WorldWideScience

Sample records for positive cardiac cells

  1. Distinct subsets of Eve-positive pericardial cells stabilise cardiac outflow and contribute to Hox gene-triggered heart morphogenesis in Drosophila.

    Science.gov (United States)

    Zmojdzian, Monika; de Joussineau, Svetlana; Da Ponte, Jean Philippe; Jagla, Krzysztof

    2018-01-17

    The Drosophila heart, composed of discrete subsets of cardioblasts and pericardial cells, undergoes Hox-triggered anterior-posterior morphogenesis, leading to a functional subdivision into heart proper and aorta, with its most anterior part forming a funnel-shaped cardiac outflow. Cardioblasts differentiate into Tin-positive 'working myocytes' and Svp-expressing ostial cells. However, developmental fates and functions of heart-associated pericardial cells remain elusive. Here, we show that the pericardial cells that express the transcription factor Even Skipped adopt distinct fates along the anterior-posterior axis. Among them, the most anterior Antp-Ubx-AbdA - negative cells form a novel cardiac outflow component we call the outflow hanging structure, whereas the Antp-expressing cells differentiate into wing heart precursors. Interestingly, Hox gene expression in the Even Skipped-positive cells not only underlies their antero-posterior diversification, but also influences heart morphogenesis in a non-cell-autonomous way. In brief, we identify a new cardiac outflow component derived from a subset of Even Skipped-expressing cells that stabilises the anterior heart tip, and demonstrate non-cell-autonomous effects of Hox gene expression in the Even Skipped-positive cells on heart morphogenesis. © 2018. Published by The Company of Biologists Ltd.

  2. c-Kit-positive cardiac stem cells nested in hypoxic niches are activated by stem cell factor reversing the aging myopathy.

    Science.gov (United States)

    Sanada, Fumihiro; Kim, Junghyun; Czarna, Anna; Chan, Noel Yan-Ki; Signore, Sergio; Ogórek, Barbara; Isobe, Kazuya; Wybieralska, Ewa; Borghetti, Giulia; Pesapane, Ada; Sorrentino, Andrea; Mangano, Emily; Cappetta, Donato; Mangiaracina, Chiara; Ricciardi, Mario; Cimini, Maria; Ifedigbo, Emeka; Perrella, Mark A; Goichberg, Polina; Choi, Augustine M; Kajstura, Jan; Hosoda, Toru; Rota, Marcello; Anversa, Piero; Leri, Annarosa

    2014-01-03

    Hypoxia favors stem cell quiescence, whereas normoxia is required for stem cell activation, but whether cardiac stem cell (CSC) function is regulated by the hypoxic/normoxic state of the cell is currently unknown. A balance between hypoxic and normoxic CSCs may be present in the young heart, although this homeostatic control may be disrupted with aging. Defects in tissue oxygenation occur in the old myocardium, and this phenomenon may expand the pool of hypoxic CSCs, which are no longer involved in myocyte renewal. Here, we show that the senescent heart is characterized by an increased number of quiescent CSCs with intact telomeres that cannot re-enter the cell cycle and form a differentiated progeny. Conversely, myocyte replacement is controlled only by frequently dividing CSCs with shortened telomeres; these CSCs generate a myocyte population that is chronologically young but phenotypically old. Telomere dysfunction dictates their actual age and mechanical behavior. However, the residual subset of quiescent young CSCs can be stimulated in situ by stem cell factor reversing the aging myopathy. Our findings support the notion that strategies targeting CSC activation and growth interfere with the manifestations of myocardial aging in an animal model. Although caution has to be exercised in the translation of animal studies to human beings, our data strongly suggest that a pool of functionally competent CSCs persists in the senescent heart and that this stem cell compartment can promote myocyte regeneration effectively, partly correcting the aging myopathy.

  3. Efficient Isolation of Cardiac Stem Cells from Brown Adipose

    Directory of Open Access Journals (Sweden)

    Zhiqiang Liu

    2010-01-01

    Full Text Available Cardiac stem cells represent a logical cell type to exploit in cardiac regeneration. The efficient harvest of cardiac stem cells from a suitable source would turn promising in cardiac stem cell therapy. Brown adipose was recently found to be a new source of cardiac stem cells, instrumental to myocardial regeneration. Unfortunately, an efficient method for the cell isolation is unavailable so far. In our study we have developed a new method for the efficient isolation of cardiac stem cells from brown adipose by combining different enzymes. Results showed that the total cell yield dramatically increased (more than 10 times, P<.01 compared with that by previous method. The content of CD133-positive cells (reported to differentiate into cardiomyocytes with a high frequency was much higher than that in the previous report (22.43% versus 3.5%. Moreover, the isolated cells could be the efficiently differentiated into functional cardiomyocytes in optimized conditions. Thus, the new method we established would be of great use in further exploring cardiac stem cell therapy.

  4. Stem cell sources for cardiac regeneration

    NARCIS (Netherlands)

    Roccio, M.; Goumans, M. J.; Sluijter, J. P. G.; Doevendans, P. A.

    Cell-based cardiac repair has the ambitious aim to replace the malfunctioning cardiac muscle developed after myocardial infarction, with new contractile cardiomyocytes and vessels. Different stem cell populations have been intensively studied in the last decade as a potential source of new

  5. Keeping the Rhythm : Cardiac Pacemaker Cell Development

    NARCIS (Netherlands)

    Burkhard, S.B.

    2017-01-01

    The heart is the first organ to form and function in the developing vertebrate embryo. Its proper morphogenesis and function is crucial for survival. Here we focus on the development and characterization of a highly specialized subset of cardiac cells, the pacemaker cells. In the mammalian heart,

  6. Cardiac Metastasis in Renal Cell Carcinoma

    African Journals Online (AJOL)

    abp

    2015-10-21

    Oct 21, 2015 ... Metastatic disease of the heart is over twenty times more common than primary heart tumors [1]. They are among the least known and highly debated issues in oncology, and few systematic studies are devoted to this topic. Cardiac involvement in renal cell carcinoma (RCC) commonly arises from direct ...

  7. Identification and functional characterization of cardiac pacemaker cells in zebrafish.

    Directory of Open Access Journals (Sweden)

    Federico Tessadori

    Full Text Available In the mammalian heart a conduction system of nodes and conducting cells generates and transduces the electrical signals evoking myocardial contractions. Specialized pacemaker cells initiating and controlling cardiac contraction rhythmicity are localized in an anatomically identifiable structure of myocardial origin, the sinus node. We previously showed that in mammalian embryos sinus node cells originate from cardiac progenitors expressing the transcription factors T-box transcription factor 3 (Tbx3 and Islet-1 (Isl1. Although cardiac development and function are strikingly conserved amongst animal classes, in lower vertebrates neither structural nor molecular distinguishable components of a conduction system have been identified, questioning its evolutionary origin. Here we show that zebrafish embryos lacking the LIM/homeodomain-containing transcription factor Isl1 display heart rate defects related to pacemaker dysfunction. Moreover, 3D reconstructions of gene expression patterns in the embryonic and adult zebrafish heart led us to uncover a previously unidentified, Isl1-positive and Tbx2b-positive region in the myocardium at the junction of the sinus venosus and atrium. Through their long interconnecting cellular protrusions the identified Isl1-positive cells form a ring-shaped structure. In vivo labeling of the Isl1-positive cells by transgenic technology allowed their isolation and electrophysiological characterization, revealing their unique pacemaker activity. In conclusion we demonstrate that Isl1-expressing cells, organized as a ring-shaped structure around the venous pole, hold the pacemaker function in the adult zebrafish heart. We have thereby identified an evolutionary conserved, structural and molecular distinguishable component of the cardiac conduction system in a lower vertebrate.

  8. Developmental origin and lineage plasticity of endogenous cardiac stem cells

    Science.gov (United States)

    Santini, Maria Paola; Forte, Elvira; Harvey, Richard P.; Kovacic, Jason C.

    2016-01-01

    Over the past two decades, several populations of cardiac stem cells have been described in the adult mammalian heart. For the most part, however, their lineage origins and in vivo functions remain largely unexplored. This Review summarizes what is known about different populations of embryonic and adult cardiac stem cells, including KIT+, PDGFRα+, ISL1+ and SCA1+ cells, side population cells, cardiospheres and epicardial cells. We discuss their developmental origins and defining characteristics, and consider their possible contribution to heart organogenesis and regeneration. We also summarize the origin and plasticity of cardiac fibroblasts and circulating endothelial progenitor cells, and consider what role these cells have in contributing to cardiac repair. PMID:27095490

  9. Cardiac Progenitor Cell Extraction from Human Auricles

    KAUST Repository

    Di Nardo, Paolo

    2017-02-22

    For many years, myocardial tissue has been considered terminally differentiated and, thus, incapable of regenerating. Recent studies have shown, instead, that cardiomyocytes, at least in part, are slowly substituted by new cells originating by precursor cells mostly embedded into the heart apex and in the atria. We have shown that an elective region of progenitor cell embedding is represented by the auricles, non-contractile atria appendages that can be easily sampled without harming the patient. The protocol here reported describes how from auricles a population of multipotent, cardiogenic cells can be isolated, cultured, and differentiated. Further studies are needed to fully exploit this cell population, but, sampling auricles, it could be possible to treat cardiac patients using their own cells circumventing rejection or organ shortage limitations.

  10. Cardiac Cells Beating in Culture: A Laboratory Exercise

    Science.gov (United States)

    Weaver, Debora

    2007-01-01

    This article describes how to establish a primary tissue culture, where cells are taken directly from an organ of a living animal. Cardiac cells are taken from chick embryos and transferred to culture dishes. These cells are not transformed and therefore have a limited life span. However, the unique characteristics of cardiac cells are maintained…

  11. Patient position alters attenuation effects in multipinhole cardiac SPECT.

    Science.gov (United States)

    Timmins, Rachel; Ruddy, Terrence D; Wells, R Glenn

    2015-03-01

    Dedicated cardiac cameras offer improved sensitivity over conventional SPECT cameras. Sensitivity gains are obtained by large numbers of detectors and novel collimator arrangements such as an array of multiple pinholes that focus on the heart. Pinholes lead to variable amounts of attenuation as a source is moved within the camera field of view. This study evaluated the effects of this variable attenuation on myocardial SPECT images. Computer simulations were performed for a set of nine point sources distributed in the left ventricular wall (LV). Sources were placed at the location of the heart in both an anthropomorphic and a water-cylinder computer phantom. Sources were translated in x, y, and z by up to 5 cm from the center. Projections were simulated with and without attenuation and the changes in attenuation were compared. A LV with an inferior wall defect was also simulated in both phantoms over the same range of positions. Real camera data were acquired on a Discovery NM530c camera (GE Healthcare, Haifa, Israel) for five min in list-mode using an anthropomorphic phantom (DataSpectrum, Durham, NC) with 100 MBq of Tc-99m in the LV. Images were taken over the same range of positions as the simulations and were compared based on the summed perfusion score (SPS), defect width, and apparent defect uptake for each position. Point sources in the water phantom showed absolute changes in attenuation of ≤8% over the range of positions and relative changes of ≤5% compared to the apex. In the anthropomorphic computer simulations, absolute change increased to 20%. The changes in relative attenuation caused a change in SPS of position-dependent changes were removed with attenuation correction. Translation of a source relative to a multipinhole camera caused only small changes in homogeneous phantoms with SPS changing position-dependent changes in attenuation.

  12. Polymer microfiber meshes facilitate cardiac differentiation of c-kit{sup +} human cardiac stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Kan, Lijuan [Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (United States); Thayer, Patrick [Department of Chemical Engineering, School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, VA (United States); Fan, Huimin [Research Institute of Heart Failure, Shanghai East Hospital of Tongji University, Shanghai (China); Ledford, Benjamin; Chen, Miao [Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (United States); Goldstein, Aaron [Department of Chemical Engineering, School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, VA (United States); Cao, Guohua [School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, VA (United States); He, Jia-Qiang, E-mail: jiahe@vt.edu [Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (United States)

    2016-09-10

    Electrospun microfiber meshes have been shown to support the proliferation and differentiation of many types of stem cells, but the phenotypic fate of c-kit{sup +} human cardiac stem cells (hCSCs) have not been explored. To this end, we utilized thin (~5 µm) elastomeric meshes consisting of aligned 1.7 µm diameter poly (ester-urethane urea) microfibers as substrates to examine their effect on hCSC viability, morphology, proliferation, and differentiation relative to cells cultured on tissue culture polystyrene (TCPS). The results showed that cells on microfiber meshes displayed an elongated morphology aligned in the direction of fiber orientation, lower proliferation rates, but increased expressions of genes and proteins majorly associated with cardiomyocyte phenotype. The early (NK2 homeobox 5, Nkx2.5) and late (cardiac troponin I, cTnI) cardiomyocyte genes were significantly increased on meshes (Nkx=2.5 56.2±13.0, cTnl=2.9±0.56,) over TCPS (Nkx2.5=4.2±0.9, cTnl=1.6±0.5, n=9, p<0.05 for both groups) after differentiation. In contrast, expressions of smooth muscle markers, Gata6 and myosin heavy chain (SM-MHC), were decreased on meshes. Immunocytochemical analysis with cardiac antibody exhibited the similar pattern of above cardiac differentiation. We conclude that aligned microfiber meshes are suitable for guiding cardiac differentiation of hCSCs and may facilitate stem cell-based therapies for treatment of cardiac diseases. - Highlights: • First study to characterize c-kit{sup +} human cardiac stem cells on microfiber meshes. • Microfiber meshes seem reducing cell proliferation, but no effect on cell viability. • Microfiber meshes facilitate the elongation of human cardiac stem cells in culture. • Cardiac but not smooth muscle differentiation were enhanced on microfiber meshes. • Microfiber meshes may be used as cardiac patches in cell-based cardiac therapy.

  13. NADPH- Diaphorase positive cardiac neurons in the atria of mice. A morphoquantitative study

    Directory of Open Access Journals (Sweden)

    Castelucci Patrícia

    2006-02-01

    Full Text Available Abstract Background The present study was conducted to determine the location, the morphology and distribution of NADPH-diaphorase positive neurons in the cardiac nerve plexus of the atria of mice (ASn. This plexus lies over the muscular layer of the atria, dorsal to the muscle itself, in the connective tissue of the subepicardium. NADPH- diaphorase staining was performed on whole-mount preparations of the atria mice. For descriptive purposes, all data are presented as means ± SEM. Results The majority of the NADPH-diaphorase positive neurons were observed in the ganglia of the plexus. A few single neurons were also observed. The number of NADPH-d positive neurons was 57 ± 4 (ranging from 39 to 79 neurons. The ganglion neurons were located in 3 distinct groups: (1 in the region situated cranial to the pulmonary veins, (2 caudally to the pulmonary veins, and (3 in the atrial groove. The largest group of neurons was located cranially to the pulmonary veins (66.7%. Three morphological types of NADPH-diaphorase neurons could be distinguished on the basis of their shape: unipolar cells, bipolar cells and cells with three processes (multipolar cells. The unipolar neurons predominated (78.9%, whereas the multipolar were encountered less frequently (5,3%. The sizes (area of maximal cell profile of the neurons ranged from about 90 μm2to about 220 μm2. Morphometrically, the three types of neurons were similar and there were no significant differences in their sizes. The total number of cardiac neurons (obtained by staining the neurons with NADH-diaphorase method was 530 ± 23. Therefore, the NADPH-diaphorase positive neurons of the heart represent 10% of the number of cardiac neurons stained by NADH. Conclusion The obtained data have shown that the NADPH-d positive neurons in the cardiac plexus of the atria of mice are morphologically different, and therefore, it is possible that the function of the neurons may also be different.

  14. Patient position alters attenuation effects in multipinhole cardiac SPECT

    International Nuclear Information System (INIS)

    Timmins, Rachel; Ruddy, Terrence D.; Wells, R. Glenn

    2015-01-01

    Purpose: Dedicated cardiac cameras offer improved sensitivity over conventional SPECT cameras. Sensitivity gains are obtained by large numbers of detectors and novel collimator arrangements such as an array of multiple pinholes that focus on the heart. Pinholes lead to variable amounts of attenuation as a source is moved within the camera field of view. This study evaluated the effects of this variable attenuation on myocardial SPECT images. Methods: Computer simulations were performed for a set of nine point sources distributed in the left ventricular wall (LV). Sources were placed at the location of the heart in both an anthropomorphic and a water-cylinder computer phantom. Sources were translated in x, y, and z by up to 5 cm from the center. Projections were simulated with and without attenuation and the changes in attenuation were compared. A LV with an inferior wall defect was also simulated in both phantoms over the same range of positions. Real camera data were acquired on a Discovery NM530c camera (GE Healthcare, Haifa, Israel) for five min in list-mode using an anthropomorphic phantom (DataSpectrum, Durham, NC) with 100 MBq of Tc-99m in the LV. Images were taken over the same range of positions as the simulations and were compared based on the summed perfusion score (SPS), defect width, and apparent defect uptake for each position. Results: Point sources in the water phantom showed absolute changes in attenuation of ≤8% over the range of positions and relative changes of ≤5% compared to the apex. In the anthropomorphic computer simulations, absolute change increased to 20%. The changes in relative attenuation caused a change in SPS of <1.5 for the water phantom but up to 4.2 in the anthropomorphic phantom. Changes were larger for axial than for transverse translations. These results were supported by SPS changes of up to six seen in the physical anthropomorphic phantom for axial translations. Defect width was also seen to significantly increase. The

  15. Histamine-2 receptor antagonist famotidine modulates cardiac stem cell characteristics in hypertensive heart disease

    Directory of Open Access Journals (Sweden)

    Sherin Saheera

    2017-10-01

    Full Text Available Background Cardiac stem cells (CSCs play a vital role in cardiac homeostasis. A decrease in the efficiency of cardiac stem cells is speculated in various cardiac abnormalities. The maintenance of a healthy stem cell population is essential for the prevention of adverse cardiac remodeling leading to cardiac failure. Famotidine, a histamine-2 receptor antagonist, is currently used to treat ulcers of the stomach and intestines. In repurposing the use of the drug, reduction of cardiac hypertrophy and improvement in cardiac function of spontaneously hypertensive rats (SHR was reported by our group. Given that stem cells are affected in cardiac pathologies, the effect of histamine-2 receptor antagonism on CSC characteristics was investigated. Methods To examine whether famotidine has a positive effect on CSCs, spontaneously hypertensive rats (SHR treated with the drug were sacrificed; and CSCs isolated from atrial appendages was evaluated. Six-month-old male SHRs were treated with famotidine (30 mg/kg/day for two months. The effect of famotidine treatment on migration, proliferation and survival of CSCs was compared with untreated SHRs and normotensive Wistar rats. Results Functional efficiency of CSCs from SHR was compromised relative to that in Wistar rat. Famotidine increased the migration and proliferation potential, along with retention of stemness of CSCs in treated SHRs. Cellular senescence and oxidative stress were also reduced. The expression of H2R was unaffected by the treatment. Discussion As anticipated, CSCs from SHRs were functionally impaired. Stem cell attributes of famotidine-treated SHRs was comparable to that of Wistar rats. Therefore, in addition to being cardioprotective, the histamine 2 receptor antagonist modulated cardiac stem cells characteristics. Restoration of stem cell efficiency by famotidine is possibly mediated by reduction of oxidative stress as the expression of H2R was unaffected by the treatment. Maintenance of

  16. Pre-transplantation specification of stem cells to cardiac lineage for regeneration of cardiac tissue.

    Science.gov (United States)

    Mayorga, Maritza; Finan, Amanda; Penn, Marc

    2009-03-01

    Myocardial infarction (MI) is a lead cause of mortality in the Western world. Treatment of acute MI is focused on restoration of antegrade flow which inhibits further tissue loss, but does not restore function to damaged tissue. Chronic therapy for injured myocardial tissue involves medical therapy that attempts to minimize pathologic remodeling of the heart. End stage therapy for chronic heart failure (CHF) involves inotropic therapy to increase surviving cardiac myocyte function or mechanical augmentation of cardiac performance. Not until the point of heart transplantation, a limited resource at best, does therapy focus on the fundamental problem of needing to replace injured tissue with new contractile tissue. In this setting, the potential for stem cell therapy has garnered significant interest for its potential to regenerate or create new contractile cardiac tissue. While to date adult stem cell therapy in clinical trials has suggested potential benefit, there is waning belief that the approaches used to date lead to regeneration of cardiac tissue. As the literature has better defined the pathways involved in cardiac differentiation, preclinical studies have suggested that stem cell pretreatment to direct stem cell differentiation prior to stem cell transplantation may be a more efficacious strategy for inducing cardiac regeneration. Here we review the available literature on pre-transplantation conditioning of stem cells in an attempt to better understand stem cell behavior and their readiness in cell-based therapy for myocardial regeneration.

  17. Treatment of gram-positive deep sternal wound infections in cardiac surgery -experiences with daptomycin-

    Directory of Open Access Journals (Sweden)

    Coskun Kasim O

    2011-09-01

    Full Text Available Abstract The reported incidence of deep sternal wound infection (DSWI after cardiac surgery is 0.4-5% with Staphylococcus aureus being the most common pathogen isolated from infected wound sternotomies and bacteraemic blood cultures. This infection is associated with a higher morbidity and mortality than other known aetiologies. Little is reported about the optimal antibiotic management. The aim of the study is to quantify the application of daptomycin treatment of DSWI due to gram-positive organisms post cardiac surgery. We performed an observational analysis in 23 cases of post sternotomy DSWI with gram-positive organisms February 2009 and September 2010. When the wound appeared viable and the microbiological cultures were negative, the technique of chest closure was individualised to the patient. The incidence of DSWI was 1.46%. The mean dose of daptomycin application was 4.4 ± 0.9 mg/kg/d and the average duration of the daptomycin application was 14.47 ± 7.33 days. In 89% of the patients VAC therapy was used. The duration from daptomycin application to sternal closure was 18 ± 13.9 days. The parameters of infection including, fibrinogen (p = 0.03, white blood cell count (p = 0.001 and C-reactive protein (p = 0.0001 were significantly reduced after daptomycin application. We had no mortality and wound healing was successfully achieved in all patients. Treatment of DSWI due to gram-positive organisms with a daptomycin-containing antibiotic regimen is safe, effective and promotes immediate improvement of local wound conditions. Based on these observations, daptomycin may offer a new treatment option for expediting surgical management of DSWI after cardiac surgery.

  18. Restrictive or Liberal Red-Cell Transfusion for Cardiac Surgery

    DEFF Research Database (Denmark)

    Mazer, C David; Whitlock, Richard P; Fergusson, Dean A

    2017-01-01

    BACKGROUND: The effect of a restrictive versus liberal red-cell transfusion strategy on clinical outcomes in patients undergoing cardiac surgery remains unclear. METHODS: In this multicenter, open-label, noninferiority trial, we randomly assigned 5243 adults undergoing cardiac surgery who had a E...

  19. Cardiac Electromechanical Models: From Cell to Organ

    Directory of Open Access Journals (Sweden)

    Natalia A Trayanova

    2011-08-01

    Full Text Available The heart is a multiphysics and multiscale system that has driven the development of the most sophisticated mathematical models at the frontiers of computation physiology and medicine. This review focuses on electromechanical (EM models of the heart from the molecular level of myofilaments to anatomical models of the organ. Because of the coupling in terms of function and emergent behaviors at each level of biological hierarchy, separation of behaviors at a given scale is difficult. Here, a separation is drawn at the cell level so that the first half addresses subcellular/single cell models and the second half addresses organ models. At the subcelluar level, myofilament models represent actin-myosin interaction and Ca-based activation. Myofilament models and their refinements represent an overview of the development in the field. The discussion of specific models emphasizes the roles of cooperative mechanisms and sarcomere length dependence of contraction force, considered the cellular basis of the Frank-Starling law. A model of electrophysiology and Ca handling can be coupled to a myofilament model to produce an EM cell model, and representative examples are summarized to provide an overview of the progression of field. The second half of the review covers organ-level models that require solution of the electrical component as a reaction-diffusion system and the mechanical component, in which active tension generated by the myocytes produces deformation of the organ as described by the equations of continuum mechanics. As outlined in the review, different organ-level models have chosen to use different ionic and myofilament models depending on the specific application; this choice has been largely dictated by compromises between model complexity and computational tractability. The review also addresses application areas of EM models such as cardiac resynchronization therapy and the role of mechano-electric coupling in arrhythmias and

  20. Reality TV positions heart center as cardiac care leader.

    Science.gov (United States)

    Rees, T

    2001-01-01

    Saint Thomas Heart Institute, Nashville, Tenn., has a long history of successful cardiac care. More than 200,000 patients have been treated at Saint Thomas. Earlier this year the hospital launched a new branding campaign that features former patients who have bonded with the institution. These former patients were provided MiniDV video cameras to record their stories. The campaign has attracted considerable attention, including newspaper and TV news coverage.

  1. Embryonic and foetal Islet-1 positive cells in human hearts are also positive to c-Kit

    Directory of Open Access Journals (Sweden)

    C. Serradifalco

    2011-12-01

    Full Text Available During embryogenesis, the mammalian heart develops from a primitive heart tube originating from two bilateral primary heart fields located in the lateral plate mesoderm. Cells belongings to the pre-cardiac mesoderm will differentiate into early cardiac progenitors, which express early transcription factors which are also common to the Isl-1 positive cardiac progenitor cells isolated from the developing pharyngeal mesoderm and the foetal and post-natal mice hearts. A second population of cardiac progenitor cells positive to c-Kit has been abundantly isolated from adult hearts. Until now, these two populations have been considered two different sets of progenitor cells present in the heart in different stages of an individual life. In the present study we collected embryonic, foetal and infant hearts, and we tested the hypotheses that c-Kit positive cells, usually isolated from the adult heart, are also present in the intra-uterine life and persist in the adult heart after birth, and that foetal Isl-1 positive cells are also positive to c-Kit. Using immunohistochemistry we studied the temporal distribution of Isl-1 positive and c-Kit/CD105 double positive cells, and by immunofluorescence and confocal analysis we studied the co-localization of c-Kit and Isl-1 positive cells. The results indicated that cardiomyocytes and interstitial cells were positive for c-Kit from the 9th to the 19th gestational week, that cells positive for both c-Kit and CD105 appeared in the interstitium at the 17th gestational week and persisted in the postnatal age, and that the Isl-1 positive cells were a subset of the c-Kit positive population.

  2. Cardiac-Derived Extracellular Matrix Enhances Cardiogenic Properties of Human Cardiac Progenitor Cells

    NARCIS (Netherlands)

    Gaetani, Roberto; Yin, Christopher; Srikumar, Neha; Braden, Rebecca; Doevendans, Pieter A; Sluijter, Joost P G; Christman, Karen L

    2016-01-01

    The use of biomaterials has been demonstrated as a viable strategy to promote cell survival and cardiac repair. However, limitations on combinational cell-biomaterial therapies exist, as cellular behavior is influenced by the microenvironment and physical characteristics of the material. Among the

  3. Induced Pluripotent Stem Cells 10 Years Later: For Cardiac Applications.

    Science.gov (United States)

    Yoshida, Yoshinori; Yamanaka, Shinya

    2017-06-09

    Induced pluripotent stem cells (iPSCs) are reprogrammed cells that have features similar to embryonic stem cells, such as the capacity of self-renewal and differentiation into many types of cells, including cardiac myocytes. Although initially the reprogramming efficiency was low, several improvements in reprogramming methods have achieved robust and efficient generation of iPSCs without genomic insertion of transgenes. iPSCs display clonal variations in epigenetic and genomic profiles and cellular behavior in differentiation. iPSC-derived cardiac myocytes (iPSC cardiac myocytes) recapitulate phenotypic differences caused by genetic variations, making them attractive human disease models, and are useful for drug discovery and toxicology testing. In addition, iPSC cardiac myocytes can help with patient stratification in regard to drug responsiveness. Furthermore, they can be used as source cells for cardiac regeneration in animal models. Here, we review recent progress in iPSC technology and its applications to cardiac diseases. © 2017 American Heart Association, Inc.

  4. High Density Sphere Culture of Adult Cardiac Cells Increases the Levels of Cardiac and Progenitor Markers and Shows Signs of Vasculogenesis

    Directory of Open Access Journals (Sweden)

    Kristina Vukusic

    2013-01-01

    Full Text Available 3D environment and high cell density play an important role in restoring and supporting the phenotypes of cells represented in cardiac tissues. The aim of this study was therefore to investigate the suitability of high density sphere (HDS cultures for studies of cardiomyocyte-, endothelial-, and stem-cell biology. Primary adult cardiac cells from nine human biopsies were cultured using different media for up to 9 weeks. The possibilities to favor a certain cell phenotype and induce production of extra cellular matrix (ECM were studied by histology, immunohistochemistry, and quantitative real-time PCR. Defined media gave significant increase in both cardiac- and progenitor-specific markers and also an intraluminal position of endothelial cells over time. Cardiac media showed indication of differentiation and maturity of HDS considering the ECM production and activities within NOTCH regulation but no additional cardiac differentiation. Endothelial media gave no positive effects on endothelial phenotype but increased proliferation without fibroblast overgrowth. In addition, indications for early vasculogenesis were found. It was also possible to affect the Wnt signaling in HDS by addition of a glycogen synthase kinase 3 (GSK3 inhibitor. In conclusion, these findings show the suitability of HDS as in vitro model for studies of cardiomyocyte-, endothelial-, and stem-cell biology.

  5. What's Your Position? Strategies for Safely Reaching Patient Comfort Goals After Cardiac Catheterization via Femoral Approach.

    Science.gov (United States)

    Suggs, Patricia M; Lewis, Rebecca; Hart, Ann C; Troutman-Jordan, Meredith; Hardin, Sonya R

    Patients frequently complain of back pain after cardiac catheterization, and there is a lack of evidence to guide practice regarding patient comfort while maintaining hemostasis at femoral access site after cardiac catheterization. The aim of this study was to examine if frequent position changes affect a patient's pain level or increase incidents of bleeding in the recovery period after cardiac catheterization. A quasi-experimental pretest/posttest design was used to evaluate a patient's reported pain levels and positioning changes during bed rest period postprocedure. Twenty charts were reviewed to note documentation of patient position, self-reported pain rating related to pain relief goals, and occurrence of bleeding at the procedure site. A survey was conducted to reveal nurse attitudes, knowledge, and beliefs regarding positioning and pain management for patients in the post-cardiac catheterization period. Results from this survey were used to develop education and data collection tools. Education regarding perceived barriers and importance of maximizing activity orders for patient comfort was provided to nursing staff. After nurse education, an additional 20 charts were reviewed to note if increasing frequency of position change affects pain levels reported by patients or if any increased incidence of bleeding was noted with greater frequency of position change. Data were analyzed using correlation analyses. Greater levels of pain were associated with higher pain ratings (r = 0.796, P position change only as a comfort measure was negatively associated with pain ratings; in other words, lower patient pain ratings were associated with use of positioning only without addition of medications to address complaint (r = -0.493, P position changes for comfort after cardiac catheterization. This initial analysis suggests position changes in conjunction with pain medication are beneficial in managing pain after cardiac catheterization. There was no increase in

  6. Cell differentiation in cardiac myxomas: confocal microscopy and gene expression analysis after laser capture microdissection.

    Science.gov (United States)

    Pucci, Angela; Mattioli, Claudia; Matteucci, Marco; Lorenzini, Daniele; Panvini, Francesca; Pacini, Simone; Ippolito, Chiara; Celiento, Michele; De Martino, Andrea; Dolfi, Amelio; Belgio, Beatrice; Bortolotti, Uberto; Basolo, Fulvio; Bartoloni, Giovanni

    2018-05-22

    Cardiac myxomas are rare tumors with a heterogeneous cell population including properly neoplastic (lepidic), endothelial and smooth muscle cells. The assessment of neoplastic (lepidic) cell differentiation pattern is rather difficult using conventional light microscopy immunohistochemistry and/or whole tissue extracts for mRNA analyses. In a preliminary study, we investigated 20 formalin-fixed and paraffin-embedded cardiac myxomas by means of conventional immunohistochemistry; in 10/20 cases, cell differentiation was also analyzed by real-time RT-PCR after laser capture microdissection of the neoplastic cells, whereas calretinin and endothelial antigen CD31 immunoreactivity was localized in 4/10 cases by double immunofluorescence confocal microscopy. Gene expression analyses of α-smooth muscle actin, endothelial CD31 antigen, alpha-cardiac actin, matrix metalloprotease-2 (MMP2) and tissue inhibitor of matrix metalloprotease-1 (TIMP1) was performed on cDNA obtained from either microdissected neoplastic cells or whole tumor sections. We found very little or absent CD31 and α-Smooth Muscle Actin expression in the microdissected cells as compared to the whole tumors, whereas TIMP1 and MMP2 genes were highly expressed in both ones, greater levels being found in patients with embolic phenomena. α-Cardiac Actin was not detected. Confocal microscopy disclosed two different signals corresponding to calretinin-positive myxoma cells and to endothelial CD31-positive cells, respectively. In conclusion, the neoplastic (lepidic) cells showed a distinct gene expression pattern and no consistent overlapping with endothelial and smooth muscle cells or cardiac myocytes; the expression of TIMP1 and MMP2 might be related to clinical presentation; larger series studies using also systematic transcriptome analysis might be useful to confirm the present results.

  7. Concise Review: Cardiac Disease Modeling Using Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Yang, Chunbo; Al-Aama, Jumana; Stojkovic, Miodrag; Keavney, Bernard; Trafford, Andrew; Lako, Majlinda; Armstrong, Lyle

    2015-09-01

    Genetic cardiac diseases are major causes of morbidity and mortality. Although animal models have been created to provide some useful insights into the pathogenesis of genetic cardiac diseases, the significant species differences and the lack of genetic information for complex genetic diseases markedly attenuate the application values of such data. Generation of induced pluripotent stem cells (iPSCs) from patient-specific specimens and subsequent derivation of cardiomyocytes offer novel avenues to study the mechanisms underlying cardiac diseases, to identify new causative genes, and to provide insights into the disease aetiology. In recent years, the list of human iPSC-based models for genetic cardiac diseases has been expanding rapidly, although there are still remaining concerns on the level of functionality of iPSC-derived cardiomyocytes and their ability to be used for modeling complex cardiac diseases in adults. This review focuses on the development of cardiomyocyte induction from pluripotent stem cells, the recent progress in heart disease modeling using iPSC-derived cardiomyocytes, and the challenges associated with understanding complex genetic diseases. To address these issues, we examine the similarity between iPSC-derived cardiomyocytes and their ex vivo counterparts and how this relates to the method used to differentiate the pluripotent stem cells into a cardiomyocyte phenotype. We progress to examine categories of congenital cardiac abnormalities that are suitable for iPSC-based disease modeling. © AlphaMed Press.

  8. Cardiac tissue engineering and regeneration using cell-based therapy

    Directory of Open Access Journals (Sweden)

    Alrefai MT

    2015-05-01

    Full Text Available Mohammad T Alrefai,1–3 Divya Murali,4 Arghya Paul,4 Khalid M Ridwan,1,2 John M Connell,1,2 Dominique Shum-Tim1,2 1Division of Cardiac Surgery, 2Division of Surgical Research, McGill University Health Center, Montreal, QC, Canada; 3King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia; 4Department of Chemical and Petroleum Engineering, School of Engineering, University of Kansas, Lawrence, KS, USA Abstract: Stem cell therapy and tissue engineering represent a forefront of current research in the treatment of heart disease. With these technologies, advancements are being made into therapies for acute ischemic myocardial injury and chronic, otherwise nonreversible, myocardial failure. The current clinical management of cardiac ischemia deals with reestablishing perfusion to the heart but not dealing with the irreversible damage caused by the occlusion or stenosis of the supplying vessels. The applications of these new technologies are not yet fully established as part of the management of cardiac diseases but will become so in the near future. The discussion presented here reviews some of the pioneering works at this new frontier. Key results of allogeneic and autologous stem cell trials are presented, including the use of embryonic, bone marrow-derived, adipose-derived, and resident cardiac stem cells. Keywords: stem cells, cardiomyocytes, cardiac surgery, heart failure, myocardial ischemia, heart, scaffolds, organoids, cell sheet and tissue engineering

  9. Cardiac cell modelling: Observations from the heart of the cardiac physiome project

    KAUST Repository

    Fink, Martin; Niederer, Steven A.; Cherry, Elizabeth M.; Fenton, Flavio H.; Koivumä ki, Jussi T.; Seemann, Gunnar; Thul, Rü diger; Zhang, Henggui; Sachse, Frank B.; Beard, Dan; Crampin, Edmund J.; Smith, Nicolas P.

    2011-01-01

    In this manuscript we review the state of cardiac cell modelling in the context of international initiatives such as the IUPS Physiome and Virtual Physiological Human Projects, which aim to integrate computational models across scales and physics. In particular we focus on the relationship between experimental data and model parameterisation across a range of model types and cellular physiological systems. Finally, in the context of parameter identification and model reuse within the Cardiac Physiome, we suggest some future priority areas for this field. © 2010 Elsevier Ltd.

  10. Wnt/β-Catenin Stimulation and Laminins Support Cardiovascular Cell Progenitor Expansion from Human Fetal Cardiac Mesenchymal Stromal Cells

    Directory of Open Access Journals (Sweden)

    Agneta Månsson-Broberg

    2016-04-01

    Full Text Available The intrinsic regenerative capacity of human fetal cardiac mesenchymal stromal cells (MSCs has not been fully characterized. Here we demonstrate that we can expand cells with characteristics of cardiovascular progenitor cells from the MSC population of human fetal hearts. Cells cultured on cardiac muscle laminin (LN-based substrata in combination with stimulation of the canonical Wnt/β-catenin pathway showed increased gene expression of ISL1, OCT4, KDR, and NKX2.5. The majority of cells stained positive for PDGFR-α, ISL1, and NKX2.5, and subpopulations also expressed the progenitor markers TBX18, KDR, c-KIT, and SSEA-1. Upon culture of the cardiac MSCs in differentiation media and on relevant LNs, portions of the cells differentiated into spontaneously beating cardiomyocytes, and endothelial and smooth muscle-like cells. Our protocol for large-scale culture of human fetal cardiac MSCs enables future exploration of the regenerative functions of these cells in the context of myocardial injury in vitro and in vivo.

  11. Biomaterial property-controlled stem cell fates for cardiac regeneration

    Directory of Open Access Journals (Sweden)

    Yanyi Xu

    2016-09-01

    Full Text Available Myocardial infarction (MI affects more than 8 million people in the United States alone. Due to the insufficient regeneration capacity of the native myocardium, one widely studied approach is cardiac tissue engineering, in which cells are delivered with or without biomaterials and/or regulatory factors to fully regenerate the cardiac functions. Specifically, in vitro cardiac tissue engineering focuses on using biomaterials as a reservoir for cells to attach, as well as a carrier of various regulatory factors such as growth factors and peptides, providing high cell retention and a proper microenvironment for cells to migrate, grow and differentiate within the scaffolds before implantation. Many studies have shown that the full establishment of a functional cardiac tissue in vitro requires synergistic actions between the seeded cells, the tissue culture condition, and the biochemical and biophysical environment provided by the biomaterials-based scaffolds. Proper electrical stimulation and mechanical stretch during the in vitro culture can induce the ordered orientation and differentiation of the seeded cells. On the other hand, the various scaffolds biochemical and biophysical properties such as polymer composition, ligand concentration, biodegradability, scaffold topography and mechanical properties can also have a significant effect on the cellular processes.

  12. Current status of stem cells in cardiac repair.

    Science.gov (United States)

    Henning, Robert J

    2018-03-01

    One out of every two men and one out of every three women greater than the age of 40 will experience an acute myocardial infarction (AMI) at some time during their lifetime. As more patients survive their AMIs, the incidence of congestive heart failure (CHF) is increasing. 6 million people in the USA have ischemic cardiomyopathies and CHF. The search for new and innovative treatments for patients with AMI and CHF has led to investigations and use of human embryonic stem cells, cardiac stem/progenitor cells, bone marrow-derived mononuclear cells and mesenchymal stem cells for treatment of these heart conditions. This paper reviews current investigations with human embryonic, cardiac, bone marrow and mesenchymal stem cells, and also stem cell paracrine factors and exosomes.

  13. Multicellular automaticity of cardiac cell monolayers: effects of density and spatial distribution of pacemaker cells

    International Nuclear Information System (INIS)

    Duverger, James Elber; Boudreau-Béland, Jonathan; Le, Minh Duc; Comtois, Philippe

    2014-01-01

    Self-organization of pacemaker (PM) activity of interconnected elements is important to the general theory of reaction–diffusion systems as well as for applications such as PM activity in cardiac tissue to initiate beating of the heart. Monolayer cultures of neonatal rat ventricular myocytes (NRVMs) are often used as experimental models in studies on cardiac electrophysiology. These monolayers exhibit automaticity (spontaneous activation) of their electrical activity. At low plated density, cells usually show a heterogeneous population consisting of PM and quiescent excitable cells (QECs). It is therefore highly probable that monolayers of NRVMs consist of a heterogeneous network of the two cell types. However, the effects of density and spatial distribution of the PM cells on spontaneous activity of monolayers remain unknown. Thus, a simple stochastic pattern formation algorithm was implemented to distribute PM and QECs in a binary-like 2D network. A FitzHugh–Nagumo excitable medium was used to simulate electrical spontaneous and propagating activity. Simulations showed a clear nonlinear dependency of spontaneous activity (occurrence and amplitude of spontaneous period) on the spatial patterns of PM cells. In most simulations, the first initiation sites were found to be located near the substrate boundaries. Comparison with experimental data obtained from cardiomyocyte monolayers shows important similarities in the position of initiation site activity. However, limitations in the model that do not reflect the complex beat-to-beat variation found in experiments indicate the need for a more realistic cardiomyocyte representation. (paper)

  14. Multicellular automaticity of cardiac cell monolayers: effects of density and spatial distribution of pacemaker cells

    Science.gov (United States)

    Elber Duverger, James; Boudreau-Béland, Jonathan; Le, Minh Duc; Comtois, Philippe

    2014-11-01

    Self-organization of pacemaker (PM) activity of interconnected elements is important to the general theory of reaction-diffusion systems as well as for applications such as PM activity in cardiac tissue to initiate beating of the heart. Monolayer cultures of neonatal rat ventricular myocytes (NRVMs) are often used as experimental models in studies on cardiac electrophysiology. These monolayers exhibit automaticity (spontaneous activation) of their electrical activity. At low plated density, cells usually show a heterogeneous population consisting of PM and quiescent excitable cells (QECs). It is therefore highly probable that monolayers of NRVMs consist of a heterogeneous network of the two cell types. However, the effects of density and spatial distribution of the PM cells on spontaneous activity of monolayers remain unknown. Thus, a simple stochastic pattern formation algorithm was implemented to distribute PM and QECs in a binary-like 2D network. A FitzHugh-Nagumo excitable medium was used to simulate electrical spontaneous and propagating activity. Simulations showed a clear nonlinear dependency of spontaneous activity (occurrence and amplitude of spontaneous period) on the spatial patterns of PM cells. In most simulations, the first initiation sites were found to be located near the substrate boundaries. Comparison with experimental data obtained from cardiomyocyte monolayers shows important similarities in the position of initiation site activity. However, limitations in the model that do not reflect the complex beat-to-beat variation found in experiments indicate the need for a more realistic cardiomyocyte representation.

  15. Evidence for Transfer of Membranes from Mesenchymal Stem Cells to HL-1 Cardiac Cells.

    Science.gov (United States)

    Boomsma, Robert A; Geenen, David L

    2014-01-01

    This study examined the interaction of mouse bone marrow mesenchymal stem cells (MSC) with cardiac HL-1 cells during coculture by fluorescent dye labeling and then flow cytometry. MSC were layered onto confluent HL-1 cell cultures in a 1 : 4 ratio. MSC gained gap junction permeant calcein from HL-1 cells after 4 hours which was partially reduced by oleamide. After 20 hours, 99% MSC gained calcein, unaffected by oleamide. Double-labeling HL-1 cells with calcein and the membrane dye DiO resulted in transfer of both calcein and DiO to MSC. When HL-1 cells were labeled with calcein and MSC with DiO, MSC gained calcein while HL-1 cells gained DiO. Very little fusion was observed since more than 90% Sca-1 positive MSC gained DiO from HL-1 cells while less than 9% gained gap junction impermeant CMFDA after 20 hours with no Sca-1 transfer to HL-1 cells. Time dependent transfer of membrane DiD was observed from HL-1 cells to MSC (100%) and vice versa (50%) after 20 hours with more limited transfer of CMFDA. These results demonstrate that MSC and HL-1 cells exchange membrane components which may account for some of the beneficial effect of MSC in the heart after myocardial infarction.

  16. Cardiac involvement in genotype-positive Fabry disease patients assessed by cardiovascular MR.

    Science.gov (United States)

    Kozor, Rebecca; Grieve, Stuart M; Tchan, Michel C; Callaghan, Fraser; Hamilton-Craig, Christian; Denaro, Charles; Moon, James C; Figtree, Gemma A

    2016-02-15

    Cardiac magnetic resonance (CMR) has the potential to provide early detection of cardiac involvement in Fabry disease. We aimed to gain further insight into this by assessing a cohort of Fabry patients using CMR. Fifty genotype-positive Fabry subjects (age 45±2 years; 50% male) referred for CMR and 39 matched controls (age 40±2 years; 59% male) were recruited. Patients had a mean Mainz severity score index of 15±2 (range 0-46), reflecting an overall mild degree of disease severity. Compared with controls, Fabry subjects had a 34% greater left ventricular mass (LVM) index (82±5 vs 61±2 g/m(2), p=0.001) and had a significantly greater papillary muscle contribution to total LVM (13±1 vs 6±0.5%, pgadolinium enhancement (LGE) was present in 15 Fabry subjects (9/21 males and 6/23 females). The most common site for LGE was the basal inferolateral wall (93%, 14/15). There was a positive association between LVM index and LGE. Despite this, there were two males and three females with no LVH that displayed LGE. Of Fabry subjects who were not on enzyme replacement therapy at enrolment (n=28), six were reclassified as having cardiac involvement (four LVH-negative/LGE-positive, one LVH-positive/LGE-positive and one LVH-positive/LGE-negative). CMR was able to detect cardiac involvement in 48% of this Fabry cohort, despite the overall mild disease phenotype of the cohort. Of those not on ERT, 21% were reclassified as having cardiac involvement allowing improved risk stratification and targeting of therapy. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  17. Paediatric cardiac anaesthesia in sickle cell disease: a case series

    African Journals Online (AJOL)

    Paediatric patients with SCD and congenital heart defects may require ... Patients with sickle cell disease (SCD) presenting for cardiac ... fluid, calculated according to body weight, was initiated. ... oxygen mixture and intravenous fentanyl (5–10 mcg/kg) and .... erythropoiesis, and in this way reduces HbS production.

  18. Cardiac stem/progenitor cells, secreted proteins, and proteomics

    Czech Academy of Sciences Publication Activity Database

    Šťastná, Miroslava; Abraham, M.R.; Van Eyk, J.E.

    2009-01-01

    Roč. 583, č. 11 (2009), s. 1800-1807 ISSN 0014-5793 Institutional research plan: CEZ:AV0Z40310501 Keywords : Cardiac stem/progenitor cell * paracrine factor * secretome Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.541, year: 2009

  19. The clinical utility of lipid profile and positive troponin in predicting future cardiac events

    Directory of Open Access Journals (Sweden)

    Arun Kumar

    2012-02-01

    Full Text Available Objective: To study the usefulness of traditional lipid profile levels in screening subjects who had developed chest pain due to cardiac event as indicated by a positive troponin I (TnI test. Methods: In this retrospective study data of the 740 patients presented to the emergency department with symptoms of cardiac ischemia that underwent both troponin and lipid profiles tests were compared with the lipid profiles of 411 normal healthy subjects (controls. The troponin was detected qualitatively when a specimen contains TnI above the 99th percentile (TnI >0.5 ng/ mL. The total cholesterol (TC, high density lipoproteins (HDL, very low density lipoproteins (VLDL, and triacyl glycerol (TG levels were also analyzed and low density lipoprotein level (LDL was calculated using Friedewald ’s formula. Results: Patients with chest pain and positive troponin test (with confirmed cardiac event were found to have significantly elevated levels of TC, TG, LDL and significantly reduced HDL levels when compared to the patients who experienced only chest pain (negative troponin and healthy controls. Conclusions: Traditional lipid profile levels still can be used in screening populations to identify the subjects with high risk of developing cardiac event which is identified by highly sensitive and specific positive troponin test.

  20. Cardiac Progenitor Cell Extraction from Human Auricles

    KAUST Repository

    Di Nardo, Paolo; Pagliari, Francesca

    2017-01-01

    by precursor cells mostly embedded into the heart apex and in the atria. We have shown that an elective region of progenitor cell embedding is represented by the auricles, non-contractile atria appendages that can be easily sampled without harming the patient

  1. Endocarditis associated with cardiac catheterization due to a Gram-positive coccus designated Micrococcus mucilaginosus incertae sedis.

    Science.gov (United States)

    Rubin, S J; Lyons, R W; Murcia, A J

    1978-01-01

    A gram-positive coccus, presently named Micrococcus mucilaginosus incertae sedis, was isolated from 14 blood cultures from a patient with endocarditis. The first positive blood culture was drawn 5 days after the patient underwent cardiac catheterization. PMID:670378

  2. Modern Perspectives on Numerical Modeling of Cardiac Pacemaker Cell

    Science.gov (United States)

    Maltsev, Victor A.; Yaniv, Yael; Maltsev, Anna V.; Stern, Michael D.; Lakatta, Edward G.

    2015-01-01

    Cardiac pacemaking is a complex phenomenon that is still not completely understood. Together with experimental studies, numerical modeling has been traditionally used to acquire mechanistic insights in this research area. This review summarizes the present state of numerical modeling of the cardiac pacemaker, including approaches to resolve present paradoxes and controversies. Specifically we discuss the requirement for realistic modeling to consider symmetrical importance of both intracellular and cell membrane processes (within a recent “coupled-clock” theory). Promising future developments of the complex pacemaker system models include the introduction of local calcium control, mitochondria function, and biochemical regulation of protein phosphorylation and cAMP production. Modern numerical and theoretical methods such as multi-parameter sensitivity analyses within extended populations of models and bifurcation analyses are also important for the definition of the most realistic parameters that describe a robust, yet simultaneously flexible operation of the coupled-clock pacemaker cell system. The systems approach to exploring cardiac pacemaker function will guide development of new therapies, such as biological pacemakers for treating insufficient cardiac pacemaker function that becomes especially prevalent with advancing age. PMID:24748434

  3. Stem Cells for Cardiac Regeneration by Cell Therapy and Myocardial Tissue Engineering

    Science.gov (United States)

    Wu, Jun; Zeng, Faquan; Weisel, Richard D.; Li, Ren-Ke

    Congestive heart failure, which often occurs progressively following a myocardial infarction, is characterized by impaired myocardial perfusion, ventricular dilatation, and cardiac dysfunction. Novel treatments are required to reverse these effects - especially in older patients whose endogenous regenerative responses to currently available therapies are limited by age. This review explores the current state of research for two related approaches to cardiac regeneration: cell therapy and tissue engineering. First, to evaluate cell therapy, we review the effectiveness of various cell types for their ability to limit ventricular dilatation and promote functional recovery following implantation into a damaged heart. Next, to assess tissue engineering, we discuss the characteristics of several biomaterials for their potential to physically support the infarcted myocardium and promote implanted cell survival following cardiac injury. Finally, looking ahead, we present recent findings suggesting that hybrid constructs combining a biomaterial with stem and supporting cells may be the most effective approaches to cardiac regeneration.

  4. Association of myocardial cell necrosis with experimental cardiac hypertrophy

    Energy Technology Data Exchange (ETDEWEB)

    Revis, N W; Cameron, A J.V.

    1979-01-01

    Cardiac hypertrophy was induced in rabbits by injecting thyroxime or isoprenaline, or by surgically constricting the abdominal aorta. An increase in heart weight was associated with a change in the ratios of bound to free forms of five lysosomal enzymes, a change in serum creatine phosphokinase and lactate dehydrogenase, and a change in the morphology of the myocardial cells. Isoprenaline treatment for 5 days induced a maximal change in heart weight, in the ratio of lysosomal enzymes, and in the serum enzymes. Thyroxine treatment was required for 15 days before maximal changes in heart weight, ratio, and serum enzymes were observed. In contrast, coarctation of the aorta caused a progressive change in heart weight, in the ratio of lysosomal enzymes, and in serum enzymes. These results suggest that necrosis of the myocardial cells does indeed accompany cardiac hypertrophy. It was further observed that autophagosomes, degenerating mitochondria in the myocardial cells during the induction of cardiac hypertrophy, and myofibril lysis were found, all of which confirms the suggestion of myocardial cell necrosis in the experimentally enlarged heart.

  5. Development of cardiac parasympathetic neurons, glial cells, and regional cholinergic innervation of the mouse heart.

    Science.gov (United States)

    Fregoso, S P; Hoover, D B

    2012-09-27

    Very little is known about the development of cardiac parasympathetic ganglia and cholinergic innervation of the mouse heart. Accordingly, we evaluated the growth of cholinergic neurons and nerve fibers in mouse hearts from embryonic day 18.5 (E18.5) through postnatal day 21(P21). Cholinergic perikarya and varicose nerve fibers were identified in paraffin sections immunostained for the vesicular acetylcholine transporter (VAChT). Satellite cells and Schwann cells in adjacent sections were identified by immunostaining for S100β calcium binding protein (S100) and brain-fatty acid binding protein (B-FABP). We found that cardiac ganglia had formed in close association to the atria and cholinergic innervation of the atrioventricular junction had already begun by E18.5. However, most cholinergic innervation of the heart, including the sinoatrial node, developed postnatally (P0.5-P21) along with a doubling of the cross-sectional area of cholinergic perikarya. Satellite cells were present throughout neonatal cardiac ganglia and expressed primarily B-FABP. As they became more mature at P21, satellite cells stained strongly for both B-FABP and S100. Satellite cells appeared to surround most cardiac parasympathetic neurons, even in neonatal hearts. Mature Schwann cells, identified by morphology and strong staining for S100, were already present at E18.5 in atrial regions that receive cholinergic innervation at later developmental times. The abundance and distribution of S100-positive Schwann cells increased postnatally along with nerve density. While S100 staining of cardiac Schwann cells was maintained in P21 and older mice, Schwann cells did not show B-FABP staining at these times. Parallel development of satellite cells and cholinergic perikarya in the cardiac ganglia and the increase in abundance of Schwann cells and varicose cholinergic nerve fibers in the atria suggest that neuronal-glial interactions could be important for development of the parasympathetic nervous

  6. Fluorescent Reporters in Human Pluripotent Stem Cells: Contributions to Cardiac Differentiation and Their Applications in Cardiac Disease and Toxicity

    NARCIS (Netherlands)

    den Hartogh, Sabine C.; Passier, Petrus Christianus Johannes Josephus

    2016-01-01

    In the last decade, since the first report of induced pluripotent stem cells, the stem cell field has made remarkable progress in the differentiation to specialized cell-types of various tissues and organs, including the heart. Cardiac lineage- and tissue-specific human pluripotent stem cell (hPSC)

  7. Fatigue of survivors following cardiac surgery: positive influences of preoperative prayer coping.

    Science.gov (United States)

    Ai, Amy L; Wink, Paul; Shearer, Marshall

    2012-11-01

    Fatigue symptoms are common among individuals suffering from cardiac diseases, but few studies have explored longitudinally protective factors in this population. This study examined the effect of preoperative factors, especially the use of prayer for coping, on long-term postoperative fatigue symptoms as one aspect of lack of vitality in middle-aged and older patients who survived cardiac surgery. The analyses capitalized on demographics, faith factors, mental health, and on medical comorbidities previously collected via two-wave preoperative interviews and standardized information from the Society of Thoracic Surgeons' national database. The current participants completed a mailed survey 30 months after surgery. Two hierarchical regressions were performed to evaluate the extent to which religious factors predicted mental and physical fatigue, respectively, after controlling for key demographics, medical indices, and mental health. Preoperative prayer coping, but not other religious factors, predicted less mental fatigue at the 30-month follow-up, after controlling for key demographics, medical comorbidities, cardiac function (previous cardiovascular intervention, congestive heart failure, left ventricular ejection fraction, New York Heart Association Classification), mental health (depression, anxiety), and protectors (optimism, hope, social support). Male gender, preoperative anxiety, and reverence in secular context predicted more mental fatigue. Physical fatigue increased with age, medical comorbidities, and preoperative anxiety. Including health control beliefs in the model did not eliminate this effect. Prayer coping may have independent and positive influences on less fatigue in individuals who survived cardiac surgery. However, future research should investigate mechanisms of this association. ©2012 The British Psychological Society.

  8. Changes in cardiac index and blood pressure on positioning children prone for scoliosis surgery.

    Science.gov (United States)

    Brown, Z E; Görges, M; Cooke, E; Malherbe, S; Dumont, G A; Ansermino, J M

    2013-07-01

    In this prospective observational study we investigated the changes in cardiac index and mean arterial pressure in children when positioned prone for scoliosis correction surgery. Thirty children (ASA 1-2, aged 13-18 years) undergoing primary, idiopathic scoliosis repair were recruited. The cardiac index and mean arterial blood pressure (median (IQR [range])) were 2.7 (2.3-3.1 [1.4-3.7]) l.min(-1).m(-2) and 73 (66-80 [54-91]) mmHg, respectively, at baseline; 2.9 (2.5-3.2 [1.7-4.4]) l.min(-1).m(-2) and 73 (63-81 [51-96]) mmHg following a 5-ml.kg(-1) fluid bolus; and 2.5 (2.2-2.7 [1.4-4.8]) l.min(-1).m(-2) and 69 (62-73 [46-85]) mmHg immediately after turning prone. Turning prone resulted in a median reduction in cardiac index of 0.5 l.min(-1).m(-2) (95% CI 0.3-0.7 l.min(-1).m(-2), p=0.001), or 18.5%, with a large degree of inter-subject variability (+10.3% to -40.9%). The changes in mean arterial blood pressure were not significant. Strategies to predict, prevent and treat decreases in cardiac index need to be developed. © 2013 The Association of Anaesthetists of Great Britain and Ireland.

  9. Integrative Modeling of Electrical Properties of Pacemaker Cardiac Cells

    Science.gov (United States)

    Grigoriev, M.; Babich, L.

    2016-06-01

    This work represents modeling of electrical properties of pacemaker (sinus) cardiac cells. Special attention is paid to electrical potential arising from transmembrane current of Na+, K+ and Ca2+ ions. This potential is calculated using the NaCaX model. In this respect, molar concentration of ions in the intercellular space which is calculated on the basis of the GENTEX model is essential. Combined use of two different models allows referring this approach to integrative modeling.

  10. Stimulating endogenous cardiac regeneration

    Directory of Open Access Journals (Sweden)

    Amanda eFinan

    2015-09-01

    Full Text Available The healthy adult heart has a low turnover of cardiac myocytes. The renewal capacity, however, is augmented after cardiac injury. Participants in cardiac regeneration include cardiac myocytes themselves, cardiac progenitor cells, and peripheral stem cells, particularly from the bone marrow compartment. Cardiac progenitor cells and bone marrow stem cells are augmented after cardiac injury, migrate to the myocardium, and support regeneration. Depletion studies of these populations have demonstrated their necessary role in cardiac repair. However, the potential of these cells to completely regenerate the heart is limited. Efforts are now being focused on ways to augment these natural pathways to improve cardiac healing, primarily after ischemic injury but in other cardiac pathologies as well. Cell and gene therapy or pharmacological interventions are proposed mechanisms. Cell therapy has demonstrated modest results and has passed into clinical trials. However, the beneficial effects of cell therapy have primarily been their ability to produce paracrine effects on the cardiac tissue and recruit endogenous stem cell populations as opposed to direct cardiac regeneration. Gene therapy efforts have focused on prolonging or reactivating natural signaling pathways. Positive results have been demonstrated to activate the endogenous stem cell populations and are currently being tested in clinical trials. A potential new avenue may be to refine pharmacological treatments that are currently in place in the clinic. Evidence is mounting that drugs such as statins or beta blockers may alter endogenous stem cell activity. Understanding the effects of these drugs on stem cell repair while keeping in mind their primary function may strike a balance in myocardial healing. To maximize endogenous cardiac regeneration,a combination of these approaches couldameliorate the overall repair process to incorporate the participation ofmultiple cell players.

  11. In vitro cultured progenitors and precursors of cardiac cell lineages from human normal and post-ischemic hearts

    Directory of Open Access Journals (Sweden)

    F Di Meglio

    2009-08-01

    Full Text Available The demonstration of the presence of dividing primitive cells in damaged hearts has sparked increased interest about myocardium regenerative processes. We examined the rate and the differentiation of in vitro cultured resident cardiac primitive cells obtained from pathological and normal human hearts in order to evaluate the activation of progenitors and precursors of cardiac cell lineages in post-ischemic human hearts. The precursors and progenitors of cardiomyocyte, smooth muscle and endothelial lineage were identified by immunocytochemistry and the expression of characteristic markers was studied by western blot and RT-PCR. The amount of proteins characteristic for cardiac cells (a-SA and MHC, VEGFR-2 and FVIII, SMA for the precursors of cardiomyocytes, endothelial and smooth muscle cells, respectively inclines toward an increase in both a-SA and MHC. The increased levels of FVIII and VEGFR2 are statistically significant, suggesting an important re-activation of neoangiogenesis. At the same time, the augmented expression of mRNA for Nkx 2.5, the trascriptional factor for cardiomyocyte differentiation, confirms the persistence of differentiative processes in terminally injured hearts. Our study would appear to confirm the activation of human heart regeneration potential in pathological conditions and the ability of its primitive cells to maintain their proliferative capability in vitro. The cardiac cell isolation method we used could be useful in the future for studying modifications to the microenvironment that positively influence cardiac primitive cell differentiation or inhibit, or retard, the pathological remodeling and functional degradation of the heart.

  12. Cardiac effects of electrical stun guns: does position of barbs contact make a difference?

    Science.gov (United States)

    Lakkireddy, Dhanunjaya; Wallick, Donald; Verma, Atul; Ryschon, Kay; Kowalewski, William; Wazni, Oussama; Butany, Jagdish; Martin, David; Tchou, Patrick J

    2008-04-01

    The use of electrical stun guns has been rising among law enforcement authorities for subduing violent subjects. Multiple reports have raised concerns over their safety. The cardiovascular safety profile of these devices in relationship to the position of delivery on the torso has not been well studied. We tested 13 adult pigs using a custom device built to deliver neuromuscular incapacitating (NMI) discharge of increasing intensity that matched the waveform of a commercially available stun gun (TASER(R) X-26, TASER International, Scottsdale, AZ, USA). Discharges with increasing multiples of output capacitances were applied in a step-up and step-down fashion, using two-tethered barbs at five locations: (1) Sternal notch to cardiac apex (position-1), (2) sternal notch to supraumbilical area (position-2), (3) sternal notch to infraumbilical area (position-3), (4) side to side on the chest (position-4), and (5) upper to lower mid-posterior torso (position-5). Endpoints included determination of maximum safe multiple (MaxSM), ventricular fibrillation threshold (VFT), and minimum ventricular fibrillation induction multiple (MinVFIM). Standard TASER discharges repeated three times did not cause ventricular fibrillation (VF) at any of the five locations. When the barbs were applied in the axis of the heart (position-1), MaxSM and MinVFIM were significantly lower than when applied away from the heart, on the dorsum (position-5) (4.31 +/- 1.11 vs 40.77 +/- 9.54, P< 0.001 and 8.31 +/- 2.69 vs 50.77 +/- 9.54, P< 0.001, respectively). The values of these endpoints at position-2, position-3, and position-4 were progressively higher and ranged in between those of position-1 and position-5. Presence of ventricular capture at a 2:1 ratio to the delivered TASER impulses correlated with induction of VF. No significant metabolic changes were seen after standard NMI TASER discharge. There was no evidence of myocardial damage based on serum cardiac markers, electrocardiography

  13. Cardiac Bmi1(+) cells contribute to myocardial renewal in the murine adult heart.

    Science.gov (United States)

    Valiente-Alandi, Iñigo; Albo-Castellanos, Carmen; Herrero, Diego; Arza, Elvira; Garcia-Gomez, Maria; Segovia, José C; Capecchi, Mario; Bernad, Antonio

    2015-10-26

    The mammalian adult heart maintains a continuous, low cardiomyocyte turnover rate throughout life. Although many cardiac stem cell populations have been studied, the natural source for homeostatic repair has not yet been defined. The Polycomb protein BMI1 is the most representative marker of mouse adult stem cell systems. We have evaluated the relevance and role of cardiac Bmi1 (+) cells in cardiac physiological homeostasis. Bmi1 (CreER/+);Rosa26 (YFP/+) (Bmi1-YFP) mice were used for lineage tracing strategy. After tamoxifen (TM) induction, yellow fluorescent protein (YFP) is expressed under the control of Rosa26 regulatory sequences in Bmi1 (+) cells. These cells and their progeny were tracked by FACS, immunofluorescence and RT-qPCR techniques from 5 days to 1 year. FACS analysis of non-cardiomyocyte compartment from TM-induced Bmi1-YFP mice showed a Bmi1 (+)-expressing cardiac progenitor cell (Bmi1-CPC: B-CPC) population, SCA-1 antigen-positive (95.9 ± 0.4 %) that expresses some stemness-associated genes. B-CPC were also able to differentiate in vitro to the three main cardiac lineages. Pulse-chase analysis showed that B-CPC remained quite stable for extended periods (up to 1 year), which suggests that this Bmi1 (+) population contains cardiac progenitors with substantial self-maintenance potential. Specific immunostaining of Bmi1-YFP hearts serial sections 5 days post-TM induction indicated broad distribution of B-CPC, which were detected in variably sized clusters, although no YFP(+) cardiomyocytes (CM) were detected at this time. Between 2 to 12 months after TM induction, YFP(+) CM were clearly identified (3 ± 0.6 % to 6.7 ± 1.3 %) by immunohistochemistry of serial sections and by flow cytometry of total freshly isolated CM. B-CPC also contributed to endothelial and smooth muscle (SM) lineages in vivo. High Bmi1 expression identifies a non-cardiomyocyte resident cardiac population (B-CPC) that contributes to the main lineages of the heart in

  14. A systemic evaluation of cardiac differentiation from mRNA reprogrammed human induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Ashish Mehta

    Full Text Available Genetically unmodified cardiomyocytes mandated for cardiac regenerative therapy is conceivable by "foot-print free" reprogramming of somatic cells to induced pluripotent stem cells (iPSC. In this study, we report generation of foot-print free hiPSC through messenger RNA (mRNA based reprograming. Subsequently, we characterize cardiomyocytes derived from these hiPSC using molecular and electrophysiological methods to characterize their applicability for regenerative medicine. Our results demonstrate that mRNA-iPSCs differentiate ontogenetically into cardiomyocytes with increased expression of early commitment markers of mesoderm, cardiac mesoderm, followed by cardiac specific transcriptional and sarcomeric structural and ion channel genes. Furthermore, these cardiomyocytes stained positively for sarcomeric and ion channel proteins. Based on multi-electrode array (MEA recordings, these mRNA-hiPSC derived cardiomyocytes responded predictably to various pharmacologically active drugs that target adrenergic, sodium, calcium and potassium channels. The cardiomyocytes responded chronotropically to isoproterenol in a dose dependent manner, inotropic activity of nifidipine decreased spontaneous contractions. Moreover, Sotalol and E-4031 prolonged QT intervals, while TTX reduced sodium influx. Our results for the first time show a systemic evaluation based on molecular, structural and functional properties of cardiomyocytes differentiated from mRNA-iPSC. These results, coupled with feasibility of generating patient-specific iPSCs hold great promise for the development of large-scale generation of clinical grade cardiomyocytes for cardiac regenerative medicine.

  15. A Cell Model to Evaluate Chemical Effects on Adult Human Cardiac Progenitor Cell Differentiation and Function

    Science.gov (United States)

    Adult cardiac stem cells (CSC) and progenitor cells (CPC) represent a population of cells in the heart critical for its regeneration and function over a lifetime. The impact of chemicals on adult human CSC/CPC differentiation and function is unknown. Research was conducted to dev...

  16. Patient-Specific Induced Pluripotent Stem Cell Models: Generation and Characterization of Cardiac Cells.

    Science.gov (United States)

    Zanella, Fabian; Sheikh, Farah

    2016-01-01

    The generation of human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes has been of utmost interest for the study of cardiac development, cardiac disease modeling, and evaluation of cardiotoxic effects of novel candidate drugs. Several protocols have been developed to guide human stem cells toward the cardiogenic path. Pioneering work used serum to promote cardiogenesis; however, low cardiogenic throughputs, lack of chemical definition, and batch-to-batch variability of serum lots constituted a considerable impediment to the implementation of those protocols to large-scale cell biology. Further work focused on the manipulation of pathways that mouse genetics indicated to be fundamental in cardiac development to promote cardiac differentiation in stem cells. Although extremely elegant, those serum-free protocols involved the use of human recombinant cytokines that tend to be quite costly and which can also be variable between lots. The latest generation of cardiogenic protocols aimed for a more cost-effective and reproducible definition of the conditions driving cardiac differentiation, using small molecules to manipulate cardiogenic pathways overriding the need for cytokines. This chapter details methods based on currently available cardiac differentiation protocols for the generation and characterization of robust numbers of hiPSC-derived cardiomyocytes under chemically defined conditions.

  17. Perspectives on stem cell therapy for cardiac regeneration. Advances and challenges.

    Science.gov (United States)

    Choi, Sung Hyun; Jung, Seok Yun; Kwon, Sang-Mo; Baek, Sang Hong

    2012-01-01

    Ischemic heart disease (IHD) accelerates cardiomyocyte loss, but the developing stem cell research could be useful for regenerating a variety of tissue cells, including cardiomyocytes. Diverse sources of stem cells for IHD have been reported, including embryonic stem cells, induced pluripotent stem cells, skeletal myoblasts, bone marrow-derived stem cells, mesenchymal stem cells, and cardiac stem cells. However, stem cells have unique advantages and disadvantages for cardiac tissue regeneration, which are important considerations in determining the specific cells for improving cell survival and long-term engraftment after transplantation. Additionally, the dosage and administration method of stem cells need to be standardized to increase stability and efficacy for clinical applications. Accordingly, this review presents a summary of the stem cell therapies that have been studied for cardiac regeneration thus far, and discusses the direction of future cardiac regeneration research for stem cells.

  18. Diagnostic impact of thallium scintigraphy and cardiac fluoroscopy when the exercise ECG is strongly positive

    International Nuclear Information System (INIS)

    Chaitman, B.R.; Brevers, G.; Dupras, G.; Lesperance, J.; Bourassa, M.G.

    1984-01-01

    We studied 83 men, who had a chest pain syndrome, no prior history of myocardial infarction, and exercise-induced horizontal or downsloping ST segment depression greater than or equal to 0.2 mV. The 38 patients unable to complete Bruce stage II had a significant increased risk of coronary (0.97 vs 0.71) and multivessel (0.88 vs 0.61) disease (p less than 0.01) compared to the pretest risk; data obtained from exercise-reperfusion thallium scintigraphy and cardiac fluoroscopy did not alter the risk of coronary or multivessel disease. The 45 patients who had ST depression greater than or equal to 0.2 mV and a peak work capacity greater than or equal to Bruce stage III did not have a significant increased risk of coronary (0.76) or multivessel disease (0.44). When both exercise-reperfusion thallium scintigraphy and cardiac fluoroscopy were abnormal in this latter patient subgroup, the post-test risk of multivessel disease was increased from 0.44 to 0.82 (p less than 0.03); when both tests were normal, none of the patients had multivessel disease (p less than 0.03) and only 0.18 had coronary artery disease. Thus, cardiac fluoroscopy and exercise thallium scintigraphy increase the diagnostic content of the strongly positive exercise ECG, particularly in men who have a peak work capacity greater than or equal to Bruce stage III

  19. Alteration of cardiac glycoside positive inotropic action by modulators of protein synthesis and degradation

    International Nuclear Information System (INIS)

    Nosek, T.M.; Adams, R.J.

    1986-01-01

    Numerous membrane bound and cytoplasmic proteins participate in the cardiac expression of the positive inotropic action (PIA) of digitalis glycosides including the Na,K-ATPase (NKA). Exposure of the myocardium to an inhibitor of protein synthesis (cycloheximide, CYC) or of protein degradation (leupeptin, LEU) alters the PIA of ouabain in isolated, paced guinea pig papillary muscles (PM) in opposite ways. In vivo exposure to CYC for 3 hr resulted in a 30% depression of the in vitro PIA of ouabain at 1.7μM compared to control. In vivo exposure to LEU for 1 hr resulted in a 47% enhancement of the in vitro PIA of 1.7μM ouabain. Neither drug had an apparent effect on the ouabain PIA ED50. Neither CYC nor LEU exposure to PM in vitro affect resting or developed tension or the response of skinned PM to calcium. The mechanisms of the PIA alterations by CYC or LEU do not involve a direct effect on the digitalis receptor. Exposure of isolated cardiac sarcolemma enriched in NKA to 10-100μM CYC or LEU did not affect NKA activity or 3 H-ouabain binding. Although direct physicochemical effects of CYC or LEU may be involved in the alterations of the ouabain PIA, it is possible that modulation of the cellular levels or turnover rate of short-lived proteins may affect cardiac regulation of the digitalis PIA

  20. Cardiac events in patients with positive exercise ECG and normal myocardial perfusion scan - a retrospective study

    International Nuclear Information System (INIS)

    Marshman, K.; Thomson, L.E.J.; Rowe, C.C.; Burns, A.J.; Woon, F.S.

    2002-01-01

    Full text: The low risk of future cardiac events following a normal myocardial perfusion study with normal stress ECG has been well documented. However, there is little literature regarding the prognosis in patients with a positive stress ECG (PosETT) and normal myocardial perfusion scan (MPS). A search of our database over an eighteen month period identified 21 patients who fitted study criteria. A PosETT was defined as stress induced horizontal or downsloping ST depression > 1mm in one or more leads with a normal baseline 12 lead ECG. Patients were divided into two subgroups depending on the severity of ST depression. A mildly PosETT was defined as ST depression of 1-1.5mm (n=10) and strongly PosETT was defined as ST depression of >2mm in at least one lead with depression in other leads (n=l 1). A normal MPS was defined as absence of reversible perfusion defects on SPECT imaging. Technetium 99m Tetrofosmin was the imaging agent used in 18/21 patients. All 21 patients exercised using the Bruce protocol for 3-12 minutes, and 9 experienced chest pain 12 months after the MPS, referring physicians were contacted. Cardiac events were defined as cardiac death, myocardial infarction, unstable angina, cardiac failure, revascularisation or a coronary angiogram demonstrating >70% stenosis. To date, follow up is complete in 11 patients with one confirmed case of single vessel revascularisation 3 months post MPS. Full follow up data will be presented. Copyright (2002) The Australian and New Zealand Society of Nuclear Medicine Inc

  1. Effects of upright and supine position on cardiac rest and exercise response in aortic regurgitation.

    Science.gov (United States)

    Shen, W F; Roubin, G S; Fletcher, P J; Choong, C Y; Hutton, B F; Harris, P J; Kelly, D T

    1985-02-01

    The effects of upright and supine position on cardiac response to exercise were assessed by radionuclide ventriculography in 15 patients with moderate to severe aortic regurgitation (AR) and in 10 control subjects. In patients with AR, heart rate was higher during upright exercise, but systolic and diastolic blood pressure and left ventricular (LV) output were similar during both forms of exercise. LV stroke volume and end-diastolic volume were not altered during supine exercise. LV end-systolic volume increased and ejection fraction decreased during supine exercise, but both were unchanged during upright exercise. Of 15 patients, 5 in the upright and 12 in the supine position had an abnormal LV ejection fraction response to exercise (p less than 0.01). Right ventricular ejection fraction increased and regurgitant index decreased with both forms of exercise and was not significantly different between the 2 positions. Thus, posture is important in determining LV response to exercise in patients with moderate to severe AR.

  2. Predictors of red blood cell transfusion after cardiac surgery: a prospective cohort study

    Directory of Open Access Journals (Sweden)

    Camila Takao Lopes

    2015-12-01

    Full Text Available Abstract OBJECTIVE To identify predictors of red blood cell transfusion (RBCT after cardiac surgery. METHOD A prospective cohort study performed with 323 adults after cardiac surgery, from April to December of 2013. A data collection instrument was constructed by the researchers containing factors associated with excessive bleeding after cardiac surgery, as found in the literature, for investigation in the immediate postoperative period. The relationship between risk factors and the outcome was assessed by univariate analysis and logistic regression. RESULTS The factors associated with RBCT in the immediate postoperative period included lower height and weight, decreased platelet count, lower hemoglobin level, higher prevalence of platelet count <150x10 3/mm3, lower volume of protamine, longer duration of anesthesia, higher prevalence of intraoperative RBCT, lower body temperature, higher heart rate and higher positive end-expiratory pressure. The independent predictor was weight <66.5Kg. CONCLUSION Factors associated with RBCT in the immediate postoperative period of cardiac surgery were found. The independent predictor was weight.

  3. Engineered Biomaterials to Enhance Stem Cell-Based Cardiac Tissue Engineering and Therapy.

    Science.gov (United States)

    Hasan, Anwarul; Waters, Renae; Roula, Boustany; Dana, Rahbani; Yara, Seif; Alexandre, Toubia; Paul, Arghya

    2016-07-01

    Cardiovascular disease is a leading cause of death worldwide. Since adult cardiac cells are limited in their proliferation, cardiac tissue with dead or damaged cardiac cells downstream of the occluded vessel does not regenerate after myocardial infarction. The cardiac tissue is then replaced with nonfunctional fibrotic scar tissue rather than new cardiac cells, which leaves the heart weak. The limited proliferation ability of host cardiac cells has motivated investigators to research the potential cardiac regenerative ability of stem cells. Considerable progress has been made in this endeavor. However, the optimum type of stem cells along with the most suitable matrix-material and cellular microenvironmental cues are yet to be identified or agreed upon. This review presents an overview of various types of biofunctional materials and biomaterial matrices, which in combination with stem cells, have shown promises for cardiac tissue replacement and reinforcement. Engineered biomaterials also have applications in cardiac tissue engineering, in which tissue constructs are developed in vitro by combining stem cells and biomaterial scaffolds for drug screening or eventual implantation. This review highlights the benefits of using biomaterials in conjunction with stem cells to repair damaged myocardium and give a brief description of the properties of these biomaterials that make them such valuable tools to the field. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Imaging: Guiding the Clinical Translation of Cardiac Stem Cell Therapy

    Science.gov (United States)

    Nguyen, Patricia K.; Lan, Feng; Wang, Yongming; Wu, Joseph C.

    2011-01-01

    Stem cells have been touted as the holy grail of medical therapy with promises to regenerate cardiac tissue, but it appears the jury is still out on this novel therapy. Using advanced imaging technology, scientists have discovered that these cells do not survive nor engraft long-term. In addition, only marginal benefit has been observed in large animal studies and human trials. However, all is not lost. Further application of advanced imaging technology will help scientists unravel the mysteries of stem cell therapy and address the clinical hurdles facing its routine implementation. In this review, we will discuss how advanced imaging technology will help investigators better define the optimal delivery method, improve survival and engraftment, and evaluate efficacy and safety. Insights gained from this review may direct the development of future preclinical investigations and clinical trials. PMID:21960727

  5. Cardiac glycosides induce cell death in human cells by inhibiting general protein synthesis.

    Directory of Open Access Journals (Sweden)

    Andrea Perne

    2009-12-01

    Full Text Available Cardiac glycosides are Na(+/K(+-pump inhibitors widely used to treat heart failure. They are also highly cytotoxic, and studies have suggested specific anti-tumor activity leading to current clinical trials in cancer patients. However, a definitive demonstration of this putative anti-cancer activity and the underlying molecular mechanism has remained elusive.Using an unbiased transcriptomics approach, we found that cardiac glycosides inhibit general protein synthesis. Protein synthesis inhibition and cytotoxicity were not specific for cancer cells as they were observed in both primary and cancer cell lines. These effects were dependent on the Na(+/K(+-pump as they were rescued by expression of a cardiac glycoside-resistant Na(+/K(+-pump. Unlike human cells, rodent cells are largely resistant to cardiac glycosides in vitro and mice were found to tolerate extremely high levels.The physiological difference between human and mouse explains the previously observed sensitivity of human cancer cells in mouse xenograft experiments. Thus, published mouse xenograft models used to support anti-tumor activity for these drugs require reevaluation. Our finding that cardiac glycosides inhibit protein synthesis provides a mechanism for the cytotoxicity of CGs and raises concerns about ongoing clinical trials to test CGs as anti-cancer agents in humans.

  6. Multipotent embryonic isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification.

    Science.gov (United States)

    Moretti, Alessandra; Caron, Leslie; Nakano, Atsushi; Lam, Jason T; Bernshausen, Alexandra; Chen, Yinhong; Qyang, Yibing; Bu, Lei; Sasaki, Mika; Martin-Puig, Silvia; Sun, Yunfu; Evans, Sylvia M; Laugwitz, Karl-Ludwig; Chien, Kenneth R

    2006-12-15

    Cardiogenesis requires the generation of endothelial, cardiac, and smooth muscle cells, thought to arise from distinct embryonic precursors. We use genetic fate-mapping studies to document that isl1(+) precursors from the second heart field can generate each of these diverse cardiovascular cell types in vivo. Utilizing embryonic stem (ES) cells, we clonally amplified a cellular hierarchy of isl1(+) cardiovascular progenitors, which resemble the developmental precursors in the embryonic heart. The transcriptional signature of isl1(+)/Nkx2.5(+)/flk1(+) defines a multipotent cardiovascular progenitor, which can give rise to cells of all three lineages. These studies document a developmental paradigm for cardiogenesis, where muscle and endothelial lineage diversification arises from a single cell-level decision of a multipotent isl1(+) cardiovascular progenitor cell (MICP). The discovery of ES cell-derived MICPs suggests a strategy for cardiovascular tissue regeneration via their isolation, renewal, and directed differentiation into specific mature cardiac, pacemaker, smooth muscle, and endothelial cell types.

  7. Selection of permanent pacing position of cardiac ventricle in patients with complete right bundle branch block

    International Nuclear Information System (INIS)

    Yang Minquan; Zhou Jun; Zhu Yan; Wang Jin; Rong Xin; Zhang Xiaoyi

    2005-01-01

    Objective: To find out the optimal pacing localization by comparing different pacing positions of the right ventricle in brady-cardiacarrhythmia patients with complete right bundle branch block. Methods: DDD type of double lumen permanent pacemaker was implanted in each of the 8 cases of sick sinus syndrome (SSS) and/or III degree atrioventricular block (III degree AVB) with complete right bundle branch block in normal heart function or class I. For each patient, four pacing positions in right ventricle were compared and the QRS pacing durations were recorded. The position with the shortest the QRS duration was chosen as the permanent pacing position. Heart function, chest X-rays and left ventricle ejection fraction (LVEF) were followed up after the operation. Results: In all the 8 cases, the posterior septum of the right ventricle were chosen as the permanent pacing position, with the shorter pacing QRS duration than that of pre-operation (P<0.05) and other pacing positions of the right ventricle. All parameters of this permanent pacing position were within the normal range. During the follow-up of 6-36 months, no abnormity was found in cardiac functions. Conclusion: In brady-cardiacarrhythmia patients with complete right bundle branch block, the implantation of permanent pacemaker should be at the junction region of inlet and outlet tracts, of the posterior septum of the right ventricle with ideal physiological function. (authors)

  8. Graphene Films Show Stable Cell Attachment and Biocompatibility with Electrogenic Primary Cardiac Cells

    OpenAIRE

    Kim, Taeyong; Kahng, Yung Ho; Lee, Takhee; Lee, Kwanghee; Kim, Do Han

    2013-01-01

    Graphene has attracted substantial attention due to its advantageous materialistic applicability. In the present study, we tested the biocompatibility of graphene films synthesized by chemical vapor deposition with electrogenic primary adult cardiac cells (cardiomyocytes) by measuring the cell properties such as cell attachment, survival, contractility and calcium transients. The results show that the graphene films showed stable cell attachment and excellent biocompatibility with the electro...

  9. Scaffold Free Bio-orthogonal Assembly of 3-Dimensional Cardiac Tissue via Cell Surface Engineering

    Science.gov (United States)

    Rogozhnikov, Dmitry; O'Brien, Paul J.; Elahipanah, Sina; Yousaf, Muhammad N.

    2016-12-01

    There has been tremendous interest in constructing in vitro cardiac tissue for a range of fundamental studies of cardiac development and disease and as a commercial system to evaluate therapeutic drug discovery prioritization and toxicity. Although there has been progress towards studying 2-dimensional cardiac function in vitro, there remain challenging obstacles to generate rapid and efficient scaffold-free 3-dimensional multiple cell type co-culture cardiac tissue models. Herein, we develop a programmed rapid self-assembly strategy to induce specific and stable cell-cell contacts among multiple cell types found in heart tissue to generate 3D tissues through cell-surface engineering based on liposome delivery and fusion to display bio-orthogonal functional groups from cell membranes. We generate, for the first time, a scaffold free and stable self assembled 3 cell line co-culture 3D cardiac tissue model by assembling cardiomyocytes, endothelial cells and cardiac fibroblast cells via a rapid inter-cell click ligation process. We compare and analyze the function of the 3D cardiac tissue chips with 2D co-culture monolayers by assessing cardiac specific markers, electromechanical cell coupling, beating rates and evaluating drug toxicity.

  10. Cardiac Glycoside Glucoevatromonoside Induces Cancer Type-Specific Cell Death

    Directory of Open Access Journals (Sweden)

    Naira F. Z. Schneider

    2018-03-01

    Full Text Available Cardiac glycosides (CGs are natural compounds used traditionally to treat congestive heart diseases. Recent investigations repositioned CGs as potential anticancer agents. To discover novel cytotoxic CG scaffolds, we selected the cardenolide glucoevatromonoside (GEV out of 46 CGs for its low nanomolar anti-lung cancer activity. GEV presented reduced toxicity toward non-cancerous cell types (lung MRC-5 and PBMC and high-affinity binding to the Na+/K+-ATPase α subunit, assessed by computational docking. GEV-induced cell death was caspase-independent, as investigated by a multiparametric approach, and culminates in severe morphological alterations in A549 cells, monitored by transmission electron microscopy, live cell imaging and flow cytometry. This non-canonical cell death was not preceded or accompanied by exacerbation of autophagy. In the presence of GEV, markers of autophagic flux (e.g. LC3I-II conversion were impacted, even in presence of bafilomycin A1. Cell death induction remained unaffected by calpain, cathepsin, parthanatos, or necroptosis inhibitors. Interestingly, GEV triggered caspase-dependent apoptosis in U937 acute myeloid leukemia cells, witnessing cancer-type specific cell death induction. Differential cell cycle modulation by this CG led to a G2/M arrest, cyclin B1 and p53 downregulation in A549, but not in U937 cells. We further extended the anti-cancer potential of GEV to 3D cell culture using clonogenic and spheroid formation assays and validated our findings in vivo by zebrafish xenografts. Altogether, GEV shows an interesting anticancer profile with the ability to exert cytotoxic effects via induction of different cell death modalities.

  11. CALCIUM-DRIVEN TRANSCRIPTION OF CARDIAC SPECIFYING GENE PROGRAM IN LIVER STEM CELLS

    Science.gov (United States)

    We have previously shown that a cloned liver stem cell line (WB F344) acquires a cardiac phenotype when seeded in a cardiac microenvironment in vivo and ex vivo. Here we investigated the mechanisms of this transdifferentiation in early (cell, rat neonatal ventricu...

  12. Molecular and environmental cues in cardiac differentiation of mesenchymal stem cells

    NARCIS (Netherlands)

    Ramkisoensing, Arti Anushka

    2014-01-01

    In this thesis molecular and environmental cues in cardiac differentiation of mesenchymal stem cells were investigated. The main conclusions were that the cardiac differentiation potential of human mesenchymal stem cells negatively correlates with donor age. This in its own shows a negative

  13. Repressive histone methylation regulates cardiac myocyte cell cycle exit.

    Science.gov (United States)

    El-Nachef, Danny; Oyama, Kyohei; Wu, Yun-Yu; Freeman, Miles; Zhang, Yiqiang; Robb MacLellan, W

    2018-05-22

    Mammalian cardiac myocytes (CMs) stop proliferating soon after birth and subsequent heart growth comes from hypertrophy, limiting the adult heart's regenerative potential after injury. The molecular events that mediate CM cell cycle exit are poorly understood. To determine the epigenetic mechanisms limiting CM cycling in adult CMs (ACMs) and whether trimethylation of lysine 9 of histone H3 (H3K9me3), a histone modification associated with repressed chromatin, is required for the silencing of cell cycle genes, we developed a transgenic mouse model where H3K9me3 is specifically removed in CMs by overexpression of histone demethylase, KDM4D. Although H3K9me3 is found across the genome, its loss in CMs preferentially disrupts cell cycle gene silencing. KDM4D binds directly to cell cycle genes and reduces H3K9me3 levels at these promotors. Loss of H3K9me3 preferentially leads to increased cell cycle gene expression resulting in enhanced CM cycling. Heart mass was increased in KDM4D overexpressing mice by postnatal day 14 (P14) and continued to increase until 9-weeks of age. ACM number, but not size, was significantly increased in KDM4D expressing hearts, suggesting CM hyperplasia accounts for the increased heart mass. Inducing KDM4D after normal development specifically in ACMs resulted in increased cell cycle gene expression and cycling. We demonstrated that H3K9me3 is required for CM cell cycle exit and terminal differentiation in ACMs. Depletion of H3K9me3 in adult hearts prevents and reverses permanent cell cycle exit and allows hyperplastic growth in adult hearts in vivo. Copyright © 2017. Published by Elsevier Ltd.

  14. The effect of space microgravity on the physiological activity of mammalian resident cardiac stem cells

    Science.gov (United States)

    Belostotskaya, Galina; Zakharov, Eugeny

    weightlessness-treated samples vs. controls. These findings correlated with reduced expression of Connexin43. Typical elongated cardiomyocytes, presenting as both individual cells and conglomerates, were present in the control samples, whereas the shortened and thickened individual cardiac myocytes prevailed in the samples subjected to space microgravity. Both control samples and microgravity-treated samples contained resident CSCs of all subtypes. Both individual CSCs and CSC-derived clones were present in the suspension of myocardial cells. However, the number of CSC-formed clones of different maturity was significantly higher in the samples subjected to space microgravity. Some clones comprised only small undifferentiated cells of one CSCs subtype, while the cells of the other clones expressed some of the specific cardiac antigens (α-Actinin and Troponin T) at varying rate. In addition, large α-actinin- and troponin T-positive individual cardiomyocytes with readily discernible sarcomeric structure still expressing the original CSC antigens were also identified. The data obtained suggest that prolonged space microgravity exposure during space flight causes significant structural changes in the mammalian myocardium which may affect cardiac contractile function. Weightlessness-induced loss in heart muscle weight is assumed to be compensated by an increase in the activity of resident CSCs, which form new cardiomyocytes proliferating and differentiating inside the clones. The authors express their gratitude to the staff of Institute of Biomedical Problems of the Russian Academy of Sciences and Company "Progress" for the preparation of experimental animals for the biosatellite flight. The study was in part supported by grants from BION-M1 Project and Program of Presidium of Russian Academy of Sciences “Fundamental Sciences for Medicine” (2013).

  15. Enrichment of cardiac differentiation of mouse embryonic stem cells by optimizing the hanging drop method.

    Science.gov (United States)

    Chen, Ming; Lin, Yong-Qing; Xie, Shuang-Lun; Wu, Hong-Fu; Wang, Jing-Feng

    2011-04-01

    Hanging drop (HD) culture is used to induce differentiation of embryonic stem cells (ESCs) into other cell types including cardiomyocytes. However, the factors affecting cardiac differentiation of ESCs with this method remain incompletely understood. We have investigated the effects of the starting number of ESCs in embryoid bodies (EBs) and the time of EB adherence to gelatin-coated plates on cardiac differentiation: cardiac differentiation was increased in the EBs by a larger number of ESCs and was decreased by plating EBs at day 4 or earlier. These two factors can thus be optimized to enrich the cardiac differentiation in ESCs using the HD method.

  16. [Cardiac invasion of ATLL cells and therapeutic effects of local along with systemic treatments].

    Science.gov (United States)

    Imoto, S; Nakagawa, T; Ito, M

    1989-07-01

    We report a rare case of adult T cell leukemia/lymphoma (ATLL) in which cardiac invasion was clinically demonstrated and treated effectively. A 45-year-old female was admitted because of exertional dyspnea and cervical tumors. The leukocyte count was 19,100/microliters with 20% of flower cells. HTLV-I antibody was positive. She was diagnosed as ATLL and treated with VEPA. She got remission for a short duration which was followed by relapse. OPEC was started as salvage therapy. In the course, extensive pericardial effusion was found in chest X-P. Pericardial puncture demonstrated ATLL cells and high titer of free IL-2 receptor (57,400U/ml) in the effusion. It was diagnosed as pericardial invasion of ATLL cells. Chemotherapy was started with new combination of drugs (cisplatin, mitoxantrone, ifosfamide, and prednisolone). Concomitantly pericardial drainage was performed and the drugs were administered directly into the pericardial cavity. The clinical improvement was obtained and pericardial effusion did not appear thereafter. She died 4 months after the diagnosis of cardiac invasion. On autopsy myocardial invasion was identified. The pericardium widely adhered and effusion measured 42 ml.

  17. Translating Stem Cell Research to Cardiac Disease Therapies: Pitfalls and Prospects for Improvement

    Science.gov (United States)

    Rosen, Michael R.; Myerburg, Robert J.; Francis, Darrel P.; Cole, Graham D.; Marbán, Eduardo

    2014-01-01

    Over the past 2 decades, there have been numerous stem cell studies focused on cardiac diseases, ranging from proof-of-concept to phase 2 trials. This series of articles focuses on the legacy of these studies and the outlook for future treatment of cardiac diseases with stem cell therapies. The first section by Rosen and Myerburg is an independent review that analyzes the basic science and translational strategies supporting the rapid advance of stem cell technology to the clinic, the philosophies behind them, trial designs, and means for going forward that may impact favorably on progress. The second and third sections were collected in response to the initial section of this review. The commentary by Francis and Cole discusses the Rosen and Myerburg review and details how trial outcomes can be affected by noise, poor trial design (particularly the absence of blinding), and normal human tendencies toward optimism and denial. The final, independent article by Marbán takes a different perspective concerning the potential for positive impact of stem cell research applied to heart disease and future prospects for its clinical application. PMID:25169179

  18. Cardiac output response to changes of the atrioventricular delay in different body positions and during exercise in patients receiving cardiac resynchronization therapy

    DEFF Research Database (Denmark)

    Ståhlberg, Marcus; Damgaard, Morten; Norsk, Peter

    2009-01-01

    AIMS: The aim of this study was to study the haemodynamic effect of atrioventricular delay (AVD) modifications within a narrow range in different body positions and during exercise in patients receiving cardiac resynchronization therapy (CRT). METHODS: The previously optimized AVD was shortened...... and prolonged by 40 ms in 27 CRT patients and 9 controls without heart failure. Cardiac output (CO) was measured by inert gas rebreathing (Innocor) as the average over different body positions (left-lateral, supine, sitting, standing, and exercise). In eight CRT patients with an implantable haemodynamic monitor......, the estimated pulmonary artery diastolic pressure (ePAD) was analysed. RESULTS: The magnitude of CO response to AVD changes was greater in CRT patients than in controls (0.25 vs. 0.20 L/min, Psize (r=0...

  19. Genetic modification of embryonic stem cells with VEGF enhances cell survival and improves cardiac function.

    Science.gov (United States)

    Xie, Xiaoyan; Cao, Feng; Sheikh, Ahmad Y; Li, Zongjin; Connolly, Andrew J; Pei, Xuetao; Li, Ren-Ke; Robbins, Robert C; Wu, Joseph C

    2007-01-01

    Cardiac stem cell therapy remains hampered by acute donor cell death posttransplantation and the lack of reliable methods for tracking cell survival in vivo. We hypothesize that cells transfected with inducible vascular endothelial growth factor 165 (VEGF(165)) can improve their survival as monitored by novel molecular imaging techniques. Mouse embryonic stem (ES) cells were transfected with an inducible, bidirectional tetracycline (Bi-Tet) promoter driving VEGF(165) and renilla luciferase (Rluc). Addition of doxycycline induced Bi-Tet expression of VEGF(165) and Rluc significantly compared to baseline (p<0.05). Expression of VEGF(165) enhanced ES cell proliferation and inhibited apoptosis as determined by Annexin-V staining. For noninvasive imaging, ES cells were transduced with a double fusion (DF) reporter gene consisting of firefly luciferase and enhanced green fluorescence protein (Fluc-eGFP). There was a robust correlation between cell number and Fluc activity (R(2)=0.99). Analysis by immunostaining, histology, and RT-PCR confirmed that expression of Bi-Tet and DF systems did not affect ES cell self-renewal or pluripotency. ES cells were differentiated into beating embryoid bodies expressing cardiac markers such as troponin, Nkx2.5, and beta-MHC. Afterward, 5 x 10(5) cells obtained from these beating embryoid bodies or saline were injected into the myocardium of SV129 mice (n=36) following ligation of the left anterior descending (LAD) artery. Bioluminescence imaging (BLI) and echocardiography showed that VEGF(165) induction led to significant improvements in both transplanted cell survival and cardiac function (p<0.05). This is the first study to demonstrate imaging of embryonic stem cell-mediated gene therapy targeting cardiovascular disease. With further validation, this platform may have broad applications for current basic research and further clinical studies.

  20. Nasal continuous positive airway pressure (n-CPAP) does not change cardiac output in preterm infants.

    Science.gov (United States)

    Moritz, Barbara; Fritz, Michael; Mann, Christian; Simma, Burkhard

    2008-02-01

    Our objective was to study how invasive mechanical ventilation impairs cardiac output (CO) in children and adults. Although the application of continuous positive airway pressure (CPAP) is widely practiced in neonatal intensive care, its hemodynamic consequences have not yet been investigated. A prospective study to assess the hemodynamic effects was conducted in 21 preterm infants CPAP (n-CPAP). Gestational age was 28.0 +/- 1.9 weeks (mean +/- standard deviation); birthweight, 1000 +/- 238 g; age at study entry, 200 +/- 155 hours; total maintenance fluid, 154 +/- 42 mL/kg/day; and n-CPAP level, 4.4 +/- 0.9 cm H(2)O. None of the infants received inotropic support, and n-CPAP did not cause any significant difference in the parameters measured: stroke volume, 3.1 +/- 1.0 mL (with n-CPAP) versus 3.1 +/- 1.0 mL (without n-CPAP); cardiac output, 487 +/- 156 mL/minute versus 500 +/- 176 mL/minute; left ventricular diastolic diameter, 1.22 +/- 0.15 cm versus 1.24 +/- 0.14 cm; fractional shortening, 0.30 +/- 0.05% versus 0.29 +/- 0.04%; and aortic velocity-time integral, 8.64 +/- 1.80 cm versus 8.70 +/- 1.65 cm. The n-CPAP level did not influence CO; n-CPAP (up to 7 cm H (2)O) has no echocardiographically detectable hemodynamic effect in preterm infants. Our data imply there is no need to withhold n-CPAP support to prevent circulatory compromise in these infants.

  1. The decrease of cardiac chamber volumes and output during positive-pressure ventilation

    DEFF Research Database (Denmark)

    Kristensen, Kasper Kyhl; Ahtarovski, Kiril Aleksov; Iversen, Kasper

    2013-01-01

    the effect of PPV on the central circulation by studying cardiac chamber volumes with cardiac magnetic resonance imaging (CMR). We hypothesized that PPV lowers cardiac output (CO) mainly via the Frank-Starling relationship. In 18 healthy volunteers, cardiac chamber volumes and flow in aorta and the pulmonary...... artery were measured by CMR during PPV levels of 0, 10, and 20 cmH2O applied via a respirator and a face mask. All cardiac chamber volumes decreased in proportion to the level of PPV. Following 20-cmH2O PPV, the total diastolic and systolic cardiac volumes (±SE) decreased from 605 (±29) ml to 446 (±29......) ml (P volume decreased by 27 (±4) ml/beat; heart rate increased by 7 (±2) beats/min; and CO decreased by 1.0 (±0.4) l/min (P

  2. Cerebral oxygen saturation and cardiac output during anaesthesia in sitting position for neurosurgical procedures: a prospective observational study.

    Science.gov (United States)

    Schramm, P; Tzanova, I; Hagen, F; Berres, M; Closhen, D; Pestel, G; Engelhard, K

    2016-10-01

    Neurosurgical operations in the dorsal cranium often require the patient to be positioned in a sitting position. This can be associated with decreased cardiac output and cerebral hypoperfusion, and possibly, inadequate cerebral oxygenation. In the present study, cerebral oxygen saturation was measured during neurosurgery in the sitting position and correlated with cardiac output. Perioperative cerebral oxygen saturation was measured continuously with two different monitors, INVOS ® and FORE-SIGHT ® . Cardiac output was measured at eight predefined time points using transoesophageal echocardiography. Forty patients were enrolled, but only 35 (20 female) were eventually operated on in the sitting position. At the first time point, the regional cerebral oxygen saturation measured with INVOS ® was 70 (sd 9)%; thereafter, it increased by 0.0187% min -1 (P<0.01). The cerebral tissue oxygen saturation measured with FORE-SIGHT ® started at 68 (sd 13)% and increased by 0.0142% min -1 (P<0.01). The mean arterial blood pressure did not change. Cardiac output was between 6.3 (sd 1.3) and 7.2 (1.8) litre min -1 at the predefined time points. Cardiac output, but not mean arterial blood pressure, showed a positive and significant correlation with cerebral oxygen saturation. During neurosurgery in the sitting position, the cerebral oxygen saturation slowly increases and, therefore, this position seems to be safe with regard to cerebral oxygen saturation. Cerebral oxygen saturation is stable because of constant CO and MAP, while the influence of CO on cerebral oxygen saturation seems to be more relevant. NCT01275898. © The Author 2016. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Stem Cell Technology in Cardiac Regeneration: A Pluripotent Stem Cell Promise.

    Science.gov (United States)

    Duelen, Robin; Sampaolesi, Maurilio

    2017-02-01

    Despite advances in cardiovascular biology and medical therapy, heart disorders are the leading cause of death worldwide. Cell-based regenerative therapies become a promising treatment for patients affected by heart failure, but also underline the need for reproducible results in preclinical and clinical studies for safety and efficacy. Enthusiasm has been tempered by poor engraftment, survival and differentiation of the injected adult stem cells. The crucial challenge is identification and selection of the most suitable stem cell type for cardiac regenerative medicine. Human pluripotent stem cells (PSCs) have emerged as attractive cell source to obtain cardiomyocytes (CMs), with potential applications, including drug discovery and toxicity screening, disease modelling and innovative cell therapies. Lessons from embryology offered important insights into the development of stem cell-derived CMs. However, the generation of a CM population, uniform in cardiac subtype, adult maturation and functional properties, is highly recommended. Moreover, hurdles regarding tumorigenesis, graft cell death, immune rejection and arrhythmogenesis need to be overcome in clinical practice. Here we highlight the recent progression in PSC technologies for the regeneration of injured heart. We review novel strategies that might overcome current obstacles in heart regenerative medicine, aiming at improving cell survival and functional integration after cell transplantation. Copyright © 2017. Published by Elsevier B.V.

  4. Stem Cell Technology in Cardiac Regeneration: A Pluripotent Stem Cell Promise

    Directory of Open Access Journals (Sweden)

    Robin Duelen

    2017-02-01

    Full Text Available Despite advances in cardiovascular biology and medical therapy, heart disorders are the leading cause of death worldwide. Cell-based regenerative therapies become a promising treatment for patients affected by heart failure, but also underline the need for reproducible results in preclinical and clinical studies for safety and efficacy. Enthusiasm has been tempered by poor engraftment, survival and differentiation of the injected adult stem cells. The crucial challenge is identification and selection of the most suitable stem cell type for cardiac regenerative medicine. Human pluripotent stem cells (PSCs have emerged as attractive cell source to obtain cardiomyocytes (CMs, with potential applications, including drug discovery and toxicity screening, disease modelling and innovative cell therapies. Lessons from embryology offered important insights into the development of stem cell-derived CMs. However, the generation of a CM population, uniform in cardiac subtype, adult maturation and functional properties, is highly recommended. Moreover, hurdles regarding tumorigenesis, graft cell death, immune rejection and arrhythmogenesis need to be overcome in clinical practice. Here we highlight the recent progression in PSC technologies for the regeneration of injured heart. We review novel strategies that might overcome current obstacles in heart regenerative medicine, aiming at improving cell survival and functional integration after cell transplantation.

  5. Integration of genomics, proteomics, and imaging for cardiac stem cell therapy

    International Nuclear Information System (INIS)

    Chun, Hyung J.; Wilson, Kitch O.; Huang, Mei; Wu, Joseph C.

    2007-01-01

    Cardiac stem cell therapy is beginning to mature as a valid treatment for heart disease. As more clinical trials utilizing stem cells emerge, it is imperative to establish the mechanisms by which stem cells confer benefit in cardiac diseases. In this paper, we review three methods - molecular cellular imaging, gene expression profiling, and proteomic analysis - that can be integrated to provide further insights into the role of this emerging therapy. (orig.)

  6. Long-term evaluation of cardiac and vascular toxicity in patients with Philadelphia chromosome-positive leukemias treated with bosutinib.

    Science.gov (United States)

    Cortes, Jorge E; Jean Khoury, H; Kantarjian, Hagop; Brümmendorf, Tim H; Mauro, Michael J; Matczak, Ewa; Pavlov, Dmitri; Aguiar, Jean M; Fly, Kolette D; Dimitrov, Svetoslav; Leip, Eric; Shapiro, Mark; Lipton, Jeff H; Durand, Jean-Bernard; Gambacorti-Passerini, Carlo

    2016-06-01

    Vascular and cardiac safety during tyrosine kinase inhibitor (TKI) therapy is an emerging issue. We evaluated vascular/cardiac toxicities associated with long-term bosutinib treatment for Philadelphia chromosome-positive (Ph+) leukemia based on treatment-emergent adverse events (TEAEs) and changes in QTc intervals and ejection fraction in two studies: a phase 1/2 study of second-/third-/fourth-line bosutinib for Ph+ leukemia resistant/intolerant to prior TKIs (N = 570) and a phase 3 study of first-line bosutinib (n = 248) versus imatinib (n = 251) in chronic phase chronic myeloid leukemia. Follow-up time was ≥48 months (both studies). Incidences of vascular/cardiac TEAEs in bosutinib-treated patients were 7%/10% overall with similar incidences observed with first-line bosutinib (5%/8%) and imatinib (4%/6%). Few patients had grade ≥3 vascular/cardiac events (4%/4%) and no individual TEAE occurred in >2% of bosutinib patients. Exposure-adjusted vascular/cardiac TEAE rates (patients with events/patient-year) were low for second-line or later bosutinib (0.037/0.050) and not significantly different between first-line bosutinib (0.015/0.024) and imatinib (0.011/0.017; P ≥ 0.267). Vascular/cardiac events were managed mainly with concomitant medications (39%/44%), bosutinib treatment interruptions (18%/21%), or dose reductions (4%/8%); discontinuations due to these events were rare (0.7%/1.0%). Based on logistic regression modelling, performance status >0 and history of vascular or cardiac disorders were prognostic of vascular/cardiac events in relapsed/refractory patients; hyperlipidemia/hypercholesterolemia and older age were prognostic of cardiac events. In newly diagnosed patients, older age was prognostic of vascular/cardiac events; history of diabetes was prognostic of vascular events. Incidences of vascular and cardiac events were low with bosutinib in the first-line and relapsed/refractory settings following long-term treatment in patients

  7. Detailed comparative anatomy of the extrinsic cardiac nerve plexus and postnatal reorganization of the cardiac position and innervation in the great apes: orangutans, gorillas, and chimpanzees.

    Science.gov (United States)

    Kawashima, Tomokazu; Sato, Fumi

    2012-03-01

    To speculate how the extrinsic cardiac nerve plexus (ECNP) evolves phyletically and ontogenetically within the primate lineage, we conducted a comparative anatomical study of the ECNP, including an imaging examination in the great apes using 20 sides from 11 bodies from three species and a range of postnatal stages from newborns to mature adults. Although the position of the middle cervical ganglion (MG) in the great apes tended to be relatively lower than that in humans, the morphology of the ECNP in adult great apes was almost consistent with that in adult humans but essentially different from that in the lesser apes or gibbons. Therefore, the well-argued anatomical question of when did the MG acquire communicating branches with the spinal cervical nerves and appear constantly in all sympathetic cardiac nerves during primate evolution is clearly considered to be after the great apes and gibbons split. Moreover, a horizontal four-chambered heart and a lifted cardiac apex with a relatively large volume in newborn great apes rapidly changed its position downward, as seen in humans during postnatal growth and was associated with a reduction in the hepatic volume by imaging diagnosis and gross anatomy. In addition, our observation using a range of postnatal stages exhibits that two sympathetic ganglia, the middle cervical and cervicothoracic ganglia, differed between the early and later postnatal stages. Copyright © 2011 Wiley Periodicals, Inc.

  8. Muscle-derived stem cells isolated as non-adherent population give rise to cardiac, skeletal muscle and neural lineages.

    Science.gov (United States)

    Arsic, Nikola; Mamaeva, Daria; Lamb, Ned J; Fernandez, Anne

    2008-04-01

    Stem cells with the ability to differentiate in specialized cell types can be extracted from a wide array of adult tissues including skeletal muscle. Here we have analyzed a population of cells isolated from skeletal muscle on the basis of their poor adherence on uncoated or collagen-coated dishes that show multi-lineage differentiation in vitro. When analysed under proliferative conditions, these cells express stem cell surface markers Sca-1 (65%) and Bcrp-1 (80%) but also MyoD (15%), Neuronal beta III-tubulin (25%), GFAP (30%) or Nkx2.5 (1%). Although capable of growing as non-attached spheres for months, when given an appropriate matrix, these cells adhere giving rise to skeletal muscle, neuronal and cardiac muscle cell lineages. A similar cell population could not be isolated from either bone marrow or cardiac tissue suggesting their specificity to skeletal muscle. When injected into damaged muscle, these non-adherent muscle-derived cells are retrieved expressing Pax7, in a sublaminar position characterizing satellite cells and participate in forming new myofibers. These data show that a non-adherent stem cell population can be specifically isolated and expanded from skeletal muscle and upon attachment to a matrix spontaneously differentiate into muscle, cardiac and neuronal lineages in vitro. Although competing with resident satellite cells, these cells are shown to significantly contribute to repair of injured muscle in vivo supporting that a similar muscle-derived non-adherent cell population from human muscle may be useful in treatment of neuromuscular disorders.

  9. Muscle-derived stem cells isolated as non-adherent population give rise to cardiac, skeletal muscle and neural lineages

    International Nuclear Information System (INIS)

    Arsic, Nikola; Mamaeva, Daria; Lamb, Ned J.; Fernandez, Anne

    2008-01-01

    Stem cells with the ability to differentiate in specialized cell types can be extracted from a wide array of adult tissues including skeletal muscle. Here we have analyzed a population of cells isolated from skeletal muscle on the basis of their poor adherence on uncoated or collagen-coated dishes that show multi-lineage differentiation in vitro. When analysed under proliferative conditions, these cells express stem cell surface markers Sca-1 (65%) and Bcrp-1 (80%) but also MyoD (15%), Neuronal β III-tubulin (25%), GFAP (30%) or Nkx2.5 (1%). Although capable of growing as non-attached spheres for months, when given an appropriate matrix, these cells adhere giving rise to skeletal muscle, neuronal and cardiac muscle cell lineages. A similar cell population could not be isolated from either bone marrow or cardiac tissue suggesting their specificity to skeletal muscle. When injected into damaged muscle, these non-adherent muscle-derived cells are retrieved expressing Pax7, in a sublaminar position characterizing satellite cells and participate in forming new myofibers. These data show that a non-adherent stem cell population can be specifically isolated and expanded from skeletal muscle and upon attachment to a matrix spontaneously differentiate into muscle, cardiac and neuronal lineages in vitro. Although competing with resident satellite cells, these cells are shown to significantly contribute to repair of injured muscle in vivo supporting that a similar muscle-derived non-adherent cell population from human muscle may be useful in treatment of neuromuscular disorders

  10. Left atrial appendages from adult hearts contain a reservoir of diverse cardiac progenitor cells.

    Directory of Open Access Journals (Sweden)

    Jussi V Leinonen

    Full Text Available There is strong evidence supporting the claim that endogenous cardiac progenitor cells (CPCs are key players in cardiac regeneration, but the anatomic source and phenotype of the master cardiac progenitors remains uncertain. Our aim was to investigate the different cardiac stem cell populations in the left atrial appendage (LAA and their fates.We investigated the CPC content and profile of adult murine LAAs using immunohistochemistry and flow cytometry. We demonstrate that the LAA contains a large number of CPCs relative to other areas of the heart, representing over 20% of the total cell number. We grew two distinct CPC populations from the LAA by varying the degree of proteolysis. These differed by their histological location, surface marker profiles and growth dynamics. Specifically, CD45(pos cells grew with milder proteolysis, while CD45(neg cells grew mainly with more intense proteolysis. Both cell types could be induced to differentiate into cells with cardiomyocyte markers and organelles, albeit by different protocols. Many CD45(pos cells expressed CD45 initially and rapidly lost its expression while differentiating.Our results demonstrate that the left atrial appendage plays a role as a reservoir of multiple types of progenitor cells in murine adult hearts. Two different types of CPCs were isolated, differing in their epicardial-myocardial localization. Considering studies demonstrating layer-specific origins of different cardiac progenitor cells, our findings may shed light on possible pathways to study and utilize the diversity of endogenous progenitor cells in the adult heart.

  11. Cardiac microvascular endothelial cells express a functional Ca+ -sensing receptor.

    Science.gov (United States)

    Berra Romani, Roberto; Raqeeb, Abdul; Laforenza, Umberto; Scaffino, Manuela Federica; Moccia, Francesco; Avelino-Cruz, Josè Everardo; Oldani, Amanda; Coltrini, Daniela; Milesi, Veronica; Taglietti, Vanni; Tanzi, Franco

    2009-01-01

    The mechanism whereby extracellular Ca(2+) exerts the endothelium-dependent control of vascular tone is still unclear. In this study, we assessed whether cardiac microvascular endothelial cells (CMEC) express a functional extracellular Ca(2+)-sensing receptor (CaSR) using a variety of techniques. CaSR mRNA was detected using RT-PCR, and CaSR protein was identified by immunocytochemical analysis. In order to assess the functionality of the receptor, CMEC were loaded with the Ca(2+)-sensitive fluorochrome, Fura-2/AM. A number of CaSR agonists, such as spermine, Gd(3+), La(3+) and neomycin, elicited a heterogeneous intracellular Ca(2+) signal, which was abolished by disruption of inositol 1,4,5-trisphosphate (InsP(3)) signaling and by depletion of intracellular stores with cyclopiazonic acid. The inhibition of the Na(+)/Ca(2+) exchanger upon substitution of extracellular Na(+) unmasked the Ca(2+) signal triggered by an increase in extracellular Ca(2+) levels. Finally, aromatic amino acids, which function as allosteric activators of CaSR, potentiated the Ca(2+) response to the CaSR agonist La(3+). These data provide evidence that CMEC express CaSR, which is able to respond to physiological agonists by mobilizing Ca(2+) from intracellular InsP(3)-sensitive stores. Copyright 2008 S. Karger AG, Basel.

  12. Improved oxygenation during standing performance of deep breathing exercises with positive expiratory pressure after cardiac surgery: A randomized controlled trial.

    Science.gov (United States)

    Pettersson, Henrik; Faager, Gun; Westerdahl, Elisabeth

    2015-09-01

    Breathing exercises after cardiac surgery are often performed in a sitting position. It is unknown whether oxygenation would be better in the standing position. The aim of this study was to evaluate oxygenation and subjective breathing ability during sitting vs standing performance of deep breathing exercises on the second day after cardiac surgery. Patients undergoing coronary artery bypass grafting (n = 189) were randomized to sitting (controls) or standing. Both groups performed 3 × 10 deep breaths with a positive expiratory pressure device. Peripheral oxygen saturation was measured before, directly after, and 15 min after the intervention. Subjective breathing ability, blood pressure, heart rate, and pain were assessed. Oxygenation improved significantly in the standing group compared with controls directly after the breathing exercises (p < 0.001) and after 15 min rest (p = 0.027). The standing group reported better deep breathing ability compared with controls (p = 0.004). A slightly increased heart rate was found in the standing group (p = 0.047). After cardiac surgery, breathing exercises with positive expiratory pressure, performed in a standing position, significantly improved oxygenation and subjective breathing ability compared with sitting performance. Performance of breathing exercises in the standing position is feasible and could be a valuable treatment for patients with postoperative hypoxaemia.

  13. Gravity and positional homeostasis of the cell

    Science.gov (United States)

    Nace, G. W.

    1983-01-01

    The effect of gravity upon cytoplasmic aggregates of the size present in eggs and upon cells is investigated. An expression is developed to describe the tendency of torque to rotate the egg and reorganize its constituents. This expression provides the net torque resulting from buoyancy and gravity acting upon a dumbbell-shaped cell, with heavy and light masses at either end and floating in a medium. Torques of approximately 2.5 x 10 to the -13th to 0.85 dyne-cm are found to act upon cells ranging from 6.4 microns to 31 mm (chicken egg). It is noted that cells must expend energy to maintain positional homeostasis against gravity, as demonstrated by results from Skylab 3, where tissue cultures used 58 percent more glucose on earth than in space. The implications for developmental biology, physiology, genetics, and evolution are discussed. It is argued that at the cellular and tissue levels the concept of gravity receptors may be unnecessary.

  14. Induced pluripotent stem cell-derived cardiac progenitors differentiate to cardiomyocytes and form biosynthetic tissues.

    Directory of Open Access Journals (Sweden)

    Nicolas Christoforou

    Full Text Available The mammalian heart has little capacity to regenerate, and following injury the myocardium is replaced by non-contractile scar tissue. Consequently, increased wall stress and workload on the remaining myocardium leads to chamber dilation, dysfunction, and heart failure. Cell-based therapy with an autologous, epigenetically reprogrammed, and cardiac-committed progenitor cell source could potentially reverse this process by replacing the damaged myocardium with functional tissue. However, it is unclear whether cardiac progenitor cell-derived cardiomyocytes are capable of attaining levels of structural and functional maturity comparable to that of terminally-fated cardiomyocytes. Here, we first describe the derivation of mouse induced pluripotent stem (iPS cells, which once differentiated allow for the enrichment of Nkx2-5(+ cardiac progenitors, and the cardiomyocyte-specific expression of the red fluorescent protein. We show that the cardiac progenitors are multipotent and capable of differentiating into endothelial cells, smooth muscle cells and cardiomyocytes. Moreover, cardiac progenitor selection corresponds to cKit(+ cell enrichment, while cardiomyocyte cell-lineage commitment is concomitant with dual expression of either cKit/Flk1 or cKit/Sca-1. We proceed to show that the cardiac progenitor-derived cardiomyocytes are capable of forming electrically and mechanically coupled large-scale 2D cell cultures with mature electrophysiological properties. Finally, we examine the cell progenitors' ability to form electromechanically coherent macroscopic tissues, using a physiologically relevant 3D culture model and demonstrate that following long-term culture the cardiomyocytes align, and form robust electromechanical connections throughout the volume of the biosynthetic tissue construct. We conclude that the iPS cell-derived cardiac progenitors are a robust cell source for tissue engineering applications and a 3D culture platform for pharmacological

  15. Optimized method for identification of the proteomes secreted by cardiac cells

    Czech Academy of Sciences Publication Activity Database

    Šťastná, Miroslava; Van Eyk, J.E.

    2013-01-01

    Roč. 1005, č. 1005 (2013), s. 225-235 ISSN 1940 -6029 Institutional support: RVO:68081715 Keywords : cardiac cells * secreted proteins * proteomic technology Subject RIV: CB - Analytical Chemistry, Separation

  16. Optimized method for identification of the proteomes secreted by cardiac cells

    Czech Academy of Sciences Publication Activity Database

    Šťastná, Miroslava; Van Eyk, J.E.

    2013-01-01

    Roč. 1005, č. 1005 (2013), s. 225-235 ISSN 1940-6029 Institutional support: RVO:68081715 Keywords : cardiac cells * secreted proteins * proteomic technology Subject RIV: CB - Analytical Chemistry, Separation

  17. Rho-associated kinase inhibitors promote the cardiac differentiation of embryonic and induced pluripotent stem cells.

    Science.gov (United States)

    Cheng, Ya-Ting; Yeih, Dong-Feng; Liang, Shu-Man; Chien, Chia-Ying; Yu, Yen-Ling; Ko, Bor-Sheng; Jan, Yee-Jee; Kuo, Cheng-Chin; Sung, Li-Ying; Shyue, Song-Kun; Chen, Ming-Fong; Yet, Shaw-Fang; Wu, Kenneth K; Liou, Jun-Yang

    2015-12-15

    Rho-associated kinase (ROCK) plays an important role in maintaining embryonic stem (ES) cell pluripotency. To determine whether ROCK is involved in ES cell differentiation into cardiac and hematopoietic lineages, we evaluated the effect of ROCK inhibitors, Y-27632 and fasudil on murine ES and induced pluripotent stem (iPS) cell differentiation. Gene expression levels were determined by real-time PCR, Western blot analysis and immunofluorescent confocal microscopy. Cell transplantation of induced differentiated cells were assessed in vivo in a mouse model (three groups, n=8/group) of acute myocardial infarction (MI). The cell engraftment was examined by immunohistochemical staining and the outcome was analyzed by echocardiography. Cells were cultured in hematopoietic differentiation medium in the presence or absence of ROCK inhibitor and colony formation as well as markers of ES, hematopoietic stem cells (HSC) and cells of cardiac lineages were analyzed. ROCK inhibition resulted in a drastic change in colony morphology accompanied by loss of hematopoietic markers (GATA-1, CD41 and β-Major) and expressed markers of cardiac lineages (GATA-4, Isl-1, Tbx-5, Tbx-20, MLC-2a, MLC-2v, α-MHC, cTnI and cTnT) in murine ES and iPS cells. Fasudil-induced cardiac progenitor (Mesp-1 expressing) cells were infused into a murine MI model. They engrafted into the peri-infarct and infarct regions and preserved left ventricular function. These findings provide new insights into the signaling required for ES cell differentiation into hematopoietic as well as cardiac lineages and suggest that ROCK inhibitors are useful in directing iPS cell differentiation into cardiac progenitor cells for cell therapy of cardiovascular diseases. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. A Cardiac Cell Outgrowth Assay for Evaluating Drug Compounds Using a Cardiac Spheroid-on-a-Chip Device

    Directory of Open Access Journals (Sweden)

    Jonas Christoffersson

    2018-05-01

    Full Text Available Three-dimensional (3D models with cells arranged in clusters or spheroids have emerged as valuable tools to improve physiological relevance in drug screening. One of the challenges with cells cultured in 3D, especially for high-throughput applications, is to quickly and non-invasively assess the cellular state in vitro. In this article, we show that the number of cells growing out from human induced pluripotent stem cell (hiPSC-derived cardiac spheroids can be quantified to serve as an indicator of a drug’s effect on spheroids captured in a microfluidic device. Combining this spheroid-on-a-chip with confocal high content imaging reveals easily accessible, quantitative outgrowth data. We found that effects on outgrowing cell numbers correlate to the concentrations of relevant pharmacological compounds and could thus serve as a practical readout to monitor drug effects. Here, we demonstrate the potential of this semi-high-throughput “cardiac cell outgrowth assay” with six compounds at three concentrations applied to spheroids for 48 h. The image-based readout complements end-point assays or may be used as a non-invasive assay for quality control during long-term culture.

  19. Carbon nanotube-incorporated collagen hydrogels improve cell alignment and the performance of cardiac constructs

    Directory of Open Access Journals (Sweden)

    Sun HY

    2017-04-01

    Full Text Available Hongyu Sun,* Jing Zhou,* Zhu Huang,* Linlin Qu,* Ning Lin,* Chengxiao Liang, Ruiwu Dai, Lijun Tang, Fuzhou Tian General Surgery Center, Chengdu Military General Hospital, Chengdu, China *These authors contributed equally to this work Abstract: Carbon nanotubes (CNTs provide an essential 2-D microenvironment for cardiomyocyte growth and function. However, it remains to be elucidated whether CNT nanostructures can promote cell–cell integrity and facilitate the formation of functional tissues in 3-D hydrogels. Here, single-walled CNTs were incorporated into collagen hydrogels to fabricate (CNT/Col hydrogels, which improved mechanical and electrical properties. The incorporation of CNTs (up to 1 wt% exhibited no toxicity to cardiomyocytes and enhanced cell adhesion and elongation. Through the use of immunohistochemical staining, transmission electron microscopy, and intracellular calcium-transient measurement, the incorporation of CNTs was found to improve cell alignment and assembly remarkably, which led to the formation of engineered cardiac tissues with stronger contraction potential. Importantly, cardiac tissues based on CNT/Col hydrogels were noted to have better functionality. Collectively, the incorporation of CNTs into the Col hydrogels improved cell alignment and the performance of cardiac constructs. Our study suggests that CNT/Col hydrogels offer a promising tissue scaffold for cardiac constructs, and might serve as injectable biomaterials to deliver cell or drug molecules for cardiac regeneration following myocardial infarction in the near future. Keywords: carbon nanotubes, collagen hydrogel, cardiac constructs, cell alignment, tissue functionality

  20. Induced Pluripotent Stem Cells-Derived Mesenchymal Stem Cells Attenuate Cigarette Smoke-Induced Cardiac Remodeling and Dysfunction

    Directory of Open Access Journals (Sweden)

    Yingmin Liang

    2017-07-01

    Full Text Available The strong relationship between cigarette smoking and cardiovascular disease (CVD has been well-documented, but the mechanisms by which smoking increases CVD risk appear to be multifactorial and incompletely understood. Mesenchymal stem cells (MSCs are regarded as an important candidate for cell-based therapy in CVD. We hypothesized that MSCs derived from induced pluripotent stem cell (iPSC-MSCs or bone marrow (BM-MSCs might alleviate cigarette smoke (CS-induced cardiac injury. This study aimed to investigate the effects of BM-MSCs or iPSC-MSCs on CS-induced changes in serum and cardiac lipid profiles, oxidative stress and inflammation as well as cardiac function in a rat model of passive smoking. Male Sprague-Dawley rats were randomly selected for exposure to either sham air (SA as control or 4% CS for 1 h per day for 56 days. On day 29 and 43, human adult BM-MSCs, iPSC-MSCs or PBS were administered intravenously to CS-exposed rats. Results from echocardiography, serum and cardiac lipid profiles, cardiac antioxidant capacity, cardiac pro- and anti-inflammatory cytokines and cardiac morphological changes were evaluated at the end of treatment. iPSC-MSC-treated group showed a greater effect in the improvement of CS-induced cardiac dysfunction over BM-MSCs-treated group as shown by increased percentage left ventricular ejection fraction and percentage fractional shortening, in line with the greater reversal of cardiac lipid abnormality. In addition, iPSC-MSCs administration attenuated CS-induced elevation of cardiac pro-inflammatory cytokines as well as restoration of anti-inflammatory cytokines and anti-oxidative markers, leading to ameliorate cardiac morphological abnormalities. These data suggest that iPSC-MSCs on one hand may restore CS-induced cardiac lipid abnormality and on the other hand may attenuate cardiac oxidative stress and inflammation via inhibition of CS-induced NF-κB activation, leading to improvement of cardiac remodeling and

  1. Usefulness of exercise ECG test with nitroglycerin and exercise cardiac scintigraphy in patients with false positive exercise ECG test

    International Nuclear Information System (INIS)

    Moritani, Kohshiro

    1984-01-01

    The purpose of this study is to evaluate the clinical usefulness of exercise (Ex) ECG test with sublingual nitroglycerin (NTG) and Ex cardiac scintigraphy in differentiating false positive responses from true positive responses of Ex ECG test. We examined 7 pts (age : 46+-7 years) with true positive Ex ECG test (TP) and 8 pts (age : 55+-10 years) with false positive Ex ECG test (FP). TP had significant coronary artery disease and FP did not. Ex test was done by multistage ergometer test. In 5 pts of TP and all pts of FP, Ex cardiac scintigraphy was performed. In TP, Ex cardiac scintigraphy revealed reversible perfusion deficit, but not in FP. NTG was administered 3 minutes before Ex test was started. Ex test with NTG was terminated at the same load as Ex test without NTG. Pressure-rate products at the end point of Ex test did not show significant difference between Ex test without NTG and that with NTG (TP: 203x10 2 , 213x10 2 , FP: 196x10 2 , 206x10 2 , respectively). In 7 pts of FP, ST depression in Ex test without NTG was not improved in Ex test with NTG. On the other hand, in all pts of TP, ST depression seen in Ex test without NTG, was not observed in Ex test with NTG. It may be concluded that Ex cardiac scintigraphy is diagnostic for differentiation of false positive responses from true positive responses of Ex ECG test, as well as Ex ECG test with NTG is. (author)

  2. Effect of exercise position during stress testing on cardiac and pulmonary thallium kinetics and accuracy in evaluating coronary artery disease

    International Nuclear Information System (INIS)

    Lear, J.L.

    1986-01-01

    We compared the effects of symptom-limited upright and supine exercise on 201Tl distribution and kinetics in the heart and lungs of 100 consecutive patients. Our analysis was based on data obtained with a digital gamma camera in the 45 degrees left anterior oblique position at 5, 40, 240, and 275 min postadministration of [201Tl]chloride. We found significant differences in the results at the 5- and 40-min intervals; viz, higher cardiac and lower pulmonary thallium activity after upright exercise in 94 subjects at both intervals, and greater variability in total and regional cardiac thallium kinetics after supine exercise. With supine exercise, the relatively low initial cardiac activity, relatively high lung activity, and the greater variability in thallium kinetics combined to make interpretation of quantitative data and cardiac images difficult and less accurate with respect to detection of coronary artery disease. These observations have important implications for the interpreting physician when thallium stress tests are performed in the supine position

  3. Human Induced Pluripotent Stem Cell-Derived Cardiac Progenitor Cells in Phenotypic Screening: A Transforming Growth Factor-β Type 1 Receptor Kinase Inhibitor Induces Efficient Cardiac Differentiation.

    Science.gov (United States)

    Drowley, Lauren; Koonce, Chad; Peel, Samantha; Jonebring, Anna; Plowright, Alleyn T; Kattman, Steven J; Andersson, Henrik; Anson, Blake; Swanson, Bradley J; Wang, Qing-Dong; Brolen, Gabriella

    2016-02-01

    Several progenitor cell populations have been reported to exist in hearts that play a role in cardiac turnover and/or repair. Despite the presence of cardiac stem and progenitor cells within the myocardium, functional repair of the heart after injury is inadequate. Identification of the signaling pathways involved in the expansion and differentiation of cardiac progenitor cells (CPCs) will broaden insight into the fundamental mechanisms playing a role in cardiac homeostasis and disease and might provide strategies for in vivo regenerative therapies. To understand and exploit cardiac ontogeny for drug discovery efforts, we developed an in vitro human induced pluripotent stem cell-derived CPC model system using a highly enriched population of KDR(pos)/CKIT(neg)/NKX2.5(pos) CPCs. Using this model system, these CPCs were capable of generating highly enriched cultures of cardiomyocytes under directed differentiation conditions. In order to facilitate the identification of pathways and targets involved in proliferation and differentiation of resident CPCs, we developed phenotypic screening assays. Screening paradigms for therapeutic applications require a robust, scalable, and consistent methodology. In the present study, we have demonstrated the suitability of these cells for medium to high-throughput screens to assess both proliferation and multilineage differentiation. Using this CPC model system and a small directed compound set, we identified activin-like kinase 5 (transforming growth factor-β type 1 receptor kinase) inhibitors as novel and potent inducers of human CPC differentiation to cardiomyocytes. Significance: Cardiac disease is a leading cause of morbidity and mortality, with no treatment available that can result in functional repair. This study demonstrates how differentiation of induced pluripotent stem cells can be used to identify and isolate cell populations of interest that can translate to the adult human heart. Two separate examples of phenotypic

  4. Elimination of remaining undifferentiated induced pluripotent stem cells in the process of human cardiac cell sheet fabrication using a methionine-free culture condition.

    Science.gov (United States)

    Matsuura, Katsuhisa; Kodama, Fumiko; Sugiyama, Kasumi; Shimizu, Tatsuya; Hagiwara, Nobuhisa; Okano, Teruo

    2015-03-01

    Cardiac tissue engineering is a promising method for regenerative medicine. Although we have developed human cardiac cell sheets by integration of cell sheet-based tissue engineering and scalable bioreactor culture, the risk of contamination by induced pluripotent stem (iPS) cells in cardiac cell sheets remains unresolved. In the present study, we established a novel culture method to fabricate human cardiac cell sheets with a decreased risk of iPS cell contamination while maintaining viabilities of iPS cell-derived cells, including cardiomyocytes and fibroblasts, using a methionine-free culture condition. When cultured in the methionine-free condition, human iPS cells did not survive without feeder cells and could not proliferate or form colonies on feeder cells or in coculture with cells for cardiac cell sheet fabrication. When iPS cell-derived cells after the cardiac differentiation were transiently cultured in the methionine-free condition, gene expression of OCT3/4 and NANOG was downregulated significantly compared with that in the standard culture condition. Furthermore, in fabricated cardiac cell sheets, spontaneous and synchronous beating was observed in the whole area while maintaining or upregulating the expression of various cardiac and extracellular matrix genes. These findings suggest that human iPS cells are methionine dependent and a methionine-free culture condition for cardiac cell sheet fabrication might reduce the risk of iPS cell contamination.

  5. Growth factors mediated differentiation of mesenchymal stem cells to cardiac polymicrotissue using hanging drop and bioreactor.

    Science.gov (United States)

    Konstantinou, Dimitrios; Lei, Ming; Xia, Zhidao; Kanamarlapudi, Venkateswarlu

    2015-04-01

    Heart disease is the major leading cause of death worldwide and the use of stem cells promises new ways for its treatment. The relatively easy and quick acquisition of human umbilical cord matrix mesenchymal stem cells (HUMSCs) and their properties make them useful for the treatment of cardiac diseases. Therefore, the main aim of this investigation was to create cardiac polymicrotissue from HUMSCs using a combination of growth factors [sphingosine-1-phosphate (S1P) and suramin] and techniques (hanging drop and bioreactor). Using designated culture conditions of the growth factors (100 nM S1P and 500 µM suramin), cardiomyocyte differentiation medium (CDM), hanging drop, bioreactor and differentiation for 7 days, a potential specific cardiac polymicrotissue was derived from HUMSCs. The effectiveness of growth factors alone or in combination in differentiation of HUMSCs to cardiac polymicrotissue was analysed by assessing the presence of cardiac markers by immunocytochemistry. This analysis demonstrated the importance of those growth factors for the differentiation. This study for the first time demonstrated the formation of a cardiac polymicrotissue under specific culture conditions. The polymicrotissue thus obtained may be used in future as a 'patch' to cover the injured cardiac region and would thereby be useful for the treatment of heart diseases. © 2014 International Federation for Cell Biology.

  6. Hybrid cardiac imaging: SPECT/CT and PET/CT. A joint position statement by the European Association of Nuclear Medicine (EANM), the European Society of Cardiac Radiology (ESCR) and the European Council of Nuclear Cardiology (ECNC)

    DEFF Research Database (Denmark)

    Flotats, Albert; Gutberlet, Matthias; Knuuti, Juhani

    2011-01-01

    . The European Association of Nuclear Medicine (EANM), the European Society of Cardiac Radiology (ESCR) and the European Council of Nuclear Cardiology (ECNC) in this paper want to present a position statement of the institutions on the current roles of SPECT/CT and PET/CT hybrid cardiac imaging in patients...

  7. Biochemistry and biology: heart-to-heart to investigate cardiac progenitor cells.

    Science.gov (United States)

    Chimenti, Isotta; Forte, Elvira; Angelini, Francesco; Messina, Elisa; Giacomello, Alessandro

    2013-02-01

    Cardiac regenerative medicine is a rapidly evolving field, with promising future developments for effective personalized treatments. Several stem/progenitor cells are candidates for cardiac cell therapy, and emerging evidence suggests how multiple metabolic and biochemical pathways strictly regulate their fate and renewal. In this review, we will explore a selection of areas of common interest for biology and biochemistry concerning stem/progenitor cells, and in particular cardiac progenitor cells. Numerous regulatory mechanisms have been identified that link stem cell signaling and functions to the modulation of metabolic pathways, and vice versa. Pharmacological treatments and culture requirements may be exploited to modulate stem cell pluripotency and self-renewal, possibly boosting their regenerative potential for cell therapy. Mitochondria and their many related metabolites and messengers, such as oxygen, ROS, calcium and glucose, have a crucial role in regulating stem cell fate and the balance of their functions, together with many metabolic enzymes. Furthermore, protein biochemistry and proteomics can provide precious clues on the definition of different progenitor cell populations, their physiology and their autocrine/paracrine regulatory/signaling networks. Interdisciplinary approaches between biology and biochemistry can provide productive insights on stem/progenitor cells, allowing the development of novel strategies and protocols for effective cardiac cell therapy clinical translation. This article is part of a Special Issue entitled Biochemistry of Stem Cells. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Efficient non-viral reprogramming of myoblasts to stemness with a single small molecule to generate cardiac progenitor cells.

    Directory of Open Access Journals (Sweden)

    Zeeshan Pasha

    Full Text Available The current protocols for generation of induced pluripotent stem (iPS cells involve genome integrating viral vectors which may induce tumorgenesis. The aim of this study was to develop and optimize a non-viral method without genetic manipulation for reprogramming of skeletal myoblasts (SMs using small molecules.SMs from young male Oct3/4-GFP(+ transgenic mouse were treated with DNA methyltransferase (DNMT inhibitor, RG108. Two weeks later, GFP(+ colonies of SM derived iPS cells (SiPS expressing GFP and with morphological similarity of mouse embryonic stem (ESCs were formed and propagated in vitro. SiPS were positive for alkaline phosphatase activity, expressed SSEA1, displayed ES cell specific pluripotency markers and formed teratoma in nude mice. Optimization of culture conditions for embryoid body (EBs formation yielded spontaneously contracting EBs having morphological, molecular, and ultra-structural similarities with cardiomyocytes and expressed early and late cardiac markers. miR profiling showed abrogation of let-7 family and upregulation of ESCs specific miR-290-295 cluster thus indicating that SiPS were similar to ESCs in miR profile. Four weeks after transplantation into the immunocompetent mice model of acute myocardial infarction (n = 12 per group, extensive myogenesis was observed in SiPS transplanted hearts as compared to DMEM controls (n = 6 per group. A significant reduction in fibrosis and improvement in global heart function in the hearts transplanted with SiPS derived cardiac progenitor cells were observed.Reprogramming of SMs by DNMT inhibitor is a simple, reproducible and efficient technique more likely to generate transgene integration-free iPS cells. Cardiac progenitors derived from iPS cells propagated extensively in the infarcted myocardium without tumorgenesis and improved cardiac function.

  9. Forward Programming of Cardiac Stem Cells by Homogeneous Transduction with MYOCD plus TBX5.

    Directory of Open Access Journals (Sweden)

    Elisa Belian

    Full Text Available Adult cardiac stem cells (CSCs express many endogenous cardiogenic transcription factors including members of the Gata, Hand, Mef2, and T-box family. Unlike its DNA-binding targets, Myocardin (Myocd-a co-activator not only for serum response factor, but also for Gata4 and Tbx5-is not expressed in CSCs. We hypothesised that its absence was a limiting factor for reprogramming. Here, we sought to investigate the susceptibility of adult mouse Sca1+ side population CSCs to reprogramming by supplementing the triad of GATA4, MEF2C, and TBX5 (GMT, and more specifically by testing the effect of the missing co-activator, Myocd. Exogenous factors were expressed via doxycycline-inducible lentiviral vectors in various combinations. High throughput quantitative RT-PCR was used to test expression of 29 cardiac lineage markers two weeks post-induction. GMT induced more than half the analysed cardiac transcripts. However, no protein was detected for the induced sarcomeric genes Actc1, Myh6, and Myl2. Adding MYOCD to GMT affected only slightly the breadth and level of gene induction, but, importantly, triggered expression of all three proteins examined (α-cardiac actin, atrial natriuretic peptide, sarcomeric myosin heavy chains. MYOCD + TBX was the most effective pairwise combination in this system. In clonal derivatives homogenously expressing MYOCD + TBX at high levels, 93% of cardiac transcripts were up-regulated and all five proteins tested were visualized.(1 GMT induced cardiac genes in CSCs, but not cardiac proteins under the conditions used. (2 Complementing GMT with MYOCD induced cardiac protein expression, indicating a more complete cardiac differentiation program. (3 Homogeneous transduction with MYOCD + TBX5 facilitated the identification of differentiating cells and the validation of this combinatorial reprogramming strategy. Together, these results highlight the pivotal importance of MYOCD in driving CSCs toward a cardiac muscle fate.

  10. Human cardiac-derived adherent proliferating cells reduce murine acute Coxsackievirus B3-induced myocarditis.

    Directory of Open Access Journals (Sweden)

    Kapka Miteva

    Full Text Available BACKGROUND: Under conventional heart failure therapy, inflammatory cardiomyopathy typically has a progressive course, indicating a need for alternative therapeutic strategies to improve long-term outcomes. We recently isolated and identified novel cardiac-derived cells from human cardiac biopsies: cardiac-derived adherent proliferating cells (CAPs. They have similarities with mesenchymal stromal cells, which are known for their anti-apoptotic and immunomodulatory properties. We explored whether CAPs application could be a novel strategy to improve acute Coxsackievirus B3 (CVB3-induced myocarditis. METHODOLOGY/PRINCIPAL FINDINGS: To evaluate the safety of our approach, we first analyzed the expression of the coxsackie- and adenovirus receptor (CAR and the co-receptor CD55 on CAPs, which are both required for effective CVB3 infectivity. We could demonstrate that CAPs only minimally express both receptors, which translates to minimal CVB3 copy numbers, and without viral particle release after CVB3 infection. Co-culture of CAPs with CVB3-infected HL-1 cardiomyocytes resulted in a reduction of CVB3-induced HL-1 apoptosis and viral progeny release. In addition, CAPs reduced CD4 and CD8 T cell proliferation. All CAPs-mediated protective effects were nitric oxide- and interleukin-10-dependent and required interferon-γ. In an acute murine model of CVB3-induced myocarditis, application of CAPs led to a decrease of cardiac apoptosis, cardiac CVB3 viral load and improved left ventricular contractility parameters. This was associated with a decline in cardiac mononuclear cell activity, an increase in T regulatory cells and T cell apoptosis, and an increase in left ventricular interleukin-10 and interferon-γ mRNA expression. CONCLUSIONS: We conclude that CAPs are a unique type of cardiac-derived cells and promising tools to improve acute CVB3-induced myocarditis.

  11. Dendritic cell-associated immune inflammation of cardiac mucosa: a possible factor in the formation of Barrett's esophagus.

    Science.gov (United States)

    Bobryshev, Yuri V; Tran, Dinh; Killingsworth, Murray C; Buckland, Michael; Lord, Reginald V N

    2009-03-01

    The development of Barrett's esophagus is poorly understood, but it has been suggested that cardiac mucosa is a precursor of intestinal type metaplasia and that inflammation of cardiac mucosa may play a role in the formation of Barrett's esophagus. The present study was undertaken to examine the presence and distribution of immune-inflammatory cells in cardiac mucosa, specifically focusing on dendritic cells because of their importance as regulators of immune reactions. Endoscopic biopsy specimens were obtained from 12 patients with cardiac mucosa without Barrett's esophagus or adenocarcinoma and from 21 patients with Barrett's esophagus without dysplasia (intestinal metaplasia). According to histology, in nine of the 21 specimens with Barrett's esophagus, areas of mucosa composed of cardiac type epithelium-lined glands were present as well. Immunohistochemical staining and electron microscopy were used to examine immune-inflammatory cells in paraffin-embedded sections. Immune-inflammatory cells, including T cells, B cells, dendritic cells, macrophages, and mast cells, were present in the connective tissue matrix that surrounded cardiac type epithelium-lined glands in all patients with cardiac mucosa. Clustering of dendritic cells with each other and with lymphocytes and the intrusion of dendritic cells between glandular mucus cells were observed. In the Barrett's esophagus specimens that contained cardiac type glands, computerized CD83 expression quantitation revealed that there were more dendritic cells in cardiac mucosa than in intestinal metaplasia. Immune-inflammatory infiltrates containing dendritic cells are consistently present in cardiac mucosa. The finding of a larger number of dendritic cells in areas of cardiac mucosa in Barrett's esophagus biopsies suggests that the immune inflammation of cardiac mucosa might play a role in modifying the local tissue environment to promote the development of specialized intestinal type metaplasia.

  12. Cardiac effects of positive pressure ventilation in ARDS assessed by NT-proBNP, Troponin T and Troponin I

    Directory of Open Access Journals (Sweden)

    Yasser Sadek Nassar

    2013-01-01

    Although the increase in cardiac markers are insignificant, yet they point to the potentially harmful role played by high PEEP, low PH and low PaO2/FiO2 ratio on the heart. Currently, no clinically relevant conclusion can be drawn apart from the recommendation to attempt to lower PEEP and shorten the duration of positive pressure ventilation, even in patients with structurally normal hearts.

  13. Electrical Stimulation Promotes Cardiac Differentiation of Human Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Damián Hernández

    2016-01-01

    Full Text Available Background. Human induced pluripotent stem cells (iPSCs are an attractive source of cardiomyocytes for cardiac repair and regeneration. In this study, we aim to determine whether acute electrical stimulation of human iPSCs can promote their differentiation to cardiomyocytes. Methods. Human iPSCs were differentiated to cardiac cells by forming embryoid bodies (EBs for 5 days. EBs were then subjected to brief electrical stimulation and plated down for 14 days. Results. In iPS(Foreskin-2 cell line, brief electrical stimulation at 65 mV/mm or 200 mV/mm for 5 min significantly increased the percentage of beating EBs present by day 14 after plating. Acute electrical stimulation also significantly increased the cardiac gene expression of ACTC1, TNNT2, MYH7, and MYL7. However, the cardiogenic effect of electrical stimulation was not reproducible in another iPS cell line, CERA007c6. Beating EBs from control and electrically stimulated groups expressed various cardiac-specific transcription factors and contractile muscle markers. Beating EBs were also shown to cycle calcium and were responsive to the chronotropic agents, isoproterenol and carbamylcholine, in a concentration-dependent manner. Conclusions. Our results demonstrate that brief electrical stimulation can promote cardiac differentiation of human iPS cells. The cardiogenic effect of brief electrical stimulation is dependent on the cell line used.

  14. Pathologic Stimulus Determines Lineage Commitment of Cardiac C-kit+ Cells.

    Science.gov (United States)

    Chen, Zhongming; Zhu, Wuqiang; Bender, Ingrid; Gong, Wuming; Kwak, Il-Youp; Yellamilli, Amritha; Hodges, Thomas J; Nemoto, Natsumi; Zhang, Jianyi; Garry, Daniel J; van Berlo, Jop H

    2017-12-12

    Although cardiac c-kit + cells are being tested in clinical trials, the circumstances that determine lineage differentiation of c-kit + cells in vivo are unknown. Recent findings suggest that endogenous cardiac c-kit + cells rarely contribute cardiomyocytes to the adult heart. We assessed whether various pathological stimuli differentially affect the eventual cell fates of c-kit + cells. We used single-cell sequencing and genetic lineage tracing of c-kit + cells to determine whether various pathological stimuli would result in different fates of c-kit + cells. Single-cell sequencing of cardiac CD45 - c-kit + cells showed innate heterogeneity, indicative of the existence of vascular and mesenchymal c-kit + cells in normal hearts. Cardiac pressure overload resulted in a modest increase in c-kit-derived cardiomyocytes, with significant increases in the numbers of endothelial cells and fibroblasts. Doxorubicin-induced acute cardiotoxicity did not increase c-kit-derived endothelial cell fates but instead induced cardiomyocyte differentiation. Mechanistically, doxorubicin-induced DNA damage in c-kit + cells resulted in expression of p53. Inhibition of p53 blocked cardiomyocyte differentiation in response to doxorubicin, whereas stabilization of p53 was sufficient to increase c-kit-derived cardiomyocyte differentiation. These results demonstrate that different pathological stimuli induce different cell fates of c-kit + cells in vivo. Although the overall rate of cardiomyocyte formation from c-kit + cells is still below clinically relevant levels, we show that p53 is central to the ability of c-kit + cells to adopt cardiomyocyte fates, which could lead to the development of strategies to preferentially generate cardiomyocytes from c-kit + cells. © 2017 American Heart Association, Inc.

  15. Protection by 6-aminonicotinamide against oxidative stress in cardiac cells

    DEFF Research Database (Denmark)

    Hofgaard, Johannes P; Sigurdardottir, Kristin Sigridur; Treiman, Marek

    2006-01-01

    necrosis following global ischemia in an isolated rat heart, apparently by limiting the oxidative injury component. We therefore explored the antioxidative potential of 6AN in a model using H9C2(2-1) rat cardiac myoblasts exposed to H2O2 stress. Dependent on the specific protocol, 6AN pretreatment for 6...

  16. Carbon nanotube-incorporated collagen hydrogels improve cell alignment and the performance of cardiac constructs

    Science.gov (United States)

    Sun, Hongyu; Zhou, Jing; Huang, Zhu; Qu, Linlin; Lin, Ning; Liang, Chengxiao; Dai, Ruiwu; Tang, Lijun; Tian, Fuzhou

    2017-01-01

    Carbon nanotubes (CNTs) provide an essential 2-D microenvironment for cardiomyocyte growth and function. However, it remains to be elucidated whether CNT nanostructures can promote cell–cell integrity and facilitate the formation of functional tissues in 3-D hydrogels. Here, single-walled CNTs were incorporated into collagen hydrogels to fabricate (CNT/Col) hydrogels, which improved mechanical and electrical properties. The incorporation of CNTs (up to 1 wt%) exhibited no toxicity to cardiomyocytes and enhanced cell adhesion and elongation. Through the use of immunohistochemical staining, transmission electron microscopy, and intracellular calcium-transient measurement, the incorporation of CNTs was found to improve cell alignment and assembly remarkably, which led to the formation of engineered cardiac tissues with stronger contraction potential. Importantly, cardiac tissues based on CNT/Col hydrogels were noted to have better functionality. Collectively, the incorporation of CNTs into the Col hydrogels improved cell alignment and the performance of cardiac constructs. Our study suggests that CNT/Col hydrogels offer a promising tissue scaffold for cardiac constructs, and might serve as injectable biomaterials to deliver cell or drug molecules for cardiac regeneration following myocardial infarction in the near future. PMID:28450785

  17. A randomized controlled trial of cell salvage in routine cardiac surgery.

    Science.gov (United States)

    Klein, Andrew A; Nashef, Samer A M; Sharples, Linda; Bottrill, Fiona; Dyer, Matthew; Armstrong, Johanna; Vuylsteke, Alain

    2008-11-01

    Previous trials have indicated that cell salvage may reduce allogeneic blood transfusion during cardiac surgery, but these studies have limitations, including inconsistent use of other blood transfusion-sparing strategies. We designed a randomized controlled trial to determine whether routine cell salvage for elective uncomplicated cardiac surgery reduces blood transfusion and is cost effective in the setting of a rigorous transfusion protocol and routine administration of antifibrinolytics. Two-hundred-thirteen patients presenting for first-time coronary artery bypass grafting and/or cardiac valve surgery were prospectively randomized to control or cell salvage groups. The latter group had blood aspirate during surgery and mediastinal drainage the first 6 h after surgery processed in a cell saver device and autotransfused. All patients received tranexamic acid and were subjected to an algorithm for red blood cell and hemostatic blood factor transfusion. There was no difference between the two groups in the proportion of patients exposed to allogeneic blood (32% in both groups, relative risk 1.0 P = 0.89). At current blood products and cell saver prices, the use of cell salvage increased the costs per patient by a minimum of $103. When patients who had mediastinal re-exploration for bleeding were excluded (as planned in the protocol), significantly fewer units of allogeneic red blood cells were transfused in the cell salvage compared with the control group (65 vs 100 U, relative risk 0.71 P = 0.04). In patients undergoing routine first-time cardiac surgery in an institution with a rigorous blood conservation program, the routine use of cell salvage does not further reduce the proportion of patients exposed to allogeneic blood transfusion. However, patients who do not have excessive bleeding after surgery receive significantly fewer units of blood with cell salvage. Although the use of cell savage may reduce the demand for blood products during cardiac surgery, this

  18. Overexpression of Cardiac-Specific Kinase TNNI3K Promotes Mouse Embryonic Stem Cells Differentiation into Cardiomyocytes.

    Science.gov (United States)

    Wang, Yin; Wang, Shi-Qiang; Wang, Li-Peng; Yao, Yu-Hong; Ma, Chun-Yan; Ding, Jin-Feng; Ye, Jue; Meng, Xian-Min; Li, Jian-Jun; Xu, Rui-Xia

    2017-01-01

    Backgroud/Aims: The biological function of cardiac troponin I-interacting kinase (TNNI3K), a cardiac-specific functional kinase, is largely unknown. We investigated the effect of human TNNI3K (hTNNI3K) on the differentiation of mouse embryonic stem cells (mESCs) into cardiomyocytes. First, the time-space expression of endogenous Tnni3k was detected by real-time polymerase chain reaction (PCR) and western blotting at 16 different time-points over a period of 28 days. Further, action potentials and calcium current with/without 5 µM nifedipine were measured by patch clamp for mESC-derived cardiomyocytes. HTNNI3K and mouse-derived siRNA were transfected into mESC using lentivirus vector to induce hTNNI3K overexpression and knock-down, respectively. The number of troponin-T (cTnT) positive cells was greater in the group with TNNI3K overexpression as compared to that in control group, while less such cells were detected in the mTnni3k knock-down group as evaluated on flow cytometry (FCM) and ImageXpress Micro system. After upregulation of connexin43, cardiac troponin-I (Ctni), Ctni, Gata4 were detected in mESCs with TNNI3K overexpression; however, overexpression of α-Actinin and Mlc2v was not detected. Interestingly, Ctnt, connexin40 and connexin45, the markers of ventricular, atrial, and pacemaker cells, respectively, were detected in by real-time PCR in TNNI3K overexpression group. our study indicated that TNNI3K overexpression promoted mESC differentiating into beating cardiomyocytes and induced up-regulating expression of cTnT by PKCε signal pathway, which suggested a modulation of TNNI3K activity as a potential therapeutic approach for ischemic cardiac disease. © 2017 The Author(s) Published by S. Karger AG, Basel.

  19. Influence of aging on the activity of mice Sca-1+CD31- cardiac stem cells.

    Science.gov (United States)

    Wu, Qiong; Zhan, Jinxi; Pu, Shiming; Qin, Liu; Li, Yun; Zhou, Zuping

    2017-01-03

    Therapeutic application of cardiac resident stem/progenitor cells (CSC/CPCs) is limited due to decline of their regenerative potential with donor age. A variety of studies have shown that the cardiac aging was the problem of the stem cells, but little is known about the impact of age on the subgroups CSC/CPCs, the relationship between subgroups CSC/CPCs ageing and age-related dysfunction. Here, we studied Sca-1+CD31- subgroups of CSCs from younger(2~3months) and older(22~24months) age mice, biological differentiation was realized using specific mediums for 14 days to induce cardiomyocyte, smooth muscle cells or endothelial cells and immunostain analysis of differentiated cell resulting were done. Proliferation and cell cycle were measured by flow cytometry assay, then used microarray to dissect variability from younger and older mice. Although the number of CSCs was higher in older mice, the advanced age significantly reduced the differentiation ability into cardiac cell lineages and the proliferation ability. Transcriptional changes in Sca-1+CD31- subgroups of CSCs during aging are related to Vitamin B6 metabolism, circadian rhythm, Tyrosine metabolism, Complement and coagulation cascades. Taking together these results indicate that Cardiac resident stem/progenitor cells have significant differences in their proliferative, pluripotency and gene profiles and those differences are age depending.

  20. Optimization of delivery strategies for cardiac cell therapy in ischemic heart disease

    NARCIS (Netherlands)

    van der Spoel, T.I.G.

    2012-01-01

    Cardiac cell therapy has been proposed as an alternative treatment option for patients after acute myocardial infarction (MI). Irrespective of the chosen regenerative strategy, it is essential to deliver sufficient number of cells to the infarcted myocardium to become effective which is important

  1. Simple suspension culture system of human iPS cells maintaining their pluripotency for cardiac cell sheet engineering.

    Science.gov (United States)

    Haraguchi, Yuji; Matsuura, Katsuhisa; Shimizu, Tatsuya; Yamato, Masayuki; Okano, Teruo

    2015-12-01

    In this study, a simple three-dimensional (3D) suspension culture method for the expansion and cardiac differentiation of human induced pluripotent stem cells (hiPSCs) is reported. The culture methods were easily adapted from two-dimensional (2D) to 3D culture without any additional manipulations. When hiPSCs were directly applied to 3D culture from 2D in a single-cell suspension, only a few aggregated cells were observed. However, after 3 days, culture of the small hiPSC aggregates in a spinner flask at the optimal agitation rate created aggregates which were capable of cell passages from the single-cell suspension. Cell numbers increased to approximately 10-fold after 12 days of culture. The undifferentiated state of expanded hiPSCs was confirmed by flow cytometry, immunocytochemistry and quantitative RT-PCR, and the hiPSCs differentiated into three germ layers. When the hiPSCs were subsequently cultured in a flask using cardiac differentiation medium, expression of cardiac cell-specific genes and beating cardiomyocytes were observed. Furthermore, the culture of hiPSCs on Matrigel-coated dishes with serum-free medium containing activin A, BMP4 and FGF-2 enabled it to generate robust spontaneous beating cardiomyocytes and these cells expressed several cardiac cell-related genes, including HCN4, MLC-2a and MLC-2v. This suggests that the expanded hiPSCs might maintain the potential to differentiate into several types of cardiomyocytes, including pacemakers. Moreover, when cardiac cell sheets were fabricated using differentiated cardiomyocytes, they beat spontaneously and synchronously, indicating electrically communicative tissue. This simple culture system might enable the generation of sufficient amounts of beating cardiomyocytes for use in cardiac regenerative medicine and tissue engineering. Copyright © 2013 John Wiley & Sons, Ltd.

  2. Human-induced pluripotent stem cell-derived cardiomyocytes from cardiac progenitor cells: effects of selective ion channel blockade.

    Science.gov (United States)

    Altomare, Claudia; Pianezzi, Enea; Cervio, Elisabetta; Bolis, Sara; Biemmi, Vanessa; Benzoni, Patrizia; Camici, Giovanni G; Moccetti, Tiziano; Barile, Lucio; Vassalli, Giuseppe

    2016-12-01

    Human-induced pluripotent stem cell (hiPSC)-derived cardiomyocytes are likely to revolutionize electrophysiological approaches to arrhythmias. Recent evidence suggests the somatic cell origin of hiPSCs may influence their differentiation potential. Owing to their cardiomyogenic potential, cardiac-stromal progenitor cells (CPCs) are an interesting cellular source for generation of hiPSC-derived cardiomyocytes. The effect of ionic current blockade in hiPSC-derived cardiomyocytes generated from CPCs has not been characterized yet. Human-induced pluripotent stem cell-derived cardiomyocytes were generated from adult CPCs and skin fibroblasts from the same individuals. The effect of selective ionic current blockade on spontaneously beating hiPSC-derived cardiomyocytes was assessed using multi-electrode arrays. Cardiac-stromal progenitor cells could be reprogrammed into hiPSCs, then differentiated into hiPSC-derived cardiomyocytes. Human-induced pluripotent stem cell-derived cardiomyocytes of cardiac origin showed higher upregulation of cardiac-specific genes compared with those of fibroblastic origin. Human-induced pluripotent stem cell-derived cardiomyocytes of both somatic cell origins exhibited sensitivity to tetrodotoxin, a blocker of Na +  current (I Na ), nifedipine, a blocker of L-type Ca 2+  current (I CaL ), and E4031, a blocker of the rapid component of delayed rectifier K +  current (I Kr ). Human-induced pluripotent stem cell-derived cardiomyocytes of cardiac origin exhibited sensitivity to JNJ303, a blocker of the slow component of delayed rectifier K +  current (I Ks ). In hiPSC-derived cardiomyocytes of cardiac origin, I Na , I CaL , I Kr , and I Ks were present as tetrodotoxin-, nifedipine-, E4031-, and JNJ303-sensitive currents, respectively. Although cardiac differentiation efficiency was improved in hiPSCs of cardiac vs. non-cardiac origin, no major functional differences were observed between hiPSC-derived cardiomyocytes of different somatic

  3. Radiation Exposure Decreases the Quantity and Quality of Cardiac Stem Cells in Mice

    Science.gov (United States)

    Luo, Lan; Urata, Yoshishige; Yan, Chen; Hasan, Al Shaimaa; Goto, Shinji; Guo, Chang-Ying; Tou, Fang-Fang; Xie, Yucai; Li, Tao-Sheng

    2016-01-01

    Radiation exposure may increase cardiovascular disease risks; however, the precise molecular/cellular mechanisms remain unclear. In the present study, we examined the hypothesis that radiation impairs cardiac stem cells (CSCs), thereby contributing to future cardiovascular disease risks. Adult C57BL/6 mice were exposed to 3 Gy γ-rays, and heart tissues were collected 24 hours later for further experiments. Although c-kit-positive cells were rarely found, radiation exposure significantly induced apoptosis and DNA damage in the cells of the heart. The ex vivo expansion of CSCs from freshly harvested atrial tissues showed a significantly lower production of CSCs in irradiated mice compared with healthy mice. The proliferative activity of CSCs evaluated by Ki-67 expression was not significantly different between the groups. However, compared to the healthy control, CSCs expanded from irradiated mice showed significantly lower telomerase activity, more 53BP1 foci in the nuclei, lower expression of c-kit and higher expression of CD90. Furthermore, CSCs expanded from irradiated mice had significantly poorer potency in the production of insulin-like growth factor-1. Our data suggest that radiation exposure significantly decreases the quantity and quality of CSCs, which may serve as sensitive bio-parameters for predicting future cardiovascular disease risks. PMID:27195709

  4. Radiation Exposure Decreases the Quantity and Quality of Cardiac Stem Cells in Mice.

    Directory of Open Access Journals (Sweden)

    Lan Luo

    Full Text Available Radiation exposure may increase cardiovascular disease risks; however, the precise molecular/cellular mechanisms remain unclear. In the present study, we examined the hypothesis that radiation impairs cardiac stem cells (CSCs, thereby contributing to future cardiovascular disease risks. Adult C57BL/6 mice were exposed to 3 Gy γ-rays, and heart tissues were collected 24 hours later for further experiments. Although c-kit-positive cells were rarely found, radiation exposure significantly induced apoptosis and DNA damage in the cells of the heart. The ex vivo expansion of CSCs from freshly harvested atrial tissues showed a significantly lower production of CSCs in irradiated mice compared with healthy mice. The proliferative activity of CSCs evaluated by Ki-67 expression was not significantly different between the groups. However, compared to the healthy control, CSCs expanded from irradiated mice showed significantly lower telomerase activity, more 53BP1 foci in the nuclei, lower expression of c-kit and higher expression of CD90. Furthermore, CSCs expanded from irradiated mice had significantly poorer potency in the production of insulin-like growth factor-1. Our data suggest that radiation exposure significantly decreases the quantity and quality of CSCs, which may serve as sensitive bio-parameters for predicting future cardiovascular disease risks.

  5. Secondary prevention through cardiac rehabilitation: physical activity counselling and exercise training: key components of the position paper from the Cardiac Rehabilitation Section of the European Association of Cardiovascular Prevention and Rehabilitation

    DEFF Research Database (Denmark)

    Corrà, Ugo; Piepoli, Massimo F; Carré, François

    2010-01-01

    of a healthy lifestyle. These secondary prevention targets are included in the overall goal of cardiac rehabilitation (CR). Cardiac rehabilitation can be viewed as the clinical application of preventive care by means of a professional multi-disciplinary integrated approach for comprehensive risk reduction...... and global long-term care of cardiac patients. The CR approach is delivered in tandem with a flexible follow-up strategy and easy access to a specialized team. To promote implementation of cardiac prevention and rehabilitation, the CR Section of the EACPR (European Association of Cardiovascular Prevention...... and Rehabilitation) has recently completed a Position Paper, entitled 'Secondary prevention through cardiac rehabilitation: A condition-oriented approach'. Components of multidisciplinary CR for seven clinical presentations have been addressed. Components include patient assessment, physical activity counselling...

  6. Improving Cardiac Action Potential Measurements: 2D and 3D Cell Culture.

    Science.gov (United States)

    Daily, Neil J; Yin, Yue; Kemanli, Pinar; Ip, Brian; Wakatsuki, Tetsuro

    2015-11-01

    Progress in the development of assays for measuring cardiac action potential is crucial for the discovery of drugs for treating cardiac disease and assessing cardiotoxicity. Recently, high-throughput methods for assessing action potential using induced pluripotent stem cell (iPSC) derived cardiomyocytes in both two-dimensional monolayer cultures and three-dimensional tissues have been developed. We describe an improved method for assessing cardiac action potential using an ultra-fast cost-effective plate reader with commercially available dyes. Our methods improve dramatically the detection of the fluorescence signal from these dyes and make way for the development of more high-throughput methods for cardiac drug discovery and cardiotoxicity.

  7. Cytokeratin-positive folliculo-stellate cells in chicken adenohypophysis.

    Science.gov (United States)

    Nishimura, Shotaro; Yamashita, Miyu; Kaneko, Takane; Kawabata, Fuminori; Tabata, Shoji

    2017-11-01

    Folliculo-stellate (FS) cells are non-endocrine cells found in the adenohypophysis and are identified in many animals by the S100 protein marker. Although keratin is another FS marker in several animals, there is no information on localization of keratin in the avian adenohypophysis. In this study, localization of cytokeratin in chicken adenohypophyseal cells was investigated immunohistochemically. Basic cytokeratin (bCK)-positive cells were arranged radially in the cell cords with their cytoplasmic processes reaching the basal lamina. The cell bodies encircled a follicle in the center of the cell cord. Furthermore, the bCK-positive cells were also S100B-positive. Growth hormone, prolactin, adrenocorticotrophic hormone, and luteinizing hormone β-subunit did not co-localize with the bCK-positive cells. In addition, the bCK-positive cells had a laminin-positive area in their cytoplasm. Transmission electron microscopy observed agranular cells equipped with several microvilli that encircled a follicle. These results indicate that bCK-positive cells in the chicken adenohypophysis may be a predominant FS cell population and produce laminin. It is suggested that they function as sustentacular cells to sustain the adjacent endocrine cells and the structure of the cell cords in the chicken adenohypophysis. © 2017 Japanese Society of Animal Science.

  8. Cardiac Sarcoidosis or Giant Cell Myocarditis? On Treatment Improvement of Fulminant Myocarditis as Demonstrated by Cardiovascular Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Hari Bogabathina

    2012-01-01

    Full Text Available Giant cell myocarditis, but not cardiac sarcoidosis, is known to cause fulminant myocarditis resulting in severe heart failure. However, giant cell myocarditis and cardiac sarcoidosis are pathologically similar, and attempts at pathological differentiation between the two remain difficult. We are presenting a case of fulminant myocarditis that has pathological features suggestive of cardiac sarcoidosis, but clinically mimicking giant cell myocarditis. This patient was treated with cyclosporine and prednisone and recovered well. This case we believe challenges our current understanding of these intertwined conditions. By obtaining a sense of severity of cardiac involvement via delayed hyperenhancement of cardiac magnetic resonance imaging, we were more inclined to treat this patient as giant cell myocarditis with cyclosporine. This resulted in excellent improvement of patient’s cardiac function as shown by delayed hyperenhancement images, early perfusion images, and SSFP videos.

  9. Influence of patterned topographic features on the formation of cardiac cell clusters and their rhythmic activities

    International Nuclear Information System (INIS)

    Wang, L; Liu, L; Magome, N; Agladze, K; Chen, Y

    2013-01-01

    In conventional primary cultures, cardiac cells prepared from a newborn rat undergo spontaneous formation of cell clusters after several days. These cell clusters may be non-homogeneously distributed on a flat surface and show irregular beating which can be recorded by calcium ion imaging. In order to improve the cell cluster homogeneity and the beating regularity, patterned topographic features were used to guide the cellular growth and the cell layer formation. On the substrate with an array of broadly spaced cross features made of photoresist, cells grew on the places that were not occupied by the crosses and thus formed a cell layer with interconnected cell clusters. Accordingly, spatially coordinated regular beating could be recorded over the whole patterned area. In contrast, when cultured on the substrate with broadly spaced but inter-connected cross features, the cardiac cell layer showed beatings which were neither coordinated in space nor regular in time. Finally, when cultured on the substrate with narrowly spaced features, the cell beating became spatially coordinated but still remained irregular. Our results suggest a way to improve the rhythmic property of cultured cardiac cell layers which might be useful for further investigations. (paper)

  10. Activation of cardiac progenitor cells through paracrine effects of mesenchymal stem cells

    International Nuclear Information System (INIS)

    Nakanishi, Chiaki; Yamagishi, Masakazu; Yamahara, Kenichi; Hagino, Ikuo; Mori, Hidezo; Sawa, Yoshiki; Yagihara, Toshikatsu; Kitamura, Soichiro; Nagaya, Noritoshi

    2008-01-01

    Mesenchymal stem cells (MSC) transplantation has been proved to be promising strategy to treat the failing heart. The effect of MSC transplantation is thought to be mediated mainly in a paracrine manner. Recent reports have suggested that cardiac progenitor cells (CPC) reside in the heart. In this study, we investigated whether MSC had paracrine effects on CPC in vitro. CPC were isolated from the neonatal rat heart using an explant method. MSC were isolated from the adult rat bone marrow. MSC-derived conditioned medium promoted proliferation of CPC and inhibited apoptosis of CPC induced by hypoxia and serum starvation. Chemotaxis chamber assay demonstrated that MSC-derived conditioned medium enhanced migration of CPC. Furthermore, MSC-derived conditioned medium upregulated expression of cardiomyocyte-related genes in CPC such as β-myosin heavy chain (β-MHC) and atrial natriuretic peptide (ANP). In conclusion, MSC-derived conditioned medium had protective effects on CPC and enhanced their migration and differentiation

  11. Uterine-derived progenitor cells are immunoprivileged and effectively improve cardiac regeneration when used for cell therapy.

    Science.gov (United States)

    Ludke, Ana; Wu, Jun; Nazari, Mansoreh; Hatta, Kota; Shao, Zhengbo; Li, Shu-Hong; Song, Huifang; Ni, Nathan C; Weisel, Richard D; Li, Ren-Ke

    2015-07-01

    Cell therapy to prevent cardiac dysfunction after myocardial infarction (MI) is less effective in aged patients because aged cells have decreased regenerative capacity. Allogeneic transplanted stem cells (SCs) from young donors are usually rejected. Maintaining transplanted SC immunoprivilege may dramatically improve regenerative outcomes. The uterus has distinct immune characteristics, and we showed that reparative uterine SCs home to the myocardium post-MI. Here, we identify immunoprivileged uterine SCs and assess their effects on cardiac regeneration after allogeneic transplantation. We found more than 20% of cells in the mouse uterus have undetectable MHC I expression by flow cytometry. Uterine MHC I((neg)) and MHC I((pos)) cells were separated by magnetic cell sorting. The MHC I((neg)) population expressed the SC markers CD34, Sca-1 and CD90, but did not express MHC II or c-kit. In vitro, MHC I((neg)) and ((pos)) SCs show colony formation and endothelial differentiation capacity. In mixed leukocyte co-culture, MHC I((neg)) cells showed reduced cell death and leukocyte proliferation compared to MHC I((pos)) cells. MHC I((neg)) and ((pos)) cells had significantly greater angiogenic capacity than mesenchymal stem cells. The benefits of intramyocardial injection of allogeneic MHC I((neg)) cells after MI were comparable to syngeneic bone marrow cell transplantation, with engraftment in cardiac tissue and limited recruitment of CD4 and CD8 cells up to 21 days post-MI. MHC I((neg)) cells preserved cardiac function, decreased infarct size and improved regeneration post-MI. This new source of immunoprivileged cells can induce neovascularization and could be used as allogeneic cell therapy for regenerative medicine. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Positive predictive value and impact of misdiagnosis of a heart failure diagnosis in administrative registers among patients admitted to a University Hospital cardiac care unit

    DEFF Research Database (Denmark)

    Mard, Shan; Nielsen, Finn Erland

    2010-01-01

    To evaluate the positive predictive value (PPV) of a diagnosis of heart failure (HF) in the Danish National Registry of Patients (NRP) among patients admitted to a University Hospital cardiac care unit, and to evaluate the impact of misdiagnosing HF.......To evaluate the positive predictive value (PPV) of a diagnosis of heart failure (HF) in the Danish National Registry of Patients (NRP) among patients admitted to a University Hospital cardiac care unit, and to evaluate the impact of misdiagnosing HF....

  13. Rigid microenvironments promote cardiac differentiation of mouse and human embryonic stem cells

    Science.gov (United States)

    Arshi, Armin; Nakashima, Yasuhiro; Nakano, Haruko; Eaimkhong, Sarayoot; Evseenko, Denis; Reed, Jason; Stieg, Adam Z.; Gimzewski, James K.; Nakano, Atsushi

    2013-04-01

    While adult heart muscle is the least regenerative of tissues, embryonic cardiomyocytes are proliferative, with embryonic stem (ES) cells providing an endless reservoir. In addition to secreted factors and cell-cell interactions, the extracellular microenvironment has been shown to play an important role in stem cell lineage specification, and understanding how scaffold elasticity influences cardiac differentiation is crucial to cardiac tissue engineering. Though previous studies have analyzed the role of matrix elasticity on the function of differentiated cardiomyocytes, whether it affects the induction of cardiomyocytes from pluripotent stem cells is poorly understood. Here, we examine the role of matrix rigidity on cardiac differentiation using mouse and human ES cells. Culture on polydimethylsiloxane (PDMS) substrates of varied monomer-to-crosslinker ratios revealed that rigid extracellular matrices promote a higher yield of de novo cardiomyocytes from undifferentiated ES cells. Using a genetically modified ES system that allows us to purify differentiated cardiomyocytes by drug selection, we demonstrate that rigid environments induce higher cardiac troponin T expression, beating rate of foci, and expression ratio of adult α- to fetal β- myosin heavy chain in a purified cardiac population. M-mode and mechanical interferometry image analyses demonstrate that these ES-derived cardiomyocytes display functional maturity and synchronization of beating when co-cultured with neonatal cardiomyocytes harvested from a developing embryo. Together, these data identify matrix stiffness as an independent factor that instructs not only the maturation of already differentiated cardiomyocytes but also the induction and proliferation of cardiomyocytes from undifferentiated progenitors. Manipulation of the stiffness will help direct the production of functional cardiomyocytes en masse from stem cells for regenerative medicine purposes.

  14. Photovoltaic-cell technologies joust for position

    Science.gov (United States)

    Fischetti, M. A.

    1984-03-01

    The three most promising photovoltaic cell technologies, single-crystal-silicon cells, polycrystalline thin films, and amorphous silicon thin films, are reviewed and discussed in terms of present levels of applicability and the prospects for domination of PV markets in the future. A U.S. DOE research plan running from 1984 to 1988 which aims to produce PV modules that will generate electricity at $.20/kWh by 1988 is outlined, and R & D efforts in Japan and Europe are considered. Although GaAs cells have reached efficiencies to 20 percent in the laboratory, the most successful commercial products have been single-crystal-silicon cells with efficiencies between 11 and 12 percent. It is suggested that the immiment rise of amorphous silicon in the late 1980s may thwart polycrystalline-cell development before it has a chance to flourish.

  15. Concise Review: Pluripotent Stem Cell-Derived Cardiac Cells, A Promising Cell Source for Therapy of Heart Failure: Where Do We Stand?

    Science.gov (United States)

    Gouadon, Elodie; Moore-Morris, Thomas; Smit, Nicoline W; Chatenoud, Lucienne; Coronel, Ruben; Harding, Sian E; Jourdon, Philippe; Lambert, Virginie; Rucker-Martin, Catherine; Pucéat, Michel

    2016-01-01

    Heart failure is still a major cause of hospitalization and mortality in developed countries. Many clinical trials have tested the use of multipotent stem cells as a cardiac regenerative medicine. The benefit for the patients of this therapeutic intervention has remained limited. Herein, we review the pluripotent stem cells as a cell source for cardiac regeneration. We more specifically address the various challenges of this cell therapy approach. We question the cell delivery systems, the immune tolerance of allogenic cells, the potential proarrhythmic effects, various drug mediated interventions to facilitate cell grafting and, finally, we describe the pathological conditions that may benefit from such an innovative approach. As members of a transatlantic consortium of excellence of basic science researchers and clinicians, we propose some guidelines to be applied to cell types and modes of delivery in order to translate pluripotent stem cell cardiac derivatives into safe and effective clinical trials. © 2015 AlphaMed Press.

  16. Sca-1+ cardiosphere-derived cells are enriched for Isl1-expressing cardiac precursors and improve cardiac function after myocardial injury.

    Directory of Open Access Journals (Sweden)

    Jianqin Ye

    Full Text Available BACKGROUND: Endogenous cardiac progenitor cells are a promising option for cell-therapy for myocardial infarction (MI. However, obtaining adequate numbers of cardiac progenitors after MI remains a challenge. Cardiospheres (CSs have been proposed to have cardiac regenerative properties; however, their cellular composition and how they may be influenced by the tissue milieu remains unclear. METHODOLOGY/PRINCIPAL FINDING: Using "middle aged" mice as CSs donors, we found that acute MI induced a dramatic increase in the number of CSs in a mouse model of MI, and this increase was attenuated back to baseline over time. We also observed that CSs from post-MI hearts engrafted in ischemic myocardium induced angiogenesis and restored cardiac function. To determine the role of Sca-1(+CD45(- cells within CSs, we cloned these from single cell isolates. Expression of Islet-1 (Isl1 in Sca-1(+CD45(- cells from CSs was 3-fold higher than in whole CSs. Cloned Sca-1(+CD45(- cells had the ability to differentiate into cardiomyocytes, endothelial cells and smooth muscle cells in vitro. We also observed that cloned cells engrafted in ischemic myocardium induced angiogenesis, differentiated into endothelial and smooth muscle cells and improved cardiac function in post-MI hearts. CONCLUSIONS/SIGNIFICANCE: These studies demonstrate that cloned Sca-1(+CD45(- cells derived from CSs from infarcted "middle aged" hearts are enriched for second heart field (i.e., Isl-1(+ precursors that give rise to both myocardial and vascular tissues, and may be an appropriate source of progenitor cells for autologous cell-therapy post-MI.

  17. Transplantation of mesenchymal stem cells overexpressing IL10 attenuates cardiac impairments in rats with myocardial infarction.

    Science.gov (United States)

    Meng, Xin; Li, Jianping; Yu, Ming; Yang, Jian; Zheng, Minjuan; Zhang, Jinzhou; Sun, Chao; Liang, Hongliang; Liu, Liwen

    2018-01-01

    Mesenchymal stem cell (MSC) has been well known to exert therapeutic potential for patients with myocardial infarction (MI). In addition, interleukin-10 (IL10) could attenuate MI through suppressing inflammation. Thus, the combination of MSC implantation with IL10 delivery may extend health benefits to ameliorate cardiac injury after MI. Here we established overexpression of IL10 in bone marrow-derived MSC through adenoviral transduction. Cell viability, apoptosis, and IL10 secretion under ischemic challenge in vitro were examined. In addition, MSC was transplanted into the injured hearts in a rat model of MI. Four weeks after the MI induction, MI, cardiac functions, apoptotic cells, and inflammation cytokines were assessed. In response to in vitro oxygen-glucose deprivation (OGD), IL10 overexpression in MSC (Ad.IL10-MSC) enhanced cell viability, decreased apoptosis, and increased IL10 secretion. Consistently, the implantation of Ad.IL10-MSCs into MI animals resulted in more reductions in myocardial infarct size, cardiac impairment, and cell apoptosis, compared to the individual treatments of either MSC or IL10 administration. Moreover, the attenuation of both systemic and local inflammations was most prominent for Ad.IL10-MSC treatment. IL10 overexpression and MSC may exert a synergistic anti-inflammatory effect to alleviate cardiac injury after MI. © 2017 Wiley Periodicals, Inc.

  18. Direct contact with endoderm-like cells efficiently induces cardiac progenitors from mouse and human pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Hideki Uosaki

    Full Text Available RATIONALE: Pluripotent stem cell-derived cardiac progenitor cells (CPCs have emerged as a powerful tool to study cardiogenesis in vitro and a potential cell source for cardiac regenerative medicine. However, available methods to induce CPCs are not efficient or require high-cost cytokines with extensive optimization due to cell line variations. OBJECTIVE: Based on our in-vivo observation that early endodermal cells maintain contact with nascent pre-cardiac mesoderm, we hypothesized that direct physical contact with endoderm promotes induction of CPCs from pluripotent cells. METHOD AND RESULT: To test the hypothesis, we cocultured mouse embryonic stem (ES cells with the endodermal cell line End2 by co-aggregation or End2-conditioned medium. Co-aggregation resulted in strong induction of Flk1(+ PDGFRa(+ CPCs in a dose-dependent manner, but the conditioned medium did not, indicating that direct contact is necessary for this process. To determine if direct contact with End2 cells also promotes the induction of committed cardiac progenitors, we utilized several mouse ES and induced pluripotent (iPS cell lines expressing fluorescent proteins under regulation of the CPC lineage markers Nkx2.5 or Isl1. In agreement with earlier data, co-aggregation with End2 cells potently induces both Nkx2.5(+ and Isl1(+ CPCs, leading to a sheet of beating cardiomyocytes. Furthermore, co-aggregation with End2 cells greatly promotes the induction of KDR(+ PDGFRa(+ CPCs from human ES cells. CONCLUSIONS: Our co-aggregation method provides an efficient, simple and cost-effective way to induce CPCs from mouse and human pluripotent cells.

  19. Induced pluripotent stem cell derived cardiomyocytes as models for cardiac arrhythmias

    Directory of Open Access Journals (Sweden)

    Maaike eHoekstra

    2012-08-01

    Full Text Available Cardiac arrhythmias are a major cause of morbidity and mortality. In younger patients, the majority of sudden cardiac deaths have an underlying Mendelian genetic cause. Over the last 15 years, enormous progress has been made in identifying the distinct clinical phenotypes and in studying the basic cellular and genetic mechanisms associated with the primary Mendelian (monogenic arrhythmia syndromes. Investigation of the electrophysiological consequences of an ion channel mutation is ideally done in the native cardiomyocyte environment. However, the majority of such studies so far have relied on heterologous expression systems in which single ion channel genes are expressed in non-cardiac cells. In some cases, transgenic mouse models haven been generated, but these also have significant shortcomings, primarily related to species differences.The discovery that somatic cells can be reprogrammed to pluripotency as induced pluripotent stem cells (iPSC has generated much interest since it presents an opportunity to generate patient- and disease-specific cell lines from which normal and diseased human cardiomyocytes can be obtained These genetically diverse human model systems can be studied in vitro and used to decipher mechanisms of disease and identify strategies and reagents for new therapies. Here we review the present state of the art with respect to cardiac disease models already generated using IPSC technology and which have been (partially characterized.Human iPSC (hiPSC models have been described for the cardiac arrhythmia syndromes, including LQT1, LQT2, LQT3-Brugada Syndrome, LQT8/Timothy syndrome and catecholaminergic polymorphic ventricular tachycardia. In most cases, the hiPSC-derived cardiomyoctes recapitulate the disease phenotype and have already provided opportunities for novel insight into cardiac pathophysiology. It is expected that the lines will be useful in the development of pharmacological agents for the management of these

  20. Cortical Bone Stem Cell Therapy Preserves Cardiac Structure and Function After Myocardial Infarction.

    Science.gov (United States)

    Sharp, Thomas E; Schena, Giana J; Hobby, Alexander R; Starosta, Timothy; Berretta, Remus M; Wallner, Markus; Borghetti, Giulia; Gross, Polina; Yu, Daohai; Johnson, Jaslyn; Feldsott, Eric; Trappanese, Danielle M; Toib, Amir; Rabinowitz, Joseph E; George, Jon C; Kubo, Hajime; Mohsin, Sadia; Houser, Steven R

    2017-11-10

    Cortical bone stem cells (CBSCs) have been shown to reduce ventricular remodeling and improve cardiac function in a murine myocardial infarction (MI) model. These effects were superior to other stem cell types that have been used in recent early-stage clinical trials. However, CBSC efficacy has not been tested in a preclinical large animal model using approaches that could be applied to patients. To determine whether post-MI transendocardial injection of allogeneic CBSCs reduces pathological structural and functional remodeling and prevents the development of heart failure in a swine MI model. Female Göttingen swine underwent left anterior descending coronary artery occlusion, followed by reperfusion (ischemia-reperfusion MI). Animals received, in a randomized, blinded manner, 1:1 ratio, CBSCs (n=9; 2×10 7 cells total) or placebo (vehicle; n=9) through NOGA-guided transendocardial injections. 5-ethynyl-2'deoxyuridine (EdU)-a thymidine analog-containing minipumps were inserted at the time of MI induction. At 72 hours (n=8), initial injury and cell retention were assessed. At 3 months post-MI, cardiac structure and function were evaluated by serial echocardiography and terminal invasive hemodynamics. CBSCs were present in the MI border zone and proliferating at 72 hours post-MI but had no effect on initial cardiac injury or structure. At 3 months, CBSC-treated hearts had significantly reduced scar size, smaller myocytes, and increased myocyte nuclear density. Noninvasive echocardiographic measurements showed that left ventricular volumes and ejection fraction were significantly more preserved in CBSC-treated hearts, and invasive hemodynamic measurements documented improved cardiac structure and functional reserve. The number of EdU + cardiac myocytes was increased in CBSC- versus vehicle- treated animals. CBSC administration into the MI border zone reduces pathological cardiac structural and functional remodeling and improves left ventricular functional reserve

  1. Optimal Population of Embryonic Stem Cells in "Hanging Drop" Culture for in-vitro Differentiation to Cardiac Myocytes

    OpenAIRE

    MIWA, Keiko; LEE, Jong-Kook; HIDAKA, Kyoko; SHI, Rong-qian; MORISAKI, Takayuki; KODAMA, Itsuo

    2002-01-01

    Pluripotent embryonic stem (ES) cells differentiate to cardiac myocytes in vitro by many other previous reports demonstrated "hanging-drop" method. In this study, the number of ES cells in each hanging-drop plays an important role in the cultivation of cardiac myocytes. We examined the optimal hanging-drop size to obtain embryonic stem cell-derived cardiac cells (ESCMs) in vitro using specific labeled mouse ES cells (hCGP7) which were stably transfected with the enhanced green fluorescent pro...

  2. PROPOSED CARDIAC STEM CELLS DERIVED FROM “CARDIOSPHERES” LACK CARDIOMYOGENIC POTENTIAL

    DEFF Research Database (Denmark)

    Andersen, Ditte Caroline

       Recent studies have reported that clinical relevant numbers of cardiac stem cells (CSCs) with cardiomyogenic potential can be obtained from small heart tissue biopsies, by an intrinsic ability of CSCs to form beating cardiospheres (CSs) during ex vivo culture. Such data have provided optimism...... that injuried heart tissue may be repaired by stem cell therapy using autologous CS derived cells, and pre-clinical studies have already been described in literature.    Herein, we established CSs from neonatal rats, and by immunofluorescence, qRT-PCR, and microscopic examination we demonstrated...... to form CSs by themselves. Phenotypically, CS cells largely resembled fibroblasts, and they lacked cardiomyogenic as well as endothelial differentiation potential.    Our data imply that at least the murine cardiosphere model seems unsuitable for enrichment of cardiac stem cells with cardiomyogenic...

  3. Mitochondrial DNA deletion mutations in adult mouse cardiac side population cells

    International Nuclear Information System (INIS)

    Lushaj, Entela B.; Lozonschi, Lucian; Barnes, Maria; Anstadt, Emily; Kohmoto, Takushi

    2012-01-01

    We investigated the presence and potential role of mitochondrial DNA (mtDNA) deletion mutations in adult cardiac stem cells. Cardiac side population (SP) cells were isolated from 12-week-old mice. Standard polymerase chain reaction (PCR) was used to screen for the presence of mtDNA deletion mutations in (a) freshly isolated SP cells and (b) SP cells cultured to passage 10. When present, the abundance of mtDNA deletion mutation was analyzed in single cell colonies. The effect of different levels of deletion mutations on SP cell growth and differentiation was determined. MtDNA deletion mutations were found in both freshly isolated and cultured cells from 12-week-old mice. While there was no significant difference in the number of single cell colonies with mtDNA deletion mutations from any of the groups mentioned above, the abundance of mtDNA deletion mutations was significantly higher in the cultured cells, as determined by quantitative PCR. Within a single clonal cell population, the detectable mtDNA deletion mutations were the same in all cells and unique when compared to deletions of other colonies. We also found that cells harboring high levels of mtDNA deletion mutations (i.e. where deleted mtDNA comprised more than 60% of total mtDNA) had slower proliferation rates and decreased differentiation capacities. Screening cultured adult stem cells for mtDNA deletion mutations as a routine assessment will benefit the biomedical application of adult stem cells.

  4. GPR30 decreases cardiac chymase/angiotensin II by inhibiting local mast cell number

    International Nuclear Information System (INIS)

    Zhao, Zhuo; Wang, Hao; Lin, Marina; Groban, Leanne

    2015-01-01

    Chronic activation of the novel estrogen receptor GPR30 by its agonist G1 mitigates the adverse effects of estrogen (E2) loss on cardiac structure and function. Using the ovariectomized (OVX) mRen2.Lewis rat, an E2-sensitive model of diastolic dysfunction, we found that E2 status is inversely correlated with local cardiac angiotensin II (Ang II) levels, likely via Ang I/chymase-mediated production. Since chymase is released from cardiac mast cells during stress (e.g., volume/pressure overload, inflammation), we hypothesized that GPR30-related cardioprotection after E2 loss might occur through its opposing actions on cardiac mast cell proliferation and chymase production. Using real-time quantitative PCR, immunohistochemistry, and immunoblot analysis, we found mast cell number, chymase expression, and cardiac Ang II levels were significantly increased in the hearts of OVX-compared to ovary-intact mRen2.Lewis rats and the GPR30 agonist G1 (50 mg/kg/day, s.c.) administered for 2 weeks limited the adverse effects of estrogen loss. In vitro studies revealed that GPR30 receptors are expressed in the RBL-2H3 mast cell line and G1 inhibits serum-induced cell proliferation in a dose-dependent manner, as determined by cell counting, BrdU incorporation assay, and Ki-67 staining. Using specific antagonists to estrogen receptors, blockage of GPR30, but not ERα or ERβ, attenuated the inhibitory effects of estrogen on BrdU incorporation in RBL-2H3 cells. Further study of the mechanism underlying the effect on cell proliferation showed that G1 inhibits cyclin-dependent kinase 1 (CDK1) mRNA and protein expression in RBL-2H3 cells in a dose-dependent manner. - Highlights: • GPR30 activation limits mast cell number in hearts from OVX mRen2.Lewis rats. • GPR30 activation decreases cardiac chymase/angiotensin II after estrogen loss. • GPR30 activation inhibits RBL-2H3 mast cell proliferation and CDK1 expression

  5. GPR30 decreases cardiac chymase/angiotensin II by inhibiting local mast cell number

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Zhuo [Department of Anesthesiology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27159-1009 (United States); Department of Cardiology, Jinan Central Hospital, Affiliated with Shandong University, 105 Jiefang Road, Jinan, 250013 (China); Wang, Hao; Lin, Marina [Department of Anesthesiology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27159-1009 (United States); Groban, Leanne, E-mail: lgroban@wakehealth.edu [Department of Anesthesiology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27159-1009 (United States); Hypertension and Vascular Disease Center, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157 (United States); Office of Women in Medicine and Science, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157 (United States)

    2015-03-27

    Chronic activation of the novel estrogen receptor GPR30 by its agonist G1 mitigates the adverse effects of estrogen (E2) loss on cardiac structure and function. Using the ovariectomized (OVX) mRen2.Lewis rat, an E2-sensitive model of diastolic dysfunction, we found that E2 status is inversely correlated with local cardiac angiotensin II (Ang II) levels, likely via Ang I/chymase-mediated production. Since chymase is released from cardiac mast cells during stress (e.g., volume/pressure overload, inflammation), we hypothesized that GPR30-related cardioprotection after E2 loss might occur through its opposing actions on cardiac mast cell proliferation and chymase production. Using real-time quantitative PCR, immunohistochemistry, and immunoblot analysis, we found mast cell number, chymase expression, and cardiac Ang II levels were significantly increased in the hearts of OVX-compared to ovary-intact mRen2.Lewis rats and the GPR30 agonist G1 (50 mg/kg/day, s.c.) administered for 2 weeks limited the adverse effects of estrogen loss. In vitro studies revealed that GPR30 receptors are expressed in the RBL-2H3 mast cell line and G1 inhibits serum-induced cell proliferation in a dose-dependent manner, as determined by cell counting, BrdU incorporation assay, and Ki-67 staining. Using specific antagonists to estrogen receptors, blockage of GPR30, but not ERα or ERβ, attenuated the inhibitory effects of estrogen on BrdU incorporation in RBL-2H3 cells. Further study of the mechanism underlying the effect on cell proliferation showed that G1 inhibits cyclin-dependent kinase 1 (CDK1) mRNA and protein expression in RBL-2H3 cells in a dose-dependent manner. - Highlights: • GPR30 activation limits mast cell number in hearts from OVX mRen2.Lewis rats. • GPR30 activation decreases cardiac chymase/angiotensin II after estrogen loss. • GPR30 activation inhibits RBL-2H3 mast cell proliferation and CDK1 expression.

  6. Cell tracking in cardiac repair: What to image and how to image

    NARCIS (Netherlands)

    A. Ruggiero (Alessandro); D.L.J. Thorek (Daniel L.J.); J. Guenoun (Jamal); G.P. Krestin (Gabriel); M.R. Bernsen (Monique)

    2012-01-01

    textabstractStem cell therapies hold the great promise and interest for cardiac regeneration among scientists, clinicians and patients. However, advancement and distillation of a standard treatment regimen are not yet finalised. Into this breach step recent developments in the imaging biosciences.

  7. Bayesian Sensitivity Analysis of a Cardiac Cell Model Using a Gaussian Process Emulator

    Science.gov (United States)

    Chang, Eugene T Y; Strong, Mark; Clayton, Richard H

    2015-01-01

    Models of electrical activity in cardiac cells have become important research tools as they can provide a quantitative description of detailed and integrative physiology. However, cardiac cell models have many parameters, and how uncertainties in these parameters affect the model output is difficult to assess without undertaking large numbers of model runs. In this study we show that a surrogate statistical model of a cardiac cell model (the Luo-Rudy 1991 model) can be built using Gaussian process (GP) emulators. Using this approach we examined how eight outputs describing the action potential shape and action potential duration restitution depend on six inputs, which we selected to be the maximum conductances in the Luo-Rudy 1991 model. We found that the GP emulators could be fitted to a small number of model runs, and behaved as would be expected based on the underlying physiology that the model represents. We have shown that an emulator approach is a powerful tool for uncertainty and sensitivity analysis in cardiac cell models. PMID:26114610

  8. A quantitative model of the cardiac ventricular cell incorporating the transverse-axial tubular system

    Czech Academy of Sciences Publication Activity Database

    Pásek, Michal; Christé, G.; Šimurda, J.

    2003-01-01

    Roč. 22, č. 3 (2003), s. 355-368 ISSN 0231-5882 R&D Projects: GA ČR GP204/02/D129 Institutional research plan: CEZ:AV0Z2076919 Keywords : cardiac cell * tubular system * quantitative modelling Subject RIV: BO - Biophysics Impact factor: 0.794, year: 2003

  9. Identification and functionality of proteomes secreted by rat cardiac stem cells and neonatal cardiomyocytes

    Czech Academy of Sciences Publication Activity Database

    Šťastná, Miroslava; Chimenti, I.; Marban, E.; Van Eyk, J.E.

    2010-01-01

    Roč. 10, č. 2 (2010), s. 245-253 ISSN 1615-9853 Institutional research plan: CEZ:AV0Z40310501 Keywords : animal proteomics * cardiac stem cells * neonatal cardiomyocytes Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 4.815, year: 2010

  10. Cardiac cell therapy: overexpression of connexin43 in skeletal myoblasts and prevention of ventricular arrhythmias

    NARCIS (Netherlands)

    Fernandes, Sarah; van Rijen, Harold V. M.; Forest, Virginie; Evain, Stéphane; Leblond, Anne-Laure; Mérot, Jean; Charpentier, Flavien; de Bakker, Jacques M. T.; Lemarchand, Patricia

    2009-01-01

    Cell-based therapies have great potential for the treatment of cardiovascular diseases. Recently, using a transgenic mouse model Roell et al. reported that cardiac engraftment of connexin43 (Cx43)-overexpressing myoblasts in vivo prevents post-infarct arrhythmia, a common cause of death in patients

  11. Specificity of secreted proteomes from cardiac stem cells and neonatal myocytes

    Czech Academy of Sciences Publication Activity Database

    Šťastná, Miroslava; Chimenti, I.; Marban, E.; Van Eyk, J.

    2009-01-01

    Roč. 276, Suppl.1 (2009), s. 346 ISSN 1742-464X. [FEBS Congress /34./. 04.07.2009-09.07.2009, Prague] Institutional research plan: CEZ:AV0Z40310501 Keywords : cardiac stem cells * secreted paracrine/autocrine factors * proteomics Subject RIV: CB - Analytical Chemistry, Separation

  12. Meta-Analyses of Human Cell-Based Cardiac Regeneration Therapies

    DEFF Research Database (Denmark)

    Gyöngyösi, Mariann; Wojakowski, Wojciech; Navarese, Eliano P

    2016-01-01

    In contrast to multiple publication-based meta-analyses involving clinical cardiac regeneration therapy in patients with recent myocardial infarction, a recently published meta-analysis based on individual patient data reported no effect of cell therapy on left ventricular function or clinical...

  13. Characterization of a Merkel Cell Polyomavirus-Positive Merkel Cell Carcinoma Cell Line CVG-1.

    Science.gov (United States)

    Velásquez, Celestino; Amako, Yutaka; Harold, Alexis; Toptan, Tuna; Chang, Yuan; Shuda, Masahiro

    2018-01-01

    Merkel cell polyomavirus (MCV) plays a causal role in ∼80% of Merkel cell carcinomas (MCC). MCV is clonally integrated into the MCC tumor genome, which results in persistent expression of large T (LT) and small T (sT) antigen oncoproteins encoded by the early locus. In MCV-positive MCC tumors, LT is truncated by premature stop codons or deletions that lead to loss of the C-terminal origin binding (OBD) and helicase domains important for replication. The N-terminal Rb binding domain remains intact. MCV-positive cell lines derived from MCC explants have been valuable tools to study the molecular mechanism of MCV-induced Merkel cell carcinogenesis. Although all cell lines have integrated MCV and express truncated LT antigens, the molecular sizes of the LT proteins differ between cell lines. The copy number of integrated viral genome also varies across cell lines, leading to significantly different levels of viral protein expression. Nevertheless, these cell lines share phenotypic similarities in cell morphology, growth characteristics, and neuroendocrine marker expression. Several low-passage MCV-positive MCC cell lines have been established since the identification of MCV. We describe a new MCV-positive MCV cell line, CVG-1, with features distinct from previously reported cell lines. CVG-1 tumor cells grow in more discohesive clusters in loose round cell suspension, and individual cells show dramatic size heterogeneity. It is the first cell line to encode an MCV sT polymorphism resulting in a unique leucine (L) to proline (P) substitution mutation at amino acid 144. CVG-1 possesses a LT truncation pattern near identical to that of MKL-1 cells differing by the last two C-terminal amino acids and also shows an LT protein expression level similar to MKL-1. Viral T antigen knockdown reveals that, like other MCV-positive MCC cell lines, CVG-1 requires T antigen expression for cell proliferation.

  14. An autopsy case of right ventricular cardiac metastasis from squamous cell carcinoma of the left hand

    Directory of Open Access Journals (Sweden)

    T. Kondo

    2016-12-01

    Full Text Available We here report a 60-year-old woman in whom autopsy revealed a metastasis in the right cardiac ventricle from a well-differentiated squamous cell carcinoma (SCC of the left hand. The tumors in the myocardium and left hand were both well-differentiated SCCs with keratinization and sporadic keratin pearls. High concentrations of heart failure markers together with a pericardial effusion suggested antemortem chronic heart failure. Our case is particularly unusual because there were no regional lymph node metastases and the cardiac metastasis was not one of multiple metastases; thus, hematogenous metastasis to the right side of the heart alone had occurred.

  15. Microfluidic system for monitoring of cardiac (H9C2) cell proliferation

    Science.gov (United States)

    Kobuszewska, A.; Cwik, P.; Jastrzebska, E.; Brzozka, Z.; Chudy, M.; Renaud, P.; Dybko, A.

    2017-05-01

    The paper presents the application of electrical impedance spectroscopy (EIS) analysis for investigation of cardiac cell (H9C2 - rat cardiomyoblast) proliferation after verapamil hydrochloride exposure. For this purpose, two different PDMS/glass microsystems with circular microchamber and longitudinal microchannel integrated with Pt/Al electrodes were used. The microchambers were fabricated in PDMS using photolithography and replica moulding techniques. Pt/Al electrodes were fabricated on a 4-inch glass substrate using Physical Vapor Deposition (PVD). Solution of verapamil hydrochloride was continuously introduced into the microsystems with H9C2 cell culture (a flow rate of 1 μl/min) for 72 h. The impedance spectra were recorded from 100 Hz to 1 MHz. We confirmed that impedance spectroscopy can be used for non-invasive, label-free and real-time analysis of cardiac cells proliferation based on cells dielectric properties and biological structure.

  16. Poly(L-lactic acid) and polyurethane nanofibers fabricated by solution blow spinning as potential substrates for cardiac cell culture

    Energy Technology Data Exchange (ETDEWEB)

    Tomecka, Ewelina, E-mail: etomecka@ch.pw.edu.pl [Department of Microbioanalytics, Institute of Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw (Poland); Wojasinski, Michal [Department of Biotechnology and Bioprocess Engineering, Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw (Poland); Jastrzebska, Elzbieta; Chudy, Michal [Department of Microbioanalytics, Institute of Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw (Poland); Ciach, Tomasz [Department of Biotechnology and Bioprocess Engineering, Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw (Poland); Brzozka, Zbigniew [Department of Microbioanalytics, Institute of Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw (Poland)

    2017-06-01

    This paper presents a comparison and evaluation of cardiac cell proliferation on poly(L-lactic acid) (PLLA) and polyurethane (PU) nanofibrous mats fabricated by solution blow spinning (SBS). Three different cardiac cell lines: rat cardiomyoblasts (H9C2 line), human (HCM) and rat cardiomyocytes (RCM) were used for experiments. Cell morphology, orientation and proliferation were investigated on non-modified and protein-modified (fibronectin, collagen, gelatin, laminin, poly-L-lysine) surfaces of both types of nanofibers. Obtained results of cell culture on nanofibers surfaces were compared to the results of cell culture on polystyrene (PS) surfaces modified in the same way. The results indicated that in most cases polymeric nanofibers (PLLA and PU) are better substrates for cardiac cell culture than PS surfaces. All types of investigated cells, cultured on nanofibers (PLLA and PU), had more elongated shape than cells cultured on PS surfaces. Moreover, cells were arranged in parallel to each other, according to fibers orientation. Additionally, it was shown that the protein modifications of investigated surfaces influenced on cell proliferation. Therefore, we suggest that the cardiac cell culture on nanofibrous mats fabricated by SBS could be more advanced experimental in vitro model for studies on the effect of various cardiac drugs than traditional culture on PS surface. - Highlights: • Solution blow spinning was used for PLLA and PU nanofibers fabrication. • Three cardiac cell lines differing in age and origin were used for experiments. • The protein modifications of investigated surfaces influenced on cell proliferation. • Nanofibers are better substrates for cardiac cell culture than PS surface. • Nanofibers enable cultivating cardiac cells under conditions similar to in vivo.

  17. Poly(L-lactic acid) and polyurethane nanofibers fabricated by solution blow spinning as potential substrates for cardiac cell culture

    International Nuclear Information System (INIS)

    Tomecka, Ewelina; Wojasinski, Michal; Jastrzebska, Elzbieta; Chudy, Michal; Ciach, Tomasz; Brzozka, Zbigniew

    2017-01-01

    This paper presents a comparison and evaluation of cardiac cell proliferation on poly(L-lactic acid) (PLLA) and polyurethane (PU) nanofibrous mats fabricated by solution blow spinning (SBS). Three different cardiac cell lines: rat cardiomyoblasts (H9C2 line), human (HCM) and rat cardiomyocytes (RCM) were used for experiments. Cell morphology, orientation and proliferation were investigated on non-modified and protein-modified (fibronectin, collagen, gelatin, laminin, poly-L-lysine) surfaces of both types of nanofibers. Obtained results of cell culture on nanofibers surfaces were compared to the results of cell culture on polystyrene (PS) surfaces modified in the same way. The results indicated that in most cases polymeric nanofibers (PLLA and PU) are better substrates for cardiac cell culture than PS surfaces. All types of investigated cells, cultured on nanofibers (PLLA and PU), had more elongated shape than cells cultured on PS surfaces. Moreover, cells were arranged in parallel to each other, according to fibers orientation. Additionally, it was shown that the protein modifications of investigated surfaces influenced on cell proliferation. Therefore, we suggest that the cardiac cell culture on nanofibrous mats fabricated by SBS could be more advanced experimental in vitro model for studies on the effect of various cardiac drugs than traditional culture on PS surface. - Highlights: • Solution blow spinning was used for PLLA and PU nanofibers fabrication. • Three cardiac cell lines differing in age and origin were used for experiments. • The protein modifications of investigated surfaces influenced on cell proliferation. • Nanofibers are better substrates for cardiac cell culture than PS surface. • Nanofibers enable cultivating cardiac cells under conditions similar to in vivo.

  18. T cell depleted haploidentical transplantation: positive selection

    Directory of Open Access Journals (Sweden)

    Franco Aversa

    2011-06-01

    Full Text Available Interest in mismatched transplantation arises from the fact that a suitable one-haplotype mismatched donor is immediately available for virtually all patients, particularly for those who urgently need an allogenic transplant. Work on one haplotype-mismatched transplants has been proceeding for over 20 years all over the world and novel transplant techniques have been developed. Some centres have focused on the conditioning regimens and post transplant immune suppression; others have concentrated on manipulating the graft which may be a megadose of extensively T celldepleted or unmanipulated progenitor cells. Excellent engraftment rates are associated with a very low incidence of acute and chronic GVHD and regimen-related mortality even in patients who are over 50 years old. Overall, event-free survival and transplant-related mortality compare favourably with reports on transplants from sources of stem cells other than the matched sibling.

  19. [Stem cells: searching predisposition to cardiac commitment by surface markers expression].

    Science.gov (United States)

    Lara-Martínez, Luis A; Gutiérrez-Villegas, Ingrid; Arenas-Luna, Victor M; Hernández-Gutierrez, Salomón

    2018-01-05

    It is well-known that cardiovascular diseases are the leading cause of death worldwide, and represent an important economic burden to health systems. In an attempt to solve this problem, stem cell therapy has emerged as a therapeutic option. Within the last 20 years, a great variety of stem cells have been used in different myocardial infarction models. Up until now, the use of cardiac stem cells (CSCs) has seemed to be the best option, but the inaccessibility and scarcity of these cells make their use unreliable. Additionally, there is a high risk as they have to be obtained directly from the heart of the patient. Unlike CSCs, adult stem cells originating from bone marrow or adipose tissue, among others, appear to be an attractive option due to their easier accessibility and abundance, but particularly due to the probable existence of cardiac progenitors among their different sub-populations. In this review an analysis is made of the surface markers present in CSCs compared with other adult stem cells. This suggested the pre-existence of cells sharing specific surface markers with CSCs, a predictable immunophenotype present in some cells, although in low proportions, and with a potential of cardiac differentiation that could be similar to CSCs, thus increasing their therapeutic value. This study highlights new perspectives regarding MSCs that would enable some of these sub-populations to be differentiated at cardiac tissue level. Copyright © 2017 Instituto Nacional de Cardiología Ignacio Chávez. Publicado por Masson Doyma México S.A. All rights reserved.

  20. Twist1 Controls a Cell-Specification Switch Governing Cell Fate Decisions within the Cardiac Neural Crest

    Science.gov (United States)

    Vincentz, Joshua W.; Firulli, Beth A.; Lin, Andrea; Spicer, Douglas B.; Howard, Marthe J.; Firulli, Anthony B.

    2013-01-01

    Neural crest cells are multipotent progenitor cells that can generate both ectodermal cell types, such as neurons, and mesodermal cell types, such as smooth muscle. The mechanisms controlling this cell fate choice are not known. The basic Helix-loop-Helix (bHLH) transcription factor Twist1 is expressed throughout the migratory and post-migratory cardiac neural crest. Twist1 ablation or mutation of the Twist-box causes differentiation of ectopic neuronal cells, which molecularly resemble sympathetic ganglia, in the cardiac outflow tract. Twist1 interacts with the pro-neural factor Sox10 via its Twist-box domain and binds to the Phox2b promoter to repress transcriptional activity. Mesodermal cardiac neural crest trans-differentiation into ectodermal sympathetic ganglia-like neurons is dependent upon Phox2b function. Ectopic Twist1 expression in neural crest precursors disrupts sympathetic neurogenesis. These data demonstrate that Twist1 functions in post-migratory neural crest cells to repress pro-neural factors and thereby regulate cell fate determination between ectodermal and mesodermal lineages. PMID:23555309

  1. Analyzing the spatial positioning of nuclei in polynuclear giant cells

    International Nuclear Information System (INIS)

    Stange, Maike; Hintsche, Marius; Sachse, Kirsten; Gerhardt, Matthias; Beta, Carsten; Valleriani, Angelo

    2017-01-01

    How cells establish and maintain a well-defined size is a fundamental question of cell biology. Here we investigated to what extent the microtubule cytoskeleton can set a predefined cell size, independent of an enclosing cell membrane. We used electropulse-induced cell fusion to form giant multinuclear cells of the social amoeba Dictyostelium discoideum . Based on dual-color confocal imaging of cells that expressed fluorescent markers for the cell nucleus and the microtubules, we determined the subcellular distributions of nuclei and centrosomes in the giant cells. Our two- and three-dimensional imaging results showed that the positions of nuclei in giant cells do not fall onto a regular lattice. However, a comparison with model predictions for random positioning showed that the subcellular arrangement of nuclei maintains a low but still detectable degree of ordering. This can be explained by the steric requirements of the microtubule cytoskeleton, as confirmed by the effect of a microtubule degrading drug. (paper)

  2. Analyzing the spatial positioning of nuclei in polynuclear giant cells

    Science.gov (United States)

    Stange, Maike; Hintsche, Marius; Sachse, Kirsten; Gerhardt, Matthias; Valleriani, Angelo; Beta, Carsten

    2017-11-01

    How cells establish and maintain a well-defined size is a fundamental question of cell biology. Here we investigated to what extent the microtubule cytoskeleton can set a predefined cell size, independent of an enclosing cell membrane. We used electropulse-induced cell fusion to form giant multinuclear cells of the social amoeba Dictyostelium discoideum. Based on dual-color confocal imaging of cells that expressed fluorescent markers for the cell nucleus and the microtubules, we determined the subcellular distributions of nuclei and centrosomes in the giant cells. Our two- and three-dimensional imaging results showed that the positions of nuclei in giant cells do not fall onto a regular lattice. However, a comparison with model predictions for random positioning showed that the subcellular arrangement of nuclei maintains a low but still detectable degree of ordering. This can be explained by the steric requirements of the microtubule cytoskeleton, as confirmed by the effect of a microtubule degrading drug.

  3. Concise Review: Fluorescent Reporters in Human Pluripotent Stem Cells: Contributions to Cardiac Differentiation and Their Applications in Cardiac Disease and Toxicity.

    Science.gov (United States)

    Den Hartogh, Sabine C; Passier, Robert

    2016-01-01

    In the last decade, since the first report of induced pluripotent stem cells, the stem cell field has made remarkable progress in the differentiation to specialized cell-types of various tissues and organs, including the heart. Cardiac lineage- and tissue-specific human pluripotent stem cell (hPSC) reporter lines have been valuable for the identification, selection, and expansion of cardiac progenitor cells and their derivatives, and for our current understanding of the underlying molecular mechanisms. In order to further advance the use of hPSCs in the fields of regenerative medicine, disease modeling, and preclinical drug development in cardiovascular research, it is crucial to identify functionally distinct cardiac subtypes and to study their biological signaling events and functional aspects in healthy and diseased conditions. In this review, we discuss the various strategies that have been followed to generate and study fluorescent reporter lines in hPSCs and provide insights how these reporter lines contribute to a better understanding and improvement of cell-based therapies and preclinical drug and toxicity screenings in the cardiac field. © AlphaMed Press.

  4. Cardiac Society of Australia and New Zealand Position Statement: Coronary Artery Calcium Scoring.

    Science.gov (United States)

    Liew, Gary; Chow, Clara; van Pelt, Niels; Younger, John; Jelinek, Michael; Chan, Jonathan; Hamilton-Craig, Christian

    2017-12-01

    Based Primary Prevention Recommendations: There is currently no data in Australia and New Zealand that CAC is cost-effective in informing primary prevention decisions. Given the cost of testing is currently borne entirely by the patient, discussion regarding the implications of CAC results should occur before CAC is recommended and undertaken. Copyright © 2017 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). Published by Elsevier B.V. All rights reserved.

  5. Three-dimensional cardiac microtissues composed of cardiomyocytes and endothelial cells co-differentiated from human pluripotent stem cells

    NARCIS (Netherlands)

    Giacomelli, Elisa; Bellin, Milena; Sala, Luca; Van Meer, Berend J.; Tertoolen, Leon G.J.; Orlova, Valeria V.; Mummery, Christine L.

    2017-01-01

    Cardiomyocytes and endothelial cells in the heart are in close proximity and in constant dialogue. Endothelium regulates the size of the heart, supplies oxygen to the myocardium and secretes factors that support cardiomyocyte function. Robust and predictive cardiac disease models that faithfully

  6. Effect of exogenous apelin-13 on cardiac stem cell mobilization in rats with myocardial infarction

    Directory of Open Access Journals (Sweden)

    Nan ZHENG

    2013-11-01

    Full Text Available Objective To explore the protective effect of exogenous apelin-13 on heart after acute myocardial infarction (AMI in rats and its mechanism. Methods SD rats were randomly divided into 3 groups: sham-operated group (n=6, control group (AMI + saline solution, n=12, experimental group (AMI + apelin-13, n=12. Four rats died in the control group, and five in the experimental group. The rest rats of both control and experimental groups underwent intramyocardial injection with saline solution 20μl and apelin-13 0.2μg/20μl within 5min after coronary artery ligation, respectively. The rats of sham-operated group underwent thoracic surgery without both coronary artery ligation and drug injection. Echocardiography was performed and myocardial infarct size was measured to evaluate the changes of cardiac function. Immunohistochemical staining method was used to detect the positive expression of C-kit, Flk1 and Sca1 in myocardial tissue. Western blotting and RT-PCR were used to quantitatively examine the expression levels of C-kit, Flk1 and Sca1 protein and mRNA in myocardial tissue. Results The results of echocardiography and myocardial infarct size measurement showed that cardiac function of rats was improved more significantly in experimental group than in control group (EF: 68.43%±2.06% in experimental group and 46.40%±15.18% in control group; FS: 33.70%±1.55% in experimental group and 20.73%±8.14% in control group; infarction myocardial area percentage: 16.10%±3.08% in experimental group and 33.83%±5.64% in control group; P<0.05. Immunohistochemical staining of C-kit, Flk1 and Sca1 was negative in sham-operated group and positive or strong positive both in experimental group and control group. Western blotting and RT-PCR showed that the protein and mRNA expression of C-kit, Flk1 and Sca1 were significantly higher in experimental group than in control group (protein level: C-kit 0.48±0.17 vs 1.05±0.08, Flk1 0.40±0.26 vs 0.88±0.10, Sca1

  7. Arrhythmogenic consequences of stem cell therapy for cardiac regeneration

    NARCIS (Netherlands)

    Smit, N.W.

    2018-01-01

    A third of the patients that survive a myocardial infarction develop heart failure for which no effective treatment exists. Stem cell therapy could be a possible solution by regeneration of the myocardium. However, the possible electrophysiological effects of interactions between stem cells and

  8. Ebola virus glycoprotein-mediated anoikis of primary human cardiac microvascular endothelial cells

    International Nuclear Information System (INIS)

    Ray, Ratna B.; Basu, Arnab; Steele, Robert; Beyene, Aster; McHowat, Jane; Meyer, Keith; Ghosh, Asish K.; Ray, Ranjit

    2004-01-01

    Ebola virus glycoprotein (EGP) has been implicated for the induction of cytotoxicity and injury in vascular cells. On the other hand, EGP has also been suggested to induce massive cell rounding and detachment from the plastic surface by downregulating cell adhesion molecules without causing cytotoxicity. In this study, we have examined the cytotoxic role of EGP in primary endothelial cells by transduction with a replication-deficient recombinant adenovirus expressing EGP (Ad-EGP). Primary human cardiac microvascular endothelial cells (HCMECs) transduced with Ad-EGP displayed loss of cell adhesion from the plastic surface followed by cell death. Transfer of conditioned medium from EGP-transduced HCMEC into naive cells did not induce loss of adhesion or cell death, suggesting that EGP needs to be expressed intracellularly to exert its cytotoxic effect. Subsequent studies suggested that HCMEC death occurred through apoptosis. Results from this study shed light on the EGP-induced anoikis in primary human cardiac endothelial cells, which may have significant pathological consequences

  9. Cell therapy attenuates cardiac dysfunction post myocardial infarction: effect of timing, routes of injection and a fibrin scaffold.

    Directory of Open Access Journals (Sweden)

    Juliana S Nakamuta

    Full Text Available BACKGROUND: Cell therapy approaches for biologic cardiac repair hold great promises, although basic fundamental issues remain poorly understood. In the present study we examined the effects of timing and routes of administration of bone marrow cells (BMC post-myocardial infarction (MI and the efficacy of an injectable biopolymer scaffold to improve cardiac cell retention and function. METHODOLOGY/PRINCIPAL FINDINGS: (99mTc-labeled BMC (6 x 10(6 cells were injected by 4 different routes in adult rats: intravenous (IV, left ventricular cavity (LV, left ventricular cavity with temporal aorta occlusion (LV(+ to mimic coronary injection, and intramyocardial (IM. The injections were performed 1, 2, 3, or 7 days post-MI and cell retention was estimated by gamma-emission counting of the organs excised 24 hs after cell injection. IM injection improved cell retention and attenuated cardiac dysfunction, whereas IV, LV or LV* routes were somewhat inefficient (<1%. Cardiac BMC retention was not influenced by timing except for the IM injection that showed greater cell retention at 7 (16% vs. 1, 2 or 3 (average of 7% days post-MI. Cardiac cell retention was further improved by an injectable fibrin scaffold at day 3 post-MI (17 vs. 7%, even though morphometric and function parameters evaluated 4 weeks later displayed similar improvements. CONCLUSIONS/SIGNIFICANCE: These results show that cells injected post-MI display comparable tissue distribution profile regardless of the route of injection and that there is no time effect for cardiac cell accumulation for injections performed 1 to 3 days post-MI. As expected the IM injection is the most efficient for cardiac cell retention, it can be further improved by co-injection with a fibrin scaffold and it significantly attenuates cardiac dysfunction evaluated 4 weeks post myocardial infarction. These pharmacokinetic data obtained under similar experimental conditions are essential for further development of these

  10. Human embryonic stem cell derived mesenchymal progenitors express cardiac markers but do not form contractile cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Christophe M Raynaud

    Full Text Available Mesenchymal progenitors or stromal cells have shown promise as a therapeutic strategy for a range of diseases including heart failure. In this context, we explored the growth and differentiation potential of mesenchymal progenitors (MPs derived in vitro from human embryonic stem cells (hESCs. Similar to MPs isolated from bone marrow, hESC derived MPs (hESC-MPs efficiently differentiated into archetypical mesenchymal derivatives such as chondrocytes and adipocytes. Upon treatment with 5-Azacytidine or TGF-β1, hESC-MPs modified their morphology and up-regulated expression of key cardiac transcription factors such as NKX2-5, MEF2C, HAND2 and MYOCD. Nevertheless, NKX2-5+ hESC-MP derivatives did not form contractile cardiomyocytes, raising questions concerning the suitability of these cells as a platform for cardiomyocyte replacement therapy. Gene profiling experiments revealed that, although hESC-MP derived cells expressed a suite of cardiac related genes, they lacked the complete repertoire of genes associated with bona fide cardiomyocytes. Our results suggest that whilst agents such as TGF-β1 and 5-Azacytidine can induce expression of cardiac related genes, but treated cells retain a mesenchymal like phenotype.

  11. Cell-based therapies for cardiac repair : a meeting report on scientific observations and European regulatory viewpoints

    NARCIS (Netherlands)

    Schüssler-Lenz, Martina; Beuneu, Claire; Menezes-Ferreira, Margarida; Jekerle, Veronika; Bartunek, Jozef; Chamuleau, Steven; Celis, Patrick; Doevendans, Pieter; O'Donovan, Maura; Hill, Jonathan; Hystad, Marit; Jovinge, Stefan; Kyselovič, Ján; Lipnik-Stangelj, Metoda; Maciulaitis, Romaldas; Prasad, Krishna; Samuel, Anthony; Tenhunen, Olli; Tonn, Torsten; Rosano, Giuseppe; Zeiher, Andreas; Salmikangas, Paula

    In the past decade, novel cell-based products have been studied in patients with acute and chronic cardiac disease to assess whether these therapies are efficacious in improving heart function and preventing the development of end-stage heart failure. Cardiac indications studied include acute

  12. Prevalence of polyreactive innate clones among graft--infiltrating B cells in human cardiac allograft vasculopathy.

    Science.gov (United States)

    Chatterjee, Debanjana; Moore, Carolina; Gao, Baoshan; Clerkin, Kevin J; See, Sarah B; Shaked, David; Rogers, Kortney; Nunez, Sarah; Veras, Yokarla; Addonizio, Linda; Givertz, Michael M; Naka, Yoshifumi; Mancini, Donna; Vasilescu, Rodica; Marboe, Charles; Restaino, Susan; Madsen, Joren C; Zorn, Emmanuel

    2018-03-01

    Cardiac allograft vasculopathy (CAV) has been associated with graft-infiltrating B cells, although their characteristics are still unclear. In this study we examined the frequency, localization and reactivity profile of graft-infiltrating B cells to determine their contribution to the pathophysiology of CAV. B cells, plasma cells and macrophages were examined by immunohistochemistry in 56 allografts with CAV, 49 native failed hearts and 25 autopsy specimens. A total of 102 B-cell clones were immortalized directly from the infiltrates of 3 fresh cardiac samples with CAV. Their secreted antibodies were assessed using enzyme-linked immunoassay and flow cytometry. B-cell infiltration was observed around coronary arteries in 93% of allograft explants with CAV. Comparatively, intragraft B cells were less frequent and less dense in the intraventricular myocardium from where routine biopsies are obtained. Plasma cells and macrophages were also detected in 85% and 95% of explants, respectively. Remarkably, B-cell infiltrates were not associated with circulating donor-specific antibodies (DSA) or prior episodes of antibody-mediated rejection (AMR). Among all B-cell clones generated from 3 explants with CAV, a majority secreted natural antibodies reactive to multiple autoantigens and apoptotic cells, a characteristic of innate B cells. Our study reveals a high frequency of infiltrating B cells around the coronary arteries of allografts with CAV, independent of DSA or AMR. These cells are enriched for innate B cells with a polyreactive profile. The findings shift the focus from conventional DSA-producing B cells to the potentially pathogenic polyreactive B cells in the development of clinical CAV. Copyright © 2018 International Society for the Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.

  13. In vitro transdifferentiation of umbilical cord stem cells into cardiac myocytes: Role of growth factors

    Directory of Open Access Journals (Sweden)

    Rasha A.M. Khattab

    2013-04-01

    Full Text Available Recently, stem cell based cell therapy has become a realistic option to replace damaged cardiomyocytes. Most studies on stem cell transplantation therapy have focused on the use of undifferentiated stem cells. There is a strong possibility that some cardiogenic differentiation of the stem cell in vitro prior to transplantation would result in higher engraftment efficiency, as well as enhanced myocardial regeneration and recovery of heart function. In this study we aimed to define the conditions for ex-vivo differentiation of cord blood stem cells to cardiomyocytes and endothelial cells. These conditions include the combination of vascular endothelial growth factor (VEGF; basic fibroblast growth factor (FGF-2 and platelet derived growth factor AB (PDGF-AB. Forty cord blood samples were included in this work. In this work, the percentage of CD34+ cells, CD31+ cells and CD34/31+ cells in mononuclear cells (MNC suspension was counted prior to culture (day zero, and day 10 in the different growth factor cocktails used as well as the control tube, from which the fold increase of CD34+ cells, CD31+ cells and CD34/31+ cells was calculated. Detection of cardiac troponin I in the cultured cells to confirm cardiac differentiation was done at day 10 using Mouse anti-troponin I monoclonal antibody. From the present study, it was concluded that the growth factor cocktail in protocol 2 (FGF2+VEGF+PDGF-AB gives better in vitro trans-differentiation of stem/progenitor cells in umbilical cord blood into cardiomyocytes and endothelial cells than the cytokines cocktail in protocol 1 (FGF2+VEGF alone.

  14. A New Method to Stabilize c-kit Expression in Reparative Cardiac Mesenchymal Cells

    Directory of Open Access Journals (Sweden)

    Marcin Wysoczynski

    2016-08-01

    Full Text Available Cell therapy improves cardiac function. Few cells have been investigated more extensively or consistently shown to be more effective than c-kit sorted cells; however, c-kit expression is easily lost during passage. Here, our primary goal was to develop an improved method to isolate c-kitpos cells and maintain c-kit expression after passaging. Cardiac mesenchymal cells (CMCs from wild-type mice were selected by polystyrene adherence properties. CMCs adhering within the first hours are referred to as rapidly adherent (RA; CMCs adhering subsequently are dubbed slowly adherent (SA. Both RA and SA CMCs were c-kit sorted. SA CMCs maintained significantly higher c-kit expression than RA cells; SA CMCs also had higher expression endothelial markers. We subsequently tested the relative efficacy of SA versus RA CMCs in the setting of post-infarct adoptive transfer. Two days after coronary occlusion, vehicle, RA CMCs, or SA CMCs were delivered percutaneously with echocardiographic guidance. SA CMCs, but not RA CMCs, significantly improved cardiac function compared to vehicle treatment. Although the mechanism remains to be elucidated, the more pronounced endothelial phenotype of the SA CMCs coupled with the finding of increased vascular density suggest a potential pro-vasculogenic action. This new method of isolating CMCs better preserves c-kit expression during passage. SA CMCs, but not RA CMCs, were effective in reducing cardiac dysfunction. Although c-kit expression was maintained, it is unclear whether maintenance of c-kit expression per se was responsible for improved function, or whether the differential adherence property itself confers a reparative phenotype independently of c-kit.

  15. Evaluation of cardiac function tests in Sudanese adult patients with sickle cell trait

    Directory of Open Access Journals (Sweden)

    Kamal E.A. Abdelsalam

    2016-10-01

    Full Text Available Background: Cardiac dysfunctions have been recognized as a common complication of sickle cell anaemia (SCA, and together with pulmonary disorder accounts for many deaths in these patients. However, sickle cell traits appear clinically normal, although they have genetic abnormality. The aim of this study was to assess the effect of sickle cell trait on cardiac prognostic markers by measuring high density lipoprotein (HDL-C, low density lipoprotein (LDL-C, cardiac creatine kinase (CK-MB, ultra-sensitive C reactive protein (us-CRP, total homocysteine (Hyc, and N-terminal pro-brain natriuretic peptide (NT-pro BNP tests in adult Sudanese patients with sickle cell trait.Methods: A cross-sectional study was performed in 200 healthy volunteers as a control group and 200 diagnosed patients with sickle cell trait. It was carried out in Khartoum Specialized Hospital, Al-Bayan Hospital, Obayed Clinical Center and Dr. Nadir Specialized Hospital, Sudan between January 2015 and January 2016. All participants were between 20-32 years old. LDL-C, HDL-C, CK-MB, NT-proBNP and hs-CRP concentrations were measured by Hitachi 912 full-automated Chemistry Analyzer (Roche Diagnostics, Germany as manufacturer procedure, while homocysteine level was measured by ELISA technique using special kit.Results: When compared to control group, the levels of LDL-C, hs-CRP and NT-proBNP revealed significant increase in patients’ sera (p<0.001, while Hyc and CK-MB levels were increased insignificantly in patients with SCT (p=0.069, p=0.054 respectively. On the other hand, comparison to control group, HDL-C showed insignificant reduction in patients (p=0.099.Conclusion: The results suggest that sickle cell trait increased the risk of patient-related complication secondary to cardiac dysfunction.

  16. miR-133a Enhances the Protective Capacity of Cardiac Progenitors Cells after Myocardial Infarction

    Directory of Open Access Journals (Sweden)

    Alberto Izarra

    2014-12-01

    Full Text Available miR-133a and miR-1 are known as muscle-specific microRNAs that are involved in cardiac development and pathophysiology. We have shown that both miR-1 and miR-133a are early and progressively upregulated during in vitro cardiac differentiation of adult cardiac progenitor cells (CPCs, but only miR-133a expression was enhanced under in vitro oxidative stress. miR-1 was demonstrated to favor differentiation of CPCs, whereas miR-133a overexpression protected CPCs against cell death, targeting, among others, the proapoptotic genes Bim and Bmf. miR-133a-CPCs clearly improved cardiac function in a rat myocardial infarction model by reducing fibrosis and hypertrophy and increasing vascularization and cardiomyocyte proliferation. The beneficial effects of miR-133a-CPCs seem to correlate with the upregulated expression of several relevant paracrine factors and the plausible cooperative secretion of miR-133a via exosomal transport. Finally, an in vitro heart muscle model confirmed the antiapoptotic effects of miR-133a-CPCs, favoring the structuration and contractile functionality of the artificial tissue.

  17. Cardiac endothelial cells isolated from mouse heart - a novel model for radiobiology

    International Nuclear Information System (INIS)

    Jelonek, K.; Walaszczyk, A.; Gabrys, D.; Pietrowska, M.; Widlak, P.; Kanthou, Ch.

    2011-01-01

    Cardiovascular disease is recognized as an important clinical problem in radiotherapy and radiation protection. However, only few radiobiological models relevant for assessment of cardiotoxic effects of ionizing radiation are available. Here we describe the isolation of mouse primary cardiac endothelial cells, a possible target for cardiotoxic effects of radiation. Cells isolated from hearts of juvenile mice were cultured and irradiated in vitro. In addition, cells isolated from hearts of locally irradiated adult animals (up to 6 days after irradiation) were tested. A dose-dependent formation of histone γH 2 A.X foci was observed after in vitro irradiation of cultured cells. However, such cells were resistant to radiation-induced apoptosis. Increased levels of actin stress fibres were observed in the cytoplasm of cardiac endothelial cells irradiated in vitro or isolated from irradiated animals. A high dose of 16 Gy did not increase permeability to Dextran in monolayers formed by endothelial cells. Up-regulated expression of Vcam1, Sele and Hsp70i genes was detected after irradiation in vitro and in cells isolated few days after irradiation in vivo. The increased level of actin stress fibres and enhanced expression of stress-response genes in irradiated endothelial cells are potentially involved in cardiotoxic effects of ionizing radiation. (authors)

  18. Could Cells from Your Nose Fix Your Heart? Transplantation of Olfactory Stem Cells in a Rat Model of Cardiac Infarction

    Directory of Open Access Journals (Sweden)

    Cameron McDonald

    2010-01-01

    Full Text Available This study examines the hypothesis that multipotent olfactory mucosal stem cells could provide a basis for the development of autologous cell transplant therapy for the treatment of heart attack. In humans, these cells are easily obtained by simple biopsy. Neural stem cells from the olfactory mucosa are multipotent, with the capacity to differentiate into developmental fates other than neurons and glia, with evidence of cardiomyocyte differentiation in vitro and after transplantation into the chick embryo. Olfactory stem cells were grown from rat olfactory mucosa. These cells are propagated as neurosphere cultures, similar to other neural stem cells. Olfactory neurospheres were grown in vitro, dissociated into single cell suspensions, and transplanted into the infarcted hearts of congeneic rats. Transplanted cells were genetically engineered to express green fluorescent protein (GFP in order to allow them to be identified after transplantation. Functional assessment was attempted using echocardiography in three groups of rats: control, unoperated; infarct only; infarcted and transplanted. Transplantation of neurosphere-derived cells from adult rat olfactory mucosa appeared to restore heart rate with other trends towards improvement in other measures of ventricular function indicated. Importantly, donor-derived cells engrafted in the transplanted cardiac ventricle and expressed cardiac contractile proteins.

  19. Cardiac Restoration Stemming From the Placenta Tree: Insights From Fetal and Perinatal Cell Biology

    Directory of Open Access Journals (Sweden)

    Sveva Bollini

    2018-04-01

    Full Text Available Efficient cardiac repair and ultimate regeneration still represents one of the main challenges of modern medicine. Indeed, cardiovascular disease can derive from independent conditions upsetting heart structure and performance: myocardial ischemia and infarction (MI, pharmacological cardiotoxicity, and congenital heart defects, just to name a few. All these disorders have profound consequences on cardiac tissue, inducing the onset of heart failure over time. Since the cure is currently represented by heart transplantation, which is extremely difficult due to the shortage of donors, much effort is being dedicated to developing innovative therapeutic strategies based on stem cell exploitation. Among the broad scenario of stem/progenitor cell subpopulations, fetal and perinatal sources, namely amniotic fluid and term placenta, have gained interest due to their peculiar regenerative capacity, high self-renewal capability, and ease of collection from clinical waste material. In this review, we will provide the state-of-the-art on fetal perinatal stem cells for cardiac repair and regeneration. We will discuss different pathological conditions and the main therapeutic strategies proposed, including cell transplantation, putative paracrine therapy, reprogramming, and tissue engineering approaches.

  20. Cardiac arrest due to hyperkalemia following irradiated packed red cells transfusion

    Energy Technology Data Exchange (ETDEWEB)

    Miyazawa, Kazuharu [Yamamoto-kumiai General Hospital, Noshiro, Akita (Japan); Ohta, Sukejuurou; Kojima, Yukiko; Mizunuma, Takahide; Nishikawa, Toshiaki

    1998-11-01

    We describe two cases of cardiac arrest due to hyperkalemia following transfusion of irradiated packed red cells. Case 1: Because sudden, rapid and massive hemorrage occurred in a 69-year-old male patient undergoing the left lobectomy of the liver, 8 units of irradiated packed red cells were rapidly transfused, the patient developed cardiac arrest. Serum kalium concentration after transfusion was 7.6 mEq/l. Case 2: A 7-month-old girl scheduled for closure of a ventricular septal defect, developed cardiac arrest due to hyperkalemia at the start of cardiopulmonary bypass. The extracorporeal circuit was primed with 6 units of irradiated packed red blood cells. Serum kalium concentration immediately after the start of cardiopulmonary bypass was 10.6 mEq/l. Analysis of kalium concentration in the pilot tubes of the same packs revealed 56-61 mEq/l. These case reports suggest that fresh irradiated packed red cells should be transfused during massive bleeding and for pediatric patients to prevent severe hyperkalemia. (author)

  1. Genome-Nuclear Lamina Interactions Regulate Cardiac Stem Cell Lineage Restriction.

    Science.gov (United States)

    Poleshko, Andrey; Shah, Parisha P; Gupta, Mudit; Babu, Apoorva; Morley, Michael P; Manderfield, Lauren J; Ifkovits, Jamie L; Calderon, Damelys; Aghajanian, Haig; Sierra-Pagán, Javier E; Sun, Zheng; Wang, Qiaohong; Li, Li; Dubois, Nicole C; Morrisey, Edward E; Lazar, Mitchell A; Smith, Cheryl L; Epstein, Jonathan A; Jain, Rajan

    2017-10-19

    Progenitor cells differentiate into specialized cell types through coordinated expression of lineage-specific genes and modification of complex chromatin configurations. We demonstrate that a histone deacetylase (Hdac3) organizes heterochromatin at the nuclear lamina during cardiac progenitor lineage restriction. Specification of cardiomyocytes is associated with reorganization of peripheral heterochromatin, and independent of deacetylase activity, Hdac3 tethers peripheral heterochromatin containing lineage-relevant genes to the nuclear lamina. Deletion of Hdac3 in cardiac progenitor cells releases genomic regions from the nuclear periphery, leading to precocious cardiac gene expression and differentiation into cardiomyocytes; in contrast, restricting Hdac3 to the nuclear periphery rescues myogenesis in progenitors otherwise lacking Hdac3. Our results suggest that availability of genomic regions for activation by lineage-specific factors is regulated in part through dynamic chromatin-nuclear lamina interactions and that competence of a progenitor cell to respond to differentiation signals may depend upon coordinated movement of responding gene loci away from the nuclear periphery. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Functional modulation of cardiac form through regionally confined cell shape changes.

    Directory of Open Access Journals (Sweden)

    Heidi J Auman

    2007-03-01

    Full Text Available Developing organs acquire a specific three-dimensional form that ensures their normal function. Cardiac function, for example, depends upon properly shaped chambers that emerge from a primitive heart tube. The cellular mechanisms that control chamber shape are not yet understood. Here, we demonstrate that chamber morphology develops via changes in cell morphology, and we determine key regulatory influences on this process. Focusing on the development of the ventricular chamber in zebrafish, we show that cardiomyocyte cell shape changes underlie the formation of characteristic chamber curvatures. In particular, cardiomyocyte elongation occurs within a confined area that forms the ventricular outer curvature. Because cardiac contractility and blood flow begin before chambers emerge, cardiac function has the potential to influence chamber curvature formation. Employing zebrafish mutants with functional deficiencies, we find that blood flow and contractility independently regulate cell shape changes in the emerging ventricle. Reduction of circulation limits the extent of cardiomyocyte elongation; in contrast, disruption of sarcomere formation releases limitations on cardiomyocyte dimensions. Thus, the acquisition of normal cardiomyocyte morphology requires a balance between extrinsic and intrinsic physical forces. Together, these data establish regionally confined cell shape change as a cellular mechanism for chamber emergence and as a link in the relationship between form and function during organ morphogenesis.

  3. Surface ECG and Fluoroscopy are Not Predictive of Right Ventricular Septal Lead Position Compared to Cardiac CT.

    Science.gov (United States)

    Rowe, Matthew K; Moore, Peter; Pratap, Jit; Coucher, John; Gould, Paul A; Kaye, Gerald C

    2017-05-01

    Controversy exists regarding the optimal lead position for chronic right ventricular (RV) pacing. Placing a lead at the RV septum relies upon fluoroscopy assisted by a surface 12-lead electrocardiogram (ECG). We compared the postimplant lead position determined by ECG-gated multidetector contrast-enhanced computed tomography (MDCT) with the position derived from the surface 12-lead ECG. Eighteen patients with permanent RV leads were prospectively enrolled. Leads were placed in the RV septum (RVS) in 10 and the RV apex (RVA) in eight using fluoroscopy with anteroposterior and left anterior oblique 30° views. All patients underwent MDCT imaging and paced ECG analysis. ECG criteria were: QRS duration; QRS axis; positive or negative net QRS amplitude in leads I, aVL, V1, and V6; presence of notching in the inferior leads; and transition point in precordial leads at or after V4. Of the 10 leads implanted in the RVS, computed tomography (CT) imaging revealed seven to be at the anterior RV wall, two at the anteroseptal junction, and one in the true septum. For the eight RVA leads, four were anterior, two septal, and two anteroseptal. All leads implanted in the RVS met at least one ECG criteria (median 3, range 1-6). However, no criteria were specific for septal position as judged by MDCT. Mean QRS duration was 160 ± 24 ms in the RVS group compared with 168 ± 14 ms for RVA pacing (P = 0.38). We conclude that the surface ECG is not sufficiently accurate to determine RV septal lead tip position compared to cardiac CT. © 2017 Wiley Periodicals, Inc.

  4. Biphasic role of chondroitin sulfate in cardiac differentiation of embryonic stem cells through inhibition of Wnt/β-catenin signaling.

    Directory of Open Access Journals (Sweden)

    Robert D Prinz

    Full Text Available The glycosaminoglycan chondroitin sulfate is a critical component of proteoglycans on the cell surface and in the extracellular matrix. As such, chondroitin sulfate side chains and the sulfation balance of chondroitin play important roles in the control of signaling pathways, and have a functional importance in human disease. In contrast, very little is known about the roles of chondroitin sulfate molecules and sulfation patterns during mammalian development and cell lineage specification. Here, we report a novel biphasic role of chondroitin sulfate in the specification of the cardiac cell lineage during embryonic stem cell differentiation through modulation of Wnt/beta-catenin signaling. Lineage marker analysis demonstrates that enzymatic elimination of endogenous chondroitin sulfates leads to defects specifically in cardiac differentiation. This is accompanied by a reduction in the number of beating cardiac foci. Mechanistically, we show that endogenous chondroitin sulfate controls cardiac differentiation in a temporal biphasic manner through inhibition of the Wnt/beta-catenin pathway, a known regulatory pathway for the cardiac lineage. Treatment with a specific exogenous chondroitin sulfate, CS-E, could mimic these biphasic effects on cardiac differentiation and Wnt/beta-catenin signaling. These results establish chondroitin sulfate and its sulfation balance as important regulators of cardiac cell lineage decisions through control of the Wnt/beta-catenin pathway. Our work suggests that targeting the chondroitin biosynthesis and sulfation machinery is a novel promising avenue in regenerative strategies after heart injury.

  5. Biphasic role of chondroitin sulfate in cardiac differentiation of embryonic stem cells through inhibition of Wnt/β-catenin signaling.

    Science.gov (United States)

    Prinz, Robert D; Willis, Catherine M; van Kuppevelt, Toin H; Klüppel, Michael

    2014-01-01

    The glycosaminoglycan chondroitin sulfate is a critical component of proteoglycans on the cell surface and in the extracellular matrix. As such, chondroitin sulfate side chains and the sulfation balance of chondroitin play important roles in the control of signaling pathways, and have a functional importance in human disease. In contrast, very little is known about the roles of chondroitin sulfate molecules and sulfation patterns during mammalian development and cell lineage specification. Here, we report a novel biphasic role of chondroitin sulfate in the specification of the cardiac cell lineage during embryonic stem cell differentiation through modulation of Wnt/beta-catenin signaling. Lineage marker analysis demonstrates that enzymatic elimination of endogenous chondroitin sulfates leads to defects specifically in cardiac differentiation. This is accompanied by a reduction in the number of beating cardiac foci. Mechanistically, we show that endogenous chondroitin sulfate controls cardiac differentiation in a temporal biphasic manner through inhibition of the Wnt/beta-catenin pathway, a known regulatory pathway for the cardiac lineage. Treatment with a specific exogenous chondroitin sulfate, CS-E, could mimic these biphasic effects on cardiac differentiation and Wnt/beta-catenin signaling. These results establish chondroitin sulfate and its sulfation balance as important regulators of cardiac cell lineage decisions through control of the Wnt/beta-catenin pathway. Our work suggests that targeting the chondroitin biosynthesis and sulfation machinery is a novel promising avenue in regenerative strategies after heart injury.

  6. Positive pressure ventilation in the management of acute and chronic cardiac failure: a systematic review and meta-analysis.

    Science.gov (United States)

    Nadar, Sunil; Prasad, Neeraj; Taylor, Rod S; Lip, Gregory Y H

    2005-03-18

    Chronic heart failure (CHF) is a common condition and is associated with excess morbidity and mortality, in spite of the many advances in its treatment. Chronic stable heart failure is also associated with an increased incidence of sleep-related breathing disorders, such as central sleep apnoea (CSA) and Cheyne Stokes respiration (CSR). Continuous positive airways pressure (CPAP) has been shown to alleviate the symptoms of CHF, improve left ventricular function and oxygenation. To a certain extent, CPAP also abolishes sleep-related breathing disorders in patients with chronic heart failure. In patients with acute pulmonary oedema, the use of positive pressure ventilation improves cardiac haemodynamic indices, as well as symptoms and oxygenation, and is associated with a lower need for intubation. However, some studies have cast doubts about its safety and suggest a higher rate of myocardial infarction associated with its use. In our opinion, non-invasive positive pressure ventilation and CPAP offers an adjunctive mode of therapy in patients with acute pulmonary oedema and chronic heart failure, who may not be suitable for intubation and in those not responsive to conventional therapies. Non-invasive ventilation also helps to improve oxygenation in those patients with exhaustion and respiratory acidosis. Many trials are still ongoing and the results of these studies would throw more light on the present role of non-invasive ventilation in the management of CHF.

  7. Human amyloidogenic light chain proteins result in cardiac dysfunction, cell death, and early mortality in zebrafish.

    Science.gov (United States)

    Mishra, Shikha; Guan, Jian; Plovie, Eva; Seldin, David C; Connors, Lawreen H; Merlini, Giampaolo; Falk, Rodney H; MacRae, Calum A; Liao, Ronglih

    2013-07-01

    Systemic amyloid light-chain (AL) amyloidosis is associated with rapidly progressive and fatal cardiomyopathy resulting from the direct cardiotoxic effects of circulating AL light chain (AL-LC) proteins and the indirect effects of AL fibril tissue infiltration. Cardiac amyloidosis is resistant to standard heart failure therapies, and, to date, there are limited treatment options for these patients. The mechanisms underlying the development of cardiac amyloidosis and AL-LC cardiotoxicity are largely unknown, and their study has been limited by the lack of a suitable in vivo model system. Here, we establish an in vivo zebrafish model of human AL-LC-induced cardiotoxicity. AL-LC isolated from AL cardiomyopathy patients or control nonamyloidogenic LC protein isolated from multiple myeloma patients (Con-LC) was directly injected into the circulation of zebrafish at 48 h postfertilization. AL-LC injection resulted in impaired cardiac function, pericardial edema, and increased cell death relative to Con-LC, culminating in compromised survival with 100% mortality within 2 wk, independent of AL fibril deposition. Prior work has implicated noncanonical p38 MAPK activation in the pathogenesis of AL-LC-induced cardiotoxicity, and p38 MAPK inhibition via SB-203580 rescued AL-LC-induced cardiac dysfunction and cell death and attenuated mortality in zebrafish. This in vivo zebrafish model of AL-LC cardiotoxicity demonstrates that antagonism of p38 MAPK within the AL-LC cardiotoxic signaling response may serve to improve cardiac function and mortality in AL cardiomyopathy. Furthermore, this in vivo model system will allow for further study of the molecular underpinnings of AL cardiotoxicity and identification of novel therapeutic strategies.

  8. Cardiac Arrhythmias in Children with Sickle Cell Anaemia | Bode ...

    African Journals Online (AJOL)

    Background : Sickle cell anaemia (SCA) is an important cause of morbidity and mortality in tropical Africa. Recurrent episodes of vaso-occlusive crisis often lead to organ ischaemia and/or infarction. Arrythmias are common and reliable manifestations of myocardial ischaemia and often follow infarction. The prevalence and ...

  9. Circulating Tumor Cells and Cardiac Metastasis from Esophageal Cancer: A Case Report

    Directory of Open Access Journals (Sweden)

    Francesca Consoli

    2011-05-01

    Full Text Available We report the case of a 67-year-old man affected by metastatic esophageal cancer. The patient developed a symptomatic heart metastasis presenting as mimicking ST-segment elevation myocardial infarction. Cardiac magnetic resonance imaging (MRI documented the presence of a mass in the apex and septum of the left ventriculum. The dissemination of cancer was confirmed by the detection of circulating tumor cells (CTCs in the peripheral blood, measured by the CellSearch System (Veridex, LLC, Raritan, N.J., USA. The blood sample drawn at cardiac disease progression revealed the presence of 2 CTCs per 7.5 ml of blood. This report highlights the potential role of CTCs as markers of metastatic spread.

  10. Mesenchymal stem cells for cardiac repair: are the actors ready for the clinical scenario?

    Directory of Open Access Journals (Sweden)

    Santiago Roura

    2017-10-01

    Full Text Available Abstract For years, sufficient progress has been made in treating heart failure following myocardial infarction; however, the social and economic burdens and the costs to world health systems remain high. Moreover, treatment advances have not resolved the underlying problem of functional heart tissue loss. In this field of research, for years we have actively explored innovative biotherapies for cardiac repair. Here, we present a general, critical overview of our experience in using mesenchymal stem cells, derived from cardiac adipose tissue and umbilical cord blood, in a variety of cell therapy and tissue engineering approaches. We also include the latest advances and future challenges, including good manufacturing practice and regulatory issues. Finally, we evaluate whether recent approaches hold potential for reliable translation to clinical trials.

  11. Biotechnological approaches to cardiac differentiation of human induced pluripotent stem cells

    OpenAIRE

    Di Guglielmo, Claudia

    2016-01-01

    [eng] The heart can be considered the most important organ of our body, as it supplies nutrients to all the cells. When affected from injuries or diseases, the heart function is hampered, as the damaged area is substituted by a fibrotic scar instead of functional tissue. Understanding the mechanisms leading to heart failure and finding a cure for cardiac diseases represents a major challenge of modern medicine, since they are the leading cause of death and disability in Western world. Being ...

  12. Human induced pluripotent stem cell-derived beating cardiac tissues on paper.

    Science.gov (United States)

    Wang, Li; Xu, Cong; Zhu, Yujuan; Yu, Yue; Sun, Ning; Zhang, Xiaoqing; Feng, Ke; Qin, Jianhua

    2015-11-21

    There is a growing interest in using paper as a biomaterial scaffold for cell-based applications. In this study, we made the first attempt to fabricate a paper-based array for the culture, proliferation, and direct differentiation of human induced pluripotent stem cells (hiPSCs) into functional beating cardiac tissues and create "a beating heart on paper." This array was simply constructed by binding a cured multi-well polydimethylsiloxane (PDMS) mold with common, commercially available paper substrates. Three types of paper material (print paper, chromatography paper and nitrocellulose membrane) were tested for adhesion, proliferation and differentiation of human-derived iPSCs. We found that hiPSCs grew well on these paper substrates, presenting a three-dimensional (3D)-like morphology with a pluripotent property. The direct differentiation of human iPSCs into functional cardiac tissues on paper was also achieved using our modified differentiation approach. The cardiac tissue retained its functional activities on the coated print paper and chromatography paper with a beating frequency of 40-70 beats per min for up to three months. Interestingly, human iPSCs could be differentiated into retinal pigment epithelium on nitrocellulose membrane under the conditions of cardiac-specific induction, indicating the potential roles of material properties and mechanical cues that are involved in regulating stem cell differentiation. Taken together, these results suggest that different grades of paper could offer great opportunities as bioactive, low-cost, and 3D in vitro platforms for stem cell-based high-throughput drug testing at the tissue/organ level and for tissue engineering applications.

  13. Force-controlled patch clamp of beating cardiac cells.

    Science.gov (United States)

    Ossola, Dario; Amarouch, Mohamed-Yassine; Behr, Pascal; Vörös, János; Abriel, Hugues; Zambelli, Tomaso

    2015-03-11

    From its invention in the 1970s, the patch clamp technique is the gold standard in electrophysiology research and drug screening because it is the only tool enabling accurate investigation of voltage-gated ion channels, which are responsible for action potentials. Because of its key role in drug screening, innovation efforts are being made to reduce its complexity toward more automated systems. While some of these new approaches are being adopted in pharmaceutical companies, conventional patch-clamp remains unmatched in fundamental research due to its versatility. Here, we merged the patch clamp and atomic force microscope (AFM) techniques, thus equipping the patch-clamp with the sensitive AFM force control. This was possible using the FluidFM, a force-controlled nanopipette based on microchanneled AFM cantilevers. First, the compatibility of the system with patch-clamp electronics and its ability to record the activity of voltage-gated ion channels in whole-cell configuration was demonstrated with sodium (NaV1.5) channels. Second, we showed the feasibility of simultaneous recording of membrane current and force development during contraction of isolated cardiomyocytes. Force feedback allowed for a gentle and stable contact between AFM tip and cell membrane enabling serial patch clamping and injection without apparent cell damage.

  14. Elastin overexpression by cell-based gene therapy preserves matrix and prevents cardiac dilation

    Science.gov (United States)

    Li, Shu-Hong; Sun, Zhuo; Guo, Lily; Han, Mihan; Wood, Michael F G; Ghosh, Nirmalya; Alex Vitkin, I; Weisel, Richard D; Li, Ren-Ke

    2012-01-01

    After a myocardial infarction, thinning and expansion of the fibrotic scar contribute to progressive heart failure. The loss of elastin is a major contributor to adverse extracellular matrix remodelling of the infarcted heart, and restoration of the elastic properties of the infarct region can prevent ventricular dysfunction. We implanted cells genetically modified to overexpress elastin to re-establish the elastic properties of the infarcted myocardium and prevent cardiac failure. A full-length human elastin cDNA was cloned, subcloned into an adenoviral vector and then transduced into rat bone marrow stromal cells (BMSCs). In vitro studies showed that BMSCs expressed the elastin protein, which was deposited into the extracellular matrix. Transduced BMSCs were injected into the infarcted myocardium of adult rats. Control groups received either BMSCs transduced with the green fluorescent protein gene or medium alone. Elastin deposition in the infarcted myocardium was associated with preservation of myocardial tissue structural integrity (by birefringence of polarized light; P elastin showed the greatest functional improvement (P elastin in the infarcted heart preserved the elastic structure of the extracellular matrix, which, in turn, preserved diastolic function, prevented ventricular dilation and preserved cardiac function. This cell-based gene therapy provides a new approach to cardiac regeneration. PMID:22435995

  15. CD34-positive cells as stem cell support after high dose therapy

    International Nuclear Information System (INIS)

    Kvalheim, G.; Pharo, A.; Holte, H.

    1996-01-01

    Six patients, five with breast cancer and one with non-Hodgkin's lymphoma, were mobilized by chemotherapy and G-CSF. CD34-positive cells were isolated by means of immunomagnetic beads and Isolex 300 Cell Separator. Mean purity of isolated CD34-positive cells was 97% and mean yield was 54%. Three patients were treated with high dose therapy followed by reinfusion of CD34-positive cells as stem cell support. Recovery of neutrophils occurred at day 8, 11 and 13 and of platelets at day 9, 14 and 32. It is concluded that immunomagnetic isolated CD34-positive cells give high purity and yield. Although use of CD34-positive cells reduces the content of contaminating tumours cells in the graft, breast cancer cells were still detectable in two out of five CD34-positive cell products. 20 refs., 2 figs., 1 tab

  16. Bilateral diaphragmatic paralysis after cardiac surgery: ventilatory assistance by nasal mask continuous positive airway pressure.

    Science.gov (United States)

    Hoch, B; Zschocke, A; Barth, H; Leonhardt, A

    2001-01-01

    The case of an 8-month-old boy with bilateral diaphragmatic paralysis after surgical reoperation for congenital heart disease is presented. In order to avoid repeated intubation and long-term mechanical ventilation or tracheotomy, we used nasal mask continuous positive airway pressure (CPAP) as an alternative method for assisted ventilation. Within 24 hours the boy accepted the nasal mask and symptoms such as dyspnea and sweating disappeared. Respiratory movements became regular and oxygen saturation increased. Nasal mask CPAP may serve as an alternative treatment of bilateral diaphragmatic paralysis in infants, thereby avoiding tracheotomy or long-term mechanical ventilation.

  17. Rhabdomyolysis in a Sickle Cell Trait Positive Active Duty Male Soldier.

    Science.gov (United States)

    Saxena, Pulkit; Chavarria, Christopher; Thurlow, John

    2016-01-01

    Exertional rhabdomyolysis is a complication of sickle cell trait (SCT) likely first reported in the military population over 40 years ago. Although commonly a benign condition, numerous studies and case reports have identified SCT positive patients to be at increased risk for rhabdomyolysis, compartment syndrome and sudden cardiac death. We report a recent case of an SCT positive African American active duty male Soldier who suffered exertional rhabdomyolysis following an Army Physical Fitness Test. His course was complicated by acute renal failure requiring hemodialysis, and he eventually recovered renal function. The diagnosis was significantly delayed despite a typical clinical presentation and available SCT screening results. The case highlights the importance of the recognition of SCT as a risk factor for severe rhabdomyolysis, and suggests more must be done for an effective SCT screening program for the active duty military population.

  18. Beat-by-beat analysis of cardiac output and blood pressure responses to short-term barostimulation in different body positions

    Science.gov (United States)

    Hildebrandt, Wulf; Schütze, Harald; Stegemann, J.

    Rapid quantification of the human baro-reflex control of heart rate has been achieved on a beat-by-beat basis using a neck-chamber with quick ECG-triggered pressure changes. Referring to recent findings on heart rate and stroke volume, the present study uses this technique to compare cardiac output as well as blood pressure changes in supine and upright position to investigate feedback effects and to confirm postural reflex modifications not revealed by RR-interval changes. A suction profile starting at +40 mmHg and running 7 steps of pressure decrease down to -65 mmHg was examined in 0° and 90° tilting position while beat-by-beat recordings were done of heart rate, stroke volume (impedance-cardiography) and blood pressure (Finapres tm) (n=16). The percentual heart rate decrease failed to be significantly different between positions. A suction-induced stroke volume increase led to a cardiac output almost maintained when supine and significantly increased when upright. A decrease in all blood pressure values was found during suction, except for systolic values in upright position which increased. Conclusively, (a) it is confirmed that different inotropy accounts for the seen gravitational effect on the cardiac output not represented by heart rate; (b) identical suction levels in different positions lead to different stimuli at the carotid receptor. This interference has to be considered in microgravity studies by beat-by-beat measurement of cardiac output and blood pressure.

  19. Protection of adult rat cardiac myocytes from ischemic cell death: role of caveolar microdomains and delta-opioid receptors.

    Science.gov (United States)

    Patel, Hemal H; Head, Brian P; Petersen, Heidi N; Niesman, Ingrid R; Huang, Diane; Gross, Garrett J; Insel, Paul A; Roth, David M

    2006-07-01

    The role of caveolae, membrane microenvironments enriched in signaling molecules, in myocardial ischemia is poorly defined. In the current study, we used cardiac myocytes prepared from adult rats to test the hypothesis that opioid receptors (OR), which are capable of producing cardiac protection in vivo, promote cardiac protection in cardiac myocytes in a caveolae-dependent manner. We determined protein expression and localization of delta-OR (DOR) using coimmunohistochemistry, caveolar fractionation, and immunoprecipitations. DOR colocalized in fractions with caveolin-3 (Cav-3), a structural component of caveolae in muscle cells, and could be immunoprecipitated by a Cav-3 antibody. Immunohistochemistry confirmed plasma membrane colocalization of DOR with Cav-3. Cardiac myocytes were subjected to simulated ischemia (2 h) or an ischemic preconditioning (IPC) protocol (10 min ischemia, 30 min recovery, 2 h ischemia) in the presence and absence of methyl-beta-cyclodextrin (MbetaCD, 2 mM), which binds cholesterol and disrupts caveolae. We also assessed the cardiac protective effects of SNC-121 (SNC), a selective DOR agonist, on cardiac myocytes with or without MbetaCD and MbetaCD preloaded with cholesterol. Ischemia, simulated by mineral oil layering to inhibit gas exchange, promoted cardiac myocyte cell death (trypan blue staining), a response blunted by SNC (37 +/- 3 vs. 59 +/- 3% dead cells in the presence and absence of 1 muM SNC, respectively, P protective effects of IPC or SNC, resulting in cell death comparable to that of the ischemic group. By contrast, SNC-induced protection was not abrogated in cells incubated with cholesterol-saturated MbetaCD, which maintained caveolae structure and function. These findings suggest a key role for caveolae, perhaps through enrichment of signaling molecules, in contributing to protection of cardiac myocytes from ischemic damage.

  20. A universal system for highly efficient cardiac differentiation of human induced pluripotent stem cells that eliminates interline variability.

    Directory of Open Access Journals (Sweden)

    Paul W Burridge

    2011-04-01

    Full Text Available The production of cardiomyocytes from human induced pluripotent stem cells (hiPSC holds great promise for patient-specific cardiotoxicity drug testing, disease modeling, and cardiac regeneration. However, existing protocols for the differentiation of hiPSC to the cardiac lineage are inefficient and highly variable. We describe a highly efficient system for differentiation of human embryonic stem cells (hESC and hiPSC to the cardiac lineage. This system eliminated the variability in cardiac differentiation capacity of a variety of human pluripotent stem cells (hPSC, including hiPSC generated from CD34(+ cord blood using non-viral, non-integrating methods.We systematically and rigorously optimized >45 experimental variables to develop a universal cardiac differentiation system that produced contracting human embryoid bodies (hEB with an improved efficiency of 94.7±2.4% in an accelerated nine days from four hESC and seven hiPSC lines tested, including hiPSC derived from neonatal CD34(+ cord blood and adult fibroblasts using non-integrating episomal plasmids. This cost-effective differentiation method employed forced aggregation hEB formation in a chemically defined medium, along with staged exposure to physiological (5% oxygen, and optimized concentrations of mesodermal morphogens BMP4 and FGF2, polyvinyl alcohol, serum, and insulin. The contracting hEB derived using these methods were composed of high percentages (64-89% of cardiac troponin I(+ cells that displayed ultrastructural properties of functional cardiomyocytes and uniform electrophysiological profiles responsive to cardioactive drugs.This efficient and cost-effective universal system for cardiac differentiation of hiPSC allows a potentially unlimited production of functional cardiomyocytes suitable for application to hPSC-based drug development, cardiac disease modeling, and the future generation of clinically-safe nonviral human cardiac cells for regenerative medicine.

  1. B cell markers in Ph1-positive acute lymphoblastic leukemia.

    Science.gov (United States)

    Alimena, G; De Rossi, G; Gastaldi, R; Guglielmi, C; Mandelli, F

    1980-01-01

    A case of acute lymphoblastic leukemia (ALL) where the blast cells had B cell markers and displayed the presence of a typical Ph1 chromosome, originated by a standard t (9;22) translocation, is reported. Cytological and clinical aspects during the entire course of the disease were consistent with the diagnosis of ALL. Evidence of differentiation along a well-defined lymphoid cell line in a Ph1-positive cell confirms the presence of the Ph1 chromosome in conditions other than chronic granulocytic leukemia and shows that it possibly does not occur in an exclusively undifferentiated totipotent stem cell.

  2. Prevalence and pattern of Lupus erythematosus cell positivity in ...

    African Journals Online (AJOL)

    The prevalence and pattern of lupus erythematosus (LE) cell positivity in diseases in Ile-Ife, Osun state was carried out between January 1999 and June 2004 (5½ years). A total of 96 patients with different diseases were screened for LE cell using standard techniques. Of this number, 63 (65.6%) were females and 33 ...

  3. Caffeoylxanthiazonoside exerts cardioprotective effects during chronic heart failure via inhibition of inflammatory responses in cardiac cells.

    Science.gov (United States)

    Yang, Bin; Wang, Fei; Cao, Huili; Liu, Guifang; Zhang, Yuean; Yan, Ping; Li, Bao

    2017-11-01

    Caffeoylxanthiazonoside (CYT) is an active constituent isolated from the fruit of the Xanthium strumarium L plant. The aim of the present study was to investigate the cardioprotective effects of oral administration of CYT on chronic heart failure (CHF) and its underlying mechanisms. A rat model of CHF was first established, and cardiac function indices, including the heart/body weight index, left heart/body weight index, fractional shortening (FS), ejection fraction (EF), cardiac output (CO) and heart rate (HR), were subsequently determined by cardiac ultrasound. Serum levels of lactate dehydrogenase (LDH) and creatine kinase (CK), and the levels of pro-inflammatory cytokines, including tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-1β in heart tissues and cardiac microvascular endothelial cells (CMECs) were determined using ELISA. In addition, the protein expression levels of nuclear factor-κB (NF-κB) signaling pathway members were determined by western blotting in CMECs. The results demonstrated that oral administration of 10, 20, 40 mg/kg CYT significantly reduced cardiac hypertrophy and reversed FS, EF, CO and HR when compared with CHF model rats. In addition, CYT administration significantly decreased the levels of TNF-α, IL-6 and IL-1β in heart tissues, as well as serum LDH and CK levels. Furthermore, exposure of CMECs to 20, 40 and 80 µg/ml CYT significantly decreased the production of TNF-α, IL-1β and IL-6. The protein expression levels of cytoplasmic NF-κB p65 and IκB were upregulated, while nuclear NF-κB p65 was downregulated following treatment of CMECs with 20, 40 and 80 µg/ml CYT when compared with untreated CHF model controls. In conclusion, the results of the current study suggest that CYT demonstrates cardioprotective effects in CHF model rats by suppressing the expression of pro-inflammatory cytokines and the NF-κB signaling pathway.

  4. Children diagnosed with congenital cardiac malformations at the national university departments of pediatric cardiology: positive predictive values of data in the Danish National Patient Registry

    Directory of Open Access Journals (Sweden)

    Peter Agergaard

    2011-02-01

    Full Text Available Peter Agergaard1, Anders Hebert2, Jesper Bjerre3, Karina Meden Sørensen4, Charlotte Olesen3, John Rosendal Østergaard31Department of Pediatrics, Viborg Hospital, Viborg, Denmark; 2Department of Pediatrics, Copenhagen University Hospital, Rigshospitalet, Denmark; 3Department of Pediatrics, Aarhus University Hospital, Skejby, Denmark; 4Department of Clinical Biochemistry and Immunology, Statens Serum Institut, Copenhagen, DenmarkIntroduction: The present study was conducted to establish the positive predictive value of congenital cardiac malformation diagnoses registered in the Danish National Patient Registry (NPR, thereby exploring whether the NPR can serve as a valid tool for epidemiologic studies of congenital cardiac malformations.Materials and methods: The study population comprised every individual born from 2000 to 2008 who was registered in the NPR with a congenital cardiac malformation diagnosis and treated at one of the two national departments of pediatric cardiology. Positive predictive values were established comparing NPR information with the clinical record of each individual.Results: A total of 2952 patients with a total of 3536 diagnoses were eligible for validation. Review of their clinical records unveiled no patient without cardiac malformation. In 98% (98%–99% of the cases, the NPR diagnosis could be found as the discharge diagnosis in the patient's clinical record, and in 90% (89%–91% of the cases the NPR diagnosis was considered a true reflection of the patient's actual malformation.Conclusions: Our study verifies that the present study population retrieved from the NPR is a valid tool for epidemiological research within the topic of congenital cardiac malformations, given that the research question is not dependent on a fully established sensitivity of the NPR. Precautions should be made regarding cardiac malformations characterized by low prevalence or poor predictive values, and the reported validity should not be

  5. Influence of Respiratory Gating, Image Filtering, and Animal Positioning on High-Resolution Electrocardiography-Gated Murine Cardiac Single-Photon Emission Computed Tomography

    Directory of Open Access Journals (Sweden)

    Chao Wu

    2015-01-01

    Full Text Available Cardiac parameters obtained from single-photon emission computed tomographic (SPECT images can be affected by respiratory motion, image filtering, and animal positioning. We investigated the influence of these factors on ultra-high-resolution murine myocardial perfusion SPECT. Five mice were injected with 99m technetium (99mTc-tetrofosmin, and each was scanned in supine and prone positions in a U-SPECT-II scanner with respiratory and electrocardiographic (ECG gating. ECG-gated SPECT images were created without applying respiratory motion correction or with two different respiratory motion correction strategies. The images were filtered with a range of three-dimensional gaussian kernels, after which end-diastolic volumes (EDVs, end-systolic volumes (ESVs, and left ventricular ejection fractions were calculated. No significant differences in the measured cardiac parameters were detected when any strategy to reduce or correct for respiratory motion was applied, whereas big differences (> 5% in EDV and ESV were found with regard to different positioning of animals. A linear relationship (p < .001 was found between the EDV or ESV and the kernel size of the gaussian filter. In short, respiratory gating did not significantly affect the cardiac parameters of mice obtained with ultra-high-resolution SPECT, whereas the position of the animals and the image filters should be the same in a comparative study with multiple scans to avoid systematic differences in measured cardiac parameters.

  6. Positive predictive value and impact of misdiagnosis of a heart failure diagnosis in administrative registers among patients admitted to a University Hospital cardiac care unit

    DEFF Research Database (Denmark)

    Mard, Shan; Nielsen, Finn Erland

    2010-01-01

    OBJECTIVE: To evaluate the positive predictive value (PPV) of a diagnosis of heart failure (HF) in the Danish National Registry of Patients (NRP) among patients admitted to a University Hospital cardiac care unit, and to evaluate the impact of misdiagnosing HF. DESIGN: The NRP was used to identify...

  7. Positive affect and negative affect correlate differently with distress and health-related quality of life in patients with cardiac conditions: Validation of the Danish Global Mood Scale

    DEFF Research Database (Denmark)

    Spindler, Helle; Denollet, Johan; Kruse, Charlotte

    2009-01-01

    The Global Mood Scale (GMS), assessing negative affect (NA) and positive affect (PA), is sensitive to tapping treatment-related changes in patients with cardiac conditions. We examined the psychometric properties of the Danish GMS and the influence of NA and PA on distress and health-related qual...

  8. Intravital imaging of cardiac function at the single-cell level.

    Science.gov (United States)

    Aguirre, Aaron D; Vinegoni, Claudio; Sebas, Matt; Weissleder, Ralph

    2014-08-05

    Knowledge of cardiomyocyte biology is limited by the lack of methods to interrogate single-cell physiology in vivo. Here we show that contracting myocytes can indeed be imaged with optical microscopy at high temporal and spatial resolution in the beating murine heart, allowing visualization of individual sarcomeres and measurement of the single cardiomyocyte contractile cycle. Collectively, this has been enabled by efficient tissue stabilization, a prospective real-time cardiac gating approach, an image processing algorithm for motion-artifact-free imaging throughout the cardiac cycle, and a fluorescent membrane staining protocol. Quantification of cardiomyocyte contractile function in vivo opens many possibilities for investigating myocardial disease and therapeutic intervention at the cellular level.

  9. Efficient solution of ordinary differential equations modeling electrical activity in cardiac cells.

    Science.gov (United States)

    Sundnes, J; Lines, G T; Tveito, A

    2001-08-01

    The contraction of the heart is preceded and caused by a cellular electro-chemical reaction, causing an electrical field to be generated. Performing realistic computer simulations of this process involves solving a set of partial differential equations, as well as a large number of ordinary differential equations (ODEs) characterizing the reactive behavior of the cardiac tissue. Experiments have shown that the solution of the ODEs contribute significantly to the total work of a simulation, and there is thus a strong need to utilize efficient solution methods for this part of the problem. This paper presents how an efficient implicit Runge-Kutta method may be adapted to solve a complicated cardiac cell model consisting of 31 ODEs, and how this solver may be coupled to a set of PDE solvers to provide complete simulations of the electrical activity.

  10. Heme oxygenase-1 affects generation and spontaneous cardiac differentiation of induced pluripotent stem cells.

    Science.gov (United States)

    Stepniewski, Jacek; Pacholczak, Tomasz; Skrzypczyk, Aniela; Ciesla, Maciej; Szade, Agata; Szade, Krzysztof; Bidanel, Romain; Langrzyk, Agnieszka; Grochowski, Radoslaw; Vandermeeren, Felix; Kachamakova-Trojanowska, Neli; Jez, Mateusz; Drabik, Grazyna; Nakanishi, Mahito; Jozkowicz, Alicja; Dulak, Jozef

    2018-02-01

    Cellular stress can influence efficiency of iPSCs generation and their differentiation. However, the role of intracellular cytoprotective factors in these processes is still not well known. Therefore, we investigated the effect of HO-1 (Hmox1) or Nrf2 (Nfe2l2), two major cytoprotective genes. Hmox1 -/- fibroblasts demonstrated decreased reprogramming efficiency in comparison to Hmox1 +/+ cells. Reversely, pharmacological enhancement of HO-1 resulted in higher number of iPSCs colonies. Importantly, elevated level of both p53 and p53-regulated miR-34a and 14-3-3σ was observed in HO-1-deficient fibroblasts whereas downregulation of p53 in these cells markedly increased their reprogramming efficiency. In human fibroblasts HO-1 silencing also induced p53 expression and affected reprogramming outcome. Hmox1 +/+ and Hmox1 -/- iPSCs similarly differentiated in vitro to cells originating from three germ layers, however, lower number of contracting cells was observed during this process in HO-1-deficient cells indicating attenuated cardiac differentiation. Importantly, silencing of Hmox1 in murine ESC using CRISPR/Cas-9 editing also impaired their spontaneous cardiac differentiation. Decreased reprogramming efficiency was also observed in Nrf2-lacking fibroblasts. Reversely, sulforaphane, a Nrf2 activator, increased the number of iPSCs colonies. However, both Nfe2l2 +/+ and Nfe2l2 -/- iPSCs showed similar pluripotency and differentiation capacity. These results indicate that regulation of HO-1 expression can further optimize generation and cardiac differentiation of iPSCs. © 2018 IUBMB Life, 70(2):129-142, 2018. © 2018 International Union of Biochemistry and Molecular Biology.

  11. Endothelial progenitor cell mobilization and increased intravascular nitric oxide in patients undergoing cardiac rehabilitation.

    Science.gov (United States)

    Paul, Jonathan D; Powell, Tiffany M; Thompson, Michael; Benjamin, Moshe; Rodrigo, Maria; Carlow, Andrea; Annavajjhala, Vidhya; Shiva, Sruti; Dejam, Andre; Gladwin, Mark T; McCoy, J Philip; Zalos, Gloria; Press, Beverly; Murphy, Mandy; Hill, Jonathan M; Csako, Gyorgy; Waclawiw, Myron A; Cannon, Richard O

    2007-01-01

    We investigated whether cardiac rehabilitation participation increases circulating endothelial progenitor cells (EPCs) and benefits vasculature in patients already on stable therapy previously shown to augment EPCs and improve endothelial function. Forty-six of 50 patients with coronary artery disease completed a 36-session cardiac rehabilitation program: 45 were treated with HMG-CoA reductase inhibitor (statin) therapy > or = 1 month (average baseline low-density lipoprotein cholesterol = 81 mg/dL). Mononuclear cells isolated from blood were quantified for EPCs by flow cytometry (CD133/VEGFR-2 cells) and assayed in culture for EPC colony-forming units (CFUs). In 23 patients, EPCs were stained for annexin-V as a marker of apoptosis, and nitrite was measured in blood as an indicator of intravascular nitric oxide. Endothelial progenitor cells increased from 35 +/- 5 to 63 +/- 10 cells/mL, and EPC-CFUs increased from 0.9 +/- 0.2 to 3.1 +/- 0.6 per well (both P < .01), but 11 patients had no increase in either measure. Those patients whose EPCs increased from baseline showed significant increases in nitrite and reduction in annexin-V staining (both P < .01) versus no change in patients without increase in EPCs. Over the course of the program, EPCs increased prior to increase in nitrite in the blood. Cardiac rehabilitation in patients receiving stable statin therapy and with low-density lipoprotein cholesterol at goal increases EPC number, EPC survival, and endothelial differentiation potential, associated with increased nitric oxide in the blood. Although this response was observed in most patients, a significant minority showed neither EPC mobilization nor increased nitric oxide in the blood.

  12. Enhancement of myocardial regeneration through genetic engineering of cardiac progenitor cells expressing Pim-1 kinase.

    Science.gov (United States)

    Fischer, Kimberlee M; Cottage, Christopher T; Wu, Weitao; Din, Shabana; Gude, Natalie A; Avitabile, Daniele; Quijada, Pearl; Collins, Brett L; Fransioli, Jenna; Sussman, Mark A

    2009-11-24

    Despite numerous studies demonstrating the efficacy of cellular adoptive transfer for therapeutic myocardial regeneration, problems remain for donated cells with regard to survival, persistence, engraftment, and long-term benefits. This study redresses these concerns by enhancing the regenerative potential of adoptively transferred cardiac progenitor cells (CPCs) via genetic engineering to overexpress Pim-1, a cardioprotective kinase that enhances cell survival and proliferation. Intramyocardial injections of CPCs overexpressing Pim-1 were given to infarcted female mice. Animals were monitored over 4, 12, and 32 weeks to assess cardiac function and engraftment of Pim-1 CPCs with echocardiography, in vivo hemodynamics, and confocal imagery. CPCs overexpressing Pim-1 showed increased proliferation and expression of markers consistent with cardiogenic lineage commitment after dexamethasone exposure in vitro. Animals that received CPCs overexpressing Pim-1 also produced greater levels of cellular engraftment, persistence, and functional improvement relative to control CPCs up to 32 weeks after delivery. Salutary effects include reduction of infarct size, greater number of c-kit(+) cells, and increased vasculature in the damaged region. Myocardial repair is significantly enhanced by genetic engineering of CPCs with Pim-1 kinase. Ex vivo gene delivery to enhance cellular survival, proliferation, and regeneration may overcome current limitations of stem cell-based therapeutic approaches.

  13. Reciprocal Modulation of IK1-INa Extends Excitability in Cardiac Ventricular Cells.

    Science.gov (United States)

    Varghese, Anthony

    2016-01-01

    The inwardly rectifying potassium current (I K1 ) and the fast inward sodium current (I Na ) are reciprocally modulated in mammalian ventricular myocytes. An increase in the expression of channels responsible for one of these two currents results in a corresponding increase in expression of the other. These currents are critical in the propagation of action potentials (AP) during the normal functioning of the heart. This study identifies a physiological role for I K1 -I Na reciprocal modulation in ventricular fiber activation thresholds and conduction. Simulations of action potentials in single cells and propagating APs in cardiac fibers were carried out using an existing model of electrical activity in cardiac ventricular myocytes. The conductances, G K1 , of the inwardly rectifying potassium current, and G Na , of the fast inward sodium current were modified independently and in tandem to simulate reciprocal modulation. In single cells, independent modulation of G K1 alone resulted in changes in activation thresholds that were qualitatively similar to those for reciprocal G K1 -G Na modulation and unlike those due to independent modulation of G Na alone, indicating that G K1 determines the cellular activation threshold. On the other hand, the variations in conduction velocity in cardiac cell fibers were similar for independent G Na modulation and for tandem changes in G K1 -G Na , suggesting that G Na is primarily responsible for setting tissue AP conduction velocity. Conduction velocity dependence on G K1 -G Na is significantly affected by the intercellular gap junction conductance. While the effects on the passive fiber space constant due to changes in both G K1 and the intercellular gap junction conductance, G gj , were in line with linear cable theory predictions, both conductances had surprisingly large effects on fiber activation thresholds. Independent modulation of G K1 rendered cardiac fibers inexcitable at higher levels of G K1 whereas tandem G K1 -G Na

  14. Secondary prevention through cardiac rehabilitation: from knowledge to implementation. A position paper from the Cardiac Rehabilitation Section of the European Association of Cardiovascular Prevention and Rehabilitation

    DEFF Research Database (Denmark)

    Piepoli, Massimo Francesco; Corrà, Ugo; Benzer, Werner

    2010-01-01

    Increasing awareness of the importance of cardiovascular prevention is not yet matched by the resources and actions within health care systems. Recent publication of the European Commission's European Heart Health Charter in 2008 prompts a review of the role of cardiac rehabilitation (CR) to card......Increasing awareness of the importance of cardiovascular prevention is not yet matched by the resources and actions within health care systems. Recent publication of the European Commission's European Heart Health Charter in 2008 prompts a review of the role of cardiac rehabilitation (CR......) to cardiovascular health outcomes. Secondary prevention through exercise-based CR is the intervention with the best scientific evidence to contribute to decrease morbidity and mortality in coronary artery disease, in particular after myocardial infarction but also incorporating cardiac interventions and chronic...... makers and consumers in the recognition of the comprehensive nature of CR. Those charged with responsibility for secondary prevention of cardiovascular disease, whether at European, national or individual centre level, need to consider where and how structured programmes of CR can be delivered to all...

  15. Liberal red blood cell transfusions impair quality of life after cardiac surgery.

    Science.gov (United States)

    González-Pérez, A; Al-Sibai, J Z; Álvarez-Fernández, P; Martínez-Camblor, P; Argüello-Junquera, M; García-Gala, J M; Martínez-Revuelta, E; Silva, J; Morís, C; Albaiceta, G M

    2018-03-12

    The optimal blood management after cardiac surgery remains controversial. Moreover, blood transfusions may have an impact on long-term outcomes. The aim of this study is to characterize the impact of liberal red blood cell transfusions on Health-Related Quality of life (HRQoL) after cardiac surgery. We studied a cohort of 205 consecutive patients after ICU discharge. Baseline characteristics and clinical data were recorded, and HRQoL was assessed using the EuroQoL-5D instrument, applied 6 months after ICU discharge. A specific question regarding the improvement in the quality of life after the surgical intervention was added to the HRQoL questionnaire. Risk factors related to impaired quality of life were identified using univariate comparisons and multivariate regression techniques. The median (interquartile range, IQR) of transfused red blood cells was 3 (1-4). Among 205 patients, 178 were studied 6 months after discharge. Impairment in at least one dimension of the EuroQoL-5D questionnaire was observed in 120 patients, with an overall score of 0.8 (IQR 0.61-1). The number of red blood cell transfusions was related to an impaired HRQoL (OR 1.17 per additional unit, 95% confidence interval 1.03-1.36, p=0.03), a trend to lower visual analog scale score (coefficient -0.75 per additional unit, 95% confidence interval -1.61 to 0.1, p=0.09) and an absence of improvement in HRQoL after surgery compared to the previous status (OR 1.13, 95% confidence interval 1.03-1.25, p=0.01). Liberal red blood cell transfusions increase the risk of impaired HRQoL after cardiac surgery. Copyright © 2018 Elsevier España, S.L.U. y SEMICYUC. All rights reserved.

  16. Emotion Risk-Factor in Patients With Cardiac Diseases: The Role of Cognitive Emotion Regulation Strategies, Positive Affect and Negative Affect (A Case-Control Study)

    Science.gov (United States)

    Bahremand, Mostafa; Alikhani, Mostafa; Zakiei, Ali; Janjani, Parisa; Aghaei, Abbas

    2016-01-01

    Application of psychological interventions is essential in classic treatments for patient with cardiac diseases. The present study compared cognitive emotion regulation strategies, positive affect, and negative affect for cardiac patients with healthy subjects. This study was a case-control study. Fifty subjects were selected using convenient sampling method from cardiac (coronary artery disease) patients presenting in Imam Ali medical center of Kermanshah, Iran in the spring 2013. Fifty subjects accompanied the patients to the medical center, selected as control group, did not have any history of cardiac diseases. For collecting data, the cognitive emotion regulation questionnaire and positive and negative affect scales were used. For data analysis, multivariate analysis of variance (MANOVA) was applied using the SPSS statistical software (ver. 19.0). In all cognitive emotion regulation strategies, there was a significant difference between the two groups. A significant difference was also detected regarding positive affect between the two groups, but no significant difference was found regarding negative affect. We found as a result that, having poor emotion regulation strategies is a risk factor for developing heart diseases. PMID:26234976

  17. Emotion Risk-Factor in Patients with Cardiac Diseases: The Role of Cognitive Emotion Regulation Strategies, Positive Affect and Negative Affect (A Case-Control Study).

    Science.gov (United States)

    Bahremand, Mostafa; Alikhani, Mostafa; Zakiei, Ali; Janjani, Parisa; Aghei, Abbas

    2015-05-17

    Application of psychological interventions is essential in classic treatments for patient with cardiac diseases. The present study compared cognitive emotion regulation strategies, positive affect, and negative affect for cardiac patients with healthy subjects. This study was a case-control study. Fifty subjects were selected using convenient sampling method from cardiac (coronary artery disease) patients presenting in Imam Ali medical center of Kermanshah, Iran in the spring 2013. Fifty subjects accompanied the patients to the medical center, selected as control group, did not have any history of cardiac diseases. For collecting data, the cognitive emotion regulation questionnaire and positive and negative affect scales were used. For data analysis, multivariate analysis of variance (MANOVA) Was applied using the SPSS statistical software (ver. 19.0). In all cognitive emotion regulation strategies, there was a significant difference between the two groups. A significant difference was also detected regarding positive affect between the two groups, but no significant difference was found regarding negative affect. We found as a result that, having poor emotion regulation strategies is a risk factor for developing heart diseases.

  18. Cardiac glycoside activities link Na(+)/K(+) ATPase ion-transport to breast cancer cell migration via correlative SAR.

    Science.gov (United States)

    Magpusao, Anniefer N; Omolloh, George; Johnson, Joshua; Gascón, José; Peczuh, Mark W; Fenteany, Gabriel

    2015-02-20

    The cardiac glycosides ouabain and digitoxin, established Na(+)/K(+) ATPase inhibitors, were found to inhibit MDA-MB-231 breast cancer cell migration through an unbiased chemical genetics screen for cell motility. The Na(+)/K(+) ATPase acts both as an ion-transporter and as a receptor for cardiac glycosides. To delineate which function is related to breast cancer cell migration, structure-activity relationship (SAR) profiles of cardiac glycosides were established at the cellular (cell migration inhibition), molecular (Na(+)/K(+) ATPase inhibition), and atomic (computational docking) levels. The SAR of cardiac glycosides and their analogs revealed a similar profile, a decrease in potency when the parent cardiac glycoside structure was modified, for each activity investigated. Since assays were done at the cellular, molecular, and atomic levels, correlation of SAR profiles across these multiple assays established links between cellular activity and specific protein-small molecule interactions. The observed antimigratory effects in breast cancer cells are directly related to the inhibition of Na(+)/K(+) transport. Specifically, the orientation of cardiac glycosides at the putative cation permeation path formed by transmembrane helices αM1-M6 correlates with the Na(+) pump activity and cell migration. Other Na(+)/K(+) ATPase inhibitors that are structurally distinct from cardiac glycosides also exhibit antimigratory activity, corroborating the conclusion that the antiport function of Na(+)/K(+) ATPase and not the receptor function is important for supporting the motility of MDA-MB-231 breast cancer cells. Correlative SAR can establish new relationships between specific biochemical functions and higher-level cellular processes, particularly for proteins with multiple functions and small molecules with unknown or various modes of action.

  19. Mechanisms of IhERG/IKr Modulation by α1-Adrenoceptors in HEK293 Cells and Cardiac Myocytes

    Directory of Open Access Journals (Sweden)

    Janire Urrutia

    2016-12-01

    Full Text Available Background: The rapid delayed rectifier K+ current (IKr, carried by the hERG protein, is one of the main repolarising currents in the human heart and a reduction of this current increases the risk of ventricular fibrillation. α1-adrenoceptors (α1-AR activation reduces IKr but, despite the clear relationship between an increase in the sympathetic tone and arrhythmias, the mechanisms underlying the α1-AR regulation of the hERG channel are controversial. Thus, we aimed to investigate the mechanisms by which α1-AR stimulation regulates IKr. Methods: α1-adrenoceptors, hERG channels, auxiliary subunits minK and MIRP1, the non PIP2-interacting mutant D-hERG (with a deletion of the 883-894 amino acids in the C-terminal and the non PKC-phosphorylable mutant N-terminal truncated-hERG (NTK-hERG were transfected in HEK293 cells. Cell membranes were extracted by centrifugation and the different proteins were visualized by Western blot. Potassium currents were recorded by the patch-clamp technique. IKr was recorded in isolated feline cardiac myocytes. Results: Activation of the α1-AR reduces the amplitude of IhERG and IKr through a positive shift in the activation half voltage, which reduces the channel availability at physiological membrane potentials. The intracellular pathway connecting the α1-AR to the hERG channel in HEK293 cells includes activation of the Gαq protein, PLC activation and PIP2 hydrolysis, activation of PKC and direct phosphorylation of the hERG channel N-terminal. The PKC-mediated IKr channel phosphorylation and subsequent IKr reduction after α1-AR stimulation was corroborated in feline cardiac myocytes. Conclusions: These findings clarify the link between sympathetic nervous system hyperactivity and IKr reduction, one of the best characterized causes of torsades de pointes and ventricular fibrillation.

  20. CD34-positive interstitial cells of the human detrusor

    DEFF Research Database (Denmark)

    Rasmussen, Helle; Hansen, Alastair; Smedts, Frank

    2007-01-01

    using a panel of antibodies directed against CD117/c-kit, CD34, CD31, S100, tryptase, neurofilament, NSE, Factor-VIII and GFAP. A striking finding was an interstitial type of cell which is CD34 immunoreactive (CD34-ir) but CD117/c-kit negative. The cells have a tentacular morphology, enveloping...... flattened processes, ramifying primarily in a bipolar fashion. Using immunoelectron microscopy (I-TEM) it was possible to view CD34 gold labelling of cells corresponding to interstitial cells. Although similar CD34-positive cells have been demonstrated in the bowel wall, they have never been described...... in the detrusor. The ontogeny and function of CD34-ir, a kit-negative cell, is unknown, but it may be involved in smooth muscle contraction....

  1. CD44-positive cells are candidates for astrocyte precursor cells in developing mouse cerebellum.

    Science.gov (United States)

    Cai, Na; Kurachi, Masashi; Shibasaki, Koji; Okano-Uchida, Takayuki; Ishizaki, Yasuki

    2012-03-01

    Neural stem cells are generally considered to be committed to becoming precursor cells before terminally differentiating into either neurons or glial cells during neural development. Neuronal and oligodendrocyte precursor cells have been identified in several areas in the murine central nervous system. The presence of astrocyte precursor cells (APCs) is not so well understood. The present study provides several lines of evidence that CD44-positive cells are APCs in the early postnatal mouse cerebellum. In developing mouse cerebellum, CD44-positive cells, mostly located in the white matter, were positive for the markers of the astrocyte lineage, but negative for the markers of mature astrocytes. CD44-positive cells were purified from postnatal cerebellum by fluorescence-activated cell sorting and characterized in vitro. In the absence of any signaling molecule, many cells died by apoptosis. The surviving cells gradually expressed glial fibrillary acidic protein, a marker for mature astrocytes, indicating that differentiation into mature astrocytes is the default program for these cells. The cells produced no neurospheres nor neurons nor oligodendrocytes under any condition examined, indicating these cells are not neural stem cells. Leukemia inhibitory factor greatly promoted astrocytic differentiation of CD44-positive cells, whereas bone morphogenetic protein 4 (BMP4) did not. Fibroblast growth factor-2 was a potent mitogen for these cells, but was insufficient for survival. BMP4 inhibited activation of caspase-3 and greatly promoted survival, suggesting a novel role for BMP4 in the control of development of astrocytes in cerebellum. We isolated and characterized only CD44 strongly positive large cells and discarded small and/or CD44 weakly positive cells in this study. Further studies are necessary to characterize these cells to help determine whether CD44 is a selective and specific marker for APCs in the developing mouse cerebellum. In conclusion, we succeeded in

  2. Induction Chemotherapy for p16 Positive Oropharyngeal Squamous Cell Carcinoma

    OpenAIRE

    Saito, Yuki; Ando, Mizuo; Omura, Go; Yasuhara, Kazuo; Yoshida, Masafumi; Takahashi, Wataru; Yamasoba, Tatsuya

    2016-01-01

    Objectives/Hypothesis We aimed to determine the effectiveness of induction chemotherapy for treating p16?positive oropharyngeal cancer in our department. Study Design This was a retrospective case series to assess treatment effectiveness. Methods We administered induction chemotherapy to patients with stage III to IV oropharyngeal p16?positive squamous cell carcinoma between 2008 and 2013. Induction chemotherapy was administered using combinations of docetaxel, cisplatin, and 5?fluorouracil. ...

  3. 8-Oxoguanine DNA glycosylase 1 (ogg1) maintains the function of cardiac progenitor cells during heart formation in zebrafish

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Lifeng [State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029 (China); Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029 (China); Zhou, Yong [Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai 200025 (China); Yu, Shanhe [Shanghai Institute of Hematology, RuiJin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025 (China); Ji, Guixiang [Nanjing Institute of Environmental Sciences/Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Environmental Protection, Nanjing 210042 (China); Wang, Lei [Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai 200025 (China); Liu, Wei [State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029 (China); Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029 (China); Gu, Aihua, E-mail: aihuagu@njmu.edu.cn [State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029 (China); Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029 (China)

    2013-11-15

    Genomic damage may devastate the potential of progenitor cells and consequently impair early organogenesis. We found that ogg1, a key enzyme initiating the base-excision repair, was enriched in the embryonic heart in zebrafish. So far, little is known about DNA repair in cardiogenesis. Here, we addressed the critical role of ogg1 in cardiogenesis for the first time. ogg1 mainly expressed in the anterior lateral plate mesoderm (ALPM), the primary heart tube, and subsequently the embryonic myocardium by in situ hybridisation. Loss of ogg1 resulted in severe cardiac morphogenesis and functional abnormalities, including the short heart length, arrhythmia, decreased cardiomyocytes and nkx2.5{sup +} cardiac progenitor cells. Moreover, the increased apoptosis and repressed proliferation of progenitor cells caused by ogg1 deficiency might contribute to the heart phenotype. The microarray analysis showed that the expression of genes involved in embryonic heart tube morphogenesis and heart structure were significantly changed due to the lack of ogg1. Among those, foxh1 is an important partner of ogg1 in the cardiac development in response to DNA damage. Our work demonstrates the requirement of ogg1 in cardiac progenitors and heart development in zebrafish. These findings may be helpful for understanding the aetiology of congenital cardiac deficits. - Highlights: • A key DNA repair enzyme ogg1 is expressed in the embryonic heart in zebrafish. • We found that ogg1 is essential for normal cardiac morphogenesis in zebrafish. • The production of embryonic cardiomyocytes requires appropriate ogg1 expression. • Ogg1 critically regulated proliferation of cardiac progenitor cells in zebrafish. • foxh1 is a partner of ogg1 in the cardiac development in response to DNA damage.

  4. Distribution of CD163-positive cell and MHC class II-positive cell in the normal equine uveal tract.

    Science.gov (United States)

    Sano, Yuto; Matsuda, Kazuya; Okamoto, Minoru; Takehana, Kazushige; Hirayama, Kazuko; Taniyama, Hiroyuki

    2016-02-01

    Antigen-presenting cells (APCs) in the uveal tract participate in ocular immunity including immune homeostasis and the pathogenesis of uveitis. In horses, although uveitis is the most common ocular disorder, little is known about ocular immunity, such as the distribution of APCs. In this study, we investigated the distribution of CD163-positive and MHC II-positive cells in the normal equine uveal tract using an immunofluorescence technique. Eleven eyes from 10 Thoroughbred horses aged 1 to 24 years old were used. Indirect immunofluorescence was performed using the primary antibodies CD163, MHC class II (MHC II) and CD20. To demonstrate the site of their greatest distribution, positive cells were manually counted in 3 different parts of the uveal tract (ciliary body, iris and choroid), and their average number was assessed by statistical analysis. The distribution of pleomorphic CD163- and MHC II-expressed cells was detected throughout the equine uveal tract, but no CD20-expressed cells were detected. The statistical analysis demonstrated the distribution of CD163- and MHC II-positive cells focusing on the ciliary body. These results demonstrated that the ciliary body is the largest site of their distribution in the normal equine uveal tract, and the ciliary body is considered to play important roles in uveal and/or ocular immune homeostasis. The data provided in this study will help further understanding of equine ocular immunity in the normal state and might be beneficial for understanding of mechanisms of ocular disorders, such as equine uveitis.

  5. Cardiac iron overload in chronically transfused patients with thalassemia, sickle cell anemia, or myelodysplastic syndrome.

    Directory of Open Access Journals (Sweden)

    Mariane de Montalembert

    Full Text Available The risk and clinical significance of cardiac iron overload due to chronic transfusion varies with the underlying disease. Cardiac iron overload shortens the life expectancy of patients with thalassemia, whereas its effect is unclear in those with myelodysplastic syndromes (MDS. In patients with sickle cell anemia (SCA, iron does not seem to deposit quickly in the heart. Our primary objective was to assess through a multicentric study the prevalence of cardiac iron overload, defined as a cardiovascular magnetic resonance T2*8 ECs in the past year, and age older than 6 years. We included from 9 centers 20 patients with thalassemia, 41 with SCA, and 25 with MDS in 2012-2014. Erythrocytapharesis did not consistently prevent iron overload in patients with SCA. Cardiac iron overload was found in 3 (15% patients with thalassemia, none with SCA, and 4 (16% with MDS. The liver iron content (LIC ranged from 10.4 to 15.2 mg/g dry weight, with no significant differences across groups (P = 0.29. Abnormal T2* was not significantly associated with any of the measures of transfusion or chelation. Ferritin levels showed a strong association with LIC. Non-transferrin-bound iron was high in the thalassemia and MDS groups but low in the SCA group (P<0.001. Hepcidin was low in thalassemia, normal in SCA, and markedly elevated in MDS (P<0.001. Two mechanisms may explain that iron deposition largely spares the heart in SCA: the high level of erythropoiesis recycles the iron and the chronic inflammation retains iron within the macrophages. Thalassemia, in contrast, is characterized by inefficient erythropoiesis, unable to handle free iron. Iron accumulation varies widely in MDS syndromes due to the competing influences of abnormal erythropoiesis, excess iron supply, and inflammation.

  6. Intra-operative intravenous fluid restriction reduces perioperative red blood cell transfusion in elective cardiac surgery, especially in transfusion-prone patients: a prospective, randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Georgopoulou Stavroula

    2010-02-01

    Full Text Available Abstract Background Cardiac surgery is a major consumer of blood products, and hemodilution increases transfusion requirements during cardiac surgery under CPB. As intraoperative parenteral fluids contribute to hemodilution, we evaluated the hypothesis that intraoperative fluid restriction reduces packed red-cell (PRC use, especially in transfusion-prone adults undergoing elective cardiac surgery. Methods 192 patients were randomly assigned to restrictive (group A, 100 pts, or liberal (group B, 92 pts intraoperative intravenous fluid administration. All operations were conducted by the same team (same surgeon and perfusionist. After anesthesia induction, intravenous fluids were turned off in Group A (fluid restriction patients, who only received fluids if directed by protocol. In contrast, intravenous fluid administration was unrestricted in group B. Transfusion decisions were made by the attending anesthesiologist, based on identical transfusion guidelines for both groups. Results 137 of 192 patients received 289 PRC units in total. Age, sex, weight, height, BMI, BSA, LVEF, CPB duration and surgery duration did not differ between groups. Fluid balance was less positive in Group A. Fewer group A patients (62/100 required transfusion compared to group B (75/92, p Conclusions Our data suggest that fluid restriction reduces intraoperative PRC transfusions without significantly increasing postoperative transfusions in cardiac surgery; this effect is more pronounced in transfusion-prone patients. Trial registration NCT00600704, at the United States National Institutes of Health.

  7. Materializing Heart Regeneration: Biomimicry of Key Observations in Cell Transplantation Therapies and Natural Cardiac Regeneration

    Science.gov (United States)

    Kong, Yen P.; Jongpaiboonkit, Leena

    2016-07-01

    New regenerative paradigms are needed to address the growing global problem of heart failure as existing interventions are unsatisfactory. Outcomes from the current paradigm of cell transplantation have not been stellar but the mechanistic knowledge learned from them is instructive in the development of future paradigms. An emerging biomaterial-based approach incorporating key mechanisms and additional ones scrutinized from the process of natural heart regeneration in zebrafish may become the next evolution in cardiac repair. We highlight, with examples, tested key concepts and pivotal ones that may be integrated into a successful therapy.

  8. Red blood cell storage duration and long-term mortality in patients undergoing cardiac intervention

    DEFF Research Database (Denmark)

    Dencker, D; Pedersen, F; Engstrøm, T

    2017-01-01

    OBJECTIVES: To study the effect of red blood cell (RBC) storage duration on long-term mortality in patients undergoing cardiac intervention. BACKGROUND: RBCs undergo numerous structural and functional changes during storage. Observational studies have assessed the association between RBC storage...... duration and patient outcomes with conflicting results. METHODS: Between January 2006 and December 2014, 82 408 patients underwent coronary angiography. Of these, 1856 patients received one to four RBC units within 30 days after this procedure. Patients were allocated according to length of RBC storage...

  9. The cardiac glycoside oleandrin induces apoptosis in human colon cancer cells via the mitochondrial pathway.

    Science.gov (United States)

    Pan, Li; Zhang, Yuming; Zhao, Wanlu; Zhou, Xia; Wang, Chunxia; Deng, Fan

    2017-07-01

    Evidence indicates that the cardiac glycoside oleandrin exhibits cytotoxic activity against several different types of cancer. However, the specific mechanisms underlying oleandrin-induced anti-tumor effects remain largely unknown. The present study examined the anti-cancer effect and underlying mechanism of oleandrin on human colon cancer cells. The cytotoxicity and IC50 of five small molecule compounds (oleandrin, neriifolin, strophanthidin, gitoxigenin, and convallatoxin) in human colon cancer cell line SW480 cells and normal human colon cell line NCM460 cells were determined by cell counting and MTT assays, respectively. Apoptosis was determined by staining cells with annexin V-FITC and propidium iodide, followed by flow cytometry. Intracellular Ca 2+ was determined using Fluo-3 AM,glutathione (GSH) levels were measured using a GSH detection kit,and the activity of caspase-3, -9 was measured using a peptide substrate. BAX, pro-caspase-3, -9, cytochrome C and BCL-2 expression were determined by Western blotting. Oleandrin significantly decreased cell viabilities in SW480, HCT116 and RKO cells. The IC50 for SW480 cells was 0.02 µM, whereas for NCM460 cells 0.56 µM. More interestingly, the results of flow cytometry showed that oleandrin potently induced apoptosis in SW480 and RKO cells. Oleandrin downregulated protein expression of pro-caspase-3, -9, but enhanced caspase-3, -9 activities. These effects were accompanied by upregulation of protein expression of cytochrome C and BAX, and downregulation of BCL-2 protein expression in a concentration-dependent manner. Furthermore, oleandrin increased intracellular Ca 2+ concentration, but decreased GSH concentration in the cells. The present results suggest that oleandrin induces apoptosis in human colorectal cancer cells via the mitochondrial pathway. Our findings provide new insight into the mechanism of anti-cancer property of oleandrin.

  10. Multipotent human stromal cells improve cardiac function after myocardial infarction in mice without long-term engraftment

    International Nuclear Information System (INIS)

    Iso, Yoshitaka; Spees, Jeffrey L.; Serrano, Claudia; Bakondi, Benjamin; Pochampally, Radhika; Song, Yao-Hua; Sobel, Burton E.; Delafontaine, Patrick; Prockop, Darwin J.

    2007-01-01

    The aim of this study was to determine whether intravenously administered multipotent stromal cells from human bone marrow (hMSCs) can improve cardiac function after myocardial infarction (MI) without long-term engraftment and therefore whether transitory paracrine effects or secreted factors are responsible for the benefit conferred. hMSCs were injected systemically into immunodeficient mice with acute MI. Cardiac function and fibrosis after MI in the hMSC-treated group were significantly improved compared with controls. However, despite the cardiac improvement, there was no evident hMSC engraftment in the heart 3 weeks after MI. Microarray assays and ELISAs demonstrated that multiple protective factors were expressed and secreted from the hMSCs in culture. Factors secreted by hMSCs prevented cell death of cultured cardiomyocytes and endothelial cells under conditions that mimicked tissue ischemia. The favorable effects of hMSCs appear to reflect the impact of secreted factors rather than engraftment, differentiation, or cell fusion

  11. Preclinical Evaluation of the Immunomodulatory Properties of Cardiac Adipose Tissue Progenitor Cells Using Umbilical Cord Blood Mesenchymal Stem Cells: A Direct Comparative Study

    Directory of Open Access Journals (Sweden)

    Isaac Perea-Gil

    2015-01-01

    Full Text Available Cell-based strategies to regenerate injured myocardial tissue have emerged over the past decade, but the optimum cell type is still under scrutiny. In this context, human adult epicardial fat surrounding the heart has been characterized as a reservoir of mesenchymal-like progenitor cells (cardiac ATDPCs with potential clinical benefits. However, additional data on the possibility that these cells could trigger a deleterious immune response following implantation are needed. Thus, in the presented study, we took advantage of the well-established low immunogenicity of umbilical cord blood-derived mesenchymal stem cells (UCBMSCs to comparatively assess the immunomodulatory properties of cardiac ATDPCs in an in vitro allostimulatory assay using allogeneic mature monocyte-derived dendritic cells (MDDCs. Similar to UCBMSCs, increasing amounts of seeded cardiac ATDPCs suppressed the alloproliferation of T cells in a dose-dependent manner. Secretion of proinflammatory cytokines (IL6, TNFα, and IFNγ was also specifically modulated by the different numbers of cardiac ATDPCs cocultured. In summary, we show that cardiac ATDPCs abrogate T cell alloproliferation upon stimulation with allogeneic mature MDDCs, suggesting that they could further regulate a possible harmful immune response in vivo. Additionally, UCBMSCs can be considered as valuable tools to preclinically predict the immunogenicity of prospective regenerative cells.

  12. Generation of human secondary cardiospheres as a potent cell processing strategy for cell-based cardiac repair.

    Science.gov (United States)

    Cho, Hyun-Jai; Lee, Ho-Jae; Chung, Yeon-Ju; Kim, Ju-Young; Cho, Hyun-Ju; Yang, Han-Mo; Kwon, Yoo-Wook; Lee, Hae-Young; Oh, Byung-Hee; Park, Young-Bae; Kim, Hyo-Soo

    2013-01-01

    Cell therapy is a promising approach for repairing damaged heart. However, there are large rooms to be improved in therapeutic efficacy. We cultured a small quantity (5-10 mg) of heart biopsy tissues from 16 patients who received heart transplantation. We produced primary and secondary cardiospheres (CSs) using repeated three-dimensional culture strategy and characterized the cells. Approximately 5000 secondary CSs were acquired after 45 days. Genetic analysis confirmed that the progenitor cells in the secondary CSs originated from the innate heart, but not from extra-cardiac organs. The expressions of Oct4 and Nanog were significantly induced in secondary CSs compared with adherent cells derived from primary CSs. Those expressions in secondary CSs were higher in a cytokine-deprived medium than in a cytokine-supplemented one, suggesting that formation of the three-dimensional structure was important to enhance stemness whereas supplementation with various cytokines was not essential. Signal blocking experiments showed that the ERK and VEGF pathways are indispensable for sphere formation. To optimize cell processing, we compared four different methods of generating spheres. Method based on the hanging-drop or AggreWell™ was superior to that based on the poly-d-lysine-coated dish or Petri dish with respect to homogeneity of the product, cellular potency and overall simplicity of the process. When transplanted into the ischemic myocardium of immunocompromised mice, human secondary CSs differentiated into cardiomyocytes and endothelial cells. These results demonstrate that generation of secondary CSs from a small quantity of adult human cardiac tissue is a feasible and effective cell processing strategy to improve the therapeutic efficacy of cell therapy. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Human breast tumor cells are more resistant to cardiac glycoside toxicity than non-tumorigenic breast cells.

    Directory of Open Access Journals (Sweden)

    Rebecca J Clifford

    Full Text Available Cardiotonic steroids (CTS, specific inhibitors of Na,K-ATPase activity, have been widely used for treating cardiac insufficiency. Recent studies suggest that low levels of endogenous CTS do not inhibit Na,K-ATPase activity but play a role in regulating blood pressure, inducing cellular kinase activity, and promoting cell viability. Higher CTS concentrations inhibit Na,K-ATPase activity and can induce reactive oxygen species, growth arrest, and cell death. CTS are being considered as potential novel therapies in cancer treatment, as they have been shown to limit tumor cell growth. However, there is a lack of information on the relative toxicity of tumor cells and comparable non-tumor cells. We have investigated the effects of CTS compounds, ouabain, digitoxin, and bufalin, on cell growth and survival in cell lines exhibiting the full spectrum of non-cancerous to malignant phenotypes. We show that CTS inhibit membrane Na,K-ATPase activity equally well in all cell lines tested regardless of metastatic potential. In contrast, the cellular responses to the drugs are different in non-tumor and tumor cells. Ouabain causes greater inhibition of proliferation and more extensive apoptosis in non-tumor breast cells compared to malignant or oncogene-transfected cells. In tumor cells, the effects of ouabain are accompanied by activation of anti-apoptotic ERK1/2. However, ERK1/2 or Src inhibition does not sensitize tumor cells to CTS cytotoxicity, suggesting that other mechanisms provide protection to the tumor cells. Reduced CTS-sensitivity in breast tumor cells compared to non-tumor cells indicates that CTS are not good candidates as cancer therapies.

  14. Proteomics-based network analysis characterizes biological processes and pathways activated by preconditioned mesenchymal stem cells in cardiac repair mechanisms.

    Science.gov (United States)

    Di Silvestre, Dario; Brambilla, Francesca; Scardoni, Giovanni; Brunetti, Pietro; Motta, Sara; Matteucci, Marco; Laudanna, Carlo; Recchia, Fabio A; Lionetti, Vincenzo; Mauri, Pierluigi

    2017-05-01

    We have demonstrated that intramyocardial delivery of human mesenchymal stem cells preconditioned with a hyaluronan mixed ester of butyric and retinoic acid (MSCp + ) is more effective in preventing the decay of regional myocardial contractility in a swine model of myocardial infarction (MI). However, the understanding of the role of MSCp + in proteomic remodeling of cardiac infarcted tissue is not complete. We therefore sought to perform a comprehensive analysis of the proteome of infarct remote (RZ) and border zone (BZ) of pigs treated with MSCp + or unconditioned stem cells. Heart tissues were analyzed by MudPIT and differentially expressed proteins were selected by a label-free approach based on spectral counting. Protein profiles were evaluated by using PPI networks and their topological analysis. The proteomic remodeling was largely prevented in MSCp + group. Extracellular proteins involved in fibrosis were down-regulated, while energetic pathways were globally up-regulated. Cardioprotectant pathways involved in the production of keto acid metabolites were also activated. Additionally, we found that new hub proteins support the cardioprotective phenotype characterizing the left ventricular BZ treated with MSCp + . In fact, the up-regulation of angiogenic proteins NCL and RAC1 can be explained by the increase of capillary density induced by MSCp + . Our results show that angiogenic pathways appear to be uniquely positioned to integrate signaling with energetic pathways involving cardiac repair. Our findings prompt the use of proteomics-based network analysis to optimize new approaches preventing the post-ischemic proteomic remodeling that may underlie the limited self-repair ability of adult heart. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Peptide-enhanced mRNA transfection in cultured mouse cardiac fibroblasts and direct reprogramming towards cardiomyocyte-like cells

    Directory of Open Access Journals (Sweden)

    Lee K

    2015-03-01

    Full Text Available Kunwoo Lee,1,2 Pengzhi Yu,3 Nithya Lingampalli,1 Hyun Jin Kim,1 Richard Tang,1 Niren Murthy1,2 1Department of Bioengineering, University of California, Berkeley, CA, USA; 2UC Berkeley and UCSF Joint Graduate Program in Bioengineering, Berkeley/San Francisco, CA, USA; 3Gladstone Institute of Cardiovascular Disease, San Francisco, CA, USA Abstract: The treatment of myocardial infarction is a major challenge in medicine due to the inability of heart tissue to regenerate. Direct reprogramming of endogenous cardiac fibroblasts into functional cardiomyocytes via the delivery of transcription factor mRNAs has the potential to regenerate cardiac tissue and to treat heart failure. Even though mRNA delivery to cardiac fibroblasts has the therapeutic potential, mRNA transfection in cardiac fibroblasts has been challenging. Herein, we develop an efficient mRNA transfection in cultured mouse cardiac fibroblasts via a polyarginine-fused heart-targeting peptide and lipofectamine complex, termed C-Lipo and demonstrate the partial direct reprogramming of cardiac fibroblasts towards cardiomyocyte cells. C-Lipo enabled the mRNA-induced direct cardiac reprogramming due to its efficient transfection with low toxicity, which allowed for multiple transfections of Gata4, Mef2c, and Tbx5 (GMT mRNAs for a period of 2 weeks. The induced cardiomyocyte-like cells had α-MHC promoter-driven GFP expression and striated cardiac muscle structure from a-actinin immunohistochemistry. GMT mRNA transfection of cultured mouse cardiac fibroblasts via C-Lipo significantly increased expression of the cardiomyocyte marker genes, Actc1, Actn2, Gja1, Hand2, and Tnnt2, after 2 weeks of transfection. Moreover, this study provides the first direct evidence that the stoichiometry of the GMT reprogramming factors influence the expression of cardiomyocyte marker genes. Our results demonstrate that mRNA delivery is a potential approach for cardiomyocyte generation. Keywords: direct cardiac

  16. In vitro epigenetic reprogramming of human cardiac mesenchymal stromal cells into functionally competent cardiovascular precursors.

    Directory of Open Access Journals (Sweden)

    Matteo Vecellio

    Full Text Available Adult human cardiac mesenchymal-like stromal cells (CStC represent a relatively accessible cell type useful for therapy. In this light, their conversion into cardiovascular precursors represents a potential successful strategy for cardiac repair. The aim of the present work was to reprogram CStC into functionally competent cardiovascular precursors using epigenetically active small molecules. CStC were exposed to low serum (5% FBS in the presence of 5 µM all-trans Retinoic Acid (ATRA, 5 µM Phenyl Butyrate (PB, and 200 µM diethylenetriamine/nitric oxide (DETA/NO, to create a novel epigenetically active cocktail (EpiC. Upon treatment the expression of markers typical of cardiac resident stem cells such as c-Kit and MDR-1 were up-regulated, together with the expression of a number of cardiovascular-associated genes including KDR, GATA6, Nkx2.5, GATA4, HCN4, NaV1.5, and α-MHC. In addition, profiling analysis revealed that a significant number of microRNA involved in cardiomyocyte biology and cell differentiation/proliferation, including miR 133a, 210 and 34a, were up-regulated. Remarkably, almost 45% of EpiC-treated cells exhibited a TTX-sensitive sodium current and, to a lower extent in a few cells, also the pacemaker I(f current. Mechanistically, the exposure to EpiC treatment introduced global histone modifications, characterized by increased levels of H3K4Me3 and H4K16Ac, as well as reduced H4K20Me3 and H3s10P, a pattern compatible with reduced proliferation and chromatin relaxation. Consistently, ChIP experiments performed with H3K4me3 or H3s10P histone modifications revealed the presence of a specific EpiC-dependent pattern in c-Kit, MDR-1, and Nkx2.5 promoter regions, possibly contributing to their modified expression. Taken together, these data indicate that CStC may be epigenetically reprogrammed to acquire molecular and biological properties associated with competent cardiovascular precursors.

  17. In Vivo Functional Selection Identifies Cardiotrophin-1 as a Cardiac Engraftment Factor for Mesenchymal Stromal Cells.

    Science.gov (United States)

    Bortolotti, Francesca; Ruozi, Giulia; Falcione, Antonella; Doimo, Sara; Dal Ferro, Matteo; Lesizza, Pierluigi; Zentilin, Lorena; Banks, Lawrence; Zacchigna, Serena; Giacca, Mauro

    2017-10-17

    Transplantation of cells into the infarcted heart has significant potential to improve myocardial recovery; however, low efficacy of cell engraftment still limits therapeutic benefit. Here, we describe a method for the unbiased, in vivo selection of cytokines that improve mesenchymal stromal cell engraftment into the heart both in normal conditions and after myocardial infarction. An arrayed library of 80 secreted factors, including most of the currently known interleukins and chemokines, were individually cloned into adeno-associated viral vectors. Pools from this library were then used for the batch transduction of bone marrow-derived mesenchymal stromal cells ex vivo, followed by intramyocardial cell administration in normal and infarcted mice. Three weeks after injection, vector genomes were recovered from the few persisting cells and identified by sequencing DNA barcodes uniquely labeling each of the tested cytokines. The most effective molecule identified by this competitive engraftment screening was cardiotrophin-1, a member of the interleukin-6 family. Intracardiac injection of mesenchymal stromal cells transiently preconditioned with cardiotrophin-1 preserved cardiac function and reduced infarct size, parallel to the persistence of the transplanted cells in the healing hearts for at least 2 months after injection. Engraftment of cardiotrophin-1-treated mesenchymal stromal cells was consequent to signal transducer and activator of transcription 3-mediated activation of the focal adhesion kinase and its associated focal adhesion complex and the consequent acquisition of adhesive properties by the cells. These results support the feasibility of selecting molecules in vivo for their functional properties with adeno-associated viral vector libraries and identify cardiotrophin-1 as a powerful cytokine promoting cell engraftment and thus improving cell therapy of the infarcted myocardium. © 2017 American Heart Association, Inc.

  18. Wnt1 inhibits hydrogen peroxide-induced apoptosis in mouse cardiac stem cells.

    Directory of Open Access Journals (Sweden)

    Jingjin Liu

    Full Text Available BACKGROUND: Because of their regenerative and paracrine abilities, cardiac stem cells (CSCs are the most appropriate, optimal and promising candidates for the development of cardiac regenerative medicine strategies. However, native and exogenous CSCs in ischemic hearts are exposed to various pro-apoptotic or cytotoxic factors preventing their regenerative and paracrine abilities. METHODS AND RESULTS: We examined the effects of H2O2 on mouse CSCs (mCSCs, and observed that hydrogen peroxide (H2O2 treatment induces mCSCs apoptosis via the caspase 3 pathway, in a dose-dependent manner. We then examined the effects of Wnt1 over-expression on H2O2-induced apoptosis in mCSCs and observed that Wnt1 significantly decreased H2O2-induced apoptosis in mCSCs. On the other hand, inhibition of the canonical Wnt pathway by the secreted frizzled related protein 2 (SFRP2 or knockdown of β-catenin in mCSCs reduced cells resistance to H2O2-induced apoptosis, suggesting that Wnt1 predominantly prevents H2O2-induced apoptosis through the canonical Wnt pathway. CONCLUSIONS: Our results provide the first evidences that Wnt1 plays an important role in CSCs' defenses against H2O2-induced apoptosis through the canonical Wnt1/GSK3β/β-catenin signaling pathway.

  19. Fulvestrant radiosensitizes human estrogen receptor-positive breast cancer cells

    International Nuclear Information System (INIS)

    Wang, Jing; Yang, Qifeng; Haffty, Bruce G.; Li, Xiaoyan; Moran, Meena S.

    2013-01-01

    Highlights: ► Fulvestrant radiosensitizes MCF-7 cells. ► Fulvestrant increases G1 arrest and decreases S phase in MCF-7 cells. ► Fulvestrant down-regulates DNA-PKcs and RAD51 in MCF-7 cells. -- Abstract: The optimal sequencing for hormonal therapy and radiation are yet to be determined. We utilized fulvestrant, which is showing promise as an alternative to other agents in the clinical setting of hormonal therapy, to assess the cellular effects of concomitant anti-estrogen therapy (fulvestrant) with radiation (F + RT). This study was conducted to assess the effects of fulvestrant alone vs. F + RT on hormone-receptor positive breast cancer to determine if any positive or negative combined effects exist. The effects of F + RT on human breast cancer cells were assessed using MCF-7 clonogenic and tetrazolium salt colorimetric (MTT) assays. The assays were irradiated with a dose of 0, 2, 4, 6 Gy ± fulvestrant. The effects of F + RT vs. single adjuvant treatment alone on cell-cycle distribution were assessed using flow cytometry; relative expression of repair proteins (Ku70, Ku80, DNA-PKcs, Rad51) was assessed using Western Blot analysis. Cell growth for radiation alone vs. F + RT was 0.885 ± 0.013 vs. 0.622 ± 0.029 @2 Gy, 0.599 ± 0.045 vs. 0.475 ± 0.054 @4 Gy, and 0.472 ± 0.021 vs. 0.380 ± 0.018 @6 Gy RT (p = 0.003). While irradiation alone induced G2/M cell cycle arrest, the combination of F + RT induced cell redistribution in the G1 phase and produced a significant decrease in the proportion of cells in G2 phase arrest and in the S phase in breast cancer cells (p < 0.01). Furthermore, levels of repair proteins DNA-PKcs and Rad51 were significantly decreased in the cells treated with F + RT compared with irradiation alone. F + RT leads to a decrease in the surviving fraction, increased cell cycle arrest, down regulating of nonhomologous repair protein DNA-PKcs and homologous recombination repair protein RAD51. Thus, our findings suggest that F + RT

  20. Cardiac regeneration therapy: connections to cardiac physiology.

    Science.gov (United States)

    Takehara, Naofumi; Matsubara, Hiroaki

    2011-12-01

    Without heart transplantation, a large number of patients with failing hearts worldwide face poor outcomes. By means of cardiomyocyte regeneration, cardiac regeneration therapy is emerging with great promise as a means for restoring loss of cardiac function. However, the limited success of clinical trials using bone marrow-derived cells and myoblasts with heterogeneous constituents, transplanted at a wide range of cell doses, has led to disagreement on the efficacy of cell therapy. It is therefore essential to reevaluate the evidence for the efficacy of cell-based cardiac regeneration therapy, focusing on targets, materials, and methodologies. Meanwhile, the revolutionary innovation of cardiac regeneration therapy is sorely needed to help the millions of people who suffer heart failure from acquired loss of cardiomyocytes. Cardiac regeneration has been used only in limited species or as a developing process in the rodent heart; now, the possibility of cardiomyocyte turnover in the human heart is being revisited. In the pursuit of this concept, the use of cardiac stem/progenitor stem cells in the cardiac niche must be focused to usher in a second era of cardiac regeneration therapy for the severely injured heart. In addition, tissue engineering and cellular reprogramming will advance the next era of treatment that will enable current cell-based therapy to progress to "real" cardiac regeneration therapy. Although many barriers remain, the prevention of refractory heart failure through cardiac regeneration is now becoming a realistic possibility.

  1. FOXP3 positive regulatory T-cells in cutaneous and systemic CD30 positive T-cell lymphoproliferations

    DEFF Research Database (Denmark)

    Gjerdrum, Lise Mette; Woetmann, Anders; Ødum, Niels

    2008-01-01

    for FOXP3 expression in tumour cells and tumour infiltrating Tregs. Labelling of a majority of the neoplastic cells was seen in one case of C-ALCL. Another three cases (one LyP and two C-ALCL) displayed weak labelling of very occasional atypical T-cells. In the remaining 38 cases the atypical lymphoid...... infiltrate was FOXP3 negative. By contrast, all biopsies contained tumour infiltrating FOXP3-positive Tregs. Significant higher numbers were recorded in ALK negative S-ALCL and LyP than in C-ALCL and S-ALCL positive for ALK. In conclusion, it is shown that FOXP3 expression in cutaneous and systemic CD30...

  2. Induction of transplantation tolerance to fully mismatched cardiac allografts by T cell mediated delivery of alloantigen

    Science.gov (United States)

    Tian, Chaorui; Yuan, Xueli; Jindra, Peter T.; Bagley, Jessamyn; Sayegh, Mohamed H.; Iacomini, John

    2010-01-01

    Induction of transplantation tolerance has the potential to allow for allograft acceptance without the need for life-long immunosuppression. Here we describe a novel approach that uses delivery of alloantigen by mature T cells to induce tolerance to fully allogeneic cardiac grafts. Adoptive transfer of mature alloantigen-expressing T cells into myeloablatively conditioned mice results in long-term acceptance of fully allogeneic heart transplants without evidence of chronic rejection. Since myeloablative conditioning is clinically undesirable we further demonstrated that adoptive transfer of mature alloantigen-expressing T cells alone into mice receiving non-myeloablative conditioning resulted in long-term acceptance of fully allogeneic heart allografts with minimal evidence of chronic rejection. Mechanistically, tolerance induction involved both deletion of donor-reactive host T cells and the development of regulatory T cells. Thus, delivery of alloantigen by mature T cells induces tolerance to fully allogeneic organ allografts in non-myeloablatively conditioned recipients, representing a novel approach for tolerance induction in transplantation. PMID:20452826

  3. Hybrid cardiac imaging using PET/MRI: a joint position statement by the European Society of Cardiovascular Radiology (ESCR) and the European Association of Nuclear Medicine (EANM).

    Science.gov (United States)

    Nensa, Felix; Bamberg, Fabian; Rischpler, Christoph; Menezes, Leon; Poeppel, Thorsten D; la Fougère, Christian; Beitzke, Dietrich; Rasul, Sazan; Loewe, Christian; Nikolaou, Konstantin; Bucerius, Jan; Kjaer, Andreas; Gutberlet, Matthias; Prakken, Niek H; Vliegenthart, Rozemarijn; Slart, Riemer H J A; Nekolla, Stephan G; Lassen, Martin L; Pichler, Bernd J; Schlosser, Thomas; Jacquier, Alexis; Quick, Harald H; Schäfers, Michael; Hacker, Marcus

    2018-05-02

    Positron emission tomography (PET) and magnetic resonance imaging (MRI) have both been used for decades in cardiovascular imaging. Since 2010, hybrid PET/MRI using sequential and integrated scanner platforms has been available, with hybrid cardiac PET/MR imaging protocols increasingly incorporated into clinical workflows. Given the range of complementary information provided by each method, the use of hybrid PET/MRI may be justified and beneficial in particular clinical settings for the evaluation of different disease entities. In the present joint position statement, we critically review the role and value of integrated PET/MRI in cardiovascular imaging, provide a technical overview of cardiac PET/MRI and practical advice related to the cardiac PET/MRI workflow, identify cardiovascular applications that can potentially benefit from hybrid PET/MRI, and describe the needs for future development and research. In order to encourage its wide dissemination, this article is freely accessible on the European Radiology and European Journal of Hybrid Imaging web sites. • Studies and case-reports indicate that PET/MRI is a feasible and robust technology. • Promising fields of application include a variety of cardiac conditions. • Larger studies are required to demonstrate its incremental and cost-effective value. • The translation of novel radiopharmaceuticals and MR-sequences will provide exciting new opportunities.

  4. A Randomized Clinical Trial of Red Blood Cell Transfusion Triggers in Cardiac Surgery.

    Science.gov (United States)

    Koch, Colleen G; Sessler, Daniel I; Mascha, Edward J; Sabik, Joseph F; Li, Liang; Duncan, Andra I; Zimmerman, Nicole M; Blackstone, Eugene H

    2017-10-01

    Class I evidence supporting a threshold for transfusion in the cardiac surgical setting is scarce. We randomly allocated patients to a transfusion hematocrit trigger of 24% versus 28% to compare morbidity, mortality, and resource use. From March 2007 to August 2014, two centers randomly assigned 722 adults undergoing coronary artery bypass graft surgery or valve procedures to a 24% hematocrit trigger (n = 363, low group) or 28% trigger (n = 354, high group). One unit of red blood cells was transfused if the hematocrit fell below the designated threshold. The primary endpoint was a composite of postoperative morbidities and mortality. Treatment effect was primarily assessed using an average relative effect generalized estimating equation model. At the second planned interim analysis, the a priori futility boundary was crossed, and the study was stopped. There was no detected treatment effect on the composite outcome (average relative effect odds ratio, low versus high, 0.86, 95% confidence interval: 0.29 to 2.54, p = 0.71). However, the low group received fewer red blood cell transfusions than the high group (54% versus 75%, p < 0.001), mostly administered in the operating room (low group, 112 [31%]; high group, 208 [59%]), followed by intensive care unit (low, 105 [31%]; high, 115 [34%]) and floor (low, 41 [12%]; high, 42 [13%]). The low group was exposed to lower hematocrits: median before transfusion, 22% (Q1 = 21%, Q3 = 23%) versus 24% (Q1 = 22%, Q3 = 25%). Negative exposures differed between treatment groups, with lower hematocrit in the 24% trigger group and more red blood cells used in the 28% group, but adverse outcomes did not differ. Because red blood cell use was less with a 24% trigger without adverse effects, our randomized trial results support aggressive blood conservation efforts in cardiac surgery. Copyright © 2017 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  5. Safe genetic modification of cardiac stem cells using a site-specific integration technique.

    Science.gov (United States)

    Lan, Feng; Liu, Junwei; Narsinh, Kazim H; Hu, Shijun; Han, Leng; Lee, Andrew S; Karow, Marisa; Nguyen, Patricia K; Nag, Divya; Calos, Michele P; Robbins, Robert C; Wu, Joseph C

    2012-09-11

    Human cardiac progenitor cells (hCPCs) are a promising cell source for regenerative repair after myocardial infarction. Exploitation of their full therapeutic potential may require stable genetic modification of the cells ex vivo. Safe genetic engineering of stem cells, using facile methods for site-specific integration of transgenes into known genomic contexts, would significantly enhance the overall safety and efficacy of cellular therapy in a variety of clinical contexts. We used the phiC31 site-specific recombinase to achieve targeted integration of a triple fusion reporter gene into a known chromosomal context in hCPCs and human endothelial cells. Stable expression of the reporter gene from its unique chromosomal integration site resulted in no discernible genomic instability or adverse changes in cell phenotype. Namely, phiC31-modified hCPCs were unchanged in their differentiation propensity, cellular proliferative rate, and global gene expression profile when compared with unaltered control hCPCs. Expression of the triple fusion reporter gene enabled multimodal assessment of cell fate in vitro and in vivo using fluorescence microscopy, bioluminescence imaging, and positron emission tomography. Intramyocardial transplantation of genetically modified hCPCs resulted in significant improvement in myocardial function 2 weeks after cell delivery, as assessed by echocardiography (P=0.002) and MRI (P=0.001). We also demonstrated the feasibility and therapeutic efficacy of genetically modifying differentiated human endothelial cells, which enhanced hind limb perfusion (Pmodification system is a safe, efficient tool to enable site-specific integration of reporter transgenes in progenitor and differentiated cell types.

  6. Hippo pathway effectors control cardiac progenitor cell fate by acting as dynamic sensors of substrate mechanics and nanostructure

    KAUST Repository

    Mosqueira, Diogo

    2014-03-25

    Stem cell responsiveness to extracellular matrix (ECM) composition and mechanical cues has been the subject of a number of investigations so far, yet the molecular mechanisms underlying stem cell mechano-biology still need full clarification. Here we demonstrate that the paralog proteins YAP and TAZ exert a crucial role in adult cardiac progenitor cell mechano-sensing and fate decision. Cardiac progenitors respond to dynamic modifications in substrate rigidity and nanopattern by promptly changing YAP/TAZ intracellular localization. We identify a novel activity of YAP and TAZ in the regulation of tubulogenesis in 3D environments and highlight a role for YAP/TAZ in cardiac progenitor proliferation and differentiation. Furthermore, we show that YAP/TAZ expression is triggered in the heart cells located at the infarct border zone. Our results suggest a fundamental role for the YAP/TAZ axis in the response of resident progenitor cells to the modifications in microenvironment nanostructure and mechanics, thereby contributing to the maintenance of myocardial homeostasis in the adult heart. These proteins are indicated as potential targets to control cardiac progenitor cell fate by materials design. © 2014 American Chemical Society.

  7. Intramyocardial implantation of differentiated rat bone marrow mesenchymal stem cells enhanced by TGF-β1 improves cardiac function in heart failure rats

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Y. [Department of Histology and Embryology, Hebei Medical University, Shijiazhuang, Hebei (China); Liu, B. [Department of Pathology, the First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei (China); Wang, H.P. [Department of Histology and Embryology, Hebei North University, Zhangjiakou, Hebei (China); Zhang, L. [Department of Histology and Embryology, Hebei Medical University, Shijiazhuang, Hebei (China)

    2016-05-31

    The present study tested the hypotheses that i) transforming growth factor beta 1 (TGF-β1) enhances differentiation of rat bone marrow mesenchymal stem cells (MSCs) towards the cardiomyogenic phenotype and ii) intramyocardial implantation of the TGF-β1-treated MSCs improves cardiac function in heart failure rats. MSCs were treated with different concentrations of TGF-β1 for 72 h, and then morphological characteristics, surface antigens and mRNA expression of several transcription factors were assessed. Intramyocardial implantation of these TGF-β1-treated MSCs to infarcted heart was also investigated. MSCs were initially spindle-shaped with irregular processes. On day 28 after TGF-β1 treatment, MSCs showed fusiform shape, orientating parallel with one another, and were connected with adjoining cells forming myotube-like structures. Immunofluorescence revealed the expression of cardiomyocyte-specific proteins, α-sarcomeric actin and troponin T, in these cells. The mRNA expression of GATA4 and Nkx2.5 genes was slightly increased on day 7, enhanced on day 14 and decreased on day 28 while α-MHC gene was not expressed on day 7, but expressed slightly on day 14 and enhanced on day 28. Transmission electron microscopy showed that the induced cells had myofilaments, z line-like substances, desmosomes, and gap junctions, in contrast with control cells. Furthermore, intramyocardial implantation of TGF-β1-treated MSCs to infarcted heart reduced scar area and increased the number of muscle cells. This structure regeneration was concomitant with the improvement of cardiac function, evidenced by decreased left ventricular end-diastolic pressure, increased left ventricular systolic pressure and increased maximal positive pressure development rate. Taken together, these results indicate that intramyocardial implantation of differentiated MSCs enhanced by TGF-β1 improved cardiac function in heart failure rats.

  8. Intramyocardial implantation of differentiated rat bone marrow mesenchymal stem cells enhanced by TGF-β1 improves cardiac function in heart failure rats

    International Nuclear Information System (INIS)

    Lv, Y.; Liu, B.; Wang, H.P.; Zhang, L.

    2016-01-01

    The present study tested the hypotheses that i) transforming growth factor beta 1 (TGF-β1) enhances differentiation of rat bone marrow mesenchymal stem cells (MSCs) towards the cardiomyogenic phenotype and ii) intramyocardial implantation of the TGF-β1-treated MSCs improves cardiac function in heart failure rats. MSCs were treated with different concentrations of TGF-β1 for 72 h, and then morphological characteristics, surface antigens and mRNA expression of several transcription factors were assessed. Intramyocardial implantation of these TGF-β1-treated MSCs to infarcted heart was also investigated. MSCs were initially spindle-shaped with irregular processes. On day 28 after TGF-β1 treatment, MSCs showed fusiform shape, orientating parallel with one another, and were connected with adjoining cells forming myotube-like structures. Immunofluorescence revealed the expression of cardiomyocyte-specific proteins, α-sarcomeric actin and troponin T, in these cells. The mRNA expression of GATA4 and Nkx2.5 genes was slightly increased on day 7, enhanced on day 14 and decreased on day 28 while α-MHC gene was not expressed on day 7, but expressed slightly on day 14 and enhanced on day 28. Transmission electron microscopy showed that the induced cells had myofilaments, z line-like substances, desmosomes, and gap junctions, in contrast with control cells. Furthermore, intramyocardial implantation of TGF-β1-treated MSCs to infarcted heart reduced scar area and increased the number of muscle cells. This structure regeneration was concomitant with the improvement of cardiac function, evidenced by decreased left ventricular end-diastolic pressure, increased left ventricular systolic pressure and increased maximal positive pressure development rate. Taken together, these results indicate that intramyocardial implantation of differentiated MSCs enhanced by TGF-β1 improved cardiac function in heart failure rats

  9. Enzalutamide inhibits androgen receptor-positive bladder cancer cell growth.

    Science.gov (United States)

    Kawahara, Takashi; Ide, Hiroki; Kashiwagi, Eiji; El-Shishtawy, Kareem A; Li, Yi; Reis, Leonardo O; Zheng, Yichun; Miyamoto, Hiroshi

    2016-10-01

    Emerging preclinical evidence suggests that androgen-mediated androgen receptor (AR) signals promote bladder cancer progression. However, little is known about the efficacy of an AR signaling inhibitor, enzalutamide, in the growth of bladder cancer cells. In this study, we compared the effects of enzalutamide and 2 other classic antiandrogens, flutamide and bicalutamide, on androgen-induced bladder cancer cell proliferation, migration, and invasion as well as tumor growth in vivo. Thiazolyl blue cell viability assay, flow cytometry, scratch wound-healing assay, transwell invasion assay, real-time polymerase chain reaction, and reporter gene assay were performed in AR-positive (e.g., UMUC3, TCCSUP, and 647V-AR) and AR-negative (e.g., UMUC3-AR-short hairpin RNA [shRNA], TCCSUP-AR-shRNA, 647V) bladder cancer lines treated with dihydrotestosterone and each AR antagonist. We also used a mouse xenograft model for bladder cancer. Dihydrotestosterone increased bladder cancer cell proliferation, migration, and invasion indicating that endogenous or exogenous AR was functional. Enzalutamide, hydroxyflutamide, and bicalutamide showed similar inhibitory effects, without significant agonist activity, on androgen-mediated cell viability/apoptosis, cell migration, and cell invasion in AR-positive lines. No significant effects of dihydrotestosterone as well as AR antagonists on the growth of AR-negative cells were seen. Correspondingly, in UMUC3 cells, these AR antagonists down-regulated androgen-induced expression of AR, matrix metalloproteinase-2, and interleukin-6. Androgen-enhanced AR-mediated transcriptional activity was also blocked by each AR antagonist exhibiting insignificant agonist activity. In UMUC3 xenograft-bearing mice, oral gavage treatment with each antiandrogen retarded tumor growth, and only enzalutamide demonstrated a statistically significant suppression compared with mock treatment. Our current data support recent observations indicating the involvement of

  10. Mesenchymal stem cells in cardiac regeneration: a detailed progress report of the last 6 years (2010-2015).

    Science.gov (United States)

    Singh, Aastha; Singh, Abhishek; Sen, Dwaipayan

    2016-06-04

    Mesenchymal stem cells have been used for cardiovascular regenerative therapy for decades. These cells have been established as one of the potential therapeutic agents, following several tests in animal models and clinical trials. In the process, various sources of mesenchymal stem cells have been identified which help in cardiac regeneration by either revitalizing the cardiac stem cells or revascularizing the arteries and veins of the heart. Although mesenchymal cell therapy has achieved considerable admiration, some challenges still remain that need to be overcome in order to establish it as a successful technique. This in-depth review is an attempt to summarize the major sources of mesenchymal stem cells involved in myocardial regeneration, the significant mechanisms involved in the process with a focus on studies (human and animal) conducted in the last 6 years and the challenges that remain to be addressed.

  11. Micro-magnet arrays for specific single bacterial cell positioning

    Energy Technology Data Exchange (ETDEWEB)

    Pivetal, Jérémy, E-mail: jeremy.piv@netcmail.com [Ecole Centrale de Lyon, CNRS UMR 5005, Laboratoire Ampère, F-69134 Écully (France); Royet, David [Ecole Centrale de Lyon, CNRS UMR 5005, Laboratoire Ampère, F-69134 Écully (France); Ciuta, Georgeta [Univ. Grenoble Alpes, Inst NEEL, F-38042 Grenoble (France); CNRS, Inst NEEL, F-38042 Grenoble (France); Frenea-Robin, Marie [Université de Lyon, Université Lyon 1, CNRS UMR 5005, Laboratoire Ampère, F-69622 Villeurbanne (France); Haddour, Naoufel [Ecole Centrale de Lyon, CNRS UMR 5005, Laboratoire Ampère, F-69134 Écully (France); Dempsey, Nora M. [Univ. Grenoble Alpes, Inst NEEL, F-38042 Grenoble (France); CNRS, Inst NEEL, F-38042 Grenoble (France); Dumas-Bouchiat, Frédéric [Univ Limoges, CNRS, SPCTS UMR 7513, 12 Rue Atlantis, F-87068 Limoges (France); Simonet, Pascal [Ecole Centrale de Lyon, CNRS UMR 5005, Laboratoire Ampère, F-69134 Écully (France)

    2015-04-15

    In various contexts such as pathogen detection or analysis of microbial diversity where cellular heterogeneity must be taken into account, there is a growing need for tools and methods that enable microbiologists to analyze bacterial cells individually. One of the main challenges in the development of new platforms for single cell studies is to perform precise cell positioning, but the ability to specifically target cells is also important in many applications. In this work, we report the development of new strategies to selectively trap single bacterial cells upon large arrays, based on the use of micro-magnets. Escherichia coli bacteria were used to demonstrate magnetically driven bacterial cell organization. In order to provide a flexible approach adaptable to several applications in the field of microbiology, cells were magnetically and specifically labeled using two different strategies, namely immunomagnetic labeling and magnetic in situ hybridization. Results show that centimeter-sized arrays of targeted, isolated bacteria can be successfully created upon the surface of a flat magnetically patterned hard magnetic film. Efforts are now being directed towards the integration of a detection tool to provide a complete micro-system device for a variety of microbiological applications. - Highlights: 1.We report a new approach to selectively micropattern bacterial cells individually upon micro-magnet arrays. 2.Permanent micro-magnets of a size approaching that of bacteria could be fabricated using a Thermo-Magnetic Patterning process. 3.Bacterial cells were labeled using two different magnetic labeling strategies providing flexible approach adaptable to several applications in the field of microbiology.

  12. Human pluripotent stem cell models of cardiac disease: from mechanisms to therapies

    Directory of Open Access Journals (Sweden)

    Karina O. Brandão

    2017-09-01

    Full Text Available It is now a decade since human induced pluripotent stem cells (hiPSCs were first described. The reprogramming of adult somatic cells to a pluripotent state has become a robust technology that has revolutionised our ability to study human diseases. Crucially, these cells capture all the genetic aspects of the patient from which they were derived. Combined with advances in generating the different cell types present in the human heart, this has opened up new avenues to study cardiac disease in humans and investigate novel therapeutic approaches to treat these pathologies. Here, we provide an overview of the current state of the field regarding the generation of cardiomyocytes from human pluripotent stem cells and methods to assess them functionally, an essential requirement when investigating disease and therapeutic outcomes. We critically evaluate whether treatments suggested by these in vitro models could be translated to clinical practice. Finally, we consider current shortcomings of these models and propose methods by which they could be further improved.

  13. Asymptomatic Changes in Cardiac Function Can Occur in DCIS Patients Following Treatment with HER-2/neu Pulsed Dendritic Cell Vaccines

    Science.gov (United States)

    Bahl, Susan; Roses, Robert; Sharma, Anupama; Koldovsky, Ursula; Xu, Shuwen; Weinstein, Susan; Nisenbaum, Harvey; Fox, Kevin; Pasha, Theresa; Zhang, Paul; Araujo, Louis; Carver, Joseph; Czerniecki, Brian J

    2009-01-01

    Background Targeting HER-2/neu with Trastuzumab has been associated with development of cardiac toxicity. Methods Twenty-seven patients with ductal carcinoma in situ (DCIS) of the breast completed an IRB approved clinical trial of a HER-2/neu targeted dendritic cell based vaccine. Four weekly vaccinations were administered prior to surgical resection. All subjects underwent pre- and post-vaccine cardiac monitoring by MUGA/ECHO scanning allowing for a comparison of cardiac function. Results In 3 of 27 vaccinated patients (11%) transient asymptomatic decrements in ejection fraction of greater than 15% were noted after vaccination. Notably, evidence of circulating anti-HER-2/neu antibody was found prior to vaccination in all three patients, but cardiac toxicity was not noted until induction of cellular mediated immune responses. Conclusions This is the first description of HER-2/neu targeted vaccination associated with an incidence of cardiac changes, and the induction of cellular immune responses combined with antibody may contribute to changes in cardiac function. PMID:19800453

  14. Establishment of a PRKAG2 cardiac syndrome disease model and mechanism study using human induced pluripotent stem cells.

    Science.gov (United States)

    Zhan, Yongkun; Sun, Xiaolei; Li, Bin; Cai, Huanhuan; Xu, Chen; Liang, Qianqian; Lu, Chao; Qian, Ruizhe; Chen, Sifeng; Yin, Lianhua; Sheng, Wei; Huang, Guoying; Sun, Aijun; Ge, Junbo; Sun, Ning

    2018-04-01

    PRKAG2 cardiac syndrome is a distinct form of human cardiomyopathy characterized by cardiac hypertrophy, ventricular pre-excitation and progressive cardiac conduction disorder. However, it remains unclear how mutations in the PRKAG2 gene give rise to such a complicated disease. To investigate the underlying molecular mechanisms, we generated disease-specific hiPSC-derived cardiomyocytes from two brothers both carrying a heterozygous missense mutation c.905G>A (R302Q) in the PRKAG2 gene and further corrected the R302Q mutation with CRISPR-Cas9 mediated genome editing. Disease-specific hiPSC-cardiomyocytes recapitulated many phenotypes of PRKAG2 cardiac syndrome including cellular enlargement, electrophysiological irregularities and glycogen storage. In addition, we found that the PRKAG2-R302Q mutation led to increased AMPK activities, resulting in extensive glycogen deposition and cardiomyocyte hypertrophy. Finally we confirmed that disrupted phenotypes of PRKAG2 cardiac syndrome caused by the specific PRKAG2-R302Q mutation can be alleviated by small molecules inhibiting AMPK activity and be rescued with CRISPR-Cas9 mediated genome correction. Our results showed that disease-specific hiPSC-CMs and genetically-corrected hiPSC-cardiomyocytes would be a very useful platform for understanding the pathogenesis of, and testing autologous cell-based therapies for, PRKAG2 cardiac syndrome. Copyright © 2018. Published by Elsevier Ltd.

  15. Boosting the pentose phosphate pathway restores cardiac progenitor cell availability in diabetes.

    Science.gov (United States)

    Katare, Rajesh; Oikawa, Atsuhiko; Cesselli, Daniela; Beltrami, Antonio P; Avolio, Elisa; Muthukrishnan, Deepti; Munasinghe, Pujika Emani; Angelini, Gianni; Emanueli, Costanza; Madeddu, Paolo

    2013-01-01

    Diabetes impinges upon mechanisms of cardiovascular repair. However, the biochemical adaptation of cardiac stem cells to sustained hyperglycaemia remains largely unknown. Here, we investigate the molecular targets of high glucose-induced damage in cardiac progenitor cells (CPCs) from murine and human hearts and attempt safeguarding CPC viability and function through reactivation of the pentose phosphate pathway. Type-1 diabetes was induced by streptozotocin. CPC abundance was determined by flow cytometry. Proliferating CPCs were identified in situ by immunostaining for the proliferation marker Ki67. Diabetic hearts showed marked reduction in CPC abundance and proliferation when compared with controls. Moreover, Sca-1(pos) CPCs isolated from hearts of diabetic mice displayed reduced activity of key enzymes of the pentose phosphate pathway, glucose-6-phosphate dehydrogenase (G6PD), and transketolase, increased levels of superoxide and advanced glucose end-products (AGE), and inhibition of the Akt/Pim-1/Bcl-2 signalling pathway. Similarly, culture of murine CPCs or human CD105(pos) progenitor cells in high glucose inhibits the pentose phosphate and pro-survival signalling pathways, leading to the activation of apoptosis. In vivo and in vitro supplementation with benfotiamine reactivates the pentose phosphate pathway and rescues CPC availability and function. This benefit is abrogated by either G6PD silencing by small interfering RNA (siRNA) or Akt inhibition by dominant-negative Akt. We provide new evidence of the negative impact of diabetes and high glucose on mechanisms controlling CPC redox state and survival. Boosting the pentose phosphate pathway might represent a novel mechanistic target for protection of CPC integrity.

  16. Predictive factors for red blood cell transfusion in children undergoing noncomplex cardiac surgery.

    Science.gov (United States)

    Mulaj, Muj; Faraoni, David; Willems, Ariane; Sanchez Torres, Cristel; Van der Linden, Philippe

    2014-08-01

    Red blood cell (RBC) transfusion is frequently required in pediatric cardiac surgery and is associated with altered outcome and increased costs. Determining which factors predict transfusion in this context will enable clinicians to adopt strategies that will reduce the risk of RBC transfusion. This study aimed to assess predictive factors associated with RBC transfusion in children undergoing low-risk cardiac surgery with cardiopulmonary bypass (CPB). Children undergoing surgery to repair ventricular septal defect or atrioventricular septal defect from 2006 to 2011 were included in this retrospective study. Demography, preoperative laboratory testing, intraoperative data, and RBC transfusion were reviewed. Univariate and multivariate logistic regression analysis were used to define factors that were able to predict RBC transfusion. Then, we employed receiver operating characteristic analysis to design a predictive score. Among the 334 children included, 261 (78%) were transfused. Age (43 mL/kg), type of oxygenator used, minimal temperature reached during CPB (<32°C), and preoperative hematocrit (<34%) were independently associated with RBC transfusion in the studied population. A predictive score 2 or greater was the best predictor of RBC transfusion. The present study identified several factors that were significantly associated with perioperative RBC transfusion. Based on these factors, we designed a predictive score that can be used to develop a patient-based blood management program with the aim of reducing the incidence of RBC transfusion. Copyright © 2014 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  17. Effects of combined mesenchymal stem cells and heme oxygenase-1 therapy on cardiac performance.

    Science.gov (United States)

    Zeng, Bin; Chen, Honglei; Zhu, Chengang; Ren, Xiaofeng; Lin, Guosheng; Cao, Feng

    2008-10-01

    Bone marrow mesenchymal stem cells (MSCs) have the potential to repair the infarcted myocardium and improve cardiac function. However, this approach is limited by its poor viability after transplantation, and controversy still exists over the mechanism by which MSCs contribute to the tissue repair. The human heme oxygenase-1 (hHO-1) was transfected into cultured MSCs using an adenoviral vector. 1 x 10(6) Ad-hHO-1-transfected MSCs (HO-1-MSCs) or Ad-Null-transfected MSCs (Null-MSCs) or PBS only (PBS group) were injected intramyocardially into rat hearts 1h after myocardial infarction. HO-1-MSCs survived in the infarcted myocardium, and expressed hHO-1 mRNA. The expression of basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF) was significantly enhanced in HO-1-MSCs-treated hearts. At the same time, there were significant reduction of TNF-alpha, IL-1-beta and IL-6 mRNA, and marked increase of IL-10 mRNA in HO-1-MSCs-treated hearts. Moreover, a further downregulation of proapoptotic protein, Bax, and a marked increase in microvessel density were observed in HO-1-MSCs-treated hearts. The infarct size and cardiac performance were also significantly improved in HO-1-MSCs-treated hearts. The combined approach improves MSCs survival and is superior to MSCs injection alone.

  18. Abnormal autonomic cardiac response to transient hypoxia in sickle cell anemia

    International Nuclear Information System (INIS)

    Sangkatumvong, S; Khoo, M C K; Coates, T D

    2008-01-01

    The objective of this study was to non-invasively assess cardiac autonomic control in subjects with sickle cell anemia (SCA) by tracking the changes in heart rate variability (HRV) that occur following brief exposure to a hypoxic stimulus. Five African–American SCA patients and seven healthy control subjects were recruited to participate in this study. Each subject was exposed to a controlled hypoxic stimulus consisting of five breaths of nitrogen. Time-varying spectral analysis of HRV was applied to estimate the cardiac autonomic response to the transient episode of hypoxia. The confounding effects of changes in respiration on the HRV spectral indices were reduced by using a computational model. A significant decrease in the parameters related to parasympathetic control was detected in the post-hypoxic responses of the SCA subjects relative to normal controls. The spectral index related to sympathetic activity, on the other hand, showed a tendency to increase the following hypoxic stimulation, but the change was not significant. This study suggests that there is some degree of cardiovascular autonomic dysfunction in SCA that is revealed by the response to transient hypoxia

  19. Embryonic Stem Cell-Derived Cardiomyocyte Heterogeneity and the Isolation of Immature and Committed Cells for Cardiac Remodeling and Regeneration

    Directory of Open Access Journals (Sweden)

    Kenneth R. Boheler

    2011-01-01

    Full Text Available Pluripotent stem cells represent one promising source for cell replacement therapy in heart, but differentiating embryonic stem cell-derived cardiomyocytes (ESC-CMs are highly heterogeneous and show a variety of maturation states. In this study, we employed an ESC clonal line that contains a cardiac-restricted ncx1 promoter-driven puromycin resistance cassette together with a mass culture system to isolate ESC-CMs that display traits characteristic of very immature CMs. The cells display properties of proliferation, CM-restricted markers, reduced mitochondrial mass, and hypoxia-resistance. Following transplantation into rodent hearts, bioluminescence imaging revealed that immature cells, but not more mature CMs, survived for at least one month following injection. These data and comparisons with more mature cells lead us to conclude that immature hypoxia resistant ESC-CMs can be isolated in mass in vitro and, following injection into heart, form grafts that may mediate long-term recovery of global and regional myocardial contractile function following infarction.

  20. Cardiac development in zebrafish and human embryonic stem cells is inhibited by exposure to tobacco cigarettes and e-cigarettes.

    Directory of Open Access Journals (Sweden)

    Nathan J Palpant

    Full Text Available Maternal smoking is a risk factor for low birth weight and other adverse developmental outcomes.We sought to determine the impact of standard tobacco cigarettes and e-cigarettes on heart development in vitro and in vivo.Zebrafish (Danio rerio were used to assess developmental effects in vivo and cardiac differentiation of human embryonic stem cells (hESCs was used as a model for in vitro cardiac development.In zebrafish, exposure to both types of cigarettes results in broad, dose-dependent developmental defects coupled with severe heart malformation, pericardial edema and reduced heart function. Tobacco cigarettes are more toxic than e-cigarettes at comparable nicotine concentrations. During cardiac differentiation of hESCs, tobacco smoke exposure results in a delayed transition through mesoderm. Both types of cigarettes decrease expression of cardiac transcription factors in cardiac progenitor cells, suggesting a persistent delay in differentiation. In definitive human cardiomyocytes, both e-cigarette- and tobacco cigarette-treated samples showed reduced expression of sarcomeric genes such as MLC2v and MYL6. Furthermore, tobacco cigarette-treated samples had delayed onset of beating and showed low levels and aberrant localization of N-cadherin, reduced myofilament content with significantly reduced sarcomere length, and increased expression of the immature cardiac marker smooth muscle alpha-actin.These data indicate a negative effect of both tobacco cigarettes and e-cigarettes on heart development in vitro and in vivo. Tobacco cigarettes are more toxic than E-cigarettes and exhibit a broader spectrum of cardiac developmental defects.

  1. Epstein-Barr Virus-positive T-cell Lymphoproliferative Disease Following Umbilical Cord Blood Transplantation for Acute Myeloid Leukemia.

    Science.gov (United States)

    Yui, Shunsuke; Yamaguchi, Hiroki; Imadome, Ken-ichi; Arai, Ayako; Takahashi, Mikiko; Ohashi, Ryuji; Tamai, Hayato; Moriya, Keiichi; Nakayama, Kazutaka; Shimizu, Akira; Inokuchi, Koiti

    2016-01-01

    We report a case of the extremely rare condition Epstein-Barr virus (EBV)-positive T-cell lymphoproliferative disease (LPD) which occurred after umbilical cord blood transplantation. A 25-year-old Japanese man underwent cord blood transplantation from a male human leukocyte antigen 4/6-matched donor due to acute myeloid leukemia with trisomy 8. Bone marrow examination on day 30 showed chimerism with at least 90% donor cells and complete hematological response. Chronic symptoms of graft-versus-host disease appeared only on the skin and were successfully treated with cyclosporine alone. Three years later, however, the patient experienced repeated cold-like symptoms and was hospitalized with liver dysfunction. A high fever developed and was followed by significant edema of the right side of the face. The EBV DNA copy number in whole peripheral blood was 2×10(4)/mL. Liver biopsy showed invasion of EBV-infected CD8-positive T cells. Southern blotting analysis of the whole peripheral blood showed that the T-cell receptor Cβ1 rearrangement was positive. On the basis of these results, EBV-positive T-cell LPD was diagnosed and treated with prednisolone, cyclosporine, and etoposide, followed by cyclophosphamide, doxorubicin, vincristine, and prednisone. However, the patient died of cardiac function failure, pneumonia, and pulmonary hemorrhage, all of unidentified cause. Most cases of EBV-related LPD after hematopoietic stem cell transplantation consist of EBV-positive B-cell LPD, and, to our knowledge, de novo EBV-positive T-cell LPD subsequent to transplantation has not been previously reported.

  2. Genetically engineered cardiac pacemaker: Stem cells transfected with HCN2 gene and myocytes-A model

    Energy Technology Data Exchange (ETDEWEB)

    Kanani, S. [Institut Genomique Fonctionelle, 141 Rue de la Cardonille, 34396 Montpellier (France); Institut Non Lineaire de Nice, CNRS and Universite de Nice, 1361 route des Lucioles, 06560 Valbonne (France); Pumir, A. [Institut Non Lineaire de Nice, CNRS and Universite de Nice, 1361 route des Lucioles, 06560 Valbonne (France); Laboratoire J.A. Dieudonne, CNRS and Universite de Nice, Parc Valrose, 06108 Nice (France)], E-mail: alain.pumir@unice.fr; Krinsky, V. [Institut Non Lineaire de Nice, CNRS and Universite de Nice, 1361 route des Lucioles, 06560 Valbonne (France)

    2008-01-07

    One of the successfully tested methods to design genetically engineered cardiac pacemaker cells consists in transfecting a human mesenchymal stem cell (hMSC) with a HCN2 gene and connecting it to a myocyte. We develop and study a mathematical model, describing a myocyte connected to a hMSC transfected with a HCN2 gene. The cardiac action potential is described both with the simple Beeler-Reuter model, as well as with the elaborate dynamic Luo-Rudy model. The HCN2 channel is described by fitting electrophysiological records, in the spirit of Hodgkin-Huxley. The model shows that oscillations can occur in a pair myocyte-stem cell, that was not observed in the experiments yet. The model predicted that: (1) HCN pacemaker channels can induce oscillations only if the number of expressed I{sub K1} channels is low enough. At too high an expression level of I{sub K1} channels, oscillations cannot be induced, no matter how many pacemaker channels are expressed. (2) At low expression levels of I{sub K1} channels, a large domain of values in the parameter space (n, N) exists, where oscillations should be observed. We denote N the number of expressed pacemaker channels in the stem cell, and n the number of gap junction channels coupling the stem cell and the myocyte. (3) The expression levels of I{sub K1} channels observed in ventricular myocytes, both in the Beeler-Reuter and in the dynamic Luo-Rudy models are too high to allow to observe oscillations. With expression levels below {approx}1/4 of the original value, oscillations can be observed. The main consequence of this work is that in order to obtain oscillations in an experiment with a myocyte-stem cell pair, increasing the values of n, N is unlikely to be helpful, unless the expression level of I{sub K1} has been reduced enough. The model also allows us to explore levels of gene expression not yet achieved in experiments, and could be useful to plan new experiments, aimed at improving the robustness of the oscillations.

  3. Genetically engineered cardiac pacemaker: Stem cells transfected with HCN2 gene and myocytes—A model

    Science.gov (United States)

    Kanani, S.; Pumir, A.; Krinsky, V.

    2008-01-01

    One of the successfully tested methods to design genetically engineered cardiac pacemaker cells consists in transfecting a human mesenchymal stem cell (hMSC) with a HCN2 gene and connecting it to a myocyte. We develop and study a mathematical model, describing a myocyte connected to a hMSC transfected with a HCN2 gene. The cardiac action potential is described both with the simple Beeler Reuter model, as well as with the elaborate dynamic Luo Rudy model. The HCN2 channel is described by fitting electrophysiological records, in the spirit of Hodgkin Huxley. The model shows that oscillations can occur in a pair myocyte-stem cell, that was not observed in the experiments yet. The model predicted that: (1) HCN pacemaker channels can induce oscillations only if the number of expressed I channels is low enough. At too high an expression level of I channels, oscillations cannot be induced, no matter how many pacemaker channels are expressed. (2) At low expression levels of I channels, a large domain of values in the parameter space (n, N) exists, where oscillations should be observed. We denote N the number of expressed pacemaker channels in the stem cell, and n the number of gap junction channels coupling the stem cell and the myocyte. (3) The expression levels of I channels observed in ventricular myocytes, both in the Beeler Reuter and in the dynamic Luo Rudy models are too high to allow to observe oscillations. With expression levels below ˜1/4 of the original value, oscillations can be observed. The main consequence of this work is that in order to obtain oscillations in an experiment with a myocyte-stem cell pair, increasing the values of n, N is unlikely to be helpful, unless the expression level of I has been reduced enough. The model also allows us to explore levels of gene expression not yet achieved in experiments, and could be useful to plan new experiments, aimed at improving the robustness of the oscillations.

  4. Development of a scalable suspension culture for cardiac differentiation from human pluripotent stem cells

    Directory of Open Access Journals (Sweden)

    Vincent C. Chen

    2015-09-01

    Full Text Available To meet the need of a large quantity of hPSC-derived cardiomyocytes (CM for pre-clinical and clinical studies, a robust and scalable differentiation system for CM production is essential. With a human pluripotent stem cells (hPSC aggregate suspension culture system we established previously, we developed a matrix-free, scalable, and GMP-compliant process for directing hPSC differentiation to CM in suspension culture by modulating Wnt pathways with small molecules. By optimizing critical process parameters including: cell aggregate size, small molecule concentrations, induction timing, and agitation rate, we were able to consistently differentiate hPSCs to >90% CM purity with an average yield of 1.5 to 2 × 109 CM/L at scales up to 1 L spinner flasks. CM generated from the suspension culture displayed typical genetic, morphological, and electrophysiological cardiac cell characteristics. This suspension culture system allows seamless transition from hPSC expansion to CM differentiation in a continuous suspension culture. It not only provides a cost and labor effective scalable process for large scale CM production, but also provides a bioreactor prototype for automation of cell manufacturing, which will accelerate the advance of hPSC research towards therapeutic applications.

  5. Influence of longitudinal position on the evolution of steady-state signal in cardiac cine balanced steady-state free precession imaging.

    Science.gov (United States)

    Spear, Tyler J; Stromp, Tori A; Leung, Steve W; Vandsburger, Moriel H

    2017-11-01

    Emerging quantitative cardiac magnetic resonance imaging (CMRI) techniques use cine balanced steady-state free precession (bSSFP) to measure myocardial signal intensity and probe underlying physiological parameters. This correlation assumes that steady-state is maintained uniformly throughout the heart in space and time. To determine the effects of longitudinal cardiac motion and initial slice position on signal deviation in cine bSSFP imaging by comparing two-dimensional (2D) and three-dimensional (3D) acquisitions. Nine healthy volunteers completed cardiac MRI on a 1.5-T scanner. Short axis images were taken at six slice locations using both 2D and 3D cine bSSFP. 3D acquisitions spanned two slices above and below selected slice locations. Changes in myocardial signal intensity were measured across the cardiac cycle and compared to longitudinal shortening. For 2D cine bSSFP, 46% ± 9% of all frames and 84% ± 13% of end-diastolic frames remained within 10% of initial signal intensity. For 3D cine bSSFP the proportions increased to 87% ± 8% and 97% ± 5%. There was no correlation between longitudinal shortening and peak changes in myocardial signal. The initial slice position significantly impacted peak changes in signal intensity for 2D sequences ( P  cine bSSFP that is only restored at the center of a 3D excitation volume. During diastole, a transient steady-state is established similar to that achieved with 3D cine bSSFP regardless of slice location.

  6. Heart failure-induced changes of voltage-gated Ca2+ channels and cell excitability in rat cardiac postganglionic neurons.

    Science.gov (United States)

    Tu, Huiyin; Liu, Jinxu; Zhang, Dongze; Zheng, Hong; Patel, Kaushik P; Cornish, Kurtis G; Wang, Wei-Zhong; Muelleman, Robert L; Li, Yu-Long

    2014-01-15

    Chronic heart failure (CHF) is characterized by decreased cardiac parasympathetic and increased cardiac sympathetic nerve activity. This autonomic imbalance increases the risk of arrhythmias and sudden death in patients with CHF. We hypothesized that the molecular and cellular alterations of cardiac postganglionic parasympathetic (CPP) neurons located in the intracardiac ganglia and sympathetic (CPS) neurons located in the stellate ganglia (SG) possibly link to the cardiac autonomic imbalance in CHF. Rat CHF was induced by left coronary artery ligation. Single-cell real-time PCR and immunofluorescent data showed that L (Ca(v)1.2 and Ca(v)1.3), P/Q (Ca(v)2.1), N (Ca(v)2.2), and R (Ca(v)2.3) types of Ca2+ channels were expressed in CPP and CPS neurons, but CHF decreased the mRNA and protein expression of only the N-type Ca2+ channels in CPP neurons, and it did not affect mRNA and protein expression of all Ca2+ channel subtypes in the CPS neurons. Patch-clamp recording confirmed that CHF reduced N-type Ca2+ currents and cell excitability in the CPP neurons and enhanced N-type Ca2+ currents and cell excitability in the CPS neurons. N-type Ca2+ channel blocker (1 μM ω-conotoxin GVIA) lowered Ca2+ currents and cell excitability in the CPP and CPS neurons from sham-operated and CHF rats. These results suggest that CHF reduces the N-type Ca2+ channel currents and cell excitability in the CPP neurons and enhances the N-type Ca2+ currents and cell excitability in the CPS neurons, which may contribute to the cardiac autonomic imbalance in CHF.

  7. Cardiomyocytes Derived From Pluripotent Stem Cells Recapitulate Electrophysiological Characteristics of an Overlap Syndrome of Cardiac Sodium Channel Disease

    NARCIS (Netherlands)

    Davis, Richard P.; Casini, Simona; van den Berg, Cathelijne W.; Hoekstra, Maaike; Remme, Carol Ann; Dambrot, Cheryl; Salvatori, Daniela; Ward-van Oostwaard, Dorien; Wilde, Arthur A. M.; Bezzina, Connie R.; Verkerk, Arie O.; Freund, Christian; Mummery, Christine L.

    2012-01-01

    Background-Pluripotent stem cells (PSCs) offer a new paradigm for modeling genetic cardiac diseases, but it is unclear whether mouse and human PSCs can truly model both gain-and loss-of-function genetic disorders affecting the Na+ current (I-Na) because of the immaturity of the PSC-derived

  8. Safety and effects of two red blood cell transfusion strategies in pediatric cardiac surgery patients: a randomized controlled trial

    NARCIS (Netherlands)

    de Gast-Bakker, D. H.; de Wilde, R. B. P.; Hazekamp, M. G.; Sojak, V.; Zwaginga, J. J.; Wolterbeek, R.; de Jonge, E.; Gesink-van der Veer, B. J.

    2013-01-01

    To investigate the safety and effects of a restrictive red blood cell (RBC) transfusion strategy in pediatric cardiac surgery patients. Randomized controlled trial. Pediatric ICU in an academic tertiary care center, Leiden University Medical Center, Leiden, The Netherlands. One hundred seven

  9. Cardiac regeneration by pharmacologically active microcarriers releasing growth factors and/or transporting adipose-derived stem cells

    Directory of Open Access Journals (Sweden)

    Monia Savi

    2014-01-01

    Full Text Available We tested the hypothesis that cardiac regeneration through local delivery of adipose-derived stem cells (ASCs, activation of resident cardiac stem cells via growth factors (GFs [hepatocyte growth factor (HGF and insulin-like growth factor 1 (IGF-1:GFs] or both, are improved by pharmacologically active microcarriers (PAMs interacting with cells/molecules conveyed on their surface. Rats with one-month old myocardial infarction were treated with ASCs, ASCs+PAMs, GF-releasing PAMs, ASCs+GF-releasing PAMs or vehicle. Two weeks later, hemodynamic function and inducibility of ventricular arrhythmias (VAs were assessed. Eventually, the hearts were subjected to anatomical and immunohistochemical analyses. A significant ASCs engraftment and the largest improvement in cardiac mechanics occurred in ASC+GF-releasing PAM rats which by contrast were more vulnerable to VAs. Thus, PAMs may improve cell/GF-based cardiac regeneration although caution should be paid on the electrophysiological impact of their physical interaction with the myocardium.

  10. Analyses of cardiac blood cells and serum proteins with regard to cause of death in forensic autopsy cases.

    Science.gov (United States)

    Quan, Li; Ishikawa, Takaki; Michiue, Tomomi; Li, Dong-Ri; Zhao, Dong; Yoshida, Chiemi; Chen, Jian-Hua; Komatsu, Ayumi; Azuma, Yoko; Sakoda, Shigeki; Zhu, Bao-Li; Maeda, Hitoshi

    2009-04-01

    To investigate hematological and serum protein profiles of cadaveric heart blood with regard to the cause of death, serial forensic autopsy cases (n=308, >18 years of age, within 48 h postmortem) were examined. Red blood cells (Rbc), hemoglobin (Hb), platelets (Plt), white blood cells (Wbc), total protein (TP) and albumin (Alb) were examined in bilateral cardiac blood. Blood cell counts, collected after turning the bodies at autopsy, approximated to the clinical values. Postmortem changes were not significant for these markers. In non-head blunt injury cases, Rbc counts, Hb, TP and Alb levels in bilateral cardiac blood were lower in subacute deaths (survival time, 1-12 h) than in acute deaths (survival time hematology analyzer than by using a blood smear test, suggesting Rbc fragmentation caused by deep burns, while increases in Wbc count and decreases in Alb levels were seen for subacute deaths. For asphyxiation, Rbc count, Hb, TP and Alb levels in bilateral cardiac blood were higher than other groups, and TP and Alb levels in the right cardiac blood were higher for hanging than for strangulation. These findings suggest that analyses of blood cells and proteins are useful for investigating the cause of death.

  11. Coupled iterated map models of action potential dynamics in a one-dimensional cable of cardiac cells

    International Nuclear Information System (INIS)

    Wang Shihong; Xie Yuanfang; Qu Zhilin

    2008-01-01

    Low-dimensional iterated map models have been widely used to study action potential dynamics in isolated cardiac cells. Coupled iterated map models have also been widely used to investigate action potential propagation dynamics in one-dimensional (1D) coupled cardiac cells, however, these models are usually empirical and not carefully validated. In this study, we first developed two coupled iterated map models which are the standard forms of diffusively coupled maps and overcome the limitations of the previous models. We then determined the coupling strength and space constant by quantitatively comparing the 1D action potential duration profile from the coupled cardiac cell model described by differential equations with that of the coupled iterated map models. To further validate the coupled iterated map models, we compared the stability conditions of the spatially uniform state of the coupled iterated maps and those of the 1D ionic model and showed that the coupled iterated map model could well recapitulate the stability conditions, i.e. the spatially uniform state is stable unless the state is chaotic. Finally, we combined conduction into the developed coupled iterated map model to study the effects of coupling strength on wave stabilities and showed that the diffusive coupling between cardiac cells tends to suppress instabilities during reentry in a 1D ring and the onset of discordant alternans in a periodically paced 1D cable

  12. Autophagy plays an important role in Sunitinib-mediated cell death in H9c2 cardiac muscle cells

    International Nuclear Information System (INIS)

    Zhao Yuqin; Xue Tao; Yang Xiaochun; Zhu Hong; Ding Xiaofei; Lou Liming; Lu Wei; Yang Bo; He Qiaojun

    2010-01-01

    Sunitinib, which is a multitargeted tyrosine-kinase inhibitor, exhibits antiangiogenic and antitumor activity, and extends survival of patients with metastatic renal-cell carcinoma (mRCC) and gastrointestinal stromal tumors (GIST). This molecule has also been reported to be associated with cardiotoxicity at a high frequency, but the mechanism is still unknown. In the present study, we observed that Sunitinib showed high anti-proliferative effect on H9c2 cardiac muscle cells measured by PI staining and the MTT assay. But apoptotic markers (PARP cleavage, caspase 3 cleavage and chromatin condensation) were uniformly negative in H9c2 cells after Sunitinib treatment for 48 h, indicating that another cell death pathway may be involved in Sunitinib-induced cardiotoxicity. Here we found Sunitinib dramatically increased autophagic flux in H9c2 cells. Acidic vesicle fluorescence and high expression of LC3-II in H9c2 cells identified autophagy as a Sunitinib-induced process that might be associated with cytotoxicity. Furthermore, knocking down Beclin 1 by RNA-interference to block autophagy in H9c2 cells revealed that the death rate was decreased when treated with Sunitinib in comparison to control cells. These results confirmed that autophagy plays an important role in Sunitinib-mediated H9c2 cells cytotoxicity. Taken together, the data presented here strongly suggest that autophagy is associated with Sunitinib-induced cardiotoxicity, and that inhibition of autophagy constitutes a viable strategy for reducing Sunitinib-induced cardiomyocyte death thereby alleviating Sunitinib cardiotoxicity.

  13. Fucoidan promotes early step of cardiac differentiation from human embryonic stem cells and long-term maintenance of beating areas.

    Science.gov (United States)

    Hamidi, Sofiane; Letourneur, Didier; Aid-Launais, Rachida; Di Stefano, Antonio; Vainchenker, William; Norol, Françoise; Le Visage, Catherine

    2014-04-01

    Somatic stem cells require specific niches and three-dimensional scaffolds provide ways to mimic this microenvironment. Here, we studied a scaffold based on Fucoidan, a sulfated polysaccharide known to influence morphogen gradients during embryonic development, to support human embryonic stem cells (hESCs) differentiation toward the cardiac lineage. A macroporous (pore 200 μm) Fucoidan scaffold was selected to support hESCs attachment and proliferation. Using a protocol based on the cardiogenic morphogen bone morphogenic protein 2 (BMP2) and transforming growth factor (TGFβ) followed by tumor necrosis factor (TNFα), an effector of cardiopoietic priming, we examined the cardiac differentiation in the scaffold compared to culture dishes and embryoid bodies (EBs). At day 8, Fucoidan scaffolds supported a significantly higher expression of the 3 genes encoding for transcription factors marking the early step of embryonic cardiac differentiation NKX2.5 (prelease TGFβ and TNFα was confirmed by Luminex technology. We also found that Fucoidan scaffolds supported the late stage of embryonic cardiac differentiation marked by a significantly higher atrial natriuretic factor (ANF) expression (pstress in the soft hydrogel impaired sarcomere formation, as confirmed by molecular analysis of the cardiac muscle myosin MYH6 and immunohistological staining of sarcomeric α-actinin. Nevertheless, Fucoidan scaffolds contributed to the development of thin filaments connecting beating areas through promotion of smooth muscle cells, thus enabling maintenance of beating areas for up to 6 months. In conclusion, Fucoidan scaffolds appear as a very promising biomaterial to control cardiac differentiation from hESCs that could be further combined with mechanical stress to promote sarcomere formation at terminal stages of differentiation.

  14. Adult Bone Marrow Mesenchymal Stem Cells Primed for fhe Repair of Damaged Cardiac Tissue After Myocardial Infarction

    Science.gov (United States)

    Marks, Edward D.

    The burden of cardiovascular disease around the world is growing, despite improvements in hospital care and time to treatment. As more people survive an initial myocardial infarction (MI), the decompensated heart tissue is strained, leading to heart failure (HF) and an increased risk for a second MI. While extensive progress has been made in treating the symptoms after MI, including HF and angina, little success has come from repairing the damaged heart tissue to alleviate the progression to these end- stage symptoms. One promising area of regenerative research has been the use of adult stem cells, particularly from the bone marrow (BMSCs). These cells can differentiate towards the cardiac cell lineage in vitro while producing trophic factors that can repair damaged tissue. When placed in the heart after MI though, BMSCs have mixed results, producing profound changes in some patients but zero or even negative effects in others. In this report, we used BMSCs as a stem cell base for a regenerative medicine system for the repair of damaged cardiac tissue. These cells are seeded on a polycaprolactone nanoscaffolding support system, which provides a growth substrate for in vitro work, as well as a housing system for protected in vivo delivery. When the nanoscaffold is pre-coated with a novel combination of a cardiac protein, thymosin beta4 (Tbeta4), and a small molecule effector of the WNT protein pathway, IWP-2, BMSCs differentiated towards the cardiac lineage in as little as 24hours. When injected into rat hearts that have been given an ischemic MI, the nanoscaffolding system slowly dissolves, leaving the cells in place of the damaged cardiac tissue. After two weeks of monitoring, BMSCs are present within the damaged hearts, as evidenced by immunofluorescence and nanoparticle tracking. Injections of the nanoscaffolding/cell system led to robust healing of the rat hearts that had been given small- and medium- damage heart attacks, outperforming PBS sham and cell

  15. Continuous Positive Airway Pressure During Exercise Improves Walking Time in Patients Undergoing Inpatient Cardiac Rehabilitation After Coronary Artery Bypass Graft Surgery: A RANDOMIZED CONTROLLED TRIAL.

    Science.gov (United States)

    Pantoni, Camila Bianca Falasco; Di Thommazo-Luporini, Luciana; Mendes, Renata Gonçalves; Caruso, Flávia Cristina Rossi; Mezzalira, Daniel; Arena, Ross; Amaral-Neto, Othon; Catai, Aparecida Maria; Borghi-Silva, Audrey

    2016-01-01

    Continuous positive airway pressure (CPAP) has been used as an effective support to decrease the negative pulmonary effects of coronary artery bypass graft (CABG) surgery. However, it is unknown whether CPAP can positively influence patients undergoing CABG during exercise. This study evaluated the effectiveness of CPAP on the first day of ambulation after CABG in patients undergoing inpatient cardiac rehabilitation (CR). Fifty-four patients after CABG surgery were randomly assigned to receive either inpatient CR and CPAP (CPG) or standard CR without CPAP (CG). Cardiac rehabilitation included walking and CPAP pressures were set between 10 to 12 cmH2O. Participants were assessed on the first day of walking at rest and during walking. Outcome measures included breathing pattern variables, exercise time in seconds (ETs), dyspnea/leg effort ratings, and peripheral oxygen saturation (SpO2). Twenty-seven patients (13 CPG vs 14 CG) completed the study. Compared with walking without noninvasive ventilation assistance, CPAP increased ETs by 43.4 seconds (P = .040) during walking, promoted better thoracoabdominal coordination, increased ventilation during walking by 12.5 L/min (P = .001), increased SpO2 values at the end of walking by 2.6% (P = .016), and reduced dyspnea ratings by 1 point (P = .008). Continuous positive airway pressure can positively influence exercise tolerance, ventilatory function, and breathing pattern in response to a single bout of exercise after CABG.

  16. Cardiac Murmur Prompting Diagnosis of Metastatic Nonseminomatous Germ Cell Testicular Neoplasia in an 18-Year-Old Patient

    Directory of Open Access Journals (Sweden)

    Steve Y. Chung

    2005-01-01

    Full Text Available Most retroperitoneal tumors such as renal cell carcinoma have been associated with tumor thrombus extending into the renal vein, inferior vena cava (IVC, and heart. The retroperitoneal metastatic potential of testicular tumors is well known. We report here the first instance of a cardiac murmur prompting diagnosis of metastatic testicular neoplasia in an 18-year-old patient. Chemotherapy was delayed and after successful surgical resection of the ventricular mass, the patient recovered uneventfully. This case underscores the need to pursue abnormal cardiac exams in newly diagnosed testicular cancer patients.

  17. Initiation of Antiviral B Cell Immunity Relies on Innate Signals from Spatially Positioned NKT Cells.

    Science.gov (United States)

    Gaya, Mauro; Barral, Patricia; Burbage, Marianne; Aggarwal, Shweta; Montaner, Beatriz; Warren Navia, Andrew; Aid, Malika; Tsui, Carlson; Maldonado, Paula; Nair, Usha; Ghneim, Khader; Fallon, Padraic G; Sekaly, Rafick-Pierre; Barouch, Dan H; Shalek, Alex K; Bruckbauer, Andreas; Strid, Jessica; Batista, Facundo D

    2018-01-25

    B cells constitute an essential line of defense from pathogenic infections through the generation of class-switched antibody-secreting cells (ASCs) in germinal centers. Although this process is known to be regulated by follicular helper T (TfH) cells, the mechanism by which B cells initially seed germinal center reactions remains elusive. We found that NKT cells, a population of innate-like T lymphocytes, are critical for the induction of B cell immunity upon viral infection. The positioning of NKT cells at the interfollicular areas of lymph nodes facilitates both their direct priming by resident macrophages and the localized delivery of innate signals to antigen-experienced B cells. Indeed, NKT cells secrete an early wave of IL-4 and constitute up to 70% of the total IL-4-producing cells during the initial stages of infection. Importantly, the requirement of this innate immunity arm appears to be evolutionarily conserved because early NKT and IL-4 gene signatures also positively correlate with the levels of neutralizing antibodies in Zika-virus-infected macaques. In conclusion, our data support a model wherein a pre-TfH wave of IL-4 secreted by interfollicular NKT cells triggers the seeding of germinal center cells and serves as an innate link between viral infection and B cell immunity. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Short-term effects of cardiac steroids on intracellular membrane traffic in neuronal NT2 cells.

    Science.gov (United States)

    Rosen, H; Glukmann, V; Feldmann, T; Fridman, E; Lichtstein, D

    2006-12-30

    Cardiac steroids (CS) are specific inhibitors of Na+, K+-ATPase activity. Although the presence of CS-like compounds in animal tissues has been established, their physiological role is not clear. In a previous study we showed that in pulse-chase membrane-labeling experiments, long term (hours) interaction of CS at physiological concentrations (nM) with Na+, K+-ATPase, caused changes in endocytosed membrane traffic in human NT2 cells. This was associated with the accumulation of large vesicles adjacent to the nucleus. For this sequence of events to function in the physiological setting, however, CS would be expected to modify membrane traffic upon short term (min) exposure and membrane labeling. We now demonstrate that CS affects membrane traffic also following a short exposure. This was reflected by the CS-induced accumulation of FM1-43 and transferrin in the cells, as well as by changes in their colocalization with Na+, K+-ATPase. We also show that the CS-induced changes in membrane traffic following up to 2 hrs exposure are reversible, whereas longer treatment induces irreversible effects. Based on these observations, we propose that endogenous CS-like compounds are physiological regulators of the recycling of endocytosed membrane proteins and cargo in neuronal cells, and may affect basic mechanisms such as neurotransmitter release and reuptake.

  19. Three-Dimensional Human Cardiac Tissue Engineered by Centrifugation of Stacked Cell Sheets and Cross-Sectional Observation of Its Synchronous Beatings by Optical Coherence Tomography.

    Science.gov (United States)

    Haraguchi, Yuji; Hasegawa, Akiyuki; Matsuura, Katsuhisa; Kobayashi, Mari; Iwana, Shin-Ichi; Kabetani, Yasuhiro; Shimizu, Tatsuya

    2017-01-01

    Three-dimensional (3D) tissues are engineered by stacking cell sheets, and these tissues have been applied in clinical regenerative therapies. The optimal fabrication technique of 3D human tissues and the real-time observation system for these tissues are important in tissue engineering, regenerative medicine, cardiac physiology, and the safety testing of candidate chemicals. In this study, for aiming the clinical application, 3D human cardiac tissues were rapidly fabricated by human induced pluripotent stem (iPS) cell-derived cardiac cell sheets with centrifugation, and the structures and beatings in the cardiac tissues were observed cross-sectionally and noninvasively by two optical coherence tomography (OCT) systems. The fabrication time was reduced to approximately one-quarter by centrifugation. The cross-sectional observation showed that multilayered cardiac cell sheets adhered tightly just after centrifugation. Additionally, the cross-sectional transmissions of beatings within multilayered human cardiac tissues were clearly detected by OCT. The observation showed the synchronous beatings of the thicker 3D human cardiac tissues, which were fabricated rapidly by cell sheet technology and centrifugation. The rapid tissue-fabrication technique and OCT technology will show a powerful potential in cardiac tissue engineering, regenerative medicine, and drug discovery research.

  20. Cardiac echinococcosis

    Directory of Open Access Journals (Sweden)

    Ivanović-Krstić Branislava A.

    2002-01-01

    Full Text Available Cardiac hydatid disease is rare. We report on an uncommon hydatid cyst localized in the right ventricular wall, right atrial wall tricuspid valve left atrium and pericard. A 33-year-old woman was treated for cough, fever and chest pain. Cardiac echocardiograpic examination revealed a round tumor (5.8 x 4 cm in the right ventricular free wall and two smaller cysts behind that tumor. There were cysts in right atrial wall and tricuspidal valve as well. Serologic tests for hydatidosis were positive. Computed tomography finding was consistent with diagnosis of hydatid cyst in lungs and right hylar part. Surgical treatment was rejected due to great risk of cardiac perforation. Medical treatment with albendazole was unsuccessful and the patient died due to systemic hydatid involvement of the lungs, liver and central nervous system.

  1. Deep breathing exercises with positive expiratory pressure at a higher rate improve oxygenation in the early period after cardiac surgery--a randomised controlled trial.

    Science.gov (United States)

    Urell, Charlotte; Emtner, Margareta; Hedenström, Hans; Tenling, Arne; Breidenskog, Marie; Westerdahl, Elisabeth

    2011-07-01

    In addition to early mobilisation, a variety of breathing exercises are used to prevent postoperative pulmonary complications after cardiac surgery. The optimal duration of the treatment is not well evaluated. The aim of this study was to determine the effect of 30 versus 10 deep breaths hourly, while awake, with positive expiratory pressure on oxygenation and pulmonary function the first days after cardiac surgery. A total of 181 patients, undergoing cardiac surgery, were randomised into a treatment group, performing 30 deep breaths hourly the first postoperative days, or into a control group performing 10 deep breaths hourly. The main outcome measurement arterial blood gases and the secondary outcome pulmonary function, evaluated with spirometry, were determined on the second postoperative day. Preoperatively, both study groups were similar in terms of age, SpO(2), forced expiratory volume in 1s and New York Heart Association classification. On the second postoperative day, arterial oxygen tension (PaO(2)) was 8.9 ± 1.7 kPa in the treatment group and 8.1 ± 1.4 kPa in the control group (p = 0.004). Arterial oxygen saturation (SaO(2)) was 92.7 ± 3.7% in the treatment group and 91.1 ± 3.8% in the control group (p = 0.016). There were no differences in measured lung function between the groups or in compliance to the breathing exercises. Compliance was 65% of possible breathing sessions. A significantly increased oxygenation was found in patients performing 30 deep breaths the first two postoperative days compared with control patients performing 10 deep breaths hourly. These results support the implementation of a higher rate of deep breathing exercises in the initial phase after cardiac surgery. Copyright © 2010 European Association for Cardio-Thoracic Surgery. Published by Elsevier B.V. All rights reserved.

  2. Positive affect moderates the effect of negative affect on cardiovascular disease-related hospitalizations and all-cause mortality after cardiac rehabilitation.

    Science.gov (United States)

    Meyer, Fiorenza Angela; von Känel, Roland; Saner, Hugo; Schmid, Jean-Paul; Stauber, Stefanie

    2015-10-01

    Little is known as to whether negative emotions adversely impact the prognosis of patients who undergo cardiac rehabilitation. We prospectively investigated the predictive value of state negative affect (NA) assessed at discharge from cardiac rehabilitation for prognosis and the moderating role of positive affect (PA) on the effect of NA on outcomes. A total of 564 cardiac patients (62.49 ± 11.51) completed a comprehensive three-month outpatient cardiac rehabilitation program, filling in the Global Mood Scale (GMS) at discharge. The combined endpoint was cardiovascular disease (CVD)-related hospitalizations plus all-cause mortality at follow-up. Cox regression models estimated the predictive value of NA, as well as the moderating influence of PA on outcomes. Survival models were adjusted for sociodemographic factors, traditional cardiovascular risk factors, and severity of disease. During a mean follow-up period of 3.4 years, 71 patients were hospitalized for a CVD-related event and 15 patients died. NA score (range 0-20) was a significant and independent predictor (hazard ratio (HR) 1.091, 95% confidence interval (CI) 1.012-1.175; p = 0.023) with a three-point higher level in NA increasing the relative risk by 9.1%. Furthermore, PA interacted significantly with NA (p < 0.001). The relative risk of poor prognosis with NA was increased in patients with low PA (p = 0.012) but remained unchanged in combination with high PA (p = 0.12). The combination of NA with low PA was particularly predictive of poor prognosis. Whether reduction of NA and increase of PA, particularly in those with high NA, improves outcome needs to be tested. © The European Society of Cardiology 2014.

  3. Effect of adjuvant noninvasive positive pressure ventilation on blood gas parameters, cardiac function and inflammatory state in patients with COPD and type II respiratory failure

    Directory of Open Access Journals (Sweden)

    You-Ming Zhu1

    2017-03-01

    Full Text Available Objective: T o analyze the effect of adjuvant noninvasive positive pressure ventilation on blood gas parameters, cardiac function and inflammatory state in patients with chronic obstructive pulmonary disease (COPD and type II respiratory failure. Methods: 90 patients with COPD and type II respiratory failure were randomly divided into observation group and control group (n=45. Control group received conventional therapy, observation group received conventional therapy + adjuvant noninvasive positive pressure ventilation, and differences in blood gas parameters, cardiac function, inflammatory state, etc., were compared between two groups of patients 2 weeks after treatment. Results: Arterial blood gas parameters pH and alveolar-arterial partial pressure of oxygen [P(A-aO2] levels of observation group were higher than those of control group while, potassium ion (K+, chloride ion (Cl﹣ and carbon dioxide combining power (CO2CP levels were lower than those of control group 2 weeks after treatment; echocardiography parameters Doppler-derived tricuspid lateral annular systolic velocity (DTIS and pulmonary arterial velocity (PAV levels were lower than those of control group (P<0.05 while pulmonary artery accelerating time (PAACT, left ventricular enddiastolic dimension (LVDd and right atrioventricular tricuspid annular plane systolic excursion (TAPSE levels were higher than those of control group (P<0.05; serum cardiac function indexes adiponectin (APN, Copeptin, N-terminal pro-B-type natriuretic peptide (NT-proBNP, cystatin C (CysC, growth differentiation factor-15 (GDF-15 and heart type fatty acid binding protein (H-FABP content were lower than those of control group (P<0.05; serum inflammatory factors hypersensitive C-reactive protein (hs-CRP, tumor necrosis factor-α (TNF-α, interleukin-1β (IL-1β, IL-8, IL-10, and transforming growth factor-β1 (TGF-β1 content were lower than those of control group (P<0.05. Conclusions: Adjuvant

  4. Iron nanoparticles increase 7-ketocholesterol-induced cell death, inflammation, and oxidation on murine cardiac HL1-NB cells

    Directory of Open Access Journals (Sweden)

    Edmond Kahn

    2010-03-01

    Full Text Available Edmond Kahn1, Mauhamad Baarine2, Sophie Pelloux3, Jean-Marc Riedinger4, Frédérique Frouin1, Yves Tourneur3, Gérard Lizard21INSE RM U678/UMR – S UPMC, IFR 14, CH U Pitié-Salpêtrière, 75634 Paris Cedex 13, France; 2Centre de Recherche INSE RM U866, Equipe Biochimie Métabolique et Nutritionnelle – Université de Bourgogne, Faculté des Sciences Gabriel, 6 Bd Gabriel, 21000 Dijon, France; 3Centre Commun de Quantimétrie, Université Lyon 1; Université de Lyon, Lyon, France; 4Département de Biologie et de Pathologie des Tumeurs, Centre Georges François-Leclerc, 21000 Dijon, FranceObjective: To evaluate the cytotoxicity of iron nanoparticles on cardiac cells and to determine whether they can modulate the biological activity of 7-ketocholesterol (7KC involved in the development of cardiovascular diseases. Nanoparticles of iron labeled with Texas Red are introduced in cultures of nonbeating mouse cardiac cells (HL1-NB with or without 7-ketocholesterol 7KC, and their ability to induce cell death, pro-inflammatory and oxidative effects are analyzed simultaneously.Study design: Flow cytometry (FCM, confocal laser scanning microscopy (CLSM, and subsequent factor analysis image processing (FAMIS are used to characterize the action of iron nanoparticles and to define their cytotoxicity which is evaluated by enhanced permeability to SYTOX Green, and release of lactate deshydrogenase (LDH. Pro-inflammatory effects are estimated by ELISA in order to quantify IL-8 and MCP-1 secretions. Pro-oxidative effects are measured with hydroethydine (HE.Results: Iron Texas Red nanoparticles accumulate at the cytoplasmic membrane level. They induce a slight LDH release, and have no inflammatory or oxidative effects. However, they enhance the cytotoxic, pro-inflammatory and oxidative effects of 7KC. The accumulation dynamics of SYTOX Green in cells is measured by CLSM to characterize the toxicity of nanoparticles. The emission spectra of SYTOX Green and

  5. Connexin 43-mediated modulation of polarized cell movement and the directional migration of cardiac neural crest cells.

    Science.gov (United States)

    Xu, Xin; Francis, Richard; Wei, Chih Jen; Linask, Kaari L; Lo, Cecilia W

    2006-09-01

    Connexin 43 knockout (Cx43alpha1KO) mice have conotruncal heart defects that are associated with a reduction in the abundance of cardiac neural crest cells (CNCs) targeted to the heart. In this study, we show CNCs can respond to changing fibronectin matrix density by adjusting their migratory behavior, with directionality increasing and speed decreasing with increasing fibronectin density. However, compared with wild-type CNCs, Cx43alpha1KO CNCs show reduced directionality and speed, while CNCs overexpressing Cx43alpha1 from the CMV43 transgenic mice show increased directionality and speed. Altered integrin signaling was indicated by changes in the distribution of vinculin containing focal contacts, and altered temporal response of Cx43alpha1KO and CMV43 CNCs to beta1 integrin function blocking antibody treatment. High resolution motion analysis showed Cx43alpha1KO CNCs have increased cell protrusive activity accompanied by the loss of polarized cell movement. They exhibited an unusual polygonal arrangement of actin stress fibers that indicated a profound change in cytoskeletal organization. Semaphorin 3A, a chemorepellent known to inhibit integrin activation, was found to inhibit CNC motility, but in the Cx43alpha1KO and CMV43 CNCs, cell processes failed to retract with semaphorin 3A treatment. Immunohistochemical and biochemical analyses suggested close interactions between Cx43alpha1, vinculin and other actin-binding proteins. However, dye coupling analysis showed no correlation between gap junction communication level and fibronectin plating density. Overall, these findings indicate Cx43alpha1 may have a novel function in mediating crosstalk with cell signaling pathways that regulate polarized cell movement essential for the directional migration of CNCs.

  6. In vitro and in vivo cell-capture strategies using cardiac stent technology - A review.

    Science.gov (United States)

    Ravindranath, Rohan R; Romaschin, Alexander; Thompson, Michael

    2016-01-01

    Stenosis is a symptom of coronary artery disease (CAD), and is caused by narrowing of arteries in the heart. Over the last several decades, medical implants such as cardiac stents have been developed to counter stenosis. Upon implantation of a stent to open up a restricted artery, narrowing of the artery can reoccur (restenosis), due to an immune response launched by the body towards the stent. Currently, restenosis is a major health concern for patients who have undergone heart surgery for coronary artery disease. Recently, there have been new methods developed to combat restenosis, which have shown potential signs of success. One proposed method is the use of stents to capture cells, thereby reducing immune response. This review will explore the different methods for cell capture both in vitro and in vivo. Biological modifications of the stent will be surveyed, as well as the use of surface science to immobilize biological probes. Immobilization of proteins and nucleotides, as well as use of magnetic field are all methods that will be further discussed. Finally, concluding remarks and future prospects will be presented. Copyright © 2015 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  7. The relative contribution of paracine effect versus direct differentiation on adipose-derived stem cell transplantation mediated cardiac repair.

    Directory of Open Access Journals (Sweden)

    Dezhong Yang

    Full Text Available BACKGROUND: Recent studies have demonstrated that transplantation of adipose-derived stem cell (ADSC can improve cardiac function in animal models of myocardial infarction (MI. However, the mechanisms underlying the beneficial effect are not fully understood. In this study, we characterized the paracrine effect of transplanted ADSC and investigated its relative importance versus direct differentiation in ADSC transplantation mediated cardiac repair. METHODOLOGY/PRINCIPAL FINDINGS: MI was experimentally induced in mice by ligation of the left anterior descending coronary artery. Either human ADSC, conditioned medium (CM collected from the same amount of ADSC or control medium was injected into the peri-infarct region immediately after MI. Compared with the control group, both ADSC and ADSC-CM significantly reduced myocardial infarct size and improved cardiac function. The therapeutic efficacy of ADSC was moderately superior to ADSC-CM. ADSC-CM significantly reduced cardiomyocyte apoptosis in the infarct border zone, to a similar degree with ADSC treatment. ADSC enhanced angiogenesis in the infarct border zone, but to a stronger degree than that seen in the ADSC-CM treatment. ADSC was able to differentiate to endothelial cell and smooth muscle cell in post-MI heart; these ADSC-derived vascular cells amount to about 9% of the enhanced angiogenesis. No cardiomyocyte differentiated from ADSC was found. CONCLUSIONS: ADSC-CM is sufficient to improve cardiac function of infarcted hearts. The therapeutic function of ADSC transplantation is mainly induced by paracrine-mediated cardioprotection and angiogenesis, while ADSC differentiation contributes a minor benefit by being involved in angiogenesis. Highlights 1 ADSC-CM is sufficient to exert a therapeutic potential. 2. ADSC was able to differentiate to vascular cells but not cardiomyocyte. 3. ADSC derived vascular cells amount to about 9% of the enhanced angiogenesis. 4. Paracrine effect is the major

  8. Stem Cell Technology in Cardiac Regeneration: A Pluripotent Stem Cell Promise

    OpenAIRE

    Robin Duelen; Maurilio Sampaolesi

    2017-01-01

    Despite advances in cardiovascular biology and medical therapy, heart disorders are the leading cause of death worldwide. Cell-based regenerative therapies become a promising treatment for patients affected by heart failure, but also underline the need for reproducible results in preclinical and clinical studies for safety and efficacy. Enthusiasm has been tempered by poor engraftment, survival and differentiation of the injected adult stem cells. The crucial challenge is identification and s...

  9. False positive paediatric labelled white blood cell study

    International Nuclear Information System (INIS)

    Beveridge, N.; Bennett, E.; Thomas, P.

    2002-01-01

    Full text: An eight-month-old female presented for a technetium labelled white blood cell study (LWBC) to exclude an intra-abdominal abscess. Born premature, the child had surgery to repair a perforated bowel and had repeated presentations with diarrhoea, fevers, a tender right upper quadrant and a raised leucocyte count. Multiple imaging modalities failed to demonstrate recurrent bowel perforation, ischaemia or an intra-abdominal mass. A LWBC study was performed with whole body imaging at 1 and 5 hours post re-injection of the radiolabelled blood. No abnormal uptake was visualised in the abdomen but abnormal white cell accumulation was noted in the right hind foot and the length of the right lower leg. This activity appeared to lie along the course of the right tibia. Plain X-ray demonstrated no evidence of tibial osteomyelitis. Concern that the LWBC may be falsely negative in a patient on antibiotics, a gallium scan was immediately performed to re-examine the abdomen. The whole body gallium images demonstrated normal physiological uptake in the abdomen and no evidence of infection in the right leg. The patient had no clinical features to support right leg pathology. The abnormal LWBC localisation in the right lower leg/foot was therefore falsely positive. The most likely explanation is increased activation of the autologous LWBC by 'rough' handling during difficult venesection and re-injection through small veins and needles/cannulas. The slow flow through the veins draining the foot injection site would contribute to margination in these vessel walls. This is a potential cause for false positive LWBC studies- with significant implications for patient care. Copyright (2002) The Australian and New Zealand Society of Nuclear Medicine Inc

  10. Real-time position reconstruction with hippocampal place cells.

    Science.gov (United States)

    Guger, Christoph; Gener, Thomas; Pennartz, Cyriel M A; Brotons-Mas, Jorge R; Edlinger, Günter; Bermúdez I Badia, S; Verschure, Paul; Schaffelhofer, Stefan; Sanchez-Vives, Maria V

    2011-01-01

    Brain-computer interfaces (BCI) are using the electroencephalogram, the electrocorticogram and trains of action potentials as inputs to analyze brain activity for communication purposes and/or the control of external devices. Thus far it is not known whether a BCI system can be developed that utilizes the states of brain structures that are situated well below the cortical surface, such as the hippocampus. In order to address this question we used the activity of hippocampal place cells (PCs) to predict the position of an rodent in real-time. First, spike activity was recorded from the hippocampus during foraging and analyzed off-line to optimize the spike sorting and position reconstruction algorithm of rats. Then the spike activity was recorded and analyzed in real-time. The rat was running in a box of 80 cm × 80 cm and its locomotor movement was captured with a video tracking system. Data were acquired to calculate the rat's trajectories and to identify place fields. Then a Bayesian classifier was trained to predict the position of the rat given its neural activity. This information was used in subsequent trials to predict the rat's position in real-time. The real-time experiments were successfully performed and yielded an error between 12.2 and 17.4% using 5-6 neurons. It must be noted here that the encoding step was done with data recorded before the real-time experiment and comparable accuracies between off-line (mean error of 15.9% for three rats) and real-time experiments (mean error of 14.7%) were achieved. The experiment shows proof of principle that position reconstruction can be done in real-time, that PCs were stable and spike sorting was robust enough to generalize from the training run to the real-time reconstruction phase of the experiment. Real-time reconstruction may be used for a variety of purposes, including creating behavioral-neuronal feedback loops or for implementing neuroprosthetic control.

  11. Coordinated Proliferation and Differentiation of Human-Induced Pluripotent Stem Cell-Derived Cardiac Progenitor Cells Depend on Bone Morphogenetic Protein Signaling Regulation by GREMLIN 2.

    Science.gov (United States)

    Bylund, Jeffery B; Trinh, Linh T; Awgulewitsch, Cassandra P; Paik, David T; Jetter, Christopher; Jha, Rajneesh; Zhang, Jianhua; Nolan, Kristof; Xu, Chunhui; Thompson, Thomas B; Kamp, Timothy J; Hatzopoulos, Antonis K

    2017-05-01

    Heart development depends on coordinated proliferation and differentiation of cardiac progenitor cells (CPCs), but how the two processes are synchronized is not well understood. Here, we show that the secreted Bone Morphogenetic Protein (BMP) antagonist GREMLIN 2 (GREM2) is induced in CPCs shortly after cardiac mesoderm specification during differentiation of human pluripotent stem cells. GREM2 expression follows cardiac lineage differentiation independently of the differentiation method used, or the origin of the pluripotent stem cells, suggesting that GREM2 is linked to cardiogenesis. Addition of GREM2 protein strongly increases cardiomyocyte output compared to established procardiogenic differentiation methods. Our data show that inhibition of canonical BMP signaling by GREM2 is necessary to promote proliferation of CPCs. However, canonical BMP signaling inhibition alone is not sufficient to induce cardiac differentiation, which depends on subsequent JNK pathway activation specifically by GREM2. These findings may have broader implications in the design of approaches to orchestrate growth and differentiation of pluripotent stem cell-derived lineages that depend on precise regulation of BMP signaling.

  12. Coordinated Proliferation and Differentiation of Human-Induced Pluripotent Stem Cell-Derived Cardiac Progenitor Cells Depend on Bone Morphogenetic Protein Signaling Regulation by GREMLIN 2

    Science.gov (United States)

    Bylund, Jeffery B.; Trinh, Linh T.; Awgulewitsch, Cassandra P.; Paik, David T.; Jetter, Christopher; Jha, Rajneesh; Zhang, Jianhua; Nolan, Kristof; Xu, Chunhui; Thompson, Thomas B.; Kamp, Timothy J.

    2017-01-01

    Heart development depends on coordinated proliferation and differentiation of cardiac progenitor cells (CPCs), but how the two processes are synchronized is not well understood. Here, we show that the secreted Bone Morphogenetic Protein (BMP) antagonist GREMLIN 2 (GREM2) is induced in CPCs shortly after cardiac mesoderm specification during differentiation of human pluripotent stem cells. GREM2 expression follows cardiac lineage differentiation independently of the differentiation method used, or the origin of the pluripotent stem cells, suggesting that GREM2 is linked to cardiogenesis. Addition of GREM2 protein strongly increases cardiomyocyte output compared to established procardiogenic differentiation methods. Our data show that inhibition of canonical BMP signaling by GREM2 is necessary to promote proliferation of CPCs. However, canonical BMP signaling inhibition alone is not sufficient to induce cardiac differentiation, which depends on subsequent JNK pathway activation specifically by GREM2. These findings may have broader implications in the design of approaches to orchestrate growth and differentiation of pluripotent stem cell-derived lineages that depend on precise regulation of BMP signaling. PMID:28125926

  13. Induction Chemotherapy for p16 Positive Oropharyngeal Squamous Cell Carcinoma.

    Science.gov (United States)

    Saito, Yuki; Ando, Mizuo; Omura, Go; Yasuhara, Kazuo; Yoshida, Masafumi; Takahashi, Wataru; Yamasoba, Tatsuya

    2016-04-01

    We aimed to determine the effectiveness of induction chemotherapy for treating p16-positive oropharyngeal cancer in our department. This was a retrospective case series to assess treatment effectiveness. We administered induction chemotherapy to patients with stage III to IV oropharyngeal p16-positive squamous cell carcinoma between 2008 and 2013. Induction chemotherapy was administered using combinations of docetaxel, cisplatin, and 5-fluorouracil. We measured the survival rates using the Kaplan-Meier method and log-rank test. We reviewed 23 patients (18 men and 5 women; age, 42-79 years). Induction chemotherapy resulted in partial or complete remission (20 patients) and in stable (2 patients) or progressive (1 patient) disease. In partial or complete remission, subsequent radiotherapy was performed in 16 patients, chemoradiotherapy in two, and transoral resection in two. In stable or progressive disease, subsequent open surgery was performed. Overall, one patient died of cervical lymph node metastasis, one died of kidney cancer, and one died of myocardial infarction. Event-free, distant-metastasis-free survival was present for 20 patients. The 3-year disease-specific survival was 95%; the overall survival was 87%. Two patients required gastrostomies during chemoradiotherapy and three required tracheotomies, but these were closed in all patients. The therapeutic response to induction chemotherapy for p16-positive oropharyngeal cancer was good. Partial or complete remission was achieved in almost 90% patients, and control of local and distant metastases was possible when it was followed by radiotherapy alone or with transoral resection of the primary tumor. A multicenter study is required to confirm these findings. 4.

  14. c-kitpos GATA-4 high rat cardiac stem cells foster adult cardiomyocyte survival through IGF-1 paracrine signalling.

    Directory of Open Access Journals (Sweden)

    Nanako Kawaguchi

    2010-12-01

    Full Text Available Resident c-kit positive (c-kitpos cardiac stem cells (CSCs could be considered the most appropriate cell type for myocardial regeneration therapies. However, much is still unknown regarding their biological properties and potential.We produced clones of high and low expressing GATA-4 CSCs from long-term bulk-cultured c-kitpos CSCs isolated from adult rat hearts. When c-kitpos GATA-4 high expressing clonal CSCs (cCSCs were co-cultured with adult rat ventricular cardiomyocytes, we observed increased survival and contractility of the cardiomyocytes, compared to cardiomyocytes cultured alone, co-cultured with fibroblasts or c-kitpos GATA-4 low expressing cCSCs. When analysed by ELISA, the concentration of IGF-1 was significantly increased in the c-kitpos GATA-4 high cCSC/cardiomyocyte co-cultures and there was a significant correlation between IGF-1 concentration and cardiomyocyte survival. We showed the activation of the IGF-1 receptor and its downstream molecular targets in cardiomyocytes co-cultured with c-kitpos GATA-4 high cCSCs but not in cardiomyocytes that were cultured alone, co-cultured with fibroblasts or c-kitpos GATA-4 low cCSCs. Addition of a blocking antibody specific to the IGF-1 receptor inhibited the survival of cardiomyocytes and prevented the activation of its signalling in cardiomyocytes in the c-kitpos GATA-4 high cCSC/cardiomyocyte co-culture system. IGF-1 supplementation or IGF-1 high conditioned medium taken from the co-culture of c-kitpos GATA-4 high cCSCs plus cardiomyocytes did extend the survival and contractility of cardiomyocytes cultured alone and cardiomyocytes co-cultured with c-kitpos GATA-4 low cCSCs.c-kitpos GATA-4 high cCSCs exert a paracrine survival effect on cardiomyocytes through induction of the IGF-1R and signalling pathway.

  15. [Parameters of cardiac muscle repolarization on the electrocardiogram when changing anatomical and electric position of the heart].

    Science.gov (United States)

    Chaĭkovskiĭ, I A; Baum, O V; Popov, L A; Voloshin, V I; Budnik, N N; Frolov, Iu A; Kovalenko, A S

    2014-01-01

    While discussing the diagnostic value of the single channel electrocardiogram a set of theoretical considerations emerges inevitably, one of the most important among them is the question about dependence of the electrocardiogram parameters from the direction of electrical axis of heart. In other words, changes in what of electrocardiogram parameters are in fact liable to reflect pathological processes in myocardium, and what ones are determined by extracardiac factors, primarily by anatomic characteristics of patients. It is arguable that while analyzing electrocardiogram it is necessary to orient to such physiologically based informative indexes as ST segment displacement. Also, symmetry of the T wave shape is an important parameter which is independent of patients anatomic features. The results obtained are of interest for theoretical and applied aspects of the biophysics of the cardiac electric field.

  16. Multifractal Desynchronization of the Cardiac Excitable Cell Network During Atrial Fibrillation. I. Multifractal Analysis of Clinical Data

    Directory of Open Access Journals (Sweden)

    Guillaume Attuel

    2018-03-01

    Full Text Available Atrial fibrillation (AF is a cardiac arrhythmia characterized by rapid and irregular atrial electrical activity with a high clinical impact on stroke incidence. Best available therapeutic strategies combine pharmacological and surgical means. But when successful, they do not always prevent long-term relapses. Initial success becomes all the more tricky to achieve as the arrhythmia maintains itself and the pathology evolves into sustained or chronic AF. This raises the open crucial issue of deciphering the mechanisms that govern the onset of AF as well as its perpetuation. In this study, we develop a wavelet-based multi-scale strategy to analyze the electrical activity of human hearts recorded by catheter electrodes, positioned in the coronary sinus (CS, during episodes of AF. We compute the so-called multifractal spectra using two variants of the wavelet transform modulus maxima method, the moment (partition function method and the magnitude cumulant method. Application of these methods to long time series recorded in a patient with chronic AF provides quantitative evidence of the multifractal intermittent nature of the electric energy of passing cardiac impulses at low frequencies, i.e., for times (≳0.5 s longer than the mean interbeat (≃ 10−1 s. We also report the results of a two-point magnitude correlation analysis which infers the absence of a multiplicative time-scale structure underlying multifractal scaling. The electric energy dynamics looks like a “multifractal white noise” with quadratic (log-normal multifractal spectra. These observations challenge concepts of functional reentrant circuits in mechanistic theories of AF, still leaving open the role of the autonomic nervous system (ANS. A transition is indeed observed in the computed multifractal spectra which group according to two distinct areas, consistently with the anatomical substrate binding to the CS, namely the left atrial posterior wall, and the ligament of Marshall

  17. Multifractal Desynchronization of the Cardiac Excitable Cell Network During Atrial Fibrillation. I. Multifractal Analysis of Clinical Data

    Science.gov (United States)

    Attuel, Guillaume; Gerasimova-Chechkina, Evgeniya; Argoul, Francoise; Yahia, Hussein; Arneodo, Alain

    2018-01-01

    Atrial fibrillation (AF) is a cardiac arrhythmia characterized by rapid and irregular atrial electrical activity with a high clinical impact on stroke incidence. Best available therapeutic strategies combine pharmacological and surgical means. But when successful, they do not always prevent long-term relapses. Initial success becomes all the more tricky to achieve as the arrhythmia maintains itself and the pathology evolves into sustained or chronic AF. This raises the open crucial issue of deciphering the mechanisms that govern the onset of AF as well as its perpetuation. In this study, we develop a wavelet-based multi-scale strategy to analyze the electrical activity of human hearts recorded by catheter electrodes, positioned in the coronary sinus (CS), during episodes of AF. We compute the so-called multifractal spectra using two variants of the wavelet transform modulus maxima method, the moment (partition function) method and the magnitude cumulant method. Application of these methods to long time series recorded in a patient with chronic AF provides quantitative evidence of the multifractal intermittent nature of the electric energy of passing cardiac impulses at low frequencies, i.e., for times (≳0.5 s) longer than the mean interbeat (≃ 10−1 s). We also report the results of a two-point magnitude correlation analysis which infers the absence of a multiplicative time-scale structure underlying multifractal scaling. The electric energy dynamics looks like a “multifractal white noise” with quadratic (log-normal) multifractal spectra. These observations challenge concepts of functional reentrant circuits in mechanistic theories of AF, still leaving open the role of the autonomic nervous system (ANS). A transition is indeed observed in the computed multifractal spectra which group according to two distinct areas, consistently with the anatomical substrate binding to the CS, namely the left atrial posterior wall, and the ligament of Marshall which is

  18. Human umbilical cord mesenchymal stromal cells suppress MHC class II expression on rat vascular endothelium and prolong survival time of cardiac allograft

    Science.gov (United States)

    Qiu, Ying; Yun, Mark M; Han, Xia; Zhao, Ruidong; Zhou, Erxia; Yun, Sheng

    2014-01-01

    Background: Human umbilical cord mesenchymal stromal cells (UC-MSCs) have low immunogenicity and immune regulation. To investigate immunomodulatory effects of human UC-MSCs on MHC class II expression and allograft, we transplanted heart of transgenic rats with MHC class II expression on vascular endothelium. Methods: UC-MSCs were obtained from human umbilical cords and confirmed with flow cytometry analysis. Transgenic rat line was established using the construct of human MHC class II transactivator gene (CIITA) under mouse ICAM-2 promoter control. The induced MHC class II expression on transgenic rat vascular endothelial cells (VECs) was assessed with immunohistological staining. And the survival time of cardiac allograft was compared between the recipients with and without UC-MSC transfusion. Results: Flow cytometry confirmed that the human UC-MSCs were positive for CD29, CD44, CD73, CD90, CD105, CD271, and negative for CD34 and HLA-DR. Repeated infusion of human UC-MSCs reduced MHC class II expression on vascular endothelia of transplanted hearts, and increased survival time of allograft. The UC-MSCs increased regulatory cytokines IL10, transforming growth factor (TGF)-β1 and suppressed proinflammatory cytokines IL2 and IFN-γ in vivo. The UC-MSC culture supernatant had similar effects on cytokine expression, and decreased lymphocyte proliferation in vitro. Conclusions: Repeated transfusion of the human UC-MSCs reduced MHC class II expression on vascular endothelia and prolonged the survival time of rat cardiac allograft. PMID:25126177

  19. FGF7 and cell density are required for final differentiation of pancreatic amylase-positive cells from human ES cells.

    Science.gov (United States)

    Takizawa-Shirasawa, Sakiko; Yoshie, Susumu; Yue, Fengming; Mogi, Akimi; Yokoyama, Tadayuki; Tomotsune, Daihachiro; Sasaki, Katsunori

    2013-12-01

    The major molecular signals of pancreatic exocrine development are largely unknown. We examine the role of fibroblast growth factor 7 (FGF7) in the final induction of pancreatic amylase-containing exocrine cells from induced-pancreatic progenitor cells derived from human embryonic stem (hES) cells. Our protocol consisted in three steps: Step I, differentiation of definitive endoderm (DE) by activin A treatment of hES cell colonies; Step II, differentiation of pancreatic progenitor cells by re-plating of the cells of Step I onto 24-well plates at high density and stimulation with all-trans retinoic acid; Step III, differentiation of pancreatic exocrine cells with a combination of FGF7, glucagon-like peptide 1 and nicotinamide. The expression levels of pancreatic endodermal markers such as Foxa2, Sox17 and gut tube endoderm marker HNF1β were up-regulated in both Step I and II. Moreover, in Step III, the induced cells expressed pancreatic markers such as amylase, carboxypeptidase A and chymotrypsinogen B, which were similar to those in normal human pancreas. From day 8 in Step III, cells immunohistochemically positive for amylase and for carboxypeptidase A, a pancreatic exocrine cell product, were induced by FGF7. Pancreatic progenitor Pdx1-positive cells were localized in proximity to the amylase-positive cells. In the absence of FGF7, few amylase-positive cells were identified. Thus, our three-step culture protocol for human ES cells effectively induces the differentiation of amylase- and carboxypeptidase-A-containing pancreatic exocrine cells.

  20. Deterministic Encapsulation of Human Cardiac Stem Cells in Variable Composition Nanoporous Gel Cocoons To Enhance Therapeutic Repair of Injured Myocardium.

    Science.gov (United States)

    Kanda, Pushpinder; Alarcon, Emilio I; Yeuchyk, Tanya; Parent, Sandrine; de Kemp, Robert A; Variola, Fabio; Courtman, David; Stewart, Duncan J; Davis, Darryl R

    2018-04-20

    Although cocooning explant-derived cardiac stem cells (EDCs) in protective nanoporous gels (NPGs) prior to intramyocardial injection boosts long-term cell retention, the number of EDCs that finally engraft is trivial and unlikely to account for salutary effects on myocardial function and scar size. As such, we investigated the effect of varying the NPG content within capsules to alter the physical properties of cocoons without influencing cocoon dimensions. Increasing NPG concentration enhanced cell migration and viability while improving cell-mediated repair of injured myocardium. Given that the latter occurred with NPG content having no detectable effect on the long-term engraftment of transplanted cells, we found that changing the physical properties of cocoons prompted explant-derived cardiac stem cells to produce greater amounts of cytokines, nanovesicles, and microRNAs that boosted the generation of new blood vessels and new cardiomyocytes. Thus, by altering the physical properties of cocoons by varying NPG content, the paracrine signature of encapsulated cells can be enhanced to promote greater endogenous repair of injured myocardium.

  1. Human cardiac stem cells exhibit mesenchymal features and are maintained through Akt/GSK-3β signaling

    International Nuclear Information System (INIS)

    Tateishi, Kento; Ashihara, Eishi; Honsho, Shoken; Takehara, Naofumi; Nomura, Tetsuya; Takahashi, Tomosaburo; Ueyama, Tomomi; Yamagishi, Masaaki; Yaku, Hitoshi; Matsubara, Hiroaki; Oh, Hidemasa

    2007-01-01

    Recent evidence suggested that human cardiac stem cells (hCSCs) may have the clinical application for cardiac repair; however, their characteristics and the regulatory mechanisms of their growth have not been fully investigated. Here, we show the novel property of hCSCs with respect to their origin and tissue distribution in human heart, and demonstrate the signaling pathway that regulates their growth and survival. Telomerase-active hCSCs were predominantly present in the right atrium and outflow tract of the heart (infant > adult) and had a mesenchymal cell-like phenotype. These hCSCs expressed the embryonic stem cell markers and differentiated into cardiomyocytes to support cardiac function when transplanted them into ischemic myocardium. Inhibition of Akt pathway impaired the hCSC proliferation and induced apoptosis, whereas inhibition of glycogen synthase kinase-3 (GSK-3) enhanced their growth and survival. We conclude that hCSCs exhibit mesenchymal features and that Akt/GSK-3β may be crucial modulators for hCSC maintenance in human heart

  2. Crosstalk between mitochondrial and sarcoplasmic reticulum Ca2+ cycling modulates cardiac pacemaker cell automaticity.

    Directory of Open Access Journals (Sweden)

    Yael Yaniv

    Full Text Available Mitochondria dynamically buffer cytosolic Ca(2+ in cardiac ventricular cells and this affects the Ca(2+ load of the sarcoplasmic reticulum (SR. In sinoatrial-node cells (SANC the SR generates periodic local, subsarcolemmal Ca(2+ releases (LCRs that depend upon the SR load and are involved in SANC automaticity: LCRs activate an inward Na(+-Ca(2+ exchange current to accelerate the diastolic depolarization, prompting the ensemble of surface membrane ion channels to generate the next action potential (AP.To determine if mitochondrial Ca(2+ (Ca(2+ (m, cytosolic Ca(2+ (Ca(2+ (c-SR-Ca(2+ crosstalk occurs in single rabbit SANC, and how this may relate to SANC normal automaticity.Inhibition of mitochondrial Ca(2+ influx into (Ru360 or Ca(2+ efflux from (CGP-37157 decreased [Ca(2+](m to 80 ± 8% control or increased [Ca(2+](m to 119 ± 7% control, respectively. Concurrent with inhibition of mitochondrial Ca(2+ influx or efflux, the SR Ca(2+ load, and LCR size, duration, amplitude and period (imaged via confocal linescan significantly increased or decreased, respectively. Changes in total ensemble LCR Ca(2+ signal were highly correlated with the change in the SR Ca(2+ load (r(2 = 0.97. Changes in the spontaneous AP cycle length (Ru360, 111 ± 1% control; CGP-37157, 89 ± 2% control in response to changes in [Ca(2+](m were predicted by concurrent changes in LCR period (r(2 = 0.84.A change in SANC Ca(2+ (m flux translates into a change in the AP firing rate by effecting changes in Ca(2+ (c and SR Ca(2+ loading, which affects the characteristics of spontaneous SR Ca(2+ release.

  3. G-CSF treatment after myocardial infarction: impact on bone marrow-derived vs cardiac progenitor cells.

    Science.gov (United States)

    Brunner, Stefan; Huber, Bruno C; Fischer, Rebekka; Groebner, Michael; Hacker, Marcus; David, Robert; Zaruba, Marc-Michael; Vallaster, Marcus; Rischpler, Christoph; Wilke, Andrea; Gerbitz, Armin; Franz, Wolfgang-Michael

    2008-06-01

    Besides its classical function in the field of autologous and allogenic stem cell transplantation, granulocyte colony-stimulating factor (G-CSF) was shown to have protective effects after myocardial infarction (MI) by mobilization of bone marrow-derived progenitor cells (BMCs) and in addition by activation of multiple signaling pathways. In the present study, we focused on the impact of G-CSF on migration of BMCs and the impact on resident cardiac cells after MI. Mice (C57BL/6J) were sublethally irradiated, and BM from green fluorescent protein (GFP)-transgenic mice was transplanted. Coronary artery ligation was performed 10 weeks later. G-CSF (100 microg/kg) was daily injected for 6 days. Subpopulations of enhanced GFP(+) cells in peripheral blood, bone marrow, and heart were characterized by flow cytometry. Growth factor expression in the heart was analyzed by quantitative real-time polymerase chain reaction. Perfusion was investigated in vivo by gated single photon emission computed tomography (SPECT). G-CSF-treated animals revealed a reduced migration of c-kit(+) and CXCR-4(+) BMCs associated with decreased expression levels of the corresponding growth factors, namely stem cell factor and stromal-derived factor-1 alpha in ischemic myocardium. In contrast, the number of resident cardiac Sca-1(+) cells was significantly increased. However, SPECT-perfusion showed no differences in infarct size between G-CSF-treated and control animals 6 days after MI. Our study shows that G-CSF treatment after MI reduces migration capacity of BMCs into ischemic tissue, but increases the number of resident cardiac cells. To optimize homing capacity a combination of G-CSF with other agents may optimize cytokine therapy after MI.

  4. Cardiac gated ventilation

    International Nuclear Information System (INIS)

    Hanson, C.W. III; Hoffman, E.A.

    1995-01-01

    There are several theoretic advantages to synchronizing positive pressure breaths with the cardiac cycle, including the potential for improving distribution of pulmonary and myocardial blood flow and enhancing cardiac output. The authors evaluated the effects of synchronizing respiration to the cardiac cycle using a programmable ventilator and electron beam CT (EBCT) scanning. The hearts of anesthetized dogs were imaged during cardiac gated respiration with a 50 msec scan aperture. Multi slice, short axis, dynamic image data sets spanning the apex to base of the left ventricle were evaluated to determine the volume of the left ventricular chamber at end-diastole and end-systole during apnea, systolic and diastolic cardiac gating. The authors observed an increase in cardiac output of up to 30% with inspiration gated to the systolic phase of the cardiac cycle in a non-failing model of the heart

  5. Comparison of Conventional versus Steerable-Catheter Guided Coronary Sinus Lead Positioning in Patients Undergoing Cardiac Resynchronization Device Implantation.

    Directory of Open Access Journals (Sweden)

    Fikret Er

    Full Text Available The aim of this study was to compare conventional versus steerable catheter guided coronary sinus (CS cannulation in patients with advanced heart failure undergoing cardiac resynchronization therapy (CRT.Steerable catheter guided coronary sinus cannulation could reduce fluoroscopy time and contrast medium use during CRT implantation.176 consecutive patients with ischemic and non-ischemic heart failure undergoing CRT implantation from January 2008 to December 2012 at the University Hospital of Cologne were identified. During the study period two concurrent CS cannulation techniques were used: standard CS cannulation technique (standard-group, n = 113 and CS cannulation using a steerable electrophysiology (EP catheter (EPCath-group, n = 63. Propensity-score matched pairs of conventional and EP-catheter guided CS cannulation made up the study population (n = 59 pairs. Primary endpoints were total fluoroscopy time and contrast medium amount used during procedure.The total fluoroscopy time was 30.9 min (interquartile range (IQR, 19.9-44.0 min in the standard-group and 23.4 min (IQR, 14.2-34-2 min in the EPCath-group (p = 0.011. More contrast medium was used in the standard-group (60.0 ml, IQR, 30.0-100 ml compared to 25.0 ml (IQR, 20.0-50.0 ml in the EPCath-group (P<0.001.Use of steerable EP catheter was associated with significant reduction of fluoroscopy time and contrast medium use in patients undergoing CRT implantation.

  6. Red Cell Distribution Width and Serum BNP Level Correlation in Diabetic Patients with Cardiac Failure: A Cross - Sectional Study.

    Science.gov (United States)

    A R, Subhashree

    2014-06-01

    Red cell distribution width (RDW) is a red cell measurement given by fully automated hematology analyzers. It is a measure of heterogeneity in the size of circulating erythrocytes. Studies have shown that it is a prognostic marker in non - anemic diabetic patients with symptomatic cardiovascular disease but its correlation with cardiac failure in diabetics has not been studied so far. Moreover, studies have also shown that a higher RDW may reflect an underlying inflammatory state. Since Diabetes is a pro inflammatory state there is a possibility that it might have an influence on the RDW values even when there is no cardiac failure, but research data on this aspect is lacking. B-type natriuretic peptide (BNP) is a proven marker for cardiac failure whose values are comparable with echo cardio graphic findings in assessing the left ventricular dysfunction. This study aimed to find out the correlation between RDW% and serum BNP levels in Diabetics with heart failure (cases) when compared to those without failure (controls). Further, we compared the RDW % values of the cases with controls. Settings and Design : The study was approved by institutional ethical and research committee. A cross-sectional study was conducted with patients attending the Diabetes clinic of a tertiary care hospital in Chennai, India, during the period of October to December 2013. Hundred known cases of type II Diabetes mellitus attending Diabetes centre of the Hospital, with clinical and Echo cardio graphic features of cardiac failure were included as cases. Hundred age and gender matched diabetics with negative history of cardiovascular disease and with normal Echo cardio graphic features were included as controls. Informed consent was obtained from all the cases and controls. Demographic data and clinical history were gathered from all the cases and controls by using a standardized self - administered questionnaire. Biochemical and hematological parameters which included Fasting and

  7. The efficacy of an intraoperative cell saver during cardiac surgery: a meta-analysis of randomized trials.

    Science.gov (United States)

    Wang, Guyan; Bainbridge, Daniel; Martin, Janet; Cheng, Davy

    2009-08-01

    Cell salvage may be used during cardiac surgery to avoid allogeneic blood transfusion. It has also been claimed to improve patient outcomes by removing debris from shed blood, which may increase the risk of stroke or neurocognitive dysfunction. In this study, we sought to determine the overall safety and efficacy of cell salvage in cardiac surgery by performing a systematic review and meta-analysis of published randomized controlled trials. A comprehensive search was undertaken to identify all randomized trials of cell saver use during cardiac surgery. MEDLINE, Cochrane Library, EMBASE, and abstract databases were searched up to November 2008. All randomized trials comparing cell saver use and no cell saver use in cardiac surgery and reporting at least one predefined clinical outcome were included. The random effects model was used to calculate the odds ratios (OR, 95% confidence intervals [CI]) and the weighted mean differences (WMD, 95% CI) for dichotomous and continuous variables, respectively. Thirty-one randomized trials involving 2282 patients were included in the meta-analysis. During cardiac surgery, the use of an intraoperative cell saver reduced the rate of exposure to any allogeneic blood product (OR 0.63, 95% CI: 0.43-0.94, P = 0.02) and red blood cells (OR 0.60, 95% CI: 0.39-0.92, P = 0.02) and decreased the mean volume of total allogeneic blood products transfused per patient (WMD -256 mL, 95% CI: -416 to -95 mL, P = 0.002). There was no difference in hospital mortality (OR 0.65, 95% CI: 0.25-1.68, P = 0.37), postoperative stroke or transient ischemia attack (OR 0.59, 95% CI: 0.20-1.76, P = 0.34), atrial fibrillation (OR 0.92, 95% CI: 0.69-1.23, P = 0.56), renal dysfunction (OR 0.86, 95% CI: 0.41-1.80, P = 0.70), infection (OR 1.25, 95% CI: 0.75-2.10, P = 0.39), patients requiring fresh frozen plasma (OR 1.16, 95% CI: 0.82-1.66, P = 0.40), and patients requiring platelet transfusions (OR 0.90, 95% CI: 0.63-1.28, P = 0.55) between cell saver and

  8. Calpain-Mediated positional information directs cell wall orientation to sustain plant stem cell activity, growth and development

    Science.gov (United States)

    Eukaryotic development and stem cell control depend on the integration of cell positional sensing with cell cycle control and cell wall positioning, yet few factors that directly link these events are known. The DEFECTIVE KERNEL1 (DEK1) gene encoding the unique plant calpain protein is fundamental f...

  9. Influence of mechanical cell salvage on red blood cell aggregation, deformability, and 2,3-diphosphoglycerate in patients undergoing cardiac surgery with cardiopulmonary bypass.

    Science.gov (United States)

    Gu, Y John; Vermeijden, Wytze J; de Vries, Adrianus J; Hagenaars, J Ans M; Graaff, Reindert; van Oeveren, Willem

    2008-11-01

    Mechanical cell salvage is increasingly used during cardiac surgery. Although this procedure is considered safe, it is unknown whether it affects the red blood cell (RBC) function, especially the RBC aggregation, deformability, and the contents of 2,3-diphosphoglycerate (2,3-DPG). This study examines the following: (1) whether the cell salvage procedure influences RBC function; and (2) whether retransfusion of the salvaged blood affects RBC function in patients. Forty patients undergoing cardiac surgery with cardiopulmonary bypass were randomly allocated to a cell saver group (n = 20) or a control group (n = 20). In the cell saver group, the blood aspirated from the wound area and the residual blood from the heart-lung machine were processed with a continuous-flow cell saver before retransfusion. In the control group this blood was retransfused without processing. The RBC aggregation and deformability were measured with a laser-assisted optical rotational cell analyzer and 2,3,-DPG by conventional laboratory test. The cell saver procedure did not influence the RBC aggregation but significantly reduced the RBC deformability (p = 0.007) and the content of RBC 2,3-DPG (p = 0.032). However, in patients receiving the processed blood, their intraoperative and postoperative RBC aggregation, deformability, and 2,3-DPG content did not differ from those of the control patients. Both groups of patients had a postoperative drop of RBC function as a result of hemodilution. The mechanical cell salvage procedure reduces the RBC deformability and the cell 2,3-DPG content. Retransfusion of the processed blood by cell saver does not further compromise the RBC function in patients undergoing cardiac surgery with cardiopulmonary bypass.

  10. Prickle1 mutation causes planar cell polarity and directional cell migration defects associated with cardiac outflow tract anomalies and other structural birth defects

    Directory of Open Access Journals (Sweden)

    Brian C. Gibbs

    2016-03-01

    Full Text Available Planar cell polarity (PCP is controlled by a conserved pathway that regulates directional cell behavior. Here, we show that mutant mice harboring a newly described mutation termed Beetlejuice (Bj in Prickle1 (Pk1, a PCP component, exhibit developmental phenotypes involving cell polarity defects, including skeletal, cochlear and congenital cardiac anomalies. Bj mutants die neonatally with cardiac outflow tract (OFT malalignment. This is associated with OFT shortening due to loss of polarized cell orientation and failure of second heart field cell intercalation mediating OFT lengthening. OFT myocardialization was disrupted with cardiomyocytes failing to align with the direction of cell invasion into the outflow cushions. The expression of genes mediating Wnt signaling was altered. Also noted were shortened but widened bile ducts and disruption in canonical Wnt signaling. Using an in vitro wound closure assay, we showed Bj mutant fibroblasts cannot establish polarized cell morphology or engage in directional cell migration, and their actin cytoskeleton failed to align with the direction of wound closure. Unexpectedly, Pk1 mutants exhibited primary and motile cilia defects. Given Bj mutant phenotypes are reminiscent of ciliopathies, these findings suggest Pk1 may also regulate ciliogenesis. Together these findings show Pk1 plays an essential role in regulating cell polarity and directional cell migration during development.

  11. A practical approach for the validation of sterility, endotoxin and potency testing of bone marrow mononucleated cells used in cardiac regeneration in compliance with good manufacturing practice

    Directory of Open Access Journals (Sweden)

    Gola Mauro

    2009-09-01

    Full Text Available Abstract Background Main scope of the EU and FDA regulations is to establish a classification criterion for advanced therapy medicinal products (ATMP. Regulations require that ATMPs must be prepared under good manufacturing practice (GMP. We have validated a commercial system for the determination of bacterial endotoxins in compliance with EU Pharmacopoeia 2.6.14, the sterility testing in compliance with EU Pharmacopoeia 2.6.1 and a potency assay in an ATMP constituted of mononucleated cells used in cardiac regeneration. Methods For the potency assay, cells were placed in the upper part of a modified Boyden chamber containing Endocult Basal Medium with supplements and transmigrated cells were scored. The invasion index was expressed as the ratio between the numbers of invading cells relative to cell migration through a control insert membrane. For endotoxins, we used a commercially available system based on the kinetic chromogenic LAL-test. Validation of sterility was performed by direct inoculation of TSB and FTM media with the cell product following Eu Ph 2.6.1 guideline. Results and discussion The calculated MVD and endotoxin limit were 780× and 39 EU/ml respectively. The 1:10 and 1:100 dilutions were selected for the validation. For sterility, all the FTM cultures were positive after 3 days. For TSB cultures, Mycetes and B. subtilis were positive after 5 and 3 days respectively. The detection limit was 1-10 colonies. A total of four invasion assay were performed: the calculated invasion index was 28.89 ± 16.82% (mean ± SD. Conclusion We have validated a strategy for endotoxin, sterility and potency testing in an ATMP used in cardiac regeneration. Unlike pharmaceutical products, many stem-cell-based products may originate in hospitals where personnel are unfamiliar with the applicable regulations. As new ATMPs are developed, the regulatory framework is likely to evolve. Meanwhile, existing regulations provide an appropriate structure for

  12. A practical approach for the validation of sterility, endotoxin and potency testing of bone marrow mononucleated cells used in cardiac regeneration in compliance with good manufacturing practice.

    Science.gov (United States)

    Soncin, Sabrina; Lo Cicero, Viviana; Astori, Giuseppe; Soldati, Gianni; Gola, Mauro; Sürder, Daniel; Moccetti, Tiziano

    2009-09-08

    Main scope of the EU and FDA regulations is to establish a classification criterion for advanced therapy medicinal products (ATMP). Regulations require that ATMPs must be prepared under good manufacturing practice (GMP). We have validated a commercial system for the determination of bacterial endotoxins in compliance with EU Pharmacopoeia 2.6.14, the sterility testing in compliance with EU Pharmacopoeia 2.6.1 and a potency assay in an ATMP constituted of mononucleated cells used in cardiac regeneration. For the potency assay, cells were placed in the upper part of a modified Boyden chamber containing Endocult Basal Medium with supplements and transmigrated cells were scored. The invasion index was expressed as the ratio between the numbers of invading cells relative to cell migration through a control insert membrane. For endotoxins, we used a commercially available system based on the kinetic chromogenic LAL-test. Validation of sterility was performed by direct inoculation of TSB and FTM media with the cell product following Eu Ph 2.6.1 guideline. The calculated MVD and endotoxin limit were 780x and 39 EU/ml respectively. The 1:10 and 1:100 dilutions were selected for the validation. For sterility, all the FTM cultures were positive after 3 days. For TSB cultures, Mycetes and B. subtilis were positive after 5 and 3 days respectively. The detection limit was 1-10 colonies. A total of four invasion assay were performed: the calculated invasion index was 28.89 +/- 16.82% (mean +/- SD). We have validated a strategy for endotoxin, sterility and potency testing in an ATMP used in cardiac regeneration. Unlike pharmaceutical products, many stem-cell-based products may originate in hospitals where personnel are unfamiliar with the applicable regulations. As new ATMPs are developed, the regulatory framework is likely to evolve. Meanwhile, existing regulations provide an appropriate structure for ensuring the safety and efficacy of the next generation of ATMPs. Personnel

  13. Anti-ATLA (antibody to adult T-cell leukemia virus-associated antigen), highly positive in OKT4-positive mature T-cell malignancies.

    Science.gov (United States)

    Tobinai, K; Nagai, M; Setoya, T; Shibata, T; Minato, K; Shimoyama, M

    1983-01-01

    Serum or plasma specimens from 252 patients with lymphoid malignancies were screened for reactivity with adult T-cell leukemia virus-associated antigen (ATLA), and the relationship between the immunologic phenotype of the tumor cells and ATLA reactivity was determined. Anti-ATLA antibodies were found in 24 (29.3%) of 82 patients with T-cell malignancy. In contrast, the antibodies were found in none of the 106 patients with B-cell malignancy and only rarely in patients with other lymphoid malignancies without blood transfusions. Among the patients with T-cell malignancy, anti-ATLA antibodies were found in 23 (45.1%) of the 51 patients with OKT4-positive mature T-cell (inducer/helper T-cell) malignancy, but in none of the patients with T-cell malignancy of pre-T, thymic T-cell or OKT8-positive mature T-cell (suppressor/cytotoxic T-cell) phenotype. Furthermore, among the OKT4-positive mature T-cell malignancies, the antibodies were found in 16 (84.2%) of 19 patients with ATL and in 5 (27.8%) of 18 patients with mature (peripheral) T-cell lymphoma, in none of four with typical T-chronic lymphocytic leukemia, in one of nine with mycosis fungoides and in the one patient with small-cell variant of Sézary's syndrome. These results suggest that anti-ATLA positive T-cell malignancies with OKT4-positive mature T-cell phenotype must be the same disease, because it is highly possible that they have the same etiology and the same cellular origin. In the atypical cases, it seems necessary to demonstrate monoclonal integration of proviral DNA of ATLV or HTLV into the tumor cells in order to establish the final diagnosis of ATL.

  14. Epigenetic regulation of cardiac progenitor cells marker c-kit by stromal cell derived factor-1α.

    Directory of Open Access Journals (Sweden)

    Zhongpu Chen

    Full Text Available BACKGROUND: Cardiac progenitor cells (CPCs have been proven suitable for stem cell therapy after myocardial infarction, especially c-kit(+CPCs. CPCs marker c-kit and its ligand, the stem cell factor (SCF, are linked as c-kit/SCF axis, which is associated with the functions of proliferation and differentiation. In our previous study, we found that stromal cell-derived factor-1α (SDF-1α could enhance the expression of c-kit. However, the mechanism is unknown. METHODS AND RESULTS: CPCs were isolated from adult mouse hearts, c-kit(+ and c-kit(- CPCs were separated by magnetic beads. The cells were cultured with SDF-1α and CXCR4-selective antagonist AMD3100, and c-kit expression was measured by qPCR and Western blotting. Results showed that SDF-1α could enhance c-kit expression of c-kit(+CPCs, made c-kit(-CPCs expressing c-kit, and AMD3100 could inhibit the function of SDF-1α. After the intervention of SDF-1α and AMD3100, proliferation and migration of CPCs were measured by CCK-8 and transwell assay. Results showed that SDF-1α could enhance the proliferation and migration of both c-kit(+ and c-kit(- CPCs, and AMD3100 could inhibit these functions. DNA methyltransferase (DNMT mRNA were measured by qPCR, DNMT activity was measured using the DNMT activity assay kit, and DNA methylation was analyzed using Sequenom's MassARRAY platform, after the CPCs were cultured with SDF-1α. The results showed that SDF-1α stimulation inhibited the expression of DNMT1 and DNMT3β, which are critical for the maintenance of regional DNA methylation. Global DNMT activity was also inhibited by SDF-1α. Lastly, SDF-1α treatment led to significant demethylation in both c-kit(+ and c-kit(- CPCs. CONCLUSIONS: SDF-1α combined with CXCR4 could up-regulate c-kit expression of c-kit(+CPCs and make c-kit(-CPCs expressing c-kit, which result in the CPCs proliferation and migration ability improvement, through the inhibition of DNMT1 and DNMT3β expression and global DNMT

  15. Circulating endothelial progenitor cell numbers are not associated with donor organ age or allograft vasculopathy in cardiac transplant recipients.

    Science.gov (United States)

    Thomas, H E; Parry, G; Dark, J H; Arthur, H M; Keavney, B D

    2009-02-01

    Increasing age is associated with reduced numbers of circulating endothelial progenitor cells (EPCs). It is unclear whether this relates to depletion or impairment of bone marrow progenitors, or to deficient mobilization signals from aging tissues. In cardiac transplant patients, one previous study has reported an association between circulating EPCs and the risk of cardiac allograft vasculopathy (CAV). We investigated whether increased donor heart age, a strong risk factor for CAV, was associated with reduced circulating EPC numbers in a group of cardiac transplant recipients matched for factors which influence EPC numbers, but with maximally discordant donor heart ages. We identified 32 patient pairs, matched for factors known to influence EPC numbers, but who had discordant donor heart ages by at least 20 years. EPCs were quantified using flow cytometry for absolute counts of cells expressing all the combinations of CD45, CD34, CD133 and the kinase domain receptor (KDR). There were no significant differences in the numbers of circulating EPCs between patients with old or young donor heart age. There was no association between the presence of CAV and circulating EPC numbers. We suggest that the increased susceptibility to CAV of older donor hearts is not mediated via circulating EPCs. Our results are consistent with the theory that the normal age-related decline in EPC numbers relates to bone marrow aging rather than failure of target tissues to induce EPC mobilization.

  16. Mast cells: potential positive and negative roles in tumor biology.

    Science.gov (United States)

    Marichal, Thomas; Tsai, Mindy; Galli, Stephen J

    2013-11-01

    Mast cells are immune cells that reside in virtually all vascularized tissues. Upon activation by diverse mechanisms, mast cells can secrete a broad array of biologically active products that either are stored in the cytoplasmic granules of the cells (e.g., histamine, heparin, various proteases) or are produced de novo upon cell stimulation (e.g., prostaglandins, leukotrienes, cytokines, chemokines, and growth factors). Mast cells are best known for their effector functions during anaphylaxis and acute IgE-associated allergic reactions, but they also have been implicated in a wide variety of processes that maintain health or contribute to disease. There has been particular interest in the possible roles of mast cells in tumor biology. In vitro studies have shown that mast cells have the potential to influence many aspects of tumor biology, including tumor development, tumor-induced angiogenesis, and tissue remodeling, and the shaping of adaptive immune responses to tumors. Yet, the actual contributions of mast cells to tumor biology in vivo remain controversial. Here, we review some basic features of mast cell biology with a special emphasis on those relevant to their potential roles in tumors. We discuss how using in vivo tumor models in combination with models in which mast cell function can be modulated has implicated mast cells in the regulation of host responses to tumors. Finally, we summarize data from studies of human tumors that suggest either beneficial or detrimental roles for mast cells in tumors. ©2013 AACR.

  17. Sickle cell, habitual dys-positions and fragile dispositions: young people with sickle cell at school

    Science.gov (United States)

    Dyson, Simon M; Atkin, Karl; Culley, Lorraine A; Dyson, Sue E; Evans, Hala

    2011-01-01

    The experiences of young people living with a sickle cell disorder in schools in England are reported through a thematic analysis of forty interviews, using Bourdieu’s notions of field, capital and habitus. Young people with sickle cell are found to be habitually dys-positioned between the demands of the clinic for health maintenance through self-care and the field of the school, with its emphases on routines, consistent attendance and contextual demands for active and passive pupil behaviour. The tactics or dispositions that young people living with sickle cell can then employ, during strategy and struggle at school, are therefore fragile: they work only contingently, transiently or have the unintended consequences of displacing other valued social relations. The dispositions of the young people with sickle cell are framed by other social struggles: innovations in school procedures merely address aspects of sickle cell in isolation and are not consolidated into comprehensive policies; mothers inform, liaise, negotiate and advocate in support of a child with sickle cell but with limited success. Reactions of teachers and peers to sickle cell have the enduring potential to drain the somatic, cultural and social capital of young people living with sickle cell. PMID:21375541

  18. CD4+/CD8+ double-positive T cells

    DEFF Research Database (Denmark)

    Overgaard, Nana H; Jung, Ji-Won; Steptoe, Raymond J

    2015-01-01

    CD4(+)/CD8(+) DP thymocytes are a well-described T cell developmental stage within the thymus. However, once differentiated, the CD4(+) lineage or the CD8(+) lineage is generally considered to be fixed. Nevertheless, mature CD4(+)/CD8(+) DP T cells have been described in the blood and peripheral...... cells, CD4(+)/CD8(+) T cell populations, outside of the thymus, have recently been described to express concurrently ThPOK and Runx3. Considerable heterogeneity exists within the CD4(+)/CD8(+) DP T cell pool, and the function of CD4(+)/CD8(+) T cell populations remains controversial, with conflicting...... reports describing cytotoxic or suppressive roles for these cells. In this review, we describe how transcriptional regulation, lineage of origin, heterogeneity of CD4 and CD8 expression, age, species, and specific disease settings influence the functionality of this rarely studied T cell population....

  19. Stem cell tourism in South Africa: The legal position | Mahomed ...

    African Journals Online (AJOL)

    Stem cell tourism has become a common phenomenon worldwide and is increasingly affecting South Africa, as is evident from recent media reports. We examine the South African legal framework regulating stem cell therapy, focusing first on the effects of unproven stem cell treatments, and provide recommendations that ...

  20. Intramuscular injection of human umbilical cord-derived mesenchymal stem cells improves cardiac function in dilated cardiomyopathy rats.

    Science.gov (United States)

    Mao, Chenggang; Hou, Xu; Wang, Benzhen; Chi, Jingwei; Jiang, Yanjie; Zhang, Caining; Li, Zipu

    2017-01-28

    Stem cells provide a promising candidate for the treatment of the fatal pediatric dilated cardiomyopathy (DCM). This study aimed to investigate the effects of intramuscular injection of human umbilical cord-derived mesenchymal stem cells (hUCMSCs) on the cardiac function of a DCM rat model. A DCM model was established by intraperitoneal injections of doxorubicin in Sprague-Dawley rats. hUCMSCs at different concentrations or cultured medium were injected via limb skeletal muscles, with blank medium injected as the control. The rats were monitored for 4 weeks, meanwhile BNP, cTNI, VEGF, HGF, GM-CSF, and LIF in the peripheral blood were examined by ELISA, and cardiac function was monitored by echocardiography (Echo-CG). Finally, the expression of IGF-1, HGF, and VEGF in the myocardium was examined by histoimmunochemistry and real-time PCR, and the ultrastructure of the myocardium was examined by electron microscopy. Injection of hUCMSCs markedly improved cardiac function in the DCM rats by significantly elevating left ventricular ejection fraction (LVEF) and left ventricular fraction shortening (LVFS). The BNP and cTNI levels in the peripheral blood were reduced by hUCMSCs, while HGF, LIF, GM-CSF, and VEGF were increased by hUCMSCs. Expression of IGF-1, HGF, and VEGF in the myocardium from the DCM rats was significantly increased by hUCMSC injection. Furthermore, hUCMSCs protected the ultrastructure of cardiomyocytes by attenuating mitochondrial swelling and maintaining sarcolemma integrity. Intramuscular injection of UCMSCs can improve DCM-induced cardiac function impairment and protect the myocardium. These effects may be mediated by regulation of relevant cytokines in serum and the myocardium.

  1. Cardiac ablation

    Directory of Open Access Journals (Sweden)

    Kelly Ratheal

    2016-01-01

    Full Text Available Cardiac ablation is a procedure that uses either radiofrequency or cryothermal energy to destroy cells in the heart to terminate and/or prevent arrhythmias. The indications for cardiac catheter ablation include refractory, symptomatic arrhythmias, with more specific guidelines for atrial fibrillation in particular. The ablation procedure itself involves mapping the arrhythmia and destruction of the aberrant pathway in an effort to permanently prevent the arrhythmia. There are many types of arrhythmias, and they require individualized approaches to ablation based on their innately different electrical pathways. Ablation of arrhythmias, such as Wolff-Parkinson-White syndrome, AV nodal reentrant tachycardia, and atrial-fibrillation, is discussed in this review. Ablation has a high success rate overall and minimal complication rates, leading to improved quality of life in many patients.

  2. Correlation of Merkel cell polyomavirus positivity with PDGFRα mutations and survivin expression in Merkel cell carcinoma.

    Science.gov (United States)

    Batinica, M; Akgül, B; Silling, S; Mauch, C; Zigrino, P

    2015-07-01

    Merkel cell carcinoma (MCC) is a neuroendocrine cancer of the skin postulated to originate through Merkel cell polyomavirus (MCPyV) oncogenesis and/or by mutations in molecules implicated in the regulation of cell growth and survival. Despite the fact that MCPvV is detected more broadly within the population, only a part of the infected people also develop MCC. It is thus conceivable that together, virus and for example mutations, are necessary for disease development. However, apart from a correlation between MCPyV positivity or mutations and MCC development, less is known about the association of these factors with progressive disease. To analyze MCPyV positivity, load and integration in MCC as well as presence of mutations in PDGFRα and TP53 genes and correlate these with clinical features and disease progression to identify features with prognostic value for clinical progression. This is a study on a MCC population group of 64 patients. MCPyV positivity, load and integration in parallel to mutations in the PDGFRα and TP53 were analyzed on genomic DNA from MCC specimens. In addition, expression of PDGFRα, survivin and p53 proteins was analyzed by immunodetection in tissues specimens. All these parameters were analyzed as function of patient's disease progression status. 83% of MCCs were positive for the MCPyV and among these 36% also displayed virus-T integration. Viral load ranged from 0.006 to 943 viral DNA copies/β-globin gene and was highest in patients with progressive disease. We detected more than one mutation within the PDGFRα gene and identified two new SNPs in 36% of MCC patients, whereas no mutations were found in TP53 gene. Survivin was expressed in 78% of specimens. We could not correlate either mutations in PDGFR or expression of PDGFR, p53 and surviving either to the disease progression or to the MCPyV positivity. In conclusion, our data indicate that the viral positivity when associated with high viral load, correlates with poor disease

  3. Molecular pathways of early CD105-positive erythroid cells as compared with CD34-positive common precursor cells by flow cytometric cell-sorting and gene expression profiling

    International Nuclear Information System (INIS)

    Machherndl-Spandl, S; Suessner, S; Danzer, M; Proell, J; Gabriel, C; Lauf, J; Sylie, R; Klein, H-U; Béné, M C; Weltermann, A; Bettelheim, P

    2013-01-01

    Special attention has recently been drawn to the molecular network of different genes that are responsible for the development of erythroid cells. The aim of the present study was to establish in detail the immunophenotype of early erythroid cells and to compare the gene expression profile of freshly isolated early erythroid precursors with that of the CD34-positive (CD34 + ) compartment. Multiparameter flow cytometric analyses of human bone marrow mononuclear cell fractions (n=20) defined three distinct early erythroid stages. The gene expression profile of sorted early erythroid cells was analyzed by Affymetrix array technology. For 4524 genes, a differential regulation was found in CD105-positive erythroid cells as compared with the CD34 + progenitor compartment (2362 upregulated genes). A highly significant difference was observed in the expression level of genes involved in transcription, heme synthesis, iron and mitochondrial metabolism and transforming growth factor-β signaling. A comparison with recently published data showed over 1000 genes that as yet have not been reported to be upregulated in the early erythroid lineage. The gene expression level within distinct pathways could be illustrated directly by applying the Ingenuity software program. The results of gene expression analyses can be seen at the Gene Expression Omnibus repository

  4. Protein tyrosine phosphatase 1B (PTP1B) is required for cardiac lineage differentiation of mouse embryonic stem cells.

    Science.gov (United States)

    Eshkiki, Zahra Shokati; Ghahremani, Mohammad Hossein; Shabani, Parisa; Firuzjaee, Sattar Gorgani; Sadeghi, Asie; Ghanbarian, Hossein; Meshkani, Reza

    2017-01-01

    Protein tyrosine phosphatase 1B (PTP1B) has been shown to regulate multiple cellular events such as differentiation, cell growth, and proliferation; however, the role of PTP1B in differentiation of embryonic stem (ES) cells into cardiomyocytes remains unexplored. In the present study, we investigated the effects of PTP1B inhibition on differentiation of ES cells into cardiomyocytes. PTP1B mRNA and protein levels were increased during the differentiation of ES cells into cardiomyocytes. Accordingly, a stable ES cell line expressing PTP1B shRNA was established. In vitro, the number and size of spontaneously beating embryoid bodies were significantly decreased in PTP1B-knockdown cells, compared with the control cells. Decreased expression of cardiac-specific markers Nkx2-5, MHC-α, cTnT, and CX43, as assessed by real-time PCR analysis, was further confirmed by immunocytochemistry of the markers. The results also showed that PTP1B inhibition induced apoptosis in both differentiated and undifferentiated ES cells, as presented by increasing the level of cleaved caspase-3, cytochrome C, and cleaved PARP. Further analyses revealed that PTP1B inhibition did not change proliferation and pluripotency of undifferentiated ES cells. Taken together, the data presented here suggest that PTP1B is essential for proper differentiation of ES cells into cardiomyocytes.

  5. Label-free separation of human embryonic stem cells (hESCs) and their cardiac derivatives using Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Chan, J W; Lieu, D K; Huser, T R; Li, R A

    2008-09-08

    Self-renewable, pluripotent human embryonic stem cells (hESCs) can be differentiated into cardiomyocytes (CMs), providing an unlimited source of cells for transplantation therapies. However, unlike certain cell lineages such as hematopoietic cells, CMs lack specific surface markers for convenient identification, physical separation, and enrichment. Identification by immunostaining of cardiac-specific proteins such as troponin requires permeabilization, which renders the cells unviable and non-recoverable. Ectopic expression of a reporter protein under the transcriptional control of a heart-specific promoter for identifying hESC-derived CMs (hESC-CMs) is useful for research but complicates potential clinical applications. The practical detection and removal of undifferentiated hESCs in a graft, which may lead to tumors, is also critical. Here, we demonstrate a non-destructive, label-free optical method based on Raman scattering to interrogate the intrinsic biochemical signatures of individual hESCs and their cardiac derivatives, allowing cells to be identified and classified. By combining the Raman spectroscopic data with multivariate statistical analysis, our results indicate that hESCs, human fetal left ventricular CMs, and hESC-CMs can be identified by their intrinsic biochemical characteristics with an accuracy of 96%, 98% and 66%, respectively. The present study lays the groundwork for developing a systematic and automated method for the non-invasive and label-free sorting of (i) high-quality hESCs for expansion, and (ii) ex vivo CMs (derived from embryonic or adult stem cells) for cell-based heart therapies.

  6. CD163 positive subsets of blood dendritic cells

    DEFF Research Database (Denmark)

    Maniecki, Maciej Bogdan; Møller, Holger Jon; Moestrup, Søren Kragh

    2006-01-01

    CD163 and CD91 are scavenging receptors with highly increased expression during the differentiation of monocytes into the anti-inflammatory macrophage phenotype. In addition, CD91 is expressed in monocyte-derived dendritic cells (MoDCs), where the receptor is suggested to be important...... for internalization of CD91-targeted antigens to be presented on the dendritic cell surface for T-cell stimulation. Despite their overlap in functionality, the expression of CD91 and CD163 has never been compared and the expression of CD163 in the monocyte-dendritic cell lineage is not yet characterized. CD163...... expression in dendritic cells (DCs) was investigated using multicolor flow cytometry in peripheral blood from 31 healthy donors and 15 HIV-1 patients in addition to umbilical cord blood from 5 newborn infants. Total RNA was isolated from MACS purified DCs and CD163 mRNA was determined with real-time reverse...

  7. Association between implantable cardioverter-defibrillator therapy and different lead positions in patients with cardiac resynchronization therapy

    DEFF Research Database (Denmark)

    Kronborg, Mads Brix; Johansen, Jens Brock; Haarbo, Jens

    2017-01-01

    /mid-ventricular/apical for the LV-LP, and as apical/non-apical for the RV-LP. Appropriate and inappropriate therapies were registered during follow-up via remote monitoring or at device interrogations. Time to event was summarized with Kaplan-Meier plots, and competed risk regression analysis was used to calculate adjusted hazard...... with an apical. We observed no significant association between appropriate therapy and LV-LP in left anterior oblique or right anterior oblique views or inappropriate therapy between any lead positions. Conclusion: An apical RV-LP is associated with an increased risk of appropriate therapy for ventricular...

  8. Long Noncoding RNA PANDA Positively Regulates Proliferation of Osteosarcoma Cells.

    Science.gov (United States)

    Kotake, Yojiro; Goto, Taiki; Naemura, Madoka; Inoue, Yasutoshi; Okamoto, Haruna; Tahara, Keiichiro

    2017-01-01

    A long noncoding RNA, p21-associated ncRNA DNA damage-activated (PANDA), associates with nuclear transcription factor Y subunit alpha (NF-YA) and inhibits its binding to promoters of apoptosis-related genes, thereby repressing apoptosis in normal human fibroblasts. Here, we show that PANDA is involved in regulating proliferation in the U2OS human osteosarcoma cell line. U2OS cells were transfected with siRNAs against PANDA 72 h later and they were subjected to reverse transcription-polymerase chain reaction (RT-PCR), quantitative RT-PCR and cell-cycle analysis. PANDA was highly expressed in U2OS cells, and its expression was induced by DNA damage. Silencing PANDA caused arrest at the G 1 phase of the cell cycle, leading to inhibition of cell proliferation. Quantitative RT-PCR showed that silencing PANDA increased mRNA levels of the cyclin-dependent kinase inhibitor p18, which caused G 1 phase arrest. These results suggest that PANDA promotes G 1 -S transition by repressing p18 transcription, and thus promotes U2OS cell proliferation. Copyright© 2017 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  9. Human Engineered Cardiac Tissues Created Using Induced Pluripotent Stem Cells Reveal Functional Characteristics of BRAF-Mediated Hypertrophic Cardiomyopathy.

    Directory of Open Access Journals (Sweden)

    Timothy J Cashman

    Full Text Available Hypertrophic cardiomyopathy (HCM is a leading cause of sudden cardiac death that often goes undetected in the general population. HCM is also prevalent in patients with cardio-facio-cutaneous syndrome (CFCS, which is a genetic disorder characterized by aberrant signaling in the RAS/MAPK signaling cascade. Understanding the mechanisms of HCM development in such RASopathies may lead to novel therapeutic strategies, but relevant experimental models of the human condition are lacking. Therefore, the objective of this study was to develop the first 3D human engineered cardiac tissue (hECT model of HCM. The hECTs were created using human cardiomyocytes obtained by directed differentiation of induced pluripotent stem cells derived from a patient with CFCS due to an activating BRAF mutation. The mutant myocytes were directly conjugated at a 3:1 ratio with a stromal cell population to create a tissue of defined composition. Compared to healthy patient control hECTs, BRAF-hECTs displayed a hypertrophic phenotype by culture day 6, with significantly increased tissue size, twitch force, and atrial natriuretic peptide (ANP gene expression. Twitch characteristics reflected increased contraction and relaxation rates and shorter twitch duration in BRAF-hECTs, which also had a significantly higher maximum capture rate and lower excitation threshold during electrical pacing, consistent with a more arrhythmogenic substrate. By culture day 11, twitch force was no longer different between BRAF and wild-type hECTs, revealing a temporal aspect of disease modeling with tissue engineering. Principal component analysis identified diastolic force as a key factor that changed from day 6 to day 11, supported by a higher passive stiffness in day 11 BRAF-hECTs. In summary, human engineered cardiac tissues created from BRAF mutant cells recapitulated, for the first time, key aspects of the HCM phenotype, offering a new in vitro model for studying intrinsic mechanisms and

  10. Extracellular Matrix-Mediated Maturation of Human Pluripotent Stem Cell-Derived Cardiac Monolayer Structure and Electrophysiological Function.

    Science.gov (United States)

    Herron, Todd J; Rocha, Andre Monteiro Da; Campbell, Katherine F; Ponce-Balbuena, Daniela; Willis, B Cicero; Guerrero-Serna, Guadalupe; Liu, Qinghua; Klos, Matt; Musa, Hassan; Zarzoso, Manuel; Bizy, Alexandra; Furness, Jamie; Anumonwo, Justus; Mironov, Sergey; Jalife, José

    2016-04-01

    Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) monolayers generated to date display an immature embryonic-like functional and structural phenotype that limits their utility for research and cardiac regeneration. In particular, the electrophysiological function of hPSC-CM monolayers and bioengineered constructs used to date are characterized by slow electric impulse propagation velocity and immature action potential profiles. Here, we have identified an optimal extracellular matrix for significant electrophysiological and structural maturation of hPSC-CM monolayers. hPSC-CM plated in the optimal extracellular matrix combination have impulse propagation velocities ≈2× faster than previously reported (43.6±7.0 cm/s; n=9) and have mature cardiomyocyte action potential profiles, including hyperpolarized diastolic potential and rapid action potential upstroke velocity (146.5±17.7 V/s; n=5 monolayers). In addition, the optimal extracellular matrix promoted hypertrophic growth of cardiomyocytes and the expression of key mature sarcolemmal (SCN5A, Kir2.1, and connexin43) and myofilament markers (cardiac troponin I). The maturation process reported here relies on activation of integrin signaling pathways: neutralization of β1 integrin receptors via blocking antibodies and pharmacological blockade of focal adhesion kinase activation prevented structural maturation. Maturation of human stem cell-derived cardiomyocyte monolayers is achieved in a 1-week period by plating cardiomyocytes on PDMS (polydimethylsiloxane) coverslips rather than on conventional 2-dimensional cell culture formats, such as glass coverslips or plastic dishes. Activation of integrin signaling and focal adhesion kinase is essential for significant maturation of human cardiac monolayers. © 2016 American Heart Association, Inc.

  11. Derivation of Human Induced Pluripotent Stem (iPS) Cells to Heritable Cardiac Arrhythmias

    Science.gov (United States)

    2017-08-10

    Inherited Cardiac Arrythmias; Long QT Syndrome (LQTS); Brugada Syndrome (BrS); Catecholaminergic Polymorphic Ventricular Tachycardia (CPVT); Early Repolarization Syndrome (ERS); Arrhythmogenic Cardiomyopathy (AC, ARVD/C); Hypertrophic Cardiomyopathy (HCM); Dilated Cardiomyopathy (DCM); Muscular Dystrophies (Duchenne, Becker, Myotonic Dystrophy); Normal Control Subjects

  12. Isolation of dendritic-cell-like S100β-positive cells in rat anterior pituitary gland.

    Science.gov (United States)

    Horiguchi, Kotaro; Fujiwara, Ken; Yoshida, Saishu; Higuchi, Masashi; Tsukada, Takehiro; Kanno, Naoko; Yashiro, Takashi; Tateno, Kozue; Osako, Shunji; Kato, Takako; Kato, Yukio

    2014-07-01

    S100β-protein-positive cells in the anterior pituitary gland appear to possess multifunctional properties. Because of their pleiotropic features, S100β-positive cells are assumed to be of a heterogeneous or even a non-pituitary origin. The observation of various markers has allowed these cells to be classified into populations such as stem/progenitor cells, epithelial cells, astrocytes and dendritic cells. The isolation and characterization of each heterogeneous population is a prerequisite for clarifying the functional character and origin of the cells. We attempt to isolate two of the subpopulations of S100β-positive cells from the anterior lobe. First, from transgenic rats that express green fluorescent protein (GFP) driven by the S100β protein promoter, we fractionate GFP-positive cells with a cell sorter and culture them so that they can interact with laminin, a component of the extracellular matrix. We observe that one morphological type of GFP-positive cells possesses extended cytoplasmic processes and shows high adhesiveness to laminin (process type), whereas the other is round in shape and exhibits low adherence to laminin (round type). We successfully isolate cells of the round type from the cultured GFP-positive cells by taking advantage of their low affinity to laminin and then measure mRNA levels of the two cell types by real-time polymerase chain reaction. The resultant data show that the process type expresses vimentin (mesenchymal cell marker) and glial fibrillary acidic protein (astrocyte marker). The round type expresses dendritic cell markers, CD11b and interleukin-6. Thus, we found a method for isolating dendritic-cell-like S100β-positive cells by means of their property of adhering to laminin.

  13. Oxidative Stress-Responsive Apoptosis Inducing Protein (ORAIP) Plays a Critical Role in High Glucose-Induced Apoptosis in Rat Cardiac Myocytes and Murine Pancreatic β-Cells.

    Science.gov (United States)

    Yao, Takako; Fujimura, Tsutomu; Murayama, Kimie; Okumura, Ko; Seko, Yoshinori

    2017-10-18

    We previously identified a novel apoptosis-inducing humoral factor in the conditioned medium of hypoxic/reoxygenated-cardiac myocytes. We named this novel post-translationally-modified secreted-form of eukaryotic translation initiation factor 5A Oxidative stress-Responsive Apoptosis-Inducing Protein (ORAIP). We confirmed that myocardial ischemia/reperfusion markedly increased plasma ORAIP levels and rat myocardial ischemia/reperfusion injury was clearly suppressed by neutralizing anti-ORAIP monoclonal antibodies (mAbs) in vivo. In this study, to investigate the mechanism of cell injury of cardiac myocytes and pancreatic β-cells involved in diabetes mellitus (DM), we analyzed plasma ORAIP levels in DM model rats and the role of ORAIP in high glucose-induced apoptosis of cardiac myocytes in vitro. We also examined whether recombinant-ORAIP induces apoptosis in pancreatic β-cells. Plasma ORAIP levels in DM rats during diabetic phase were about 18 times elevated as compared with non-diabetic phase. High glucose induced massive apoptosis in cardiac myocytes (66.2 ± 2.2%), which was 78% suppressed by neutralizing anti-ORAIP mAb in vitro. Furthermore, recombinant-ORAIP clearly induced apoptosis in pancreatic β-cells in vitro. These findings strongly suggested that ORAIP plays a pivotal role in hyperglycemia-induced myocardial injury and pancreatic β-cell injury in DM. ORAIP will be a biomarker and a critical therapeutic target for cardiac injury and progression of DM itself.

  14. Coupling primary and stem cell–derived cardiomyocytes in an in vitro model of cardiac cell therapy

    Science.gov (United States)

    Aratyn-Schaus, Yvonne; Pasqualini, Francesco S.; Yuan, Hongyan; McCain, Megan L.; Ye, George J.C.; Sheehy, Sean P.; Campbell, Patrick H.

    2016-01-01

    The efficacy of cardiac cell therapy depends on the integration of existing and newly formed cardiomyocytes. Here, we developed a minimal in vitro model of this interface by engineering two cell microtissues (μtissues) containing mouse cardiomyocytes, representing spared myocardium after injury, and cardiomyocytes generated from embryonic and induced pluripotent stem cells, to model newly formed cells. We demonstrated that weaker stem cell–derived myocytes coupled with stronger myocytes to support synchronous contraction, but this arrangement required focal adhesion-like structures near the cell–cell junction that degrade force transmission between cells. Moreover, we developed a computational model of μtissue mechanics to demonstrate that a reduction in isometric tension is sufficient to impair force transmission across the cell–cell boundary. Together, our in vitro and in silico results suggest that mechanotransductive mechanisms may contribute to the modest functional benefits observed in cell-therapy studies by regulating the amount of contractile force effectively transmitted at the junction between newly formed and spared myocytes. PMID:26858266

  15. Krox20 defines a subpopulation of cardiac neural crest cells contributing to arterial valves and bicuspid aortic valve.

    Science.gov (United States)

    Odelin, Gaëlle; Faure, Emilie; Coulpier, Fanny; Di Bonito, Maria; Bajolle, Fanny; Studer, Michèle; Avierinos, Jean-François; Charnay, Patrick; Topilko, Piotr; Zaffran, Stéphane

    2018-01-03

    Although cardiac neural crest cells are required at early stages of arterial valve development, their contribution during valvular leaflet maturation remains poorly understood. Here, we show in mouse that neural crest cells from pre-otic and post-otic regions make distinct contributions to the arterial valve leaflets. Genetic fate-mapping analysis of Krox20-expressing neural crest cells shows a large contribution to the borders and the interleaflet triangles of the arterial valves. Loss of Krox20 function results in hyperplastic aortic valve and partially penetrant bicuspid aortic valve formation. Similar defects are observed in neural crest Krox20 -deficient embryos. Genetic lineage tracing in Krox20 -/- mutant mice shows that endothelial-derived cells are normal, whereas neural crest-derived cells are abnormally increased in number and misplaced in the valve leaflets. In contrast, genetic ablation of Krox20 -expressing cells is not sufficient to cause an aortic valve defect, suggesting that adjacent cells can compensate this depletion. Our findings demonstrate a crucial role for Krox20 in arterial valve development and reveal that an excess of neural crest cells may be associated with bicuspid aortic valve. © 2018. Published by The Company of Biologists Ltd.

  16. Clinical Utility of Circulating Tumor Cells in ALK-Positive Non-Small-Cell Lung Cancer.

    Science.gov (United States)

    Faugeroux, Vincent; Pailler, Emma; Auger, Nathalie; Taylor, Melissa; Farace, Françoise

    2014-01-01

    The advent of rationally targeted therapies such as small-molecule tyrosine kinase inhibitors (TKIs) has considerably transformed the therapeutic management of a subset of patients with non-small-cell lung cancer (NSCLC) harboring defined molecular abnormalities. When such genetic molecular alterations are detected the use of specific TKI has demonstrated better results (overall response rate, progression free survival) compared to systemic therapy. However, the detection of such molecular abnormalities is complicated by the difficulty in obtaining sufficient tumor material, in terms of quantity and quality, from a biopsy. Here, we described how circulating tumor cells (CTCs) can have a clinical utility in anaplastic lymphoma kinase (ALK) positive NSCLC patients to diagnose ALK-EML4 gene rearrangement and to guide therapeutic management of these patients. The ability to detect genetic abnormalities such ALK rearrangement in CTCs shows that these cells could offer new perspectives both for the diagnosis and the monitoring of ALK-positive patients eligible for treatment with ALK inhibitors.

  17. The value of right lateral decubitus position to decrease artificial defect of cardiac anterior wall in 99Tcm-MIBI SPECT myocardial perfusion imaging for women

    International Nuclear Information System (INIS)

    Huang Kemin; Feng Yanlin; Wen Guanghua; Liang Weitang; Yu Fengwen; Liu Dejun

    2013-01-01

    Objective: To explore the value of right lateral decubitus position MPI for differentiating myocardial perfusion defect from cardiac anterior wall attenuation artificial defect, caused by breast of woman. Methods: Forty-nine patients(average age (61.5±8.4) years) who had low likelihood of coronary artery disease and had perfusion defect in the anterior wall after exercise stress 99 Tc m -MIBI MPI were included. All underwent supine and right lateral decubitus position during resting SPECT images. The myocardial perfusion SPECT images at left ventricle were reconstructed and were measured by Bull's-eye, based on the counts. Results from both supine position imaging and right lateral decubitus position imaging were compared. Paired t test was used to statistically analyse the data by SPSS 13.0. Results: Compared with supine position, the counts of the anterior, inferior, apex and lateral wall in right lateral decubitus position were significantly higher: (71.30±3.53)% vs (66.50±3.85)%, (70.06±4.45)% vs (65.44±4.16)%, (77.90±3.00)% vs (75.81±4.08)%,(79.30±2.26)% vs (72.60±3.87)% (t=6.731, 5.286, 3.555, 10.885, all P<0.01). The counts of septal wall were significantly lower ((66.60±3.98)% vs (70.06±4.51)%, t=-4.625, P<0.01) in right lateral decubitus position than that in supine position. Among the different regions of anterior wall, the counts of the anterior-middle ((76.40 ± 3.80)% vs (68.60 ± 4.76)%) and anterior-apex region ((77.10±3.24)% vs (69.00±3.54)%) were significantly higher (t=9.916, 8.870, both P<0.01) in right lateral decubitus position than those in supine position, but there was insignificance ((56.94±6.06)% vs (58.50±4.98)%, t=-1.493, P>0.05) at anterior-basal region. The artificial defect of different degrees in anterior wall was observed in all patients in supine position, 23 cases (46.9%, 23/49) showed artificial defect in the anterior-middle region and 16 cases (32.7%, 16/49) in the anterior-apex region. All artificial defect

  18. JS-K, a GST-activated nitric oxide donor prodrug, enhances chemo-sensitivity in renal carcinoma cells and prevents cardiac myocytes toxicity induced by Doxorubicin.

    Science.gov (United States)

    Qiu, Mingning; Ke, Longzhi; Zhang, Sai; Zeng, Xin; Fang, Zesong; Liu, Jianjun

    2017-08-01

    Doxorubicin, a highly effective and widely used anthracycline antibiotic in multiple chemotherapy regimens, has been limited by its cardiotoxicity. The aim of this study is to investigate the effect of nitric oxide donor prodrug JS-K on proliferation and apoptosis in renal carcinoma cells and cardiac myocytes toxicity induced by Doxorubicin and to explore possible p53-related mechanism in renal carcinoma cells. The effect of JS-K on anti-cancer activity of Doxorubicin was investigated in renal carcinoma cells via detecting cell proliferation, cytotoxicity, cell death and apoptosis and expressions of apoptotic-related proteins. Effect of p53 on the combination of JS-K and Doxorubicin was determined using p53 inhibitor Pifithrin-α and p53 activator III. Furthermore, the effect of JS-K on cardiac myocytes toxicity of Doxorubicin was investigated in H9c2 (2-1) cardiac myocytes via measuring cell growth, cell death and apoptosis, expressions of proteins involved in apoptosis and intracellular reactive oxygen species. We demonstrated that JS-K could increase Doxorubicin-induced renal carcinoma cell growth suppression and apoptosis and could increase expressions of proteins that are involved in apoptosis. Additionally, Pifithrin-α reversed the promoting effect of JS-K on Doxorubicin-induced renal carcinoma cell apoptosis; conversely, the p53 activator III exacerbated the promoting effect of JS-K on Doxorubicin-induced renal carcinoma cell apoptosis. Furthermore, JS-K protected H9c2 (2-1) cardiac myocytes against Doxorubicin-induced toxicity and decreased Doxorubicin-induced reactive oxygen species production. JS-K enhances the anti-cancer activity of Doxorubicin in renal carcinoma cells by upregulating p53 expression and prevents cardiac myocytes toxicity of Doxorubicin by decreasing oxidative stress.

  19. Cardiac Subtype-Specific Modeling of Kv1.5 Ion Channel Deficiency Using Human Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Maike Marczenke

    2017-07-01

    Full Text Available The ultrarapid delayed rectifier K+ current (IKur, mediated by Kv1.5 channels, constitutes a key component of the atrial action potential. Functional mutations in the underlying KCNA5 gene have been shown to cause hereditary forms of atrial fibrillation (AF. Here, we combine targeted genetic engineering with cardiac subtype-specific differentiation of human induced pluripotent stem cells (hiPSCs to explore the role of Kv1.5 in atrial hiPSC-cardiomyocytes. CRISPR/Cas9-mediated mutagenesis of integration-free hiPSCs was employed to generate a functional KCNA5 knockout. This model as well as isogenic wild-type control hiPSCs could selectively be differentiated into ventricular or atrial cardiomyocytes at high efficiency, based on the specific manipulation of retinoic acid signaling. Investigation of electrophysiological properties in Kv1.5-deficient cardiomyocytes compared to isogenic controls revealed a strictly atrial-specific disease phentoype, characterized by cardiac subtype-specific field and action potential prolongation and loss of 4-aminopyridine sensitivity. Atrial Kv1.5-deficient cardiomyocytes did not show signs of arrhythmia under adrenergic stress conditions or upon inhibiting additional types of K+ current. Exposure of bulk cultures to carbachol lowered beating frequencies and promoted chaotic spontaneous beating in a stochastic manner. Low-frequency, electrical stimulation in single cells caused atrial and mutant-specific early afterdepolarizations, linking the loss of KCNA5 function to a putative trigger mechanism in familial AF. These results clarify for the first time the role of Kv1.5 in atrial hiPSC-cardiomyocytes and demonstrate the feasibility of cardiac subtype-specific disease modeling using engineered hiPSCs.

  20. CD3-positive B cells: a storage-dependent phenomenon.

    Directory of Open Access Journals (Sweden)

    Angela Nagel

    Full Text Available The majority of clinical studies requires extensive management of human specimen including e.g. overnight shipping of blood samples in order to convey the samples in a central laboratory or to simultaneously analyze large numbers of patients. Storage of blood samples for periods of time before in vitro/ex vivo testing is known to influence the antigen expression on the surface of lymphocytes. In this context, the present results show for the first time that the T cell antigen CD3 can be substantially detected on the surface of human B cells after ex vivo storage and that the degree of this phenomenon critically depends on temperature and duration after blood withdrawal. The appearance of CD3 on the B cell surface seems to be a result of contact-dependent antigen exchange between T and B lymphocytes and is not attributed to endogenous production by B cells. Since cellular subsets are often classified by phenotypic analyses, our results indicate that ex vivo cellular classification in peripheral blood might result in misleading interpretations. Therefore, in order to obtain results reflecting the in vivo situation, it is suggested to minimize times of ex vivo blood storage after isolation of PBMC. Moreover, to enable reproducibility of results between different research groups and multicenter studies, we would emphasize the necessity to specify and standardize the storage conditions, which might be the basis of particular findings.

  1. Infrared fluorescent protein 1.4 genetic labeling tracks engrafted cardiac progenitor cells in mouse ischemic hearts.

    Directory of Open Access Journals (Sweden)

    Lijuan Chen

    Full Text Available Stem cell therapy has a potential for regenerating damaged myocardium. However, a key obstacle to cell therapy's success is the loss of engrafted cells due to apoptosis or necrosis in the ischemic myocardium. While many strategies have been developed to improve engrafted cell survival, tools to evaluate cell efficacy within the body are limited. Traditional genetic labeling tools, such as GFP-like fluorescent proteins (eGFP, DsRed, mCherry, have limited penetration depths in vivo due to tissue scattering and absorption. To circumvent these limitations, a near-infrared fluorescent mutant of the DrBphP bacteriophytochrome from Deinococcus radiodurans, IFP1.4, was developed for in vivo imaging, but it has yet to be used for in vivo stem/progenitor cell tracking. In this study, we incorporated IFP1.4 into mouse cardiac progenitor cells (CPCs by a lentiviral vector. Live IFP1.4-labeled CPCs were imaged by their near-infrared fluorescence (NIRF using an Odyssey scanner following overnight incubation with biliverdin. A significant linear correlation was observed between the amount of cells and NIRF signal intensity in in vitro studies. Lentiviral mediated IFP1.4 gene labeling is stable, and does not impact the apoptosis and cardiac differentiation of CPC. To assess efficacy of our model for engrafted cells in vivo, IFP1.4-labeled CPCs were intramyocardially injected into infarcted hearts. NIRF signals were collected at 1-day, 7-days, and 14-days post-injection using the Kodak in vivo multispectral imaging system. Strong NIRF signals from engrafted cells were imaged 1 day after injection. At 1 week after injection, 70% of the NIRF signal was lost when compared to the intensity of the day 1 signal. The data collected 2 weeks following transplantation showed an 88% decrease when compared to day 1. Our studies have shown that IFP1.4 gene labeling can be used to track the viability of transplanted cells in vivo.

  2. Risk of Acute Kidney Injury in Patients Randomized to a Restrictive Versus Liberal Approach to Red Blood Cell Transfusion in Cardiac Surgery: A Substudy Protocol of the Transfusion Requirements in Cardiac Surgery III Noninferiority Trial.

    Science.gov (United States)

    Garg, Amit X; Shehata, Nadine; McGuinness, Shay; Whitlock, Richard; Fergusson, Dean; Wald, Ron; Parikh, Chirag; Bagshaw, Sean M; Khanykin, Boris; Gregory, Alex; Syed, Summer; Hare, Gregory M T; Cuerden, Meaghan S; Thorpe, Kevin E; Hall, Judith; Verma, Subodh; Roshanov, Pavel S; Sontrop, Jessica M; Mazer, C David

    2018-01-01

    When safe to do so, avoiding blood transfusions in cardiac surgery can avoid the risk of transfusion-related infections and other complications while protecting a scarce resource and reducing costs. This protocol describes a kidney substudy of the Transfusion Requirements in Cardiac Surgery III (TRICS-III) trial, a multinational noninferiority randomized controlled trial to determine whether the risk of major clinical outcomes in patients undergoing planned cardiac surgery with cardiopulmonary bypass is no greater with a restrictive versus liberal approach to red blood cell transfusion. The objective of this substudy is to determine whether the risk of acute kidney injury is no greater with a restrictive versus liberal approach to red blood cell transfusion, and whether this holds true in patients with and without preexisting chronic kidney disease. Multinational noninferiority randomized controlled trial conducted in 73 centers in 19 countries (2014-2017). Patients (~4800) undergoing planned cardiac surgery with cardiopulmonary bypass. The primary outcome of this substudy is perioperative acute kidney injury, defined as an acute rise in serum creatinine from the preoperative value (obtained in the 30-day period before surgery), where an acute rise is defined as ≥26.5 μmol/L in the first 48 hours after surgery or ≥50% in the first 7 days after surgery. We will report the absolute risk difference in acute kidney injury and the 95% confidence interval. We will repeat the primary analysis using alternative definitions of acute kidney injury, including staging definitions, and will examine effect modification by preexisting chronic kidney disease (defined as a preoperative estimated glomerular filtration rate [eGFR] blood cell transfusion in the presence of anemia during cardiac surgery done with cardiopulmonary bypass. www.clinicaltrials.gov; clinical trial registration number NCT 02042898.

  3. Therapy with mesenchymal stromal cells or conditioned medium reverse cardiac alterations in a high-fat diet-induced obesity model.

    Science.gov (United States)

    Daltro, P S; Barreto, B C; Silva, P G; Neto, P Chenaud; Sousa Filho, P H F; Santana Neta, D; Carvalho, G B; Silva, D N; Paredes, B D; de Alcantara, A C; Freitas, L A R; Couto, R D; Santos, R R; Souza, B S F; Soares, M B P; Macambira, S G

    2017-10-01

    Obesity is associated with numerous cardiac complications, including arrhythmias, cardiac fibrosis, remodeling and heart failure. Here we evaluated the therapeutic potential of mesenchymal stromal cells (MSCs) and their conditioned medium (CM) to treat cardiac complications in a mouse model of high-fat diet (HFD)-induced obesity. After obesity induction and HFD withdrawal, obese mice were treated with MSCs, CM or vehicle. Cardiac function was assessed using electrocardiography, echocardiography and treadmill test. Body weight and biochemical parameters were evaluated. Cardiac tissue was used for real time (RT)-polymerase chain reaction (PCR) and histopathologic analysis. Characterization of CM by protein array showed the presence of different cytokines and growth factors, including chemokines, osteopontin, cystatin C, Serpin E1 and Gas 6. HFD-fed mice presented cardiac arrhythmias, altered cardiac gene expression and fibrosis reflected in physical exercise incapacity associated with obesity and diabetes. Administration of MSCs or CM improved arrhythmias and exercise capacity. This functional improvement correlated with normalization of GATA4 gene expression in the hearts of MSC- or CM-treated mice. The gene expression of connexin 43, troponin I, adiponectin, transforming growth factor (TGF) β, peroxisome proliferator activated receptor gamma (PPARγ), insulin-like growth factor 1 (IGF-1), matrix metalloproteinase-9 (MMP9) and tissue inhibitor of metalloproteinases 1 (TIMP1) were significantly reduced in MSCs, but not in CM-treated mice. Moreover, MSC or CM administration reduced the intensity of cardiac fibrosis. Our results suggest that MSCs and CM have a recovery effect on cardiac disturbances due to obesity and corroborate to the paracrine action of MSCs in heart disease models. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  4. Computer algorithms for automated detection and analysis of local Ca2+ releases in spontaneously beating cardiac pacemaker cells.

    Directory of Open Access Journals (Sweden)

    Alexander V Maltsev

    Full Text Available Local Ca2+ Releases (LCRs are crucial events involved in cardiac pacemaker cell function. However, specific algorithms for automatic LCR detection and analysis have not been developed in live, spontaneously beating pacemaker cells. In the present study we measured LCRs using a high-speed 2D-camera in spontaneously contracting sinoatrial (SA node cells isolated from rabbit and guinea pig and developed a new algorithm capable of detecting and analyzing the LCRs spatially in two-dimensions, and in time. Our algorithm tracks points along the midline of the contracting cell. It uses these points as a coordinate system for affine transform, producing a transformed image series where the cell does not contract. Action potential-induced Ca2+ transients and LCRs were thereafter isolated from recording noise by applying a series of spatial filters. The LCR birth and death events were detected by a differential (frame-to-frame sensitivity algorithm applied to each pixel (cell location. An LCR was detected when its signal changes sufficiently quickly within a sufficiently large area. The LCR is considered to have died when its amplitude decays substantially, or when it merges into the rising whole cell Ca2+ transient. Ultimately, our algorithm provides major LCR parameters such as period, signal mass, duration, and propagation path area. As the LCRs propagate within live cells, the algorithm identifies splitting and merging behaviors, indicating the importance of locally propagating Ca2+-induced-Ca2+-release for the fate of LCRs and for generating a powerful ensemble Ca2+ signal. Thus, our new computer algorithms eliminate motion artifacts and detect 2D local spatiotemporal events from recording noise and global signals. While the algorithms were developed to detect LCRs in sinoatrial nodal cells, they have the potential to be used in other applications in biophysics and cell physiology, for example, to detect Ca2+ wavelets (abortive waves, sparks and

  5. Characterization of nonlymphoid cells in rat spleen, with special reference to strongly Ia-positive branched cells in T-cell areas

    International Nuclear Information System (INIS)

    Dijkstra, C.D.

    1982-01-01

    By use of a monoclonal antibody against Ia antigen in an immunoperoxidase method, strongly Ia-positive branched cells are found in the T-cell areas of the splenic white pulp of the rat. In order to further characterize these cells, enzyme histochemical characteristics, phagocytic capacity, and irradiation sensitivity have been studied. Evidence is presented that these strongly Ia-positive branched cells represent interdigitating cells. The influence of whole-body irradiation on interdigitating cells is discussed. Comparison with data from the literature on the in vitro dendritic cell isolated from spleen cell suspensions reveals many similarities between the described interdigitating cell in vivo and the dendritic cell in vitro

  6. Rate of transformation and normal range about cardiac size and cardiothoracic ratio according to patient position and age at chest radiography of Korean adult man

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Young Cheol [Dept. of Radiology, Samsung Medical Center, Seoul (Korea, Republic of); Lim, Cheong Hwan; Jung, Hong Ryang [Dept. of Radiological Science, Hanseo University, Seosan (Korea, Republic of); Kim, Yun Min [Dept. of Radiotechnology, Wonkwang Health Science University, Iksan (Korea, Republic of); Hong, Dong Hee [Dept. of Radiological Science, Far East University, Eumseong (Korea, Republic of)

    2017-06-15

    Purpose of this study is present the normal range of cardiac size and cardiothoracic ratio according to patient position(chest PA and AP) and age of Korean adult male on digital chest X - ray, And to propose a mutually compatible conversion rate. 1,024 males were eligible for this study, among 1,300 normal chest patients who underwent chest PA and low-dose CT examinations on the same day at the 'S' Hospital Health Examination Center in Seoul From January to December 2014. CS and CTR were measured by Danzer (1919). The mean difference between CS and CTR was statistically significant (p<0.01) in Chest PA (CS 135.48 mm, CTR 43.99%) and Chest AP image (CS 155.96 mm, CTR 51.75%). There was no statistically significant difference between left and right heart in chest PA and AP images(p>0.05). CS showed statistically significant difference between Chest PA (p>0. 05) and Chest AP (p<0.05). The thorax size and CTR were statistically significant (p<0.01) in both age and chest PA and AP. Result of this study, On Chest AP image CS was magnified 15%, CTR was magnified 17% compare with Chest PA image. CS and CTR were about 10% difference by changing posture at all ages.

  7. EBV-positive diffuse large B-cell lymphoma of the elderly

    NARCIS (Netherlands)

    C.Y. Ok (Chi Young); T.G. Papathomas (Thomas); L.J. Medeiros (L. Jeffrey); K.H. Young (Ken)

    2013-01-01

    textabstractEpstein-Barr virus (EBV) positive diffuse large B-cell lymphoma (DLBCL) of the elderly, initially described in 2003, is a provisional entity in the 2008World Health Organization classification system and is defined as an EBV-positive monoclonal large B-cell proliferation that occurs in

  8. Assessment of human MAPCs for stem cell transplantation and cardiac regeneration after myocardial infarction in SCID mice.

    Science.gov (United States)

    Dimomeletis, Ilias; Deindl, Elisabeth; Zaruba, Marc; Groebner, Michael; Zahler, Stefan; Laslo, Saskia M; David, Robert; Kostin, Sawa; Deutsch, Markus A; Assmann, Gerd; Mueller-Hoecker, Josef; Feuring-Buske, Michaela; Franz, Wolfgang M

    2010-11-01

    Clinical studies suggest that transplantation of total bone marrow (BM) after myocardial infarction (MI) is feasible and potentially effective. However, focusing on a defined BM-derived stem cell type may enable a more specific and optimized treatment. Multilineage differentiation potential makes BM-derived multipotent adult progenitor cells (MAPCs) a promising stem cell pool for regenerative purposes. We analyzed the cardioregenerative potential of human MAPCs in a murine model of myocardial infarction. Human MAPCs were selected by negative depletion of CD45(+)/glycophorin(+) BM cells and plated on fibronectin-coated dishes. In vitro, stem cells were analyzed by reverse transcription polymerase chain reaction. In vivo, we transplanted human MAPCs (5 × 10(5)) by intramyocardial injection after MI in severe combined immunodeficient (SCID) beige mice. Six and 30 days after the surgical procedure, pressure-volume relationships were investigated in vivo. Heart tissues were analyzed immunohistochemically. Reverse transcription polymerase chain reaction experiments on early human MAPC passages evidenced an expression of Oct-4, a stem cell marker indicating pluripotency. In later passages, cardiac markers (Nkx2.5, GATA4, MLC-2v, MLC-2a, ANP, cTnT, cTnI,) and smooth muscle cell markers (SMA, SM22α) were expressed. Transplantation of human MAPCs into the ischemic border zone after MI resulted in an improved cardiac function at day 6 (ejection fraction, 26% vs 20%) and day 30 (ejection fraction, 30% vs 23%). Confirmation of human MAPC marker vimentin in immunohistochemistry demonstrated that human MAPC integrated in the peri-infarct region. The proliferation marker Ki67 was absent in immunohistochemistry and teratoma formation was not found, indicating no tumorous potential of transplanted human MAPCs in the tumor-sensitive SCID model. Transplantation of human MAPCs after MI ameliorates myocardial function, which may be explained by trophic effects of human MAPCs. Lack of

  9. FZD4 Marks Lateral Plate Mesoderm and Signals with NORRIN to Increase Cardiomyocyte Induction from Pluripotent Stem Cell-Derived Cardiac Progenitors

    Directory of Open Access Journals (Sweden)

    Charles Yoon

    2018-01-01

    Full Text Available The identification of cell surface proteins on stem cells or stem cell derivatives is a key strategy for the functional characterization, isolation, and understanding of stem cell population dynamics. Here, using an integrated mass spectrometry- and microarray-based approach, we analyzed the surface proteome and transcriptome of cardiac progenitor cells (CPCs generated from the stage-specific differentiation of mouse and human pluripotent stem cells. Through bioinformatics analysis, we have identified and characterized FZD4 as a marker for lateral plate mesoderm. Additionally, we utilized FZD4, in conjunction with FLK1 and PDGFRA, to further purify CPCs and increase cardiomyocyte (CM enrichment in both mouse and human systems. Moreover, we have shown that NORRIN presented to FZD4 further increases CM output via proliferation through the canonical WNT pathway. Taken together, these findings demonstrate a role for FZD4 in mammalian cardiac development.

  10. Increased numbers of P63-positive/CD117-positive cells in advanced adenoid cystic carcinoma give a poorer prognosis

    Directory of Open Access Journals (Sweden)

    Zhou Quan

    2012-09-01

    Full Text Available Abstract Objectives This study consisted of two parts. One part was to analyze the survival rates of adenoid cystic carcinoma (ACC in Chinese and explain the difference between our data and the literature. The other was to analyze the relationship between the expression of CD117 and the histological grade and the prognosis. Methods A retrospective study of 80 ACC patients was performed. Clinical data were collected, and p63, CD117 were detected by immunohistochemical staining. Results Eighty patients received follow-ups 3 to 216 months after initial diagnosis. ACC occurred in the lacrimal gland (26.3%, n = 21, nasal cavity and parasinus (33.8%, n = 27 and other sites (40.0%, n = 33. The 5-year and 10-year survival rates were 66.41% and 10.16%, respectively. Over expression of CD117 was detected in p63-negative cells in 94.3% of cases and in p63-positive cells in 45.8%. The expression of CD117 in p63-positive cells was significantly associated with the histological grade (P Conclusions ACC had a good 5-year survival but poor 10-year survival in Chinese, which differed from the occidental data. More p63+/CD117+ cells were associated with a higher histological grade and poorer outcome. Virtual slides The virtual slide(s for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1701457278762097

  11. Positional information is reprogrammed in blastema cells of the regenerating limb of the axolotl (Ambystoma mexicanum).

    Science.gov (United States)

    McCusker, Catherine D; Gardiner, David M

    2013-01-01

    The regenerating region of an amputated salamander limb, known as the blastema, has the amazing capacity to replace exactly the missing structures. By grafting cells from different stages and regions of blastemas induced to form on donor animals expressing Green Fluorescent Protein (GFP), to non-GFP host animals, we have determined that the cells from early stage blastemas, as well as cells at the tip of late stage blastemas are developmentally labile such that their positional identity is reprogrammed by interactions with more proximal cells with stable positional information. In contrast, cells from the adjacent, more proximal stump tissues as well as the basal region of late bud blastemas are positionally stable, and thus form ectopic limb structures when grafted. Finally, we have found that a nerve is required to maintain the blastema cells in a positionally labile state, thus indicating a role for reprogramming cues in the blastema microenvironment.

  12. Positional information is reprogrammed in blastema cells of the regenerating limb of the axolotl (Ambystoma mexicanum.

    Directory of Open Access Journals (Sweden)

    Catherine D McCusker

    Full Text Available The regenerating region of an amputated salamander limb, known as the blastema, has the amazing capacity to replace exactly the missing structures. By grafting cells from different stages and regions of blastemas induced to form on donor animals expressing Green Fluorescent Protein (GFP, to non-GFP host animals, we have determined that the cells from early stage blastemas, as well as cells at the tip of late stage blastemas are developmentally labile such that their positional identity is reprogrammed by interactions with more proximal cells with stable positional information. In contrast, cells from the adjacent, more proximal stump tissues as well as the basal region of late bud blastemas are positionally stable, and thus form ectopic limb structures when grafted. Finally, we have found that a nerve is required to maintain the blastema cells in a positionally labile state, thus indicating a role for reprogramming cues in the blastema microenvironment.

  13. Mathematical cardiac electrophysiology

    CERN Document Server

    Colli Franzone, Piero; Scacchi, Simone

    2014-01-01

    This book covers the main mathematical and numerical models in computational electrocardiology, ranging from microscopic membrane models of cardiac ionic channels to macroscopic bidomain, monodomain, eikonal models and cardiac source representations. These advanced multiscale and nonlinear models describe the cardiac bioelectrical activity from the cell level to the body surface and are employed in both the direct and inverse problems of electrocardiology. The book also covers advanced numerical techniques needed to efficiently carry out large-scale cardiac simulations, including time and space discretizations, decoupling and operator splitting techniques, parallel finite element solvers. These techniques are employed in 3D cardiac simulations illustrating the excitation mechanisms, the anisotropic effects on excitation and repolarization wavefronts, the morphology of electrograms in normal and pathological tissue and some reentry phenomena. The overall aim of the book is to present rigorously the mathematica...

  14. Biomaterials for cardiac regeneration

    CERN Document Server

    Ruel, Marc

    2015-01-01

    This book offers readers a comprehensive biomaterials-based approach to achieving clinically successful, functionally integrated vasculogenesis and myogenesis in the heart. Coverage is multidisciplinary, including the role of extracellular matrices in cardiac development, whole-heart tissue engineering, imaging the mechanisms and effects of biomaterial-based cardiac regeneration, and autologous bioengineered heart valves. Bringing current knowledge together into a single volume, this book provides a compendium to students and new researchers in the field and constitutes a platform to allow for future developments and collaborative approaches in biomaterials-based regenerative medicine, even beyond cardiac applications. This book also: Provides a valuable overview of the engineering of biomaterials for cardiac regeneration, including coverage of combined biomaterials and stem cells, as well as extracellular matrices Presents readers with multidisciplinary coverage of biomaterials for cardiac repair, including ...

  15. ATP-ase positive cells in human oral mucosa transplanted to nude mice

    DEFF Research Database (Denmark)

    Dabelsteen, E; Kirkeby, S

    1981-01-01

    A model to study the differentiation of human oral epithelium in vivo utilizing transplantation of human tissue to nude mice has been described. Previous studies have described the epithelial cells in this model. In this study we demonstrate that 8 d after transplantation, Langerhans cells, ident......, identified as ATP-ase positive dendritic cells, have almost disappeared from the transplanted epithelium whereas at day 21 after transplantation such cells were abundant. It is suggested that the ATP-ase positive cells which reappear in the transplanted epithelium are of mouse origin....

  16. A new 99mTc-red blood cell labeling procedure for cardiac blood pool imaging: Clinical results

    International Nuclear Information System (INIS)

    Kelbaek, H.; Buelow, K.; Aldershvile, J.; Moegelyang, J.; Nielsen, S.L.; Copenhagen Univ.

    1989-01-01

    The first clinical results of a new 99m Tc-red blood cell labeling procedure avoiding cell centrifugation are presented. One ml heparinized blood samples were incubated with small amounts of a stannous kit. By titration studies, ideal quantities of sodium hypochlorite for oxidation of extracellular tin and of EDTA as stabilizer of the label were found. The Cl - concentration and pH of the labeled blood were acceptable, and EDTA increased labeling yield and stability determined in vitro by a few percent. The new procedure gave a slightly higher labeling yield than a current technique using centrifugation of cells. Labeling efficiency expressed as cell bound/total activity was 96.6%±1.3% in healthy subjects and 95.5%±2.2% in cardiac patients and remained high for 2 h after reinjection. The biological halflife of labeled cells following the new procedure was 11-12 h rendering it suitable for serial determinations of radionuclide cardiography. (orig.)

  17. Posttransplantation primary cutaneous CD30 (Ki-1)-positive large-cell lymphoma.

    Science.gov (United States)

    Seçkin, D; Demirhan, B; Oğuz Güleç, T; Arikan, U; Haberal, M

    2001-12-01

    We describe the case of a 51-year-old female renal transplant recipient with primary cutaneous CD30-positive large-cell lymphoma of T-cell origin. Cutaneous T-cell lymphomas are rarely reported in organ transplant recipients, and we believe they should be considered in the differential diagnosis of cutaneous neoplastic and infectious diseases affecting this patient group.

  18. Tissue-Mimicking Geometrical Constraints Stimulate Tissue-Like Constitution and Activity of Mouse Neonatal and Human-Induced Pluripotent Stem Cell-Derived Cardiac Myocytes

    Directory of Open Access Journals (Sweden)

    Götz Pilarczyk

    2016-01-01

    Full Text Available The present work addresses the question of to what extent a geometrical support acts as a physiological determining template in the setup of artificial cardiac tissue. Surface patterns with alternating concave to convex transitions of cell size dimensions were used to organize and orientate human-induced pluripotent stem cell (hIPSC-derived cardiac myocytes and mouse neonatal cardiac myocytes. The shape of the cells, as well as the organization of the contractile apparatus recapitulates the anisotropic line pattern geometry being derived from tissue geometry motives. The intracellular organization of the contractile apparatus and the cell coupling via gap junctions of cell assemblies growing in a random or organized pattern were examined. Cell spatial and temporal coordinated excitation and contraction has been compared on plain and patterned substrates. While the α-actinin cytoskeletal organization is comparable to terminally-developed native ventricular tissue, connexin-43 expression does not recapitulate gap junction distribution of heart muscle tissue. However, coordinated contractions could be observed. The results of tissue-like cell ensemble organization open new insights into geometry-dependent cell organization, the cultivation of artificial heart tissue from stem cells and the anisotropy-dependent activity of therapeutic compounds.

  19. Machine Learning of Human Pluripotent Stem Cell-Derived Engineered Cardiac Tissue Contractility for Automated Drug Classification

    Directory of Open Access Journals (Sweden)

    Eugene K. Lee

    2017-11-01

    Full Text Available Accurately predicting cardioactive effects of new molecular entities for therapeutics remains a daunting challenge. Immense research effort has been focused toward creating new screening platforms that utilize human pluripotent stem cell (hPSC-derived cardiomyocytes and three-dimensional engineered cardiac tissue constructs to better recapitulate human heart function and drug responses. As these new platforms become increasingly sophisticated and high throughput, the drug screens result in larger multidimensional datasets. Improved automated analysis methods must therefore be developed in parallel to fully comprehend the cellular response across a multidimensional parameter space. Here, we describe the use of machine learning to comprehensively analyze 17 functional parameters derived from force readouts of hPSC-derived ventricular cardiac tissue strips (hvCTS electrically paced at a range of frequencies and exposed to a library of compounds. A generated metric is effective for then determining the cardioactivity of a given drug. Furthermore, we demonstrate a classification model that can automatically predict the mechanistic action of an unknown cardioactive drug.

  20. Human adipose stem cell and ASC-derived cardiac progenitor cellular therapy improves outcomes in a murine model of myocardial infarction

    Directory of Open Access Journals (Sweden)

    Davy PMC

    2015-10-01

    Full Text Available Philip MC Davy,1 Kevin D Lye,2,3 Juanita Mathews,1 Jesse B Owens,1 Alice Y Chow,1 Livingston Wong,2 Stefan Moisyadi,1 Richard C Allsopp1 1Institute for Biogenesis Research, 2John A. Burns School of Medicine, University of Hawaii at Mānoa, 3Tissue Genesis, Inc., Honolulu, HI, USA Background: Adipose tissue is an abundant and potent source of adult stem cells for transplant therapy. In this study, we present our findings on the potential application of adipose-derived stem cells (ASCs as well as induced cardiac-like progenitors (iCPs derived from ASCs for the treatment of myocardial infarction. Methods and results: Human bone marrow (BM-derived stem cells, ASCs, and iCPs generated from ASCs using three defined cardiac lineage transcription factors were assessed in an immune-compromised mouse myocardial infarction model. Analysis of iCP prior to transplant confirmed changes in gene and protein expression consistent with a cardiac phenotype. Endpoint analysis was performed 1 month posttransplant. Significantly increased endpoint fractional shortening, as well as reduction in the infarct area at risk, was observed in recipients of iCPs as compared to the other recipient cohorts. Both recipients of iCPs and ASCs presented higher myocardial capillary densities than either recipients of BM-derived stem cells or the control cohort. Furthermore, mice receiving iCPs had a significantly higher cardiac retention of transplanted cells than all other groups. Conclusion: Overall, iCPs generated from ASCs outperform BM-derived stem cells and ASCs in facilitating recovery from induced myocardial infarction in mice. Keywords: adipose stem cells, myocardial infarction, cellular reprogramming, cellular therapy, piggyBac, induced cardiac-like progenitors

  1. Cardiac rehabilitation

    Science.gov (United States)

    ... rehab; Heart failure - cardiac rehab References Anderson L, Taylor RS. Cardiac rehabilitation for people with heart disease: ... of Medicine, Division of Cardiology, Harborview Medical Center, University of Washington Medical School, Seattle, WA. Also reviewed ...

  2. Gene transfer preferentially selects MHC class I positive tumour cells and enhances tumour immunogenicity.

    Science.gov (United States)

    Hacker, Ulrich T; Schildhauer, Ines; Barroso, Margarita Céspedes; Kofler, David M; Gerner, Franz M; Mysliwietz, Josef; Buening, Hildegard; Hallek, Michael; King, Susan B S

    2006-05-01

    The modulated expression of MHC class I on tumour tissue is well documented. Although the effect of MHC class I expression on the tumorigenicity and immunogenicity of MHC class I negative tumour cell lines has been rigorously studied, less is known about the validity of gene transfer and selection in cell lines with a mixed MHC class I phenotype. To address this issue we identified a C26 cell subline that consists of distinct populations of MHC class I (H-2D/K) positive and negative cells. Transient transfection experiments using liposome-based transfer showed a lower transgene expression in MHC class I negative cells. In addition, MHC class I negative cells were more sensitive to antibiotic selection. This led to the generation of fully MHC class I positive cell lines. In contrast to C26 cells, all transfectants were rejected in vivo and induced protection against the parental tumour cells in rechallenge experiments. Tumour cell specificity of the immune response was demonstrated in in vitro cytokine secretion and cytotoxicity assays. Transfectants expressing CD40 ligand and hygromycin phosphotransferase were not more immunogenic than cells expressing hygromycin resistance alone. We suggest that the MHC class I positive phenotype of the C26 transfectants had a bearing on their immunogenicity, because selected MHC class I positive cells were more immunogenic than parental C26 cells and could induce specific anti-tumour immune responses. These data demonstrate that the generation of tumour cell transfectants can lead to the selection of subpopulations that show an altered phenotype compared to the parental cell line and display altered immunogenicity independent of selection marker genes or other immune modulatory genes. Our results show the importance of monitoring gene transfer in the whole tumour cell population, especially for the evaluation of in vivo therapies targeted to heterogeneous tumour cell populations.

  3. Cellular uptake and cytotoxicity of positively charged chitosan gold nanoparticles in human lung adenocarcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Seon Young; Jang, Soo Hwa [Seoul National University, Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Institute for Veterinary Science (Korea, Republic of); Park, Jin; Jeong, Saeromi; Park, Jin Ho; Ock, Kwang Su [Soongsil University, Department of Chemistry (Korea, Republic of); Lee, Kangtaek [Yonsei University, Department of Chemical and Biomolecular Engineering (Korea, Republic of); Yang, Sung Ik [Kyung Hee University, College of Environment and Applied Chemistry (Korea, Republic of); Joo, Sang-Woo, E-mail: sjoo@ssu.ac.kr [Soongsil University, Department of Chemistry (Korea, Republic of); Ryu, Pan Dong; Lee, So Yeong, E-mail: leeso@snu.ac.kr [Seoul National University, Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Institute for Veterinary Science (Korea, Republic of)

    2012-12-15

    Cellular uptake, cytotoxicity, and mechanisms of cytotoxicity of the positively charged Au nanoparticles (NPs) were examined in A549 cells, which are one of the most characterized pulmonary cellular systems. Positively charged Au NPs were prepared by chemical reduction using chitosan. The dimension and surface charge of Au NPs were examined by transmission electron microscopy (TEM), dynamic light scattering, and zeta potential measurements. The uptake of Au NPs into A549 cells was also monitored using TEM and dark-field microscopy (DFM) and z-stack confocal microRaman spectroscopy. DFM live cell imaging was also performed to monitor the entry of chitosan Au NPs in real time. The cytotoxic assay, using both methylthiazol tetrazolium and lactate dehydrogenase assays revealed that positively charged Au NPs decreased cell viability. Flow cytometry, DNA fragmentation, real-time PCR, and western blot analysis suggest that positively charged chitosan Au NPs provoke cell damage through both apoptotic and necrotic pathways.

  4. Cellular uptake and cytotoxicity of positively charged chitosan gold nanoparticles in human lung adenocarcinoma cells

    International Nuclear Information System (INIS)

    Choi, Seon Young; Jang, Soo Hwa; Park, Jin; Jeong, Saeromi; Park, Jin Ho; Ock, Kwang Su; Lee, Kangtaek; Yang, Sung Ik; Joo, Sang-Woo; Ryu, Pan Dong; Lee, So Yeong

    2012-01-01

    Cellular uptake, cytotoxicity, and mechanisms of cytotoxicity of the positively charged Au nanoparticles (NPs) were examined in A549 cells, which are one of the most characterized pulmonary cellular systems. Positively charged Au NPs were prepared by chemical reduction using chitosan. The dimension and surface charge of Au NPs were examined by transmission electron microscopy (TEM), dynamic light scattering, and zeta potential measurements. The uptake of Au NPs into A549 cells was also monitored using TEM and dark-field microscopy (DFM) and z-stack confocal microRaman spectroscopy. DFM live cell imaging was also performed to monitor the entry of chitosan Au NPs in real time. The cytotoxic assay, using both methylthiazol tetrazolium and lactate dehydrogenase assays revealed that positively charged Au NPs decreased cell viability. Flow cytometry, DNA fragmentation, real-time PCR, and western blot analysis suggest that positively charged chitosan Au NPs provoke cell damage through both apoptotic and necrotic pathways.

  5. Leu-9 (CD 7) positivity in acute leukemias: a marker of T-cell lineage?

    Science.gov (United States)

    Ben-Ezra, J; Winberg, C D; Wu, A; Rappaport, H

    1987-01-01

    Monoclonal antibody Leu-9 (CD 7) has been reported to be a sensitive and specific marker for T-cell lineage in leukemic processes, since it is positive in patients whose leukemic cells fail to express other T-cell antigens. To test whether Leu-9 is indeed specific for T-cell leukemias, we examined in detail 10 cases of acute leukemia in which reactions were positive for Leu-9 and negative for other T-cell-associated markers including T-11, Leu-1, T-3, and E-rosettes. Morphologically and cytochemically, 2 of these 10 leukemias were classified as lymphoblastic, 4 as myeloblastic, 2 as monoblastic, 1 as megakaryoblastic, and 1 as undifferentiated. The case of acute megakaryoblastic leukemia is the first reported case to be Leu-9 positive. None of the 10 were TdT positive. Of six cases (two monoblastic, one lymphoblastic, one myeloblastic, one megakaryoblastic, and one undifferentiated) in which we evaluated for DNA gene rearrangements, only one, a peroxidase-positive leukemia, showed a novel band on study of the T-cell-receptor beta-chain gene. We therefore conclude that Leu-9 is not a specific marker to T-cell lineage and that, in the absence of other supporting data, Leu-9 positivity should not be used as the sole basis of classifying an acute leukemia as being T-cell derived.

  6. [Cardiac tamponade disclosing systemic lupus erythematosus].

    Science.gov (United States)

    Nour-Eddine, M; Bennis, A; Soulami, S; Chraibi, N

    1996-02-01

    Cardiac tamponade secondary to systemic lupus erythematosus is rare and has a very serious prognosis. The authors report a case of cardiac tamponade confirmed by echocardiography, which constituted the presenting sign of systemic lupus erythematosus in a 20-year-old patient, who required emergency pericardial aspiration. The diagnosis of systemic lupus erythematosus was established on the basis of the combination of pericardial involvement, non-erosive arthritis, leukopenia with lymphopenia, presence of LE cells and anti-native DNA antibodies and positive antinuclear antibody titre of 1/2560. The clinical course was favourable in response to 3 months of corticosteroid treatment. The possibility of SLE should be considered in any case of cardiac tamponade in a young patient in which the aetiology is not explained.

  7. Influence of high- and low-LET radiation on the cardiac differentiation of mouse embryonic stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Helm, Alexander

    2013-07-19

    The in utero exposure to ionising radiation poses a risk for the radiosensitive developing embryo. Effects of low-LET radiation on different developmental stages of the embryo are relatively well known due to experimental studies and epidemiological data. Data for effects on the very early stage of the embryonic development, particularly the effects of high-LET radiation instead are rather limited. However, unanticipated exposures of the early embryo to ionising radiation may occur through diagnostic or therapeutic applications or through radiation accidents. Additionally, protons and carbon ions are increasingly used in radiotherapy. Thus, a risk estimation of high-LET exposure especially to the early embryo is of a certain importance. To address this topic, pluripotent mouse embryonic stem cells resembling the blastocyst stage were irradiated with high-LET carbon ions or low-LET X-rays and subsequently differentiated to mimic the early embryonic development. The occurrence of spontaneously contracting cardiomyocytes was used as a marker to asses the radiation effects on the differentiation. Among others, cell inactivation, cell death and gene expression were analysed. A delay in the cardiac differentiation after radiation exposure was found. The results point to radiation-induced cell killing as the main effector of the developmental delay. Carbon ions were found to be more effective than X-rays.

  8. Case report of precursor B-cell lymphoblastic lymphoma presenting as syncope and cardiac mass in a nonimmunocompromised child.

    Science.gov (United States)

    Hahn, Barry; Rao, Sudha; Shah, Binita

    2007-08-01

    We report the case of a previously healthy, 10-year-old boy who presented to the emergency department with a syncopal episode. In the emergency department, the patient was diagnosed with a right atrial mass, later identified as a precursor B-cell lymphoblastic lymphoma (LL). Most causes of syncope in children are not life threatening. In most cases, it indicates a predisposition to vasovagal episodes. Lymphomas account for approximately 7% of malignancies among children younger than 20 years, are more common in white males and immunocompromised patients, and are predominantly tumors of T-cell origin. Children with non-Hodgkin lymphoma usually present with extranodal disease, most frequently involving the abdomen (31%), mediastinum (26%), or head and neck (29%). Our patient was unique in that he was a nonimmunocompromised, black boy, presenting with syncope in the setting of a large atrial mass identified as a precursor B-cell LL. To our knowledge, there are no reported cases of precursor B-cell LL presenting as syncope and a cardiac mass.

  9. High glucose-induced Ca2+ overload and oxidative stress contribute to apoptosis of cardiac cells through mitochondrial dependent and independent pathways.

    Science.gov (United States)

    Kumar, Sandeep; Kain, Vasundhara; Sitasawad, Sandhya L

    2012-07-01

    Cardiac cell apoptosis is the initiating factor of cardiac complications especially diabetic cardiomyopathy. Mitochondria are susceptible to the damaging effects of elevated glucose condition. Calcium overload and oxidative insult are the two mutually non-exclusive phenomena suggested to cause cardiac dysfunction. Here, we examined the effect of high-glucose induced calcium overload in calpain-1 mediated cardiac apoptosis in an in vitro setting. H9c2, rat ventricular myoblast cell line was treated with elevated glucose condition and the cellular consequences were studied. Intracellular calcium trafficking, ROS generation, calpain-1 activation and caspase-12 and caspase-9 pathway were studied using flow cytometry, confocal microscopy and Western blot analysis. High-glucose treatment resulted in increased intracellular calcium ([Ca2+]i) which was mobilized to the mitochondria. Concomitant intra-mitochondrial calcium ([Ca2+]m) increase resulted in enhanced reactive oxygen and nitrogen species generation. These events led to mitochondrial dysfunction and apoptosis. Cardiomyocyte death exhibited several classical markers of apoptosis, including activation of caspases, appearance of annexin V on the outer plasma membrane, increased population of cells with sub-G0/G1 DNA content and nuclear condensation. Key findings include elucidation of cell signaling mechanism of high-glucose induced calcium-dependent cysteine protease calpain-1 activation, which triggers non-conventional caspases as alternate mode of cell death. This information increases the understanding of cardiac cell death under hyperglycemic condition and can possibly be extended for designing new therapeutic strategies for diabetic cardiomyopathy. The novel findings of the study reveal that high glucose induces apoptosis by both mitochondria-dependent and independent pathways via concomitant rise in intracellular calcium. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Music exposure induced prolongation of cardiac allograft survival and generated regulatory CD4⁺ cells in mice.

    Science.gov (United States)

    Uchiyama, M; Jin, X; Zhang, Q; Amano, A; Watanabe, T; Niimi, M

    2012-05-01

    In clinical practice, music has been used to decrease stress, heart rate, and blood pressure and to provide a distraction from disease symptoms. We investigated sound effects on alloimmune responses in murine heart transplantation. Naïve and eardrum-ruptured CBA/N (CBA, H2(K)) underwent transplantation of a C57BL/6 (B6, H2(b)) heart and were exposed to 1 of 3 types of music-opera (La Traviata), classical (Mozart), and New Age (Enya)-or 1 of 6 different single sound frequencies for 7 days. An adoptive transfer study was performed to determine whether regulatory cells were generated in allograft recipients. Cell-proliferation, cytokine, and flow cytometry assessments were also performed. CBA recipients of a B6 graft exposed to opera and classical music had significantly prolonged allograft survival (median survival times [MSTs], 26.5 and 20 days, respectively), whereas those exposed to 6 single sound frequencies and New Age did not (MSTs, 7, 8, 9, 8, 8, 8, and 11 days, respectively). Untreated and eardrum-ruptured CBA rejected B6 grafts acutely (MSTs, 7 and 8.5 days, respectively). Adoptive transfer of whole splenocytes, CD4(+) cells, and CD4(+)CD25(+) cells from opera-exposed primary recipients resulted in significantly prolonged allograft survival in naive secondary recipients (MSTs, 36, 68, and >50 days, respectively). Cell-proliferation, interleukin (IL)-2 and interferon-γ were suppressed in opera-exposed mice, whereas IL-4 and IL-10 from opera-exposed recipients were up-regulated. Flow cytometry studies showed an increased CD4(+)CD25(+)Foxp3(+) cell population in splenocytes from opera-exposed mice. In conclusion, exposure to some types of music may induce prolonged survival of fully allogeneic cardiac allografts and generate CD4(+)CD25(+)Foxp3(+) regulatory cells. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. The ROS/NF-κB/NR4A2 pathway is involved in H2O2 induced apoptosis of resident cardiac stem cells via autophagy.

    Science.gov (United States)

    Shi, Xingxing; Li, Wenjing; Liu, Honghong; Yin, Deling; Zhao, Jing

    2017-09-29

    Cardiac stem cells (CSCs)-based therapy provides a promising avenue for the management of ischemic heart diseases. However, engrafted CSCs are subjected to acute cell apoptosis in the ischemic microenvironment. Here, stem cell antigen 1 positive (Sca-1 + ) CSCs proved to own therapy potential were cultured and treated with H 2 O 2 to mimic the ischemia situation. As autophagy inhibitor, 3-methyladenine (3MA), inhibited H 2 O 2 -induced CSCs apoptosis, thus we demonstrated that H 2 O 2 induced autophagy-dependent apoptosis in CSCs, and continued to find key proteins responsible for the crosstalk between autophagy and apoptosis. Nuclear Receptor Subfamily 4 Group A Member 2 (NR4A2), increased upon cardiomyocyte injury with unknown functions in CSCs, was increased by H 2 O 2 . NR4A2 siRNA attenuated H 2 O 2 induced autophagy and apoptosis in CSCs, which suggested an important role of NR4A2 in CSCs survival in ischemia conditions. Reactive oxygen species (ROS) and NF-κB (P65) subunit were both increased by H 2 O 2 . Either the ROS scavenger, N-acetyl-l-cysteine (NAC) or NF-κB signaling inhibitor, bay11-7082 could attenuate H 2 O 2 -induced autophagy and apoptosis in CSCs, which suggested they were involved in this process. Furthermore, NAC inhibited NF-κB activities, while bay11-7082 inhibited NR4A2 expression, which revealed a ROS/NF-κB/NR4A2 pathway responsible for H 2 O 2 -induced autophagy and apoptosis in CSCs. Our study supports a new clue enhancing the survival rate of CSCs in the infarcted myocardium for cell therapy in ischemic cardiomyopathy.

  12. Infectious mononucleosis accompanied by clonal proliferation of EBV-infected cells and infection of CD8-positive cells.

    Science.gov (United States)

    Arai, Ayako; Yamaguchi, Takeshi; Komatsu, Honami; Imadome, Ken-Ichi; Kurata, Morito; Nagata, Kaoru; Miura, Osamu

    2014-01-01

    A 22-year-old male was admitted for a sustained fever of 2 months, lymphadenopathy, and liver dysfunction. Anti-VCA-IgM antibody was positive, with elevated Epstein-Barr virus (EBV)-DNA load in the peripheral blood. Liver biopsy revealed infiltration of CD8-positive and EBV-positive cells. Most peripheral blood mononuclear cells (PBMCs) were also positive for CD8, and showed detectable levels of EBV-DNA. Monoclonal proliferation of EBV-infected cells was detected in the PBMCs by Southern blotting for EBV-terminal repeat (EBV-TR). Although EBV-positive T-cell lymphoproliferative disease (EBV-T-LPD) was suspected, the symptoms spontaneously resolved within 12 months. Anti-VCA-IgM antibody and the clonal band of EBV-TR were negative 1 year after the onset, while anti-EBNA antibody was positive. The final diagnosis was thus confirmed as infectious mononucleosis (IM). Our results indicate that EBV-infected CD8-positive cells and clonal proliferation of EBV-infected cells may be temporally detected in IM. EBV-T-LPDs should be carefully excluded in such cases.

  13. Radiosensitivity and effect of hypoxia in HPV positive head and neck cancer cells

    International Nuclear Information System (INIS)

    Sørensen, Brita Singers; Busk, Morten; Olthof, Nadine; Speel, Ernst-Jan; Horsman, Michael R.; Alsner, Jan; Overgaard, Jens

    2013-01-01

    Background and purpose: HPV associated Head and Neck Squamous Cell Carcinoma (HNSCC) represents a distinct subgroup of HNSCC characterized by a favorable prognosis and a distinct molecular biology. Previous data from the randomized DAHANCA 5 trial indicated that HPV positive tumors did not benefit from hypoxic modifications by Nimorazole during radiotherapy, whereas a significant benefit was observed in the HPV negative tumors. However, more studies have demonstrated equal frequencies of hypoxic tumors among HPV-positive and HPV-negative tumors. The aim of the present study was to determine radiosensitivity, the impact of hypoxia and the effect of Nimorazole in HPV positive and HPV negative cell lines. Materials and method: The used cell lines were: UDSCC2, UMSCC47 and UPCISCC90 (HPV positive) and FaDu DD , UTSCC33 and UTSCC5 (HPV negative). Cells were cultured under normoxic or hypoxic conditions, and gene expression levels of previously established hypoxia induced genes were assessed by qPCR. Cells were irradiated with various doses under normoxia, hypoxia or hypoxia +1 mM Nimorazole, and the clonogenic survival was determined. Results: The HPV positive and HPV negative cell lines exhibited similar patterns of upregulation of hypoxia induced genes in response to hypoxia. The HPV positive cell lines were up to 2.4 times more radiation sensitive than HPV negative cell lines. However, all HPV positive cells displayed the same response to hypoxia in radiosensitivity, with an OER in the range 2.3–2.9, and a sensitizer effect of Nimorazole of 1.13–1.29, similar to HPV negative cells. Conclusions: Although HPV positive cells had a markedly higher radiosensitivity compared to HPV negative cells, they displayed the same relative radioresistance under hypoxia and the same relative sensitizer effect of Nimorazole. The clinical observation that HPV positive patients do not seem to benefit from Nimorazole treatment is not due to inherent differences in hypoxia sensitivity

  14. Molecular pharmacology of cell receptors for cardiac glycosides, opiates, ACTH and ion channel modulators

    Energy Technology Data Exchange (ETDEWEB)

    Hnatowich, M R

    1986-01-01

    The influence of light and oxygen on molecular interactions between the artificial food dye, erythrosine (ERY), and (/sup 3/H)ouabain ((/sup 3/H)OUA) binding sites on (Na/sup +/ + K/sup +/)-ATPase in rat brain and guinea pig heart was investigated. Putative endogenous digitalis-like factors (DLF's) were studied in four in vitro assays for cardiac glycosides. (/sup 3/H)Etorphine binding was characterized in rat brain homogenates, depleted of opioids, from animals acutely and chronically treated with morphine and naloxone, and either unstressed or cold-restraint-stressed. Binding sites for the ion channel modulators (/sup 3/H)verapamil ((/sup 3/H)VER) and (/sup 3/H) phencyclidine ((/sup 3/H)PCP) were characterized in rat brain.

  15. The rate of uptake of cardiac glycosides into human cultured cells and the effects of chloroquine on it.

    Science.gov (United States)

    Algharably, N; Owler, D; Lamb, J F

    1986-10-15

    HeLa cells grown on Petri dishes were either pulse labelled with various cardiac glycosides or grown in low concentrations of them for up to 2 days; either in the presence of chloroquine or not. The cells were then homogenised and the cell free homogenate layered on a continuous sucrose gradient; and the glycoside content and that of various markers measured. In another series of experiments HeLa cells were grown on plastic beads under the above conditions and then the content of glycosides and of some marker enzymes measured. The rate of internalisation of ouabain, digoxin and digitoxin from the plasma membrane preparation produced by the bead method is at 9% hr-1, similar to the rate of loss of digoxin and digitoxin from whole cells but much faster than that of ouabain. In the sucrose gradient experiments it was found that [3H]ouabain, digoxin and digitoxin all initially co-distribute with the plasma membrane marker, 5'-nucleotidase, and then leave this fraction of the homogenate at a fast rate when kept at 37 degrees, to co-distribute with the lysosomal marker, beta-hexosaminidase. At 2 degrees the ouabain remains co-distributed with the plasma membrane marker. The rate of transfer is estimated to be some 90% hr-1, much faster than previously thought. Chloroquine causes an increased retention of digoxin and digitoxin in the lysosomal fraction of the homogenate. These results are best explained by supposing that the sodium pump-glycoside complex rapidly enters a region of the peripheral cytoplasm, and that this region then controls the subsequent exit of digoxin and digitoxin from the cell. The main barrier for ouabain occurs at a stage later than this. The consequences of this model on other aspects of pump activity is discussed.

  16. Desmosomal Molecules In and Out of Adhering Junctions: Normal and Diseased States of Epidermal, Cardiac and Mesenchymally Derived Cells

    Directory of Open Access Journals (Sweden)

    Sebastian Pieperhoff

    2010-01-01

    Full Text Available Current cell biology textbooks mention only two kinds of cell-to-cell adhering junctions coated with the cytoplasmic plaques: the desmosomes (maculae adhaerentes, anchoring intermediate-sized filaments (IFs, and the actin microfilament-anchoring adherens junctions (AJs, including both punctate (puncta adhaerentia and elongate (fasciae adhaerentes structures. In addition, however, a series of other junction types has been identified and characterized which contain desmosomal molecules but do not fit the definition of desmosomes. Of these special cell-cell junctions containing desmosomal glycoproteins or proteins we review the composite junctions (areae compositae connecting the cardiomyocytes of mature mammalian hearts and their importance in relation to human arrhythmogenic cardiomyopathies. We also emphasize the various plakophilin-2-positive plaques in AJs (coniunctiones adhaerentes connecting proliferatively active mesenchymally-derived cells, including interstitial cells of the heart and several soft tissue tumor cell types. Moreover, desmoplakin has also been recognized as a constituent of the plaques of the complexus adhaerentes connecting certain lymphatic endothelial cells. Finally, we emphasize the occurrence of the desmosomal transmembrane glycoprotein, desmoglein Dsg2, out of the context of any junction as dispersed cell surface molecules in certain types of melanoma cells and melanocytes. This broadening of our knowledge on the diversity of AJ structures indicates that it may still be too premature to close the textbook chapters on cell-cell junctions.

  17. Concomitant use of polarization and positive phase contrast microscopy for the study of microbial cells

    Czech Academy of Sciences Publication Activity Database

    Žižka, Zdeněk; Gabriel, Jiří

    2015-01-01

    Roč. 60, č. 6 (2015), s. 545-550 ISSN 0015-5632 Institutional support: RVO:61388971 Keywords : polarization microscopy * microbial cells * positive phase contrast Subject RIV: EE - Microbiology, Virology Impact factor: 1.335, year: 2015

  18. Bacterial vaginosis (clue cell-positive discharge) : diagnostic, ultra-structural and therapeutic aspects

    NARCIS (Netherlands)

    W.I. van der Meijden (Willem)

    1987-01-01

    textabstractThis thesis deals with several aspects of (abnormal) vaginal discharge, focusing especially on clue cell-positive discharge (bacterial vaginosis, nonspecific vaginitis). It reports data on epidemiology and clinical features, pathogenesis, and treatment of this vaginal disease entity,

  19. Intracellular Position of Centrioles and the Direction of Homeostatic Epithelial Cell Movements in the Mouse Cornea.

    Science.gov (United States)

    Silverman, Erika; Zhao, Jin; Merriam, John C; Nagasaki, Takayuki

    2017-02-01

    Corneal epithelial cells exhibit continuous centripetal movements at a rate of about 30 µm per day, but neither the driving force nor the mechanism that determines the direction of movements is known. To facilitate the investigation of homeostatic cell movement, we examined if the intracellular position of a centriole can be used as a directional marker of epithelial cell movements in the mouse cornea. A direction of cell movements was estimated in fixed specimens from a pattern of underlying subepithelial nerve fibers. Intracellular position of centrioles was determined by gamma-tubulin immunohistology and plotted in a narrow strip along the entire diameter of a cornea from limbus to limbus. When we determined the position of centrioles in the peripheral cornea where cell movements proceed generally along a radial path, about 55% of basal epithelial cells contained a centriole in the front half of a cell. However, in the central cornea where cells exhibit a spiral pattern of movements, centrioles were distributed randomly. These results suggest that centrioles tend to be positioned toward the direction of movement in corneal basal epithelial cells when they are moving centripetally at a steady rate.

  20. Wnt signaling positively regulates endothelial cell fate specification in the Fli1a-positive progenitor population via Lef1.

    Science.gov (United States)

    Hübner, Kathleen; Grassme, Kathrin S; Rao, Jyoti; Wenke, Nina K; Zimmer, Cordula L; Korte, Laura; Mu Ller, Katja; Sumanas, Saulius; Greber, Boris; Herzog, Wiebke

    2017-10-01

    During vertebrate embryogenesis, vascular endothelial cells (ECs) and primitive erythrocytes become specified within close proximity in the posterior lateral plate mesoderm (LPM) from a common progenitor. However, the signaling cascades regulating the specification into either lineage remain largely elusive. Here, we analyze the contribution of β-catenin dependent Wnt signaling to EC and erythrocyte specification during zebrafish embryogenesis. We generated novel β-catenin dependent Wnt signaling reporters which, by using destabilized fluorophores (Venus-Pest, dGFP), specifically allow us to detect Wnt signaling responses in narrow time windows as well as in spatially restricted domains, defined by Cre recombinase expression (Tg(axin2 BAC :Venus-Pest) mu288 ; Tg(14TCF:loxP-STOP-loxP-dGFP) mu202 ). We therefore can detect β-catenin dependent Wnt signaling activity in a subset of the Fli1a-positive progenitor population. Additionally, we show that mesodermal Wnt3a-mediated signaling via the transcription factor Lef1 positively regulates EC specification (defined by kdrl expression) at the expense of primitive erythrocyte specification (defined by gata1 expression) in zebrafish embryos. Using mesoderm derived from human embryonic stem cells, we identified the same principle of Wnt signaling dependent EC specification in conjunction with auto-upregulation of LEF1. Our data indicate a novel role of β-catenin dependent Wnt signaling in regulating EC specification during vasculogenesis. Copyright © 2017. Published by Elsevier Inc.

  1. EGb 761 Protects Cardiac Microvascular Endothelial Cells against Hypoxia/Reoxygenation Injury and Exerts Inhibitory Effect on the ATM Pathway.

    Science.gov (United States)

    Zhang, Chao; Wang, Deng-Feng; Zhang, Zhuang; Han, Dong; Yang, Kan

    2017-03-28

    Ginkgo bilob a extract (EGb 761) has been widely used clinically to reduce myocardial ischemia reperfusion injury (MIRI). Microvascular endothelial cells (MVECs) may be a proper cellular model in vitro for the effect and mechanism study against MIRI. However, the protective effect of EGb 761 on MVECs resisting hypoxia/reoxygenation (H/R) injury is little reported. In this study, H/R-injured MVECs were treated with EGb 761, and then the cell viability, apoptosis, ROS production, SOD activity, caspase-3 activity, and protein level of ATM, γ-H2AX, p53, and Bax were measured. ATM siRNA was transfected to study the changes of protein in the ATM pathway. EGb 761 presented protective effect on H/R-injured MVECs, with decreasing cell death, apoptosis, and ROS, and elevated SOD activity. Next, EGb 761 could inhibit H/R-induced ATM, γ-H2AX, p53, and Bax in a dose-dependent manner. Moreover, ATM siRNA also could inhibit H/R-induced ATM, γ-H2AX, p53, and Bax. Overall, these findings verify that EGb 761 protects cardiac MVECs from H/R injury, and for the first time, illustrate the influence on the ATM pathway and apoptosis by EGb 761 via dampening ROS.

  2. Evaluation of Changes in Morphology and Function of Human Induced Pluripotent Stem Cell Derived Cardiomyocytes (HiPSC-CMs) Cultured on an Aligned-Nanofiber Cardiac Patch.

    Science.gov (United States)

    Khan, Mahmood; Xu, Yanyi; Hua, Serena; Johnson, Jed; Belevych, Andriy; Janssen, Paul M L; Gyorke, Sandor; Guan, Jianjun; Angelos, Mark G

    2015-01-01

    Dilated cardiomyopathy is a major cause of progressive heart failure. Utilization of stem cell therapy offers a potential means of regenerating viable cardiac tissue. However, a major obstacle to stem cell therapy is the delivery and survival of implanted stem cells in the ischemic heart. To address this issue, we have developed a biomimetic aligned nanofibrous cardiac patch and characterized the alignment and function of human inducible pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) cultured on this cardiac patch. This hiPSC-CMs seeded patch was compared with hiPSC-CMs cultured on standard flat cell culture plates. hiPSC-CMs were cultured on; 1) a highly aligned polylactide-co-glycolide (PLGA) nanofiber scaffold (~50 microns thick) and 2) on a standard flat culture plate. Scanning electron microscopy (SEM) was used to determine alignment of PLGA nanofibers and orientation of the cells on the respective surfaces. Analysis of gap junctions (Connexin-43) was performed by confocal imaging in both the groups. Calcium cycling and patch-clamp technique were performed to measure calcium transients and electrical coupling properties of cardiomyocytes. SEM demonstrated >90% alignment of the nanofibers in the patch which is similar to the extracellular matrix of decellularized rat myocardium. Confocal imaging of the cardiomyocytes demonstrated symmetrical alignment in the same direction on the aligned nanofiber patch in sharp contrast to the random appearance of cardiomyocytes cultured on a tissue culture plate. The hiPSC-CMs cultured on aligned nanofiber cardiac patches showed more efficient calcium cycling compared with cells cultured on standard flat surface culture plates. Quantification of mRNA with qRT-PCR confirmed that these cardiomyocytes expressed α-actinin, troponin-T and connexin-43 in-vitro. Overall, our results demonstrated changes in morphology and function of human induced pluripotent derived cardiomyocytes cultured in an anisotropic environment

  3. [Isolation, purification and primary culture of adult mouse cardiac fibroblasts].

    Science.gov (United States)

    Li, Rujun; Gong, Kaizheng; Zhang, Zhengang

    2017-01-01

    Objective To establish a method for primary culture of adult mouse cardiac fibroblasts. Methods Myocardial tissues from adult mice were digested with 1 g/L trypsin and 0.8 g/L collagenase IV by oscillating water bath for a short time repeatedly. Cardiac fibroblasts and myocardial cells were isolated with differential adhesion method. Immunofluorescence staining was used to assess the purity of cardiac fibroblasts. The cell morphology was observed under an inverted phase contrast microscope. The proliferation of cardiac fibroblasts was analyzed by growth curve and CCK-8 assay. The Smad2/3 phosphorylation induced by TGF-β1 was detected by Western blotting. Results After 90 minutes of differential adhesion, adherent fibroblasts formed spherical cell mass and after 3 days, cells were spindle-shaped and proliferated rapidly. Cells were confluent after 5 days and the growth curve presented nearly "S" shape. The positive expression rate of vimentin was 95%. CCK-8 assay showed that the optimal cell proliferating activity was found from day 3 to day 5. The level of phosphorylated Smad2/3 obviously increased at the second passage induced by TGF-β1. Conclusion This method is economical and stable to isolate cardiac fibroblasts with high activity and high purity from adult mice.

  4. Clinical recommendations of cardiac magnetic resonance, Part II: inflammatory and congenital heart disease, cardiomyopathies and cardiac tumors: a position paper of the working group 'Applicazioni della Risonanza Magnetica' of the Italian Society of Cardiology.

    Science.gov (United States)

    Pontone, Gianluca; Di Bella, Gianluca; Silvia, Castelletti; Maestrini, Viviana; Festa, Pierluigi; Ait-Ali, Lamia; Masci, Pier Giorgio; Monti, Lorenzo; di Giovine, Gabriella; De Lazzari, Manuel; Cipriani, Alberto; Guaricci, Andrea I; Dellegrottaglie, Santo; Pepe, Alessia; Marra, Martina Perazzolo; Aquaro, Giovanni D

    2017-04-01

    The current document was developed by the working group on the 'application of cardiac magnetic resonance' of the Italian Society of Cardiology to provide a perspective on the current state of technical advances and clinical cardiac magnetic resonance applications and to inform cardiologists how to implement their clinical and diagnostic pathway with the introduction of this technique in the clinical practice. Appropriateness criteria were defined using a score system: score 1-3 = inappropriate (test is not generally acceptable and is not a reasonable approach for the indication), score 4-6 = uncertain (test may be generally acceptable and may be a reasonable approach for the indication but more research and/or patient information is needed to classify the indication definitively) and score 7-9 = appropriate (test is generally acceptable and is a reasonable approach for the indication).

  5. Cell adhesive affinity does not dictate primitive endoderm segregation and positioning during murine embryoid body formation.

    Science.gov (United States)

    Moore, Robert; Cai, Kathy Q; Escudero, Diogo O; Xu, Xiang-Xi

    2009-09-01

    The classical cell sorting experiments undertaken by Townes and Holtfreter described the intrinsic propensity of dissociated embryonic cells to self-organize and reconcile into their original embryonic germ layers with characteristic histotypic positioning. Steinberg presented the differential adhesion hypothesis to explain these patterning phenomena. Here, we have reappraised these issues by implementing embryoid bodies to model the patterning of epiblast and primitive endoderm layers. We have used combinations of embryonic stem (ES) cells and their derivatives differentiated by retinoic acid treatment to model epiblast and endoderm cells, and wild-type or E-cadherin null cells to represent strongly or weakly adherent cells, respectively. One cell type was fluorescently labeled and reconstituted with another heterotypically to generate chimeric embryoid bodies, and cell sorting was tracked by time-lapse video microscopy and confirmed by immunostaining. When undifferentiated wild-type and E-cadherin null ES cells were mixed, the resulting cell aggregates consisted of a core of wild-type cells surrounded by loosely associated E-cadherin null cells, consistent with the differential adhesion hypothesis. However, when mixed with undifferentiated ES cells, the differentiated primitive endoderm-like cells sorted to the surface to form a primitive endoderm layer irrespective of cell-adhesive strength, contradicting the differential adhesion hypothesis. We propose that the primitive endoderm cells reach the surface by random movement, and subsequently the cells generate an apical/basal polarity that prevents reentry. Thus, the ability to generate epithelial polarity, rather than adhesive affinity, determines the surface positioning of the primitive endoderm cells. (c) 2009 Wiley-Liss, Inc.

  6. Secondary prevention through cardiac rehabilitation: physical activity counselling and exercise training: key components of the position paper from the Cardiac Rehabilitation Section of the European Association of Cardiovascular Prevention and Rehabilitation

    DEFF Research Database (Denmark)

    Corrà, Ugo; Piepoli, Massimo F; Carré, François

    2010-01-01

    , exercise training, diet/nutritional counselling, weight control management, lipid management, blood pressure monitoring, smoking cessation, and psychosocial management. Cardiac rehabilitation services are by definition multi-factorial and comprehensive, with physical activity counselling and exercise...... training as central components in all rehabilitation and preventive interventions. Many of the risk factor improvements occurring in CR can be mediated through exercise training programmes. This call-for-action paper presents the key components of a CR programme: physical activity counselling and exercise...

  7. Cardiac-Restricted IGF-1Ea Overexpression Reduces the Early Accumulation of Inflammatory Myeloid Cells and Mediates Expression of Extracellular Matrix Remodelling Genes after Myocardial Infarction

    Directory of Open Access Journals (Sweden)

    Enrique Gallego-Colon

    2015-01-01

    Full Text Available Strategies to limit damage and improve repair after myocardial infarct remain a major therapeutic goal in cardiology. Our previous studies have shown that constitutive expression of a locally acting insulin-like growth factor-1 Ea (IGF-1Ea propeptide promotes functional restoration after cardiac injury associated with decreased scar formation. In the current study, we investigated the underlying molecular and cellular mechanisms behind the enhanced functional recovery. We observed improved cardiac function in mice overexpressing cardiac-specific IGF-1Ea as early as day 7 after myocardial infarction. Analysis of gene transcription revealed that supplemental IGF-1Ea regulated expression of key metalloproteinases (MMP-2 and MMP-9, their inhibitors (TIMP-1 and TIMP-2, and collagen types (Col 1α1 and Col 1α3 in the first week after injury. Infiltration of inflammatory cells, which direct the remodelling process, was also altered; in particular there was a notable reduction in inflammatory Ly6C+ monocytes at day 3 and an increase in anti-inflammatory CD206+ macrophages at day 7. Taken together, these results indicate that the IGF-1Ea transgene shifts the balance of innate immune cell populations early after infarction, favouring a reduction in inflammatory myeloid cells. This correlates with reduced extracellular matrix remodelling and changes in collagen composition that may confer enhanced scar elasticity and improved cardiac function.

  8. Manipulation of cells' position across a microfluidic channel using a series of continuously varying herringbone structures

    Science.gov (United States)

    Jung, Yugyung; Hyun, Ji-chul; Choi, Jongchan; Atajanov, Arslan; Yang, Sung

    2017-12-01

    Controlling cells' movement is an important technique in biological analysis that is performed within a microfluidic system. Many external forces are utilized for manipulation of cells, including their position in the channel. These forces can effectively control cells in a desired manner. Most of techniques used to manipulate cells require sophisticated set-ups and equipment to generate desired effect. The exception to this is the use of hydrodynamic force. In this study, a series of continuously varying herringbone structures is proposed for positioning cells in a microfluidic channel using hydrodynamic force. This structure was experimentally developed by changing parameters, such as the length of the herringbone's apex, the length of the herringbone's base and the ratio of the height of the flat channel to the height of the herringbone structure. Results of this study, have demonstrated that the length of the herringbone's apex and the ratio of the heights of the flat channel and the herringbone structure were crucial parameters influencing positioning of cells at 100 μl/h flow rate. The final design was fixed at 170 and 80 μm for the length of herringbone's apex and the length of herringbone's base, respectively. The average position of cells in this device was 34 μm away from the side wall in a 200 μm wide channel. Finally, to substantiate a practical application of the herringbone structure for positioning, cells were randomly introduced into a microfluidic device, containing an array of trapping structures together with a series of herringbone structures along the channel. The cells were moved toward the trapping structure by the herringbone structure and the trapping efficiency was increased. Therefore, it is anticipated that this device will be utilized to continuously control cells' position without application of external forces.

  9. Clinical comparison of cardiac blood pool visualization with technetium-99m red blood cells labeled in vivo and with technetium-99m human serum albumin

    International Nuclear Information System (INIS)

    Thrall, J.H.; Freitas, J.E.; Swanson, D.; Rogers, W.L.; Clare, J.M.; Brown, M.L.; Pitt, B.

    1978-01-01

    Technetium-99m red blood cells (Tc-RBC) labeled by an in vivo technique were compared with two preparations of Tc-99m human serum albumin (HSA) for cardiac blood-pool imaging. Relative distribution of the tracers was analyzed on end-diastolic frames of gated blood-pool studies and on whole-body (head to mid-thigh) anterior pinhole images. The Tc-RBC demonstrated greater relative percentage localization in the cardiac blood pool, higher target-to-background ratios in the left ventricle, and less liver concentration. For cardiac blood-pool imaging, Tc-RBC labeled by the in vivo approach appears to be superior to the two Tc-HSA preparations studied

  10. Islet Cells Serve as Cells of Origin of Pancreatic Gastrin-Positive Endocrine Tumors

    DEFF Research Database (Denmark)

    Bonnavion, Rémy; Teinturier, Romain; Jaafar, Rami

    2015-01-01

    The cells of origin of pancreatic gastrinomas remain an enigma, since no gastrin-expressing cells are found in the normal adult pancreas. It was proposed that the cellular origin of pancreatic gastrinomas may come from either the pancreatic cells themselves or gastrin-expressing cells which have ...

  11. Risk of Acute Kidney Injury in Patients Randomized to a Restrictive Versus Liberal Approach to Red Blood Cell Transfusion in Cardiac Surgery: A Substudy Protocol of the Transfusion Requirements in Cardiac Surgery III Noninferiority Trial

    Directory of Open Access Journals (Sweden)

    Amit X. Garg

    2018-01-01

    Full Text Available Background: When safe to do so, avoiding blood transfusions in cardiac surgery can avoid the risk of transfusion-related infections and other complications while protecting a scarce resource and reducing costs. This protocol describes a kidney substudy of the Transfusion Requirements in Cardiac Surgery III (TRICS-III trial, a multinational noninferiority randomized controlled trial to determine whether the risk of major clinical outcomes in patients undergoing planned cardiac surgery with cardiopulmonary bypass is no greater with a restrictive versus liberal approach to red blood cell transfusion. Objective: The objective of this substudy is to determine whether the risk of acute kidney injury is no greater with a restrictive versus liberal approach to red blood cell transfusion, and whether this holds true in patients with and without preexisting chronic kidney disease. Design and Setting: Multinational noninferiority randomized controlled trial conducted in 73 centers in 19 countries (2014-2017. Patients: Patients (~4800 undergoing planned cardiac surgery with cardiopulmonary bypass. Measurements: The primary outcome of this substudy is perioperative acute kidney injury, defined as an acute rise in serum creatinine from the preoperative value (obtained in the 30-day period before surgery, where an acute rise is defined as ≥26.5 μmol/L in the first 48 hours after surgery or ≥50% in the first 7 days after surgery. Methods: We will report the absolute risk difference in acute kidney injury and the 95% confidence interval. We will repeat the primary analysis using alternative definitions of acute kidney injury, including staging definitions, and will examine effect modification by preexisting chronic kidney disease (defined as a preoperative estimated glomerular filtration rate [eGFR] <60 mL/min/1.73 m 2 . Limitations: It is not possible to blind patients or providers to the intervention; however, objective measures will be used to assess

  12. Protamine-induced permeabilization of cell envelopes of gram-positive and gram-negative bacteria

    DEFF Research Database (Denmark)

    Johansen, Charlotte; Verheul, A.; Gram, Lone

    1997-01-01

    carboxyfluorescein and ATP after 2 to 5 min. Maximum antibacterial activity was reached at alkaline pH and in the absence of divalent cations. The efficient permeabilization of cell envelopes of both gram-positive and gram-negative bacteria suggests that protamine causes a general disruption of the cell envelope...

  13. Transplantation of Immortalized CD34+ and CD34- Adipose-Derived Stem Cells Improve Cardiac Function and Mitigate Systemic Pro-Inflammatory Responses.

    Directory of Open Access Journals (Sweden)

    Jong-Ho Kim

    Full Text Available Adipose-derived stem cells (ADSCs have the potential to differentiate into various cell lineages and they are easily obtainable from patients, which makes them a promising candidate for cell therapy. However, a drawback is their limited life span during in vitro culture. Therefore, hTERT-immortalized CD34+ and CD34- mouse ADSC lines (mADSCshTERT tagged with GFP were established. We evaluated the proliferation capacity, multi-differentiation potential, and secretory profiles of CD34+ and CD34- mADSCshTERT in vitro, as well as their effects on cardiac function and systemic inflammation following transplantation into a rat model of acute myocardial infarction (AMI to assess whether these cells could be used as a novel cell source for regeneration therapy in the cardiovascular field. CD34+ and CD34- mADSCshTERT demonstrated phenotypic characteristics and multi-differentiation potentials similar to those of primary mADSCs. CD34+ mADSCshTERT exhibited a higher proliferation ability compared to CD34- mADSCshTERT, whereas CD34- mADSCshTERT showed a higher osteogenic differentiation potential compared to CD34+ mADSCshTERT. Primary mADSCs, CD34+, and CD34- mADSCshTERT primarily secreted EGF, TGF-β1, IGF-1, IGF-2, MCP-1, and HGFR. CD34+ mADSCshTERT had higher secretion of VEGF and SDF-1 compared to CD34- mADSCshTERT. IL-6 secretion was severely reduced in both CD34+ and CD34- mADSCshTERT compared to primary mADSCs. Transplantation of CD34+ and CD34- mADSCshTERT significantly improved the left ventricular ejection fraction and reduced infarct size compared to AMI-induced rats after 28 days. At 28 days after transplantation, engraftment of CD34+ and CD34- mADSCshTERT was confirmed by positive Y chromosome staining, and differentiation of CD34+ and CD34- mADSCshTERT into endothelial cells was found in the infarcted myocardium. Significant decreases were observed in circulating IL-6 levels in CD34+ and CD34- mADSCshTERT groups compared to the AMI

  14. Evaluation of polyelectrolyte complex-based scaffolds for mesenchymal stem cell therapy in cardiac ischemia treatment

    OpenAIRE

    Ceccaldi, Caroline; Bushkalova, Raya; Alfarano, Chiara; Lairez, Olivier; Calise, Denis; Bourin, Philippe; Frugier, Céline; Rouzaud-Laborde, Charlotte; Cussac, Daniel; Parini, Angelo; Sallerin, Brigitte; Girod Fullana, Sophie

    2014-01-01

    Three-dimensional (3D) scaffolds hold great potential for stem cell-based therapies. Indeed, recent results have shown that biomimetic scaffolds may enhance cell survival and promote an increase in the concentration of therapeutic cells at the injury site. The aim of this work was to engineer an original polymeric scaffold based on the respective beneficial effects of alginate and chitosan. Formulations were made from various alginate/chitosan ratios to form opposite-charge polyelectrolyte co...

  15. T Cell Interstitial Migration: Motility Cues from the Inflamed Tissue for Micro- and Macro-Positioning.

    Science.gov (United States)

    Gaylo, Alison; Schrock, Dillon C; Fernandes, Ninoshka R J; Fowell, Deborah J

    2016-01-01

    Effector T cells exit the inflamed vasculature into an environment shaped by tissue-specific structural configurations and inflammation-imposed extrinsic modifications. Once within interstitial spaces of non-lymphoid tissues, T cells migrate in an apparent random, non-directional, fashion. Efficient T cell scanning of the tissue environment is essential for successful location of infected target cells or encounter with antigen-presenting cells that activate the T cell's antimicrobial effector functions. The mechanisms of interstitial T cell motility and the environmental cues that may promote or hinder efficient tissue scanning are poorly understood. The extracellular matrix (ECM) appears to play an important scaffolding role in guidance of T cell migration and likely provides a platform for the display of chemotactic factors that may help to direct the positioning of T cells. Here, we discuss how intravital imaging has provided insight into the motility patterns and cellular machinery that facilitates T cell interstitial migration and the critical environmental factors that may optimize the efficiency of effector T cell scanning of the inflamed tissue. Specifically, we highlight the local micro-positioning cues T cells encounter as they migrate within inflamed tissues, from surrounding ECM and signaling molecules, as well as a requirement for appropriate long-range macro-positioning within distinct tissue compartments or at discrete foci of infection or tissue damage. The central nervous system (CNS) responds to injury and infection by extensively remodeling the ECM and with the de novo generation of a fibroblastic reticular network that likely influences T cell motility. We examine how inflammation-induced changes to the CNS landscape may regulate T cell tissue exploration and modulate function.

  16. Reversible immortalization of Nestin-positive precursor cells from pancreas and differentiation into insulin-secreting cells

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Pei; Li, Li; Qi, Hui [The Clinical Medical Research Center, The Second Clinical Medical College (Shenzhen People' s Hospital), Jinan University, 518020 Shenzhen (China); Zhou, Han-xin [Department of General Surgery, First Hospital (Shenzhen Second People' s Hospital) of Shenzhen University, 518020 Shenzhen (China); Deng, Chun-yan [The Clinical Medical Research Center, The Second Clinical Medical College (Shenzhen People' s Hospital), Jinan University, 518020 Shenzhen (China); Li, Fu-rong, E-mail: frli62@yahoo.com [The Clinical Medical Research Center, The Second Clinical Medical College (Shenzhen People' s Hospital), Jinan University, 518020 Shenzhen (China); Shenzhen Institution of Gerontology, 518020 Shenzhen (China)

    2012-02-10

    Highlights: Black-Right-Pointing-Pointer The NPPCs from mouse pancreas were isolated. Black-Right-Pointing-Pointer Tet-on system for SV40 large in NPPCs was used to get RINPPCs. Black-Right-Pointing-Pointer The RINPPCs can undergo at least 80 population doublings without senescence. Black-Right-Pointing-Pointer The RINPPCs can be induced to differentiate into insulin-producing cells. Black-Right-Pointing-Pointer The combination of GLP-1 and sodium butyrate promoted the differentiation process. -- Abstract: Pancreatic stem cells or progenitor cells posses the ability of directed differentiation into pancreatic {beta} cells. However, these cells usually have limited proliferative capacity and finite lifespan in vitro. In the present study, Nestin-positive progenitor cells (NPPCs) from mouse pancreas that expressed the pancreatic stem cells or progenitor cell marker Nestin were isolated to obtain a sufficient number of differentiated pancreatic {beta} cells. Tet-on system for SV40 large T-antigen expression in NPPCs was used to achieve reversible immortalization. The reversible immortal Nestin-positive progenitor cells (RINPPCs) can undergo at least 80 population doublings without senescence in vitro while maintaining their biological and genetic characteristics. RINPPCs can be efficiently induced to differentiate into insulin-producing cells that contain a combination of glucagon-like peptide-1 (GLP-1) and sodium butyrate. The results of the present study can be used to explore transplantation therapy of type I diabetes mellitus.

  17. Circulating CD34-positive cells, glomerular filtration rate and triglycerides in relation to hypertension.

    Science.gov (United States)

    Shimizu, Yuji; Sato, Shimpei; Koyamatsu, Jun; Yamanashi, Hirotomo; Nagayoshi, Mako; Kadota, Koichiro; Maeda, Takahiro

    2015-11-01

    Serum triglycerides have been reported to be independently associated with the development of chronic kidney disease (CKD), which is known to play a role in vascular disturbance. On the other hand, circulating CD34-positve cells, including endothelial progenitor cells, are reported to contribute to vascular repair. However, no studies have reported on the correlation between triglycerides and the number of CD34-positive cells. Since hypertension is well known factor for vascular impairment, the degree of correlation between serum triglycerides and circulating CD34-positve cells should account for hypertension status. We conducted a cross-sectional study of 274 elderly Japanese men aged ≥ 60 years (range 60-79 years) undergoing general health checkups. Multiple linear regression analysis of non-hypertensive subjects adjusting for classical cardiovascular risk factors showed that although triglyceride levels (1SD increments; 64 mg/dL) did not significantly correlate with glomerular filtration rate (GFR) (β = -2.06, p = 0.163), a significant positive correlation was seen between triglycerides and the number of circulating CD34-positive cells (β = 0.50, p = 0.004). In hypertensive subjects, a significant inverse correlation between triglycerides and GFR was observed (β = -2.66, p = 0.035), whereas no significant correlation between triglycerides and the number of circulating CD34-positive cells was noted (β = -0.004, p = 0.974). Since endothelial progenitor cells (CD34-positive cells) have been reported to contribute to vascular repair, our results indicate that in non-hypertensive subjects, triglycerides may stimulate an increase in circulating CD34-positive cells (vascular repair) by inducing vascular disturbance. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. Understanding positional cues in salamander limb regeneration: implications for optimizing cell-based regenerative therapies

    Directory of Open Access Journals (Sweden)

    Catherine D. McCusker

    2014-06-01

    Full Text Available Regenerative medicine has reached the point where we are performing clinical trials with stem-cell-derived cell populations in an effort to treat numerous human pathologies. However, many of these efforts have been challenged by the inability of the engrafted populations to properly integrate into the host environment to make a functional biological unit. It is apparent that we must understand the basic biology of tissue integration in order to apply these principles to the development of regenerative therapies in humans. Studying tissue integration in model organisms, where the process of integration between the newly regenerated tissues and the ‘old’ existing structures can be observed and manipulated, can provide valuable insights. Embryonic and adult cells have a memory of their original position, and this positional information can modify surrounding tissues and drive the formation of new structures. In this Review, we discuss the positional interactions that control the ability of grafted cells to integrate into existing tissues during the process of salamander limb regeneration, and discuss how these insights could explain the integration defects observed in current cell-based regenerative therapies. Additionally, we describe potential molecular tools that can be used to manipulate the positional information in grafted cell populations, and to promote the communication of positional cues in the host environment to facilitate the integration of engrafted cells. Lastly, we explain how studying positional information in current cell-based therapies and in regenerating limbs could provide key insights to improve the integration of cell-based regenerative therapies in the future.

  19. Effects of continuous positive airway pressure on anxiety, depression, and major cardiac and cerebro-vascular events in obstructive sleep apnea patients with and without coronary artery disease.

    Science.gov (United States)

    Lee, Ming-Chung; Shen, Yu-Chih; Wang, Ji-Hung; Li, Yu-Ying; Li, Tzu-Hsien; Chang, En-Ting; Wang, Hsiu-Mei

    2017-01-01

    Obstructive sleep apnea (OSA) is associated with bad cardiovascular outcomes and a high prevalence of anxiety and depression. This study investigated the effects of continuous positive airway pressure (CPAP) on the severity of anxiety and depression in OSA patients with or without coronary artery disease (CAD) and on the rate of cardio- and cerebro-vascular events in those with OSA and CAD. This prospective study included patients with moderate-to-severe OSA, with or without a recent diagnosis of CAD; all were started on CPAP therapy. Patients completed the Chinese versions of the Beck Anxiety Inventory (BAI) and Beck Depression Inventory-II (BDI-II) at baseline and after 6-month follow-up. The occurrence of major adverse cardiac and cerebrovascular events (MACCE) was assessed every 3 months up to 1 year. BAI scores decreased from 8.5 ± 8.4 at baseline to 5.4 ± 6.9 at 6 months in CPAP-compliant OSA patients without CAD ( P < 0.05). BAI scores also decreased from 20.7 ± 14.9 to 16.1 ± 14.5 in CPAP-compliant OSA patients with CAD. BDI-II scores decreased in CPAP-compliant OSA patients without CAD (from 11.1 ± 10.7 at baseline to 6.6 ± 9.5 at 6 months) and in CPAP-compliant OSA patients with CAD (from 20.4 ± 14.3 to 15.9 ± 7.3). In addition, there was a large effect size (ES) of BAI and BDI in 6-month CPAP treatment of OSA patients with CAD and a large ES in those with OSA under CPAP treatment. In OSA patients with CAD, the occurrence of MACCE was significantly lower in CPAP-compliant patients than that in CPAP noncompliant patients (11% in CPAP compliant and 50% in noncompliant; P < 0.05). CPAP improved anxiety and depression in OSA patients regardless of CAD. In OSA patients with CAD, CPAP-compliant patients had a lower 1-year rate of MACCE than CPAP-noncompliant patients.

  20. CD146 positive human dental pulp stem cells promote regeneration of dentin/pulp-like structures.

    Science.gov (United States)

    Matsui, Mikiko; Kobayashi, Tomoko; Tsutsui, Takeo W

    2018-04-01

    CD146 and STRO-1 are endothelial biomarkers that are co-expressed on the cellular membranes of blood vessels within human dental pulp tissue. This study characterized the percentage of dentin-like structures produced by CD146-positive (CD146 + ) human dental pulp stem cells (DPSCs), compared with their CD146-negative (CD146 - ) counterparts. DPSC populations were enriched using magnetic-activated cell sorting (MACS), yielding CD146 + and CD146 - cells, as well as mixtures composed of 25% CD146 + cells and 75% CD146 - cells (CD146 +/- ). Cell growth assays indicated that CD146 + cells exhibit an approximate 3-4 h difference in doubling time, compared with CD146 - cells. Cell cycle distributions were determined by flow cytometry analysis. The low percentage of CD146 + cells' DNA content in G 0 /G 1 phase were compared with CD146 - and non-separated cells. In contrast to CD146 - and non-separated cells, prompt mineralization was observed in CD146 + cells. Subsequently, qRT-PCR revealed high mRNA expression of CD146 and Alkaline phosphatase in mineralization-induced CD146 + cells. CD146 + cells were also observed high adipogenic ability by Oil red O staining. Histological examinations revealed an increased area of dentin/pulp-like structures in transplanted CD146 + cells, compared with CD146 - and CD146 +/- cells. Immunohistochemical studies detected dentin matrix protein-1 (DMP1) and dentin sialophosphoprotein (DSPP), as well as human mitochondria, in transplanted DPSCs. Co-expression of CD146 and GFP indicated that CD146 was expressed in transplanted CD146 + cells. CD146 + cells may promote mineralization and generate dentin/pulp-like structures, suggesting a role in self-renewal of stem cells and dental pulp regenerative therapy.

  1. Positive Feedback Keeps Duration of Mitosis Temporally Insulated from Upstream Cell-Cycle Events.

    Science.gov (United States)

    Araujo, Ana Rita; Gelens, Lendert; Sheriff, Rahuman S M; Santos, Silvia D M

    2016-10-20

    Cell division is characterized by a sequence of events by which a cell gives rise to two daughter cells. Quantitative measurements of cell-cycle dynamics in single cells showed that despite variability in G1-, S-, and G2 phases, duration of mitosis is short and remarkably constant. Surprisingly, there is no correlation between cell-cycle length and mitotic duration, suggesting that mitosis is temporally insulated from variability in earlier cell-cycle phases. By combining live cell imaging and computational modeling, we showed that positive feedback is the molecular mechanism underlying the temporal insulation of mitosis. Perturbing positive feedback gave rise to a sluggish, variable entry and progression through mitosis and uncoupled duration of mitosis from variability in cell cycle length. We show that positive feedback is important to keep mitosis short, constant, and temporally insulated and anticipate it might be a commonly used regulatory strategy to create modularity in other biological systems. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Impact of conditioning hyperglycemic on myocardial infarction rats: Cardiac cell survival factors

    Science.gov (United States)

    Malfitano, Christiane; de Souza Junior, Alcione Lescano; Irigoyen, Maria Cláudia

    2014-01-01

    While clinical data have suggested that the diabetic heart is more susceptible to ischemic heart disease (IHD), animal data have so far pointed to a lower probability of IHD. Thus, the aim of this present review is to look at these conflicting results and discuss the protective mechanisms that conditioned hyperglycemia may confer to the heart against ischemic injury. Several mechanisms have been proposed to explain the cardioprotective action of high glucose exposure, namely, up-regulation of anti-apoptotic factor Bcl-2, inactivation of pro-apoptotic factor bad, and activation of pro-survival factors such as protein kinase B (Akt), vascular endothelial growth factor (VEGF), hypoxia inducible factor-1α and protein kinase C-ε. Indeed, cytosolic increase in Ca2+ concentration, the mitochondrial permeability transition pore, plays a key role in the genesis of ischemic injury. Previous studies have shown that the diabetic heart decreased Na+/Ca2+ and Na+/H+ exchanger activity and as such it accumulates less Ca2+ in cardiomyocyte, thus preventing cardiac injury and the associated heart dysfunctions. In addition, the expression of VEGF in diabetic animals leads to increased capillary density before myocardial infarction. Despite poor prognostic in the long-term, all these results suggest that diabetes mellitus and consequently hyperglycemia may indeed play a cardioprotective role against myocardial infarction in the short term. PMID:24976917

  3. Sudden cardiac arrest in sports - need for uniform registration: A Position Paper from the Sport Cardiology Section of the European Association for Cardiovascular Prevention and Rehabilitation.

    Science.gov (United States)

    Solberg, E E; Borjesson, M; Sharma, S; Papadakis, M; Wilhelm, M; Drezner, J A; Harmon, K G; Alonso, J M; Heidbuchel, H; Dugmore, D; Panhuyzen-Goedkoop, N M; Mellwig, K-P; Carre, F; Rasmusen, H; Niebauer, J; Behr, E R; Thiene, G; Sheppard, M N; Basso, C; Corrado, D

    2016-04-01

    There are large variations in the incidence, registration methods and reported causes of sudden cardiac arrest/sudden cardiac death (SCA/SCD) in competitive and recreational athletes. A crucial question is to which degree these variations are genuine or partly due to methodological incongruities. This paper discusses the uncertainties about available data and provides comprehensive suggestions for standard definitions and a guide for uniform registration parameters of SCA/SCD. The parameters include a definition of what constitutes an 'athlete', incidence calculations, enrolment of cases, the importance of gender, ethnicity and age of the athlete, as well as the type and level of sporting activity. A precise instruction for autopsy practice in the case of a SCD of athletes is given, including the role of molecular samples and evaluation of possible doping. Rational decisions about cardiac preparticipation screening and cardiac safety at sport facilities requires increased data quality concerning incidence, aetiology and management of SCA/SCD in sports. Uniform standard registration of SCA/SCD in athletes and leisure sportsmen would be a first step towards this goal. © The European Society of Cardiology 2015.

  4. Increased number of IgG4-positive plasma cells in chronic rhinosinusitis.

    Science.gov (United States)

    Ohno, Keiko; Kimura, Yurika; Matsuda, Yoko; Takahashi, Masatoki; Honjyou, Motomu; Arai, Tomio; Tsutsumi, Takeshi

    2017-02-01

    High levels of IgG4-positive plasma cells were observed in tissue samples from ∼30% of patients with chronic rhinosinusitis who satisfied the comprehensive diagnostic criteria for IgG4-related disease. Detection of increased numbers of IgG4-positive plasma cells in the nasal cavity or paranasal sinuses might not be sufficient to make a diagnosis of IgG4-related rhinosinusitis, and a comprehensive evaluation is required. This study aimed to clarify the clinicopathological characteristics of IgG4-positive plasma cells in patients with chronic rhinosinusitis. This study examined nasal mucosal specimens from 35 patients and assigned them to high-IgG4 and low-IgG4 groups based on infiltration of IgG4-positive plasma cells. It compared the pathological characteristics of the two groups, including the presence of fibrosis, phlebitis, hyperplasia of the nasal glands and infiltration of inflammatory cells. No cases of chronic rhinosinusitis showed storiform fibrosis or obliterative phlebitis. The mean number of IgG4-positive plasma cells in samples from all patients was 29.8 ± 40.3/high-power field. Eleven of the 35 cases (31.4%) were classified as high-IgG4. Hyperplasia of the nasal glands was observed significantly more frequently in the high-IgG4 group than in the low-IgG4 group (p = .03).

  5. Stem cells can form gap junctions with cardiac myocytes and exert pro-arrhythmic effects

    Directory of Open Access Journals (Sweden)

    Nicoline Willemijn Smit

    2014-10-01

    Full Text Available Stem cell therapy has been suggested to be a promising option for regeneration of injured myocardium, for example following a myocardial infarction. For clinical use cell-based therapies have to be safe and applicable and are aimed to renovate the architecture of the heart. Yet for functional and coordinated activity synchronized with the host myocardium stem cells have to be capable of forming electrical connections with resident cardiomyocytes. In this paper we discuss whether stem cells are capable of establishing functional electrotonic connections with cardiomyocytes and whether these may generate a risk for arrhythmias. Application of stem cells in the clinical setting with outcomes concerning arrhythmogenic safety and future perspectives will also briefly be touched upon.

  6. A positive feedback regulation of ISL-1 in DLBCL but not in pancreatic β-cells

    International Nuclear Information System (INIS)

    Zhang, Qiao; Yang, Zhe; Wang, Weiping; Guo, Ting; Jia, Zhuqing; Ma, Kangtao; Zhou, Chunyan

    2014-01-01

    Highlights: • ISL-1 is highly expressed in human pancreatic β-cells and DLBCL. • ISL-1 accelerates the tumorigenesis of DLBCL in vivo. • c-Myc positively regulates ISL-1 expression in DLBCL but not in pancreatic β-cells. • ISL-1 and c-Myc forms an ISL-1/c-Myc transcriptional complex only in DLBCL. • Positive feedback regulation of ISL-1 does not exist in normal pancreatic β-cell. - Abstract: Insulin enhancer binding protein-1 (ISL-1), a LIM-homeodomain transcription factor, has been reported to play essential roles in promoting adult pancreatic β-cells proliferation. Recent studies indicate that ISL-1 may also involve in the occurrence of a variety of tumors. However, whether ISL-1 has any functional effect on tumorigenesis, and what are the differences on ISL-1 function in distinct conditions, are completely unknown. In this study, we found that ISL-1 was highly expressed in human pancreatic β-cells, as well as in diffuse large B cell lymphoma (DLBCL), but to a much less extent in other normal tissues or tumor specimens. Further study revealed that ISL-1 promoted the proliferation of pancreatic β-cells and DLBCL cells, and also accelerated the tumorigenesis of DLBCL in vivo. We also found that ISL-1 could activate c-Myc transcription not only in pancreatic β-cells but also in DLBCL cells. However, a cell-specific feedback regulation was detectable only in DLBCL cells. This auto-regulatory loop was established by the interaction of ISL-1 and c-Myc to form an ISL-1/c-Myc transcriptional complex, and synergistically to promote ISL-1 transcription through binding on the ISL-1 promoter. Taken together, our results demonstrate a positive feedback regulation of ISL-1 in DLBCL but not in pancreatic β-cells, which might result in the functional diversities of ISL-1 in different physiological and pathological processes

  7. A positive feedback regulation of ISL-1 in DLBCL but not in pancreatic β-cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qiao, E-mail: zhangqiao200824@126.com [Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences (Ministry of Education), Peking University, 38 Xueyuan Road, 100191 Beijing (China); Yang, Zhe, E-mail: zheyang@bjmu.edu.cn [Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences (Ministry of Education), Peking University, 38 Xueyuan Road, 100191 Beijing (China); Wang, Weiping, E-mail: wwp@bjmu.edu.cn [Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences (Ministry of Education), Peking University, 38 Xueyuan Road, 100191 Beijing (China); Guo, Ting, E-mail: luckyguoting@bjmu.edu.cn [Department of Gastrointestinal Translation Research, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital, 52 Fucheng Road, 100142 Beijing (China); Jia, Zhuqing, E-mail: zhuqingjia@126.com [Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences (Ministry of Education), Peking University, 38 Xueyuan Road, 100191 Beijing (China); Ma, Kangtao, E-mail: makangtao11@126.com [Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences (Ministry of Education), Peking University, 38 Xueyuan Road, 100191 Beijing (China); Zhou, Chunyan, E-mail: chunyanzhou@bjmu.edu.cn [Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences (Ministry of Education), Peking University, 38 Xueyuan Road, 100191 Beijing (China)

    2014-07-04

    Highlights: • ISL-1 is highly expressed in human pancreatic β-cells and DLBCL. • ISL-1 accelerates the tumorigenesis of DLBCL in vivo. • c-Myc positively regulates ISL-1 expression in DLBCL but not in pancreatic β-cells. • ISL-1 and c-Myc forms an ISL-1/c-Myc transcriptional complex only in DLBCL. • Positive feedback regulation of ISL-1 does not exist in normal pancreatic β-cell. - Abstract: Insulin enhancer binding protein-1 (ISL-1), a LIM-homeodomain transcription factor, has been reported to play essential roles in promoting adult pancreatic β-cells proliferation. Recent studies indicate that ISL-1 may also involve in the occurrence of a variety of tumors. However, whether ISL-1 has any functional effect on tumorigenesis, and what are the differences on ISL-1 function in distinct conditions, are completely unknown. In this study, we found that ISL-1 was highly expressed in human pancreatic β-cells, as well as in diffuse large B cell lymphoma (DLBCL), but to a much less extent in other normal tissues or tumor specimens. Further study revealed that ISL-1 promoted the proliferation of pancreatic β-cells and DLBCL cells, and also accelerated the tumorigenesis of DLBCL in vivo. We also found that ISL-1 could activate c-Myc transcription not only in pancreatic β-cells but also in DLBCL cells. However, a cell-specific feedback regulation was detectable only in DLBCL cells. This auto-regulatory loop was established by the interaction of ISL-1 and c-Myc to form an ISL-1/c-Myc transcriptional complex, and synergistically to promote ISL-1 transcription through binding on the ISL-1 promoter. Taken together, our results demonstrate a positive feedback regulation of ISL-1 in DLBCL but not in pancreatic β-cells, which might result in the functional diversities of ISL-1 in different physiological and pathological processes.

  8. Dose-dependency and reversibility of radiation-induced injury in cardiac explant-derived cells of mice

    Science.gov (United States)

    Luo, Lan; Yan, Chen; Urata, Yoshishige; Hasan, Al Shaimaa; Goto, Shinji; Guo, Chang-Ying; Zhang, Shouhua; Li, Tao-Sheng

    2017-01-01

    We evaluated the dose-dependency and reversibility of radiation-induced injury in cardiac explant-derived cells (CDCs), a mixed cell population grown from heart tissues. Adult C57BL/6 mice were exposed to 0, 10, 50 and 250 mGy γ-rays for 7 days and atrial tissues were collected for experiments 24 hours after last exposure. The number of CDCs was significantly decreased by daily exposure to over 250 mGy. Interestingly, daily exposure to over 50 mGy significantly decreased the c-kit expression and telomerase activity, increased 53BP1 foci in the nuclei of CDCs. However, CD90 expression and growth factors production in CDCs were not significantly changed even after daily exposure to 250 mGy. We further evaluated the reversibility of radiation-induced injury in CDCs at 1 week and 3 weeks after a single exposure to 3 Gy γ-rays. The number and growth factors production of CDCs were soon recovered at 1 week. However, the increased expression of CD90 were retained at 1 week, but recovered at 3 weeks. Moreover, the decreased expression of c-kit, impaired telomerase activity, and increased 53BP1 foci were poorly recovered even at 3 weeks. These data may help us to find the most sensitive and reliable bio-parameter(s) for evaluating radiation-induced injury in CDCs. PMID:28098222

  9. Sickle cell disease and complex congenital cardiac surgery: a case report and review of the pathophysiology and perioperative management.

    Science.gov (United States)

    Sanders, D B; Smith, B P; Sowell, S R; Nguyen, D H; Derby, C; Eshun, F; Nigro, J J

    2014-03-01

    Sickle cell anemia and thalassemia are hemoglobinopathies rarely encountered in the United States. Compounded with congenital heart disease, patients with sickle cell disease (SCD) requiring cardiopulmonary bypass and open-heart surgery represent the proverbial "needle in the haystack". As such, there is some trepidation on the part of clinicians when these patients present for complex cardiac surgery. SCD is an autosomal, recessive condition that results from a single nucleotide polymorphism in the β-globin gene. Hemoglobin SS molecules (HgbSS) with this point mutation can polymerize under the right conditions, stiffening the erythrocyte membrane and distorting the cellular structure to the characteristic sickle shape. This shape change alters cellular transit through the microvasculature. As a result, circumstances such as hypoxia, hypothermia, acidosis or diminished blood flow can lead to aggregation, vascular occlusion and thrombosis. Chronically, SCD can give rise to multiorgan damage secondary to hemolysis and vascular obstruction. This review and case study details an 11-year-old African-American male with known SCD who presented to the cardiothoracic surgical service with congenital heart disease consisting of an anomalous, intramural right coronary artery arising from the left coronary sinus for surgical consultation and subsequent surgical correction. This case report will include a review of the pathophysiology and current literature regarding preoperative, intraoperative and postoperative management of SCD patients.

  10. Role of inflammatory cells and adenosine in lung ischemia reoxygenation injury using a model of lung donation after cardiac death.

    Science.gov (United States)

    Smail, Hassiba; Baste, Jean-Marc; Gay, Arnaud; Begueret, Hugues; Noël, Romain; Morin, Jean-Paul; Litzler, Pierre-Yves

    2016-04-01

    The objective of this study is to analyze the role of inflammation in the lung ischemia reperfusion (IR) injury and determine the protective role of adenosine in an in vitro lung transplantation model. We used a hybrid model of lung donor after cardiac death, with warm ischemia in corpo of varying duration (2 h, 4 h) followed by in vitro lung slices culture for reoxygenation (1 h, 4 h and 24 h), in the presence or not of lymphocytes and of adenosine. To quantify the inflammatory lesions, we performed TNFα, IL2 assays, and histological analysis. In this model of a nonblood perfused system, the addition of lymphocytes during reoxygenation lead to higher rates of TNFα and IL2 after 4 h than after 2 h of warm ischemia (P < .05). These levels increased with the duration of reoxygenation and were maximum at 24 h (P < .05). In the presence of adenosine TNFα and IL2 decreased. After 2 h of warm ischemia, we observed a significant inflammatory infiltration, alveolar thickening and a necrosis of the bronchiolar cells. After 4 h of warm ischemia, alveolar cells necrosis was associated. This model showed that lymphocytes increased the inflammatory response and the histological lesions after 4 h of warm ischemia and that adenosine could have an anti-inflammatory role with potential reconditioning action when used in the pneumoplegia solution.

  11. Higher positive identification of malignant CSF cells using the cytocentrifuge than the Suta chamber

    Directory of Open Access Journals (Sweden)

    Sérgio Monteiro de Almeida

    Full Text Available ABSTRACT Objective To define how to best handle cerebrospinal fluid (CSF specimens to obtain the highest positivity rate for the diagnosis of malignancy, comparing two different methods of cell concentration, sedimentation and cytocentrifugation. Methods A retrospective analysis of 411 CSF reports. Results This is a descriptive comparative study. The positive identification of malignant CSF cells was higher using the centrifuge than that using the Suta chamber (27.8% vs. 19.0%, respectively; p = 0.038. Centrifuge positively identified higher numbers of malignant cells in samples with a normal concentration of white blood cells (WBCs (< 5 cells/mm3 and with more than 200 cells/mm3, although this was not statistically significant. There was no lymphocyte loss using either method. Conclusions Cytocentrifugation positively identified a greater number of malignant cells in the CSF than cytosedimentation with the Suta chamber. However, there was no difference between the methods when the WBC counts were within the normal range.

  12. Inverse relationship between tumour proliferation markers and connexin expression in a malignant cardiac tumour originating from mesenchymal stem cell engineered tissue in a rat in-vivo model.

    Directory of Open Access Journals (Sweden)

    Cathleen eSpath

    2013-04-01

    Full Text Available Background: Recently, we demonstrated the beneficial effects of engineered heart tissues for the treatment of dilated cardiomyopathy in rats. For further development of this technique we started to produce engineered tissue (ET from mesenchymal stem cells. Interestingly, we observed a malignant tumour invading the heart with an inverse relationship between proliferation markers and connexin-expression.Methods: Commercial CD54+/CD90+/CD34-/CD45- bone marrow derived mesenchymal rat stem cells (cBM-MSC, characterized were used for production of mesenchymal stem-cell-ET (MSC-ET by suspending them in a collagen-I, matrigel-mixture and cultivating for 14 days with electrical stimulation. 3 MSC-ET were implanted around the beating heart of adult rats for days. Another 3 MSC-ET were produced from freshly isolated rat bone marrow derived stem cells (sBM-MSC.Results: 3 weeks after implantation of the MSC-ETs the hearts were surgically excised. While in 5/6 cases the ET was clearly distinguishable and was found as a ring containing mostly connective tissue around the heart, in 1/6 the heart was completely surrounded by a huge, undifferentiated, pleomorphic tumour originating from the cMSC-ET (cBM-MSC, classified as a high grade malignant sarcoma. Quantitatively we found a clear inverse relationship between cardiac connexin-expression (Cx43, Cx40 or Cx45 and increased Ki-67 expression (Cx43: p<0.0001, Cx45: p<0.03, Cx40: p<0.014. At the tumour-heart border there were significantly more Ki-67 positive cells (p=0.001, and only 2% Cx45 and Ki-67-expressing cells, while the other connexins were nearly completely absent (p<0.0001.Conclusions and hypothesis: These observations strongly suggest the hypothesis, that invasive tumour growth is accompanied by reduction in connexins. This implicates that gap junction communication between tumour and normal tissue is reduced or absent, which could mean that growth and differentiation signals can not be exchanged.

  13. Apelin enhances cardiac neovascularization after myocardial infarction by recruiting aplnr+ circulating cells

    NARCIS (Netherlands)

    Tempel, D.; de Boer, M.; van Deel, E.D.; Haasdijk, R.A.; Duncker, D.J.G.M.; Cheng, C.; Schulte-Merker, S.; Duckers, H.J.

    2012-01-01

    RATIONALE: Neovascularization stimulated by local or recruited stem cells after ischemia is a key process that salvages damaged tissue and shows similarities with embryonic vascularization. Apelin receptor (Aplnr) and its endogenous ligand apelin play an important role in cardiovascular development.

  14. Apelin Enhances Cardiac Neovascularization After Myocardial Infarction By Recruiting Aplnr+ Circulating Cells

    NARCIS (Netherlands)

    Tempel, D.; Boer, de M.; Deel, van E.D.; Haasdijk, A.; Duncker, D.J.; Cheng, C.; Schulte-Merker, S.; Duckers, H.J.

    2012-01-01

    Rationale: Neovascularization stimulated by local or recruited stem cells after ischemia is a key process that salvages damaged tissue and shows similarities with embryonic vascularization. Apelin receptor (Aplnr) and its endogenous ligand apelin play an important role in cardiovascular development.

  15. Clinicopathological Analysis of Ocular Adnexal Extranodal Marginal Zone B-Cell Lymphoma with IgG4-Positive Cells

    Science.gov (United States)

    Lee, Min Joung; Kim, Namju; Choe, Ji-Young; Khwarg, Sang In; Jeon, Yoon Kyung

    2015-01-01

    This study aims to analyze clinical and pathological characteristics of ocular adnexal extranodal marginal zone B-cell lymphoma (EMZL) accompanying IgG4-positive cells. Fifty patients with a diagnosis of primary non-conjunctival ocular adnexal EMZL were enrolled in this study. The number of IgG4-positive cells and the ratio of IgG/IgG4 were evaluated by immunohistochemistry in the biopsy specimens. The patients were divided into two groups based on the absolute number and the ratio of IgG4-positive cells (IgG4-posivite vs IgG4-negative groups). The demographic data, clinical staging at diagnosis, histopathological characteristics, and response to initial treatment were comparatively analyzed between the 2 groups. Five (10%) of 50 patients were defined as IgG4-positive group, and all the cases showed characteristic histological features such as extensive plasma cell infiltration and dense fibrosis. Most of these patients (4 of 5 patients) had lymphoma of the lacrimal gland. The patients from the IgG4-positive group showed a lower response rate to initial treatment (87.5 vs 33%, p = 0.03) than IgG4-negative group with a median follow-up period of 38 months. A part of the ocular adnexal EMZLs were accompanied with IgG4-positive cells. Significantly, most IgG4-positive ocular adnexal EMZLs occurred in the lacrimal gland, and can be related with a more frequent treatment failure. PMID:26111022

  16. Effect of perilipin-5 on apoptosis of cardiac microvascular endothelial cells induced by high fat and high glucose in mice

    Directory of Open Access Journals (Sweden)

    Jin DU

    2017-12-01

    Full Text Available Objective To investigate the effects and mechanisms of perilipin-5 (Plin5 on the apoptosis of mouse cardiac microvascular endothelial cells induced by high fat and high glucose. Methods The mouse cardiac microvascular endothelial cells (MCMECs cultured with high glucose medium were respectively given 0, 100, 300 and 500μmol/L palmitic acid for 24 hours. In order to explore the effects and mechanisms of Plin5 on MCMECs injuries induced by high fat and high glucose, MCMECs exposed to 300μmol/L palmitic acid for 24 hours were divided into control group, Scra siRNA group and Plin5 siRNA group. The control group was only treated with transfection reagent, the Scra siRNA group was given treatment of transfection reagent and garbled RNA, the Plin5 siRNA group was given treatment of transfection reagent and Plin5 specific siRNA. In order to further confirm the specific mechanism of Plin5 in high fat/glucose inducing MCMECs injury, MCMECs in Plin5 siRNA group were divided into vehicle group and N-acetyl cysteine (NAC group, and given the same intervention of high fat. The apoptotic rate was detected by flow cytometry, qRT-PCR and Western blotting were respectively used to detect the mRNA and protein expression of Plin5, and the intracellular reactive oxygen species (ROS level was tested by DHE staining and ELISA kit. Results The apoptotic rate of MCMECs was increased in a fat concentration-dependent manner (P<0.05. Compared with 0μmol/L palmitic acid group, the intracellular ROS content and the expression of Plin5 increased significantly in 300μmol/L palmitic acid group (P<0.05. Compared with the control group and the Scra siRNA group, the intracellular ROS content and apoptotic rate increased significantly in Plin5 siRNA group under the action of 300μmol/L palmitic acid (P<0.05. Compared with the vehicle group, the intracellular ROS content and apoptotic rate decreased remarkably in NAC group (P<0.05. Conclusion With inhibition of oxidative stress

  17. A Positive Control for Detection of Functional CD4 T Cells in PBMC: The CPI Pool.

    Science.gov (United States)

    Schiller, Annemarie; Zhang, Ting; Li, Ruliang; Duechting, Andrea; Sundararaman, Srividya; Przybyla, Anna; Kuerten, Stefanie; Lehmann, Paul V

    2017-12-07

    Testing of peripheral blood mononuclear cells (PBMC) for immune monitoring purposes requires verification of their functionality. This is of particular concern when the PBMC have been shipped or stored for prolonged periods of time. While the CEF (Cytomegalo-, Epstein-Barr and Flu-virus) peptide pool has become the gold standard for testing CD8 cell functionality, a positive control for CD4 cells is so far lacking. The latter ideally consists of proteins so as to control for the functionality of the antigen processing and presentation compartments, as well. Aiming to generate a positive control for CD4 cells, we first selected 12 protein antigens from infectious/environmental organisms that are ubiquitous: Varicella, Influenza, Parainfluenza, Mumps, Cytomegalovirus, Streptococcus , Mycoplasma , Lactobacillus , Neisseria , Candida , Rubella, and Measles. Of these antigens, three were found to elicited interferon (IFN)-γ-producing CD4 cells in the majority of human test subjects: inactivated cytomegalo-, parainfluenza-, and influenza virions (CPI). While individually none of these three antigens triggered a recall response in all donors, the pool of the three (the 'CPI pool'), did. One hundred percent of 245 human donors tested were found to be CPI positive, including Caucasians, Asians, and African-Americans. Therefore, the CPI pool appears to be suitable to serve as universal positive control for verifying the functionality of CD4 and of antigen presenting cells.

  18. Tyrosine hydroxylase positive nerves and mast cells in the porcine gallbladder

    Directory of Open Access Journals (Sweden)

    I. Stefanov

    2017-03-01

    Full Text Available The aim of this study was to detect the localisation of tyrosine hydroxylase (TH positive nerve fibres (THN and distribution of tyrosine hydroxylase positive mast cells (THMC in the wall of porcine gallbladder. THN were observed as single fibres, nerve fibres forming perivascular plexuses and nerve fibres grouped within the nerve fascicles. In the gallbladder`s fundus, body and neck, the TH+ fibres formed mucosal, muscular and serosal nonganglionated nerve plexuses. Toluidine blue (TB staining was used to confirm that the TH positive cells were mast cells. The number of THMC in the propria of gallbladder`s fundus, body and neck was significantly higher than in the muscular and serosal layers in both genders. The number of mast cells in the musculature was higher than in the serosa. The density and location of the THMC were similar to the TB positive (with gamma meta-chromasia mast cells in both males and females, and statistically significant difference was not established. In conclusion, original data concerning the existence and localisation of catecholaminergic nerves and THMC distribution in the porcine gallbladder’s wall are presented. The results could con-tribute to the body of knowledge of functional communication between autonomic nerves and mast cells in the gallbladder.

  19. Molecular imaging in stem cell-based therapies of cardiac diseases.

    Science.gov (United States)

    Li, Xiang; Hacker, Marcus

    2017-10-01

    In the past 15years, despite that regenerative medicine has shown great potential for cardiovascular diseases, the outcome and safety of stem cell transplantation has shown controversial results in the published literature. Medical imaging might be useful for monitoring and quantifying transplanted cells within the heart and to serially characterize the effects of stem cell therapy of the myocardium. From the multiple available noninvasive imaging techniques, magnetic resonance imaging and nuclear imaging by positron (PET) or single photon emission computer tomography (SPECT) are the most used clinical approaches to follow the fate of transplanted stem cells in vivo. In this article, we provide a review on the role of different noninvasive imaging modalities and discuss their advantages and disadvantages. We focus on the different in-vivo labeling and reporter gene imaging strategies for stem cell tracking as well as the concept and reliability to use imaging parameters as noninvasive surrogate endpoints for the evaluation of the post-therapeutic outcome. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. PDGFBB promotes PDGFRα-positive cell migration into artificial bone in vivo

    International Nuclear Information System (INIS)

    Yoshida, Shigeyuki; Iwasaki, Ryotaro; Kawana, Hiromasa; Miyauchi, Yoshiteru; Hoshi, Hiroko; Miyamoto, Hiroya; Mori, Tomoaki; Kanagawa, Hiroya; Katsuyama, Eri; Fujie, Atsuhiro; Hao, Wu

    2012-01-01

    Highlights: ► We examined effects of PDGFBB in PDGFRα positive cell migration in artificial bones. ► PDGFBB was not expressed in osteoblastic cells but was expressed in peripheral blood cells. ► PDGFBB promoted PDGFRα positive cell migration into artificial bones but not osteoblast proliferation. ► PDGFBB did not inhibit osteoblastogenesis. -- Abstract: Bone defects caused by traumatic bone loss or tumor dissection are now treated with auto- or allo-bone graft, and also occasionally by artificial bone transplantation, particularly in the case of large bone defects. However, artificial bones often exhibit poor affinity to host bones followed by bony union failure. Thus therapies combining artificial bones with growth factors have been sought. Here we report that platelet derived growth factor bb (PDGFBB) promotes a significant increase in migration of PDGF receptor α (PDGFRα)-positive mesenchymal stem cells/pre-osteoblastic cells into artificial bone in vivo. Growth factors such as transforming growth factor beta (TGFβ) and hepatocyte growth factor (HGF) reportedly inhibit osteoblast differentiation; however, PDGFBB did not exhibit such inhibitory effects and in fact stimulated osteoblast differentiation in vitro, suggesting that combining artificial bones with PDGFBB treatment could promote host cell migration into artificial bones without inhibiting osteoblastogenesis.

  1. CD147 knockdown improves the antitumor efficacy of trastuzumab in HER2-positive breast cancer cells.

    Science.gov (United States)

    Xiong, Lijuan; Ding, Li; Ning, Haoyong; Wu, Chenglin; Fu, Kaifei; Wang, Yuxiao; Zhang, Yan; Liu, Yan; Zhou, Lijun

    2016-09-06

    Trastuzumab is widely used in the clinical treatment of human epidermal growth factor receptor-2 (HER2)-positive breast cancer, but the patient response rate is low. CD147 stimulates cancer cell proliferation, migration, metastasis and differentiation and is involved in chemoresistance in many types of cancer cells. Whether CD147 alters the effect of trastuzumab on HER2-positive breast cancer cells has not been previously reported. Our study confirmed that CD147 suppression enhances the effects of trastuzumab both in vitro and in vivo. CD147 suppression increased the inhibitory rate of trastuzumab and cell apoptosis in SKBR3, BT474, HCC1954 and MDA-MB453 cells compared with the controls. Furthermore, CD147 knockdown increased expression of cleaved Caspase-3/9 and poly (ADP-ribose) polymerase (PARP) and decreased both mitogen-activated protein kinase (MAPK) and Akt phosphorylation in the four cell lines. In an HCC1954 xenograft model, trastuzumab achieved greater suppression of tumor growth in the CD147-knockdown group than in the shRNA negative control (NC) group. These data indicated that enhancement of the effect of trastuzumab on HER2-positive cells following CD147 knockdown might be attributed to increased apoptosis and decreased phosphorylation of signaling proteins. CD147 may be a key protein for enhancing the clinical efficacy of trastuzumab.

  2. Positioning of the NOR-bearing chromosomes in relation to nucleoli in daughter cells after mitosis.

    Science.gov (United States)

    Kalmárová, M; Smirnov, E; Kovácik, L; Popov, A; Raska, I

    2008-01-01

    It is known that chromosomes occupy non-random positions in the cell nucleus. However, it is not clear to what extent their nuclear positions, together with their neighborhood, are conserved in daughter cells. To address specific aspects of this problem, we used the model of the chromosomes carrying ribosomal genes that are organized in clusters termed Nucleolus Organizer Regions (NORs). We compared the association of chosen NOR-bearing chromosomes (NOR-chromosomes) with nucleoli, as well as the numbers of nucleoli, in the pairs of daughter cells, and established how frequently the daughter cells had equal numbers of the homologs of certain NOR-chromosomes associated with individual nucleoli. The daughter cells typically had different numbers of nucleoli. At the same time, using immuno-FISH with probes for chromosomes 14 and 15 in HeLa cells, we found that the cell pairs with identical combinations appeared significantly more frequently than predicted by the random model. Thus, although the total number of chromosomes associated with nucleoli is variable, our data indicate that the position of the NOR-bearing chromosomes in relation to nucleoli is partly conserved through mitosis.

  3. PDGFBB promotes PDGFR{alpha}-positive cell migration into artificial bone in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Shigeyuki [Department of Dentistry and Oral Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582 (Japan); Center for Human Metabolomic Systems Biology, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582 (Japan); Iwasaki, Ryotaro; Kawana, Hiromasa [Department of Dentistry and Oral Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582 (Japan); Miyauchi, Yoshiteru [Center for Human Metabolomic Systems Biology, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582 (Japan); Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582 (Japan); Department of Integrated Bone Metabolism and Immunology, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582 (Japan); Hoshi, Hiroko; Miyamoto, Hiroya; Mori, Tomoaki [Center for Human Metabolomic Systems Biology, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582 (Japan); Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582 (Japan); Kanagawa, Hiroya [Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582 (Japan); Katsuyama, Eri; Fujie, Atsuhiro [Center for Human Metabolomic Systems Biology, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582 (Japan); Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582 (Japan); Hao, Wu [Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582 (Japan); and others

    2012-05-18

    Highlights: Black-Right-Pointing-Pointer We examined effects of PDGFBB in PDGFR{alpha} positive cell migration in artificial bones. Black-Right-Pointing-Pointer PDGFBB was not expressed in osteoblastic cells but was expressed in peripheral blood cells. Black-Right-Pointing-Pointer PDGFBB promoted PDGFR{alpha} positive cell migration into artificial bones but not osteoblast proliferation. Black-Right-Pointing-Pointer PDGFBB did not inhibit osteoblastogenesis. -- Abstract: Bone defects caused by traumatic bone loss or tumor dissection are now treated with auto- or allo-bone graft, and also occasionally by artificial bone transplantation, particularly in the case of large bone defects. However, artificial bones often exhibit poor affinity to host bones followed by bony union failure. Thus therapies combining artificial bones with growth factors have been sought. Here we report that platelet derived growth factor bb (PDGFBB) promotes a significant increase in migration of PDGF receptor {alpha} (PDGFR{alpha})-positive mesenchymal stem cells/pre-osteoblastic cells into artificial bone in vivo. Growth factors such as transforming growth factor beta (TGF{beta}) and hepatocyte growth factor (HGF) reportedly inhibit osteoblast differentiation; however, PDGFBB did not exhibit such inhibitory effects and in fact stimulated osteoblast differentiation in vitro, suggesting that combining artificial bones with PDGFBB treatment could promote host cell migration into artificial bones without inhibiting osteoblastogenesis.

  4. Positioning of the sensor cell on the sensing area using cell trapping pattern in incubation type planar patch clamp biosensor.

    Science.gov (United States)

    Wang, Zhi-Hong; Takada, Noriko; Uno, Hidetaka; Ishizuka, Toru; Yawo, Hiromu; Urisu, Tsuneo

    2012-08-01

    Positioning the sensor cell on the micropore of the sensor chip and keeping it there during incubation are problematic tasks for incubation type planar patch clamp biosensors. To solve these problems, we formed on the Si sensor chip's surface a cell trapping pattern consisting of a lattice pattern with a round area 5 μm deep and with the micropore at the center of the round area. The surface of the sensor chip was coated with extra cellular matrix collagen IV, and HEK293 cells on which a chimera molecule of channel-rhodopsin-wide-receiver (ChR-WR) was expressed, were then seeded. We examined the effects of this cell trapping pattern on the biosensor's operation. In the case of a flat sensor chip without a cell trapping pattern, it took several days before the sensor cell covered the micropore and formed an almost confluent state. As a result, multi-cell layers easily formed and made channel current measurements impossible. On the other hand, the sensor chip with cell trapping pattern easily trapped cells in the round area, and formed the colony consisted of the cell monolayer covering the micropore. A laser (473 nm wavelength) induced channel current was observed from the whole cell arrangement formed using the nystatin perforation technique. The observed channel current characteristics matched measurements made by using a pipette patch clamp. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Chemical analysis of isolated cell walls of Gram-positive bacteria and the determination of the cell wall to cell mass ratio.

    NARCIS (Netherlands)

    Wal, van der A.; Norde, W.; Bendinger, B.; Zehnder, A.J.B.; Lyklema, J.

    1997-01-01

    Cell walls of five Gram-positive bacterial strains, including four coryneforms and a Bacillus brevis strain were isolated and subsequently chemically analysed. The wall contribution to the total cell mass is calculated from a comparison of D-Lactate concentrations in hydrolysates of whole cells and

  6. Discovery and progress of direct cardiac reprogramming.

    Science.gov (United States)

    Kojima, Hidenori; Ieda, Masaki

    2017-06-01

    Cardiac disease remains a major cause of death worldwide. Direct cardiac reprogramming has emerged as a promising approach for cardiac regenerative therapy. After the discovery of MyoD, a master regulator for skeletal muscle, other single cardiac reprogramming factors (master regulators) have been sought. Discovery of cardiac reprogramming factors was inspired by the finding that multiple, but not single, transcription factors were needed to generate induced pluripotent stem cells (iPSCs) from fibroblasts. We first reported a combination of cardiac-specific transcription factors, Gata4, Mef2c, and Tbx5 (GMT), that could convert mouse fibroblasts into cardiomyocyte-like cells, which were designated as induced cardiomyocyte-like cells (iCMs). Following our first report of cardiac reprogramming, many researchers, including ourselves, demonstrated an improvement in cardiac reprogramming efficiency, in vivo direct cardiac reprogramming for heart regeneration, and cardiac reprogramming in human cells. However, cardiac reprogramming in human cells and adult fibroblasts remains inefficient, and further efforts are needed. We believe that future research elucidating epigenetic barriers and molecular mechanisms of direct cardiac reprogramming will improve the reprogramming efficiency, and that this new technology has great potential for clinical applications.

  7. Hypokalemia and sudden cardiac death

    DEFF Research Database (Denmark)

    Kjeldsen, Keld

    2010-01-01

    Worldwide, approximately three million people suffer sudden cardiac death annually. These deaths often emerge from a complex interplay of substrates and triggers. Disturbed potassium homeostasis among heart cells is an example of such a trigger. Thus, hypokalemia and, also, more transient...... of fatal arrhythmia and sudden cardiac death a patient is, the more attention should be given to the potassium homeostasis....

  8. Argyrophilic nucleolar organizer region in MIB-1 positive cells in non-small cell lung cancer: clinicopathological significance and survival

    International Nuclear Information System (INIS)

    Kobyakov, Dmitriy Sergeevich; Avdalyan, Ashot Merudzhanovich; Lazarev, Aleksandr Fedorovich; Lushnikova, Elena Leonidovna; Nepomnyashchikh, Lev Moiseevich

    2014-01-01

    To evaluate the relation between argyrophilic nucleolar organizer region (AgNOR)-associated proteins and clinicopathological parameters and survival in non-small-cell lung cancer (NSCLC). A total of 207 surgical specimens diagnosed as NSCLC were included in this study. Double-staining procedures were performed using antigen Ki-67 (clone MIB-1) and silver nitrate by immunohistochemical and AgNOR-staining methods. The AgNOR area in MIB-1-positive cells of NSCLC is related to clinicopathological parameters under the TNM (tumor, node, and metastasis) system. The survival of patients with small AgNOR area in MIB-1-positive cells is better than that of patients with large AgNOR area. Molecular, biological (AgNOR area in MIB-1-positive cells), and clinicopathological (greatest tumor dimension, metastases to regional lymph nodes, histology, and differentiation) parameters are independent prognostic factors of NSCLC. The AgNOR area in MIB-1-positive cells is related to clinicopathological parameters and survival in NSCLC

  9. From cell to bedside: some pathophysiologic considerations about the cardiac stimulation

    International Nuclear Information System (INIS)

    Gutierrez, O.

    2013-01-01

    Myocardial cell pathophysiology is presented as related to possible modification by electrical stimulation of the myocardium. The objective is a diagnostic and therapeutic clinical application such as is seen with bradyarrhythmias and tachyarrhythmias. In addition, the E C is an essential tool during catheter ablation procedures

  10. Membrane tension controls adhesion positioning at the leading edge of cells.

    Science.gov (United States)

    Pontes, Bruno; Monzo, Pascale; Gole, Laurent; Le Roux, Anabel-Lise; Kosmalska, Anita Joanna; Tam, Zhi Yang; Luo, Weiwei; Kan, Sophie; Viasnoff, Virgile; Roca-Cusachs, Pere; Tucker-Kellogg, Lisa; Gauthier, Nils C

    2017-09-04

    Cell migration is dependent on adhesion dynamics and actin cytoskeleton remodeling at the leading edge. These events may be physically constrained by the plasma membrane. Here, we show that the mechanical signal produced by an increase in plasma membrane tension triggers the positioning of new rows of adhesions at the leading edge. During protrusion, as membrane tension increases, velocity slows, and the lamellipodium buckles upward in a myosin II-independent manner. The buckling occurs between the front of the lamellipodium, where nascent adhesions are positioned in rows, and the base of the lamellipodium, where a vinculin-dependent clutch couples actin to previously positioned adhesions. As membrane tension decreases, protrusion resumes and buckling disappears, until the next cycle. We propose that the mechanical signal of membrane tension exerts upstream control in mechanotransduction by periodically compressing and relaxing the lamellipodium, leading to the positioning of adhesions at the leading edge of cells. © 2017 Pontes et al.

  11. Microcirculation within Grooved Substrates regulates Cell Positioning and Cell Docking inside Microfluidic Channels

    Science.gov (United States)

    Manbachi, Amir; Shrivastava, Shamit; Cioffi, Margherita; Chung, Bong Geun; Moretti, Matteo; Demirci, Utkan; Yliperttula, Marjo; Khademhosseini, Ali

    2009-01-01

    Immobilization of cells inside microfluidic devices is a promising approach for enabling studies related to drug screening and cell biology. Despite extensive studies in using grooved substrates for immobilizing cells inside channels, a systematic study of the effects of various parameters that influence cell docking and retention within grooved substrates has not been performed. We demonstrate using computational simulations that the fluid dynamic environment within microgrooves significantly varies with groove width, generating micro-circulation areas in smaller microgrooves. Wall shear stress simulation predicted that shear stresses were in opposite direction in smaller grooves (25 and 50 μm wide) in comparison to those in wider grooves (75 and 100 μm wide). To validate the simulations, cells were seeded within microfluidic devices, where microgrooves of different widths were aligned perpendicularly to the direction of the flow. Experimental results showed that, as predicted, the inversion of the local direction of shear stress within the smaller grooves resulted in alignment of cells on two opposite sides of the grooves under the same flow conditions. Also, the amplitude of shear stress within microgrooved channels significantly influenced cell retainment in the channels. Therefore, our studies suggest that microscale shear stresses greatly influence cellular docking, immobilization, and retention in fluidic systems and should be considered for the design of cell-based microdevices. PMID:18432345

  12. Reduced H3K27me3 expression in Merkel cell polyoma virus-positive tumors.

    Science.gov (United States)

    Busam, Klaus J; Pulitzer, Melissa P; Coit, Daniel C; Arcila, Maria; Leng, Danielle; Jungbluth, Achim A; Wiesner, Thomas

    2017-06-01

    Merkel cell carcinoma is a primary cutaneous neuroendocrine carcinoma, which once metastatic is difficult to treat. Recent mutation analyses of Merkel cell carcinoma revealed a low number of mutations in Merkel cell polyomavirus-associated tumors, and a high number of mutations in virus-negative combined squamous cell and neuroendocrine carcinomas of chronically sun-damaged skin. We speculated that the paucity of mutations in virus-positive Merkel cell carcinoma may reflect a pathomechanism that depends on derangements of chromatin without alterations in the DNA sequence (epigenetic dysregulation). One central epigenetic regulator is the Polycomb repressive complex 2 (PRC2), which silences genomic regions by trimethylating (me3) lysine (K) 27 of histone H3, and thereby establishes the histone mark H3K27me3. Recent experimental research data demonstrated that PRC2 loss in mice skin results in the formation of Merkel cells. Prompted by these findings, we explored a possible contribution of PRC2 loss in human Merkel cell carcinoma. We examined the immunohistochemical expression of H3K27me3 in 35 Merkel cell carcinomas with pure histological features (22 primary and 13 metastatic lesions) and in 5 combined squamous and neuroendocrine carcinomas of the skin. We found a strong reduction of H3K27me3 staining in tumors with pure histologic features and virus-positive Merkel cell carcinomas. Combined neuroendocrine carcinomas had no or only minimal loss of H3K27me3 labeling. Our findings suggest that a PRC2-mediated epigenetic deregulation may play a role in the pathogenesis of virus-positive Merkel cell carcinomas and in tumors with pure histologic features.

  13. Seven-Year Follow-Up Assessment of Cardiac Function in NSABP B-31, a Randomized Trial Comparing Doxorubicin and Cyclophosphamide Followed by Paclitaxel (ACP) With ACP Plus Trastuzumab As Adjuvant Therapy for Patients With Node-Positive, Human Epidermal Growth Factor Receptor 2–Positive Breast Cancer

    Science.gov (United States)

    Romond, Edward H.; Jeong, Jong-Hyeon; Rastogi, Priya; Swain, Sandra M.; Geyer, Charles E.; Ewer, Michael S.; Rathi, Vikas; Fehrenbacher, Louis; Brufsky, Adam; Azar, Catherine A.; Flynn, Patrick J.; Zapas, John L.; Polikoff, Jonathan; Gross, Howard M.; Biggs, David D.; Atkins, James N.; Tan-Chiu, Elizabeth; Zheng, Ping; Yothers, Greg; Mamounas, Eleftherios P.; Wolmark, Norman

    2012-01-01

    Purpose Cardiac dysfunction (CD) is a recognized risk associated with the addition of trastuzumab to adjuvant chemotherapy for human epidermal growth factor receptor 2–positive breast cancer, especially when the treatment regimen includes anthracyclines. Given the demonstrated efficacy of trastuzumab, ongoing assessment of cardiac safety and identification of risk factors for CD are important for optimal patient care. Patients and Methods In National Surgical Adjuvant Breast and Bowel Project B-31, a phase III adjuvant trial, 1,830 patients who met eligibility criteria for initiation of trastuzumab were evaluated for CD. Recovery from CD was also assessed. A statistical model was developed to estimate the risk of severe congestive heart failure (CHF). Baseline patient characteristics associated with anthracycline-related decline in cardiac function were also identified. Results At 7-year follow-up, 37 (4.0%) of 944 patients who received trastuzumab experienced a cardiac event (CE) versus 10 (1.3%) of 743 patients in the control arm. One cardiac-related death has occurred in each arm of the protocol. A Cardiac Risk Score, calculated using patient age and baseline left ventricular ejection fraction (LVEF) by multiple-gated acquisition scan, statistically correlates with the risk of a CE. After stopping trastuzumab, the majority of patients who experienced CD recovered LVEF in the normal range, although some decline from baseline often persists. Only two CEs occurred more than 2 years after initiation of trastuzumab. Conclusion The late development of CHF after the addition of trastuzumab to paclitaxel after doxorubicin/ cyclophosphamide chemotherapy is uncommon. The risk versus benefit of trastuzumab as given in this regimen remains strongly in favor of trastuzumab. PMID:22987084

  14. Islet Cells Serve as Cells of Origin of Pancreatic Gastrin-Positive Endocrine Tumors.

    Science.gov (United States)

    Bonnavion, Rémy; Teinturier, Romain; Jaafar, Rami; Ripoche, Doriane; Leteurtre, Emmanuelle; Chen, Yuan-Jia; Rehfeld, Jens F; Lepinasse, Florian; Hervieu, Valérie; Pattou, François; Vantyghem, Marie-Christine; Scoazec, Jean-Yves; Bertolino, Philippe; Zhang, Chang Xian

    2015-10-01

    The cells of origin of pancreatic gastrinomas remain an enigma, since no gastrin-expressing cells are found in the normal adult pancreas. It was proposed that the cellular origin of pancreatic gastrinomas may come from either the pancreatic cells themselves or gastrin-expressing cells which have migrated from the duodenum. In the current study, we further characterized previously described transient pancreatic gastrin-expressing cells using cell lineage tracing in a pan-pancreatic progenitor and a pancreatic endocrine progenitor model. We provide evidence showing that pancreatic gastrin-e