron microscope. For a specimen that is constrained to have an equipotential surface, the simulations show that the step in the projected potential across a p-n junction is always lower than would be predicted from the properties of the bulk device, but is relatively insensitive to the value of the surface state energy, especially for thicker specimens and higher dopant concentrations. The depletion width measured from the projected potential, however, has a complicated dependence on specimen thickness. The results of the simulations are of broader interest for understanding the influence of surfaces and interfaces on electrostatic potentials in nanoscale semiconductor devices. © 2013 Elsevier B.V. All rights reserved.

  10. DNA minor groove electrostatic potential: influence of sequence-specific transitions of the torsion angle gamma and deoxyribose conformations.

    Science.gov (United States)

    Zhitnikova, M Y; Shestopalova, A V

    2017-11-01

    The structural adjustments of the sugar-phosphate DNA backbone (switching of the γ angle (O5'-C5'-C4'-C3') from canonical to alternative conformations and/or C2'-endo → C3'-endo transition of deoxyribose) lead to the sequence-specific changes in accessible surface area of both polar and non-polar atoms of the grooves and the polar/hydrophobic profile of the latter ones. The distribution of the minor groove electrostatic potential is likely to be changing as a result of such conformational rearrangements in sugar-phosphate DNA backbone. Our analysis of the crystal structures of the short free DNA fragments and calculation of their electrostatic potentials allowed us to determine: (1) the number of classical and alternative γ angle conformations in the free B-DNA; (2) changes in the minor groove electrostatic potential, depending on the conformation of the sugar-phosphate DNA backbone; (3) the effect of the DNA sequence on the minor groove electrostatic potential. We have demonstrated that the structural adjustments of the DNA double helix (the conformations of the sugar-phosphate backbone and the minor groove dimensions) induce changes in the distribution of the minor groove electrostatic potential and are sequence-specific. Therefore, these features of the minor groove sizes and distribution of minor groove electrostatic potential can be used as a signal for recognition of the target DNA sequence by protein in the implementation of the indirect readout mechanism.

  11. Student reasoning about electrostatic and gravitational potential energy: An exploratory study with interdisciplinary consequences

    Directory of Open Access Journals (Sweden)

    Beth A. Lindsey

    2014-01-01

    Full Text Available This paper describes an investigation into student reasoning about potential energy in the context of introductory electrostatics. Similar incorrect reasoning patterns emerged both in written questions administered after relevant instruction and in one-on-one interviews. These reasoning patterns are also prevalent in responses to questions posed about gravitational potential energy in the context of universal gravitation in introductory mechanics. This finding is relevant for interdisciplinary research, because many courses in multiple disciplines first introduce the concept of electric potential energy in analogy to gravitational potential energy. The results suggest that in introductory courses students do not gain an understanding of potential energy that is sufficiently robust to apply in more advanced physics courses or in disciplines other than physics, in which students must frequently reason with energy in the context of interactions between atoms and molecules.

  12. Towards automated electron holographic tomography for 3D mapping of electrostatic potentials

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, Daniel, E-mail: Daniel.Wolf@Triebenberg.de [Triebenberg Laboratory, Institute of Structure Physics, Technische Universitaet Dresden, 01062 Dresden (Germany); Lubk, Axel; Lichte, Hannes [Triebenberg Laboratory, Institute of Structure Physics, Technische Universitaet Dresden, 01062 Dresden (Germany); Friedrich, Heiner [Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Sorbonnelaan 16, 3584 CA, Utrecht (Netherlands)

    2010-04-15

    Electron-holographic tomography (EHT), that is, the combination of off-axis electron holography with electron tomography, was successfully applied for the quantitative 3D mapping of electrostatic potentials at the nanoscale. Here we present the first software package (THOMAS) for semi-automated acquisition of holographic tilt series, a prerequisite for efficient data collection. Using THOMAS, the acquisition time for a holographic tilt series, consisting of object and reference holograms, is reduced by a factor of five on average, compared to the previous, completely manual approaches. Moreover, the existing software packages for retrieving amplitude and phase information from electron holograms have been extended, now including a one-step procedure for holographic tilt series reconstruction. Furthermore, a modified SIRT algorithm (WSIRT) was implemented for the quantitative 3D reconstruction of the electrostatic potential from the aligned phase tilt series. Finally, the application of EHT to a polystyrene latex sphere test-specimen and a pn-doped Ge 'needle'-shaped specimen are presented, illustrating the quantitative character of EHT. For both specimens the mean inner potential (MIP) values were accurately determined from the reconstructed 3D potential. For the Ge specimen, additionally the 'built-in' voltage across the pn junction of 0.5 V was obtained.

  13. Manipulation of electron transport in graphene by nanopatterned electrostatic potential on an electret

    Science.gov (United States)

    Wang, Xiaowei; Wang, Rui; Wang, Shengnan; Zhang, Dongdong; Jiang, Xingbin; Cheng, Zhihai; Qiu, Xiaohui

    2018-01-01

    The electron transport characteristics of graphene can be finely tuned using local electrostatic fields. Here, we use a scanning probe technique to construct a statically charged electret gate that enables in-situ fabrication of graphene devices with precisely designed potential landscapes, including p-type and n-type unipolar graphene transistors and p-n junctions. Electron dynamic simulation suggests that electron beam collimation and focusing in graphene can be achieved via periodic charge lines and concentric charge circles. This approach to spatially manipulating carrier density distribution may offer an efficient way to investigate the novel electronic properties of graphene and other low-dimensional materials.

  14. Observation of potential barriers on barium strontium titanate PTCR ceramics by electrostatic force microscopy

    International Nuclear Information System (INIS)

    Manfredini, J.P.; Paulin Filho, P.I.; Gheno, S.M.

    2011-01-01

    A composition of PTCR ceramic based in barium titanate with isovalent replacement of part of barium by strontium using lanthanum and manganese as additives was investigated. The transition temperature, typical of these materials, was shifted below the room temperature by the presence of strontium, whose behavior was detected by tests of DC resistivity and impedance spectroscopy. The observation of potential barriers at grain boundaries was possible through the technique of electrostatic force microscopy (EFM). The results also showed the presence of space charges in regions inside grains, possibly at subgrain boundaries. (author)

  15. On calculation of the electrostatic potential of a phosphatidylinositol phosphate-containing phosphatidylcholine lipid membrane accounting for membrane dynamics.

    Directory of Open Access Journals (Sweden)

    Jonathan C Fuller

    Full Text Available Many signaling events require the binding of cytoplasmic proteins to cell membranes by recognition of specific charged lipids, such as phosphoinositol-phosphates. As a model for a protein-membrane binding site, we consider one charged phosphoinositol phosphate (PtdIns(3P embedded in a phosphatidylcholine bilayer. As the protein-membrane binding is driven by electrostatic interactions, continuum solvent models require an accurate representation of the electrostatic potential of the phosphoinositol phosphate-containing membrane. We computed and analyzed the electrostatic potentials of snapshots taken at regular intervals from molecular dynamics simulations of the bilayer. We observe considerable variation in the electrostatic potential of the bilayer both along a single simulation and between simulations performed with the GAFF or CHARMM c36 force fields. However, we find that the choice of GAFF or CHARMM c36 parameters has little effect on the electrostatic potential of a given configuration of the bilayer with a PtdIns(3P embedded in it. From our results, we propose a remedian averaging method for calculating the electrostatic potential of a membrane system that is suitable for simulations of protein-membrane binding with a continuum solvent model.

  16. An improved fast multipole method for electrostatic potential calculations in a class of coarse-grained molecular simulations

    International Nuclear Information System (INIS)

    Poursina, Mohammad; Anderson, Kurt S.

    2014-01-01

    This paper presents a novel algorithm to approximate the long-range electrostatic potential field in the Cartesian coordinates applicable to 3D coarse-grained simulations of biopolymers. In such models, coarse-grained clusters are formed via treating groups of atoms as rigid and/or flexible bodies connected together via kinematic joints. Therefore, multibody dynamic techniques are used to form and solve the equations of motion of such coarse-grained systems. In this article, the approximations for the potential fields due to the interaction between a highly negatively/positively charged pseudo-atom and charged particles, as well as the interaction between clusters of charged particles, are presented. These approximations are expressed in terms of physical and geometrical properties of the bodies such as the entire charge, the location of the center of charge, and the pseudo-inertia tensor about the center of charge of the clusters. Further, a novel substructuring scheme is introduced to implement the presented far-field potential evaluations in a binary tree framework as opposed to the existing quadtree and octree strategies of implementing fast multipole method. Using the presented Lagrangian grids, the electrostatic potential is recursively calculated via sweeping two passes: assembly and disassembly. In the assembly pass, adjacent charged bodies are combined together to form new clusters. Then, the potential field of each cluster due to its interaction with faraway resulting clusters is recursively calculated in the disassembly pass. The method is highly compatible with multibody dynamic schemes to model coarse-grained biopolymers. Since the proposed method takes advantage of constant physical and geometrical properties of rigid clusters, improvement in the overall computational cost is observed comparing to the tradition application of fast multipole method

  17. An improved fast multipole method for electrostatic potential calculations in a class of coarse-grained molecular simulations

    Science.gov (United States)

    Poursina, Mohammad; Anderson, Kurt S.

    2014-08-01

    This paper presents a novel algorithm to approximate the long-range electrostatic potential field in the Cartesian coordinates applicable to 3D coarse-grained simulations of biopolymers. In such models, coarse-grained clusters are formed via treating groups of atoms as rigid and/or flexible bodies connected together via kinematic joints. Therefore, multibody dynamic techniques are used to form and solve the equations of motion of such coarse-grained systems. In this article, the approximations for the potential fields due to the interaction between a highly negatively/positively charged pseudo-atom and charged particles, as well as the interaction between clusters of charged particles, are presented. These approximations are expressed in terms of physical and geometrical properties of the bodies such as the entire charge, the location of the center of charge, and the pseudo-inertia tensor about the center of charge of the clusters. Further, a novel substructuring scheme is introduced to implement the presented far-field potential evaluations in a binary tree framework as opposed to the existing quadtree and octree strategies of implementing fast multipole method. Using the presented Lagrangian grids, the electrostatic potential is recursively calculated via sweeping two passes: assembly and disassembly. In the assembly pass, adjacent charged bodies are combined together to form new clusters. Then, the potential field of each cluster due to its interaction with faraway resulting clusters is recursively calculated in the disassembly pass. The method is highly compatible with multibody dynamic schemes to model coarse-grained biopolymers. Since the proposed method takes advantage of constant physical and geometrical properties of rigid clusters, improvement in the overall computational cost is observed comparing to the tradition application of fast multipole method.

  18. Electronic memory devices based on the chalcone with negative electrostatic potential regions

    International Nuclear Information System (INIS)

    Yan, Bao-Long; Sun, Ru; Ge, Jian-Feng; Wang, Dong; Li, Hua; Lu, Jian-Mei

    2013-01-01

    The molecular electrostatic potential (ESP) properties were used for the explanation of organic electric memory ability. Several chalcone compounds, owning a negative ESP region locates at the oxygen atom, were selected in this paper to validate the selection of compounds for organic memory materials. The synthesis, characterization, fabrication of the organic memory devices and the electrical properties for them were reported, and they were shown as WORM (write once read many times) type memory devices. The molecular geometries were optimized by the addition of a changeable electric field in the x direction inside the molecules using FF-DFT (Finite Field-Density Functionary Theory) method. The relationship between ESP of the molecules under different electric field and the property was discussed, and the mechanisms associated with the memory effect were also elucidated from DFT calculation results. - Highlights: • The molecular electrostatic potential (ESP) properties were used. • The chalcone compounds were used for the WORM type device. • The molecular geometries were optimized by the addition of a changeable electric field in the x direction. • The structure–property relationship was discussed

  19. Dirac gap-induced graphene quantum dot in an electrostatic potential

    Science.gov (United States)

    Giavaras, G.; Nori, Franco

    2011-04-01

    A spatially modulated Dirac gap in a graphene sheet leads to charge confinement, thus enabling a graphene quantum dot to be formed without the application of external electric and magnetic fields [G. Giavaras and F. Nori, Appl. Phys. Lett. 97, 243106 (2010)]. This can be achieved provided the Dirac gap has a local minimum in which the states become localized. In this work, the physics of such a gap-induced dot is investigated in the continuum limit by solving the Dirac equation. It is shown that gap-induced confined states couple to the states introduced by an electrostatic quantum well potential. Hence the region in which the resulting hybridized states are localized can be tuned with the potential strength, an effect which involves Klein tunneling. The proposed quantum dot may be used to probe quasirelativistic effects in graphene, while the induced confined states may be useful for graphene-based nanostructures.

  20. Real-space formulation of the electrostatic potential and total energy of solids

    International Nuclear Information System (INIS)

    Pask, J E; Sterne, P A

    2004-01-01

    We develop expressions for the electrostatic potential and total energy of crystalline solids which are amenable to direct evaluation in real space. Unlike conventional reciprocal space formulations, no Fourier transforms or reciprocal lattice summations are required, and the formulation is well suited for large-scale, parallel computations. The need for reciprocal space expressions is eliminated by replacing long-range potentials by equivalent localized charge distributions and incorporating long-range interactions into boundary conditions on the unit cell. In so doing, a simplification of the conventional reciprocal space formalism is obtained. The equivalence of the real- and reciprocal space formalisms is demonstrated by direct comparison in self-consistent density-functional calculations

  1. Bohm potential effect on the propagation of electrostatic surface wave in semi-bounded quantum plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myoung-Jae [Department of Physics, Hanyang University, Seoul 04763 (Korea, Republic of); Research Institute for Natural Sciences, Hanyang University, Seoul 04763 (Korea, Republic of); Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr [Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 15588 (Korea, Republic of); Department of Electrical and Computer Engineering, MC 0407, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0407 (United States)

    2017-02-12

    High frequency electrostatic wave propagation in a dense and semi-bounded electron quantum plasma is investigated with consideration of the Bohm potential. The dispersion relation for the surface mode of quantum plasma is derived and numerically analyzed. We found that the quantum effect enhances the frequency of the wave especially in the high wave number regime. However, the frequency of surface wave is found to be always lower than that of the bulk wave for the same quantum wave number. The group velocity of the surface wave for various quantum wave number is also obtained. - Highlights: • High frequency electrostatic wave propagation is investigated in a dense semi-bounded quantum plasma. • The dispersion relation for the surface mode of quantum plasma is derived and numerically analyzed. • The quantum effect enhances the frequency of the wave especially in the high wave number regime. • The frequency of surface wave is found to be always lower than that of the bulk wave. • The group velocity of the surface wave for various quantum wave number is also obtained.

  2. Influence of surface topology and electrostatic potential on water/electrode systems

    Science.gov (United States)

    Siepmann, J. Ilja; Sprik, Michiel

    1995-01-01

    We have used the classical molecular dynamics technique to simulate the ordering of a water film adsorbed on an atomic model of a tip of a scanning tunneling microscope approaching a planar metal surface. For this purpose, we have developed a classical model for the water-substrate interactions that solely depends on the coordinates of the particles and does not require the definition of geometrically smooth boundary surfaces or image planes. The model includes both an electrostatic induction for the metal atoms (determined by means of an extended Lagrangian technique) and a site-specific treatment of the water-metal chemisorption. As a validation of the model we have investigated the structure of water monolayers on metal substrates of various topology [the (111), (110), and (100) crystallographic faces] and composition (Pt, Ag, Cu, and Ni), and compared the results to experiments. The modeling of the electrostatic induction is compatible with a finite external potential imposed on the metal. This feature is used to investigate the structural rearrangements of the water bilayer between the pair of scanning tunneling microscope electrodes in response to an applied external voltage difference. We find significant asymmetry in the dependence on the sign of the applied voltage. Another result of the calculation is an estimate of the perturbation to the work function caused by the wetting film. For the conditions typical for operation of a scanning tunneling microscope probe, the change in the work function is found to be comparable to the applied voltage (a few hundred millivolts).

  3. Mapping the electrostatic potential of Au nanoparticles using hybrid electron holography.

    Science.gov (United States)

    Ozsoy-Keskinbora, Cigdem; Boothroyd, Chris B; Dunin-Borkowski, Rafal E; van Aken, Peter A; Koch, Christoph T

    2016-06-01

    Electron holography is a powerful technique for characterizing electrostatic potentials, charge distributions, electric and magnetic fields, strain distributions and semiconductor dopant distributions with sub-nm spatial resolution. Mapping internal electrostatic and magnetic fields within nanoparticles and other low-dimensional materials by TEM requires both high spatial resolution and high phase sensitivity. Carrying out such an analysis fully quantitatively is even more challenging, since artefacts such as dynamical electron scattering may strongly affect the measurement. In-line electron holography, one of the variants of electron holography, features high phase sensitivity at high spatial frequencies, but suffers from inefficient phase recovery at low spatial frequencies. Off-axis electron holography, in contrast, can recover low spatial frequency phase information much more reliably, but is less effective in retrieving phase information at high spatial frequencies when compared to in-line holography. We investigate gold nanoparticles using hybrid electron holography at both atomic-resolution and intermediate magnification. Hybrid electron holography is a novel technique that synergistically combines off-axis and in-line electron holography, allowing the measurement of the complex wave function describing the scattered electrons with excellent signal-to-noise properties at both high and low spatial frequencies. The effect of dynamical electron scattering is minimized by beam tilt averaging. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Correlation between potential well structure and neutron production in inertial electrostatic confinement fusion

    International Nuclear Information System (INIS)

    Ohnishi, M.; Yamamoto, Y.; Yoshikawa, K.; Sato, K.H.

    1997-01-01

    The electrostatic potential well in inertial electrostatic confinement (IEC) is studied using two approaches. First, the equilibrium potential profile is obtained by solving the charge neutrality condition, i.e. n i n e , assuming the appropriate distribution functions for the ions and the electrons. The formation of a double well structure is demonstrated, with a depth depending upon the ratio between the focus radii of the electrons and the ions. The correlations between the well depth and the volume integrated neutron production due to deuterium-deuterium (DD) reactions are obtained. Second, in order to study the stability of the well, the dynamic behaviours of the potential well are calculated by performing time advancing numerical simulations on the basis of the particle in cell method. Single, double and triple wells, depending on the amount of injected ion current, are observed to be formed for ions with a monoenergetic distribution. The well in the centre of the multiwell structure is unstable and oscillates with a periods much longer than the inverse ion plasma frequency. A double well structure can be formed even for ions with a spread out energy distribution when the ion current is larger than the threshold value. The time averaged neutron production by DD fusion events is proportional to a power of the ion current involved in forming the double well structure. The results strongly suggest that the high neutron production rate should be attributed to not only the well depth but also the unstable behaviour of the potential, i.e. the intermittent peaking of the density in the centre region. A numerical simulation reveals that IEC possesses a favourable dependence of fusion reactions on the injected ion current for the application to a neutron source or a fusion reactor. (author). 9 refs, 9 figs

  5. Evaluation of an Electrostatic Dust Removal System with Potential Application in Next-Step Fusion Devices

    International Nuclear Information System (INIS)

    Friesen, F.Q.L.; John, B.; Skinner, C.H.; Roquemore, A.L.; Calle, C.I.

    2011-01-01

    The ability to manage inventories of carbon, tritium, and high-Z elements in fusion plasmas depends on means for effective dust removal. A dust conveyor, based on a moving electrostatic potential well, was tested with particles of tungsten, carbon, glass and sand. A digital microscope imaged a representative portion of the conveyor, and dust particle size and volume distributions were derived before and after operation. About 10 mm3 volume of carbon and tungsten particles were moved in under 5 seconds. The highest driving amplitude tested of 3 kV was the most effective. The optimal driving frequency was 210 Hz (maximum tested) for tungsten particles, decreasing to below 60 Hz for the larger sand particles. Measurements of particle size and volume distributions after 10 and 100 cycles show the breaking apart of agglomerated carbon, and the change in particle distribution over short timescales (<1 s).

  6. Unintended Positional Drift and Its Potential Solutions

    DEFF Research Database (Denmark)

    Nilsson, Niels Christian; Serafin, Stefania; Nordahl, Rolf

    2013-01-01

    many users unintentionally move forward while walking in place. We refer to this phenomenon accidental movement as Unintended Positional Drift. The poster presents evidence of the phenomenon's existence and subsequently discusses different design solutions which potentially could circumvent the problem....

  7. Measurements of strongly localized potential well profiles in an inertial electrostatic fusion neutron source

    International Nuclear Information System (INIS)

    Yoshikawa, K.; Takiyama, K.; Koyama, T.

    2001-01-01

    Direct measurements of localized electric fields are made by the laser-induced fluorescence (LIF) method by use of the Stark effects in the central cathode core region of an Inertial-Electrostatic Confinement Fusion (IECF) neutron (proton) source, which is expected for various applications, such as luggage security inspection, non-destructive testing, land mine detector, or positron emitter production for cancer detection, currently producing continuously about 10 7 n/sec D-D neutrons. Since 1967 when the first fusion reaction was successfully proved experimentally in a very compact IECF device, potential well formation due to space charge associated with spherically converging ion beams has been a central key issue to be clarified in the beam-beam colliding fusion, which is the major mechanism of the IECF neutron source. Many experiments, but indirect, were made so far to clarify the potential well, but none of them produced definitive evidence, however. Results by the present LIF method show a double well potential profile with a slight concave for ion beams with relatively larger angular momenta, whereas for ions with smaller angular momenta, potential but much steeper peak to develop. (author)

  8. Mapping the electrostatic potential of Au nanoparticles using hybrid electron holography

    Energy Technology Data Exchange (ETDEWEB)

    Ozsoy-Keskinbora, Cigdem, E-mail: c.ozsoy@fkf.mpg.de [Stuttgart Center for Electron Microscopy, Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart (Germany); Boothroyd, Chris B.; Dunin-Borkowski, Rafal E. [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, 52425 Jülich (Germany); Aken, Peter A. van [Stuttgart Center for Electron Microscopy, Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart (Germany); Koch, Christoph T. [Structure Research & Electron Microscopy group, Department of Physics, Humboldt University of Berlin, Newtonstraße 15, 12489 Berlin (Germany)

    2016-06-15

    Electron holography is a powerful technique for characterizing electrostatic potentials, charge distributions, electric and magnetic fields, strain distributions and semiconductor dopant distributions with sub-nm spatial resolution. Mapping internal electrostatic and magnetic fields within nanoparticles and other low-dimensional materials by TEM requires both high spatial resolution and high phase sensitivity. Carrying out such an analysis fully quantitatively is even more challenging, since artefacts such as dynamical electron scattering may strongly affect the measurement. In-line electron holography, one of the variants of electron holography, features high phase sensitivity at high spatial frequencies, but suffers from inefficient phase recovery at low spatial frequencies. Off-axis electron holography, in contrast, can recover low spatial frequency phase information much more reliably, but is less effective in retrieving phase information at high spatial frequencies when compared to in-line holography. We investigate gold nanoparticles using hybrid electron holography at both atomic-resolution and intermediate magnification. Hybrid electron holography is a novel technique that synergistically combines off-axis and in-line electron holography, allowing the measurement of the complex wave function describing the scattered electrons with excellent signal-to-noise properties at both high and low spatial frequencies. The effect of dynamical electron scattering is minimized by beam tilt averaging. - Highlights: • Hybrid electron holography approach applied to Au nanoparticles. • Proof of principle of atomic resolution hybrid electron holography experiment demonstrated. • Dynamical scattering artifacts decrease by varying the illumination direction. • The effect of the number of iterations and noise on the low spatial frequencies in the phase are discussed.

  9. Mapping the electrostatic potential of Au nanoparticles using hybrid electron holography

    International Nuclear Information System (INIS)

    Ozsoy-Keskinbora, Cigdem; Boothroyd, Chris B.; Dunin-Borkowski, Rafal E.; Aken, Peter A. van; Koch, Christoph T.

    2016-01-01

    Electron holography is a powerful technique for characterizing electrostatic potentials, charge distributions, electric and magnetic fields, strain distributions and semiconductor dopant distributions with sub-nm spatial resolution. Mapping internal electrostatic and magnetic fields within nanoparticles and other low-dimensional materials by TEM requires both high spatial resolution and high phase sensitivity. Carrying out such an analysis fully quantitatively is even more challenging, since artefacts such as dynamical electron scattering may strongly affect the measurement. In-line electron holography, one of the variants of electron holography, features high phase sensitivity at high spatial frequencies, but suffers from inefficient phase recovery at low spatial frequencies. Off-axis electron holography, in contrast, can recover low spatial frequency phase information much more reliably, but is less effective in retrieving phase information at high spatial frequencies when compared to in-line holography. We investigate gold nanoparticles using hybrid electron holography at both atomic-resolution and intermediate magnification. Hybrid electron holography is a novel technique that synergistically combines off-axis and in-line electron holography, allowing the measurement of the complex wave function describing the scattered electrons with excellent signal-to-noise properties at both high and low spatial frequencies. The effect of dynamical electron scattering is minimized by beam tilt averaging. - Highlights: • Hybrid electron holography approach applied to Au nanoparticles. • Proof of principle of atomic resolution hybrid electron holography experiment demonstrated. • Dynamical scattering artifacts decrease by varying the illumination direction. • The effect of the number of iterations and noise on the low spatial frequencies in the phase are discussed.

  10. Electrostatics in Chemistry

    Indian Academy of Sciences (India)

    Electrostatics in Chemistry. 3. Molecular Electrostatic Potential: Visualization and Topography. Shridhar R Gadre and Pravin K Bhadane. 1 1. Basic Principles, Resona- nce, Vol.4, No.2, 11-19, 1999. 2. Electrostatic Potentials of. Atoms, Ions and Molecules,. Resonance, Vol.4, No.5, 40-51,. 1999. Topographical features of the ...

  11. Electrostatics in Chemistry

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 7. Electrostatics in Chemistry - Molecular Electrostatic Potential: Visualization and Topography. Shridhar R Gadre Pravin K Bhadane. Series Article Volume 4 Issue 7 July 1999 pp 14-23 ...

  12. Two-extremum electrostatic potential of metal-lattice plasma and the work function of an electron

    Directory of Open Access Journals (Sweden)

    Surma S.A.

    2015-06-01

    Full Text Available Metal-lattice plasma is treated as a neutral two-component two-phase system of 2D surface and 3D bulk. Free electron density and bulk chemical potential are used as intensive parameters of the system with the phase boundary position determined in the crystalline lattice. A semiempirical expression for the electron screened electrostatic potential is constructed using the lattice-plasma polarization concept. It comprises an image term and three repulsion/attraction terms of second and fourth orders. The novel curve has two extremes and agrees with certain theoretical forms of potential. A practical formula for the electron work function of metals and a simplified schema of electronic structure at the metal/vacuum interface are proposed. This yields 10.44 eV for the Fermi energy of free electron gas; -5.817 eV for the Fermi energy level; 4.509 eV for the average work function of bcc tungsten. Selected data are also given for fcc Cu and hcp Re. For harmonic frequencies ~ 10E16 per s of the self-excited metal-lattice plasma, energy gaps of 14.54 and 8.02 eV are found, which correspond to the bulk and surface plasmons, respectively. Further extension of this thermodynamics and metal-lattice theory based approach may contribute to a better understanding of theoretical models which are employed in chemical physics, catalysis and materials science of nanostructures.

  13. Accuracy of Protein Embedding Potentials: An Analysis in Terms of Electrostatic Potentials

    DEFF Research Database (Denmark)

    Olsen, Jogvan Magnus Haugaard; List, Nanna Holmgaard; Kristensen, Kasper

    2015-01-01

    strategies combined with single-fragment ab initio calculations. In fact, due to the self-interaction error in Kohn–Sham density functional theory (KS-DFT), use of large full-structure quantum-mechanical calculations based on conventional (hybrid) functionals leads to less accurate embedding potentials than...

  14. Mathematics motivated by physics: the electrostatic potential is the Coulomb integral transform of the electric charge density

    OpenAIRE

    Medina, L; Ley Koo, E

    2008-01-01

    This article illustrates a practical way to connect and coordinate the teaching and learning of physics and mathematics. The starting point is the electrostatic potential, which is obtained in any introductory course of electromagnetism from the Coulomb potential and the superposition principle for any charge distribution. The necessity to develop solutions to the Laplace and Poisson differential equations is also recognized, identifying the Coulomb potential as the generating function of har...

  15. The influence of screening of the polyion electrostatic potential on the counterion dynamics in polyelectrolyte solutions

    Science.gov (United States)

    Schipper, F. J. M.; Hollander, J. G.; Leyte, J. C.

    1998-10-01

    The self-diffusion coefficient of tetra-methylammonium counterion in solutions of polymethacrylic acid in 0953-8984/10/41/004/img1 has been measured over a broad polyion concentration range at a constant degree of neutralization and at different ratios of added monovalent or bivalent salt to polyions. A maximum counterion self-diffusion coefficient was observed as a function of polyion concentration. The value of the self-diffusion coefficient at the maximum did not depend on the valency of the added salt. The maximum was found at lower polymer concentrations and with a higher value, when the ratio of added salt to polyions was increased, as predicted by the Poisson-Boltzmann-Smoluchowski equation in the cylindrical cell model for polyelectrolytes. At higher polyion concentrations a maximum counterion self-diffusion coefficient against the ratio of added salt and polyions was observed, which has not been reported before. Upon increasing this ratio the electrostatic potential of the polyelectrolyte gets screened, leading to an increase of the counterion self-diffusion coefficient. Concentration effects of the added salt on the other hand ultimately lead to a decrease of the counterion self-diffusion coefficient, which explains the occurrence of a maximum.

  16. Effects of neglecting carrier tunneling on electrostatic potential in calculating direct tunneling gate current in deep submicron MOSFETs

    OpenAIRE

    Hakim, MMA; Haque, A

    2002-01-01

    We investigate the validity of the assumption of neglecting carrier tunneling effects on self-consistent electrostatic potential in calculating direct tunneling gate current in deep submicron MOSFETs. Comparison between simulated and experimental results shows that for accurate modeling of direct tunneling current, tunneling effects on potential profile need to be considered. The relative error in gate current due to neglecting carrier tunneling is higher at higher gate voltages and increases...

  17. Analytical calculation of geometric and chromatic aberrations in a bi-potential electrostatic and bell-shaped magnetic combined lens

    International Nuclear Information System (INIS)

    Ximen Jiye; Liu Zhixiong

    2000-01-01

    In the present paper, Gaussian optical property in the bi-potential electrostatic and the bell-shaped magnetic combined lens - a new theoretical model first proposed in electron optics - has been thoroughly studied. Meanwhile, based on electron optical canonical aberration theory, analytical formulas of third-order geometrical and first-order chromatic aberration coefficients and their computational results have first been derived for this bi-potential electrostatic and bell-shaped magnetic combined lens. It is to emphasized that this theoretical study can be used to estimate third-order geometric and first-order chromatic aberrations and to provide a theoretical criterion for numerical computation in a rotationally symmetric electromagnetic lens

  18. Reactivity of etoricoxib based on computational study of molecular orbitals, molecular electrostatic potential surface and Mulliken charge analysis

    Science.gov (United States)

    Sachdeva, Ritika; Soni, Abhinav; Singh, V. P.; Saini, G. S. S.

    2018-05-01

    Etoricoxib is one of the selective cyclooxygenase inhibitor drug which plays a significant role in the pharmacological management of arthritis and pain. The theoretical investigation of its reactivity is done using Density Functional Theory calculations. Molecular Electrostatic Potential Surface of etoricoxib and its Mulliken atomic charge distribution are used for the prediction of its electrophilic and nucleophilic sites. The detailed analysis of its frontier molecular orbitals is also done.

  19. Potential well measurements in spherical electrostatic-inertial plasma confinement (SEIC) using a collimated proton detector

    International Nuclear Information System (INIS)

    Miley, G.H.; Nadler, J.H.; Gu, Y.B.

    1992-01-01

    A collimated proton detector has been developed for spatially resolved proton measurement in SEIC deuterium fusion experiments. The results are used to infer the potential well depth and well dynamics during SEIC operation. The SEIC operates as follows: ions enter the cathode-grid and are decelerated due to the presence of the positive space charge in the center created by the high ion density there. Since the fusion cross-section is ion-velocity dependent, the greater the height of the positive potential, the lower is the fusion reaction rate in that region. This source profile is determined by the collimated proton measurement. Analysis of the observed proton energy and parametric dependence on voltage current indicates that beam-background fusion predominantly occurs (for a typical 12-mA cathode current, 30-kV cathode voltage in a 4-mTorr D, background). Computer simulations suggest that for these parameters, a positive space charge potential of magnitude about 1/2 of the applied voltage forms inside the cathode. These results establish the first measurement of a positive potential well structure inside an ion injected SEIC device. The dynamics of the well profile with changing injected current is described along with a description of the technique used for unfolding the proton data

  20. A Study of Electrostatic Charge on Insulating Film by Electrostatic Force Microscopy

    International Nuclear Information System (INIS)

    Kikunaga, K; Toosaka, K; Kamohara, T; Sakai, K; Nonaka, K

    2011-01-01

    Electrostatic charge properties on polypropylene film have been characterized by atomic force microscopy and electrostatic force microscopy. The measurements have been carried out after the polypropylene film was electrified by contact and separation process in an atmosphere of controlled humidity. The negative and positive charge in concave surface has been observed. The correlation between concave surface and charge position suggests that the electrostatic charges could be caused by localized contact. On the other hand, positive charge on a flat surface has been observed. The absence of a relationship between surface profile and charge position suggests that the electrostatic charge should be caused by discharge during the separation process. The spatial migration of other positive charges through surface roughness has been observed. The results suggest that there could be some electron traps on the surface roughness and some potentials on the polypropylene film.

  1. Electrostatics in Chemistry

    Indian Academy of Sciences (India)

    characteristics and applications of the electrostatic potential of many-electron atoms, ions and molecules are discussed. Electrostatic Potential of Atoms and Singly. Charged ..... [6] R K Pathak and S R Gadre,J. Chat. Phys., 93, 1770, 1990. [7] S R Gadre, S A Kalkarni and I H Shrivastava,J. Chern. Phys., 96,52;3,. 1992. ~ .1.

  2. Theoretical potential for low energy consumption phase change memory utilizing electrostatically-induced structural phase transitions in 2D materials

    Science.gov (United States)

    Rehn, Daniel A.; Li, Yao; Pop, Eric; Reed, Evan J.

    2018-01-01

    Structural phase-change materials are of great importance for applications in information storage devices. Thermally driven structural phase transitions are employed in phase-change memory to achieve lower programming voltages and potentially lower energy consumption than mainstream nonvolatile memory technologies. However, the waste heat generated by such thermal mechanisms is often not optimized, and could present a limiting factor to widespread use. The potential for electrostatically driven structural phase transitions has recently been predicted and subsequently reported in some two-dimensional materials, providing an athermal mechanism to dynamically control properties of these materials in a nonvolatile fashion while achieving potentially lower energy consumption. In this work, we employ DFT-based calculations to make theoretical comparisons of the energy required to drive electrostatically-induced and thermally-induced phase transitions. Determining theoretical limits in monolayer MoTe2 and thin films of Ge2Sb2Te5, we find that the energy consumption per unit volume of the electrostatically driven phase transition in monolayer MoTe2 at room temperature is 9% of the adiabatic lower limit of the thermally driven phase transition in Ge2Sb2Te5. Furthermore, experimentally reported phase change energy consumption of Ge2Sb2Te5 is 100-10,000 times larger than the adiabatic lower limit due to waste heat flow out of the material, leaving the possibility for energy consumption in monolayer MoTe2-based devices to be orders of magnitude smaller than Ge2Sb2Te5-based devices.

  3. 2D MEMS electrostatic cantilever waveguide scanner for potential image display application

    Directory of Open Access Journals (Sweden)

    Gu Kebin

    2015-01-01

    Full Text Available This paper presents the current status of our micro-fabricated SU-8 2D electrostatic cantilever waveguide scanner. The current design utilizes a monolithically integrated electrostatic push-pull actuator. A 4.0 μm SU-8 rib waveguide design allows a relatively large core cross section (4μm in height and 20 μm in width to couple with existing optical fiber and a broad band single mode operation (λ= 0.7μm to 1.3μm with minimal transmission loss (85% to 87% output transmission efficiency with Gaussian beam profile input. A 2D scanning motion has been successfully demonstrated with two fundamental resonances found at 202 and 536 Hz in vertical and horizontal directions. A 130 μm and 19 μm, corresponding displacement and 0.062 and 0.009 rad field of view were observed at a +150V input. Beam divergence from the waveguide was corrected by a focusing GRIN lens and a 5μm beam diameter is observed at the focal plane. The transmission efficiency is low (~10% and cantilever is slightly under tensile residual stress due to inherent imperfection in the process and tooling in fabrication. However, 2D light scanning pattern was successfully demonstrated using 1-D push-pull actuation.

  4. The measurement of electrostatic potentials in core/shell GaN nanowires using off-axis electron holography

    DEFF Research Database (Denmark)

    Yazdi, Sadegh; Kasama, Takeshi; Ciechonski, R

    2013-01-01

    Core-shell GaN nanowires are expected to be building blocks of future light emitting devices. Here we apply off-axis electron holography to map the electrostatic potential distributions in such nanowires. To access the cross-section of selected individual nanowires, focused ion beam (FIB) milling...... is used. Furthermore, to assess the influence of FIB damage, the dopant potential measured from an intact NW is compared with a FIB prepared one. It is shown that in addition to the built-in potential between the p-type shell and unintentionally n-type under-layer there is a potential barrier between...... the core and under-layer which are both unintentionally n-type doped....

  5. A new venous infusion path monitoring system utilizing electrostatic induced potential.

    Science.gov (United States)

    Ogawa, Hidekuni; Yonezawa, Yoshiharu; Maki, Hiromichi; Caldwell, W Morton

    2008-01-01

    A new venous infusion pathway monitoring system has been developed for hospital and home use. The system consists of linear and digital integrated circuits and a low-power 8-bit single chip microcomputer which constantly monitors the infusion pathway intactness. A 330 kHz AC voltage, which is induced on the patient's body by electrostatic coupling from a 330 kHz pulse oscillator, can be recorded by main and reference electrodes wrapped around the infusion polyvinyl chloride tube. If the injection needle or infusion tube becomes detached, then the system detects changes in the induced AC voltages and alerts the nursing station, via the nurse call system or PHS (personal handy phone system).

  6. Effects of positive potential in the catastrophe theory study of the point model for bumpy tori

    Energy Technology Data Exchange (ETDEWEB)

    Punjabi, A; Vahala, G [College of William and Mary, Williamsburg, VA (USA). Dept. of Physics

    1985-02-01

    With positive ambipolar potential, ion non-resonant neoclassical transport leads to increased particle confinement times. In certain regimes of filling pressure, microwave powers (ECRH and ICRH) and positive potential, new folds can now emerge from previously degenerate equilibrium surfaces allowing for distinct C, T, and M modes of operation. A comparison in the equilibrium fold structure is also made between (i) equal particle and energy confinement times, and (ii) particle confinement times enhanced over the energy confinement time. The nonlinear time evolution of these point model equations is considered and confirms the delay convention occurrences at the fold edges. It is clearly seen that the time-asymptotic equilibrium state is very sensitive, not only to the values of the control parameters (neutral density, ambipolar electrostatic potential, electron and ion cyclotron power densities) but also to the initial conditions on the plasma density, and electron and ion temperatures.

  7. Electrostatic pickup station

    CERN Multimedia

    CERN PhotoLab

    1982-01-01

    Electrostatic pickup station, with 4 interleaved electrodes, to measure beam position in the horizontal and vertical plane. This type is used in the transfer lines leaving the PS (TT2, TT70, TTL2). See also 7904075.

  8. Electrostatics in Chemistry

    Indian Academy of Sciences (India)

    fundamental concepts of electrostatics as applied to atoms and molecules. The electric ... chemistry, the chemistry of the covalent bond, deals with the structures ..... the position of an asteroid named Ceres ... World Scientific. Singapore, 1992.

  9. Electrostatic Positioning System for a free fall test at drop tower Bremen and an overview of tests for the Weak Equivalence Principle in past, present and future

    Science.gov (United States)

    Sondag, Andrea; Dittus, Hansjörg

    2016-08-01

    The Weak Equivalence Principle (WEP) is at the basis of General Relativity - the best theory for gravitation today. It has been and still is tested with different methods and accuracies. In this paper an overview of tests of the Weak Equivalence Principle done in the past, developed in the present and planned for the future is given. The best result up to now is derived from the data of torsion balance experiments by Schlamminger et al. (2008). An intuitive test of the WEP consists of the comparison of the accelerations of two free falling test masses of different composition. This has been carried through by Kuroda & Mio (1989, 1990) with the up to date most precise result for this setup. There is still more potential in this method, especially with a longer free fall time and sensors with a higher resolution. Providing a free fall time of 4.74 s (9.3 s using the catapult) the drop tower of the Center of Applied Space Technology and Microgravity (ZARM) at the University of Bremen is a perfect facility for further improvements. In 2001 a free fall experiment with high sensitive SQUID (Superconductive QUantum Interference Device) sensors tested the WEP with an accuracy of 10-7 (Nietzsche, 2001). For optimal conditions one could reach an accuracy of 10-13 with this setup (Vodel et al., 2001). A description of this experiment and its results is given in the next part of this paper. For the free fall of macroscopic test masses it is important to start with precisely defined starting conditions concerning the positions and velocities of the test masses. An Electrostatic Positioning System (EPS) has been developed to this purpose. It is described in the last part of this paper.

  10. Are electrostatic potentials between regions of different chemical composition measurable? The Gibbs-Guggenheim Principle reconsidered, extended and its consequences revisited.

    Science.gov (United States)

    Pethica, Brian A

    2007-12-21

    As indicated by Gibbs and made explicit by Guggenheim, the electrical potential difference between two regions of different chemical composition cannot be measured. The Gibbs-Guggenheim Principle restricts the use of classical electrostatics in electrochemical theories as thermodynamically unsound with some few approximate exceptions, notably for dilute electrolyte solutions and concomitant low potentials where the linear limit for the exponential of the relevant Boltzmann distribution applies. The Principle invalidates the widespread use of forms of the Poisson-Boltzmann equation which do not include the non-electrostatic components of the chemical potentials of the ions. From a thermodynamic analysis of the parallel plate electrical condenser, employing only measurable electrical quantities and taking into account the chemical potentials of the components of the dielectric and their adsorption at the surfaces of the condenser plates, an experimental procedure to provide exceptions to the Principle has been proposed. This procedure is now reconsidered and rejected. No other related experimental procedures circumvent the Principle. Widely-used theoretical descriptions of electrolyte solutions, charged surfaces and colloid dispersions which neglect the Principle are briefly discussed. MD methods avoid the limitations of the Poisson-Bolzmann equation. Theoretical models which include the non-electrostatic components of the inter-ion and ion-surface interactions in solutions and colloid systems assume the additivity of dispersion and electrostatic forces. An experimental procedure to test this assumption is identified from the thermodynamics of condensers at microscopic plate separations. The available experimental data from Kelvin probe studies are preliminary, but tend against additivity. A corollary to the Gibbs-Guggenheim Principle is enunciated, and the Principle is restated that for any charged species, neither the difference in electrostatic potential nor the

  11. Echo in a semibounded plasma confined by an inhomogeneous electrostatic potential

    International Nuclear Information System (INIS)

    Revenchuk, S.M.

    1997-01-01

    The effect of the shape of a confining potential (potential barrier) on linear and nonlinear echoes arising due to the reflection of charged particles by this potential is studied. The model of a plasma confined by a potential that is a monotonous power-law function of the space coordinate is used to study the problem. It is shown that a linear echo (the effect of a nonlocal reflection of waves) arises only for a square-law confining potential. The second-order nonlinear echo caused by two external perturbations with different frequencies can occur for potentials with both square-law and inverse power-law coordinate dependences: the frequency of this echo equals the difference of the frequencies of the externally applied perturbations. In the model considered, an echo at the frequency that is the sum of the frequencies of the external perturbations, which was predicted in the previous papers, does not occur

  12. Stern potential and Debye length measurements in dilute ionic solutions with electrostatic force microscopy

    International Nuclear Information System (INIS)

    Kumar, Bharat; Crittenden, Scott R

    2013-01-01

    We demonstrate the ability to measure Stern potential and Debye length in dilute ionic solution with atomic force microscopy. We develop an analytic expression for the second harmonic force component of the capacitive force in an ionic solution from the linearized Poisson–Boltzmann equation. This allows us to calibrate the AFM tip potential and, further, obtain the Stern potential of sample surfaces. In addition, the measured capacitive force is independent of van der Waals and double layer forces, thus providing a more accurate measure of Debye length. (paper)

  13. Stern potential and Debye length measurements in dilute ionic solutions with electrostatic force microscopy.

    Science.gov (United States)

    Kumar, Bharat; Crittenden, Scott R

    2013-11-01

    We demonstrate the ability to measure Stern potential and Debye length in dilute ionic solution with atomic force microscopy. We develop an analytic expression for the second harmonic force component of the capacitive force in an ionic solution from the linearized Poisson-Boltzmann equation. This allows us to calibrate the AFM tip potential and, further, obtain the Stern potential of sample surfaces. In addition, the measured capacitive force is independent of van der Waals and double layer forces, thus providing a more accurate measure of Debye length.

  14. Electrostatic corrections to the Mikheyev-Smirnov-Wolfenstein potential of a neutrino in the sun

    OpenAIRE

    Horowitz, C. J.

    2002-01-01

    This paper is being withdrawn. The electic filed effects should be interpreted as a correction to the electron density. Therefore the original MSW potential calculated in terms of the full electron density is correct.

  15. Computational study of molecular electrostatic potential, docking and dynamics simulations of gallic acid derivatives as ABL inhibitors.

    Science.gov (United States)

    Raghi, K R; Sherin, D R; Saumya, M J; Arun, P S; Sobha, V N; Manojkumar, T K

    2018-04-05

    Chronic myeloid leukemia (CML), a hematological malignancy arises due to the spontaneous fusion of the BCR and ABL gene, resulting in a constitutively active tyrosine kinase (BCR-ABL). Pharmacological activity of Gallic acid and 1,3,4-Oxadiazole as potential inhibitors of ABL kinase has already been reported. Objective of this study is to evaluate the ABL kinase inhibitory activity of derivatives of Gallic acid fused with 1,3,4-Oxadiazole moieties. Attempts have been made to identify the key structural features responsible for drug likeness of the Gallic acid and the 1,3,4-Oxadiazole ring using molecular electrostatic potential maps (MESP). To investigate the inhibitory activity of Gallic acid derivatives towards the ABL receptor, we have applied molecular docking and molecular dynamics (MD) simulation approaches. A comparative study was performed using Bosutinib as the standard which is an approved CML drug acting on the same receptor. Furthermore, the novel compounds designed and reported here in were evaluated for ADME properties and the results indicate that they show acceptable pharmacokinetic properties. Accordingly these compounds are predicted to be drug like with low toxicity potential. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Electrostatic potentials and energy loss due to a projectile propagating through a non-Maxwellian dusty plasma

    International Nuclear Information System (INIS)

    Deeba, F.; Ahmad, Zahoor; Murtaza, G.

    2006-01-01

    The electrostatic potentials (Debye and wake) and energy loss due to a charged projectile propagating through an unmagnetized collisionless dusty plasma are derived employing kappa and generalized (r,q) velocity distributions for the dust acoustic wave. It is found that these quantities in general differ from their Maxwellian counterparts and are sensitive to the values of spectral index, κ in the case of kappa distribution and to r, q in the case of generalized (r,q) distribution. The amplitudes of these quantities are less for small values of the spectral index (κ, r=0, q) but approach the Maxwellian in the limit κ→∞ (for kappa distribution) and for r=0, q→∞ [for generalized (r,q) distribution]. For any nonzero value of r, the potential and the energy loss grow beyond the Maxwellian results. The effect of kappa and generalized (r,q) distributions on potential and energy loss is also studied numerically and the results are compared with those of the Maxwellian distribution

  17. Probing lipid membrane electrostatics

    Science.gov (United States)

    Yang, Yi

    The electrostatic properties of lipid bilayer membranes play a significant role in many biological processes. Atomic force microscopy (AFM) is highly sensitive to membrane surface potential in electrolyte solutions. With fully characterized probe tips, AFM can perform quantitative electrostatic analysis of lipid membranes. Electrostatic interactions between Silicon nitride probes and supported zwitterionic dioleoylphosphatidylcholine (DOPC) bilayer with a variable fraction of anionic dioleoylphosphatidylserine (DOPS) were measured by AFM. Classical Gouy-Chapman theory was used to model the membrane electrostatics. The nonlinear Poisson-Boltzmann equation was numerically solved with finite element method to provide the potential distribution around the AFM tips. Theoretical tip-sample electrostatic interactions were calculated with the surface integral of both Maxwell and osmotic stress tensors on tip surface. The measured forces were interpreted with theoretical forces and the resulting surface charge densities of the membrane surfaces were in quantitative agreement with the Gouy-Chapman-Stern model of membrane charge regulation. It was demonstrated that the AFM can quantitatively detect membrane surface potential at a separation of several screening lengths, and that the AFM probe only perturbs the membrane surface potential by external field created by the internai membrane dipole moment. The analysis yields a dipole moment of 1.5 Debye per lipid with a dipole potential of +275 mV for supported DOPC membranes. This new ability to quantitatively measure the membrane dipole density in a noninvasive manner will be useful in identifying the biological effects of the dipole potential. Finally, heterogeneous model membranes were studied with fluid electric force microscopy (FEFM). Electrostatic mapping was demonstrated with 50 nm resolution. The capabilities of quantitative electrostatic measurement and lateral charge density mapping make AFM a unique and powerful

  18. Optical and electrostatic potential investigations of electrical breakdown phenomena in a low-pressure gas discharge lamp

    International Nuclear Information System (INIS)

    Gendre, M F; Haverlag, M; Kroesen, G M W

    2010-01-01

    The ignition phase is a critical stage in the operation of gas discharge lamps where the neutral gas enclosed between the electrodes undergoes a transformation from the dielectric state to a conducting phase, eventually enabling the production of light. The phenomena occurring during this phase transition are not fully understood and the related experimental studies are often limited to local optical measurements in environments prone to influencing these transient phenomena. In this work unipolar ignition phenomena at sub-kilovolt levels are investigated in a 3 Torr argon discharge tube. The lamp is placed in a highly controlled environment so as to prevent any bias on the measurements. A fast intensified CCD camera and a specially designed novel electrostatic probe are used simultaneously so as to provide a broad array of measured and computed parameters which are displayed in space-time diagrams for cross comparisons. Experiments show that three distinct phases exist during successful ignitions: upon the application of voltage a first ionization wave starts from the active electrode and propagates in the neutral gas towards the opposite electrode. A local front of high axial E field strength is associated with this process and causes a local ionization to occur, leading to the electrostatic charging of the lamp. Next, a second wave propagates from the ground electrode back towards the active electrode with a higher velocity, and in this process leads to a partial discharging of the lamp. This return stroke draws a homogeneous plasma column which eventually bridges both electrodes at the end of the wave propagation. At this point both electrode sheaths are formed and the common features of a glow discharge are observed. The third phase is an increase in the light intensity of the plasma column until the lamp reaches a steady-state operation. Failed ignitions present only the first phase where the first wave starts its propagation but extinguishes in the lamp

  19. Self-consistent electrostatic potential due to trapped plasma in the magnetosphere

    International Nuclear Information System (INIS)

    Miller, R.H.; Khazanov, G.V.

    1993-01-01

    The authors address the problem of the steady state confinement of plasma in a magnetic flux tube. They construct a steady state distribution function, under the assumption of no waves or collisions, using the kinematic constants of the motion, total energy and magnetic moment. The local particle densities are shown to be integrals over the equatorial distribution function for the particle of concern. The electric potential is determined by the imposition of quasineutrality. The authors show that their self consistent model produces potential drops which are consistent with the kinetic energy of the equatorially trapped particles. They comment on earlier work of Alfven and Faelthammar, and for a bi-Maxwellian distribution compare the results of the present model with the Alfven and Faelthammar model

  20. Electrostatic potential fluctuation induced by charge discreteness in a nanoscale trench

    International Nuclear Information System (INIS)

    Lee, Taesang; Kim, S. S.; Jho, Y. S.; Park, Gunyoung; Chang, C. S.

    2007-01-01

    A simplified two-dimensional Monte Carlo simulation is performed to estimate the charging potential fluctuations caused by strong binary Coulomb interactions between discrete charged particles in nanometer scale trenches. It is found that the discrete charge effect can be an important part of the nanoscale trench research, inducing scattering of ion trajectories in a nanoscale trench by a fluctuating electric field. The effect can enhance the ion deposition on the side walls and disperse the material contact energy of the incident ions, among others

  1. Driving electrostatic transducers

    DEFF Research Database (Denmark)

    Nielsen, Dennis; Knott, Arnold; Andersen, Michael A. E.

    2013-01-01

    Electrostatic transducers represent a very interesting alternative to the traditional inefficient electrodynamic transducers. In order to establish the full potential of these transducers, power amplifiers which fulfill the strict requirements imposed by such loads (high impedance, frequency...... depended, nonlinear and high bias voltage for linearization) must be developed. This paper analyzes power stages and bias configurations suitable for driving an electrostatic transducer. Measurement results of a 300 V prototype amplifier are shown. Measuring THD across a high impedance source is discussed...

  2. Solar wind and magnetosphere plasma diagnostics by spacecraft electrostatic potential measurements

    Directory of Open Access Journals (Sweden)

    A. Pedersen

    1995-02-01

    Full Text Available Several satellites (GEOS-1, GEOS-2, ISEE-1, Viking and CRRES carried electric field experiments on which probes were driven by a current from the satellite to be close to the plasma potential. The potential difference between an electric field probe and its spacecraft (with conductive surfaces can be used to determine the ambient electron density and/or electron flux with limited accuracy but with high time resolution, of the order of 10-100 ms. It is necessary for the development of this diagnostic method to understand the photoemission characteristics of probes and satellites. According to the electric field experiments on the above-mentioned satellites, all materials develop very similar photoemission properties when they are beyond the influence of atmospheric oxygen. The photoelectron yield steadily increases over the first few months in space and reaches values well above those measured on clean surfaces in the laboratory. The method can be used for solar radiation levels corresponding to distances from 0.4 to 5 AU from the Sun.

  3. Electrical potential-assisted DNA hybridization. How to mitigate electrostatics for surface DNA hybridization.

    Science.gov (United States)

    Tymoczko, Jakub; Schuhmann, Wolfgang; Gebala, Magdalena

    2014-12-24

    Surface-confined DNA hybridization reactions are sensitive to the number and identity of DNA capture probes and experimental conditions such as the nature and the ionic strength of the electrolyte solution. When the surface probe density is high or the concentration of bulk ions is much lower than the concentration of ions within the DNA layer, hybridization is significantly slowed down or does not proceed at all. However, high-density DNA monolayers are attractive for designing high-sensitivity DNA sensors. Thus, circumventing sluggish DNA hybridization on such interfaces allows a high surface concentration of target DNA and improved signal/noise ratio. We present potential-assisted hybridization as a strategy in which an external voltage is applied to the ssDNA-modified interface during the hybridization process. Results show that a significant enhancement of hybridization can be achieved using this approach.

  4. Yukawa multipole electrostatics and nontrivial coupling between electrostatic and dispersion interactions in electrolytes

    International Nuclear Information System (INIS)

    Kjellander, Roland; Ramirez, Rosa

    2008-01-01

    An exact treatment of screened electrostatics in electrolyte solutions is presented. In electrolytes the anisotropy of the exponentially decaying electrostatic potential from a molecule extends to the far field region. The full directional dependence of the electrostatic potential from a charged or uncharged molecule remains in the longest range tail (i.e. from all multipole moments). In particular, the range of the potential from an ion and that from an electroneutral polar particle is generally exactly the same. This is in contrast to the case in vacuum or pure polar liquids, where the potential from a single charge is longer ranged than that from a dipole, which is, itself, longer ranged than the one from a quadrupole etc. The orientational dependence of the exponentially screened electrostatic interaction between two molecules in electrolytes is therefore rather complex even at long distances. These facts are formalized in Yukawa multipole expansions of the electrostatic potential and the pair interaction free energy based on the Yukawa function family exp(-κr)/r m , where r is the distance, κ is a decay parameter and m is a positive integer. The expansion is formally exact for electrolytes with molecular solvent and in the primitive model, provided the non-Coulombic interactions between the particles are sufficiently short ranged. The results can also be applied in the Poisson-Boltzmann approximation. Differences and similarities to the ordinary multipole expansion of electrostatics are pointed out. On the other hand, when the non-Coulombic interactions between the constituent particles of the electrolyte solution contain a dispersion 1/r 6 potential, the electrostatic potential from a molecule decays like a power law for long distances rather than as a Yukawa function. This is due to nontrivial coupling between the electrostatic and dispersion interactions. There remains an exponentially decaying component in the electrostatic potential, but it becomes

  5. Spatial distribution of potential and positive Aedes aegypti breeding sites

    Directory of Open Access Journals (Sweden)

    Daniel Elías Cuartas

    2017-03-01

    Conclusions: The spatial relationship between positive and potential A. aegypti breeding sites both indoors and outdoors is dynamic and highly sensitive to the characteristics of each territory. Knowing how positive and potential breeding sites are distributed contributes to the prioritization of resources and actions in vector control programs.

  6. Surface Electrostatic Potential and Water Orientation in the presence of Sodium Octanoate Dilute Monolayers Studied by Means of Molecular Dynamics Simulations.

    Science.gov (United States)

    Bernardino, Kalil; de Moura, André F

    2015-10-13

    A series of atomistic molecular dynamics simulations were performed in the present investigation to assess the spontaneous formation of surfactant monolayers of sodium octanoate at the water-vacuum interface. The surfactant surface coverage increased until a saturation threshold was achieved, after which any further surfactant addition led to the formation of micellar aggregates within the solution. The saturated films were not densely packed, as might be expected for short-chained surfactants, and all films regardless of the surface coverage presented surfactant molecules with the same ordering pattern, namely, with the ionic heads toward the aqueous solution and the tails lying nearly parallel to the interface. The major contributions to the electrostatic surface potential came from the charged heads and the counterion distribution, which nearly canceled out each other. The balance between the oppositely charged ions rendered the electrostatic contributions from water meaningful, amounting to ca. 10% of the contributions arising from the ionic species. And even the aliphatic tails, whose atoms bear relatively small partial atomic charges as compared to the polar molecules and molecular fragments, contributed with ca. 20% of the total electrostatic surface potential of the systems under investigation. Although the aliphatic tails were not so orderly arranged as in a compact film, the C-H bonds assumed a preferential orientation, leading to an increased contribution to the electrostatic properties of the interface. The most prominent feature arising from the partitioning of the electrostatic potential into individual contributions was the long-range ordering of the water molecules. This ordering of the water molecules produced a repulsive dipole-dipole interaction between the two interfaces, which increased with the surface coverage. Only for a water layer wider than 10 nm was true bulk behavior observed, and the repulsive dipole-dipole interaction faded away.

  7. Brainstem Auditory Evoked Potential in HIV-Positive Adults.

    Science.gov (United States)

    Matas, Carla Gentile; Samelli, Alessandra Giannella; Angrisani, Rosanna Giaffredo; Magliaro, Fernanda Cristina Leite; Segurado, Aluísio C

    2015-10-20

    To characterize the findings of brainstem auditory evoked potential in HIV-positive individuals exposed and not exposed to antiretroviral treatment. This research was a cross-sectional, observational, and descriptive study. Forty-five HIV-positive individuals (18 not exposed and 27 exposed to the antiretroviral treatment - research groups I and II, respectively - and 30 control group individuals) were assessed through brainstem auditory evoked potential. There were no significant between-group differences regarding wave latencies. A higher percentage of altered brainstem auditory evoked potential was observed in the HIV-positive groups when compared to the control group. The most common alteration was in the low brainstem. HIV-positive individuals have a higher percentage of altered brainstem auditory evoked potential that suggests central auditory pathway impairment when compared to HIV-negative individuals. There was no significant difference between individuals exposed and not exposed to antiretroviral treatment.

  8. Electrostatic accelerators

    CERN Document Server

    Hinterberger, F

    2006-01-01

    The principle of electrostatic accelerators is presented. We consider Cockcroft– Walton, Van de Graaff and Tandem Van de Graaff accelerators. We resume high voltage generators such as cascade generators, Van de Graaff band generators, Pelletron generators, Laddertron generators and Dynamitron generators. The speci c features of accelerating tubes, ion optics and methods of voltage stabilization are described. We discuss the characteristic beam properties and the variety of possible beams. We sketch possible applications and the progress in the development of electrostatic accelerators.

  9. Electrostatic beneficiation of coal

    Energy Technology Data Exchange (ETDEWEB)

    Mazumder, M.K.; Tennal, K.B.; Lindquist, D.

    1994-10-01

    Dry physical beneficiation of coal has many advantages over wet cleaning methods and post combustion flue gas cleanup processes. The dry beneficiation process is economically competitive and environmentally safe and has the potential of making vast amounts of US coal reserves available for energy generation. While the potential of the electrostatic beneficiation has been studied for many years in laboratories and in pilot plants, a successful full scale electrostatic coal cleaning plant has not been commercially realized yet. In this paper the authors review some of the technical problems that are encountered in this method and suggest possible solutions that may lead toward its full utilization in cleaning coal.

  10. Electrostatic potentials of the S-locus F-box proteins contribute to the pollen S specificity in self-incompatibility in Petunia hybrida.

    Science.gov (United States)

    Li, Junhui; Zhang, Yue; Song, Yanzhai; Zhang, Hui; Fan, Jiangbo; Li, Qun; Zhang, Dongfen; Xue, Yongbiao

    2017-01-01

    Self-incompatibility (SI) is a self/non-self discrimination system found widely in angiosperms and, in many species, is controlled by a single polymorphic S-locus. In the Solanaceae, Rosaceae and Plantaginaceae, the S-locus encodes a single S-RNase and a cluster of S-locus F-box (SLF) proteins to control the pistil and pollen expression of SI, respectively. Previous studies have shown that their cytosolic interactions determine their recognition specificity, but the physical force between their interactions remains unclear. In this study, we show that the electrostatic potentials of SLF contribute to the pollen S specificity through a physical mechanism of 'like charges repel and unlike charges attract' between SLFs and S-RNases in Petunia hybrida. Strikingly, the alteration of a single C-terminal amino acid of SLF reversed its surface electrostatic potentials and subsequently the pollen S specificity. Collectively, our results reveal that the electrostatic potentials act as a major physical force between cytosolic SLFs and S-RNases, providing a mechanistic insight into the self/non-self discrimination between cytosolic proteins in angiosperms. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  11. Multipolar electrostatics.

    Science.gov (United States)

    Cardamone, Salvatore; Hughes, Timothy J; Popelier, Paul L A

    2014-06-14

    Atomistic simulation of chemical systems is currently limited by the elementary description of electrostatics that atomic point-charges offer. Unfortunately, a model of one point-charge for each atom fails to capture the anisotropic nature of electronic features such as lone pairs or π-systems. Higher order electrostatic terms, such as those offered by a multipole moment expansion, naturally recover these important electronic features. The question remains as to why such a description has not yet been widely adopted by popular molecular mechanics force fields. There are two widely-held misconceptions about the more rigorous formalism of multipolar electrostatics: (1) Accuracy: the implementation of multipole moments, compared to point-charges, offers little to no advantage in terms of an accurate representation of a system's energetics, structure and dynamics. (2) Efficiency: atomistic simulation using multipole moments is computationally prohibitive compared to simulation using point-charges. Whilst the second of these may have found some basis when computational power was a limiting factor, the first has no theoretical grounding. In the current work, we disprove the two statements above and systematically demonstrate that multipole moments are not discredited by either. We hope that this perspective will help in catalysing the transition to more realistic electrostatic modelling, to be adopted by popular molecular simulation software.

  12. Electrostatic pickup station

    CERN Multimedia

    CERN PhotoLab

    1979-01-01

    Electrostatic pickup station, with 4 electrodes, to measure beam position in the horizontal and vertical plane. This type is used in the transfer lines leaving the PS (TT2, TTL2, TT70). See also 8206063, where the electrode shapes are clearly visible.

  13. Positive zeta potential of a negatively charged semi-permeable plasma membrane

    Science.gov (United States)

    Sinha, Shayandev; Jing, Haoyuan; Das, Siddhartha

    2017-08-01

    The negative charge of the plasma membrane (PM) severely affects the nature of moieties that may enter or leave the cells and controls a large number of ion-interaction-mediated intracellular and extracellular events. In this letter, we report our discovery of a most fascinating scenario, where one interface (e.g., membrane-cytosol interface) of the negatively charged PM shows a positive surface (or ζ) potential, while the other interface (e.g., membrane-electrolyte interface) still shows a negative ζ potential. Therefore, we encounter a completely unexpected situation where an interface (e.g., membrane-cytosol interface) that has a negative surface charge density demonstrates a positive ζ potential. We establish that the attainment of such a property by the membrane can be ascribed to an interplay of the nature of the membrane semi-permeability and the electrostatics of the electric double layer established on either side of the charged membrane. We anticipate that such a membrane property can lead to such capabilities of the cell (in terms of accepting or releasing certain kinds of moieties as well regulating cellular signaling) that was hitherto inconceivable.

  14. Electrostatic energy of KHF2

    NARCIS (Netherlands)

    Gool, W. van; Bruinink, J.; Bottelberghs, P.H.

    1972-01-01

    Electrostatic lattice energies are calculated in KHF2. Fractional charges occurring in the complex anions are treated with a general procedure and the results are compared to a specialized approach reported earlier. Interstitial potentials are calculated to obtain the electrostatic field through

  15. Large electrostatic accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Jones, C.M.

    1984-01-01

    The increasing importance of energetic heavy ion beams in the study of atomic physics, nuclear physics, and materials science has partially or wholly motivated the construction of a new generation of large electrostatic accelerators designed to operate at terminal potentials of 20 MV or above. In this paper, the author briefly discusses the status of these new accelerators and also discusses several recent technological advances which may be expected to further improve their performance. The paper is divided into four parts: (1) a discussion of the motivation for the construction of large electrostatic accelerators, (2) a description and discussion of several large electrostatic accelerators which have been recently completed or are under construction, (3) a description of several recent innovations which may be expected to improve the performance of large electrostatic accelerators in the future, and (4) a description of an innovative new large electrostatic accelerator whose construction is scheduled to begin next year. Due to time and space constraints, discussion is restricted to consideration of only tandem accelerators.

  16. Large electrostatic accelerators

    International Nuclear Information System (INIS)

    Jones, C.M.

    1984-01-01

    The increasing importance of energetic heavy ion beams in the study of atomic physics, nuclear physics, and materials science has partially or wholly motivated the construction of a new generation of large electrostatic accelerators designed to operate at terminal potentials of 20 MV or above. In this paper, the author briefly discusses the status of these new accelerators and also discusses several recent technological advances which may be expected to further improve their performance. The paper is divided into four parts: (1) a discussion of the motivation for the construction of large electrostatic accelerators, (2) a description and discussion of several large electrostatic accelerators which have been recently completed or are under construction, (3) a description of several recent innovations which may be expected to improve the performance of large electrostatic accelerators in the future, and (4) a description of an innovative new large electrostatic accelerator whose construction is scheduled to begin next year. Due to time and space constraints, discussion is restricted to consideration of only tandem accelerators

  17. Electrostatic hazards

    CERN Document Server

    Luttgens, Günter; Luttgens, Gnter; Luttgens, G Nter

    1997-01-01

    In the US, UK and Europe there is in excess of one notifiable dust or electrostatic explosion every day of the year. This clearly makes the hazards associated with the handling of materials subject to either cause or react to electrostatic discharge of vital importance to anyone associated with their handling or industrial bulk use. This book provides a comprehensive guide to the dangers of static electricity and how to avoid them. It will prove invaluable to safety managers and professionals, as well as all personnel involved in the activities concerned, in the chemical, agricultural, pharmaceutical and petrochemical process industries. The book makes extended use of case studies to illustrate the principles being expounded, thereby making it far more open, accessible and attractive to the practitioner in industry than the highly theoretical texts which are also available. The authors have many years' experience in the area behind them, including the professional teaching of the content provided here. Günte...

  18. Electrostatic accelerators

    OpenAIRE

    Hinterberger, F

    2006-01-01

    The principle of electrostatic accelerators is presented. We consider Cockcroft– Walton, Van de Graaff and Tandem Van de Graaff accelerators. We resume high voltage generators such as cascade generators, Van de Graaff band generators, Pelletron generators, Laddertron generators and Dynamitron generators. The speci c features of accelerating tubes, ion optics and methods of voltage stabilization are described. We discuss the characteristic beam properties and the variety of possible beams. We ...

  19. Spectroscopic and DFT Studies of Second Sphere Variants of the Type 1 Copper Site in Azurin: Covalent and Non-Local Electrostatic Contributions to Reduction Potentials

    Science.gov (United States)

    Hadt, Ryan G.; Sun, Ning; Marshall, Nicholas M.; Hodgson, Keith O.; Hedman, Britt; Lu, Yi; Solomon, Edward I.

    2012-01-01

    The reduction potentials (E0) of type 1 (T1) or blue copper (BC) sites in proteins and enzymes with identical first coordination spheres around the redox active copper ion can vary by ~400 mV. Here, we use a combination of low temperature electronic absorption and magnetic circular dichroism, electron paramagnetic resonance, resonance Raman, and S K-edge X-ray absorption spectroscopies to investigate a series of second sphere variants—F114P, N47S, and F114N in Pseudomonas aeruginosa azurin (Az)—which modulate hydrogen bonding to and protein derived dipoles nearby the Cu-S(Cys) bond. Density functional theory (DFT) calculations correlated to the experimental data allow for the fractionation of the contributions to tuning E0 into covalent and non-local electrostatic components. These are found to be significant, comparable in magnitude, and additive for active H-bonds, while passive H-bonds are mostly non-local electrostatic in nature. For dipoles, these terms can be additive to or oppose one another. This study provides a methodology for uncoupling covalency from non-local electrostatics, which, when coupled to X-ray crystallographic data, distinguishes specific local interactions from more long range protein/active interactions, while affording further insight into the second sphere mechanisms available to the protein to tune the E0 of electron transfer sites in biology. PMID:22985400

  20. Electrostatic modulation of periodic potentials in a two-dimensional electron gas: From antidot lattice to quantum dot lattice

    Energy Technology Data Exchange (ETDEWEB)

    Goswami, Srijit; Aamir, Mohammed Ali; Shamim, Saquib; Ghosh, Arindam [Department of Physics, Indian Institute of Science, Bangalore 560 012 (India); Siegert, Christoph; Farrer, Ian; Ritchie, David A. [Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Pepper, Michael [Department of Electrical and Electronic Engineering, University College, London WC1E 7JE (United Kingdom)

    2013-12-04

    We use a dual gated device structure to introduce a gate-tuneable periodic potential in a GaAs/AlGaAs two dimensional electron gas (2DEG). Using only a suitable choice of gate voltages we can controllably alter the potential landscape of the bare 2DEG, inducing either a periodic array of antidots or quantum dots. Antidots are artificial scattering centers, and therefore allow for a study of electron dynamics. In particular, we show that the thermovoltage of an antidot lattice is particularly sensitive to the relative positions of the Fermi level and the antidot potential. A quantum dot lattice, on the other hand, provides the opportunity to study correlated electron physics. We find that its current-voltage characteristics display a voltage threshold, as well as a power law scaling, indicative of collective Coulomb blockade in a disordered background.

  1. Electrostatic modulation of periodic potentials in a two-dimensional electron gas: From antidot lattice to quantum dot lattice

    International Nuclear Information System (INIS)

    Goswami, Srijit; Aamir, Mohammed Ali; Shamim, Saquib; Ghosh, Arindam; Siegert, Christoph; Farrer, Ian; Ritchie, David A.; Pepper, Michael

    2013-01-01

    We use a dual gated device structure to introduce a gate-tuneable periodic potential in a GaAs/AlGaAs two dimensional electron gas (2DEG). Using only a suitable choice of gate voltages we can controllably alter the potential landscape of the bare 2DEG, inducing either a periodic array of antidots or quantum dots. Antidots are artificial scattering centers, and therefore allow for a study of electron dynamics. In particular, we show that the thermovoltage of an antidot lattice is particularly sensitive to the relative positions of the Fermi level and the antidot potential. A quantum dot lattice, on the other hand, provides the opportunity to study correlated electron physics. We find that its current-voltage characteristics display a voltage threshold, as well as a power law scaling, indicative of collective Coulomb blockade in a disordered background

  2. Asymptotic value of screening parameter as determined from the one-electron fragment of the kinetic energy or electrostatic potential at the nucleus

    International Nuclear Information System (INIS)

    Teruya, Hirohide; Anno, Tosinobu

    1985-01-01

    Numerical value of lim sub(Z → infinity) delta(i, j)/delta Zsub(i), where (i, j) stands for average interaction energy of a pair of electrons embedded in hydrogenic orbitals (HAO's) is presented for a wide range of HAO's. Data to be presented should be useful to calculate the asymptotic limit of screening effect seen by an electron embedded in a given kind of orbital for an isoelectronic series of atoms as determined from the ''one-electron component'' of the total kinetic energy of or of the electrostatic potential at the nucleus within an atom. (author)

  3. Asymptotic value of screening parameter as determined from the one-electron fragment of the kinetic energy or electrostatic potential at the nucleus

    Energy Technology Data Exchange (ETDEWEB)

    Teruya, Hirohide; Anno, Tosinobu

    1985-09-01

    Numerical value of lim sub(Z ..-->.. infinity) delta(i, j)/delta Zsub(i), where (i, j) stands for average interaction energy of a pair of electrons embedded in hydrogenic orbitals (HAO's) is presented for a wide range of HAO's. Data to be presented should be useful to calculate the asymptotic limit of screening effect seen by an electron embedded in a given kind of orbital for an isoelectronic series of atoms as determined from the ''one-electron component'' of the total kinetic energy of or of the electrostatic potential at the nucleus within an atom.

  4. Processive pectin methylesterases: the role of electrostatic potential, breathing motions and bond cleavage in the rectification of Brownian motions.

    Directory of Open Access Journals (Sweden)

    Davide Mercadante

    Full Text Available Pectin methylesterases (PMEs hydrolyze the methylester groups that are found on the homogalacturonan (HG chains of pectic polysaccharides in the plant cell wall. Plant and bacterial PMEs are especially interesting as the resulting de-methylesterified (carboxylated sugar residues are found to be arranged contiguously, indicating a so-called processive nature of these enzymes. Here we report the results of continuum electrostatics calculations performed along the molecular dynamics trajectory of a PME-HG-decasaccharide complex. In particular it was observed that, when the methylester groups of the decasaccharide were arranged in order to mimic the just-formed carboxylate product of de-methylesterification, a net unidirectional sliding of the model decasaccharide was subsequently observed along the enzyme's binding groove. The changes that occurred in the electrostatic binding energy and protein dynamics during this translocation provide insights into the mechanism by which the enzyme rectifies Brownian motions to achieve processivity. The free energy that drives these molecular motors is thus demonstrated to be incorporated endogenously in the methylesterified groups of the HG chains and is not supplied exogenously.

  5. Structure-Function Correlation Analysis of Connexin50 Missense Mutations Causing Congenital Cataract: Electrostatic Potential Alteration Could Determine Intracellular Trafficking Fate of Mutants

    Directory of Open Access Journals (Sweden)

    Devroop Sarkar

    2014-01-01

    Full Text Available Connexin50 (Cx50 mutations are reported to cause congenital cataract probably through the disruption of intercellular transport in the lens. Cx50 mutants that undergo mistrafficking have generally been associated with failure to form functional gap junction channels; however, sometimes even properly trafficked mutants were found to undergo similar consequences. We hereby wanted to elucidate any structural bases of the varied functional consequences of Cx50 missense mutations through in silico approach. Computational studies have been done based on a Cx50 homology model to assess conservation, solvent accessibility, and 3-dimensional localization of mutated residues as well as mutation-induced changes in surface electrostatic potential, H-bonding, and steric clash. This was supplemented with meta-analysis of published literature on the functional properties of connexin missense mutations. Analyses revealed that the mutation-induced critical alterations of surface electrostatic potential in Cx50 mutants could determine their fate in intracellular trafficking. A similar pattern was observed in case of mutations involving corresponding conserved residues in other connexins also. Based on these results the trafficking fates of 10 uncharacterized Cx50 mutations have been predicted. Further experimental analyses are needed to validate the observed correlation.

  6. Effect of the electrostatic surface potential on the oligomerization of full-length human recombinant prion protein at single-molecule level

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bin; Xu, Bingqian, E-mail: bxu@engr.uga.edu [Single Molecule Study Laboratory, College of Engineering and Nanoscale Science, and Engineering Center, University of Georgia, Athens, Georgia 30605 (United States); Lou, Zhichao [Single Molecule Study Laboratory, College of Engineering and Nanoscale Science, and Engineering Center, University of Georgia, Athens, Georgia 30605 (United States); College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Zhang, Haiqian [College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China)

    2016-03-21

    The electrostatic surface potential (ESP) of prion oligomers has critical influences on the aggregating processes of the prion molecules. The atomic force microscopy (AFM) and structural simulation were combined to investigate the molecular basis of the full-length human recombinant prion oligomerization on mica surfaces. The high resolution non-intrusive AFM images showed that the prion oligomers formed different patterns on mica surfaces at different buffer pH values. The basic binding units for the large oligomers were determined to be prion momoners (Ms), dimers (Ds), and trimers (Ts). The forming of the D and T units happened through the binding of hydrophobic β-sheets of the M units. In contrast, the α-helices of these M, D, and T units were the binding areas for the formation of large oligomers. At pH 4.5, the binding units M, D, and T showed clear polarized ESP distributions on the surface domains, while at pH 7.0, they showed more evenly distributed ESPs. Based on the conformations of oligomers observed from AFM images, the D and T units were more abundantly on mica surface at pH 4.5 because the ESP re-distribution of M units helped to stabilize these larger oligomers. The amino acid side chains involved in the binding interfaces were stabilized by hydrogen bonds and electrostatic interactions. The detailed analysis of the charged side chains at pH 4.5 indicated that the polarized ESPs induced the aggregations among M, D, and T to form larger oligomers. Therefore, the hydrogen bonds and electrostatic interactions worked together to form the stabilized prion oligomers.

  7. Effect of the electrostatic surface potential on the oligomerization of full-length human recombinant prion protein at single-molecule level

    International Nuclear Information System (INIS)

    Wang, Bin; Xu, Bingqian; Lou, Zhichao; Zhang, Haiqian

    2016-01-01

    The electrostatic surface potential (ESP) of prion oligomers has critical influences on the aggregating processes of the prion molecules. The atomic force microscopy (AFM) and structural simulation were combined to investigate the molecular basis of the full-length human recombinant prion oligomerization on mica surfaces. The high resolution non-intrusive AFM images showed that the prion oligomers formed different patterns on mica surfaces at different buffer pH values. The basic binding units for the large oligomers were determined to be prion momoners (Ms), dimers (Ds), and trimers (Ts). The forming of the D and T units happened through the binding of hydrophobic β-sheets of the M units. In contrast, the α-helices of these M, D, and T units were the binding areas for the formation of large oligomers. At pH 4.5, the binding units M, D, and T showed clear polarized ESP distributions on the surface domains, while at pH 7.0, they showed more evenly distributed ESPs. Based on the conformations of oligomers observed from AFM images, the D and T units were more abundantly on mica surface at pH 4.5 because the ESP re-distribution of M units helped to stabilize these larger oligomers. The amino acid side chains involved in the binding interfaces were stabilized by hydrogen bonds and electrostatic interactions. The detailed analysis of the charged side chains at pH 4.5 indicated that the polarized ESPs induced the aggregations among M, D, and T to form larger oligomers. Therefore, the hydrogen bonds and electrostatic interactions worked together to form the stabilized prion oligomers.

  8. Effect of the electrostatic surface potential on the oligomerization of full-length human recombinant prion protein at single-molecule level

    Science.gov (United States)

    Wang, Bin; Lou, Zhichao; Zhang, Haiqian; Xu, Bingqian

    2016-03-01

    The electrostatic surface potential (ESP) of prion oligomers has critical influences on the aggregating processes of the prion molecules. The atomic force microscopy (AFM) and structural simulation were combined to investigate the molecular basis of the full-length human recombinant prion oligomerization on mica surfaces. The high resolution non-intrusive AFM images showed that the prion oligomers formed different patterns on mica surfaces at different buffer pH values. The basic binding units for the large oligomers were determined to be prion momoners (Ms), dimers (Ds), and trimers (Ts). The forming of the D and T units happened through the binding of hydrophobic β-sheets of the M units. In contrast, the α-helices of these M, D, and T units were the binding areas for the formation of large oligomers. At pH 4.5, the binding units M, D, and T showed clear polarized ESP distributions on the surface domains, while at pH 7.0, they showed more evenly distributed ESPs. Based on the conformations of oligomers observed from AFM images, the D and T units were more abundantly on mica surface at pH 4.5 because the ESP re-distribution of M units helped to stabilize these larger oligomers. The amino acid side chains involved in the binding interfaces were stabilized by hydrogen bonds and electrostatic interactions. The detailed analysis of the charged side chains at pH 4.5 indicated that the polarized ESPs induced the aggregations among M, D, and T to form larger oligomers. Therefore, the hydrogen bonds and electrostatic interactions worked together to form the stabilized prion oligomers.

  9. Electrostatic control by lipids upon the membrane-bound (Na+ + K+)-ATPase. II. The influence of surface potential upon the activating ion equilibria.

    Science.gov (United States)

    Ahrens, M L

    1983-07-13

    Electrostatic influences upon the enzymatic activity of the (Na+ + K+)-ATPase from ox brain (EC 3.6.1.3) have been studied. (1) The characteristics of the temperature dependence of the activity - the slopes and inflection temperature, Ti, of the Arrhenius plots - have been shown to depend on the total concentration, but not on the specific properties of added monovalent ions. (2) The enzymatic activity has been shown to be subject simultaneously to unspecific and specific influences of alkali-metal ions or NH+4. Ion-specific effects result from different binding constants of complexation between activating ions and enzyme. These stability constants are affected by the formation of an electrical double layer at the membrane surface. With increasing electrostatic screening, the complex formation is destabilized and, as a consequence, the enzymatic activity decreases. (3) This interaction between ion binding and surface electrostatics enables the enzyme to adapt its activity to the actual ionic conditions. This gives rise to a complex net dependence of the enzymatic activity upon the concentrations of activating ions. Such dependencies are analyzed, and an 'activity surface' has been constructed which represents the enzymatic activity as a function of simultaneously varying concentrations of sodium and potassium. The shape of this activity surface is determined by the relations between ion concentrations, surface potential and the resulting stability of the complexation between the activating ions and the enzyme. By means of three-dimensional representation it is demonstrated that the adaptability of the stability constants is of great importance with respect to the maintenance of the optimal ionic concentrations within the living cell. Therefore, by means of the surrounding membrane, the ATPase is provided with a quality, in addition to its substrate specificity and catalytic ability, which is necessary for its function as a transport enzyme.

  10. Electrostatic interaction between Interball-2 and the ambient plasma. 1. Determination of the spacecraft potential from current calculations

    Directory of Open Access Journals (Sweden)

    M. Bouhram

    2002-03-01

    Full Text Available The Interball-2 spacecraft travels at altitudes extending up to 20 000 km, and becomes positively charged due to the low-plasma densities encountered and the photoemission on its sunlit surface. Therefore, a knowledge of the spacecraft potential Fs is required for correcting accurately thermal ion measurements on Interball-2. The determination of Fs  is based on the balance of currents between escaping photoelectrons and incoming plasma electrons. A three-dimensional model of the potential structure surrounding Interball-2, including a realistic geometry and neglecting the space-charge densities, is used to find, through particle simulations, current-voltage relations of impacting plasma electrons Ie (Fs and escaping photoelectrons Iph (Fs . The inferred relations are compared to analytic relationships in order to quantify the effects of the spacecraft geometry, the ambient magnetic field B0 and the electron temperature Te . We found that the complex geometry has a weak effect on the inferred currents, while the presence of B0 tends to decrease their values. Providing that the photoemission saturation current density Jph0 is known, a relation between Fs and the plasma density Ne can be derived by using the current balance. Since Jph0 is critical to this process, simultaneous measurements of Ne from Z-mode observations in the plasmapause, and data on the potential difference Fs  - Fp  between the spacecraft and an electric probe (p are used in order to reverse the process. A value Jph0 ~ = 32 µAm-2 is estimated, close to laboratory tests, but less than typical measurements in space. Using this value, Ne and Fs  can be derived systematically from electric field measurements without any additional calculation. These values are needed for correcting the distributions of low-energy ions measured by the Hyperboloid experiment on Interball-2. The effects of the potential structure on ion trajectories reaching Hyperboloid are discussed

  11. Determination of the electrostatic potential distribution in Pt/Fe:SrTiO₃/Nb:SrTiO₃ thin-film structures by electron holography.

    Science.gov (United States)

    Marchewka, Astrid; Cooper, David; Lenser, Christian; Menzel, Stephan; Du, Hongchu; Dittmann, Regina; Dunin-Borkowski, Rafal E; Waser, Rainer

    2014-11-10

    We determined the electrostatic potential distribution in pristine Pt/Fe:SrTiO3/Nb:SrTiO3 structures by electron holography experiments, revealing the existence of a depletion layer extending into the Nb-doped bottom electrode. Simulations of potential profiles in metal-insulator-metal structures were conducted assuming different types and distributions of dopants. It is found that the presence of acceptor-type dopant concentrations at the Fe:SrTiO3/Nb:SrTiO3 interface with a donor-doped insulating layer provides a good match to the measured profile. Such acceptor-type interface concentrations may be associated with Sr vacancies on the Nb:SrTiO3 side of the bottom interface.

  12. Determination of the electrostatic potential distribution in Pt/Fe:SrTiO3/Nb:SrTiO3 thin-film structures by electron holography

    Science.gov (United States)

    Marchewka, Astrid; Cooper, David; Lenser, Christian; Menzel, Stephan; Du, Hongchu; Dittmann, Regina; Dunin-Borkowski, Rafal E.; Waser, Rainer

    2014-11-01

    We determined the electrostatic potential distribution in pristine Pt/Fe:SrTiO3/Nb:SrTiO3 structures by electron holography experiments, revealing the existence of a depletion layer extending into the Nb-doped bottom electrode. Simulations of potential profiles in metal-insulator-metal structures were conducted assuming different types and distributions of dopants. It is found that the presence of acceptor-type dopant concentrations at the Fe:SrTiO3/Nb:SrTiO3 interface with a donor-doped insulating layer provides a good match to the measured profile. Such acceptor-type interface concentrations may be associated with Sr vacancies on the Nb:SrTiO3 side of the bottom interface.

  13. PCE: web tools to compute protein continuum electrostatics

    Science.gov (United States)

    Miteva, Maria A.; Tufféry, Pierre; Villoutreix, Bruno O.

    2005-01-01

    PCE (protein continuum electrostatics) is an online service for protein electrostatic computations presently based on the MEAD (macroscopic electrostatics with atomic detail) package initially developed by D. Bashford [(2004) Front Biosci., 9, 1082–1099]. This computer method uses a macroscopic electrostatic model for the calculation of protein electrostatic properties, such as pKa values of titratable groups and electrostatic potentials. The MEAD package generates electrostatic energies via finite difference solution to the Poisson–Boltzmann equation. Users submit a PDB file and PCE returns potentials and pKa values as well as color (static or animated) figures displaying electrostatic potentials mapped on the molecular surface. This service is intended to facilitate electrostatics analyses of proteins and thereby broaden the accessibility to continuum electrostatics to the biological community. PCE can be accessed at . PMID:15980492

  14. Ion sources for electrostatic accelerators

    International Nuclear Information System (INIS)

    Hellborg, R.

    1998-01-01

    Maybe the most important part of an electrostatic accelerator system, and also often the most tricky part is the ion source. There has been a rapid growth in activity in ion-source research and development during the last two to three decades. Some of these developments have also been of benefit to electrostatic accelerator users. In this report some of the different types of ion sources used in electrostatic accelerators are described. The list is not complete but more an overview of some of the more commonly used sources. The description is divided into two groups; positive ion sources for single stage electrostatic accelerators and negative ion sources for two stages (i.e. tandem) accelerators

  15. Method of electrostatic filtration

    International Nuclear Information System (INIS)

    Devienne, F.M.

    1975-01-01

    Electrostatic filtration of secondary ions of mass m in a given mass ratio with a primary ion of mass M which has formed the secondary ions by fission is carried out by a method which consists in forming a singly-charged primary ion of the substance having a molecular mass M and extracting the ion at a voltage V 1 with respect to ground. The primary ion crosses a potential barrier V 2 , in producing the dissociation of the ion into at least two fragments of secondary ions and in extracting the fragment ion of mass m at a voltage V 2 . Filtration is carried out in an electrostatic analyzer through which only the ions of energy eV'' are permitted to pass, detecting the ions which have been filtered. The mass m of the ions is such that (M/m) = (V 1 - V 2 )/(V'' - V 2 )

  16. Electrostatically telescoping nanotube nonvolatile memory device

    International Nuclear Information System (INIS)

    Kang, Jeong Won; Jiang Qing

    2007-01-01

    We propose a nonvolatile memory based on carbon nanotubes (CNTs) serving as the key building blocks for molecular-scale computers and investigate the dynamic operations of a double-walled CNT memory element by classical molecular dynamics simulations. The localized potential energy wells achieved from both the interwall van der Waals energy and CNT-metal binding energy make the bistability of the CNT positions and the electrostatic attractive forces induced by the voltage differences lead to the reversibility of this CNT memory. The material for the electrodes should be carefully chosen to achieve the nonvolatility of this memory. The kinetic energy of the CNT shuttle experiences several rebounds induced by the collisions of the CNT onto the metal electrodes, and this is critically important to the performance of such an electrostatically telescoping CNT memory because the collision time is sufficiently long to cause a delay of the state transition

  17. Are AMPA Receptor Positive Allosteric Modulators Potential Pharmacotherapeutics for Addiction?

    Directory of Open Access Journals (Sweden)

    Lucas R. Watterson

    2013-12-01

    Full Text Available Positive allosteric modulators (PAMs of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA receptors are a diverse class of compounds that increase fast excitatory transmission in the brain. AMPA PAMs have been shown to facilitate long-term potentiation, strengthen communication between various cortical and subcortical regions, and some of these compounds increase the production and release of brain-derived neurotrophic factor (BDNF in an activity-dependent manner. Through these mechanisms, AMPA PAMs have shown promise as broad spectrum pharmacotherapeutics in preclinical and clinical studies for various neurodegenerative and psychiatric disorders. In recent years, a small collection of preclinical animal studies has also shown that AMPA PAMs may have potential as pharmacotherapeutic adjuncts to extinction-based or cue-exposure therapies for the treatment of drug addiction. The present paper will review this preclinical literature, discuss novel data collected in our laboratory, and recommend future research directions for the possible development of AMPA PAMs as anti-addiction medications.

  18. Laboratory Measurements of Electrostatic Solitary Structures Generated by Beam Injection

    International Nuclear Information System (INIS)

    Lefebvre, Bertrand; Chen, Li-Jen; Gekelman, Walter; Pribyl, Patrick; Vincena, Stephen; Kintner, Paul; Pickett, Jolene; Chiang, Franklin; Judy, Jack

    2010-01-01

    Electrostatic solitary structures are generated by injection of a suprathermal electron beam parallel to the magnetic field in a laboratory plasma. Electric microprobes with tips smaller than the Debye length (λ De ) enabled the measurement of positive potential pulses with half-widths 4 to 25λ De and velocities 1 to 3 times the background electron thermal speed. Nonlinear wave packets of similar velocities and scales are also observed, indicating that the two descend from the same mode which is consistent with the electrostatic whistler mode and result from an instability likely to be driven by field-aligned currents.

  19. Neural substrate of the late positive potential in emotional processing

    Science.gov (United States)

    Liu, Yuelu; Huang, Haiqing; McGinnis, Menton; Keil, Andreas; Ding, Mingzhou

    2012-01-01

    The late positive potential (LPP) is a reliable electrophysiological index of emotional perception in humans. Despite years of research the brain structures that contribute to the generation and modulation of LPP are not well understood. Recording EEG and fMRI simultaneously, and applying a recently proposed single-trial ERP analysis method, we addressed the problem by correlating the single-trial LPP amplitude evoked by affective pictures with the blood-oxygen-level-dependent (BOLD) activity. Three results were found. First, relative to neutral pictures, pleasant and unpleasant pictures elicited enhanced LPP, as well as heightened BOLD activity in both visual cortices and emotion-processing structures such as amygdala and prefrontal cortex, consistent with previous findings. Second, the LPP amplitude across three picture categories was significantly correlated with BOLD activity in visual cortices, temporal cortices, amygdala, orbitofrontal cortex, and insula. Third, within each picture category, LPP-BOLD coupling revealed category-specific differences. For pleasant pictures, the LPP amplitude was coupled with BOLD in occipitotemporal junction, medial prefrontal cortex, amygdala, and precuneus, whereas for unpleasant pictures, significant LPP-BOLD correlation was observed in ventrolateral prefrontal cortex, insula, and posterior cingulate cortex. These results suggest that LPP is generated and modulated by an extensive brain network comprised of both cortical and subcortical structures associated with visual and emotional processing and the degree of contribution by each of these structures to the LPP modulation is valence-specific. PMID:23077042

  20. Electrostatic potential in a bent piezoelectric nanowire with consideration of size-dependent piezoelectricity and semiconducting characterization.

    Science.gov (United States)

    Wang, Kaifa; Wang, Baolin

    2018-03-26

    Determining the electric potential in a bent piezoelectric nanowire (NW) is a fundamental issue of nanogenerators and nanopiezotronics. The combined influence of the flexoelectric effect, the semiconducting performance and the angle of atomic force microscope (AFM) tip has never been studied previously and will be investigated in this paper. The exact solution for the electric potential of a bent piezoelectric semiconductor NW is derived. The electric potential of the present model with consideration of flexoelectric effect varies along the length of the NW and is different from that of the classical piezoelectric model. Flexoelectric effect enhances but the semiconducting performance reduces the electric potential of the NW. In addition, it is found that if the angle of the AFM tip reaches 30 degrees, the error of the electric potential obtained from the model ignored the effect of the angle of the AFM tip is almost 16%, which is unacceptable. © 2018 IOP Publishing Ltd.

  1. Electrostatic potential in a bent piezoelectric nanowire with consideration of size-dependent piezoelectricity and semiconducting characterization

    Science.gov (United States)

    Wang, K. F.; Wang, B. L.

    2018-06-01

    Determining the electric potential in a bent piezoelectric nanowire (NW) is a fundamental issue of nanogenerators and nanopiezotronics. The combined influence of the flexoelectric effect, the semiconducting performance and the angle of atomic force microscope (AFM) tip has never been studied previously and will be investigated in this paper. The exact solution for the electric potential of a bent piezoelectric semiconductor NW is derived. The electric potential of the present model with consideration of flexoelectric effect varies along the length of the NW and is different from that of the classical piezoelectric model. Flexoelectric effect enhances but the semiconducting performance reduces the electric potential of the NW. In addition, it is found that if the angle of the AFM tip reaches 30°, the error of the electric potential obtained from the model ignored the effect of the angle of the AFM tip is almost 16%, which is unacceptable.

  2. Innovative Electrostatic Adhesion Technologies

    Science.gov (United States)

    Bryan, Tom; Macleod, Todd; Gagliano, Larry; Williams, Scott; McCoy, Brian

    2015-01-01

    Developing specialized Electro-Static grippers (commercially used in Semiconductor Manufacturing and in package handling) will allow gentle and secure Capture, Soft Docking, and Handling of a wide variety of materials and shapes (such as upper-stages, satellites, arrays, and possibly asteroids) without requiring physical features or cavities for a pincher or probe or using harpoons or nets. Combined with new rigid boom mechanisms or small agile chaser vehicles, flexible, high speed Electro-Static Grippers can enable compliant capture of spinning objects starting from a safe stand-off distance. Electroadhesion (EA) can enable lightweight, ultra-low-power, compliant attachment in space by using an electrostatic force to adhere similar and dissimilar surfaces. A typical EA enabled device is composed of compliant space-rated materials, such as copper-clad polyimide encapsulated by polymers. Attachment is induced by strong electrostatic forces between any substrate material, such as an exterior satellite panel and a compliant EA gripper pad surface. When alternate positive and negative charges are induced in adjacent planar electrodes in an EA surface, the electric fields set up opposite charges on the substrate and cause an electrostatic adhesion between the electrodes and the induced charges on the substrate. Since the electrodes and the polymer are compliant and can conform to uneven or rough surfaces, the electrodes can remain intimately close to the entire surface, enabling high clamping pressures. Clamping pressures of more than 3 N/cm2 in shear can be achieved on a variety of substrates with ultra-low holding power consumption (measured values are less than 20 microW/Newton weight held). A single EA surface geometry can be used to clamp both dielectric and conductive substrates, with slightly different physical mechanisms. Furthermore EA clamping requires no normal force be placed on the substrate, as conventional docking requires. Internally funded research and

  3. Potential profiles in the central core of the cathode in the star mode operation in an inertial-electrostatic fusion neutron source

    International Nuclear Information System (INIS)

    Yoshikawa, K.; Masuda, K.; Toku, H.

    2003-01-01

    After the successful measurements of the localized electric fields in the center-spot mode operation with relatively large space-charge effects by the laser-induced fluorescence (LIF) method, measurements of potential profiles in the star mode operation with small space-charge effects on helium gas are made in the central cathode core region of an Inertial-Electrostatic Confinement Fusion (IECF) neutron source, which is most suitable to neutron calibration in the fusion devices. Since the high-voltage is required to the star mode operation on deuterium gas, it is predicted to bring about very small beam space charge-related potential. To increase accuracy, we adopted n=4 (2 1 S to 4 1 D:HeI) transition, instead of previous n=3, which is most sensitive to the local electric fields in the Stark transition, and verified using the well-known U-shaped hollow cathode potential. The localized electric fields thus measured by LIF method using n=4 transition show negligible electric fields in the star mode compared with the center-spot mode. (author)

  4. Electrostatic accelerator dielectrics

    International Nuclear Information System (INIS)

    Cooke, C.M.

    1989-05-01

    High voltage insulation problems in electrostatic accelerators are discussed. The aim of the analysis is to broaden the knowledge, highlight the characteristics of insulation technology and design strategies to improve use. The basic geometry of the insulation in accelerators is considered. A detailed description of each of the insulation regions is provided. The gas gap insulation of the terminal voltage is found to be sensitive to regions of high electric stress. In order to obtain satisfactory performance from solid support insulation, the attention is focused on the electric stress value and distribution. Potential subjects for discussion and further investigations are given

  5. Synthesis, X-ray crystallography characterization, vibrational spectroscopic, molecular electrostatic potential maps, thermodynamic properties studies of N,N'-di(p-thiazole)formamidine.

    Science.gov (United States)

    Rofouei, M K; Fereyduni, E; Sohrabi, N; Shamsipur, M; Attar Gharamaleki, J; Sundaraganesan, N

    2011-01-01

    In this work, we will report a combined experimental and theoretical study on molecular and vibrational structure of N,N'-di(p-thiazole)formamidine (DpTF). DpTF has been synthesized and characterized by elemental analysis, FT-IR, FT-Raman, 1H NMR, 13C NMR spectroscopy and X-ray single crystal diffraction. The FT-IR and FT-Raman spectra of DpTF were recorded in the solid phase. The optimized geometry was calculated by HF and B3LYP methods using 6-31G(d) basis set. The FT-IR and FT-Raman spectra of DpTF was calculated at the HF/B3LYP/6-31G(d) level and were interpreted in terms of potential energy distribution (PED) analysis. The scaled theoretical wavenumber showed very good agreement with the experimental values. A detailed interpretation of the infrared and Raman spectra of DpTF was reported. On the basis of vibrational analyses, the thermodynamic properties of the title compound at different temperatures have been calculated, revealing the correlations between Cp,m°, Sm°, Hm° and temperatures. Furthermore, molecular electrostatic potential maps (MESP) and total dipole moment properties of the compound have been calculated. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. Inertial Electrostatic Confinement (IEC) devices

    International Nuclear Information System (INIS)

    Nebel, R.A.; Turner, L.; Tiouririne, T.N.; Barnes, D.C.; Nystrom, W.D.; Bussard, R.W.; Miley, G.H.; Javedani, J.; Yamamoto, Y.

    1994-01-01

    Inertial Electrostatic Confinement (IEC) is one of the earliest plasma confinement concepts, having first been suggested by P. T. Farnsworth in the 1950s. The concept involves a simple apparatus of concentric spherical electrostatic grids or a combination of grids and magnetic fields. An electrostatic structure is formed from the confluence of electron or ion beams. Gridded IEC systems have demonstrated neutron yields as high as 2 * 10 10 neutrons/sec. These systems have considerable potential as small, inexpensive, portable neutron sources for assaying applications. Neutron tomography is also a potential application. Atomic physics effects strongly influence the performance of all of these systems. Important atomic effects include elastic scattering, ionization, excitation, and charge exchange. This paper discusses how an IEC system is influenced by these effects and how to design around them. Theoretical modeling and experimental results are presented

  7. Limiting assumptions in molecular modeling: electrostatics.

    Science.gov (United States)

    Marshall, Garland R

    2013-02-01

    Molecular mechanics attempts to represent intermolecular interactions in terms of classical physics. Initial efforts assumed a point charge located at the atom center and coulombic interactions. It is been recognized over multiple decades that simply representing electrostatics with a charge on each atom failed to reproduce the electrostatic potential surrounding a molecule as estimated by quantum mechanics. Molecular orbitals are not spherically symmetrical, an implicit assumption of monopole electrostatics. This perspective reviews recent evidence that requires use of multipole electrostatics and polarizability in molecular modeling.

  8. Large electrostatic accelerators

    International Nuclear Information System (INIS)

    Jones, C.M.

    1984-01-01

    The paper is divided into four parts: a discussion of the motivation for the construction of large electrostatic accelerators, a description and discussion of several large electrostatic accelerators which have been recently completed or are under construction, a description of several recent innovations which may be expected to improve the performance of large electrostatic accelerators in the future, and a description of an innovative new large electrostatic accelerator whose construction is scheduled to begin next year

  9. Search for Effects of an Electrostatic Potential on Clocks in the Frame of Reference of a Charged Particle

    Science.gov (United States)

    Ringermacher, Harry I.; Conradi, Mark S.; Cassenti, Brice

    2005-01-01

    Results of experiments to confirm a theory that links classical electromagnetism with the geometry of spacetime are described. The theory, based on the introduction of a Torsion tensor into Einstein s equations and following the approach of Schroedinger, predicts effects on clocks attached to charged particles, subject to intense electric fields, analogous to the effects on clocks in a gravitational field. We show that in order to interpret this theory, one must re-interpret all clock changes, both gravitational and electromagnetic, as arising from changes in potential energy and not merely potential. The clock is provided naturally by proton spins in hydrogen atoms subject to Nuclear Magnetic Resonance trials. No frequency change of clocks was observed to a resolution of 6310(exp -9). A new "Clock Principle" was postulated to explain the null result. There are two possible implications of the experiments: (a) The Clock Principle is invalid and, in fact, no metric theory incorporating electromagnetism is possible; (b) The Clock Principle is valid and it follows that a negative rest mass cannot exist.

  10. Toward the description of electrostatic interactions between globular proteins: potential of mean force in the primitive model.

    Science.gov (United States)

    Dahirel, Vincent; Jardat, Marie; Dufrêche, Jean-François; Turq, Pierre

    2007-09-07

    Monte Carlo simulations are used to calculate the exact potential of mean force between charged globular proteins in aqueous solution. The aim of the present paper is to study the influence of the ions of the added salt on the effective interaction between these nanoparticles. The charges of the model proteins, either identical or opposite, are either central or distributed on a discrete pattern. Contrarily to Poisson-Boltzmann predictions, attractive, and repulsive direct forces between proteins are not screened similarly. Moreover, it has been shown that the relative orientations of the charge patterns strongly influence salt-mediated interactions. More precisely, for short distances between the proteins, ions enhance the difference of the effective forces between (i) like-charged and oppositely charged proteins, (ii) attractive and repulsive relative orientations of the proteins, which may affect the selectivity of protein/protein recognition. Finally, such results observed with the simplest models are applied to a more elaborate one to demonstrate their generality.

  11. Spontaneous and Selective Nanowelding of Silver Nanowires by Electrochemical Ostwald Ripening and High Electrostatic Potential at the Junctions for High-Performance Stretchable Transparent Electrodes.

    Science.gov (United States)

    Lee, Hyo-Ju; Oh, Semi; Cho, Ki-Yeop; Jeong, Woo-Lim; Lee, Dong-Seon; Park, Seong-Ju

    2018-04-25

    Metal nanowires have been gaining increasing attention as the most promising stretchable transparent electrodes for emerging field of stretchable optoelectronic devices. Nanowelding technology is a major challenge in the fabrication of metal nanowire networks because the optoelectronic performances of metal nanowire networks are mostly limited by the high junction resistance between nanowires. We demonstrate the spontaneous and selective welding of Ag nanowires (AgNWs) by Ag solders via an electrochemical Ostwald ripening process and high electrostatic potential at the junctions of AgNWs. The AgNWs were welded by depositing Ag nanoparticles (AgNPs) on the conducting substrate and then exposing them to water at room temperature. The AgNPs were spontaneously dissolved in water to form Ag + ions, which were then reduced to single-crystal Ag solders selectively at the junctions of the AgNWs. Hence, the welded AgNWs showed higher optoelectronic and stretchable performance compared to that of as-formed AgNWs. These results indicate that electrochemical Ostwald ripening-based welding can be used as a promising method for high-performance metal nanowire electrodes in various next-generation devices such as stretchable solar cells, stretchable displays, organic light-emitting diodes, and skin sensors.

  12. The electrostatic atomization of hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, A J

    1984-06-01

    Exploitation of the unique and potentially beneficial characteristics of electrostatic atomization in combustion systems has foundered upon the inability of two element, diode devices to operate at flow rates that are larger than a fraction of a millilitre per second. This restriction has been attributed to the high innate electrical resistivity of hydrocarbon fuels. A discussion of proposed electrostatic fuel atomizers and their limitations is presented from the vantage of a recently developed theory of electrostatic spraying. Comparison of theory and experiment reveals the existence of a 'constant of spraying' and the presence of an operational regime in which low charge density droplet development is possible. Operation with hydrocarbons in this regime occurs when the mean droplet size is greater than or equal to 10 ..mu..m and fluid viscosity is below about 250 cp. The resulting spray has a mean droplet size that is functionally dependent only upon the free charge density level of the fluid. Consequently there is no theoretical impediment to the attainment of high flow rate electrostatic atomization with fluids of arbitrary conductivity. Implementation is achieved by a general class of electrostatic spray devices which employ direct charge injection. The Spray Triode, a submerged field-emission electron gun, represents a particularly simple member of this new class of atomizer. Among the Spray Triode operational characteristics to be discussed is insensitivity to spray fluid properties and flow rate.

  13. Potential predictive factors of positive prostate biopsy in the Chinese ...

    African Journals Online (AJOL)

    Yomi

    2012-01-16

    Jan 16, 2012 ... Therefore, it might be inappropriate that we apply these western models to the. Chinese population that has a lower incidence of PCa. Therefore, this retrospective study aimed to determine predictive factors for a positive prostate biopsy in Chinese men. Our ultimate goal is to develop a simple model for ...

  14. Compact electrostatic comb actuator

    Science.gov (United States)

    Rodgers, M. Steven; Burg, Michael S.; Jensen, Brian D.; Miller, Samuel L.; Barnes, Stephen M.

    2000-01-01

    A compact electrostatic comb actuator is disclosed for microelectromechanical (MEM) applications. The actuator is based upon a plurality of meshed electrostatic combs, some of which are stationary and others of which are moveable. One or more restoring springs are fabricated within an outline of the electrostatic combs (i.e. superposed with the moveable electrostatic combs) to considerably reduce the space required for the actuator. Additionally, a truss structure is provided to support the moveable electrostatic combs and prevent bending or distortion of these combs due to unbalanced electrostatic forces or external loading. The truss structure formed about the moveable electrostatic combs allows the spacing between the interdigitated fingers of the combs to be reduced to about one micron or less, thereby substantially increasing the number of active fingers which can be provided in a given area. Finally, electrostatic shields can be used in the actuator to substantially reduce unwanted electrostatic fields to further improve performance of the device. As a result, the compact electrostatic comb actuator of the present invention occupies only a fraction of the space required for conventional electrostatic comb actuators, while providing a substantial increase in the available drive force (up to one-hundred times).

  15. Electrostatically atomised hydrocarbon sprays

    Energy Technology Data Exchange (ETDEWEB)

    Yule, A.J.; Shrimpton, J.S.; Watkins, A.P.; Balachandran, W.; Hu, D. [UMIST, Manchester (United Kingdom). Thermofluids Division, Dept. of Mechanical Engineering

    1995-07-01

    A burner using an electrostatic method to produce and control a fuel spray is investigated for non-burning sprays. The burner has a charge injection nozzle and the liquid flow rate and charge injection rate are varied using hydrocarbon liquids of differing viscosities, surface tensions and electrical conductivities (kerosene, white spirit and diesel oil). Droplet size distributions are measured and it is shown how the dropsize, spray pattern, breakup mechanism and breakup length depend on the above variables, and in particular on the specific charge achieved in the spray. The data are valuable for validating two computer models under development. One predicts the electric field and flow field inside the nozzle as a function of emitter potential, geometry and flow rate. The other predicts the effect of charge on spray dispersion, with a view to optimizing spray combustion. It is shown that electrostatic disruptive forces can be used to atomize oils at flow rates commensurate with practical combustion systems and that the charge injection technique is particularly suitable for highly resistive liquids. Possible limitations requiring further research include the need to control the wide spray angle, which may provide fuel-air mixtures too lean near the nozzle, and the need to design for maximum charge injection rate, which is thought to be limited by corona breakdown in the gas near the nozzle orifice. 30 refs., 15 figs., 1 tab.

  16. PREFACE: Electrostatics 2015

    Science.gov (United States)

    Matthews, James

    2015-10-01

    Electrostatics 2015, supported by the Institute of Physics, was held in the Sir James Matthews building at Southampton Solent University, UK between 12th and 16th April 2015. Southampton is a historic city on the South Coast of England with a strong military and maritime history. Southampton is home to two Universities: Solent University, which hosted the conference, and the University of Southampton, where much work is undertaken related to electrostatics. 37 oral and 44 poster presentations were accepted for the conference, and 60 papers were submitted and accepted for the proceedings. The Bill Bright Memorial Lecture was delivered this year by Professor Mark Horenstein from Boston University who was, until recently, Editor-in-Chief of the Journal of Electrostatics. He spoke on The contribution of surface potential to diverse problems in electrostatics and his thorough knowledge of the subject of electrostatics was evident in the presentation. The first session was chaired by the Conference Chair, Dr Keith Davies, whose experience in the field showed through his frequent contributions to the discussions throughout the conference. Hazards and Electrostatic Discharge have formed a strong core to Electrostatics conferences for many years, and this conference contained sessions on both Hazards and on ESD, including an invited talk from Dr Jeremy Smallwood on ESD in Industry - Present and Future. Another strong theme to emerge from this year's programme was Non-Thermal Plasmas, which was covered in two sessions. There were two invited talks on this subject: Professor Masaaki Okubo gave a talk on Development of super-clean diesel engine and combustor using nonthermal plasma hybrid after treatment and Dr David Go presented a talk on Atmospheric-pressure ionization processes: New approaches and applications for plasmas in contact with liquids. A new innovation to the conference this year was the opportunity for conference sponsors to present to the delegates a technical

  17. SUPPLEMENTARY INFORMATION Molecular electrostatic potential ...

    Indian Academy of Sciences (India)

    Sandhya K S

    PADINJARE VEETIL BIJINA and CHERUMUTTATHU H SURESH. Chemical Sciences and Technology Division and Academy of Scientific & Innovative Research (AcSIR), CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum 695019, India. Email: sureshch@gmail.com. # Celebrating 100 years ...

  18. Mast cells: potential positive and negative roles in tumor biology.

    Science.gov (United States)

    Marichal, Thomas; Tsai, Mindy; Galli, Stephen J

    2013-11-01

    Mast cells are immune cells that reside in virtually all vascularized tissues. Upon activation by diverse mechanisms, mast cells can secrete a broad array of biologically active products that either are stored in the cytoplasmic granules of the cells (e.g., histamine, heparin, various proteases) or are produced de novo upon cell stimulation (e.g., prostaglandins, leukotrienes, cytokines, chemokines, and growth factors). Mast cells are best known for their effector functions during anaphylaxis and acute IgE-associated allergic reactions, but they also have been implicated in a wide variety of processes that maintain health or contribute to disease. There has been particular interest in the possible roles of mast cells in tumor biology. In vitro studies have shown that mast cells have the potential to influence many aspects of tumor biology, including tumor development, tumor-induced angiogenesis, and tissue remodeling, and the shaping of adaptive immune responses to tumors. Yet, the actual contributions of mast cells to tumor biology in vivo remain controversial. Here, we review some basic features of mast cell biology with a special emphasis on those relevant to their potential roles in tumors. We discuss how using in vivo tumor models in combination with models in which mast cell function can be modulated has implicated mast cells in the regulation of host responses to tumors. Finally, we summarize data from studies of human tumors that suggest either beneficial or detrimental roles for mast cells in tumors. ©2013 AACR.

  19. Cytokeratin positivity in myxopapillary ependymoma – a potential diagnostic pitfall

    Directory of Open Access Journals (Sweden)

    Sur Monalisa

    2008-10-01

    Full Text Available Abstract Background Myxopapillary ependymomas (MPE occur in the filum terminale of the spinal cord, but also present in extra-spinal locations such as subcutaneous tissue and brain. They are slow growing grade I gliomas. Areas of solid growth pattern with aggregates of cells with "epithelioid morphology" seen in MPE can mimic metastatic carcinoma. The presence of occasional cells with clear cytoplasm and morphology can resemble Chordoma. Diagnosis can be missed due to these morphological similarities, which could affect patient management and hence, long term survival. Case presentation We describe two cases of MPE with cytokeratin (AE1 AE3, CAM 5.2, Cytokeratin 7 and cytokeratin 20 expression. Conclusion MPE can be positive for Cytokeratins (CAM 5.2, AE1 AE3, CK7 and focally for EMA, which could be misdiagnosed as metastatic carcinoma. In cases demonstrating epithelioid and clear cell morphology, the diagnosis of MPE should be made in conjunction with histology, proper immunohistochemical profile which includes co-expression of GFAP, S-100 protein and epithelial markers, radiologic findings and site. It is important to be aware of the cytokeratin profile in MPE to avoid erroneous diagnosis with other tumour entities.

  20. Positive organizational potential as a valuable resource of the contemporary company

    Directory of Open Access Journals (Sweden)

    Bohdan Godziszewski

    2014-12-01

    Full Text Available The main aim of the article is to present an outcome of the research project concerning the essence and importance of positive organizational potential understood as state, levels and configurations of companies’ resources which stimulate positive organizational climate, positive organizational culture and positive employees’ behaviour, supporting comprehensive companies’ development. Within the project framework was necessary to identify the internal structure of positive potential, positive culture, positive climate and positive employees’ behaviours. Correlations among the above phenomena and companies’ performances were calculated, within a group of 103 Polish companies, as well.

  1. Empathy and the Internet: Positive Potentials vs. Risks

    Directory of Open Access Journals (Sweden)

    Tatjana Milivojević

    2015-09-01

    Full Text Available Internet enables the exchange of information with incredible speed, allowing at the same time users to share their feelings, thoughts and opinions. This exchange that can be carried out virally spreading the interest about people and events that transcends our geographical and social horizons, represents a civilizational progress when it’s not recognized just as technological progress, but also as an increasing process of humanization of man and society. Empathy, which was once reserved for the narrowest community, can now be expanded globally. This optimistic view, however, doesn’t take under consideration that human capacity for empathy isn't limitless. Perceptual, cognitive, and emotional overload can lead to saturation and desensitization or dissociation where there is apperception of others, but without any emotional involvement. The paradox of empathy lays within its possibility of being used as a means of control and manipulation: it’s then a pure mimicry of empathy. It can serve a better acquaintance, rapprochement and understanding of other people and cultures, or, on the contrary, non-relations such as impersonation, inauthentic communication, and ultimately online harassment. Therefore, the possibility that Internet gives us to be connected to others is less important than the personal attitude that each individual has towards it and to others via the network. Internet isn't empathic by itself, but it can help one’s basic empathy, which is developing in vivid interpersonal contacts in the real world, to expand to the remote and sensory unobservable others. In this article we’ll analyze the empathic potential of social networks, as well as their features that can narrow or even shut down empathy.

  2. Embedding beyond electrostatics

    DEFF Research Database (Denmark)

    Nåbo, Lina J.; Olsen, Jógvan Magnus Haugaard; Holmgaard List, Nanna

    2016-01-01

    We study excited states of cholesterol in solution and show that, in this specific case, solute wave-function confinement is the main effect of the solvent. This is rationalized on the basis of the polarizable density embedding scheme, which in addition to polarizable embedding includes non-electrostatic...... repulsion that effectively confines the solute wave function to its cavity. We illustrate how the inclusion of non-electrostatic repulsion results in a successful identification of the intense π → π∗ transition, which was not possible using an embedding method that only includes electrostatics....... This underlines the importance of non-electrostatic repulsion in quantum-mechanical embedding-based methods....

  3. Edutainment Science: Electrostatics

    Science.gov (United States)

    Ahlers, Carl

    2009-01-01

    Electrostatics should find a special place in all primary school science curricula. It is a great learning area that reinforces the basics that underpin electricity and atomic structure. Furthermore, it has many well documented hands-on activities. Unfortunately, the "traditional" electrostatics equipment such as PVC rods, woollen cloths, rabbit…

  4. Electrostatic septum, SPS

    CERN Multimedia

    CERN PhotoLab

    1978-01-01

    To minimize losses during slow extraction towards N- and W-Area, electrostatic septa in long straight sections 2 and 6 precede the magnetic septa. This picture shows such an electrostatic septum in its tank. See 7501120X, 7501199 and 7501201 for more detailed pictures.

  5. Collisionless electrostatic shocks

    DEFF Research Database (Denmark)

    Andersen, H.K.; Andersen, S.A.; Jensen, Vagn Orla

    1970-01-01

    An attempt was made in the laboratory to observe the standing collisionless electrostatic shocks in connection with the bow shock of the earth......An attempt was made in the laboratory to observe the standing collisionless electrostatic shocks in connection with the bow shock of the earth...

  6. Electrostatic Levitation Furnace for the ISS

    Science.gov (United States)

    Murakami, Keiji; Koshikawa, Naokiyo; Shibasaki, Kohichi; Ishikawa, Takehiko; Okada, Junpei; Takada, Tetsuya; Arai, Tatsuya; Fujino, Naoki; Yamaura, Yukiko

    2012-01-01

    JAXA (Japan Aerospace Exploration Agency) has just started the development of Electrostatic Levitation Furnace to be launched in 2014 for the ISS. This furnace can control the sample position with electrostatic force and heat it above 2000 degree Celsius using semiconductor laser from four different directions. The announcement of Opportunity will be issued soon for this furnace. In this paper, we will show the specifications of this furnace and also the development schedule

  7. Gender moderates valence effects on the late positive potential to emotional distracters

    OpenAIRE

    Syrjänen, Elmeri

    2013-01-01

    Attention is captured more strongly by emotional pictures than by neutral pictures. This allocation of attention to emotional pictures is commonly indexed by the late positive potential (LPP), an event-related potential (ERP) that is larger for negative and positive pictures than for neutral pictures. However, findings are mixed in regards to valence effects, that is, whether the LPP is larger for negative pictures than for positive pictures (negativity bias) or vice versa (positivity bias). ...

  8. Geometry-Dependent Electrostatics near Contact Lines

    International Nuclear Information System (INIS)

    Chou, Tom

    2001-01-01

    Long-ranged electrostatic interactions in electrolytes modify contact angles on charged substrates in a scale and geometry-dependent manner. For angles measured at scales smaller than the typical Debye screening length, the wetting geometry near the contact line must be explicitly considered. Using variational and asymptotic methods, we derive new transcendental equations for the contact angle as functions of the electrostatic potential only at the three phase contact line. Analytic expressions are found in certain limits and compared with predictions for contact angles measured with lower resolution. An estimate for electrostatic contributions to line tension is also given

  9. Electrostatic Detumble of Space Objects

    Data.gov (United States)

    National Aeronautics and Space Administration — Electrostatic Tractor Technology research explores the harmony of physics and engineering to develop and test electrostatic actuation methods for touchless detumble...

  10. Positive technology–A powerful partnership between positive psychology and interactive technology. A discussion of potential and challenges.

    Directory of Open Access Journals (Sweden)

    Sarah Diefenbach

    2017-11-01

    Full Text Available Under the umbrella term "positive computing" concepts of positive psychology are transferred to the domain of human-computer interaction (HCI. In an interdisciplinary community psychologist, computer scientists, designers and others are exploring promising ways how to utilize interactive technology to support wellbeing and human flourishing. Along with this, the recent popularity of smartphone apps aiming at the improvement of health behavior, mindfulness and positive routines, suggests the general acceptance of technology as a facilitator of personal development. Given this, there generally seems a high potential for a technology mediated trigger of positive behavior change, especially in context of positive psychology and resource oriented approaches such as solution-focused coaching. At the same time, there is still a lack of well-founded approaches to design such technology which consider its responsible role as an "interactive coach" and systematically integrate the needed expertise of different disciplines. The present article discusses the general potential and particular challenges to support the goals of positive psychology and human desire for self-improvement through interactive technology and highlights critical steps for a successful partnership between both.

  11. Electrostatic and electromagnetic instabilities associated with electrostatic shocks: Two-dimensional particle-in-cell simulation

    International Nuclear Information System (INIS)

    Kato, Tsunehiko N.; Takabe, Hideaki

    2010-01-01

    A two-dimensional electromagnetic particle-in-cell simulation with the realistic ion-to-electron mass ratio of 1836 is carried out to investigate the electrostatic collisionless shocks in relatively high-speed (∼3000 km s -1 ) plasma flows and also the influence of both electrostatic and electromagnetic instabilities, which can develop around the shocks, on the shock dynamics. It is shown that the electrostatic ion-ion instability can develop in front of the shocks, where the plasma is under counterstreaming condition, with highly oblique wave vectors as was shown previously. The electrostatic potential generated by the electrostatic ion-ion instability propagating obliquely to the shock surface becomes comparable with the shock potential and finally the shock structure is destroyed. It is also shown that in front of the shock the beam-Weibel instability gradually grows as well, consequently suggesting that the magnetic field generated by the beam-Weibel instability becomes important in long-term evolution of the shock and the Weibel-mediated shock forms long after the electrostatic shock vanished. It is also observed that the secondary electrostatic shock forms in the reflected ions in front of the primary electrostatic shock.

  12. A Direct Driver for Electrostatic Transducers

    DEFF Research Database (Denmark)

    Nielsen, Dennis; Knott, Arnold; Andersen, Michael A. E.

    2014-01-01

    Electrostatic transducers represent a very interesting alternative to the traditional inefficient electrodynamic transducers. In order to establish the full potential of these transducers, power amplifiers which fulfill the strict requirements imposed by such loads (high impedance, frequency...... depended, nonlinear and high bias voltage for linearization) must be developed. This paper analyzes a power stage suitable for driving an electrostatic transducer under biasing. Measurement results of a ±400 V prototype amplifier are shown. THD below 1% is reported....

  13. On-Orbit 3-Dimensional Electrostatic Detumble for Generic Spacecraft Geometries

    Science.gov (United States)

    Bennett, Trevor J.

    In recent years, there is a growing interest in active debris removal and on-orbit servicing of Earth orbiting assets. The growing need for such approaches is often exemplified by the Iridium-Kosmos collision in 2009 that generated thousands of debris fragments. There exists a variety of active debris removal and on-orbit servicing technologies in development. Conventional docking mechanisms and mechanical capture by actuated manipulators, exemplified by NASA's Restore-L mission, require slow target tumble rates or more aggressive circumnavigation rate matching. The tumble rate limitations can be overcome with flexible capture systems such nets, harpoons, or tethers yet these systems require complex deployment, towing, and/or interfacing strategies to avoid servicer and target damage. Alternatively, touchless methods overcome the tumble rate limitations by provide detumble control prior to a mechanical interface. This thesis explores electrostatic detumble technology to touchlessly reduce large target rotation rates of Geostationary satellites and debris. The technical challenges preceding flight implementation largely reside in the long-duration formation flying guidance, navigation, and control of a servicer spacecraft equipped with electrostatic charge transfer capability. Leveraging prior research into the electrostatic charging of spacecraft, electrostatic detumble control formulations are developed for both axisymmetric and generic target geometries. A novel relative position vector and associated relative orbit control approach is created to manage the long-duration proximity operations. Through detailed numerical simulations, the proposed detumble and relative motion control formulations demonstrate detumble of several thousand kilogram spacecraft tumbling at several degrees per second in only several days. The availability, either through modeling or sensing, of the relative attitude, relative position, and electrostatic potential are among key concerns

  14. Asteroid electrostatic instrumentation and modelling

    Energy Technology Data Exchange (ETDEWEB)

    Aplin, K L; Bowles, N E; Urbak, E [Department of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom); Keane, D; Sawyer, E C, E-mail: k.aplin1@physics.ox.ac.uk [RAL Space, R25, Harwell Oxford, Didcot OX11 0QX (United Kingdom)

    2011-06-23

    Asteroid surface material is expected to become photoelectrically charged, and is likely to be transported through electrostatic levitation. Understanding any movement of the surface material is relevant to proposed space missions to return samples to Earth for detailed isotopic analysis. Motivated by preparations for the Marco Polo sample return mission, we present electrostatic modelling for a real asteroid, Itokawa, for which detailed shape information is available, and verify that charging effects are likely to be significant at the terminator and at the edges of shadow regions for the Marco Polo baseline asteroid, 1999JU3. We also describe the Asteroid Charge Experiment electric field instrumentation intended for Marco Polo. Finally, we find that the differing asteroid and spacecraft potentials on landing could perturb sample collection for the short landing time of 20min that is currently planned.

  15. Electrostatic attraction between overall neutral surfaces.

    Science.gov (United States)

    Adar, Ram M; Andelman, David; Diamant, Haim

    2016-08-01

    Two overall neutral surfaces with positively and negatively charged domains ("patches") have been shown in recent experiments to exhibit long-range attraction when immersed in an ionic solution. Motivated by the experiments, we calculate analytically the osmotic pressure between such surfaces within the Poisson-Boltzmann framework, using a variational principle for the surface-averaged free energy. The electrostatic potential, calculated beyond the linear Debye-Hückel theory, yields an overall attraction at large intersurface separations, over a wide range of the system's controlled length scales. In particular, the attraction is stronger and occurs at smaller separations for surface patches of larger size and charge density. In this large patch limit, we find that the attraction-repulsion crossover separation is inversely proportional to the square of the patch-charge density and to the Debye screening length.

  16. Electrostatic Levitator Electrode Layout

    Science.gov (United States)

    1998-01-01

    Schematic of Electrostatic Levitator (ESL) electrodes and controls system. The ESL uses static electricity to suspend an object (about 2-3 mm in diameter) inside a vacuum chamber while a laser heats the sample until it melts. This lets scientists record a wide range of physical properties without the sample contacting the container or any instruments, conditions that would alter the readings. The Electrostatic Levitator is one of several tools used in NASA's microgravity materials science program.

  17. Electrostatic Levitator Layout

    Science.gov (United States)

    1998-01-01

    Electrostatic Levitator (ESL) general layout with captions. The ESL uses static electricity to suspend an object (about 2-3 mm in diameter) inside a vacuum chamber while a laser heats the sample until it melts. This lets scientists record a wide range of physical properties without the sample contacting the container or any instruments, conditions that would alter the readings. The Electrostatic Levitator is one of several tools used in NASA's microgravity materials science program.

  18. Clustering of HIV-1 Subtypes Based on gp120 V3 Loop electrostatic properties

    Directory of Open Access Journals (Sweden)

    López de Victoria Aliana

    2012-02-01

    Full Text Available Abstract Background The V3 loop of the glycoprotein gp120 of HIV-1 plays an important role in viral entry into cells by utilizing as coreceptor CCR5 or CXCR4, and is implicated in the phenotypic tropisms of HIV viruses. It has been hypothesized that the interaction between the V3 loop and CCR5 or CXCR4 is mediated by electrostatics. We have performed hierarchical clustering analysis of the spatial distributions of electrostatic potentials and charges of V3 loop structures containing consensus sequences of HIV-1 subtypes. Results Although the majority of consensus sequences have a net charge of +3, the spatial distribution of their electrostatic potentials and charges may be a discriminating factor for binding and infectivity. This is demonstrated by the formation of several small subclusters, within major clusters, which indicates common origin but distinct spatial details of electrostatic properties. Some of this information may be present, in a coarse manner, in clustering of sequences, but the spatial details are largely lost. We show the effect of ionic strength on clustering of electrostatic potentials, information that is not present in clustering of charges or sequences. We also make correlations between clustering of electrostatic potentials and net charge, coreceptor selectivity, global prevalence, and geographic distribution. Finally, we interpret coreceptor selectivity based on the N6X7T8|S8X9 sequence glycosylation motif, the specific positive charge location according to the 11/24/25 rule, and the overall charge and electrostatic potential distribution. Conclusions We propose that in addition to the sequence and the net charge of the V3 loop of each subtype, the spatial distributions of electrostatic potentials and charges may also be important factors for receptor recognition and binding and subsequent viral entry into cells. This implies that the overall electrostatic potential is responsible for long-range recognition of the V3

  19. Clustering of HIV-1 Subtypes Based on gp120 V3 Loop electrostatic properties

    International Nuclear Information System (INIS)

    López de Victoria, Aliana; Kieslich, Chris A; Rizos, Apostolos K; Krambovitis, Elias; Morikis, Dimitrios

    2012-01-01

    The V3 loop of the glycoprotein gp120 of HIV-1 plays an important role in viral entry into cells by utilizing as coreceptor CCR5 or CXCR4, and is implicated in the phenotypic tropisms of HIV viruses. It has been hypothesized that the interaction between the V3 loop and CCR5 or CXCR4 is mediated by electrostatics. We have performed hierarchical clustering analysis of the spatial distributions of electrostatic potentials and charges of V3 loop structures containing consensus sequences of HIV-1 subtypes. Although the majority of consensus sequences have a net charge of +3, the spatial distribution of their electrostatic potentials and charges may be a discriminating factor for binding and infectivity. This is demonstrated by the formation of several small subclusters, within major clusters, which indicates common origin but distinct spatial details of electrostatic properties. Some of this information may be present, in a coarse manner, in clustering of sequences, but the spatial details are largely lost. We show the effect of ionic strength on clustering of electrostatic potentials, information that is not present in clustering of charges or sequences. We also make correlations between clustering of electrostatic potentials and net charge, coreceptor selectivity, global prevalence, and geographic distribution. Finally, we interpret coreceptor selectivity based on the N 6 X 7 T 8 |S 8 X 9 sequence glycosylation motif, the specific positive charge location according to the 11/24/25 rule, and the overall charge and electrostatic potential distribution. We propose that in addition to the sequence and the net charge of the V3 loop of each subtype, the spatial distributions of electrostatic potentials and charges may also be important factors for receptor recognition and binding and subsequent viral entry into cells. This implies that the overall electrostatic potential is responsible for long-range recognition of the V3 loop with coreceptors CCR5/CXCR4, whereas the charge

  20. A Monte-Carlo method which is not based on Markov chain algorithm, used to study electrostatic screening of ion potential

    Science.gov (United States)

    Šantić, Branko; Gracin, Davor

    2017-12-01

    A new simple Monte Carlo method is introduced for the study of electrostatic screening by surrounding ions. The proposed method is not based on the generally used Markov chain method for sample generation. Each sample is pristine and there is no correlation with other samples. As the main novelty, the pairs of ions are gradually added to a sample provided that the energy of each ion is within the boundaries determined by the temperature and the size of ions. The proposed method provides reliable results, as demonstrated by the screening of ion in plasma and in water.

  1. The Effectiveness of Positive Coping Program on Reduction of Addiction Potential in Students

    Directory of Open Access Journals (Sweden)

    Fatemeh Nematollahi

    2010-02-01

    Full Text Available Objective: This study aimed to study the effectiveness of positive coping program on reduction of addiction potential in dormitory girl students. Method: The research method was semi experimental method namely: pre test-post test with witness group. In selection of sample, first addiction potential scale administered among 160 dormitory girl students, and 20 of them who were scored higher than cutoff score on addiction potential scale selected and divided to two experimental and witness groups. Experimental group received 10 sessions training which each session was 90 minutes. Positive coping program was based on three components of Bob Murray’s theory namely: social relationships, goal setting and spirituality. After finishing of training Post test were administered in both experimental and witness groups. Results: The results showed positive coping training was significantly reduced students’ addiction potential. Conclusion: The training of positive coping can be affect on reduction of girl students’ addiction potential.

  2. Electrostatic coupling of ion pumps.

    Science.gov (United States)

    Nieto-Frausto, J; Lüger, P; Apell, H J

    1992-01-01

    In this paper the electrostatic interactions between membrane-embedded ion-pumps and their consequences for the kinetics of pump-mediated transport processes have been examined. We show that the time course of an intrinsically monomolecular transport reaction can become distinctly nonexponential, if the reaction is associated with charge translocation and takes place in an aggregate of pump molecules. First we consider the electrostatic coupling of a single dimer of ion-pumps embedded in the membrane. Then we apply the treatment to the kinetic analysis of light-driven proton transport by bacteriorhodopsin which forms two-dimensional hexagonal lattices. Finally, for the case of nonordered molecules, we also consider a model in which the pumps are randomly distributed over the nodes of a lattice. Here the average distance is equal to that deduced experimentally and the elemental size of the lattice is the effective diameter of one single pump. This latter model is applied to an aggregate of membrane-embedded Na, K- and Ca-pumps. In all these cases the electrostatic potential considered is the exact solution calculated from the method of electrical images for a plane membrane of finite thickness immersed in an infinite aqueous solution environment. The distributions of charges (ions or charged binding sites) are considered homogeneous or discrete in the membrane and/or in the external solution. In the case of discrete distributions we compare the results from a mean field approximation and a stochastic simulation.

  3. Sustained release vancomycin-coated titanium alloy using a novel electrostatic dry powder coating technique may be a potential strategy to reduce implant-related infection.

    Science.gov (United States)

    Han, Jing; Yang, Yi; Lu, Junren; Wang, Chenzhong; Xie, Youtao; Zheng, Xuebin; Yao, Zhenjun; Zhang, Chi

    2017-07-24

    In order to tackle the implant-related infection, a novel way was developed in this study to coat vancomycin particles mixed with controlled release coating materials onto the surface of titanium alloy by using an electrostatic dry powder coating technique. To characterize this sustained release antibacterial coating, surface morphology, in vitro and in vivo drug release were sequentially evaluated. In vitro cytotoxicity was tested by Cell Counting Kit-8 (CCK-8) assay and cytological changes were observed by inverted microscope. The antibacterial properties against MRSA, including a bacterial growth inhibition assay and a colony-counting test by spread plate method were performed. Results indicated that the vancomycin-coated sample was biocompatible for Human osteoblast cell line MG-63 and displayed effective antibacterial ability against MRSA. The coating film was revealed uniform by scanning electron microscopy. Both the in vitro and in vivo drug release kinetics showed an initially high release rate, followed by an extended period of sustained drug release over 7 days. These results suggest that with good biocompatibility and antibacterial ability, the sustained release antibacterial coating of titanium alloy using our novel electrostatic dry powder coating process may provide a promising candidate for the treatment of orthopedic implant-related infection.

  4. Magnetosheath electrostatic turbulence

    International Nuclear Information System (INIS)

    Rodriguez, P.

    1979-01-01

    By using measurements with the University of Iowa plasma wave experiment on the Imp 6 satellite a study has been conducted of the spectrum of electrostatic plasma waves in the terrestrial magnetosheath. Electrostatic plasma wave turbulence is almost continuously present throughout the magnetosheath with broadband (20 Hz to 70 kHz) rms field intensities typically 0.01--1.0 mV m -1 . Peak intensities of about 1.0 mV m -1 near the electron plasma frequency (30--60 kHz) have been detected occasionally. Two or three components can usually be identified in the spectrum of magnetosheath electrostatic turbulence: a high-frequency (> or =30kHz) component peaking at the electron plasma frequency f/sub p/e, a low-frequency component with a broad intensity maximum below the nominal ion plasma frequency f/sub p/i (approx. f/sub p/e/43), and a less well defined intermediate component in the range f/sub p/i < f< f/sub p/e. The intensity distribution of magnetosheath electrostatic turbulence clearly shows that the low-frequency component is associated with the bow shock, suggesting that the ion heating begun at the shock continues into the downstream magnetosheath. Electrostatic waves below 1 kHz are polarized along the magnetic field direction, a result consistent with the polarization of electrostatic waves at the shock. The high- and intermediate-frequency components are features of the magnetosheath spectrum which are not characteristic of the shock spectrum but are often detected in the upstream solar wind. The intensity distribution of electrostatic turbulence at the magnetosheath plasma frequency has no apparent correlation with the shock, indicating that electron plasma oscillations are a general feature of the magnetosheath. The plasma wave noise shows a tendency to decrease toward the dawn and dusk regions, consistent with a general decrease in turbulence away from the subsolar magnetosheath

  5. Influence of solvent polarization and non-uniform ion size on electrostatic properties between charged surfaces in an electrolyte solution

    Science.gov (United States)

    Sin, Jun-Sik

    2017-12-01

    In this paper, we study electrostatic properties between two similar or oppositely charged surfaces immersed in an electrolyte solution by using the mean-field approach accounting for solvent polarization and non-uniform size effects. Applying a free energy formalism accounting for unequal ion sizes and orientational ordering of water dipoles, we derive coupled and self-consistent equations to calculate electrostatic properties between charged surfaces. Electrostatic properties for similarly charged surfaces depend on the counterion size but not on the coion size. Moreover, electrostatic potential and osmotic pressure between similarly charged surfaces are found to be increased with increasing counterion size. On the other hand, the corresponding ones between oppositely charged surfaces are related to both sizes of positive and negative ions. For oppositely charged surfaces, the electrostatic potential, number density of solvent molecules, and relative permittivity of an electrolyte having unequal ion sizes are not symmetric about the centerline between the charged surfaces. For either case, the consideration of solvent polarization results in a decrease in the electrostatic potential and the osmotic pressure compared to the case without the effect.

  6. Theoretical Probing of Weak Anion-Cation Interactions in Certain Pyridinium-Based Ionic Liquid Ion Pairs and the Application of Molecular Electrostatic Potential in Their Ionic Crystal Density Determination: A Comparative Study Using Density Functional Approach.

    Science.gov (United States)

    Joseph, Aswathy; Thomas, Vibin Ipe; Żyła, Gaweł; Padmanabhan, A S; Mathew, Suresh

    2018-01-11

    A comprehensive study on the structure, nature of interaction, and properties of six ionic pairs of 1-butylpyridinium and 1-butyl-4-methylpyridinium cations in combination with tetrafluoroborate (BF 4 - ), chloride (Cl - ), and bromide (Br - ) anions have been carried out using density functional theory (DFT). The anion-cation interaction energy (ΔE int ), thermochemistry values, theoretical band gap, molecular orbital energy order, DFT-based chemical activity descriptors [chemical potential (μ), chemical hardness (η), and electrophilicity index (ω)], and distribution of density of states (DOS) of these ion pairs were investigated. The ascendancy of the -CH 3 substituent at the fourth position of the 1-butylpyridinium cation ring on the values of ΔE int , theoretical band gap and chemical activity descriptors was evaluated. The ΔE int values were negative for all six ion pairs and were highest for Cl - containing ion pairs. The theoretical band gap value after -CH 3 substitution increased from 3.78 to 3.96 eV (for Cl - ) and from 2.74 to 2.88 eV (for Br - ) and decreased from 4.9 to 4.89 eV (for BF 4 - ). Ion pairs of BF 4 - were more susceptible to charge transfer processes as inferred from their significantly high η values and comparatively small difference in ω value after -CH 3 substitution. The change in η and μ values due to the -CH 3 substituent is negligibly small in all cases except for the ion pairs of Cl - . Critical-point (CP) analyses were carried out to investigate the AIM topological parameters at the interionic bond critical points (BCPs). The RDG isosurface analysis indicated that the anion-cation interaction was dominated by strong H cat ···X ani and C cat ···X ani interactions in ion pairs of Cl - and Br - whereas a weak van der Waal's effect dominated in ion pairs of BF 4 - . The molecular electrostatic potential (MESP)-based parameter ΔΔV min measuring the anion-cation interaction strength showed a good linear correlation with

  7. Advances in electrostatic accelerators

    International Nuclear Information System (INIS)

    Wegner, H.E.

    1975-01-01

    Advances in the design and performance of electrostatic accelerators since 1969 are reviewed with special emphasis on the ''forefront'' accelerators that are currently leading in voltage capability. A comparison of the acceleration tube design offered by the National Electrostatics Corporation and the High Voltage Engineering Corporation is also made. Other methods of increasing heavy ion energy by means of dual foil stripping are discussed as well as the performance of a newly developed sputter ion source for the production of negative heavy ions with reliability and flexibility that greatly exceeds all other present systems. Finally, new developments in terms of both booster systems and very high voltage electrostatic accelerators (25 to 60 MV) are discussed. (U.S.)

  8. Comparative study of potential whiplash injuries for different occupant seated positions during rear end accidents.

    Science.gov (United States)

    Omerović, Senad; Tomasch, Ernst; Gutsche, Andreas J; Prebil, Ivan

    2016-01-01

    Whiplash injuries to the cervical spine represent a considerable economic burden on society with medical conditions, in some cases persisting for more than a year. Numerous studies of whiplash injuries have been made for occupant normal seated position, leaving the analysis of neck injuries for out-of-normal positions not well documented. For that purpose, a detailed human cervical spine finite element model was developed. The analysis was made for four most common occupant seated positions, such as: Normal Position with the torso against the seat back and the head looking straight ahead, Torso Lean forward position with the torso away from the seat back for approximately 10°, Head Flexed position with the head flexed forward approximately 20° from the normal position and Head-Flexed with Torso Lean forward position with the head flexed forward approximately 20° and torso 10° from the normal position. The comparative study included the analysis of capsular ligament deformation and the level of S-curvature of the cervical spine. The model developed predicted that Head Flexed seated position and Head-Flexed with Torso Lean forward seated position are most threatening for upper and lower cervical spine capsular ligament, respectively. As for the level of S-curvature, the model predicted that Head-Flexed with Torso Lean forward seated position would be most prone to neck injuries associated with it. This study demonstrated that the occupant seated position has a significant influence on potential whiplash injuries.

  9. A New Approach for Studying Bond Rupture/Closure of a Spiro Benzopyran Photochromic Material: Reactivity Descriptors Derived from Frontier Orbitals and DFT Computed Electrostatic Potential Energy Surface Maps

    Directory of Open Access Journals (Sweden)

    M. S. A. Abdel-Mottaleb

    2016-01-01

    Full Text Available This paper focuses on computations technique within the framework of the TD-DFT theory for studying the relationship between structure-properties of reversible conversion of photochromic materials. Specifically, we report on 1′,3′-dihydro-8-methoxy-1′,3′,3′-trimethyl-6-nitrospiro[2H-1-benzopyran-2,2′-(2H-indole] (SP and its isomers. TD-DFT calculated UV-Vis electronic spectra of the closed and open isomers of this photochromic material are in excellent agreement with the experimental results. Moreover, this paper reports on the results of theoretical investigations of reactivity indices that may govern the conversion between spiropyrans and its isomers. In addition, the solvent and rigidity of the medium significantly control the thermal bleaching of the photogenerated colored isomers and hence the switch ability pattern of the photochromic material. The effect of molecular structure computed by DFT in gas-phase and solvents on Cspiro-O bond length has been shown to correlate with photochromic properties. For this compound, DFT optimized geometry could be used to predict photochromism. Furthermore, in an attempt to predict the driving force for MC → SP, this work explores, for the first time, profitable exploitation of the calculated and visualized mapped electrostatic potential energy surfaces (ESP map. Interestingly, it seems that the electrostatic potential forces over the molecular fragments govern spirobond rupture/closure reactions. Thermodynamically, all-trans-colored isomer (CTT is the most stable merocyanine-like form.

  10. Electrostatics of a Family of Conducting Toroids

    Science.gov (United States)

    Lekner, John

    2009-01-01

    An exact solution is found for the electrostatic potential of a family of conducting charged toroids. The toroids are characterized by two lengths "a" and "b", with "a" greater than or equal to "2b". They are closed, with no hole in the "doughnut". The results are obtained by considering the potential of two equal charges, displaced from the…

  11. Electrostatic septum, SPS

    CERN Multimedia

    1975-01-01

    To minimize losses during slow extraction towards N- and W-Areas, electrostatic septa in long straight sections 2 an 6 precede the magnetic septa. The 2 electrode plates, visible at the entrance to the septum, provide a vertical electric field to remove the ions created by the circulating beam in the residual gas. Here we see one of the electrostatic septa being assembled by Faustin Emery (left) and Jacques Soubeyran (right), in the clean room of building 867. See also 7501199, 7501201, 7801286 and further explanations there.

  12. Isospectral Trigonometric Pöschl-Teller Potentials with Position Dependent Mass Generated by Supersymmetry

    International Nuclear Information System (INIS)

    Santiago-Cruz, C

    2016-01-01

    In this work a position dependent mass Hamiltonian with the same spectrum of the trigonometric Pöschl-Teller one was constructed by means of the underlying potential algebra. The corresponding wave functions are determined by using the factorization method. A new family of isospectral potentials are constructed by applying a Darboux transformation. An example is presented in order to illustrate the formalism. (paper)

  13. Potential for false positive HIV test results with the serial rapid HIV testing algorithm

    Directory of Open Access Journals (Sweden)

    Baveewo Steven

    2012-03-01

    Full Text Available Abstract Background Rapid HIV tests provide same-day results and are widely used in HIV testing programs in areas with limited personnel and laboratory infrastructure. The Uganda Ministry of Health currently recommends the serial rapid testing algorithm with Determine, STAT-PAK, and Uni-Gold for diagnosis of HIV infection. Using this algorithm, individuals who test positive on Determine, negative to STAT-PAK and positive to Uni-Gold are reported as HIV positive. We conducted further testing on this subgroup of samples using qualitative DNA PCR to assess the potential for false positive tests in this situation. Results Of the 3388 individuals who were tested, 984 were HIV positive on two consecutive tests, and 29 were considered positive by a tiebreaker (positive on Determine, negative on STAT-PAK, and positive on Uni-Gold. However, when the 29 samples were further tested using qualitative DNA PCR, 14 (48.2% were HIV negative. Conclusion Although this study was not primarily designed to assess the validity of rapid HIV tests and thus only a subset of the samples were retested, the findings show a potential for false positive HIV results in the subset of individuals who test positive when a tiebreaker test is used in serial testing. These findings highlight a need for confirmatory testing for this category of individuals.

  14. Potential for false positive HIV test results with the serial rapid HIV testing algorithm.

    Science.gov (United States)

    Baveewo, Steven; Kamya, Moses R; Mayanja-Kizza, Harriet; Fatch, Robin; Bangsberg, David R; Coates, Thomas; Hahn, Judith A; Wanyenze, Rhoda K

    2012-03-19

    Rapid HIV tests provide same-day results and are widely used in HIV testing programs in areas with limited personnel and laboratory infrastructure. The Uganda Ministry of Health currently recommends the serial rapid testing algorithm with Determine, STAT-PAK, and Uni-Gold for diagnosis of HIV infection. Using this algorithm, individuals who test positive on Determine, negative to STAT-PAK and positive to Uni-Gold are reported as HIV positive. We conducted further testing on this subgroup of samples using qualitative DNA PCR to assess the potential for false positive tests in this situation. Of the 3388 individuals who were tested, 984 were HIV positive on two consecutive tests, and 29 were considered positive by a tiebreaker (positive on Determine, negative on STAT-PAK, and positive on Uni-Gold). However, when the 29 samples were further tested using qualitative DNA PCR, 14 (48.2%) were HIV negative. Although this study was not primarily designed to assess the validity of rapid HIV tests and thus only a subset of the samples were retested, the findings show a potential for false positive HIV results in the subset of individuals who test positive when a tiebreaker test is used in serial testing. These findings highlight a need for confirmatory testing for this category of individuals.

  15. Guided assembly of nanoparticles on electrostatically charged nanocrystalline diamond thin films

    Directory of Open Access Journals (Sweden)

    Verveniotis Elisseos

    2011-01-01

    Full Text Available Abstract We apply atomic force microscope for local electrostatic charging of oxygen-terminated nanocrystalline diamond (NCD thin films deposited on silicon, to induce electrostatically driven self-assembly of colloidal alumina nanoparticles into micro-patterns. Considering possible capacitive, sp2 phase and spatial uniformity factors to charging, we employ films with sub-100 nm thickness and about 60% relative sp2 phase content, probe the spatial material uniformity by Raman and electron microscopy, and repeat experiments at various positions. We demonstrate that electrostatic potential contrast on the NCD films varies between 0.1 and 1.2 V and that the contrast of more than ±1 V (as detected by Kelvin force microscopy is able to induce self-assembly of the nanoparticles via coulombic and polarization forces. This opens prospects for applications of diamond and its unique set of properties in self-assembly of nano-devices and nano-systems.

  16. The two sides of complement C3d: evolution of electrostatics in a link between innate and adaptive immunity.

    Science.gov (United States)

    Kieslich, Chris A; Morikis, Dimitrios

    2012-01-01

    The interaction between complement fragment C3d and complement receptor 2 (CR2) is a key aspect of complement immune system activation, and is a component in a link between innate and adaptive immunities. The complement immune system is an ancient mechanism for defense, and can be found in species that have been on Earth for the last 600 million years. However, the link between the complement system and adaptive immunity, which is formed through the association of the B-cell co-receptor complex, including the C3d-CR2 interaction, is a much more recent adaptation. Human C3d and CR2 have net charges of -1 and +7 respectively, and are believed to have evolved favoring the role of electrostatics in their functions. To investigate the role of electrostatics in the function and evolution of human C3d and CR2, we have applied electrostatic similarity methods to identify regions of evolutionarily conserved electrostatic potential based on 24 homologues of complement C3d and 4 homologues of CR2. We also examine the effects of structural perturbation, as introduced through molecular dynamics and mutations, on spatial distributions of electrostatic potential to identify perturbation resistant regions, generated by so-called electrostatic "hot-spots". Distributions of electrostatic similarity based on families of perturbed structures illustrate the presence of electrostatic "hot-spots" at the two functional sites of C3d, while the surface of CR2 lacks electrostatic "hot-spots" despite its excessively positive nature. We propose that the electrostatic "hot-spots" of C3d have evolved to optimize its dual-functionality (covalently attaching to pathogen surfaces and interaction with CR2), which are both necessary for the formation B-cell co-receptor complexes. Comparison of the perturbation resistance of the electrostatic character of the homologues of C3d suggests that there was an emergence of a new role of electrostatics, and a transition in the function of C3d, after the

  17. The two sides of complement C3d: evolution of electrostatics in a link between innate and adaptive immunity.

    Directory of Open Access Journals (Sweden)

    Chris A Kieslich

    Full Text Available The interaction between complement fragment C3d and complement receptor 2 (CR2 is a key aspect of complement immune system activation, and is a component in a link between innate and adaptive immunities. The complement immune system is an ancient mechanism for defense, and can be found in species that have been on Earth for the last 600 million years. However, the link between the complement system and adaptive immunity, which is formed through the association of the B-cell co-receptor complex, including the C3d-CR2 interaction, is a much more recent adaptation. Human C3d and CR2 have net charges of -1 and +7 respectively, and are believed to have evolved favoring the role of electrostatics in their functions. To investigate the role of electrostatics in the function and evolution of human C3d and CR2, we have applied electrostatic similarity methods to identify regions of evolutionarily conserved electrostatic potential based on 24 homologues of complement C3d and 4 homologues of CR2. We also examine the effects of structural perturbation, as introduced through molecular dynamics and mutations, on spatial distributions of electrostatic potential to identify perturbation resistant regions, generated by so-called electrostatic "hot-spots". Distributions of electrostatic similarity based on families of perturbed structures illustrate the presence of electrostatic "hot-spots" at the two functional sites of C3d, while the surface of CR2 lacks electrostatic "hot-spots" despite its excessively positive nature. We propose that the electrostatic "hot-spots" of C3d have evolved to optimize its dual-functionality (covalently attaching to pathogen surfaces and interaction with CR2, which are both necessary for the formation B-cell co-receptor complexes. Comparison of the perturbation resistance of the electrostatic character of the homologues of C3d suggests that there was an emergence of a new role of electrostatics, and a transition in the function of C3

  18. Chromatic aberrations of electrostatic axisymmetric lenses produced by circular cylinders

    International Nuclear Information System (INIS)

    Baranova, L.A.; Ul'yanova, N.S.; Yavor, S.Ya.

    1989-01-01

    Ion beams both to test material and for technological processes have being used lately in science and technology more and more. Electrostatic lenses are used, as a rule, for such beam production. Coefficients of chromatic aberrration for a wide range of changes in lense parameters are calculated on the basis of analytical expressions to determine the potential in immerse and isolated lenses. The chromatic aberration coefficient is presented as a polynomial according to the degrees of reverse increase, that permits to calculate a circle of blurring of subject arbitrary position

  19. An electrostatic elliptical mirror for neutral polar molecules.

    Science.gov (United States)

    González Flórez, A Isabel; Meek, Samuel A; Haak, Henrik; Conrad, Horst; Santambrogio, Gabriele; Meijer, Gerard

    2011-11-14

    Focusing optics for neutral molecules finds application in shaping and steering molecular beams. Here we present an electrostatic elliptical mirror for polar molecules consisting of an array of microstructured gold electrodes deposited on a glass substrate. Alternating positive and negative voltages applied to the electrodes create a repulsive potential for molecules in low-field-seeking states. The equipotential lines are parallel to the substrate surface, which is bent in an elliptical shape. The mirror is characterized by focusing a beam of metastable CO molecules and the results are compared to the outcome of trajectory simulations.

  20. Versatile electrostatic trap

    NARCIS (Netherlands)

    van Veldhoven, J.; Bethlem, H.L.; Schnell, M.; Meijer, G.

    2006-01-01

    A four electrode electrostatic trap geometry is demonstrated that can be used to combine a dipole, quadrupole, and hexapole field. A cold packet of ND315 molecules is confined in both a purely quadrupolar and hexapolar trapping field and additionally, a dipole field is added to a hexapole field to

  1. Electrostatics in Chemistry

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 2. Electrostatics in Chemistry - Basic Principles. Shridhar R Gadre Pravin K Bhadane. Series Article Volume 4 Issue 2 February 1999 pp 8-19. Fulltext. Click here to view fulltext PDF. Permanent link:

  2. Electrostatic shielding of transformers

    Energy Technology Data Exchange (ETDEWEB)

    De Leon, Francisco

    2017-11-28

    Toroidal transformers are currently used only in low-voltage applications. There is no published experience for toroidal transformer design at distribution-level voltages. Toroidal transformers are provided with electrostatic shielding to make possible high voltage applications and withstand the impulse test.

  3. Electrostatic septum, SPS

    CERN Multimedia

    CERN PhotoLab

    1975-01-01

    To minimize losses during slow extraction towards N- and W-Area, electrostatic septa in long straight sections 2 and 6 precede the magnetic septa. This picture is a detail of 7501199, and shows the suspension of the wires. 7801286 shows a septum in its tank. See also 7501120X.

  4. Molecular electrostatic potential and "atoms-in-molecules" analyses of the interplay between π-hole and lone pair···π/X-H···π/metal···π interactions.

    Science.gov (United States)

    Bauzá, Antonio; Seth, Saikat Kumar; Frontera, Antonio

    2018-04-05

    Using ab initio calculations, we analyze the interplay between π-hole interactions involving the nitro group of 1,4-dinitrobenzene and lone pair···π (lp···π), C-H···π or metal(M)···π noncovalent interactions. Moreover, we have also used 1,4-phenylenebis(phosphine dioxide) for comparison purposes. Interesting cooperativity effects are found when π-hole (F···N,P) and lp···π/C-H···π/M···π interactions coexist in the same supramolecular assembly. These effects are studied theoretically in terms of energetic and geometric features of the complexes, which are computed by ab initio methods (RI-MP2/def2-TZVP). A charge density analysis using the Bader's theory of "atoms in molecules" is carried out to characterize the interactions and to analyze their strengthening or weakening depending on the variation of charge density at critical points. The importance of electrostatic effects on the mutual influence of the interaction is studied by means of molecular electrostatic potential calculations. By taking advantage of these computational tools, the present study examines interplay of these interactions. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  5. Electrostatic phenomena in volcanic eruptions

    Energy Technology Data Exchange (ETDEWEB)

    Lane, S J; James, M R; Gilbert, J S, E-mail: s.lane@lancaster.ac.uk [Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ (United Kingdom)

    2011-06-23

    Electrostatic phenomena have long been associated with the explosive eruption of volcanoes. Lightning generated in volcanic plumes is a spectacular atmospheric electrical event that requires development of large potential gradients over distances of up to kilometres. This process begins as hydrated liquid rock (magma) ascends towards Earth's surface. Pressure reduction causes water supersaturation in the magma and the development of bubbles of supercritical water, where deeper than c. 1000 m, and water vapour at shallower depths that drives flow expansion. The generation of high strain rates in the expanding bubbly magma can cause it to fracture in a brittle manner, as deformation relaxation timescales are exceeded. The brittle fracture provides the initial charge separation mechanism, known as fractoemission. The resulting mixture of charged silicate particles and ions evolves over time, generating macro-scale potential gradients in the atmosphere and driving processes such as particle aggregation. For the silicate particles, aggregation driven by electrostatic effects is most significant for particles smaller than c. 100 {mu}m. Aggregation acts to change the effective aerodynamic behaviour of silicate particles, thus altering the sedimentation rates of particles from volcanic plumes from the atmosphere. The presence of liquid phases also promotes aggregation processes and lightning.

  6. Existence domain of electrostatic solitary waves in the lunar wake

    Science.gov (United States)

    Rubia, R.; Singh, S. V.; Lakhina, G. S.

    2018-03-01

    Electrostatic solitary waves (ESWs) and double layers are explored in a four-component plasma consisting of hot protons, hot heavier ions (He++), electron beam, and suprathermal electrons having κ-distribution using the Sagdeev pseudopotential method. Three modes exist: slow and fast ion-acoustic modes and electron-acoustic mode. The occurrence of ESWs and their existence domain as a function of various plasma parameters, such as the number densities of ions and electron beam, the spectral index, κ, the electron beam velocity, the temperatures of ions, and electron beam, are analyzed. It is observed that both the slow and fast ion-acoustic modes support both positive and negative potential solitons as well as their coexistence. Further, they support a "forbidden gap," the region in which the soliton ceases to propagate. In addition, slow ion-acoustic solitons support the existence of both positive and negative potential double layers. The electron-acoustic mode is only found to support negative potential solitons for parameters relevant to the lunar wake plasma. Fast Fourier transform of a soliton electric field produces a broadband frequency spectrum. It is suggested that all three soliton types taken together can provide a good explanation for the observed electrostatic waves in the lunar wake.

  7. Theoretical insight into the binding energy and detonation performance of ε-, γ-, β-CL-20 cocrystals with β-HMX, FOX-7, and DMF in different molar ratios, as well as electrostatic potential.

    Science.gov (United States)

    Feng, Rui-Zhi; Zhang, Shu-Hai; Ren, Fu-de; Gou, Rui-Jun; Gao, Li

    2016-06-01

    Molecular dynamics method was employed to study the binding energies on the selected crystal planes of the ε-, γ-, β-conformation 2,4,6,8,10,12-hexanitrohexaazaisowurtzitane (ε-, γ-, β-CL-20) cocrystal explosives with 1,1-diamino-2,2-dinitroethylene (FOX-7), 1,3,5,7-tetranitro- 1,3,5,7-tetrazacyclooctane with β-conformation (β-HMX) and N,N-dimethylformamide (DMF) in different molar ratios. The oxygen balance, density, detonation velocity, detonation pressure, and surface electrostatic potential were analyzed. The results indicate that the binding energies E b (*) and stabilities are in the order of 1:1 > 2:1 > 3:1 > 5:1 > 8:1 (CL-20:FOX-7/β-HMX/DMF). The values of E b (*) and stabilities of the energetic-nonenergetic CL-20/DMF cocrystals are far larger than those of the energetic-energetic CL-20/FOX-7 and CL-20/β-HMX, and those of CL-20/β-HMX are the smallest. For CL-20/FOX-7 and CL-20/β-HMX, the largest E b (*) appears in the cocrystals with the 1:1, 1:2 or 1:3 molar ratio, and the stabilities of the cocrystals with the excess ratio of CL-20 are weaker than those in the cocrystals with the excess ratio of FOX-7 or β-HMX. In CL-20/FOX-7, CL-20 prefers adopting the γ-form, and ε-CL-20 is the preference in CL-20/β-HMX, and ε-CL-20 and β-CL-20 can be found in CL-20/DMF. The CL-20/FOX-7 and CL-20/β-HMX cocrystals with low molar ratios can meet the requirements of low sensitive high energetic materials. Surface electrostatic potential reveals the nature of the sensitivity change upon the cocrystal formation. Graphical Abstract MD method was employed to study the binding energies on the selected crystal planes in the ε-, γ-, β-CL-20 cocrystals with FOX-7, β-HMX and DMF in different molar ratios. Surface electrostatic potential reveals the nature of the sensitivity change in cocrystals.

  8. Ocular vestibular evoked myogenic potential in patients with benign paroxysmal positional vertigo

    Directory of Open Access Journals (Sweden)

    Mozhgan Masoom

    2014-06-01

    Full Text Available Background and Aim: Since utricle is the main damaged organ in benign paroxysmal positional vertigo (BPPV, ocular vestibular evoked myogenic potential (oVEMP may be an appropriate method to evaluate the utricule dysfunction and the effect of disease recurrence rate on it. This study aimed to record myogenic potential in patients with benign paroxysmal positional vertigo.Methods: In a cross-sectional study, ocular myogenic potential was recorded in 25 healthy subjects and 20 patients with benign paroxysmal positional vertigo using 500 Hz-tone bursts (95 dB nHL.Results: In the affected ear, mean amplitude was lower and mean threshold was higher than those in the unaffected ear and in the normal group (p<0.05. Mean amplitude asymmetry ratio of patients was more than the healthy subjects (p0.05. Frequencies of abnormal responses in the affected ears were higher than in unaffected ears and in the normal group (p<0.05. Furthermore, the patients with recurrent vertigo showed more abnormalities than the patients with non-recurrent (p=0.030.Conclusion: In the recurrent benign paroxysmal positional vertigo, ocular vestibular evoked myogenic potential showed more damage in the utricle, suggesting this response could be used to evaluate the patients with benign paroxysmal positional vertigo.

  9. Looking on the bright side in social anxiety: the potential benefit of promoting positive mental imagery.

    Directory of Open Access Journals (Sweden)

    Arnaud ePictet

    2014-02-01

    Full Text Available Current cognitive models of social phobia converge on the view that negative imagery is a key factor in the development and maintenance of the disorder. Research to date has predominantly focussed on the detrimental impact of negative imagery on cognitive bias and anxiety symptoms, while the potential benefit of promoting positive imagery has been relatively unexplored. Emerging evidence suggests however that positive imagery could have multiple benefits such as improving positive affect, self-esteem and positive interpretation bias, and enhancing social performance. The present article defends the view that combining bias induction with a repeated practice in generating positive imagery in a cognitive bias modification procedure could represent a promising area for future research and clinical innovation in social anxiety disorder.

  10. Electrostatic dry powder prepregging of carbon fiber

    Science.gov (United States)

    Throne, James L.; Sohn, Min-Seok

    1990-01-01

    Ultrafine, 5-10 micron polymer-matrix resin powders are directly applied to carbon fiber tows by passing then in an air or nitrogen stream through an electrostatic potential; the particles thus charged will strongly adhere to grounded carbon fibers, and can be subsequently fused to the fiber in a continuously-fed radiant oven. This electrostatic technique derived significant end-use mechanical property advantages from the obviation of solvents, binders, and other adulterants. Additional matrix resins used to produce prepregs to date have been PMR-15, Torlon 40000, and LaRC TPI.

  11. TIARA electrostatic accelerator facility

    International Nuclear Information System (INIS)

    Tajima, Satoshi; Takada, Isao; Mizuhashi, Kiyoshi; Uno, Sadanori; Ohkoshi, Kiyonori; Nakajima, Yoshinori; Saitoh, Yuichi; Ishii, Yasuyuki; Kamiya, Tomihiro

    1996-07-01

    In order to promote the Advanced Radiation Technology Project, Japan Atomic Energy Research Institute constructed TIARA facility composed of four ion accelerators at Takasaki Radiation Chemistry Research Establishment for the period from 1988 to 1993. A 3MV tandem accelerator and an AVF cycrotron were completed in 1991 as the first phase of the construction, and a 3MV single-ended accelerator and a 400kV ion implanter were completed in 1993 as the second phase. Three electrostatic accelerators, the tandem, the single-ended and the implanter, were installed in the Multiple-beam facility of TIARA and have been operated for various experiments with using single, dual and triple beams without any serious trouble. This report describes the constructive works, machine performances, control systems, safety systems and accessory equipments of the electrostatic accelerators. (author)

  12. IAE pulsed electrostatic accelerator

    International Nuclear Information System (INIS)

    Afanas'ev, V.P.; Ganzhelyuk, M.L.; Kozlov, L.D.; Koltypin, E.A.; Molchanov, Yu.D.; Otroshchenko, G.A.; Yan'kov, G.B.

    1976-01-01

    The modernized pulse electrostatic accelerator using the klystron ion grouping and the beam interruption system prior to acceleration is described. The accelerator is modernized in order to improve parameters of a current pulse and to decrease the background in the measurement room. The ion beam of needed dimensions is obtained with the help of a high-frequency source and a beam grouping and deflection system. The general view of the beam grouping and deflection system is shown. The ion beam forming process is considered in detail. The modernized electrostatic accelerator permits to obtain a pulse current with a pulse length of 1.5 ns and an amplitude of 1.5 - 2 μA. With the repetition frequency of 2 MHz, the average target current is about 6 μA

  13. Electrostatic curtain studies

    International Nuclear Information System (INIS)

    Meyer, L.C.

    1992-05-01

    This report presents the results of experiments using electrostatic curtains (ESCS) as a transuranic (TRU) contamination control technique. The TRU contaminants included small (micrometer to sub micrometer) particles of plutonium and americium compounds associated with defense-related waste. Three series of experiments were conducted. The first was with uncontaminated Idaho National Engineering Laboratory (INEL) soil, the second used contaminated soil containing plutonium-239 (from a mixture of Rocky Flats Plant contaminated soil and INEL uncontaminated soil), and the third was uncontaminated INEL soil spiked with plutonium-239. All experiments with contaminated soil were conducted inside a glove box containing a dust generator, low volume cascade impactor (LVCI), electrostatic separator, and electrostatic materials. The data for these experiments consisted of the mass of dust collected on the various material coupons, plates, and filters; radiochemical analysis of selected samples; and photographs, as well as computer printouts giving particle size distributions and dimensions from the scanning electron microscope (SEM). The following results were found: (a) plutonium content (pCi/g) was found to increase with smaller soil particle sizes and (b) the electrostatic field had a stronger influence on smaller particle sizes compared to larger particle sizes. The SEM analysis indicated that the particle size of the tracer Pu239 used in the spiked soil experiments was below the detectable size limit (0.5 μm) of the SEM and, thus, may not be representative of plutonium particles found in defense-related waste. The use of radiochemical analysis indicated that plutonium could be found on separator plates of both polarities, as well as passing through the electric field and collecting on LVCI filters

  14. Electrostatic septum, SPS

    CERN Multimedia

    CERN PhotoLab

    1975-01-01

    To minimize losses during slow extraction towards N- and W-Area, electrostatic septa in long straight section 2 and 6 precede the magnetic septa. The 2 electrode plates, visible at the entrance to the septum, establish a vertical electrical field to remove the ions created by the circulating beam in the residual gas. See 7801286 for such a septum in its tank, and 7501201 for a detailed view of the wire suspension. See also 7501120X.

  15. Numerical simulations for quantitative analysis of electrostatic interaction between atomic force microscopy probe and an embedded electrode within a thin dielectric: meshing optimization, sensitivity to potential distribution and impact of cantilever contribution

    Science.gov (United States)

    Azib, M.; Baudoin, F.; Binaud, N.; Villeneuve-Faure, C.; Bugarin, F.; Segonds, S.; Teyssedre, G.

    2018-04-01

    Recent experimental results demonstrated that an electrostatic force distance curve (EFDC) can be used for space charge probing in thin dielectric layers. A main advantage of the method is claimed to be its sensitivity to charge localization, which, however, needs to be substantiated by numerical simulations. In this paper, we have developed a model which permits us to compute an EFDC accurately by using the most sophisticated and accurate geometry for the atomic force microscopy probe. To avoid simplifications and in order to reproduce experimental conditions, the EFDC has been simulated for a system constituted of a polarized electrode embedded in a thin dielectric layer (SiN x ). The individual contributions of forces on the tip and on the cantilever have been analyzed separately to account for possible artefacts. The EFDC sensitivity to potential distribution is studied through the change in electrode shape, namely the width and the depth. Finally, the numerical results have been compared with experimental data.

  16. A study of the bound states for square potential wells with position-dependent mass

    International Nuclear Information System (INIS)

    Ganguly, A.; Kuru, S.; Negro, J.; Nieto, L.M.

    2006-01-01

    A potential well with position-dependent mass is studied for bound states. Applying appropriate matching conditions, a transcendental equation is derived for the energy eigenvalues. Numerical results are presented graphically and the variation of the energy of the bound states are calculated as a function of the well-width and mass

  17. CASE REPORT PET/CT-positive brown tumour – a potentially ...

    African Journals Online (AJOL)

    Brown tumor of bone: a potential source of false-positive Thallium-201 localization. J Nucl Med 1989; 30: 1264-1267. 4. Nassar GM, Ayus JC. Images in clinical medicine. Brown tumor in end stage renal disease. N Engl J Med. 1999; 341: 1652. 5. Keyser JS, Postma GN. Brown tumor of the mandible. Am J Otolaryngol 1996; ...

  18. A singular position-dependent mass particle in an infinite potential well

    International Nuclear Information System (INIS)

    Mustafa, Omar; Mazharimousavi, S. Habib

    2009-01-01

    An unusual singular position-dependent-mass particle in an infinite potential well is considered. The corresponding Hamiltonian is mapped through a point-canonical-transformation and an explicit correspondence between the target Hamiltonian and a Poeschl-Teller type reference Hamiltonian is obtained. New ordering ambiguity parametric setting are suggested

  19. Toward precise potential energy curves for diatomic molecules, derived from experimental line positions

    International Nuclear Information System (INIS)

    Helm, H.

    1984-01-01

    An inverted, first-order perturbation approach is used to derive potential energy curves for diatomic molecules from experimental line positions of molecular bands. The concept adopted here is based on the inverted perturbation analysis (IPA) proposed by Kozman and Hinze, but uses radial eigenfunctions of the trial potential energy curves as basis sets for the perturbation correction. Using molecular linepositions rather than molecular energy levels we circumvent the necessity of defining molecular constants for the molecule prior to the derivation of the potential energy curves. (Author)

  20. Harm avoidance in adolescents modulates late positive potentials during affective picture processing.

    Science.gov (United States)

    Zhang, Wenhai; Lu, Jiamei; Ni, Ziyin; Liu, Xia; Wang, Dahua; Shen, Jiliang

    2013-08-01

    Research in adults has shown that individual differences in harm avoidance (HA) modulate electrophysiological responses to affective stimuli. To determine whether HA in adolescents modulates affective information processing, we collected event-related potentials from 70 adolescents while they viewed 90 pictures from the Chinese affective picture system. Multiple regressions revealed that HA negatively predicted late positive potential (LPP) for positive pictures and positively predicted for negative pictures; however, HA did not correlate with LPP for neutral pictures. The results suggest that at the late evaluative stage, high-HA adolescents display attentional bias to negative pictures while low-HA adolescents display attentional bias to negative pictures. Moreover, these dissociable attentional patterns imply that individual differences in adolescents' HA modulate the late selective attention mechanism of affective information. Copyright © 2013. Published by Elsevier Ltd.

  1. Highly Tunable Electrostatic Nanomechanical Resonators

    KAUST Repository

    Kazmi, Syed Naveed Riaz

    2017-11-24

    There has been significant interest towards highly tunable resonators for on-demand frequency selection in modern communication systems. Here, we report highly tunable electrostatically actuated silicon-based nanomechanical resonators. In-plane doubly-clamped bridges, slightly curved as shallow arches due to residual stresses, are fabricated using standard electron beam lithography and surface nanomachining. The resonators are designed such that the effect of mid-plane stretching dominates the softening effect of the electrostatic force. This is achieved by controlling the gap-to-thickness ratio and by exploiting the initial curvature of the structure from fabrication. We demonstrate considerable increase in the resonance frequency of nanoresonators with the dc bias voltages up to 108% for 180 nm thick structures with a transduction gap of 1 $mu$m separating them from the driving/sensing electrodes. The experimental results are found in good agreement with those of a nonlinear analytical model based on the Euler-Bernoulli beam theory. As a potential application, we demonstrate a tunable narrow band-pass filter using two electrically coupled nanomechanical arch resonators with varied dc bias voltages.

  2. Highly Tunable Electrostatic Nanomechanical Resonators

    KAUST Repository

    Kazmi, Syed Naveed Riaz; Hajjaj, Amal Z.; Hafiz, Md Abdullah Al; Da Costa, Pedro M. F. J.; Younis, Mohammad I.

    2017-01-01

    There has been significant interest towards highly tunable resonators for on-demand frequency selection in modern communication systems. Here, we report highly tunable electrostatically actuated silicon-based nanomechanical resonators. In-plane doubly-clamped bridges, slightly curved as shallow arches due to residual stresses, are fabricated using standard electron beam lithography and surface nanomachining. The resonators are designed such that the effect of mid-plane stretching dominates the softening effect of the electrostatic force. This is achieved by controlling the gap-to-thickness ratio and by exploiting the initial curvature of the structure from fabrication. We demonstrate considerable increase in the resonance frequency of nanoresonators with the dc bias voltages up to 108% for 180 nm thick structures with a transduction gap of 1 $mu$m separating them from the driving/sensing electrodes. The experimental results are found in good agreement with those of a nonlinear analytical model based on the Euler-Bernoulli beam theory. As a potential application, we demonstrate a tunable narrow band-pass filter using two electrically coupled nanomechanical arch resonators with varied dc bias voltages.

  3. Is Education a Fundamental Right? People's Lay Theories About Intellectual Potential Drive Their Positions on Education.

    Science.gov (United States)

    Savani, Krishna; Rattan, Aneeta; Dweck, Carol S

    2017-09-01

    Does every child have a fundamental right to receive a high-quality education? We propose that people's beliefs about whether "nearly everyone" or "only some people" have high intellectual potential drive their positions on education. Three studies found that the more people believed that nearly everyone has high potential, the more they viewed education as a fundamental human right. Furthermore, people who viewed education as a fundamental right, in turn (a) were more likely to support the institution of free public education, (b) were more concerned upon learning that students in the country were not performing well academically compared with students in peer nations, and (c) were more likely to support redistributing educational funds more equitably across wealthier and poorer school districts. The studies show that people's beliefs about intellectual potential can influence their positions on education, which can affect the future quality of life for countless students.

  4. Early visual evoked potentials are modulated by eye position in humans induced by whole body rotations

    Directory of Open Access Journals (Sweden)

    Petit Laurent

    2004-09-01

    Full Text Available Abstract Background To reach and grasp an object in space on the basis of its image cast on the retina requires different coordinate transformations that take into account gaze and limb positioning. Eye position in the orbit influences the image's conversion from retinotopic (eye-centered coordinates to an egocentric frame necessary for guiding action. Neuroimaging studies have revealed eye position-dependent activity in extrastriate visual, parietal and frontal areas that is along the visuo-motor pathway. At the earliest vision stage, the role of the primary visual area (V1 in this process remains unclear. We used an experimental design based on pattern-onset visual evoked potentials (VEP recordings to study the effect of eye position on V1 activity in humans. Results We showed that the amplitude of the initial C1 component of VEP, acknowledged to originate in V1, was modulated by the eye position. We also established that putative spontaneous small saccades related to eccentric fixation, as well as retinal disparity cannot explain the effects of changing C1 amplitude of VEP in the present study. Conclusions The present modulation of the early component of VEP suggests an eye position-dependent activity of the human primary visual area. Our findings also evidence that cortical processes combine information about the position of the stimulus on the retinae with information about the location of the eyes in their orbit as early as the stage of primary visual area.

  5. Electrostatic tuning of permeation and selectivity in aquaporin water channels

    DEFF Research Database (Denmark)

    Jensen, Mogens O Stibius; Tajkhorshid, E.; Schulten, K.

    2003-01-01

    Water permeation and electrostatic interactions between water and channel are investigated in the Escherichia coli glycerol uptake facilitator GlpF, a member of the aquaporin water channel family, by molecular dynamics simulations. A tetrameric model of the channel embedded in a 16:0/ 18:1c9...... with the protein electrostatic fields enforce a bipolar water configuration inside the channel with dipole inversion at the NPA motifs. At the NPA motifs water-protein electrostatic interactions facilitate this inversion. Furthermore, water-water electrostatic interactions are in all regions inside the channel...... stronger than water-protein interactions, except near a conserved, positively charged Arg residue. We find that variations of the protein electrostatic field through the channel, owing to preserved structural features, completely explain the bipolar orientation of water. This orientation persists despite...

  6. Dirac Particle for the Position Dependent Mass in the Generalized Asymmetric Woods-Saxon Potential

    Directory of Open Access Journals (Sweden)

    Soner Alpdoğan

    2014-01-01

    Full Text Available The one-dimensional Dirac equation with position dependent mass in the generalized asymmetric Woods-Saxon potential is solved in terms of the hypergeometric functions. The transmission and reflection coefficients are obtained by considering the one-dimensional electric current density for the Dirac particle and the equation describing the bound states is found by utilizing the continuity conditions of the obtained wave function. Also, by using the generalized asymmetric Woods-Saxon potential solutions, the scattering states are found out without making calculation for the Woods-Saxon, Hulthen, cusp potentials, and so forth, which are derived from the generalized asymmetric Woods-Saxon potential and the conditions describing transmission resonances and supercriticality are achieved. At the same time, the data obtained in this work are compared with the results achieved in earlier studies and are observed to be consistent.

  7. Is education a fundamental right? People's lay theories about intellectual potential drive their positions on education

    OpenAIRE

    Savani, K; Rattan, A; Dweck, C S

    2017-01-01

    Does every child have a fundamental right to receive a high quality education? We propose that people’s beliefs about whether “nearly everyone” or “only some people” have high intellectual potential drive their positions on education. Three studies found that the more people believed that nearly everyone has high potential, the more they viewed education as a fundamental human right. Further, people who viewed education as a fundamental right, in turn, (1) were more likely to support the inst...

  8. Electrostatics of Pharmaceutical Aerosols for Pulmonary Delivery.

    Science.gov (United States)

    Lip Kwok, Philip Chi

    2015-01-01

    This paper provides a review on key research findings in the rapidly developing area of pharmaceutical aerosol electrostatics. Solids and liquids can become charged without electric fields, the former by contact or friction and the latter by flowing or spraying. Therefore, charged particles and droplets carrying net charges are produced from pharmaceutical inhalers (e.g. dry powder inhalers, metered dose inhalers, and nebulisers) due to the mechanical processes involved in aerosolisation. The charging depends on many physicochemical factors, such as formulation composition, solid state properties, inhaler material and design, and relative humidity. In silico, in vitro, and limited in vivo studies have shown that electrostatic charges may potentially influence particle deposition in the airways. However, the evidence is not yet conclusive. Furthermore, there are currently no regulatory requirements on the characterisation and control of the electrostatic properties of inhaled formulations. Besides the need for further investigations on the relationship between physicochemical factors and charging characteristics of the aerosols, controlled and detailed in vivo studies are also required to confirm whether charges can affect particle deposition in the airways. Since pharmaceutical aerosol electrostatics is a relatively new research area, much remains to be explored. Thus there is certainly potential for development. New findings in the future may contribute to the advancement of pharmaceutical aerosol formulations and respiratory drug delivery.

  9. Electrostatically Driven Nanoballoon Actuator.

    Science.gov (United States)

    Barzegar, Hamid Reza; Yan, Aiming; Coh, Sinisa; Gracia-Espino, Eduardo; Dunn, Gabriel; Wågberg, Thomas; Louie, Steven G; Cohen, Marvin L; Zettl, Alex

    2016-11-09

    We demonstrate an inflatable nanoballoon actuator based on geometrical transitions between the inflated (cylindrical) and collapsed (flattened) forms of a carbon nanotube. In situ transmission electron microscopy experiments employing a nanoelectromechanical manipulator show that a collapsed carbon nanotube can be reinflated by electrically charging the nanotube, thus realizing an electrostatically driven nanoballoon actuator. We find that the tube actuator can be reliably cycled with only modest control voltages (few volts) with no apparent wear or fatigue. A complementary theoretical analysis identifies critical parameters for nanotube nanoballoon actuation.

  10. SIMION, Electrostatic Lens Analysis and Design

    International Nuclear Information System (INIS)

    Dahl, David A.

    2001-01-01

    1 - Description of program or function: SIMION is an electrostatic lens analysis and design program. In SIMION an electrostatic lens is defined as a two-dimensional electrostatic potential array containing both electrode and non-electrode points. The potential array is refined using over-relaxation methods allowing voltage contours and ion trajectories to be computed and plotted. Planar and cylindrical symmetry assumptions allow the two-dimensional fields to support three-dimensional ion trajectory calculations. In addition, the user has the option of writing simple programs which can among other actions control field scale factors, dynamically adjust electrodes, and define explicit three-dimensional field functions (e.g. a quadrupole) used in lieu of array fields in specified portions of the potential array. Magnetic fields can be specified for computing ion trajectories in many electrostatic and magnetic field environments. An interactive graphics interface that uses a high resolution color display and mouse allows the user to view electrodes, trajectories, and contours on the screen prior to plotting, and a memory zoom feature permits expansion of selected areas in the current view. The mouse can be operated to edit the potential array, initialize voltage gradients, or resize the potential array. 2 - Method of solution: SIMION is designed to model the electrostatic fields and forces created by a collection of shaped electrodes given certain symmetry assumptions. The electrostatic fields are modeled as boundary value problem solutions of a Laplace elliptical partial differential equation. A finite difference technique called dynamically self-adjusting over-relaxation is applied to the two-dimensional potential array of points representing electrode and non-electrode regions to obtain a best estimate of the voltages for those points within the array that depict non-electrode regions. A standard fourth-order Runge-Kutta method is used for numerical integration of

  11. Relativistic total energy and chemical potential of heavy atoms and positive ions

    International Nuclear Information System (INIS)

    Hill, S.H.; Grout, P.J.; March, N.H.

    1984-01-01

    The relativistic Thomas-Fermi theory, with a finite nucleus, is used to study the variation of the chemical potential μ with atomic number Z and number of electrons N (N <= Z). The difference between the total energy of positive ions and that of the corresponding neutral atom has been obtained. The scaling predictions are confirmed by numerical calculations. The first principles calculation of the relativistic Thomas-Fermi total energy of neutral atoms is also studied. (author)

  12. Continuum electrostatics for ionic solutions with non-uniform ionic sizes

    International Nuclear Information System (INIS)

    Li Bo

    2009-01-01

    This work concerns electrostatic properties of an ionic solution with multiple ionic species of possibly different ionic sizes. Such properties are described by the minimization of an electrostatic free-energy functional of ionic concentrations. Bounds are obtained for ionic concentrations with low electrostatic free energies. Such bounds are used to show that there exists a unique set of equilibrium ionic concentrations that minimizes the free-energy functional. The equilibrium ionic concentrations are found to depend sorely on the equilibrium electrostatic potential, resembling the classical Boltzmann distributions that relate the equilibrium ionic concentrations to the equilibrium electrostatic potential. Unless all the ionic and solvent molecular sizes are assumed to be the same, explicit formulae of such dependence are, however, not available in general. It is nevertheless proved that in equilibrium the ionic charge density is a decreasing function of the electrostatic potential. This determines a variational principle with a convex functional for the electrostatic potential

  13. Dissociating the Influence of Affective Word Content and Cognitive Processing Demands on the Late Positive Potential.

    Science.gov (United States)

    Nowparast Rostami, Hadiseh; Ouyang, Guang; Bayer, Mareike; Schacht, Annekathrin; Zhou, Changsong; Sommer, Werner

    2016-01-01

    The late positive potential (LPP) elicited by affective stimuli in the event-related brain potential (ERP) is often assumed to be a member of the P3 family. The present study addresses the relationship of the LPP to the classic P3b in a published data set, using a non-parametric permutation test for topographical comparisons, and residue iteration decomposition to assess the temporal features of the LPP and the P3b by decomposing the ERP into several component clusters according to their latency variability. The experiment orthogonally manipulated arousal and valence of words, which were either read or judged for lexicality. High-arousing and positive valenced words induced a larger LPP than low-arousing and negative valenced words, respectively, and the LDT elicited a larger P3b than reading. The experimental manipulation of arousal, valence, and task yielded main effects without any interactions on ERP amplitude in the LPP/P3b time range. The arousal and valence effects partially differed from the task effect in scalp topography; in addition, whereas the late positive component elicited by affective stimuli, defined as LPP, was stimulus-locked, the late positive component elicited by task demand, defined as P3b, was mainly latency-variable. Therefore LPP and P3b manifest different subcomponents.

  14. Antagonistic properties of a natural product-Bicuculline with the gamma-aminobutyric acid receptor: studied through electrostatic potential mapping, electronic and vibrational spectra using ab initio and density functional theory.

    Science.gov (United States)

    Srivastava, Anubha; Tandon, Poonam; Jain, Sudha; Asthana, B P

    2011-12-15

    (+)-Bicuculline (hereinafter referred to as bicuculline), a phthalide isoquinoline alkaloid is of current interest as an antagonist of gamma-aminobutyric acid (GABA). Its inhibitor properties have been studied through molecular electrostatic potential (MEP) mapping of this molecule and GABA receptor. The hot site on the potential surface of bicuculline, which is also isosteric with GABA receptor, has been used to interpret the inhibitor property. A systematic quantum chemical study of the possible conformations, their relative stabilities, FT-Raman, FT-IR and UV-vis spectroscopic analysis of bicuculline has been reported. The optimized geometries, wavenumber and intensity of the vibrational bands of all the conformers of bicuculline have been calculated using ab initio Hartree-Fock (HF) and density functional theory (DFT) employing B3LYP functional and 6-311G(d,p) basis set. Mulliken atomic charges, HOMO-LUMO gap ΔE, ionization potential, dipole moments and total energy have also been obtained for the optimized geometries of both the molecules. TD-DFT method is used to calculate the electronic absorption parameters in gas phase as well as in solvent environment using integral equation formalism-polarizable continuum model (IEF-PCM) employing 6-31G basis set and the results thus obtained are compared with the UV absorption spectra. The combination of experimental and calculated results provides an insight into the structural and vibrational spectroscopic properties of bicuculline. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Internal Electrostatic Discharge Monitor - IESDM

    Science.gov (United States)

    Kim, Wousik; Goebel, Dan M.; Jun, Insoo; Garrett, Henry B.

    2011-01-01

    A document discusses an innovation designed to effectively monitor dielectric charging in spacecraft components to measure the potential for discharge in order to prevent damage from internal electrostatic discharge (IESD). High-energy electrons penetrate the structural materials and shielding of a spacecraft and then stop inside dielectrics and keep accumulating. Those deposited charges generate an electric field. If the electric field becomes higher than the breakdown threshold (approx. =2 x 10(exp 5) V/cm), discharge occurs. This monitor measures potentials as a function of dielectric depth. Differentiation of potential with respect to the depth yields electric field. Direct measurement of the depth profile of the potential in a dielectric makes real-time electronic field evaluation possible without simulations. The IESDM has been designed to emulate a multi-layer circuit board, to insert very thin metallic layers between the dielectric layers. The conductors serve as diagnostic monitoring locations to measure the deposited electron-charge and the charge dynamics. Measurement of the time-dependent potential of the metal layers provides information on the amount of charge deposited in the dielectrics and the movement of that charge with time (dynamics).

  16. Undamped electrostatic plasma waves

    Energy Technology Data Exchange (ETDEWEB)

    Valentini, F.; Perrone, D.; Veltri, P. [Dipartimento di Fisica and CNISM, Universita della Calabria, 87036 Rende (CS) (Italy); Califano, F.; Pegoraro, F. [Dipartimento di Fisica and CNISM, Universita di Pisa, 56127 Pisa (Italy); Morrison, P. J. [Institute for Fusion Studies and Department of Physics, University of Texas at Austin, Austin, Texas 78712-1060 (United States); O' Neil, T. M. [Department of Physics, University of California at San Diego, La Jolla, California 92093 (United States)

    2012-09-15

    Electrostatic waves in a collision-free unmagnetized plasma of electrons with fixed ions are investigated for electron equilibrium velocity distribution functions that deviate slightly from Maxwellian. Of interest are undamped waves that are the small amplitude limit of nonlinear excitations, such as electron acoustic waves (EAWs). A deviation consisting of a small plateau, a region with zero velocity derivative over a width that is a very small fraction of the electron thermal speed, is shown to give rise to new undamped modes, which here are named corner modes. The presence of the plateau turns off Landau damping and allows oscillations with phase speeds within the plateau. These undamped waves are obtained in a wide region of the (k,{omega}{sub R}) plane ({omega}{sub R} being the real part of the wave frequency and k the wavenumber), away from the well-known 'thumb curve' for Langmuir waves and EAWs based on the Maxwellian. Results of nonlinear Vlasov-Poisson simulations that corroborate the existence of these modes are described. It is also shown that deviations caused by fattening the tail of the distribution shift roots off of the thumb curve toward lower k-values and chopping the tail shifts them toward higher k-values. In addition, a rule of thumb is obtained for assessing how the existence of a plateau shifts roots off of the thumb curve. Suggestions are made for interpreting experimental observations of electrostatic waves, such as recent ones in nonneutral plasmas.

  17. Undamped electrostatic plasma waves

    International Nuclear Information System (INIS)

    Valentini, F.; Perrone, D.; Veltri, P.; Califano, F.; Pegoraro, F.; Morrison, P. J.; O'Neil, T. M.

    2012-01-01

    Electrostatic waves in a collision-free unmagnetized plasma of electrons with fixed ions are investigated for electron equilibrium velocity distribution functions that deviate slightly from Maxwellian. Of interest are undamped waves that are the small amplitude limit of nonlinear excitations, such as electron acoustic waves (EAWs). A deviation consisting of a small plateau, a region with zero velocity derivative over a width that is a very small fraction of the electron thermal speed, is shown to give rise to new undamped modes, which here are named corner modes. The presence of the plateau turns off Landau damping and allows oscillations with phase speeds within the plateau. These undamped waves are obtained in a wide region of the (k,ω R ) plane (ω R being the real part of the wave frequency and k the wavenumber), away from the well-known “thumb curve” for Langmuir waves and EAWs based on the Maxwellian. Results of nonlinear Vlasov-Poisson simulations that corroborate the existence of these modes are described. It is also shown that deviations caused by fattening the tail of the distribution shift roots off of the thumb curve toward lower k-values and chopping the tail shifts them toward higher k-values. In addition, a rule of thumb is obtained for assessing how the existence of a plateau shifts roots off of the thumb curve. Suggestions are made for interpreting experimental observations of electrostatic waves, such as recent ones in nonneutral plasmas.

  18. Electrostatic Plasma Accelerator (EPA)

    Science.gov (United States)

    Brophy, John R.; Aston, Graeme

    1995-01-01

    The application of electric propulsion to communications satellites, however, has been limited to the use of hydrazine thrusters with electric heaters for thrust and specific impulse augmentation. These electrothermal thrusters operate at specific impulse levels of approximately 300 s with heater powers of about 500 W. Low power arcjets (1-3 kW) are currently being investigated as a way to increase specific impulse levels to approximately 500 s. Ion propulsion systems can easily produce specific impulses of 3000 s or greater, but have yet to be applied to communications satellites. The reasons most often given for not using ion propulsion systems are their high level of overall complexity, low thrust with long burn times, and the difficulty of integrating the propulsion system into existing commercial spacecraft busses. The Electrostatic Plasma Accelerator (EPA) is a thruster concept which promises specific impulse levels between low power arcjets and those of the ion engine while retaining the relative simplicity of the arcjet. The EPA thruster produces thrust through the electrostatic acceleration of a moderately dense plasma. No accelerating electrodes are used and the specific impulse is a direct function of the applied discharge voltage and the propellant atomic mass.

  19. A novel electrostatic precipitator

    International Nuclear Information System (INIS)

    Tang, Minkang; Wang, Liqian; Lin, Zhigui

    2013-01-01

    ESP (Electrostatic Precipitation) has been widely used in the mining, building materials, metallurgy and power industries. Dust particles or other harmful particles from the airstream can be precipitated by ESP with great collecting efficiency. Because of its' large size, high cost and energy consumption, the scope of application of ESP has been limited to a certain extent. By means of the theory of electrostatics and fluid dynamics, a corona assembly with a self-cleaning function and a threshold voltage automatic tracking technology has been developed and used in ESP. It is indicated that compared with conventional ESP, the electric field length has been reduced to 1/10 of the original, the current density on the collecting electrode increased 3-5 times at the maximum, the approach speed of dust particles in the electric field towards the collecting electrode is 4 times that in conventional ESP and the electric field wind speed may be enhanced by 2-3 times the original. Under the premise of ESP having a high efficiency of dust removal, equipment volume may be actually reduced to 1/5 to 1/10 of the original volume and energy consumption may be reduced by more than 50%.

  20. Two-dimensional potential and charge distributions of positive surface streamer

    International Nuclear Information System (INIS)

    Tanaka, Daiki; Matsuoka, Shigeyasu; Kumada, Akiko; Hidaka, Kunihiko

    2009-01-01

    Information on the potential and the field profile along a surface discharge is required for quantitatively discussing and clarifying the propagation mechanism. The sensing technique with a Pockels crystal has been developed for directly measuring the potential and electric field distribution on a dielectric material. In this paper, the Pockels sensing system consists of a pulse laser and a CCD camera for measuring the instantaneous two-dimensional potential distribution on a 25.4 mm square area with a 50 μm sampling pitch. The temporal resolution is 3.2 ns which is determined by the pulse width of the laser emission. The transient change in the potential distribution of a positive surface streamer propagating in atmospheric air is measured with this system. The electric field and the charge distributions are also calculated from the measured potential profile. The propagating direction component of the electric field near the tip of the propagating streamer reaches 3 kV mm -1 . When the streamer stops, the potential distribution along a streamer forms an almost linear profile with the distance from the electrode, and its gradient is about 0.5 kV mm -1 .

  1. Position-Dependent Mass Schrödinger Equation for the Morse Potential

    International Nuclear Information System (INIS)

    Ovando, G; Peña, J J; Morales, J; López-Bonilla, J

    2017-01-01

    The position dependent mass Schrödinger equation (PDMSE) has a wide range of quantum applications such as the study of semiconductors, quantum wells, quantum dots and impurities in crystals, among many others. On the other hand, the Morse potential is one of the most important potential models used to study the electronic properties of diatomic molecules. In this work, the solution of the effective mass one-dimensional Schrödinger equation for the Morse potential is presented. This is done by means of the canonical transformation method in algebraic form. The PDMSE is solved for any model of the proposed kinetic energy operators as for example the BenDaniel-Duke, Gora-Williams, Zhu-Kroemer or Li-Kuhn. Also, in order to solve the PDMSE with Morse potential, we consider a superpotential leading to a special form of the exactly solvable Schrödinger equation of constant mass for a class of multiparameter exponential-type potential along with a proper mass distribution. The proposed approach is general and can be applied in the search of new potentials suitable on science of materials by looking into the viable choices of the mass function. (paper)

  2. Electrostatic-Dipole (ED) Fusion Confinement Studies

    Science.gov (United States)

    Miley, George H.; Shrestha, Prajakti J.; Yang, Yang; Thomas, Robert

    2004-11-01

    The Electrostatic-Dipole (ED) concept significantly differs from a "pure" dipole confinement device [1] in that the charged particles are preferentially confined to the high-pressure region interior of the dipole coil by the assistance of a surrounding spherical electrostatic grid. In present ED experiments, a current carrying coil is embedded inside the grid of an IEC such as to produce a magnetic dipole field. Charged particles are injected axisymmetrically from an ion gun (or duo-plasmatron) into the center of the ED confinement grid/dipole ring where they oscillate along the magnetic field lines and pass the peak field region at the center of the dipole region. As particles begin accelerating away from the center region towards the outer electrostatic grid region, they encounter a strong electrostatic potential (order of 10's of kilovolts) retarding force. The particles then decelerate, reverse direction and re-enter the dipole field region where again magnetic confinement dominates. This process continues, emulating a complex harmonic oscillator motion. The resulting pressure profile averaged over the field curvature offers good plasma stability in the ED configuration. The basic concept and results from preliminary experiments will be described. [1] M.E. Mauel, et al. "Dipole Equilibrium and Stability," 18th IAEA Conference of Plasma Phys. and Control. Nuclear Fusion, Varenna, Italy 2000, IAEA-F1-CN-70/TH

  3. Focusing properties of a square electrostatic rainbow lens

    International Nuclear Information System (INIS)

    Telečki, I.; Petrović, S.; Beličev, P.; Rađenović, B.; Balvanović, R.; Bojović, B.; Nešković, N.

    2012-01-01

    This paper is devoted to the focusing properties of a square electrostatic rainbow lens, which is a novel ion beam optical element. We consider the transmission of parallel and non-parallel proton beams of the initial kinetic energy of 10 keV through this lens. The potential of the electrodes of the lens is chosen to be 2 kV. The electrostatic potential and components of the electric field in the region of the lens are calculated using a three-dimensional finite element computer code. We investigate the spatial and angular distributions of protons propagating through the lens and in the drift space after it. It is confirmed that the evolutions of these distributions are determined by the evolutions of the corresponding rainbow lines, generated using the theory of crystal rainbows. The beam is separated into two components. One beam component, appearing as a beam core, is generated dominantly by the focused protons. Its boundary line in the transverse position plane can be very well approximated by a hypotrochoid. The other beam component is generated dominantly by the defocused protons. We present the focusing coefficient of the lens, the confining coefficients of the lens for the focused and defocused protons, the density of the beam core, the vertical or horizontal emittance of the beam core, and the brightness of the beam core.

  4. Electrostatic behavior of the charge-regulated bacterial cell surface.

    Science.gov (United States)

    Hong, Yongsuk; Brown, Derick G

    2008-05-06

    The electrostatic behavior of the charge-regulated surfaces of Gram-negative Escherichia coli and Gram-positive Bacillus brevis was studied using numerical modeling in conjunction with potentiometric titration and electrophoretic mobility data as a function of solution pH and electrolyte composition. Assuming a polyelectrolytic polymeric bacterial cell surface, these experimental and numerical analyses were used to determine the effective site numbers of cell surface acid-base functional groups and Ca(2+) sorption coefficients. Using effective site concentrations determined from 1:1 electrolyte (NaCl) experimental data, the charge-regulation model was able to replicate the effects of 2:1 electrolyte (CaCl(2)), both alone and as a mixture with NaCl, on the measured zeta potential using a single Ca(2+) surface binding constant for each of the bacterial species. This knowledge is vital for understanding how cells respond to changes in solution pH and electrolyte composition as well as how they interact with other surfaces. The latter is especially important due to the widespread use of the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory in the interpretation of bacterial adhesion. As surface charge and surface potential both vary on a charge-regulated surface, accurate modeling of bacterial interactions with surfaces ultimately requires use of an electrostatic model that accounts for the charge-regulated nature of the cell surface.

  5. Lens effect of unipolar electrostatic steerers on low-energy ion beams and its effective reduction

    International Nuclear Information System (INIS)

    Asozu, Takuhiro; Matsuda, Makoto; Kutsukake, Kenichi

    2010-08-01

    The JAEA-Tokai tandem accelerator has two ion injectors, one is the negative ion injector placed on the ground and the other is the positive ion injector in the high voltage terminal. The electrostatic steerers in the high voltage terminal are used for ion beams from the both injectors. Because the beams from the negative ion injector gain high energy at the 20MV terminal, the electrodes of the electrostatic steerers are designed to be supplied several ten kV. The high voltages are supplied by two unipolar DC power supplies and they are controlled as the sum of the voltages keeps constant. The high electric potential between the electrodes affects the beam trajectory as an electrostatic lens. The potential must be too high for the low energy ion beams from the positive ion injector on the 100kV deck. We simulated the beam trajectory by calculation and evaluated the strength of the lens effects. The results showed that the focal distances were too short to control the beam form positive ion injector using optical devices in the downstream. If we reduce the voltages to one tenth in simulation, then the focusing effects were much less significant. We installed a multiplying factor circuit to make the voltages variable and much lower. The results of beam-handling tests using the circuit actually showed significant increase of the ion beam current. (author)

  6. The potential of positive deviance approach for the sustainable control of neglected tropical diseases.

    Science.gov (United States)

    Ong, Ken Ing Cherng; Araki, Hitomi; Kano, Shigeyuki; Jimba, Masamine

    2016-01-01

    Neglected tropical diseases (NTDs) have gained much attention in recent years due to the support from various agencies. However, the main approach to combat NTDs has been to cure rather than to prevent. As many NTD infections are closely linked with human behaviors such as hygienic practices and tradition, behavior change is also very crucial to prevent relapse or reinfection. Therefore, we would like to suggest a potential new approach-the positive deviance approach-to tackle NTDs by focusing on the preventive phase. What makes this approach unique is that the solution comes from the affected population themselves and not from the expert outsiders. Preventive chemotherapy that relies on outside aid has serious sustainability issues as reinfection is also high after the aid program has ended. Learning from the success story in Vietnam on preventing childhood malnutrition, the positive deviance approach could end the spread of NTDs once and for all by making full use of the available local solutions.

  7. Visual evoked potentials show strong positive association with intracranial pressure in patients with cryptococcal meningitis

    Directory of Open Access Journals (Sweden)

    Marcelo Adriano da Cunha Silva Vieira

    2015-04-01

    Full Text Available Objective : To verify the relationship between intracranial pressure and flash visual evoked potentials (F-VEP in patients with cryptococcal meningitis. Method The sample included adults diagnosed with cryptococcal meningitis admitted at a reference hospital for infectious diseases. The patients were subjected to F-VEP tests shortly before lumbar puncture. The Pearson’s linear correlation coefficient was calculated and the linear regression analysis was performed. Results : Eighteen individuals were subjected to a total of 69 lumbar punctures preceded by F-VEP tests. At the first lumbar puncture performed in each patient, N2 latency exhibited a strong positive correlation with intracranial pressure (r = 0.83; CI = 0.60 - 0.94; p < 0.0001. The direction of this relationship was maintained in subsequent punctures. Conclusion : The intracranial pressure measured by spinal tap manometry showed strong positive association with the N2 latency F-VEP in patients with cryptococcal meningitis.

  8. Electrostatic ion acoustic waves

    International Nuclear Information System (INIS)

    Hasegawa, A.

    1983-01-01

    In this paper, certain aspects of plasma physics are illustrated through a study of electrostatic ion acoustic waves. The paper consists of three Sections. Section II deals with linear properties of the ion acoustic wave including derivation of the dispersions relation with the effect of Landau damping and of an ambient magnetic field. The section also introduces the excitation processes of the ion acoustic wave due to an electron drift or to a stimulated Brillouin scattering. The nonlinear properties are introduced in Section III and IV. In Section III, incoherent nonlinear effects such as quasilinear and mode-coupling saturations of the instability are discussed. The coherent nonlinear effects such as the generation of ion acoustic solitons, shocks and weak double layers are presented in Section IV. (Auth.)

  9. Irradiation and electrostatic separator

    International Nuclear Information System (INIS)

    Schultz, M.A.

    1976-01-01

    An apparatus for collecting pollutants in which a passageway is formed to define a path for industrial gases passing therethrough is described. A plurality of isotope sources extend along at least a portion of the path followed by the industrial gases to provide a continuing irradiation zone for pollutants in the gases. Collecting electrode plates are associated with such an irradiation zone to efficiently collect particulates as a result of an electrostatic field established between such plates, particularly very small particulates. The series of isotope sources are extended for a length sufficient to attain material improvement in the efficiency of collecting the pollutants. Such an effective length is established along a substantially unidirectional path of the gases, or preferably a reversing path in a folded conduit assembly to attain further efficiency by allowing more compact apparatus structures

  10. Personality and emotional processing: A relationship between extraversion and the late positive potential in adolescence.

    Science.gov (United States)

    Speed, Brittany C; Nelson, Brady D; Perlman, Greg; Klein, Daniel N; Kotov, Roman; Hajcak, Greg

    2015-08-01

    Neuroticism and extraversion are multifaceted affective-laden personality traits that have been associated with major depressive disorder (MDD). Research and theory have argued that extraversion, and particularly its facet positive emotionality, is specific to MDD, while neuroticism is common across internalizing disorders. Converging evidence has suggested that MDD is associated with reduced engagement with emotional stimuli, but it remains unclear whether either extraversion, neuroticism, or both modulate reactivity to emotional cues. The late positive potential (LPP) is an event-related brain potential that is uniquely suited to assess engagement with emotional stimuli because it reflects sustained attention toward emotional content. The current study examined the LPP in relation to personality traits that may confer risk for depression by examining the relationship between the LPP and both neuroticism and extraversion in never-depressed adolescent girls. Specifically, 550 girls aged 13.5-15.5 with no lifetime history of depression completed an emotional picture-viewing task, and the LPP was measured in response to neutral, pleasant, and unpleasant pictures. Personality traits were gathered via self- and informant report. Results indicated that high extraversion was associated with a potentiated LPP to emotional pictures-and this effect was accounted for by positive emotionality in particular. In contrast, there was no association between the LPP and neuroticism or its facets. The present study is one of the first to demonstrate that extraversion is associated with variation in neural indices of emotional picture processing, similar to what has been observed among individuals with depression and at high risk for depression. © 2015 Society for Psychophysiological Research.

  11. Lunar electrostatic effects and protection

    International Nuclear Information System (INIS)

    Sun, Yongwei; Yuan, Qingyun; Xiong, Jiuliang

    2013-01-01

    The space environment and features on the moon surface are factors in strong electrostatic electrification. Static electricity will be produced in upon friction between lunar soil and detectors or astronauts on the lunar surface. Lunar electrostatic environment effects from lunar exploration equipment are very harmful. Lunar dust with electrostatic charge may enter the equipment or even cover the instruments. It can affect the normal performance of moon detectors. Owing to the huge environmental differences between the moon and the earth, the electrostatic protection technology on the earth can not be applied. In this paper, we review the electrostatic characteristics of lunar dust, its effects on aerospace equipment and moon static elimination technologies. It was concluded that the effect of charged lunar dust on detectors and astronauts should be completely researched as soon as possible.

  12. Conservation and Role of Electrostatics in Thymidylate Synthase.

    Science.gov (United States)

    Garg, Divita; Skouloubris, Stephane; Briffotaux, Julien; Myllykallio, Hannu; Wade, Rebecca C

    2015-11-27

    Conservation of function across families of orthologous enzymes is generally accompanied by conservation of their active site electrostatic potentials. To study the electrostatic conservation in the highly conserved essential enzyme, thymidylate synthase (TS), we conducted a systematic species-based comparison of the electrostatic potential in the vicinity of its active site. Whereas the electrostatics of the active site of TS are generally well conserved, the TSs from minimal organisms do not conform to the overall trend. Since the genomes of minimal organisms have a high thymidine content compared to other organisms, the observation of non-conserved electrostatics was surprising. Analysis of the symbiotic relationship between minimal organisms and their hosts, and the genetic completeness of the thymidine synthesis pathway suggested that TS from the minimal organism Wigglesworthia glossinidia (W.g.b.) must be active. Four residues in the vicinity of the active site of Escherichia coli TS were mutated individually and simultaneously to mimic the electrostatics of W.g.b TS. The measured activities of the E. coli TS mutants imply that conservation of electrostatics in the region of the active site is important for the activity of TS, and suggest that the W.g.b. TS has the minimal activity necessary to support replication of its reduced genome.

  13. Beyond Massive MIMO: The Potential of Positioning With Large Intelligent Surfaces

    Science.gov (United States)

    Hu, Sha; Rusek, Fredrik; Edfors, Ove

    2018-04-01

    We consider the potential for positioning with a system where antenna arrays are deployed as a large intelligent surface (LIS), which is a newly proposed concept beyond massive-MIMO where future man-made structures are electronically active with integrated electronics and wireless communication making the entire environment \\lq\\lq{}intelligent\\rq\\rq{}. In a first step, we derive Fisher-information and Cram\\'{e}r-Rao lower bounds (CRLBs) in closed-form for positioning a terminal located perpendicular to the center of the LIS, whose location we refer to as being on the central perpendicular line (CPL) of the LIS. For a terminal that is not on the CPL, closed-form expressions of the Fisher-information and CRLB seem out of reach, and we alternatively find approximations of them which are shown to be accurate. Under mild conditions, we show that the CRLB for all three Cartesian dimensions ($x$, $y$ and $z$) decreases quadratically in the surface-area of the LIS, except for a terminal exactly on the CPL where the CRLB for the $z$-dimension (distance from the LIS) decreases linearly in the same. In a second step, we analyze the CRLB for positioning when there is an unknown phase $\\varphi$ presented in the analog circuits of the LIS. We then show that the CRLBs are dramatically increased for all three dimensions but decrease in the third-order of the surface-area. Moreover, with an infinitely large LIS the CRLB for the $z$-dimension with an unknown $\\varphi$ is 6 dB higher than the case without phase uncertainty, and the CRLB for estimating $\\varphi$ converges to a constant that is independent of the wavelength $\\lambda$. At last, we extensively discuss the impact of centralized and distributed deployments of LIS, and show that a distributed deployment of LIS can enlarge the coverage for terminal-positioning and improve the overall positioning performance.

  14. Mechanical behavior analysis on electrostatically actuated rectangular microplates

    Science.gov (United States)

    Li, Zhikang; Zhao, Libo; Jiang, Zhuangde; Ye, Zhiying; Dai, Lu; Zhao, Yulong

    2015-03-01

    Microplates are widely used in various MEMS devices based on electrostatic actuation such as MEMS switches, micro pumps and capacitive micromachined ultrasonic transducers (CMUTs). Accurate predictions for the mechanical behavior of the microplate under electrostatic force are important not only for the design and optimization of these electrostatic devices but also for their operation. This paper presents a novel reduced-order model for electrostatically actuated rectangular and square microplates with a new method to treat the nonlinear electrostatic force. The model was developed using Galerkin method which turned the partial-differential equation governing the microplates into an ordinary equation system. Using this model and cosine-like deflection functions, explicit expressions were established for the deflection and pull-in voltage of the rectangular and square microplates. The theoretical results were well validated with the finite element method simulations and experimental data of literature. The expressions for the deflection analysis are able to predict the deflection up to the pull-in position with an error less than 5.0%. The expressions for the pull-in voltage analysis can determine the pull-in voltages with errors less than 1.0%. Additionally, the method to calculate the capacitance variation of the electrostatically actuated microplates was proposed. These theoretical analyses are helpful for design and optimization of electrostatically actuated microdevices.

  15. Mechanical behavior analysis on electrostatically actuated rectangular microplates

    International Nuclear Information System (INIS)

    Li, Zhikang; Zhao, Libo; Jiang, Zhuangde; Ye, Zhiying; Zhao, Yulong; Dai, Lu

    2015-01-01

    Microplates are widely used in various MEMS devices based on electrostatic actuation such as MEMS switches, micro pumps and capacitive micromachined ultrasonic transducers (CMUTs). Accurate predictions for the mechanical behavior of the microplate under electrostatic force are important not only for the design and optimization of these electrostatic devices but also for their operation. This paper presents a novel reduced-order model for electrostatically actuated rectangular and square microplates with a new method to treat the nonlinear electrostatic force. The model was developed using Galerkin method which turned the partial-differential equation governing the microplates into an ordinary equation system. Using this model and cosine-like deflection functions, explicit expressions were established for the deflection and pull-in voltage of the rectangular and square microplates. The theoretical results were well validated with the finite element method simulations and experimental data of literature. The expressions for the deflection analysis are able to predict the deflection up to the pull-in position with an error less than 5.0%. The expressions for the pull-in voltage analysis can determine the pull-in voltages with errors less than 1.0%. Additionally, the method to calculate the capacitance variation of the electrostatically actuated microplates was proposed. These theoretical analyses are helpful for design and optimization of electrostatically actuated microdevices. (paper)

  16. Electrostatic field of the large fragment of Escherichia coli DNA polymerase I.

    Science.gov (United States)

    Warwicker, J; Ollis, D; Richards, F M; Steitz, T A

    1985-12-05

    The electrostatic field of the large fragment of Escherichia coli DNA polymerase I (Klenow fragment) has been calculated by the finite difference procedure on a 2 A grid. The potential field is substantially negative at physiological pH (reflecting the net negative charge at this pH). The largest regions of positive potential are in the deep crevice of the C-terminal domain, which is the proposed binding site for the DNA substrate. Within the crevice, the electrostatic potential has a partly helical form. If the DNA is positioned to fulfil stereochemical requirements, then the positive potential generally follows the major groove and (to a lesser extent) the negative potential is in the minor groove. Such an arrangement could stabilize DNA configurations related by screw symmetry. The histidine residues of the Klenow fragment give the positive field of the groove a sensitivity to relatively small pH changes around neutrality. We suggest that the histidine residues could change their ionization states in response to DNA binding, and that this effect could contribute to the protein-DNA binding energy.

  17. Incongruence between Verbal and Non-Verbal Information Enhances the Late Positive Potential.

    Science.gov (United States)

    Morioka, Shu; Osumi, Michihiro; Shiotani, Mayu; Nobusako, Satoshi; Maeoka, Hiroshi; Okada, Yohei; Hiyamizu, Makoto; Matsuo, Atsushi

    2016-01-01

    Smooth social communication consists of both verbal and non-verbal information. However, when presented with incongruence between verbal information and nonverbal information, the relationship between an individual judging trustworthiness in those who present the verbal-nonverbal incongruence and the brain activities observed during judgment for trustworthiness are not clear. In the present study, we attempted to identify the impact of incongruencies between verbal information and facial expression on the value of trustworthiness and brain activity using event-related potentials (ERP). Combinations of verbal information [positive/negative] and facial expressions [smile/angry] expressions were presented randomly on a computer screen to 17 healthy volunteers. The value of trustworthiness of the presented facial expression was evaluated by the amount of donation offered by the observer to the person depicted on the computer screen. In addition, the time required to judge the value of trustworthiness was recorded for each trial. Using electroencephalography, ERP were obtained by averaging the wave patterns recorded while the participants judged the value of trustworthiness. The amount of donation offered was significantly lower when the verbal information and facial expression were incongruent, particularly for [negative × smile]. The amplitude of the early posterior negativity (EPN) at the temporal lobe showed no significant difference between all conditions. However, the amplitude of the late positive potential (LPP) at the parietal electrodes for the incongruent condition [negative × smile] was higher than that for the congruent condition [positive × smile]. These results suggest that the LPP amplitude observed from the parietal cortex is involved in the processing of incongruence between verbal information and facial expression.

  18. Electrostatic charge characteristics of jet nebulized aerosols.

    Science.gov (United States)

    Kwok, Philip Chi Lip; Trietsch, Sebastiaan J; Kumon, Michiko; Chan, Hak-Kim

    2010-06-01

    Liquid droplets can be spontaneously charged in the absence of applied electric fields by spraying. It has been shown by computational simulation that charges may influence particle deposition in the airways. The electrostatic properties of jet nebulized aerosols and their potential effects on lung deposition have hardly been studied. A modified electrical low pressure impactor (ELPI) was employed to characterize the aerosol charges generated from jet nebulized commercial products. The charge and size measurements were conducted at 50% RH and 22 degrees C with a modified ELPI. Ventolin, Bricanyl, and Atrovent were nebulized using PARI LC Plus jet nebulizers coupled to a DeVilbiss Pulmo-Aide compressor. The aerosols were sampled in 30-sec durations. The drug deposits on the impactor stages were assayed chemically using high-performance liquid chromatography (HPLC). The charges of nebulized deionized water, isotonic saline, and the three commercial products diluted with saline were also measured to analyze the contributions of the major nebule ingredients on charging. No mass assays were performed on these runs. All three commercial nebules generated net negative charges. The magnitude of the charges reduced over the period of nebulization. Ventolin and Bricanyl yielded similar charge profiles. Highly variable charges were produced from deionized water. On the other hand, nebulized saline reproducibly generated net positive charges. Diluted commercial nebules showed charge polarity inversion. The charge profiles of diluted salbutamol and terbutaline solutions resembled those of saline, while the charges from diluted ipratropium solutions fluctuated near neutrality. The charge profiles were shown to be influenced by the concentration and physicochemical properties of the drugs, as well as the history of nebulization. The drugs may have unique isoelectric concentrations in saline at which the nebulized droplets would carry near-zero charges. According to results from

  19. Stability, Nonlinearity and Reliability of Electrostatically Actuated MEMS Devices

    Directory of Open Access Journals (Sweden)

    Di Chen

    2007-05-01

    Full Text Available Electrostatic micro-electro-mechanical system (MEMS is a special branch with a wide range of applications in sensing and actuating devices in MEMS. This paper provides a survey and analysis of the electrostatic force of importance in MEMS, its physical model, scaling effect, stability, nonlinearity and reliability in detail. It is necessary to understand the effects of electrostatic forces in MEMS and then many phenomena of practical importance, such as pull-in instability and the effects of effective stiffness, dielectric charging, stress gradient, temperature on the pull-in voltage, nonlinear dynamic effects and reliability due to electrostatic forces occurred in MEMS can be explained scientifically, and consequently the great potential of MEMS technology could be explored effectively and utilized optimally. A simplified parallel-plate capacitor model is proposed to investigate the resonance response, inherent nonlinearity, stiffness softened effect and coupled nonlinear effect of the typical electrostatically actuated MEMS devices. Many failure modes and mechanisms and various methods and techniques, including materials selection, reasonable design and extending the controllable travel range used to analyze and reduce the failures are discussed in the electrostatically actuated MEMS devices. Numerical simulations and discussions indicate that the effects of instability, nonlinear characteristics and reliability subjected to electrostatic forces cannot be ignored and are in need of further investigation.

  20. Electrostatic fluctuations in soap films

    International Nuclear Information System (INIS)

    Dean, D.S.; Horgan, R.R.

    2002-01-01

    A field theory to describe electrostatic interactions in soap films, described by electric multilayers with a generalized thermodynamic surface-charging mechanism, is studied. In the limit where the electrostatic interactions are weak, this theory is exactly soluble. The theory incorporates in a consistent way, the surface-charging mechanism and the fluctuations in the electrostatic field that correspond to the zero-frequency component of the van der Waals force. It is shown that these terms lead to a Casimir-like attraction that can be sufficiently large to explain the transition between the common black film to a Newton black film

  1. Electrical operation of electrostatic precipitators

    CERN Document Server

    Parker, Ken

    2003-01-01

    The electrostatic precipitator remains on of the most cost effective means of controlling the emission of particulates from most industrial processes. This book will be of interest to both users and suppliers of electrostatic precipitators as well as advanced students on environmental based courses. The author identifies the physical and engineering basis for the development of electrical equipment for electrostatic precipitators and thoroughly explores the technological factors which optimize the efficiency of the precipitator and hence minimize emissions, as well as future developments in th

  2. Ballistic Jumping Drops on Superhydrophobic Surfaces via Electrostatic Manipulation.

    Science.gov (United States)

    Li, Ning; Wu, Lei; Yu, Cunlong; Dai, Haoyu; Wang, Ting; Dong, Zhichao; Jiang, Lei

    2018-02-01

    The ballistic ejection of liquid drops by electrostatic manipulating has both fundamental and practical implications, from raindrops in thunderclouds to self-cleaning, anti-icing, condensation, and heat transfer enhancements. In this paper, the ballistic jumping behavior of liquid drops from a superhydrophobic surface is investigated. Powered by the repulsion of the same kind of charges, water drops can jump from the surface. The electrostatic acting time for the jumping of a microliter supercooled drop only takes several milliseconds, even shorter than the time for icing. In addition, one can control the ballistic jumping direction precisely by the relative position above the electrostatic field. The approach offers a facile method that can be used to manipulate the ballistic drop jumping via an electrostatic field, opening the possibility of energy efficient drop detaching techniques in various applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Proton emission with a screened electrostatic barrier

    Energy Technology Data Exchange (ETDEWEB)

    Budaca, R. [Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest-Magurele (Romania); Academy of Romanian Scientists, Bucharest (Romania); Budaca, A.I. [Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest-Magurele (Romania)

    2017-08-15

    Half-lives of proton emission for Z ≥ 51 nuclei are calculated within a simple analytical model based on the WKB approximation for the barrier penetration probability which includes the centrifugal and overlapping effects besides the electrostatic repulsion. The model has a single free parameter associated to a Hulthen potential which emulates a Coulomb electrostatic interaction only at short distance. The agreement with experimental data is very good for most of the considered nuclei. Theoretical predictions are made for few cases with uncertain emitting state configuration or incomplete decay information. The model's assignment of the proton orbital momentum is in agreement with the differentiation of the experimental data by orbital momentum values realized with a newly introduced correlation formula. (orig.)

  4. Interaction dynamics of electrostatic solitary waves

    Directory of Open Access Journals (Sweden)

    V. L. Krasovsky

    1999-01-01

    Full Text Available Interaction of nonlinear electrostatic pulses associated with electron phase density holes moving in a collisionless plasma is studied. An elementary event of the interaction is analyzed on the basis of the energy balance in the system consisting of two electrostatic solitary waves. It is established that an intrinsic property of the system is a specific irreversibility caused by a nonadiabatic modification of the internal structure of the holes and their effective heating in the process of the interaction. This dynamical irreversibility is closely connected with phase mixing of the trapped electrons comprising the holes and oscillating in the varying self-consistent potential wells. As a consequence of the irreversibility, the "collisions" of the solitary waves should be treated as "inelastic" ones. This explains the general tendency to the merging of the phase density holes frequently observed in numerical simulation and to corresponding coupling of the solitary waves.

  5. Galectin-7 Expression Potentiates HER-2-Positive Phenotype in Breast Cancer.

    Directory of Open Access Journals (Sweden)

    Andrée-Anne Grosset

    Full Text Available HER-2 positive tumors are among the most aggressive subtypes of breast cancer and are frequently associated with metastasis and poor outcome. As with other aggressive subtypes of breast cancer, these tumors are associated with abnormally high expression of galectin-7 (gal-7, which confers metastatic breast tumor cells with increased invasive behavior. Although previous studies in the rat model of breast tumorigenesis have shown that gal-7 is also increased in primary breast tumor, its contribution to the development of the primary breast tumors remains unclear. In the present work, we have used genetically-engineered gal-7-deficient mice to examine the role of gal-7 in the development of the mammary gland and of breast cancer. Using histological and immunohistological analysis of whole mammary glands at different stages of development, we detected no significant changes between normal and gal-7-deficient mice. To test the involvement of gal-7 in breast cancer, we next examined the effects of loss of gal-7 on mammary tumor development by crossing gal-7-deficient mice with the mammary tumor transgenic mouse strain FVB-Tg(MMTV-Erbb2NK1Mul/J. Finally, assessment of mice survival and tumor volume showed a delay of mammary tumor growth in the absence of systemic gal-7. These data suggest that gal-7 could potentiate the phenotype of HER-2 positive primary breast cancer.

  6. Explosion safety in industrial electrostatics

    Science.gov (United States)

    Szabó, S. V.; Kiss, I.; Berta, I.

    2011-01-01

    Complicated industrial systems are often endangered by electrostatic hazards, both from atmospheric (lightning phenomenon, primary and secondary lightning protection) and industrial (technological problems caused by static charging and fire and explosion hazards.) According to the classical approach protective methods have to be used in order to remove electrostatic charging and to avoid damages, however no attempt to compute the risk before and after applying the protective method is made, relying instead on well-educated and practiced expertise. The Budapest School of Electrostatics - in close cooperation with industrial partners - develops new suitable solutions for probability based decision support (Static Control Up-to-date Technology, SCOUT) using soft computing methods. This new approach can be used to assess and audit existing systems and - using the predictive power of the models - to design and plan activities in industrial electrostatics.

  7. Computational Methods for Biomolecular Electrostatics

    Science.gov (United States)

    Dong, Feng; Olsen, Brett; Baker, Nathan A.

    2008-01-01

    An understanding of intermolecular interactions is essential for insight into how cells develop, operate, communicate and control their activities. Such interactions include several components: contributions from linear, angular, and torsional forces in covalent bonds, van der Waals forces, as well as electrostatics. Among the various components of molecular interactions, electrostatics are of special importance because of their long range and their influence on polar or charged molecules, including water, aqueous ions, and amino or nucleic acids, which are some of the primary components of living systems. Electrostatics, therefore, play important roles in determining the structure, motion and function of a wide range of biological molecules. This chapter presents a brief overview of electrostatic interactions in cellular systems with a particular focus on how computational tools can be used to investigate these types of interactions. PMID:17964951

  8. Electrostatic Phenomena on Planetary Surfaces

    Science.gov (United States)

    Calle, Carlos I.

    2017-02-01

    The diverse planetary environments in the solar system react in somewhat different ways to the encompassing influence of the Sun. These different interactions define the electrostatic phenomena that take place on and near planetary surfaces. The desire to understand the electrostatic environments of planetary surfaces goes beyond scientific inquiry. These environments have enormous implications for both human and robotic exploration of the solar system. This book describes in some detail what is known about the electrostatic environment of the solar system from early and current experiments on Earth as well as what is being learned from the instrumentation on the space exploration missions (NASA, European Space Agency, and the Japanese Space Agency) of the last few decades. It begins with a brief review of the basic principles of electrostatics.

  9. Holes in magneto electrostatic traps

    International Nuclear Information System (INIS)

    Jones, R.

    1996-01-01

    We observe that in magneto electrostatic confinement (MEC) devices the magnetic surfaces are not always equipotentials. The lack of symmetry in the equipotential surfaces can result in holes in MEC plasma traps. (author)

  10. Salpeter equation in position space: Numerical solution for arbitrary confining potentials

    International Nuclear Information System (INIS)

    Nickisch, L.J.; Durand, L.; Durand, B.

    1984-01-01

    We present and test two new methods for the numerical solution of the relativistic wave equation [(-del 2 +m 1 2 )/sup 1/2/+(-del 2 +m 2 2 )/sup 1/2/+V(r)-M]psi( r ) = 0, which appears in the theory of relativistic quark-antiquark bound states. Our methods work directly in position space, and hence have the desirable features that we can vary the potential V(r) locally in fitting the qq-bar mass spectrum, and can easily build in the expected behavior of V for r→0,infinity. Our first method converts the nonlocal square-root operators to mildly singular integral operators involving hyperbolic Bessel functions. The resulting integral equation can be solved numerically by matrix techniques. Our second method approximates the square-root operators directly by finite matrices. Both methods converge rapidly with increasing matrix size (the square-root matrix method more rapidly) and can be used in fast-fitting routines. We present some tests for oscillator and Coulomb interactions, and for the realistic Coulomb-plus-linear potential used in qq-bar phenomenology

  11. Beta receptor-mediated modulation of the late positive potential in humans.

    Science.gov (United States)

    de Rover, Mischa; Brown, Stephen B R E; Boot, Nathalie; Hajcak, Greg; van Noorden, Martijn S; van der Wee, Nic J A; Nieuwenhuis, Sander

    2012-02-01

    Electrophysiological studies have identified a scalp potential, the late positive potential (LPP), which is modulated by the emotional intensity of observed stimuli. Previous work has shown that the LPP reflects the modulation of activity in extrastriate visual cortical structures, but little is known about the source of that modulation. The present study investigated whether beta-adrenergic receptors are involved in the generation of the LPP. We used a genetic individual differences approach (experiment 1) and a pharmacological manipulation (experiment 2) to test the hypothesis that the LPP is modulated by the activation of β-adrenergic receptors. In experiment 1, we found that LPP amplitude depends on allelic variation in the β1-receptor gene polymorphism. In experiment 2, we found that LPP amplitude was modulated by the β-blocker propranolol in a direction dependent on subjects' level of trait anxiety: In participants with lower trait anxiety, propranolol led to a (nonsignificant) decrease in the LPP modulation; in participants with higher trait anxiety, propranolol increased the emotion-related LPP modulation. These results provide initial support for the hypothesis that the LPP reflects the downstream effects, in visual cortical areas, of β-receptor-mediated activation of the amygdala.

  12. Electrostatic Charging and Particle Interactions in Microscopic Insulating Grains

    Science.gov (United States)

    Lee, Victor

    In this thesis, we experimentally investigate the electrostatic charging as well as the particle interactions in microscopic insulating grains. First, by tracking individual grains accelerated in an electric field, we quantitatively demonstrate that tribocharging of same-material grains depends on particle size. Large grains tend to charge positively, and small ones tend to charge negatively. Theories based on the transfer of trapped electrons can explain this tendency but have not been validated. Here we show that the number of trapped electrons, measured independently by a thermoluminescence technique, is orders of magnitude too small to be responsible for the amount of charge transferred. This result reveals that trapped electrons are not responsible for same-material tribocharging of dielectric particles. Second, same-material tribocharging in grains can result in important long-range electrostatic interactions. However, how these electrostatic interactions contribute to particle clustering remains elusive, primarily due to the lack of direct, detailed observations. Using a high-speed camera that falls with a stream charged grains, we observe for the first time how charged grains can undergo attractive as well as repulsive Kepler-like orbits. Charged particles can be captured in their mutual electrostatic potential and form clusters via multiple bounces. Dielectric polarization effects are directly observed, which lead to additional attractive forces and stabilize "molecule-like" arrangements of charged particles. Third, we have developed a new method to study the charge transfer of microscopic particles based on acoustic levitation techniques. This method allows us to narrow the complex problem of many-particle charging down to precise charge measurements of a single sub-millimeter particle colliding with a target plate. By simply attaching nonpolar groups onto glass surfaces, we show that the contact charging of a particle is highly dependent on

  13. Electrostatic shock structures in dissipative multi-ion dusty plasmas

    Science.gov (United States)

    Elkamash, I. S.; Kourakis, I.

    2018-06-01

    A comprehensive analytical model is introduced for shock excitations in dusty bi-ion plasma mixtures, taking into account collisionality and kinematic (fluid) viscosity. A multicomponent plasma configuration is considered, consisting of positive ions, negative ions, electrons, and a massive charged component in the background (dust). The ionic dynamical scale is focused upon; thus, electrons are assumed to be thermalized, while the dust is stationary. A dissipative hybrid Korteweg-de Vries/Burgers equation is derived. An analytical solution is obtained, in the form of a shock structure (a step-shaped function for the electrostatic potential, or an electric field pulse) whose maximum amplitude in the far downstream region decays in time. The effect of relevant plasma configuration parameters, in addition to dissipation, is investigated. Our work extends earlier studies of ion-acoustic type shock waves in pure (two-component) bi-ion plasma mixtures.

  14. Electrostatic assembly/disassembly of nanoscaled colloidosomes for light-triggered cargo release

    KAUST Repository

    Li, Song

    2015-04-27

    Colloidosome capsules possess the potential for the encapsulation and release of molecular and macromolecular cargos. However, the stabilization of the colloidosome shell usually requires an additional covalent crosslinking which irreversibly seals the capsules, and greatly limits their applications in large-cargos release. Herein we report nanoscaled colloidosomes designed by the electrostatic assembly of organosilica nanoparticles (NPs) with oppositely charged surfaces (rather than covalent bonds), arising from different contents of a bridged nitrophenylene-alkoxysilane [NB; 3-nitro-N-(3-(triethoxysilyl)propyl)-4-(((3-(triethoxysilyl)propyl)-amino)methyl)benzamid] derivative in the silica. The surface charge of the positively charged NPs was reversed by light irradiation because of a photoreaction in the NB moieties, which impacted the electrostatic interactions between NPs and disassembled the colloidosome nanosystems. This design was successfully applied for the encapsulation and light-triggered release of cargos. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Vestibular evoked myogenic potentials and digital vectoelectronystagmography's study in patients with benign paroxysmal positional vertigo

    Directory of Open Access Journals (Sweden)

    Lira-Batista, Marta Maria da Silva

    2013-04-01

    Full Text Available Introduction: Benign Paroxysmal Positional Vertigo (BPPV is a very common vestibular disorder characterized by brief but intense attacks of rotatory vertigo triggered by simple rapid movement of the head. The integrity of the vestibular pathways can be assessed using tests such as digital vectoelectronystagmography (VENG and vestibular evoked myogenic potentials (VEMP. Aim: This study aimed to determine the VEMP findings with respect to latency, amplitude, and waveform peak to peak and the results of the oculomotor and vestibular components of VENG in patients with BPPV. Method: Although this otoneurological condition is quite common, little is known of the associated VEMP and VENG changes, making it important to research and describe these results. Results: We examined the records of 4438 patients and selected 35 charts after applying the inclusion and exclusion criteria. Of these, 26 patients were women and 9 men. The average age at diagnosis was 52.7 years, and the most prevalent physiological cause, accounting for 97.3% of cases, was ductolithiasis. There was a statistically significant association between normal hearing and mild contralateral sensorineural hearing loss. The results of the oculomotor tests were within the normal reference ranges for all subjects. Patients with BPPV exhibited symmetrical function of the semicircular canals in their synergistic pairs (p < 0.001. The caloric test showed statistically normal responses from the lateral canals. The waveforms of all patients were adequate, but the VEMP results for the data-crossing maneuver with positive positioning showed a trend toward a relationship for the left ear Lp13. There was also a trend towards an association between normal reflexes in the caloric test and the inter-peak VEMP of the left ear. It can be concluded that although there are some differences between the average levels of the VENG and VEMP results, these differences were not statistically significant

  16. The electrostatic cylindrical sheath in a plasma

    International Nuclear Information System (INIS)

    Wang Chunhua; Sun Xiaoxia; Bai Dongxue

    2004-01-01

    The electrostatic sheath with a cylindrical geometry in an ion-electron plasma is investigated. Assuming a Boltzmann response to electrons and cold ions with bulk flow, it is shown that the radius of the cylindrical geometry do not affect the sheath potential significantly. The authors also found that the sheath potential profile is steeper in the cylindrical sheath compared to the slab sheath. The distinct feature of the cylindrical sheath is that the ion density distribution is not monotonous. The sheath region can be divided into three regions, two ascendant regions and one descendant region. (author)

  17. Antimicrobial-Resistance Genetic Markers in Potentially Pathogenic Gram Positive Cocci Isolated from Brazilian Soft Cheese.

    Science.gov (United States)

    Resende, Juliana Alves; Fontes, Cláudia Oliveira; Ferreira-Machado, Alessandra Barbosa; Nascimento, Thiago César; Silva, Vânia Lúcia; Diniz, Cláudio Galuppo

    2018-02-01

    Although most Brazilian dairy products meet high technological standards, there are quality issues regarding milk production, which may reduce the final product quality. Several microbial species may contaminate milk during manufacture and handling. If antimicrobial usage remains uncontrolled in dairy cattle, the horizontal transfer of antimicrobial resistance genes in foodstuffs may be of particular concern for both food producers and dairy industry. This study focused on the evaluation of putative Gram positive cocci in Minas cheese and of antimicrobial and biocide resistance genes among the isolated bacteria. Representative samples of 7 different industrially trademarked Minas cheeses (n = 35) were processed for selective culture and isolation of Gram positive cocci. All isolated bacteria were identified by DNA sequencing of the 16S rRNA gene. Antimicrobial resistance genes were screened by PCR. Overall, 208 strains were isolated and identified as follows: Enterococcus faecalis (47.6%), Macrococcus caseolyticus (18.3%), Enterococcus faecium (11.5%), Enterococcus caseliflavus (7.7%), Staphylococcus haemolyticus (7.2%), Staphylococcus aureus (4.3%), Staphylococcus epidermidis (2.9%), and Enterococcus hirae (0.5%). The genetic markers mecA (78.0%) and smr (71.4%) were the most prevalent, but others were also detected, such as blaZ (65.2%), msrA (60.9%), msrB (46.6%), linA (54.7%), and aacA-aphD (47.6%). The occurrence of opportunist pathogenic bacteria harboring antimicrobial resistance markers in the cheese samples are of special concern, since these bacteria are not considered harmful contaminating agents according to the Brazilian sanitary regulations. However, they are potentially pathogenic bacteria and the cheese may be considered a reservoir for antimicrobial resistance genes available for horizontal transfer through the food chain, manufacturing personnel and consumers. © 2018 Institute of Food Technologists®.

  18. The morphology of electrostatic tripolar regions

    International Nuclear Information System (INIS)

    Nocera, L.

    2008-01-01

    Electrostatic tripolar regions in plasmas develop a skewness of their own electric potential waveform as a peculiar morphological property, which distinguishes them from symmetric electrostatic solitary waves. Within the collision-less, kinetic treatment developed here, this property holds if the velocity distributions of electrons and ions are singular in value, irrespective of their smoothness at the region's boundary and of the smoothness of the potential waveform and of the electron and ion density distributions. These singularities are integrable, and are of the logarithmic and jump type: the former occur at isolated points in phase space; the latter occur on the left branch of the electron separatrix and on the left branch of the ion sub-separatrix. The distributions are non-negative if, at its local extrema, the potential waveform is skewed to the left, in agreement with observations, and if the skewness is smaller than a given bound: a sufficient condition for such skewness to be small about the minimum of the potential waveform is that a sufficiently fast electron beam exists on the high-potential boundary of the tripolar region. In those special cases in which the particle distributions are continuous in value, the above mentioned singularities affect their space and velocity derivatives. These results could be extracted from very general considerations on the degree of smoothness of the spatial distribution of the electric potential and on the non-negativity of the electron and ion distributions, without the assistance of any specific models

  19. Theory of electrostatics and electrokinetics of soft particles

    Directory of Open Access Journals (Sweden)

    Hiroyuki Ohshima

    2009-01-01

    Full Text Available We investigate theoretically the electrostatics and electrokinetics of a soft particle, i.e. a hard particle covered with an ion-penetrable surface layer of polyelectrolytes. The electric properties of soft particles in an electrolyte solution, which differ from those of hard particles, are essentially determined by the Donnan potential in the surface layer. In particular, the Donnan potential plays an essential role in the electrostatics and electrokinetics of soft particles. Furthermore, the concept of zeta potential, which is important in the electrokinetics of hard particles, loses its physical meaning in the electrokinetics of soft particles. In this review, we discuss the potential distribution around a soft particle, the electrostatic interaction between two soft particles, and the motion of a soft particle in an electric field.

  20. An efficient numerical approach to electrostatic microelectromechanical system simulation

    International Nuclear Information System (INIS)

    Pu, Li

    2009-01-01

    Computational analysis of electrostatic microelectromechanical systems (MEMS) requires an electrostatic analysis to compute the electrostatic forces acting on micromechanical structures and a mechanical analysis to compute the deformation of micromechanical structures. Typically, the mechanical analysis is performed on an undeformed geometry. However, the electrostatic analysis is performed on the deformed position of microstructures. In this paper, a new efficient approach to self-consistent analysis of electrostatic MEMS in the small deformation case is presented. In this approach, when the microstructures undergo small deformations, the surface charge densities on the deformed geometry can be computed without updating the geometry of the microstructures. This algorithm is based on the linear mode shapes of a microstructure as basis functions. A boundary integral equation for the electrostatic problem is expanded into a Taylor series around the undeformed configuration, and a new coupled-field equation is presented. This approach is validated by comparing its results with the results available in the literature and ANSYS solutions, and shows attractive features comparable to ANSYS. (general)

  1. Working memory load reduces the late positive potential and this effect is attenuated with increasing anxiety.

    Science.gov (United States)

    MacNamara, Annmarie; Ferri, Jamie; Hajcak, Greg

    2011-09-01

    Emotion regulation decreases the processing of arousing stimuli, as indexed by the late positive potential (LPP), an electrocortical component that varies in amplitude with emotional arousal. Emotion regulation increases activity in the prefrontal areas associated with cognitive control, including the dosolateral prefrontal cortex (DLPFC). The present study manipulated working memory load, known to activate the DLPFC, and recorded the LPP elicited by aversive and neutral IAPS pictures presented during the retention interval. The LPP was larger on low-load compared to high-load trials, and on trials with aversive compared to neutral pictures. These LPP data suggest that emotional content and working memory load have opposing effects on attention to distracting stimuli. State anxiety was associated with reduced modulation of the LPP by working memory load. Results are discussed in terms of competition for attention between emotion and cognition and suggest a relationship between DLPFC activation and the allocation of attentional resources to distracting visual stimuli-a relationship that may be disrupted with increasing anxiety.

  2. Decision ambiguity is mediated by a late positive potential originating from cingulate cortex.

    Science.gov (United States)

    Sun, Sai; Zhen, Shanshan; Fu, Zhongzheng; Wu, Daw-An; Shimojo, Shinsuke; Adolphs, Ralph; Yu, Rongjun; Wang, Shuo

    2017-08-15

    People often make decisions in the face of ambiguous information, but it remains unclear how ambiguity is represented in the brain. We used three types of ambiguous stimuli and combined EEG and fMRI to examine the neural representation of perceptual decisions under ambiguity. We identified a late positive potential, the LPP, which differentiated levels of ambiguity, and which was specifically associated with behavioral judgments about choices that were ambiguous, rather than passive perception of ambiguous stimuli. Mediation analyses together with two further control experiments confirmed that the LPP was generated only when decisions are made (not during mere perception of ambiguous stimuli), and only when those decisions involved choices on a dimension that is ambiguous. A further control experiment showed that a stronger LPP arose in the presence of ambiguous stimuli compared to when only unambiguous stimuli were present. Source modeling suggested that the LPP originated from multiple loci in cingulate cortex, a finding we further confirmed using fMRI and fMRI-guided ERP source prediction. Taken together, our findings argue for a role of an LPP originating from cingulate cortex in encoding decisions based on task-relevant perceptual ambiguity, a process that may in turn influence confidence judgment, response conflict, and error correction. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Application of positive matrix factorization to identify potential sources of PAHs in soil of Dalian, China

    International Nuclear Information System (INIS)

    Wang Degao; Tian Fulin; Yang Meng; Liu Chenlin; Li Yifan

    2009-01-01

    Soil derived sources of polycyclic aromatic hydrocarbons (PAHs) in the region of Dalian, China were investigated using positive matrix factorization (PMF). Three factors were separated based on PMF for the statistical investigation of the datasets both in summer and winter. These factors were dominated by the pattern of single sources or groups of similar sources, showing seasonal and regional variations. The main sources of PAHs in Dalian soil in summer were the emissions from coal combustion average (46%), diesel engine (30%), and gasoline engine (24%). In winter, the main sources were the emissions from coal-fired boiler (72%), traffic average (20%), and gasoline engine (8%). These factors with strong seasonality indicated that coal combustion in winter and traffic exhaust in summer dominated the sources of PAHs in soil. These results suggested that PMF model was a proper approach to identify the sources of PAHs in soil. - PMF model is a proper approach to identify potential sources of PAHs in soil based on the PAH profiles measured in the field and those published in the literature.

  4. Vlasov Simulation of Electrostatic Solitary Structures in Multi-Component Plasmas

    Science.gov (United States)

    Umeda, Takayuki; Ashour-Abdalla, Maha; Pickett, Jolene S.; Goldstein, Melvyn L.

    2012-01-01

    Electrostatic solitary structures have been observed in the Earth's magnetosheath by the Cluster spacecraft. Recent theoretical work has suggested that these solitary structures are modeled by electron acoustic solitary waves existing in a four-component plasma system consisting of core electrons, two counter-streaming electron beams, and one species of background ions. In this paper, the excitation of electron acoustic waves and the formation of solitary structures are studied by means of a one-dimensional electrostatic Vlasov simulation. The present result first shows that either electron acoustic solitary waves with negative potential or electron phase-space holes with positive potential are excited in four-component plasma systems. However, these electrostatic solitary structures have longer duration times and higher wave amplitudes than the solitary structures observed in the magnetosheath. The result indicates that a high-speed and small free energy source may be needed as a fifth component. An additional simulation of a five-component plasma consisting of a stable four-component plasma and a weak electron beam shows the generation of small and fast electron phase-space holes by the bump-on-tail instability. The physical properties of the small and fast electron phase-space holes are very similar to those obtained by the previous theoretical analysis. The amplitude and duration time of solitary structures in the simulation are also in agreement with the Cluster observation.

  5. A Solvatochromic Model Calibrates Nitriles’ Vibrational Frequencies to Electrostatic Fields

    Science.gov (United States)

    Bagchi, Sayan; Fried, Stephen D.; Boxer, Steven G.

    2012-01-01

    Electrostatic interactions provide a primary connection between a protein’s three-dimensional structure and its function. Infrared (IR) probes are useful because vibrational frequencies of certain chemical groups, such as nitriles, are linearly sensitive to local electrostatic field, and can serve as a molecular electric field meter. IR spectroscopy has been used to study electrostatic changes or fluctuations in proteins, but measured peak frequencies have not been previously mapped to total electric fields, because of the absence of a field-frequency calibration and the complication of local chemical effects such as H-bonds. We report a solvatochromic model that provides a means to assess the H-bonding status of aromatic nitrile vibrational probes, and calibrates their vibrational frequencies to electrostatic field. The analysis involves correlations between the nitrile’s IR frequency and its 13C chemical shift, whose observation is facilitated by a robust method for introducing isotopes into aromatic nitriles. The method is tested on the model protein Ribonuclease S (RNase S) containing a labeled p-CN-Phe near the active site. Comparison of the measurements in RNase S against solvatochromic data gives an estimate of the average total electrostatic field at this location. The value determined agrees quantitatively with MD simulations, suggesting broader potential for the use of IR probes in the study of protein electrostatics. PMID:22694663

  6. Electrostatically mediated adsorption by nanodiamond and nanocarbon particles

    International Nuclear Information System (INIS)

    Gibson, Natalie M.; Luo, Tzy-Jiun Mark; Shenderova, Olga; Koscheev, Alexey P.; Brenner, Donald W.

    2012-01-01

    Nanodiamond (ND) and other nanocarbon particles are popular platforms for the immobilization of molecular species. In the present research, factors affecting adsorption and desorption of propidium iodide (PI) dye, chosen as a charged molecule model, on ND and sp 2 carbon nanoparticles were studied, with a size ranging from 75 to 4,305 nm. It was found that adsorption of PI molecules, as characterized by ultraviolet–visible spectroscopy, on ND particles is strongly influenced by sorbent-sorbate electrostatic interactions. Different types of NDs with a negative zeta potential were found to adsorb positively charged PI molecules, while no PI adsorption was observed for NDs with a positive zeta potential. The type and density of surface groups of negatively charged NDs greatly influenced the degree and capacity of the PI adsorbed. Ozone-purified NDs had the highest capacity for PI adsorption, due to its greater density of oxygen containing groups, i.e., acid anhydrides and carboxyls, as assessed by TDMS and TOF–SIMS. Single wall nanohorns and carbon onion particles were found to adsorb PI regardless of their zeta potential; this is likely due to π bonding between the aromatic rings of PI and the graphitic surface of the materials and the internal cavity of the horns.

  7. Electrostatically mediated adsorption by nanodiamond and nanocarbon particles

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, Natalie M.; Luo, Tzy-Jiun Mark, E-mail: tluo@ncsu.edu; Shenderova, Olga [North Carolina State University, Department of Materials Science and Engineering (United States); Koscheev, Alexey P. [Karpov Institute of Physical Chemistry, State Scientific Center of Russian Federation (Russian Federation); Brenner, Donald W. [North Carolina State University, Department of Materials Science and Engineering (United States)

    2012-03-15

    Nanodiamond (ND) and other nanocarbon particles are popular platforms for the immobilization of molecular species. In the present research, factors affecting adsorption and desorption of propidium iodide (PI) dye, chosen as a charged molecule model, on ND and sp{sup 2} carbon nanoparticles were studied, with a size ranging from 75 to 4,305 nm. It was found that adsorption of PI molecules, as characterized by ultraviolet-visible spectroscopy, on ND particles is strongly influenced by sorbent-sorbate electrostatic interactions. Different types of NDs with a negative zeta potential were found to adsorb positively charged PI molecules, while no PI adsorption was observed for NDs with a positive zeta potential. The type and density of surface groups of negatively charged NDs greatly influenced the degree and capacity of the PI adsorbed. Ozone-purified NDs had the highest capacity for PI adsorption, due to its greater density of oxygen containing groups, i.e., acid anhydrides and carboxyls, as assessed by TDMS and TOF-SIMS. Single wall nanohorns and carbon onion particles were found to adsorb PI regardless of their zeta potential; this is likely due to {pi} bonding between the aromatic rings of PI and the graphitic surface of the materials and the internal cavity of the horns.

  8. Abscisic Acid Accumulates at Positive Turgor Potential in Excised Soybean Seedling Growing Zones 1

    Science.gov (United States)

    Creelman, Robert A.; Mullet, John E.

    1991-01-01

    Abscisic acid (ABA) accumulated in soybean (Glycine max [L.] Merr. cv Williams) hypocotyl elongating regions when seedlings were transferred to low water potential vermiculite (Ψ = −0.3 megapascals) even though positive turgor is retained in this tissue. Accumulation of ABA in growing zones could occur from de novo biosynthesis within this tissue or transport from adjacent nongrowing zones. Both growing and nongrowing hypocotyl and root tissues accumulated significant levels of ABA when excised and dehydrated to reduce turgor. Surprisingly, excised growing zones (which experienced no water loss) also accumulated ABA when incubated in darkness for 4 hours at 100% relative humidity and 29°C. Induction of ABA accumulation in the excised elongating region of the hypocotyl was not caused by disruption of root pressure or wounding. While excision of hypocotyl elongating regions induced ABA accumulation, no change in either extensin or p33 mRNA levels was observed. Accumulation of extensin or p33 mRNA required more severe wounding. This suggests that ABA is not involved in the response of these genes in wounded tissue and that wound signals are not causing ABA accumulation in excised tissue. Accumulation of ABA in excised elongating regions was correlated with growth inhibition and a decline in turgor to the yield threshold (Ψ;p = 0.37 megapascals; R Matyssek, S Maruyama, JS Boyer [1988] Plant Physiol 86: 1163-1167). Inhibiting hypocotyl growth by transferring seedlings to lower temperatures or light did not cause ABA accumulation. We conclude that induction of ABA accumulation in growing zones is more sensitive to changes in turgor than the induction which occurs in mature tissues. Images Figure 2 PMID:16668113

  9. Abscisic Acid accumulates at positive turgor potential in excised soybean seedling growing zones.

    Science.gov (United States)

    Creelman, R A; Mullet, J E

    1991-04-01

    Abscisic acid (ABA) accumulated in soybean (Glycine max [L.] Merr. cv Williams) hypocotyl elongating regions when seedlings were transferred to low water potential vermiculite (Psi = -0.3 megapascals) even though positive turgor is retained in this tissue. Accumulation of ABA in growing zones could occur from de novo biosynthesis within this tissue or transport from adjacent nongrowing zones. Both growing and nongrowing hypocotyl and root tissues accumulated significant levels of ABA when excised and dehydrated to reduce turgor. Surprisingly, excised growing zones (which experienced no water loss) also accumulated ABA when incubated in darkness for 4 hours at 100% relative humidity and 29 degrees C. Induction of ABA accumulation in the excised elongating region of the hypocotyl was not caused by disruption of root pressure or wounding. While excision of hypocotyl elongating regions induced ABA accumulation, no change in either extensin or p33 mRNA levels was observed. Accumulation of extensin or p33 mRNA required more severe wounding. This suggests that ABA is not involved in the response of these genes in wounded tissue and that wound signals are not causing ABA accumulation in excised tissue. Accumulation of ABA in excised elongating regions was correlated with growth inhibition and a decline in turgor to the yield threshold (Psi;(p) = 0.37 megapascals; R Matyssek, S Maruyama, JS Boyer [1988] Plant Physiol 86: 1163-1167). Inhibiting hypocotyl growth by transferring seedlings to lower temperatures or light did not cause ABA accumulation. We conclude that induction of ABA accumulation in growing zones is more sensitive to changes in turgor than the induction which occurs in mature tissues.

  10. Surface electrostatics: theory and computations

    KAUST Repository

    Chatzigeorgiou, G.

    2014-02-05

    The objective of this work is to study the electrostatic response of materials accounting for boundary surfaces with their own (electrostatic) constitutive behaviour. The electric response of materials with (electrostatic) energetic boundary surfaces (surfaces that possess material properties and constitutive structures different from those of the bulk) is formulated in a consistent manner using a variational framework. The forces and moments that appear due to bulk and surface electric fields are also expressed in a consistent manner. The theory is accompanied by numerical examples on porous materials using the finite-element method, where the influence of the surface electric permittivity on the electric displacement, the polarization stress and the Maxwell stress is examined.

  11. Where do developing countries go after Doha?:An analysis of WTO positions and potential alliances

    OpenAIRE

    Bjørnskov, Christian; Lind, Kim Martin Hjorth

    2002-01-01

    In the wake of the November 2001 Ministerial Conference in Doha, the positions of most members of the World Trade Organisation diverge, reflecting a large extent of disagreement within the organisation. This paper attempts to organise these positions and thereby inspire a debate on the possibility of collusion in the coming round of trade negotiations with a particular focus on the options of developing countries. Members' positions on a range of issues identified as important in the coming r...

  12. Anomalous positive flatband voltage shifts in metal gate stacks containing rare-earth oxide capping layers

    KAUST Repository

    Caraveo-Frescas, J. A.; Hedhili, Mohamed N.; Wang, H.; Schwingenschlö gl, Udo; Alshareef, Husam N.

    2012-01-01

    measure a ∼350 mV negative shift with the Si overlayer present and a ∼110 mV positive shift with the Si overlayer removed. This effect is correlated to a positive change in the average electrostatic potential at the TaN/dielectric interface which

  13. Charge sniffer for electrostatics demonstrations

    Science.gov (United States)

    Dinca, Mihai P.

    2011-02-01

    An electronic electroscope with a special design for demonstrations and experiments on static electricity is described. It operates as an electric charge sniffer by detecting slightly charged objects when they are brought to the front of its sensing electrode. The sniffer has the advantage of combining high directional sensitivity with a logarithmic bar display. It allows for the identification of electric charge polarity during charge separation by friction, peeling, electrostatic induction, batteries, or secondary coils of power transformers. Other experiments in electrostatics, such as observing the electric field of an oscillating dipole and the distance dependence of the electric field generated by simple charge configurations, are also described.

  14. Electrostatic solitons in unmagnetized hot electron-positron-ion plasmas

    International Nuclear Information System (INIS)

    Mahmood, S.; Ur-Rehman, H.

    2009-01-01

    Linear and nonlinear electrostatic waves in unmagnetized electron-positron-ion (e-p-i) plasmas are studied. The electrons and positrons are assumed to be isothermal and dynamic while ions are considered to be stationary to neutralize the plasma background only. It is found that both upper (fast) and lower (slow) Langmuir waves can propagates in such a type of pair (e-p) plasma in the presence of ions. The small amplitude electrostatic Korteweg-de Vries (KdV) solitons are also obtained using reductive perturbation method. The electrostatic potential hump structures are found to exist when the temperature of the electrons is larger than the positrons, while the electrostatic potential dips are obtained in the reverse temperature conditions for electrons and positrons in e-p-i plasmas. The numerical results are also shown for illustration. The effects of different ion concentration and temperature ratios of electrons and positrons, on the formation of nonlinear electrostatic potential structures in e-p-i plasmas are also discussed.

  15. AESOP: A Python Library for Investigating Electrostatics in Protein Interactions.

    Science.gov (United States)

    Harrison, Reed E S; Mohan, Rohith R; Gorham, Ronald D; Kieslich, Chris A; Morikis, Dimitrios

    2017-05-09

    Electric fields often play a role in guiding the association of protein complexes. Such interactions can be further engineered to accelerate complex association, resulting in protein systems with increased productivity. This is especially true for enzymes where reaction rates are typically diffusion limited. To facilitate quantitative comparisons of electrostatics in protein families and to describe electrostatic contributions of individual amino acids, we previously developed a computational framework called AESOP. We now implement this computational tool in Python with increased usability and the capability of performing calculations in parallel. AESOP utilizes PDB2PQR and Adaptive Poisson-Boltzmann Solver to generate grid-based electrostatic potential files for protein structures provided by the end user. There are methods within AESOP for quantitatively comparing sets of grid-based electrostatic potentials in terms of similarity or generating ensembles of electrostatic potential files for a library of mutants to quantify the effects of perturbations in protein structure and protein-protein association. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  16. Anharmonic 1D actuator model including electrostatic and Casimir forces with fractional damping perturbed by an external force

    Science.gov (United States)

    Mansoori Kermani, Maryam; Dehestani, Maryam

    2018-06-01

    We modeled a one-dimensional actuator including the Casimir and electrostatic forces perturbed by an external force with fractional damping. The movable electrode was assumed to oscillate by an anharmonic elastic force originated from Murrell-Mottram or Lippincott potential. The nonlinear equations have been solved via the Adomian decomposition method. The behavior of the displacement of the electrode from equilibrium position, its velocity and acceleration were described versus time. Also, the changes of the displacement have been investigated according to the frequency of the external force and the voltage of the electrostatic force. The convergence of the Adomian method and the effect of the orders of expansion on the displacement versus time, frequency, and voltage were discussed. The pull-in parameter was obtained and compared with the other models in the literature. This parameter was described versus the equilibrium position and anharmonicity constant.

  17. Anharmonic 1D actuator model including electrostatic and Casimir forces with fractional damping perturbed by an external force

    Science.gov (United States)

    Mansoori Kermani, Maryam; Dehestani, Maryam

    2018-03-01

    We modeled a one-dimensional actuator including the Casimir and electrostatic forces perturbed by an external force with fractional damping. The movable electrode was assumed to oscillate by an anharmonic elastic force originated from Murrell-Mottram or Lippincott potential. The nonlinear equations have been solved via the Adomian decomposition method. The behavior of the displacement of the electrode from equilibrium position, its velocity and acceleration were described versus time. Also, the changes of the displacement have been investigated according to the frequency of the external force and the voltage of the electrostatic force. The convergence of the Adomian method and the effect of the orders of expansion on the displacement versus time, frequency, and voltage were discussed. The pull-in parameter was obtained and compared with the other models in the literature. This parameter was described versus the equilibrium position and anharmonicity constant.

  18. Some theoretical aspects of electrostatic double layers

    International Nuclear Information System (INIS)

    Carlqvist, P.

    1978-11-01

    A review is presented of the main results of the theoretical work on electrostatic double layers. The general properties of double layers are first considered. Then the time-independent double layer is discussed. The discussion deals with the potential drop, the thickness, and some necessary criteria for the existence and stability of the layer. As a complement to the study of the timeindependent double layer a few remarks are also made upon the timedependent double layer. Finally the question of how double layers are formed and maintained is treated. Several possible formation mechanisms are considered. (author)

  19. Stray capacitances in the watt balance operation: electrostatic forces

    DEFF Research Database (Denmark)

    Quagliotti, Danilo; Mana, G.

    2014-01-01

    In a watt balance, stray capacitances exist between the coil and the magnet. Since the electric current flowing in the coil creates a difference in electric potentials between the coil and magnet, their electrostatic interactions must be taken into account. This paper reports the results of a fin......In a watt balance, stray capacitances exist between the coil and the magnet. Since the electric current flowing in the coil creates a difference in electric potentials between the coil and magnet, their electrostatic interactions must be taken into account. This paper reports the results...

  20. Positive emotion in distress as a potentially effective emotion regulation strategy for depression: A preliminary investigation.

    Science.gov (United States)

    Yamaguchi, Keiko; Ito, Masaya; Takebayashi, Yoshitake

    2018-03-12

    Emotion regulation utilizing positive emotion during negative emotional states might be one of the effective ways to alleviate depression and anxiety problems among people with emotional disorders. This study examined the psychometric properties and incremental validity of the Positive Emotion In Distress Scale (PEIDS), a newly developed self-report scale, in a sample of university students in Japan. To examine the psychometric properties of the PEIDS, the scale was completed by Japanese university students (396 men and 363 women; mean age of 19.92). Participants additionally answered the Emotion Regulation Questionnaire, Rumination and Reflection Questionnaire - Shorter Version, Affective Style Questionnaire, Positive and Negative Affective Schedule, and Hospital Anxiety and Depression Scale. The survey was conducted at two time points separated by 1 month to assess test-retest reliability and validity of the PEIDS. Exploratory and confirmatory factor analyses confirmed a one-factor structure. Reliability was confirmed by high internal consistency and test-retest stability; the convergent and discriminant validity was confirmed by correlations with related and unrelated variables. The results of hierarchical regression analyses demonstrated that positive emotion in distress might predict depression above and beyond the effect of baseline depression and other common emotion regulation strategies. The PEIDS showed acceptable reliability and validity within young adults and a non-clinical population in Japan. Further research will be needed to examine the effect of positive emotion among clinical populations. Previous research suggests that positive emotions play a key role in recovery from depression and anxiety problems through some forms of psychotherapy. The Positive Emotion In Distress Scale (PEIDS) measures individual differences regarding the extent to which people can experience positive emotions in negative emotional states. Results suggested that the

  1. Structural and electrostatic regularities in interactions of homeodomains with operator DNA

    International Nuclear Information System (INIS)

    Chirgadze, Yu.N.; Ivanov, V.V.; Polozov, R.V.; Zheltukhin, E.I.; Sivozhelezov, V.S.

    2008-01-01

    Interfaces of five DNA-homeodomain complexes, selected by similarity of structures and patterns of contacting residues, were compared. The long-range stage of the recognition process was characterized by electrostatic potentials about 5 Angstroem away from molecular surfaces of both protein and DNA. For proteins, clear positive potential is displayed only at the side contacting DNA, while grooves of DNA display a strong negative potential. Thus, one functional role of electrostatics is guiding the protein into the DNA major groove. At the close-range stage, neutralization of the phosphate charges by positively charged residues is necessary for decreasing the strong electrostatic potential of DNA, allowing nucleotide bases to participate in formation of protein-DNA atomic contacts in the interface. The protein's recognizing α-helix was shown to form both invariant and variable contacts with DNA by means of the certain specific side groups, with water molecules participating in some of the contacts. The invariant contacts included the highly specific Asn-Ade hydrogen bonds, nonpolar contacts of hydrophobic amino acids serving as barriers for fixing the protein on DNA, and interface water molecule cluster providing local mobility necessary for the dissociation of the protein-DNA complex. One of the water molecules is invariant and located at the center of the interface. Invariant contacts of the proteins are mostly formed with the TAAT motive of promoter DNA's forward strand. They distinguish the homeodomain family from other DNA-binding proteins. Variable contacts are formed with the reverse strand and are responsible for the binding specificity within the homeodomain family

  2. Identifying potential engaging leaders within medical education: The role of positive influence on peers.

    Science.gov (United States)

    Michalec, Barret; Veloski, J Jon; Hojat, Mohammadreza; Tykocinski, Mark L

    2014-08-26

    Abstract Background: Previous research has paid little to no attention towards exploring methods of identifying existing medical student leaders. Aim: Focusing on the role of influence and employing the tenets of the engaging leadership model, this study examines demographic and academic performance-related differences of positive influencers and if students who have been peer-identified as positive influencers also demonstrate high levels of genuine concern for others. Methods: Three separate fourth-year classes were asked to designate classmates that had significant positive influences on their professional and personal development. The top 10% of those students receiving positive influence nominations were compared with the other students on demographics, academic performance, and genuine concern for others. Results: Besides age, no demographic differences were found between positive influencers and other students. High positive influencers were not found to have higher standardized exam scores but did receive significantly higher clinical clerkship ratings. High positive influencers were found to possess a higher degree of genuine concern for others. Conclusion: The findings lend support to (a) utilizing the engaging model to explore leaders and leadership within medical education, (b) this particular method of identifying existing medical student leaders, and (c) return the focus of leadership research to the power of influence.

  3. Continuous electrodeionization through electrostatic shielding

    International Nuclear Information System (INIS)

    Dermentzis, Konstantinos

    2008-01-01

    We report a new continuous electrodeionization cell with electrostatically shielded concentrate compartments or electrochemical Faraday cages formed by porous electronically and ionically conductive media, instead of permselective ion exchange membranes. Due to local elimination of the applied electric field within the compartments, they electrostatically retain the incoming ions and act as 'electrostatic ion pumps' or 'ion traps' and therefore concentrate compartments. The porous media are chemically and thermally stable. Electrodeionization or electrodialysis cells containing such concentrate compartments in place of ion exchange membranes can be used to regenerate ion exchange resins and produce deionized water, to purify industrial effluents and desalinate brackish or seawater. The cells can work by polarity reversal without any negative impact to the deionization process. Because the electronically and ionically active media constituting the electrostatically shielded concentrate compartments are not permselective and coions are not repelled but can be swept by the migrating counterions, the cells are not affected by the known membrane associated limitations, such as concentration polarization or scaling and show an increased current efficiency

  4. Linac boosters for electrostatic machines

    International Nuclear Information System (INIS)

    Ben-Zvi, I.; Brookhaven National Lab., Upton, NY

    1990-01-01

    A survey of linacs which are used as boosters to electrostatic accelerators is presented. Machines both operating and under construction, copper and superconducting, are reviewed. The review includes data on the accelerating structures, performance, rf and control, beam optics, budget, vacuum and cryogenics. (orig.)

  5. Inertial electrostatic confinement I(IEC) neutron sources

    International Nuclear Information System (INIS)

    Nebel, R.A.; Barnes, D.C.; Caramana, E.J.; Janssen, R.D.; Nystrom, W.D.; Tiouririne, T.N.; Trent, B.C.; Miley, G.H.; Javedani, J.

    1995-01-01

    Inertial Electrostatic Confinement (IEC) is one of the earliest plasma confinement concepts, having first been suggested by P.T. Farnsworth in the 1950s. The concept involves a simple apparatus of concentric spherical electrostatic grids or a combination of grids and magnetic fields. An electrostatic structure is formed from the confluence of electron or ion beams. Gridded IEC systems have demonstrated neutron yields as high as 2*10 [10]. neutrons/sec in steady state. These systems have considerable potential as small, inexpensive, portable neutron sources for assaying applications. Neutron tomography is also a potential application. This paper discusses the IEC concept and how it can be adapted to a steady-state assaying source and an intense pulsed neutron source. Theoretical modeling and experimental results are presented

  6. Atomic processes in Inertial Electrostatic Confinement (IEC) devices

    International Nuclear Information System (INIS)

    Nebel, R.A.; Turner, L.; Tiouririne, T.N.; Barnes, D.C.; Nystrom, W.D.; Bussard, R.W.; Miley, G.H.; Javedani, J.; Yamamoto, Y.

    1993-01-01

    Inertial Electrostatic Confinement (IEC) is one of the earliest plasma confinement concepts, having first been suggested by P. T. Farnsworth in the 1950s. The concept involves a simple apparatus of concentric spherical electrostatic grids or a combination of grids and magnetic fields. An electrostatic structure is formed from the confluence of electron or ion beams. Gridded IEC systems have demonstrated neutron yields as high as 2*10 10 neutrons/sec. These systems have considerable potential as small, inexpensive, portable neutron sources for assaying applications. Neutron tomography is also a potential application. Atomic physics effects strongly influence the performance of all of these systems. Important atomic effects include elastic scattering, ionization, excitation, and charge exchange. This paper discusses how an IEC system is influenced by these effects and how to design around them. Theoretical modeling and experimental results are presented

  7. Electrostatic energies of crystals in space of arbitrary dimension

    International Nuclear Information System (INIS)

    Takemoto, Hiroki; Tohsaki, Akihiro

    2005-01-01

    We present a new method to evaluate electrostatic energies under periodic boundary conditions. The lattice sum of Coulomb potentials is expressed through the elliptic Q function of the third kind. This enables us to evaluate electrostatic energies of ionic crystals very accurately and with very rapid convergence. In particular, we study the dimensionality of the electrostatic energies of NaCl-type and CsCl-type crystals, whose expressions are functions of the spatial dimension treated as a real number. Furthermore, the expressions we obtain are applicable to computational simulations using molecular dynamics and Monte Carlo methods. We generate random distributions of point charges under periodic boundary conditions, and we analyze the randomness and its anisotropy on the basis of potential distributions. (author)

  8. Effects of electrostatic trapping on neoclassical transport in an impure plasma

    International Nuclear Information System (INIS)

    Hazeltine, R.D.; Ware, A.A.

    1976-01-01

    Contamination of a toroidally confined plasma by highly charged impurity ions can produce substantial variation of the electrostatic potential within a magnetic surface. The resulting electrostatic trapping and electrostatic drifts, of hydrogen ions and electrons, yields significant alterations in neoclassical transport theory. A transport theory which includes these effects is derived from the drift-kinetic equation, with an ordering scheme modeled on the parameters of recent tokamak experiments. The theory self-consistently predicts that electrostatic trapping should be fully comparable to magnetic trapping, and provides transport coefficients which, depending quadratically upon the temperature and pressure gradients, differ markedly from the standard neoclassical coefficients for a pure plasma

  9. Effects of RNA branching on the electrostatic stabilization of viruses

    NARCIS (Netherlands)

    Erdemci-Tandogan, Gonca; Wagner, Jef; Schoot, Paul van der|info:eu-repo/dai/nl/102140618; Podgornik, Rudolf; Zandi, Roya

    2016-01-01

    Many single-stranded (ss) RNA viruses self assemble from capsid protein subunits and the nucleic acid to form an infectious virion. It is believed that the electrostatic interactions between the negatively charged RNA and the positively charged viral capsid proteins drive the encapsidation, although

  10. Electrostatic Self-Assembly of Polysaccharides into Nanofibers

    DEFF Research Database (Denmark)

    Mendes, Ana Carina Loureiro; Strohmenger, Timm; Goycoolea, Francisco

    2017-01-01

    In this study, the anionic polysaccharide Xanthan gum (X) was mixed with positively charged Chitosan oligomers (ChO), and used as building blocks, to generate novel nanofibers by electrostatic self-assembly in aqueous conditions. Different concentrations, ionic strength and order of mixing of both...

  11. Technique for enhancing the power output of an electrostatic generator employing parametric resonance

    Science.gov (United States)

    Post, Richard F.

    2016-02-23

    A circuit-based technique enhances the power output of electrostatic generators employing an array of axially oriented rods or tubes or azimuthal corrugated metal surfaces for their electrodes. During generator operation, the peak voltage across the electrodes occurs at an azimuthal position that is intermediate between the position of minimum gap and maximum gap. If this position is also close to the azimuthal angle where the rate of change of capacity is a maximum, then the highest rf power output possible for a given maximum allowable voltage at the minimum gap can be attained. This rf power output is then coupled to the generator load through a coupling condenser that prevents suppression of the dc charging potential by conduction through the load. Optimized circuit values produce phase shifts in the rf output voltage that allow higher power output to occur at the same voltage limit at the minimum gap position.

  12. Disciplinary style and child abuse potential: association with indicators of positive functioning in children with behavior problems.

    Science.gov (United States)

    Rodriguez, Christina M; Eden, Ann M

    2008-06-01

    Reduction of ineffective parenting is promoted in parent training components of mental health treatment for children with externalizing behavior disorders, but minimal research has considered whether disciplinary style and lower abuse risk could also be associated with positive functioning in such children. The present study examined whether lower dysfunctional disciplinary style and child abuse risk was associated with children's positive self-concept, adaptive attributional style, and hopefulness. Recruited from children undergoing treatment for disruptive behavior disorders, 69 mother-child dyads participated, with maternal caregivers reporting on their disciplinary style and abuse potential and children reporting independently on their positive functioning (adaptive attributional style, overall self-concept, and hopelessness). Findings supported the hypothesized association, with lower scores on mothers' dysfunctional discipline style and abuse potential significantly predicting children's reported positive functioning. Future research directions pertaining to more adaptive functioning in children with behavior problems are discussed.

  13. Electrostatic stabilizer for a passive magnetic bearing system

    Science.gov (United States)

    Post, Richard F.

    2015-11-24

    Electrostatic stabilizers are provided for passive bearing systems composed of annular magnets having a net positive stiffness against radial displacements and that have a negative stiffness for vertical displacements, resulting in a vertical instability. Further embodiments are shown of a radial electrostatic stabilizer geometry (using circuitry similar to that employed in the vertical stabilizer). This version is suitable for stabilizing radial (lateral) displacements of a rotor that is levitated by annular permanent magnets that are stable against vertical displacements but are unstable against radial displacements.

  14. Ascending colon rotation following patient positional change during CT colonography: a potential pitfall in interpretation

    International Nuclear Information System (INIS)

    Kim, Ji Yeon; Park, Seong Ho; Lee, Seung Soo; Kim, Ah Young; Ha, Hyun Kwon

    2011-01-01

    To investigate the degree and pattern of ascending colonic rotation as patients moved from supine to prone positions during CTC. A search of our CTC and colonoscopy database found 37 patients (43 eligible lesions) who fulfilled the following criteria: colonoscopy-proven sessile polyps ≥6 mm in the straight mid-ascending colon, lesion visualisation in both supine and prone CTC, and optimal colonic distension. A coordinate system was developed to designate the polyp radial location ( ) along the luminal circumference, unaffected by rotation of the torso. The degree/direction of polyp radial location change (i.e. ascending colonic rotation) between supine and prone positions correlated with anthropometric measurements. Movement from supine to prone positions resulted in a change in the radial polyp location of between -23 and 79 (median, 21 ), demonstrating external rotation of the ascending colon in almost all cases (2 to 79 in 36/37 patients and 42/43 lesions). The degree/direction of rotation mildly correlated with the degree of abdominal compression in the anterior-posterior direction in prone position (r = 0.427 [P = 0.004] and r = 0.404 [P = 0.007]). The ascending colon was usually found to rotate externally as patients moved from supine to prone positions, partly dependent on the degree of abdominal compression. (orig.)

  15. A Rising Female Empire? : Exploring the potential barriers women face in achieving leadership positions in the humanitarian sector

    OpenAIRE

    Eriksson, Lina Elisabeth

    2015-01-01

    This research aims to explore how women and men view and perceive potential barriers to women achieving leadership positions in the humanitarian sector. Female leadership is so far an under-researched area within the humanitarian sector, so it is unknown whether females encounter any barriers in accessing and attaining leadership positions. Three categories were identified; identity, perception and challenges through which the views and barriers are explored. Semi-structured interviews were c...

  16. A strong focussing cylindrical electrostatic quadrupole

    International Nuclear Information System (INIS)

    Sheng Yaochang

    1986-01-01

    The construction and performance of small cylindrical electrostatic quadrupole, which is installed in JM-400 pulse electrostatic accelerator, are described. This electrostatic quadrupole is not only used in neutron generator, but also suitable for ion injector as well as for low energy electron accelerator

  17. On the construction of coherent states of position dependent mass Schroedinger equation endowed with effective potential

    International Nuclear Information System (INIS)

    Chithiika Ruby, V.; Senthilvelan, M.

    2010-01-01

    In this paper, we propose an algorithm to construct coherent states for an exactly solvable position dependent mass Schroedinger equation. We use point canonical transformation method and obtain ground state eigenfunction of the position dependent mass Schroedinger equation. We fix the ladder operators in the deformed form and obtain explicit expression of the deformed superpotential in terms of mass distribution and its derivative. We also prove that these deformed operators lead to minimum uncertainty relations. Further, we illustrate our algorithm with two examples, in which the coherent states given for the second example are new.

  18. Exact solutions of the Schrodinger equation with the position-dependent mass for a hard-core potential

    International Nuclear Information System (INIS)

    Dong Shihai; Lozada-Cassou, M.

    2005-01-01

    The exact solutions of two-dimensional Schrodinger equation with the position-dependent mass for a hard-core potential are obtained. The eigenvalues related to the position-dependent masses μ 1 and μ 2 , the potential well depth V 0 and the effective range r 0 can be calculated by the boundary condition. We generalize this quantum system to three-dimensional case. The special cases for l=0,1 are studied in detail. For l=0 and c=0, we find that the energy levels will increase with the parameters μ 2 , V 0 and r 0 if μ 1 >μ 2

  19. Electrostatic Model Applied to ISS Charged Water Droplet Experiment

    Science.gov (United States)

    Stevenson, Daan; Schaub, Hanspeter; Pettit, Donald R.

    2015-01-01

    The electrostatic force can be used to create novel relative motion between charged bodies if it can be isolated from the stronger gravitational and dissipative forces. Recently, Coulomb orbital motion was demonstrated on the International Space Station by releasing charged water droplets in the vicinity of a charged knitting needle. In this investigation, the Multi-Sphere Method, an electrostatic model developed to study active spacecraft position control by Coulomb charging, is used to simulate the complex orbital motion of the droplets. When atmospheric drag is introduced, the simulated motion closely mimics that seen in the video footage of the experiment. The electrostatic force's inverse dependency on separation distance near the center of the needle lends itself to analytic predictions of the radial motion.

  20. Characteristics of electrostatic solitary waves observed in the plasma sheet boundary: Statistical analyses

    Directory of Open Access Journals (Sweden)

    H. Kojima

    1999-01-01

    Full Text Available We present the characteristics of the Electrostatic Solitary Waves (ESW observed by the Geotail spacecraft in the plasma sheet boundary layer based on the statistical analyses. We also discuss the results referring to a model of ESW generation due to electron beams, which is proposed by computer simulations. In this generation model, the nonlinear evolution of Langmuir waves excited by electron bump-on-tail instabilities leads to formation of isolated electrostatic potential structures corresponding to "electron hole" in the phase space. The statistical analyses of the Geotail data, which we conducted under the assumption that polarity of ESW potentials is positive, show that most of ESW propagate in the same direction of electron beams, which are observed by the plasma instrument, simultaneously. Further, we also find that the ESW potential energy is much smaller than the background electron thermal energy and that the ESW potential widths are typically shorter than 60 times of local electron Debye length when we assume that the ESW potentials travel in the same velocity of electron beams. These results are very consistent with the ESW generation model that the nonlinear evolution of electron bump-on-tail instability leads to the formation of electron holes in the phase space.

  1. Functionally Independent Components of the Late Positive Event-Related Potential During Visual Spatial Attention

    National Research Council Canada - National Science Library

    Makeig, Scott; Westeifleld, Marissa; Jung, Tzyy-Ping; Covington, James; Townsend, Jeanne; Sejnowski, Terrence J; Courchesne, Eric

    1999-01-01

    Human event-related potentials (ERPs) were recorded from 10 subjects presented with visual target and nontarget stimuli at five screen locations and responding to targets presented at one of the locations...

  2. Position-dependent patterning of spontaneous action potentials in immature cochlear inner hair cells

    Science.gov (United States)

    Johnson, Stuart L.; Eckrich, Tobias; Kuhn, Stephanie; Zampini, Valeria; Franz, Christoph; Ranatunga, Kishani M.; Roberts, Terri P.; Masetto, Sergio; Knipper, Marlies; Kros, Corné J.; Marcotti, Walter

    2011-01-01

    Spontaneous action potential activity is crucial for mammalian sensory system development. In the auditory system, patterned firing activity has been observed in immature spiral ganglion cells and brain-stem neurons and is likely to depend on cochlear inner hair cell (IHC) action potentials. It remains uncertain whether spiking activity is intrinsic to developing IHCs and whether it shows patterning. We found that action potentials are intrinsically generated by immature IHCs of altricial rodents and that apical IHCs exhibit bursting activity as opposed to more sustained firing in basal cells. We show that the efferent neurotransmitter ACh, by fine-tuning the IHC’s resting membrane potential (Vm), is crucial for the bursting pattern in apical cells. Endogenous extracellular ATP also contributes to the Vm of apical and basal IHCs by activating SK2 channels. We hypothesize that the difference in firing pattern along the cochlea instructs the tonotopic differentiation of IHCs and auditory pathway. PMID:21572434

  3. Heating of charged particles by electrostatic wave propagating perpendicularly to uniform magnetic field

    International Nuclear Information System (INIS)

    Niu, Keishiro; Shimojo, Takashi.

    1978-02-01

    Increase in kinetic energy of a charged particle, affected by an electrostatic wave propagating perpendicularly to a uniform magnetic field, is obtained for both the initial and later stages. Detrapping time of the particle from the potential dent of the electrostatic wave and energy increase during trapping of the particle is analytically derived. Numerical simulations are carried out to support theoretical results. (auth.)

  4. Structural changes at the myrtenol backbone reverse its positive allosteric potential into inhibitory GABAA receptor modulation

    DEFF Research Database (Denmark)

    Milanos, Sinem; Kuenzel, Katharina; Gilbert, Daniel F

    2017-01-01

    monoterpenes, e.g. myrtenol as positive allosteric modulator at α1β2 GABAA receptors. Here, along with pharmacophore-based virtual screening studies, we demonstrate that scaffold modifications of myrtenol resulted in loss of modulatory activity. Two independent approaches, fluorescence-based compound analysis...

  5. Beyond 1984: The Positive and Negative Potential of Computer Supported School Focused Information Systems.

    Science.gov (United States)

    Klein, Susan S.

    Although educators' use of computers to track student and school information with the attendant positive and negative outcomes is still in an early stage of development, accessible data from such systems could improve the objective rationality of educational and instructional decision-making as long as no one places unwarranted credibility in the…

  6. Assessment of potential false positives via orbitrap-based untargeted lipidomics from rat tissues.

    Science.gov (United States)

    Xu, Lina; Wang, Xueying; Jiao, Yupei; Liu, Xiaohui

    2018-02-01

    Untargeted lipidomics is increasingly popular due to the broad coverage of lipid species. Data dependent MS/MS acquisition is commonly used in order to acquire sufficient information for confident lipid assignment. However, although lipids are identified based on MS/MS confirmation, a number of false positives are still observed. Here, we discuss several causes of introducing lipid false identifications in untargeted analysis. Phosphotidylcholines and cholesteryl esters generate in-source fragmentation to produce dimethylated phosphotidylethanolamine and free cholesterol. Dimerization of fatty acid results in false identification of fatty acid ester of hydroxyl fatty acid. Realizing these false positives is able to improve confidence of results acquired from untargeted analysis. Besides, thresholds are established for lipids identified using LipidSearch v4.1.16 software to reduce unreliable results. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. A Potential Role for mu-Opioids in Mediating the Positive Effects of Gratitude.

    Science.gov (United States)

    Henning, Max; Fox, Glenn R; Kaplan, Jonas; Damasio, Hanna; Damasio, Antonio

    2017-01-01

    Gratitude is a complex emotional feeling associated with universally desirable positive effects in personal, social, and physiological domains. Why or how gratitude achieves these functional outcomes is not clear. Toward the goal of identifying its' underlying physiological processes, we recently investigated the neural correlates of gratitude. In our study, participants were exposed to gratitude-inducing stimuli, and rated each according to how much gratitude it provoked. As expected, self-reported gratitude intensity correlated with brain activity in distinct regions of the medial pre-frontal cortex associated with social reward and moral cognition. Here we draw from our data and existing literature to offer a theoretical foundation for the physiological correlates of gratitude. We propose that mu-opioid signaling (1) accompanies the mental experience of gratitude, and (2) may account for the positive effects of gratitude on social relationships, subjective wellbeing, and physiological health.

  8. Low-frequency electrostatic waves in the ionospheric E region

    Energy Technology Data Exchange (ETDEWEB)

    Krane, B [NDRE, Box 25, N-2027 Kjeller (Norway); Pecseli, H L; Sato, H [Physics Department, University of Oslo, PO Box 1048 Blindern, N-0316 Oslo (Norway); Trulsen, J [Institute of Theoretical Astrophysics, University of Oslo, PO Box 1029 Blindern, N-0315 Oslo (Norway); Wernik, A W, E-mail: hans.pecseli@fys.uio.n [Space Research Center, Polish Academy of Sciences, ul. Bartycka 18a, 00-716 Warsaw (Poland)

    2010-06-15

    Low-frequency electrostatic waves in the ionospheric E region are studied by analyzing data obtained by instrumented rockets. We identify the origin of the enhanced fluctuation level to be the Farley-Buneman instability. The basic information on instability, such as altitude varying spectra and speed of propagation are obtained. Comparison of power spectra for the fluctuations in plasma density and electrostatic potential, respectively, provides information on the electron dynamics. A bispectral analysis gives indications of phase-coherent couplings within the wave spectrum, while higher order structure functions indicate some intermittent features of the turbulence.

  9. Electrostatic field distributions in the Harwell Tandem accelerator

    International Nuclear Information System (INIS)

    Read, P.M.

    1981-11-01

    The electrostatic field distributions in the Harwell Tandem accelerator have been precisely calculated using the electrostatics program FINALE. The results indicate that the accelerator which presently has an upper voltage limit of 6.5 MV has the potential to operate at 8 MV. Such an upgrade could be achieved by a modification to the high voltage terminal. Replacement of the existing accelerator tubes with accelerator tubes capable of a gradient of 1.8 MV/m would also be required. The existing stack may also require replacement. The terminal modification itself would reduce the terminal to tank breakdown frequency. (author)

  10. Flexural-Phonon Scattering Induced by Electrostatic Gating in Graphene

    DEFF Research Database (Denmark)

    Gunst, Tue; Kaasbjerg, Kristen; Brandbyge, Mads

    2017-01-01

    Graphene has an extremely high carrier mobility partly due to its planar mirror symmetry inhibiting scattering by the highly occupied acoustic flexural phonons. Electrostatic gating of a graphene device can break the planar mirror symmetry, yielding a coupling mechanism to the flexural phonons......-limiting factor, and show how the carrier density and temperature scaling of the mobility depends on the electrostatic environment. Our findings may explain the high deformation potential for in-plane acoustic phonons extracted from experiments and, furthermore, suggest a direct relation between device symmetry...

  11. Characterization of zonal flow generation in weak electrostatic turbulence

    International Nuclear Information System (INIS)

    Negrea, M; Petrisor, I; Weyssow, B

    2008-01-01

    The influence of the diamagnetic Kubo number, which is proportional to the diamagnetic drift velocity, on the zonal flow generation by an anisotropic stochastic electrostatic potential is considered from a semi-analytic point of view. The analysis is performed in the weak turbulence limit and as an analytical tool the decorrelation trajectory method is used. It is shown that the fragmentation of the drift wave structures (a signature of the zonal flow generation) is influenced not only by the anisotropy parameter and the electrostatic Kubo number as expected, but also by the diamagnetic Kubo number. Global Lagrangian averages of characteristic quantities are calculated and interpreted

  12. Improved UUV Positioning Using Acoustic Communications and a Potential for Real-Time Networking and Collaboration

    Science.gov (United States)

    2017-06-01

    model the environment is proposed for real-time applications . To be able to establish the submersible vehicle’s position, a tracking algorithm ...approximation, which in certain cases can lead to coarse accuracy in the results. In high frequency applications , however, ray tracing algorithms are very...intelligence techniques, as in the genetic algorithms or simulated annealing algorithms . START Initial Choice for Run UKF for  , , , ,  x R Q

  13. Control of secondary electrons from ion beam impact using a positive potential electrode

    Energy Technology Data Exchange (ETDEWEB)

    Crowley, T. P., E-mail: tpcrowley@xanthotechnologies.com; Demers, D. R.; Fimognari, P. J. [Xantho Technologies, LLC, Madison, Wisconsin 53705 (United States)

    2016-11-15

    Secondary electrons emitted when an ion beam impacts a detector can amplify the ion beam signal, but also introduce errors if electrons from one detector propagate to another. A potassium ion beam and a detector comprised of ten impact wires, four split-plates, and a pair of biased electrodes were used to demonstrate that a low-voltage, positive electrode can be used to maintain the beneficial amplification effect while greatly reducing the error introduced from the electrons traveling between detector elements.

  14. Potential Effects of Climate Change on Treeline Position in the Swedish Mountains

    Directory of Open Access Journals (Sweden)

    Jon Moen

    2004-06-01

    Full Text Available Climate change may strongly influence species distribution and, thus, the structure and function of ecosystems. This paper describes simulated changes in the position of the upper treeline in the Swedish mountains in response to predicted climate change. Data on predicted summer temperature changes, the current position of the treeline, and a digital elevation model were used to predict the position of the treeline over a 100-year timeframe. The results show the treeline advancing upward by 233-667 m, depending on the climate scenario used and location within the mountain chain. Such changes hypothetically caused a 75-85% reduction in treeless alpine heaths, with 60-93% of the remaining areas being scree slopes and boulder fields. For this change to occur, the migration rate of the trees would be in the order of 23-221 m yr-1, which is well within published migration rates for wind-dispersed deciduous trees. The remaining alpine areas would be strongly fragmented. These drastic changes would influence all aspects of mountain ecosystems, including biodiversity conservation and human land-use patterns.

  15. Digital electrostatic acoustic transducer array

    KAUST Repository

    Carreno, Armando Arpys Arevalo

    2016-12-19

    In this paper we present the fabrication and characterization of an array of electrostatic acoustic transducers. The array is micromachined on a silicon wafer using standard micro-machining techniques. Each array contains 2n electrostatic transducer membranes, where “n” is the bit number. Every element of the array has a hexagonal membrane shape structure, which is separated from the substrate by 3µm air gap. The membrane is made out 5µm thick polyimide layer that has a bottom gold electrode on the substrate and a gold top electrode on top of the membrane (250nm). The wafer layout design was diced in nine chips with different array configurations, with variation of the membrane dimensions. The device was tested with 90 V giving and sound output level as high as 35dB, while actuating all the elements at the same time.

  16. Electrostatic accelerators fundamentals and applications

    CERN Document Server

    2005-01-01

    Electrostatic accelerators are an important and widespread subgroup within the broad spectrum of modern, large particle acceleration devices. They are specifically designed for applications that require high-quality ion beams in terms of energy stability and emittance at comparatively low energies (a few MeV). Their ability to accelerate virtually any kind of ion over a continuously tunable range of energies make them a highly versatile tool for investigations in many research fields including, but not limited to, atomic and nuclear spectroscopy, heavy ion reactions, accelerator mass spectroscopy as well as ion-beam analysis and modification. The book is divided into three parts. The first part concisely introduces the field of accelerator technology and techniques that emphasize their major modern applications. The second part treats the electrostatic accelerator per se: its construction and operational principles as well as its maintenance. The third part covers all relevant applications in which electrosta...

  17. Frontier applications of electrostatic accelerators

    Science.gov (United States)

    Liu, Ke-Xin; Wang, Yu-Gang; Fan, Tie-Shuan; Zhang, Guo-Hui; Chen, Jia-Er

    2013-10-01

    Electrostatic accelerator is a powerful tool in many research fields, such as nuclear physics, radiation biology, material science, archaeology and earth sciences. Two electrostatic accelerators, one is the single stage Van de Graaff with terminal voltage of 4.5 MV and another one is the EN tandem with terminal voltage of 6 MV, were installed in 1980s and had been put into operation since the early 1990s at the Institute of Heavy Ion Physics. Many applications have been carried out since then. These two accelerators are described and summaries of the most important applications on neutron physics and technology, radiation biology and material science, as well as accelerator mass spectrometry (AMS) are presented.

  18. Tandem electrostatic accelerators for BNCT

    International Nuclear Information System (INIS)

    Ma, J.C.

    1994-01-01

    The development of boron neutron capture therapy (BNCT) into a viable therapeutic modality will depend, in part, on the availability of suitable neutron sources compatible with installation in a hospital environment. Low-energy accelerator-based intense neutron sources, using electrostatic or radio frequency quadrupole proton accelerators have been suggested for this purpose and are underdevelopment at several laboratories. New advances in tandem electrostatic accelerator technology now allow acceleration of the multi-milliampere proton beams required to produce therapeutic neutron fluxes for BNCT. The relatively compact size, low weight and high power efficiency of these machines make them particularly attractive for installation in a clinical or research facility. The authors will describe the limitations on ion beam current and available neutron flux from tandem accelerators relative to the requirements for BNCT research and therapy. Preliminary designs and shielding requirements for a tandern accelerator-based BNCT research facility will also be presented

  19. Digital electrostatic acoustic transducer array

    KAUST Repository

    Carreno, Armando Arpys Arevalo; Castro, David; Conchouso Gonzalez, David; Kosel, Jü rgen; Foulds, Ian G.

    2016-01-01

    In this paper we present the fabrication and characterization of an array of electrostatic acoustic transducers. The array is micromachined on a silicon wafer using standard micro-machining techniques. Each array contains 2n electrostatic transducer membranes, where “n” is the bit number. Every element of the array has a hexagonal membrane shape structure, which is separated from the substrate by 3µm air gap. The membrane is made out 5µm thick polyimide layer that has a bottom gold electrode on the substrate and a gold top electrode on top of the membrane (250nm). The wafer layout design was diced in nine chips with different array configurations, with variation of the membrane dimensions. The device was tested with 90 V giving and sound output level as high as 35dB, while actuating all the elements at the same time.

  20. Anode wire in cylindrical cathode tube : destabilizing electrostatic force

    CERN Document Server

    Wertelaers, P

    2017-01-01

    A two-dimensional -- cross-sectional -- discussion suffices. The tube is offset, and the electrostatic potential is found analytically with perturbative methods. Then, the force is established with the Maxwell stress tensor. Alternatively, trying to find the force with energy methods, fails. Finally, finite element tests are performed in order to report on the degree of non-linearity for large offsets.

  1. Effects of electrostatic interactions on electron transfer reactions

    International Nuclear Information System (INIS)

    Hickel, B.

    1987-01-01

    The fast reactions of electron transfer are studied by pulse radiolysis. This technique allows the creation in about 10 -8 second radicals and radical ions with high redox potentials. For solvated electrons electrostatic interaction on the kinetics of reactions limited by diffusion is described by Debye's equation when ion mobility is known. Deviation from theory can occur in ion pairs formation. This is evidenced experimentally for anions by cation complexation with a cryptate. Relatively slow reactions are more sensitive to electrostatic interactions than limited by diffusion. If ion pairs are not formed kinetics constant depends on dielectric constant of solvent and reaction radius. Experimentally is studied the effect of electrostatic interaction on the rate constants of solvated electrons with anions and cations in water-ethanol mixtures where the dielectric constant change from 80 to 25 at room temperature. 17 refs

  2. Position-dependent patterning of spontaneous action potentials in immature cochlear inner hair cells.

    Science.gov (United States)

    Johnson, Stuart L; Eckrich, Tobias; Kuhn, Stephanie; Zampini, Valeria; Franz, Christoph; Ranatunga, Kishani M; Roberts, Terri P; Masetto, Sergio; Knipper, Marlies; Kros, Corné J; Marcotti, Walter

    2011-06-01

    Spontaneous action potential activity is crucial for mammalian sensory system development. In the auditory system, patterned firing activity has been observed in immature spiral ganglion and brain-stem neurons and is likely to depend on cochlear inner hair cell (IHC) action potentials. It remains uncertain whether spiking activity is intrinsic to developing IHCs and whether it shows patterning. We found that action potentials were intrinsically generated by immature IHCs of altricial rodents and that apical IHCs showed bursting activity as opposed to more sustained firing in basal cells. We show that the efferent neurotransmitter acetylcholine fine-tunes the IHC's resting membrane potential (V(m)), and as such is crucial for the bursting pattern in apical cells. Endogenous extracellular ATP also contributes to the V(m) of apical and basal IHCs by triggering small-conductance Ca(2+)-activated K(+) (SK2) channels. We propose that the difference in firing pattern along the cochlea instructs the tonotopic differentiation of IHCs and auditory pathway.

  3. Evaluation of human skin tests for potential dermal irritant and contact sensitizing products: a position paper

    NARCIS (Netherlands)

    Loveren H van; Jong WH de; Garssen J; LPI

    1998-01-01

    Prediction of human cutaneous irritation and sensitization in view of hazard identification has primarily relied on the use of laboratory animals. Such studies in laboratory animals have been very instrumental in the detection of potential contact sensitizing agents. There are however many

  4. Electrostatic septa for SPS extraction

    CERN Multimedia

    1975-01-01

    The extraction system for the N-Area is located in LSS2 (another one for the W-Area, now abandoned, was in LSS6). The electrostatic septum consists of 4 parts, each 3 m long. It is made of W-wires, 0.12 mm thick. The nominal electric field is 100 kV/cm. See also Annual Report 1975, p.175.

  5. Quantitative nanoscale electrostatics of viruses.

    Science.gov (United States)

    Hernando-Pérez, M; Cartagena-Rivera, A X; Lošdorfer Božič, A; Carrillo, P J P; San Martín, C; Mateu, M G; Raman, A; Podgornik, R; de Pablo, P J

    2015-11-07

    Electrostatics is one of the fundamental driving forces of the interaction between biomolecules in solution. In particular, the recognition events between viruses and host cells are dominated by both specific and non-specific interactions and the electric charge of viral particles determines the electrostatic force component of the latter. Here we probe the charge of individual viruses in liquid milieu by measuring the electrostatic force between a viral particle and the Atomic Force Microscope tip. The force spectroscopy data of co-adsorbed ϕ29 bacteriophage proheads and mature virions, adenovirus and minute virus of mice capsids is utilized for obtaining the corresponding density of charge for each virus. The systematic differences of the density of charge between the viral particles are consistent with the theoretical predictions obtained from X-ray structural data. Our results show that the density of charge is a distinguishing characteristic of each virus, depending crucially on the nature of the viral capsid and the presence/absence of the genetic material.

  6. Electrostatic and magnetic fields in bilayer graphene

    Science.gov (United States)

    Jellal, Ahmed; Redouani, Ilham; Bahlouli, Hocine

    2015-08-01

    We compute the transmission probability through rectangular potential barriers and p-n junctions in the presence of a magnetic and electric fields in bilayer graphene taking into account contributions from the full four bands of the energy spectrum. For energy E higher than the interlayer coupling γ1 (E >γ1) two propagation modes are available for transport giving rise to four possible ways for transmission and reflection coefficients. However, when the energy is less than the height of the barrier the Dirac fermions exhibit transmission resonances and only one mode of propagation is available for transport. We study the effect of the interlayer electrostatic potential denoted by δ and variations of different barrier geometry parameters on the transmission probability.

  7. Electrostatic axisymmetric mirror with removable spherical aberration

    International Nuclear Information System (INIS)

    Birmuzaev, S.B.; Serikbaeva, G.S.; Hizirova, M.A.

    1999-01-01

    The electrostatic axisymmetric mirror, assembled from three coaxial cylinders with an equal diameter d and under the potential v1, v2 and v3, was computed. The proportions of geometrical and electric parameters of the mirror, with which the spherical 3-order aberration may be eliminated, were determined. The computation outcomes of the case, when the focal power of the mirror is enough large and the object plane in the focus is out of its field, are presented (Fig. 1 - potentials proportion that makes elimination of the spherical aberration possible; Fig. 2 - the focus coordinates when the spherical aberration is eliminated). The geometrical values are presented by d, and the electric ones are presented by v1. The figures on the curves present a length of the second (middle) electrode. The zero point is located in the middle of the gap between the first and second electrodes The investigated mirror may be used as a lens for the transmission electron microscope

  8. Development of Electrostatically Clean Solar Array Panels

    Science.gov (United States)

    Stern, Theodore G.

    2000-01-01

    Certain missions require Electrostatically Clean Solar Array (ECSA) panels to establish a favorable environment for the operation of sensitive scientific instruments. The objective of this program was to demonstrate the feasibility of an ECSA panel that minimizes panel surface potential below 100mV in LEO and GEO charged particle environments, prevents exposure of solar cell voltage and panel insulating surfaces to the ambient environment, and provides an equipotential, grounded structure surrounding the entire panel. An ECSA panel design was developed that uses a Front Side Aperture-Shield (FSA) that covers all inter-cell areas with a single graphite composite laminate, composite edge clips for connecting the FSA to the panel substrate, and built-in tabs that interconnect the FSA to conductive coated coverglasses using a conductive adhesive. Analysis indicated the ability of the design to meet the ECSA requirements. Qualification coupons and a 0.5m x 0.5m prototype panel were fabricated and tested for photovoltaic performance and electrical grounding before and after exposure to acoustic and thermal cycling environments. The results show the feasibility of achieving electrostatic cleanliness with a small penalty in mass, photovoltaic performance and cost, with a design is structurally robust and compatible with a wide range of current solar panel technologies.

  9. Cancer-associated fibroblasts are positively correlated with metastatic potential of human gastric cancers

    Directory of Open Access Journals (Sweden)

    Zhang Hao

    2010-06-01

    Full Text Available Abstract Background The prognosis of gastric cancer patients is difficult to predict because of defects in establishing the surgical-pathological features. Cancer-associated fibroblasts (CAFs have been found to play prominent role in promoting tumor growth, invasion and metastasis. Thus raises the hypothesis that the extent of CAFs prevalence may help to establish the prognosis of gastric cancer patients. Methods Immunochemistry and realtime-PCR experiments were carried out to compare the expression of proteins which are specific markers of CAFs or secreted by CAFs in the tumor and normal tissue specimens. The extent of CAFs' prevalence was graded according to immunochemical staining, and correlation was further analyzed between CAFs' prevalence and other tumor characteristics which may influence the prognosis of gastric cancer patients. Results Nearly 80 percent of normal gastric tissues were negative or weak positive for CAFs staining, while more than 60 percent of gastric cancer tissues were moderate or strong positive for CAFs staining. Realtime-PCR results also showed significant elevated expression of FAP, SDF-1 and TGF-β1 in gastric cancer tissues compared to normal gastric tissues. Further analysis showed that CAFs' prevalence was correlated with tumor size, depth of the tumor, lymph node metastasis, liver metastasis or peritoneum metastasis. Conclusions Reactive cancer associated fibroblasts (CAFs were frequently accumulated in gastric cancer tissues, and the prevalence of CAFs was correlated with tumor size, depth of the tumor and tumor metastasis, thus give some supports for establishing the prognosis of the gastric cancer patients.

  10. particle simulation for electrostatic oscillation of virtual cathode in relativistic electron beams

    International Nuclear Information System (INIS)

    Chen Deming; Wang Min

    1990-01-01

    The virtual cathode oscillation in relativistic electron beams is studied by a 1-D electrostatic particle simulation code with finite-size-particle model. When injection current is less than the space charge limiting current, electron beam propagates stably and transsmits completely. When injection current exceeds the space charge limit, its propagation is unstable, a part of electrons reflect and the other electrons transsmit. The position and potential of the virtual cathode caused by space charge effects oscillate periodically. When the beam current increases, the virtual cathode position closer to the injection plane and its oscillating region gets narrower, the virtual cathode potential decreases and its amplitude increases, the oscillation frequency increases above the beam plasma frequency

  11. Coulomb torque - a general theory for electrostatic forces in many-body systems

    CERN Document Server

    Khachaturian, A V M

    2003-01-01

    In static experiments that comprise three conducting spheres suspended by torsion wires and held at constant electric potential, a net angular displacement about their centres has been observed. We demonstrate that the observed rotation is consistent with Coulomb's law of electrical forces complemented by Gauss' surface integrals for electrical potential. Analysis demonstrates that electrostatic torque is the result of electrostatic forces acting on an asymmetric distribution of charges residing on the surfaces of the spheres. The asymptotic value for electrostatic torque is proportional to the inverse of the fourth power of separation distance with the rotation direction, up or down taken perpendicular to a plane passing through sphere centres, given explicitly by the equation for torque. The identification of electrostatic torque prompts further analysis of models of matter at all size scales where electrostatic forces are the dominant operative force.

  12. Coulomb torque - a general theory for electrostatic forces in many-body systems

    International Nuclear Information System (INIS)

    Khachatourian, Armik V M; Wistrom, Anders O

    2003-01-01

    In static experiments that comprise three conducting spheres suspended by torsion wires and held at constant electric potential, a net angular displacement about their centres has been observed. We demonstrate that the observed rotation is consistent with Coulomb's law of electrical forces complemented by Gauss' surface integrals for electrical potential. Analysis demonstrates that electrostatic torque is the result of electrostatic forces acting on an asymmetric distribution of charges residing on the surfaces of the spheres. The asymptotic value for electrostatic torque is proportional to the inverse of the fourth power of separation distance with the rotation direction, up or down taken perpendicular to a plane passing through sphere centres, given explicitly by the equation for torque. The identification of electrostatic torque prompts further analysis of models of matter at all size scales where electrostatic forces are the dominant operative force

  13. The Summating Potential Is a Reliable Marker of Electrode Position in Electrocochleography: Cochlear Implant as a Theragnostic Probe.

    Science.gov (United States)

    Helmstaedter, Victor; Lenarz, Thomas; Erfurt, Peter; Kral, Andrej; Baumhoff, Peter

    2017-12-14

    For the increasing number of cochlear implantations in subjects with residual hearing, hearing preservation, and thus the prevention of implantation trauma, is crucial. A method for monitoring the intracochlear position of a cochlear implant (CI) and early indication of imminent cochlear trauma would help to assist the surgeon to achieve this goal. The aim of this study was to evaluate the reliability of the different electric components recorded by an intracochlear electrocochleography (ECochG) as markers for the cochleotopic position of a CI. The measurements were made directly from the CI, combining intrasurgical diagnostics with the therapeutical use of the CI, thus, turning the CI into a "theragnostic probe." Intracochlear ECochGs were measured in 10 Dunkin Hartley guinea pigs of either sex, with normal auditory brainstem response thresholds. All subjects were fully implanted (4 to 5 mm) with a custom six contact CI. The ECochG was recorded simultaneously from all six contacts with monopolar configuration (retroauricular reference electrode). The gross ECochG signal was filtered off-line to separate three of its main components: compound action potential, cochlear microphonic, and summating potential (SP). Additionally, five cochleae were harvested and histologically processed to access the spatial position of the CI contacts. Both ECochG data and histological reconstructions of the electrode position were fitted with the Greenwood function to verify the reliability of the deduced cochleotopic position of the CI. SPs could be used as suitable markers for the frequency position of the recording electrode with an accuracy of ±1/4 octave in the functioning cochlea, verified by histology. Cochlear microphonics showed a dependency on electrode position but were less reliable as positional markers. Compound action potentials were not suitable for CI position information but were sensitive to "cochlear health" (e.g., insertion trauma). SPs directly recorded from

  14. Electrostatically confined quantum rings in bilayer graphene.

    Science.gov (United States)

    Zarenia, M; Pereira, J M; Peeters, F M; Farias, G A

    2009-12-01

    We propose a new system where electron and hole states are electrostatically confined into a quantum ring in bilayer graphene. These structures can be created by tuning the gap of the graphene bilayer using nanostructured gates or by position-dependent doping. The energy levels have a magnetic field (B(0)) dependence that is strikingly distinct from that of usual semiconductor quantum rings. In particular, the eigenvalues are not invariant under a B(0) --> -B(0) transformation and, for a fixed total angular momentum index m, their field dependence is not parabolic, but displays two minima separated by a saddle point. The spectra also display several anticrossings, which arise due to the overlap of gate-confined and magnetically confined states.

  15. The uterine blush. A potential false-positive in Meckel's scan interpretation

    International Nuclear Information System (INIS)

    Fink-Bennett, D.

    1982-01-01

    To determine the presence, prevalence, and clinical importance of /sup 99m/Tc pertechnetate uterine uptake, this retrospective analysis of 71 Meckel's scans was undertaken. Specifically, each study was evaluated for the presence of a focal accumulation of radiotracer cephalad to the bladder. Patients received an intravenous dose of 150 microCi/kg of /sup 99m/Tc pertechnetate. Each study consisted of 15 one minute anterior serial gamma camera images, and a 15, 30, and 60 minute anterior, right lateral and posterior scintiscan. Menstrual histories were obtained from all patients except two. No males (33/33), nor premenstrual (13/13), menopausal (4/4) or posthysterectomy (2/2) patients revealed a uterine blush. Eleven of 15 patients (73%) with regular menses demonstrated a uterine blush. They were in the menstrual or secretory phases of their cycle. Four demonstrated no uterine uptake, had regular periods, but were in the proliferative phase of their cycle. Two with irregular periods, and one with no recorded menstrual history, manifested the blush. Radiotracer should be expected in the uterus during the menstrual and secretory phases of the menstrual cycle. It is a manifestation of a normal physiologic phenomenon, and must be recognized to prevent false-positive Meckel's scan interpretations

  16. Barriers Inhibiting Inquiry-Based Science Teaching and Potential Solutions: Perceptions of Positively Inclined Early Adopters

    Science.gov (United States)

    Fitzgerald, Michael; Danaia, Lena; McKinnon, David H.

    2017-07-01

    In recent years, calls for the adoption of inquiry-based pedagogies in the science classroom have formed a part of the recommendations for large-scale high school science reforms. However, these pedagogies have been problematic to implement at scale. This research explores the perceptions of 34 positively inclined early-adopter teachers in relation to their implementation of inquiry-based pedagogies. The teachers were part of a large-scale Australian high school intervention project based around astronomy. In a series of semi-structured interviews, the teachers identified a number of common barriers that prevented them from implementing inquiry-based approaches. The most important barriers identified include the extreme time restrictions on all scales, the poverty of their common professional development experiences, their lack of good models and definitions for what inquiry-based teaching actually is, and the lack of good resources enabling the capacity for change. Implications for expectations of teachers and their professional learning during educational reform and curriculum change are discussed.

  17. The uterine blush. A potential false-positive in Meckel's scan interpretation

    Energy Technology Data Exchange (ETDEWEB)

    Fink-Bennett, D.

    1982-10-01

    To determine the presence, prevalence, and clinical importance of /sup 99m/Tc pertechnetate uterine uptake, this retrospective analysis of 71 Meckel's scans was undertaken. Specifically, each study was evaluated for the presence of a focal accumulation of radiotracer cephalad to the bladder. Patients received an intravenous dose of 150 microCi/kg of /sup 99m/Tc pertechnetate. Each study consisted of 15 one minute anterior serial gamma camera images, and a 15, 30, and 60 minute anterior, right lateral and posterior scintiscan. Menstrual histories were obtained from all patients except two. No males (33/33), nor premenstrual (13/13), menopausal (4/4) or posthysterectomy (2/2) patients revealed a uterine blush. Eleven of 15 patients (73%) with regular menses demonstrated a uterine blush. They were in the menstrual or secretory phases of their cycle. Four demonstrated no uterine uptake, had regular periods, but were in the proliferative phase of their cycle. Two with irregular periods, and one with no recorded menstrual history, manifested the blush. Radiotracer should be expected in the uterus during the menstrual and secretory phases of the menstrual cycle. It is a manifestation of a normal physiologic phenomenon, and must be recognized to prevent false-positive Meckel's scan interpretations.

  18. Nanoparticle electrostatic loss within corona needle charger during particle-charging process

    International Nuclear Information System (INIS)

    Huang Chenghsiung; Alonso, Manuel

    2011-01-01

    A numerical investigation has been carried out to examine the electrostatic loss of nanoparticles in a corona needle charger. Two-dimensional flow field, electric field, particle charge, and particle trajectory were simulated to obtain the electrostatic deposition loss at different conditions. Simulation of particle trajectories shows that the number of charges per particle during the charging process depends on the particle diameter, radial position from the symmetry axis, applied voltage, Reynolds number, and axial distance along the charger. The numerical results of nanoparticle electrostatic loss agreed fairly well with available experimental data. The results reveal that the electrostatic loss of nanoparticles increases with increasing applied voltage and electrical mobility of particles; and with decreasing particle diameter and Reynolds number. A regression equation closely fitted the obtained numerical results for different conditions. The equation is useful for directly calculating the electrostatic loss of nanoparticles in the corona needle charger during particle-charging process.

  19. Parametric study of non-relativistic electrostatic shocks and the structure of their transition layer

    Energy Technology Data Exchange (ETDEWEB)

    Dieckmann, M. E. [Institute of Physics and Astronomy, University of Potsdam, D-14476 Potsdam (Germany); Department of Science and Technology, Linkoeping University, SE-60174 Norrkoeping (Sweden); Ahmed, H.; Sarri, G.; Doria, D.; Kourakis, I.; Borghesi, M. [Centre for Plasma Physics, School of Mathematics and Physics, Queen' s University of Belfast, Belfast BT7 1NN (United Kingdom); Romagnani, L. [LULI, Ecole Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau (France); Pohl, M. [Institute of Physics and Astronomy, University of Potsdam, D-14476 Potsdam (Germany); DESY, D-15738 Zeuthen (Germany)

    2013-04-15

    Nonrelativistic electrostatic unmagnetized shocks are frequently observed in laboratory plasmas and they are likely to exist in astrophysical plasmas. Their maximum speed, expressed in units of the ion acoustic speed far upstream of the shock, depends only on the electron-to-ion temperature ratio if binary collisions are absent. The formation and evolution of such shocks is examined here for a wide range of shock speeds with particle-in-cell simulations. The initial temperatures of the electrons and the 400 times heavier ions are equal. Shocks form on electron time scales at Mach numbers between 1.7 and 2.2. Shocks with Mach numbers up to 2.5 form after tens of inverse ion plasma frequencies. The density of the shock-reflected ion beam increases and the number of ions crossing the shock thus decreases with an increasing Mach number, causing a slower expansion of the downstream region in its rest frame. The interval occupied by this ion beam is on a positive potential relative to the far upstream. This potential pre-heats the electrons ahead of the shock even in the absence of beam instabilities and decouples the electron temperature in the foreshock ahead of the shock from the one in the far upstream plasma. The effective Mach number of the shock is reduced by this electron heating. This effect can potentially stabilize nonrelativistic electrostatic shocks moving as fast as supernova remnant shocks.

  20. Parametric study of non-relativistic electrostatic shocks and the structure of their transition layer

    International Nuclear Information System (INIS)

    Dieckmann, M. E.; Ahmed, H.; Sarri, G.; Doria, D.; Kourakis, I.; Borghesi, M.; Romagnani, L.; Pohl, M.

    2013-01-01

    Nonrelativistic electrostatic unmagnetized shocks are frequently observed in laboratory plasmas and they are likely to exist in astrophysical plasmas. Their maximum speed, expressed in units of the ion acoustic speed far upstream of the shock, depends only on the electron-to-ion temperature ratio if binary collisions are absent. The formation and evolution of such shocks is examined here for a wide range of shock speeds with particle-in-cell simulations. The initial temperatures of the electrons and the 400 times heavier ions are equal. Shocks form on electron time scales at Mach numbers between 1.7 and 2.2. Shocks with Mach numbers up to 2.5 form after tens of inverse ion plasma frequencies. The density of the shock-reflected ion beam increases and the number of ions crossing the shock thus decreases with an increasing Mach number, causing a slower expansion of the downstream region in its rest frame. The interval occupied by this ion beam is on a positive potential relative to the far upstream. This potential pre-heats the electrons ahead of the shock even in the absence of beam instabilities and decouples the electron temperature in the foreshock ahead of the shock from the one in the far upstream plasma. The effective Mach number of the shock is reduced by this electron heating. This effect can potentially stabilize nonrelativistic electrostatic shocks moving as fast as supernova remnant shocks.

  1. Technetium labeled WH701 for its potential use to image TNF-receptor-positive hepatocarcinoma

    International Nuclear Information System (INIS)

    Xia Jinsong; Wu Hua; Xiang Yan

    2004-01-01

    Objective: In this investigation, TNF analogs (WH701) was labeled with technetium (A number of TNF analogs had been selected and synthesized in our lab using random phage-display peptides library ) and pharmacokinetics and feasibility studies were performed for its potential use as diagnostic radiopharmaceutical. Methods WH701 was radiolabeled with 99m Tc then the complexes were characterized by thin layer chromatography. In vitro stability of the radiolabeled WH701 was examined simultaneity. Biodistribution and tumor uptake studies were also conducted to determine its in vivo characteristics. Results: The peptide analog WH701 permitted efficient incorporation of 99m Tc. The preparation of 99m Tc-WH701 was stable in vitro. Studies in vivo suggested that the biological activity of the peptide was not compromised. The agent was cleared rapidly from the blood and excreted mainly from kidney. The labeled peptide was shown in the nude mouse model to localize rapidly and specifically in site of tumor. Conclusions: The TNF analogue peptide WH701 can be radiolabeled with 99m Tc without loss of affinity, and the 99m Tc-WH701 shows radiochemical stability for an extended period of time in vitro. The high specific tumor uptake, rapid blood clearance, and predominantly renal excretion make 99m Tc-WH701 a promising candidate for tumor imaging. This agent is worthy of further investigation.

  2. Technetium labeled WH701 for its potential use to image TNF-receptor-positive hepatocarcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Jinsong, Xia; Hua, Wu; Yan, Xiang [Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China)

    2004-07-01

    Objective: In this investigation, TNF analogs (WH701) was labeled with technetium (A number of TNF analogs had been selected and synthesized in our lab using random phage-display peptides library ) and pharmacokinetics and feasibility studies were performed for its potential use as diagnostic radiopharmaceutical. Methods WH701 was radiolabeled with {sup 99m}Tc then the complexes were characterized by thin layer chromatography. In vitro stability of the radiolabeled WH701 was examined simultaneity. Biodistribution and tumor uptake studies were also conducted to determine its in vivo characteristics. Results: The peptide analog WH701 permitted efficient incorporation of {sup 99m}Tc. The preparation of {sup 99m}Tc-WH701 was stable in vitro. Studies in vivo suggested that the biological activity of the peptide was not compromised. The agent was cleared rapidly from the blood and excreted mainly from kidney. The labeled peptide was shown in the nude mouse model to localize rapidly and specifically in site of tumor. Conclusions: The TNF analogue peptide WH701 can be radiolabeled with {sup 99m}Tc without loss of affinity, and the {sup 99m}Tc-WH701 shows radiochemical stability for an extended period of time in vitro. The high specific tumor uptake, rapid blood clearance, and predominantly renal excretion make {sup 99m}Tc-WH701 a promising candidate for tumor imaging. This agent is worthy of further investigation.

  3. APBSmem: a graphical interface for electrostatic calculations at the membrane.

    Directory of Open Access Journals (Sweden)

    Keith M Callenberg

    2010-09-01

    Full Text Available Electrostatic forces are one of the primary determinants of molecular interactions. They help guide the folding of proteins, increase the binding of one protein to another and facilitate protein-DNA and protein-ligand binding. A popular method for computing the electrostatic properties of biological systems is to numerically solve the Poisson-Boltzmann (PB equation, and there are several easy-to-use software packages available that solve the PB equation for soluble proteins. Here we present a freely available program, called APBSmem, for carrying out these calculations in the presence of a membrane. The Adaptive Poisson-Boltzmann Solver (APBS is used as a back-end for solving the PB equation, and a Java-based graphical user interface (GUI coordinates a set of routines that introduce the influence of the membrane, determine its placement relative to the protein, and set the membrane potential. The software Jmol is embedded in the GUI to visualize the protein inserted in the membrane before the calculation and the electrostatic potential after completing the computation. We expect that the ease with which the GUI allows one to carry out these calculations will make this software a useful resource for experimenters and computational researchers alike. Three examples of membrane protein electrostatic calculations are carried out to illustrate how to use APBSmem and to highlight the different quantities of interest that can be calculated.

  4. The Role of the Electrostatic Force in Spore Adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Eunhyea [Georgia Institute of Technology; Yiacoumi, Sotira [Georgia Institute of Technology; Lee, Ida [University of Tennessee, Knoxville (UTK); Tsouris, Costas [ORNL

    2010-01-01

    Electrostatic force is investigated as one of the components of the adhesion force between Bacillus thuringiensis (Bt) spores and planar surfaces. The surface potentials of a Bt spore and a mica surface are experimentally obtained using a combined atomic force microscopy (AFM)-scanning surface potential microscopy technique. On the basis of experimental information, the surface charge density of the spores is estimated at 0.03 {micro}C/cm{sup 2} at 20% relative humidity and decreases with increasing humidity. The Coulombic force is introduced for the spore-mica system (both charged, nonconductive surfaces), and an electrostatic image force is introduced to the spore-gold system because gold is electrically conductive. The Coulombic force for spore-mica is repulsive because the components are similarly charged, while the image force for the spore-gold system is attractive. The magnitude of both forces decreases with increasing humidity. The electrostatic forces are added to other force components, e.g., van der Waals and capillary forces, to obtain the adhesion force for each system. The adhesion forces measured by AFM are compared to the estimated values. It is shown that the electrostatic (Coulombic and image) forces play a significant role in the adhesion force between spores and planar surfaces.

  5. Electrostatics effects in granular materials

    Science.gov (United States)

    Sarkar, Saurabh; Chaudhuri, Bodhisattwa

    2013-06-01

    This purpose of this study is to investigate the role of physiochemical properties and operational conditions in determining the electrostatic interactions between two species on a surface under typical industrial conditions. The variables considered for the study were particle type, particle size and shape, loading mass, surface type, angle of inclination of chute, nature and concentration of additive. Triboelectrification of simple and binary mixtures in a simple hopper and chute geometry was observed to be strongly linked to work function and moisture content of the powdered material.

  6. Electrostatics, structure prediction, and the energy landscapes for protein folding and binding.

    Science.gov (United States)

    Tsai, Min-Yeh; Zheng, Weihua; Balamurugan, D; Schafer, Nicholas P; Kim, Bobby L; Cheung, Margaret S; Wolynes, Peter G

    2016-01-01

    While being long in range and therefore weakly specific, electrostatic interactions are able to modulate the stability and folding landscapes of some proteins. The relevance of electrostatic forces for steering the docking of proteins to each other is widely acknowledged, however, the role of electrostatics in establishing specifically funneled landscapes and their relevance for protein structure prediction are still not clear. By introducing Debye-Hückel potentials that mimic long-range electrostatic forces into the Associative memory, Water mediated, Structure, and Energy Model (AWSEM), a transferable protein model capable of predicting tertiary structures, we assess the effects of electrostatics on the landscapes of thirteen monomeric proteins and four dimers. For the monomers, we find that adding electrostatic interactions does not improve structure prediction. Simulations of ribosomal protein S6 show, however, that folding stability depends monotonically on electrostatic strength. The trend in predicted melting temperatures of the S6 variants agrees with experimental observations. Electrostatic effects can play a range of roles in binding. The binding of the protein complex KIX-pKID is largely assisted by electrostatic interactions, which provide direct charge-charge stabilization of the native state and contribute to the funneling of the binding landscape. In contrast, for several other proteins, including the DNA-binding protein FIS, electrostatics causes frustration in the DNA-binding region, which favors its binding with DNA but not with its protein partner. This study highlights the importance of long-range electrostatics in functional responses to problems where proteins interact with their charged partners, such as DNA, RNA, as well as membranes. © 2015 The Protein Society.

  7. Obtaining the electrostatic screening from first principles

    International Nuclear Information System (INIS)

    Shaviv, N.J.; Shaviv, G.

    2003-01-01

    We derive the electrostatic screening effect from first principles and show the basic properties of the screening process. We in particular show that under the conditions prevailing in the Sun the number of particles in the Debye sphere is of the order of unity. Consequently; fluctuations play a dominant role in the screening process. The fluctuations lead to an effective time dependent potential. Particles with low kinetic energy lose on the average energy to the plasma and vice versa with high energy particles. We derive general conditions on the screening energy and show under what conditions the Salpeter approximation is obtained. The connection between the screening and relaxation processes in the plasma is exposed

  8. Invited review article: the electrostatic plasma lens.

    Science.gov (United States)

    Goncharov, Alexey

    2013-02-01

    The fundamental principles, experimental results, and potential applications of the electrostatic plasma lens for focusing and manipulating high-current, energetic, heavy ion beams are reviewed. First described almost 50 years ago, this optical beam device provides space charge neutralization of the ion beam within the lens volume, and thus provides an effective and unique tool for focusing high current beams where a high degree of neutralization is essential to prevent beam blow-up. Short and long lenses have been explored, and a lens in which the magnetic field is provided by rare-earth permanent magnets has been demonstrated. Applications include the use of this kind of optical tool for laboratory ion beam manipulation, high dose ion implantation, heavy ion accelerator injection, in heavy ion fusion, and other high technology.

  9. The Analytic Solution of Schroedinger Equation with Potential Function Superposed by Six Terms with Positive-power and Inverse-power Potentials

    International Nuclear Information System (INIS)

    Hu Xianquan; Luo Guang; Cui Lipeng; Niu Lianbin; Li Fangyu

    2009-01-01

    The analytic solution of the radial Schroedinger equation is studied by using the tight coupling condition of several positive-power and inverse-power potential functions in this article. Furthermore, the precisely analytic solutions and the conditions that decide the existence of analytic solution have been searched when the potential of the radial Schroedinger equation is V(r) = α 1 r 8 + α 2 r 3 + α 3 r 2 + β 3 r -1 + β 2 r -3 + β 1 r -4 . Generally speaking, there is only an approximate solution, but not analytic solution for Schroedinger equation with several potentials' superposition. However, the conditions that decide the existence of analytic solution have been found and the analytic solution and its energy level structure are obtained for the Schroedinger equation with the potential which is motioned above in this paper. According to the single-value, finite and continuous standard of wave function in a quantum system, the authors firstly solve the asymptotic solution through the radial coordinate r → and r → 0; secondly, they make the asymptotic solutions combining with the series solutions nearby the neighborhood of irregular singularities; and then they compare the power series coefficients, deduce a series of analytic solutions of the stationary state wave function and corresponding energy level structure by tight coupling among the coefficients of potential functions for the radial Schroedinger equation; and lastly, they discuss the solutions and make conclusions. (general)

  10. Electrostatics in pharmaceutical aerosols for inhalation.

    Science.gov (United States)

    Wong, Jennifer; Chan, Hak-Kim; Kwok, Philip Chi Lip

    2013-08-01

    Electrostatics continues to play an important role in pharmaceutical aerosols for inhalation. Despite its ubiquitous nature, the charging process is complex and not well understood. Nonetheless, significant advances in the past few years continue to improve understanding and lead to better control of electrostatics. The purpose of this critical review is to present an overview of the literature, with an emphasis on how electrostatic charge can be useful in improving pulmonary drug delivery.

  11. Electrostatic Climber for Space Elevator and Launcher

    OpenAIRE

    Bolonkin, A.

    2007-01-01

    Author details research on the new, very prospective, electrostatic Space Elevator climber based on a new electrostatic linear engine previously offered at the 42nd Joint Propulsion Conference (AIAA-2006-5229) and published in AEAT, Vol.78, No.6, 2006, pp. 502-508. The electrostatic climber discussed can have any speed (and braking), the energy for climber movement is delivered by a lightweight high-voltage line into a Space Elevator-holding cable from Earth electric generator. This electric ...

  12. A small-gap electrostatic micro-actuator for large deflections

    Science.gov (United States)

    Conrad, Holger; Schenk, Harald; Kaiser, Bert; Langa, Sergiu; Gaudet, Matthieu; Schimmanz, Klaus; Stolz, Michael; Lenz, Miriam

    2015-01-01

    Common quasi-static electrostatic micro actuators have significant limitations in deflection due to electrode separation and unstable drive regions. State-of-the-art electrostatic actuators achieve maximum deflections of approximately one third of the electrode separation. Large electrode separation and high driving voltages are normally required to achieve large actuator movements. Here we report on an electrostatic actuator class, fabricated in a CMOS-compatible process, which allows high deflections with small electrode separation. The concept presented makes the huge electrostatic forces within nanometre small electrode separation accessible for large deflections. Electrostatic actuations that are larger than the electrode separation were measured. An analytical theory is compared with measurement and simulation results and enables closer understanding of these actuators. The scaling behaviour discussed indicates significant future improvement on actuator deflection. The presented driving concept enables the investigation and development of novel micro systems with a high potential for improved device and system performance. PMID:26655557

  13. Fluctuations of estradiol during women's menstrual cycle: Influences on reactivity towards erotic stimuli in the late positive potential.

    Science.gov (United States)

    Munk, Aisha J L; Zoeller, Aaron C; Hennig, Juergen

    2018-05-01

    While several studies examined the reactivity towards negative emotional stimuli across women's menstrual cycle, only few investigated responses to positive emotional cues in association with sexual hormones on a neural level. Therefore, the aim of the current EEG-experiment was to study the differential reactivity towards positive (erotic) words during the menstrual cycle (i.e. with fluctuations in the steroids estradiol and progesterone) in the late positive potential (LPP). Regarding reactivity towards erotic stimuli, the LPP is seen as the most relevant ERP-component, as more positive amplitudes in the LPP reflect larger incentive salience and higher arousal. The LPP towards erotic words was expected to be more pronounced during fertile phases of the menstrual cycle (around ovulation). Furthermore, associations with hormonal concentrations of estradiol and progesterone were investigated. 19 young, free cycling women were tested in an Erotic Stroop paradigm during the follicular phase, ovulation, and the luteal phase in a balanced cross-over design, while electroencephalogram (EEG) was recorded. LPPs in reaction to erotic compared to neutral words were larger in every phase. During the follicular phase and ovulation, higher estradiol-concentrations were associated with more positive LPP-amplitudes towards erotic- than to neutral words. No effects of progesterone, as well as no effects of cycle phase, were evident. Results are being discussed regarding implications for further research. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Germanium CMOS potential from material and process perspectives: Be more positive about germanium

    Science.gov (United States)

    Toriumi, Akira; Nishimura, Tomonori

    2018-01-01

    practically viable, we need to understand why electron mobility is severely degraded in the inversion layer in Ge n-channel MOSFETs and to find out how it can be increased. In the Si CMOS technology, the SiO2/Si interface has long been investigated and cannot be ignored even after the introduction of high-k gate stack technology. In that sense, the GeO2/Ge interface should be intensively studied to make the best of Ge’s advantages. Therefore we first discuss the GeO2/Ge interface with regard to its physical and electrical characteristics. When we regard Ge as a channel material beyond Si for high performance ULSIs, we also have to seriously consider the gate stack scalability and reliability. The source/drain engineering, as well as the gate stack formation, is another challenge in Ge MOSFET design. Both the higher metal/Ge contact resistance and the larger p/n junction leakage current may be the consequences of Ge’s intrinsic properties because they are derived from the strong Fermi-level pinning and the narrow energy band gap, respectively. Even if the carrier transport in the channel may be ideally ballistic, these properties should degrade FET properties. The narrower energy band gap of Ge is often addressed, but the higher dielectric constant of Ge is rarely discussed. This is also the case for most of the other high-mobility materials. The dielectric constant is directly and negatively related to short-channel effects, and we have not been able to provide a substantial solution to overcome this hardship. We have to keep this in mind for the short-channel FET operation. Although a number of problems remain to be solved, in this paper, we view the current status of Ge FET technology positively. A number of (but not all) Ge-related challenges have been overcome in the past 10 years, which seems to be a good time to summarize the status of Ge technology, particularly materials engineering aspects rather than device integration issues. Since we cannot cover all of the

  15. Preconceptual design for the electrostatic enclosure

    International Nuclear Information System (INIS)

    Meyer, L.C.

    1992-09-01

    This report presents a preconceptual design (design criteria and assumptions) for electrostatic enclosures to be used during buried transuranic waste recovery operations. These electrostatic enclosures (along with the application of dust control products) will provide an in-depth contamination control strategy. As part of this preconceptual design, options for electrostatic curtain design are given including both hardwall and fabric enclosures. Ventilation systems, doors, air locks, electrostatic curtains, and supporting systems also are discussed. In addition to the conceptual design, engineering scale tests are proposed to be run at the Test Reactor Area. The planned engineering scale tests will give final material specifications for full-scale retrieval demonstrations

  16. Industrial Electrostatic-Gecko Gripper, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Perception Robotics is developing an innovative product, the Electrostatic Gecko Gripper? (ESG Gripper), for the industrial automation market. This unique gripping...

  17. Industrial Electrostatic-Gecko Gripper, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Perception Robotics is developing an innovative product, the "Electrostatic Gecko Gripper" (ESG Gripper), for the industrial automation market. This unique gripping...

  18. Optics elements for modeling electrostatic lenses and accelerator components: III. Electrostatic deflectors

    International Nuclear Information System (INIS)

    Brown, T.A.; Gillespie, G.H.

    2000-01-01

    Ion-beam optics models for simulating electrostatic prisms (deflectors) of different geometries have been developed for the envelope (matrix) computer code TRACE 3-D as a part of the development of a suite of electrostatic beamline element models which includes lenses, acceleration columns, quadrupoles and prisms. The models for electrostatic prisms are described in this paper. The electrostatic prism model options allow the first-order modeling of cylindrical, spherical and toroidal electrostatic deflectors. The application of these models in the development of ion-beam transport systems is illustrated through the modeling of a spherical electrostatic analyzer as a component of the new low-energy beamline at the Center for Accelerator Mass Spectrometry. Although initial tests following installation of the new beamline showed that the new spherical electrostatic analyzer was not behaving as predicted by these first-order models, operational conditions were found under which the analyzer now works properly as a double-focusing spherical electrostatic prism

  19. Electrostatic analogy for symmetron gravity

    Science.gov (United States)

    Ogden, Lillie; Brown, Katherine; Mathur, Harsh; Rovelli, Kevin

    2017-12-01

    The symmetron model is a scalar-tensor theory of gravity with a screening mechanism that suppresses the effect of the symmetron field at high densities characteristic of the Solar System and laboratory scales but allows it to act with gravitational strength at low density on the cosmological scale. We elucidate the screening mechanism by showing that in the quasistatic Newtonian limit there are precise analogies between symmetron gravity and electrostatics for both strong and weak screening. For strong screening we find that large dense bodies behave in a manner analogous to perfect conductors in electrostatics. Based on this analogy we find that the symmetron field exhibits a lightning rod effect wherein the field gradients are enhanced near the ends of pointed or elongated objects. An ellipsoid placed in a uniform symmetron gradient is shown to experience a torque. By symmetry there is no gravitational torque in this case. Hence this effect unmasks the symmetron and might serve as the basis for future laboratory experiments. The symmetron force between a point mass and a large dense body includes a component corresponding to the interaction of the point mass with its image in the larger body. None of these effects have counterparts in the Newtonian limit of Einstein gravity. We discuss the similarities between symmetron gravity and the chameleon model as well as the differences between the two.

  20. Microencapsulation and Electrostatic Processing Device

    Science.gov (United States)

    Morrison, Dennis R. (Inventor); Mosier, Benjamin (Inventor); Cassanto, John M. (Inventor)

    2001-01-01

    A microencapsulation and electrostatic processing (MEP) device is provided for forming microcapsules. In one embodiment, the device comprises a chamber having a filter which separates a first region in the chamber from a second region in the chamber. An aqueous solution is introduced into the first region through an inlet port, and a hydrocarbon/ polymer solution is introduced into the second region through another inlet port. The filter acts to stabilize the interface and suppress mixing between the two immiscible solutions as they are being introduced into their respective regions. After the solutions have been introduced and have become quiescent, the interface is gently separated from the filter. At this point, spontaneous formation of microcapsules at the interface may begin to occur, or some fluid motion may be provided to induce microcapsule formation. In any case, the fluid shear force at the interface is limited to less than 100 dynes/sq cm. This low-shear approach to microcapsule formation yields microcapsules with good sphericity and desirable size distribution. The MEP device is also capable of downstream processing of microcapsules, including rinsing, re-suspension in tertiary fluids, electrostatic deposition of ancillary coatings, and free-fluid electrophoretic separation of charged microcapsules.

  1. Electrostatic discharge concepts and definitions

    Energy Technology Data Exchange (ETDEWEB)

    Borovina, Dan L [Los Alamos National Laboratory

    2008-01-01

    Many objects -like a human body, plastic wrap, or a rolling cart -that are electrically neutral, overall, can gain a net electrostatic charge by means of one of three methods: induction, physical transfer, or triboelectric charging (separation of conductive surfaces). The result is a voltage difference between the charged object and other objects, creating a situation where current flow is likely if two objects come into contact or close proximity. This current flow is known as electrostatic discharge, or ESD. The energy and voltage of the discharge can be influenced by factors such as the temperature and humidity in the room, the types of materials or flooring involved, or the clothing and footwear a person uses. Given the possible ranges of the current and voltage characteristic of an ESD pulse, it is important to consider the safety risks associated with detonator handling, assembly and disassembly, transportation and maintenance. For main charge detonators, these safety risks include high explosive violent reactions (HEVR) as well as inadvertent nuclear detonations (lND).

  2. Investigations of electrostatic ion waves in a collisionless plasma

    International Nuclear Information System (INIS)

    Michelsen, P.

    1980-06-01

    The author reviews a series of publications concerning theoretical and experimental investigations of electrostatic ion waves in a collisionless plasma. The experimental work was performed in the Risoe Q-machine under various operational conditions. Besides a description of this machine and the diagnostic techniques used for the measurements, two kinds of electrostatic waves are treated, namely, ion-acoustic waves and ion-cyclotron waves. Due to the relative simplicity of the ion-acoustic waves, these were treated in detail in order to get a more general understanding of the behaviour of the propagation properties of electrostatic waves. The problem concerning the difficulties in describing waves excited at a certain position and propagating in space by a proper mathematical model was especially considered in depth. Furthermore, ion-acoustic waves were investigated which propagated in a plasma with a density gradient, and afterwards in a plasma with an ion beam. Finally, a study of the electrostatic ion-cyclotron waves was undertaken, and it was shown that these waves were unstable in a plasma traversed by an ion beam. (Auth.)

  3. Influence of the Level of the Development of Skills on Labour Potential, its Implementation and Choice of Work Position

    Directory of Open Access Journals (Sweden)

    Kseniya Aleksandrovna Ustinova

    2016-09-01

    Full Text Available The article deals with the sociological assessment of the skills level and identification of its influence on some aspects of labour activity: the realization of labour potential, choice of the scope of activity, position and occupation. It suggests an approach based on the subjective evaluation of the population as an instrument of the skills level assessment. The received results are compared with the indirect estimates allowing to characterize some particular components of labour potential which are similar to the considered skills. A specific feature of the research is not only the determination of the professional sphere, occupation and position on the skills level, but also the accounting of the reverse effect. The methodological tools including the methods for the assessment of skills level, labour potential and extent of its implementation in a labour activity have been approved in the Vologda region. The study revealed that, at the present time, the most developed skills are the teamwork, communication and mutual understanding while the least developed ones are the initiative and creativity as well as ability to be retrained and readiness to increase the professional level. It shows that the employees of socially oriented spheres and also the representatives of state structures have more developed skills. At the same time, the development of innovative skills not only leads to the growth of labour potential, but also creates conditions for the employment in workplaces with higher skills requirements. The paper shows that higher skills level along with higher skills requirements leads to more complete implementation of cumulative potential in the labour activity. The received results can be used by regional authorities for the development of the analytical system of labour market, the development of labour force and the labour potential of the population.

  4. Cholesterol Promotes Protein Binding by Affecting Membrane Electrostatics and Solvation Properties.

    Science.gov (United States)

    Doktorova, Milka; Heberle, Frederick A; Kingston, Richard L; Khelashvili, George; Cuendet, Michel A; Wen, Yi; Katsaras, John; Feigenson, Gerald W; Vogt, Volker M; Dick, Robert A

    2017-11-07

    Binding of the retroviral structural protein Gag to the cellular plasma membrane is mediated by the protein's matrix (MA) domain. Prominent among MA-PM interactions is electrostatic attraction between the positively charged MA domain and the negatively charged plasma membrane inner leaflet. Previously, we reported that membrane association of HIV-1 Gag, as well as purified Rous sarcoma virus (RSV) MA and Gag, depends strongly on the presence of acidic lipids and is enhanced by cholesterol (Chol). The mechanism underlying this enhancement was unclear. Here, using a broad set of in vitro and in silico techniques we addressed molecular mechanisms of association between RSV MA and model membranes, and investigated how Chol enhances this association. In neutron scattering experiments with liposomes in the presence or absence of Chol, MA preferentially interacted with preexisting POPS-rich clusters formed by nonideal lipid mixing, binding peripherally to the lipid headgroups with minimal perturbation to the bilayer structure. Molecular dynamics simulations showed a stronger MA-bilayer interaction in the presence of Chol, and a large Chol-driven increase in lipid packing and membrane surface charge density. Although in vitro MA-liposome association is influenced by disparate variables, including ionic strength and concentrations of Chol and charged lipids, continuum electrostatic theory revealed an underlying dependence on membrane surface potential. Together, these results conclusively show that Chol affects RSV MA-membrane association by making the electrostatic potential at the membrane surface more negative, while decreasing the penalty for lipid headgroup desolvation. The presented approach can be applied to other viral and nonviral proteins. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  5. Clinical and Laboratory Potential Predictors of Blood Culture Positivity in Under Five Children with Clinically Severe Pneumonia - Khartoum -Sudan.

    Science.gov (United States)

    Salih, Karimeldin Mohamed Ali; El-Samani, El-Fatih; Bilal, Jalal Ali; Eldouch, Widad; Ibrahim, Salah Ahmed

    2015-08-01

    Blood culture is necessary for appropriate management of clinically severe pneumonia in children under five years of age. However, in limited resource countries it might be unduly costly and waste of valuable time because of the high negative culture rate. This study aims to identify clinical and laboratory parameters that potentially predict a positive blood culture in cases of severe pneumonia. A hospital based study, enrolled 189 cases satisfying the WHO definition of severe pneumonia. Age, gender, clinical history, physical examination, temperature, complete blood count, C-reactive protein, blood culture and Chest X Ray for all the patients were recorded. Forty one patients had positive blood culture giving a prevalence of 21.7%. All variables were used in a dichotomous manner. White Blood Count (WBC) more than 20 000, very high C-reactive protein (C-RP ≥8mg/L) and Temperature more than 40(o)C, had a positive predictive value of 46.1%, 44.3% and 40.0% respectively for a positive culture as well as a Negative Predictive Value of 91.1%, 91.6% and 91.7% respectively. The WBC more than 20 000 and temperature above 40(o)C had a significant association with a positive blood culture. Their adjusted Odds Ratios were 3.9 (95% CI: 1.4-10.90) and 3.1 (95% CI: 1.2-8.4) respectively. This was not the case for C-RP (Odds Ratio=2.2, 95% CI: 0.7-2.2) or positive Chest X Ray (Odds Ratio=1.5, 95% CI: 0.6-3.6). Temperature of more than 40(o)C, Very high C-RP and WBC of more than 20 000 are good indicators of a potential positive blood culture. It is therefore recommended that further research be undertaken to refine these predictors as screening tools before resorting to blood culture. It is also recommended that antibiotic treatment may be initiated on the basis of the high temperature and WBC, while waiting for the culture results.

  6. Effects of dielectric inhomogeneity on electrostatic twist rigidity of a helical biomolecule in Debye-Hückel regime

    Science.gov (United States)

    Rezaie-Dereshgi, Amir; Mohammad-Rafiee, Farshid

    2018-04-01

    The electrostatic interactions play a crucial role in biological systems. Here we consider an impermeable dielectric molecule in the solvent with a different dielectric constant. The electrostatic free energy in the problem is studied in the Debye-Hückel regime using the analytical Green function that is calculated in the paper. Using this electrostatic free energy, we study the electrostatic contribution to the twist rigidity of a double stranded helical molecule such as a DNA and an actin filament. The dependence of the electrostatic twist rigidity of the molecule to the dielectric inhomogeneity, structural parameters, and the salt concentration is studied. It is shown that, depending on the parameters, the electrostatic twist rigidity could be positive or negative.

  7. State Anxiety Carried Over From Prior Threat Increases Late Positive Potential Amplitude During an Instructed Emotion Regulation Task

    Science.gov (United States)

    Pedersen, Walker S.; Larson, Christine L.

    2018-01-01

    Emotion regulation has important consequences for emotional and mental health (Saxena, Dubey & Pandey, 2011) and is dependent on executive function (Eisenberg, Smith & Spinrad, 2011). Because state anxiety disrupts executive function (Robinson, Vytal, Cornwell & Grillon, 2013), we tested whether state anxiety disrupts emotion regulation by having participants complete an instructed emotion regulation task, while under threat of unpredictable shock and while safe from shock. We used the late positive potential (LPP) component of the event related potential to measure emotion regulation success. We predicted that LPP responses to negatively valenced images would be modulated by participants’ attempts to increase and decrease their emotions when safe from shock, but not while under threat of shock. Our manipulation check revealed an order effect such that for participants who completed the threat of shock condition first self-reported state anxiety carried over into the subsequent safe condition. Additionally, we found that although instructions to regulate affected participants’ ratings of how unpleasant the images made them feel, instructions to regulate had no effect on LPP amplitude regardless of threat condition. Instead we found that participants who received the threat condition prior to safe had greater LPP responses to all images in the safe condition. We posit that the carryover of anxiety resulted in misattribution of arousal and potentiation of neural responses to the images in the safe condition. Thus, our results imply that physiological arousal and cognition combine to influence the basic neural response to emotional stimuli. PMID:27055095

  8. Frequency-dependent electrostatic actuation in microfluidic MEMS.

    Energy Technology Data Exchange (ETDEWEB)

    Zavadil, Kevin Robert; Michalske, Terry A.; Sounart, Thomas L.

    2003-09-01

    Electrostatic actuators exhibit fast response times and are easily integrated into microsystems because they can be fabricated with standard IC micromachining processes and materials. Although electrostatic actuators have been used extensively in 'dry' MEMS, they have received less attention in microfluidic systems probably because of challenges such as electrolysis, anodization, and electrode polarization. Here we demonstrate that ac drive signals can be used to prevent electrode polarization, and thus enable electrostatic actuation in many liquids, at potentials low enough to avoid electrochemistry. We measure the frequency response of an interdigitated silicon comb-drive actuator in liquids spanning a decade of dielectric permittivities and four decades of conductivity, and present a simple theory that predicts the characteristic actuation frequency. The analysis demonstrates the importance of the native oxide on silicon actuator response, and suggests that the actuation frequency can be shifted by controlling the thickness of the oxide. For native silicon devices, actuation is predicted at frequencies less than 10 MHz, in electrolytes of ionic strength up to 100 mmol/L, and thus electrostatic actuation may be feasible in many bioMEMS and other microfluidic applications.

  9. Investigation on Electrostatical Breakup of Bio-Oil Droplets

    Directory of Open Access Journals (Sweden)

    John Z. Wen

    2012-10-01

    Full Text Available In electrostatic atomization, the input electrical energy causes breaking up of the droplet surface by utilizing a mutual repulsion of net charges accumulating on that surface. In this work a number of key parameters controlling the bio-oil droplet breakup process are identified and these correlations among the droplet size distribution, specific charges of droplets and externally applied electrical voltages are quantified. Theoretical considerations of the bag or strip breakup mechanism of biodiesel droplets experiencing electrostatic potential are compared to experimental outcomes. The theoretical analysis suggests the droplet breakup process is governed by the Rayleigh instability condition, which reveals the effects of droplets size, specific charge, surface tension force, and droplet velocities. Experiments confirm that the average droplet diameters decrease with increasing specific charges and this decreasing tendency is non-monotonic due to the motion of satellite drops in the non-uniform electrical field. The measured specific charges are found to be smaller than the theoretical values. And the energy transformation from the electrical energy to surface energy, in addition to the energy loss, Taylor instability breakup, non-excess polarization and some system errors, accounts for this discrepancy. The electrostatic force is the dominant factor controlling the mechanism of biodiesel breakup in electrostatic atomization.

  10. Efficient Algorithms for Electrostatic Interactions Including Dielectric Contrasts

    Directory of Open Access Journals (Sweden)

    Christian Holm

    2013-10-01

    Full Text Available Coarse-grained models of soft matter are usually combined with implicit solvent models that take the electrostatic polarizability into account via a dielectric background. In biophysical or nanoscale simulations that include water, this constant can vary greatly within the system. Performing molecular dynamics or other simulations that need to compute exact electrostatic interactions between charges in those systems is computationally demanding. We review here several algorithms developed by us that perform exactly this task. For planar dielectric surfaces in partial periodic boundary conditions, the arising image charges can be either treated with the MMM2D algorithm in a very efficient and accurate way or with the electrostatic layer correction term, which enables the user to use his favorite 3D periodic Coulomb solver. Arbitrarily-shaped interfaces can be dealt with using induced surface charges with the induced charge calculation (ICC* algorithm. Finally, the local electrostatics algorithm, MEMD(Maxwell Equations Molecular Dynamics, even allows one to employ a smoothly varying dielectric constant in the systems. We introduce the concepts of these three algorithms and an extension for the inclusion of boundaries that are to be held fixed at a constant potential (metal conditions. For each method, we present a showcase application to highlight the importance of dielectric interfaces.

  11. Diffusion properties of a guiding center plasma in a model electrostatic turbulence

    International Nuclear Information System (INIS)

    Pettini, M.; Vulpiani, A.; Misguich, J.H.; Balescu, R.; De Leener, M.; Orban, J.

    1986-01-01

    Numerical simulations have been performed to calculate the diffusion coefficient of several hundreds of charged particles across a strong magnetic field B, due to a known spectrum of electrostatic fluctuations. The results have been compared with the turbulent diffusion theory proposed by Misguich et al. The equation of motion is solved with a model electrostatic potential. This potential is also the Hamiltonian of this chaotic non-autonomous system: positive Lyapunov exponents are found in qualitative agreement with theoretical predictions. The absolute diffusion coefficients found in two different models exhibit a transition between two scaling regions: a classical scaling at low amplitudes (D ∼ E 2 /B 2 ), and a Bohm scaling at higher amplitudes (D ∼ E/B), in agreement with the predictions for these models. The value of the diffusion coefficient obtained in the isotropic model shows a satisfactory agreement with the theory. The study of the relative diffusion of initially close particles yields a clear quantitative confirmation of the clump effect and of the validity of the theoretical treatment of such nonlinearities. (26 fig, 20 refs)

  12. Can empathy, other personality attributes, and level of positive social influence in medical school identify potential leaders in medicine?

    Science.gov (United States)

    Hojat, Mohammadreza; Michalec, Barret; Veloski, J Jon; Tykocinski, Mark L

    2015-04-01

    To test the hypotheses that medical students recognized by peers as the most positive social influencers would score (1) high on measures of engaging personality attributes that are conducive to relationship building (empathy, sociability, activity, self-esteem), and (2) low on disengaging personality attributes that are detrimental to interpersonal relationships (loneliness, neuroticism, aggression-hostility, impulsive sensation seeking). The study included 666 Jefferson Medical College students who graduated in 2011-2013. Students used a peer nomination instrument to identify classmates who had a positive influence on their professional and personal development. At matriculation, these students had completed a survey that included the Jefferson Scale of Empathy and Zuckerman-Kuhlman Personality Questionnaire short form and abridged versions of the Rosenberg Self-Esteem Scale and UCLA Loneliness Scale. In multivariate analyses of variance, the method of contrasted groups was used to compare the personality attributes of students nominated most frequently by their peers as positive influencers (top influencers [top 25% in their class distribution], n = 176) with those of students nominated least frequently (bottom influencers [bottom 25%], n = 171). The top influencers scored significantly higher on empathy, sociability, and activity and significantly lower on loneliness compared with the bottom influencers. However, the effect size estimates of the differences were moderate at best. The research hypotheses were partially confirmed. Positive social influencers appear to possess personality attributes conducive to relationship building, which is an important feature of effective leadership. The findings have implications for identifying and training potential leaders in medicine.

  13. Electrostatic plasma lens for focusing negatively charged particle beams.

    Science.gov (United States)

    Goncharov, A A; Dobrovolskiy, A M; Dunets, S M; Litovko, I V; Gushenets, V I; Oks, E M

    2012-02-01

    We describe the current status of ongoing research and development of the electrostatic plasma lens for focusing and manipulating intense negatively charged particle beams, electrons, and negative ions. The physical principle of this kind of plasma lens is based on magnetic isolation electrons providing creation of a dynamical positive space charge cloud in shortly restricted volume propagating beam. Here, the new results of experimental investigations and computer simulations of wide-aperture, intense electron beam focusing by plasma lens with positive space charge cloud produced due to the cylindrical anode layer accelerator creating a positive ion stream towards an axis system is presented.

  14. Assessing the Electrode-Neuron Interface with the Electrically Evoked Compound Action Potential, Electrode Position, and Behavioral Thresholds.

    Science.gov (United States)

    DeVries, Lindsay; Scheperle, Rachel; Bierer, Julie Arenberg

    2016-06-01

    Variability in speech perception scores among cochlear implant listeners may largely reflect the variable efficacy of implant electrodes to convey stimulus information to the auditory nerve. In the present study, three metrics were applied to assess the quality of the electrode-neuron interface of individual cochlear implant channels: the electrically evoked compound action potential (ECAP), the estimation of electrode position using computerized tomography (CT), and behavioral thresholds using focused stimulation. The primary motivation of this approach is to evaluate the ECAP as a site-specific measure of the electrode-neuron interface in the context of two peripheral factors that likely contribute to degraded perception: large electrode-to-modiolus distance and reduced neural density. Ten unilaterally implanted adults with Advanced Bionics HiRes90k devices participated. ECAPs were elicited with monopolar stimulation within a forward-masking paradigm to construct channel interaction functions (CIF), behavioral thresholds were obtained with quadrupolar (sQP) stimulation, and data from imaging provided estimates of electrode-to-modiolus distance and scalar location (scala tympani (ST), intermediate, or scala vestibuli (SV)) for each electrode. The width of the ECAP CIF was positively correlated with electrode-to-modiolus distance; both of these measures were also influenced by scalar position. The ECAP peak amplitude was negatively correlated with behavioral thresholds. Moreover, subjects with low behavioral thresholds and large ECAP amplitudes, averaged across electrodes, tended to have higher speech perception scores. These results suggest a potential clinical role for the ECAP in the objective assessment of individual cochlear implant channels, with the potential to improve speech perception outcomes.

  15. Vesicle fusion with bilayer lipid membrane controlled by electrostatic interaction

    Directory of Open Access Journals (Sweden)

    Azusa Oshima

    2017-09-01

    Full Text Available The fusion of proteoliposomes is a promising approach for incorporating membrane proteins in artificial lipid membranes. In this study, we employed an electrostatic interaction between vesicles and supported bilayer lipid membranes (s-BLMs to control the fusion process. We combined large unilamellar vesicles (LUVs containing anionic lipids, which we used instead of proteoliposomes, and s-BLMs containing cationic lipids to control electrostatic interaction. Anionic LUVs were never adsorbed or ruptured on the SiO2 substrate with a slight negative charge, and selectively fused with cationic s-BLMs. The LUVs can be fused effectively to the target position. Furthermore, as the vesicle fusion proceeds and some of the positive charges are neutralized, the attractive interaction weakens and finally the vesicle fusion saturates. In other words, we can control the number of LUVs fused with s-BLMs by controlling the concentration of the cationic lipids in the s-BLMs. The fluidity of the s-BLMs after vesicle fusion was confirmed to be sufficiently high. This indicates that the LUVs attached to the s-BLMs were almost completely fused, and there were few intermediate state vesicles in the fusion process. We could control the position and amount of vesicle fusion with the s-BLMs by employing an electrostatic interaction.

  16. Electrostatics with Computer-Interfaced Charge Sensors

    Science.gov (United States)

    Morse, Robert A.

    2006-01-01

    Computer interfaced electrostatic charge sensors allow both qualitative and quantitative measurements of electrostatic charge but are quite sensitive to charges accumulating on modern synthetic materials. They need to be used with care so that students can correctly interpret their measurements. This paper describes the operation of the sensors,…

  17. Preliminary tests of the electrostatic plasma accelerator

    Science.gov (United States)

    Aston, G.; Acker, T.

    1990-01-01

    This report describes the results of a program to verify an electrostatic plasma acceleration concept and to identify those parameters most important in optimizing an Electrostatic Plasma Accelerator (EPA) thruster based upon this thrust mechanism. Preliminary performance measurements of thrust, specific impulse and efficiency were obtained using a unique plasma exhaust momentum probe. Reliable EPA thruster operation was achieved using one power supply.

  18. Destructive role of hot ions in the formation of electrostatic density humps and dips in dusty plasmas

    International Nuclear Information System (INIS)

    Mahmood, S.; Saleem, H.

    2003-01-01

    It is shown that the ion thermal energy is destructive for the ion acoustic solitons in the presence of dust, and it decreases the value of Mach number for the formation of solitary structures. The regions of ion density humps and dips are produced simultaneously, corresponding to positive and negative values of the electrostatic potential. The nonlinear electron density also behaves in a similar fashion as that of ions. However, the dust density increases in the regions where the ion and electron densities are depleted and vice versa

  19. Large Aperture Electrostatic Dust Detector

    International Nuclear Information System (INIS)

    Skinner, C.H.; Hensley, R.; Roquemore, A.L.

    2007-01-01

    Diagnosis and management of dust inventories generated in next-step magnetic fusion devices is necessary for their safe operation. A novel electrostatic dust detector, based on a fine grid of interlocking circuit traces biased to 30 or 50 v has been developed for the detection of dust particles on remote surfaces in air and vacuum environments. Impinging dust particles create a temporary short circuit and the resulting current pulse is recorded by counting electronics. Up to 90% of the particles are ejected from the grid or vaporized suggesting the device may be useful for controlling dust inventories. We report measurements of the sensitivity of a large area (5x5 cm) detector to microgram quantities of dust particles and review its applications to contemporary tokamaks and ITER.

  20. Take-Home Electrostatics Experiments

    Science.gov (United States)

    Brown, Michael H.

    1997-10-01

    Important concepts in electrostatics can be taught using apparatus that students can find or build at home. A TV or monitor screens serves as the source of a strong electric field (10,000 V/m). It can be used to charge a capacitor made from foil-covered cardboard plates supported by the bottom of a plastic pop bottle. A foil ball suspended between the plates transfers charges in a version of Franklin's experiment. An electric dipole compass,made of carnauba wax polarized in the electric field of the TV, can be used to map the fringing field of the capacitor. Discharge of charged foil-covered balls produces ``static'' that can be detected with an AM radio. *supported in part by NSF CCD grant DUE-9555215

  1. Microencapsulation and Electrostatic Processing Method

    Science.gov (United States)

    Morrison, Dennis R. (Inventor); Mosier, Benjamin (Inventor)

    2000-01-01

    Methods are provided for forming spherical multilamellar microcapsules having alternating hydrophilic and hydrophobic liquid layers, surrounded by flexible, semi-permeable hydrophobic or hydrophilic outer membranes which can be tailored specifically to control the diffusion rate. The methods of the invention rely on low shear mixing and liquid-liquid diffusion process and are particularly well suited for forming microcapsules containing both hydrophilic and hydrophobic drugs. These methods can be carried out in the absence of gravity and do not rely on density-driven phase separation, mechanical mixing or solvent evaporation phases. The methods include the process of forming, washing and filtering microcapsules. In addition, the methods contemplate coating microcapsules with ancillary coatings using an electrostatic field and free fluid electrophoresis of the microcapsules. The microcapsules produced by such methods are particularly useful in the delivery of pharmaceutical compositions.

  2. Plant operator selection system for evaluating employment candidates' potential for success in electric power plant operations positions

    International Nuclear Information System (INIS)

    Dunnette, M.D.

    1982-01-01

    The Plant Operator Selection System is a battery of tests and questionnaires that can be administered to job candidates in less than three hours. Various components of the battery measure what a job candidate has accomplished in previous educational and work situations, how well a candidate compares with others on a number of important aptitudes or abilities, and whether or not a candidate possesses the kind of personal stability required in power plant operations positions. A job candidate's answers to the tests and questionnaires of the Plant Operator Selection System are scored and converted to an OVERALL POTENTIAL INDEX. Values of the OVERALL POTENTIAL INDEX [OPI] range between 0 and 15. Candidates with high OPI values are much more likely to become effective and successful plant operators than candidates with low OPI values. It is possible to estimate the financial advantages to a company of using the Plant Operator Selection System in evaluating candidates for plant operations jobs

  3. Spatial profile measurements of ion-confining potentials using novel position-sensitive ion-energy spectrometer arrays

    International Nuclear Information System (INIS)

    Yoshida, M.; Cho, T.; Hirata, M.; Ito, H.; Kohagura, J.; Yatsu, K.; Miyoshi, S.

    2003-01-01

    The first experimental demonstration of simultaneous measurements of temporally and spatially resolved ion-confining potentials phi c and end-loss-ion fluxes I ELA has been carried out during a single plasma discharge alone by the use of newly designed ion-energy-spectrometer arrays installed in both end regions of the GAMMA 10 tandem mirror. This position-sensitive ion-detector structure is proposed to obtain precise ion-energy spectra without any perturbations from simultaneously incident energetic electrons into the arrays. The relation between phi c and I ELA is physically interpreted in terms of Pastukhov's potential confinement theory. In particular, the importance of axisymmetric phi c formation is found for the plasma confinement

  4. The dynamic allocation of attention to emotion: simultaneous and independent evidence from the late positive potential and steady state visual evoked potentials.

    Science.gov (United States)

    Hajcak, Greg; MacNamara, Annmarie; Foti, Dan; Ferri, Jamie; Keil, Andreas

    2013-03-01

    Emotional stimuli capture and hold attention without explicit instruction. The late positive potential (LPP) component of the event related potential can be used to track motivated attention toward emotional stimuli, and is larger for emotional compared to neutral pictures. In the frequency domain, the steady state visual evoked potential (ssVEP) has also been used to track attention to stimuli flickering at a particular frequency. Like the LPP, the ssVEP is also larger for emotional compared to neutral pictures. Prior work suggests that both the LPP and ssVEP are sensitive to "top-down" manipulations of attention, however the LPP and ssVEP have not previously been examined using the same attentional manipulation in the same participants. In the present study, LPP and ssVEP amplitudes were simultaneously elicited by unpleasant and neutral pictures. Partway through picture presentation, participants' attention was directed toward an arousing or non-arousing region of unpleasant pictures. In line with prior work, the LPP was reduced when attention was directed toward non-arousing compared to arousing regions of unpleasant pictures; similar results were observed for the ssVEP. Thus, both electrocortical measures index affective salience and are sensitive to directed (here: spatial) attention. Variation in the LPP and ssVEP was unrelated, suggesting that these measures are not redundant with each other and may capture different neurophysiological aspects of affective stimulus processing and attention. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Electrostatic effect for the collisionless tearing mode

    International Nuclear Information System (INIS)

    Hoshino, M.

    1987-01-01

    Electron dynamics has not been self-consistently considered in collisionless tearing mode theories to date because of the mathematical complexity of the Vlasov-Maxwell equations. We have found using computer simulations that electrostatic fields play an important role in the tearing mode. Vlasov theory, including the electrostatic field, is investigated for topologies with both antiparallel and nonantiparallel magnetic field lines. The electrostatic field influences the resonant current in the neutral sheet which is a non-MHD effect, and modifies the linear growth rate. At the magnetopause, where the field lines are not antiparallel, the electrostatic effect acts to raise the linear growth rate of the tearing mode. On the other hand, in the magnetotail, where magnetic field lines are antiparallel, the electrostatic effect reduces the tearing mode growth rate. copyright American Geophysical Union 1987

  6. Electrostatic charges generated on aerosolisation of dispersions

    International Nuclear Information System (INIS)

    Wang, Yanyang

    2001-01-01

    In responding to the international community's agreement of phasing out chlorofluorocarbon (CFC) propellants by the year 2000, hydrofluoroalkane (HFA) has been chosen to replace CFCs. Intensive investigations related to the new propellant products have been carried out. Aerosol electrostatics is one of the topics investigated. To understand and subsequently control the charging processes is the motive of the research reported here. To help elucidate the complex charging process occurring naturally during atomization of liquids from pressurised Metered Dose Inhalers (pMDIs), it has been broken down into a sequence of related, simpler sub processes-drop charging, streaming current charging (coarse spray), splashing charging and fine spray charging. Our initial studies are of single drops forming at and breaking away from the tips of capillary tubes. The drop forming processes are so slow that any hydrodynamic effect can be dismissed. Then the charge on the drop is measured. It is found that the charge on water drops is always negative (∼ 10 -14 C) at field-free condition and the magnitude of the charge increases as the drop size increases and the surrounding tube diameter decreases. With salt solutions, the charge on drops is negative at dilute solutions, decreases in magnitude as the concentration of electrolytes increases and finally reverses the sign of charge at approximately 1 M - drop charge becomes positive. All these experimental results can be explained in terms of contact potential between liquid and the inner wall of the capillary, which sets up an electric field between the pendant drop and the surrounding tube. Then computational simulation work is carried out and the data are compared with experimental results. It is found that the computer simulation data are in accord with experimental observations. This is a potential method to measure absolute potential difference between a liquid and a solid. Secondly, the hydrodynamic processes are investigated

  7. Electrostatic turbulence in the Tokamak TBR-1

    International Nuclear Information System (INIS)

    Castro, R.M. de.

    1991-01-01

    Characteristics of turbulence at plasma edge of tokamak TBR - 1 are determined from measurements of potentials and density fluctuations, done with a square array of four single Langmuir probes. Two adjacent probes are used to measure the floating potential of the plasma in either poloidal or toroidal directions, the remaining two probes are used to measure saturation current also in poloidal and toroidal directions. Using multiple shot data from the four probe array the radial fluctuation density (n ∼ ) and floating potential (φ ∼ ) profiles are estimated. Analysing the fluctuations spectra the wavenumber-frequency spectrum S(k,ω) from two points measurements is determined. An extension of the cross-correlation concept to a three points correlations leads to the estimation of the fluctuation induced particle flux, from which the particle diffusion coefficient and the convected heat flux can be estimated. All this measurements were performed with and without a resonant magnetic field to verify the eventual influence of this field on the data already mentioned. It was verified that the particle flux is outward and due to electrostatic fluctuations with frequencies lower than 150 khz. (author)

  8. 3D RISM theory with fast reciprocal-space electrostatics

    Energy Technology Data Exchange (ETDEWEB)

    Heil, Jochen; Kast, Stefan M., E-mail: stefan.kast@tu-dortmund.de [Physikalische Chemie III, Technische Universität Dortmund, Otto-Hahn-Str. 6, 44227 Dortmund (Germany)

    2015-03-21

    The calculation of electrostatic solute-solvent interactions in 3D RISM (“three-dimensional reference interaction site model”) integral equation theory is recast in a form that allows for a computational treatment analogous to the “particle-mesh Ewald” formalism as used for molecular simulations. In addition, relations that connect 3D RISM correlation functions and interaction potentials with thermodynamic quantities such as the chemical potential and average solute-solvent interaction energy are reformulated in a way that calculations of expensive real-space electrostatic terms on the 3D grid are completely avoided. These methodical enhancements allow for both, a significant speedup particularly for large solute systems and a smoother convergence of predicted thermodynamic quantities with respect to box size, as illustrated for several benchmark systems.

  9. 3D RISM theory with fast reciprocal-space electrostatics.

    Science.gov (United States)

    Heil, Jochen; Kast, Stefan M

    2015-03-21

    The calculation of electrostatic solute-solvent interactions in 3D RISM ("three-dimensional reference interaction site model") integral equation theory is recast in a form that allows for a computational treatment analogous to the "particle-mesh Ewald" formalism as used for molecular simulations. In addition, relations that connect 3D RISM correlation functions and interaction potentials with thermodynamic quantities such as the chemical potential and average solute-solvent interaction energy are reformulated in a way that calculations of expensive real-space electrostatic terms on the 3D grid are completely avoided. These methodical enhancements allow for both, a significant speedup particularly for large solute systems and a smoother convergence of predicted thermodynamic quantities with respect to box size, as illustrated for several benchmark systems.

  10. 3D RISM theory with fast reciprocal-space electrostatics

    International Nuclear Information System (INIS)

    Heil, Jochen; Kast, Stefan M.

    2015-01-01

    The calculation of electrostatic solute-solvent interactions in 3D RISM (“three-dimensional reference interaction site model”) integral equation theory is recast in a form that allows for a computational treatment analogous to the “particle-mesh Ewald” formalism as used for molecular simulations. In addition, relations that connect 3D RISM correlation functions and interaction potentials with thermodynamic quantities such as the chemical potential and average solute-solvent interaction energy are reformulated in a way that calculations of expensive real-space electrostatic terms on the 3D grid are completely avoided. These methodical enhancements allow for both, a significant speedup particularly for large solute systems and a smoother convergence of predicted thermodynamic quantities with respect to box size, as illustrated for several benchmark systems

  11. Electrostatic influence in a wire chamber. Choice of geometric parameters of a chamber

    International Nuclear Information System (INIS)

    Comparat, V.; Ovazza, D.

    1979-01-01

    The MWPC electrostatic properties are studied: a positive ponctual charge is put near an anode wire and induced charges on all electrodes of MWPC and their variations with the position of the positive charge are determined. So the best choice for geometrical parameters of a PWPC is given [fr

  12. Small electrostatic storage rings; also for highly charged ions?

    International Nuclear Information System (INIS)

    Moeller, S.P.; Pedersen, U.V.

    2001-01-01

    Two years ago, a small electrostatic storage ring ELISA (electrostatic ion storage ring, Aarhus) was put into operation. The design of this small 7 m circumference ring was based on electrostatic deflection plates and quadrupoles. This is in contrast to the larger ion storage rings, which are based on magnetic focusing and deflection. The result is a small, relatively inexpensive, storage ring being able to store ions of any mass and any charge at low energy ( -11 mbar resulting in storage times of several tens of seconds for singly charged ions. The maximum number of singly charged ions that can be stored is a few 10 7 . Several experiments have already been performed in ELISA. These include lifetime studies of metastable ions and studies of fullerenes and metal-cluster ions. Lasers are also used for excitation of the circulating ions. Heating/cooling of the ring is possible. Cooling of the ring leads to significantly lower pressures, and correspondingly longer lifetimes. A change of the temperature of the vacuum chambers surrounding the ion beam also leads to a change of the spectrum of the black-body radiation, which has a significant influence on weakly bound negative ions. At the time of writing, at least two other electrostatic storage rings are being built, and more are planned. In the following, the electrostatic storage ring ELISA will be described, and results from some of the initial experiments demonstrating the performance will be shown. The relative merits of such a ring, as opposed to the larger magnetic rings and the smaller ion traps will be discussed. The potential for highly charged ions will be briefly mentioned. (orig.)

  13. Studies of spherical inertial-electrostatic confinement

    International Nuclear Information System (INIS)

    Miley, G.H.

    1992-01-01

    Theoretical and experimental results from studies of Spherical Inertial-Electrostatic Confinement (SIEC) are presented. This principle of IEC involves the confinement by multiple potential wells created by ion injection into a spherical device containing biased grids. A semitransparent cathode accelerates ions, generating a spherical ion-beam flow which converges at the center of the spherical volume, creating a space charge (potential well) region. An electron flow is created by the core (virtual anode) region, forming in turn a virtual cathode. Ions trapped inside this well oscillate back and forth until they fuse or degrade in energy. Such multiple wells with virtual anodes and cathodes, have been called ''Poissors'' following the original work by Farnsworth and by Hirsch. Fusion within the core occurs by reactions between non-Maxwellian beam-beam type ions. This has the potential for achieving a high power density and also for burning both D-T and advanced fuels. If successful, such a device would be attractive for a variety of high power density applications, e.g., space power or as a neutron source based on D-D or D-T operation. Simulations of recent SIEC experiments have been carried out using the XL-code, to solve Poisson's equation, self-consistently with the collisionless Vlasov equation in spherical geometry for several current species and grid parameters. The potential profile predictions are reasonably consistent with experimental results. Potential well measurements used a collimated proton detector. Results indicate that an ∼ 15-kV virtual anode, at least one centimeter in radius, was formed in a spherical device with a cathode potential of 30 kV using an ion current of ∼ 30 mA. Analysis indicates D + densities on the order of 10 9 cm -3 , and D 2 + densities on the order of 10 10 cm -3 . Steady-state D-D neutron emission of about 10 6 n/sec is observed

  14. A self-consistent transport model for molecular conduction based on extended Huckel theory with full three-dimensional electrostatics

    DEFF Research Database (Denmark)

    Zahid, F.; Paulsson, Magnus; Polizzi, E.

    2005-01-01

    overlap) method and the electrostatic effects of metallic leads (bias and image charges) are included through a three-dimensional finite element method. This allows us to capture spatial details of the electrostatic potential profile, including effects of charging, screening, and complicated electrode...

  15. New Distributed Multipole Methods for Accurate Electrostatics for Large-Scale Biomolecular Simultations

    Science.gov (United States)

    Sagui, Celeste

    2006-03-01

    An accurate and numerically efficient treatment of electrostatics is essential for biomolecular simulations, as this stabilizes much of the delicate 3-d structure associated with biomolecules. Currently, force fields such as AMBER and CHARMM assign ``partial charges'' to every atom in a simulation in order to model the interatomic electrostatic forces, so that the calculation of the electrostatics rapidly becomes the computational bottleneck in large-scale simulations. There are two main issues associated with the current treatment of classical electrostatics: (i) how does one eliminate the artifacts associated with the point-charges (e.g., the underdetermined nature of the current RESP fitting procedure for large, flexible molecules) used in the force fields in a physically meaningful way? (ii) how does one efficiently simulate the very costly long-range electrostatic interactions? Recently, we have dealt with both of these challenges as follows. In order to improve the description of the molecular electrostatic potentials (MEPs), a new distributed multipole analysis based on localized functions -- Wannier, Boys, and Edminston-Ruedenberg -- was introduced, which allows for a first principles calculation of the partial charges and multipoles. Through a suitable generalization of the particle mesh Ewald (PME) and multigrid method, one can treat electrostatic multipoles all the way to hexadecapoles all without prohibitive extra costs. The importance of these methods for large-scale simulations will be discussed, and examplified by simulations from polarizable DNA models.

  16. Wall Climbing Robot Using Electrostatic Adhesion Force Generated by Flexible Interdigital Electrodes

    Directory of Open Access Journals (Sweden)

    Rong Liu

    2013-01-01

    Full Text Available Electrostatic adhesion technology has broad application prospects on wall climbing robots because of its unique characteristics compared with other types of adhesion technologies. A double tracked wall climbing robot based on electrostatic adhesion technology is presented including electrode panel design, mechanical structure design, power supply system design and control system design. A theoretical adhesion model was established and the electrostatic potential and field were expressed by series expansions in terms of solutions of the Laplace function. Based on this model, the electrostatic adhesion force was calculated using the Maxwell stress tensor formulation. Several important factors which may influence the electrostatic adhesion force were analysed and discussed by both FEM simulation and theoretical calculation. In addition, experiments on the adhesion performance of the electrode panel and the climbing performance of the robot on various wall materials were carried out. Both the simulation and experiment results verify the feasibility of electrostatic adhesion technology being applied on wall climbing robots. The theoretical model and calculation method for the electrostatic adhesion force proposed in this paper are also justified.

  17. Dynamics, Surface Electrostatics and Phase Properties of Nanoscale Curved Lipid Bilayers

    Science.gov (United States)

    Koolivand, Amir

    Surface electrostatic potential of a lipid bilayer governs many vital functions of living cells. Several classes of proteins are known of exhibiting strong binding preferences to curved lipid bilayer surfaces. In this project we employed electron paramagnetic resonance (EPR) of a recently introduced phospholipid (IMTSL-PTE) bearing a pH-sensitive nitroxide covalently attached to the lipid head group to measure the surface electrostatics of the lipid membrane and nanopore-confined lipid bilayers as a function of the bilayer curvature. The pKa of the ionizable group of this lipid-based spin probe is reporting on the bilayer surface electrostatics potential by changes in the EPR spectra. Specifically, both rotational dynamics and magnetic parameters of the nitroxide are affected by the probe protonation. Effect of curvature on the surface electrostatic potential and dynamics of lipid bilayer was studied for POPG and DMPG unilamellar vesicles (ULVs). It was found that the magnitude of the negative surface electrostatic potential increased upon decrease in the vesicle diameter for the bilayers in the fluid phase; however, no significant changes were observed for DMPG ULVs in a gel phase. We speculate that biologically relevant fluid bilayer phase allows for a larger variability in the lipid packing density in the lipid polar head group region than a more ordered gel phase and it is likely that the lipid flip-flop is responsible for pH equilibration of IMTSL-PTE. The kinetic EPR study of nitroxide reduction showed that the rate of flip-flop is in the order of 10-5 s-1. The flip-flop rate constant increases when vesicle size deceases. Oxygen permeability measured by X-ban EPR decreases in higher curved vesicles---an observation that is consistent with a tighter packing in smaller vesicles. Partitioning of a small nitroxide molecule TEMPO into ULVs was measured by X-band (9 GHz) and W-band (95 GHz) EPR spectroscopy. The partitioning coefficient of this probe in the lipid

  18. Electrostatics in the Surroundings of a Topologically Charged Black Hole in the Brane

    Directory of Open Access Journals (Sweden)

    Alexis Larrañaga

    2014-01-01

    Full Text Available We determine the expression for the electrostatic potential generated by a point charge held stationary in the topologically charged black hole spacetime arising from the Randall-Sundrum II braneworld model. We treat the static electric point charge as a linear perturbation on the black hole background and an expression for the electrostatic multipole solution is given: PACS: 04.70.-s, 04.50.Gh, 11.25.-w, 41.20.-q, 41.90.+e.

  19. On the Relativistic Correction of Particles Trajectory in Tandem Type Electrostatic Accelerator

    OpenAIRE

    Minárik Stanislav

    2015-01-01

    A constant potential is applied to the acceleration of the ion-beam in the tandem type electrostatic accelerator. However, not just one voltage is applied, but instead a number of applications can be made in succession by means of the tandem arrangement of high voltage tubes. This number of voltage applications, which is the number of so-called "stages" of a tandem accelerator, may be two, three, or four, depending on the chosen design. Electrostatic field with approximately constant intensit...

  20. Direct Analysis of Large Living Organism by Megavolt Electrostatic Ionization Mass Spectrometry

    Science.gov (United States)

    Ng, Kwan-Ming; Tang, Ho-Wai; Man, Sin-Heng; Mak, Pui-Yuk; Choi, Yi-Ching; Wong, Melody Yee-Man

    2014-09-01

    A new ambient ionization method allowing the direct chemical analysis of living human body by mass spectrometry (MS) was developed. This MS method, namely Megavolt Electrostatic Ionization Mass Spectrometry, is based on electrostatic charging of a living individual to megavolt (MV) potential, illicit drugs, and explosives on skin/glove, flammable solvent on cloth/tissue paper, and volatile food substances in breath were readily ionized and detected by a mass spectrometer.

  1. Fabrication of graphene/polyaniline composite multilayer films by electrostatic layer-by-layer assembly

    Science.gov (United States)

    Cong, Jiaojiao; Chen, Yuze; Luo, Jing; Liu, Xiaoya

    2014-10-01

    A novel graphene/polyaniline composite multilayer film was fabricated by electrostatic interactions induced layer-by-layer self-assembly technique, using water dispersible and negatively charged chemically converted graphene (CCG) and positively charged polyaniline (PANI) as building blocks. CCG was achieved through partly reduced graphene oxide, which remained carboxyl group on its surface. The remaining carboxyl groups not only retain the dispersibility of CCG, but also allow the growth of the multilayer films via electrostatic interactions between graphene and PANI. The structure and morphology of the obtained CCG/PANI multilayer film are characterized by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, Ultraviolet-visible absorption spectrum (UV-vis), scanning electron microscopy (SEM), Raman spectroscopy and X-Ray Diffraction (XRD). The electrochemical properties of the resulting film are studied using cyclic voltammetry (CV), which showed that the resulting CCG/PANI multilayer film kept electroactivity in neutral solution and showed outstanding cyclic stability up to 100 cycles. Furthermore, the composite film exhibited good electrocatalytic ability toward ascorbic acid (AA) with a linear response from 1×10-4 to 1.2×10-3 M with the detect limit of 5×10-6 M. This study provides a facile and effective strategy to fabricate graphene/PANI nanocomposite film with good electrochemical property, which may find potential applications in electronic devices such as electrochemical sensor.

  2. Specific Electrostatic Molecular Recognition in Water

    DEFF Research Database (Denmark)

    Li, Ming; Hoeck, Casper; Schoffelen, Sanne

    2016-01-01

    The identification of pairs of small peptides that recognize each other in water exclusively through electrostatic interactions is reported. The target peptide and a structure-biased combinatorial ligand library consisting of ≈78 125 compounds were synthesized on different sized beads. Peptide......-bead binding assay and by 2D NMR spectroscopy. Molecular dynamics (MD) studies revealed a putative mode of interaction for this unusual electrostatic binding event. High binding specificity occurred through a combination of topological matching and electrostatic and hydrogen-bond complementarities. From MD...

  3. Nonlinear dynamics of resistive electrostatic drift waves

    DEFF Research Database (Denmark)

    Korsholm, Søren Bang; Michelsen, Poul; Pécseli, H.L.

    1999-01-01

    The evolution of weakly nonlinear electrostatic drift waves in an externally imposed strong homogeneous magnetic field is investigated numerically in three spatial dimensions. The analysis is based on a set of coupled, nonlinear equations, which are solved for an initial condition which is pertur......The evolution of weakly nonlinear electrostatic drift waves in an externally imposed strong homogeneous magnetic field is investigated numerically in three spatial dimensions. The analysis is based on a set of coupled, nonlinear equations, which are solved for an initial condition which...... polarity, i.e. a pair of electrostatic convective cells....

  4. Introduction to numerical electrostatics using MATLAB

    CERN Document Server

    Dworsky, Lawrence N

    2014-01-01

    The first of its kind uniquely devoted to the field of computational electrostatics, this book dives headfirst into the actual problems that engineers are expected to solve using method of moment (MoM), finite difference, and finite element techniques. Readers are guided step by step through specific problems and challenges, covering all aspects of electrostatics with an emphasis on numerical procedures. Focusing on practical examples, mathematical equations, and common issues with algorithms, this is an ideal text for students in engineering, physics, and electrostatics-and working engineers

  5. Trial sequential analysis reveals insufficient information size and potentially false positive results in many meta-analyses

    DEFF Research Database (Denmark)

    Brok, J.; Thorlund, K.; Gluud, C.

    2008-01-01

    in 80% (insufficient information size). TSA(15%) and TSA(LBHIS) found that 95% and 91% had absence of evidence. The remaining nonsignificant meta-analyses had evidence of lack of effect. CONCLUSION: TSA reveals insufficient information size and potentially false positive results in many meta......OBJECTIVES: To evaluate meta-analyses with trial sequential analysis (TSA). TSA adjusts for random error risk and provides the required number of participants (information size) in a meta-analysis. Meta-analyses not reaching information size are analyzed with trial sequential monitoring boundaries...... analogous to interim monitoring boundaries in a single trial. STUDY DESIGN AND SETTING: We applied TSA on meta-analyses performed in Cochrane Neonatal reviews. We calculated information sizes and monitoring boundaries with three different anticipated intervention effects of 30% relative risk reduction (TSA...

  6. Potential clinical applications of {sup 18}F-fluorodeoxyglucose position emission tomography/magnetic resonance mammography in breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Ihn Ho; Kong, Eun Jung [Dept. of Nuclear Medicine, Yeugnam University Hospital, Daegu (Korea, Republic of)

    2017-09-15

    The whole-body positron emission tomography (PET)/magnetic resonance (MR) scan is a cutting edge technology providing comprehensive structural information from MR imaging and functional features from PET in a single session. Recent research findings and clinical experience have shown that 18F-fluorodeoxyglucose (FDG) whole-body PET/MR imaging has a diagnostic performance comparable with or superior to that of PET/CT in the field of oncology, including for breast cancer. In particular, FDG PET/MR mammography in the prone position with the breast hanging in a pendant manner can provide more comprehensive information about the metabolism, anatomy, and functional features of a breast lesion than a whole-body PET/MR scan. This article reports on current state-of-the-art PET/MR mammography in patients with breast cancer and the prospects for potential application in the future.

  7. Presence and potential for horizontal transfer of antibiotic resistance in oxidase-positive bacteria populating raw salad vegetables.

    Science.gov (United States)

    Bezanson, G S; MacInnis, R; Potter, G; Hughes, T

    2008-09-30

    To assess whether domestically grown fresh salad vegetables constitute a possible reservoir of antibiotic resistance for Canadian consumers, aerobic bacteria capable of forming colonies at 30 degrees C on nutrient-limited media were recovered from a single sampling of Romaine lettuce, Savoy spinach and alfalfa sprouts, then examined for their susceptibility to ten antibiotics and the carriage of potentially mobile R-plasmids and integrons. Of the 140 isolates resistant to one or more antibiotic, 93.5 and 90.0% were resistant to ampicillin and cephalothin; 35.7% to chloramphenicol, 10.0% to streptomycin, 4.2% to nalidixic acid, 4.2% to kanamycin, and 2.8% to gentamicin. Gram-positive isolates accounted for less than 4% of the antibiotic resistant strains. A small portion (23.1%) of the predominant oxidase-positive, gram-negative isolates was resistant to two or more antimicrobials. Members of the Pseudomonas fluorescens/putida complex were most prevalent among the 34 resistant strains identified. Sphingobacterium spp. and Acinetobacter baumanni also were detected. Ten of 52 resistant strains carried plasmids, 3 of which were self-transmissible and bore resistance to ampicillin and kanamycin. Eighteen of 48 gave PCR evidence for integron DNA. Class 2 type integrons were the most prevalent, followed by class 1. We conclude that the foods examined here carry antibiotic resistant bacteria at the retail level. Further, our determination that resistant strains contain integron-specific DNA sequences and self-transmissible R-plasmids indicates their potential to influence the pool of antibiotic resistance in humans via lateral gene transfer subsequent to ingestion.

  8. The effect of emotional content on brain activation and the late positive potential in a word n-back task.

    Directory of Open Access Journals (Sweden)

    Juliane Kopf

    Full Text Available INTRODUCTION: There is mounting evidence for the influence of emotional content on working memory performance. This is particularly important in light of the emotion processing that needs to take place when emotional content interferes with executive functions. In this study, we used emotional words of different valence but with similar arousal levels in an n-back task. METHODS: We examined the effects on activation in the prefrontal cortex by means of functional near-infrared spectroscopy (fNIRS and on the late positive potential (LPP. FNIRS and LPP data were examined in 30 healthy subjects. RESULTS: BEHAVIORAL RESULTS SHOW AN INFLUENCE OF VALENCE ON THE ERROR RATE DEPENDING ON THE DIFFICULTY OF THE TASK: more errors were made when the valence was negative and the task difficult. Brain activation was dependent both on the difficulty of the task and on the valence: negative valence of a word diminished the increase in activation, whereas positive valence did not influence the increase in activation, while difficulty levels increased. The LPP also differentiated between the different valences, and in addition was influenced by the task difficulty, the more difficult the task, the less differentiation could be observed. CONCLUSIONS: Summarized, this study shows the influence of valence on a verbal working memory task. When a word contained a negative valence, the emotional content seemed to take precedence in contrast to words containing a positive valence. Working memory and emotion processing sites seemed to overlap and compete for resources even when words are carriers of the emotional content.

  9. Contribution of electrostatics to the binding of pancreatic-type ribonucleases to membranes.

    Science.gov (United States)

    Sundlass, Nadia K; Eller, Chelcie H; Cui, Qiang; Raines, Ronald T

    2013-09-17

    Pancreatic-type ribonucleases show clinical promise as chemotherapeutic agents but are limited in efficacy by the inefficiency of their uptake by human cells. Cellular uptake can be increased by the addition of positive charges to the surface of ribonucleases, either by site-directed mutagenesis or by chemical modification. This observation has led to the hypothesis that ribonuclease uptake by cells depends on electrostatics. Here, we use a combination of experimental and computational methods to ascertain the contribution of electrostatics to the cellular uptake of ribonucleases. We focus on three homologous ribonucleases: Onconase (frog), ribonuclease A (cow), and ribonuclease 1 (human). Our results support the hypothesis that electrostatics are necessary for the cellular uptake of Onconase. In contrast, specific interactions with cell-surface components likely contribute more to the cellular uptake of ribonuclease A and ribonuclease 1 than do electrostatics. These findings provide insight for the design of new cytotoxic ribonucleases.

  10. Heliopause Electrostatic Rapid Transit System (HERTS)

    Science.gov (United States)

    Wiegmann, Bruce M.

    2015-01-01

    A recent six month investigation focused on: "Determining the benefits of propelling a scientific spacecraft by an 'Electric Sail' propulsion system to the edge of our solar system (the Heliopause), a distance of 100 to 120 AU, in ten years or less" has recently been completed by the Advance Concepts Office at NASA's MSFC. The concept investigated has been named the Heliopause Electrostatic Rapid Transit System (HERTS) by the MSFC team. The HERTS is a revolutionary propellant-less propulsion concept that is ideal for deep space missions to the Outer Planets, Heliopause, and beyond. It is unique in that it uses momentum exchange from naturally occurring solar wind protons to propel a spacecraft within the heliosphere. The propulsion system consists of an array of electrically positively-biased wires that extend outward 20 km from a rotating (one revolution per hour) spacecraft. It was determined that the HERTS system can accelerate a spacecraft to velocities as much as two to three times that possible by any realistic extrapolation of current state-of-the-art propulsion technologies- including solar electric and solar sail propulsion systems. The data produced show that a scientific spacecraft could reach distances of 100AU in less than 10 years. Moreover, it can be reasonably expected that this system could be developed within a decade and provide meaningful Heliophysics Science and Outer Planetary Science returns in the 2025-2035 timeframe.

  11. Feedback stabilization of electrostatic reactive instabilities

    International Nuclear Information System (INIS)

    Richards, R.K.

    1976-01-01

    A general theory for the feedback stabilization of electrostatic reactive instabilities is developed which includes the effects of dissipation in the plasma and frequency dependence in the sensor-suppressor elements and in the external feedback circuit. This theory is compared to experiments involving particular reactive instability, an interchange mode, found in a magnetic mirror device; these results are found to be in good agreement with theory. One noteworthy result is that a frequency dependence in the overall gain and phase shift of the feedback loop can cause destabilization at large gain. Multimode feedback stabilization is studied using the spatial variation of two interchange modes to separate them such that each can be acted upon individually by the feedback system. The transfer function of the plasma is also examined. This analysis is used for mode identification and location of the pole positions. As an example of using feedback as a diagnostic tool, instability induced transport is studied. Here feedback is used to control the amplitude of fluctuations at saturation

  12. Molecular electrostatics for probing lone pair-π interactions.

    Science.gov (United States)

    Mohan, Neetha; Suresh, Cherumuttathu H; Kumar, Anmol; Gadre, Shridhar R

    2013-11-14

    An electrostatics-based approach has been proposed for probing the weak interactions between lone pair containing molecules and π deficient molecular systems. For electron-rich molecules, the negative minima in molecular electrostatic potential (MESP) topography give the location of electron localization and the MESP value at the minimum (Vmin) quantifies the electron-rich character of that region. Interactive behavior of a lone pair bearing molecule with electron deficient π-systems, such as hexafluorobenzene, 1,3,5-trinitrobenzene, 2,4,6-trifluoro-1,3,5-triazine and 1,2,4,5-tetracyanobenzene explored within DFT brings out good correlation of the lone pair-π interaction energy (E(int)) with the Vmin value of the electron-rich system. Such interaction is found to be portrayed well with the Electrostatic Potential for Intermolecular Complexation (EPIC) model. On the basis of the precise location of MESP minimum, a prediction for the orientation of a lone pair bearing molecule with an electron deficient π-system is possible in the majority of the cases studied.

  13. Electrostatic systems used for the multipassage magnetic mass spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Berger, C; Baril, M

    1987-08-15

    Improvement in the power of resolution is desirable in the multiplication of passages in magnetic fields; our guiding principle is to carry out the operation using a single magnetic prism. In the multipassage process the ions must first turn back after leaving the prism. This turnback is obtained by an electrostatic mirror. We obtain a large enough number of passages by placing two mirrors and two systems with time-varying roles at right angles. These systems are referred to as lens-mirror 1. When they act as mirrors, they enable the particles to circulate in a closed circuit; when they act as lenses, they enable the particles to enter the circuit or leave it. The coupling of two multipassage spectrometers is momentarily possible thanks to lens-mirror 2. The function change results from a change in electrode potential. The requirements for these electrostatic systems and their construction are studied.

  14. Effect of electrostatic interactions on electron-transfer reactions

    International Nuclear Information System (INIS)

    Hickel, B.

    1987-01-01

    Fast reactions of electron transfer are studied by pulsed radiolysis. By this technique radicals and ionic radicals with high redox potentials are created homogeneously in the solution in about 10 -8 second. For solvated electron effect of electrostatic interaction on kinetics of reactions limited by diffusion is obtained with a good approximation by the Debye equation when ion mobility is known. Deviation from the theory occurs in ion pair formation, which is evidenced experimentally in reactions between anions when cations are complexed by a cryptate. Slow reactions k 8 M -1 s -1 are more sensitive to electrostatic interactions than reactions limited by diffusion. When there is no ion pair formation the velocity constant depends upon dielectric constant of the solvent and reaction distance. 17 refs

  15. The late positive potential as a marker of motivated attention to underweight bodies in girls with anorexia nervosa.

    Science.gov (United States)

    Horndasch, Stefanie; Heinrich, Hartmut; Kratz, Oliver; Moll, Gunther H

    2012-12-01

    In anorexia nervosa (AN), aspects of motivational salience and reward are increasingly discussed. Event related potentials, particularly the late positive potential (LPP), have been investigated as a marker for motivational salience of stimuli, for example in addictive disorders. The aim of this study was to assess the LPP as a possible indicator of motivated attention towards disease-specific pictures of underweight female bodies in adolescents with AN in comparison to typically developing (TD) adolescent girls. 13 girls with AN and 18 TD adolescent girls (aged 12 to 18 years) viewed pictures of underweight, normal-weight and overweight women while EEG activity was recorded. An earlier (450-680 ms after stimulus onset) as well as a later time window (850-1250 ms after stimulus onset) of the LPP were examined for the different picture categories. Participants were also asked to rate subjective emotions (fear, disgust, happiness) elicited by the pictures. Subjective ratings showed no differential experience of emotions for the two groups. For AN patients, highest LPP amplitudes were found for underweight women in the earlier as well as in the later time window. In TD girls, highest amplitudes for pictures of overweight women were observed in the earlier time window. A differential LPP pattern for girls with AN and TD girls when viewing pictures of women's bodies of different weight categories was obtained. Highest amplitudes in AN patients for pictures of underweight women may reflect motivational significance of strongly underweight body shapes. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Nonlinear Dynamics of Electrostatically Actuated MEMS Arches

    KAUST Repository

    Al Hennawi, Qais M.

    2015-01-01

    In this thesis, we present theoretical and experimental investigation into the nonlinear statics and dynamics of clamped-clamped in-plane MEMS arches when excited by an electrostatic force. Theoretically, we first solve the equation of motion using

  17. The Electrostatic Actuated Next Generation Microshutter Arrays

    Data.gov (United States)

    National Aeronautics and Space Administration — The field of view required for future missions is much larger than James Webb Space Telescope (JWST). We need to use electrostatic actuation to replace magnetic...

  18. Electrostatic correlations: from plasma to biology

    International Nuclear Information System (INIS)

    Levin, Yan

    2002-01-01

    Electrostatic correlations play an important role in physics, chemistry and biology. In plasmas they result in thermodynamic instability similar to the liquid-gas phase transition of simple molecular fluids. For charged colloidal suspensions the electrostatic correlations are responsible for screening and colloidal charge renormalization. In aqueous solutions containing multivalent counterions they can lead to charge inversion and flocculation. In biological systems the correlations account for the organization of cytoskeleton and the compaction of genetic material. In spite of their ubiquity, the true importance of electrostatic correlations has come to be fully appreciated only quite recently. In this paper, we will review the thermodynamic consequences of electrostatic correlations in a variety of systems ranging from classical plasmas to molecular biology

  19. Electrostatic Spectrometer for Mars Rover Wheel

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop a simple electrostatic spectrometer that can be mounted on the wheels of a Mars rover to continuously and unobtrusively determine the mineral composition and...

  20. The Electrocardiogram as an Example of Electrostatics

    Science.gov (United States)

    Hobbie, Russell K.

    1973-01-01

    Develops a simplified electrostatic model of the heart with conduction within the torso neglected to relate electrocardiogram patterns to the charge distribution within the myocardium. Suggests its application to explanation of Coulomb's law in general physics. (CC)

  1. Highly Tunable Electrothermally and Electrostatically Actuated Resonators

    KAUST Repository

    Hajjaj, Amal Z.; Alcheikh, Nouha; Ramini, Abdallah; Hafiz, Md Abdullah Al; Younis, Mohammad I.

    2016-01-01

    methods, we demonstrate that a single resonator can be operated at a wide range of frequencies. The microbeam is actuated electrothermally by passing a dc current through it, and electrostatically by applying a dc polarization voltage between the microbeam

  2. Electrostatically actuated torsional resonant sensors and switches

    KAUST Repository

    Younis, Mohammad I.

    2016-01-01

    Embodiments in accordance of a torsional resonant sensor disclosure is configured to actuate a beam structure using electrostatic actuation with an AC harmonic load (e.g., AC and DC voltage sources) that is activated upon detecting a particular

  3. Quasi-electrostatic waves in dusty plasma

    International Nuclear Information System (INIS)

    Das, A.C.; Goswami, K.S.; Misra, A.K.

    1997-01-01

    Low frequency quasi-electrostatic waves in cold dusty plasma are investigated taking account of liberation and absorption of electrons and ions by the dust and their momentum transfer mechanism. (author)

  4. Electrostatic fluxes and plasma rotation in the edge region of EXTRAP-T2R

    International Nuclear Information System (INIS)

    Serianni, G.; Antoni, V.; Bergsaaker, H.; Brunsell, P.; Drake, J.R.; Spolaore, M.; Saetherblom, H.E.; Vianello, N.

    2001-01-01

    The EXTRAP-T2 reversed field pinch has undergone a significant reconstruction into the new T2R device. This paper reports the first measurements performed with Langmuir probes in the edge region of EXTRAP-T2R. The radial profiles of plasma parameters like electron density and temperature, plasma potential, electrical fields and electrostatic turbulence-driven particle flux are presented. These profiles are interpreted in a momentum balance model where finite Larmor radius losses occur over a distance of about two Larmor radii from the limiter position. The double shear layer of the ExB drift velocity is discussed in terms of the Biglari-Diamond-Terry theory of turbulence decorrelation. (author)

  5. Electrostatic Fluxes and Plasma Rotation in the Edge Region of EXTRAP-T2R

    Science.gov (United States)

    Serianni, G.; Antoni, V.; Bergsåker, H.; Brunsell, P.; Drake, J. R.; Spolaore, M.; Sätherblom, H. E.; Vianello, N.

    2001-10-01

    The EXTRAP-T2 reversed field pinch has undergone a significant reconstruction into the new T2R device. This paper reports the first measurements performed with Langmuir probes in the edge region of EXTRAP-T2R. The radial profiles of plasma parameters like electron density and temperature, plasma potential, electrical fields and electrostatic turbulence-driven particle flux are presented. These profiles are interpreted in a momentum balance model where finite Larmor radius losses occur over a distance of about two Larmor radii from the limiter position. The double shear layer of the E×B drift velocity is discussed in terms of the Biglari-Diamond-Terry theory of turbulence decorrelation.

  6. Proximity sensing of electrostatic induction electret nanoparticles device using separation electrode

    Directory of Open Access Journals (Sweden)

    Jianxiong Zhu

    2017-04-01

    Full Text Available We reported a two dimensional self-powered proximity sensor based on nanoparticles polytetrafluoroethylene (PTFE electrostatic induction electret using separation electrode. The structural pattern was carefully designed for identifying the specific position on the horizontal plane. When the separation electrode is motioned above the sensor, the induced charges on electrodes will change based on the coupling effect of the electret film. Experiment results showed that the proximity sensor works well with the velocity 0.05 m/s. We also found that the prototype have a good stability even with a huge uncontrolled perturbation on the Y direction. Our work could be a significant step forward in self-powered proximity sensing technology, with a wide range of potential applications in touchpad, robotics, and safety-monitoring device.

  7. A study on the performance of an electrostatic focusing mirror for Rydberg positronium

    Science.gov (United States)

    Jones, Adric C. L.; Cecchini, Gabriel G.; Moxom, Jeremy; Osorno, Kevin; Rutbeck-Goldman, Harris J.; Fuentes-Garcia, Melina; Greaves, Rod G.; Adams, Daniel J.; Tom, Harry W. K.; Mills, Allen P., Jr.

    2018-01-01

    Recently, we demonstrated an electrostatic mirror that focuses a beam of Rydberg positronium atoms over a 6 m path to a 32 ± 1 mm FWHM diameter spot on a position sensitive detector. The mirror is comprised of 360 wires arranged in the shape of a nearly-cylindrical revolved truncated ellipse 96 mm in radius, with potentials of equal and opposite magnitude applied to alternating wires to create a short-ranged electric field that decreases in magnitude exponentially with e-folding length = 0.53 mm. Here, we explore in detail the observed resolution and discuss the factors contributing to its broadening from the ideal point focus of a perfect embodiment of the mirror. Improvements to the design are considered, with the aim to achieve a mirror with a resolution of <0.5 mm, which is necessary for a proposed measurement of the gravitational deflection of positronium.

  8. Review on the Modeling of Electrostatic MEMS

    Directory of Open Access Journals (Sweden)

    Wan-Chun Chuang

    2010-06-01

    Full Text Available Electrostatic-driven microelectromechanical systems devices, in most cases, consist of couplings of such energy domains as electromechanics, optical electricity, thermoelectricity, and electromagnetism. Their nonlinear working state makes their analysis complex and complicated. This article introduces the physical model of pull-in voltage, dynamic characteristic analysis, air damping effect, reliability, numerical modeling method, and application of electrostatic-driven MEMS devices.

  9. Nonlinear Electrostatic Wave Equations for Magnetized Plasmas

    DEFF Research Database (Denmark)

    Dysthe, K.B.; Mjølhus, E.; Pécseli, Hans

    1984-01-01

    The lowest order kinetic effects are included in the equations for nonlinear electrostatic electron waves in a magnetized plasma. The modifications of the authors' previous analysis based on a fluid model are discussed.......The lowest order kinetic effects are included in the equations for nonlinear electrostatic electron waves in a magnetized plasma. The modifications of the authors' previous analysis based on a fluid model are discussed....

  10. High-energy capacitance electrostatic micromotors

    Science.gov (United States)

    Baginsky, I. L.; Kostsov, E. G.

    2003-03-01

    The design and parameters of a new electrostatic micromotor with high energy output are described. The motor is created by means of microelectronic technology. Its operation is based on the electromechanic energy conversion during the electrostatic rolling of the metallic films (petals) on the ferroelectric film surface. The mathematical simulation of the main characteristics of the rolling process is carried out. The experimentally measured parameters of the petal step micromotors are shown. The motor operation and its efficiency are investigated.

  11. Energy Balance in an Electrostatic Accelerator

    OpenAIRE

    Zolotorev, Max S.; McDonald, Kirk T.

    2000-01-01

    The principle of an electrostatic accelerator is that when a charge e escapes from a conducting plane that supports a uniform electric field of strength E_0, then the charge gains energy e E_0 d as it moves distance d from the plane. Where does this energy come from? We that the mechanical energy gain of the electron is balanced by the decrease in the electrostatic field energy of the system.

  12. Optics Elements for Modeling Electrostatic Lenses and Accelerator Components: III. Electrostatic Deflectors

    International Nuclear Information System (INIS)

    Brown, T.A.; Gillespie, G.H.

    1999-01-01

    Ion-beam optics models for simulating electrostatic prisms (deflectors) of different geometries have been developed for the computer code TRACE 3-D. TRACE 3-D is an envelope (matrix) code, which includes a linear space charge model, that was originally developed to model bunched beams in magnetic transport systems and radiofrequency (RF) accelerators. Several new optical models for a number of electrostatic lenses and accelerator columns have been developed recently that allow the code to be used for modeling beamlines and accelerators with electrostatic components. The new models include a number of options for: (1) Einzel lenses, (2) accelerator columns, (3) electrostatic prisms, and (4) electrostatic quadrupoles. A prescription for setting up the initial beam appropriate to modeling 2-D (continuous) beams has also been developed. The models for electrostatic prisms are described in this paper. The electrostatic prism model options allow the modeling of cylindrical, spherical, and toroidal electrostatic deflectors. The application of these models in the development of ion-beam transport systems is illustrated through the modeling of a spherical electrostatic analyzer as a component of the new low energy beamline at CAMS

  13. Study of talcum charging status in parallel plate electrostatic separator based on particle trajectory analysis

    Science.gov (United States)

    Yunxiao, CAO; Zhiqiang, WANG; Jinjun, WANG; Guofeng, LI

    2018-05-01

    Electrostatic separation has been extensively used in mineral processing, and has the potential to separate gangue minerals from raw talcum ore. As for electrostatic separation, the particle charging status is one of important influence factors. To describe the talcum particle charging status in a parallel plate electrostatic separator accurately, this paper proposes a modern images processing method. Based on the actual trajectories obtained from sequence images of particle movement and the analysis of physical forces applied on a charged particle, a numerical model is built, which could calculate the charge-to-mass ratios represented as the charging status of particle and simulate the particle trajectories. The simulated trajectories agree well with the experimental results obtained by images processing. In addition, chemical composition analysis is employed to reveal the relationship between ferrum gangue mineral content and charge-to-mass ratios. Research results show that the proposed method is effective for describing the particle charging status in electrostatic separation.

  14. Imaging latex–carbon nanotube composites by subsurface electrostatic force microscopy

    International Nuclear Information System (INIS)

    Patel, Sajan; Petty, Clayton W.; Krafcik, Karen Lee

    2016-01-01

    Electrostatic modes of atomic force microscopy have shown to be non-destructive and relatively simple methods for imaging conductors embedded in insulating polymers. Here we use electrostatic force microscopy to image the dispersion of carbon nanotubes in a latex-based conductive composite, which brings forth features not observed in previously studied systems employing linear polymer films. A fixed-potential model of the probe-nanotube electrostatics is presented which in principle gives access to the conductive nanoparticle's depth and radius, and the polymer film dielectric constant. Comparing this model to the data results in nanotube depths that appear to be slightly above the film–air interface. Furthermore, this result suggests that water-mediated charge build-up at the film–air interface may be the source of electrostatic phase contrast in ambient conditions.

  15. Transverse confinement of an ion beam in a purely electrostatic configuration

    International Nuclear Information System (INIS)

    Correa, J.R.; Ordonez, C.A.; Weathers, D.L.

    2005-01-01

    The transverse confinement of an ion beam in a purely electrostatic configuration is studied. Analytical expressions for the electric potential of three different electrode configurations are found. Each configuration may be described as consisting of many closely spaced Einzel lenses, such that the focusing periodicity length is much smaller than the transverse size of the beam. Classical trajectory computer simulations are used to obtain a map of the phase space co-ordinates for which transverse electrostatic confinement occurs with one of the configurations. The results indicate that confinement should occur for a large range of conditions. It is speculated that the configurations studied can be used for transverse confinement of ion beams in either electrostatic ion traps or electrostatic ion storage rings

  16. Electrostatic electron spectrometer based on two cylinders without axial symmetry

    International Nuclear Information System (INIS)

    Varga, D.; Toekesi, K.

    2005-01-01

    Complete text of publication follows. During the last decades electrostatic analyzers were widely used in atomic and surface physics. This was due to their good focusing and dispersion properties, The cylindrical mirror analyzer (CMA) is one of the most advantageous electrostatic analyzers. Its second order focusing properties have been calculated by many authors. A modified, so called 'box' type, CMA (ESA-13) is described in ref. [1]. For CMA (ESA-13), the position of the electron source and focus are outside the analyzer which is desirable for practical reasons. The ends of the cylinders are closed with two coaxial discs, therefore the electrostatic field near the edge is distorted compared to the logarithmic field existing in the classical 'in-finite' cylindrical mirror analyzer. However, the 'box' type distorted field cylindrical mirror analyzer geometry contains several limitations regarding the irradiation of the sample. Therefore, the construction of these analyzers was changed by replacing the endings of the analyzer with conically shaped electrodes ensuring a better accessibility for excitation. But among the various experimental tasks many geometrical conditions arise that are different or that need different sizes compared with the previous ones. Therefore, in a practical point of view, it is extremely advantageous to have different variations of spectrometers. This allows us to choose the best solution for a given problem. In this work, we present electron-optical properties of a mirror type electrostatic electron spectrometer consisting of two cylinders with eccentricity (see Fig 1.), namely the Eccentric Cylindrical Mirror Analyzer (ECMA). The designed analyzer is a possible variation of CMA for measuring the energy distribution of electrons with high energy resolution or making an electron monocromator. It has been shown that the Eccentric Cylindrical Mirror Analyzer has second-order focusing properties with remarkable dispersion (see Fig 2

  17. Quantification of the electrostatic forces involved in the directed assembly of colloidal nanoparticles by AFM nanoxerography.

    Science.gov (United States)

    Palleau, E; Sangeetha, N M; Ressier, L

    2011-08-12

    Directed assembly of 10 nm dodecanethiol stabilized silver nanoparticles in hexane and 14 nm citrate stabilized gold nanoparticles in ethanol was performed by AFM nanoxerography onto charge patterns of both polarities written into poly(methylmethacrylate) thin films. The quasi-neutral silver nanoparticles were grafted on both positive and negative charge patterns while the negatively charged gold nanoparticles were selectively deposited on positive charge patterns only. Numerical simulations were conducted to quantify the magnitude, direction and spatial range of the electrophoretic and dielectrophoretic forces exerted by the charge patterns on these two types of nanoparticles in suspension taken as models. The simulations indicate that the directed assembly of silver nanoparticles on both charge patterns is due to the predominant dielectrophoretic forces, while the selective assembly of gold nanoparticles only on positive charge patterns is due to the predominant electrophoretic forces. The study also suggests that the minimum surface potential of charge patterns required for obtaining effective nanoparticle assembly depends strongly on the charge and polarizability of the nanoparticles and also on the nature of the dispersing solvent. Attractive electrostatic forces of about 2 × 10( - 2) pN in magnitude just above the charged surface appear to be sufficient to trap silver nanoparticles in hexane onto charge patterns and the value is about 2 pN for gold nanoparticles in ethanol, under the present experimental conditions. The numerical simulations used in this work to quantify the electrostatic forces operating in the directed assembly of nanoparticles from suspensions onto charge patterns can easily be extended to any kind of colloid and serve as an effective tool for a better comprehension and prediction of liquid-phase nanoxerography processes.

  18. Quantification of the electrostatic forces involved in the directed assembly of colloidal nanoparticles by AFM nanoxerography

    International Nuclear Information System (INIS)

    Palleau, E; Sangeetha, N M; Ressier, L

    2011-01-01

    Directed assembly of 10 nm dodecanethiol stabilized silver nanoparticles in hexane and 14 nm citrate stabilized gold nanoparticles in ethanol was performed by AFM nanoxerography onto charge patterns of both polarities written into poly(methylmethacrylate) thin films. The quasi-neutral silver nanoparticles were grafted on both positive and negative charge patterns while the negatively charged gold nanoparticles were selectively deposited on positive charge patterns only. Numerical simulations were conducted to quantify the magnitude, direction and spatial range of the electrophoretic and dielectrophoretic forces exerted by the charge patterns on these two types of nanoparticles in suspension taken as models. The simulations indicate that the directed assembly of silver nanoparticles on both charge patterns is due to the predominant dielectrophoretic forces, while the selective assembly of gold nanoparticles only on positive charge patterns is due to the predominant electrophoretic forces. The study also suggests that the minimum surface potential of charge patterns required for obtaining effective nanoparticle assembly depends strongly on the charge and polarizability of the nanoparticles and also on the nature of the dispersing solvent. Attractive electrostatic forces of about 2 x 10 -2 pN in magnitude just above the charged surface appear to be sufficient to trap silver nanoparticles in hexane onto charge patterns and the value is about 2 pN for gold nanoparticles in ethanol, under the present experimental conditions. The numerical simulations used in this work to quantify the electrostatic forces operating in the directed assembly of nanoparticles from suspensions onto charge patterns can easily be extended to any kind of colloid and serve as an effective tool for a better comprehension and prediction of liquid-phase nanoxerography processes.

  19. Optimization of an electrostatic quadrupole doublet focusing systems

    Energy Technology Data Exchange (ETDEWEB)

    Hussein, Oday A., E-mail: oah@sc.nahrainuniv.edu.iq [Department of Physics, College of Science, Al-Nahrain University, Baghdad (Iraq); Sise, Omer [Department of Science Education, Faculty of Education, Suleyman Demirel University, Isparta (Turkey)

    2017-05-15

    Highlights: • The imaging properties of an electrostatic quadrupole doublet lens were analyzed with the aid of computer simulation. • The optimal electrode voltages which lead to stigmatic image in both planes of the quadrupole doublet lens with minimum spot size at position sensitive detector (PSD) were found for two operation modes: point-to-point focusing and parallel-to-point focusing. • The imaging properties of are very sensitive to the lunching angle of the electron-beam. - Abstract: The imaging properties of an electrostatic quadrupole doublet lens were analyzed with the aid of computer simulation. The optimal electrode voltages which lead to stigmatic image in both planes of the quadrupole doublet lens with minimum spot size at position sensitive detector (PSD) were found for two operation modes: point-to-point focusing and parallel-to-point focusing. The optical properties as: Magnifications, spot sizes in the image plane and aberration figures were discussed. The results showed that the focusing of the lens was strong in the xy-plane in comparison with the focusing in the xz-plane. The distortion of the image was greater when the image position will be close to the lens in comparison with object position. Also, the imaging properties were very sensitive to the lunching angle of the electron-beam.

  20. Extraction of uranium with TBP in an electrostatic apparatus

    International Nuclear Information System (INIS)

    Kalbasi, M.

    1980-10-01

    An experimental investigation into the utilization of electrostatic energy for solvent extraction of metallic species has been made. Drops were formed at a single nozzle and charged electrically by applying a high d.c. voltage to the nozzle which was arranged to form part of a parallel disc electrode system. After the drops left this electrode zone they travelled through a metallic pipe the purpose of which was to screen the drops from the external electrostatic forces. The liquid system employed in the present work was aqueous uranyl nitrate solution as a dispersed phase and organic tri-n-butyl phosphate (TBP)-diluent as a continuous phase. Uncharged drops were studied in the presence and absence of nitric acid salting agent and in addition both discrete and spray regimes were examined with charged drops. Size, velocity, oscillation motion, charge leakage, actual potential gradient and mass transfer coefficients (reaction rate constants) were studied. A cine camera was used to study the velocity and oscillatory motion of the charged drops moving in the continuous phase in the presence and absence of an electric field. The results of this work suggest that both hydrodynamic and electrostatic forces are responsible for the liquid-liquid extraction rate increase. (author)

  1. Effects of electrostatic interactions on ligand dissociation kinetics

    Science.gov (United States)

    Erbaş, Aykut; de la Cruz, Monica Olvera; Marko, John F.

    2018-02-01

    We study unbinding of multivalent cationic ligands from oppositely charged polymeric binding sites sparsely grafted on a flat neutral substrate. Our molecular dynamics simulations are suggested by single-molecule studies of protein-DNA interactions. We consider univalent salt concentrations spanning roughly a 1000-fold range, together with various concentrations of excess ligands in solution. To reveal the ionic effects on unbinding kinetics of spontaneous and facilitated dissociation mechanisms, we treat electrostatic interactions both at a Debye-Hückel (DH) (or implicit ions, i.e., use of an electrostatic potential with a prescribed decay length) level and by the more precise approach of considering all ionic species explicitly in the simulations. We find that the DH approach systematically overestimates unbinding rates, relative to the calculations where all ion pairs are present explicitly in solution, although many aspects of the two types of calculation are qualitatively similar. For facilitated dissociation (FD) (acceleration of unbinding by free ligands in solution) explicit-ion simulations lead to unbinding at lower free-ligand concentrations. Our simulations predict a variety of FD regimes as a function of free-ligand and ion concentrations; a particularly interesting regime is at intermediate concentrations of ligands where nonelectrostatic binding strength controls FD. We conclude that explicit-ion electrostatic modeling is an essential component to quantitatively tackle problems in molecular ligand dissociation, including nucleic-acid-binding proteins.

  2. Membrane Protein Properties Revealed through Data-Rich Electrostatics Calculations.

    Science.gov (United States)

    Marcoline, Frank V; Bethel, Neville; Guerriero, Christopher J; Brodsky, Jeffrey L; Grabe, Michael

    2015-08-04

    The electrostatic properties of membrane proteins often reveal many of their key biophysical characteristics, such as ion channel selectivity and the stability of charged membrane-spanning segments. The Poisson-Boltzmann (PB) equation is the gold standard for calculating protein electrostatics, and the software APBSmem enables the solution of the PB equation in the presence of a membrane. Here, we describe significant advances to APBSmem, including full automation of system setup, per-residue energy decomposition, incorporation of PDB2PQR, calculation of membrane-induced pKa shifts, calculation of non-polar energies, and command-line scripting for large-scale calculations. We highlight these new features with calculations carried out on a number of membrane proteins, including the recently solved structure of the ion channel TRPV1 and a large survey of 1,614 membrane proteins of known structure. This survey provides a comprehensive list of residues with large electrostatic penalties for being embedded in the membrane, potentially revealing interesting functional information. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. GroPBS: Fast Solver for Implicit Electrostatics of Biomolecules

    Directory of Open Access Journals (Sweden)

    Franziska eBertelshofer

    2015-11-01

    Full Text Available Knowledge about the electrostatic potential on the surface of biomolecules or biomembranes under physiological conditions is an important step in the attempt to characterize the physico-chemical properties of these molecules and in particular also their interactions with each other. Additionally, knowledge about solution electrostatics may guide also the design of molecules with specified properties. However, explicit water models come at a high computational cost, rendering them unsuitable for large design studies or for docking purposes. Implicit models with the water phase treated as a continuum require the numerical solution of the Poisson-Boltzmann Equation (PBE. Here, we present a new flexible program for the numerical solution of the PBE, allowing for different geometries, and the explicit and implicit inclusion of membranes. It involves a discretization of space and the computation of the molecular surface. The PBE is solved using finite differences, the resulting set of equations is solved using a Gauss-Seidel method. It is shown for the example of the sucrose transporter ScrY that the implicit inclusion of a surrounding membrane has a strong effect also on the electrostatics within the pore region and thus need to be carefully considered e.g. in design studies on membrane proteins.

  4. Potential mechanism of corpus-predominant gastritis after PPI therapy in Helicobacter pylori-positive patients with GERD.

    Science.gov (United States)

    Mukaisho, Ken-ichi; Hagiwara, Tadashi; Nakayama, Takahisa; Hattori, Takanori; Sugihara, Hiroyuki

    2014-09-14

    The long-term use of proton pump inhibitors (PPIs) exacerbates corpus atrophic gastritis in patients with Helicobacter pylori (H. pylori) infection. To identify a potential mechanism for this change, we discuss interactions between pH, bile acids, and H. pylori. Duodenogastric reflux, which includes bile, occurs in healthy individuals, and bile reflux is increased in patients with gastroesophageal reflux disease (GERD). Diluted human plasma and bile acids have been found to be significant chemoattractants and chemorepellents, respectively, for the bacillus H. pylori. Although only taurine conjugates, with a pKa of 1.8-1.9, are soluble in an acidic environment, glycine conjugates, with a pKa of 4.3-5.2, as well as taurine-conjugated bile acids are soluble in the presence of PPI therapy. Thus, the soluble bile acid concentrations in the gastric contents of patients with GERD after continuous PPI therapy are considerably higher than that in those with intact acid production. In the distal stomach, the high concentration of soluble bile acids is likely to act as a bactericide or chemorepellent for H. pylori. In contrast, the mucous layer in the proximal stomach has an optimal bile concentration that forms chemotactic gradients with plasma components required to direct H. pylori to the epithelial surface. H. pylori may then colonize in the stomach body rather than in the pyloric antrum, which may explain the occurrence of corpus-predominant gastritis after PPI therapy in H. pylori-positive patients with GERD.

  5. Use of Anthropogenic Sea Floor Structures by Australian Fur Seals: Potential Positive Ecological Impacts of Marine Industrial Development?

    Science.gov (United States)

    Arnould, John P Y; Monk, Jacquomo; Ierodiaconou, Daniel; Hindell, Mark A; Semmens, Jayson; Hoskins, Andrew J; Costa, Daniel P; Abernathy, Kyler; Marshall, Greg J

    2015-01-01

    Human-induced changes to habitats can have deleterious effects on many species that occupy them. However, some species can adapt and even benefit from such modifications. Artificial reefs have long been used to provide habitat for invertebrate communities and promote local fish populations. With the increasing demand for energy resources within ocean systems, there has been an expansion of infrastructure in near-shore benthic environments which function as de facto artificial reefs. Little is known of their use by marine mammals. In this study, the influence of anthropogenic sea floor structures (pipelines, cable routes, wells and shipwrecks) on the foraging locations of 36 adult female Australian fur seals (Arctocephalus pusillus doriferus) was investigated. For 9 (25%) of the individuals, distance to anthropogenic sea floor structures was the most important factor in determining the location of intensive foraging activity. Whereas the influence of anthropogenic sea floor structures on foraging locations was not related to age and mass, it was positively related to flipper length/standard length (a factor which can affect manoeuvrability). A total of 26 (72%) individuals tracked with GPS were recorded spending time in the vicinity of structures (from 75% of the foraging trip duration) with pipelines and cable routes being the most frequented. No relationships were found between the amount of time spent frequenting anthropogenic structures and individual characteristics. More than a third (35%) of animals foraging near anthropogenic sea floor structures visited more than one type of structure. These results further highlight potentially beneficial ecological outcomes of marine industrial development.

  6. Electrostatic Power Generation from Negatively Charged, Simulated Lunar Regolith

    Science.gov (United States)

    Choi, Sang H.; King, Glen C.; Kim, Hyun-Jung; Park, Yeonjoon

    2010-01-01

    Research was conducted to develop an electrostatic power generator for future lunar missions that facilitate the utilization of lunar resources. The lunar surface is known to be negatively charged from the constant bombardment of electrons and protons from the solar wind. The resulting negative electrostatic charge on the dust particles, in the lunar vacuum, causes them to repel each other minimizing the potential. The result is a layer of suspended dust about one meter above the lunar surface. This phenomenon was observed by both Clementine and Surveyor spacecrafts. During the Apollo 17 lunar landing, the charged dust was a major hindrance, as it was attracted to the astronauts' spacesuits, equipment, and the lunar buggies. The dust accumulated on the spacesuits caused reduced visibility for the astronauts, and was unavoidably transported inside the spacecraft where it caused breathing irritation [1]. In the lunar vacuum, the maximum charge on the particles can be extremely high. An article in the journal "Nature", titled "Moon too static for astronauts?" (Feb 2, 2007) estimates that the lunar surface is charged with up to several thousand volts [2]. The electrostatic power generator was devised to alleviate the hazardous effects of negatively charged lunar soil by neutralizing the charged particles through capacitive coupling and thereby simultaneously harnessing power through electric charging [3]. The amount of power generated or collected is dependent on the areal coverage of the device and hovering speed over the lunar soil surface. A thin-film array of capacitors can be continuously charged and sequentially discharged using a time-differentiated trigger discharge process to produce a pulse train of discharge for DC mode output. By controlling the pulse interval, the DC mode power can be modulated for powering devices and equipment. In conjunction with a power storage system, the electrostatic power generator can be a power source for a lunar rover or other

  7. The first step in layer-by-layer deposition: Electrostatics and/or non-electrostatics?

    NARCIS (Netherlands)

    Lyklema, J.; Deschênes, L.

    2011-01-01

    A critical discussion is presented on the properties and prerequisites of adsorbed polyelectrolytes that have to function as substrates for further layer-by-layer deposition. The central theme is discriminating between the roles of electrostatic and non-electrostatic interactions. In order to

  8. The electrostatic interaction of two point charges in equilibrium plasmas within the Debye approximation

    International Nuclear Information System (INIS)

    Filippov, A V

    2015-01-01

    This paper is devoted to a careful study of two charge interaction in an equilibrium plasma within the Debye approximation. The effect of external boundary conditions for the electric field strength and potential on the electrostatic force is studied. The problem is solved by the method of potential decomposition into Legendre polynomials up to the fifth multipole term included. It is shown that the effect of attraction of identically charged macroparticles is explained by the influence of the external boundary. When the size of a calculation cell is increased the attraction effect disappears and the electrostatic force is well described by the screened Debye-Hückel potential. (paper)

  9. Geometry and Optics of the Electrostatic ELENA Transfer Lines

    CERN Document Server

    Vanbavinckhove, G; Barna, D; Bartmann, W; Butin, F; Choisnet, O; Yamada, H

    2013-01-01

    The future ELENA ring at CERN will decelerate the AD anti-proton beam further from 5.3 MeV to 100 keV kinetic energy, to increase the efficiency of anti-proton trapping. At present there are four experiments in the AD hall which will be complemented with the installation of ELENA by additional three experiments and an additional source for commissioning. This paper describes the optimization of the transfer line geometry, ring rotation and source position. The optics of the transfer lines and error studies to define field and alignment tolerances are shown, and the optics particularities of electrostatic elements and their optimization highlighted.

  10. Proton-beam writing channel based on an electrostatic accelerator

    Science.gov (United States)

    Lapin, A. S.; Rebrov, V. A.; Kolin'ko, S. V.; Salivon, V. F.; Ponomarev, A. G.

    2016-09-01

    We have described the structure of the proton-beam writing channel as a continuation of a nuclear scanning microprobe channel. The problem of the accuracy of positioning a probe by constructing a new high-frequency electrostatic scanning system has been solved. Special attention has been paid to designing the probe-forming system and its various configurations have been considered. The probe-forming system that best corresponds to the conditions of the lithographic process has been found based on solving the problem of optimizing proton beam formation. A system for controlling beam scanning using multifunctional module of integrated programmable logic systems has been developed.

  11. Use of Anthropogenic Sea Floor Structures by Australian Fur Seals: Potential Positive Ecological Impacts of Marine Industrial Development?

    Directory of Open Access Journals (Sweden)

    John P Y Arnould

    Full Text Available Human-induced changes to habitats can have deleterious effects on many species that occupy them. However, some species can adapt and even benefit from such modifications. Artificial reefs have long been used to provide habitat for invertebrate communities and promote local fish populations. With the increasing demand for energy resources within ocean systems, there has been an expansion of infrastructure in near-shore benthic environments which function as de facto artificial reefs. Little is known of their use by marine mammals. In this study, the influence of anthropogenic sea floor structures (pipelines, cable routes, wells and shipwrecks on the foraging locations of 36 adult female Australian fur seals (Arctocephalus pusillus doriferus was investigated. For 9 (25% of the individuals, distance to anthropogenic sea floor structures was the most important factor in determining the location of intensive foraging activity. Whereas the influence of anthropogenic sea floor structures on foraging locations was not related to age and mass, it was positively related to flipper length/standard length (a factor which can affect manoeuvrability. A total of 26 (72% individuals tracked with GPS were recorded spending time in the vicinity of structures (from 75% of the foraging trip duration with pipelines and cable routes being the most frequented. No relationships were found between the amount of time spent frequenting anthropogenic structures and individual characteristics. More than a third (35% of animals foraging near anthropogenic sea floor structures visited more than one type of structure. These results further highlight potentially beneficial ecological outcomes of marine industrial development.

  12. Field distribution in a coaxial electrostatic wiggler

    Directory of Open Access Journals (Sweden)

    Shi-Chang Zhang

    2010-09-01

    Full Text Available The field distribution in a coaxial electrostatic wiggler corresponds to the special solution of a Laplace equation in a cylindrical coordinate system with a boundary value problem of sinusoidal ripples. This paper is devoted to the physical and mathematical treatment for an analytical solution of the field distribution in the coaxial electrostatic wiggler. The explicit expression of the solution indicates that the field distribution in the coaxial electrostatic wiggler varies according to a periodic function in the longitudinal direction, and is related to the first and second kinds of modified Bessel functions in the radial direction, respectively. Comparison shows excellent agreement between the analytical formula and the computer simulation technology (CST results. The physical application of the considered system and its analytical solution are discussed.

  13. Electrostatic coating technologies for food processing.

    Science.gov (United States)

    Barringer, Sheryl A; Sumonsiri, Nutsuda

    2015-01-01

    The application of electrostatics in both powder and liquid coating can improve the quality of food, such as its appearance, aroma, taste, and shelf life. Coatings can be found most commonly in the snack food industry, as well as in confectionery, bakery, meat and cheese processing. In electrostatic powder coating, the most important factors influencing coating quality are powder particle size, density, flowability, charge, and resistivity, as well as the surface properties and characteristics of the target. The most important factors during electrostatic liquid coating, also known as electrohydrodynamic coating, include applied voltage and electrical resistivity and viscosity of the liquid. A good understanding of these factors is needed for the design of optimal coating systems for food processing.

  14. Acoustic effects of single electrostatic discharges

    International Nuclear Information System (INIS)

    Orzech, Łukasz

    2015-01-01

    Electric discharges, depending on their character, can emit different types of energy, resulting in different effects. Single electrostatic discharges besides generation of electromagnetic pulses are also the source of N acoustic waves. Their specified parameters depending on amount of discharging charge enable determination of value of released charge in a function of acoustic descriptor (e.g. acoustic pressure). Presented approach is the basics of acoustic method for measurement of single electrostatic discharges, enabling direct and contactless measurement of value of charge released during ESD. Method for measurement of acoustic effect of impact of a single electrostatic discharge on the environment in a form of pressure shock wave and examples of acoustic descriptors in a form of equation Q=f(p a ) are described. The properties of measuring system as well as the results of regression static analyses used to determine the described relationships are analysed in details. (paper)

  15. Electrostatic micromotor based on ferroelectric ceramics

    Science.gov (United States)

    Baginsky, I. L.; Kostsov, E. G.

    2004-11-01

    A new electrostatic micromotor is described that utilizes the electromechanical energy conversion principle earlier described by the authors. The electromechanical energy conversion is based on reversible electrostatic rolling of thin metallic films (petals) on a ferroelectric surface. The motor's active media are layers of ferroelectric ceramics (about 100 µm in thickness). The characteristics of the electrostatic rolling of the petals on different ceramic surfaces are studied, as well as the dynamic characteristics of the micromotors. It is shown that the use of antiferroelectric material allows one to reach a specific energy capacitance comparable to that of the micromotors based on ferroelectric films and to achieve a specific power of 30-300 µW mm-2.

  16. Electrostatic Deposition of Large-Surface Graphene

    Directory of Open Access Journals (Sweden)

    Charles Trudeau

    2018-01-01

    Full Text Available This work describes a method for electrostatic deposition of graphene over a large area using controlled electrostatic exfoliation from a Highly Ordered Pyrolytic Graphite (HOPG block. Deposition over 130 × 130 µm2 with 96% coverage is achieved, which contrasts with sporadic micro-scale depositions of graphene with little control from previous works on electrostatic deposition. The deposition results are studied by Raman micro-spectroscopy and hyperspectral analysis using large fields of view to allow for the characterization of the whole deposition area. Results confirm that laser pre-patterning of the HOPG block prior to cleaving generates anchor points favoring a more homogeneous and defect-free HOPG surface, yielding larger and more uniform graphene depositions. We also demonstrate that a second patterning of the HOPG block just before exfoliation can yield features with precisely controlled geometries.

  17. Electrostatic Dust Detection and Removal for ITER

    International Nuclear Information System (INIS)

    C.H. Skinner; A. Campos; H. Kugel; J. Leisure; A.L. Roquemore; S. Wagner

    2008-01-01

    We present some recent results on two innovative applications of microelectronics technology to dust inventory measurement and dust removal in ITER. A novel device to detect the settling of dust particles on a remote surface has been developed in the laboratory. A circuit board with a grid of two interlocking conductive traces with 25 (micro)m spacing is biased to 30-50 V. Carbon particles landing on the energized grid create a transient short circuit. The current flowing through the short circuit creates a voltage pulse that is recorded by standard nuclear counting electronics and the total number of counts is related to the mass of dust impinging on the grid. The particles typically vaporize in a few seconds restoring the previous voltage standoff. Experience on NSTX however, showed that in a tokamak environment it was still possible for large particles or fibers to remain on the grid causing a long term short circuit. We report on the development of a gas puff system that uses helium to clear such particles. Experiments with varying nozzle designs, backing pressures, puff durations, and exit flow orientations have given an optimal configuration that effectively removes particles from an area up to 25 cm 2 with a single nozzle. In a separate experiment we are developing an advanced circuit grid of three interlocking traces that can generate a miniature electrostatic traveling wave for transporting dust to a suitable exit port. We have fabricated such a 3-pole circuit board with 25 micron insulated traces that operates with voltages up to 200 V. Recent results showed motion of dust particles with the application of only 50 V bias voltage. Such a device could potentially remove dust continuously without dedicated interventions and without loss of machine availability for plasma operations

  18. Histidine in Continuum Electrostatics Protonation State Calculations

    Science.gov (United States)

    Couch, Vernon; Stuchebruckhov, Alexei

    2014-01-01

    A modification to the standard continuum electrostatics approach to calculate protein pKas which allows for the decoupling of histidine tautomers within a two state model is presented. Histidine with four intrinsically coupled protonation states cannot be easily incorporated into a two state formalism because the interaction between the two protonatable sites of the imidazole ring is not purely electrostatic. The presented treatment, based on a single approximation of the interrelation between histidine’s charge states, allows for a natural separation of the two protonatable sites associated with the imidazole ring as well as the inclusion of all protonation states within the calculation. PMID:22072521

  19. Design of an electrostatic magnetic quadrupole accelerator

    International Nuclear Information System (INIS)

    Mizuno, M.; Ohara, Y.

    1993-01-01

    A new type of electrostatic acceleration system, electrostatic magnetic quadrupole (ESMQ) acceleration system, is proposed for efficient acceleration of negative ion beams. In this system, permanent magnets are buried in the acceleration electrodes so as to produce a quadrupole magnetic field in the electrode aperture region. Envelope simulation indicates that the quadrupole field can deflect electrons stripped from the negative ions. Beam envelope simulations for deuterium ions and electrons have been carried out using the beam envelope code TRACE. Electrons are largely divergent and most appear likely to hit downstream electrodes. Furthermore, maximum beam divergence of the deuterium ions is reduced to the focusing effect of the quadrupole magnetic field

  20. Electrostatic air filters generated by electric fields

    International Nuclear Information System (INIS)

    Bergman, W.; Biermann, A.H.; Hebard, H.D.; Lum, B.Y.; Kuhl, W.D.

    1981-01-01

    This paper presents theoretical and experimental findings on fibrous filters converted to electrostatic operation by a nonionizing electric field. Compared to a conventional fibrous filter, the electrostatic filter has a higher efficiency and a longer, useful life. The increased efficiency is attributed to a time independent attraction between polarized fibers and charged, polarized particles and a time dependent attraction between charged fibers and charged, polarized particles. The charge on the fibers results from a dynamic process of charge accumulation due to the particle deposits and a charge dissipation due to the fiber conductivity

  1. Quantitative 3D-KPFM imaging with simultaneous electrostatic force and force gradient detection

    International Nuclear Information System (INIS)

    Collins, L; Rodriguez, B J; Okatan, M B; Li, Q; Kravenchenko, I I; Lavrik, N V; Kalinin, S V; Jesse, S

    2015-01-01

    Kelvin probe force microscopy (KPFM) is a powerful characterization technique for imaging local electrochemical and electrostatic potential distributions and has been applied across a broad range of materials and devices. Proper interpretation of the local KPFM data can be complicated, however, by convolution of the true surface potential under the tip with additional contributions due to long range capacitive coupling between the probe (e.g. cantilever, cone, tip apex) and the sample under test. In this work, band excitation (BE)-KPFM is used to negate such effects. In contrast to traditional single frequency KPFM, multifrequency BE-KPFM is shown to afford dual sensitivity to both the electrostatic force and the force gradient detection, analogous to simultaneous amplitude modulated and frequency modulated KPFM imaging. BE-KPFM is demonstrated on a Pt/Au/SiO x test structure and electrostatic force gradient detection is found to lead to an improved lateral resolution compared to electrostatic force detection. Finally, a 3D-KPFM imaging technique is developed. Force volume (FV) BE-KPFM allows the tip–sample distance dependence of the electrostatic interactions (force and force gradient) to be recorded at each point across the sample surface. As such, FVBE-KPFM provides a much needed pathway towards complete tip–sample capacitive de-convolution in KPFM measurements and will enable quantitative surface potential measurements with nanoscale resolution. (paper)

  2. Space Weather Influence on Relative Motion Control using the Touchless Electrostatic Tractor

    Science.gov (United States)

    Hogan, Erik A.; Schaub, Hanspeter

    2016-09-01

    With recent interest in the use of electrostatic forces for contactless tugging and attitude control of noncooperative objects for orbital servicing and active debris mitigation, the need for a method of remote charge control arises. In this paper, the use of a directed electron beam for remote charge control is considered in conjunction with the relative motion control. A tug vehicle emits an electron beam onto a deputy object, charging it negatively. At the same time, the tug is charged positively due to beam emission, resulting in an attractive electrostatic force. The relative position feedback control between the tug and the passive debris object is studied subject to the charging being created through an electron beam. Employing the nominal variations of the GEO space weather conditions across longitude slots, two electrostatic tugging strategies are considered. First, the electron beam current is adjusted throughout the orbit in order to maximize this resulting electrostatic force. This open-loop control strategy compensates for changes in the nominally expected local space weather environment in the GEO region to adjust for fluctuations in the local plasma return currents. Second, the performance impact of using a fixed electron beam current on the electrostatic tractor is studied if the same natural space weather variations are assumed. The fixed electron beam current shows a minor performance penalty (<5 %) while providing a much simpler implementation that does not require any knowledge of local space weather conditions.

  3. Numerical solution of electrostatic problems of the accelerator project VICKSI

    International Nuclear Information System (INIS)

    Janetzki, U.

    1975-03-01

    In this work, the numerical solution to a few of the electrostatic problems is dealt with which have occured within the framework of the heavy ion accelerator project VICKSI. By means of these selected examples, the versatile applicability of the numerical method is to be demonstrated, and simultaneously assistance is given for the solution of similar problems. The numerical process for solving ion-optics problems consists generally of two steps. In the first step, the potential distribution for a given boundary value problem is iteratively calculated for the Laplace equation, and then the image characteristics of the electostatic lense are investigated using the Raytrace method. (orig./LH) [de

  4. Simulation-based Investigations of Electrostatic Beam Energy Analysers

    CERN Document Server

    Pahl, Hannes

    2015-01-01

    An energy analyser is needed to measure the beam energy profile behind the REX-EBIS at ISOLDE. The device should be able to operate with an accuracy of 1 V at voltages up to 30 kV. In order to find a working concept for an electrostatic energy analyser different designs were evaluated with simulations. A spherical device and its design issues are presented. The potential deformation effects of grids at high voltages and their influence on the energy resolution were investigated. First tests were made with a grid-free ring electrode device and show promising results.

  5. Electrostatic interaction between Interball-2 and the ambient plasma. 2. Influence on the low energy ion measurements with Hyperboloid

    Directory of Open Access Journals (Sweden)

    M. Hamelin

    2002-03-01

    Full Text Available The measurement of the thermal ion distributions in space is always strongly influenced by the ion motion through the complex 3D electrostatic potential structure built around a charged spacecraft. In this work, we study the related aberrations of the ion distribution detected on board, with special application to the case of the Hyperboloid instrument borne by the Interball-2 auroral satellite. Most of the time, the Interball-2 high altitude auroral satellite is charged at some non-negligible positive potential with respect to the ambient plasma, as shown in part 1; in consequence, the measurement of magnetospheric low energy ions (< 80 eV with the Hyperboloid instrument can be disturbed by the complex electric potential environment of the satellite. In the case of positive charging, as in previous experiments, a negative bias is applied to the Hyperboloid structure in order to reduce this effect and to keep as much as possible the opportunity to detect very low energy ions. Then, the ions reaching the Hyperboloid entrance windows would have travelled across a continuous huge electrostatic lens involving various spatial scales from ~ 10 cm (detector radius to ~ 10 m (satellite antennas. Neglecting space charge effects, we have computed the ion trajectories that are able to reach the Hyperboloid windows within their acceptance angles. There are three main results: (i for given values of the satellite potential, and for each direction of arrival (each window, we deduced the related energy cutoff; (ii we found that all ions in the energy channel, including the cutoff, can come from a large range of directions in the unperturbed plasma, especially when the solar panels or antennas act as electrostatic mirrors; (iii for higher energy channels, the disturbances are reduced to small angular shifts. Biasing of the aperture is not very effective with the Hyperboloid instrument (as on previous missions with instruments installed close to the spacecraft

  6. Pumping potential wells

    Science.gov (United States)

    Hershkowitz, N.; Forest, C.; Wang, E. Y.; Intrator, T.

    1987-01-01

    Nonmonotonic plasma potential structures are a common feature of many double layers and sheaths. Steady state plasma potential wells separating regions having different plasma potentials are often found in laboratory experiments. In order to exist, such structures all must find a solution to a common problem. Ions created by charge exchange or ionization in the region of the potential well are electrostatically confined and tend to accumulate and fill up the potential well. The increase in positive charge should eliminate the well. Nevertheless, steady state structures are found in which the wells do not fill up. This means that it is important to take into account processes which 'pump' ions from the well. As examples of ion pumping of plasma wells, potential dips in front of a positively biased electro collecting anode in a relatively cold, low density multidipole plasma is considered. Pumping is provided by ion leaks from the edges of the potential dip or by oscillating the applied potential. In the former case the two dimensional character of the problem is shown to be important.

  7. Pumping potential wells

    International Nuclear Information System (INIS)

    Hershkowitz, N.; Forest, C.; Wang, E.Y.; Intrator, T.

    1987-01-01

    Nonmonotonic plasma potential structures are a common feature of many double layers and sheaths. Steady state plasma potential wells separating regions having different plasma potentials are often found in laboratory experiments. In order to exist, all such structures must find a solution to a common problem. Ions created by charge exchange or ionization in the region of the potential well are electrostatically confined and tend to accumulate and fill up the potential well. The increase in positive charge should eliminate the well. Nevertheless, steady state structures are found in which the wells do not fill up. This means that it is important to take into account processes which pump ions from the well. As examples of ion pumping of plasma wells, potential dips in front of a positively biased electron collecting anode in a relatively cold, low density, multidipole plasma are considered. Pumping is provided by ion leaks from the edges of the potential dip or by oscillating the applied potential. In the former case the two-dimensional character of the problem is shown to be important

  8. Pumping potential wells

    International Nuclear Information System (INIS)

    Hershkowitz, N.; Forest, C.; Wang, E.Y.; Intrator, T.

    1987-01-01

    Nonmonotonic plasma potential structures are a common feature of many double layers and sheaths. Steady state plasma potential wells separating regions having different plasma potentials are often found in laboratory experiments. In order to exist, such structures all must find a solution to a common problem. Ions created by charge exchange or ionization in the region of the potential well are electrostatically confined and tend to accumulate and fill up the potential well. The increase in positive charge should eliminate the well, but steady state structures are found in which the wells do not fill up. This means that it is important to take into account processes which 'pump' ions from the well. As examples of ion pumping of plasma wells, potential dips in front of a positively biased electron collecting anode in a relatively cold, low density multidipole plasma are considered. Pumping is provided by ion leaks from the edges of the potential dip or by oscillating the applied potential. In the former case the two dimensional character of the problem is shown to be important. (author)

  9. Resolving beam transport problems in electrostatic accelerators

    International Nuclear Information System (INIS)

    Larson, J.D.

    1977-01-01

    A review is given of problem areas in beam transmission which are frequently encountered during the design, operation and upgrading of electrostatic accelerators. Examples are provided of analytic procedures that clarify accelerator ion optics and lead to more effective beam transport. Suggestions are made for evaluating accelerator design with the goal of improved performance

  10. Efficient optimization of electrostatic interactions between biomolecules.

    Energy Technology Data Exchange (ETDEWEB)

    Bardhan, J. P.; Altman, M. D.; White, J. K.; Tidor, B.; Mathematics and Computer Science; MIT

    2007-01-01

    We present a PDE-constrained approach to optimizing the electrostatic interactions between two biomolecules. These interactions play important roles in the determination of binding affinity and specificity, and are therefore of significant interest when designing a ligand molecule to bind tightly to a receptor. Using a popular continuum model and physically reasonable assumptions, the electrostatic component of the binding free energy is a convex, quadratic function of the ligand charge distribution. Traditional optimization methods require exhaustive pre-computation, and the expense has precluded a full exploration of the promise of electrostatic optimization in biomolecule analysis and design. In this paper we describe an approach in which the electrostatic simulations and optimization problem are solved simultaneously; unlike many PDE- constrained optimization frameworks, the proposed method does not incorporate the PDE as a set of equality constraints. This co-optimization approach can be used by itself to solve unconstrained problems or those with linear equality constraints, or in conjunction with primal-dual interior point methods to solve problems with inequality constraints. Model problems demonstrate that the co-optimization method is computationally efficient and can be used to solve realistic problems.

  11. Collapse of Electrostatic Waves in Magnetoplasmas

    DEFF Research Database (Denmark)

    Shukla, P. K.; Yu, M. Y.; Juul Rasmussen, Jens

    1984-01-01

    The two-fluid model is employed to investigate the collapse of electrostatic waves in magnetized plasmas. It is found that nonlinear interaction of ion cyclotron, upper-, and lower-hybrid waves with adiabatic particle motion along the external magnetic field can cause wave-field collapse....

  12. Dynamical Aspects of Electrostatic Double Layers

    DEFF Research Database (Denmark)

    Raadu, M.A.; Juul Rasmussen, J.

    1988-01-01

    Electrostatic double layers have been proposed as an acceleration mechanism in solar flares and other astrophysical objects. They have been extensively studied in the laboratory and by means of computer simulations. The theory of steady-state double layers implies several existence criteria...

  13. Resolving beam transport problems in electrostatic accelerators

    International Nuclear Information System (INIS)

    Larson, J.D.

    1977-01-01

    This paper reviews problem areas in beam transmission which are frequently encountered during the design, operation and upgrading of electrostatic accelerators. Examples are provided of analytic procedures that clarify accelerator ion optics and lead to more effective beam transport. Suggestions are made for evaluating accelerator design with the goal of improved performance

  14. The Electrostatic Environments of Mars: Atmospheric Discharges

    Science.gov (United States)

    Calle, Carlos I.; Mackey, Paul J.; Johansen, Michael R.; Hogue, Michael D.; Phillips, James, III; Cox, Rachel E.

    2016-01-01

    The electrostatic environment on Mars is controlled by its ever present atmospheric dust. Dust devils and dust storms tribocharge this dust. Theoretical studies predict that lightning and/or glow discharges should be present on Mars, but none have been directly observed. Experiments are planned to shed light on this issue.

  15. Surface charge measurement using an electrostatic probe

    DEFF Research Database (Denmark)

    Crichton, George C; McAllister, Iain Wilson

    1998-01-01

    During the 1960s, the first measurements of charge on dielectric surfaces using simple electrostatic probes were reported. However it is only within the last 10 years that a proper understanding of the probe response has been developed. This situation arose as a consequence of the earlier studies...

  16. The electrostatic interaction between interfacial colloidal particles

    Science.gov (United States)

    Hurd, A. J.

    1985-11-01

    The electrostatic interaction between charged, colloidal particles trapped at an air-water interface is considered using linearised Poisson-Boltzmann results for point particles. In addition to the expected screened-Coulomb contribution, which decays exponentially, an algebraic dipole-dipole interaction occurs that may account for long-range interactions in interfacial colloidal systems.

  17. Electrostatic fuel conditioning of internal combustion engines

    Science.gov (United States)

    Gold, P. I.

    1982-01-01

    Diesel engines were tested to determine if they are influenced by the presence of electrostatic and magnetic fields. Field forces were applied in a variety of configurations including pretreatment of the fuel and air, however, no affect on engine performance was observed.

  18. Electrostatic MEMS devices with high reliability

    Science.gov (United States)

    Goldsmith, Charles L; Auciello, Orlando H; Sumant, Anirudha V; Mancini, Derrick C; Gudeman, Chris; Sampath, Suresh; Carlilse, John A; Carpick, Robert W; Hwang, James

    2015-02-24

    The present invention provides for an electrostatic microelectromechanical (MEMS) device comprising a dielectric layer separating a first conductor and a second conductor. The first conductor is moveable towards the second conductor, when a voltage is applied to the MEMS device. The dielectric layer recovers from dielectric charging failure almost immediately upon removal of the voltage from the MEMS device.

  19. Electrostatic force microscopy: imaging DNA and protein polarizations one by one

    International Nuclear Information System (INIS)

    Mikamo-Satoh, Eriko; Yamada, Fumihiko; Takagi, Akihiko; Matsumoto, Takuya; Kawai, Tomoji

    2009-01-01

    We present electrostatic force microscopy images of double-stranded DNA and transcription complex on an insulating mica substrate obtained with molecular resolution using a frequency-mode noncontact atomic force microscope. The electrostatic potential images show that both DNA and transcription complexes are polarized with an upward dipole moment. Potential differences of these molecules from the mica substrate enabled us to estimate dipole moments of isolated DNA and transcription complex in zero external field to be 0.027 D/base and 0.16 D/molecule, respectively. Scanning capacitance microscopy demonstrates characteristic contrast inversion between DNA and transcription complex images, indicating the difference in electric polarizability of these molecules. These findings indicate that the electrostatic properties of individual biological molecules can be imaged on an insulator substrate while retaining complex formation.

  20. Compressive sensing-based electrostatic sensor array signal processing and exhausted abnormal debris detecting

    Science.gov (United States)

    Tang, Xin; Chen, Zhongsheng; Li, Yue; Yang, Yongmin

    2018-05-01

    When faults happen at gas path components of gas turbines, some sparsely-distributed and charged debris will be generated and released into the exhaust gas. The debris is called abnormal debris. Electrostatic sensors can detect the debris online and further indicate the faults. It is generally considered that, under a specific working condition, a more serious fault generates more and larger debris, and a piece of larger debris carries more charge. Therefore, the amount and charge of the abnormal debris are important indicators of the fault severity. However, because an electrostatic sensor can only detect the superposed effect on the electrostatic field of all the debris, it can hardly identify the amount and position of the debris. Moreover, because signals of electrostatic sensors depend on not only charge but also position of debris, and the position information is difficult to acquire, measuring debris charge accurately using the electrostatic detecting method is still a technical difficulty. To solve these problems, a hemisphere-shaped electrostatic sensors' circular array (HSESCA) is used, and an array signal processing method based on compressive sensing (CS) is proposed in this paper. To research in a theoretical framework of CS, the measurement model of the HSESCA is discretized into a sparse representation form by meshing. In this way, the amount and charge of the abnormal debris are described as a sparse vector. It is further reconstructed by constraining l1-norm when solving an underdetermined equation. In addition, a pre-processing method based on singular value decomposition and a result calibration method based on weighted-centroid algorithm are applied to ensure the accuracy of the reconstruction. The proposed method is validated by both numerical simulations and experiments. Reconstruction errors, characteristics of the results and some related factors are discussed.