WorldWideScience

Sample records for population size genetic

  1. Noninvasive genetics provides insights into the population size and genetic diversity of an Amur tiger population in China.

    Science.gov (United States)

    Wang, Dan; Hu, Yibo; Ma, Tianxiao; Nie, Yonggang; Xie, Yan; Wei, Fuwen

    2016-01-01

    Understanding population size and genetic diversity is critical for effective conservation of endangered species. The Amur tiger (Panthera tigris altaica) is the largest felid and a flagship species for wildlife conservation. Due to habitat loss and human activities, available habitat and population size are continuously shrinking. However, little is known about the true population size and genetic diversity of wild tiger populations in China. In this study, we collected 55 fecal samples and 1 hair sample to investigate the population size and genetic diversity of wild Amur tigers in Hunchun National Nature Reserve, Jilin Province, China. From the samples, we determined that 23 fecal samples and 1 hair sample were from 7 Amur tigers: 2 males, 4 females and 1 individual of unknown sex. Interestingly, 2 fecal samples that were presumed to be from tigers were from Amur leopards, highlighting the significant advantages of noninvasive genetics over traditional methods in studying rare and elusive animals. Analyses from this sample suggested that the genetic diversity of wild Amur tigers is much lower than that of Bengal tigers, consistent with previous findings. Furthermore, the genetic diversity of this Hunchun population in China was lower than that of the adjoining subpopulation in southwest Primorye Russia, likely due to sampling bias. Considering the small population size and relatively low genetic diversity, it is urgent to protect this endangered local subpopulation in China. © 2015 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

  2. Change in genetic size of small-closed populations: lessons from a domestic mammal population

    Directory of Open Access Journals (Sweden)

    Farhad Ghafouri-Kesbi

    2010-01-01

    Full Text Available The aim of this study was to monitor changes in genetic size of a small-closed population of Iranian Zandi sheep, by using pedigree information from animals born between 1991 and 2005. The genetic size was assessed by using measures based on the probability of identity-by-descend of genes (coancestry, f, and effective population size, Ne, as well as measures based on probability of gene origin (effective number of founders, f e, effective number of founder genomes, f g, and effective number of non-founder genomes, f ne. Average coancestry, or the degree of genetic similarity of individuals, increased from 0.81% to 1.44% during the period 1993 to 2005, at the same time that Ne decreased from 263 to 93. The observed trend for f e was irregular throughout the experiment in a way that f e was 68, 87, 77, 92, and 80 in 1993, 1996, 1999, 2002, and 2005, respectively. Simultaneously, f g, the most informative effective number, decreased from 61 to 35. The index of genetic diversity (GD which was obtained from estimates of f g,decreased about 2% throughout the period studied. In addition, a noticeable reduction was observed in the estimates of f ne from 595 in 1993 to 61 in 2005. The higher than 1 ratio of f e to f g indicated the presence of bottlenecks and genetic drift in the development of this population of Zandi sheep. From 1993 to 1999, f ne was much higher than f e, thereby indicating that with respect to loss of genetic diversity, the unequal contribution of founders was more important than the random genetic drift in non-founder generations. Subsequently, random genetic drift in non-founder generations was the major reason for f e> f ne. The minimization of average coancestry in new reproductive individuals was recommended as a means of preserving the population against a further loss in genetic diversity.

  3. Change in genetic size of small-closed populations: Lessons from a domestic mammal population.

    Science.gov (United States)

    Ghafouri-Kesbi, Farhad

    2010-10-01

    The aim of this study was to monitor changes in genetic size of a small-closed population of Iranian Zandi sheep, by using pedigree information from animals born between 1991 and 2005. The genetic size was assessed by using measures based on the probability of identity-by-descend of genes (coancestry, f, and effective population size, N(e) ), as well as measures based on probability of gene origin (effective number of founders, f(e) , effective number of founder genomes, f(g) , and effective number of non-founder genomes, f(ne) ). Average coancestry, or the degree of genetic similarity of individuals, increased from 0.81% to 1.44% during the period 1993 to 2005, at the same time that N(e) decreased from 263 to 93. The observed trend for f(e) was irregular throughout the experiment in a way that f(e) was 68, 87, 77, 92, and 80 in 1993, 1996, 1999, 2002, and 2005, respectively. Simultaneously, f(g) , the most informative effective number, decreased from 61 to 35. The index of genetic diversity (GD) which was obtained from estimates of f(g) , decreased about 2% throughout the period studied. In addition, a noticeable reduction was observed in the estimates of f(ne) from 595 in 1993 to 61 in 2005. The higher than 1 ratio of f(e) to f(g) indicated the presence of bottlenecks and genetic drift in the development of this population of Zandi sheep. From 1993 to 1999, f(ne) was much higher than f(e) , thereby indicating that with respect to loss of genetic diversity, the unequal contribution of founders was more important than the random genetic drift in non-founder generations. Subsequently, random genetic drift in non-founder generations was the major reason for f(e) > f(ne) . The minimization of average coancestry in new reproductive individuals was recommended as a means of preserving the population against a further loss in genetic diversity.

  4. Population-based resequencing of experimentally evolved populations reveals the genetic basis of body size variation in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Thomas L Turner

    2011-03-01

    Full Text Available Body size is a classic quantitative trait with evolutionarily significant variation within many species. Locating the alleles responsible for this variation would help understand the maintenance of variation in body size in particular, as well as quantitative traits in general. However, successful genome-wide association of genotype and phenotype may require very large sample sizes if alleles have low population frequencies or modest effects. As a complementary approach, we propose that population-based resequencing of experimentally evolved populations allows for considerable power to map functional variation. Here, we use this technique to investigate the genetic basis of natural variation in body size in Drosophila melanogaster. Significant differentiation of hundreds of loci in replicate selection populations supports the hypothesis that the genetic basis of body size variation is very polygenic in D. melanogaster. Significantly differentiated variants are limited to single genes at some loci, allowing precise hypotheses to be formed regarding causal polymorphisms, while other significant regions are large and contain many genes. By using significantly associated polymorphisms as a priori candidates in follow-up studies, these data are expected to provide considerable power to determine the genetic basis of natural variation in body size.

  5. Population size, center-periphery, and seed dispersers' effects on the genetic diversity and population structure of the Mediterranean relict shrub Cneorum tricoccon.

    Science.gov (United States)

    Lázaro-Nogal, Ana; Matesanz, Silvia; García-Fernández, Alfredo; Traveset, Anna; Valladares, Fernando

    2017-09-01

    The effect of population size on population genetic diversity and structure has rarely been studied jointly with other factors such as the position of a population within the species' distribution range or the presence of mutualistic partners influencing dispersal. Understanding these determining factors for genetic variation is critical for conservation of relict plants that are generally suffering from genetic deterioration. Working with 16 populations of the vulnerable relict shrub Cneorum tricoccon throughout the majority of its western Mediterranean distribution range, and using nine polymorphic microsatellite markers, we examined the effects of periphery (peripheral vs. central), population size (large vs. small), and seed disperser (introduced carnivores vs. endemic lizards) on the genetic diversity and population structure of the species. Contrasting genetic variation ( H E : 0.04-0.476) was found across populations. Peripheral populations showed lower genetic diversity, but this was dependent on population size. Large peripheral populations showed high levels of genetic diversity, whereas small central populations were less diverse. Significant isolation by distance was detected, indicating that the effect of long-distance gene flow is limited relative to that of genetic drift, probably due to high selfing rates ( F IS  = 0.155-0.887), restricted pollen flow, and ineffective seed dispersal. Bayesian clustering also supported the strong population differentiation and highly fragmented structure. Contrary to expectations, the type of disperser showed no significant effect on either population genetic diversity or structure. Our results challenge the idea of an effect of periphery per se that can be mainly explained by population size, drawing attention to the need of integrative approaches considering different determinants of genetic variation. Furthermore, the very low genetic diversity observed in several small populations and the strong among-population

  6. Revealing life-history traits by contrasting genetic estimations with predictions of effective population size.

    Science.gov (United States)

    Greenbaum, Gili; Renan, Sharon; Templeton, Alan R; Bouskila, Amos; Saltz, David; Rubenstein, Daniel I; Bar-David, Shirli

    2017-12-22

    Effective population size, a central concept in conservation biology, is now routinely estimated from genetic surveys and can also be theoretically predicted from demographic, life-history, and mating-system data. By evaluating the consistency of theoretical predictions with empirically estimated effective size, insights can be gained regarding life-history characteristics and the relative impact of different life-history traits on genetic drift. These insights can be used to design and inform management strategies aimed at increasing effective population size. We demonstrated this approach by addressing the conservation of a reintroduced population of Asiatic wild ass (Equus hemionus). We estimated the variance effective size (N ev ) from genetic data (N ev =24.3) and formulated predictions for the impacts on N ev of demography, polygyny, female variance in lifetime reproductive success (RS), and heritability of female RS. By contrasting the genetic estimation with theoretical predictions, we found that polygyny was the strongest factor affecting genetic drift because only when accounting for polygyny were predictions consistent with the genetically measured N ev . The comparison of effective-size estimation and predictions indicated that 10.6% of the males mated per generation when heritability of female RS was unaccounted for (polygyny responsible for 81% decrease in N ev ) and 19.5% mated when female RS was accounted for (polygyny responsible for 67% decrease in N ev ). Heritability of female RS also affected N ev ; hf2=0.91 (heritability responsible for 41% decrease in N ev ). The low effective size is of concern, and we suggest that management actions focus on factors identified as strongly affecting Nev, namely, increasing the availability of artificial water sources to increase number of dominant males contributing to the gene pool. This approach, evaluating life-history hypotheses in light of their impact on effective population size, and contrasting

  7. Interspecific hybridization contributes to high genetic diversity and apparent effective population size in an endemic population of mottled ducks (Anas fulvigula maculosa)

    Science.gov (United States)

    Peters, Jeffrey L.; Sonsthagen, Sarah A.; Lavretsky, Philip; Rezsutek, Michael; Johnson, William P.; McCracken, Kevin G.

    2014-01-01

    Under drift-mutation equilibrium, genetic diversity is expected to be correlated with effective population size (Ne). Changes in population size and gene flow are two important processes that can cause populations to deviate from this expected relationship. In this study, we used DNA sequences from six independent loci to examine the influence of these processes on standing genetic diversity in endemic mottled ducks (Anas fulvigula) and geographically widespread mallards (A. platyrhynchos), two species known to hybridize. Mottled ducks have an estimated census size that is about two orders-of-magnitude smaller than that of mallards, yet these two species have similar levels of genetic diversity, especially at nuclear DNA. Coalescent analyses suggest that a population expansion in the mallard at least partly explains this discrepancy, but the mottled duck harbors higher genetic diversity and apparent N e than expected for its census size even after accounting for a population decline. Incorporating gene flow into the model, however, reduced the estimated Ne of mottled ducks to 33 % of the equilibrium Ne and yielded an estimated Ne consistent with census size. We also examined the utility of these loci to distinguish among mallards, mottled ducks, and their hybrids. Most putatively pure individuals were correctly assigned to species, but the power for detecting hybrids was low. Although hybridization with mallards potentially poses a conservation threat to mottled ducks by creating a risk of extinction by hybridization, introgression of mallard alleles has helped maintain high genetic diversity in mottled ducks and might be important for the adaptability and survival of this species.

  8. Founder representation and effective population size in old versus young breeds-genetic diversity of Finnish and Nordic Spitz.

    Science.gov (United States)

    Kumpulainen, M; Anderson, H; Svevar, T; Kangasvuo, I; Donner, J; Pohjoismäki, J

    2017-10-01

    Finnish Spitz is 130-year-old breed and has been highly popular in Finland throughout its history. Nordic Spitz is very similar to Finnish Spitz by origin and use, but is a relatively recent breed with much smaller population size. To see how breed age and breeding history have influenced the current population, we performed comprehensive population genetic analysis using pedigree data of 28,119 Finnish and 9,009 Nordic Spitzes combined with genomewide single nucleotide polymorphism (SNP) data from 135 Finnish and 110 Nordic Spitzes. We found that the Finnish Spitz has undergone repeated male bottlenecks resulting in dramatic loss of genetic diversity, reflected by 20 effective founders (f a ) and mean heterozygosity (Hz) of 0.313. The realized effective population size in the breed based on pedigree analysis (N¯ec) is 168, whereas the genetic effective population size (N eg ) computed the decay of linkage disequilibrium (r 2 ) is only 57 individuals. Nordic Spitz, although once been near extinction, has not been exposed to similar repeated bottlenecks than Finnish Spitz and had f a of 27 individuals. However, due to the smaller total population size, the breed has also smaller effective population size than Finnish Spitz (N¯ec = 98 and N eg  = 49). Interestingly, the r 2 data show that the effective population size has contracted dramatically since the establishment of the breed, emphasizing the role of breed standards as constrains for the breeding population. Despite the small population size, Nordic Spitz still maintains SNP heterozygosity levels similar to mixed breed dogs (mean Hz = 0.409). Our study demonstrates that although pedigree analyses cannot provide estimates of the present diversity within a breed, the effective population sizes inferred from them correlate with the genotyping results. The genetic relationships of the northern Spitz breeds and the benefits of the open breed registry are discussed. © 2017 Blackwell Verlag GmbH.

  9. Population genetic structure, linkage disequilibrium and effective population size of conserved and extensively raised village chicken populations of Southern Africa

    Directory of Open Access Journals (Sweden)

    Khulekhani Sedwell Khanyile

    2015-02-01

    Full Text Available Extensively raised village chickens are considered a valuable source of biodiversity, with genetic variability developed over thousands of years that ought to be characterised and utilized. Surveys that can reveal a population’s genetic structure and provide an insight into its demographic history will give valuable information to manage and conserve important indigenous animal genetic resources. This study reports population diversity and structure, linkage disequilibrium and effective population sizes of Southern African village chickens and conservation flocks from South Africa. DNA samples from 312 chickens from South African village and conservation flocks (n =146, Malawi (n =30 and Zimbabwe (n =136 were genotyped using the Illumina iSelect chicken SNP60K BeadChip. Population genetic structure analysis distinguished the four conservation flocks from the village chicken populations. Of the four flocks, the Ovambo clustered closer to the village chickens particularly those sampled from South Africa. Clustering of the village chickens followed a geographic gradient whereby South African chickens were closer to those from Zimbabwe than to chickens from Malawi. Different conservation flocks seemed to have maintained different components of the ancestral genomes with a higher proportion of village chicken diversity found in the Ovambo population. Overall population LD averaged over chromosomes ranged from 0.03 ± 0.07 to 0.58 ± 0.41 and averaged 0.15 ± 0.16. Higher LD, ranging from 0.29-0.36, was observed between SNP markers that were less than 10kb apart in the conservation flocks. LD in the conservation flocks steadily decreased to 0.15 (PK and 0.24 (VD at SNP marker interval of 500kb. Genomewide LD decay in the village chickens from Malawi, Zimbabwe and South Africa followed a similar trend as the conservation flocks although the mean LD values for the investigated SNP intervals were lower. The results suggest low effective population

  10. An Adaptive Genetic Algorithm with Dynamic Population Size for Optimizing Join Queries

    OpenAIRE

    Vellev, Stoyan

    2008-01-01

    The problem of finding the optimal join ordering executing a query to a relational database management system is a combinatorial optimization problem, which makes deterministic exhaustive solution search unacceptable for queries with a great number of joined relations. In this work an adaptive genetic algorithm with dynamic population size is proposed for optimizing large join queries. The performance of the algorithm is compared with that of several classical non-determinis...

  11. Genetic variability and effective population size when local extinction and recolonization of subpopulations are frequent

    Science.gov (United States)

    Maruyama, Takeo; Kimura, Motoo

    1980-01-01

    If a population (species) consists of n haploid lines (subpopulations) which reproduce asexually and each of which is subject to random extinction and subsequent replacement, it is shown that, at equilibrium in which mutational production of new alleles and their random extinction balance each other, the genetic diversity (1 minus the sum of squares of allelic frequencies) is given by 2Nev/(1 + 2Nev), where [Formula: see text] in which Ñ is the harmonic mean of the population size per line, n is the number of lines (assumed to be large), λ is the rate of line extinction, and v is the mutation rate (assuming the infinite neutral allele model). In a diploid population (species) consisting of n colonies, if migration takes place between colonies at the rate m (the island model) in addition to extinction and recolonization of colonies, it is shown that effective population size is [Formula: see text] If the rate of colony extinction (λ) is much larger than the migration rate of individuals, the effective population size is greatly reduced compared with the case in which no colony extinctions occur (in which case Ne = nÑ). The stepping-stone type of recolonization scheme is also considered. Bearing of these results on the interpretation of the level of genetic variability at the enzyme level observed in natural populations is discussed from the standpoint of the neutral mutation-random drift hypothesis. PMID:16592920

  12. Genetic health and population monitoring of two small black bear (Ursus americanus populations in Alabama, with a regional perspective of genetic diversity and exchange.

    Directory of Open Access Journals (Sweden)

    John P Draper

    Full Text Available One of the major concerns in conservation today is the loss of genetic diversity which is a frequent consequence of population isolation and small population sizes. Fragmentation of populations and persecution of carnivores has posed a substantial threat to the persistence of free ranging carnivores in North America since the arrival of European settlers. Black bears have seen significant reductions in range size from their historic extent, which is most pronounced in the southeastern United States and even more starkly in Alabama where until recently bears were reduced to a single geographically isolated population in the Mobile River Basin. Recently a second population has naturally re-established itself in northeastern Alabama. We sought to determine size, genetic diversity and genetic connectivity for these two populations in relation to other regional populations. Both populations of black bears in Alabama had small population sizes and had moderate to low genetic diversity, but showed different levels of connectivity to surrounding populations of bears. The Mobile River Basin population had a small population size at only 86 individuals (76-124, 95% C.I., the lowest genetic diversity of compared populations (richness = 2.33, Ho and He = 0.33, and showed near complete genetic isolation from surrounding populations across multiple tests. The newly recolonizing population in northeastern Alabama had a small but growing population doubling in 3 years (34 individuals 26-43, 95% C.I., relatively moderate genetic diversity compared to surrounding populations (richness = 3.32, Ho = 0.53, He = 0.65, and showed a high level of genetic connectivity with surrounding populations.

  13. Genetic health and population monitoring of two small black bear (Ursus americanus) populations in Alabama, with a regional perspective of genetic diversity and exchange.

    Science.gov (United States)

    Draper, John P; Waits, Lisette P; Adams, Jennifer R; Seals, Christopher L; Steury, Todd D

    2017-01-01

    One of the major concerns in conservation today is the loss of genetic diversity which is a frequent consequence of population isolation and small population sizes. Fragmentation of populations and persecution of carnivores has posed a substantial threat to the persistence of free ranging carnivores in North America since the arrival of European settlers. Black bears have seen significant reductions in range size from their historic extent, which is most pronounced in the southeastern United States and even more starkly in Alabama where until recently bears were reduced to a single geographically isolated population in the Mobile River Basin. Recently a second population has naturally re-established itself in northeastern Alabama. We sought to determine size, genetic diversity and genetic connectivity for these two populations in relation to other regional populations. Both populations of black bears in Alabama had small population sizes and had moderate to low genetic diversity, but showed different levels of connectivity to surrounding populations of bears. The Mobile River Basin population had a small population size at only 86 individuals (76-124, 95% C.I.), the lowest genetic diversity of compared populations (richness = 2.33, Ho and He = 0.33), and showed near complete genetic isolation from surrounding populations across multiple tests. The newly recolonizing population in northeastern Alabama had a small but growing population doubling in 3 years (34 individuals 26-43, 95% C.I.), relatively moderate genetic diversity compared to surrounding populations (richness = 3.32, Ho = 0.53, He = 0.65), and showed a high level of genetic connectivity with surrounding populations.

  14. Genetic variation, relatedness, and effective population size of polar bears (Ursus maritimus) in the southern Beaufort Sea, Alaska

    Science.gov (United States)

    Cronin, Matthew A.; Amstrup, Steven C.; Talbot, Sandra L.; Sage, George K.; Amstrup, Kristin S.

    2009-01-01

    Polar bears (Ursus maritimus) are unique among bears in that they are adapted to the Arctic sea ice environment. Genetic data are useful for understanding their evolution and can contribute to management. We assessed parentage and relatedness of polar bears in the southern Beaufort Sea, Alaska, with genetic data and field observations of age, sex, and mother–offspring and sibling relationships. Genotypes at 14 microsatellite DNA loci for 226 bears indicate that genetic variation is comparable to other populations of polar bears with mean number of alleles per locus of 7.9 and observed and expected heterozygosity of 0.71. The genetic data verified 60 field-identified mother–offspring pairs and identified 10 additional mother–cub pairs and 48 father–offspring pairs. The entire sample of related and unrelated bears had a mean pairwise relatedness index (rxy) of approximately zero, parent–offspring and siblings had rxy of approximately 0.5, and 5.2% of the samples had rxy values within the range expected for parent-offspring. Effective population size (Ne= 277) and the ratio of Ne to total population size (Ne/N = 0.182) were estimated from the numbers of reproducing males and females. Ne estimates with genetic methods gave variable results. Our results verify and expand field data on reproduction by females and provide new data on reproduction by males and estimates of relatedness and Ne in a polar bear population.

  15. Genetic variation, relatedness, and effective population size of polar bears (Ursus maritimus) in the southern Beaufort Sea, Alaska.

    Science.gov (United States)

    Cronin, Matthew A; Amstrup, Steven C; Talbot, Sandra L; Sage, George K; Amstrup, Kristin S

    2009-01-01

    Polar bears (Ursus maritimus) are unique among bears in that they are adapted to the Arctic sea ice environment. Genetic data are useful for understanding their evolution and can contribute to management. We assessed parentage and relatedness of polar bears in the southern Beaufort Sea, Alaska, with genetic data and field observations of age, sex, and mother-offspring and sibling relationships. Genotypes at 14 microsatellite DNA loci for 226 bears indicate that genetic variation is comparable to other populations of polar bears with mean number of alleles per locus of 7.9 and observed and expected heterozygosity of 0.71. The genetic data verified 60 field-identified mother-offspring pairs and identified 10 additional mother-cub pairs and 48 father-offspring pairs. The entire sample of related and unrelated bears had a mean pairwise relatedness index (r(xy)) of approximately zero, parent-offspring and siblings had r(xy) of approximately 0.5, and 5.2% of the samples had r(xy) values within the range expected for parent-offspring. Effective population size (N(e) = 277) and the ratio of N(e) to total population size (N(e)/N = 0.182) were estimated from the numbers of reproducing males and females. N(e) estimates with genetic methods gave variable results. Our results verify and expand field data on reproduction by females and provide new data on reproduction by males and estimates of relatedness and N(e) in a polar bear population.

  16. Population estimates of extended family structure and size.

    Science.gov (United States)

    Garceau, Anne; Wideroff, Louise; McNeel, Timothy; Dunn, Marsha; Graubard, Barry I

    2008-01-01

    Population-based estimates of biological family size can be useful for planning genetic studies, assessing how distributions of relatives affect disease associations with family history and estimating prevalence of potential family support. Mean family size per person is estimated from a population-based telephone survey (n = 1,019). After multivariate adjustment for demographic variables, older and non-White respondents reported greater mean numbers of total, first- and second-degree relatives. Females reported more total and first-degree relatives, while less educated respondents reported more second-degree relatives. Demographic differences in family size have implications for genetic research. Therefore, periodic collection of family structure data in representative populations would be useful. Copyright 2008 S. Karger AG, Basel.

  17. Conservation genetics of managed ungulate populations

    Science.gov (United States)

    Scribner, Kim T.

    1993-01-01

    Natural populations of many species are increasingly impacted by human activities. Perturbations are particularly pronunced for large ungulates due in part to sport and commercial harvest, to reductions and fragmentation of native habitat, and as the result of reintroductions. These perturbations affect population size, sex and age composition, and population breeding structure, and as a consequence affect the levels and partitioning of genetic variation. Three case histories highlighting long-term ecological genetic research on mule deer Odocoileus hemionus (Rafinesque, 1817), white-tailed deer O. virginianus (Zimmermann, 1780), and Alpine ibex Capra i. ibex Linnaeus, 1758 are presented. Joint examinations of population ecological and genetic data from several populations of each species reveal: (1) that populations are not in genetic equilibrium, but that allele frequencies and heterozygosity change dramatically over time and among cohorts produced in successive years, (2) populations are genetically structured over short and large geographic distances reflecting local breeding structure and patterns of gene flow, respectively; however, this structure is quite dynamic over time, due in part to population exploitation, and (3) restocking programs are often undertaken with small numbers of founding individuals resulting in dramatic declines in levels of genetic variability and increasing levels of genetic differentiation among populations due to genetic drift. Genetic characteristics have and will continue to provide valuable indirect sources of information relating enviromental and human perturbations to changes in population processes.

  18. The Genetic Basis of Natural Variation in Kernel Size and Related Traits Using a Four-Way Cross Population in Maize.

    Science.gov (United States)

    Chen, Jiafa; Zhang, Luyan; Liu, Songtao; Li, Zhimin; Huang, Rongrong; Li, Yongming; Cheng, Hongliang; Li, Xiantang; Zhou, Bo; Wu, Suowei; Chen, Wei; Wu, Jianyu; Ding, Junqiang

    2016-01-01

    Kernel size is an important component of grain yield in maize breeding programs. To extend the understanding on the genetic basis of kernel size traits (i.e., kernel length, kernel width and kernel thickness), we developed a set of four-way cross mapping population derived from four maize inbred lines with varied kernel sizes. In the present study, we investigated the genetic basis of natural variation in seed size and other components of maize yield (e.g., hundred kernel weight, number of rows per ear, number of kernels per row). In total, ten QTL affecting kernel size were identified, three of which (two for kernel length and one for kernel width) had stable expression in other components of maize yield. The possible genetic mechanism behind the trade-off of kernel size and yield components was discussed.

  19. Genetic algorithm with small population size for search feasible control parameters for parallel hybrid electric vehicles

    Directory of Open Access Journals (Sweden)

    Yu-Huei Cheng

    2017-11-01

    Full Text Available The control strategy is a major unit in hybrid electric vehicles (HEVs. In order to provide suitable control parameters for reducing fuel consumptions and engine emissions while maintaining vehicle performance requirements, the genetic algorithm (GA with small population size is applied to search for feasible control parameters in parallel HEVs. The electric assist control strategy (EACS is used as the fundamental control strategy of parallel HEVs. The dynamic performance requirements stipulated in the Partnership for a New Generation of Vehicles (PNGV is considered to maintain the vehicle performance. The known ADvanced VehIcle SimulatOR (ADVISOR is used to simulate a specific parallel HEV with urban dynamometer driving schedule (UDDS. Five population sets with size 5, 10, 15, 20, and 25 are used in the GA. The experimental results show that the GA with population size of 25 is the best for selecting feasible control parameters in parallel HEVs.

  20. The episode of genetic drift defining the migration of humans out of Africa is derived from a large east African population size.

    Directory of Open Access Journals (Sweden)

    Nuha Elhassan

    Full Text Available Human genetic variation particularly in Africa is still poorly understood. This is despite a consensus on the large African effective population size compared to populations from other continents. Based on sequencing of the mitochondrial Cytochrome C Oxidase subunit II (MT-CO2, and genome wide microsatellite data we observe evidence suggesting the effective size (Ne of humans to be larger than the current estimates, with a foci of increased genetic diversity in east Africa, and a population size of east Africans being at least 2-6 fold larger than other populations. Both phylogenetic and network analysis indicate that east Africans possess more ancestral lineages in comparison to various continental populations placing them at the root of the human evolutionary tree. Our results also affirm east Africa as the likely spot from which migration towards Asia has taken place. The study reflects the spectacular level of sequence variation within east Africans in comparison to the global sample, and appeals for further studies that may contribute towards filling the existing gaps in the database. The implication of these data to current genomic research, as well as the need to carry out defined studies of human genetic variation that includes more African populations; particularly east Africans is paramount.

  1. Genetic analysis of Mexican Criollo cattle populations.

    Science.gov (United States)

    Ulloa-Arvizu, R; Gayosso-Vázquez, A; Ramos-Kuri, M; Estrada, F J; Montaño, M; Alonso, R A

    2008-10-01

    The objective of this study was to evaluate the genetic structure of Mexican Criollo cattle populations using microsatellite genetic markers. DNA samples were collected from 168 animals from four Mexican Criollo cattle populations, geographically isolated in remote areas of Sierra Madre Occidental (West Highlands). Also were included samples from two breeds with Iberian origin: the fighting bull (n = 24) and the milking central American Criollo (n = 24) and one Asiatic breed: Guzerat (n = 32). Genetic analysis consisted of the estimation of the genetic diversity in each population by the allele number and the average expected heterozygosity found in nine microsatellite loci. Furthermore, genetic relationships among the populations were defined by their genetic distances. Our data shows that Mexican cattle populations have a relatively high level of genetic diversity based either on the mean number of alleles (10.2-13.6) and on the expected heterozygosity (0.71-0.85). The degree of observed homozygosity within the Criollo populations was remarkable and probably caused by inbreeding (reduced effective population size) possibly due to reproductive structure within populations. Our data shows that considerable genetic differentiation has been occurred among the Criollo cattle populations in different regions of Mexico.

  2. Quantifying introgression risk with realistic population genetics.

    Science.gov (United States)

    Ghosh, Atiyo; Meirmans, Patrick G; Haccou, Patsy

    2012-12-07

    Introgression is the permanent incorporation of genes from the genome of one population into another. This can have severe consequences, such as extinction of endemic species, or the spread of transgenes. Quantification of the risk of introgression is an important component of genetically modified crop regulation. Most theoretical introgression studies aimed at such quantification disregard one or more of the most important factors concerning introgression: realistic genetical mechanisms, repeated invasions and stochasticity. In addition, the use of linkage as a risk mitigation strategy has not been studied properly yet with genetic introgression models. Current genetic introgression studies fail to take repeated invasions and demographic stochasticity into account properly, and use incorrect measures of introgression risk that can be manipulated by arbitrary choices. In this study, we present proper methods for risk quantification that overcome these difficulties. We generalize a probabilistic risk measure, the so-called hazard rate of introgression, for application to introgression models with complex genetics and small natural population sizes. We illustrate the method by studying the effects of linkage and recombination on transgene introgression risk at different population sizes.

  3. Local extinction and recolonization, species effective population size, and modern human origins.

    Science.gov (United States)

    Eller, Elise; Hawks, John; Relethford, John H

    2004-10-01

    A primary objection from a population genetics perspective to a multiregional model of modern human origins is that the model posits a large census size, whereas genetic data suggest a small effective population size. The relationship between census size and effective size is complex, but arguments based on an island model of migration show that if the effective population size reflects the number of breeding individuals and the effects of population subdivision, then an effective population size of 10,000 is inconsistent with the census size of 500,000 to 1,000,000 that has been suggested by archeological evidence. However, these models have ignored the effects of population extinction and recolonization, which increase the expected variance among demes and reduce the inbreeding effective population size. Using models developed for population extinction and recolonization, we show that a large census size consistent with the multiregional model can be reconciled with an effective population size of 10,000, but genetic variation among demes must be high, reflecting low interdeme migration rates and a colonization process that involves a small number of colonists or kin-structured colonization. Ethnographic and archeological evidence is insufficient to determine whether such demographic conditions existed among Pleistocene human populations, and further work needs to be done. More realistic models that incorporate isolation by distance and heterogeneity in extinction rates and effective deme sizes also need to be developed. However, if true, a process of population extinction and recolonization has interesting implications for human demographic history.

  4. Population Genetic Aspects of Pollinator Decline

    Directory of Open Access Journals (Sweden)

    Laurence Packer

    2001-06-01

    Full Text Available We reviewed the theory of conservation genetics, with special emphasis on the influence of haplodiploidy and other aspects of bee biology upon conservation genetic parameters. We then investigated the possibility that pollinator decline can be addressed in this way, using two meta-analytical approaches on genetic data from the Hymenoptera and the Lepidoptera. First, we compared levels of heterozygosity between the orders. As has been found previously, the haplodiploid Hymenoptera had markedly lower levels of genetic variation than the Lepidoptera. Bees had even lower levels, and bumble bees, in particular, often seemed almost monomorphic genetically. However, the statistically confounding effects of phylogeny render detailed interpretation of such data difficult. Second, we investigated patterns of gene flow among populations of these insects. Hymenoptera were far more likely to show genetic effects of population fragmentation than are Lepidoptera, even at similar geographic distances between populations. The reduced effective population sizes resulting from haplodiploidy probably contributed to this result. The proportion of species with low levels of gene flow did not vary among the different taxonomic groups within the Hymenoptera.

  5. Genetic basis for body size variation between an anadromous and two derived lacustrine populations of threespine stickleback Gasterosteus aculeatus in southwest Alaska.

    Science.gov (United States)

    Bowles, Ella; Johnston, Rebecca A; Vanderzwan, Stevi L; Rogers, Sean M

    2016-02-01

    Body size is a highly variable trait among geographically separated populations. Size-assortative reproductive isolation has been linked to recent adaptive radiations of threespine stickleback ( Gasterosteus aculeatus ) into freshwater, but the genetic basis of the commonly found size difference between anadromous and derived lacustrine sticklebacks has not been tested. We studied the genetic basis of size differences between recently diverging stickleback lineages in southwest Alaska using a common environment experiment. We crossed stickleback within one anadromous (Naknek River) and one lake (Pringle Lake) population and between the anadromous and two lake populations (Pringle and JoJo Lakes), and raised them in a salinity of 4-6 ppt. The F1 anadromous and freshwater forms differed significantly in size, whereas hybrids were intermediate or exhibited dominance toward the anadromous form. Additionally, the size of freshwater F1s differed from their wild counterparts, with within-population F1s from Pringle Lake growing larger than their wild counterparts, while there was no size difference between lab-raised and wild anadromous fish. Sexual dimorphism was always present in anadromous fish, but not in freshwater, and not always in the hybrid crosses. These results, along with parallel changes among anadromous and freshwater forms in other regions, suggest that this heritable trait is both plastic and may be under divergent and/or sexual selection.

  6. Genetic composition of captive panda population.

    Science.gov (United States)

    Yang, Jiandong; Shen, Fujun; Hou, Rong; Da, Yang

    2016-10-03

    A major function of the captive panda population is to preserve the genetic diversity of wild panda populations in their natural habitats. Understanding the genetic composition of the captive panda population in terms of genetic contributions from the wild panda populations provides necessary knowledge for breeding plans to preserve the genetic diversity of the wild panda populations. The genetic contributions from different wild populations to the captive panda population were highly unbalanced, with Qionglai accounting for 52.2 % of the captive panda gene pool, followed by Minshan with 21.5 %, Qinling with 10.6 %, Liangshan with 8.2 %, and Xiaoxiangling with 3.6 %, whereas Daxiangling, which had similar population size as Xiaoxiangling, had no genetic representation in the captive population. The current breeding recommendations may increase the contribution of some small wild populations at the expense of decreasing the contributions of other small wild populations, i.e., increasing the Xiaoxiangling contribution while decreasing the contribution of Liangshan, or sharply increasing the Qinling contribution while decreasing the contributions of Xiaoxiangling and Liangshan, which were two of the three smallest wild populations and were already severely under-represented in the captive population. We developed three habitat-controlled breeding plans that could increase the genetic contributions from the smallest wild populations to 6.7-11.2 % for Xiaoxiangling, 11.5-12.3 % for Liangshan and 12.9-20.0 % for Qinling among the offspring of one breeding season while reducing the risk of hidden inbreeding due to related founders from the same habitat undetectable by pedigree data. The three smallest wild panda populations of Daxiangling, Xiaoxiangling and Liangshan either had no representation or were severely unrepresented in the current captive panda population. By incorporating the breeding goal of increasing the genetic contributions from the smallest wild

  7. Estimation of effective population size in continuously distributed populations: There goes the neighborhood

    Science.gov (United States)

    M. C. Neel; K. McKelvey; N. Ryman; M. W. Lloyd; R. Short Bull; F. W. Allendorf; M. K. Schwartz; R. S. Waples

    2013-01-01

    Use of genetic methods to estimate effective population size (Ne) is rapidly increasing, but all approaches make simplifying assumptions unlikely to be met in real populations. In particular, all assume a single, unstructured population, and none has been evaluated for use with continuously distributed species. We simulated continuous populations with local mating...

  8. How Ebola impacts genetics of Western lowland gorilla populations.

    Science.gov (United States)

    Le Gouar, Pascaline J; Vallet, Dominique; David, Laetitia; Bermejo, Magdalena; Gatti, Sylvain; Levréro, Florence; Petit, Eric J; Ménard, Nelly

    2009-12-18

    Emerging infectious diseases in wildlife are major threats for both human health and biodiversity conservation. Infectious diseases can have serious consequences for the genetic diversity of populations, which could enhance the species' extinction probability. The Ebola epizootic in western and central Africa induced more than 90% mortality in Western lowland gorilla population. Although mortality rates are very high, the impacts of Ebola on genetic diversity of Western lowland gorilla have never been assessed. We carried out long term studies of three populations of Western lowland gorilla in the Republic of the Congo (Odzala-Kokoua National Park, Lossi gorilla sanctuary both affected by Ebola and Lossi's periphery not affected). Using 17 microsatellite loci, we compared genetic diversity and structure of the populations and estimate their effective size before and after Ebola outbreaks. Despite the effective size decline in both populations, we did not detect loss in genetic diversity after the epizootic. We revealed temporal changes in allele frequencies in the smallest population. Immigration and short time elapsed since outbreaks could explain the conservation of genetic diversity after the demographic crash. Temporal changes in allele frequencies could not be explained by genetic drift or random sampling. Immigration from genetically differentiated populations and a non random mortality induced by Ebola, i.e., selective pressure and cost of sociality, are alternative hypotheses. Understanding the influence of Ebola on gorilla genetic dynamics is of paramount importance for human health, primate evolution and conservation biology.

  9. How Ebola impacts genetics of Western lowland gorilla populations.

    Directory of Open Access Journals (Sweden)

    Pascaline J Le Gouar

    2009-12-01

    Full Text Available Emerging infectious diseases in wildlife are major threats for both human health and biodiversity conservation. Infectious diseases can have serious consequences for the genetic diversity of populations, which could enhance the species' extinction probability. The Ebola epizootic in western and central Africa induced more than 90% mortality in Western lowland gorilla population. Although mortality rates are very high, the impacts of Ebola on genetic diversity of Western lowland gorilla have never been assessed.We carried out long term studies of three populations of Western lowland gorilla in the Republic of the Congo (Odzala-Kokoua National Park, Lossi gorilla sanctuary both affected by Ebola and Lossi's periphery not affected. Using 17 microsatellite loci, we compared genetic diversity and structure of the populations and estimate their effective size before and after Ebola outbreaks. Despite the effective size decline in both populations, we did not detect loss in genetic diversity after the epizootic. We revealed temporal changes in allele frequencies in the smallest population.Immigration and short time elapsed since outbreaks could explain the conservation of genetic diversity after the demographic crash. Temporal changes in allele frequencies could not be explained by genetic drift or random sampling. Immigration from genetically differentiated populations and a non random mortality induced by Ebola, i.e., selective pressure and cost of sociality, are alternative hypotheses. Understanding the influence of Ebola on gorilla genetic dynamics is of paramount importance for human health, primate evolution and conservation biology.

  10. Effective size of density-dependent two-sex populations: the effect of mating systems.

    Science.gov (United States)

    Myhre, A M; Engen, S; SAEther, B-E

    2017-08-01

    Density dependence in vital rates is a key feature affecting temporal fluctuations of natural populations. This has important implications for the rate of random genetic drift. Mating systems also greatly affect effective population sizes, but knowledge of how mating system and density regulation interact to affect random genetic drift is poor. Using theoretical models and simulations, we compare N e in short-lived, density-dependent animal populations with different mating systems. We study the impact of a fluctuating, density-dependent sex ratio and consider both a stable and a fluctuating environment. We find a negative relationship between annual N e /N and adult population size N due to density dependence, suggesting that loss of genetic variation is reduced at small densities. The magnitude of this decrease was affected by mating system and life history. A male-biased, density-dependent sex ratio reduces the rate of genetic drift compared to an equal, density-independent sex ratio, but a stochastic change towards male bias reduces the N e /N ratio. Environmental stochasticity amplifies temporal fluctuations in population size and is thus vital to consider in estimation of effective population sizes over longer time periods. Our results on the reduced loss of genetic variation at small densities, particularly in polygamous populations, indicate that density regulation may facilitate adaptive evolution at small population sizes. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  11. Experimental Population Genetics in the Introductory Genetics Laboratory Using "Drosophila" as a Model Organism

    Science.gov (United States)

    Johnson, Ronald; Kennon, Tillman

    2009-01-01

    Hypotheses of population genetics are derived and tested by students in the introductory genetics laboratory classroom as they explore the effects of biotic variables (physical traits of fruit flies) and abiotic variables (island size and distance) on fruit fly populations. In addition to this hypothesis-driven experiment, the development of…

  12. A longitudinal genetic survey identifies temporal shifts in the population structure of Dutch house sparrows

    Science.gov (United States)

    Cousseau, L; Husemann, M; Foppen, R; Vangestel, C; Lens, L

    2016-01-01

    Dutch house sparrow (Passer domesticus) densities dropped by nearly 50% since the early 1980s, and similar collapses in population sizes have been reported across Europe. Whether, and to what extent, such relatively recent demographic changes are accompanied by concomitant shifts in the genetic population structure of this species needs further investigation. Therefore, we here explore temporal shifts in genetic diversity, genetic structure and effective sizes of seven Dutch house sparrow populations. To allow the most powerful statistical inference, historical populations were resampled at identical locations and each individual bird was genotyped using nine polymorphic microsatellites. Although the demographic history was not reflected by a reduction in genetic diversity, levels of genetic differentiation increased over time, and the original, panmictic population (inferred from the museum samples) diverged into two distinct genetic clusters. Reductions in census size were supported by a substantial reduction in effective population size, although to a smaller extent. As most studies of contemporary house sparrow populations have been unable to identify genetic signatures of recent population declines, results of this study underpin the importance of longitudinal genetic surveys to unravel cryptic genetic patterns. PMID:27273323

  13. Temporal dynamics of genetic variability in a mountain goat (Oreamnos americanus) population.

    Science.gov (United States)

    Ortego, Joaquín; Yannic, Glenn; Shafer, Aaron B A; Mainguy, Julien; Festa-Bianchet, Marco; Coltman, David W; Côté, Steeve D

    2011-04-01

    The association between population dynamics and genetic variability is of fundamental importance for both evolutionary and conservation biology. We combined long-term population monitoring and molecular genetic data from 123 offspring and their parents at 28 microsatellite loci to investigate changes in genetic diversity over 14 cohorts in a small and relatively isolated population of mountain goats (Oreamnos americanus) during a period of demographic increase. Offspring heterozygosity decreased while parental genetic similarity and inbreeding coefficients (F(IS) ) increased over the study period (1995-2008). Immigrants introduced three novel alleles into the population and matings between residents and immigrants produced more heterozygous offspring than local crosses, suggesting that immigration can increase population genetic variability. The population experienced genetic drift over the study period, reflected by a reduced allelic richness over time and an 'isolation-by-time' pattern of genetic structure. The temporal decline of individual genetic diversity despite increasing population size probably resulted from a combination of genetic drift due to small effective population size, inbreeding and insufficient counterbalancing by immigration. This study highlights the importance of long-term genetic monitoring to understand how demographic processes influence temporal changes of genetic diversity in long-lived organisms. © 2011 Blackwell Publishing Ltd.

  14. Molecular Population Genetics.

    Science.gov (United States)

    Casillas, Sònia; Barbadilla, Antonio

    2017-03-01

    Molecular population genetics aims to explain genetic variation and molecular evolution from population genetics principles. The field was born 50 years ago with the first measures of genetic variation in allozyme loci, continued with the nucleotide sequencing era, and is currently in the era of population genomics. During this period, molecular population genetics has been revolutionized by progress in data acquisition and theoretical developments. The conceptual elegance of the neutral theory of molecular evolution or the footprint carved by natural selection on the patterns of genetic variation are two examples of the vast number of inspiring findings of population genetics research. Since the inception of the field, Drosophila has been the prominent model species: molecular variation in populations was first described in Drosophila and most of the population genetics hypotheses were tested in Drosophila species. In this review, we describe the main concepts, methods, and landmarks of molecular population genetics, using the Drosophila model as a reference. We describe the different genetic data sets made available by advances in molecular technologies, and the theoretical developments fostered by these data. Finally, we review the results and new insights provided by the population genomics approach, and conclude by enumerating challenges and new lines of inquiry posed by increasingly large population scale sequence data. Copyright © 2017 Casillas and Barbadilla.

  15. Temporal genetic stability and high effective population size despite fisheries-induced life-history trait evolution in the North Sea sole

    NARCIS (Netherlands)

    Cuveliers, E.L.; Volckaert, F.A.M.; Rijnsdorp, A.D.; Larmuseau, M.H.D.; Maes, G.E.

    2011-01-01

    Heavy fishing and other anthropogenic influences can have profound impact on a species’ resilience to harvesting. Besides the decrease in the census and effective population size, strong declines in mature adults and recruiting individuals may lead to almost irreversible genetic changes in

  16. Estimating the Population Size and Genetic Diversity of Amur Tigers in Northeast China.

    Science.gov (United States)

    Dou, Hailong; Yang, Haitao; Feng, Limin; Mou, Pu; Wang, Tianming; Ge, Jianping

    2016-01-01

    Over the past century, the endangered Amur tiger (Panthera tigris altaica) has experienced a severe contraction in demography and geographic range because of habitat loss, poaching, and prey depletion. In its historical home in Northeast China, there appears to be a single tiger population that includes tigers in Southwest Primorye and Northeast China; however, the current demographic status of this population is uncertain. Information on the abundance, distribution and genetic diversity of this population for assessing the efficacy of conservation interventions are scarce. We used noninvasive genetic detection data from scats, capture-recapture models and an accumulation curve method to estimate the abundance of Amur tigers in Northeast China. We identified 11 individual tigers (6 females and 5 males) using 10 microsatellite loci in three nature reserves between April 2013 and May 2015. These tigers are confined primarily to a Hunchun Nature Reserve along the border with Russia, with an estimated population abundance of 9-11 tigers during the winter of 2014-2015. They showed a low level of genetic diversity. The mean number of alleles per locus was 2.60 and expected and observed heterozygosity were 0.42 and 0.49, respectively. We also documented long-distance dispersal (~270 km) of a male Amur tiger to Huangnihe Nature Reserve from the border, suggesting that the expansion of neighboring Russian populations may eventually help sustain Chinese populations. However, the small and isolated population recorded by this study demonstrate that there is an urgent need for more intensive regional management to create a tiger-permeable landscape and increased genetic connectivity with other populations.

  17. Analysis of genetic diversity in a close population of Zandi sheep ...

    Indian Academy of Sciences (India)

    of the effective population size (Ne) for extending popula- tion genetics theory developed ..... animal genetic resources management plans: management of small populations at risk. Food and Agriculture Organization,. Rome, Italy. Fisher R. A. ...

  18. Does source population size affect performance in new environments?

    Science.gov (United States)

    Yates, Matthew C; Fraser, Dylan J

    2014-01-01

    Small populations are predicted to perform poorly relative to large populations when experiencing environmental change. To explore this prediction in nature, data from reciprocal transplant, common garden, and translocation studies were compared meta-analytically. We contrasted changes in performance resulting from transplantation to new environments among individuals originating from different sized source populations from plants and salmonids. We then evaluated the effect of source population size on performance in natural common garden environments and the relationship between population size and habitat quality. In ‘home-away’ contrasts, large populations exhibited reduced performance in new environments. In common gardens, the effect of source population size on performance was inconsistent across life-history stages (LHS) and environments. When transplanted to the same set of new environments, small populations either performed equally well or better than large populations, depending on life stage. Conversely, large populations outperformed small populations within native environments, but only at later life stages. Population size was not associated with habitat quality. Several factors might explain the negative association between source population size and performance in new environments: (i) stronger local adaptation in large populations and antagonistic pleiotropy, (ii) the maintenance of genetic variation in small populations, and (iii) potential environmental differences between large and small populations. PMID:25469166

  19. Estimating the Population Size and Genetic Diversity of Amur Tigers in Northeast China.

    Directory of Open Access Journals (Sweden)

    Hailong Dou

    Full Text Available Over the past century, the endangered Amur tiger (Panthera tigris altaica has experienced a severe contraction in demography and geographic range because of habitat loss, poaching, and prey depletion. In its historical home in Northeast China, there appears to be a single tiger population that includes tigers in Southwest Primorye and Northeast China; however, the current demographic status of this population is uncertain. Information on the abundance, distribution and genetic diversity of this population for assessing the efficacy of conservation interventions are scarce. We used noninvasive genetic detection data from scats, capture-recapture models and an accumulation curve method to estimate the abundance of Amur tigers in Northeast China. We identified 11 individual tigers (6 females and 5 males using 10 microsatellite loci in three nature reserves between April 2013 and May 2015. These tigers are confined primarily to a Hunchun Nature Reserve along the border with Russia, with an estimated population abundance of 9-11 tigers during the winter of 2014-2015. They showed a low level of genetic diversity. The mean number of alleles per locus was 2.60 and expected and observed heterozygosity were 0.42 and 0.49, respectively. We also documented long-distance dispersal (~270 km of a male Amur tiger to Huangnihe Nature Reserve from the border, suggesting that the expansion of neighboring Russian populations may eventually help sustain Chinese populations. However, the small and isolated population recorded by this study demonstrate that there is an urgent need for more intensive regional management to create a tiger-permeable landscape and increased genetic connectivity with other populations.

  20. Estimating population sizes for elusive animals: the forest elephants of Kakum National Park, Ghana.

    Science.gov (United States)

    Eggert, L S; Eggert, J A; Woodruff, D S

    2003-06-01

    African forest elephants are difficult to observe in the dense vegetation, and previous studies have relied upon indirect methods to estimate population sizes. Using multilocus genotyping of noninvasively collected samples, we performed a genetic survey of the forest elephant population at Kakum National Park, Ghana. We estimated population size, sex ratio and genetic variability from our data, then combined this information with field observations to divide the population into age groups. Our population size estimate was very close to that obtained using dung counts, the most commonly used indirect method of estimating the population sizes of forest elephant populations. As their habitat is fragmented by expanding human populations, management will be increasingly important to the persistence of forest elephant populations. The data that can be obtained from noninvasively collected samples will help managers plan for the conservation of this keystone species.

  1. Population structure and effective/census population size ratio in threatened three-spined stickleback populations from an isolated river basin in northwest Spain.

    Science.gov (United States)

    Pérez-Figueroa, A; Fernández, C; Amaro, R; Hermida, M; San Miguel, E

    2015-08-01

    Variability at 20 microsatellite loci was examined to assess the population genetic structure, gene flow, and effective population size (N(e)) in three populations of three-spined stickleback (Gasterosteus aculeatus) from the upper basin of the Miño River in Galicia, NW Spain, where this species is threatened. The three populations showed similar levels of genetic diversity. There is a significant genetic differentiation between the three populations, but also significant gene flow. N(e) estimates based on linkage disequilibrium yielded values of 355 for the Miño River population and 241 and 311 for the Rato and Guisande Rivers, respectively, although we expect that these are overestimates. N(e) estimates based on temporal methods, considering gene flow or not, for the tributaries yielded values of 30-56 and 47-56 for the Rato and Guisande Rivers, respectively. Estimated census size (N(c)) for the Rato River was 880 individuals. This yielded a N(e)/N(c) estimate of 3-6 % for temporal estimation of N(e), which is within the empirical range observed in freshwater fishes. We suggest that the three populations analyzed have a sufficient level of genetic diversity with some genetic structure. Additionally, the absence of physical barriers suggests that conservation efforts and monitoring should focus in the whole basin as a unit.

  2. A population on the edge: genetic diversity and population structure of the world's northernmost harbour seals (Phoca vitulina)

    DEFF Research Database (Denmark)

    Andersen, Liselotte Wesley; Lydersen, Christian; Frie, Anne Kirstine

    2011-01-01

    insight into consequences of population declines in a broader conservation context. The harbour seal population at Svalbard is the world's northernmost harbour seal population. Nothing is known about the genetic diversity, distinctiveness or origin of this small, marginalized mammalian population. Thus......  It is crucial to examine the genetic diversity and structure of small, isolated populations, especially those at the edge of their distribution range, because they are vulnerable to stochastic processes if genetic diversity is low and isolation level high, and because such populations provide...... microsatellites and variation in the D-loop. Each of the four locations was a genetically distinct population. The Svalbard population was highly genetically distinct, had reduced genetic diversity, received limited gene flow, had a rather low effective population size and showed an indication of having...

  3. Genetic population structure of the vulnerable bog fritillary butterfly.

    Science.gov (United States)

    Vandewoestijne, S; Baguette, M

    2004-01-01

    Populations of the bog fritillary butterfly Proclossiana eunomia (Lepidoptera, Nymphalidae) occur in patchy habitat in central and western Europe. P. eunomia is a vulnerable species in the Belgian Ardennes and the number of occupied sites has significantly decreased in this region since the 1960s. RAPD (random amplified polymorphic DNA) markers were used to study the consequences of habitat loss and fragmentation on the genetic population structure of this species. Gene diversity was lower in populations with smaller population sizes. Genetic subdivision was high (Fst=0.0887) considering the small spatial scale of this study (150 km2). The most geographically isolated population was also the most genetically differentiated one. The genetic population structure and genetic differentiation detected in this study were explained by (1) differences in altitude of the sampled locations and, (2) lower dispersal propensity and dispersal rate in fragmented landscapes versus continuous landscapes. Results from the RAPD analyses were compared with a previous allozyme based study on the same populations. The results of this study suggest that increased fragmentation has lead to a greater genetic differentiation between remaining P. eunomia populations.

  4. Can small wildlife conservancies maintain genetically stable populations of large mammals? Evidence for increased genetic drift in geographically restricted populations of Cape buffalo in East Africa

    DEFF Research Database (Denmark)

    Heller, R; Okello, J B A; Siegismund, H

    2010-01-01

    populations, the level of genetic differentiation found here is comparable to that among pan-African populations. Overall, correlations between conservancy area and indices of genetic diversity suggest buffalo populations inhabiting small parks are showing signs of genetic erosion, stressing the need for more......The Cape buffalo (Syncerus caffer caffer) is one of the dominant and most widespread herbivores in sub-Saharan Africa. High levels of genetic diversity and exceptionally low levels of population differentiation have been found in the Cape buffalo compared to other African savannah ungulates...... active management of such populations. Our findings raise concerns about the future of other African savannah ungulates with lower population sizes and inferior dispersal capabilities compared with the buffalo....

  5. Evolutionary dynamics with fluctuating population sizes and strong mutualism

    Science.gov (United States)

    Chotibut, Thiparat; Nelson, David R.

    2015-08-01

    Game theory ideas provide a useful framework for studying evolutionary dynamics in a well-mixed environment. This approach, however, typically enforces a strictly fixed overall population size, deemphasizing natural growth processes. We study a competitive Lotka-Volterra model, with number fluctuations, that accounts for natural population growth and encompasses interaction scenarios typical of evolutionary games. We show that, in an appropriate limit, the model describes standard evolutionary games with both genetic drift and overall population size fluctuations. However, there are also regimes where a varying population size can strongly influence the evolutionary dynamics. We focus on the strong mutualism scenario and demonstrate that standard evolutionary game theory fails to describe our simulation results. We then analytically and numerically determine fixation probabilities as well as mean fixation times using matched asymptotic expansions, taking into account the population size degree of freedom. These results elucidate the interplay between population dynamics and evolutionary dynamics in well-mixed systems.

  6. Evolutionary dynamics with fluctuating population sizes and strong mutualism.

    Science.gov (United States)

    Chotibut, Thiparat; Nelson, David R

    2015-08-01

    Game theory ideas provide a useful framework for studying evolutionary dynamics in a well-mixed environment. This approach, however, typically enforces a strictly fixed overall population size, deemphasizing natural growth processes. We study a competitive Lotka-Volterra model, with number fluctuations, that accounts for natural population growth and encompasses interaction scenarios typical of evolutionary games. We show that, in an appropriate limit, the model describes standard evolutionary games with both genetic drift and overall population size fluctuations. However, there are also regimes where a varying population size can strongly influence the evolutionary dynamics. We focus on the strong mutualism scenario and demonstrate that standard evolutionary game theory fails to describe our simulation results. We then analytically and numerically determine fixation probabilities as well as mean fixation times using matched asymptotic expansions, taking into account the population size degree of freedom. These results elucidate the interplay between population dynamics and evolutionary dynamics in well-mixed systems.

  7. Diversity and effective population size of four horse breeds from microsatellite DNA markers in South-Central Mexico

    Directory of Open Access Journals (Sweden)

    J. F. Vázquez-Armijo

    2017-06-01

    Full Text Available The South-Central region of Mexico has experienced a sizeable introduction of purebred horses for recreational aims. A study was designed to assess effective population sizes and genetic diversity and to verify the genetic integrity of four horse breeds. Using a 12-microsatellite panel, Quarter Horse, Azteca, Thoroughbred and Creole (CRL horses were sampled and analysed for diversity and genetic structure. Genetic diversity parameters showed high numbers of heterozygous horses but small effective population sizes in all breeds. Population structure results suggested some degree of admixture of CRL with the other reference breeds. The highly informative microsatellite panel allowed the verification of diversity in introduced horse populations and the confirmation of small effective population sizes, which suggests a risk for future breed integrity.

  8. Genetic structure and effective population size through time: a tale on two coastal marine species with contrasting life-history patterns

    Directory of Open Access Journals (Sweden)

    Sara Martins Francisco

    2015-12-01

    Full Text Available Species with dispersal mediated by planktonic larvae are expected to be more likely to show temporal genetic variation, due to differences in larval mortality and dispersal ability. The shanny Lipophrys pholis is a typical benthic rocky intertidal fish and its dispersion is limited to its long larval stage. In contrast, the sand-smelt Atherina presbyter has a very short planktonic life, small size and weak swimming capabilities, which translates into reduced dispersion potential. A total of 226 specimens of L. pholis (collected in 2003, 2013 and 2014 and 281 of A. presbyter (collected in 2005, 2012, 2013 and 2014 were screened for genetic variation using the mitochondrial control region. Only 12 (out of 171 and 25 (out of 155 haplotypes found were shared between sampling periods for the shanny and the sand smelt, respectively. For both species, haplotype networks showed a deep genealogy with multiple levels of diversification and no temporal structure. Interestingly, some of the previously inferred missing haplotypes were sampled in more recent years. The genetic diversity indices showed little variation among sampling periods and were generally high. For L. pholis significant genetic differentiation was detected between 2013 and 2014, while no significant differences were detected between sampling periods in A. presbyter. The shanny showed lower effective population size per generation when compared to the sand-smelt (which yielded lack of evidence for genetic drift for the first and second period of the study. These results highlight the fact that temporal changes in the gene pool composition need to be considered when evaluating population structure, especially for species with long pelagic larval dispersion, more vulnerable to fluctuations in the recruitment.

  9. Population genetic diversity and fitness in multiple environments

    Directory of Open Access Journals (Sweden)

    McGreevy Thomas J

    2010-07-01

    Full Text Available Abstract Background When a large number of alleles are lost from a population, increases in individual homozygosity may reduce individual fitness through inbreeding depression. Modest losses of allelic diversity may also negatively impact long-term population viability by reducing the capacity of populations to adapt to altered environments. However, it is not clear how much genetic diversity within populations may be lost before populations are put at significant risk. Development of tools to evaluate this relationship would be a valuable contribution to conservation biology. To address these issues, we have created an experimental system that uses laboratory populations of an estuarine crustacean, Americamysis bahia with experimentally manipulated levels of genetic diversity. We created replicate cultures with five distinct levels of genetic diversity and monitored them for 16 weeks in both permissive (ambient seawater and stressful conditions (diluted seawater. The relationship between molecular genetic diversity at presumptive neutral loci and population vulnerability was assessed by AFLP analysis. Results Populations with very low genetic diversity demonstrated reduced fitness relative to high diversity populations even under permissive conditions. Population performance decreased in the stressful environment for all levels of genetic diversity relative to performance in the permissive environment. Twenty percent of the lowest diversity populations went extinct before the end of the study in permissive conditions, whereas 73% of the low diversity lines went extinct in the stressful environment. All high genetic diversity populations persisted for the duration of the study, although population sizes and reproduction were reduced under stressful environmental conditions. Levels of fitness varied more among replicate low diversity populations than among replicate populations with high genetic diversity. There was a significant correlation

  10. Non-invasive genetic censusing and monitoring of primate populations.

    Science.gov (United States)

    Arandjelovic, Mimi; Vigilant, Linda

    2018-03-01

    Knowing the density or abundance of primate populations is essential for their conservation management and contextualizing socio-demographic and behavioral observations. When direct counts of animals are not possible, genetic analysis of non-invasive samples collected from wildlife populations allows estimates of population size with higher accuracy and precision than is possible using indirect signs. Furthermore, in contrast to traditional indirect survey methods, prolonged or periodic genetic sampling across months or years enables inference of group membership, movement, dynamics, and some kin relationships. Data may also be used to estimate sex ratios, sex differences in dispersal distances, and detect gene flow among locations. Recent advances in capture-recapture models have further improved the precision of population estimates derived from non-invasive samples. Simulations using these methods have shown that the confidence interval of point estimates includes the true population size when assumptions of the models are met, and therefore this range of population size minima and maxima should be emphasized in population monitoring studies. Innovations such as the use of sniffer dogs or anti-poaching patrols for sample collection are important to ensure adequate sampling, and the expected development of efficient and cost-effective genotyping by sequencing methods for DNAs derived from non-invasive samples will automate and speed analyses. © 2018 Wiley Periodicals, Inc.

  11. Habitat Fragmentation Differentially Affects Genetic Variation, Phenotypic Plasticity and Survival in Populations of a Gypsum Endemic

    Directory of Open Access Journals (Sweden)

    Silvia Matesanz

    2017-05-01

    Full Text Available Habitat fragmentation, i.e., fragment size and isolation, can differentially alter patterns of neutral and quantitative genetic variation, fitness and phenotypic plasticity of plant populations, but their effects have rarely been tested simultaneously. We assessed the combined effects of size and connectivity on these aspects of genetic and phenotypic variation in populations of Centaurea hyssopifolia, a narrow endemic gypsophile that previously showed performance differences associated with fragmentation. We grew 111 maternal families sampled from 10 populations that differed in their fragment size and connectivity in a common garden, and characterized quantitative genetic variation, phenotypic plasticity to drought for key functional traits, and plant survival, as a measure of population fitness. We also assessed neutral genetic variation within and among populations using eight microsatellite markers. Although C. hyssopifolia is a narrow endemic gypsophile, we found substantial neutral genetic variation and quantitative variation for key functional traits. The partition of genetic variance indicated that a higher proportion of variation was found within populations, which is also consistent with low population differentiation in molecular markers, functional traits and their plasticity. This, combined with the generally small effect of habitat fragmentation suggests that gene flow among populations is not restricted, despite large differences in fragment size and isolation. Importantly, population’s similarities in genetic variation and plasticity did not reflect the lower survival observed in isolated populations. Overall, our results indicate that, although the species consists of genetically variable populations able to express functional plasticity, such aspects of adaptive potential may not always reflect populations’ survival. Given the differential effects of habitat connectivity on functional traits, genetic variation and fitness

  12. Population genetic structure of urban malaria vector Anopheles stephensi in India.

    Science.gov (United States)

    Sharma, Richa; Sharma, Arvind; Kumar, Ashwani; Dube, Madhulika; Gakhar, S K

    2016-04-01

    Malaria is a major public health problem in India because climatic condition and geography of India provide an ideal environment for development of malaria vector. Anopheles stephensi is a major urban malaria vector in India and its control has been hampered by insecticide resistance. In present study population genetic structure of A. stephensi is analyzed at macro geographic level using 13 microsatellite markers. Significantly high genetic differentiation was found in all studied populations with differentiation values (FST) ranging from 0.0398 to 0.1808. The geographic distance was found to be playing a major role in genetic differentiation between different populations. Overall three genetic pools were observed and population of central India was found to be coexisting in two genetic pools. High effective population size (Ne) was found in all the studied populations. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Population and genetic outcomes 20 years after reintroducing bobcats (Lynx rufus) to Cumberland Island, Georgia USA

    Science.gov (United States)

    Diefenbach, Duane R.; Hansen, Leslie A.; Bohling, Justin H.; Miller-Butterworth, Cassandra

    2015-01-01

    In 1988–1989, 32 bobcats Lynx rufus were reintroduced to Cumberland Island (CUIS), Georgia, USA, from which they had previously been extirpated. They were monitored intensively for 3 years immediately post-reintroduction, but no estimation of the size or genetic diversity of the population had been conducted in over 20 years since reintroduction. We returned to CUIS in 2012 to estimate abundance and effective population size of the present-day population, as well as to quantify genetic diversity and inbreeding. We amplified 12 nuclear microsatellite loci from DNA isolated from scats to establish genetic profiles to identify individuals. We used spatially explicit capture–recapture population estimation to estimate abundance. From nine unique genetic profiles, we estimate a population size of 14.4 (SE = 3.052) bobcats, with an effective population size (Ne) of 5–8 breeding individuals. This is consistent with predictions of a population viability analysis conducted at the time of reintroduction, which estimated the population would average 12–13 bobcats after 10 years. We identified several pairs of related bobcats (parent-offspring and full siblings), but ~75% of the pairwise comparisons were typical of unrelated individuals, and only one individual appeared inbred. Despite the small population size and other indications that it has likely experienced a genetic bottleneck, levels of genetic diversity in the CUIS bobcat population remain high compared to other mammalian carnivores. The reintroduction of bobcats to CUIS provides an opportunity to study changes in genetic diversity in an insular population without risk to this common species. Opportunities for natural immigration to the island are limited; therefore, continued monitoring and supplemental bobcat reintroductions could be used to evaluate the effect of different management strategies to maintain genetic diversity and population viability. The successful reintroduction and maintenance of a

  14. Genetic variation in Danish populations of Erysiphe graminis f.sp. hordei: estimation of gene diversity and effective population size using RFLP data

    DEFF Research Database (Denmark)

    Damgaard, C.; Giese, Nanna Henriette

    1996-01-01

    Genetic variation of the barley powdery mildew fungus (Erysiphe graminis f.sp. hordei) was estimated in three Danish local populations. Genetic variation was estimated from the variation amongst clones of Egh, and was therefore an estimate of the maximum genetic variation in the local populations...

  15. Population genomics of eusocial insects: the costs of a vertebrate-like effective population size.

    Science.gov (United States)

    Romiguier, J; Lourenco, J; Gayral, P; Faivre, N; Weinert, L A; Ravel, S; Ballenghien, M; Cahais, V; Bernard, A; Loire, E; Keller, L; Galtier, N

    2014-03-01

    The evolution of reproductive division of labour and social life in social insects has lead to the emergence of several life-history traits and adaptations typical of larger organisms: social insect colonies can reach masses of several kilograms, they start reproducing only when they are several years old, and can live for decades. These features and the monopolization of reproduction by only one or few individuals in a colony should affect molecular evolution by reducing the effective population size. We tested this prediction by analysing genome-wide patterns of coding sequence polymorphism and divergence in eusocial vs. noneusocial insects based on newly generated RNA-seq data. We report very low amounts of genetic polymorphism and an elevated ratio of nonsynonymous to synonymous changes – a marker of the effective population size – in four distinct species of eusocial insects, which were more similar to vertebrates than to solitary insects regarding molecular evolutionary processes. Moreover, the ratio of nonsynonymous to synonymous substitutions was positively correlated with the level of social complexity across ant species. These results are fully consistent with the hypothesis of a reduced effective population size and an increased genetic load in eusocial insects, indicating that the evolution of social life has important consequences at both the genomic and population levels. © 2014 The Authors. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  16. Genetic variation facilitates seedling establishment but not population growth rate of a perennial invader.

    Science.gov (United States)

    Li, Shou-Li; Vasemägi, Anti; Ramula, Satu

    2016-01-01

    Assessing the demographic consequences of genetic variation is fundamental to invasion biology. However, genetic and demographic approaches are rarely combined to explore the effects of genetic variation on invasive populations in natural environments. This study combined population genetics, demographic data and a greenhouse experiment to investigate the consequences of genetic variation for the population fitness of the perennial, invasive herb Lupinus polyphyllus. Genetic and demographic data were collected from 37 L. polyphyllus populations representing different latitudes in Finland, and genetic variation was characterized based on 13 microsatellite loci. Associations between genetic variation and population size, population density, latitude and habitat were investigated. Genetic variation was then explored in relation to four fitness components (establishment, survival, growth, fecundity) measured at the population level, and the long-term population growth rate (λ). For a subset of populations genetic variation was also examined in relation to the temporal variability of λ. A further assessment was made of the role of natural selection in the observed variation of certain fitness components among populations under greenhouse conditions. It was found that genetic variation correlated positively with population size, particularly at higher latitudes, and differed among habitat types. Average seedling establishment per population increased with genetic variation in the field, but not under greenhouse conditions. Quantitative genetic divergence (Q(ST)) based on seedling establishment in the greenhouse was smaller than allelic genetic divergence (F'(ST)), indicating that unifying selection has a prominent role in this fitness component. Genetic variation was not associated with average survival, growth or fecundity measured at the population level, λ or its variability. The study suggests that although genetic variation may facilitate plant invasions by

  17. Population genetic differentiation of height and body mass index across Europe

    DEFF Research Database (Denmark)

    Robinson, Matthew R.; Hemani, Gibran; Medina-Gomez, Carolina

    2015-01-01

    Across-nation differences in the mean values for complex traits are common(1-8), but the reasons for these differences are unknown. Here we find that many independent loci contribute to population genetic differences in height and body mass index (BMI) in 9,416 individuals across 14 European...... countries. Using discovery data on over 250,000 individuals and unbiased effect size estimates from 17,500 sibling pairs, we estimate that 24% (95% credible interval (CI) = 9%, 41%) and 8% (95% CI = 4%, 16%) of the captured additive genetic variance for height and BMI, respectively, reflect population...... genetic differences. Population genetic divergence differed significantly from that in a null model (height, P

  18. Genetic structure and gene flow among Komodo dragon populations inferred by microsatellite loci analysis.

    Science.gov (United States)

    Ciofi, C; Bruford, M W

    1999-12-01

    A general concern for the conservation of endangered species is the maintenance of genetic variation within populations, particularly when they become isolated and reduced in size. Estimates of gene flow and effective population size are therefore important for any conservation initiative directed to the long-term persistence of a species in its natural habitat. In the present study, 10 microsatellite loci were used to assess the level of genetic variability among populations of the Komodo dragon Varanus komodoensis. Effective population size was calculated and gene flow estimates were compared with palaeogeographic data in order to assess the degree of vulnerability of four island populations. Rinca and Flores, currently separated by an isthmus of about 200 m, retained a high level of genetic diversity and showed a high degree of genetic similarity, with gene flow values close to one migrant per generation. The island of Komodo showed by far the highest levels of genetic divergence, and its allelic distinctiveness was considered of great importance in the maintenance of genetic variability within the species. A lack of distinct alleles and low levels of gene flow and genetic variability were found for the small population of Gili Motang island, which was identified as vulnerable to stochastic threats. Our results are potentially important for both the short- and long-term management of the Komodo dragon, and are critical in view of future re-introduction or augmentation in areas where the species is now extinct or depleted.

  19. Multi-population Genomic Relationships for Estimating Current Genetic Variances Within and Genetic Correlations Between Populations.

    Science.gov (United States)

    Wientjes, Yvonne C J; Bijma, Piter; Vandenplas, Jérémie; Calus, Mario P L

    2017-10-01

    Different methods are available to calculate multi-population genomic relationship matrices. Since those matrices differ in base population, it is anticipated that the method used to calculate genomic relationships affects the estimate of genetic variances, covariances, and correlations. The aim of this article is to define the multi-population genomic relationship matrix to estimate current genetic variances within and genetic correlations between populations. The genomic relationship matrix containing two populations consists of four blocks, one block for population 1, one block for population 2, and two blocks for relationships between the populations. It is known, based on literature, that by using current allele frequencies to calculate genomic relationships within a population, current genetic variances are estimated. In this article, we theoretically derived the properties of the genomic relationship matrix to estimate genetic correlations between populations and validated it using simulations. When the scaling factor of across-population genomic relationships is equal to the product of the square roots of the scaling factors for within-population genomic relationships, the genetic correlation is estimated unbiasedly even though estimated genetic variances do not necessarily refer to the current population. When this property is not met, the correlation based on estimated variances should be multiplied by a correction factor based on the scaling factors. In this study, we present a genomic relationship matrix which directly estimates current genetic variances as well as genetic correlations between populations. Copyright © 2017 by the Genetics Society of America.

  20. Seasonal genetic variation associated with population dynamics of a poecilogonous polychaete worm

    DEFF Research Database (Denmark)

    Thonig, Anne; Banta, Gary Thomas; Hansen, Benni Winding

    2017-01-01

    Poecilogonous species show variation in developmental mode, with larvae that differ both morphologically and ecologically. The spionid polychaete Pygospio elegans shows variation in developmental mode not only between populations, but also seasonally within populations. We investigated...... differentiation at two of the sites. The seasonal genetic shift correlated with the appearance of new size cohorts in the populations. Additionally, we found that the genetic composition of reproductive individuals did not always reflect the genetic composition of the entire sample, indicating that variance...

  1. Genetic assessment of captive red panda (Ailurus fulgens) population.

    Science.gov (United States)

    Kumar, Arun; Rai, Upashna; Roka, Bhupen; Jha, Alankar K; Reddy, P Anuradha

    2016-01-01

    Red panda (Ailurus fulgens) is threatened across its range by detrimental human activities and rapid habitat changes necessitating captive breeding programs in various zoos globally to save this flagship species from extinction. One of the ultimate aims of ex situ conservation is reintroduction of endangered animals into their natural habitats while maintaining 90 % of the founder genetic diversity. Advances in molecular genetics and microsatellite genotyping techniques make it possible to accurately estimate genetic diversity of captive animals of unknown ancestry. Here we assess genetic diversity of the red panda population in Padmaja Naidu Himalayan Zoological Park, Darjeeling, which plays a pivotal role in ex situ conservation of red panda in India. We generated microsatellite genotypes of fifteen red pandas with a set of fourteen loci. This population is genetically diverse with 68 % observed heterozygosity (H O ) and mean inbreeding (F IS ) coefficient of 0.05. However population viability analysis reveals that this population has a very low survival probability (<2 %) and will rapidly loose its genetic diversity to 37 % mainly due to small population size and skewed male-biased sex ratio. Regular supplementation with a pair of adult individuals every five years will increase survival probability and genetic diversity to 99 and 61 % respectively and will also support future harvesting of individuals for reintroduction into the wild and exchange with other zoos.

  2. Supervised Machine Learning for Population Genetics: A New Paradigm

    Science.gov (United States)

    Schrider, Daniel R.; Kern, Andrew D.

    2018-01-01

    As population genomic datasets grow in size, researchers are faced with the daunting task of making sense of a flood of information. To keep pace with this explosion of data, computational methodologies for population genetic inference are rapidly being developed to best utilize genomic sequence data. In this review we discuss a new paradigm that has emerged in computational population genomics: that of supervised machine learning (ML). We review the fundamentals of ML, discuss recent applications of supervised ML to population genetics that outperform competing methods, and describe promising future directions in this area. Ultimately, we argue that supervised ML is an important and underutilized tool that has considerable potential for the world of evolutionary genomics. PMID:29331490

  3. Population genetics and the evolution of geographic range limits in an annual plant.

    Science.gov (United States)

    Moeller, David A; Geber, Monica A; Tiffin, Peter

    2011-10-01

    Abstract Theoretical models of species' geographic range limits have identified both demographic and evolutionary mechanisms that prevent range expansion. Stable range limits have been paradoxical for evolutionary biologists because they represent locations where populations chronically fail to respond to selection. Distinguishing among the proposed causes of species' range limits requires insight into both current and historical population dynamics. The tools of molecular population genetics provide a window into the stability of range limits, historical demography, and rates of gene flow. Here we evaluate alternative range limit models using a multilocus data set based on DNA sequences and microsatellites along with field demographic data from the annual plant Clarkia xantiana ssp. xantiana. Our data suggest that central and peripheral populations have very large historical and current effective population sizes and that there is little evidence for population size changes or bottlenecks associated with colonization in peripheral populations. Whereas range limit populations appear to have been stable, central populations exhibit a signature of population expansion and have contributed asymmetrically to the genetic diversity of peripheral populations via migration. Overall, our results discount strictly demographic models of range limits and more strongly support evolutionary genetic models of range limits, where adaptation is prevented by a lack of genetic variation or maladaptive gene flow.

  4. Genetic distances between the Utah Mormons and related populations.

    Science.gov (United States)

    McLellan, T; Jorde, L B; Skolnick, M H

    1984-01-01

    Gene frequency data, consisting of six red cell antigen loci, nine electrophoretic systems, and HLA-A and -B are reported for the Utah Mormon population. These are compared statistically to gene frequencies from at U.S. population, 13 European populations, and seven populations from three religious isolates. The Mormon gene frequencies are similar to those of their northern European ancestors. This is explained by the large founding size of the Mormon population and high rates of gene flow. In contrast, the religious isolates (Amish, Hutterites, and Mennonites) show marked divergence from their ancestral populations and each other, due to isolation and random genetic drift. The HLA loci and electrophoretic loci presented here yield sets of genetic distances that are highly correlated (r = .734) and that both correspond closely to the actual geographic distances among the European populations. The genetic distances based on red cell antigen loci correspond less closely to the geographic distances and exhibit lower correlations with both the HLA and electrophoretic loci (r = .524 and r = .565, respectively). PMID:6591796

  5. Spatial extent of analysis influences observed patterns of population genetic structure in a widespread darter species (Percidae)

    Science.gov (United States)

    Argentina, Jane E.; Angermeier, Paul L.; Hallerman, Eric M.; Welsh, Stuart A.

    2018-01-01

    Connectivity among stream fish populations allows for exchange of genetic material and helps maintain genetic diversity, adaptive potential and population stability over time. Changes in species demographics and population connectivity have the potential to permanently alter the genetic patterns of stream fish, although these changes through space and time are variable and understudied in small‐bodied freshwater fish.As a spatially widespread, common species of benthic freshwater fish, the variegate darter (Etheostoma variatum) is a model species for documenting how patterns of genetic structure and diversity respond to increasing isolation due to large dams and how scale of study may shape our understanding of these patterns. We sampled variegate darters from 34 sites across their range in the North American Ohio River basin and examined how patterns of genetic structure and diversity within and between populations responded to historical population changes and dams within and between populations.Spatial scale and configuration of genetic structure varied across the eight identified populations, from tributaries within a watershed, to a single watershed, to multiple watersheds that encompass Ohio River mainstem habitats. This multiwatershed pattern of population structuring suggests genetic dispersal across large distances was and may continue to be common, although some populations remain isolated despite no apparent structural dispersal barriers. Populations with low effective population sizes and evidence of past population bottlenecks showed low allelic richness, but diversity patterns were not related to watershed size, a surrogate for habitat availability. Pairwise genetic differentiation (FST) increased with fluvial distance and was related to both historic and contemporary processes. Genetic diversity changes were influenced by underlying population size and stability, and while instream barriers were not strong determinants of genetic structuring or

  6. Genetic diversity of Morato's Digger Toad, Proceratophrys moratoi: spatial structure, gene flow, effective size and the need for differential management strategies of populations

    Directory of Open Access Journals (Sweden)

    Mauricio P. Arruda

    2017-06-01

    Full Text Available Abstract The Morato's Digger Toad, Proceratophrys moratoi, is a critically endangered toad species with a marked population decline in southern Brazilian Cerrado. Despite this, new populations are being discovered, primarily in the northern part of the distribution range, which raises a number of questions with regard to the conservation status of the species. The present study analyzed the genetic diversity of the species based on microsatellite markers. Our findings permitted the identification of two distinct management units. We found profound genetic structuring between the southern populations, on the left margin of the Tietê River, and all other populations. A marked reduction was observed in the contemporary gene flow among the central populations that are most affected by anthropogenic impacts, such as extensive sugar cane plantations, which presumably decreases habitat connectivity. The results indicated reduced diversity in the southern populations which, combined with a smaller effective population size, may make these populations more susceptible to extinction. We recommend the reclassification of P. moratoi as vulnerable and the establishment of a special protection program for the southern populations. Our results provide important insights about the local extinction of southern populations of this toad.

  7. Modelling the loss of genetic diversity in vole populations in a spatially and temporally varying environment

    DEFF Research Database (Denmark)

    Topping, Christopher John; Østergaard, Siri; Pertoldi, Cino

    2003-01-01

    conditions, but exclude factors such as animal behaviour, environmental structure, and breeding biology, all of which influence genetic diversity. Most populations are unique in some of these characteristics, and therefore may be unsuitable for the classical approach. Here, an alternative approach using...... to habitat availability and their influence on vole behaviour. Interaction between spatial and temporal dynamics altered the ratio of effective population size to census size. This indicates an altered reproductive potential, crucial in conservation biology applications. However, when the loss......Altering environmental conditions affects the genetic composition of populations via demographic and selective responses by creating of variety of population substructuring types. Classical genetic approaches can predict the genetic composition of populations under long-term or structurally stable...

  8. Spatial genetic structure in continuous and fragmented populations of Pinus pinaster Aiton.

    Science.gov (United States)

    De-Lucas, A I; González-Martínez, S C; Vendramin, G G; Hidalgo, E; Heuertz, M

    2009-11-01

    Habitat fragmentation, i.e., the reduction of populations into small isolated remnants, is expected to increase spatial genetic structure (SGS) in plant populations through nonrandom mating, lower population densities and potential aggregation of reproductive individuals. We investigated the effects of population size reduction and genetic isolation on SGS in maritime pine (Pinus pinaster Aiton) using a combined experimental and simulation approach. Maritime pine is a wind-pollinated conifer which has a scattered distribution in the Iberian Peninsula as a result of forest fires and habitat fragmentation. Five highly polymorphic nuclear microsatellites were genotyped in a total of 394 individuals from two population pairs from the Iberian Peninsula, formed by one continuous and one fragmented population each. In agreement with predictions, SGS was significant and stronger in fragments (Sp = 0.020 and Sp = 0.026) than in continuous populations, where significant SGS was detected for one population only (Sp = 0.010). Simulations suggested that under fat-tailed dispersal, small population size is a stronger determinant of SGS than genetic isolation, while under normal dispersal, genetic isolation has a stronger effect. SGS was always stronger in real populations than in simulations, except if unrealistically narrow dispersal and/or high variance of reproductive success were modelled (even when accounting for potential overestimation of SGS in real populations as a result of short-distance sampling). This suggests that factors such as nonrandom mating or selection not considered in the simulations were additionally operating on SGS in Iberian maritime pine populations.

  9. Parameters in the estimation of the most suitable F2 population size in conventional maize (Zea mays L. breeding programs

    Directory of Open Access Journals (Sweden)

    Delić Nenad

    2010-01-01

    Full Text Available The objective of the present study was to observe differences among four sizes of the F2 populations (100, 200, 300 and 500 plants on the basis of test-crosses for grain yield according to the average values of the populations, genetic and phenotypic variances, genotypic and phenotypic coefficients of variations and broad-sense heritability. The values of genetic variance did not significantly differ over population sizes according to all possible comparisons, including the comparison of values obtained for the phenotypic variance. Furthermore, the values of broadsense heritability (67.8%-69% did not significantly vary over different F2 population sizes. Genetic variability of the observed progenies, as a principal prerequisite of successful selection, was at the satisfactory level in all population sizes.

  10. Sampling strategies for estimating brook trout effective population size

    Science.gov (United States)

    Andrew R. Whiteley; Jason A. Coombs; Mark Hudy; Zachary Robinson; Keith H. Nislow; Benjamin H. Letcher

    2012-01-01

    The influence of sampling strategy on estimates of effective population size (Ne) from single-sample genetic methods has not been rigorously examined, though these methods are increasingly used. For headwater salmonids, spatially close kin association among age-0 individuals suggests that sampling strategy (number of individuals and location from...

  11. THE EVOLUTIONARY GENETICS OF AN ADAPTIVE MATERNAL EFFECT: EGG SIZE PLASTICITY IN A SEED BEETLE.

    Science.gov (United States)

    Fox, Charles W; Czesak, Mary Ellen; Mousseau, Timothy A; Roff, Derek A

    1999-04-01

    In many organisms, a female's environment provides a reliable indicator of the environmental conditions that her progeny will encounter. In such cases, maternal effects may evolve as mechanisms for transgenerational phenotypic plasticity whereby, in response to a predictive environmental cue, a mother can change the type of eggs that she makes or can program a developmental switch in her offspring, which produces offspring prepared for the environmental conditions predicted by the cue. One potentially common mechanism by which females manipulate the phenotype of their progeny is egg size plasticity, in which females vary egg size in response to environmental cues. We describe an experiment in which we quantify genetic variation in egg size and egg size plasticity in a seed beetle, Stator limbatus, and measure the genetic constraints on the evolution of egg size plasticity, quantified as the genetic correlation between the size of eggs laid across host plants. We found that genetic variation is present within populations for the size of eggs laid on seeds of two host plants (Acacia greggii and Cercidium floridum; h 2 ranged between 0.217 and 0.908), and that the heritability of egg size differed between populations and hosts (higher on A. greggii than on C. floridum). We also found that the evolution of egg size plasticity (the maternal effect) is in part constrained by a high genetic correlation across host plants (r G > 0.6). However, the cross-environment genetic correlation is less than 1.0, which indicates that the size of eggs laid on these two hosts can diverge in response to natural selection and that egg size plasticity is thus capable of evolving in response to natural selection. © 1999 The Society for the Study of Evolution.

  12. Population growth rate and genetic variability of small and large populations of Red flour beetle (Tribolium castaneum) following multigenerational exposure to copper.

    Science.gov (United States)

    Laskowski, Ryszard; Radwan, Jacek; Kuduk, Katarzyna; Mendrok, Magdalena; Kramarz, Paulina

    2015-07-01

    We reared large (1000 individuals) and small (20 individuals) populations of Tribolium castaneum on diet contaminated with copper in order to determine if the size of a population affects its ability to adapt to adverse environmental conditions. After 10 generations, we used microsatellite markers to estimate and subsequently compare the genetic variability of the copper-treated populations with that of the control populations, which were reared on uncontaminated medium. Additionally, we conducted a full cross-factorial experiment which evaluated the effects of 10 generations of "pre-exposure" to copper on a population's fitness in control and copper-contaminated environments. In order to distinguish results potentially arising from genetic adaptation from those due to non-genetic effects associated to parental exposure to copper, we subjected also F11 generation, originating from parents not exposed to copper, to the same cross-factorial experiment. The effects of long-term exposure to copper depended on population size: the growth rates of small populations that were pre-exposed to copper were inhibited compared to those of small populations reared in uncontaminated environments. Large Cu-exposed populations had a higher growth rate in the F10 generation compared to the control groups, while the growth rate of the F11 generation was unaffected by copper exposure history. The only factor that had a significant effect on genetic variability was population size, but this was to be expected given the large difference in the number of individuals between large and small populations. Neither copper contamination nor its interaction with population size affected the number of microsatellite alleles retained in the F10 generation.

  13. A tight association in two genetically unlinked dispersal related traits in sympatric and allopatric salt marsh beetle populations.

    Science.gov (United States)

    Van Belleghem, Steven M; Hendrickx, Frederik

    2014-02-01

    Local adaptation likely involves selection on multiple, genetically unlinked traits to increase fitness in divergent habitats. Conversely, recombination is expected to counteract local adaptation under gene flow by breaking down adaptive gene combinations. Western European populations of the salt marsh beetle Pogonus chalceus are characterized by large interpopulation variation at various geographical ranges in two traits related to dispersal ability, i.e. wing size and different allozymes of the mitochondrial NADP(+)-dependent isocitrate dehydrogenase (mtIdh) gene. In this study, we tested whether variation in wing length was as strongly genetically determined in locally adapted populations in a sympatric mosaic compared to allopatric populations, and if variation in mtIDH and wing size was genetically unlinked. We demonstrate that the genetic determination of wing size is very high (h (2) = 0.90) in sympatry and of comparable magnitude as geographically separated populations. Second, we show that, although frequencies of mtIDH allozymes are tightly associated with mean population wing size across Western European populations, the correlation is strongly reduced within some of the populations. These findings demonstrate that the divergence involves at least two traits under independent genetic control and that the genetically distinct ecotypes are retained at geographical distances with ample opportunity for gene flow.

  14. The impact of accelerating faster than exponential population growth on genetic variation.

    Science.gov (United States)

    Reppell, Mark; Boehnke, Michael; Zöllner, Sebastian

    2014-03-01

    Current human sequencing projects observe an abundance of extremely rare genetic variation, suggesting recent acceleration of population growth. To better understand the impact of such accelerating growth on the quantity and nature of genetic variation, we present a new class of models capable of incorporating faster than exponential growth in a coalescent framework. Our work shows that such accelerated growth affects only the population size in the recent past and thus large samples are required to detect the models' effects on patterns of variation. When we compare models with fixed initial growth rate, models with accelerating growth achieve very large current population sizes and large samples from these populations contain more variation than samples from populations with constant growth. This increase is driven almost entirely by an increase in singleton variation. Moreover, linkage disequilibrium decays faster in populations with accelerating growth. When we instead condition on current population size, models with accelerating growth result in less overall variation and slower linkage disequilibrium decay compared to models with exponential growth. We also find that pairwise linkage disequilibrium of very rare variants contains information about growth rates in the recent past. Finally, we demonstrate that models of accelerating growth may substantially change estimates of present-day effective population sizes and growth times.

  15. The evolution of RNA viruses: A population genetics view

    Science.gov (United States)

    Moya, Andrés; Elena, Santiago F.; Bracho, Alma; Miralles, Rosario; Barrio, Eladio

    2000-01-01

    RNA viruses are excellent experimental models for studying evolution under the theoretical framework of population genetics. For a proper justification of this thesis we have introduced some properties of RNA viruses that are relevant for studying evolution. On the other hand, population genetics is a reductionistic theory of evolution. It does not consider or make simplistic assumptions on the transformation laws within and between genotypic and phenotypic spaces. However, such laws are minimized in the case of RNA viruses because the phenotypic space maps onto the genotypic space in a much more linear way than on higher DNA-based organisms. Under experimental conditions, we have tested the role of deleterious and beneficial mutations in the degree of adaptation of vesicular stomatitis virus (VSV), a nonsegmented virus of negative strand. We also have studied how effective population size, initial genetic variability in populations, and environmental heterogeneity shapes the impact of mutations in the evolution of vesicular stomatitis virus. Finally, in an integrative attempt, we discuss pros and cons of the quasispecies theory compared with classic population genetics models for haploid organisms to explain the evolution of RNA viruses. PMID:10860958

  16. Population genetics of non-genetic traits: Evolutionary roles of stochasticity in gene expression

    KAUST Repository

    Mineta, Katsuhiko

    2015-05-01

    The role of stochasticity in evolutionary genetics has long been debated. To date, however, the potential roles of non-genetic traits in evolutionary processes have been largely neglected. In molecular biology, growing evidence suggests that stochasticity in gene expression (SGE) is common and that SGE has major impacts on phenotypes and fitness. Here, we provide a general overview of the potential effects of SGE on population genetic parameters, arguing that SGE can indeed have a profound effect on evolutionary processes. Our analyses suggest that SGE potentially alters the fate of mutations by influencing effective population size and fixation probability. In addition, a genetic control of SGE magnitude could evolve under certain conditions, if the fitness of the less-fit individual increases due to SGE and environmental fluctuation. Although empirical evidence for our arguments is yet to come, methodological developments for precisely measuring SGE in living organisms will further advance our understanding of SGE-driven evolution.

  17. Population genetics of non-genetic traits: Evolutionary roles of stochasticity in gene expression

    KAUST Repository

    Mineta, Katsuhiko; Matsumoto, Tomotaka; Osada, Naoki; Araki, Hitoshi

    2015-01-01

    The role of stochasticity in evolutionary genetics has long been debated. To date, however, the potential roles of non-genetic traits in evolutionary processes have been largely neglected. In molecular biology, growing evidence suggests that stochasticity in gene expression (SGE) is common and that SGE has major impacts on phenotypes and fitness. Here, we provide a general overview of the potential effects of SGE on population genetic parameters, arguing that SGE can indeed have a profound effect on evolutionary processes. Our analyses suggest that SGE potentially alters the fate of mutations by influencing effective population size and fixation probability. In addition, a genetic control of SGE magnitude could evolve under certain conditions, if the fitness of the less-fit individual increases due to SGE and environmental fluctuation. Although empirical evidence for our arguments is yet to come, methodological developments for precisely measuring SGE in living organisms will further advance our understanding of SGE-driven evolution.

  18. Rate of inbreeding and effective population size in four major South ...

    African Journals Online (AJOL)

    huis

    Keywords: Dairy cattle, genetic diversity, pedigree analysis ... inbreeding and effective population sizes for the four major South African ... breeding programs and therefore L was computed as an average of generation intervals for the four.

  19. The Effect of Recurrent Floods on Genetic Composition of Marble Trout Populations

    Science.gov (United States)

    Pujolar, José Martin; Vincenzi, Simone; Zane, Lorenzo; Jesensek, Dusan; De Leo, Giulio A.; Crivelli, Alain J.

    2011-01-01

    A changing global climate can threaten the diversity of species and ecosystems. We explore the consequences of catastrophic disturbances in determining the evolutionary and demographic histories of secluded marble trout populations in Slovenian streams subjected to weather extremes, in particular recurrent flash floods and debris flows causing massive mortalities. Using microsatellite data, a pattern of extreme genetic differentiation was found among populations (global F ST of 0.716), which exceeds the highest values reported in freshwater fish. All locations showed low levels of genetic diversity as evidenced by low heterozygosities and a mean of only 2 alleles per locus, with few or no rare alleles. Many loci showed a discontinuous allele distribution, with missing alleles across the allele size range, suggestive of a population contraction. Accordingly, bottleneck episodes were inferred for all samples with a reduction in population size of 3–4 orders of magnitude. The reduced level of genetic diversity observed in all populations implies a strong impact of genetic drift, and suggests that along with limited gene flow, genetic differentiation might have been exacerbated by recurrent mortalities likely caused by flash flood and debris flows. Due to its low evolutionary potential the species might fail to cope with an intensification and altered frequency of flash flood events predicted to occur with climate change. PMID:21931617

  20. Confidence intervals for population allele frequencies: the general case of sampling from a finite diploid population of any size.

    Science.gov (United States)

    Fung, Tak; Keenan, Kevin

    2014-01-01

    The estimation of population allele frequencies using sample data forms a central component of studies in population genetics. These estimates can be used to test hypotheses on the evolutionary processes governing changes in genetic variation among populations. However, existing studies frequently do not account for sampling uncertainty in these estimates, thus compromising their utility. Incorporation of this uncertainty has been hindered by the lack of a method for constructing confidence intervals containing the population allele frequencies, for the general case of sampling from a finite diploid population of any size. In this study, we address this important knowledge gap by presenting a rigorous mathematical method to construct such confidence intervals. For a range of scenarios, the method is used to demonstrate that for a particular allele, in order to obtain accurate estimates within 0.05 of the population allele frequency with high probability (> or = 95%), a sample size of > 30 is often required. This analysis is augmented by an application of the method to empirical sample allele frequency data for two populations of the checkerspot butterfly (Melitaea cinxia L.), occupying meadows in Finland. For each population, the method is used to derive > or = 98.3% confidence intervals for the population frequencies of three alleles. These intervals are then used to construct two joint > or = 95% confidence regions, one for the set of three frequencies for each population. These regions are then used to derive a > or = 95%% confidence interval for Jost's D, a measure of genetic differentiation between the two populations. Overall, the results demonstrate the practical utility of the method with respect to informing sampling design and accounting for sampling uncertainty in studies of population genetics, important for scientific hypothesis-testing and also for risk-based natural resource management.

  1. Confidence intervals for population allele frequencies: the general case of sampling from a finite diploid population of any size.

    Directory of Open Access Journals (Sweden)

    Tak Fung

    Full Text Available The estimation of population allele frequencies using sample data forms a central component of studies in population genetics. These estimates can be used to test hypotheses on the evolutionary processes governing changes in genetic variation among populations. However, existing studies frequently do not account for sampling uncertainty in these estimates, thus compromising their utility. Incorporation of this uncertainty has been hindered by the lack of a method for constructing confidence intervals containing the population allele frequencies, for the general case of sampling from a finite diploid population of any size. In this study, we address this important knowledge gap by presenting a rigorous mathematical method to construct such confidence intervals. For a range of scenarios, the method is used to demonstrate that for a particular allele, in order to obtain accurate estimates within 0.05 of the population allele frequency with high probability (> or = 95%, a sample size of > 30 is often required. This analysis is augmented by an application of the method to empirical sample allele frequency data for two populations of the checkerspot butterfly (Melitaea cinxia L., occupying meadows in Finland. For each population, the method is used to derive > or = 98.3% confidence intervals for the population frequencies of three alleles. These intervals are then used to construct two joint > or = 95% confidence regions, one for the set of three frequencies for each population. These regions are then used to derive a > or = 95%% confidence interval for Jost's D, a measure of genetic differentiation between the two populations. Overall, the results demonstrate the practical utility of the method with respect to informing sampling design and accounting for sampling uncertainty in studies of population genetics, important for scientific hypothesis-testing and also for risk-based natural resource management.

  2. Combining noninvasive genetics and a new mammalian sex-linked marker provides new tools to investigate population size, structure and individual behaviour: An application to bats.

    Science.gov (United States)

    Zarzoso-Lacoste, Diane; Jan, Pierre-Loup; Lehnen, Lisa; Girard, Thomas; Besnard, Anne-Laure; Puechmaille, Sebastien J; Petit, Eric J

    2018-03-01

    Monitoring wild populations is crucial for their effective management. Noninvasive genetic methods provide robust data from individual free-ranging animals, which can be used in capture-mark-recapture (CMR) models to estimate demographic parameters without capturing or disturbing them. However, sex- and status-specific behaviour, which may lead to differences in detection probabilities, is rarely considered in monitoring. Here, we investigated population size, sex ratio, sex- and status-related behaviour in 19 Rhinolophus hipposideros maternity colonies (Northern France) with a noninvasive genetic CMR approach (using faeces) combined with parentage assignments. The use of the DDX3X/Y-Mam sexual marker designed in this study, which shows inter- and intrachromosomal length polymorphism across placental mammals, together with eight polymorphic microsatellite markers, produced high-quality genetic data with limited genotyping errors and allowed us to reliably distinguish different categories of individuals (males, reproductive and nonreproductive females) and to estimate population sizes. We showed that visual counts represent well-adult female numbers and that population composition in maternity colonies changes dynamically during the summer. Before parturition, colonies mainly harbour pregnant and nonpregnant females with a few visiting males, whereas after parturition, colonies are mainly composed of mothers and their offspring with a few visiting nonmothers and males. Our approach gives deeper insight into sex- and status-specific behaviour, a prerequisite for understanding population dynamics and developing effective monitoring and management strategies. Provided sufficient samples can be obtained, this approach can be readily applied to a wide range of species. © 2017 John Wiley & Sons Ltd.

  3. Loss and recovery of genetic diversity in adapting populations of HIV.

    Directory of Open Access Journals (Sweden)

    Pleuni S Pennings

    2014-01-01

    Full Text Available The evolution of drug resistance in HIV occurs by the fixation of specific, well-known, drug-resistance mutations, but the underlying population genetic processes are not well understood. By analyzing within-patient longitudinal sequence data, we make four observations that shed a light on the underlying processes and allow us to infer the short-term effective population size of the viral population in a patient. Our first observation is that the evolution of drug resistance usually occurs by the fixation of one drug-resistance mutation at a time, as opposed to several changes simultaneously. Second, we find that these fixation events are accompanied by a reduction in genetic diversity in the region surrounding the fixed drug-resistance mutation, due to the hitchhiking effect. Third, we observe that the fixation of drug-resistance mutations involves both hard and soft selective sweeps. In a hard sweep, a resistance mutation arises in a single viral particle and drives all linked mutations with it when it spreads in the viral population, which dramatically reduces genetic diversity. On the other hand, in a soft sweep, a resistance mutation occurs multiple times on different genetic backgrounds, and the reduction of diversity is weak. Using the frequency of occurrence of hard and soft sweeps we estimate the effective population size of HIV to be 1.5 x 10(5 (95% confidence interval [0.8 x 10(5,4.8 x 10(5]. This number is much lower than the actual number of infected cells, but much larger than previous population size estimates based on synonymous diversity. We propose several explanations for the observed discrepancies. Finally, our fourth observation is that genetic diversity at non-synonymous sites recovers to its pre-fixation value within 18 months, whereas diversity at synonymous sites remains depressed after this time period. These results improve our understanding of HIV evolution and have potential implications for treatment strategies.

  4. Deep Learning for Population Genetic Inference.

    Science.gov (United States)

    Sheehan, Sara; Song, Yun S

    2016-03-01

    Given genomic variation data from multiple individuals, computing the likelihood of complex population genetic models is often infeasible. To circumvent this problem, we introduce a novel likelihood-free inference framework by applying deep learning, a powerful modern technique in machine learning. Deep learning makes use of multilayer neural networks to learn a feature-based function from the input (e.g., hundreds of correlated summary statistics of data) to the output (e.g., population genetic parameters of interest). We demonstrate that deep learning can be effectively employed for population genetic inference and learning informative features of data. As a concrete application, we focus on the challenging problem of jointly inferring natural selection and demography (in the form of a population size change history). Our method is able to separate the global nature of demography from the local nature of selection, without sequential steps for these two factors. Studying demography and selection jointly is motivated by Drosophila, where pervasive selection confounds demographic analysis. We apply our method to 197 African Drosophila melanogaster genomes from Zambia to infer both their overall demography, and regions of their genome under selection. We find many regions of the genome that have experienced hard sweeps, and fewer under selection on standing variation (soft sweep) or balancing selection. Interestingly, we find that soft sweeps and balancing selection occur more frequently closer to the centromere of each chromosome. In addition, our demographic inference suggests that previously estimated bottlenecks for African Drosophila melanogaster are too extreme.

  5. Inferring genetic connectivity in real populations, exemplified by coastal and oceanic Atlantic cod.

    Science.gov (United States)

    Spies, Ingrid; Hauser, Lorenz; Jorde, Per Erik; Knutsen, Halvor; Punt, André E; Rogers, Lauren A; Stenseth, Nils Chr

    2018-04-19

    Genetic data are commonly used to estimate connectivity between putative populations, but translating them to demographic dispersal rates is complicated. Theoretical equations that infer a migration rate based on the genetic estimator F ST , such as Wright's equation, F ST ≈ 1/(4 N e m + 1), make assumptions that do not apply to most real populations. How complexities inherent to real populations affect migration was exemplified by Atlantic cod in the North Sea and Skagerrak and was examined within an age-structured model that incorporated genetic markers. Migration was determined under various scenarios by varying the number of simulated migrants until the mean simulated level of genetic differentiation matched a fixed level of genetic differentiation equal to empirical estimates. Parameters that decreased the N e / N t ratio (where N e is the effective and N t is the total population size), such as high fishing mortality and high fishing gear selectivity, increased the number of migrants required to achieve empirical levels of genetic differentiation. Higher maturity-at-age and lower selectivity increased N e / N t and decreased migration when genetic differentiation was fixed. Changes in natural mortality, fishing gear selectivity, and maturity-at-age within expected limits had a moderate effect on migration when genetic differentiation was held constant. Changes in population size had the greatest effect on the number of migrants to achieve fixed levels of F ST , particularly when genetic differentiation was low, F ST ≈ 10 -3 Highly variable migration patterns, compared with constant migration, resulted in higher variance in genetic differentiation and higher extreme values. Results are compared with and provide insight into the use of theoretical equations to estimate migration among real populations. Copyright © 2018 the Author(s). Published by PNAS.

  6. Asian elephants in China: estimating population size and evaluating habitat suitability.

    Directory of Open Access Journals (Sweden)

    Li Zhang

    Full Text Available We monitored the last remaining Asian elephant populations in China over the past decade. Using DNA tools and repeat genotyping, we estimated the population sizes from 654 dung samples collected from various areas. Combined with morphological individual identifications from over 6,300 elephant photographs taken in the wild, we estimated that the total Asian elephant population size in China is between 221 and 245. Population genetic structure and diversity were examined using a 556-bp fragment of mitochondrial DNA, and 24 unique haplotypes were detected from DNA analysis of 178 individuals. A phylogenetic analysis revealed two highly divergent clades of Asian elephants, α and β, present in Chinese populations. Four populations (Mengla, Shangyong, Mengyang, and Pu'Er carried mtDNA from the α clade, and only one population (Nangunhe carried mtDNA belonging to the β clade. Moreover, high genetic divergence was observed between the Nangunhe population and the other four populations; however, genetic diversity among the five populations was low, possibly due to limited gene flow because of habitat fragmentation. The expansion of rubber plantations, crop cultivation, and villages along rivers and roads had caused extensive degradation of natural forest in these areas. This had resulted in the loss and fragmentation of elephant habitats and had formed artificial barriers that inhibited elephant migration. Using Geographic Information System, Global Positioning System, and Remote Sensing technology, we found that the area occupied by rubber plantations, tea farms, and urban settlements had dramatically increased over the past 40 years, resulting in the loss and fragmentation of elephant habitats and forming artificial barriers that inhibit elephant migration. The restoration of ecological corridors to facilitate gene exchange among isolated elephant populations and the establishment of cross-boundary protected areas between China and Laos to secure

  7. A population genetic interpretation of GWAS findings for human quantitative traits

    Science.gov (United States)

    Bullaughey, Kevin; Hudson, Richard R.; Sella, Guy

    2018-01-01

    Human genome-wide association studies (GWASs) are revealing the genetic architecture of anthropomorphic and biomedical traits, i.e., the frequencies and effect sizes of variants that contribute to heritable variation in a trait. To interpret these findings, we need to understand how genetic architecture is shaped by basic population genetics processes—notably, by mutation, natural selection, and genetic drift. Because many quantitative traits are subject to stabilizing selection and because genetic variation that affects one trait often affects many others, we model the genetic architecture of a focal trait that arises under stabilizing selection in a multidimensional trait space. We solve the model for the phenotypic distribution and allelic dynamics at steady state and derive robust, closed-form solutions for summary statistics of the genetic architecture. Our results provide a simple interpretation for missing heritability and why it varies among traits. They predict that the distribution of variances contributed by loci identified in GWASs is well approximated by a simple functional form that depends on a single parameter: the expected contribution to genetic variance of a strongly selected site affecting the trait. We test this prediction against the results of GWASs for height and body mass index (BMI) and find that it fits the data well, allowing us to make inferences about the degree of pleiotropy and mutational target size for these traits. Our findings help to explain why the GWAS for height explains more of the heritable variance than the similarly sized GWAS for BMI and to predict the increase in explained heritability with study sample size. Considering the demographic history of European populations, in which these GWASs were performed, we further find that most of the associations they identified likely involve mutations that arose shortly before or during the Out-of-Africa bottleneck at sites with selection coefficients around s = 10−3. PMID

  8. The between-population genetic architecture of growth, maturation, and plasticity in Atlantic salmon.

    Science.gov (United States)

    Debes, Paul Vincent; Fraser, Dylan John; Yates, Matthew; Hutchings, Jeffrey A

    2014-04-01

    The between-population genetic architecture for growth and maturation has not been examined in detail for many animal species despite its central importance in understanding hybrid fitness. We studied the genetic architecture of population divergence in: (i) maturation probabilities at the same age; (ii) size at age and growth, while accounting for maturity status and sex; and (iii) growth plasticity in response to environmental factors, using divergent wild and domesticated Atlantic salmon (Salmo salar). Our work examined two populations and their multigenerational hybrids in a common experimental arrangement in which salinity and quantity of suspended sediments were manipulated to mimic naturally occurring environmental variation. Average specific growth rates across environments differed among crosses, maturity groups, and cross-by-maturity groups, but a growth-rate reduction in the presence of suspended sediments was equal for all groups. Our results revealed both additive and nonadditive outbreeding effects for size at age and for growth rates that differed with life stage, as well as the presence of different sex- and size-specific maturation probabilities between populations. The major implication of our work is that estimates of the genetic architecture of growth and maturation can be biased if one does not simultaneously account for temporal changes in growth and for different maturation probabilities between populations. Namely, these correlated traits interact differently within each population and between sexes and among generations, due to nonadditive effects and a level of independence in the genetic control for traits. Our results emphasize the challenges to investigating and predicting phenotypic changes resulting from between-population outbreeding.

  9. Relationships among walleye population characteristics and genetic diversity in northern Wisconsin Lakes

    Science.gov (United States)

    Waterhouse, Matthew D.; Sloss, Brian L.; Isermann, Daniel A.

    2014-01-01

    The maintenance of genetic integrity is an important goal of fisheries management, yet little is known regarding the effects of management actions (e.g., stocking, harvest regulations) on the genetic diversity of many important fish species. Furthermore, relationships between population characteristics and genetic diversity remain poorly understood. We examined relationships among population demographics (abundance, recruitment, sex ratio, and mean age of the breeding population), stocking intensity, and genetic characteristics (heterozygosity, effective number of alleles, allelic richness, Wright's inbreeding coefficient, effective population size [Ne], mean d2 [a measure of inbreeding], mean relatedness, and pairwise population ΦST estimates) for 15 populations of Walleye Sander vitreus in northern Wisconsin. We also tested for potential demographic and genetic influences on Walleye body condition and early growth. Combinations of demographic variables explained 47.1–79.8% of the variation in genetic diversity. Skewed sex ratios contributed to a reduction in Ne and subsequent increases in genetic drift and relatedness among individuals within populations; these factors were correlated to reductions in allelic richness and early growth rate. Levels of inbreeding were negatively related to both age-0 abundance and mean age, suggesting Ne was influenced by recruitment and generational overlap. A negative relationship between the effective number of alleles and body condition suggests stocking affected underlying genetic diversity of recipient populations and the overall productivity of the population. These relationships may result from poor performance of stocked fish, outbreeding depression, or density-dependent factors. An isolation-by-distance pattern of genetic diversity was apparent in nonstocked populations, but was disrupted in stocked populations, suggesting that stocking affected genetic structure. Overall, demographic factors were related to genetic

  10. Living in isolation - population structure, reproduction, and genetic variation of the endangered plant species Dianthus gratianopolitanus (Cheddar pink).

    Science.gov (United States)

    Putz, Christina M; Schmid, Christoph; Reisch, Christoph

    2015-09-01

    The endangered plant species Dianthus gratianopolitanus exhibits a highly fragmented distribution range comprising many isolated populations. Based upon this pattern of distribution, we selected a study region in Switzerland with a lower magnitude of isolation (Swiss Jura) and another study region in Germany with a higher degree of isolation (Franconian Jura). In each region, we chose ten populations to analyze population structure, reproduction, and genetic variation in a comparative approach. Therefore, we determined population density, cushion size, and cushion density to analyze population structure, investigated reproductive traits, including number of flowers, capsules, and germination rate, and analyzed amplified fragment length polymorphisms to study genetic variation. Population and cushion density were credibly higher in German than in Swiss populations, whereas reproductive traits and genetic variation within populations were similar in both study regions. However, genetic variation among populations and isolation by distance were stronger in Germany than in Switzerland. Generally, cushion size and density as well as flower and capsule production increased with population size and density, whereas genetic variation decreased with population density. In contrast to our assumptions, we observed denser populations and cushions in the region with the higher magnitude of isolation, whereas reproductive traits and genetic variation within populations were comparable in both regions. This corroborates the assumption that stronger isolation must not necessarily result in the loss of fitness and genetic variation. Furthermore, it supports our conclusion that the protection of strongly isolated populations contributes essentially to the conservation of a species' full evolutionary potential.

  11. Genetic evidence for a Paleolithic human population expansion in Africa

    Science.gov (United States)

    Reich, David E.; Goldstein, David B.

    1998-01-01

    Human populations have undergone dramatic expansions in size, but other than the growth associated with agriculture, the dates and magnitudes of those expansions have never been resolved. Here, we introduce two new statistical tests for population expansion, which use variation at a number of unlinked genetic markers to study the demographic histories of natural populations. By analyzing genetic variation in various aboriginal populations from throughout the world, we show highly significant evidence for a major human population expansion in Africa, but no evidence of expansion outside of Africa. The inferred African expansion is estimated to have occurred between 49,000 and 640,000 years ago, certainly before the Neolithic expansions, and probably before the splitting of African and non-African populations. In showing a significant difference between African and non-African populations, our analysis supports the unique role of Africa in human evolutionary history, as has been suggested by most other genetic work. In addition, the missing signal in non-African populations may be the result of a population bottleneck associated with the emergence of these populations from Africa, as postulated in the “Out of Africa” model of modern human origins. PMID:9653150

  12. Microsatellite DNA analysis of northern pike ( Esox lucius L.) populations: insights into the genetic structure and demographic history of a genetically depauperate species

    DEFF Research Database (Denmark)

    Jacobsen, B. H.; Hansen, Michael Møller; Loeschcke, V.

    2005-01-01

    The northern pike Esox lucius L. is a freshwater fish exhibiting pronounced population subdivision and low genetic variability. However, there is limited knowledge on phylogeographical patterns within the species, and it is not known whether the low genetic variability reflects primarily current...... low effective population sizes or historical bottlenecks. We analysed six microsatellite loci in ten populations from Europe and North America. Genetic variation was low, with the average number of alleles within populations ranging from 2.3 to 4.0 per locus. Genetic differentiation among populations...... was high (overall theta(ST) = 0.51; overall rho(ST) = 0.50). Multidimensional scaling analysis of genetic distances between populations and spatial analysis of molecular variance suggested a single phylogeographical race within the sampled populations from northern Europe, whereas North American...

  13. Critical mutation rate has an exponential dependence on population size in haploid and diploid populations.

    Directory of Open Access Journals (Sweden)

    Elizabeth Aston

    Full Text Available Understanding the effect of population size on the key parameters of evolution is particularly important for populations nearing extinction. There are evolutionary pressures to evolve sequences that are both fit and robust. At high mutation rates, individuals with greater mutational robustness can outcompete those with higher fitness. This is survival-of-the-flattest, and has been observed in digital organisms, theoretically, in simulated RNA evolution, and in RNA viruses. We introduce an algorithmic method capable of determining the relationship between population size, the critical mutation rate at which individuals with greater robustness to mutation are favoured over individuals with greater fitness, and the error threshold. Verification for this method is provided against analytical models for the error threshold. We show that the critical mutation rate for increasing haploid population sizes can be approximated by an exponential function, with much lower mutation rates tolerated by small populations. This is in contrast to previous studies which identified that critical mutation rate was independent of population size. The algorithm is extended to diploid populations in a system modelled on the biological process of meiosis. The results confirm that the relationship remains exponential, but show that both the critical mutation rate and error threshold are lower for diploids, rather than higher as might have been expected. Analyzing the transition from critical mutation rate to error threshold provides an improved definition of critical mutation rate. Natural populations with their numbers in decline can be expected to lose genetic material in line with the exponential model, accelerating and potentially irreversibly advancing their decline, and this could potentially affect extinction, recovery and population management strategy. The effect of population size is particularly strong in small populations with 100 individuals or less; the

  14. Effective population size dynamics reveal impacts of historic climatic events and recent anthropogenic pressure in African elephants

    DEFF Research Database (Denmark)

    Okello, J B A; Wittemyer, G; Rasmussen, Henrik Barner

    2008-01-01

    Two hundred years of elephant hunting for ivory, peaking in 1970-1980s, caused local extirpations and massive population declines across Africa. The resulting genetic impacts on surviving populations have not been studied, despite the importance of understanding the evolutionary repercussions...... of such human-mediated events on this keystone species. Using Bayesian coalescent-based genetic methods to evaluate time-specific changes in effective population size, we analysed genetic variation in 20 highly polymorphic microsatellite loci from 400 elephants inhabiting the greater Samburu-Laikipia region...... of northern Kenya. This area experienced a decline of between 80% and 90% in the last few decades when ivory harvesting was rampant. The most significant change in effective population size, however, occurred approximately 2500 years ago during a mid-Holocene period of climatic drying in tropical Africa...

  15. Deep Learning for Population Genetic Inference.

    Directory of Open Access Journals (Sweden)

    Sara Sheehan

    2016-03-01

    Full Text Available Given genomic variation data from multiple individuals, computing the likelihood of complex population genetic models is often infeasible. To circumvent this problem, we introduce a novel likelihood-free inference framework by applying deep learning, a powerful modern technique in machine learning. Deep learning makes use of multilayer neural networks to learn a feature-based function from the input (e.g., hundreds of correlated summary statistics of data to the output (e.g., population genetic parameters of interest. We demonstrate that deep learning can be effectively employed for population genetic inference and learning informative features of data. As a concrete application, we focus on the challenging problem of jointly inferring natural selection and demography (in the form of a population size change history. Our method is able to separate the global nature of demography from the local nature of selection, without sequential steps for these two factors. Studying demography and selection jointly is motivated by Drosophila, where pervasive selection confounds demographic analysis. We apply our method to 197 African Drosophila melanogaster genomes from Zambia to infer both their overall demography, and regions of their genome under selection. We find many regions of the genome that have experienced hard sweeps, and fewer under selection on standing variation (soft sweep or balancing selection. Interestingly, we find that soft sweeps and balancing selection occur more frequently closer to the centromere of each chromosome. In addition, our demographic inference suggests that previously estimated bottlenecks for African Drosophila melanogaster are too extreme.

  16. Deep Learning for Population Genetic Inference

    Science.gov (United States)

    Sheehan, Sara; Song, Yun S.

    2016-01-01

    Given genomic variation data from multiple individuals, computing the likelihood of complex population genetic models is often infeasible. To circumvent this problem, we introduce a novel likelihood-free inference framework by applying deep learning, a powerful modern technique in machine learning. Deep learning makes use of multilayer neural networks to learn a feature-based function from the input (e.g., hundreds of correlated summary statistics of data) to the output (e.g., population genetic parameters of interest). We demonstrate that deep learning can be effectively employed for population genetic inference and learning informative features of data. As a concrete application, we focus on the challenging problem of jointly inferring natural selection and demography (in the form of a population size change history). Our method is able to separate the global nature of demography from the local nature of selection, without sequential steps for these two factors. Studying demography and selection jointly is motivated by Drosophila, where pervasive selection confounds demographic analysis. We apply our method to 197 African Drosophila melanogaster genomes from Zambia to infer both their overall demography, and regions of their genome under selection. We find many regions of the genome that have experienced hard sweeps, and fewer under selection on standing variation (soft sweep) or balancing selection. Interestingly, we find that soft sweeps and balancing selection occur more frequently closer to the centromere of each chromosome. In addition, our demographic inference suggests that previously estimated bottlenecks for African Drosophila melanogaster are too extreme. PMID:27018908

  17. Population-genetic properties of differentiated copy number variations in cattle.

    Science.gov (United States)

    Xu, Lingyang; Hou, Yali; Bickhart, Derek M; Zhou, Yang; Hay, El Hamidi Abdel; Song, Jiuzhou; Sonstegard, Tad S; Van Tassell, Curtis P; Liu, George E

    2016-03-23

    While single nucleotide polymorphism (SNP) is typically the variant of choice for population genetics, copy number variation (CNV) which comprises insertion, deletion and duplication of genomic sequence, is an informative type of genetic variation. CNVs have been shown to be both common in mammals and important for understanding the relationship between genotype and phenotype. However, CNV differentiation, selection and its population genetic properties are not well understood across diverse populations. We performed a population genetics survey based on CNVs derived from the BovineHD SNP array data of eight distinct cattle breeds. We generated high resolution results that show geographical patterns of variations and genome-wide admixture proportions within and among breeds. Similar to the previous SNP-based studies, our CNV-based results displayed a strong correlation of population structure and geographical location. By conducting three pairwise comparisons among European taurine, African taurine, and indicine groups, we further identified 78 unique CNV regions that were highly differentiated, some of which might be due to selection. These CNV regions overlapped with genes involved in traits related to parasite resistance, immunity response, body size, fertility, and milk production. Our results characterize CNV diversity among cattle populations and provide a list of lineage-differentiated CNVs.

  18. Population genetic structure and conservation genetics of threatened Okaloosa darters (Etheostoma okaloosae).

    Science.gov (United States)

    Austin, James D.; Jelks, Howard L.; Tate, Bill; Johnson, Aria R.; Jordan, Frank

    2011-01-01

    Imperiled Okaloosa darters (Etheostoma okaloosae) are small, benthic fish limited to six streams that flow into three bayous of Choctawhatchee Bay in northwest Florida, USA. We analyzed the complete mitochondrial cytochrome b gene and 10 nuclear microsatellite loci for 255 and 273 Okaloosa darters, respectively. Bayesian clustering analyses and AMOVA reflect congruent population genetic structure in both mitochondrial and microsatellite DNA. This structure reveals historical isolation of Okaloosa darter streams nested within bayous. Most of the six streams appear to have exchanged migrants though they remain genetically distinct. The U.S. Fish and Wildlife Service recently reclassified Okaloosa darters from endangered to threatened status. Our genetic data support the reclassification of Okaloosa darter Evolutionary Significant Units (ESUs) in the larger Tom's, Turkey, and Rocky creeks from endangered to threatened status. However, the three smaller drainages (Mill, Swift, and Turkey Bolton creeks) remain at risk due to their small population sizes and anthropogenic pressures on remaining habitat. Natural resource managers now have the evolutionary information to guide recovery actions within and among drainages throughout the range of the Okaloosa darter.

  19. Sensitivity analysis of effective population size to demographic parameters in house sparrow populations.

    Science.gov (United States)

    Stubberud, Marlene Waege; Myhre, Ane Marlene; Holand, Håkon; Kvalnes, Thomas; Ringsby, Thor Harald; Saether, Bernt-Erik; Jensen, Henrik

    2017-05-01

    The ratio between the effective and the census population size, Ne/N, is an important measure of the long-term viability and sustainability of a population. Understanding which demographic processes that affect Ne/N most will improve our understanding of how genetic drift and the probability of fixation of alleles is affected by demography. This knowledge may also be of vital importance in management of endangered populations and species. Here, we use data from 13 natural populations of house sparrow (Passer domesticus) in Norway to calculate the demographic parameters that determine Ne/N. Using the global variance-based Sobol' method for the sensitivity analyses, we found that Ne/N was most sensitive to demographic variance, especially among older individuals. Furthermore, the individual reproductive values (that determine the demographic variance) were most sensitive to variation in fecundity. Our results draw attention to the applicability of sensitivity analyses in population management and conservation. For population management aiming to reduce the loss of genetic variation, a sensitivity analysis may indicate the demographic parameters towards which resources should be focused. The result of such an analysis may depend on the life history and mating system of the population or species under consideration, because the vital rates and sex-age classes that Ne/N is most sensitive to may change accordingly. © 2017 John Wiley & Sons Ltd.

  20. Sociocultural behavior, sex-biased admixture, and effective population sizes in Central African Pygmies and non-Pygmies.

    Science.gov (United States)

    Verdu, Paul; Becker, Noémie S A; Froment, Alain; Georges, Myriam; Grugni, Viola; Quintana-Murci, Lluis; Hombert, Jean-Marie; Van der Veen, Lolke; Le Bomin, Sylvie; Bahuchet, Serge; Heyer, Evelyne; Austerlitz, Frédéric

    2013-04-01

    Sociocultural phenomena, such as exogamy or phylopatry, can largely determine human sex-specific demography. In Central Africa, diverging patterns of sex-specific genetic variation have been observed between mobile hunter-gatherer Pygmies and sedentary agricultural non-Pygmies. However, their sex-specific demography remains largely unknown. Using population genetics and approximate Bayesian computation approaches, we inferred male and female effective population sizes, sex-specific migration, and admixture rates in 23 Central African Pygmy and non-Pygmy populations, genotyped for autosomal, X-linked, Y-linked, and mitochondrial markers. We found much larger effective population sizes and migration rates among non-Pygmy populations than among Pygmies, in agreement with the recent expansions and migrations of non-Pygmies and, conversely, the isolation and stationary demography of Pygmy groups. We found larger effective sizes and migration rates for males than for females for Pygmies, and vice versa for non-Pygmies. Thus, although most Pygmy populations have patrilocal customs, their sex-specific genetic patterns resemble those of matrilocal populations. In fact, our results are consistent with a lower prevalence of polygyny and patrilocality in Pygmies compared with non-Pygmies and a potential female transmission of reproductive success in Pygmies. Finally, Pygmy populations showed variable admixture levels with the non-Pygmies, with often much larger introgression from male than from female lineages. Social discrimination against Pygmies triggering complex movements of spouses in intermarriages can explain these male-biased admixture patterns in a patrilocal context. We show how gender-related sociocultural phenomena can determine highly variable sex-specific demography among populations, and how population genetic approaches contrasting chromosomal types allow inferring detailed human sex-specific demographic history.

  1. Phylogenetics and population genetics of Plotosus canius (Siluriformes: Plotosidae from Malaysian coastal waters

    Directory of Open Access Journals (Sweden)

    Nima Khalili Samani

    2016-05-01

    Full Text Available Plotosus canius (Hamilton, 1822 is a significant marine species in Malaysia from nutritional and commercial perspectives. Despite numerous fundamental research on biological characteristics of P. canius, there are various concerns on the level of population differentiation, genomic structure, and the level of genetic variability among their populations due to deficiency of genetic-based studies. Deficiency on basic contexts such as stock identification, phylogenetic relationship and population genetic structure would negatively impact their sustainable conservation. Hence, this study was conducted to characterize the genetic structure of P. canius for the first time through the application of mitochondrial Cytochrome Oxidase I (COI gene, cross amplification of Tandanus tandanus microsatellites, and a total of 117 collected specimens across five selected populations of Malaysia. The experimental results of the mitochondrial analysis revealed that the haplotype diversity and nucleotide diversity varied from 0.395–0.771 and 0.033–0.65 respectively. Moreover, the statistical analysis of microsatellites addressed a considerable heterozygote insufficiency in all populations, with average observed heterozygosity (Ho value of 0.2168, which was lower than the standard heterozygosity in marine populations (Ho = 0.79. This alongside the high Fis values estimation, high pairwise differentiation among populations and low within population variations are supposed to be associated with small sample size, and inbreeding system. Besides, the significant finding of this study was the sharing of common haplotype KR086940, which reflects a historical genetic connectivity between Peninsular Malaysia and Borneo populations due to the geological history of Southeast Asia during Pleistocene era. Demographic analyses showed that all populations were in an equilibrium state with no significant evidence of population expansion. To put it briefly, the current study has

  2. High genetic diversity and low population structure in Porter's sunflower (Helianthus porteri).

    Science.gov (United States)

    Gevaert, Scott D; Mandel, Jennifer R; Burke, John M; Donovan, Lisa A

    2013-01-01

    Granite outcrops in the southeastern United States are rare and isolated habitats that support edaphically controlled communities dominated by herbaceous plants. They harbor rare and endemic species that are expected to have low genetic variability and high population structure due to small population sizes and their disjunct habitat. We test this expectation for an annual outcrop endemic, Helianthus porteri (Porter's sunflower). Contrary to expectation, H. porteri has relatively high genetic diversity (H e = 0.681) and relatively low genetic structure among the native populations (F ST = 0.077) when compared to 5 other Helianthus species (N = 288; 18 expressed sequence tag-SSR markers). These findings suggest greater gene flow than expected. The potential for gene flow is supported by the analysis of transplant populations established with propagules from a common source in 1959. One population established close to a native population (1.5 km) at the edge of the natural range is genetically similar to and shares rare alleles with the adjacent native population and is distinct from the central source population. In contrast, a transplant population established north of the native range has remained similar to the source population. The relatively high genetic diversity and low population structure of this species, combined with the long-term success of transplanted populations, bode well for its persistence as long as the habitat persists.

  3. Pre-whaling genetic diversity and population ecology in eastern Pacific gray whales: insights from ancient DNA and stable isotopes.

    Directory of Open Access Journals (Sweden)

    S Elizabeth Alter

    Full Text Available Commercial whaling decimated many whale populations, including the eastern Pacific gray whale, but little is known about how population dynamics or ecology differed prior to these removals. Of particular interest is the possibility of a large population decline prior to whaling, as such a decline could explain the ~5-fold difference between genetic estimates of prior abundance and estimates based on historical records. We analyzed genetic (mitochondrial control region and isotopic information from modern and prehistoric gray whales using serial coalescent simulations and Bayesian skyline analyses to test for a pre-whaling decline and to examine prehistoric genetic diversity, population dynamics and ecology. Simulations demonstrate that significant genetic differences observed between ancient and modern samples could be caused by a large, recent population bottleneck, roughly concurrent with commercial whaling. Stable isotopes show minimal differences between modern and ancient gray whale foraging ecology. Using rejection-based Approximate Bayesian Computation, we estimate the size of the population bottleneck at its minimum abundance and the pre-bottleneck abundance. Our results agree with previous genetic studies suggesting the historical size of the eastern gray whale population was roughly three to five times its current size.

  4. Landscape attributes and life history variability shape genetic structure of trout populations in a stream network

    Science.gov (United States)

    Neville, H.M.; Dunham, J.B.; Peacock, M.M.

    2006-01-01

    Spatial and temporal landscape patterns have long been recognized to influence biological processes, but these processes often operate at scales that are difficult to study by conventional means. Inferences from genetic markers can overcome some of these limitations. We used a landscape genetics approach to test hypotheses concerning landscape processes influencing the demography of Lahontan cutthroat trout in a complex stream network in the Great Basin desert of the western US. Predictions were tested with population- and individual-based analyses of microsatellite DNA variation, reflecting patterns of dispersal, population stability, and local effective population sizes. Complementary genetic inferences suggested samples from migratory corridors housed a mixture of fish from tributaries, as predicted based on assumed migratory life histories in those habitats. Also as predicted, populations presumed to have greater proportions of migratory fish or from physically connected, large, or high quality habitats had higher genetic variability and reduced genetic differentiation from other populations. Populations thought to contain largely non-migratory individuals generally showed the opposite pattern, suggesting behavioral isolation. Estimated effective sizes were small, and we identified significant and severe genetic bottlenecks in several populations that were isolated, recently founded, or that inhabit streams that desiccate frequently. Overall, this work suggested that Lahontan cutthroat trout populations in stream networks are affected by a combination of landscape and metapopulation processes. Results also demonstrated that genetic patterns can reveal unexpected processes, even within a system that is well studied from a conventional ecological perspective. ?? Springer 2006.

  5. On the number of New World founders: a population genetic portrait of the peopling of the Americas.

    Science.gov (United States)

    Hey, Jody

    2005-06-01

    The founding of New World populations by Asian peoples is the focus of considerable archaeological and genetic research, and there persist important questions on when and how these events occurred. Genetic data offer great potential for the study of human population history, but there are significant challenges in discerning distinct demographic processes. A new method for the study of diverging populations was applied to questions on the founding and history of Amerind-speaking Native American populations. The model permits estimation of founding population sizes, changes in population size, time of population formation, and gene flow. Analyses of data from nine loci are consistent with the general portrait that has emerged from archaeological and other kinds of evidence. The estimated effective size of the founding population for the New World is fewer than 80 individuals, approximately 1% of the effective size of the estimated ancestral Asian population. By adding a splitting parameter to population divergence models it becomes possible to develop detailed portraits of human demographic history. Analyses of Asian and New World data support a model of a recent founding of the New World by a population of quite small effective size.

  6. Genetic diversity in India and the inference of Eurasian population expansion.

    Science.gov (United States)

    Xing, Jinchuan; Watkins, W Scott; Hu, Ya; Huff, Chad D; Sabo, Aniko; Muzny, Donna M; Bamshad, Michael J; Gibbs, Richard A; Jorde, Lynn B; Yu, Fuli

    2010-01-01

    Genetic studies of populations from the Indian subcontinent are of great interest because of India's large population size, complex demographic history, and unique social structure. Despite recent large-scale efforts in discovering human genetic variation, India's vast reservoir of genetic diversity remains largely unexplored. To analyze an unbiased sample of genetic diversity in India and to investigate human migration history in Eurasia, we resequenced one 100-kb ENCODE region in 92 samples collected from three castes and one tribal group from the state of Andhra Pradesh in south India. Analyses of the four Indian populations, along with eight HapMap populations (692 samples), showed that 30% of all SNPs in the south Indian populations are not seen in HapMap populations. Several Indian populations, such as the Yadava, Mala/Madiga, and Irula, have nucleotide diversity levels as high as those of HapMap African populations. Using unbiased allele-frequency spectra, we investigated the expansion of human populations into Eurasia. The divergence time estimates among the major population groups suggest that Eurasian populations in this study diverged from Africans during the same time frame (approximately 90 to 110 thousand years ago). The divergence among different Eurasian populations occurred more than 40,000 years after their divergence with Africans. Our results show that Indian populations harbor large amounts of genetic variation that have not been surveyed adequately by public SNP discovery efforts. Our data also support a delayed expansion hypothesis in which an ancestral Eurasian founding population remained isolated long after the out-of-Africa diaspora, before expanding throughout Eurasia. © 2010 Xing et al.; licensee BioMed Central Ltd.

  7. Estimating demographic contributions to effective population size in an age-structured wild population experiencing environmental and demographic stochasticity.

    Science.gov (United States)

    Trask, Amanda E; Bignal, Eric M; McCracken, Davy I; Piertney, Stuart B; Reid, Jane M

    2017-09-01

    A population's effective size (N e ) is a key parameter that shapes rates of inbreeding and loss of genetic diversity, thereby influencing evolutionary processes and population viability. However, estimating N e , and identifying key demographic mechanisms that underlie the N e to census population size (N) ratio, remains challenging, especially for small populations with overlapping generations and substantial environmental and demographic stochasticity and hence dynamic age-structure. A sophisticated demographic method of estimating N e /N, which uses Fisher's reproductive value to account for dynamic age-structure, has been formulated. However, this method requires detailed individual- and population-level data on sex- and age-specific reproduction and survival, and has rarely been implemented. Here, we use the reproductive value method and detailed demographic data to estimate N e /N for a small and apparently isolated red-billed chough (Pyrrhocorax pyrrhocorax) population of high conservation concern. We additionally calculated two single-sample molecular genetic estimates of N e to corroborate the demographic estimate and examine evidence for unobserved immigration and gene flow. The demographic estimate of N e /N was 0.21, reflecting a high total demographic variance (σ2dg) of 0.71. Females and males made similar overall contributions to σ2dg. However, contributions varied among sex-age classes, with greater contributions from 3 year-old females than males, but greater contributions from ≥5 year-old males than females. The demographic estimate of N e was ~30, suggesting that rates of increase of inbreeding and loss of genetic variation per generation will be relatively high. Molecular genetic estimates of N e computed from linkage disequilibrium and approximate Bayesian computation were approximately 50 and 30, respectively, providing no evidence of substantial unobserved immigration which could bias demographic estimates of N e . Our analyses identify

  8. Current and historical drivers of landscape genetic structure differ in core and peripheral salamander populations.

    Directory of Open Access Journals (Sweden)

    Rachael Y Dudaniec

    Full Text Available With predicted decreases in genetic diversity and greater genetic differentiation at range peripheries relative to their cores, it can be difficult to distinguish between the roles of current disturbance versus historic processes in shaping contemporary genetic patterns. To address this problem, we test for differences in historic demography and landscape genetic structure of coastal giant salamanders (Dicamptodon tenebrosus in two core regions (Washington State, United States versus the species' northern peripheral region (British Columbia, Canada where the species is listed as threatened. Coalescent-based demographic simulations were consistent with a pattern of post-glacial range expansion, with both ancestral and current estimates of effective population size being much larger within the core region relative to the periphery. However, contrary to predictions of recent human-induced population decline in the less genetically diverse peripheral region, there was no genetic signature of population size change. Effects of current demographic processes on genetic structure were evident using a resistance-based landscape genetics approach. Among core populations, genetic structure was best explained by length of the growing season and isolation by resistance (i.e. a 'flat' landscape, but at the periphery, topography (slope and elevation had the greatest influence on genetic structure. Although reduced genetic variation at the range periphery of D. tenebrosus appears to be largely the result of biogeographical history rather than recent impacts, our analyses suggest that inherent landscape features act to alter dispersal pathways uniquely in different parts of the species' geographic range, with implications for habitat management.

  9. Generation time and effective population size in Polar Eskimos

    Science.gov (United States)

    Matsumura, Shuichi; Forster, Peter

    2008-01-01

    North Greenland Polar Eskimos are the only hunter–gatherer population, to our knowledge, who can offer precise genealogical records spanning several generations. This is the first report from Eskimos on two key parameters in population genetics, namely, generation time (T) and effective population size (Ne). The average mother–daughter and father–son intervals were 27 and 32 years, respectively, roughly similar to the previously published generation times obtained from recent agricultural societies across the world. To gain an insight for the generation time in our distant ancestors, we calculated maternal generation time for two wild chimpanzee populations. We also provide the first comparison among three distinct approaches (genealogy, variance and life table methods) for calculating Ne, which resulted in slightly differing values for the Eskimos. The ratio of the effective to the census population size is estimated as 0.6–0.7 for autosomal and X-chromosomal DNA, 0.7–0.9 for mitochondrial DNA and 0.5 for Y-chromosomal DNA. A simulation of alleles along the genealogy suggested that Y-chromosomal DNA may drift a little faster than mitochondrial DNA in this population, in contrast to agricultural Icelanders. Our values will be useful not only in prehistoric population inference but also in understanding the shaping of our genome today. PMID:18364314

  10. A general population genetic framework for antagonistic selection that accounts for demography and recurrent mutation.

    Science.gov (United States)

    Connallon, Tim; Clark, Andrew G

    2012-04-01

    Antagonistic selection--where alleles at a locus have opposing effects on male and female fitness ("sexual antagonism") or between components of fitness ("antagonistic pleiotropy")--might play an important role in maintaining population genetic variation and in driving phylogenetic and genomic patterns of sexual dimorphism and life-history evolution. While prior theory has thoroughly characterized the conditions necessary for antagonistic balancing selection to operate, we currently know little about the evolutionary interactions between antagonistic selection, recurrent mutation, and genetic drift, which should collectively shape empirical patterns of genetic variation. To fill this void, we developed and analyzed a series of population genetic models that simultaneously incorporate these processes. Our models identify two general properties of antagonistically selected loci. First, antagonistic selection inflates heterozygosity and fitness variance across a broad parameter range--a result that applies to alleles maintained by balancing selection and by recurrent mutation. Second, effective population size and genetic drift profoundly affect the statistical frequency distributions of antagonistically selected alleles. The "efficacy" of antagonistic selection (i.e., its tendency to dominate over genetic drift) is extremely weak relative to classical models, such as directional selection and overdominance. Alleles meeting traditional criteria for strong selection (N(e)s > 1, where N(e) is the effective population size, and s is a selection coefficient for a given sex or fitness component) may nevertheless evolve as if neutral. The effects of mutation and demography may generate population differences in overall levels of antagonistic fitness variation, as well as molecular population genetic signatures of balancing selection.

  11. Population Structure, Genetic Diversity, and Evolutionary History of Kleinia neriifolia (Asteraceae) on the Canary Islands.

    Science.gov (United States)

    Sun, Ye; Vargas-Mendoza, Carlos F

    2017-01-01

    Kleinia neriifolia Haw. is an endemic species on the Canarian archipelago, this species is widespread in the coastal thicket of all the Canarian islands. In the present study, genetic diversity and population structure of K. neriifolia were investigated using chloroplast gene sequences and nuclear SSR (simple sequence repeat). The differentiation among island populations, the historical demography, and the underlying evolutionary scenarios of this species are further tested based on the genetic data. Chloroplast diversity reveals a strong genetic divergence between eastern islands (Gran Canaria, Fuerteventura, and Lanzarote) and western islands (EI Hierro, La Palma, La Gomera, Tenerife), this west-east genetic divergence may reflect a very beginning of speciation. The evolutionary scenario with highest posterior probabilities suggests Gran Canaria as oldest population with a westward colonization path to Tenerife, La Gomera, La Palma, and EI Hierro, and eastward dispersal path to Lanzarote through Fuerteventura. In the western islands, there is a slight decrease in the effective population size toward areas of recent colonization. However, in the eastern islands, the effective population size increase in Lanzarote relative to Gran Canaria and Fuerteventura. These results further our understanding of the evolution of widespread endemic plants within Canarian archipelago.

  12. Population Structure, Genetic Diversity, and Evolutionary History of Kleinia neriifolia (Asteraceae on the Canary Islands

    Directory of Open Access Journals (Sweden)

    Ye Sun

    2017-06-01

    Full Text Available Kleinia neriifolia Haw. is an endemic species on the Canarian archipelago, this species is widespread in the coastal thicket of all the Canarian islands. In the present study, genetic diversity and population structure of K. neriifolia were investigated using chloroplast gene sequences and nuclear SSR (simple sequence repeat. The differentiation among island populations, the historical demography, and the underlying evolutionary scenarios of this species are further tested based on the genetic data. Chloroplast diversity reveals a strong genetic divergence between eastern islands (Gran Canaria, Fuerteventura, and Lanzarote and western islands (EI Hierro, La Palma, La Gomera, Tenerife, this west–east genetic divergence may reflect a very beginning of speciation. The evolutionary scenario with highest posterior probabilities suggests Gran Canaria as oldest population with a westward colonization path to Tenerife, La Gomera, La Palma, and EI Hierro, and eastward dispersal path to Lanzarote through Fuerteventura. In the western islands, there is a slight decrease in the effective population size toward areas of recent colonization. However, in the eastern islands, the effective population size increase in Lanzarote relative to Gran Canaria and Fuerteventura. These results further our understanding of the evolution of widespread endemic plants within Canarian archipelago.

  13. Estimation of the effective population size (Ne) and its application in the management of small populations

    DEFF Research Database (Denmark)

    Jimenez Mena, Belen

    2016-01-01

    Effective population size (Ne) is an important concept to understand the evolution of a population. In conservation, Ne is used to assess the threat status of a population, evaluate its genetic viability in the future and set conservation priorities. An accurate estimation of Ne is thus essential....... The main objective of this thesis was to better understand how the estimation of Ne using molecular markers can be improved for use in conservation genetics. As a first step, we undertook a simulation study where three different methods to estimate Ne were investigated. We explored how well these three...... methods performed under different scenarios. This study showed that all three methods performed better when the number of unlinked loci used to make the estimation increased and the minimum number of loci need for an accurate estimation of Ne was 100 SNPs. A general assumption in the estimation of Ne...

  14. Consistent loss of genetic diversity in isolated cutthroat trout populations independent of habitat size and quality

    Science.gov (United States)

    Kellie J. Carim; Lisa A. Eby; Craig A. Barfoot; Matthew C. Boyer

    2016-01-01

    Fragmentation and isolation of wildlife populations has reduced genetic diversity worldwide, leaving many populations vulnerable to inbreeding depression and local extinction. Nonetheless, isolation is protecting many native aquatic species from interactions with invasive species, often making reconnection an unrealistic conservation strategy. Isolation management is...

  15. Population genetics of the Mediterranean fruit fly, Ceratitis capitata (Wied.)

    International Nuclear Information System (INIS)

    Kourti, A.; Loukas, M.; Economopoulos, A.P.

    1990-01-01

    The genetic structure of 15 wild populations of Mediterranean fruit fly (medfly), Ceratitis capitata (Wiedemann), sampled from different geographical areas and different host fruit tree species, has been studied. Each population was analysed for 25 enzyme systems detected electrophoretically. All the Mediterranean populations proved to be highly monomorphic (H-bar=0.053) whereas those from South Africa and Reunion were highly heteromorphic (H-bar=0.234 and 0.153 respectively). As the urea denaturation method was used, no hidden genetic variability caused by the usual electrophoretic conditions was detected. The most probable explanation of the low genetic variability observed in the introduced populations of the medfly seems to be the historical reasons, namely the time elapsed since colonization and the number of individuals of the founder population. Experiments in the field and in the laboratory failed to detect any pattern of preference for oviposition sites in the medfly populations. More specifically, the differences in allele frequencies for the polymorphic loci among these populations do not seem to be correlated either with the taxonomic status of the host fruit or with the size of the fruit. It is concluded that the medfly as a fine grained species may utilize many alternative food resources without an apparent action of selection (or at least one that is detectable by the methods used). By estimating the genetic distances between the populations and/or by using the allozymes as genetic markers the route(s) of dispersion of the fly from its geographic centre of origin, which is placed in Africa, could be roughly traced. Finally, no systematic changes in allele frequencies were observed in populations reared on artificial substrate. (author). 43 refs, 2 figs, 9 tabs

  16. Genetic and environmental factors affecting birth size variation

    DEFF Research Database (Denmark)

    Yokoyama, Yoshie; Jelenkovic, Aline; Hur, Yoon-Mi

    2018-01-01

    Background: The genetic architecture of birth size may differ geographically and over time. We examined differences in the genetic and environmental contributions to birthweight, length and ponderal index (PI) across geographical-cultural regions (Europe, North America and Australia, and East Asia......) and across birth cohorts, and how gestational age modifies these effects. Methods: Data from 26 twin cohorts in 16 countries including 57 613 monozygotic and dizygotic twin pairs were pooled. Genetic and environmental variations of birth size were estimated using genetic structural equation modelling....... Results: The variance of birthweight and length was predominantly explained by shared environmental factors, whereas the variance of PI was explained both by shared and unique environmental factors. Genetic variance contributing to birth size was small. Adjusting for gestational age decreased...

  17. Genetic size and growth in goats

    NARCIS (Netherlands)

    Ogink, N.W.M.

    1993-01-01

    Since the last century, many biologists have studied the effects of size differences between species on the rate of their metabolic processes. in 1980, Taylor published the genetic size-scaling theory which incorporated the existing knowledge on size effects, and introduced two formal

  18. Mating System and Effective Population Size of the Overexploited Neotropical Tree (Myroxylon peruiferum L.f.) and Their Impact on Seedling Production.

    Science.gov (United States)

    Silvestre, Ellida de Aguiar; Schwarcz, Kaiser Dias; Grando, Carolina; de Campos, Jaqueline Bueno; Sujii, Patricia Sanae; Tambarussi, Evandro Vagner; Macrini, Camila Menezes Trindade; Pinheiro, José Baldin; Brancalion, Pedro Henrique Santin; Zucchi, Maria Imaculada

    2018-03-16

    The reproductive system of a tree species has substantial impact on genetic diversity and structure within and among natural populations. Such information, should be considered when planning tree planting for forest restoration. Here, we describe the mating system and genetic diversity of an overexploited Neotropical tree, Myroxylon peruiferum L.f. (Fabaceae) sampled from a forest remnant (10 seed trees and 200 seeds) and assess whether the effective population size of nursery-grown seedlings (148 seedlings) is sufficient to prevent inbreeding depression in reintroduced populations. Genetic analyses were performed based on 8 microsatellite loci. M. peruiferum presented a mixed mating system with evidence of biparental inbreeding (t^m-t^s = 0.118). We found low levels of genetic diversity for M. peruiferum species (allelic richness: 1.40 to 4.82; expected heterozygosity: 0.29 to 0.52). Based on Ne(v) within progeny, we suggest a sample size of 47 seed trees to achieve an effective population size of 100. The effective population sizes for the nursery-grown seedlings were much smaller Ne = 27.54-34.86) than that recommended for short term Ne ≥ 100) population conservation. Therefore, to obtain a reasonable genetic representation of native tree species and prevent problems associated with inbreeding depression, seedling production for restoration purposes may require a much larger sampling effort than is currently used, a problem that is further complicated by species with a mixed mating system. This study emphasizes the need to integrate species reproductive biology into seedling production programs and connect conservation genetics with ecological restoration.

  19. Population genetic analysis reveals barriers and corridors for gene flow within and among riparian populations of a rare plant.

    Science.gov (United States)

    Hevroy, Tanya H; Moody, Michael L; Krauss, Siegfried L

    2018-02-01

    Landscape features and life-history traits affect gene flow, migration and drift to impact on spatial genetic structure of species. Understanding this is important for managing genetic diversity of threatened species. This study assessed the spatial genetic structure of the rare riparian Grevillea sp. Cooljarloo (Proteaceae), which is restricted to a 20 km 2 region impacted by mining in the northern sandplains of the Southwest Australian Floristic Region, an international biodiversity hotspot. Within creek lines and floodplains, the distribution is largely continuous. Models of dispersal within riparian systems were assessed by spatial genetic analyses including population level partitioning of genetic variation and individual Bayesian clustering. High levels of genetic variation and weak isolation by distance within creek line and floodplain populations suggest large effective population sizes and strong connectivity, with little evidence for unidirectional gene flow as might be expected from hydrochory. Regional clustering of creek line populations and strong divergence among creek line populations suggest substantially lower levels of gene flow among creek lines than within creek lines. There was however a surprising amount of genetic admixture in floodplain populations, which could be explained by irregular flooding and/or movements by highly mobile nectar-feeding bird pollinators. Our results highlight that for conservation of rare riparian species, avoiding an impact to hydrodynamic processes, such as water tables and flooding dynamics, may be just as critical as avoiding direct impacts on the number of plants.

  20. Population genetic structure of Monimopetalum chinense (Celastraceae), an endangered endemic species of eastern China.

    Science.gov (United States)

    Xie, Guo-Wen; Wang, De-Lian; Yuan, Yong-Ming; Ge, Xue-Jun

    2005-04-01

    Monimopetalum chinense (Celastraceae) standing for the monotypic genus is endemic to eastern China. Its conservation status is vulnerable as most populations are small and isolated. Monimopetalum chinense is capable of reproducing both sexually and asexually. The aim of this study was to understand the genetic structure of M. chinense and to suggest conservation strategies. One hundred and ninety individuals from ten populations sampled from the entire distribution area of M. chinense were investigated by using inter-simple sequence repeats (ISSR). A total of 110 different ISSR bands were generated using ten primers. Low levels of genetic variation were revealed both at the species level (Isp=0.183) and at the population level (Ipop=0.083). High clonal diversity (D = 0.997) was found, and strong genetic differentiation among populations was detected (49.06 %). Small population size, possible inbreeding, limited gene flow due to short distances of seed dispersal, fragmentation of the once continuous range and subsequent genetic drift, may have contributed to shaping the population genetic structure of the species.

  1. Effective population sizes of a major vector of human diseases, Aedes aegypti.

    Science.gov (United States)

    Saarman, Norah P; Gloria-Soria, Andrea; Anderson, Eric C; Evans, Benjamin R; Pless, Evlyn; Cosme, Luciano V; Gonzalez-Acosta, Cassandra; Kamgang, Basile; Wesson, Dawn M; Powell, Jeffrey R

    2017-12-01

    The effective population size ( N e ) is a fundamental parameter in population genetics that determines the relative strength of selection and random genetic drift, the effect of migration, levels of inbreeding, and linkage disequilibrium. In many cases where it has been estimated in animals, N e is on the order of 10%-20% of the census size. In this study, we use 12 microsatellite markers and 14,888 single nucleotide polymorphisms (SNPs) to empirically estimate N e in Aedes aegypti , the major vector of yellow fever, dengue, chikungunya, and Zika viruses. We used the method of temporal sampling to estimate N e on a global dataset made up of 46 samples of Ae. aegypti that included multiple time points from 17 widely distributed geographic localities. Our N e estimates for Ae. aegypti fell within a broad range (~25-3,000) and averaged between 400 and 600 across all localities and time points sampled. Adult census size (N c ) estimates for this species range between one and five thousand, so the N e / N c ratio is about the same as for most animals. These N e values are lower than estimates available for other insects and have important implications for the design of genetic control strategies to reduce the impact of this species of mosquito on human health.

  2. Population Genetics of Franciscana Dolphins (Pontoporia blainvillei: Introducing a New Population from the Southern Edge of Their Distribution.

    Directory of Open Access Journals (Sweden)

    María Constanza Gariboldi

    Full Text Available Due to anthropogenic factors, the franciscana dolphin, Pontoporia blainvillei, is the most threatened small cetacean on the Atlantic coast of South America. Four Franciscana Management Areas have been proposed: Espiritu Santo to Rio de Janeiro (FMA I, São Paulo to Santa Catarina (FMA II, Rio Grande do Sul to Uruguay (FMA III, and Argentina (FMA IV. Further genetic studies distinguished additional populations within these FMAs. We analyzed the population structure, phylogeography, and demographic history in the southernmost portion of the species range. From the analysis of mitochondrial DNA control region sequences, 5 novel haplotypes were found, totalizing 60 haplotypes for the entire distribution range. The haplotype network did not show an apparent phylogeographical signal for the southern FMAs. Two populations were identified: Monte Hermoso (MH and Necochea (NC+Claromecó (CL+Río Negro (RN. The low levels of genetic variability, the relative constant size over time, and the low levels of gene flow may indicate that MH has been colonized by a few maternal lineages and became isolated from geographically close populations. The apparent increase in NC+CL+RN size would be consistent with the higher genetic variability found, since genetic diversity is generally higher in older and expanding populations. Additionally, RN may have experienced a recent split from CL and NC; current high levels of gene flow may be occurring between the latter ones. FMA IV would comprise four franciscana dolphin populations: Samborombón West+Samborombón South, Cabo San Antonio+Buenos Aires East, NC+CL+Buenos Aires Southwest+RN and MH. Results achieved in this study need to be taken into account in order to ensure the long-term survival of the species.

  3. Tabapuã breed in Northeastern Brazil: genetic progress and population structure

    Directory of Open Access Journals (Sweden)

    Dirlane Novais Caires

    2012-08-01

    Full Text Available The objective of this study was to evaluate the history of the Tabapuã breed in Northeastern Brazil by determining its population structure and genetic progress. Pedigree information from animals born in the period between 1965 and 2006 and weight-adjusted data at 205 (W205, 365 (W365 and 550 (W550 days of age for bovines born between 1975 and 2006 were used. The (covariance components and genetic value were estimated using the application MTDFREML. Also, the software ENDOG was used for pedigree analysis and parameter estimation based on the probabilities of gene origin, inbreeding and average generation interval. The heritability coefficients for direct genetic effects were 0.21±0.03, 0.26±0.04 and 0.36±0.05 for W205, W365 and W550, respectively. During the first 20 years studied, the observed effective size was small. The generation intervals by gametic pathway were: 7.7±3.4 (sire-son, 7.8±3.7 (sire-daughter, 6.9±3.3 (dam-son, 6.8 ± 3.1 (dam-daughter, and mean interval of 7.3±3.4 years. The studied population showed moderate heritability coefficients, whereas the genetic gains based on the studied traits may be higher than those estimated by genetic tendencies. Reduced generation interval, increased effective size and continuous mating control of relatives are important strategies for the genetic progress of the Tabapuã breed in the region.

  4. Genetic differentiation for size at first reproduction through male versus female functions in the widespread Mediterranean tree Pinus pinaster.

    Science.gov (United States)

    Santos-del-Blanco, L; Climent, J; González-Martínez, S C; Pannell, J R

    2012-11-01

    The study of local adaptation in plant reproductive traits has received substantial attention in short-lived species, but studies conducted on forest trees are scarce. This lack of research on long-lived species represents an important gap in our knowledge, because inferences about selection on the reproduction and life history of short-lived species cannot necessarily be extrapolated to trees. This study considers whether the size for first reproduction is locally adapted across a broad geographical range of the Mediterranean conifer species Pinus pinaster. In particular, the study investigates whether this monoecious species varies genetically among populations in terms of whether individuals start to reproduce through their male function, their female function or both sexual functions simultaneously. Whether differences among populations could be attributed to local adaptation across a climatic gradient is then considered. Male and female reproduction and growth were measured during early stages of sexual maturity of a P. pinaster common garden comprising 23 populations sampled across the species range. Generalized linear mixed models were used to assess genetic variability of early reproductive life-history traits. Environmental correlations with reproductive life-history traits were tested after controlling for neutral genetic structure provided by 12 nuclear simple sequence repeat markers. Trees tended to reproduce first through their male function, at a size (height) that varied little among source populations. The transition to female reproduction was slower, showed higher levels of variability and was negatively correlated with vegetative growth traits. Several female reproductive traits were correlated with a gradient of growth conditions, even after accounting for neutral genetic structure, with populations from more unfavourable sites tending to commence female reproduction at a lower individual size. The study represents the first report of genetic

  5. Integration of genetic and demographic data to assess population risk in a continuously distributed species

    Science.gov (United States)

    Fedy, Bradley C.; Row, Jeffery R.; Oyler-McCance, Sara J.

    2017-01-01

    The identification and demographic assessment of biologically meaningful populations is fundamental to species’ ecology and management. Although genetic tools are used frequently to identify populations, studies often do not incorporate demographic data to understand their respective population trends. We used genetic data to define subpopulations in a continuously distributed species. We assessed demographic independence and variation in population trends across the distribution. Additionally, we identified potential barriers to gene flow among subpopulations. We sampled greater sage-grouse (Centrocercus urophasianus) leks from across their range (≈175,000 Km2) in Wyoming and amplified DNA at 14 microsatellite loci for 1761 samples. Subsequently, we assessed population structure in unrelated individuals (n = 872) by integrating results from multiple Bayesian clustering approaches and used the boundaries to inform our assessment of long-term population trends and lek activity over the period of 1995–2013. We identified four genetic clusters of which two northern ones showed demographic independence from the others. Trends in population size for the northwest subpopulation were statistically different from the other three genetic clusters and the northeast and southwest subpopulations demonstrated a general trend of increasing proportion of inactive leks over time. Population change from 1996 to 2012 suggested population growth in the southern subpopulations and decline, or neutral, change in the northern subpopulations. We suggest that sage-grouse subpopulations in northern Wyoming are at greater risk of extirpation than the southern subpopulations due to smaller census and effective population sizes and higher variability within subpopulations. Our research is an example of incorporating genetic and demographic data and provides guidance on the identification of subpopulations of conservation concern.

  6. Microsatellite data analysis for population genetics

    Science.gov (United States)

    Theories and analytical tools of population genetics have been widely applied for addressing various questions in the fields of ecological genetics, conservation biology, and any context where the role of dispersal or gene flow is important. Underlying much of population genetics is the analysis of ...

  7. The effect of multiple paternity on genetic diversity of small populations during and after colonisation.

    Directory of Open Access Journals (Sweden)

    Marina Rafajlović

    Full Text Available Genetic variation within and among populations is influenced by the genetic content of the founders and the migrants following establishment. This is particularly true if populations are small, migration rate low and habitats arranged in a stepping-stone fashion. Under these circumstances the level of multiple paternity is critical since multiply mated females bring more genetic variation into founder groups than single mated females. One such example is the marine snail Littorina saxatilis that during postglacial times has invaded mainland refuge areas and thereafter small islands emerging due to isostatic uplift by occasional rafting of multiply mated females. We modelled effects of varying degrees of multiple paternity on the genetic variation of island populations colonised by the founders spreading from the mainland, by quantifying the population heterozygosity during both the transient colonisation process, and after a steady state (with migration has been reached. During colonisation, multiple mating by [Formula: see text] males increased the heterozygosity by [Formula: see text] in comparison with single paternity, while in the steady state the increase was [Formula: see text] compared with single paternity. In the steady state the increase of heterozygosity due to multiple paternity is determined by a corresponding increase in effective population size. During colonisation, by contrast, the increase in heterozygosity is larger and it cannot be explained in terms of the effective population size alone. During the steady-state phase bursts of high genetic variation spread through the system, and far from the mainland this led to short periods of high diversity separated by long periods of low diversity. The size of these fluctuations was boosted by multiple paternity. We conclude that following glacial periods of extirpation, recolonization of isolated habitats by this species has been supported by its high level of multiple paternity.

  8. The Effect of Multiple Paternity on Genetic Diversity of Small Populations during and after Colonisation

    KAUST Repository

    Rafajlović, Marina

    2013-10-28

    Genetic variation within and among populations is influenced by the genetic content of the founders and the migrants following establishment. This is particularly true if populations are small, migration rate low and habitats arranged in a stepping-stone fashion. Under these circumstances the level of multiple paternity is critical since multiply mated females bring more genetic variation into founder groups than single mated females. One such example is the marine snail Littorina saxatilis that during postglacial times has invaded mainland refuge areas and thereafter small islands emerging due to isostatic uplift by occasional rafting of multiply mated females. We modelled effects of varying degrees of multiple paternity on the genetic variation of island populations colonised by the founders spreading from the mainland, by quantifying the population heterozygosity during both the transient colonisation process, and after a steady state (with migration) has been reached. During colonisation, multiple mating by 2-10 males increased the heterozygosity by 10-300% in comparison with single paternity, while in the steady state the increase was 10-50% compared with single paternity. In the steady state the increase of heterozygosity due to multiple paternity is determined by a corresponding increase in effective population size. During colonisation, by contrast, the increase in heterozygosity is larger and it cannot be explained in terms of the effective population size alone. During the steady-state phase bursts of high genetic variation spread through the system, and far from the mainland this led to short periods of high diversity separated by long periods of low diversity. The size of these fluctuations was boosted by multiple paternity. We conclude that following glacial periods of extirpation, recolonization of isolated habitats by this species has been supported by its high level of multiple paternity. 2013 Rafajlovi? et al.

  9. Demographic collapse and low genetic diversity of the Irrawaddy dolphin population inhabiting the Mekong River.

    Science.gov (United States)

    Krützen, Michael; Beasley, Isabel; Ackermann, Corinne Y; Lieckfeldt, Dietmar; Ludwig, Arne; Ryan, Gerard E; Bejder, Lars; Parra, Guido J; Wolfensberger, Rebekka; Spencer, Peter B S

    2018-01-01

    In threatened wildlife populations, it is important to determine whether observed low genetic diversity may be due to recent anthropogenic pressure or the consequence of historic events. Historical size of the Irrawaddy dolphin (Orcaella brevirostris) population inhabiting the Mekong River is unknown and there is significant concern for long-term survival of the remaining population as a result of low abundance, slow reproduction rate, high neonatal mortality, and continuing anthropogenic threats. We investigated population structure and reconstructed the demographic history based on 60 Irrawaddy dolphins samples collected between 2001 and 2009. The phylogenetic analysis indicated reciprocal monophyly of Mekong River Orcaella haplotypes with respect to haplotypes from other populations, suggesting long-standing isolation of the Mekong dolphin population from other Orcaella populations. We found that at least 85% of all individuals in the two main study areas: Kratie and Stung Treng, bore the same mitochondrial haplotype. Out of the 21 microsatellite loci tested, only ten were polymorphic and exhibited very low levels of genetic diversity. Both individual and frequency-based approaches suggest very low and non-significant genetic differentiation of the Mekong dolphin population. Evidence for recent bottlenecks was equivocal. Some results suggested a recent exponential decline in the Mekong dolphin population, with the current size being only 5.2% of the ancestral population. In order for the Mekong dolphin population to have any potential for long-term survival, it is imperative that management priorities focus on preventing any further population fragmentation or genetic loss, reducing or eliminating anthropogenic threats, and promoting connectivity between all subpopulations.

  10. Effective population size dynamics reveal impacts of historic climatic events and recent anthropogenic pressure in African elephants.

    Science.gov (United States)

    Okello, J B A; Wittemyer, G; Rasmussen, H B; Arctander, P; Nyakaana, S; Douglas-Hamilton, I; Siegismund, H R

    2008-09-01

    Two hundred years of elephant hunting for ivory, peaking in 1970-1980s, caused local extirpations and massive population declines across Africa. The resulting genetic impacts on surviving populations have not been studied, despite the importance of understanding the evolutionary repercussions of such human-mediated events on this keystone species. Using Bayesian coalescent-based genetic methods to evaluate time-specific changes in effective population size, we analysed genetic variation in 20 highly polymorphic microsatellite loci from 400 elephants inhabiting the greater Samburu-Laikipia region of northern Kenya. This area experienced a decline of between 80% and 90% in the last few decades when ivory harvesting was rampant. The most significant change in effective population size, however, occurred approximately 2500 years ago during a mid-Holocene period of climatic drying in tropical Africa. Contrary to expectations, detailed analyses of four contemporary age-based cohorts showed that the peak poaching epidemic in the 1970s caused detectable temporary genetic impacts, with genetic diversity rebounding as juveniles surviving the poaching era became reproductively mature. This study demonstrates the importance of climatic history in shaping the distribution and genetic history of a keystone species and highlights the utility of coalescent-based demographic approaches in unravelling ancestral demographic events despite a lack of ancient samples. Unique insights into the genetic signature of mid-Holocene climatic change in Africa and effects of recent poaching pressure on elephants are discussed.

  11. Morphological, physiological, and genetic variation between metallicolous and nonmetallicolous populations of Dianthus carthusianorum.

    Science.gov (United States)

    Wójcik, Małgorzata; Dresler, Sławomir; Jawor, Emilia; Kowalczyk, Krzysztof; Tukiendorf, Anna

    2013-01-01

    Waste deposits produced by metal mining and smelting activities provide extremely difficult habitats for plant colonization and growth. Therefore, plants spontaneously colonizing such areas represent a very interesting system for studying evolution of plant adaptation and population differentiation between contaminated and noncontaminated environments. In this study, two populations of Dianthus carthusianorum, one originating from Zn-Pb waste deposit (a metallicolous population, M) and the other from unpolluted soil (a nonmetallicolous population, NM), were analyzed in respect of their morphological and physiological traits as well as genetic markers. It was found that the plants inhabiting the waste heap differed significantly from the NM plants in terms of leaf size and shape, and these differences were persistent between the first generation of the plants of both populations cultivated under uniform, controlled laboratory conditions. In contrast with the evident morphological differences, no significant differentiation between the populations regarding the physiological traits measured (accumulation of proline, anthocyanins, chlorophyll, carotenoids) was found. These traits can be regarded as neither population specific nor stress markers. The genetic variability was analyzed using 17 random amplified polymorphic DNA (RAPD) and four inter simple sequence repeat (ISSR) markers; this proved that the differentiation between the M and NM populations exists also at the genetic level. Analysis of molecular variance (AMOVA) showed that 24% of the total genetic diversity resided among populations, while 76% - within the populations. However, no significant differences in intrapopulation genetic diversity (Hj) between the M and NM populations of D. carthusianorum was found, which contradicts the theory that acquisition of adaptation mechanisms to adverse, isolated growth habitats is related to reduction in genetic diversity. Distinct genetic differences between the two

  12. Nesting habits influence population genetic structure of a bee living in anthropogenic disturbance.

    Science.gov (United States)

    Vickruck, J L; Richards, M H

    2017-05-01

    While most organisms are negatively affected by anthropogenic disturbance, a few species thrive in landscapes altered by humans. Typically, native bees are negatively impacted by anthropogenic environmental change, including habitat alteration and climate change. Here, we investigate the population structure of the eastern carpenter bee Xylocopa virginica, a generalist pollinator with a broad geographic range spanning eastern North America. Eastern carpenter bees now nest almost exclusively in artificial wooden structures, linking their geographic distribution and population structure to human activities and disturbance. To investigate the population structure of these bees, we sampled females from 16 different populations from across their range. Nine species-specific microsatellite loci showed that almost all populations are genetically distinct, but with high levels of genetic diversity and low levels of inbreeding overall. Broadly speaking, populations clustered into three distinct genetic groups: a northern group, a western group and a core group. The northern group had low effective population sizes, decreased genetic variability and the highest levels of inbreeding in the data set, suggesting that carpenter bees may be expanding their range northward. The western group was genetically distinct, but lacked signals of a recent range expansion. Climatic data showed that summer and winter temperatures explained a significant amount of the genetic differentiation seen among populations, while precipitation did not. Our results indicate that X. virginica may be one of the rare 'anthrophilic' species that thrive in the face of anthropogenic disturbance. © 2017 John Wiley & Sons Ltd.

  13. Genetic models reveal historical patterns of sea lamprey population fluctuations within Lake Champlain

    Directory of Open Access Journals (Sweden)

    Cassidy C. D’Aloia

    2015-10-01

    Full Text Available The origin of sea lamprey (Petromyzon marinus in Lake Champlain has been heavily debated over the past decade. Given the lack of historical documentation, two competing hypotheses have emerged in the literature. First, it has been argued that the relatively recent population size increase and concomitant rise in wounding rates on prey populations are indicative of an invasive population that entered the lake through the Champlain Canal. Second, recent genetic evidence suggests a post-glacial colonization at the end of the Pleistocene, approximately 11,000 years ago. One limitation to resolving the origin of sea lamprey in Lake Champlain is a lack of historical and current measures of population size. In this study, the issue of population size was explicitly addressed using nuclear (nDNA and mitochondrial DNA (mtDNA markers to estimate historical demography with genetic models. Haplotype network analysis, mismatch analysis, and summary statistics based on mtDNA noncoding sequences for NCI (479 bp and NCII (173 bp all indicate a recent population expansion. Coalescent models based on mtDNA and nDNA identified two potential demographic events: a population decline followed by a very recent population expansion. The decline in effective population size may correlate with land-use and fishing pressure changes post-European settlement, while the recent expansion may be associated with the implementation of the salmonid stocking program in the 1970s. These results are most consistent with the hypothesis that sea lamprey are native to Lake Champlain; however, the credibility intervals around parameter estimates demonstrate that there is uncertainty regarding the magnitude and timing of past demographic events.

  14. An alternative covariance estimator to investigate genetic heterogeneity in populations.

    Science.gov (United States)

    Heslot, Nicolas; Jannink, Jean-Luc

    2015-11-26

    For genomic prediction and genome-wide association studies (GWAS) using mixed models, covariance between individuals is estimated using molecular markers. Based on the properties of mixed models, using available molecular data for prediction is optimal if this covariance is known. Under this assumption, adding individuals to the analysis should never be detrimental. However, some empirical studies showed that increasing training population size decreased prediction accuracy. Recently, results from theoretical models indicated that even if marker density is high and the genetic architecture of traits is controlled by many loci with small additive effects, the covariance between individuals, which depends on relationships at causal loci, is not always well estimated by the whole-genome kinship. We propose an alternative covariance estimator named K-kernel, to account for potential genetic heterogeneity between populations that is characterized by a lack of genetic correlation, and to limit the information flow between a priori unknown populations in a trait-specific manner. This is similar to a multi-trait model and parameters are estimated by REML and, in extreme cases, it can allow for an independent genetic architecture between populations. As such, K-kernel is useful to study the problem of the design of training populations. K-kernel was compared to other covariance estimators or kernels to examine its fit to the data, cross-validated accuracy and suitability for GWAS on several datasets. It provides a significantly better fit to the data than the genomic best linear unbiased prediction model and, in some cases it performs better than other kernels such as the Gaussian kernel, as shown by an empirical null distribution. In GWAS simulations, alternative kernels control type I errors as well as or better than the classical whole-genome kinship and increase statistical power. No or small gains were observed in cross-validated prediction accuracy. This alternative

  15. Low genetic diversity and local adaptive divergence of Dracaena cambodiana (Liliaceae) populations associated with historical population bottlenecks and natural selection: an endangered long-lived tree endemic to Hainan Island, China.

    Science.gov (United States)

    Zheng, D-J; Xie, L-S; Zhu, J-H; Zhang, Z-L

    2012-09-01

    Historical population bottlenecks and natural selection have important effects on the current genetic diversity and structure of long-lived trees. Dracaena cambodiana is an endangered, long-lived tree endemic to Hainan Island, China. Our field investigations showed that only 10 populations remain on Hainan Island and that almost all have been seriously isolated and grow in distinct habitats. A considerable amount of genetic variation at the species level, but little variation at the population level, and a high level of genetic differentiation among the populations with limited gene flow in D. cambodiana were detected using inter-simple sequence repeat (ISSR) and random amplified polymorphic DNA (RAPD) analyses. No significant correlation was found between genetic diversity and actual population size, as the genetic diversities were similar regardless of population size. The Mantel test revealed that there was no correlation between genetic and geographic distances among the 10 populations. The UPGMA, PCoA and Bayesian analyses showed that local adaptive divergence has occurred among the D. cambodiana populations, which was further supported by habitat-private fragments. We suggest that the current genetic diversity and population differentiation of D. cambodiana resulted from historical population bottlenecks and natural selection followed by historical isolation. However, the lack of natural regeneration of D. cambodiana indicates that former local adaptations with low genetic diversity may have been genetically weak and are unable to adapt to the current ecological environments. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.

  16. Inferring Population Size History from Large Samples of Genome-Wide Molecular Data - An Approximate Bayesian Computation Approach.

    Directory of Open Access Journals (Sweden)

    Simon Boitard

    2016-03-01

    Full Text Available Inferring the ancestral dynamics of effective population size is a long-standing question in population genetics, which can now be tackled much more accurately thanks to the massive genomic data available in many species. Several promising methods that take advantage of whole-genome sequences have been recently developed in this context. However, they can only be applied to rather small samples, which limits their ability to estimate recent population size history. Besides, they can be very sensitive to sequencing or phasing errors. Here we introduce a new approximate Bayesian computation approach named PopSizeABC that allows estimating the evolution of the effective population size through time, using a large sample of complete genomes. This sample is summarized using the folded allele frequency spectrum and the average zygotic linkage disequilibrium at different bins of physical distance, two classes of statistics that are widely used in population genetics and can be easily computed from unphased and unpolarized SNP data. Our approach provides accurate estimations of past population sizes, from the very first generations before present back to the expected time to the most recent common ancestor of the sample, as shown by simulations under a wide range of demographic scenarios. When applied to samples of 15 or 25 complete genomes in four cattle breeds (Angus, Fleckvieh, Holstein and Jersey, PopSizeABC revealed a series of population declines, related to historical events such as domestication or modern breed creation. We further highlight that our approach is robust to sequencing errors, provided summary statistics are computed from SNPs with common alleles.

  17. THE SIGNIFICANCE OF GENETIC EROSION IN THE PROCESS OF EXTINCTION .1. GENETIC DIFFERENTIATION IN SALVIA-PRATENSIS AND SCABIOSA-COLUMBARIA IN RELATION TO POPULATION-SIZE

    NARCIS (Netherlands)

    VANTREUREN, R; BIJLSMA, R; VANDELDEN, W; OUBORG, NJ

    As part of a programme to determine the importance of the loss of genetic variation for the probability of population extinction, the amount of allozyme variation was determined in 14 populations of Salvia pratensis and in 12 populations of Scabiosa columbaria. Significant correlations were found

  18. Microsatellite genetic diversity and differentiation of native and introduced grass carp populations in three continents

    Science.gov (United States)

    Chapman, Duane C.; Chen, Qin; Wang, Chenghui; Zhao, Jinlian; Lu, Guoqing; Zsigmond, Jeney; Li, Si-Fa

    2012-01-01

    Grass carp (Ctenopharyngodon idella), a freshwater species native to China, has been introduced to about 100 countries/regions and poses both biological and environmental challenges to the receiving ecosystems. In this study, we analyzed genetic variation in grass carp from three introduced river systems (Mississippi River Basin in US, Danube River in Hungary, and Tone River in Japan) as well as its native ranges (Yangtze, Pearl, and Amur Rivers) in China using 21 novel microsatellite loci. The allelic richness, observed heterozygosity, and within-population gene diversity were found to be lower in the introduced populations than in the native populations, presumably due to the small founder population size of the former. Significant genetic differentiation was found between all pairwise populations from different rivers. Both principal component analysis and Bayesian clustering analysis revealed obvious genetic distinction between the native and introduced populations. Interestingly, genetic bottlenecks were detected in the Hungarian and Japanese grass carp populations, but not in the North American population, suggesting that the Mississippi River Basin grass carp has experienced rapid population expansion with potential genetic diversification during the half-century since its introduction. Consequently, the combined forces of the founder effect, introduction history, and rapid population expansion help explaining the observed patterns of genetic diversity within and among both native and introduced populations of the grass carp.

  19. Development of genetic diversity, differentiation and structure over 500 years in four ponderosa pine populations.

    Science.gov (United States)

    Lesser, M R; Parchman, T L; Jackson, S T

    2013-05-01

    Population history plays an important role in shaping contemporary levels of genetic variation and geographic structure. This is especially true in small, isolated range-margin populations, where effects of inbreeding, genetic drift and gene flow may be more pronounced than in large continuous populations. Effects of landscape fragmentation and isolation distance may have implications for persistence of range-margin populations if they are demographic sinks. We studied four small, disjunct populations of ponderosa pine over a 500-year period. We coupled demographic data obtained through dendroecological methods with microsatellite data to discern how and when contemporary levels of allelic diversity, among and within-population levels of differentiation, and geographic structure, arose. Alleles accumulated rapidly following initial colonization, demonstrating proportionally high levels of gene flow into the populations. At population sizes of approximately 100 individuals, allele accumulation saturated. Levels of genetic differentiation among populations (F(ST) and Jost's D(est)) and diversity within populations (F(IS)) remained stable through time. There was no evidence of geographic genetic structure at any time in the populations' history. Proportionally, high gene flow in the early stages of population growth resulted in rapid accumulation of alleles and quickly created relatively homogenous genetic patterns among populations. Our study demonstrates that contemporary levels of genetic diversity were formed quickly and early in population development. How contemporary genetic diversity accumulates over time is a key facet of understanding population growth and development. This is especially relevant given the extent and speed at which species ranges are predicted to shift in the coming century. © 2013 Blackwell Publishing Ltd.

  20. Three Molecular Markers Show No Evidence of Population Genetic Structure in the Gouldian Finch (Erythrura gouldiae.

    Directory of Open Access Journals (Sweden)

    Peri E Bolton

    Full Text Available Assessment of genetic diversity and connectivity between regions can inform conservation managers about risk of inbreeding, potential for adaptation and where population boundaries lie. The Gouldian finch (Erythrura gouldiae is a threatened species in northern Australia, occupying the savannah woodlands of the biogeographically complex monsoon tropics. We present the most comprehensive population genetic analysis of diversity and structure the Gouldian finch using 16 microsatellite markers, mitochondrial control region and 3,389 SNPs from genotyping-by-sequencing. Mitochondrial diversity is compared across three related, co-distributed finches with different conservation threat-statuses. There was no evidence of genetic differentiation across the western part of the range in any of the molecular markers, and haplotype diversity but not richness was lower than a common co-distributed species. Individuals within the panmictic population in the west may be highly dispersive within this wide area, and we urge caution when interpreting anecdotal observations of changes to the distribution and/or flock sizes of Gouldian finch populations as evidence of overall changes to the population size of this species.

  1. Population and genomic lessons from genetic analysis of two Indian populations.

    Science.gov (United States)

    Juyal, Garima; Mondal, Mayukh; Luisi, Pierre; Laayouni, Hafid; Sood, Ajit; Midha, Vandana; Heutink, Peter; Bertranpetit, Jaume; Thelma, B K; Casals, Ferran

    2014-10-01

    Indian demographic history includes special features such as founder effects, interpopulation segregation, complex social structure with a caste system and elevated frequency of consanguineous marriages. It also presents a higher frequency for some rare mendelian disorders and in the last two decades increased prevalence of some complex disorders. Despite the fact that India represents about one-sixth of the human population, deep genetic studies from this terrain have been scarce. In this study, we analyzed high-density genotyping and whole-exome sequencing data of a North and a South Indian population. Indian populations show higher differentiation levels than those reported between populations of other continents. In this work, we have analyzed its consequences, by specifically assessing the transferability of genetic markers from or to Indian populations. We show that there is limited genetic marker portability from available genetic resources such as HapMap or the 1,000 Genomes Project to Indian populations, which also present an excess of private rare variants. Conversely, tagSNPs show a high level of portability between the two Indian populations, in contrast to the common belief that North and South Indian populations are genetically very different. By estimating kinship from mates and consanguinity in our data from trios, we also describe different patterns of assortative mating and inbreeding in the two populations, in agreement with distinct mating preferences and social structures. In addition, this analysis has allowed us to describe genomic regions under recent adaptive selection, indicating differential adaptive histories for North and South Indian populations. Our findings highlight the importance of considering demography for design and analysis of genetic studies, as well as the need for extending human genetic variation catalogs to new populations and particularly to those with particular demographic histories.

  2. Population genetics at three spatial scales of a rare sponge living in fragmented habitats

    Directory of Open Access Journals (Sweden)

    Uriz Maria J

    2010-01-01

    Full Text Available Abstract Background Rare species have seldom been studied in marine habitats, mainly because it is difficult to formally assess the status of rare species, especially in patchy benthic organisms, for which samplings are often assumed to be incomplete and, thus, inappropriate for establishing the real abundance of the species. However, many marine benthic invertebrates can be considered rare, due to the fragmentation and rarity of suitable habitats. Consequently, studies on the genetic connectivity of rare species in fragmented habitats are basic for assessing their risk of extinction, especially in the context of increased habitat fragmentation by human activities. Sponges are suitable models for studying the intra- and inter-population genetic variation of rare invertebrates, as they produce lecitotrophic larvae and are often found in fragmented habitats. Results We investigated the genetic structure of a Mediterranean sponge, Scopalina lophyropoda (Schmidt, using the allelic size variation of seven specific microsatellite loci. The species can be classified as "rare" because of its strict habitat requirements, the low number of individuals per population, and the relatively small size of its distribution range. It also presents a strong patchy distribution, philopatric larval dispersal, and both sexual and asexual reproduction. Classical genetic-variance-based methods (AMOVA and differentiation statistics revealed that the genetic diversity of S. lophyropoda was structured at the three spatial scales studied: within populations, between populations of a geographic region, and between isolated geographic regions, although some stochastic gene flow might occur among populations within a region. The genetic structure followed an isolation-by-distance pattern according to the Mantel test. However, despite philopatric larval dispersal and fission events in the species, no single population showed inbreeding, and the contribution of clonality to the

  3. Reconstructing eight decades of genetic variation in an isolated Danish population of the large blue butterfly Maculinea arion

    DEFF Research Database (Denmark)

    Ugelvig, Line V; Nielsen, Per S; Boomsma, Jacobus J

    2011-01-01

    structure over the last 77 years from museum specimens. We also tested amplification efficiency in such historical samples as a function of repeat length and sample age. Low population numbers in the 1980s did not affect genetic diversity, but considerable turnover of alleles has characterized...... between dispersal, effective population size, and long-term genetic erosion of these endangered butterflies remains unknown. Using non-destructive sampling, we investigated the genetic diversity of the last extant population of M. arion in Denmark, which experienced critically low numbers in the 1980s....... Results: Using nine microsatellite markers, we show that the population is genetically impoverished compared to nearby populations in Sweden, but less so than monitoring programs suggested. Ten additional short repeat microsatellites were used to reconstruct changes in genetic diversity and population...

  4. Outbreaks, gene flow and effective population size in the migratory locust, Locusta migratoria: a regional-scale comparative survey.

    Science.gov (United States)

    Chapuis, Marie-Pierre; Loiseau, Anne; Michalakis, Yannis; Lecoq, Michel; Franc, Alex; Estoup, Arnaud

    2009-03-01

    The potential effect of population outbreaks on within and between genetic variation of populations in pest species has rarely been assessed. In this study, we compare patterns of genetic variation in different sets of historically frequently outbreaking and rarely outbreaking populations of an agricultural pest of major importance, the migratory locust, Locusta migratoria. We analyse genetic variation within and between 24 populations at 14 microsatellites in Western Europe, where only ancient and low-intensity outbreaks have been reported (non-outbreaking populations), and in Madagascar and Northern China, where frequent and intense outbreak events have been recorded over the last century (outbreaking populations). Our comparative survey shows that (i) the long-term effective population size is similar in outbreaking and non-outbreaking populations, as evidenced by similar estimates of genetic diversity, and (ii) gene flow is substantially larger among outbreaking populations than among non-outbreaking populations, as evidenced by a fourfold to 30-fold difference in FST values. We discuss the implications for population dynamics and the consequences for management strategies of the observed patterns of genetic variation in L. migratoria populations with contrasting historical outbreak frequency and extent.

  5. Patterns of ancestry and genetic diversity in reintroduced populations of the slimy sculpin: Implications for conservation

    Science.gov (United States)

    Huff, David D.; Miller, Loren M.; Vondracek, Bruce C.

    2010-01-01

    Reintroductions are a common approach for preserving intraspecific biodiversity in fragmented landscapes. However, they may exacerbate the reduction in genetic diversity initially caused by population fragmentation because the effective population size of reintroduced populations is often smaller and reintroduced populations also tend to be more geographically isolated than native populations. Mixing genetically divergent sources for reintroduction purposes is a practice intended to increase genetic diversity. We documented the outcome of reintroductions from three mixed sources on the ancestral composition and genetic variation of a North American fish, the slimy sculpin (Cottus cognatus). We used microsatellite markers to evaluate allelic richness and heterozygosity in the reintroduced populations relative to computer simulated expectations. Sculpins in reintroduced populations exhibited higher levels of heterozygosity and allelic richness than any single source, but only slightly higher than the single most genetically diverse source population. Simulations intended to mimic an ideal scenario for maximizing genetic variation in the reintroduced populations also predicted increases, but they were only moderately greater than the most variable source population. We found that a single source contributed more than the other two sources at most reintroduction sites. We urge caution when choosing whether to mix source populations in reintroduction programs. Genetic characteristics of candidate source populations should be evaluated prior to reintroduction if feasible. When combined with knowledge of the degree of genetic distinction among sources, simulations may allow the genetic diversity benefits of mixing populations to be weighed against the risks of outbreeding depression in reintroduced and nearby populations.

  6. Genetic Diversity and Population Structure of Varronia curassavica: A Medicinal Polyploid Species in a Threatened Ecosystem.

    Science.gov (United States)

    Hoeltgebaum, Marcia Patricia; Dos Reis, Maurício Sedrez

    2017-06-01

    Varronia curassavica is an important medicinal species associated with the restinga, one of the most threatened coastal ecosystems of the Atlantic Forest. These circumstances call for studies aimed at estimating effective population size and gene flow to improve conservation efforts. Hence, the present study aimed to characterize the genetic diversity, ploidy level, and population structure of this species in different areas of restinga using microsatellites. Varronia curassavica was characterized as an autotetraploid, with high genetic variability, low divergence, and no significant fixation indices, indicating the absence of, or reduced, inbreeding and genetic drift in the study area. About 44% of the alleles occurred at low frequency in adults of all populations and 41% in the progenies evaluated. Gene flow was high, consistent with outcrossing species with high dispersal capacity (Nm = 4.87). The results showed no tendency toward isolation by distance. The estimated effective size indicates that the populations studied have the potential to ensure conservation of the species in the long term. The genetic variability and population structure of V. curassavica, as determined in this study, could form the foundation for activities directed toward the sustainable use of this resource and its conservation. Even though the restinga ecosystem has suffered dramatic reductions in area, this study provides evidence that this species is resilient to anthropogenic threats to its genetic integrity, since it is a polyploid with self-incompatibility mechanisms that contribute to maintaining high genetic diversity in an panmictic meta-population along the coast of Santa Catarina. © The American Genetic Association 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Effects of parental number and duration of the breeding period on the effective population size and genetic diversity of a captive population of the endangered Tokyo bitterling Tanakia tanago (Teleostei: Cyprinidae).

    Science.gov (United States)

    Kubota, Hitoshi; Watanabe, Katsutoshi

    2012-01-01

    The maintenance of genetic diversity is one of the chief concerns in the captive breeding of endangered species. Using microsatellite and mtDNA markers, we examined the effects of two key variables (parental number and duration of breeding period) on effective population size (N(e) ) and genetic diversity of offspring in an experimental breeding program for the endangered Tokyo bitterling, Tanakia tanago. Average heterozygosity and number of alleles of offspring estimated from microsatellite data increased with parental number in a breeding aquarium, and exhibited higher values for a long breeding period treatment (9 weeks) compared with a short breeding period (3 weeks). Haplotype diversity in mtDNA of offspring decreased with the reduction in parental number, and this tendency was greater for the short breeding period treatment. Genetic estimates of N(e) obtained with two single-sample estimation methods were consistently higher for the long breeding period treatment with the same number of parental fish. Average N(e) /N ratios were ranged from 0.5 to 1.4, and were high especially in the long breeding period with small and medium parental number treatments. Our results suggest that the spawning intervals of females and alternative mating behaviors of males influence the effective size and genetic diversity of offspring in bitterling. To maintain the genetic diversity of captive T. tanago, we recommend that captive breeding programs should be conducted for a sufficiently long period with an optimal level of parental density, as well as using an adequate number of parents. © 2011 Wiley Periodicals, Inc.

  8. Sibship reconstruction for inferring mating systems, dispersal and effective population size in headwater brook trout (Salvelinus fontinalis) populations

    Science.gov (United States)

    Kanno, Yoichiro; Vokoun, Jason C.; Letcher, Benjamin H.

    2011-01-01

    Brook trout Salvelinus fontinalis populations have declined in much of the native range in eastern North America and populations are typically relegated to small headwater streams in Connecticut, USA. We used sibship reconstruction to infer mating systems, dispersal and effective population size of resident (non-anadromous) brook trout in two headwater stream channel networks in Connecticut. Brook trout were captured via backpack electrofishing using spatially continuous sampling in the two headwaters (channel network lengths of 4.4 and 7.7 km). Eight microsatellite loci were genotyped in a total of 740 individuals (80–140 mm) subsampled in a stratified random design from all 50 m-reaches in which trout were captured. Sibship reconstruction indicated that males and females were both mostly polygamous although single pair matings were also inferred. Breeder sex ratio was inferred to be nearly 1:1. Few large-sized fullsib families (>3 individuals) were inferred and the majority of individuals were inferred to have no fullsibs among those fish genotyped (family size = 1). The median stream channel distance between pairs of individuals belonging to the same large-sized fullsib families (>3 individuals) was 100 m (range: 0–1,850 m) and 250 m (range: 0–2,350 m) in the two study sites, indicating limited dispersal at least for the size class of individuals analyzed. Using a sibship assignment method, the effective population size for the two streams was estimated at 91 (95%CI: 67–123) and 210 (95%CI: 172–259), corresponding to the ratio of effective-to-census population size of 0.06 and 0.12, respectively. Both-sex polygamy, low variation in reproductive success, and a balanced sex ratio may help maintain genetic diversity of brook trout populations with small breeder sizes persisting in headwater channel networks.

  9. Human population genetics and “ancestrality” business

    OpenAIRE

    André Langaney

    2009-01-01

    Following the foundation of theoretical population genetics by Wright, Fischer, Haldane and Malécot, in the first half of the 20th century, applied human population genetics developed with great success with the improvement and accumulation of new technologies to measure genetic polymorphism, first through protein polymorphisms since the 1960’s, then through DNA typing and sequencing since the 1980’s. The field of population genetics and biological anthropology was developed by a handful of d...

  10. Population genetic structure and genetic diversity of Chinese pomfret at the coast of the East China Sea and the South China Sea.

    Science.gov (United States)

    Sun, Peng; Tang, Baojun; Yin, Fei

    2018-05-01

    The Chinese pomfret Pampus chinensis is one of the most economic and ecological important marine fish species in China. In the present study, the population genetic structure and genetic diversity of P. chinensis were evaluated from a total sample size of 180 individuals representing six populations from the East China Sea and the South China Sea using mitochondrial cytochrome c oxidase subunit I (COI) gene. A total of 24 variable sites (including 3 singleton sites and 21 parsimony information sites) were observed, and 18 haplotypes were defined. The haplotype diversity (Hd) of the populations ranged from 0.559 to 0.775, and the nucleotide diversity (π) ranged from 0.330 to 1.090%. Analysis of molecular variance (AMOVA) reveals that the main variation (66.02%) was among individuals within populations. The average pairwise differences and ϕ ST values indicated significant genetic differentiation between Dongxing population and the other populations. The results of the present study are helpful for the sustainable management and utilization of this species.

  11. Integrating environmental and genetic effects to predict responses of tree populations to climate.

    Science.gov (United States)

    Wang, Tongli; O'Neill, Gregory A; Aitken, Sally N

    2010-01-01

    Climate is a major environmental factor affecting the phenotype of trees and is also a critical agent of natural selection that has molded among-population genetic variation. Population response functions describe the environmental effect of planting site climates on the performance of a single population, whereas transfer functions describe among-population genetic variation molded by natural selection for climate. Although these approaches are widely used to predict the responses of trees to climate change, both have limitations. We present a novel approach that integrates both genetic and environmental effects into a single "universal response function" (URF) to better predict the influence of climate on phenotypes. Using a large lodgepole pine (Pinus contorta Dougl. ex Loud.) field transplant experiment composed of 140 populations planted on 62 sites to demonstrate the methodology, we show that the URF makes full use of data from provenance trials to: (1) improve predictions of climate change impacts on phenotypes; (2) reduce the size and cost of future provenance trials without compromising predictive power; (3) more fully exploit existing, less comprehensive provenance tests; (4) quantify and compare environmental and genetic effects of climate on population performance; and (5) predict the performance of any population growing in any climate. Finally, we discuss how the last attribute allows the URF to be used as a mechanistic model to predict population and species ranges for the future and to guide assisted migration of seed for reforestation, restoration, or afforestation and genetic conservation in a changing climate.

  12. Using population genetic tools to develop a control strategy for feral cats (Felis catus) in Hawai'i

    Science.gov (United States)

    Hansen, H.; Hess, S.C.; Cole, D.; Banko, P.C.

    2007-01-01

    Population genetics can provide information about the demographics and dynamics of invasive species that is beneficial for developing effective control strategies. We studied the population genetics of feral cats on Hawai'i Island by microsatellite analysis to evaluate genetic diversity and population structure, assess gene flow and connectivity among three populations, identify potential source populations, characterise population dynamics, and evaluate sex-biased dispersal. High genetic diversity, low structure, and high number of migrants per generation supported high gene flow that was not limited spatially. Migration rates revealed that most migration occurred out of West Mauna Kea. Effective population size estimates indicated increasing cat populations despite control efforts. Despite high gene flow, relatedness estimates declined significantly with increased geographic distance and Bayesian assignment tests revealed the presence of three population clusters. Genetic structure and relatedness estimates indicated male-biased dispersal, primarily from Mauna Kea, suggesting that this population should be targeted for control. However, recolonisation seems likely, given the great dispersal ability that may not be inhibited by barriers such as lava flows. Genetic monitoring will be necessary to assess the effectiveness of future control efforts. Management of other invasive species may benefit by employing these population genetic tools. ?? CSIRO 2007.

  13. Fractured genetic connectivity threatens a southern california puma (Puma concolor population.

    Directory of Open Access Journals (Sweden)

    Holly B Ernest

    Full Text Available Pumas (Puma concolor; also known as mountain lions and cougars in southern California live among a burgeoning human population of roughly 20 million people. Yet little is known of the consequences of attendant habitat loss and fragmentation, and human-caused puma mortality to puma population viability and genetic diversity. We examined genetic status of pumas in coastal mountains within the Peninsular Ranges south of Los Angeles, in San Diego, Riverside, and Orange counties. The Santa Ana Mountains are bounded by urbanization to the west, north, and east, and are separated from the eastern Peninsular Ranges to the southeast by a ten lane interstate highway (I-15. We analyzed DNA samples from 97 pumas sampled between 2001 and 2012. Genotypic data for forty-six microsatellite loci revealed that pumas sampled in the Santa Ana Mountains (n = 42 displayed lower genetic diversity than pumas from nearly every other region in California tested (n = 257, including those living in the Peninsular Ranges immediately to the east across I-15 (n = 55. Santa Ana Mountains pumas had high average pairwise relatedness, high individual internal relatedness, a low estimated effective population size, and strong evidence of a bottleneck and isolation from other populations in California. These and ecological findings provide clear evidence that Santa Ana Mountains pumas have been experiencing genetic impacts related to barriers to gene flow, and are a warning signal to wildlife managers and land use planners that mitigation efforts will be needed to stem further genetic and demographic decay in the Santa Ana Mountains puma population.

  14. In search of genetic constraints limiting the evolution of egg size: direct and correlated responses to artificial selection on a prenatal maternal effector.

    Science.gov (United States)

    Pick, J L; Hutter, P; Tschirren, B

    2016-06-01

    Maternal effects are an important force in nature, but the evolutionary dynamics of the traits that cause them are not well understood. Egg size is known to be a key mediator of prenatal maternal effects with an established genetic basis. In contrast to theoretical expectations for fitness-related traits, there is a large amount of additive genetic variation in egg size observed in natural populations. One possible mechanism for the maintenance of this variation is through genetic constraints caused by a shared genetic basis among traits. Here we created replicated, divergent selection lines for maternal egg investment in Japanese quail (Coturnix japonica) to quantify the role of genetic constraints in the evolution of egg size. We found that egg size responds rapidly to selection, accompanied by a strong response in all egg components. Initially, we observed a correlated response in body size, but this response declined over time, showing that egg size and body size can evolve independently. Furthermore, no correlated response in fecundity (measured as the proportion of days on which a female laid an egg) was observed. However, the response to selection was asymmetrical, with egg size plateauing after one generation of selection in the high but not the low investment lines. We attribute this pattern to the presence of genetic asymmetries, caused by directional dominance or unequal allele frequencies. Such asymmetries may contribute to the evolutionary stasis in egg size observed in natural populations, despite a positive association between egg size and fitness.

  15. Designs and Methods for Association Studies and Population Size Inference in Statistical Genetics

    DEFF Research Database (Denmark)

    Waltoft, Berit Lindum

    method provides a simple goodness of t test by comparing the observed SFS with the expected SFS under a given model of population size changes. By the use of Monte Carlo estimation the expected time between coalescent events can be estimated and the expected SFS can thereby be evaluated. Using......). The OR is interpreted as the eect of an exposure on the probability of being diseased at the end of follow-up, while the interpretation of the IRR is the eect of an exposure on the probability of becoming diseased. Through a simulation study, the OR from a classical case-control study is shown to be an inconsistent...... the classical chi-square statistics we are able to infer single parameter models. Multiple parameter models, e.g. multiple epochs, are harder to identify. By introducing the inference of population size back in time as an inverse problem, the second procedure applies the theory of smoothing splines to infer...

  16. Population structure and genetic variability of mainland and insular populations of the Neotropical water rat, Nectomys squamipes (Rodentia, Sigmodontinae

    Directory of Open Access Journals (Sweden)

    Francisca C. Almeida

    2005-12-01

    Full Text Available Seven microsatellite loci were used to investigate the genetic variability and structure of six mainland and two island populations of the Neotropical water rat Nectomys squamipes, a South American semi-aquatic rodent species with a wide distribution. High levels of variability were found within mainland populations while island populations were less variable but the more differentiated in respect to allele number and frequency. The time of biological divergence between mainland and island populations coincided with geological data. A significant geographic structure was found in mainland populations (theta = 0.099; rho = 0.086 although the degree of differentiation was relatively low in respect to the distance between surveyed localities (24 to 740 km. Genetic and geographic distances were not positively correlated as previously found with random amplified polymorphic DNA (RAPD markers. Significant but low genetic differentiation in the mainland and lack of isolation by distance can be explained by large population size and/or recent population expansion. Additionally, the agreement between the age of geologic events (sea level fluctuations and divergence times for insular populations points to a good reference for molecular clock calibration to associate recent environmental changes and the distribution pattern of small mammals in the Brazilian Atlantic Forest.

  17. The effects of Medieval dams on genetic divergence and demographic history in brown trout populations.

    Science.gov (United States)

    Hansen, Michael M; Limborg, Morten T; Ferchaud, Anne-Laure; Pujolar, José-Martin

    2014-06-05

    Habitat fragmentation has accelerated within the last century, but may have been ongoing over longer time scales. We analyzed the timing and genetic consequences of fragmentation in two isolated lake-dwelling brown trout populations. They are from the same river system (the Gudenå River, Denmark) and have been isolated from downstream anadromous trout by dams established ca. 600-800 years ago. For reference, we included ten other anadromous populations and two hatchery strains. Based on analysis of 44 microsatellite loci we investigated if the lake populations have been naturally genetically differentiated from anadromous trout for thousands of years, or have diverged recently due to the establishment of dams. Divergence time estimates were based on 1) Approximate Bayesian Computation and 2) a coalescent-based isolation-with-gene-flow model. Both methods suggested divergence times ca. 600-800 years bp, providing strong evidence for establishment of dams in the Medieval as the factor causing divergence. Bayesian cluster analysis showed influence of stocked trout in several reference populations, but not in the focal lake and anadromous populations. Estimates of effective population size using a linkage disequilibrium method ranged from 244 to > 1,000 in all but one anadromous population, but were lower (153 and 252) in the lake populations. We show that genetic divergence of lake-dwelling trout in two Danish lakes reflects establishment of water mills and impassable dams ca. 600-800 years ago rather than a natural genetic population structure. Although effective population sizes of the two lake populations are not critically low they may ultimately limit response to selection and thereby future adaptation. Our results demonstrate that populations may have been affected by anthropogenic disturbance over longer time scales than normally assumed.

  18. Factors determining the average body size of geographically separated Arctodiaptomus salinus (Daday, 1885) populations.

    Science.gov (United States)

    Anufriieva, Elena V; Shadrin, Nickolai V

    2014-03-01

    Arctodiaptomus salinus inhabits water bodies across Eurasia and North Africa. Based on our own data and that from the literature, we analyzed the influences of several factors on the intra- and inter-population variability of this species. A strong negative linear correlation between temperature and average body size in the Crimean and African populations was found, in which the parameters might be influenced by salinity. Meanwhile, a significant negative correlation between female body size and the altitude of habitats was found by comparing body size in populations from different regions. Individuals from environments with highly varying abiotic parameters, e.g. temporary reservoirs, had a larger body size than individuals from permanent water bodies. The changes in average body mass in populations were at 11.4 times, whereas, those in individual metabolic activities were at 6.2 times. Moreover, two size groups of A. salinus in the Crimean and the Siberian lakes were observed. The ratio of female length to male length fluctuated between 1.02 and 1.30. The average size of A. salinus in populations and its variations were determined by both genetic and environmental factors. However, the parities of these factors were unequal in either spatial or temporal scales.

  19. Defining population structure and genetic signatures of decline in the giant garter snake (Thamnophis gigas): implications for conserving threatened species within highly altered landscapes

    Science.gov (United States)

    Wood, Dustin A.; Halstead, Brian J.; Casazza, Michael L.; Hansen, Eric C.; Wylie, Glenn D.; Vandergast, Amy

    2015-01-01

    Anthropogenic habitat fragmentation can disrupt the ability of species to disperse across landscapes, which can alter the levels and distribution of genetic diversity within populations and negatively impact long-term viability. The giant gartersnake (Thamnophis gigas) is a state and federally threatened species that historically occurred in the wetland habitats of California’s Great Central Valley. Despite the loss of 93 % of historic wetlands throughout the Central Valley, giant gartersnakes continue to persist in relatively small, isolated patches of highly modified agricultural wetlands. Gathering information regarding genetic diversity and effective population size represents an essential component for conservation management programs aimed at this species. Previous mitochondrial sequence studies have revealed historical patterns of differentiation, yet little is known about contemporary population structure and diversity. On the basis of 15 microsatellite loci, we estimate population structure and compare indices of genetic diversity among populations spanning seven drainage basins within the Central Valley. We sought to understand how habitat loss may have affected genetic differentiation, genetic diversity and effective population size, and what these patterns suggest in terms of management and restoration actions. We recovered five genetic clusters that were consistent with regional drainage basins, although three northern basins within the Sacramento Valley formed a single genetic cluster. Our results show that northern drainage basin populations have higher connectivity than among central and southern basins populations, and that greater differentiation exists among the more geographically isolated populations in the central and southern portion of the species’ range. Genetic diversity measures among basins were significantly different, and were generally lower in southern basin populations. Levels of inbreeding and evidence of population

  20. Homogenous Population Genetic Structure of the Non-Native Raccoon Dog (Nyctereutes procyonoides) in Europe as a Result of Rapid Population Expansion

    Science.gov (United States)

    Drygala, Frank; Korablev, Nikolay; Ansorge, Hermann; Fickel, Joerns; Isomursu, Marja; Elmeros, Morten; Kowalczyk, Rafał; Baltrunaite, Laima; Balciauskas, Linas; Saarma, Urmas; Schulze, Christoph; Borkenhagen, Peter; Frantz, Alain C.

    2016-01-01

    The extent of gene flow during the range expansion of non-native species influences the amount of genetic diversity retained in expanding populations. Here, we analyse the population genetic structure of the raccoon dog (Nyctereutes procyonoides) in north-eastern and central Europe. This invasive species is of management concern because it is highly susceptible to fox rabies and an important secondary host of the virus. We hypothesized that the large number of introduced animals and the species’ dispersal capabilities led to high population connectivity and maintenance of genetic diversity throughout the invaded range. We genotyped 332 tissue samples from seven European countries using 16 microsatellite loci. Different algorithms identified three genetic clusters corresponding to Finland, Denmark and a large ‘central’ population that reached from introduction areas in western Russia to northern Germany. Cluster assignments provided evidence of long-distance dispersal. The results of an Approximate Bayesian Computation analysis supported a scenario of equal effective population sizes among different pre-defined populations in the large central cluster. Our results are in line with strong gene flow and secondary admixture between neighbouring demes leading to reduced genetic structuring, probably a result of its fairly rapid population expansion after introduction. The results presented here are remarkable in the sense that we identified a homogenous genetic cluster inhabiting an area stretching over more than 1500km. They are also relevant for disease management, as in the event of a significant rabies outbreak, there is a great risk of a rapid virus spread among raccoon dog populations. PMID:27064784

  1. Investigating the Genetic Diversity, Population Differentiation and Population Dynamics of Cycas segmentifida (Cycadaceae Endemic to Southwest China by Multiple Molecular Markers

    Directory of Open Access Journals (Sweden)

    Xiuyan Feng

    2017-05-01

    Full Text Available Climate change, species dispersal ability and habitat fragmentation are major factors influencing species distribution and genetic diversity, especially for the range-restricted and threatened taxa. Here, using four sequences of chloroplast DNAs (cpDNAs, three nuclear genes (nDNAs and 12 nuclear microsatellites (SSRs, we investigated the genetic diversity, genetic structure, divergence time and population dynamics of Cycas segmentifida D. Y. Wang and C. Y. Deng, a threatened cycad species endemic to Southwest China. High levels of genetic diversity and genetic differentiation were revealed in C. segmentifida. Haplotypes of networks showed two evolutionary units in C. segmentifida, with the exception of the nuclear gene GTP network. Meanwhile, the UPGMA tree, structure and PCoA analyses suggested that 14 populations of C. segmentifida were divided into two clades. There was significant effect of isolation by distance (IBD in this species. However, this species did not display a significant phylogeographic structure. The divergence time estimation suggested that its haplotypes diverged during the Middle Pleistocene. Additionally, the population dynamics inferred from different DNA sequences analyses were discordant. Bottleneck analysis showed that populations of C. segmentifida did not experience any recent bottleneck effect, but rather pointed to a contraction of its effective population size over time. Furthermore, our results suggested that the population BM which held an intact population structure and occupied undisturbed habitat was at the Hardy–Weinberg equilibrium, implying that this population is a free-mating system. These genetic features provide important information for the sustainable management of C. segmentifida.

  2. Genetic diversity in wild populations of Paulownia fortune.

    Science.gov (United States)

    Li, H Y; Ru, G X; Zhang, J; Lu, Y Y

    2014-11-01

    The genetic diversities of 16 Paulownia fortunei populations involving 143 individuals collected from 6 provinces in China were analyzed using amplified fragment length polymorphism (AFLP). A total of 9 primer pairs with 1169 polymorphic loci were screened out, and each pair possessed 132 bands on average. The percentage of polymorphic bands (98.57%), the effective number of alleles (1.2138-1.2726), Nei's genetic diversity (0.1566-0.1887), and Shannon's information index (0.2692-0.3117) indicated a plentiful genetic diversity and different among Paulownia fortunei populations. The genetic differentiation coefficient between populations was 0.2386, while the gene flow was 1.0954, and the low gene exchange promoted genetic differentiation. Analysis of variance indicated that genetic variation mainly occurred within populations (81.62% of total variation) rather than among populations (18.38%). The 16 populations were divided by unweighted pair-group method with arithmetic means (UPGMA) into 4 groups with obvious regionalism, in which the populations with close geographical locations (latitude) were clustered together.

  3. Geographic origins and population genetics of bats killed at wind-energy facilities.

    Science.gov (United States)

    Pylant, Cortney L; Nelson, David M; Fitzpatrick, Matthew C; Gates, J Edward; Keller, Stephen R

    2016-07-01

    An unanticipated impact of wind-energy development has been large-scale mortality of insectivorous bats. In eastern North America, where mortality rates are among the highest in the world, the hoary bat (Lasiurus cinereus) and the eastern red bat (L. borealis) comprise the majority of turbine-associated bat mortality. Both species are migratory tree bats with widespread distributions; however, little is known regarding the geographic origins of bats killed at wind-energy facilities or the diversity and population structure of affected species. We addressed these unknowns by measuring stable hydrogen isotope ratios (δ 2 H) and conducting population genetic analyses of bats killed at wind-energy facilities in the central Appalachian Mountains (USA) to determine the summering origins, effective size, structure, and temporal stability of populations. Our results indicate that ~1% of hoary bat mortalities and ~57% of red bat mortalities derive from non-local sources, with no relationship between the proportion of non-local bats and sex, location of mortality, or month of mortality. Additionally, our data indicate that hoary bats in our sample consist of an unstructured population with a small effective size (N e ) and either a stable or declining history. Red bats also showed no evidence of population genetic structure, but in contrast to hoary bats, the diversity contained in our red bat samples is consistent with a much larger N e that reflects a demographic expansion after a bottleneck. These results suggest that the impacts of mortality associated with intensive wind-energy development may affect bat species dissimilarly, with red bats potentially better able to absorb sustained mortality than hoary bats because of their larger N e . Our results provide important baseline data and also illustrate the utility of stable isotopes and population genetics for monitoring bat populations affected by wind-energy development. © 2016 by the Ecological Society of America.

  4. Population genetics of reef coral endosymbionts (Symbiodinium, Dinophyceae).

    Science.gov (United States)

    Thornhill, D J; Howells, E J; Wham, D C; Steury, T D; Santos, S R

    2017-05-01

    Symbiodinium is a diverse genus of unicellular dinoflagellate symbionts associating with various marine protists and invertebrates. Although the broadscale diversity and phylogenetics of the Symbiodinium complex is well established, there have been surprisingly few data on fine-scale population structure and biogeography of these dinoflagellates. Yet population-level processes contribute strongly to the biology of Symbiodinium, including how anthropogenic-driven global climate change impacts these symbionts and their host associations. Here, we present a synthesis of population-level characteristics for Symbiodinium, with an emphasis on how phylogenetic affinities, dynamics within and among host individuals, and a propensity towards clonality shape patterns on and across reefs. Major inferences include the following: (i) Symbiodinium populations within individual hosts are comprised mainly of cells belonging to a single or few genetic clones. (ii) Symbiont populations exhibit a mixed mode of reproduction, wherein at least one sexual recombination event occurs in the genealogy between most genotypes, but clonal propagation predominates overall. (iii) Mutualistic Symbiodinium do not perpetually persist outside their hosts, instead undergoing turnover and replacement via the continuous shedding of viable clonal cells from host individuals. (iv) Symbiont populations living in the same host, but on different reefs, are often genetically subdivided, suggesting low connectivity, adaptation to local conditions, or prolific asexual reproduction and low effective population sizes leading to disproportionate success within and among hosts. Overall, this synthesis forms a basis for future investigations of coral symbiosis ecology and evolution as well as delimitation of species boundaries in Symbiodinium and other eukaryotic microorganisms. © 2017 John Wiley & Sons Ltd.

  5. The Relationship between Mating System and Genetic Diversity in Diploid Sexual Populations of Cyrtomium falcatum in Japan.

    Directory of Open Access Journals (Sweden)

    Ryosuke Imai

    Full Text Available The impact of variation in mating system on genetic diversity is a well-debated topic in evolutionary biology. The diploid sexual race of Cyrtomium falcatum (Japanese holly fern shows mating system variation, i.e., it displays two different types of sexual expression (gametangia formation in gametophytes: mixed (M type and separate (S type. We examined whether there is variation in the selfing rate among populations of this species, and evaluated the relationship between mating system, genetic diversity and effective population size using microsatellites. In this study, we developed eight new microsatellite markers and evaluated genetic diversity and structure of seven populations (four M-type and three S-type. Past effective population sizes (Ne were inferred using Approximate Bayesian computation (ABC. The values of fixation index (FIS, allelic richness (AR and gene diversity (h differed significantly between the M-type (FIS: 0.626, AR: 1.999, h: 0.152 and the S-type (FIS: 0.208, AR: 2.718, h: 0.367 populations (when admixed individuals were removed from two populations. Although evidence of past bottleneck events was detected in all populations by ABC, the current Ne of the M-type populations was about a third of that of the S-type populations. These results suggest that the M-type populations have experienced more frequent bottlenecks, which could be related to their higher colonization ability via gametophytic selfing. Although high population differentiation among populations was detected (FST = 0.581, F'ST = 0.739, there was no clear genetic differentiation between the M- and S-types. Instead, significant isolation by distance was detected among all populations. These results suggest that mating system variation in this species is generated by the selection for single spore colonization during local extinction and recolonization events and there is no genetic structure due to mating system.

  6. Population genetic structure of eelgrass (Zostera marina on the Korean coast: Current status and conservation implications for future management.

    Directory of Open Access Journals (Sweden)

    Jae Hwan Kim

    Full Text Available Seagrasses provide numerous ecosystem services for coastal and estuarine environments, such as nursery functions, erosion protection, pollution filtration, and carbon sequestration. Zostera marina (common name "eelgrass" is one of the seagrass bed-forming species distributed widely in the northern hemisphere, including the Korean Peninsula. Recently, however, there has been a drastic decline in the population size of Z. marina worldwide, including Korea. We examined the current population genetic status of this species on the southern coast of Korea by estimating the levels of genetic diversity and genetic structure of 10 geographic populations using eight nuclear microsatellite markers. The level of genetic diversity was found to be significantly lower for populations on Jeju Island [mean allelic richness (AR = 1.92, clonal diversity (R = 0.51], which is located approximately 155 km off the southernmost region of the Korean Peninsula, than for those in the South Sea (mean AR = 2.69, R = 0.82, which is on the southern coast of the mainland. South Korean eelgrass populations were substantially genetically divergent from one another (FST = 0.061-0.573, suggesting that limited contemporary gene flow has been taking place among populations. We also found weak but detectable temporal variation in genetic structure within a site over 10 years. In additional depth comparisons, statistically significant genetic differentiation was observed between shallow (or middle and deep zones in two of three sites tested. Depleted genetic diversity, small effective population sizes (Ne and limited connectivity for populations on Jeju Island indicate that these populations may be vulnerable to local extinction under changing environmental conditions, especially given that Jeju Island is one of the fastest warming regions around the world. Overall, our work will inform conservation and restoration efforts, including transplantation for eelgrass populations at the

  7. Medical Genetics and the First Studies of the Genetics of Populations in Mexico.

    Science.gov (United States)

    Barahona, Ana

    2016-09-01

    Following World War II (WWII), there was a new emphasis within genetics on studying the genetic composition of populations. This probably had a dual source in the growing strength of evolutionary biology and the new international interest in understanding the effects of radiation on human populations, following the atomic bombings in Japan. These global concerns were shared by Mexican physicians. Indeed, Mexico was one of the leading centers of this trend in human genetics. Three leading players in this story were Mario Salazar Mallén, Adolfo Karl, and Rubén Lisker. Their trajectories and the international networks in human genetics that were established after WWII, paved the way for the establishment of medical and population genetics in Mexico. Salazar Mallén's studies on the distribution and characterization of ABO blood groups in indigenous populations were the starting point while Karl's studies on the distribution of abnormal hemoglobin in Mexican indigenous populations showed the relationships observed in other laboratories at the time. It was Lisker's studies, however, that were instrumental in the development of population genetics in the context of national public policies for extending health care services to the Mexican population. In particular, he conducted studies on Mexican indigenous groups contributing to the knowledge of the biological diversity of human populations according to international trends that focused on the variability of human populations in terms of genetic frequencies. From the start, however, Lisker was as committed to the reconstruction of shared languages and practices as he was to building networks of collaboration in order to guarantee the necessary groundwork for establishing the study of the genetics of human populations in Mexico. This study also allows us to place Mexican science within a global context in which connected narratives describe the interplay between global trends and national contexts. Copyright © 2016 by

  8. Spatial and temporal variation in population genetic structure of wild Nile tilapia (Oreochromis niloticus across Africa

    Directory of Open Access Journals (Sweden)

    Bezault Etienne

    2011-12-01

    Full Text Available Abstract Background Reconstructing the evolutionary history of a species is challenging. It often depends not only on the past biogeographic and climatic events but also the contemporary and ecological factors, such as current connectivity and habitat heterogeneity. In fact, these factors might interact with each other and shape the current species distribution. However, to what extent the current population genetic structure reflects the past and the contemporary factors is largely unknown. Here we investigated spatio-temporal genetic structures of Nile tilapia (Oreochromis niloticus populations, across their natural distribution in Africa. While its large biogeographic distribution can cause genetic differentiation at the paleo-biogeographic scales, its restricted dispersal capacity might induce a strong genetic structure at micro-geographic scales. Results Using nine microsatellite loci and 350 samples from ten natural populations, we found the highest genetic differentiation among the three ichthyofaunal provinces and regions (Ethiopian, Nilotic and Sudano-Sahelian (RST = 0.38 - 0.69. This result suggests the predominant effect of paleo-geographic events at macro-geographic scale. In addition, intermediate divergences were found between rivers and lakes within the regions, presumably reflecting relatively recent interruptions of gene flow between hydrographic basins (RST = 0.24 - 0.32. The lowest differentiations were observed among connected populations within a basin (RST = 0.015 in the Volta basin. Comparison of temporal sample series revealed subtle changes in the gene pools in a few generations (F = 0 - 0.053. The estimated effective population sizes were 23 - 143 and the estimated migration rate was moderate (m ~ 0.094 - 0.097 in the Volta populations. Conclusions This study revealed clear hierarchical patterns of the population genetic structuring of O. niloticus in Africa. The effects of paleo-geographic and climatic events were

  9. Genetic and morphological divergence among Cooper's Hawk (Accipiter cooperii) populations breeding in north-central and western North America

    Science.gov (United States)

    Sonsthagen, Sarah A.; Rosenfield, Robert N.; Bielefeldt, John; Murphy, Robert K.; Stewart, Andrew C.; Stout, William C.; Driscoll, Timothy G.; Bozek, Michael A.; Sloss, Brian L.; Talbot, Sandra L.

    2012-01-01

    Cooper's Hawk (Accipiter cooperii) populations breeding in the northern portion of the species' range exhibit variation in morphological traits that conforms to predictions based on differences in prey size, tree stand density, and migratory behavior. We examined genetic structure and gene flow and compared divergence at morphological traits (PST) and genetic markers (FST) to elucidate mechanisms (selection or genetic drift) that promote morphological diversification among Cooper's Hawk populations. Cooper's Hawks appear to conform to the genetic pattern of an east-west divide. Populations in British Columbia are genetically differentiated from north-central populations (Wisconsin, Minnesota, and North Dakota; pairwise microsatellite FST= 0.031-0.050; mitochondrial DNA ΦST = 0.177-0.204), which suggests that Cooper's Hawks were restricted to at least two Pleistocene glacial refugia. The strength of the Rocky Mountains—Great Plains area as a barrier to dispersal is further supported by restricted gene-flow rates between British Columbia and other sampled breeding populations. Divergence in morphological traits (PST) was also observed across study areas, but with British Columbia and North Dakota differentiated from Wisconsin and Minnesota, a pattern not predicted on the basis of FST and ΦST interpopulation estimates. Comparison of PSTand FSTestimates suggests that heterogeneous selection may be acting on Cooper's Hawks in the northern portion of their distribution, which is consistent with hypotheses that variation in prey mass and migratory behavior among populations may be influencing overall body size and wing chord. We were unable to distinguish between the effects of genetic drift and selection on tail length in the study populations.

  10. Genetic diversity and population genetic structure of the only population of Aoluguya Reindeer (Rangifer tarandus) in China.

    Science.gov (United States)

    Ju, Yan; Liu, Huamiao; Rong, Min; Zhang, Ranran; Dong, Yimeng; Zhou, Yongna; Xing, Xiumei

    2018-04-16

    Aoluguya Reindeer is the only reindeer species in China and currently approximately 1000 Aoluguya Reindeer remain semi-domesticated. A relative low diversity estimate was found by investigating genetic variability and demographic history of its population. Mismatch distribution curve of its nucleotide sequences and neutral test indicate its population has not experienced expansion. Genetic diversity and population structure were also analysed by using its mtDNA and microsatellites technology. Statistical results of these analyses showed there were varying degrees of population inbreeding and suggested that gene flow existed among its populations at one time. Three mutation models were also used to detect the bottleneck effect of reindeer population. The genetic variation of eight populations is relatively small. In addition, the clustering program STRUCTURE was used to analyse Aoluguya Reindeer population structure, to determine its optimal K and first time to analyse the phylogenetic status of Aoluguya Reindeer among other reindeer subspecies. It is recommended that the government establish a natural conservation area in Aoluguya Reindeer growing geography, forbade the trade and hunting of Aoluguya Reindeer, and strengthen the protection of this endangered species.

  11. Sardinian Population (Italy): a Genetic Review

    African Journals Online (AJOL)

    thou

    , according to the classification suggested by Contini (1979). The genetic ... and to have maintained a genetic identity through their evolution: the cluster constituted ...... HLA class II haplotypes reveals that the Sardinian population is genetically.

  12. Contrasting geographic patterns of genetic differentiation in body size and development time with reproductive isolation in Dendroctonus ponderosae (Coleoptera: Curculionidae, Scolytinae)

    Science.gov (United States)

    Ryan R. Bracewell; Michael E. Pfrender; Karen E. Mock; Barbara J. Bentz

    2013-01-01

    Body size and development time are two critical phenotypic traits that can be highly adaptive in insects. Recent population genetic analyses and crossing experiments with the mountain pine beetle (Dendroctonus ponderosae Hopkins) have described substantial levels of neutral molecular genetic differentiation, genetic differences in phenotypic traits, and reproductive...

  13. Genetic diversity of six populations of red hybrid tilapia, using microsatellites genetic markers

    Directory of Open Access Journals (Sweden)

    Boris Briñez R.

    2011-05-01

    Full Text Available Objective. To determine and evaluate the genetic diversity of six populations of red hybrid tilapia, with the purpose to assess the potential benefit of a future breeding program conducted at the Research Center for Aquaculture (Ceniacua, Colombia. Material and methods. A total of 300 individuals, representing a wide genetic variability, were genotyped using a fluorescent microsatellite marker set of 5 gene-based SSRs in 6 different farms belonging to 4 States of Colombia. Results. The result showed that the mean number of alleles per locus per population was 8.367. The population 5 had the highest mean number of alleles with 9.6 alleles, followed by population 4 with 9.4 alleles, population 2 with 9.2, population 3 with 8.0, population 1 with 7.2 and population 6 with 6.8 alleles. The analysis of the distribution of genetic variation was (17.32% among population, while among individuals within populations was (28.55% and within individuals was high (54.12%. The standard diversity indices showed that population 4 was the more variable (mean He=0.837 followed by population 1 (mean He=0.728, population 3 (mean He=0.721, population 5 (mean He=0.705, population 2 (mean He=0.690, population 6 (mean He=0.586. Highly significant deviations from Hardy–Weinberg, exhibited all of the populations, mostly due to deficits of heterozygotes. Genotype frequencies at loci UNH 106 of population 5 and loci UNH 172 of population 6 were Hardy-Weinberg equilibrium (HWE. Conclusions. The results of this study, contribute to the genetic breeding program of Tilapia, conduced by the Research Center for Aquaculture. The Fst distance showed that the samples are differentiated genetically and it is possible to use at the beginning of the genetic program. However, it is recommended to introduce others individuals to the crossbreeding program.

  14. Gaussian process-based Bayesian nonparametric inference of population size trajectories from gene genealogies.

    Science.gov (United States)

    Palacios, Julia A; Minin, Vladimir N

    2013-03-01

    Changes in population size influence genetic diversity of the population and, as a result, leave a signature of these changes in individual genomes in the population. We are interested in the inverse problem of reconstructing past population dynamics from genomic data. We start with a standard framework based on the coalescent, a stochastic process that generates genealogies connecting randomly sampled individuals from the population of interest. These genealogies serve as a glue between the population demographic history and genomic sequences. It turns out that only the times of genealogical lineage coalescences contain information about population size dynamics. Viewing these coalescent times as a point process, estimating population size trajectories is equivalent to estimating a conditional intensity of this point process. Therefore, our inverse problem is similar to estimating an inhomogeneous Poisson process intensity function. We demonstrate how recent advances in Gaussian process-based nonparametric inference for Poisson processes can be extended to Bayesian nonparametric estimation of population size dynamics under the coalescent. We compare our Gaussian process (GP) approach to one of the state-of-the-art Gaussian Markov random field (GMRF) methods for estimating population trajectories. Using simulated data, we demonstrate that our method has better accuracy and precision. Next, we analyze two genealogies reconstructed from real sequences of hepatitis C and human Influenza A viruses. In both cases, we recover more believed aspects of the viral demographic histories than the GMRF approach. We also find that our GP method produces more reasonable uncertainty estimates than the GMRF method. Copyright © 2013, The International Biometric Society.

  15. Monitoring dolphins in an urban marine system: total and effective population size estimates of Indo-Pacific bottlenose dolphins in Moreton Bay, Australia.

    Directory of Open Access Journals (Sweden)

    Ina C Ansmann

    Full Text Available Moreton Bay, Queensland, Australia is an area of high biodiversity and conservation value and home to two sympatric sub-populations of Indo-Pacific bottlenose dolphins (Tursiops aduncus. These dolphins live in close proximity to major urban developments. Successful management requires information regarding their abundance. Here, we estimate total and effective population sizes of bottlenose dolphins in Moreton Bay using photo-identification and genetic data collected during boat-based surveys in 2008-2010. Abundance (N was estimated using open population mark-recapture models based on sighting histories of distinctive individuals. Effective population size (Ne was estimated using the linkage disequilibrium method based on nuclear genetic data at 20 microsatellite markers in skin samples, and corrected for bias caused by overlapping generations (Ne c. A total of 174 sightings of dolphin groups were recorded and 365 different individuals identified. Over the whole of Moreton Bay, a population size N of 554 ± 22.2 (SE (95% CI: 510-598 was estimated. The southern bay sub-population was small at an estimated N = 193 ± 6.4 (SE (95% CI: 181-207, while the North sub-population was more numerous, with 446 ± 56 (SE (95% CI: 336-556 individuals. The small estimated effective population size of the southern sub-population (Ne c = 56, 95% CI: 33-128 raises conservation concerns. A power analysis suggested that to reliably detect small (5% declines in size of this population would require substantial survey effort (>4 years of annual mark-recapture surveys at the precision levels achieved here. To ensure that ecological as well as genetic diversity within this population of bottlenose dolphins is preserved, we consider that North and South sub-populations should be treated as separate management units. Systematic surveys over smaller areas holding locally-adapted sub-populations are suggested as an alternative method for increasing ability to detect

  16. Molecular genetic diversity and genetic structure of Vietnamese indigenous pig populations

    DEFF Research Database (Denmark)

    Pham, L. D.; Do, Duy Ngoc; Nam, L. Q.

    2014-01-01

    The study characterized genetic diversity and genetic structure of five indigenous pig populations (Ha Lang, Muong Te, Mong Cai, Lung and Lung Pu), two wild pig populations (Vietnamese and Thai wild pigs) and an exotic pig breed (Yorkshire) using FAO/ISAG recommended 16 microsatellite markers...

  17. Sex-specific genetic diversity is shaped by cultural factors in Inner Asian human populations.

    Science.gov (United States)

    Marchi, Nina; Hegay, Tatyana; Mennecier, Philippe; Georges, Myriam; Laurent, Romain; Whitten, Mark; Endicott, Philipp; Aldashev, Almaz; Dorzhu, Choduraa; Nasyrova, Firuza; Chichlo, Boris; Ségurel, Laure; Heyer, Evelyne

    2017-04-01

    Sex-specific genetic structures have been previously documented worldwide in humans, even though causal factors have not always clearly been identified. In this study, we investigated the impact of ethnicity, geography and social organization on the sex-specific genetic structure in Inner Asia. Furthermore, we explored the process of ethnogenesis in multiple ethnic groups. We sampled DNA in Central and Northern Asia from 39 populations of Indo-Iranian and Turkic-Mongolic native speakers. We focused on genetic data of the Y chromosome and mitochondrial DNA. First, we compared the frequencies of haplogroups to South European and East Asian populations. Then, we investigated the genetic differentiation for eight Y-STRs and the HVS1 region, and tested for the effect of geography and ethnicity on such patterns. Finally, we reconstructed the male demographic history, inferred split times and effective population sizes of different ethnic groups. Based on the haplogroup data, we observed that the Indo-Iranian- and Turkic-Mongolic-speaking populations have distinct genetic backgrounds. However, each population showed consistent mtDNA and Y chromosome haplogroups patterns. As expected in patrilocal populations, we found that the Y-STRs were more structured than the HVS1. While ethnicity strongly influenced the genetic diversity on the Y chromosome, geography better explained that of the mtDNA. Furthermore, when looking at various ethnic groups, we systematically found a genetic split time older than historical records, suggesting a cultural rather than biological process of ethnogenesis. This study highlights that, in Inner Asia, specific cultural behaviors, especially patrilineality and patrilocality, leave a detectable signature on the sex-specific genetic structure. © 2017 Wiley Periodicals, Inc.

  18. A cat's tale: the impact of genetic restoration on Florida panther population dynamics and persistence.

    Science.gov (United States)

    Hostetler, Jeffrey A; Onorato, David P; Jansen, Deborah; Oli, Madan K

    2013-05-01

    substantially higher risk of extinction if the genetic restoration initiative had not been implemented. 6. Our results, along with those reporting increases in population size and improvements in biomedical correlates of inbreeding depression, provide strong evidence that genetic restoration substantially contributed to the observed increases in the Florida panther population. © 2012 The Authors. Journal of Animal Ecology © 2012 British Ecological Society.

  19. Low genetic diversity and minimal population substructure in the endangered Florida manatee: implications for conservation

    Science.gov (United States)

    Tucker, Kimberly Pause; Hunter, Margaret E.; Bonde, Robert K.; Austin, James D.; Clark, Ann Marie; Beck, Cathy A.; McGuire, Peter M.; Oli, Madan K.

    2012-01-01

    Species of management concern that have been affected by human activities typically are characterized by low genetic diversity, which can adversely affect their ability to adapt to environmental changes. We used 18 microsatellite markers to genotype 362 Florida manatees (Trichechus manatus latirostris), and investigated genetic diversity, population structure, and estimated genetically effective population size (Ne). The observed and expected heterozygosity and average number of alleles were 0.455 ± 0.04, 0.479 ± 0.04, and 4.77 ± 0.51, respectively. All measures of Florida manatee genetic diversity were less than averages reported for placental mammals, including fragmented or nonideal populations. Overall estimates of differentiation were low, though significantly greater than zero, and analysis of molecular variance revealed that over 95% of the total variance was among individuals within predefined management units or among individuals along the coastal subpopulations, with only minor portions of variance explained by between group variance. Although genetic issues, as inferred by neutral genetic markers, appear not to be critical at present, the Florida manatee continues to face demographic challenges due to anthropogenic activities and stochastic factors such as red tides, oil spills, and disease outbreaks; these can further reduce genetic diversity of the manatee population.

  20. Artificial barriers prevent genetic recovery of small isolated populations of a low-mobility freshwater fish.

    Science.gov (United States)

    Coleman, R A; Gauffre, B; Pavlova, A; Beheregaray, L B; Kearns, J; Lyon, J; Sasaki, M; Leblois, R; Sgro, C; Sunnucks, P

    2018-01-12

    Habitat loss and fragmentation often result in small, isolated populations vulnerable to environmental disturbance and loss of genetic diversity. Low genetic diversity can increase extinction risk of small populations by elevating inbreeding and inbreeding depression, and reducing adaptive potential. Due to their linear nature and extensive use by humans, freshwater ecosystems are especially vulnerable to habitat loss and fragmentation. Although the effects of fragmentation on genetic structure have been extensively studied in migratory fishes, they are less understood in low-mobility species. We estimated impacts of instream barriers on genetic structure and diversity of the low-mobility river blackfish (Gadopsis marmoratus) within five streams separated by weirs or dams constructed 45-120 years ago. We found evidence of small-scale (barriers, as expected for a fish with low mobility. Genetic diversity was lower above barriers in small streams only, regardless of barrier age. In particular, one isolated population showed evidence of a recent bottleneck and inbreeding. Differentiation above and below the barrier (F ST  = 0.13) was greatest in this stream, but in other streams did not differ from background levels. Spatially explicit simulations suggest that short-term barrier effects would not be detected with our data set unless effective population sizes were very small (barriers is reduced and requires more genetic markers compared to panmictic populations. We also demonstrate the importance of accounting for natural population genetic structure in fragmentation studies.

  1. Whole-Genome Resequencing of Experimental Populations Reveals Polygenic Basis of Egg-Size Variation in Drosophila melanogaster.

    Science.gov (United States)

    Jha, Aashish R; Miles, Cecelia M; Lippert, Nodia R; Brown, Christopher D; White, Kevin P; Kreitman, Martin

    2015-10-01

    Complete genome resequencing of populations holds great promise in deconstructing complex polygenic traits to elucidate molecular and developmental mechanisms of adaptation. Egg size is a classic adaptive trait in insects, birds, and other taxa, but its highly polygenic architecture has prevented high-resolution genetic analysis. We used replicated experimental evolution in Drosophila melanogaster and whole-genome sequencing to identify consistent signatures of polygenic egg-size adaptation. A generalized linear-mixed model revealed reproducible allele frequency differences between replicated experimental populations selected for large and small egg volumes at approximately 4,000 single nucleotide polymorphisms (SNPs). Several hundred distinct genomic regions contain clusters of these SNPs and have lower heterozygosity than the genomic background, consistent with selection acting on polymorphisms in these regions. These SNPs are also enriched among genes expressed in Drosophila ovaries and many of these genes have well-defined functions in Drosophila oogenesis. Additional genes regulating egg development, growth, and cell size show evidence of directional selection as genes regulating these biological processes are enriched for highly differentiated SNPs. Genetic crosses performed with a subset of candidate genes demonstrated that these genes influence egg size, at least in the large genetic background. These findings confirm the highly polygenic architecture of this adaptive trait, and suggest the involvement of many novel candidate genes in regulating egg size. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  2. Genetic diversity and population structure of 20 North European cattle breeds

    DEFF Research Database (Denmark)

    kantanen, J; Olsaker, Ingrid; Holm, Lars-Erik

    2000-01-01

    Blood samples were collected from 743 animals from 15 indigenous, 2 old imported, and 3 commercial North European cattle breeds. The samples were analyzed for 11 erythrocyte antigen systems, 8 proteins, and 10 microsatellites, and used to assess inter- and intrabreed genetic variation and genetic......, allelic diversity has been reduced in several breeds, which was explained by limited effective population sizes over the course of man-directed breed development and demographic bottlenecks of indigenous breeds. A tree showing genetic relationships between breeds was constructed from a matrix of random...... drift-based genetic distance estimates. The breeds were classified on the basis of the tree topology into four major breed groups, defined as Northern indigenous breeds, Southern breeds, Ayrshire and Friesian breeds, and Jersey. Grouping of Nordic breeds was supported by documented breed history...

  3. Population Genetic Structure of the Tropical Two-Wing Flyingfish (Exocoetus volitans.

    Directory of Open Access Journals (Sweden)

    Eric A Lewallen

    Full Text Available Delineating populations of pantropical marine fish is a difficult process, due to widespread geographic ranges and complex life history traits in most species. Exocoetus volitans, a species of two-winged flyingfish, is a good model for understanding large-scale patterns of epipelagic fish population structure because it has a circumtropical geographic range and completes its entire life cycle in the epipelagic zone. Buoyant pelagic eggs should dictate high local dispersal capacity in this species, although a brief larval phase, small body size, and short lifespan may limit the dispersal of individuals over large spatial scales. Based on these biological features, we hypothesized that E. volitans would exhibit statistically and biologically significant population structure defined by recognized oceanographic barriers. We tested this hypothesis by analyzing cytochrome b mtDNA sequence data (1106 bps from specimens collected in the Pacific, Atlantic and Indian oceans (n = 266. AMOVA, Bayesian, and coalescent analytical approaches were used to assess and interpret population-level genetic variability. A parsimony-based haplotype network did not reveal population subdivision among ocean basins, but AMOVA revealed limited, statistically significant population structure between the Pacific and Atlantic Oceans (ΦST = 0.035, p<0.001. A spatially-unbiased Bayesian approach identified two circumtropical population clusters north and south of the Equator (ΦST = 0.026, p<0.001, a previously unknown dispersal barrier for an epipelagic fish. Bayesian demographic modeling suggested the effective population size of this species increased by at least an order of magnitude ~150,000 years ago, to more than 1 billion individuals currently. Thus, high levels of genetic similarity observed in E. volitans can be explained by high rates of gene flow, a dramatic and recent population expansion, as well as extensive and consistent dispersal throughout the geographic

  4. Population Genetic Structure of the Tropical Two-Wing Flyingfish (Exocoetus volitans)

    Science.gov (United States)

    Lewallen, Eric A.; Bohonak, Andrew J.; Bonin, Carolina A.; van Wijnen, Andre J.; Pitman, Robert L.; Lovejoy, Nathan R.

    2016-01-01

    Delineating populations of pantropical marine fish is a difficult process, due to widespread geographic ranges and complex life history traits in most species. Exocoetus volitans, a species of two-winged flyingfish, is a good model for understanding large-scale patterns of epipelagic fish population structure because it has a circumtropical geographic range and completes its entire life cycle in the epipelagic zone. Buoyant pelagic eggs should dictate high local dispersal capacity in this species, although a brief larval phase, small body size, and short lifespan may limit the dispersal of individuals over large spatial scales. Based on these biological features, we hypothesized that E. volitans would exhibit statistically and biologically significant population structure defined by recognized oceanographic barriers. We tested this hypothesis by analyzing cytochrome b mtDNA sequence data (1106 bps) from specimens collected in the Pacific, Atlantic and Indian oceans (n = 266). AMOVA, Bayesian, and coalescent analytical approaches were used to assess and interpret population-level genetic variability. A parsimony-based haplotype network did not reveal population subdivision among ocean basins, but AMOVA revealed limited, statistically significant population structure between the Pacific and Atlantic Oceans (ΦST = 0.035, p<0.001). A spatially-unbiased Bayesian approach identified two circumtropical population clusters north and south of the Equator (ΦST = 0.026, p<0.001), a previously unknown dispersal barrier for an epipelagic fish. Bayesian demographic modeling suggested the effective population size of this species increased by at least an order of magnitude ~150,000 years ago, to more than 1 billion individuals currently. Thus, high levels of genetic similarity observed in E. volitans can be explained by high rates of gene flow, a dramatic and recent population expansion, as well as extensive and consistent dispersal throughout the geographic range of the

  5. Genetic approaches to understanding the population-level impact of wind energy development on migratory bats

    Energy Technology Data Exchange (ETDEWEB)

    Vonhof, Maarten J. [Western Michigan Univ., Kalamazoo MI (United States); Russell, Amy L. [Grand Valley State Univ. Allendale, MI (United States)

    2013-09-30

    Documented fatalities of bats at wind turbines have raised serious concerns about the future impacts of increased wind power development on populations of migratory bat species. Yet there is little data on bat population sizes and trends to provide context for understanding the consequences of mortality due to wind power development. Using a large dataset of both nuclear and mitochondrial DNA variation for eastern red bats, we demonstrated that: 1) this species forms a single, panmictic population across their range with no evidence for the historical use of divergent migratory pathways by any portion of the population; 2) the effective size of this population is in the hundreds of thousands to millions; and 3) for large populations, genetic diversity measures and at least one coalescent method are insensitive to even very high rates of population decline over long time scales and until population size has become very small. Our data provide important context for understanding the population-level impacts of wind power development on affected bat species.

  6. Biochemical genetic variation between four populations of ...

    African Journals Online (AJOL)

    system) to 0.093 in the Spekboom River population (Limpopo River system). The genetic distance, FST and NEM values, as well as pair-wise contingency c2 analyses indicate a lack of gene flow between populations, as expected for isolated fish. Evidence of foreign genetic material in one population was also observed.

  7. Restoration of coral populations in light of genetic diversity estimates

    Science.gov (United States)

    Shearer, T. L.; Porto, I.; Zubillaga, A. L.

    2009-09-01

    Due to the importance of preserving the genetic integrity of populations, strategies to restore damaged coral reefs should attempt to retain the allelic diversity of the disturbed population; however, genetic diversity estimates are not available for most coral populations. To provide a generalized estimate of genetic diversity (in terms of allelic richness) of scleractinian coral populations, the literature was surveyed for studies describing the genetic structure of coral populations using microsatellites. The mean number of alleles per locus across 72 surveyed scleractinian coral populations was 8.27 (±0.75 SE). In addition, population genetic datasets from four species ( Acropora palmata, Montastraea cavernosa, Montastraea faveolata and Pocillopora damicornis) were analyzed to assess the minimum number of donor colonies required to retain specific proportions of the genetic diversity of the population. Rarefaction analysis of the population genetic datasets indicated that using 10 donor colonies randomly sampled from the original population would retain >50% of the allelic diversity, while 35 colonies would retain >90% of the original diversity. In general, scleractinian coral populations are genetically diverse and restoration methods utilizing few clonal genotypes to re-populate a reef will diminish the genetic integrity of the population. Coral restoration strategies using 10-35 randomly selected local donor colonies will retain at least 50-90% of the genetic diversity of the original population.

  8. Species delimitation, genetic diversity and population historical dynamics of Cycas diannanensis (Cycadaceae occurring sympatrically in the Red River region of China

    Directory of Open Access Journals (Sweden)

    Liu eJian

    2015-09-01

    Full Text Available Delimitating species boundaries could be of critical importance when evaluating the species’ evolving process and providing guidelines for conservation genetics. Here, species delimitation was carried out on three endemic and endangered Cycas species with resembling morphology and overlapped distribution range along the Red River (Yuanjiang in China: Cycas diananensis Z. T. Guan et G. D. Tao, Cycas parvula S. L. Yang and Cycas multiovula D. Y. Wang. A total of 137 individuals from 15 populations were genotyped by using three chloroplastic (psbA-trnH, atpI-atpH and trnL-rps4 and two single copy nuclear (RPB1 and SmHP DNA sequences. Basing on the carefully morphological comparison and cladistic haplotype aggregation (CHA analysis, we propose all the populations as one species, with the rest two incorporated into C. diannanensis. Genetic diversity and structure analysis of the conflated C. diannanensis revealed this species possessed a relative lower genetic diversity than estimates of other Cycas species. The higher genetic diversity among populations and relative lower genetic diversity within populations, as well as obvious genetic differentiation among populations inferred from chloroplastic DNA (cpDNA suggested a recent genetic loss within this protected species. Additionally, a clear genetic structure of C. diannanensis corresponding with geography was detected based on cpDNA, dividing its population ranges into Yuanjiang-Nanhun basin and Ejia-Jiepai basin groups. Demographical history analyses based on combined cpDNA and one nuclear DNA (nDNA SmHP both showed the population size of C. diannanensis began to decrease in Quaternary glaciation with no subsequent expansion, while another nDNA RPB1 revealed a more recent sudden expansion after long-term population size contraction, suggesting its probable bottleneck events in history. Our findings offer grounded views for clarifying species boundaries of C. diannanensis when determining the

  9. Persistency of Prediction Accuracy and Genetic Gain in Synthetic Populations Under Recurrent Genomic Selection

    Directory of Open Access Journals (Sweden)

    Dominik Müller

    2017-03-01

    Full Text Available Recurrent selection (RS has been used in plant breeding to successively improve synthetic and other multiparental populations. Synthetics are generated from a limited number of parents ( Np , but little is known about how Np affects genomic selection (GS in RS, especially the persistency of prediction accuracy (rg , g ^ and genetic gain. Synthetics were simulated by intermating Np= 2–32 parent lines from an ancestral population with short- or long-range linkage disequilibrium (LDA and subjected to multiple cycles of GS. We determined rg , g ^ and genetic gain across 30 cycles for different training set (TS sizes, marker densities, and generations of recombination before model training. Contributions to rg , g ^ and genetic gain from pedigree relationships, as well as from cosegregation and LDA between QTL and markers, were analyzed via four scenarios differing in (i the relatedness between TS and selection candidates and (ii whether selection was based on markers or pedigree records. Persistency of rg , g ^ was high for small Np , where predominantly cosegregation contributed to rg , g ^ , but also for large Np , where LDA replaced cosegregation as the dominant information source. Together with increasing genetic variance, this compensation resulted in relatively constant long- and short-term genetic gain for increasing Np > 4, given long-range LDA in the ancestral population. Although our scenarios suggest that information from pedigree relationships contributed to rg , g ^ for only very few generations in GS, we expect a longer contribution than in pedigree BLUP, because capturing Mendelian sampling by markers reduces selective pressure on pedigree relationships. Larger TS size (NTS and higher marker density improved persistency of rg , g ^ and hence genetic gain, but additional recombinations could not increase genetic gain.

  10. A rangewide population genetic study of trumpeter swans

    Science.gov (United States)

    Oyler-McCance, S.J.; Ransler, F.A.; Berkman, L.K.; Quinn, T.W.

    2007-01-01

    For management purposes, the range of naturally occurring trumpeter swans (Cygnus buccinator) has been divided into two populations, the Pacific Coast Population (PP) and the Rocky Mountain Population (RMP). Little is known about the distribution of genetic variation across the species' range despite increasing pressure to make difficult management decisions regarding the two populations and flocks within them. To address this issue, we used rapidly evolving genetic markers (mitochondrial DNA sequence and 17 nuclear microsatellite loci) to elucidate the underlying genetic structure of the species. Data from both markers revealed a significant difference between the PP and RMP with the Yukon Territory as a likely area of overlap. Additionally, we found that the two populations have somewhat similar levels of genetic diversity (PP is slightly higher) suggesting that the PP underwent a population bottleneck similar to a well-documented one in the RMP. Both genetic structure and diversity results reveal that the Tri-State flock, a suspected unique, non-migratory flock, is not genetically different from the Canadian flock of the RMP and need not be treated as a unique population from a genetic standpoint. Finally, trumpeter swans appear to have much lower mitochondrial DNA variability than other waterfowl studied thus far which may suggest a previous, species-wide bottleneck. ?? 2007 Springer Science+Business Media, Inc.

  11. Population genetics without intraspecific data

    DEFF Research Database (Denmark)

    Thorne, Jeffrey L; Choi, Sang Chul; Yu, Jiaye

    2007-01-01

    A central goal of computational biology is the prediction of phenotype from DNA and protein sequence data. Recent models of sequence change use in silico prediction systems to incorporate the effects of phenotype on evolutionary rates. These models have been designed for analyzing sequence data...... populations, and parameters of interspecific models should have population genetic interpretations. We show, with two examples, how population genetic interpretations can be assigned to evolutionary models. The first example considers the impact of RNA secondary structure on sequence change, and the second...... reflects the tendency for protein tertiary structure to influence nonsynonymous substitution rates. We argue that statistical fit to data should not be the sole criterion for assessing models of sequence change. A good interspecific model should also yield a clear and biologically plausible population...

  12. Lack of Population Genetic Structuring in Ocelots (Leopardus pardalis in a Fragmented Landscape

    Directory of Open Access Journals (Sweden)

    Marina G. Figueiredo

    2015-07-01

    Full Text Available Habitat fragmentation can promote patches of small and isolated populations, gene flow disruption between those populations, and reduction of local and total genetic variation. As a consequence, these small populations may go extinct in the long-term. The ocelot (Leopardus pardalis, originally distributed from Texas to southern Brazil and northern Argentina, has been impacted by habitat fragmentation throughout much of its range. To test whether habitat fragmentation has already induced genetic differentiation in an area where this process has been documented for a larger felid (jaguars, we analyzed molecular variation in ocelots inhabiting two Atlantic Forest fragments, Morro do Diabo (MD and Iguaçu Region (IR. Analyses using nine microsatellites revealed mean observed and expected heterozygosity of 0.68 and 0.70, respectively. The MD sampled population showed evidence of a genetic bottleneck under two mutational models (TPM = 0.03711 and SMM = 0.04883. Estimates of genetic structure (FST = 0.027; best fit of k = 1 with STRUCTURE revealed no meaningful differentiation between these populations. Thus, our results indicate that the ocelot populations sampled in these fragments are still not significantly different genetically, a pattern that strongly contrasts with that previously observed in jaguars for the same comparisons. This observation is likely due to a combination of two factors: (i larger effective population size of ocelots (relative to jaguars in each fragment, implying a slower effect of drift-induced differentiation; and (ii potentially some remaining permeability of the anthropogenic matrix for ocelots, as opposed to the observed lack of permeability for jaguars. The persistence of ocelot gene flow between these areas must be prioritized in long-term conservation planning on behalf of these felids.

  13. Genetic Variation and Population Structure in Jamunapari Goats Using Microsatellites, Mitochondrial DNA, and Milk Protein Genes

    Science.gov (United States)

    Rout, P. K.; Thangraj, K.; Mandal, A.; Roy, R.

    2012-01-01

    Jamunapari, a dairy goat breed of India, has been gradually declining in numbers in its home tract over the years. We have analysed genetic variation and population history in Jamunapari goats based on 17 microsatellite loci, 2 milk protein loci, mitochondrial hypervariable region I (HVRI) sequencing, and three Y-chromosomal gene sequencing. We used the mitochondrial DNA (mtDNA) mismatch distribution, microsatellite data, and bottleneck tests to infer the population history and demography. The mean number of alleles per locus was 9.0 indicating that the allelic variation was high in all the loci and the mean heterozygosity was 0.769 at nuclear loci. Although the population size is smaller than 8,000 individuals, the amount of variability both in terms of allelic richness and gene diversity was high in all the microsatellite loci except ILST 005. The gene diversity and effective number of alleles at milk protein loci were higher than the 10 other Indian goat breeds that they were compared to. Mismatch analysis was carried out and the analysis revealed that the population curve was unimodal indicating the expansion of population. The genetic diversity of Y-chromosome genes was low in the present study. The observed mean M ratio in the population was above the critical significance value (Mc) and close to one indicating that it has maintained a slowly changing population size. The mode-shift test did not detect any distortion of allele frequency and the heterozygosity excess method showed that there was no significant departure from mutation-drift equilibrium detected in the population. However, the effects of genetic bottlenecks were observed in some loci due to decreased heterozygosity and lower level of M ratio. There were two observed genetic subdivisions in the population supporting the observations of farmers in different areas. This base line information on genetic diversity, bottleneck analysis, and mismatch analysis was obtained to assist the conservation

  14. Genetic diversity and population history of a critically endangered primate, the northern muriqui (Brachyteles hypoxanthus).

    Science.gov (United States)

    Chaves, Paulo B; Alvarenga, Clara S; Possamai, Carla de B; Dias, Luiz G; Boubli, Jean P; Strier, Karen B; Mendes, Sérgio L; Fagundes, Valéria

    2011-01-01

    Social, ecological, and historical processes affect the genetic structure of primate populations, and therefore have key implications for the conservation of endangered species. The northern muriqui (Brachyteles hypoxanthus) is a critically endangered New World monkey and a flagship species for the conservation of the Atlantic Forest hotspot. Yet, like other neotropical primates, little is known about its population history and the genetic structure of remnant populations. We analyzed the mitochondrial DNA control region of 152 northern muriquis, or 17.6% of the 864 northern muriquis from 8 of the 12 known extant populations and found no evidence of phylogeographic partitions or past population shrinkage/expansion. Bayesian and classic analyses show that this finding may be attributed to the joint contribution of female-biased dispersal, demographic stability, and a relatively large historic population size. Past population stability is consistent with a central Atlantic Forest Pleistocene refuge. In addition, the best scenario supported by an Approximate Bayesian Computation analysis, significant fixation indices (Φ(ST) = 0.49, Φ(CT) = 0.24), and population-specific haplotypes, coupled with the extirpation of intermediate populations, are indicative of a recent geographic structuring of genetic diversity during the Holocene. Genetic diversity is higher in populations living in larger areas (>2,000 hectares), but it is remarkably low in the species overall (θ = 0.018). Three populations occurring in protected reserves and one fragmented population inhabiting private lands harbor 22 out of 23 haplotypes, most of which are population-exclusive, and therefore represent patchy repositories of the species' genetic diversity. We suggest that these populations be treated as discrete units for conservation management purposes.

  15. Genetic diversity and population history of a critically endangered primate, the northern muriqui (Brachyteles hypoxanthus.

    Directory of Open Access Journals (Sweden)

    Paulo B Chaves

    Full Text Available Social, ecological, and historical processes affect the genetic structure of primate populations, and therefore have key implications for the conservation of endangered species. The northern muriqui (Brachyteles hypoxanthus is a critically endangered New World monkey and a flagship species for the conservation of the Atlantic Forest hotspot. Yet, like other neotropical primates, little is known about its population history and the genetic structure of remnant populations. We analyzed the mitochondrial DNA control region of 152 northern muriquis, or 17.6% of the 864 northern muriquis from 8 of the 12 known extant populations and found no evidence of phylogeographic partitions or past population shrinkage/expansion. Bayesian and classic analyses show that this finding may be attributed to the joint contribution of female-biased dispersal, demographic stability, and a relatively large historic population size. Past population stability is consistent with a central Atlantic Forest Pleistocene refuge. In addition, the best scenario supported by an Approximate Bayesian Computation analysis, significant fixation indices (Φ(ST = 0.49, Φ(CT = 0.24, and population-specific haplotypes, coupled with the extirpation of intermediate populations, are indicative of a recent geographic structuring of genetic diversity during the Holocene. Genetic diversity is higher in populations living in larger areas (>2,000 hectares, but it is remarkably low in the species overall (θ = 0.018. Three populations occurring in protected reserves and one fragmented population inhabiting private lands harbor 22 out of 23 haplotypes, most of which are population-exclusive, and therefore represent patchy repositories of the species' genetic diversity. We suggest that these populations be treated as discrete units for conservation management purposes.

  16. Population genetic structure in natural and reintroduced beaver (Castor fiber populations in Central Europe

    Directory of Open Access Journals (Sweden)

    Kautenburger, R.

    2008-12-01

    Full Text Available Castor fiber Linnaeus, 1758 is the only indigenous species of the genus Castor in Europe and Asia. Due to extensive hunting until the beginning of the 20th century, the distribution of the formerly widespread Eurasian beaver was dramatically reduced. Only a few populations remained and these were in isolated locations, such as the region of the German Elbe River. The loss of genetic diversity in small or captive populations throughgenetic drift and inbreeding is a severe conservation problem. However, the reintroduction of beaver populations from several regions in Europe has shown high viability and populations today are growing fast. In the present study we analysed the population genetic structure of a natural and two reintroduced beaver populations in Germany and Austria. Furthermore, we studied the genetic differentiation between two beaver species, C. fiber and the American beaver (C. canadensis, using RAPD (Random Amplified Polymorphic DNA as a genetic marker. The reintroduced beaver populations of different origins and the autochthonous population of the Elbe River showed a similar low genetic heterogeneity. There was an overall high genetic similarity in the species C. fiber, and no evidence was found for a clear subspecific structure in the populations studied.

  17. Genetic variation between ecotypic populations of Chloris ...

    African Journals Online (AJOL)

    Genetic variation between ecotypic populations of Chloris roxburghiana grass detected through RAPD analysis. ... frequency indicated that the four populations of C. roxburghiana were genetically distinct, probably as a result of variation in soil fertility, geographical isolation and socio-ecological history of the study sites.

  18. AMOVA-based clustering of population genetic data

    NARCIS (Netherlands)

    Meirmans, P.G.

    2012-01-01

    Determining the genetic structure of populations is becoming an increasingly important aspect of genetic studies. One of the most frequently used methods is the calculation of F-statistics using an Analysis of Molecular Variance (AMOVA). However, this has the drawback that the population hierarchy

  19. Size-defined morphotypes in Zoanthus (Hexacorallia: Zoantharia) populations on shores in KwaZulu-Natal, South Africa.

    Science.gov (United States)

    Ryland, John S

    2015-07-17

    Colonial zoanthids are a conspicuous feature of the subtropical rocky intertidal in KwaZulu-Natal but those of the genus Zoanthus have a confused taxonomy with 10, difficult to separate, nominal species described from the region. This paper presents an analysis of polyp size, measured as mean diameter determined photographically from the number of polyps occupying an area of 6 × 4 cm(2). The results, based on diameter frequency of 127 samples from five shores, indicate three populations (morphotypes) with means of 4.3 (SD ±0.53), 5.7 (SD ±0.70) and 8.4 (SD ±0.58) mm occurring in the approximate abundance ratios of 10:5:1, possibly corresponding to Zoanthus sansibaricus, Z. natalensis and Z. lawrencei. The underlying assumptions with regard to population structure (the number, size and degree of fragmentation of clones) and the normality of data are discussed, as are trans-oceanic larval dispersal, recruitment, and genetic connectivity. The essential, traditional species description in Zoanthus, using internal morphology, on its own may be an inadequate discriminator of species. The status of the few possibly valid species is discussed in relation to the present results and recent studies based on the application of molecular genetics. Thorough studies of the population structure (genets and ramets) and a taxonomic approach based on the combined use of morphology, genetic methods and statistically robust, quantitative morphometrics are proposed as a potential way forward.

  20. Reconstructing eight decades of genetic variation in an isolated Danish population of the large blue butterfly Maculinea arion

    Directory of Open Access Journals (Sweden)

    Boomsma Jacobus J

    2011-07-01

    Full Text Available Abstract Background Fragmentation of terrestrial ecosystems has had detrimental effects on metapopulations of habitat specialists. Maculinea butterflies have been particularly affected because of their specialized lifecycles, requiring both specific food-plants and host-ants. However, the interaction between dispersal, effective population size, and long-term genetic erosion of these endangered butterflies remains unknown. Using non-destructive sampling, we investigated the genetic diversity of the last extant population of M. arion in Denmark, which experienced critically low numbers in the 1980s. Results Using nine microsatellite markers, we show that the population is genetically impoverished compared to nearby populations in Sweden, but less so than monitoring programs suggested. Ten additional short repeat microsatellites were used to reconstruct changes in genetic diversity and population structure over the last 77 years from museum specimens. We also tested amplification efficiency in such historical samples as a function of repeat length and sample age. Low population numbers in the 1980s did not affect genetic diversity, but considerable turnover of alleles has characterized this population throughout the time-span of our analysis. Conclusions Our results suggest that M. arion is less sensitive to genetic erosion via population bottlenecks than previously thought, and that managing clusters of high quality habitat may be key for long-term conservation.

  1. Applications of random forest feature selection for fine-scale genetic population assignment.

    Science.gov (United States)

    Sylvester, Emma V A; Bentzen, Paul; Bradbury, Ian R; Clément, Marie; Pearce, Jon; Horne, John; Beiko, Robert G

    2018-02-01

    Genetic population assignment used to inform wildlife management and conservation efforts requires panels of highly informative genetic markers and sensitive assignment tests. We explored the utility of machine-learning algorithms (random forest, regularized random forest and guided regularized random forest) compared with F ST ranking for selection of single nucleotide polymorphisms (SNP) for fine-scale population assignment. We applied these methods to an unpublished SNP data set for Atlantic salmon ( Salmo salar ) and a published SNP data set for Alaskan Chinook salmon ( Oncorhynchus tshawytscha ). In each species, we identified the minimum panel size required to obtain a self-assignment accuracy of at least 90% using each method to create panels of 50-700 markers Panels of SNPs identified using random forest-based methods performed up to 7.8 and 11.2 percentage points better than F ST -selected panels of similar size for the Atlantic salmon and Chinook salmon data, respectively. Self-assignment accuracy ≥90% was obtained with panels of 670 and 384 SNPs for each data set, respectively, a level of accuracy never reached for these species using F ST -selected panels. Our results demonstrate a role for machine-learning approaches in marker selection across large genomic data sets to improve assignment for management and conservation of exploited populations.

  2. Assessing population genetic structure via the maximisation of genetic distance

    Directory of Open Access Journals (Sweden)

    Toro Miguel A

    2009-11-01

    Full Text Available Abstract Background The inference of the hidden structure of a population is an essential issue in population genetics. Recently, several methods have been proposed to infer population structure in population genetics. Methods In this study, a new method to infer the number of clusters and to assign individuals to the inferred populations is proposed. This approach does not make any assumption on Hardy-Weinberg and linkage equilibrium. The implemented criterion is the maximisation (via a simulated annealing algorithm of the averaged genetic distance between a predefined number of clusters. The performance of this method is compared with two Bayesian approaches: STRUCTURE and BAPS, using simulated data and also a real human data set. Results The simulations show that with a reduced number of markers, BAPS overestimates the number of clusters and presents a reduced proportion of correct groupings. The accuracy of the new method is approximately the same as for STRUCTURE. Also, in Hardy-Weinberg and linkage disequilibrium cases, BAPS performs incorrectly. In these situations, STRUCTURE and the new method show an equivalent behaviour with respect to the number of inferred clusters, although the proportion of correct groupings is slightly better with the new method. Re-establishing equilibrium with the randomisation procedures improves the precision of the Bayesian approaches. All methods have a good precision for FST ≥ 0.03, but only STRUCTURE estimates the correct number of clusters for FST as low as 0.01. In situations with a high number of clusters or a more complex population structure, MGD performs better than STRUCTURE and BAPS. The results for a human data set analysed with the new method are congruent with the geographical regions previously found. Conclusion This new method used to infer the hidden structure in a population, based on the maximisation of the genetic distance and not taking into consideration any assumption about Hardy

  3. Population structure and genetic diversity of native and invasive populations of Solanum rostratum (Solanaceae.

    Directory of Open Access Journals (Sweden)

    Jiali Zhao

    Full Text Available We investigate native and introduced populations of Solanum rostratum, an annual, self-compatible plant that has been introduced around the globe. This study is the first to compare the genetic diversity of Solanum rostratum between native and introduced populations. We aim to (1 determine the level of genetic diversity across the studied regions; (2 explore the likely origins of invasive populations in China; and (3 investigate whether there is the evidence of multiple introductions into China.We genotyped 329 individuals at 10 microsatellite loci to determine the levels of genetic diversity and to investigate population structure of native and introduced populations of S. rostratum. We studied five populations in each of three regions across two continents: Mexico, the U.S.A. and China.We found the highest genetic diversity among Mexican populations of S. rostratum. Genetic diversity was significantly lower in Chinese and U.S.A. populations, but we found no regional difference in inbreeding coefficients (F IS or population differentiation (F ST. Population structure analyses indicate that Chinese and U.S.A. populations are more closely related to each other than to sampled Mexican populations, revealing that introduced populations in China share an origin with the sampled U.S.A. populations. The distinctiveness between some introduced populations indicates multiple introductions of S. rostratum into China.

  4. Population genetic structure in wild and aquaculture populations of Hemibarbus maculates inferred from microsatellites markers

    Directory of Open Access Journals (Sweden)

    Linlin Li

    2017-03-01

    Full Text Available The objective of this study was to investigate 4 aquaculture populations Shanghai (SH, Hangzhou (HZ, Kaihua (KH and Xianju (XJ and one wild population Yingshan (YS of spotted barbell (Hemibarbus maculates to assess their genetic diversity level and investigate the genetic structure of the populations. The dendrogram and STRUCTURE revealed that the populations XJ, KH, and HZ jointly formed one cluster, to which the populations SH and YS were sequentially adhered. The genetic diversity of the cultured populations maintained better, possible due to favourable hatchery conditions that decreased the effect of environmental selection present in wild populations. The results of the present study will contribute to the management of spotted barbell genetic resources, but also demonstrates how the genetic diversity of freshwater species is vulnerable to human activity.

  5. Understanding and estimating effective population size for practical application in marine species management.

    Science.gov (United States)

    Hare, Matthew P; Nunney, Leonard; Schwartz, Michael K; Ruzzante, Daniel E; Burford, Martha; Waples, Robin S; Ruegg, Kristen; Palstra, Friso

    2011-06-01

    Effective population size (N(e)) determines the strength of genetic drift in a population and has long been recognized as an important parameter for evaluating conservation status and threats to genetic health of populations. Specifically, an estimate of N(e) is crucial to management because it integrates genetic effects with the life history of the species, allowing for predictions of a population's current and future viability. Nevertheless, compared with ecological and demographic parameters, N(e) has had limited influence on species management, beyond its application in very small populations. Recent developments have substantially improved N(e) estimation; however, some obstacles remain for the practical application of N(e) estimates. For example, the need to define the spatial and temporal scale of measurement makes the concept complex and sometimes difficult to interpret. We reviewed approaches to estimation of N(e) over both long-term and contemporary time frames, clarifying their interpretations with respect to local populations and the global metapopulation. We describe multiple experimental factors affecting robustness of contemporary N(e) estimates and suggest that different sampling designs can be combined to compare largely independent measures of N(e) for improved confidence in the result. Large populations with moderate gene flow pose the greatest challenges to robust estimation of contemporary N(e) and require careful consideration of sampling and analysis to minimize estimator bias. We emphasize the practical utility of estimating N(e) by highlighting its relevance to the adaptive potential of a population and describing applications in management of marine populations, where the focus is not always on critically endangered populations. Two cases discussed include the mechanisms generating N(e) estimates many orders of magnitude lower than census N in harvested marine fishes and the predicted reduction in N(e) from hatchery-based population

  6. Higher fine-scale genetic structure in peripheral than in core populations of a long-lived and mixed-mating conifer--eastern white cedar (Thuja occidentalis L.).

    Science.gov (United States)

    Pandey, Madhav; Rajora, Om P

    2012-04-05

    Fine-scale or spatial genetic structure (SGS) is one of the key genetic characteristics of plant populations. Several evolutionary and ecological processes and population characteristics influence the level of SGS within plant populations. Higher fine-scale genetic structure may be expected in peripheral than core populations of long-lived forest trees, owing to the differences in the magnitude of operating evolutionary and ecological forces such as gene flow, genetic drift, effective population size and founder effects. We addressed this question using eastern white cedar (Thuja occidentalis) as a model species for declining to endangered long-lived tree species with mixed-mating system. We determined the SGS in two core and two peripheral populations of eastern white cedar from its Maritime Canadian eastern range using six nuclear microsatellite DNA markers. Significant SGS ranging from 15 m to 75 m distance classes was observed in the four studied populations. An analysis of combined four populations revealed significant positive SGS up to the 45 m distance class. The mean positive significant SGS observed in the peripheral populations was up to six times (up to 90 m) of that observed in the core populations (15 m). Spatial autocorrelation coefficients and correlograms of single and sub-sets of populations were statistically significant. The extent of within-population SGS was significantly negatively correlated with all genetic diversity parameters. Significant heterogeneity of within-population SGS was observed for 0-15 m and 61-90 m between core and peripheral populations. Average Sp, and gene flow distances were higher in peripheral (Sp = 0.023, σg = 135 m) than in core (Sp = 0.014, σg = 109 m) populations. However, the mean neighborhood size was higher in the core (Nb = 82) than in the peripheral (Nb = 48) populations. Eastern white cedar populations have significant fine-scale genetic structure at short distances. Peripheral populations have several

  7. Genetic integration of molar cusp size variation in baboons.

    Science.gov (United States)

    Koh, Christina; Bates, Elizabeth; Broughton, Elizabeth; Do, Nicholas T; Fletcher, Zachary; Mahaney, Michael C; Hlusko, Leslea J

    2010-06-01

    Many studies of primate diversity and evolution rely on dental morphology for insight into diet, behavior, and phylogenetic relationships. Consequently, variation in molar cusp size has increasingly become a phenotype of interest. In 2007 we published a quantitative genetic analysis of mandibular molar cusp size variation in baboons. Those results provided more questions than answers, as the pattern of genetic integration did not fit predictions from odontogenesis. To follow up, we expanded our study to include data from the maxillary molar cusps. Here we report on these later analyses, as well as inter-arch comparisons with the mandibular data. We analyzed variation in two-dimensional maxillary molar cusp size using data collected from a captive pedigreed breeding colony of baboons, Papio hamadryas, housed at the Southwest National Primate Research Center. These analyses show that variation in maxillary molar cusp size is heritable and sexually dimorphic. We also estimated additive genetic correlations between cusps on the same crown, homologous cusps along the tooth row, and maxillary and mandibular cusps. The pattern for maxillary molars yields genetic correlations of one between the paracone-metacone and protocone-hypocone. Bivariate analyses of cuspal homologues on adjacent teeth yield correlations that are high or not significantly different from one. Between dental arcades, the nonoccluding cusps consistently yield high genetic correlations, especially the metaconid-paracone and metaconid-metacone. This pattern of genetic correlation does not immediately accord with the pattern of development and/or calcification, however these results do follow predictions that can be made from the evolutionary history of the tribosphenic molar. Copyright 2009 Wiley-Liss, Inc.

  8. High mutation rates explain low population genetic divergence at copy-number-variable loci in Homo sapiens.

    Science.gov (United States)

    Hu, Xin-Sheng; Yeh, Francis C; Hu, Yang; Deng, Li-Ting; Ennos, Richard A; Chen, Xiaoyang

    2017-02-22

    Copy-number-variable (CNV) loci differ from single nucleotide polymorphic (SNP) sites in size, mutation rate, and mechanisms of maintenance in natural populations. It is therefore hypothesized that population genetic divergence at CNV loci will differ from that found at SNP sites. Here, we test this hypothesis by analysing 856 CNV loci from the genomes of 1184 healthy individuals from 11 HapMap populations with a wide range of ancestry. The results show that population genetic divergence at the CNV loci is generally more than three times lower than at genome-wide SNP sites. Populations generally exhibit very small genetic divergence (G st  = 0.05 ± 0.049). The smallest divergence is among African populations (G st  = 0.0081 ± 0.0025), with increased divergence among non-African populations (G st  = 0.0217 ± 0.0109) and then among African and non-African populations (G st  = 0.0324 ± 0.0064). Genetic diversity is high in African populations (~0.13), low in Asian populations (~0.11), and intermediate in the remaining 11 populations. Few significant linkage disequilibria (LDs) occur between the genome-wide CNV loci. Patterns of gametic and zygotic LDs indicate the absence of epistasis among CNV loci. Mutation rate is about twice as large as the migration rate in the non-African populations, suggesting that the high mutation rates play dominant roles in producing the low population genetic divergence at CNV loci.

  9. Gene flow and effective population sizes of the butterfly Maculinea alcon in a highly fragmented, anthropogenic landscape

    DEFF Research Database (Denmark)

    Vanden Broeck, An; Maes, Dirk; Kelager, Andreas

    2017-01-01

    fragmentation as they occupy narrow niches or restricted habitat ranges. Here, we assess contemporary interpopulation connectedness of the threatened, myrmecophilous butterfly,Maculinea alcon, in a highly fragmented landscape.Weinferred dispersal, effective population sizes, genetic diversity and structure...

  10. An Artificial Immune System with Feedback Mechanisms for Effective Handling of Population Size

    Science.gov (United States)

    Gao, Shangce; Wang, Rong-Long; Ishii, Masahiro; Tang, Zheng

    This paper represents a feedback artificial immune system (FAIS). Inspired by the feedback mechanisms in the biological immune system, the proposed algorithm effectively manipulates the population size by increasing and decreasing B cells according to the diversity of the current population. Two kinds of assessments are used to evaluate the diversity aiming to capture the characteristics of the problem on hand. Furthermore, the processing of adding and declining the number of population is designed. The validity of the proposed algorithm is tested for several traveling salesman benchmark problems. Simulation results demonstrate the efficiency of the proposed algorithm when compared with the traditional genetic algorithm and an improved clonal selection algorithm.

  11. Long-term effective population sizes, temporal stability of genetic composition and potential for local adaptation in anadromous brown trout ( Salmo trutta ) populations

    DEFF Research Database (Denmark)

    Hansen, Michael Møller; Ruzzante, D.E.; Eg Nielsen, Einar

    2002-01-01

    temporal samples from the same populations than among samples from different populations. Estimates of N-e, using a likelihood-based implementation of the temporal method, revealed N-e greater than or equal to 500 in two of three populations for which we have historical data. A third population in a small...... (3 km) river showed Ne greater than or equal to 300. Assuming a stepping-stone model of gene flow we considered the relative roles of gene flow, random genetic drift and selection to assess the possibilities for local adaptation. The requirements for local adaptation were fulfilled, but only...... adaptations resulting from strong selection were expected to occur at the level of individual populations. Adaptations resulting from weak selection were more likely to occur on a regional basis, i.e. encompassing several populations. N-e appears to have declined recently in at least one of the studied...

  12. Comparative Analysis of the Pattern of Population Genetic Diversity in Three Indo-West Pacific Rhizophora Mangrove Species.

    Science.gov (United States)

    Yan, Yu-Bin; Duke, Norm C; Sun, Mei

    2016-01-01

    Rhizophora species are the most widely distributed mangrove trees in the Indo-West Pacific (IWP) region. Comparative studies of these species with shared life history traits can help identify evolutionary factors that have played most important roles in determining genetic diversity within and between populations in ocean-current dispersed mangrove tree species. We sampled 935 individuals from 54 natural populations for genotyping with 13 microsatellite markers to investigate the level of genetic variation, population structure, and gene flow on a broad geographic scale in Rhizophora apiculata, Rhizophora mucronata , and Rhizophora stylosa across the IWP region. In contrast to the pattern expected of long-lived woody plants with predominant wind-pollination, water-dispersed seeds and wide geographic range, genetic variation within populations was generally low in all the three species, especially in those peripheral populations from geographic range limits. Although the large water-buoyant propagules of Rhizophora have capacity for long distance dispersal, such events might be rare in reality, as reflected by the low level of gene flow and high genetic differentiation between most of population pairs within each species. Phylogeographic separation of Australian and Pacific island populations from SE Asian lineages previously revealed with DNA sequence data was still detectable in R. apiculata based on genetic distances, but this pattern of disjunction was not always evident in R. mucronata and R. stylosa , suggesting that fast-evolving molecular markers could be more suitable for detecting contemporary genetic structure but not deep evolutionary divergence caused by historical vicariance. Given that mangrove species generally have small effective population sizes, we conclude that genetic drift coupled with limited gene flow have played a dominant role in producing the current pattern of population genetic diversity in the IWP Rhizophora species, overshadowing the

  13. Using non-invasively collected genetic data to estimate density and population size of tigers in the Bangladesh Sundarbans

    Directory of Open Access Journals (Sweden)

    M. Abdul Aziz

    2017-10-01

    Full Text Available Population density is a key parameter to monitor endangered carnivores in the wild. The photographic capture-recapture method has been widely used for decades to monitor tigers, Panthera tigris, however the application of this method in the Sundarbans tiger landscape is challenging due to logistical difficulties. Therefore, we carried out molecular analyses of DNA contained in non-invasively collected genetic samples to assess the tiger population in the Bangladesh Sundarbans within a spatially explicit capture-recapture (SECR framework. By surveying four representative sample areas totalling 1994 km2 of the Bangladesh Sundarbans, we collected 440 suspected tiger scat and hair samples. Genetic screening of these samples provided 233 authenticated tiger samples, which we attempted to amplify at 10 highly polymorphic microsatellite loci. Of these, 105 samples were successfully amplified, representing 45 unique genotype profiles. The capture-recapture analyses of these unique genotypes within the SECR model provided a density estimate of 2.85 ± SE 0.44 tigers/100 km2 (95% CI: 1.99–3.71 tigers/100 km2 for the area sampled, and an estimate of 121 tigers (95% CI: 84–158 tigers for the total area of the Bangladesh Sundarbans. We demonstrate that this non-invasive genetic surveillance can be an additional approach for monitoring tiger populations in a landscape where camera-trapping is challenging.

  14. Philosophy of race meets population genetics.

    Science.gov (United States)

    Spencer, Quayshawn

    2015-08-01

    In this paper, I respond to four common semantic and metaphysical objections that philosophers of race have launched at scholars who interpret recent human genetic clustering results in population genetics as evidence for biological racial realism. I call these objections 'the discreteness objection', 'the visibility objection', 'the very important objection', and 'the objectively real objection.' After motivating each objection, I show that each one stems from implausible philosophical assumptions about the relevant meaning of 'race' or the nature of biological racial realism. In order to be constructive, I end by offering some advice for how we can productively critique attempts to defend biological racial realism based on recent human genetic clustering results. I also offer a clarification of the relevant human-population genetic research. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Genetic structure in contemporary south Tyrolean isolated populations revealed by analysis of Y-chromosome, mtDNA, and Alu polymorphisms.

    Science.gov (United States)

    Pichler, Irene; Mueller, Jakob C; Stefanov, Stefan A; De Grandi, Alessandro; Volpato, Claudia Beu; Pinggera, Gerd K; Mayr, Agnes; Ogriseg, Martin; Ploner, Franz; Meitinger, Thomas; Pramstaller, Peter P

    2006-08-01

    Most of the inhabitants of South Tyrol in the eastern Italian Alps can be considered isolated populations because of their physical separation by mountain barriers and their sociocultural heritage. We analyzed the genetic structure of South Tyrolean populations using three types of genetic markers: Y-chromosome, mitochondrial DNA (mtDNA), and autosomal Alu markers. Using random samples taken from the populations of Val Venosta, Val Pusteria, Val Isarco, Val Badia, and Val Gardena, we calculated genetic diversity within and among the populations. Microsatellite diversity and unique event polymorphism diversity (on the Y chromosome) were substantially lower in the Ladin-speaking population of Val Badia compared to the neighboring German-speaking populations. In contrast, the genetic diversity of mtDNA haplotypes was lowest for the upper Val Venosta and Val Pusteria. These data suggest a low effective population size, or little admixture, for the gene pool of the Ladin-speaking population from Val Badia. Interestingly, this is more pronounced for Ladin males than for Ladin females. For the pattern of genetic Alu variation, both Ladin samples (Val Gardena and Val Badia) are among the samples with the lowest diversity. An admixture analysis of one German-speaking valley (Val Venosta) indicates a relatively high genetic contribution of Ladin origin. The reduced genetic diversity and a high genetic differentiation in the Rhaetoroman- and German-speaking South Tyrolean populations may constitute an important basis for future medical genetic research and gene mapping studies in South Tyrol.

  16. Founding population size of an aquatic invasive species

    Science.gov (United States)

    Kalinowski, Steven T.; Muhlfeld, Clint C.; Guy, Christopher S.; Benjamin Cox,

    2010-01-01

    Non-native species of fish threaten native fishes throughout North America, and in the Rocky Mountains, introduced populations of lake trout threaten native populations of bull trout. Effective management of lake trout and other exotic species require understanding the dynamics of invasion in order to either suppress non-native populations or to prevent their spread. In this study, we used microsatellite genetic data to estimate the number of lake trout that invaded a population of bull trout in Swan Lake, MT. Examination of genetic diversity and allele frequencies within the Swan Lake populations showed that most of the genes in the lake trout population are descended from two founders. This emphasizes the importance of preventing even a few lake trout from colonizing new territory.

  17. Consequences of habitat fragmentation on genetic structure of Chamaedorea alternans (Arecaceae) palm populations in the tropical rain forests of Los Tuxtlas, Veracruz, Mexico

    OpenAIRE

    Peñaloza-Ramírez, Juan Manuel; Aguilar-Amezquita, Bernardo; Núñez-Farfán, Juan; Pérez-Nasser, Nidia; Albarrán-Lara, Ana Luisa; Oyama, Ken

    2016-01-01

    Abstract: Chamaedorea alternans is a palm species that has suffered from selective extraction, and habitat loss. We collected 11 populations from fragmented and conserved forest. We assess genetic variation of C. alternans, genetic exchange, differentiation, bottlenecks, effective population size and signals of natural selection. Genetic diversity was higher in conserved than in fragmented forest but not significant. Fragmentation did not play a significant role in genetic diversity, possibly...

  18. Fitness decline under osmotic stress in Caenorhabditis elegans populations subjected to spontaneous mutation accumulation at varying population sizes.

    Science.gov (United States)

    Katju, Vaishali; Packard, Lucille B; Keightley, Peter D

    2018-04-01

    The consequences of mutations for population fitness depends on their individual selection coefficients and the effective population size. An earlier study of Caenorhabditis elegans spontaneous mutation accumulation lines evolved for 409 generations at three population sizes found that N e   = 1 populations declined significantly in fitness whereas the fitness of larger populations (N e   = 5, 50) was indistinguishable from the ancestral control under benign conditions. To test if larger MA populations harbor a load of cryptic deleterious mutations that are obscured under benign laboratory conditions, we measured fitness under osmotic stress via exposure to hypersaline conditions. The fitness of N e   = 1 lines exhibited a further decline under osmotic stress compared to benign conditions. However, the fitness of larger populations remained indistinguishable from that of the ancestral control. The average effects of deleterious mutations in N e   = 1 lines were estimated to be 22% for productivity and 14% for survivorship, exceeding values previously detected under benign conditions. Our results suggest that fitness decline is due to large effect mutations that are rapidly removed via selection even in small populations, with implications for conservation practices. Genetic stochasticity may not be as potent and immediate a threat to the persistence of small populations as other demographic and environmental stochastic factors. © 2018 The Author(s). Evolution © 2018 The Society for the Study of Evolution.

  19. Large effective population size and temporal genetic stability in Atlantic cod (Gadus morhua) in the southern Gulf of St. Lawrence

    DEFF Research Database (Denmark)

    Therkildsen, Nina Overgaard; Eg Nielsen, Einar; Swain, Douglas P.

    2010-01-01

    Worldwide, many commercial fish stocks have experienced dramatic declines due to overfishing. Such fisheries-induced population reductions could potentially erode the genetic diversity of marine fish populations. Based on analyses of DNA extracted from archived and contemporary samples, this paper...

  20. Spatial and population genetic structure of microsatellites in white pine

    Science.gov (United States)

    Paula E. Marquardt; Bryan K. Epperson

    2004-01-01

    We evaluated the population genetic structure of seven microsatellite loci for old growth and second growth populations of eastern white pine (Pinus strobus). From each population, located within Hartwick Pines State Park, Grayling, Michigan, USA, 120-122 contiguous trees were sampled for genetic analysis. Within each population, genetic diversity...

  1. Persistency of Prediction Accuracy and Genetic Gain in Synthetic Populations Under Recurrent Genomic Selection.

    Science.gov (United States)

    Müller, Dominik; Schopp, Pascal; Melchinger, Albrecht E

    2017-03-10

    Recurrent selection (RS) has been used in plant breeding to successively improve synthetic and other multiparental populations. Synthetics are generated from a limited number of parents [Formula: see text] but little is known about how [Formula: see text] affects genomic selection (GS) in RS, especially the persistency of prediction accuracy ([Formula: see text]) and genetic gain. Synthetics were simulated by intermating [Formula: see text]= 2-32 parent lines from an ancestral population with short- or long-range linkage disequilibrium ([Formula: see text]) and subjected to multiple cycles of GS. We determined [Formula: see text] and genetic gain across 30 cycles for different training set ( TS ) sizes, marker densities, and generations of recombination before model training. Contributions to [Formula: see text] and genetic gain from pedigree relationships, as well as from cosegregation and [Formula: see text] between QTL and markers, were analyzed via four scenarios differing in (i) the relatedness between TS and selection candidates and (ii) whether selection was based on markers or pedigree records. Persistency of [Formula: see text] was high for small [Formula: see text] where predominantly cosegregation contributed to [Formula: see text], but also for large [Formula: see text] where [Formula: see text] replaced cosegregation as the dominant information source. Together with increasing genetic variance, this compensation resulted in relatively constant long- and short-term genetic gain for increasing [Formula: see text] > 4, given long-range LD A in the ancestral population. Although our scenarios suggest that information from pedigree relationships contributed to [Formula: see text] for only very few generations in GS, we expect a longer contribution than in pedigree BLUP, because capturing Mendelian sampling by markers reduces selective pressure on pedigree relationships. Larger TS size ([Formula: see text]) and higher marker density improved persistency of

  2. The Driving Forces of Cultural Complexity : Neanderthals, Modern Humans, and the Question of Population Size.

    Science.gov (United States)

    Fogarty, Laurel; Wakano, Joe Yuichiro; Feldman, Marcus W; Aoki, Kenichi

    2017-03-01

    The forces driving cultural accumulation in human populations, both modern and ancient, are hotly debated. Did genetic, demographic, or cognitive features of behaviorally modern humans (as opposed to, say, early modern humans or Neanderthals) allow culture to accumulate to its current, unprecedented levels of complexity? Theoretical explanations for patterns of accumulation often invoke demographic factors such as population size or density, whereas statistical analyses of variation in cultural complexity often point to the importance of environmental factors such as food stability, in determining cultural complexity. Here we use both an analytical model and an agent-based simulation model to show that a full understanding of the emergence of behavioral modernity, and the cultural evolution that has followed, depends on understanding and untangling the complex relationships among culture, genetically determined cognitive ability, and demographic history. For example, we show that a small but growing population could have a different number of cultural traits from a shrinking population with the same absolute number of individuals in some circumstances.

  3. Population-genetic nature of copy number variations in the human genome.

    Science.gov (United States)

    Kato, Mamoru; Kawaguchi, Takahisa; Ishikawa, Shumpei; Umeda, Takayoshi; Nakamichi, Reiichiro; Shapero, Michael H; Jones, Keith W; Nakamura, Yusuke; Aburatani, Hiroyuki; Tsunoda, Tatsuhiko

    2010-03-01

    Copy number variations (CNVs) are universal genetic variations, and their association with disease has been increasingly recognized. We designed high-density microarrays for CNVs, and detected 3000-4000 CNVs (4-6% of the genomic sequence) per population that included CNVs previously missed because of smaller sizes and residing in segmental duplications. The patterns of CNVs across individuals were surprisingly simple at the kilo-base scale, suggesting the applicability of a simple genetic analysis for these genetic loci. We utilized the probabilistic theory to determine integer copy numbers of CNVs and employed a recently developed phasing tool to estimate the population frequencies of integer copy number alleles and CNV-SNP haplotypes. The results showed a tendency toward a lower frequency of CNV alleles and that most of our CNVs were explained only by zero-, one- and two-copy alleles. Using the estimated population frequencies, we found several CNV regions with exceptionally high population differentiation. Investigation of CNV-SNP linkage disequilibrium (LD) for 500-900 bi- and multi-allelic CNVs per population revealed that previous conflicting reports on bi-allelic LD were unexpectedly consistent and explained by an LD increase correlated with deletion-allele frequencies. Typically, the bi-allelic LD was lower than SNP-SNP LD, whereas the multi-allelic LD was somewhat stronger than the bi-allelic LD. After further investigation of tag SNPs for CNVs, we conclude that the customary tagging strategy for disease association studies can be applicable for common deletion CNVs, but direct interrogation is needed for other types of CNVs.

  4. Shallow Population Genetic Structures of Thread-sail Filefish ( Populations from Korean Coastal Waters

    Directory of Open Access Journals (Sweden)

    M. Yoon

    2012-02-01

    Full Text Available Genetic diversities, population genetic structures and demographic histories of the thread-sail filefish Stephanolepis cirrhifer were investigated by nucleotide sequencing of 336 base pairs of the mitochondrial DNA (mtDNA control region in 111 individuals collected from six populations in Korean coastal waters. A total of 70 haplotypes were defined by 58 variable nucleotide sites. The neighbor-joining tree of the 70 haplotypes was shallow and did not provide evidence of geographical associations. Expansion of S. cirrhifer populations began approximate 51,000 to 102,000 years before present, correlating with the period of sea level rise since the late Pleistocene glacial maximum. High levels of haplotype diversities (0.974±0.029 to 1.000±0.076 and nucleotide diversities (0.014 to 0.019, and low levels of genetic differentiation among populations inferred from pairwise population FST values (−0.007 to 0.107, support an expansion of the S. cirrhifer population. Hierarchical analysis of molecular variance (AMOVA revealed weak but significant genetic structures among three groups (FCT = 0.028, p<0.05, and no genetic variation within groups (0.53%; FSC = 0.005, p = 0.23. These results may help establish appropriate fishery management strategies for stocks of S. cirrhifer and related species.

  5. Genetic diversity and population structure in contemporary house sparrow populations along an urbanization gradient.

    Science.gov (United States)

    Vangestel, C; Mergeay, J; Dawson, D A; Callens, T; Vandomme, V; Lens, L

    2012-09-01

    House sparrow (Passer domesticus) populations have suffered major declines in urban as well as rural areas, while remaining relatively stable in suburban ones. Yet, to date no exhaustive attempt has been made to examine how, and to what extent, spatial variation in population demography is reflected in genetic population structuring along contemporary urbanization gradients. Here we use putatively neutral microsatellite loci to study if and how genetic variation can be partitioned in a hierarchical way among different urbanization classes. Principal coordinate analyses did not support the hypothesis that urban/suburban and rural populations comprise two distinct genetic clusters. Comparison of FST values at different hierarchical scales revealed drift as an important force of population differentiation. Redundancy analyses revealed that genetic structure was strongly affected by both spatial variation and level of urbanization. The results shown here can be used as baseline information for future genetic monitoring programmes and provide additional insights into contemporary house sparrow dynamics along urbanization gradients.

  6. Higher fine-scale genetic structure in peripheral than in core populations of a long-lived and mixed-mating conifer - eastern white cedar (Thuja occidentalis L.)

    Science.gov (United States)

    2012-01-01

    Background Fine-scale or spatial genetic structure (SGS) is one of the key genetic characteristics of plant populations. Several evolutionary and ecological processes and population characteristics influence the level of SGS within plant populations. Higher fine-scale genetic structure may be expected in peripheral than core populations of long-lived forest trees, owing to the differences in the magnitude of operating evolutionary and ecological forces such as gene flow, genetic drift, effective population size and founder effects. We addressed this question using eastern white cedar (Thuja occidentalis) as a model species for declining to endangered long-lived tree species with mixed-mating system. Results We determined the SGS in two core and two peripheral populations of eastern white cedar from its Maritime Canadian eastern range using six nuclear microsatellite DNA markers. Significant SGS ranging from 15 m to 75 m distance classes was observed in the four studied populations. An analysis of combined four populations revealed significant positive SGS up to the 45 m distance class. The mean positive significant SGS observed in the peripheral populations was up to six times (up to 90 m) of that observed in the core populations (15 m). Spatial autocorrelation coefficients and correlograms of single and sub-sets of populations were statistically significant. The extent of within-population SGS was significantly negatively correlated with all genetic diversity parameters. Significant heterogeneity of within-population SGS was observed for 0-15 m and 61-90 m between core and peripheral populations. Average Sp, and gene flow distances were higher in peripheral (Sp = 0.023, σg = 135 m) than in core (Sp = 0.014, σg = 109 m) populations. However, the mean neighborhood size was higher in the core (Nb = 82) than in the peripheral (Nb = 48) populations. Conclusion Eastern white cedar populations have significant fine-scale genetic structure at short distances. Peripheral

  7. Higher fine-scale genetic structure in peripheral than in core populations of a long-lived and mixed-mating conifer - eastern white cedar (Thuja occidentalis L.

    Directory of Open Access Journals (Sweden)

    Pandey Madhav

    2012-04-01

    Full Text Available Abstract Background Fine-scale or spatial genetic structure (SGS is one of the key genetic characteristics of plant populations. Several evolutionary and ecological processes and population characteristics influence the level of SGS within plant populations. Higher fine-scale genetic structure may be expected in peripheral than core populations of long-lived forest trees, owing to the differences in the magnitude of operating evolutionary and ecological forces such as gene flow, genetic drift, effective population size and founder effects. We addressed this question using eastern white cedar (Thuja occidentalis as a model species for declining to endangered long-lived tree species with mixed-mating system. Results We determined the SGS in two core and two peripheral populations of eastern white cedar from its Maritime Canadian eastern range using six nuclear microsatellite DNA markers. Significant SGS ranging from 15 m to 75 m distance classes was observed in the four studied populations. An analysis of combined four populations revealed significant positive SGS up to the 45 m distance class. The mean positive significant SGS observed in the peripheral populations was up to six times (up to 90 m of that observed in the core populations (15 m. Spatial autocorrelation coefficients and correlograms of single and sub-sets of populations were statistically significant. The extent of within-population SGS was significantly negatively correlated with all genetic diversity parameters. Significant heterogeneity of within-population SGS was observed for 0-15 m and 61-90 m between core and peripheral populations. Average Sp, and gene flow distances were higher in peripheral (Sp = 0.023, σg = 135 m than in core (Sp = 0.014, σg = 109 m populations. However, the mean neighborhood size was higher in the core (Nb = 82 than in the peripheral (Nb = 48 populations. Conclusion Eastern white cedar populations have significant fine-scale genetic structure at short

  8. Assessment of Genetic Diversity and Population Genetic Structure of Corylus mandshurica in China Using SSR Markers.

    Science.gov (United States)

    Zong, Jian-Wei; Zhao, Tian-Tian; Ma, Qing-Hua; Liang, Li-Song; Wang, Gui-Xi

    2015-01-01

    Corylus mandshurica, also known as pilose hazelnut, is an economically and ecologically important species in China. In this study, ten polymorphic simple sequence repeat (SSR) markers were applied to evaluate the genetic diversity and population structure of 348 C. mandshurica individuals among 12 populations in China. The SSR markers expressed a relatively high level of genetic diversity (Na = 15.3, Ne = 5.6604, I = 1.8853, Ho = 0.6668, and He = 0.7777). According to the coefficient of genetic differentiation (Fst = 0.1215), genetic variation within the populations (87.85%) were remarkably higher than among populations (12.15%). The average gene flow (Nm = 1.8080) significantly impacts the genetic structure of C. mandshurica populations. The relatively high gene flow (Nm = 1.8080) among wild C. mandshurica may be caused by wind-pollinated flowers, highly nutritious seeds and self-incompatible mating system. The UPGMA (unweighted pair group method of arithmetic averages) dendrogram was divided into two main clusters. Moreover, the results of STRUCTURE analysis suggested that C. mandshurica populations fell into two main clusters. Comparison of the UPGMA dendrogram and the Bayesian STRUCTURE analysis showed general agreement between the population subdivisions and the genetic relationships among populations of C. mandshurica. Group I accessions were located in Northeast China, while Group II accessions were in North China. It is worth noting that a number of genetically similar populations were located in the same geographic region. The results further showed that there was obvious genetic differentiation among populations from Northeast China to North China. Results from the Mantel test showed a weak but still significant positive correlation between Nei's genetic distance and geographic distance (km) among populations (r = 0.419, P = 0.005), suggesting that genetic differentiation in the 12 C. mandshurica populations might be related to geographic distance. These

  9. Assessment of Genetic Diversity and Population Genetic Structure of Corylus mandshurica in China Using SSR Markers.

    Directory of Open Access Journals (Sweden)

    Jian-Wei Zong

    Full Text Available Corylus mandshurica, also known as pilose hazelnut, is an economically and ecologically important species in China. In this study, ten polymorphic simple sequence repeat (SSR markers were applied to evaluate the genetic diversity and population structure of 348 C. mandshurica individuals among 12 populations in China. The SSR markers expressed a relatively high level of genetic diversity (Na = 15.3, Ne = 5.6604, I = 1.8853, Ho = 0.6668, and He = 0.7777. According to the coefficient of genetic differentiation (Fst = 0.1215, genetic variation within the populations (87.85% were remarkably higher than among populations (12.15%. The average gene flow (Nm = 1.8080 significantly impacts the genetic structure of C. mandshurica populations. The relatively high gene flow (Nm = 1.8080 among wild C. mandshurica may be caused by wind-pollinated flowers, highly nutritious seeds and self-incompatible mating system. The UPGMA (unweighted pair group method of arithmetic averages dendrogram was divided into two main clusters. Moreover, the results of STRUCTURE analysis suggested that C. mandshurica populations fell into two main clusters. Comparison of the UPGMA dendrogram and the Bayesian STRUCTURE analysis showed general agreement between the population subdivisions and the genetic relationships among populations of C. mandshurica. Group I accessions were located in Northeast China, while Group II accessions were in North China. It is worth noting that a number of genetically similar populations were located in the same geographic region. The results further showed that there was obvious genetic differentiation among populations from Northeast China to North China. Results from the Mantel test showed a weak but still significant positive correlation between Nei's genetic distance and geographic distance (km among populations (r = 0.419, P = 0.005, suggesting that genetic differentiation in the 12 C. mandshurica populations might be related to geographic

  10. Genetic diversity in natural populations of Jacaranda decurrens Cham. determined using RAPD and AFLP markers

    Directory of Open Access Journals (Sweden)

    Bianca W. Bertoni

    2010-01-01

    Full Text Available Jacaranda decurrens (Bignoniaceae is an endemic species of the Cerrado with validated antitumoral activity. The genetic diversity of six populations of J. decurrens located in the State of São Paulo was determined in this study by using molecular markers for randomly amplified polymorphic DNA (RAPD and amplified fragment length polymorphism (AFLP. Following optimization of the amplification reaction, 10 selected primers generated 78 reproducible RAPD fragments that were mostly (69.2% polymorphic. Two hundred and five reproducible AFLP fragments were generated by using four selected primer combinations; 46.3% of these fragments were polymorphic, indicating a considerable level of genetic diversity. Analysis of molecular variance (AMOVA using these two groups of markers indicated that variability was strongly structured amongst populations. The unweighted pair group method with arithmatic mean (UPGMA and Pearson's correlation coefficient (RAPD -0.16, p = 0.2082; AFLP 0.37, p = 0.1006 between genetic matrices and geographic distances suggested that the population structure followed an island model in which a single population of infinite size gave rise to the current populations of J. decurrens, independently of their spatial position. The results of this study indicate that RAPD and AFLP markers were similarly efficient in measuring the genetic variability amongst natural populations of J. decurrens. These data may be useful for developing strategies for the preservation of this medicinal species in the Cerrado.

  11. Can genetic estimators provide robust estimates of the effective number of breeders in small populations?

    Directory of Open Access Journals (Sweden)

    Marion Hoehn

    Full Text Available The effective population size (N(e is proportional to the loss of genetic diversity and the rate of inbreeding, and its accurate estimation is crucial for the monitoring of small populations. Here, we integrate temporal studies of the gecko Oedura reticulata, to compare genetic and demographic estimators of N(e. Because geckos have overlapping generations, our goal was to demographically estimate N(bI, the inbreeding effective number of breeders and to calculate the N(bI/N(a ratio (N(a =number of adults for four populations. Demographically estimated N(bI ranged from 1 to 65 individuals. The mean reduction in the effective number of breeders relative to census size (N(bI/N(a was 0.1 to 1.1. We identified the variance in reproductive success as the most important variable contributing to reduction of this ratio. We used four methods to estimate the genetic based inbreeding effective number of breeders N(bI(gen and the variance effective populations size N(eV(gen estimates from the genotype data. Two of these methods - a temporal moment-based (MBT and a likelihood-based approach (TM3 require at least two samples in time, while the other two were single-sample estimators - the linkage disequilibrium method with bias correction LDNe and the program ONeSAMP. The genetic based estimates were fairly similar across methods and also similar to the demographic estimates excluding those estimates, in which upper confidence interval boundaries were uninformative. For example, LDNe and ONeSAMP estimates ranged from 14-55 and 24-48 individuals, respectively. However, temporal methods suffered from a large variation in confidence intervals and concerns about the prior information. We conclude that the single-sample estimators are an acceptable short-cut to estimate N(bI for species such as geckos and will be of great importance for the monitoring of species in fragmented landscapes.

  12. Genetic parameters for litter size in Black Slavonian pigs

    Energy Technology Data Exchange (ETDEWEB)

    Skorput, D.; Gorjanc, G.; Dikic, M.; Lujovic, Z.

    2014-06-01

    The objective of this study was to estimate genetic parameters for litter size of Black Slavonian pigs using the repeatability, multiple trait, and random regression models, and to consider the possibility to increase litter size in Black Slavonian pigs by selection. A total of 4,733 litter records from the first to the sixth parity from sows that farrowed between January 1998 and December 2010 were included in the analysis. Individual record consisted of the following variables: breeding organisation (eight regions), parity (1-6), service boar, and farrowing season (monthyear interaction). Estimation of all the covariance components with three different models was based on the residual maximum likelihood method. Estimate of additive genetic variance and heritability for number of piglets born alive with repeatability model was 0.23 and 0.10, respectively. Estimates of additive genetic variance with multiple trait and random regression model were in a wider range from 0.05 to 0.65 across parities, and heritabilities were estimated in the range between 0.03 and 0.26. Estimates of phenotypic and additive genetic correlations were much smoother with random regression model in comparison with multiple trait model. Due to unexpected changes of variances along trajectory obtained with multiple trait and random regression model, the best option for genetic evaluation of litter size for now could be the use of repeatability model. With increasing number of data with proper data structure alternative modelling of litter size of Black Slavonian pig using multiple trait and random regression model could be taken into consideration. (Author)

  13. Genetic parameters for litter size in Black Slavonian pigs

    Directory of Open Access Journals (Sweden)

    Dubravko Skorput

    2014-02-01

    Full Text Available The objective of this study was to estimate genetic parameters for litter size of Black Slavonian pigs using the repeatability, multiple trait, and random regression models, and to consider the possibility to increase litter size in Black Slavonian pigs by selection. A total of 4733 litter records from the first to the sixth parity from sows that farrowed between January 1998 and December 2010 were included in the analysis. Individual record consisted of the following variables: breeding organisation (eight regions, parity (1-6, service boar, and farrowing season (month-year interaction. Estimation of all the covariance components with three different models was based on the residual maximum likelihood method. Estimate of additive genetic variance and heritability for number of piglets born alive with repeatability model was 0.23 and 0.10, respectively. Estimates of additive genetic variance with multiple trait and random regression model were in a wider range from 0.05 to 0.65 across parities, and heritabilities were estimated in the range between 0.03 and 0.26. Estimates of phenotypic and additive genetic correlations were much smoother with random regression model in comparison with multiple trait model. Due to unexpected changes of variances along trajectory obtained with multiple trait and random regression model, the best option for genetic evaluation of litter size for now could be the use of repeatability model. With increasing number of data with proper data structure alternative modelling of litter size of Black Slavonian pig using multiple trait and random regression model could be taken into consideration.

  14. Genetic Pattern and Demographic History of Salminus brasiliensis: Population Expansion in the Pantanal Region during the Pleistocene

    Directory of Open Access Journals (Sweden)

    Lívia A. de Carvalho Mondin

    2018-01-01

    Full Text Available Pleistocene climate changes were major historical events that impacted South American biodiversity. Although the effects of such changes are well-documented for several biomes, it is poorly known how these climate shifts affected the biodiversity of the Pantanal floodplain. Fish are one of the most diverse groups in the Pantanal floodplains and can be taken as a suitable biological model for reconstructing paleoenvironmental scenarios. To identify the effects of Pleistocene climate changes on Pantanal’s ichthyofauna, we used genetic data from multiple populations of a top-predator long-distance migratory fish, Salminus brasiliensis. We specifically investigated whether Pleistocene climate changes affected the demography of this species. If this was the case, we expected to find changes in population size over time. Thus, we assessed the genetic diversity of S. brasiliensis to trace the demographic history of nine populations from the Upper Paraguay basin, which includes the Pantanal floodplain, that form a single genetic group, employing approximate Bayesian computation (ABC to test five scenarios: constant population, old expansion, old decline, old bottleneck following by recent expansion, and old expansion following by recent decline. Based on two mitochondrial DNA markers, our inferences from ABC analysis, the results of Bayesian skyline plot, the implications of star-like networks, and the patterns of genetic diversity (high haplotype diversity and low-to-moderate nucleotide diversity indicated a sudden population expansion. ABC allowed us to make strong quantitative inferences about the demographic history of S. brasiliensis. We estimated a small ancestral population size that underwent a drastic fivefold expansion, probably associated with the colonization of newly formed habitats. The estimated time of this expansion was consistent with a humid and warm phase as inferred by speleothem growth phases and travertine records during

  15. GENETIC VARIABILITY OF THREE POPULATIONS OF FLYING FISH, Hirundichthy oxycephalus FROM MAKASSAR STRAIT

    Directory of Open Access Journals (Sweden)

    Andi Parenrengi

    2016-03-01

    Full Text Available Flying fish, Hirundichthy oxycephalus is one of economically important marine species to Indonesia, particularly in Makassar Strait and Flores Sea. However, there is a limited published data on genetic variation in molecular marker level of this species. Random Amplified Polymorphic DNA (RAPD was employed in this study to determine the genetic variability of three populations of flying fish collected from Takalar, Pare-Pare, and Majene in Makassar Strait. Genomic DNA was isolated from preserved muscle tissue using phenol-chloroform technique. Two selected arbitrary primers (CA-01 and P-40 were performed to generate RAPD finger printing of flying fish populations. The two primers generated a total of 81 fragments (loci and 50 polymorphic fragments with size ranging from 125 to 1,250 bp. There were no significant differences in number of fragment and number of polymorphic fragment among populations. The high polymorphism (63.5±7.4% was obtained from Takalar population followed by Pare-Pare (58.3±19.6% and Majene population (57.7±0.8%. Similarity index of individuals was 0.60±0.17 for Takalar, 0.63±0.17 for Majene and 0.75±0.21 for Pare-Pare population. Seven fragments were identified as species-specific markers of H. oxycephalus. The UPGMA cluster analysis showed that the Takalar population was genetically closer to Pare-Pare population (D= 0.0812 than to Majene population (D= 0.1873.

  16. Genetic diversity of disease-associated loci in Turkish population.

    Science.gov (United States)

    Karaca, Sefayet; Cesuroglu, Tomris; Karaca, Mehmet; Erge, Sema; Polimanti, Renato

    2015-04-01

    Many consortia and international projects have investigated the human genetic variation of a large number of ethno-geographic groups. However, populations with peculiar genetic features, such as the Turkish population, are still absent in publically available datasets. To explore the genetic predisposition to health-related traits of the Turkish population, we analyzed 34 genes associated with different health-related traits (for example, lipid metabolism, cardio-vascular diseases, hormone metabolism, cellular detoxification, aging and energy metabolism). We observed relevant differences between the Turkish population and populations with non-European ancestries (that is, Africa and East Asia) in some of the investigated genes (that is, AGT, APOE, CYP1B1, GNB3, IL10, IL6, LIPC and PON1). As most complex traits are highly polygenic, we developed polygenic scores associated with different health-related traits to explore the genetic diversity of the Turkish population with respect to other human groups. This approach showed significant differences between the Turkish population and populations with non-European ancestries, as well as between Turkish and Northern European individuals. This last finding is in agreement with the genetic structure of European and Middle East populations, and may also agree with epidemiological evidences about the health disparities of Turkish communities in Northern European countries.

  17. Population genetic characteristics of horse chestnut in Serbia

    Directory of Open Access Journals (Sweden)

    Ocokoljić Mirjana

    2013-01-01

    Full Text Available The general population genetic characteristics of cultivated horse chestnut trees excelling in growth, phenotype characteristics, type of inflorescence, productivity and resistance to the leafminer Cameraria ohridella Deschka and Dimić were analyzed in Serbia. The analyzed population genetic parameters point to fundamental differences in the genetic structure among the cultivated populations in Serbia. The study shows the variability in all properties among the populations and inter-individual variability within the populations. The variability and differential characteristics were assessed using statistical parameters, taking into account the satisfactory reflection of the hereditary potential. The assessed differences in the vitality and evolution potential of different populations can determine the methods of horse chestnut gene pool collection, reconstruction and improvement. [Projekat Ministarstva nauke Republike Srbije, br. 31041: Establishment of Wood Plantations Intended for a forestation of Serbia

  18. Microsatellite based genetic structure of regional transboundary Istrian sheep breed populations in Croatia and Slovenia

    Directory of Open Access Journals (Sweden)

    Beatriz Gutierrez-Gil

    2015-02-01

    Full Text Available Istrian dairy sheep is a local breed essential for the identity and development of the Northern- Adriatic karstic region through high-quality products, primarily the hard sheep artisanal cheese. Border changes fragmented the initial Istrian dairy sheep population in three genetically isolated sub-populations in Italy (1000 animals, Slovenia (1150 animals and Croatia (2500 animals. Due to the drastic reduction of their population sizes and fragmentation, the populations in Croatia and Slovenia are included in governmentally supported conservation programs. The initial subpopulation in Italy was restored after near extinction with stock from Slovenia, and is used today in meat production. The aim of this study was to provide an initial understanding of the current genetic structure and distribution of the genetic variability that exists in Istrian sheep by analysing individuals sampled in two regional groups of Istrian sheep from Croatia and Slovenia. Cres island sheep and Lika pramenka sheep were used as out-groups for comparison. Genetic differentiation was analysed using factorial correspondence analysis and structure clustering over 26 microsatellite loci for a total of 104 sheep belonging to three breeds from Croatia and Slovenia. Factorial correspondence analysis and clustering-based structure analysis both showed three distinct populations: Lika pramenka sheep, Cres island sheep and Istrian sheep. We did not find a marked genetic divergence of the regional groups of Istrian sheep. Istrian sheep regional group from Slovenia showed lower genetic variability compared to the one from Croatia. Variability and structure information obtained in this study considered alongside with socio-cultural-contexts and economic goals for the Istrian sheep reared in Croatia and Slovenia indicate that the cross-border exchange of genetic material of animals carrying private alleles among populations would maintain these alleles at low frequencies and minimize

  19. Estimates of population genetic diversity in brown bullhead catfish by DNA fingerprinting

    Energy Technology Data Exchange (ETDEWEB)

    Roth, A.C.; Wessendarp, T.K.; Gordon, D.A.; Smith, M.K. [Environmental Protection Agency, Cincinnati, OH (United States); Lattier, D.L. [Oak Ridge Inst. for Science and Education, Cincinnati, OH (United States); Hertzberg, V.; Leonard, A. [Univ. of Cincinnati, OH (United States). Dept. of Environmental Health

    1994-12-31

    Estimates of population genetic diversity may be a sensitive indicator of environmental impact, since limiting the effective breeding population by any means will result in loss of some variant genotypes, as has been demonstrated by allozyme analysis. DNA fingerprinting techniques are also coming into use for population analyses, and the authors chose to apply fingerprinting analysis three populations of brown bullhead catfish collected in Northern Ohio. DNA was isolated from the red blood cells of individual fish. Purified DNAs were digested with EcoR1 restriction enzyme; the digests were then sized on a 1% agarose gel, transferred to nylon membranes and probed with a radiolabeled M13 probe using the Westneat hybridization protocol (Southern blotting). This method effects fragments containing VNTR (variable number of tandem repeat) sequences complementary to the M13, which are highly variable among individual catfish. Hybridized bands were visualized by a Molecular Dynamics phosphorimager and recorded and analyzed with its proprietary Imagequant image analysis program, Excel and SAS. A total of 10 variable bands were identified and their presence or absence scored in each individual. These data were analyzed to determine between and within-population similarity indices as well as population heterozygosity and genetic diversity measures.

  20. Genetic variation in natural honeybee populations, Apis mellifera capensis

    Science.gov (United States)

    Hepburn, Randall; Neumann, Peter; Radloff, Sarah E.

    2004-09-01

    Genetic variation in honeybee, Apis mellifera, populations can be considerably influenced by breeding and commercial introductions, especially in areas with abundant beekeeping. However, in southern Africa apiculture is based on the capture of wild swarms, and queen rearing is virtually absent. Moreover, the introduction of European subspecies constantly failed in the Cape region. We therefore hypothesize a low human impact on genetic variation in populations of Cape honeybees, Apis mellifera capensis. A novel solution to studying genetic variation in honeybee populations based on thelytokous worker reproduction is applied to test this hypothesis. Environmental effects on metrical morphological characters of the phenotype are separated to obtain a genetic residual component. The genetic residuals are then re-calculated as coefficients of genetic variation. Characters measured included hair length on the abdomen, width and length of wax plate, and three wing angles. The data show for the first time that genetic variation in Cape honeybee populations is independent of beekeeping density and probably reflects naturally occurring processes such as gene flow due to topographic and climatic variation on a microscale.

  1. Comparative Analysis of the Pattern of Population Genetic Diversity in Three Indo-West Pacific Rhizophora Mangrove Species

    Directory of Open Access Journals (Sweden)

    Yu-Bin Yan

    2016-09-01

    Full Text Available Rhizophora species are the most widely distributed mangrove trees in the Indo-West Pacific (IWP region. Comparative studies of these species with shared life history traits can help identify evolutionary factors that have played most important roles in determining genetic diversity within and between populations in ocean-current dispersed mangrove tree species. We sampled 935 individuals from 54 natural populations for genotyping with 13 microsatellite markers to investigate the level of genetic variation, population structure, and gene flow on a broad geographic scale in Rhizophora apiculata, R. mucronata, and R. stylosa across the IWP region. In contrast to the pattern expected of long-lived woody plants with predominant wind-pollination, water-dispersed seeds and wide geographic range, genetic variation within populations was generally low in all the three species, especially in those peripheral populations from geographic range limits. Although the large water-buoyant propagules of Rhizophora have capacity for long distance dispersal, such events might be rare in reality, as reflected by the low level of gene flow and high genetic differentiation between most of population pairs within each species. Phylogeographic separation of Australian and Pacific island populations from SE Asian lineages previously revealed with DNA sequence data was still detectable in R. apiculata based on genetic distances, but this pattern of disjunction was not always evident in R. mucronata and R. stylosa, suggesting that fast-evolving molecular markers could be more suitable for detecting contemporary genetic structure but not deep evolutionary divergence caused by historical vicariance. Given that mangrove species generally have small effective population sizes, we conclude that genetic drift coupled with limited gene flow have played a dominant role in producing the current pattern of population genetic diversity in the IWP Rhizophora species, overshadowing the

  2. Bacterial Population Genetics in a Forensic Context

    Energy Technology Data Exchange (ETDEWEB)

    Velsko, S P

    2009-11-02

    This report addresses the recent Department of Homeland Security (DHS) call for a Phase I study to (1) assess gaps in the forensically relevant knowledge about the population genetics of eight bacterial agents of concern, (2) formulate a technical roadmap to address those gaps, and (3) identify new bioinformatics tools that would be necessary to analyze and interpret population genetic data in a forensic context. The eight organisms that were studied are B. anthracis, Y. pestis, F. tularensis, Brucella spp., E. coli O157/H7, Burkholderia mallei, Burkholderia pseudomallei, and C. botulinum. Our study focused on the use of bacterial population genetics by forensic investigators to test hypotheses about the possible provenance of an agent that was used in a crime or act of terrorism. Just as human population genetics underpins the calculations of match probabilities for human DNA evidence, bacterial population genetics determines the level of support that microbial DNA evidence provides for or against certain well-defined hypotheses about the origins of an infecting strain. Our key findings are: (1) Bacterial population genetics is critical for answering certain types of questions in a probabilistic manner, akin (but not identical) to 'match probabilities' in DNA forensics. (2) A basic theoretical framework for calculating likelihood ratios or posterior probabilities for forensic hypotheses based on microbial genetic comparisons has been formulated. This 'inference-on-networks' framework has deep but simple connections to the population genetics of mtDNA and Y-STRs in human DNA forensics. (3) The 'phylogeographic' approach to identifying microbial sources is not an adequate basis for understanding bacterial population genetics in a forensic context, and has limited utility, even for generating 'leads' with respect to strain origin. (4) A collection of genotyped isolates obtained opportunistically from international locations

  3. Litter size, fur quality and genetic analyses of American mink

    DEFF Research Database (Denmark)

    Thirstrup, Janne Pia

    of the skin, have been analyzed. Both fur quality traits and litter size are complex traits underlying quantitative genetic variation. Methods for estimating genetic variance, spanning from pedigree information to the use of different genetic markers, have been utilized in order to gain knowledge about...

  4. Population Genetics and Natural Selection in Rheumatic Disease.

    Science.gov (United States)

    Ramos, Paula S

    2017-08-01

    Human genetic diversity is the result of population genetic forces. This genetic variation influences disease risk and contributes to health disparities. Natural selection is an important influence on human genetic variation. Because immune and inflammatory function genes are enriched for signals of positive selection, the prevalence of rheumatic disease-risk alleles seen in different populations is partially the result of differing selective pressures (eg, due to pathogens). This review summarizes the genetic regions associated with susceptibility to different rheumatic diseases and concomitant evidence for natural selection, including known agents of selection exerting selective pressure in these regions. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Genetic diversity analysis in the Hypericum perforatum populations ...

    African Journals Online (AJOL)

    Assessment of genetic variability among the Hypericum perforatum populations is critical to the development of effective conservation strategies in the Kashmir valley. To obtain accurate estimates of genetic diversity among and within populations of H. perforatum, inter-simple sequence repeats (ISSR) markers were used.

  6. Reliability of different mark-recapture methods for population size estimation tested against reference population sizes constructed from field data.

    Directory of Open Access Journals (Sweden)

    Annegret Grimm

    Full Text Available Reliable estimates of population size are fundamental in many ecological studies and biodiversity conservation. Selecting appropriate methods to estimate abundance is often very difficult, especially if data are scarce. Most studies concerning the reliability of different estimators used simulation data based on assumptions about capture variability that do not necessarily reflect conditions in natural populations. Here, we used data from an intensively studied closed population of the arboreal gecko Gehyra variegata to construct reference population sizes for assessing twelve different population size estimators in terms of bias, precision, accuracy, and their 95%-confidence intervals. Two of the reference populations reflect natural biological entities, whereas the other reference populations reflect artificial subsets of the population. Since individual heterogeneity was assumed, we tested modifications of the Lincoln-Petersen estimator, a set of models in programs MARK and CARE-2, and a truncated geometric distribution. Ranking of methods was similar across criteria. Models accounting for individual heterogeneity performed best in all assessment criteria. For populations from heterogeneous habitats without obvious covariates explaining individual heterogeneity, we recommend using the moment estimator or the interpolated jackknife estimator (both implemented in CAPTURE/MARK. If data for capture frequencies are substantial, we recommend the sample coverage or the estimating equation (both models implemented in CARE-2. Depending on the distribution of catchabilities, our proposed multiple Lincoln-Petersen and a truncated geometric distribution obtained comparably good results. The former usually resulted in a minimum population size and the latter can be recommended when there is a long tail of low capture probabilities. Models with covariates and mixture models performed poorly. Our approach identified suitable methods and extended options to

  7. Detailed genetic structure of European bitterling populations in Central Europe

    Directory of Open Access Journals (Sweden)

    Veronika Bartáková

    2015-11-01

    Full Text Available The European bitterling (Rhodeus amarus is a small cyprinid fish whose populations declined markedly between 1950 and 1980. However, its range currently expands, partly due to human-assisted introductions. We determined the genetic variability and detailed spatial structure among bitterling populations in Central Europe and tested alternative hypotheses about colonization of this area. Twelve polymorphic microsatellite loci on a large sample of 688 individuals had been used to analyse genetic variability and population structure. Samples originated from 27 localities with emphasis on area of the Czech Republic where three major sea drainages (Black, Baltic, and Northern Sea meet. Highly variable level of intrapopulation genetic variability had generally been detected and a recent decrease in numbers (“bottleneck” had been indicated by genetic data among six populations. High level of interpopulation differentiation was identified even within the basins. There was a significant role of genetic drift and indications of low dispersal ability of R. amarus. Surprisingly, the Odra River was inhabited by two distinct populations without any genetic signatures of a secondary contact. Czech part of the Odra (Baltic basin was colonized from the Danubian refugium (similarly to adjacent Danubian basin rivers including the Morava, while Polish part of the Odra was genetically similar to the populations in the Vistula River (Baltic basin, that has been colonized by a different (Eastern phylogeographic lineage of R. amarus. Most Czech R. amarus populations were colonized from the Danubian refugium, suggesting potential for a human-mediated colonization of the Odra or Elbe Rivers by R. amarus. One Elbe basin population was genetically mixed from the two (Danubian and Eastern phylogeographic lineages. In general the Czech populations of R. amarus were genetically stable except for a single population which has probably been recently introduced. This research

  8. Genetic diversity of Plasmodium falciparum populations in southeast and western Myanmar.

    Science.gov (United States)

    Soe, Than Naing; Wu, Yanrui; Tun, Myo Win; Xu, Xin; Hu, Yue; Ruan, Yonghua; Win, Aung Ye Naung; Nyunt, Myat Htut; Mon, Nan Cho Nwe; Han, Kay Thwe; Aye, Khin Myo; Morris, James; Su, Pincan; Yang, Zhaoqing; Kyaw, Myat Phone; Cui, Liwang

    2017-07-04

    The genetic diversity of malaria parasites reflects the complexity and size of the parasite populations. This study was designed to explore the genetic diversity of Plasmodium falciparum populations collected from two southeastern areas (Shwekyin and Myawaddy bordering Thailand) and one western area (Kyauktaw bordering Bangladesh) of Myanmar. A total of 267 blood samples collected from patients with acute P. falciparum infections during 2009 and 2010 were used for genotyping at the merozoite surface protein 1 (Msp1), Msp2 and glutamate-rich protein (Glurp) loci. One hundred and eighty four samples were successfully genotyped at three genes. The allelic distributions of the three genes were all significantly different among three areas. MAD20 and 3D7 were the most prevalent alleles in three areas for Msp1 and Msp2, respectively. The Glurp allele with a bin size of 700-750 bp was the most prevalent both in Shwekyin and Myawaddy, whereas two alleles with bin sizes of 800-850 bp and 900-1000 bp were the most prevalent in the western site Kyauktaw. Overall, 73.91% of samples contained multiclonal infections, resulting in a mean multiplicity of infection (MOI) of 1.94. Interestingly, the MOI level presented a rising trend with the order of Myawaddy, Kyauktaw and Shwekyin, which also paralleled with the increasing frequencies of Msp1 RO33 and Msp2 FC27 200-250 bp alleles. Msp1 and Msp2 genes displayed higher levels of diversity and higher MOI rates than Glurp. PCR revealed four samples (two from Shwekyin and two from Myawaddy) with mixed infections of P. falciparum and P. vivax. This study genotyped parasite clinical samples from two southeast regions and one western state of Myanmar at the Msp1, Msp2 and Glurp loci, which revealed high levels of genetic diversity and mixed-strain infections of P. falciparum populations at these sites. The results indicated that malaria transmission intensity in these regions remained high and more strengthened control efforts are

  9. Genetic diversity and population structure of Sitodiplosis mosellana in Northern China.

    Directory of Open Access Journals (Sweden)

    Yun Duan

    Full Text Available The wheat midge, Sitodiplosis mosellana, is an important pest in Northern China. We tested the hypothesis that the population structure of this species arises during a range expansion over the past 30 years. This study used microsatellite and mitochondrial loci to conduct population genetic analysis of S. mosellana across its distribution range in China. We found strong genetic structure among the 16 studied populations, including two genetically distinct groups (the eastern and western groups, broadly consistent with the geography and habitat fragmentation. These results underline the importance of natural barriers in impeding dispersal and gene flow of S. mosellana populations. Low to moderate genetic diversity among the populations and moderate genetic differentiation (F ST = 0.117 between the two groups were also found. The populations in the western group had lower genetic diversity, higher genetic differentiation and lower gene flow (F ST = 0.116, Nm = 1.89 than those in the eastern group (F ST = 0.049, Nm = 4.91. Genetic distance between populations was positively and significantly correlated with geographic distance (r = 0.56, P<0.001. The population history of this species provided no evidence for population expansion or bottlenecks in any of these populations. Our data suggest that the distribution of genetic diversity, genetic differentiation and population structure of S. mosellana have resulted from a historical event, reflecting its adaptation to diverse habitats and forming two different gene pools. These results may be the outcome of a combination of restricted gene flow due to geographical and environmental factors, population history, random processes of genetic drift and individual dispersal patterns. Given the current risk status of this species in China, this study can offer useful information for forecasting outbreaks and designing effective pest management programs.

  10. Genetic diversity and population structure of Chinese honeybees ...

    African Journals Online (AJOL)

    Genetic diversity and population structure of Chinese honeybees (Apis cerana) under microsatellite markers. T Ji, L Yin, G Chen. Abstract. Using 21 microsatellite markers and PCR method, the polymorphisms of 20 Apis cerana honeybee populations across China was investigated and the genetic structure and diversity of ...

  11. Identification of management units using population genetic data

    NARCIS (Netherlands)

    Palsboll, Per J.; Berube, Martine; Allendorf, Fred W.

    The identification of management units (MUs) is central to the management of natural populations and is crucial for monitoring the effects of human activity upon species abundance. Here, we propose that the identification of MUs from population genetic data should be based upon the amount of genetic

  12. Spatial genetic structure within populations and management implications of the South American species Acacia aroma (Fabaceae).

    Science.gov (United States)

    Pometti, Carolina; Bessega, Cecilia; Cialdella, Ana; Ewens, Mauricio; Saidman, Beatriz; Vilardi, Juan

    2018-01-01

    The identification of factors that structure intraspecific diversity is of particular interest for biological conservation and restoration ecology. All rangelands in Argentina are currently experiencing some form of deterioration or desertification. Acacia aroma is a multipurpose species widely distributed throughout this country. In this study, we used the AFLP technique to study genetic diversity, population genetic structure, and fine-scale spatial genetic structure in 170 individuals belonging to 6 natural Argentinean populations. With 401 loci, the mean heterozygosity (HE = 0.2) and the mean percentage of polymorphic loci (PPL = 62.1%) coefficients indicated that the genetic variation is relatively high in A. aroma. The analysis with STRUCTURE showed that the number of clusters (K) was 3. With Geneland analysis, the number of clusters was K = 4, sharing the same grouping as STRUCTURE but dividing one population into two groups. When studying SGS, significant structure was detected in 3 of 6 populations. The neighbourhood size in these populations ranged from 15.2 to 64.3 individuals. The estimated gene dispersal distance depended on the effective population density and disturbance level and ranged from 45 to 864 m. The combined results suggest that a sampling strategy, which aims to maintain a considerable part of the variability contained in natural populations sampled here, would include at least 3 units defined by the clusters analyses that exhibit particular genetic properties. Moreover, the current SGS analysis suggests that within the wider management units/provinces, seed collection from A. aroma should target trees separated by a minimum distance of 50 m but preferably 150 m to reduce genetic relatedness among seeds from different trees.

  13. Multiple estimates of effective population size for monitoring a long-lived vertebrate: An application to Yellowstone grizzly bears

    Science.gov (United States)

    Kamath, Pauline L.; Haroldson, Mark A.; Luikart, Gordon; Paetkau, David; Whitman, Craig L.; van Manen, Frank T.

    2015-01-01

    Effective population size (Ne) is a key parameter for monitoring the genetic health of threatened populations because it reflects a population's evolutionary potential and risk of extinction due to genetic stochasticity. However, its application to wildlife monitoring has been limited because it is difficult to measure in natural populations. The isolated and well-studied population of grizzly bears (Ursus arctos) in the Greater Yellowstone Ecosystem provides a rare opportunity to examine the usefulness of different Ne estimators for monitoring. We genotyped 729 Yellowstone grizzly bears using 20 microsatellites and applied three single-sample estimators to examine contemporary trends in generation interval (GI), effective number of breeders (Nb) and Ne during 1982–2007. We also used multisample methods to estimate variance (NeV) and inbreeding Ne (NeI). Single-sample estimates revealed positive trajectories, with over a fourfold increase in Ne (≈100 to 450) and near doubling of the GI (≈8 to 14) from the 1980s to 2000s. NeV (240–319) and NeI (256) were comparable with the harmonic mean single-sample Ne (213) over the time period. Reanalysing historical data, we found NeV increased from ≈80 in the 1910s–1960s to ≈280 in the contemporary population. The estimated ratio of effective to total census size (Ne/Nc) was stable and high (0.42–0.66) compared to previous brown bear studies. These results support independent demographic evidence for Yellowstone grizzly bear population growth since the 1980s. They further demonstrate how genetic monitoring of Ne can complement demographic-based monitoring of Nc and vital rates, providing a valuable tool for wildlife managers.

  14. Genetic network and breeding patterns of a sicklefin lemon shark (Negaprion acutidens population in the Society Islands, French Polynesia.

    Directory of Open Access Journals (Sweden)

    Johann Mourier

    Full Text Available Human pressures have put many top predator populations at risk of extinction. Recent years have seen alarming declines in sharks worldwide, while their resilience remains poorly understood. Studying the ecology of small populations of marine predators is a priority to better understand their ability to withstand anthropogenic and environmental stressors. In the present study, we monitored a naturally small island population of 40 adult sicklefin lemon sharks in Moorea, French Polynesia over 5 years. We reconstructed the genetic relationships among individuals and determined the population's mating system. The genetic network illustrates that all individuals, except one, are interconnected at least through one first order genetic relationship. While this species developed a clear inbreeding avoidance strategy involving dispersal and migration, the small population size, low number of breeders, and the fragmented environment characterizing these tropical islands, limits its complete effectiveness.

  15. The genetic structure of fermentative vineyard-associated Saccharomyces cerevisiae populations revealed by microsatellite analysis.

    Science.gov (United States)

    Schuller, Dorit; Casal, Margarida

    2007-02-01

    From the analysis of six polymorphic microsatellite loci performed in 361 Saccharomyces cerevisiae isolates, 93 alleles were identified, 52 of them being described for the first time. All these isolates have a distinct mtDNA RFLP pattern. They are derived from a pool of 1620 isolates obtained from spontaneous fermentations of grapes collected in three vineyards of the Vinho Verde Region in Portugal, during the 2001-2003 harvest seasons. For all loci analyzed, observed heterozygosity was 3-4 times lower than the expected value supposing a Hardy-Weinberg equilibrium (random mating and no evolutionary mechanisms acting), indicating a clonal structure and strong populational substructuring. Genetic differences among S. cerevisiae populations were apparent mainly from gradations in allele frequencies rather than from distinctive "diagnostic" genotypes, and the accumulation of small allele-frequency differences across six loci allowed the identification of population structures. Genetic differentiation in the same vineyard in consecutive years was of the same order of magnitude as the differences verified among the different vineyards. Correlation of genetic differentiation with the distance between sampling points within a vineyard suggested a pattern of isolation-by-distance, where genetic divergence in a vineyard increased with size. The continuous use of commercial yeasts has a limited influence on the autochthonous fermentative yeast population collected from grapes and may just slightly change populational structures of strains isolated from sites very close to the winery where they have been used. The present work is the first large-scale approach using microsatellite typing allowing a very fine resolution of indigenous S. cerevisiae populations isolated from vineyards.

  16. Role of population genetics in the sterile insect technique

    International Nuclear Information System (INIS)

    Krafsur, E.S.

    2005-01-01

    The detection and analysis of genetic variation in natural and laboratory populations are reviewed. The application of population genetic methods and theory can help to plan and evaluate the implementation of area-wide integrated pest management (AW-IPM) programmes that use the sterile insect technique (SIT). Population genetic studies can play an important role in estimating dispersal rates and thus gene flow among target populations, determining if sibling species exist, establishing the origin of outbreaks or reintroductions, and supporting the quality control of mass-reared colonies. The target's population history may be examined, in terms of 'bottlenecks', range fragmentations, and expansions. Genetic methods can be helpful in distinguishing wild insects from released sterile or substerile ones, and in ascertaining, together with mating cross-compatibility studies, the compatibility of mass-reared colonies with target wild insects. (author)

  17. Population genetics implications for the conservation of the Philippine Crocodile Crocodylus mindorensis Schmidt, 1935 (Crocodylia: Crocodylidae

    Directory of Open Access Journals (Sweden)

    M.R.P. Hinlo

    2014-03-01

    Full Text Available Limited information is available on the Philippine Crocodile, Crocodylus mindorensis, concerning levels of genetic diversity either relative to other crocodilian species or among populations of the species itself. With only two known extant populations of C. mindorensis remaining, potentially low levels of genetic diversity are a conservation concern. Here, we evaluated 619 putative Philippine Crocodiles using a suite of 11 microsatellite markers, and compared them to four other crocodilian species sample sets. The two remaining populations from the island of Luzon and the island of Mindanao, representing the extremes of the former species’ distribution, appear to be differentiated as a result of genetic drift rather than selection. Both extant populations demonstrate lower genetic diversity and effective population sizes relative to other studied crocodilian species. The 57 C. mindorensis and C. porosus, Saltwater Crocodile, hybrids identified earlier from the Palawan Wildlife Rescue and Conservation Center were revalidated with a suite of 20 microsatellite loci; however, the timing of the event and the prevalence of hybridization in the species had yet to be fully determined. We defined the hybrids as one first cross from a C. porosus female and a C. mindorensis male and 56 C. mindorensis backcross individuals. This hybridization event appears to be confined to the PWRCC collection.

  18. Population Genetic Structure and Gene Flow Among Nigerian Goats ...

    African Journals Online (AJOL)

    Population Genetic structure in 200 indigenous goats sampled across four states from the South-Western and South Southern region of Nigeria was assessed using 7 microsatellite DNA markers. Observed Analysis of molecular genetic variation (AMOVA) was higher within populations (3.47) than among populations (1.84) ...

  19. Evidences of delayed size recovery in Araucaria angustifolia populations after post-glacial colonization of highlands in Southeastern Brazil

    Directory of Open Access Journals (Sweden)

    Valdir M. Stefenon

    2008-09-01

    Full Text Available Up to date, little is known about the relationship between historical demography and the current genetic structure of A. Angus As a first effort towards overcoming this lack, microsatellite data scored in six populations and isozyme allele frequencies published for 11 natural stands of this species were analysed in order to assess molecular signatures of populations' demographic history. Signatures of genetic bottlenecks were captured in all analysed populations of southeastern Brazil. Among southern populations, signatures of small effective population size were observed in only three out of 13 populations. Southern populations likely experienced faster recovery of population size after migration onto highlands. Accordingly, current genetic diversity of the southern populations gives evidence of fast population size recovery. In general, demographic history of A. Angusmatches climatic dynamics of southern and southeastern Brazil during the Pleistocene and Holocene. Palynological records and reconstruction of the past climatic dynamics of southeastern and southern Brazil support the hypothesis of different population size recovery dynamics for populations from these regions.Até o momento, pouco se conhece sobre a relação entre história demográfica e a presente estrutura genética da A. Angus Como uma primeira tentativa em transpor esta deficiência, dados de microssatélites coletados em seis populações e freqüências alélicas de isoenzimas publicadas para 11 populações naturais desta espécie foram analisadas com o objetivo de acessar assinaturas moleculares da história demográfica populacional. Assinaturas de gargalos genéticos foram capturadas em todas as populações analisadas provenientes do Sudeste do Brasil. Entre as populações do Sul, assinaturas de pequeno tamanho populacional efetivo foram observadas em somente três entre 13 populações. Populações do Sul provavelmente apresentaram uma rápida recuperação do

  20. Stock enhancement or sea ranching? Insights from monitoring the genetic diversity, relatedness and effective population size in a seeded great scallop population (Pecten maximus)

    OpenAIRE

    Morvezen, R; Boudry, P; Laroche, J; Charrier, G

    2016-01-01

    The mass release of hatchery-propagated stocks raises numerous questions concerning its efficiency in terms of local recruitment and effect on the genetic diversity of wild populations. A seeding program, consisting of mass release of hatchery-produced juveniles in the local naturally occurring population of great scallops (Pecten maximus L.), was initiated in the early 1980s in the Bay of Brest (France). The present study aims at evaluating whether this seeding program leads to actual popula...

  1. POPULATION GENETICS OF Atta sexdens rubropilosa (HYMENOPTERA: FORMICIDAE

    Directory of Open Access Journals (Sweden)

    Liriana Belizário Cantagalli

    2013-01-01

    Full Text Available The genetic variability of Atta sexdens rubropilosa leaf-cutting ants collected from five brazilian localities was evaluated with PCR-RAPD technique. We used 15 primers producing 148 fragments of which 123 (83,11 % contained polymorphisms. The estimated Shannon index was 0.3836 ± 0.2335 showing that these ants possess high genetic diversity. The GST value was 0,2372 and PT = 0,184, indicating that the analyzed populations are moderately differentiated and 82 % of the variation obtained occur within populations. Although Mantel’s test had shown correlation between genetic distances and geographic was observed that Ivatuba and Itambé (33,8 km have the small geographical distance and the largest genetic distance. The lower genetic distance was estimated for Maringá and Ivatuba but this localities have a small geographic distance (42,3 km, indicating that there are no barriers for mating among reproducers in these populations. The high degree of polymorphism (83,11 % and the ability to cross among the populations in the studied regions indicate that this species of leaf-cutting ant is well adapted to the region; therefore, integrated control programs can be developed.

  2. Population genetics of Atta sexdens rubropilosa (Hymenoptera: Formicidae)

    International Nuclear Information System (INIS)

    Belizario Cantagalli, Liriana; Aparecida Mangolin, Claudete; Colla Ruvolo Takasusuki, Maria Claudia

    2013-01-01

    The genetic variability of Atta sexdens rubropilosa leaf-cutting ants collected from five Brazilian localities was evaluated with PCR-RAPD technique. we used 15 primers producing 148 fragments of which 123 (83.11 %) contained polymorphisms. the estimated Shannon index was 0.3836 ± 0.2335 showing that these ants possess high genetic diversity. the G S T value was 0.2372 and Φ p t = 0.184, indicating that the analyzed populations are moderately differentiated and 82 % of the variation obtained occur within populations. although mantel's test had shown correlation between genetic distances and geographic was observed that Ivatuba and Itambe (33.8 km) have the small geographical distance and the largest genetic distance. the lower genetic distance was estimated for Maringa and Ivatuba but this localities have a small geographic distance (42.3 km), indicating that there are no barriers for mating among reproducers in these populations. the high degree of polymorphism (83.11 %) and the ability to cross among the populations in the studied regions indicate that this species of leaf-cutting ant is well adapted to the region; therefore, integrated control programs can be developed.

  3. Population genetics of the aquatic fungus Tetracladium marchalianum over space and time.

    Science.gov (United States)

    Anderson, Jennifer L; Shearer, Carol A

    2011-01-14

    Aquatic hyphomycete fungi are fundamental mediators of energy flow and nutrient spiraling in rivers. These microscopic fungi are primarily dispersed in river currents, undergo substantial annual fluctuations in abundance, and reproduce either predominantly or exclusively asexually. These aspects of aquatic hyphomycete biology are expected to influence levels and distributions of genetic diversity over both spatial and temporal scales. In this study, we investigated the spatiotemporal distribution of genotypic diversity in the representative aquatic hyphomycete Tetracladium marchalianum. We sampled populations of this fungus from seven sites, three sites each in two rivers in Illinois, USA, and one site in a Wisconsin river, USA, and repeatedly sampled one population over two years to track population genetic parameters through two seasonal cycles. The resulting fungal isolates (N = 391) were genotyped at eight polymorphic microsatellite loci. In spite of seasonal reductions in the abundance of this species, genotypic diversity was consistently very high and allele frequencies remarkably stable over time. Likewise, genotypic diversity was very high at all sites. Genetic differentiation was only observed between the most distant rivers (∼450 km). Clear evidence that T. marchalianum reproduces sexually in nature was not observed. Additionally, we used phylogenetic analysis of partial β-tubulin gene sequences to confirm that the fungal isolates studied here represent a single species. These results suggest that populations of T. marchalianum may be very large and highly connected at local scales. We speculate that large population sizes and colonization of alternate substrates in both terrestrial and aquatic environments may effectively buffer the aquatic populations from in-stream population fluctuations and facilitate stability in allele frequencies over time. These data also suggest that overland dispersal is more important for structuring populations of T

  4. Population genetics of the aquatic fungus Tetracladium marchalianum over space and time.

    Directory of Open Access Journals (Sweden)

    Jennifer L Anderson

    2011-01-01

    Full Text Available Aquatic hyphomycete fungi are fundamental mediators of energy flow and nutrient spiraling in rivers. These microscopic fungi are primarily dispersed in river currents, undergo substantial annual fluctuations in abundance, and reproduce either predominantly or exclusively asexually. These aspects of aquatic hyphomycete biology are expected to influence levels and distributions of genetic diversity over both spatial and temporal scales. In this study, we investigated the spatiotemporal distribution of genotypic diversity in the representative aquatic hyphomycete Tetracladium marchalianum. We sampled populations of this fungus from seven sites, three sites each in two rivers in Illinois, USA, and one site in a Wisconsin river, USA, and repeatedly sampled one population over two years to track population genetic parameters through two seasonal cycles. The resulting fungal isolates (N = 391 were genotyped at eight polymorphic microsatellite loci. In spite of seasonal reductions in the abundance of this species, genotypic diversity was consistently very high and allele frequencies remarkably stable over time. Likewise, genotypic diversity was very high at all sites. Genetic differentiation was only observed between the most distant rivers (∼450 km. Clear evidence that T. marchalianum reproduces sexually in nature was not observed. Additionally, we used phylogenetic analysis of partial β-tubulin gene sequences to confirm that the fungal isolates studied here represent a single species. These results suggest that populations of T. marchalianum may be very large and highly connected at local scales. We speculate that large population sizes and colonization of alternate substrates in both terrestrial and aquatic environments may effectively buffer the aquatic populations from in-stream population fluctuations and facilitate stability in allele frequencies over time. These data also suggest that overland dispersal is more important for structuring

  5. How closely does genetic diversity in finite populations conform to predictions of neutral theory? Large deficits in regions of low recombination.

    Science.gov (United States)

    Frankham, R

    2012-03-01

    Levels of genetic diversity in finite populations are crucial in conservation and evolutionary biology. Genetic diversity is required for populations to evolve and its loss is related to inbreeding in random mating populations, and thus to reduced population fitness and increased extinction risk. Neutral theory is widely used to predict levels of genetic diversity. I review levels of genetic diversity in finite populations in relation to predictions of neutral theory. Positive associations between genetic diversity and population size, as predicted by neutral theory, are observed for microsatellites, allozymes, quantitative genetic variation and usually for mitochondrial DNA (mtDNA). However, there are frequently significant deviations from neutral theory owing to indirect selection at linked loci caused by balancing selection, selective sweeps and background selection. Substantially lower genetic diversity than predicted under neutrality was found for chromosomes with low recombination rates and high linkage disequilibrium (compared with 'normally' recombining chromosomes within species and adjusted for different copy numbers and mutation rates), including W (median 100% lower) and Y (89% lower) chromosomes, dot fourth chromosomes in Drosophila (94% lower) and mtDNA (67% lower). Further, microsatellite genetic and allelic diversity were lost at 12 and 33% faster rates than expected in populations adapting to captivity, owing to widespread selective sweeps. Overall, neither neutral theory nor most versions of the genetic draft hypothesis are compatible with all empirical results.

  6. Genetic structure of Potentilla acaulis (Rosaceae) populations ...

    African Journals Online (AJOL)

    Jane

    2011-07-18

    Jul 18, 2011 ... populations based on randomly amplified polymorphic. DNA (RAPD) in habitat ..... the correlation between ΦST values and genetic distances was highly ... Propagule recruitment from genets of perennial clonal plants could ...

  7. Familial clustering and genetic risk for dementia in a genetically isolated Dutch population.

    NARCIS (Netherlands)

    K. Sleegers (Kristel); F. Forey; J. Theuns (Jessie); Y.S. Aulchenko (Yurii); S. Rademakers (Suzanne); M. Cruts (Marc); W.A. van Gool (Willem); P. Heutink (Peter); B.A. Oostra (Ben); J.C. van Swieten (John); C.M. van Duijn (Cornelia); C. van Broeckhoven (Christine)

    2004-01-01

    textabstractDespite advances in elucidating the genetic epidemiology of Alzheimer's disease and frontotemporal dementia, the aetiology for most patients with dementia remains unclear. We examined the genetic epidemiology of dementia in a recent genetically isolated Dutch population founded around

  8. CDPOP: A spatially explicit cost distance population genetics program

    Science.gov (United States)

    Erin L. Landguth; S. A. Cushman

    2010-01-01

    Spatially explicit simulation of gene flow in complex landscapes is essential to explain observed population responses and provide a foundation for landscape genetics. To address this need, we wrote a spatially explicit, individual-based population genetics model (CDPOP). The model implements individual-based population modelling with Mendelian inheritance and k-allele...

  9. Genetic Differentiations among the Populations of Salvia japonica (Lamiaceae and Its Related Species

    Directory of Open Access Journals (Sweden)

    SUDARMONO

    2008-03-01

    Full Text Available Morphological and genetic variations within Salvia japonica (Lamiaceae and its related species in Japan were analyzed for clarifying their taxonomic significance. The genetic variations were explored through chloroplast and nuclear ribosomal DNA sequences and allozyme polymorphisms. Since chromosome numbers characterized the genus of Salvia, we also examined whether the karyotypes were different. We examined 58 populations of S. japonica and 14 populations of others species of Salvia. Among the populations of S. japonica represented four forms (f. japonica, f. longipes, f. lanuginosa and f. albiflora. The size of chromosomes were various among Salvia spp. Based on the allozyme as well as the DNA sequence, the populations of S. japonica separated from the others Salvia species. The populations of S. japonica exhibited four combinations of the morphological characters. However, these combinations did not correlate to the four forms of S. japonica. In addition, the morphological variations did not correlate to the allozyme and DNA sequences. It is suggested that the four morphological variations as well as the four form of S. japonica should not considered to be a taxonomic unit; accordingly, S. japonica were considered to be still at the early stage of speciation process.

  10. Reduced fine-scale spatial genetic structure in grazed populations of Dianthus carthusianorum.

    Science.gov (United States)

    Rico, Y; Wagner, H H

    2016-11-01

    Strong spatial genetic structure in plant populations can increase homozygosity, reducing genetic diversity and adaptive potential. The strength of spatial genetic structure largely depends on rates of seed dispersal and pollen flow. Seeds without dispersal adaptations are likely to be dispersed over short distances within the vicinity of the mother plant, resulting in spatial clustering of related genotypes (fine-scale spatial genetic structure, hereafter spatial genetic structure (SGS)). However, primary seed dispersal by zoochory can promote effective dispersal, increasing the mixing of seeds and influencing SGS within plant populations. In this study, we investigated the effects of seed dispersal by rotational sheep grazing on the strength of SGS and genetic diversity using 11 nuclear microsatellites for 49 populations of the calcareous grassland forb Dianthus carthusianorum. Populations connected by rotational sheep grazing showed significantly weaker SGS and higher genetic diversity than populations in ungrazed grasslands. Independent of grazing treatment, small populations showed significantly stronger SGS and lower genetic diversity than larger populations, likely due to genetic drift. A lack of significant differences in the strength of SGS and genetic diversity between populations that were recently colonized and pre-existing populations suggested that populations colonized after the reintroduction of rotational sheep grazing were likely founded by colonists from diverse source populations. We conclude that dispersal by rotational sheep grazing has the potential to considerably reduce SGS within D. carthusianorum populations. Our study highlights the effectiveness of landscape management by rotational sheep grazing to importantly reduce genetic structure at local scales within restored plant populations.

  11. [Genetic differentiation of Isaria farinosa populations in Anhui Province of East China].

    Science.gov (United States)

    Sun, Zhao-Hong; Luan, Feng-Gang; Zhang, Da-Min; Chen, Ming-Jun; Wang, Bin; Li, Zeng-Zhi

    2011-11-01

    Isaria farinosa is an important entomopathogenic fungus. By using ISSR, this paper studied the genetic heterogeneity of six I. farinosa populations at different localities of Anhui Province, East China. A total of 98.5% polymorphic loci were amplified with ten polymorphic primers, but the polymorphism at population level varied greatly, within the range of 59.6%-93.2%. The genetic differentiation index (G(st)) between the populations based on Nei's genetic heterogenesis analysis was 0.3365, and the gene flow (N(m)) was 0.4931. The genetic differentiation between the populations was lower than that within the populations, suggesting that the genetic variation of I. farinosa mainly come from the interior of the populations. The UPGMA clustering based on the genetic similarities between the isolates revealed that the Xishan population was monophylectic, while the other five populations were polyphylectic, with the Yaoluoping population being the most heterogenic and the Langyashan population being the least heterogenic. No correlations were observed between the geographic distance and the genetic distance of the populations. According to the UPGMA clustering based on the genetic distance between the populations, the six populations were classified into three groups, and this classification was accorded with the clustering based on geographic environment, suggesting the effects of environmental heterogeneity on the population heterogeneity.

  12. Familial clustering and genetic risk for dementia in a genetically isolated Dutch population

    NARCIS (Netherlands)

    Sleegers, K.; Roks, G.; Theuns, J.; Aulchenko, Y. S.; Rademakers, R.; Cruts, M.; van Gool, W. A.; van Broeckhoven, C.; Heutink, P.; Oostra, B. A.; van Swieten, J. C.; van Duijn, C. M.

    2004-01-01

    Despite advances in elucidating the genetic epidemiology of Alzheimer's disease and frontotemporal dementia, the aetiology for most patients with dementia remains unclear. We examined the genetic epidemiology of dementia in a recent genetically isolated Dutch population founded around 1750. The

  13. Genetic variability induction in the size of the size of rice plantules by combined irradiation and temperature treatments

    International Nuclear Information System (INIS)

    Garcia, D.; Gonzalez, L.M.; Gumberra, R.

    1993-01-01

    Induced variability in the size of rice plantules was determined using the heritability calculation in a narrow sense, by means of the progenitor-descendant regression. Progenitor stands for the original variety, whereas descendant stands for plant population from CO6 0 gamma-rays irradiated seeds (at 100-600 Gy doses), treated at different temperatures. Results obtained: show the possibility to increase efficiency in variability induction by a combined course of action of both factors. In this experience, the best combination turned out to be 300 Gy-0 celsius grated, which of all the changes that it caused, some 75 percent was of a genetic nature

  14. Genetic history of the African Sahelian populations.

    Science.gov (United States)

    Černý, V; Kulichová, I; Poloni, E S; Nunes, J M; Pereira, L; Mayor, A; Sanchez-Mazas, A

    2018-03-01

    From a biogeographic perspective, Africa is subdivided into distinct horizontal belts. Human populations living along the Sahel/Savannah belt south of the Sahara desert have often been overshadowed by extensive studies focusing on other African populations such as hunter-gatherers or Bantu in particular. However, the Sahel together with the Savannah bordering it in the south is a challenging region where people had and still have to cope with harsh climatic conditions and show resilient behaviours. Besides exponentially growing urban populations, several local groups leading various lifestyles and speaking languages belonging to three main linguistic families still live in rural localities across that region today. Thanks to several years of consistent population sampling throughout this area, the genetic history of the African Sahelian populations has been largely reconstructed and a deeper knowledge has been acquired regarding their adaptation to peculiar environments and/or subsistence modes. Distinct exposures to pathogens-in particular, malaria-likely contributed to their genetic differentiation for HLA genes. In addition, although food-producing strategies spread within the Sahel/Savannah belt relatively recently, during the last five millennia according to recent archaeological and archaeobotanical studies, remarkable amounts of genetic differences are also observed between sedentary farmers and more mobile pastoralists at multiple neutral and selected loci, reflecting both demographic effects and genetic adaptations to distinct cultural traits, such as dietary habits. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Genetic structure and diversity in Juniperus communis populations in Saxony, Germany

    Directory of Open Access Journals (Sweden)

    Reim Stefanie

    2016-06-01

    Full Text Available In recent years, land use changes led to a rapid decline and fragmentation of J. communis populations in Germany. Population isolation may lead to a restricted gene flow and, further, to negative effects on genetic variation. In this study, genetic diversity and population structure in seven fragmented J. communis populations in Saxony, Germany, were investigated using nuclear microsatellites (nSSR and chloroplast single nucleotide polymorphism (cpSNP. In all Saxony J. communis populations, a high genetic diversity was determined but no population differentiation could be detected whatever method was applied (Bayesian cluster analysis, F-statistics, AMOVA. The same was true for three J. communis out-group samples originating from Italy, Slovakia and Norway, which also showed high genetic diversity and low genetic differences regarding other J. communis populations. Low genetic differentiation among the J. communis populations ascertained with nuclear and chloroplast markers indicated high levels of gene flow by pollen and also by seeds between the sampled locations. Low genetic differentiation may also provide an indicator of Juniper survival during the last glacial maximum (LGM in Europe. The results of this study serve as a basis for the implementation of appropriate conservation measures in Saxony.

  16. Determination of the optimal sample size for a clinical trial accounting for the population size.

    Science.gov (United States)

    Stallard, Nigel; Miller, Frank; Day, Simon; Hee, Siew Wan; Madan, Jason; Zohar, Sarah; Posch, Martin

    2017-07-01

    The problem of choosing a sample size for a clinical trial is a very common one. In some settings, such as rare diseases or other small populations, the large sample sizes usually associated with the standard frequentist approach may be infeasible, suggesting that the sample size chosen should reflect the size of the population under consideration. Incorporation of the population size is possible in a decision-theoretic approach either explicitly by assuming that the population size is fixed and known, or implicitly through geometric discounting of the gain from future patients reflecting the expected population size. This paper develops such approaches. Building on previous work, an asymptotic expression is derived for the sample size for single and two-arm clinical trials in the general case of a clinical trial with a primary endpoint with a distribution of one parameter exponential family form that optimizes a utility function that quantifies the cost and gain per patient as a continuous function of this parameter. It is shown that as the size of the population, N, or expected size, N∗ in the case of geometric discounting, becomes large, the optimal trial size is O(N1/2) or O(N∗1/2). The sample size obtained from the asymptotic expression is also compared with the exact optimal sample size in examples with responses with Bernoulli and Poisson distributions, showing that the asymptotic approximations can also be reasonable in relatively small sample sizes. © 2016 The Author. Biometrical Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Genetic Diversity and Population Structure of Mesoamerican Jaguars (Panthera onca): Implications for Conservation and Management.

    Science.gov (United States)

    Wultsch, Claudia; Caragiulo, Anthony; Dias-Freedman, Isabela; Quigley, Howard; Rabinowitz, Salisa; Amato, George

    2016-01-01

    Mesoamerican jaguars (Panthera onca) have been extirpated from over 77% of their historic range, inhabiting fragmented landscapes at potentially reduced population sizes. Maintaining and restoring genetic diversity and connectivity across human-altered landscapes has become a major conservation priority; nonetheless large-scale genetic monitoring of natural populations is rare. This is the first regional conservation genetic study of jaguars to primarily use fecal samples collected in the wild across five Mesoamerican countries: Belize, Costa Rica, Guatemala, Honduras, and Mexico. We genotyped 445 jaguar fecal samples and examined patterns of genetic diversity and connectivity among 115 individual jaguars using data from 12 microsatellite loci. Overall, moderate levels of genetic variation were detected (NA = 4.50 ± 1.05, AR = 3.43 ± 0.22, HE = 0.59 ± 0.04), with Mexico having the lowest genetic diversity, followed by Honduras, Guatemala, Belize, and Costa Rica. Population-based gene flow measures (FST = 0.09 to 0.15, Dest = 0.09 to 0.21), principal component analysis, and Bayesian clustering applied in a hierarchical framework revealed significant genetic structure in Mesoamerican jaguars, roughly grouping individuals into four genetic clusters with varying levels of admixture. Gene flow was highest among Selva Maya jaguars (northern Guatemala and central Belize), whereas genetic differentiation among all other sampling sites was moderate. Genetic subdivision was most pronounced between Selva Maya and Honduran jaguars, suggesting limited jaguar movement between these close geographic regions and ultimately refuting the hypothesis of contemporary panmixia. To maintain a critical linkage for jaguars dispersing through the Mesoamerican landscape and ensure long-term viability of this near threatened species, we recommend continued management and maintenance of jaguar corridors. The baseline genetic data provided by this study underscores the importance of

  18. Exploration of genetic architecture through sib-ship reconstruction in advanced breeding population of Eucalyptus nitens.

    Directory of Open Access Journals (Sweden)

    Jaroslav Klápště

    Full Text Available Accurate inference of relatedness between individuals in breeding population contributes to the precision of genetic parameter estimates, effectiveness of inbreeding management and the amount of genetic progress delivered from breeding programs. Pedigree reconstruction has been proven to be an efficient tool to correct pedigree errors and recover hidden relatedness in open pollinated progeny tests but the method can be limited by the lack of parental genotypes and the high proportion of alien pollen from outside the breeding population. Our study investigates the efficiency of sib-ship reconstruction in an advanced breeding population of Eucalyptus nitens with only partially tracked pedigree. The sib-ship reconstruction allowed the identification of selfs (4% of the sample and the exploration of their potential effect on inbreeding depression in the traits studied. We detected signs of inbreeding depression in diameter at breast height and growth strain while no indications were observed in wood density, wood stiffness and tangential air-dry shrinkage. After the application of a corrected sib-ship relationship matrix, additive genetic variance and heritability were observed to increase where signs of inbreeding depression were initially detected. Conversely, the same genetic parameters for traits that appeared to be free of inbreeding depression decreased in size. It therefore appeared that greater genetic variance may be due, at least in part, to contributions from inbreeding in these studied populations rather than a removal of inbreeding as is traditionally thought.

  19. Determining causes of genetic isolation in a large carnivore (Ursus americanus population to direct contemporary conservation measures.

    Directory of Open Access Journals (Sweden)

    Agnès Pelletier

    Full Text Available The processes leading to genetic isolation influence a population's local extinction risk, and should thus be identified before conservation actions are implemented. Natural or human-induced circumstances can result in historical or contemporary barriers to gene flow and/or demographic bottlenecks. Distinguishing between these hypotheses can be achieved by comparing genetic diversity and differentiation in isolated vs. continuous neighboring populations. In Ontario, American black bears (Ursus americanus are continuously distributed, genetically diverse, and exhibit an isolation-by-distance structuring pattern, except on the Bruce Peninsula (BP. To identify the processes that led to the genetic isolation of BP black bears, we modelled various levels of historical and contemporary migration and population size reductions using forward simulations. We compared simulation results with empirical genetic indices from Ontario black bear populations under different levels of geographic isolation, and conducted additional simulations to determine if translocations could help achieve genetic restoration. From a genetic standpoint, conservation concerns for BP black bears are warranted because our results show that: i a recent demographic bottleneck associated with recently reduced migration best explains the low genetic diversity on the BP; and ii under sustained isolation, BP black bears could lose between 70% and 80% of their rare alleles within 100 years. Although restoring migration corridors would be the most effective method to enhance long-term genetic diversity and prevent inbreeding, it is unrealistic to expect connectivity to be re-established. Current levels of genetic diversity could be maintained by successfully translocating 10 bears onto the peninsula every 5 years. Such regular translocations may be more practical than landscape restoration, because areas connecting the peninsula to nearby mainland black bear populations have been

  20. Catastrophic floods may pave the way for increased genetic diversity in endemic artesian spring snail populations.

    Directory of Open Access Journals (Sweden)

    Jessica Worthington Wilmer

    Full Text Available The role of disturbance in the promotion of biological heterogeneity is widely recognised and occurs at a variety of ecological and evolutionary scales. However, within species, the impact of disturbances that decimate populations are neither predicted nor known to result in conditions that promote genetic diversity. Directly examining the population genetic consequences of catastrophic disturbances however, is rarely possible, as it requires both longitudinal genetic data sets and serendipitous timing. Our long-term study of the endemic aquatic invertebrates of the artesian spring ecosystem of arid central Australia has presented such an opportunity. Here we show a catastrophic flood event, which caused a near total population crash in an aquatic snail species (Fonscochlea accepta endemic to this ecosystem, may have led to enhanced levels of within species genetic diversity. Analyses of individuals sampled and genotyped from the same springs sampled both pre (1988-1990 and post (1995, 2002-2006 a devastating flood event in 1992, revealed significantly higher allelic richness, reduced temporal population structuring and greater effective population sizes in nearly all post flood populations. Our results suggest that the response of individual species to disturbance and severe population bottlenecks is likely to be highly idiosyncratic and may depend on both their ecology (whether they are resilient or resistant to disturbance and the stability of the environmental conditions (i.e. frequency and intensity of disturbances in which they have evolved.

  1. Study of human genetic diversity : inferences on population origin and history

    OpenAIRE

    Haber, Marc, 1980-

    2013-01-01

    Patterns of human genetic diversity suggest that all modern humans originated from a small population in Africa that expanded rapidly 50,000 years ago to occupy the whole world. While moving into new environments, genetic drift and natural selection affected populations differently, creating genetic structure. By understanding the genetic structure of human populations, we can reconstruct human history and understand the genetic basis of diseases. The work presented here contributes to the on...

  2. Population genetic testing for cancer susceptibility: founder mutations to genomes.

    Science.gov (United States)

    Foulkes, William D; Knoppers, Bartha Maria; Turnbull, Clare

    2016-01-01

    The current standard model for identifying carriers of high-risk mutations in cancer-susceptibility genes (CSGs) generally involves a process that is not amenable to population-based testing: access to genetic tests is typically regulated by health-care providers on the basis of a labour-intensive assessment of an individual's personal and family history of cancer, with face-to-face genetic counselling performed before mutation testing. Several studies have shown that application of these selection criteria results in a substantial proportion of mutation carriers being missed. Population-based genetic testing has been proposed as an alternative approach to determining cancer susceptibility, and aims for a more-comprehensive detection of mutation carriers. Herein, we review the existing data on population-based genetic testing, and consider some of the barriers, pitfalls, and challenges related to the possible expansion of this approach. We consider mechanisms by which population-based genetic testing for cancer susceptibility could be delivered, and suggest how such genetic testing might be integrated into existing and emerging health-care structures. The existing models of genetic testing (including issues relating to informed consent) will very likely require considerable alteration if the potential benefits of population-based genetic testing are to be fully realized.

  3. Analysis of genetic diversity in Brown Swiss, Jersey and Holstein populations using genome-wide single nucleotide polymorphism markers

    Directory of Open Access Journals (Sweden)

    Melka Melkaye G

    2012-03-01

    Full Text Available Abstract Background Studies of genetic diversity are essential in understanding the extent of differentiation between breeds, and in designing successful diversity conservation strategies. The objective of this study was to evaluate the level of genetic diversity within and between North American Brown Swiss (BS, n = 900, Jersey (JE, n = 2,922 and Holstein (HO, n = 3,535 cattle, using genotyped bulls. GENEPOP and FSTAT software were used to evaluate the level of genetic diversity within each breed and between each pair of the three breeds based on genome-wide SNP markers (n = 50,972. Results Hardy-Weinberg equilibrium (HWE exact test within breeds showed a significant deviation from equilibrium within each population (P st indicated that the combination of BS and HO in an ideally amalgamated population had higher genetic diversity than the other pairs of breeds. Conclusion Results suggest that the three bull populations have substantially different gene pools. BS and HO show the largest gene differentiation and jointly the highest total expected gene diversity compared to when JE is considered. If the loss of genetic diversity within breeds worsens in the future, the use of crossbreeding might be an option to recover genetic diversity, especially for the breeds with small population size.

  4. GENETIC VARIABILITY OF POLYMESODA EROSA POPULATION IN THE SEGARA ANAKAN CILACAP

    Directory of Open Access Journals (Sweden)

    AGUS NURYANTO

    2010-01-01

    Full Text Available Mud clams, Polymesoda erosa, in the Segara Anakan Cilacap are highly exploited by the local communities for daily consumption. This is presumed causing population decline and potentially causing loss of genetic diversity. Genetic diversity level within population can be obtained by population genetic study using molecular marker such as randomly amplified polymorphic DNA (RAPD. Here we amplified RAPD marker using ten arbitrary primers to assess genetic diversity of P. erosa population in the Segara Anakan Cilacap to provide genetic data for its sustainable use. The results proved that the use of RAPD marker has high polymorphisms. The mud clam population also showed a high level of heterozygosity and genetic diversity. This has important implication for the management plan towards sustainable use of P. erosa in the Segara Anakan Cilacap.

  5. The use of genetics for the management of a recovering population: temporal assessment of migratory peregrine falcons in North America.

    Directory of Open Access Journals (Sweden)

    Jeff A Johnson

    2010-11-01

    Full Text Available Our ability to monitor populations or species that were once threatened or endangered and in the process of recovery is enhanced by using genetic methods to assess overall population stability and size over time. This can be accomplished most directly by obtaining genetic measures from temporally-spaced samples that reflect the overall stability of the population as given by changes in genetic diversity levels (allelic richness and heterozygosity, degree of population differentiation (F(ST and D(EST, and effective population size (N(e. The primary goal of any recovery effort is to produce a long-term self-sustaining population, and these genetic measures provide a metric by which we can gauge our progress and help make important management decisions.The peregrine falcon in North America (Falco peregrinus tundrius and anatum was delisted in 1994 and 1999, respectively, and its abundance will be monitored by the species Recovery Team every three years until 2015. Although the United States Fish and Wildlife Service makes a distinction between tundrius and anatum subspecies, our genetic results based on eleven microsatellite loci suggest limited differentiation that can be attributed to an isolation by distance relationship and warrant no delineation of these two subspecies in its northern latitudinal distribution from Alaska through Canada into Greenland. Using temporal samples collected at Padre Island, Texas during migration (seven temporal time periods between 1985-2007, no significant differences in genetic diversity or significant population differentiation in allele frequencies between time periods were observed and were indistinguishable from those obtained from tundrius/anatum breeding locations throughout their northern distribution. Estimates of harmonic mean N(e were variable and imprecise, but always greater than 500 when employing multiple temporal genetic methods.These results, including those from simulations to assess the power of

  6. Multiple estimates of effective population size for monitoring a long-lived vertebrate: an application to Yellowstone grizzly bears.

    Science.gov (United States)

    Kamath, Pauline L; Haroldson, Mark A; Luikart, Gordon; Paetkau, David; Whitman, Craig; van Manen, Frank T

    2015-11-01

    Effective population size (N(e)) is a key parameter for monitoring the genetic health of threatened populations because it reflects a population's evolutionary potential and risk of extinction due to genetic stochasticity. However, its application to wildlife monitoring has been limited because it is difficult to measure in natural populations. The isolated and well-studied population of grizzly bears (Ursus arctos) in the Greater Yellowstone Ecosystem provides a rare opportunity to examine the usefulness of different N(e) estimators for monitoring. We genotyped 729 Yellowstone grizzly bears using 20 microsatellites and applied three single-sample estimators to examine contemporary trends in generation interval (GI), effective number of breeders (N(b)) and N(e) during 1982-2007. We also used multisample methods to estimate variance (N(eV)) and inbreeding N(e) (N(eI)). Single-sample estimates revealed positive trajectories, with over a fourfold increase in N(e) (≈100 to 450) and near doubling of the GI (≈8 to 14) from the 1980s to 2000s. N(eV) (240-319) and N(eI) (256) were comparable with the harmonic mean single-sample N(e) (213) over the time period. Reanalysing historical data, we found N(eV) increased from ≈80 in the 1910s-1960s to ≈280 in the contemporary population. The estimated ratio of effective to total census size (N(e) /N(c)) was stable and high (0.42-0.66) compared to previous brown bear studies. These results support independent demographic evidence for Yellowstone grizzly bear population growth since the 1980s. They further demonstrate how genetic monitoring of N(e) can complement demographic-based monitoring of N(c) and vital rates, providing a valuable tool for wildlife managers. © 2015 John Wiley & Sons Ltd.

  7. Genetic population structure of the malaria vector Anopheles baimaii in north-east India using mitochondrial DNA.

    Science.gov (United States)

    Sarma, Devojit K; Prakash, Anil; O'Loughlin, Samantha M; Bhattacharyya, Dibya R; Mohapatra, Pradumnya K; Bhattacharjee, Kanta; Das, Kanika; Singh, Sweta; Sarma, Nilanju P; Ahmed, Gias U; Walton, Catherine; Mahanta, Jagadish

    2012-03-20

    investigated. The lack of genetic population structure in the other north-east Indian populations likely reflects large population sizes of An. baimaii that, historically, were able to disperse through continuous forest habitats in the north-east India. Additional markers and analytical approaches are required to determine if recent deforestation is now preventing ongoing gene flow. Until such information is acquired, An. baimaii in north-east India should be treated as a single unit for the implementation of vector control measures.

  8. Genetic population structure of the malaria vector Anopheles baimaii in north-east India using mitochondrial DNA

    Directory of Open Access Journals (Sweden)

    Sarma Devojit K

    2012-03-01

    confirmed and its epidemiological significance further investigated. The lack of genetic population structure in the other north-east Indian populations likely reflects large population sizes of An. baimaii that, historically, were able to disperse through continuous forest habitats in the north-east India. Additional markers and analytical approaches are required to determine if recent deforestation is now preventing ongoing gene flow. Until such information is acquired, An. baimaii in north-east India should be treated as a single unit for the implementation of vector control measures.

  9. Competition in size-structured populations: mechanisms inducing cohort formation and population cycles

    NARCIS (Netherlands)

    de Roos, A.M.; Persson, L.

    2003-01-01

    In this paper we investigate the consequences of size-dependent competition among the individuals of a consumer population by analyzing the dynamic properties of a physiologically structured population model. Only 2 size-classes of individuals are distinguished: juveniles and adults. Juveniles and

  10. No loss of genetic diversity in the exploited and recently collapsed population of Bay of Biscay anchovy (Engraulis encrasicolus, L.)

    KAUST Repository

    Montes, Iratxe; Iriondo, Mikel; Manzano, Carmen; Santos, Maria; Conklin, Darrell; Carvalho, Gary R.; Irigoien, Xabier; Estonba, Andone

    2016-01-01

    The European anchovy, Engraulis encrasicolus, in the Bay of Biscay suffered a collapse in census population size (Nc) starting in 2002, from which it did not recover until 2010. The slow recovery raised concern over sustainability, potential reduction in adaptive potential, and vulnerability to local extirpation. Long- and short-term effective population size (Ne), Ne/Nc ratio, and other genetic parameters were estimated to evaluate demographic signals of population decline. A total of 349 neutral single-nucleotide polymorphisms (SNPs) were screened in 330 anchovy individuals from the Bay of Biscay distributed across a 20-year period. We show that Nc fluctuations have not significantly affected short-term Ne, and therefore, genetic diversity has remained stable throughout the recent collapse. This study illustrates that Ne estimates should be incorporated into management plans. Our results on short-term Ne suggested that the anchovy in the Bay of Biscay has not faced any recent severe threat of losing evolutionary potential due to genetic drift. However, differences between short- and long-term Ne estimates suggested that the Bay of Biscay anchovy population may be currently much smaller than in the historical past. © 2016, Springer-Verlag Berlin Heidelberg.

  11. No loss of genetic diversity in the exploited and recently collapsed population of Bay of Biscay anchovy (Engraulis encrasicolus, L.)

    KAUST Repository

    Montes, Iratxe

    2016-04-11

    The European anchovy, Engraulis encrasicolus, in the Bay of Biscay suffered a collapse in census population size (Nc) starting in 2002, from which it did not recover until 2010. The slow recovery raised concern over sustainability, potential reduction in adaptive potential, and vulnerability to local extirpation. Long- and short-term effective population size (Ne), Ne/Nc ratio, and other genetic parameters were estimated to evaluate demographic signals of population decline. A total of 349 neutral single-nucleotide polymorphisms (SNPs) were screened in 330 anchovy individuals from the Bay of Biscay distributed across a 20-year period. We show that Nc fluctuations have not significantly affected short-term Ne, and therefore, genetic diversity has remained stable throughout the recent collapse. This study illustrates that Ne estimates should be incorporated into management plans. Our results on short-term Ne suggested that the anchovy in the Bay of Biscay has not faced any recent severe threat of losing evolutionary potential due to genetic drift. However, differences between short- and long-term Ne estimates suggested that the Bay of Biscay anchovy population may be currently much smaller than in the historical past. © 2016, Springer-Verlag Berlin Heidelberg.

  12. Genetic variation in Rhodomyrtus tomentosa (Kemunting) populations from Malaysia as revealed by inter-simple sequence repeat markers.

    Science.gov (United States)

    Hue, T S; Abdullah, T L; Abdullah, N A P; Sinniah, U R

    2015-12-14

    Kemunting (Rhodomyrtus tomentosa) from the Myrtaceae family, is native to Malaysia. It is widely used in traditional medicine to treat various illnesses and possesses significant antibacterial properties. In addition, it has great potential as ornamental in landscape design. Genetic variability studies are important for the rational management and conservation of genetic material. In the present study, inter-simple sequence repeat markers were used to assess the genetic diversity of 18 R. tomentosa populations collected from ten states of Peninsular Malaysia. The 11 primers selected generated 173 bands that ranged in size from 1.6 kb to 130 bp, which corresponded to an average of 15.73 bands per primer. Of these bands, 97.69% (169 in total) were polymorphic. High genetic diversity was documented at the species level (H(T) = 0.2705; I = 0.3973; PPB = 97.69%) but there was a low diversity at population level (H(S) = 0.0073; I = 0 .1085; PPB = 20.14%). The high level of genetic differentiation revealed by G(ST) (73%) and analysis of molecular variance (63%), together with the limited gene flow among population (N(m) = 0.1851), suggests that the populations examined are isolated. Results from an unweighted pair group method with arithmetic mean dendrogram and principal coordinate analysis clearly grouped the populations into two geographic groups. This clear grouping can also be demonstrated by the significant Mantel test (r = 0.581, P = 0.001). We recommend that all the R. tomentosa populations be preserved in conservation program.

  13. Genetic genealogy comes of age: perspectives on the use of deep-rooted pedigrees in human population genetics.

    Science.gov (United States)

    Larmuseau, M H D; Van Geystelen, A; van Oven, M; Decorte, R

    2013-04-01

    In this article, we promote the implementation of extensive genealogical data in population genetic studies. Genealogical records can provide valuable information on the origin of DNA donors in a population genetic study, going beyond the commonly collected data such as residence, birthplace, language, and self-reported ethnicity. Recent studies demonstrated that extended genealogical data added to surname analysis can be crucial to detect signals of (past) population stratification and to interpret the population structure in a more objective manner. Moreover, when in-depth pedigree data are combined with haploid markers, it is even possible to disentangle signals of temporal differentiation within a population genetic structure during the last centuries. Obtaining genealogical data for all DNA donors in a population genetic study is a labor-intensive task but the vastly growing (genetic) genealogical databases, due to the broad interest of the public, are making this job more time-efficient if there is a guarantee for sufficient data quality. At the end, we discuss the advantages and pitfalls of using genealogy within sampling campaigns and we provide guidelines for future population genetic studies. Copyright © 2013 Wiley Periodicals, Inc.

  14. Loss of genetic diversity in Maculinea populations over 10 years

    DEFF Research Database (Denmark)

    Nash, David Richard; Lomborg, Andreas Eg

    I will present the results of research on the population genetics of Maculinea alcon and M. arion in Southern scandinavia, which shows a strong decrease in genetic diversity in most populations, even if those populations are apparently otherwise healthy....

  15. The heterogeneous HLA genetic makeup of the Swiss population.

    Science.gov (United States)

    Buhler, Stéphane; Nunes, José Manuel; Nicoloso, Grazia; Tiercy, Jean-Marie; Sanchez-Mazas, Alicia

    2012-01-01

    This study aims at investigating the HLA molecular variation across Switzerland in order to determine possible regional differences, which would be highly relevant to several purposes: optimizing donor recruitment strategies in hematopoietic stem cell transplantation (HSCT), providing reliable reference data in HLA and disease association studies, and understanding the population genetic background(s) of this culturally heterogeneous country. HLA molecular data of more than 20,000 HSCT donors from 9-13 recruitment centers of the whole country were analyzed. Allele and haplotype frequencies were estimated by using new computer tools adapted to the heterogeneity and ambiguity of the data. Non-parametric and resampling statistical tests were performed to assess Hardy-Weinberg equilibrium, selective neutrality and linkage disequilibrium among different loci, both in each recruitment center and in the whole national registry. Genetic variation was explored through genetic distance and hierarchical analysis of variance taking into account both geographic and linguistic subdivisions in Switzerland. The results indicate a heterogeneous genetic makeup of the Swiss population: first, allele frequencies estimated on the whole national registry strongly deviate from Hardy-Weinberg equilibrium, by contrast with the results obtained for individual centers; second, a pronounced differentiation is observed for Ticino, Graubünden, and, to a lesser extent, Wallis, suggesting that the Alps represent(ed) a barrier to gene flow; finally, although cultural (linguistic) boundaries do not represent a main genetic differentiation factor in Switzerland, the genetic relatedness between population from south-eastern Switzerland and Italy agrees with historical and linguistic data. Overall, this study justifies the maintenance of a decentralized donor recruitment structure in Switzerland allowing increasing the genetic diversity of the national--and hence global--donor registry. It also

  16. Population genetic structure of rare and endangered plants using molecular markers

    Science.gov (United States)

    Raji, Jennifer; Atkinson, Carter T.

    2013-01-01

    This study was initiated to assess the levels of genetic diversity and differentiation in the remaining populations of Phyllostegia stachyoides and Melicope zahlbruckneri in Hawai`i Volcanoes National Park and determine the extent of gene flow to identify genetically distinct individuals or groups for conservation purposes. Thirty-six Amplified Fragment Length Polymorphic (AFLP) primer combinations generated a total of 3,242 polymorphic deoxyribonucleic acid (DNA) fragments in the P. stachyoides population with a percentage of polymorphic bands (PPB) ranging from 39.3 to 65.7% and 2,780 for the M. zahlbruckneri population with a PPB of 18.8 to 64.6%. Population differentiation (Fst) of AFLP loci between subpopulations of P. stachyoides was low (0.043) across populations. Analysis of molecular variance of P. stachyoides showed that 4% of the observed genetic differentiation occurred between populations in different kīpuka and 96% when individuals were pooled from all kīpuka. Moderate genetic diversity was detected within the M. zahlbruckneri population. Bayesian and multivariate analyses both classified the P. stachyoides and M. zahlbruckneri populations into genetic groups with considerable sub-structuring detected in the P. stachyoides population. The proportion of genetic differentiation among populations explained by geographical distance was estimated by Mantel tests. No spatial correlation was found between genetic and geographic distances in both populations. Finally, a moderate but significant gene flow that could be attributed to insect or bird-mediated dispersal of pollen across the different kīpuka was observed. The results of this study highlight the utility of a multi-allelic DNA-based marker in screening a large number of polymorphic loci in small and closely related endangered populations and revealed the presence of genetically unique groups of individuals in both M. zahlbruckneri and P. stachyoides populations. Based on these findings

  17. Genetic diversity in different populations of sloths assessed by DNA fingerprinting

    Directory of Open Access Journals (Sweden)

    MORAES N.

    2002-01-01

    Full Text Available In this study we analyzed a population of Bradypus torquatus with individuals originally distributed in different localities of Bahia, and two populations of B. variegatus with individuals from Bahia and São Paulo States. Using the DNA fingerprinting method, we assessed the genetic variability within and between populations. Analysis of the DNA profiles revealed genetic similarity indices ranging from 0.34 ± 0.07 to 0.87 ± 0.04. Similar low levels of genetic variability were found only in isolated mammalian populations or among related individuals. This study presents the first analyses of genetic diversity in sloth populations.

  18. Population genetics of Glossina palpalis palpalis from central African sleeping sickness foci

    Directory of Open Access Journals (Sweden)

    Solano Philippe

    2011-07-01

    Full Text Available Abstract Background Glossina palpalis palpalis (Diptera: Glossinidae is widespread in west Africa, and is the main vector of sleeping sickness in Cameroon as well as in the Bas Congo Province of the Democratic Republic of Congo. However, little is known on the structure of its populations. We investigated G. p. palpalis population genetic structure in five sleeping sickness foci (four in Cameroon, one in Democratic Republic of Congo using eight microsatellite DNA markers. Results A strong isolation by distance explains most of the population structure observed in our sampling sites of Cameroon and DRC. The populations here are composed of panmictic subpopulations occupying fairly wide zones with a very strong isolation by distance. Effective population sizes are probably between 20 and 300 individuals and if we assume densities between 120 and 2000 individuals per km2, dispersal distance between reproducing adults and their parents extends between 60 and 300 meters. Conclusions This first investigation of population genetic structure of G. p. palpalis in Central Africa has evidenced random mating subpopulations over fairly large areas and is thus at variance with that found in West African populations of G. p. palpalis. This study brings new information on the isolation by distance at a macrogeographic scale which in turn brings useful information on how to organise regional tsetse control. Future investigations should be directed at temporal sampling to have more accurate measures of demographic parameters in order to help vector control decision.

  19. Refining and defining riverscape genetics: How rivers influence population genetic structure

    Science.gov (United States)

    Chanté D. Davis; Clinton W. Epps; Rebecca L. Flitcroft; Michael A. Banks

    2018-01-01

    Traditional analysis in population genetics evaluates differences among groups of individuals and, in some cases, considers the effects of distance or potential barriers to gene flow. Genetic variation of organisms in complex landscapes, seascapes, or riverine systems, however, may be shaped by many forces. Recent research has linked habitat heterogeneity and landscape...

  20. Two disjunct Pleistocene populations and anisotropic postglacial expansion shaped the current genetic structure of the relict plant Amborella trichopoda.

    Directory of Open Access Journals (Sweden)

    Rémi Tournebize

    Full Text Available Past climate fluctuations shaped the population dynamics of organisms in space and time, and have impacted their present intra-specific genetic structure. Demo-genetic modelling allows inferring the way past demographic and migration dynamics have determined this structure. Amborella trichopoda is an emblematic relict plant endemic to New Caledonia, widely distributed in the understory of non-ultramafic rainforests. We assessed the influence of the last glacial climates on the demographic history and the paleo-distribution of 12 Amborella populations covering the whole current distribution. We performed coalescent genetic modelling of these dynamics, based on both whole-genome resequencing and microsatellite genotyping data. We found that the two main genetic groups of Amborella were shaped by the divergence of two ancestral populations during the last glacial maximum. From 12,800 years BP, the South ancestral population has expanded 6.3-fold while the size of the North population has remained stable. Recent asymmetric gene flow between the groups further contributed to the phylogeographical pattern. Spatially explicit coalescent modelling allowed us to estimate the location of ancestral populations with good accuracy (< 22 km and provided indications regarding the mid-elevation pathways that facilitated post-glacial expansion.

  1. Genetics of human body size and shape: pleiotropic and independent genetic determinants of adiposity.

    Science.gov (United States)

    Livshits, G; Yakovenko, K; Ginsburg, E; Kobyliansky, E

    1998-01-01

    The present study utilized pedigree data from three ethnically different populations of Kirghizstan, Turkmenia and Chuvasha. Principal component analysis was performed on a matrix of genetic correlations between 22 measures of adiposity, including skinfolds, circumferences and indices. Findings are summarized as follows: (1) All three genetic matrices were not positive definite and the first four factors retained even after exclusion RG > or = 1.0, explained from 88% to 97% of the total additive genetic variation in the 22 trials studied. This clearly emphasizes the massive involvement of pleiotropic gene effects in the variability of adiposity traits. (2) Despite the quite natural differences in pairwise correlations between the adiposity traits in the three ethnically different samples under study, factor analysis revealed a common basic pattern of covariability for the adiposity traits. In each of the three samples, four genetic factors were retained, namely, the amount of subcutaneous fat, the total body obesity, the pattern of distribution of subcutaneous fat and the central adiposity distribution. (3) Genetic correlations between the retained four factors were virtually non-existent, suggesting that several independent genetic sources may be governing the variation of adiposity traits. (4) Variance decomposition analysis on the obtained genetic factors leaves no doubt regarding the substantial familial and (most probably genetic) effects on variation of each factor in each studied population. The similarity of results in the three different samples indicates that the findings may be deemed valid and reliable descriptions of the genetic variation and covariation pattern of adiposity traits in the human species.

  2. Genetic diversity and population structure of sweet cassava using ...

    African Journals Online (AJOL)

    The objective of this study was to evaluate the population structure and genetic diversity among 66 sweet cassava (Manihot esculenta Crantz) traditional accessions collected in Maringa, Parana, Brazil, using microsatellite molecular markers. Population structure was analyzed by means of genetic distances and ...

  3. gPGA: GPU Accelerated Population Genetics Analyses.

    Directory of Open Access Journals (Sweden)

    Chunbao Zhou

    Full Text Available The isolation with migration (IM model is important for studies in population genetics and phylogeography. IM program applies the IM model to genetic data drawn from a pair of closely related populations or species based on Markov chain Monte Carlo (MCMC simulations of gene genealogies. But computational burden of IM program has placed limits on its application.With strong computational power, Graphics Processing Unit (GPU has been widely used in many fields. In this article, we present an effective implementation of IM program on one GPU based on Compute Unified Device Architecture (CUDA, which we call gPGA.Compared with IM program, gPGA can achieve up to 52.30X speedup on one GPU. The evaluation results demonstrate that it allows datasets to be analyzed effectively and rapidly for research on divergence population genetics. The software is freely available with source code at https://github.com/chunbaozhou/gPGA.

  4. High genetic structure and low mitochondrial diversity in bottlenose dolphins of the Archipelago of Bocas del Toro, Panama: A population at risk?

    Science.gov (United States)

    Barragán-Barrera, Dalia C; May-Collado, Laura J; Tezanos-Pinto, Gabriela; Islas-Villanueva, Valentina; Correa-Cárdenas, Camilo A; Caballero, Susana

    2017-01-01

    The current conservation status of the bottlenose dolphin (Tursiops truncatus) under the IUCN is 'least concern'. However, in the Caribbean, small and localized populations of the 'inshore form' may be at higher risk of extinction than the 'worldwide distributed form' due to a combination of factors including small population size, high site fidelity, genetic isolation, and range overlap with human activities. Here, we study the population genetic structure of bottlenose dolphins from the Archipelago of Bocas del Toro in Panama. This is a small population characterized by high site fidelity and is currently heavily-impacted by the local dolphin-watching industry. We collected skin tissue samples from 25 dolphins to study the genetic diversity and structure of this population. We amplified a portion of the mitochondrial Control Region (mtDNA-CR) and nine microsatellite loci. The mtDNA-CR analyses revealed that dolphins in Bocas del Toro belong to the 'inshore form', grouped with the Bahamas-Colombia-Cuba-Mexico population unit. They also possess a unique haplotype new for the Caribbean. The microsatellite data indicated that the Bocas del Toro dolphin population is highly structured, likely due to restricted movement patterns. Previous abundance estimates obtained with mark-recapture methods reported a small population of 80 dolphins (95% CI = 72-87), which is similar to the contemporary effective population size estimated in this study (Ne = 73 individuals; CI = 18.0 - ∞; 0.05). The combination of small population size, high degree of genetic isolation, and intense daily interactions with dolphin-watching boats puts the Bocas del Toro dolphin to at high risk of extinction. Despite national guidelines to regulate the dolphin-watching industry in Bocas del Toro and ongoing educational programs for tour operators, only in 2012 seven animals have died due to boat collisions. Our results suggest that the conservation status of bottlenose dolphins in Bocas del Toro

  5. High genetic structure and low mitochondrial diversity in bottlenose dolphins of the Archipelago of Bocas del Toro, Panama: A population at risk?

    Directory of Open Access Journals (Sweden)

    Dalia C Barragán-Barrera

    Full Text Available The current conservation status of the bottlenose dolphin (Tursiops truncatus under the IUCN is 'least concern'. However, in the Caribbean, small and localized populations of the 'inshore form' may be at higher risk of extinction than the 'worldwide distributed form' due to a combination of factors including small population size, high site fidelity, genetic isolation, and range overlap with human activities. Here, we study the population genetic structure of bottlenose dolphins from the Archipelago of Bocas del Toro in Panama. This is a small population characterized by high site fidelity and is currently heavily-impacted by the local dolphin-watching industry. We collected skin tissue samples from 25 dolphins to study the genetic diversity and structure of this population. We amplified a portion of the mitochondrial Control Region (mtDNA-CR and nine microsatellite loci. The mtDNA-CR analyses revealed that dolphins in Bocas del Toro belong to the 'inshore form', grouped with the Bahamas-Colombia-Cuba-Mexico population unit. They also possess a unique haplotype new for the Caribbean. The microsatellite data indicated that the Bocas del Toro dolphin population is highly structured, likely due to restricted movement patterns. Previous abundance estimates obtained with mark-recapture methods reported a small population of 80 dolphins (95% CI = 72-87, which is similar to the contemporary effective population size estimated in this study (Ne = 73 individuals; CI = 18.0 - ∞; 0.05. The combination of small population size, high degree of genetic isolation, and intense daily interactions with dolphin-watching boats puts the Bocas del Toro dolphin to at high risk of extinction. Despite national guidelines to regulate the dolphin-watching industry in Bocas del Toro and ongoing educational programs for tour operators, only in 2012 seven animals have died due to boat collisions. Our results suggest that the conservation status of bottlenose dolphins in

  6. Shallow Population Genetic Structures of Thread-sail Filefish (Stephanolepis cirrhifer) Populations from Korean Coastal Waters.

    Science.gov (United States)

    Yoon, M; Park, W; Nam, Y K; Kim, D S

    2012-02-01

    Genetic diversities, population genetic structures and demographic histories of the thread-sail filefish Stephanolepis cirrhifer were investigated by nucleotide sequencing of 336 base pairs of the mitochondrial DNA (mtDNA) control region in 111 individuals collected from six populations in Korean coastal waters. A total of 70 haplotypes were defined by 58 variable nucleotide sites. The neighbor-joining tree of the 70 haplotypes was shallow and did not provide evidence of geographical associations. Expansion of S. cirrhifer populations began approximate 51,000 to 102,000 years before present, correlating with the period of sea level rise since the late Pleistocene glacial maximum. High levels of haplotype diversities (0.974±0.029 to 1.000±0.076) and nucleotide diversities (0.014 to 0.019), and low levels of genetic differentiation among populations inferred from pairwise population F ST values (-0.007 to 0.107), support an expansion of the S. cirrhifer population. Hierarchical analysis of molecular variance (AMOVA) revealed weak but significant genetic structures among three groups (F CT = 0.028, p<0.05), and no genetic variation within groups (0.53%; F SC = 0.005, p = 0.23). These results may help establish appropriate fishery management strategies for stocks of S. cirrhifer and related species.

  7. Population genetics of commercial and feral honey bees in Western Australia.

    Science.gov (United States)

    Chapman, Nadine C; Lim, Julianne; Oldroyd, Benjamin P

    2008-04-01

    Due to the introduction of exotic honey bee (Apis mellifera L.) diseases in the eastern states, the borders of the state of Western Australia were closed to the import of bees for breeding and other purposes > 25 yr ago. To provide genetically improved stock for the industry, a closed population breeding program was established that now provides stock for the majority of Western Australian beekeepers. Given concerns that inbreeding may have resulted from the closed population breeding structure, we assessed the genetic diversity within and between the breeding lines by using microsatellite and mitochondrial markers. We found that the breeding population still maintains considerable genetic diversity, despite 25 yr of selective breeding. We also investigated the genetic distance of the closed population breeding program to that of beekeepers outside of the program, and the feral Western Australian honey bee population. The feral population is genetically distinct from the closed population, but not from the genetic stock maintained by beekeepers outside of the program. The honey bees of Western Australia show three mitotypes, originating from two subspecies: Apis mellifera ligustica (mitotypes C1 and M7b) and Apis mellifera iberica (mitotype M6). Only mitotypes C1 and M6 are present in the commercial populations. The feral population contains all three mitotypes.

  8. Microsatellite variability reveals high genetic diversity and low genetic differentiation in a critical giant panda population

    Directory of Open Access Journals (Sweden)

    Jiandong YANG, Zhihe ZHANG, Fujun SHEN, Xuyu YANG, Liang ZHANG, Limin CHEN, Wenping ZHANG, Qing ZHU, Rong HOU

    2011-12-01

    Full Text Available Understanding present patterns of genetic diversity is critical in order to design effective conservation and management strategies for endangered species. Tangjiahe Nature Reserve (NR is one of the most important national reserves for giant pandas Ailuropoda melanoleuca in China. Previous studies have shown that giant pandas in Tangjiahe NR may be threatened by population decline and fragmentation. Here we used 10 microsatellite DNA markers to assess the genetic variability in the Tangjiahe population. The results indicate a low level of genetic differentiation between the Hongshihe and Motianling subpopulations in the reserve. Assignment tests using the Bayesian clustering method in STRUCTURE identified one genetic cluster from 42 individuals of the two subpopulations. All individuals from the same subpopulation were assigned to one cluster. This indicates high gene flow between subpopulations. F statistic analyses revealed a low FIS-value of 0.024 in the total population and implies a randomly mating population in Tangjiahe NR. Additionally, our data show a high level of genetic diversity for the Tangjiahe population. Mean allele number (A, Allelic richness (AR and mean expected heterozygosity (HE for the Tangjiahe population was 5.9, 5.173 and 0.703, respectively. This wild giant panda population can be restored through concerted effort [Current Zoology 57 (6: 717–724, 2011].

  9. A biogeographical population genetics perspective of the colonization of cats in Latin America and temporal genetic changes in Brazilian cat populations

    Directory of Open Access Journals (Sweden)

    Manuel Ruiz-García

    2008-01-01

    Full Text Available We used nine morphological genes to analyze cat populations from Mexico, the Dominican Republic, the Colombian, Brazilian and Peruvian Amazon, Bolivia and Brazil. Most populations were in Hardy-Weinberg equilibrium at the O locus. The highest allele frequencies so far detected at world level for alleles I (inhibitor and L (long hair were found at La Paz (Bolivia. The analyses revealed at least five cat gene pools in Latin America: These findings suggest that the current genetic distribution of cats in Latin America correlates with the colonization of the Americas during the XIV to XVIII centuries. Additionally, the cat populations of São Paulo, Rio de Janeiro and Manaus were sampled, to compare their 1996-2003 genetic profiles with those obtained in 1983. Generally, these genetic profiles seem temporally stable, which is important for comparing cat populations sampled in different years and decades.

  10. HIV populations are large and accumulate high genetic diversity in a nonlinear fashion.

    Science.gov (United States)

    Maldarelli, Frank; Kearney, Mary; Palmer, Sarah; Stephens, Robert; Mican, JoAnn; Polis, Michael A; Davey, Richard T; Kovacs, Joseph; Shao, Wei; Rock-Kress, Diane; Metcalf, Julia A; Rehm, Catherine; Greer, Sarah E; Lucey, Daniel L; Danley, Kristen; Alter, Harvey; Mellors, John W; Coffin, John M

    2013-09-01

    HIV infection is characterized by rapid and error-prone viral replication resulting in genetically diverse virus populations. The rate of accumulation of diversity and the mechanisms involved are under intense study to provide useful information to understand immune evasion and the development of drug resistance. To characterize the development of viral diversity after infection, we carried out an in-depth analysis of single genome sequences of HIV pro-pol to assess diversity and divergence and to estimate replicating population sizes in a group of treatment-naive HIV-infected individuals sampled at single (n = 22) or multiple, longitudinal (n = 11) time points. Analysis of single genome sequences revealed nonlinear accumulation of sequence diversity during the course of infection. Diversity accumulated in recently infected individuals at rates 30-fold higher than in patients with chronic infection. Accumulation of synonymous changes accounted for most of the diversity during chronic infection. Accumulation of diversity resulted in population shifts, but the rates of change were low relative to estimated replication cycle times, consistent with relatively large population sizes. Analysis of changes in allele frequencies revealed effective population sizes that are substantially higher than previous estimates of approximately 1,000 infectious particles/infected individual. Taken together, these observations indicate that HIV populations are large, diverse, and slow to change in chronic infection and that the emergence of new mutations, including drug resistance mutations, is governed by both selection forces and drift.

  11. Microsatellites Reveal Genetic Homogeneity among Outbreak Populations of Crown-of-Thorns Starfish (Acanthaster cf. solaris) on Australia’s Great Barrier Reef

    KAUST Repository

    Harrison, Hugo

    2017-03-10

    Specific patterns in the initiation and spread of reef-wide outbreaks of crown-of-thorns starfish are important, both to understand potential causes (or triggers) of outbreaks and to develop more effective and highly targeted management and containment responses. Using analyses of genetic diversity and structure (based on 17 microsatellite loci), this study attempted to resolve the specific origin for recent outbreaks of crown-of-thorns on Australia’s Great Barrier Reef (GBR). We assessed the genetic structure amongst 2705 starfish collected from 13 coral reefs in four regions that spanned ~1000 km of the GBR. Our results indicate that populations sampled across the full length of the GBR are genetically homogeneous (G’ST = −0.001; p = 0.948) with no apparent genetic structure between regions. Approximate Bayesian computational analyses suggest that all sampled populations had a common origin and that current outbreaking populations of crown-of-thorns starfish (CoTS) in the Swains are not independent of outbreak populations in the northern GBR. Despite hierarchical sampling and large numbers of CoTS genotyped from individual reefs and regions, limited genetic structure meant we were unable to determine a putative source population for the current outbreak of CoTS on the GBR. The very high genetic homogeneity of sampled populations and limited evidence of inbreeding indicate rapid expansion in population size from multiple, undifferentiated latent populations.

  12. Microsatellites Reveal Genetic Homogeneity among Outbreak Populations of Crown-of-Thorns Starfish (Acanthaster cf. solaris) on Australia’s Great Barrier Reef

    KAUST Repository

    Harrison, Hugo; Pratchett, Morgan; Messmer, Vanessa; Saenz-Agudelo, Pablo; Berumen, Michael L.

    2017-01-01

    Specific patterns in the initiation and spread of reef-wide outbreaks of crown-of-thorns starfish are important, both to understand potential causes (or triggers) of outbreaks and to develop more effective and highly targeted management and containment responses. Using analyses of genetic diversity and structure (based on 17 microsatellite loci), this study attempted to resolve the specific origin for recent outbreaks of crown-of-thorns on Australia’s Great Barrier Reef (GBR). We assessed the genetic structure amongst 2705 starfish collected from 13 coral reefs in four regions that spanned ~1000 km of the GBR. Our results indicate that populations sampled across the full length of the GBR are genetically homogeneous (G’ST = −0.001; p = 0.948) with no apparent genetic structure between regions. Approximate Bayesian computational analyses suggest that all sampled populations had a common origin and that current outbreaking populations of crown-of-thorns starfish (CoTS) in the Swains are not independent of outbreak populations in the northern GBR. Despite hierarchical sampling and large numbers of CoTS genotyped from individual reefs and regions, limited genetic structure meant we were unable to determine a putative source population for the current outbreak of CoTS on the GBR. The very high genetic homogeneity of sampled populations and limited evidence of inbreeding indicate rapid expansion in population size from multiple, undifferentiated latent populations.

  13. Genetic variation and population structure of interleukin genes ...

    Indian Academy of Sciences (India)

    ... phylogenetic analysis based on genetic distances between populations agreed with known social and cultural data ... thus, impact on community genetics (Bittles 2001, 2002). ... reflect an interaction between evolutionary and demographic.

  14. Genetic Evaluation of Natural Populations of the Endangered Conifer Thuja koraiensis Using Microsatellite Markers by Restriction-Associated DNA Sequencing

    Directory of Open Access Journals (Sweden)

    Lu Hou

    2018-04-01

    Full Text Available Thuja koraiensis Nakai is an endangered conifer of high economic and ecological value in Jilin Province, China. However, studies on its population structure and conservation genetics have been limited by the lack of genomic data. Here, 37,761 microsatellites (simple sequence repeat, SSR were detected based on 875,792 de novo-assembled contigs using a restriction-associated DNA (RAD approach. Among these SSRs, 300 were randomly selected to test for polymorphisms and 96 obtained loci were able to amplify a fragment of expected size. Twelve polymorphic SSR markers were developed to analyze the genetic diversity and population structure of three natural populations. High genetic diversity (mean NA = 5.481, HE = 0.548 and moderate population differentiation (pairwise Fst = 0.048–0.078, Nm = 2.940–4.958 were found in this species. Molecular variance analysis suggested that most of the variation (83% existed within populations. Combining the results of STRUCTURE, principal coordinate, and neighbor-joining analysis, the 232 individuals were divided into three genetic clusters that generally correlated with their geographical distributions. Finally, appropriate conservation strategies were proposed to protect this species. This study provides genetic information for the natural resource conservation and utilization of T. koraiensis and will facilitate further studies of the evolution and phylogeography of the species.

  15. Genetic diversity and population structure in contemporary house sparrow populations along an urbanization gradient

    OpenAIRE

    Vangestel, C; Mergeay, Joachim; Dawson, D. A; Callens, T; Vandomme, V; Lens, L

    2012-01-01

    House sparrow (Passer domesticus) populations have suffered major declines in urban as well as rural areas, while remaining relatively stable in suburban ones. Yet, to date no exhaustive attempt has been made to examine how, and to what extent, spatial variation in population demography is reflected in genetic population structuring along contemporary urbanization gradients. Here we use putatively neutral microsatellite loci to study if and how genetic variation can be partitioned in a hierar...

  16. Colony social organization and population genetic structure of an introduced population of formosan subterranean termite from New Orleans, Louisiana.

    Science.gov (United States)

    Husseneder, Claudia; Messenger, Matthew T; Su, Nan-Yao; Grace, J Kenneth; Vargo, Edward L

    2005-10-01

    The Formosan subterranean termite, Coptotermes formosanus Shiraki, is an invasive species in many parts of the world, including the U.S. mainland. The reasons for its invasive success may have to do with the flexible social and spatial organization of colonies. We investigated the population and breeding structure of 14 C. formosanus colonies in Louis Armstrong Park, New Orleans, LA. This population has been the focus of extensive study for many years, providing the opportunity to relate aspects of colony breeding structure to previous findings on colony characteristics such as body weight and number of workers, wood consumption, and intercolony aggression. Eight colonies were headed by a single pair of outbred reproductives (simple families), whereas six colonies were headed by low numbers of multiple kings and/or queens that were likely the neotenic descendants of the original colony (extended families). Within the foraging area of one large extended family colony, we found genetic differentiation among different collection sites, suggesting the presence of separate reproductive centers. No significant difference between simple family colonies and extended family colonies was found in worker body weight, soldier body weight, foraging area, population size, or wood consumption. However, level of inbreeding within colonies was negatively correlated with worker body weight and positively correlated with wood consumption. Also, genetic distance between colonies was positively correlated with aggression levels, suggesting a genetic basis to nestmate discrimination cues in this termite population. No obvious trait associated with colony reproductive structure was found that could account for the invasion success of this species.

  17. Genetic Allee effects and their interaction with ecological Allee effects.

    Science.gov (United States)

    Wittmann, Meike J; Stuis, Hanna; Metzler, Dirk

    2018-01-01

    It is now widely accepted that genetic processes such as inbreeding depression and loss of genetic variation can increase the extinction risk of small populations. However, it is generally unclear whether extinction risk from genetic causes gradually increases with decreasing population size or whether there is a sharp transition around a specific threshold population size. In the ecological literature, such threshold phenomena are called 'strong Allee effects' and they can arise for example from mate limitation in small populations. In this study, we aim to (i) develop a meaningful notion of a 'strong genetic Allee effect', (ii) explore whether and under what conditions such an effect can arise from inbreeding depression due to recessive deleterious mutations, and (iii) quantify the interaction of potential genetic Allee effects with the well-known mate-finding Allee effect. We define a strong genetic Allee effect as a genetic process that causes a population's survival probability to be a sigmoid function of its initial size. The inflection point of this function defines the critical population size. To characterize survival-probability curves, we develop and analyse simple stochastic models for the ecology and genetics of small populations. Our results indicate that inbreeding depression can indeed cause a strong genetic Allee effect, but only if individuals carry sufficiently many deleterious mutations (lethal equivalents). Populations suffering from a genetic Allee effect often first grow, then decline as inbreeding depression sets in and then potentially recover as deleterious mutations are purged. Critical population sizes of ecological and genetic Allee effects appear to be often additive, but even superadditive interactions are possible. Many published estimates for the number of lethal equivalents in birds and mammals fall in the parameter range where strong genetic Allee effects are expected. Unfortunately, extinction risk due to genetic Allee effects

  18. Genetic structure of populations and differentiation in forest trees

    Science.gov (United States)

    Raymond P. Guries; F. Thomas Ledig

    1981-01-01

    Electrophoretic techniques permit population biologists to analyze genetic structure of natural populations by using large numbers of allozyme loci. Several methods of analysis have been applied to allozyme data, including chi-square contingency tests, F-statistics, and genetic distance. This paper compares such statistics for pitch pine (Pinus rigida...

  19. The use of genetics for the management of a recovering population: temporal assessment of migratory peregrine falcons in North America

    Science.gov (United States)

    Johnson, Jeff A.; Talbot, Sandra L.; Sage, George K.; Burnham, Kurt K.; Brown, Joseph W.; Maechtle, Tom L.; Seegar, William S.; Yates, Michael A.; Anderson, Bud; Mindell, David P.

    2010-01-01

    Background:Our ability to monitor populations or species that were once threatened or endangered and in the process of recovery is enhanced by using genetic methods to assess overall population stability and size over time. This can be accomplished most directly by obtaining genetic measures from temporally-spaced samples that reflect the overall stability of the population as given by changes in genetic diversity levels (allelic richness and heterozygosity), degree of population differentiation (FST and DEST), and effective population size (Ne). The primary goal of any recovery effort is to produce a long-term self-sustaining population, and these measures provide a metric by which we can gauge our progress and help make important management decisions. Methodology/Principal Findings:The peregrine falcon in North America (Falco peregrinus tundrius and anatum) was delisted in 1994 and 1999, respectively, and its abundance will be monitored by the species Recovery Team every three years until 2015. Although the United States Fish and Wildlife Service makes a distinction between tundrius and anatum subspecies, our genetic results based on eleven microsatellite loci, including those from Brown et al. (2007), suggest no differentiation and warrant delineation of a subspecies in its northern latitudinal distribution from Alaska through Canada into Greenland. Using temporal samples collected at Padre Island, Texas during migration (seven temporal time periods between 1985-2007), no significant differences in genetic diversity or significant population differentiation in allele frequencies between time periods were observed and were indistinguishable from those obtained from tundrius/anatum breeding locations throughout their northern distribution. Estimates of harmonic mean Ne were variable and imprecise, but always greater than 500 when employing multiple temporal genetic methods. These results, including those from simulations to assess the power of each method to

  20. Population genetic structure of peninsular Malaysia Malay sub-ethnic groups.

    Science.gov (United States)

    Hatin, Wan Isa; Nur-Shafawati, Ab Rajab; Zahri, Mohd-Khairi; Xu, Shuhua; Jin, Li; Tan, Soon-Guan; Rizman-Idid, Mohammed; Zilfalil, Bin Alwi

    2011-04-05

    Patterns of modern human population structure are helpful in understanding the history of human migration and admixture. We conducted a study on genetic structure of the Malay population in Malaysia, using 54,794 genome-wide single nucleotide polymorphism genotype data generated in four Malay sub-ethnic groups in peninsular Malaysia (Melayu Kelantan, Melayu Minang, Melayu Jawa and Melayu Bugis). To the best of our knowledge this is the first study conducted on these four Malay sub-ethnic groups and the analysis of genotype data of these four groups were compiled together with 11 other populations' genotype data from Indonesia, China, India, Africa and indigenous populations in Peninsular Malaysia obtained from the Pan-Asian SNP database. The phylogeny of populations showed that all of the four Malay sub-ethnic groups are separated into at least three different clusters. The Melayu Jawa, Melayu Bugis and Melayu Minang have a very close genetic relationship with Indonesian populations indicating a common ancestral history, while the Melayu Kelantan formed a distinct group on the tree indicating that they are genetically different from the other Malay sub-ethnic groups. We have detected genetic structuring among the Malay populations and this could possibly be accounted for by their different historical origins. Our results provide information of the genetic differentiation between these populations and a valuable insight into the origins of the Malay sub-ethnic groups in Peninsular Malaysia.

  1. Genetic classification of populations using supervised learning.

    Directory of Open Access Journals (Sweden)

    Michael Bridges

    2011-05-01

    Full Text Available There are many instances in genetics in which we wish to determine whether two candidate populations are distinguishable on the basis of their genetic structure. Examples include populations which are geographically separated, case-control studies and quality control (when participants in a study have been genotyped at different laboratories. This latter application is of particular importance in the era of large scale genome wide association studies, when collections of individuals genotyped at different locations are being merged to provide increased power. The traditional method for detecting structure within a population is some form of exploratory technique such as principal components analysis. Such methods, which do not utilise our prior knowledge of the membership of the candidate populations. are termed unsupervised. Supervised methods, on the other hand are able to utilise this prior knowledge when it is available.In this paper we demonstrate that in such cases modern supervised approaches are a more appropriate tool for detecting genetic differences between populations. We apply two such methods, (neural networks and support vector machines to the classification of three populations (two from Scotland and one from Bulgaria. The sensitivity exhibited by both these methods is considerably higher than that attained by principal components analysis and in fact comfortably exceeds a recently conjectured theoretical limit on the sensitivity of unsupervised methods. In particular, our methods can distinguish between the two Scottish populations, where principal components analysis cannot. We suggest, on the basis of our results that a supervised learning approach should be the method of choice when classifying individuals into pre-defined populations, particularly in quality control for large scale genome wide association studies.

  2. Genetic classification of populations using supervised learning.

    LENUS (Irish Health Repository)

    Bridges, Michael

    2011-01-01

    There are many instances in genetics in which we wish to determine whether two candidate populations are distinguishable on the basis of their genetic structure. Examples include populations which are geographically separated, case-control studies and quality control (when participants in a study have been genotyped at different laboratories). This latter application is of particular importance in the era of large scale genome wide association studies, when collections of individuals genotyped at different locations are being merged to provide increased power. The traditional method for detecting structure within a population is some form of exploratory technique such as principal components analysis. Such methods, which do not utilise our prior knowledge of the membership of the candidate populations. are termed unsupervised. Supervised methods, on the other hand are able to utilise this prior knowledge when it is available.In this paper we demonstrate that in such cases modern supervised approaches are a more appropriate tool for detecting genetic differences between populations. We apply two such methods, (neural networks and support vector machines) to the classification of three populations (two from Scotland and one from Bulgaria). The sensitivity exhibited by both these methods is considerably higher than that attained by principal components analysis and in fact comfortably exceeds a recently conjectured theoretical limit on the sensitivity of unsupervised methods. In particular, our methods can distinguish between the two Scottish populations, where principal components analysis cannot. We suggest, on the basis of our results that a supervised learning approach should be the method of choice when classifying individuals into pre-defined populations, particularly in quality control for large scale genome wide association studies.

  3. Extensive genetic divergence among Diptychus maculatus populations in northwest China

    Science.gov (United States)

    Meng, Wei; Yang, Tianyan; Hai, Sa; Ma, Yanwu; Cai, Lingang; Ma, Xufa; Gao, Tianxiang; Guo, Yan

    2015-05-01

    D. maculates is a kind of specialized Schizothoracinae fish has been locally listed as a protected animal in Xinjiang Province, China. Ili River located in north of Tianshan Mountain and Tarim River located in north of Qinghai-Tibetan Plateau were two main distribution areas of this fish. To investigate the genetic diversity and genetic structure of D. maculates, four populations from Tarim River system and two populations from Ili River system were collected in this study. A 570-bp sequence of the control region was obtained for 105 specimens. Twenty-four haplotypes were detected from six populations, only Kunes River population and Kashi River population shared haplotypes with each other. For all the populations examined, the haplotype diversity ( h) was 0.904 8±0.012 6, nucleotide diversity (π) was 0.027 9±0.013 9, and the average number of pairwise nucleotide differences ( k) was 15.878 3±7.139 1. The analysis of molecular variance (AMOVA) showed that 86.31% of the total genetic variation was apportioned among populations, and the variation within sampled populations was 13.69%. Genetic differences among sampled populations were highly significant. F st statistical test indicated that all populations were significantly divergent from each other ( P<0.01). The largest F st value was between Yurungkash River population and Muzat River population, while the smallest F st value was between Kunes River population and Kashi River population. NJ phylogenetic tree of D-loop haplotypes revealed two main clades. The neutrality test and mismatch distribution analysis suggested that the fish had went through a recent population expansion. The uplift of Tianshan Mountain and movement of Qinghai-Tibetan Plateau might contribute to the wide genetic divergence of D. maculates in northwest China.

  4. Invertebrate population genetics across Earth's largest habitat: The deep-sea floor.

    Science.gov (United States)

    Taylor, M L; Roterman, C N

    2017-10-01

    Despite the deep sea being the largest habitat on Earth, there are just 77 population genetic studies of invertebrates (115 species) inhabiting non-chemosynthetic ecosystems on the deep-sea floor (below 200 m depth). We review and synthesize the results of these papers. Studies reveal levels of genetic diversity comparable to shallow-water species. Generally, populations at similar depths were well connected over 100s-1,000s km, but studies that sampled across depth ranges reveal population structure at much smaller scales (100s-1,000s m) consistent with isolation by adaptation across environmental gradients, or the existence of physical barriers to connectivity with depth. Few studies were ocean-wide (under 4%), and 48% were Atlantic-focused. There is strong emphasis on megafauna and commercial species with research into meiofauna, "ecosystem engineers" and other ecologically important species lacking. Only nine papers account for ~50% of the planet's surface (depths below 3,500 m). Just two species were studied below 5,000 m, a quarter of Earth's seafloor. Most studies used single-locus mitochondrial genes revealing a common pattern of non-neutrality, consistent with demographic instability or selective sweeps; similar to deep-sea hydrothermal vent fauna. The absence of a clear difference between vent and non-vent could signify that demographic instability is common in the deep sea, or that selective sweeps render single-locus mitochondrial studies demographically uninformative. The number of population genetics studies to date is miniscule in relation to the size of the deep sea. The paucity of studies constrains meta-analyses where broad inferences about deep-sea ecology could be made. © 2017 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

  5. Island Rule, quantitative genetics and brain-body size evolution in Homo floresiensis.

    Science.gov (United States)

    Diniz-Filho, José Alexandre Felizola; Raia, Pasquale

    2017-06-28

    Colonization of islands often activate a complex chain of adaptive events that, over a relatively short evolutionary time, may drive strong shifts in body size, a pattern known as the Island Rule. It is arguably difficult to perform a direct analysis of the natural selection forces behind such a change in body size. Here, we used quantitative evolutionary genetic models, coupled with simulations and pattern-oriented modelling, to analyse the evolution of brain and body size in Homo floresiensis , a diminutive hominin species that appeared around 700 kya and survived up to relatively recent times (60-90 kya) on Flores Island, Indonesia. The hypothesis of neutral evolution was rejected in 97% of the simulations, and estimated selection gradients are within the range found in living natural populations. We showed that insularity may have triggered slightly different evolutionary trajectories for body and brain size, which means explaining the exceedingly small cranial volume of H. floresiensis requires additional selective forces acting on brain size alone. Our analyses also support previous conclusions that H. floresiensis may be most likely derived from an early Indonesian H. erectus , which is coherent with currently accepted biogeographical scenario for Homo expansion out of Africa. © 2017 The Author(s).

  6. Genetic Analysis of Kernel Traits in Maize-Teosinte Introgression Populations

    Directory of Open Access Journals (Sweden)

    Zhengbin Liu

    2016-08-01

    Full Text Available Seed traits have been targeted by human selection during the domestication of crop species as a way to increase the caloric and nutritional content of food during the transition from hunter-gather to early farming societies. The primary seed trait under selection was likely seed size/weight as it is most directly related to overall grain yield. Additional seed traits involved in seed shape may have also contributed to larger grain. Maize (Zea mays ssp. mays kernel weight has increased more than 10-fold in the 9000 years since domestication from its wild ancestor, teosinte (Z. mays ssp. parviglumis. In order to study how size and shape affect kernel weight, we analyzed kernel morphometric traits in a set of 10 maize-teosinte introgression populations using digital imaging software. We identified quantitative trait loci (QTL for kernel area and length with moderate allelic effects that colocalize with kernel weight QTL. Several genomic regions with strong effects during maize domestication were detected, and a genetic framework for kernel traits was characterized by complex pleiotropic interactions. Our results both confirm prior reports of kernel domestication loci and identify previously uncharacterized QTL with a range of allelic effects, enabling future research into the genetic basis of these traits.

  7. Genomic dissection of variation in clutch size and egg mass in a wild great tit (Parus major) population.

    Science.gov (United States)

    Santure, Anna W; De Cauwer, Isabelle; Robinson, Matthew R; Poissant, Jocelyn; Sheldon, Ben C; Slate, Jon

    2013-08-01

    Clutch size and egg mass are life history traits that have been extensively studied in wild bird populations, as life history theory predicts a negative trade-off between them, either at the phenotypic or at the genetic level. Here, we analyse the genomic architecture of these heritable traits in a wild great tit (Parus major) population, using three marker-based approaches - chromosome partitioning, quantitative trait locus (QTL) mapping and a genome-wide association study (GWAS). The variance explained by each great tit chromosome scales with predicted chromosome size, no location in the genome contains genome-wide significant QTL, and no individual SNPs are associated with a large proportion of phenotypic variation, all of which may suggest that variation in both traits is due to many loci of small effect, located across the genome. There is no evidence that any regions of the genome contribute significantly to both traits, which combined with a small, nonsignificant negative genetic covariance between the traits, suggests the absence of genetic constraints on the independent evolution of these traits. Our findings support the hypothesis that variation in life history traits in natural populations is likely to be determined by many loci of small effect spread throughout the genome, which are subject to continued input of variation by mutation and migration, although we cannot exclude the possibility of an additional input of major effect genes influencing either trait. © 2013 John Wiley & Sons Ltd.

  8. Population genetic analysis of Enterocytozoon bieneusi in humans.

    Science.gov (United States)

    Li, Wei; Cama, Vitaliano; Feng, Yaoyu; Gilman, Robert H; Bern, Caryn; Zhang, Xichen; Xiao, Lihua

    2012-01-01

    Genotyping based on sequence analysis of the ribosomal internal transcribed spacer has revealed significant genetic diversity in Enterocytozoonbieneusi. Thus far, the population genetics of E. bieneusi and its significance in the epidemiology of microsporidiosis have not been examined. In this study, a multilocus sequence typing of E. bieneusi in AIDS patients in Lima, Peru was conducted, using 72 specimens previously genotyped as A, D, IV, EbpC, WL11, Peru7, Peru8, Peru10 and Peru11 at the internal transcribed spacer locus. Altogether, 39 multilocus genotypes were identified among the 72 specimens. The observation of strong intragenic linkage disequilibria and limited genetic recombination among markers were indicative of an overall clonal population structure of E. bieneusi. Measures of pair-wise intergenic linkage disequilibria and a standardised index of association (IAS) based on allelic profile data further supported this conclusion. Both sequence-based and allelic profile-based phylogenetic analyses showed the presence of two genetically isolated groups in the study population, one (group 1) containing isolates of the anthroponotic internal transcribed spacer genotype A, and the other (group 2) containing isolates of multiple internal transcribed spacer genotypes (mainly genotypes D and IV) with zoonotic potential. The measurement of linkage disequilibria and recombination indicated group 2 had a clonal population structure, whereas group 1 had an epidemic population structure. The formation of the two sub-populations was confirmed by STRUCTURE and Wright's fixation index (FST) analyses. The data highlight the power of MLST in understanding the epidemiology of E. bieneusi. Published by Elsevier Ltd.

  9. Genetic and demographic recovery of an isolated population of brown bear Ursus arctos L., 1758

    Directory of Open Access Journals (Sweden)

    Elena G. Gonzalez

    2016-04-01

    Full Text Available The brown bear Ursus arctos L., 1758 population of the Cantabrian Mountains (northwestern Spain became isolated from other bear populations in Europe about 500 years ago and has declined due to hunting and habitat degradation. At the beginning of the 20th century, the Cantabrian population split into eastern and western subpopulations, and genetic exchange between them ceased. In the early 1990s, total population size was estimated to be < 100 bears. Subsequently, reduction in human-caused mortality has brought about an increase in numbers, mainly in the western subpopulation, likely promoting male-mediated migration and gene flow from the western nucleus to the eastern. To evaluate the possible genetic recovery of the small and genetically depauperate eastern subpopulation, in 2013 and 2014 we genotyped hair and faeces samples (116 from the eastern subpopulation and 36 from the western for 18 microsatellite markers. Data from the annual count of females with cubs of the year (COY during the past twenty-six years was used to analyze demographic changes. The number of females with COY fell to a minimum of seven in the western and three in eastern subpopulations in the biennium 1993–1994 and reached a respective maximum of 54 and 10 individuals in 2013–2014. We also observed increased bear dispersal and gene flow, mainly from the western to the eastern subpopulation. Of the 26 unique genotypes detected in the eastern subpopulation, 14 (54% presented an admixture composition, and seven (27% were determined to be migrants from the western subpopulation. Hence, the two separated and clearly structured subpopulations identified in the past currently show some degree of genetic admixture. This research shows the partial demographic recovery and a change in genetic composition due to migration process in a population of bears that has been isolated for several centuries.

  10. Genetic affinities between endogamous and inbreeding populations of Uttar Pradesh.

    Science.gov (United States)

    Khan, Faisal; Pandey, Atul Kumar; Tripathi, Manorma; Talwar, Sudha; Bisen, Prakash S; Borkar, Minal; Agrawal, Suraksha

    2007-04-07

    India has experienced several waves of migration since the Middle Paleolithic. It is believed that the initial demic movement into India was from Africa along the southern coastal route, approximately 60,000-85,000 years before present (ybp). It has also been reported that there were two other major colonization which included eastward diffusion of Neolithic farmers (Elamo Dravidians) from Middle East sometime between 10,000 and 7,000 ybp and a southern dispersal of Indo Europeans from Central Asia 3,000 ybp. Mongol entry during the thirteenth century A.D. as well as some possible minor incursions from South China 50,000 to 60,000 ybp may have also contributed to cultural, linguistic and genetic diversity in India. Therefore, the genetic affinity and relationship of Indians with other world populations and also within India are often contested. In the present study, we have attempted to offer a fresh and immaculate interpretation on the genetic relationships of different North Indian populations with other Indian and world populations. We have first genotyped 20 tetra-nucleotide STR markers among 1800 north Indian samples of nine endogamous populations belonging to three different socio-cultural strata. Genetic distances (Nei's DA and Reynold's Fst) were calculated among the nine studied populations, Caucasians and East Asians. This analysis was based upon the allelic profile of 20 STR markers to assess the genetic similarity and differences of the north Indian populations. North Indians showed a stronger genetic relationship with the Europeans (DA 0.0341 and Fst 0.0119) as compared to the Asians (DA 0.1694 and Fst - 0.0718). The upper caste Brahmins and Muslims were closest to Caucasians while middle caste populations were closer to Asians. Finally, three phylogenetic assessments based on two different NJ and ML phylogenetic methods and PC plot analysis were carried out using the same panel of 20 STR markers and 20 geo-ethnic populations. The three phylogenetic

  11. Genetic affinities between endogamous and inbreeding populations of Uttar Pradesh

    Directory of Open Access Journals (Sweden)

    Borkar Minal

    2007-04-01

    Full Text Available Abstract Background India has experienced several waves of migration since the Middle Paleolithic. It is believed that the initial demic movement into India was from Africa along the southern coastal route, approximately 60,000–85,000 years before present (ybp. It has also been reported that there were two other major colonization which included eastward diffusion of Neolithic farmers (Elamo Dravidians from Middle East sometime between 10,000 and 7,000 ybp and a southern dispersal of Indo Europeans from Central Asia 3,000 ybp. Mongol entry during the thirteenth century A.D. as well as some possible minor incursions from South China 50,000 to 60,000 ybp may have also contributed to cultural, linguistic and genetic diversity in India. Therefore, the genetic affinity and relationship of Indians with other world populations and also within India are often contested. In the present study, we have attempted to offer a fresh and immaculate interpretation on the genetic relationships of different North Indian populations with other Indian and world populations. Results We have first genotyped 20 tetra-nucleotide STR markers among 1800 north Indian samples of nine endogamous populations belonging to three different socio-cultural strata. Genetic distances (Nei's DA and Reynold's Fst were calculated among the nine studied populations, Caucasians and East Asians. This analysis was based upon the allelic profile of 20 STR markers to assess the genetic similarity and differences of the north Indian populations. North Indians showed a stronger genetic relationship with the Europeans (DA 0.0341 and Fst 0.0119 as compared to the Asians (DA 0.1694 and Fst – 0.0718. The upper caste Brahmins and Muslims were closest to Caucasians while middle caste populations were closer to Asians. Finally, three phylogenetic assessments based on two different NJ and ML phylogenetic methods and PC plot analysis were carried out using the same panel of 20 STR markers and 20

  12. Estimating spatio-temporal dynamics of size-structured populations

    DEFF Research Database (Denmark)

    Kristensen, Kasper; Thygesen, Uffe Høgsbro; Andersen, Ken Haste

    2014-01-01

    with simple stock dynamics, to estimate simultaneously how size distributions and spatial distributions develop in time. We demonstrate the method for a cod population sampled by trawl surveys. Particular attention is paid to correlation between size classes within each trawl haul due to clustering...... of individuals with similar size. The model estimates growth, mortality and reproduction, after which any aspect of size-structure, spatio-temporal population dynamics, as well as the sampling process can be probed. This is illustrated by two applications: 1) tracking the spatial movements of a single cohort...

  13. Genetic population structure of Shoal Bass within their native range

    Science.gov (United States)

    Taylor, Andrew T.; Tringali, Michael D.; Sammons, Steven M.; Ingram, Travis R.; O'Rouke, Patrick M.; Peterson, Douglas L.; Long, James M.

    2018-01-01

    Endemic to the Apalachicola River basin of the southeastern USA, the Shoal Bass Micropterus cataractae is a fluvial‐specialist sport fish that is imperiled because of anthropogenic habitat alteration. To counter population declines, restorative stocking efforts are becoming an increasingly relevant management strategy. However, population genetic structure within the species is currently unknown, but it could influence management decisions, such as brood source location. Leveraging a collaborative effort to collect and genotype specimens with 16 microsatellite loci, our objective was to characterize hierarchical population structure and genetic differentiation of the Shoal Bass across its native range, including an examination of structuring mechanisms, such as relatedness and inbreeding levels. Specimens identified as Shoal Bass were collected from 13 distinct sites (N ranged from 17 to 209 per location) and were then taxonomically screened to remove nonnative congeners and hybrids (pure Shoal Bass N ranged from 13 to 183 per location). Our results revealed appreciable population structure, with five distinct Shoal Bass populations identifiable at the uppermost hierarchical level that generally corresponded with natural geographic features and anthropogenic barriers. Substructure was recovered within several of these populations, wherein differences appeared related to spatial isolation and local population dynamics. An analysis of molecular variance revealed that 3.6% of the variation in our data set was accounted for among three larger river drainages, but substructure within each river drainage also explained an additional 8.9% of genetic variation, demonstrating that management at a scale lower than the river drainage level would likely best conserve genetic diversity. Results provide a population genetic framework that can inform future management decisions, such as brood source location, so that genetic diversity within and among populations is

  14. KEYNOTE ADDRESS: CONSERVATION GENETICS OF FRESHWATER ORGANISMS

    OpenAIRE

    WEISS S.

    2005-01-01

    This manuscript serves as a summary of both the importance of genetics in conservation, and the range of methodological approaches available. Two somewhat distinct realms of conservation genetics are outlined. The first theoretically rests upon the field of population genetics, and primarily concerns itself with the conservation of genetic diversity within and among populations, both in the wild and captivity. Basic concepts such as heterozygosity, genetic drift, and effective population size...

  15. Genetic admixture and population substructure in Guanacaste Costa Rica.

    Directory of Open Access Journals (Sweden)

    Zhaoming Wang

    2010-10-01

    Full Text Available The population of Costa Rica (CR represents an admixture of major continental populations. An investigation of the CR population structure would provide an important foundation for mapping genetic variants underlying common diseases and traits. We conducted an analysis of 1,301 women from the Guanacaste region of CR using 27,904 single nucleotide polymorphisms (SNPs genotyped on a custom Illumina InfiniumII iSelect chip. The program STRUCTURE was used to compare the CR Guanacaste sample with four continental reference samples, including HapMap Europeans (CEU, East Asians (JPT+CHB, West African Yoruba (YRI, as well as Native Americans (NA from the Illumina iControl database. Our results show that the CR Guanacaste sample comprises a three-way admixture estimated to be 43% European, 38% Native American and 15% West African. An estimated 4% residual Asian ancestry may be within the error range. Results from principal components analysis reveal a correlation between genetic and geographic distance. The magnitude of linkage disequilibrium (LD measured by the number of tagging SNPs required to cover the same region in the genome in the CR Guanacaste sample appeared to be weaker than that observed in CEU, JPT+CHB and NA reference samples but stronger than that of the HapMap YRI sample. Based on the clustering pattern observed in both STRUCTURE and principal components analysis, two subpopulations were identified that differ by approximately 20% in LD block size averaged over all LD blocks identified by Haploview. We also show in a simulated association study conducted within the two subpopulations, that the failure to account for population stratification (PS could lead to a noticeable inflation in the false positive rate. However, we further demonstrate that existing PS adjustment approaches can reduce the inflation to an acceptable level for gene discovery.

  16. Genetic changeover in Drosophila populations

    International Nuclear Information System (INIS)

    Wallace, B.

    1986-01-01

    Three populations of Drosophila melanogaster that were daughter populations of two others with histories of high, continuous radiation exposure [population 5 (irradiated, small population size) gave rise to populations 17 (small) and 18 (large); population 6 (irradiated, large population size) gave rise to population 19 (large)] were maintained for 1 year with no radiation exposure. The frequency with which random combinations of second chromosomes taken from population 19 proved to be lethal changed abruptly after about 8 months, thus revealing the origin of a selectively favored element in that population. (This element may or may not have been the cause of the lethality.) A comparison of the loss of lethals in populations 17 and 18 with a loss that occurred concurrently in the still-irradiated population 5 suggests that a second, selectively favored element had arisen in that population just before populations 17 and 18 were split off. This element was on a nonlethal chromosome. The result in population 5 was the elimination of many lethals from that population, followed by a subsequent increase as mutations occurred in the favored nonlethal chromosome. Populations 17 and 18, with no radiation exposure, underwent a loss of lethals with no subsequent increase. The events described here, as well as others to be described elsewhere, suggest that populations may be subject to episodic periods of rapid gene frequency changes that occur under intense selection pressure. In the instances in which the changeover was revealed by the elimination of preexisting lethals, earlier lethal frequencies were reduced by approximately one-half; the selectively favored elements appear, then, to be favored in the heterozygous--not homozygous--condition

  17. Stochastic problems in population genetics

    CERN Document Server

    Maruyama, Takeo

    1977-01-01

    These are" notes based on courses in Theoretical Population Genetics given at the University of Texas at Houston during the winter quarter, 1974, and at the University of Wisconsin during the fall semester, 1976. These notes explore problems of population genetics and evolution involving stochastic processes. Biological models and various mathematical techniques are discussed. Special emphasis is given to the diffusion method and an attempt is made to emphasize the underlying unity of various problems based on the Kolmogorov backward equation. A particular effort was made to make the subject accessible to biology students who are not familiar with stochastic processes. The references are not exhaustive but were chosen to provide a starting point for the reader interested in pursuing the subject further. Acknowledgement I would like to use this opportunity to express my thanks to Drs. J. F. Crow, M. Nei and W. J. Schull for their hospitality during my stays at their universities. I am indebted to Dr. M. Kimura...

  18. Genetic disorders from an endogamous population

    African Journals Online (AJOL)

    Abdulbari Bener

    b Dept. of Evidence for Population Health Unit, School of Epidemiology and Health Sciences, University of Manchester, Manchester, UK ... genetics counseling and screening for the hereditary diseases programme. Results: The ..... Elementary.

  19. Population Genetic Structure of Peninsular Malaysia Malay Sub-Ethnic Groups

    Science.gov (United States)

    Hatin, Wan Isa; Nur-Shafawati, Ab Rajab; Zahri, Mohd-Khairi; Xu, Shuhua; Jin, Li; Tan, Soon-Guan; Rizman-Idid, Mohammed; Zilfalil, Bin Alwi

    2011-01-01

    Patterns of modern human population structure are helpful in understanding the history of human migration and admixture. We conducted a study on genetic structure of the Malay population in Malaysia, using 54,794 genome-wide single nucleotide polymorphism genotype data generated in four Malay sub-ethnic groups in peninsular Malaysia (Melayu Kelantan, Melayu Minang, Melayu Jawa and Melayu Bugis). To the best of our knowledge this is the first study conducted on these four Malay sub-ethnic groups and the analysis of genotype data of these four groups were compiled together with 11 other populations' genotype data from Indonesia, China, India, Africa and indigenous populations in Peninsular Malaysia obtained from the Pan-Asian SNP database. The phylogeny of populations showed that all of the four Malay sub-ethnic groups are separated into at least three different clusters. The Melayu Jawa, Melayu Bugis and Melayu Minang have a very close genetic relationship with Indonesian populations indicating a common ancestral history, while the Melayu Kelantan formed a distinct group on the tree indicating that they are genetically different from the other Malay sub-ethnic groups. We have detected genetic structuring among the Malay populations and this could possibly be accounted for by their different historical origins. Our results provide information of the genetic differentiation between these populations and a valuable insight into the origins of the Malay sub-ethnic groups in Peninsular Malaysia. PMID:21483678

  20. Genetic diversity, population structure, and traditional culture of Camellia reticulata.

    Science.gov (United States)

    Xin, Tong; Huang, Weijuan; De Riek, Jan; Zhang, Shuang; Ahmed, Selena; Van Huylenbroeck, Johan; Long, Chunlin

    2017-11-01

    Camellia reticulata is an arbor tree that has been cultivated in southwestern China by various sociolinguistic groups for esthetic purposes as well as to derive an edible seed oil. This study examined the influence of management, socio-economic factors, and religion on the genetic diversity patterns of Camellia reticulata utilizing a combination of ethnobotanical and molecular genetic approaches. Semi-structured interviews and key informant interviews were carried out with local communities in China's Yunnan Province. We collected plant material ( n  = 190 individuals) from five populations at study sites using single-dose AFLP markers in order to access the genetic diversity within and between populations. A total of 387 DNA fragments were produced by four AFLP primer sets. All DNA fragments were found to be polymorphic (100%). A relatively high level of genetic diversity was revealed in C. reticulata samples at both the species ( H sp  = 0.3397, I sp  = 0.5236) and population (percentage of polymorphic loci = 85.63%, H pop  = 0.2937, I pop  = 0.4421) levels. Findings further revealed a relatively high degree of genetic diversity within C. reticulata populations (Analysis of Molecular Variance = 96.31%). The higher genetic diversity within populations than among populations of C. reticulata from different geographies is likely due to the cultural and social influences associated with its long cultivation history for esthetic and culinary purposes by diverse sociolinguistic groups. This study highlights the influence of human management, socio-economic factors, and other cultural variables on the genetic and morphological diversity of C. reticulata at a regional level. Findings emphasize the important role of traditional culture on the conservation and utilization of plant genetic diversity.

  1. Population-genetic analysis of seven qualitative traits in the population of the municipality Maglaj (Bosnia and Herzegovina

    Directory of Open Access Journals (Sweden)

    Mrehić Elma

    2015-01-01

    Full Text Available On the basis of the complex seven monogenic qualitative characteristics (shape of the earlobes, hairiness of middle phalange, flexibility of lateral tongue edges, the extensiveness of the distal and proximal joint of the thumb and the flexibility of the distal phalanx of the little finger and one sexually conditioned property (digital index we analyzed the genetic structure of four populations of rural municipality Maglaj: Kosova, Novi Šeher, Jablanica, Moševac, then one isolated local population Ravna and one urban population area called Maglaj. The survey covered a total of 440 students (213 girls and 227 boys aged 11-18 years. According to the degree of genetic heterogeneity, values of Wahlund variance that are obtained for each trait belong in the category of low genetic differentiation. The maximum value of Wahlund variance was identified for the property shape of the earlobes (by Cavalli - Sforza, Bodmer = 0.0452, and the lowest for phenotypic system flexibility of lateral tongue edges (by Cavalli - Sforza, Bodmer = 0.0000. Studied set of population is the most heterogeneous according to the frequency of recessive allelogene for phenotypic characteristic shape of the earlobes, and the most homogeneous for the phenotypic trait flexibility of lateral tongue edge. Based on the analysis of genetic distance for seven phenotypic traits in populations of municipality Maglaj we established the minimum genetic distance between populations of Kosova and Maglaj (fθ = 0.0007, and the largest genetic distance between populations of Jablanica and Moševac (fθ = 0.0144. It was noted that the lowest average coefficient of kinship has a local population of Kosova (fθ = 0.0028, while the highest average coefficient of kinship has a population Moševac (fθ = 0.0081. The greatest characteristic has a population of Moševac (fθs = 0.7556, and the lowest characteristic has a population of Novi Šeher (fθs = -0.0795. Based on the obtained values of

  2. PGG.Population: a database for understanding the genomic diversity and genetic ancestry of human populations.

    Science.gov (United States)

    Zhang, Chao; Gao, Yang; Liu, Jiaojiao; Xue, Zhe; Lu, Yan; Deng, Lian; Tian, Lei; Feng, Qidi; Xu, Shuhua

    2018-01-04

    There are a growing number of studies focusing on delineating genetic variations that are associated with complex human traits and diseases due to recent advances in next-generation sequencing technologies. However, identifying and prioritizing disease-associated causal variants relies on understanding the distribution of genetic variations within and among populations. The PGG.Population database documents 7122 genomes representing 356 global populations from 107 countries and provides essential information for researchers to understand human genomic diversity and genetic ancestry. These data and information can facilitate the design of research studies and the interpretation of results of both evolutionary and medical studies involving human populations. The database is carefully maintained and constantly updated when new data are available. We included miscellaneous functions and a user-friendly graphical interface for visualization of genomic diversity, population relationships (genetic affinity), ancestral makeup, footprints of natural selection, and population history etc. Moreover, PGG.Population provides a useful feature for users to analyze data and visualize results in a dynamic style via online illustration. The long-term ambition of the PGG.Population, together with the joint efforts from other researchers who contribute their data to our database, is to create a comprehensive depository of geographic and ethnic variation of human genome, as well as a platform bringing influence on future practitioners of medicine and clinical investigators. PGG.Population is available at https://www.pggpopulation.org. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. The genetic basis of natural variation in mushroom body size in Drosophila melanogaster.

    Science.gov (United States)

    Zwarts, Liesbeth; Vanden Broeck, Lies; Cappuyns, Elisa; Ayroles, Julien F; Magwire, Michael M; Vulsteke, Veerle; Clements, Jason; Mackay, Trudy F C; Callaerts, Patrick

    2015-12-11

    Genetic variation in brain size may provide the basis for the evolution of the brain and complex behaviours. The genetic substrate and the selective pressures acting on brain size are poorly understood. Here we use the Drosophila Genetic Reference Panel to map polymorphic variants affecting natural variation in mushroom body morphology. We identify 139 genes and 39 transcription factors and confirm effects on development and adult plasticity. We show correlations between morphology and aggression, sleep and lifespan. We propose that natural variation in adult brain size is controlled by interaction of the environment with gene networks controlling development and plasticity.

  4. Reliability of genetic bottleneck tests for detecting recent population declines

    NARCIS (Netherlands)

    Peery, M. Zachariah; Kirby, Rebecca; Reid, Brendan N.; Stoelting, Ricka; Doucet-Beer, Elena; Robinson, Stacie; Vasquez-Carrillo, Catalina; Pauli, Jonathan N.; Palsboll, Per J.

    The identification of population bottlenecks is critical in conservation because populations that have experienced significant reductions in abundance are subject to a variety of genetic and demographic processes that can hasten extinction. Genetic bottleneck tests constitute an appealing and

  5. [Prospect and application of microsatellite population genetics in study of geoherbs].

    Science.gov (United States)

    Zhang, Wen-Jing; Zhang, Yong-Qing; Yuan, Qing-Jun; Huang, Lu-Qi; Jiang, Dan; Jing, Li

    2013-12-01

    The author introduces the basic concepts of microsatellite and population genetics and its characteristics, expounds the application of these theories for population genetic structure and genetic diversity, gene flow and evolutionary significant unit ESU division research. This paper discuss its applicationin study of genetic causes, origin of cultivation, different regional origins of geoherbs, aiming at providing a new theory and method for geoherbs.

  6. Rapid genetic erosion in pollutant-exposed experimental chironomid populations

    Energy Technology Data Exchange (ETDEWEB)

    Nowak, Carsten [Abteilung Okologie und Evolution, Institut fuer Okologie, Evolution und Diversitaet, J. W. Goethe-Universitaet Frankfurt am Main, Siesmayerstrasse 70, 60054 Frankfurt am Main (Germany)], E-mail: cnowak@senckenberg.de; Vogt, Christian [Abteilung Aquatische Okotoxikologie, Institut fuer Okologie, Evolution und Diversitaet, J. W. Goethe-Universitaet Frankfurt am Main, Siesmayerstrasse 70, 60054 Frankfurt am Main (Germany)], E-mail: vogt@bio.uni-frankfurt.de; Pfenninger, Markus [Abteilung Okologie und Evolution, Institut fuer Okologie, Evolution und Diversitaet, J. W. Goethe-Universitaet Frankfurt am Main, Siesmayerstrasse 70, 60054 Frankfurt am Main (Germany)], E-mail: pfenninger@bio.uni-frankfurt.de; Schwenk, Klaus [Abteilung Okologie und Evolution, Institut fuer Okologie, Evolution und Diversitaet, J. W. Goethe-Universitaet Frankfurt am Main, Siesmayerstrasse 70, 60054 Frankfurt am Main (Germany)], E-mail: k.schwenk@bio.uni-frankfurt.de; Oehlmann, Joerg [Abteilung Aquatische Okotoxikologie, Institut fuer Okologie, Evolution und Diversitaet, J. W. Goethe-Universitaet Frankfurt am Main, Siesmayerstrasse 70, 60054 Frankfurt am Main (Germany)], E-mail: oehlmann@bio.uni-frankfurt.de; Streit, Bruno [Abteilung Okologie und Evolution, Institut fuer Okologie, Evolution und Diversitaet, J. W. Goethe-Universitaet Frankfurt am Main, Siesmayerstrasse 70, 60054 Frankfurt am Main (Germany)], E-mail: streit@bio.uni-frankfurt.de; Oetken, Matthias [Abteilung Aquatische Okotoxikologie, Institut fuer Okologie, Evolution und Diversitaet, J. W. Goethe-Universitaet Frankfurt am Main, Siesmayerstrasse 70, 60054 Frankfurt am Main (Germany)], E-mail: oetken@bio.uni-frankfurt.de

    2009-03-15

    Few studies have evaluated how effectively environmental contamination may reduce genetic diversity of a population. Here, we chose a laboratory approach in order to test if tributyltin (TBT) exposure at environmentally relevant concentrations leads to reduced genetic variation in the midge Chironomus riparius. Two TBT-exposed and two unexposed experimental populations were reared simultaneously in the laboratory for 12 generations. We recorded several life-history traits in each generation and monitored genetic variation over time using five variable microsatellite markers. TBT-exposed strains showed increased larval mortality (treatments: 43.8%; controls: 27.8%), slightly reduced reproductive output, and delayed larval development. Reduction of genetic variation was strongest and only significant in the TBT-exposed strains (treatments: -45.9%, controls: -24.4% of initial heterozygosity) after 12 generations. Our findings document that chemical pollution may lead to a rapid decrease in genetic diversity, which has important implications for conservation strategies and ecological management in polluted environments. - Chronic TBT exposure reduces allelic variation at five variable microsatellite loci in experimental populations of Chironomus riparius.

  7. Rapid genetic erosion in pollutant-exposed experimental chironomid populations

    International Nuclear Information System (INIS)

    Nowak, Carsten; Vogt, Christian; Pfenninger, Markus; Schwenk, Klaus; Oehlmann, Joerg; Streit, Bruno; Oetken, Matthias

    2009-01-01

    Few studies have evaluated how effectively environmental contamination may reduce genetic diversity of a population. Here, we chose a laboratory approach in order to test if tributyltin (TBT) exposure at environmentally relevant concentrations leads to reduced genetic variation in the midge Chironomus riparius. Two TBT-exposed and two unexposed experimental populations were reared simultaneously in the laboratory for 12 generations. We recorded several life-history traits in each generation and monitored genetic variation over time using five variable microsatellite markers. TBT-exposed strains showed increased larval mortality (treatments: 43.8%; controls: 27.8%), slightly reduced reproductive output, and delayed larval development. Reduction of genetic variation was strongest and only significant in the TBT-exposed strains (treatments: -45.9%, controls: -24.4% of initial heterozygosity) after 12 generations. Our findings document that chemical pollution may lead to a rapid decrease in genetic diversity, which has important implications for conservation strategies and ecological management in polluted environments. - Chronic TBT exposure reduces allelic variation at five variable microsatellite loci in experimental populations of Chironomus riparius

  8. Public goods games in populations with fluctuating size.

    Science.gov (United States)

    McAvoy, Alex; Fraiman, Nicolas; Hauert, Christoph; Wakeley, John; Nowak, Martin A

    2018-05-01

    Many mathematical frameworks of evolutionary game dynamics assume that the total population size is constant and that selection affects only the relative frequency of strategies. Here, we consider evolutionary game dynamics in an extended Wright-Fisher process with variable population size. In such a scenario, it is possible that the entire population becomes extinct. Survival of the population may depend on which strategy prevails in the game dynamics. Studying cooperative dilemmas, it is a natural feature of such a model that cooperators enable survival, while defectors drive extinction. Although defectors are favored for any mixed population, random drift could lead to their elimination and the resulting pure-cooperator population could survive. On the other hand, if the defectors remain, then the population will quickly go extinct because the frequency of cooperators steadily declines and defectors alone cannot survive. In a mutation-selection model, we find that (i) a steady supply of cooperators can enable long-term population survival, provided selection is sufficiently strong, and (ii) selection can increase the abundance of cooperators but reduce their relative frequency. Thus, evolutionary game dynamics in populations with variable size generate a multifaceted notion of what constitutes a trait's long-term success. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Genetic variability in captive populations of the stingless bee Tetragonisca angustula.

    Science.gov (United States)

    Santiago, Leandro R; Francisco, Flávio O; Jaffé, Rodolfo; Arias, Maria C

    2016-08-01

    Low genetic variability has normally been considered a consequence of animal husbandry and a major contributing factor to declining bee populations. Here, we performed a molecular analysis of captive and wild populations of the stingless bee Tetragonisca angustula, one of the most commonly kept species across South America. Microsatellite analyses showed similar genetic variability between wild and captive populations However, captive populations showed lower mitochondrial genetic variability. Male-mediated gene flow, transport and division of nests are suggested as the most probable explanations for the observed patterns of genetic structure. We conclude that increasing the number of colonies kept through nest divisions does not negatively affect nuclear genetic variability, which seems to be maintained by small-scale male dispersal and human-mediated nest transport. However, the transport of nests from distant localities should be practiced with caution given the high genetic differentiation observed between samples from western and eastern areas. The high genetic structure verified is the result of a long-term evolutionary process, and bees from distant localities may represent unique evolutionary lineages.

  10. An analysis of the genetic diversity and genetic structure of ...

    African Journals Online (AJOL)

    ajl yemi

    2011-12-26

    Dec 26, 2011 ... relief, diuresis, blood pressure and lipid metabolism. (Kawasaki et al., 2000). ... Habitat. Longitude(N),. Latitude(E). Population size. Sample size. LY. Luoyang, Henan ..... Compared with the high genetic diversity at the species.

  11. Migratory divides and their consequences for dispersal, population size and parasite-host interactions.

    Science.gov (United States)

    Møller, A P; Garamszegi, L Z; Peralta-Sánchez, J M; Soler, J J

    2011-08-01

    Populations of migratory birds differ in their direction of migration with neighbouring populations often migrating in divergent directions separated by migratory divides. A total of 26% of 103 passerine bird species in Europe had migratory divides that were located disproportionately often along a longitudinal gradient in Central Europe, consistent with the assumption of a Quaternary glacial origin of such divides in the Iberian and Balkan peninsulas followed by recolonization. Given that studies have shown significant genetic differentiation and reduced gene flow across migratory divides, we hypothesized that an absence of migratory divides would result in elevated rates of gene flow and hence a reduced level of local adaptation. In a comparative study, species with migratory divides had larger population sizes and population densities and longer dispersal distances than species without migratory divides. Species with migratory divides tended to be habitat generalists. Bird species with migratory divides had higher richness of blood parasites and higher growth rates of Staphylococcus on their eggs during the incubation period. There was weaker cell-mediated immunity in adults and stronger cell lysis in species with migratory divides. These findings may suggest that migratory divides constitute barriers to dispersal with consequences for ecology and evolution of distributions, population sizes, habitats and parasite-host interactions. They also suggest that migratory divides may play a role in local adaptation in host-parasite interactions. © 2011 The Authors. Journal of Evolutionary Biology © 2011 European Society For Evolutionary Biology.

  12. Population genetic history of Aristeus antennatus (Crustacea: Decapoda in the Western and Central Mediterranean Sea.

    Directory of Open Access Journals (Sweden)

    Annamaria Marra

    Full Text Available Aristeus antennatus is an ecologically and economically important deep-water species in the Mediterranean Sea. In this study we investigated the genetic variability of A. antennatus sampled from 10 sampling stations in the Western and Central Mediterranean. By comparing our new samples with available data from the Western area, we aim to identify potential genetic stocks of A. antennatus and to reconstruct its historical demography in the Mediterranean. We analyzed two regions of mitochondrial DNA in 319 individuals, namely COI and 16S. We found two main results: i the genetic diversity values consistent with previous data within the Mediterranean and the absence of barriers to gene flow within the Mediterranean Sea; ii a constant long-term effective population size in almost all demes but a strong signature of population expansion in the pooled sample about 50,000 years B.P./ago. We propose two explanation for our results. The first is based on the ecology of A. antennatus. We suggest the existence of a complex meta-population structured into two layers: a deeper-dwelling stock, not affected by fishing, which preserves the pattern of historical demography; and genetically homogeneous demes inhabiting the fishing grounds. The larval dispersal, adult migration and continuous movements of individuals from "virgin" deeper grounds not affected by fishing to upper fishing areas support an effective 'rescue effect' contributing to the recovery of the exploited stocks and explain their genetic homogeneity throughout the Mediterranean Sea. The second is based on the reproduction model of this shrimp: the high variance in offspring production calls for a careful interpretation of the data observed under classical population genetics and Kingman's coalescent. In both cases, management policies for A. antennatus will therefore require careful evaluation of the meta-population dynamics of all stocks in the Mediterranean. In the future, it will be

  13. Genetic population structure of the desert shrub species lycium ruthenicum inferred from chloroplast dna

    International Nuclear Information System (INIS)

    Chen, H.; Yonezawa, T.

    2014-01-01

    Lycium ruthenicum (Solananeae), a spiny shrub mostly distributed in the desert regions of north and northwest China, has been shown to exhibit high tolerance to the extreme environment. In this study, the phylogeography and evolutionary history of L. ruthenicum were examined, on the basis of 80 individuals from eight populations. Using the sequence variations of two spacer regions of chloroplast DNA (trnH-psbA and rps16-trnK) , the absence of a geographic component in the chloroplast DNA genetic structure was identified (GST = 0.351, NST = 0.304, NST< GST), which was consisted with the result of SAMOVA, suggesting weak phylogeographic structure of this species. Phylogenetic and network analyses showed that a total of 10 haplotypes identified in the present study clustered into two clades, in which clade I harbored the ancestral haplotypes that inferred two independent glacial refugia in the middle of Qaidam Basin and the western Inner Mongolia. The existence of regional evolutionary differences was supported by GENETREE, which revealed that one of the population in Qaidam Basin and the two populations in Tarim Basin had experienced rapid expansion, and the other populations retained relatively stable population size during the Pleistocene . Given the results of long-term gene flow and pairwise differences, strong gene flow was insufficient to reduce the genetic differentiation among populations or within populations, probably due to the genetic composition containing a common haplotype and the high number of private haplotypes fixed for most of the population. The divergence times of different lineages were consistent with the rapid uplift phases of the Qinghai-Tibetan Plateau and the initiation and expansion of deserts in northern China, suggesting that the origin and evolution of L. ruthenicum were strongly influenced by Quaternary environment changes. (author)

  14. Historical Processes and Contemporary Anthropogenic Activities Influence Genetic Population Dynamics of Nassau Grouper (Epinephelus striatus within The Bahamas

    Directory of Open Access Journals (Sweden)

    Krista D. Sherman

    2017-12-01

    Full Text Available Severe declines of endangered Nassau grouper (Epinephelus striatus across The Bahamas and Caribbean have spurred efforts to improve their fisheries management and population conservation. The Bahamas is reported to hold the majority of fish spawning aggregations for Nassau grouper, however, the status and genetic population structure of fish within the country is largely unknown, presenting a major knowledge gap for their sustainable management. Between August 2014–February 2017, 464 individual Nassau grouper sampled from The Bahamas were genotyped using 15 polymorphic microsatellite loci to establish measures of population structure, genetic diversity and effective population size (Ne. Nassau grouper were characterized by mostly high levels of genetic diversity, but we found no evidence for geographic population structure. Microsatellite analyses revealed weak, but significant genetic differentiation of Nassau grouper throughout the Bahamian archipelago (Global FST 0.00236, p = 0.0001. Temporal analyses of changes in Ne over the last 1,000 generations provide evidence in support of a pronounced historic decline in Bahamian Nassau grouper that appears to pre-date anthropogenic fishing activities. M-ratio results corroborate significant reductions in Ne throughout The Bahamas, with evidence for population bottlenecks in three islands and an active fish spawning aggregation along with apparent signs of inbreeding at two islands. Current estimates of Ne for Nassau grouper are considerably lower compared with historic levels. These findings represent important new contributions to our understanding of the evolutionary history, demographics and genetic connectivity of this endangered species, which are of critical importance for advancing their sustainable management.

  15. Genetic Diversity and Structure of the Apiosporina morbosa Populations on Prunus spp.

    Science.gov (United States)

    Zhang, Jinxiu; Fernando, W G Dilantha; Remphrey, William R

    2005-08-01

    ABSTRACT Populations of Apiosporina morbosa collected from 15 geographic locations in Canada and the United States and three host species, Prunus virginiana, P. pensylvanica, and P. padus, were evaluated using the sequence-related amplified polymorphism (SRAP) technique to determine their genetic diversity and population differentiation. Extensive diversity was detected in the A. morbosa populations, including 134 isolates from Canada and the United States, regardless of the origin of the population. The number of polymorphic loci varied from 6.9 to 82.8% in the geographic populations, and from 41.4 to 79.3% in the populations from four host genotypes based on 58 polymorphic fragments. In all, 44 to 100% of isolates in the geographic populations and 43.6 to 76.2% in populations from four host genotypes represented unique genotypes. Values of heterozygosity (H) varied from 2.8 to 28.3% in the geographic populations and 10.2 to 26.1% in the populations from four host genotypes. In general, the A. morbosa populations sampled from wild chokecherry showed a higher genetic diversity than those populations collected from other host species, whereas the populations isolated from cultivated chokecherry, P. virginiana 'Shubert Select', showed a reduction of genetic diversity compared with populations from wild P. virginiana. Significant population differentiation was found among both the geographic populations (P virginiana were closely clustered, and no population differentiation was detected except for the populations from Morris, Morden, and Winnipeg, Manitoba, Canada. Furthermore, the populations from P. virginiana in the same geographic locations had higher genetic identity and closer genetic distance to each other compared with those from different locations. Four populations from P. virginiana, P. pensylvanica, and P. padus, were significantly differentiated from each other (P P> = 0.334). Indirect estimation of gene flow showed that significant restricted gene flow

  16. The population genetics of Quechuas, the largest native South American group: autosomal sequences, SNPs, and microsatellites evidence high level of diversity.

    Science.gov (United States)

    Scliar, Marilia O; Soares-Souza, Giordano B; Chevitarese, Juliana; Lemos, Livia; Magalhães, Wagner C S; Fagundes, Nelson J; Bonatto, Sandro L; Yeager, Meredith; Chanock, Stephen J; Tarazona-Santos, Eduardo

    2012-03-01

    Elucidating the pattern of genetic diversity for non-European populations is necessary to make the benefits of human genetics research available to individuals from these groups. In the era of large human genomic initiatives, Native American populations have been neglected, in particular, the Quechua, the largest South Amerindian group settled along the Andes. We characterized the genetic diversity of a Quechua population in a global setting, using autosomal noncoding sequences (nine unlinked loci for a total of 16 kb), 351 unlinked SNPs and 678 microsatellites and tested predictions of the model of the evolution of Native Americans proposed by (Tarazona-Santos et al.: Am J Hum Genet 68 (2001) 1485-1496). European admixture is Quechua or Melanesian populations, which is concordant with the African origin of modern humans and the fact that South America was the last part of the world to be peopled. The diversity in the Quechua population is comparable with that of Eurasian populations, and the allele frequency spectrum based on resequencing data does not reflect a reduction in the proportion of rare alleles. Thus, the Quechua population is a large reservoir of common and rare genetic variants of South Amerindians. These results are consistent with and complement our evolutionary model of South Amerindians (Tarazona-Santos et al.: Am J Hum Genet 68 (2001) 1485-1496), proposed based on Y-chromosome data, which predicts high genomic diversity due to the high level of gene flow between Andean populations and their long-term effective population size. Copyright © 2012 Wiley Periodicals, Inc.

  17. The Genetic Structure of Wild Orobanche cumana Wallr. (Orobanchaceae Populations in Eastern Bulgaria Reflects Introgressions from Weedy Populations

    Directory of Open Access Journals (Sweden)

    Rocío Pineda-Martos

    2014-01-01

    Full Text Available Orobanche cumana is a holoparasitic plant naturally distributed from central Asia to south-eastern Europe, where it parasitizes wild Asteraceae species. It is also an important parasitic weed of sunflower crops. The objective of this research was to investigate genetic diversity, population structure, and virulence on sunflower of O. cumana populations parasitizing wild plants in eastern Bulgaria. Fresh tissue of eight O. cumana populations and mature seeds of four of them were collected in situ on wild hosts. Genetic diversity and population structure were studied with SSR markers and compared to weedy populations. Two main gene pools were identified in Bulgarian populations, with most of the populations having intermediate characteristics. Cross-inoculation experiments revealed that O. cumana populations collected on wild species possessed similar ability to parasitize sunflower to those collected on sunflower. The results were explained on the basis of an effective genetic exchange between populations parasitizing sunflower crops and those parasitizing wild species. The occurrence of bidirectional gene flow may have an impact on wild populations, as new physiological races continuously emerge in weedy populations. Also, genetic variability of wild populations may favour the ability of weedy populations to overcome sunflower resistance mechanisms.

  18. The Genetic Structure of Wild Orobanche cumana Wallr. (Orobanchaceae) Populations in Eastern Bulgaria Reflects Introgressions from Weedy Populations

    Science.gov (United States)

    Pineda-Martos, Rocío; Pujadas-Salvà, Antonio J.; Fernández-Martínez, José M.; Stoyanov, Kiril; Pérez-Vich, Begoña

    2014-01-01

    Orobanche cumana is a holoparasitic plant naturally distributed from central Asia to south-eastern Europe, where it parasitizes wild Asteraceae species. It is also an important parasitic weed of sunflower crops. The objective of this research was to investigate genetic diversity, population structure, and virulence on sunflower of O. cumana populations parasitizing wild plants in eastern Bulgaria. Fresh tissue of eight O. cumana populations and mature seeds of four of them were collected in situ on wild hosts. Genetic diversity and population structure were studied with SSR markers and compared to weedy populations. Two main gene pools were identified in Bulgarian populations, with most of the populations having intermediate characteristics. Cross-inoculation experiments revealed that O. cumana populations collected on wild species possessed similar ability to parasitize sunflower to those collected on sunflower. The results were explained on the basis of an effective genetic exchange between populations parasitizing sunflower crops and those parasitizing wild species. The occurrence of bidirectional gene flow may have an impact on wild populations, as new physiological races continuously emerge in weedy populations. Also, genetic variability of wild populations may favour the ability of weedy populations to overcome sunflower resistance mechanisms. PMID:25143963

  19. The role of ecological factors in determining phylogeographic and population genetic structure of two sympatric island skinks (Plestiodon kishinouyei and P. stimpsonii).

    Science.gov (United States)

    Kurita, Kazuki; Toda, Mamoru

    2017-04-01

    We conducted comparative phylogeographic and population genetic analyses of Plestiodon kishinouyei and P. stimpsonii, two sympatric skinks endemic to islands in the southern Ryukyus, to explore different factors that have influenced population structure. Previous phylogenetic studies using partial mitochondrial DNA indicate similar divergence times from their respective closest relatives, suggesting that differences in population structure are driven by intrinsic attributes of either species rather than the common set of extrinsic factors that both presumably have been exposed to throughout their history. In this study, analysis of mtDNA sequences and microsatellite polymorphism demonstrate contrasting patterns of phylogeography and population structure: P. kishinouyei exhibits a lower genetic variability and lower genetic differentiation among islands than P. stimpsonii, consistent with recent population expansion. However, historical demographic analyses indicate that the relatively high genetic uniformity in P. kishinouyei is not attributable to recent expansion. We detected significant isolation-by-distance patterns among P. kishinouyei populations on the land bridge islands, but not among P. stimpsonii populations occurring on those same islands. Our results suggest that P. kishinouyei populations have maintained gene flows across islands until recently, probably via ephemeral Quaternary land bridges. The lower genetic variability in P. kishinouyei may also indicate smaller effective population sizes on average than that of P. stimpsonii. We interpret these differences as a consequence of ecological divergence between the two species, primarily in trophic level and habitat preference.

  20. Genetic Divergence and Signatures of Natural Selection in Marginal Populations of a Keystone, Long-Lived Conifer, Eastern White Pine (Pinus strobus) from Northern Ontario

    Science.gov (United States)

    Chhatre, Vikram E.; Rajora, Om P.

    2014-01-01

    Marginal populations are expected to provide the frontiers for adaptation, evolution and range shifts of plant species under the anticipated climate change conditions. Marginal populations are predicted to show genetic divergence from central populations due to their isolation, and divergent natural selection and genetic drift operating therein. Marginal populations are also expected to have lower genetic diversity and effective population size (N e) and higher genetic differentiation than central populations. We tested these hypotheses using eastern white pine (Pinus strobus) as a model for keystone, long-lived widely-distributed plants. All 614 eastern white pine trees, in a complete census of two populations each of marginal old-growth, central old-growth, and central second-growth, were genotyped at 11 microsatellite loci. The central populations had significantly higher allelic and genotypic diversity, latent genetic potential (LGP) and N e than the marginal populations. However, heterozygosity and fixation index were similar between them. The marginal populations were genetically diverged from the central populations. Model testing suggested predominant north to south gene flow in the study area with curtailed gene flow to northern marginal populations. Signatures of natural selection were detected at three loci in the marginal populations; two showing divergent selection with directional change in allele frequencies, and one balancing selection. Contrary to the general belief, no significant differences were observed in genetic diversity, differentiation, LGP, and N e between old-growth and second-growth populations. Our study provides information on the dynamics of migration, genetic drift and selection in central versus marginal populations of a keystone long-lived plant species and has broad evolutionary, conservation and adaptation significance. PMID:24859159

  1. Genetic divergence and signatures of natural selection in marginal populations of a keystone, long-lived conifer, Eastern White Pine (Pinus strobus) from Northern Ontario.

    Science.gov (United States)

    Chhatre, Vikram E; Rajora, Om P

    2014-01-01

    Marginal populations are expected to provide the frontiers for adaptation, evolution and range shifts of plant species under the anticipated climate change conditions. Marginal populations are predicted to show genetic divergence from central populations due to their isolation, and divergent natural selection and genetic drift operating therein. Marginal populations are also expected to have lower genetic diversity and effective population size (Ne) and higher genetic differentiation than central populations. We tested these hypotheses using eastern white pine (Pinus strobus) as a model for keystone, long-lived widely-distributed plants. All 614 eastern white pine trees, in a complete census of two populations each of marginal old-growth, central old-growth, and central second-growth, were genotyped at 11 microsatellite loci. The central populations had significantly higher allelic and genotypic diversity, latent genetic potential (LGP) and Ne than the marginal populations. However, heterozygosity and fixation index were similar between them. The marginal populations were genetically diverged from the central populations. Model testing suggested predominant north to south gene flow in the study area with curtailed gene flow to northern marginal populations. Signatures of natural selection were detected at three loci in the marginal populations; two showing divergent selection with directional change in allele frequencies, and one balancing selection. Contrary to the general belief, no significant differences were observed in genetic diversity, differentiation, LGP, and Ne between old-growth and second-growth populations. Our study provides information on the dynamics of migration, genetic drift and selection in central versus marginal populations of a keystone long-lived plant species and has broad evolutionary, conservation and adaptation significance.

  2. Quasispecies theory in the context of population genetics

    Directory of Open Access Journals (Sweden)

    Wilke Claus O

    2005-08-01

    Full Text Available Abstract Background A number of recent papers have cast doubt on the applicability of the quasispecies concept to virus evolution, and have argued that population genetics is a more appropriate framework to describe virus evolution than quasispecies theory. Results I review the pertinent literature, and demonstrate for a number of cases that the quasispecies concept is equivalent to the concept of mutation-selection balance developed in population genetics, and that there is no disagreement between the population genetics of haploid, asexually-replicating organisms and quasispecies theory. Conclusion Since quasispecies theory and mutation-selection balance are two sides of the same medal, the discussion about which is more appropriate to describe virus evolution is moot. In future work on virus evolution, we would do good to focus on the important questions, such as whether we can develop accurate, quantitative models of virus evolution, and to leave aside discussions about the relative merits of perfectly equivalent concepts.

  3. Comparative population genetics of the German shepherd dog in South Africa

    Directory of Open Access Journals (Sweden)

    N. J. Coutts

    2010-01-01

    Full Text Available Modern breeding practices strive to achieve distinctive phenotypic uniformity in breeds of dogs, but these strategies are associated with the inevitable loss of genetic diversity. Thus, in parallel with the morphological variation displayed by breeds, purebred dogs commonly express genetic defects as a result of the inbreeding associated with artificial selection and the reduction of selection against disease phenotypes. Microsatellite marker analyses of 15 polymorphic canine loci were used to investigate measures of genetic diversity and population differentiation within and between German-bred and South African-bred German shepherd dogs. These data were quantified by comparison with typically outbred mongrel or crossbred dogs. Both the imported and locally-bred German shepherd dogs exhibited similar levels of genetic diversity. The breed is characterised by only a moderate loss of genetic diversity relative to outbred dogs, despite originating from a single founding sire and experiencing extensive levels of inbreeding throughout the history of the breed. Non-significant population differentiation between the ancestral German and derived South African populations indicates sufficient contemporary gene flow between these populations, suggesting that migration resulting from the importation of breeding stock has mitigated the effects of random genetic drift and a population bottleneck caused by the original founder event in South Africa. Significant differentiation between the combined German shepherd dog population and the outbred dogs illustrates the effects of selection and genetic drift on the breed since its establishment just over 100 years ago.

  4. Population structure and genetic diversity characterization of a sunflower association mapping population using SSR and SNP markers.

    Science.gov (United States)

    Filippi, Carla V; Aguirre, Natalia; Rivas, Juan G; Zubrzycki, Jeremias; Puebla, Andrea; Cordes, Diego; Moreno, Maria V; Fusari, Corina M; Alvarez, Daniel; Heinz, Ruth A; Hopp, Horacio E; Paniego, Norma B; Lia, Veronica V

    2015-02-13

    Argentina has a long tradition of sunflower breeding, and its germplasm is a valuable genetic resource worldwide. However, knowledge of the genetic constitution and variability levels of the Argentinean germplasm is still scarce, rendering the global map of cultivated sunflower diversity incomplete. In this study, 42 microsatellite loci and 384 single nucleotide polymorphisms (SNPs) were used to characterize the first association mapping population used for quantitative trait loci mapping in sunflower, along with a selection of allied open-pollinated and composite populations from the germplasm bank of the National Institute of Agricultural Technology of Argentina. The ability of different kinds of markers to assess genetic diversity and population structure was also evaluated. The analysis of polymorphism in the set of sunflower accessions studied here showed that both the microsatellites and SNP markers were informative for germplasm characterization, although to different extents. In general, the estimates of genetic variability were moderate. The average genetic diversity, as quantified by the expected heterozygosity, was 0.52 for SSR loci and 0.29 for SNPs. Within SSR markers, those derived from non-coding regions were able to capture higher levels of diversity than EST-SSR. A significant correlation was found between SSR and SNP- based genetic distances among accessions. Bayesian and multivariate methods were used to infer population structure. Evidence for the existence of three different genetic groups was found consistently across data sets (i.e., SSR, SNP and SSR + SNP), with the maintainer/restorer status being the most prevalent characteristic associated with group delimitation. The present study constitutes the first report comparing the performance of SSR and SNP markers for population genetics analysis in cultivated sunflower. We show that the SSR and SNP panels examined here, either used separately or in conjunction, allowed consistent

  5. Population genetic data of the NGM SElect STR loci in Chinese Han population from Zhejiang region, China.

    Science.gov (United States)

    Zhou, Anju; Wu, Weiwei; Liu, Qiuling; Wu, Yeda; Lu, Dejian

    2013-03-01

    Genetic variations of the 17 NGM SElect STR loci in Chinese Han samples from the Zhejiang region were analyzed. The results show that the NGM SElect is a highly genetic informative system in Zhejiang Han, and this population shows quite different genetic data from other major populations in the world with the exception of the Fujian Han.

  6. Toward a Better Understanding of Population Genetics: Pop!World--A Virtual, Inquiry-Based Tool for Teaching Population Genetics

    Science.gov (United States)

    Poulin, Jessica; Ramamurthy, Bina; Dittmar, Katharina

    2013-01-01

    Population genetics is fundamental to understanding evolutionary theory, and is taught in most introductory biology/evolution courses. Many students are unaware that understanding this topic requires pertinent knowledge

  7. Phylogeography and population genetics of the endangered Amazonian manatee, Trichechus inunguis Natterer, 1883 (Mammalia, Sirenia).

    Science.gov (United States)

    Cantanhede, Andréa Martins; Da Silva, Vera Maria Ferreira; Farias, Izeni Pires; Hrbek, Tomas; Lazzarini, Stella Maris; Alves-Gomes, José

    2005-02-01

    We used mitochondrial DNA control region sequences to examine phylogeography and population differentiation of the endangered Amazonian manatee Trichechus inunguis. We observe lack of molecular differentiation among localities and we find weak association between geographical and genetic distances. However, nested clade analysis supports restricted gene flow and/or dispersal with some long-distance dispersal. Although this species has a history of extensive hunting, genetic diversity and effective population sizes are relatively high when compared to the West Indian manatee Trichechus manatus. Patterns of mtDNA haplotype diversity in T. inunguis suggest a genetic disequilibrium most likely explained by demographic expansion resulting from secession of hunting and enforcement of conservation and protective measures. Phylogenetic analysis of T. manatus and T. inunguis haplotypes suggests that T. inunguis is nested within T. manatus, effectively making T. manatus a paraphyletic entity. Paraphyly of T. manatus and recent divergence times of T. inunguis and the three main T. manatus lineages suggest a possible need for a taxonomic re-evaluation of the western Atlantic Trichechus.

  8. Population genetics and cryptic species

    International Nuclear Information System (INIS)

    McPheron, Bruce A.

    2000-01-01

    Does the definition of a species matter for pest management purposes? Taxonomists provide us with tools - usually morphological characters - to identify a group of organisms that we call a species. The implication of this identification is that all of the individuals that fit the provided description are members of the species in question. The taxonomists have considered the range of variation among individuals in defining the species, but this variation is often forgotten when we take the concept of species to the level of management. Just as there is morphological variation among individuals, there is also variation in practically any character we might imagine, which has implications for the short and long term success of our management tactics. The rich literature on insecticide resistance should be a constant reminder of the fact that the pressure on pest survival and reproduction applied by our management approaches frequently leads to evolutionary changes within the pest species. The degree of variation within a particular species is a defining characteristic of that species. This level of variability may have very important implications for successful management, so it is very important to measure variation and, whenever possible, the genetic basis of that variation, in a target species. Population genetic approaches can provide evidence of genetic structure (or lack thereof) among populations of a species. These types of data can be used to discuss the movement of pest populations on a local or global scale. In other cases, we may have a complex of species that share some, but not all, characteristics. Species complexes that share morphological characters (i.e., cannot be easily distinguished) but not biological characters are referred to as sibling or cryptic species

  9. Genetic Diversity and Population Structure in Native Chicken Populations from Myanmar, Thailand and Laos by Using 102 Indels Markers

    Directory of Open Access Journals (Sweden)

    A. A. Maw

    2015-01-01

    Full Text Available The genetic diversity of native chicken populations from Myanmar, Thailand, and Laos was examined by using 102 insertion and/or deletion (indels markers. Most of the indels loci were polymorphic (71% to 96%, and the genetic variability was similar in all populations. The average observed heterozygosities (HO and expected heterozygosities (HE ranged from 0.205 to 0.263 and 0.239 to 0.381, respectively. The coefficients of genetic differentiation (Gst for all cumulated populations was 0.125, and the Thai native chickens showed higher Gst (0.088 than Myanmar (0.041 and Laotian (0.024 populations. The pairwise Fst distances ranged from 0.144 to 0.308 among populations. A neighbor-joining (NJ tree, using Nei’s genetic distance, revealed that Thai and Laotian native chicken populations were genetically close, while Myanmar native chickens were distant from the others. The native chickens from these three countries were thought to be descended from three different origins (K = 3 from STRUCTURE analysis. Genetic admixture was observed in Thai and Laotian native chickens, while admixture was absent in Myanmar native chickens.

  10. Integrating genetic data and population viability analyses for the identification of harbour seal (Phoca vitulina) populations and management units

    DEFF Research Database (Denmark)

    Olsen, Morten Tange; Andersen, Liselotte Wesley; Dietz, Rune

    2014-01-01

    present a novel approach, integrating genetic, life-history and demographic data to identify populations and management units in southern Scandinavian harbour seals. First, 15 microsatellite markers and model- and distance-based genetic clustering methods were used to determine the population genetic...... structure in harbour seals. Second, we used harbour seal demographic and life-history data to conduct population viability analyses (PVAs) in the VORTEX simulation model in order to determine whether the inferred genetic units could be classified as management units according to Lowe and Allendorf's (2010......, and that the combined use of genetic data and PVAs constitute a promising approach for delineating populations and management units. This article is protected by copyright. All rights reserved....

  11. Disentangling the effects of evolutionary, demographic, and environmental factors influencing genetic structure of natural populations: Atlantic herring as a case study

    DEFF Research Database (Denmark)

    Gaggiotti, Oscar E.; Bekkevold, Dorte; Jørgensen, Hanne B.H.

    2009-01-01

    , on the other hand, seems to have been largely eroded, which is not surprising given the large reproductive potential and presumed enormous local effective population sizes of pelagic fish that constrain the effect of stochastic processes. The approach we used can in principle be applied to any abundant...... carried out separate analyses of neutral and selected genetic variation, which allowed us to establish that the two most important factors affecting population structure were selection due to salinity at spawning sites and feeding migrations. The genetic signal left by the demographic history of herring...

  12. Genetics, geography, and culture: the population of S. Pietro Island (Sardinia, Italy).

    Science.gov (United States)

    Vona, G; Calò, C M; Lucia, G; Mameli, G E; Succa, V; Esteban, E; Moral, P

    1996-08-01

    An interesting aspect of the island of Sardinia (Italy) is the wide range of genetic variability within the island itself. The variability is widened by the presence of some populations of different ethnic origin who speak a language other than Sardinian. This work deals with the study of the genetic structure of the Carloforte population which inhabits the tiny island of S. Pietro 4 km off the southwest coast of Sardinia. S. Pietro was first populated in 1738 by emigrants coming from the island of Tabarka (Tunisia) who spoke an archaic form of the Ligurian dialect. Data on genetic polymorphisms in the Carloforte population are presented and discussed in relation to some Sardinian and Italian populations. Data on demographic and matrimonial structure are also presented. The genetic analyses show the Carloforte population as being clearly separated from both Sardinians and continental Italians. The isolation of Carloforte, highlighted by language diversity, endogamy, and consanguinity levels and marriage area, supports the idea of genetic diversity linked to cultural peculiarity.

  13. Population Genetic Structure and Evidence of Demographic Expansion of the Ayu (Plecoglossus altivelis in East Asia

    Directory of Open Access Journals (Sweden)

    Ye-Seul Kwan

    2012-10-01

    Full Text Available Plecoglossus altivelis (ayu is an amphidromous fish widely distributed in Northeastern Asia from the East China Sea to the northern Japanese coastal waters, encompassing the Korean Peninsula within its range. The shore lines of northeastern region in Asia have severely fluctuated following glaciations in the Quaternary. In the present study, we investigate the population genetic structure and historical demographic change of P. altivelis at a population level in East Asia. Analysis of molecular variance (AMOVA based on 244 mitochondrial control region DNA sequences clearly showed that as the sampling scope extended to a larger geographic area, genetic differentiation began to become significant, particularly among Northeastern populations. A series of hierarchical AMOVA could detect the genetic relationship of three closely located islands between Korea and Japan that might have been tightly connected by the regional Tsushima current. Neutrality and mismatch distribution analyses revealed a strong signature of a recent population expansion of P. altivelis in East Asia, estimated at 126 to 391 thousand years ago during the late Pleistocene. Therefore it suggests that the present population of P. altivelis traces back to its approximate demographic change long before the last glacial maximum. This contrasts our a priori expectation that the most recent glacial event might have the most crucial effect on the present day demography of marine organisms through bottleneck and subsequent increase of effective population size in this region.

  14. Population genetic structure of the sidespot barb, Barbus neefi, from ...

    African Journals Online (AJOL)

    Allozyme analysis was used to determine patterns of genetic variation within and between populations of Barbus neefi. The products of 29 loci were analysed, with 17 loci being monomorphic in all populations. The genetic variability estimates compared well with values reported in the literature. The percentage of ...

  15. Population genetics of Setaria viridis, a new model system.

    Science.gov (United States)

    Huang, Pu; Feldman, Maximilian; Schroder, Stephan; Bahri, Bochra A; Diao, Xianmin; Zhi, Hui; Estep, Matt; Baxter, Ivan; Devos, Katrien M; Kellogg, Elizabeth A

    2014-10-01

    An extensive survey of the standing genetic variation in natural populations is among the priority steps in developing a species into a model system. In recent years, green foxtail (Setaria viridis), along with its domesticated form foxtail millet (S. italica), has rapidly become a promising new model system for C4 grasses and bioenergy crops, due to its rapid life cycle, large amount of seed production and small diploid genome, among other characters. However, remarkably little is known about the genetic diversity in natural populations of this species. In this study, we survey the genetic diversity of a worldwide sample of more than 200 S. viridis accessions, using the genotyping-by-sequencing technique. Two distinct genetic groups in S. viridis and a third group resembling S. italica were identified, with considerable admixture among the three groups. We find the genetic variation of North American S. viridis correlates with both geography and climate and is representative of the total genetic diversity in this species. This pattern may reflect several introduction/dispersal events of S. viridis into North America. We also modelled demographic history and show signal of recent population decline in one subgroup. Finally, we show linkage disequilibrium decay is rapid (<45 kb) in our total sample and slow in genetic subgroups. These results together provide an in-depth understanding of the pattern of genetic diversity of this new model species on a broad geographic scale. They also provide key guidelines for on-going and future work including germplasm preservation, local adaptation, crossing designs and genomewide association studies. © 2014 John Wiley & Sons Ltd.

  16. Population genetics inference for longitudinally-sampled mutants under strong selection.

    Science.gov (United States)

    Lacerda, Miguel; Seoighe, Cathal

    2014-11-01

    Longitudinal allele frequency data are becoming increasingly prevalent. Such samples permit statistical inference of the population genetics parameters that influence the fate of mutant variants. To infer these parameters by maximum likelihood, the mutant frequency is often assumed to evolve according to the Wright-Fisher model. For computational reasons, this discrete model is commonly approximated by a diffusion process that requires the assumption that the forces of natural selection and mutation are weak. This assumption is not always appropriate. For example, mutations that impart drug resistance in pathogens may evolve under strong selective pressure. Here, we present an alternative approximation to the mutant-frequency distribution that does not make any assumptions about the magnitude of selection or mutation and is much more computationally efficient than the standard diffusion approximation. Simulation studies are used to compare the performance of our method to that of the Wright-Fisher and Gaussian diffusion approximations. For large populations, our method is found to provide a much better approximation to the mutant-frequency distribution when selection is strong, while all three methods perform comparably when selection is weak. Importantly, maximum-likelihood estimates of the selection coefficient are severely attenuated when selection is strong under the two diffusion models, but not when our method is used. This is further demonstrated with an application to mutant-frequency data from an experimental study of bacteriophage evolution. We therefore recommend our method for estimating the selection coefficient when the effective population size is too large to utilize the discrete Wright-Fisher model. Copyright © 2014 by the Genetics Society of America.

  17. Genetic diversity of populations of the dioecious Myrsine coriacea (Primulaceae in the Atlantic Forest

    Directory of Open Access Journals (Sweden)

    Roberta Pena da Paschoa

    2018-04-01

    Full Text Available ABSTRACT Although a species’ sexual system may influence the genetic diversity of its populations in their natural environment, there have been few such studies involving indigenous species of the Atlantic Forest. Here we study Myrsine coriacea, a dioecious tree widely used in reforestation programs despite a lack of information about its natural interpopulation genetic variation. To address this knowledge gap, intra- and interpopulation genetic diversity were measured for male and female individuals of ten natural populations using ISSR markers. Greater intrapopulation genetic diversity indicated interpopulation gene flow, regardless of isolation and distance between populations. Multivariate analyses detected significant differences in genetic diversity between populations, but not between males and females, which indicates that genetic diversity did not differ between the two sex morphs. Distance between populations was unrelated to genetic diversity. Myrsine coriacea has not experienced a loss of genetic variability despite the characteristic segregated spatial distribution of its populations. These results suggest that obligatory cross-pollination and dispersal by birds may be important mechanisms for the maintenance of genetic diversity in natural populations of M. coriacea.

  18. Mitochondrial DNA genetic variations among four horse populations in Egypt

    Directory of Open Access Journals (Sweden)

    Othman E. Othman

    2017-12-01

    It is concluded that sequence analysis of mtDNA control region is still the most informative tool for the identification of genetic biodiversity and phylogeny of different horse breeds and populations. The horse populations reared in Egypt possess low genetic diversity and all of them are belonged to Equus caballus breed.

  19. Consequences of severe habitat fragmentation on density, genetics, and spatial capture-recapture analysis of a small bear population.

    Directory of Open Access Journals (Sweden)

    Sean M Murphy

    Full Text Available Loss and fragmentation of natural habitats caused by human land uses have subdivided several formerly contiguous large carnivore populations into multiple small and often isolated subpopulations, which can reduce genetic variation and lead to precipitous population declines. Substantial habitat loss and fragmentation from urban development and agriculture expansion relegated the Highlands-Glades subpopulation (HGS of Florida, USA, black bears (Ursus americanus floridanus to prolonged isolation; increasing human land development is projected to cause ≥ 50% loss of remaining natural habitats occupied by the HGS in coming decades. We conducted a noninvasive genetic spatial capture-recapture study to quantitatively describe the degree of contemporary habitat fragmentation and investigate the consequences of habitat fragmentation on population density and genetics of the HGS. Remaining natural habitats sustaining the HGS were significantly more fragmented and patchier than those supporting Florida's largest black bear subpopulation. Genetic diversity was low (AR = 3.57; HE = 0.49 and effective population size was small (NE = 25 bears, both of which remained unchanged over a period spanning one bear generation despite evidence of some immigration. Subpopulation density (0.054 bear/km2 was among the lowest reported for black bears, was significantly female-biased, and corresponded to a subpopulation size of 98 bears in available habitat. Conserving remaining natural habitats in the area occupied by the small, genetically depauperate HGS, possibly through conservation easements and government land acquisition, is likely the most important immediate step to ensuring continued persistence of bears in this area. Our study also provides evidence that preferentially placing detectors (e.g., hair traps or cameras primarily in quality habitat across fragmented landscapes poses a challenge to estimating density-habitat covariate relationships using spatial

  20. Into the depth of population genetics: pattern of structuring in mesophotic red coral populations

    Science.gov (United States)

    Costantini, Federica; Abbiati, Marco

    2016-03-01

    Deep-sea reef-building corals are among the most conspicuous invertebrates inhabiting the hard-bottom habitats worldwide and are particularly susceptible to human threats. The precious red coral ( Corallium rubrum, L. 1758) has a wide bathymetric distribution, from shallow up to 800 m depth, and represents a key species in the Mediterranean mesophotic reefs. Several studies have investigated genetic variability in shallow-water red coral populations, while geographic patterns in mesophotic habitats are largely unknown. This study investigated genetic variability of C. rubrum populations dwelling between 55 and 120 m depth, from the Ligurian to the Ionian Sea along about 1500 km of coastline. A total of 18 deep rocky banks were sampled. Colonies were analyzed by means of a set of microsatellite loci and the putative control region of the mitochondrial DNA. Collected data were compared with previous studies. Both types of molecular markers showed high genetic similarity between populations within the northern (Ligurian Sea and Tuscan Archipelago) and the southern (Tyrrhenian and Ionian seas) study areas. Variability in habitat features between the sampling sites did not affect the genetic variability of the populations. Conversely, the patchy distribution of suitable habitats affected populations' connectivity within and among deep coral banks. Based on these results and due to the emphasis on red coral protection in the Mediterranean Sea by international institutions, red coral could be promoted as a `focal species' to develop management plans for the conservation of deep coralligenous reefs, a reservoir of marine biodiversity.

  1. Genetic diversity of Pinus halepensis Mill. populations detected by RAPD loci

    OpenAIRE

    Gómez , Aránzazu; Alía , Ricardo; Bueno , María

    2001-01-01

    International audience; Genetic diversity of Pinus halepensis Mill. was analysed in nine populations (six Spanish populations and one each from Tunisia, France and Greece). Twenty four RAPD loci were amplified with 60 megagametophyte DNA samples from each population. Populations' contribution to Nei gene diversity and to allelic richness were calculated. Results showed higher within population genetic variation but also a $G_{{\\rm ST}} = 13.6\\%$ higher than those detected in previous studies ...

  2. Genetic population structure of muskellunge in the Great Lakes

    Science.gov (United States)

    Kapuscinski, Kevin L.; Sloss, Brian L.; Farrell, John M.

    2013-01-01

    We quantified genetic relationships among Muskellunge Esox masquinongy from 15 locations in the Great Lakes to determine the extent and distribution of measurable population structure and to identify appropriate spatial scales for fishery management and genetic conservation. We hypothesized that Muskellunge from each area represented genetically distinct populations, which would be evident from analyses of genotype data. A total of 691 Muskellunge were sampled (n = 10–127/site) and genetic data were collected at 13 microsatellite loci. Results from a suite of analyses (including pairwise genetic differentiation, Bayesian admixture prediction, analysis of molecular variance, and tests of isolation by distance) indicated the presence of nine distinct genetic groups, including two that were approximately 50 km apart. Geographic proximity and low habitat complexity seemed to facilitate genetic similarity among areas, whereas Muskellunge from areas of greater habitat heterogeneity exhibited high differentiation. Muskellunge from most areas contained private alleles, and mean within-area genetic variation was similar to that reported for other freshwater fishes. Management programs aimed at conserving the broader diversity and long-term sustainability of Muskellunge could benefit by considering the genetically distinct groups as independent fisheries, and individual spawning and nursery habitats could subsequently be protected to conserve the evolutionary potential of Muskellunge.

  3. Genetic Diversity in Jatropha curcas Populations in the State of Chiapas, Mexico

    Directory of Open Access Journals (Sweden)

    Miguel Salvador-Figueroa

    2011-10-01

    Full Text Available Jatropha curcas L. has become an important source of oil production for biodiesel fuel. Most genetic studies of this plant have been conducted with Asian and African accessions, where low diversity was encountered. There are no studies of this kind focusing in the postulated region of origin. Therefore, five populations of J. curcas were studied in the state of Chiapas, Mexico, using amplified fragment length polymorphism (AFLP markers. One hundred and fifty-two useful markers were obtained: overall polymorphism = 81.18% and overall Nei’s genetic diversity (He = 0.192. The most diverse population was the Border population [He: 0.245, Shanon’s information index (I: 0.378]. A cluster analysis revealed the highest dissimilarity coefficient (0.893 yet to be reported among accessions. An analysis of molecular variance (AMOVA revealed that the greatest variation is within populations (87.8%, followed by the variation among populations (7.88%. The PhiST value (0.121 indicated moderate differentiation between populations. However, a spatial AMOVA (SAMOVA detected a stronger genetic structure of populations, with a PhiST value of 0.176. To understand the fine structure of populations, an analysis of data with Bayesian statistics was conducted with software Structure©. The number of genetic populations (K was five, with mixed ancestry in most individuals (genetic migrants, except in the Soconusco, where there was a tiny fraction of fragments from other populations. In contrast, SAMOVA grouped populations in four units. To corroborate the above findings, we searched for possible genetic barriers, determining as the main barrier that separating the Border from the rest of the populations. The results are discussed based on the possible ancestry of populations.

  4. The genetic consequences of selection in natural populations.

    Science.gov (United States)

    Thurman, Timothy J; Barrett, Rowan D H

    2016-04-01

    The selection coefficient, s, quantifies the strength of selection acting on a genetic variant. Despite this parameter's central importance to population genetic models, until recently we have known relatively little about the value of s in natural populations. With the development of molecular genetic techniques in the late 20th century and the sequencing technologies that followed, biologists are now able to identify genetic variants and directly relate them to organismal fitness. We reviewed the literature for published estimates of natural selection acting at the genetic level and found over 3000 estimates of selection coefficients from 79 studies. Selection coefficients were roughly exponentially distributed, suggesting that the impact of selection at the genetic level is generally weak but can occasionally be quite strong. We used both nonparametric statistics and formal random-effects meta-analysis to determine how selection varies across biological and methodological categories. Selection was stronger when measured over shorter timescales, with the mean magnitude of s greatest for studies that measured selection within a single generation. Our analyses found conflicting trends when considering how selection varies with the genetic scale (e.g., SNPs or haplotypes) at which it is measured, suggesting a need for further research. Besides these quantitative conclusions, we highlight key issues in the calculation, interpretation, and reporting of selection coefficients and provide recommendations for future research. © 2016 John Wiley & Sons Ltd.

  5. Population genetic structure of the people of Qatar.

    Science.gov (United States)

    Hunter-Zinck, Haley; Musharoff, Shaila; Salit, Jacqueline; Al-Ali, Khalid A; Chouchane, Lotfi; Gohar, Abeer; Matthews, Rebecca; Butler, Marcus W; Fuller, Jennifer; Hackett, Neil R; Crystal, Ronald G; Clark, Andrew G

    2010-07-09

    People of the Qatar peninsula represent a relatively recent founding by a small number of families from three tribes of the Arabian Peninsula, Persia, and Oman, with indications of African admixture. To assess the roles of both this founding effect and the customary first-cousin marriages among the ancestral Islamic populations in Qatar's population genetic structure, we obtained and genotyped with Affymetrix 500k SNP arrays DNA samples from 168 self-reported Qatari nationals sampled from Doha, Qatar. Principal components analysis was performed along with samples from the Human Genetic Diversity Project data set, revealing three clear clusters of genotypes whose proximity to other human population samples is consistent with Arabian origin, a more eastern or Persian origin, and individuals with African admixture. The extent of linkage disequilibrium (LD) is greater than that of African populations, and runs of homozygosity in some individuals reflect substantial consanguinity. However, the variance in runs of homozygosity is exceptionally high, and the degree of identity-by-descent sharing generally appears to be lower than expected for a population in which nearly half of marriages are between first cousins. Despite the fact that the SNPs of the Affymetrix 500k chip were ascertained with a bias toward SNPs common in Europeans, the data strongly support the notion that the Qatari population could provide a valuable resource for the mapping of genes associated with complex disorders and that tests of pairwise interactions are particularly empowered by populations with elevated LD like the Qatari. Copyright 2010 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  6. Genetic diversity in Chilean populations of rainbow trout, Oncorhynchus mykiss

    Directory of Open Access Journals (Sweden)

    Claudia B Cárcamo

    2015-03-01

    Full Text Available The rainbow trout Oncorhynchus mykiss, was first introduced in Chile between 1905 and 1920 and is currently widely distributed in Chile from Antofagasta (23°S to Patagonia (55°S. The broad range of the geographic and climatic distributions of this species in Chile offers a unique opportunity to study the effect of naturalization of an introduced species on its genetic variability. It is of particular importance to observe the genetic variability of populations in the northern range of this species distribution, in a transition zone where a Mediterranean-type climate changes to an arid climate. The present study analyzed allozymic variability and distribution within and between populations of O. mykiss from the river basins of Elqui and Limari rivers, and six culture strains, using starch-gel protein electrophoresis. Populations were found to be in Hardy-Weinberg equilibrium and the average values of He (0.045, polymorphism (13.9% and allele per locus (1.19 are similar to rainbow trout in its native distributional range. About 77.8% of the genetic variability was within population, similar to the variability reported for wild populations in the northern hemisphere. However, a marked genetic differentiation between wild populations was also found. This is likely to be the consequence of initial founder effects followed by subsequent introgression of resident populations caused by reseeding with trout of different origins in both basins.

  7. Integrating population genetics and conservation biology in the era of genomics.

    Science.gov (United States)

    Ouborg, N Joop

    2010-02-23

    As one of the final activities of the ESF-CONGEN Networking programme, a conference entitled 'Integrating Population Genetics and Conservation Biology' was held at Trondheim, Norway, from 23 to 26 May 2009. Conference speakers and poster presenters gave a display of the state-of-the-art developments in the field of conservation genetics. Over the five-year running period of the successful ESF-CONGEN Networking programme, much progress has been made in theoretical approaches, basic research on inbreeding depression and other genetic processes associated with habitat fragmentation and conservation issues, and with applying principles of conservation genetics in the conservation of many species. Future perspectives were also discussed in the conference, and it was concluded that conservation genetics is evolving into conservation genomics, while at the same time basic and applied research on threatened species and populations from a population genetic point of view continues to be emphasized.

  8. Genetic differentiation among Parastichopus regalis populations from Western Mediterranean Sea: potential effects of its fishery and current connectivity.

    Directory of Open Access Journals (Sweden)

    C. MAGGI

    2015-09-01

    Full Text Available Parastichopus regalis (Cuvier, 1817 is the most expensive seafood product on the catalonian market (NE Spain, with prices around 130 €/Kg (fresh weight. Despite its ecological and economic importance, biological and genetic information on this sea cucumber species is scarce. We provided the first insight on the genetic structure of P. regalis using sequences of cytochrome oxidase I (COI and 16S genes, as well as a morphological description of its populations. Individuals were collected in six locations along the Spanish Mediterranean coast, including an area under fishery pressure (Catalonia. We found high haplotype diversity and low nucleotide diversity for both genes, with higher levels of genetic diversity observed on COI gene. Population pairwise fixation index (FST, AMOVA and correspondence analysis (CA based on COI, revealed significant genetic differentiation among some locations. However, further analysis using nuclear markers (e.g. microsatellites would be necessary to corroborate these results. Moreover, the genetic and morphological data may indicate fishery effects on the Catalonian population with decrease of the size and weight average and lower genetic diversity compared to locations without fishery pressure. For an appropriate management of this species, we suggest: 1 an accurate assessment of the stocks status along the Spanish coasts; 2 the study of the reproductive cycle of this target species and the establishment of a closed fishery season according to it; 3 the founding of protected areas (i.e. not take zones to conserve healthy populations and favour the recruitment on the nearby areas.

  9. Development of novel SSR markers for evaluation of genetic diversity and population structure in Tribulus terrestris L. (Zygophyllaceae).

    Science.gov (United States)

    Kaur, Kuljit; Sharma, Vikas; Singh, Vijay; Wani, Mohammad Saleem; Gupta, Raghbir Chand

    2016-12-01

    Tribulus terrestris L., commonly called puncture vine and gokhru, is an important member of Zygophyllaceae. The species is highly important in context to therapeutic uses and provides important active principles responsible for treatment of various diseases and also used as tonic. It is widely distributed in tropical regions of India and the world. However, status of its genetic diversity remained concealed due to lack of research work in this species. In present study, genetic diversity and structure of different populations of T. terrestris from north India was examined at molecular level using newly developed Simple Sequence Repeat (SSR) markers. In total, 20 primers produced 48 alleles in a size range of 100-500 bp with maximum (4) fragments amplified by TTMS-1, TTMS-25 and TTMS-33. Mean Polymorphism Information Content (PIC) and Marker Index (MI) were 0.368 and 1.01, respectively. Dendrogram showed three groups, one of which was purely containing accessions from Rajasthan while other two groups corresponded to Punjab and Haryana regions with intermixing of few other accessions. Analysis of molecular variance partitioned 76 % genetic variance within populations and 24 % among populations. Bayesian model based STRUCTURE analysis detected two genetic stocks for analyzed germplasm and also detected some admixed individuals. Different geographical populations of this species showed high level of genetic diversity. Results of present study can be useful in identifying diverse accessions and management of this plant resource. Moreover, the novel SSR markers developed can be utilized for various genetic analyses in this species in future.

  10. Extensive population genetic structure in the giraffe

    Directory of Open Access Journals (Sweden)

    Grether Gregory F

    2007-12-01

    Full Text Available Abstract Background A central question in the evolutionary diversification of large, widespread, mobile mammals is how substantial differentiation can arise, particularly in the absence of topographic or habitat barriers to dispersal. All extant giraffes (Giraffa camelopardalis are currently considered to represent a single species classified into multiple subspecies. However, geographic variation in traits such as pelage pattern is clearly evident across the range in sub-Saharan Africa and abrupt transition zones between different pelage types are typically not associated with extrinsic barriers to gene flow, suggesting reproductive isolation. Results By analyzing mitochondrial DNA sequences and nuclear microsatellite loci, we show that there are at least six genealogically distinct lineages of giraffe in Africa, with little evidence of interbreeding between them. Some of these lineages appear to be maintained in the absence of contemporary barriers to gene flow, possibly by differences in reproductive timing or pelage-based assortative mating, suggesting that populations usually recognized as subspecies have a long history of reproductive isolation. Further, five of the six putative lineages also contain genetically discrete populations, yielding at least 11 genetically distinct populations. Conclusion Such extreme genetic subdivision within a large vertebrate with high dispersal capabilities is unprecedented and exceeds that of any other large African mammal. Our results have significant implications for giraffe conservation, and imply separate in situ and ex situ management, not only of pelage morphs, but also of local populations.

  11. Review: Genetic diversity and population structure of cotton ...

    African Journals Online (AJOL)

    Cotton (Gossypium spp.) is the world's leading natural fiber crop and is cultivated in diverse temperate and tropical areas. In this sense, molecular markers are important tools for polymorphism identification in genetic diversity analyses. The objective of this study was to evaluate genetic diversity and population structure in ...

  12. Genetic diversity, population structure and marker trait associations ...

    Indian Academy of Sciences (India)

    Supplementary data: Genetic diversity, population structure and marker trait associations for seed quality traits in cotton (Gossypium hirsutum). Ashok Badigannavar and Gerald O. Myers. J. Genet. 94, 87–94. Table 1. List of cotton germplasm lines used in this study. Germplasm no. Cultivar. Region. Germplasm no. Cultivar.

  13. A multi-parent advanced generation inter-cross (MAGIC) population for genetic analysis and improvement of cowpea (Vigna unguiculata L. Walp.).

    Science.gov (United States)

    Huynh, Bao-Lam; Ehlers, Jeffrey D; Huang, Bevan Emma; Muñoz-Amatriaín, María; Lonardi, Stefano; Santos, Jansen R P; Ndeve, Arsenio; Batieno, Benoit J; Boukar, Ousmane; Cisse, Ndiaga; Drabo, Issa; Fatokun, Christian; Kusi, Francis; Agyare, Richard Y; Guo, Yi-Ning; Herniter, Ira; Lo, Sassoum; Wanamaker, Steve I; Xu, Shizhong; Close, Timothy J; Roberts, Philip A

    2018-03-01

    Multi-parent advanced generation inter-cross (MAGIC) populations are an emerging type of resource for dissecting the genetic structure of traits and improving breeding populations. We developed a MAGIC population for cowpea (Vigna unguiculata L. Walp.) from eight founder parents. These founders were genetically diverse and carried many abiotic and biotic stress resistance, seed quality and agronomic traits relevant to cowpea improvement in the United States and sub-Saharan Africa, where cowpea is vitally important in the human diet and local economies. The eight parents were inter-crossed using structured matings to ensure that the population would have balanced representation from each parent, followed by single-seed descent, resulting in 305 F 8 recombinant inbred lines each carrying a mosaic of genome blocks contributed by all founders. This was confirmed by single nucleotide polymorphism genotyping with the Illumina Cowpea Consortium Array. These lines were on average 99.74% homozygous but also diverse in agronomic traits across environments. Quantitative trait loci (QTLs) were identified for several parental traits. Loci with major effects on photoperiod sensitivity and seed size were also verified by biparental genetic mapping. The recombination events were concentrated in telomeric regions. Due to its broad genetic base, this cowpea MAGIC population promises breakthroughs in genetic gain, QTL and gene discovery, enhancement of breeding populations and, for some lines, direct releases as new varieties. © 2018 The Authors. The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.

  14. MICROSATELLITE GENETIC VARIATION IN CULTURED POPULATIONS OF AFRICAN CATFISH (Clarias gariepinus IN INDONESIA

    Directory of Open Access Journals (Sweden)

    Imron Imron

    2011-06-01

    Full Text Available African catfish, Clarias gariepinus, is one of economically important farmed species in Indonesia. To support the development of aquaculture industry, high genetic quality of both broodstock and seeds is required and breeding program is considered as viable option. Information on genetic variation of the populations being considered to form a base population may give insight toward the appropriate strategy to be implemented in breeding program. This study was aimed to assess genetic variation in farmed populations of catfish in Indonesia using microsatellite markers with special emphasis on their use to develop breeding program. Three populations of farmed catfish, namely Dumbo, Paiton, and Sangkuriang were collected. Fifteen individuals representing each population were screened for microsatellite variability using seven primer sets (cga01, cga02, cga03, cga05, cga06, cga09, cga10. Results found that with exception of two loci (cga01 and cg02 which had a slight increase, the other four loci showed reduction in the number of alleles ranging from 35% to 80% depending on loci. Farmed populations also showed heterozygote deficient and inbreeding level, being the highest was found in Sangkuriang and the least was observed in Dumbo population. Individuals within populations contributed most (95% while interpopulation variation accounted for only 5% of the total genetic variation. Populations of Dumbo and Sangkuriang were genetically similar while populations of Paiton were genetically different from both Dumbo and Sangkuriang. Viewed from genetic perspective, by combining all information emerging from this study, the best possible strategy to establish a base population with broad genetic base and less inbreeding would be to combine all the populations into a synthetic base population.

  15. Population genetic diversity and hybrid detection in captive zebras.

    Science.gov (United States)

    Ito, Hideyuki; Langenhorst, Tanya; Ogden, Rob; Inoue-Murayama, Miho

    2015-08-21

    Zebras are members of the horse family. There are three species of zebras: the plains zebra Equus quagga, the Grevy's zebra E. grevyi and the mountain zebra E. zebra. The Grevy's zebra and the mountain zebra are endangered, and hybridization between the Grevy's zebra and the plains zebra has been documented, leading to a requirement for conservation genetic management within and between the species. We characterized 28 microsatellite markers in Grevy's zebra and assessed cross-amplification in plains zebra and two of its subspecies, as well as mountain zebra. A range of standard indices were employed to examine population genetic diversity and hybrid populations between Grevy's and plains zebra were simulated to investigate subspecies and hybrid detection. Microsatellite marker polymorphism was conserved across species with sufficient variation to enable individual identification in all populations. Comparative diversity estimates indicated greater genetic variation in plains zebra and its subspecies than Grevy's zebra, despite potential ascertainment bias. Species and subspecies differentiation were clearly demonstrated and F1 and F2 hybrids were correctly identified. These findings provide insights into captive population genetic diversity in zebras and support the use of these markers for identifying hybrids, including the known hybrid issue in the endangered Grevy's zebra.

  16. Genetic signatures of variation in population size in a native fungal pathogen after the recent intensive plantation of its host tree

    NARCIS (Netherlands)

    Labbé, Frédéric; Fontaine, Michael Christophe; Robin, Cécile; Dutech, Cyril

    2017-01-01

    Historical fluctuations in forests’ distribution driven by past climate changes and anthropogenic activities can have large impacts on the demographic history of pathogens that have a long co-evolution history with these host trees. Using a population genetic approach, we investigated that

  17. QTL mapping in multiple populations and development stages reveals dynamic quantitative trait loci for fruit size in cucumbers of different market classes.

    Science.gov (United States)

    Weng, Yiqun; Colle, Marivi; Wang, Yuhui; Yang, Luming; Rubinstein, Mor; Sherman, Amir; Ophir, Ron; Grumet, Rebecca

    2015-09-01

    QTL analysis in multi-development stages with different QTL models identified 12 consensus QTLs underlying fruit elongation and radial growth presenting a dynamic view of genetic control of cucumber fruit development. Fruit size is an important quality trait in cucumber (Cucumis sativus L.) of different market classes. However, the genetic and molecular basis of fruit size variations in cucumber is not well understood. In this study, we conducted QTL mapping of fruit size in cucumber using F2, F2-derived F3 families and recombinant inbred lines (RILs) from a cross between two inbred lines Gy14 (North American picking cucumber) and 9930 (North China fresh market cucumber). Phenotypic data of fruit length and diameter were collected at three development stages (anthesis, immature and mature fruits) in six environments over 4 years. QTL analysis was performed with three QTL models including composite interval mapping (CIM), Bayesian interval mapping (BIM), and multiple QTL mapping (MQM). Twenty-nine consistent and distinct QTLs were detected for nine traits from multiple mapping populations and QTL models. Synthesis of information from available fruit size QTLs allowed establishment of 12 consensus QTLs underlying fruit elongation and radial growth, which presented a dynamic view of genetic control of cucumber fruit development. Results from this study highlighted the benefits of QTL analysis with multiple QTL models and different mapping populations in improving the power of QTL detection. Discussion was presented in the context of domestication and diversifying selection of fruit length and diameter, marker-assisted selection of fruit size, as well as identification of candidate genes for fruit size QTLs in cucumber.

  18. Urban habitat fragmentation and genetic population structure of bobcats in coastal southern California

    Science.gov (United States)

    Ruell, E.W.; Riley, S.P.D.; Douglas, M.R.; Antolin, M.F.; Pollinger, J.R.; Tracey, J.A.; Lyren, L.M.; Boydston, E.E.; Fisher, R.N.; Crooks, K.R.

    2012-01-01

    Although habitat fragmentation is recognized as a primary threat to biodiversity, the effects of urban development on genetic population structure vary among species and landscapes and are not yet well understood. Here we use non-invasive genetic sampling to compare the effects of fragmentation by major roads and urban development on levels of dispersal, genetic diversity, and relatedness between paired bobcat populations in replicate landscapes in coastal southern California. We hypothesized that bobcat populations in sites surrounded by urbanization would experience reduced functional connectivity relative to less isolated nearby populations. Our results show that bobcat genetic population structure is affected by roads and development but not always as predicted by the degree that these landscape features surround fragments. Instead, we suggest that urban development may affect functional connectivity between bobcat populations more by limiting the number and genetic diversity of source populations of migrants than by creating impermeable barriers to dispersal.

  19. MONITORING OF GENETIC DIVERSITY IN FARMED DEER POPULATIONS USING MICROSATELLITE MARKERS

    Directory of Open Access Journals (Sweden)

    Pavol Bajzík

    2011-12-01

    Full Text Available Deer (Cervidaei belong to the most important species used as farmed animals. We focused on assesing the genetic diversity among five deer populations. Analysis has been performed on a total of 183 animals originating from Czech Republic, Hungary, New Zealand, Poland and Slovak Republic. Genetic variability were investigated using 8 microsatellite markers used in deer. Statistical data of all populations we obtained on the basis of Nei statistics, using by POWERMARKER 3.23 programme. Graphical view of relationships among populations and individuals in the populations was obtained using the Dendroscope software. Molecular genetic data combinated with evaluation in statistical programmes could lead to a complex view of populations and diffrences among them.doi:10.5219/172

  20. Both population size and patch quality affect local extinctions and colonizations.

    Science.gov (United States)

    Franzén, Markus; Nilsson, Sven G

    2010-01-07

    Currently, the habitat of many species is fragmented, resulting in small local populations with individuals occasionally dispersing between the remaining habitat patches. In a solitary bee metapopulation, extinction probability was related to both local bee population sizes and pollen resources measured as host plant population size. Patch size, on the other hand, had no additional predictive power. The turnover rate of local bee populations in 63 habitat patches over 4 years was high, with 72 extinction events and 31 colonization events, but the pollen plant population was stable with no extinctions or colonizations. Both pollen resources and bee populations had strong and independent effects on extinction probability, but connectivity was not of importance. Colonizations occurred more frequently within larger host plant populations. For metapopulation survival of the bee, large pollen plant populations are essential, independent of current bee population size.

  1. Quantifying introgression risk with realistic population genetics

    OpenAIRE

    Ghosh, Atiyo; Meirmans, Patrick G.; Haccou, Patsy

    2012-01-01

    Introgression is the permanent incorporation of genes from the genome of one population into another. This can have severe consequences, such as extinction of endemic species, or the spread of transgenes. Quantification of the risk of introgression is an important component of genetically modified crop regulation. Most theoretical introgression studies aimed at such quantification disregard one or more of the most important factors concerning introgression: realistic genetical mechanisms, rep...

  2. Genetic structure of Balearic honeybee populations based on microsatellite polymorphism

    Directory of Open Access Journals (Sweden)

    Moritz Robin FA

    2003-05-01

    Full Text Available Abstract The genetic variation of honeybee colonies collected in 22 localities on the Balearic Islands (Spain was analysed using eight polymorphic microsatellite loci. Previous studies have demonstrated that these colonies belong either to the African or west European evolutionary lineages. These populations display low variability estimated from both the number of alleles and heterozygosity values, as expected for the honeybee island populations. Although genetic differentiation within the islands is low, significant heterozygote deficiency is present, indicating a subpopulation genetic structure. According to the genetic differentiation test, the honeybee populations of the Balearic Islands cluster into two groups: Gimnesias (Mallorca and Menorca and Pitiusas (Ibiza and Formentera, which agrees with the biogeography postulated for this archipelago. The phylogenetic analysis suggests an Iberian origin of the Balearic honeybees, thus confirming the postulated evolutionary scenario for Apis mellifera in the Mediterranean basin. The microsatellite data from Formentera, Ibiza and Menorca show that ancestral populations are threatened by queen importations, indicating that adequate conservation measures should be developed for protecting Balearic bees.

  3. EvoSNP-DB: A database of genetic diversity in East Asian populations.

    Science.gov (United States)

    Kim, Young Uk; Kim, Young Jin; Lee, Jong-Young; Park, Kiejung

    2013-08-01

    Genome-wide association studies (GWAS) have become popular as an approach for the identification of large numbers of phenotype-associated variants. However, differences in genetic architecture and environmental factors mean that the effect of variants can vary across populations. Understanding population genetic diversity is valuable for the investigation of possible population specific and independent effects of variants. EvoSNP-DB aims to provide information regarding genetic diversity among East Asian populations, including Chinese, Japanese, and Korean. Non-redundant SNPs (1.6 million) were genotyped in 54 Korean trios (162 samples) and were compared with 4 million SNPs from HapMap phase II populations. EvoSNP-DB provides two user interfaces for data query and visualization, and integrates scores of genetic diversity (Fst and VarLD) at the level of SNPs, genes, and chromosome regions. EvoSNP-DB is a web-based application that allows users to navigate and visualize measurements of population genetic differences in an interactive manner, and is available online at [http://biomi.cdc.go.kr/EvoSNP/].

  4. Genetic diversity and population structure in Polygonum cespitosum: insights to an ongoing plant invasion.

    Directory of Open Access Journals (Sweden)

    Silvia Matesanz

    Full Text Available Molecular markers can help elucidate how neutral evolutionary forces and introduction history contribute to genetic variation in invaders. We examined genetic diversity, population structure and colonization patterns in the invasive Polygonum cespitosum, a highly selfing, tetraploid Asian annual introduced to North America. We used nine diploidized polymorphic microsatellite markers to study 16 populations in the introduced range (northeastern North America, via the analyses of 516 individuals, and asked the following questions: 1 Do populations have differing levels of within-population genetic diversity? 2 Do populations form distinct genetic clusters? 3 Does population structure reflect either geographic distances or habitat similarities? We found low heterozygosity in all populations, consistent with the selfing mating system of P. cespitosum. Despite the high selfing levels, we found substantial genetic variation within and among P. cespitosum populations, based on the percentage of polymorphic loci, allelic richness, and expected heterozygosity. Inferences from individual assignment tests (Bayesian clustering and pairwise FST values indicated high among-population differentiation, which indicates that the effects of gene flow are limited relative to those of genetic drift, probably due to the high selfing rates and the limited seed dispersal ability of P. cespitosum. Population structure did not reflect a pattern of isolation by distance nor was it related to habitat similarities. Rather, population structure appears to be the result of the random movement of propagules across the introduced range, possibly associated with human dispersal. Furthermore, the high population differentiation, genetic diversity, and fine-scale genetic structure (populations founded by individuals from different genetic sources in the introduced range suggest that multiple introductions to this region may have occurred. High genetic diversity may further

  5. Genetic diversity of Casearia sylvestris populations in remnants of the Atlantic Forest.

    Science.gov (United States)

    Araujo, F L; Siqueira, M V B M; Grando, C; Viana, J P G; Pinheiro, J B; Alves-Pereira, A; Campos, J B; Brancalion, P H S; Zucchi, M I

    2017-01-23

    Guaçatonga (Casearia sylvestris) is a native plant of the Atlantic Forest, with high medicinal potential and relevance for reforestation programs. The aim of this study was to characterize, with microsatellite markers, two populations of C. sylvestris from remaining areas of the Atlantic Forest in the State of São Paulo. High allelic variation was found in both populations (N A = 101 and 117; A R = 12.5 and 14.4), although with high endogamy coefficients (f = 0.640 and 0.363). Estimates of genetic structure suggested the presence of considerable genetic divergence between the populations (F ST = 0.103); however, there was no spatial genetic structure within the populations. Genetic divergence may have occurred due to decreased gene flow between the fragmented populations as the result of deforestation. The results of this study demonstrate the importance of genetic diversity and its characterization in native plants within remaining forest areas for the management and restoration of such areas.

  6. Genetics of Type 2 Diabetes: the Power of Isolated Populations

    DEFF Research Database (Denmark)

    Andersen, Mette Korre; Pedersen, Casper-Emil Tingskov; Moltke, Ida

    2016-01-01

    Type 2 diabetes (T2D) affects millions of people worldwide. Improving the understanding of the underlying mechanisms and ultimately improving the treatment strategies are, thus, of great interest. To achieve this, identification of genetic variation predisposing to T2D is important. A large number...... of complex disease variants and describe their contributions to the understanding of the genetics of T2D. © 2016, Springer Science+Business Media New York....... disease-associated variants due to genetic drift. Collectively, this increases the statistical power to detect association signals in isolated populations compared to large outbred populations. In this review, we elaborate on why isolated populations are a powerful resource for the identification...

  7. Natural Genetic Transformation Generates a Population of Merodiploids in Streptococcus pneumoniae

    Science.gov (United States)

    Zomer, Aldert; Bootsma, Hester J.; Prudhomme, Marc; Granadel, Chantal; Hermans, Peter W. M.; Polard, Patrice; Martin, Bernard; Claverys, Jean-Pierre

    2013-01-01

    Partial duplication of genetic material is prevalent in eukaryotes and provides potential for evolution of new traits. Prokaryotes, which are generally haploid in nature, can evolve new genes by partial chromosome duplication, known as merodiploidy. Little is known about merodiploid formation during genetic exchange processes, although merodiploids have been serendipitously observed in early studies of bacterial transformation. Natural bacterial transformation involves internalization of exogenous donor DNA and its subsequent integration into the recipient genome by homology. It contributes to the remarkable plasticity of the human pathogen Streptococcus pneumoniae through intra and interspecies genetic exchange. We report that lethal cassette transformation produced merodiploids possessing both intact and cassette-inactivated copies of the essential target gene, bordered by repeats (R) corresponding to incomplete copies of IS861. We show that merodiploidy is transiently stimulated by transformation, and only requires uptake of a ∼3-kb DNA fragment partly repeated in the chromosome. We propose and validate a model for merodiploid formation, providing evidence that tandem-duplication (TD) formation involves unequal crossing-over resulting from alternative pairing and interchromatid integration of R. This unequal crossing-over produces a chromosome dimer, resolution of which generates a chromosome with the TD and an abortive chromosome lacking the duplicated region. We document occurrence of TDs ranging from ∼100 to ∼900 kb in size at various chromosomal locations, including by self-transformation (transformation with recipient chromosomal DNA). We show that self-transformation produces a population containing many different merodiploid cells. Merodiploidy provides opportunities for evolution of new genetic traits via alteration of duplicated genes, unrestricted by functional selective pressure. Transient stimulation of a varied population of merodiploids by

  8. Natural genetic transformation generates a population of merodiploids in Streptococcus pneumoniae.

    Directory of Open Access Journals (Sweden)

    Calum Johnston

    Full Text Available Partial duplication of genetic material is prevalent in eukaryotes and provides potential for evolution of new traits. Prokaryotes, which are generally haploid in nature, can evolve new genes by partial chromosome duplication, known as merodiploidy. Little is known about merodiploid formation during genetic exchange processes, although merodiploids have been serendipitously observed in early studies of bacterial transformation. Natural bacterial transformation involves internalization of exogenous donor DNA and its subsequent integration into the recipient genome by homology. It contributes to the remarkable plasticity of the human pathogen Streptococcus pneumoniae through intra and interspecies genetic exchange. We report that lethal cassette transformation produced merodiploids possessing both intact and cassette-inactivated copies of the essential target gene, bordered by repeats (R corresponding to incomplete copies of IS861. We show that merodiploidy is transiently stimulated by transformation, and only requires uptake of a ~3-kb DNA fragment partly repeated in the chromosome. We propose and validate a model for merodiploid formation, providing evidence that tandem-duplication (TD formation involves unequal crossing-over resulting from alternative pairing and interchromatid integration of R. This unequal crossing-over produces a chromosome dimer, resolution of which generates a chromosome with the TD and an abortive chromosome lacking the duplicated region. We document occurrence of TDs ranging from ~100 to ~900 kb in size at various chromosomal locations, including by self-transformation (transformation with recipient chromosomal DNA. We show that self-transformation produces a population containing many different merodiploid cells. Merodiploidy provides opportunities for evolution of new genetic traits via alteration of duplicated genes, unrestricted by functional selective pressure. Transient stimulation of a varied population of

  9. Genetic diversity and relatedness among seven red deer (Cervus elaphus populations

    Directory of Open Access Journals (Sweden)

    Lenka Maršálková

    2014-02-01

    Full Text Available Deer (Cervidae recently belongs to the most important species. The aim of presenting study was evaluation of genetic diversity and relationship within and among seven red deer populations from different origins - Czech Republic, Hungary, hybrids Hungary x New Zealand, Lithuania, New Zealand, Poland and Slovak Republic. This study was conducted to determine the levels of genetic variability and relationships among deer populations from a total of 637 animals originating from seven countries Czech Republic (50, Hungary (35, Hungary x New Zealand hybrids (67, Lithuania (26, New Zealand (82, Poland (347 and Slovak Republic (30.  We used the hair bulbs as a source of DNA.  In total, 213 alleles were observed from the 10 loci surveyed. The number of alleles per locus ranged from 11 (IOBT965 to 35 (T156, RT13. Genetic diversity and relatedness among red deer populations has been performed on a total of 637 animals. A panel of 10 microsatellite markers used in deer were optimized. On the basis of this panel of microsatellites we were investigated genetic variability and relationships by using statistical and graphical programmes. We evaluated how close populations are to each other and their genetic admixture. Molecular genetic data combined with evaluation in statistical programmes could lead to a complex view of populations

  10. Life histories predict genetic diversity and population structure within three species of octopus targeted by small-scale fisheries in Northwest Mexico

    Science.gov (United States)

    Ceballos-Vázquez, Bertha P.; Arellano-Martínez, Marcial; García-Rodríguez, Francisco J.; Culver, Melanie; Reyes-Bonilla, Hector

    2018-01-01

    The fishery for octopus in Northwest Mexico has increased to over 2,000 tons annually, but to date the specific composition of the catch has been ignored. With at least three main species targeted by artisanal fisheries in the region with distinct life histories, the lack of basic biological information about the distribution, metapopulation size and structure of each species could impede effective fisheries management to avoid overexploitation. We tested if different life histories of three species of octopus could help predict observed patterns of genetic diversity, population dynamics, structure and connectivity and how this information could be relevant to the sustainable management of the fishery. We sequenced two mitochondrial genes and genotyped seven nuclear microsatellite loci to identify the distribution of each species in 20 locations from the Gulf of California and the west coast of the Baja California peninsula. We tested five hypotheses derived from population genetic theory based on differences in the fecundity and dispersal potential for each species. We discovered that Octopus bimaculoides with low fecundity and direct development (without a planktonic phase) had lower average effective population size and genetic diversity, but higher levels of kinship, population structure, and richness of private alleles, than the other two species. These features indicated limited dispersal and high local recruitment. In contrast, O. bimaculatus and O. hubbsorum with higher fecundity and planktonic phase as paralarvae had higher effective population size and genetic diversity, and overall lower kinship and population structure than O. bimaculoides. These observations supported higher levels of gene flow over a larger geographical scale. O. bimaculatus with the longest planktonic paralarval duration and therefore larger dispersal potential had differences in the calculated parameters possibly associated with increased connectivity. We propose O

  11. Genetic structure, divergence and admixture of Han Chinese, Japanese and Korean populations.

    Science.gov (United States)

    Wang, Yuchen; Lu, Dongsheng; Chung, Yeun-Jun; Xu, Shuhua

    2018-01-01

    Han Chinese, Japanese and Korean, the three major ethnic groups of East Asia, share many similarities in appearance, language and culture etc., but their genetic relationships, divergence times and subsequent genetic exchanges have not been well studied. We conducted a genome-wide study and evaluated the population structure of 182 Han Chinese, 90 Japanese and 100 Korean individuals, together with the data of 630 individuals representing 8 populations wordwide. Our analyses revealed that Han Chinese, Japanese and Korean populations have distinct genetic makeup and can be well distinguished based on either the genome wide data or a panel of ancestry informative markers (AIMs). Their genetic structure corresponds well to their geographical distributions, indicating geographical isolation played a critical role in driving population differentiation in East Asia. The most recent common ancestor of the three populations was dated back to 3000 ~ 3600 years ago. Our analyses also revealed substantial admixture within the three populations which occurred subsequent to initial splits, and distinct gene introgression from surrounding populations, of which northern ancestral component is dominant. These estimations and findings facilitate to understanding population history and mechanism of human genetic diversity in East Asia, and have implications for both evolutionary and medical studies.

  12. Evaluating manta ray mucus as an alternative DNA source for population genetics study: underwater-sampling, dry-storage and PCR success

    Science.gov (United States)

    Maxwell, Elisabeth A.; Marshall, Andrea D.; Christensen, Ana B.

    2015-01-01

    Sharks and rays are increasingly being identified as high-risk species for extinction, prompting urgent assessments of their local or regional populations. Advanced genetic analyses can contribute relevant information on effective population size and connectivity among populations although acquiring sufficient regional sample sizes can be challenging. DNA is typically amplified from tissue samples which are collected by hand spears with modified biopsy punch tips. This technique is not always popular due mainly to a perception that invasive sampling might harm the rays, change their behaviour, or have a negative impact on tourism. To explore alternative methods, we evaluated the yields and PCR success of DNA template prepared from the manta ray mucus collected underwater and captured and stored on a Whatman FTA™ Elute card. The pilot study demonstrated that mucus can be effectively collected underwater using toothbrush. DNA stored on cards was found to be reliable for PCR-based population genetics studies. We successfully amplified mtDNA ND5, nuclear DNA RAG1, and microsatellite loci for all samples and confirmed sequences and genotypes being those of target species. As the yields of DNA with the tested method were low, further improvements are desirable for assays that may require larger amounts of DNA, such as population genomic studies using emerging next-gen sequencing. PMID:26413431

  13. Genetic Diversity and Population Structure of Theileria annulata in Oman.

    Science.gov (United States)

    Al-Hamidhi, Salama; H Tageldin, Mohammed; Weir, William; Al-Fahdi, Amira; Johnson, Eugene H; Bobade, Patrick; Alqamashoui, Badar; Beja-Pereira, Albano; Thompson, Joanne; Kinnaird, Jane; Shiels, Brian; Tait, Andy; Babiker, Hamza

    2015-01-01

    Theileriosis, caused by a number of species within the genus Theileria, is a common disease of livestock in Oman. It is a major constraint to the development of the livestock industry due to a high rate of morbidity and mortality in both cattle and sheep. Since little is currently known about the genetic diversity of the parasites causing theileriosis in Oman, the present study was designed to address this issue with specific regard to T. annulata in cattle. Blood samples were collected from cattle from four geographically distinct regions in Oman for genetic analysis of the Theileria annulata population. Ten genetic markers (micro- and mini-satellites) representing all four chromosomes of T. annulata were applied to these samples using a combination of PCR amplification and fragment analysis. The resultant genetic data was analysed to provide a first insight into the structure of the T. annulata population in Oman. We applied ten micro- and mini-satellite markers to a total of 310 samples obtained from different regions (174 [56%] from Dhofar, 68 [22%] from Dhira, 44 [14.5%] from Batinah and 24 [8%] from Sharqia). A high degree of allelic diversity was observed among the four parasite populations. Expected heterozygosity for each site ranged from 0.816 to 0.854. A high multiplicity of infection was observed in individual hosts, with an average of 3.3 to 3.4 alleles per locus, in samples derived from Batinah, Dhofar and Sharqia regions. In samples from Dhira region, an average of 2.9 alleles per locus was observed. Mild but statistically significant linkage disequilibrium between pairs of markers was observed in populations from three of the four regions. In contrast, when the analysis was performed at farm level, no significant linkage disequilibrium was observed. Finally, no significant genetic differentiation was seen between the four populations, with most pair-wise FST values being less than 0.03. Slightly higher FST values (GST' = 0.075, θ = 0.07) were

  14. Genetic Diversity and Population Structure of Theileria annulata in Oman.

    Directory of Open Access Journals (Sweden)

    Salama Al-Hamidhi

    Full Text Available Theileriosis, caused by a number of species within the genus Theileria, is a common disease of livestock in Oman. It is a major constraint to the development of the livestock industry due to a high rate of morbidity and mortality in both cattle and sheep. Since little is currently known about the genetic diversity of the parasites causing theileriosis in Oman, the present study was designed to address this issue with specific regard to T. annulata in cattle.Blood samples were collected from cattle from four geographically distinct regions in Oman for genetic analysis of the Theileria annulata population. Ten genetic markers (micro- and mini-satellites representing all four chromosomes of T. annulata were applied to these samples using a combination of PCR amplification and fragment analysis. The resultant genetic data was analysed to provide a first insight into the structure of the T. annulata population in Oman.We applied ten micro- and mini-satellite markers to a total of 310 samples obtained from different regions (174 [56%] from Dhofar, 68 [22%] from Dhira, 44 [14.5%] from Batinah and 24 [8%] from Sharqia. A high degree of allelic diversity was observed among the four parasite populations. Expected heterozygosity for each site ranged from 0.816 to 0.854. A high multiplicity of infection was observed in individual hosts, with an average of 3.3 to 3.4 alleles per locus, in samples derived from Batinah, Dhofar and Sharqia regions. In samples from Dhira region, an average of 2.9 alleles per locus was observed. Mild but statistically significant linkage disequilibrium between pairs of markers was observed in populations from three of the four regions. In contrast, when the analysis was performed at farm level, no significant linkage disequilibrium was observed. Finally, no significant genetic differentiation was seen between the four populations, with most pair-wise FST values being less than 0.03. Slightly higher FST values (GST' = 0.075,

  15. On population size estimators in the Poisson mixture model.

    Science.gov (United States)

    Mao, Chang Xuan; Yang, Nan; Zhong, Jinhua

    2013-09-01

    Estimating population sizes via capture-recapture experiments has enormous applications. The Poisson mixture model can be adopted for those applications with a single list in which individuals appear one or more times. We compare several nonparametric estimators, including the Chao estimator, the Zelterman estimator, two jackknife estimators and the bootstrap estimator. The target parameter of the Chao estimator is a lower bound of the population size. Those of the other four estimators are not lower bounds, and they may produce lower confidence limits for the population size with poor coverage probabilities. A simulation study is reported and two examples are investigated. © 2013, The International Biometric Society.

  16. Analysis of genetic diversity in Bolivian llama populations using microsatellites.

    Science.gov (United States)

    Barreta, J; Gutiérrez-Gil, B; Iñiguez, V; Romero, F; Saavedra, V; Chiri, R; Rodríguez, T; Arranz, J J

    2013-08-01

    South American camelids (SACs) have a major role in the maintenance and potential future of rural Andean human populations. More than 60% of the 3.7 million llamas living worldwide are found in Bolivia. Due to the lack of studies focusing on genetic diversity in Bolivian llamas, this analysis investigates both the genetic diversity and structure of 12 regional groups of llamas that span the greater part of the range of distribution for this species in Bolivia. The analysis of 42 microsatellite markers in the considered regional groups showed that, in general, there were high levels of polymorphism (a total of 506 detected alleles; average PIC across per marker: 0.66), which are comparable with those reported for other populations of domestic SACs. The estimated diversity parameters indicated that there was high intrapopulational genetic variation (average number of alleles and average expected heterozygosity per marker: 12.04 and 0.68, respectively) and weak genetic differentiation among populations (FST range: 0.003-0.052). In agreement with these estimates, Bolivian llamas showed a weak genetic structure and an intense gene flow between all the studied regional groups, which is due to the exchange of reproductive males between the different flocks. Interestingly, the groups for which the largest pairwise FST estimates were observed, Sud Lípez and Nor Lípez, showed a certain level of genetic differentiation that is probably due to the pattern of geographic isolation and limited communication infrastructures of these southern localities. Overall, the population parameters reported here may serve as a reference when establishing conservation policies that address Bolivian llama populations. © 2012 Blackwell Verlag GmbH.

  17. The Genetic Basis of Baculum Size and Shape Variation in Mice

    Directory of Open Access Journals (Sweden)

    Nicholas G. Schultz

    2016-05-01

    Full Text Available The rapid divergence of male genitalia is a preeminent evolutionary pattern. This rapid divergence is especially striking in the baculum, a bone that occurs in the penis of many mammalian species. Closely related species often display diverse baculum morphology where no other morphological differences can be discerned. While this fundamental pattern of evolution has been appreciated at the level of gross morphology, nearly nothing is known about the genetic basis of size and shape divergence. Quantifying the genetic basis of baculum size and shape variation has been difficult because these structures generally lack obvious landmarks, so comparing them in three dimensions is not straightforward. Here, we develop a novel morphometric approach to quantify size and shape variation from three-dimensional micro-CT scans taken from 369 bacula, representing 75 distinct strains of the BXD family of mice. We identify two quantitative trait loci (QTL that explain ∼50% of the variance in baculum size, and a third QTL that explains more than 20% of the variance in shape. Together, our study demonstrates that baculum morphology may diverge relatively easily, with mutations at a few loci of large effect that independently modulate size and shape. Based on a combination of bioinformatic investigations and new data on RNA expression, we prioritized these QTL to 16 candidate genes, which have hypothesized roles in bone morphogenesis and may enable future genetic manipulation of baculum morphology.

  18. Predator-driven brain size evolution in natural populations of Trinidadian killifish (Rivulus hartii)

    Science.gov (United States)

    Walsh, Matthew R.; Broyles, Whitnee; Beston, Shannon M.; Munch, Stephan B.

    2016-01-01

    Vertebrates exhibit extensive variation in relative brain size. It has long been assumed that this variation is the product of ecologically driven natural selection. Yet, despite more than 100 years of research, the ecological conditions that select for changes in brain size are unclear. Recent laboratory selection experiments showed that selection for larger brains is associated with increased survival in risky environments. Such results lead to the prediction that increased predation should favour increased brain size. Work on natural populations, however, foreshadows the opposite trajectory of evolution; increased predation favours increased boldness, slower learning, and may thereby select for a smaller brain. We tested the influence of predator-induced mortality on brain size evolution by quantifying brain size variation in a Trinidadian killifish, Rivulus hartii, from communities that differ in predation intensity. We observed strong genetic differences in male (but not female) brain size between fish communities; second generation laboratory-reared males from sites with predators exhibited smaller brains than Rivulus from sites in which they are the only fish present. Such trends oppose the results of recent laboratory selection experiments and are not explained by trade-offs with other components of fitness. Our results suggest that increased male brain size is favoured in less risky environments because of the fitness benefits associated with faster rates of learning and problem-solving behaviour. PMID:27412278

  19. Increase in density of genetically diverse invasive Asian shore crab (Hemigrapsus sanguineus) populations in the Gulf of Maine.

    Science.gov (United States)

    Lord, Joshua P; Williams, Larissa M

    2017-04-01

    Hemigrapsus sanguineus , the Asian shore crab, has rapidly replaced Carcinus maenas , the green crab, as the most abundant crab on rocky shores in the northwest Atlantic since its introduction to the United States (USA) in 1988. The northern edge of this progressing invasion is the Gulf of Maine, where Asian shore crabs are only abundant in the south. We compared H. sanguineus population densities to those from published 2005 surveys and quantified genetic variation using the cytochrome c oxidase subunit I gene. We found that the range of H. sanguineus had extended northward since 2005, that population density had increased substantially (at least 10-fold at all sites), and that Asian shore crabs had become the dominant intertidal crab species in New Hampshire and southern Maine. Despite the significant increase in population density of H. sanguineus , populations only increased by a factor of 14 in Maine compared to 70 in southern New England, possibly due to cooler temperatures in the Gulf of Maine. Genetically, populations were predominantly composed of a single haplotype of Japanese, Korean, or Taiwanese origin, although an additional seven haplotypes were found. Six of these haplotypes were of Asian origin, while two are newly described. Large increases in population sizes of genetically diverse individuals in Maine will likely have a large ecological impact, causing a reduction in populations of mussels, barnacles, snails, and other crabs, similar to what has occurred at southern sites with large populations of this invasive crab species.

  20. Inference and Analysis of Population Structure Using Genetic Data and Network Theory.

    Science.gov (United States)

    Greenbaum, Gili; Templeton, Alan R; Bar-David, Shirli

    2016-04-01

    Clustering individuals to subpopulations based on genetic data has become commonplace in many genetic studies. Inference about population structure is most often done by applying model-based approaches, aided by visualization using distance-based approaches such as multidimensional scaling. While existing distance-based approaches suffer from a lack of statistical rigor, model-based approaches entail assumptions of prior conditions such as that the subpopulations are at Hardy-Weinberg equilibria. Here we present a distance-based approach for inference about population structure using genetic data by defining population structure using network theory terminology and methods. A network is constructed from a pairwise genetic-similarity matrix of all sampled individuals. The community partition, a partition of a network to dense subgraphs, is equated with population structure, a partition of the population to genetically related groups. Community-detection algorithms are used to partition the network into communities, interpreted as a partition of the population to subpopulations. The statistical significance of the structure can be estimated by using permutation tests to evaluate the significance of the partition's modularity, a network theory measure indicating the quality of community partitions. To further characterize population structure, a new measure of the strength of association (SA) for an individual to its assigned community is presented. The strength of association distribution (SAD) of the communities is analyzed to provide additional population structure characteristics, such as the relative amount of gene flow experienced by the different subpopulations and identification of hybrid individuals. Human genetic data and simulations are used to demonstrate the applicability of the analyses. The approach presented here provides a novel, computationally efficient model-free method for inference about population structure that does not entail assumption of

  1. Insights into population ecology and sexual selection in snakes through the application of DNA-based genetic markers.

    Science.gov (United States)

    Gibbs, H L; Weatherhead, P J

    2001-01-01

    Hypervariable genetic markers have revolutionized studies of kinship, behavioral ecology, and population biology in vertebrate groups such as birds, but their use in snakes remains limited. To illustrate the value of such markers in snakes, we review studies that have used microsatellite DNA loci to analyze local population differentiation and parentage in snakes. Four ecologically distinct species of snakes all show evidence for differentiation at small spatial scales (2-15 km), but with substantial differences among species. This result highlights how genetic analysis can reveal hidden aspects of the natural history of difficult-to-observe taxa, and it raises important questions about the ecological factors that may contribute to restricted gene flow. A 3-year study of genetic parentage in marked populations of the northern water snake showed that (1) participation in mating aggregations was a poor predictor of genetic-based measures of reproductive success; (2) multiple paternity was high, yet there was no detectable fitness advantage to multiple mating by females; and (3) the opportunity for selection was far higher in males than in females due to a larger variance in male reproductive success, and yet this resulted in no detectable selection on morphological variation in males. Thus genetic markers have provided accurate measures of individual reproductive success in this species, an important step toward resolving the adaptive significance of key features including multiple paternity and reversed sexual size dimorphism. Overall these studies illustrate how genetic analyses of snakes provide previously unobtainable information of long-standing interest to behavioral ecologists.

  2. Genetics of radionuclide-contaminated mosquitofish populations and homology between Gambusia affinis and G. holbrooki

    International Nuclear Information System (INIS)

    Theodorakis, C.W.; Bickham, J.W.; Chesser, R.K.

    1998-01-01

    The effects of radionuclide contamination on genetic structure of eastern mosquitofish (Gambusia holbrooki) populations from the US Department of Energy's Savannah River Site (SRS) were investigated to develop methods of assessing ecological risk of chronic exposures to xenobiotics. Fish from two contaminated and two reference sites were examined by the randomly amplified polymorphic DNA (RAPD) technique, which revealed that the frequency of three markers was greater in the contaminated than the reference sites and that the frequency of two markers was greater in reference than in the contaminated sites. A previous study examined populations of western mosquitofish (G. affinis) from the Oak Ridge National Laboratory (ORNL) and found that certain RAPD markers were present in radionuclide-contaminated ORNL populations at a higher frequency than in reference populations. The contaminant-indicative markers observed in the SRS populations were the same size and amplified by the same polymerase chain reaction primers used in the ORNL study. Southern blot analysis revealed that the SRS G. holbrooki contaminant-indicative markers were homologous to the ORNL G. affinis contaminant-indicative markers. The observation that two species show similar patterns of band frequency shifts at two separate localities is consistent with the hypothesis that these DNA markers may originate from genetic elements that provide a selective advantage in contaminated habitats. Thus, the methodology used in these studies may prove to be useful to indicate population-level effects of environmental contamination

  3. The critical domain size of stochastic population models.

    Science.gov (United States)

    Reimer, Jody R; Bonsall, Michael B; Maini, Philip K

    2017-02-01

    Identifying the critical domain size necessary for a population to persist is an important question in ecology. Both demographic and environmental stochasticity impact a population's ability to persist. Here we explore ways of including this variability. We study populations with distinct dispersal and sedentary stages, which have traditionally been modelled using a deterministic integrodifference equation (IDE) framework. Individual-based models (IBMs) are the most intuitive stochastic analogues to IDEs but yield few analytic insights. We explore two alternate approaches; one is a scaling up to the population level using the Central Limit Theorem, and the other a variation on both Galton-Watson branching processes and branching processes in random environments. These branching process models closely approximate the IBM and yield insight into the factors determining the critical domain size for a given population subject to stochasticity.

  4. Amphibian population genetics in agricultural landscapes: does viniculture drive the population structuring of the European common frog (Rana temporaria?

    Directory of Open Access Journals (Sweden)

    Patrick P. Lenhardt

    2017-07-01

    Full Text Available Amphibian populations have been declining globally over the past decades. The intensification of agriculture, habitat loss, fragmentation of populations and toxic substances in the environment are considered as driving factors for this decline. Today, about 50% of the area of Germany is used for agriculture and is inhabited by a diverse variety of 20 amphibian species. Of these, 19 are exhibiting declining populations. Due to the protection status of native amphibian species, it is important to evaluate the effect of land use and associated stressors (such as road mortality and pesticide toxicity on the genetic population structure of amphibians in agricultural landscapes. We investigated the effects of viniculture on the genetic differentiation of European common frog (Rana temporaria populations in Southern Palatinate (Germany. We analyzed microsatellite data of ten loci from ten breeding pond populations located within viniculture landscape and in the adjacent forest block and compared these results with a previously developed landscape permeability model. We tested for significant correlation of genetic population differentiation and landscape elements, including land use as well as roads and their associated traffic intensity, to explain the genetic structure in the study area. Genetic differentiation among forest populations was significantly lower (median pairwise FST = 0.0041 at 5.39 km to 0.0159 at 9.40 km distance than between viniculture populations (median pairwise FST = 0.0215 at 2.34 km to 0.0987 at 2.39 km distance. Our analyses rejected isolation by distance based on roads and associated traffic intensity as the sole explanation of the genetic differentiation and suggest that the viniculture landscape has to be considered as a limiting barrier for R. temporaria migration, partially confirming the isolation of breeding ponds predicted by the landscape permeability model. Therefore, arable land may act as a sink habitat

  5. Broad-scale Population Genetics of the Host Sea Anemone, Heteractis magnifica

    KAUST Repository

    Emms, Madeleine

    2015-12-01

    Broad-scale population genetics can reveal population structure across an organism’s entire range, which can enable us to determine the most efficient population-wide management strategy depending on levels of connectivity. Genetic variation and differences in genetic diversity on small-scales have been reported in anemones, but nothing is known about their broad-scale population structure, including that of “host” anemone species, which are increasingly being targeted in the aquarium trade. In this study, microsatellite markers were used as a tool to determine the population structure of a sessile, host anemone species, Heteractis magnifica, across the Indo-Pacific region. In addition, two rDNA markers were used to identify Symbiodinium from the samples, and phylogenetic analyses were used to measure diversity and geographic distribution of Symbiodinium across the region. Significant population structure was identified in H. magnifica across the Indo-Pacific, with at least three genetic breaks, possibly the result of factors such as geographic distance, geographic isolation and environmental variation. Symbiodinium associations were also affected by environmental variation and supported the geographic isolation of some regions. These results suggests that management of H. magnifica must be implemented on a local scale, due to the lack of connectivity between clusters. This study also provides further evidence for the combined effects of geographic distance and environmental distance in explaining genetic variance.

  6. Enclaves of genetic diversity resisted Inca impacts on population history.

    Science.gov (United States)

    Barbieri, Chiara; Sandoval, José R; Valqui, Jairo; Shimelman, Aviva; Ziemendorff, Stefan; Schröder, Roland; Geppert, Maria; Roewer, Lutz; Gray, Russell; Stoneking, Mark; Fujita, Ricardo; Heggarty, Paul

    2017-12-12

    The Inca Empire is claimed to have driven massive population movements in western South America, and to have spread Quechua, the most widely-spoken language family of the indigenous Americas. A test-case is the Chachapoyas region of northern Peru, reported as a focal point of Inca population displacements. Chachapoyas also spans the environmental, cultural and demographic divides between Amazonia and the Andes, and stands along the lowest-altitude corridor from the rainforest to the Pacific coast. Following a sampling strategy informed by linguistic data, we collected 119 samples, analysed for full mtDNA genomes and Y-chromosome STRs. We report a high indigenous component, which stands apart from the network of intense genetic exchange in the core central zone of Andean civilization, and is also distinct from neighbouring populations. This unique genetic profile challenges the routine assumption of large-scale population relocations by the Incas. Furthermore, speakers of Chachapoyas Quechua are found to share no particular genetic similarity or gene-flow with Quechua speakers elsewhere, suggesting that here the language spread primarily by cultural diffusion, not migration. Our results demonstrate how population genetics, when fully guided by the archaeological, historical and linguistic records, can inform multiple disciplines within anthropology.

  7. Capacities for population-genetic variation and ecological adaptations

    Directory of Open Access Journals (Sweden)

    Marinković Dragoslav

    2007-01-01

    Full Text Available In contemporary science of population genetics it is equally complex and important to visualize how adaptive limits of individual variation are determined, as well as to describe the amount and sort of this variation. Almost all century the scientists devoted their efforts to explain the principles and structure of biological variation (genetic, developmental, environmental, interactive, etc., basing its maintenance within existing limits mostly on equilibria proclaimed by Hardy-Weinberg rules. Among numerous model-organisms that have been used to prove these rules and demonstrate new variants within mentioned concepts, Drosophila melanogaster is a kind of queen that is used in thousands of experiments for almost exactly 100 years (CARPENTER 1905, with which numerous discoveries and principles were determined that later turned out to be applicable to all other organisms. It is both, in nature and in laboratory, that Drosophilids were used to demonstrate the basic principles of population-genetic variation that was later applied to other species of animals. In ecological-genetic variation their richness in different environments could be used as an exact indicator of the status of a determined habitat, and its population-genetic structure may definitely point out to a possibility that specific resources of the environment start to be in danger to deteriorate, or to disappear in the near future. This paper shows clear-cut differences among environmental habitats, when populations of Drosophilidae are quantitatively observed in different wild, semi-domestic and domestic environments, demonstrating a highly expressed mutual dependence of these two parameters. A crucial approach is how to estimate the causes that determine the limits of biological, i.e. of individual and population-genetic variation. The realized, i.e. adaptive variation, is much lesser than a total possible variation of a polygenic trait, and in this study, using a moderately

  8. Genetic diversity and population structure of maize landraces from ...

    African Journals Online (AJOL)

    Genetic diversity and population structure of maize landraces from Côte ... However, no study on the genetic diversity of the species has been performed to date. ... The cross between two individuals from different groups might help exploit the ...

  9. Genetic diversity in natural populations of Buriti (Mauritia flexuosa L. f.

    Directory of Open Access Journals (Sweden)

    Liene Rocha Picanço Gomes

    2011-01-01

    Full Text Available This study aimed to characterize the genetic diversity of buriti populations by AFLP (Amplified Fragment LengthPolymorphism markers. The analysis was performed in four populations used by traditional communities in the state of Amazonia(Bom Jesus do Anamã, Lauro Sodré, Santa Luzia do Buiçuzinho, and Esperança II. From each population 30 plants wererandomly selected. To obtain the markers four primer combinations were used. The percentage of polymorphic loci was estimated,the molecular variance among and within populations analyzed and a dendrogram constructed. The primers detected 339 polymorphicloci ranging from 81.1 % to 91.1 % among populations. Analysis of molecular variance attributed 77.18 % to variation within and22.8 % to variation between populations. The dendrogram indicated the formation of two groups, showing that the populations ofBom Jesus do Anamã and Lauro Sodré are genetically most similar and thet the genetic and geographical distances are notcorrelated.

  10. Genetic structure of earthworm populations at a regional scale: inferences from mitochondrial and microsatellite molecular markers in Aporrectodea icterica (Savigny 1826.

    Directory of Open Access Journals (Sweden)

    Magally Torres-Leguizamon

    Full Text Available Despite the fundamental role that soil invertebrates (e.g. earthworms play in soil ecosystems, the magnitude of their spatial genetic variation is still largely unknown and only a few studies have investigated the population genetic structure of these organisms. Here, we investigated the genetic structure of seven populations of a common endogeic earthworm (Aporrectodea icterica sampled in northern France to explore how historical species range changes, microevolutionary processes and human activities interact in shaping genetic variation at a regional scale. Because combining markers with distinct modes of inheritance can provide extra, complementary information on gene flow, we compared the patterns of genetic structure revealed using nuclear (7 microsatellite loci and mitochondrial markers (COI. Both types of markers indicated low genetic polymorphism compared to other earthworm species, a result that can be attributed to ancient bottlenecks, for instance due to species isolation in southern refugia during the ice ages with subsequent expansion toward northern Europe. Historical events can also be responsible for the existence of two divergent, but randomly interbreeding mitochondrial lineages within all study populations. In addition, the comparison of observed heterozygosity among microsatellite loci and heterozygosity expected under mutation-drift equilibrium suggested a recent decrease in effective size in some populations that could be due to contemporary events such as habitat fragmentation. The absence of relationship between geographic and genetic distances estimated from microsatellite allele frequency data also suggested that dispersal is haphazard and that human activities favour passive dispersal among geographically distant populations.

  11. HLA-C molecular characterization of a Lebanese population and genetic structure of 39 populations from Europe to India-Pakistan.

    Science.gov (United States)

    Buhler, S; Megarbane, A; Lefranc, G; Tiercy, J-M; Sanchez-Mazas, A

    2006-07-01

    Lebanon is located at a continental crossroad between Europe, Africa, and Asia. This region has been the center of wide-scale movements of populations as well as the theater of genetic and cultural trade off among neighboring populations. In this study, HLA-C alleles were characterized by a PCR-SSOP (sequence-specific oligonucleotide probes) hybridization protocol in a sample of 97 Lebanese. A total of 23 alleles were identified with four predominant, Cw*0401, Cw*0602, Cw*0701/06, and Cw*1203, accounting for almost 60% of HLA-C allele frequencies. We included the Lebanese data into a broad analysis of the HLA-C genetic structure of a large set of populations located in Europe, the Middle East, and the Indian subcontinent. Our results indicate that Lebanese exhibit an intermediate genetic profile among the populations from the Middle East, which constitute a rather homogeneous genetic group. In Europe, a high correlation coefficient is found between genetic and geographic distances. In this continent, we also identified a significant genetic frontier following a north-east to south-west axis. This frontier cuts through the Alps and the Pyrenees, thus separating the north-western European populations from those located in the eastern and Mediterranean areas. Finally, the populations from India - Pakistan are very heterogeneous, particularly the Dravidians. Their differentiation has probably been caused by rapid genetic drift under complex influences of cultural, linguistic, and/or religious barriers. Overall, the results show that the HLA-C genetic patterns of these three geographic regions, i.e., the Middle East, Europe, and India-Pakistan, have been shaped by very different genetic histories.

  12. Trapped in the extinction vortex? Strong genetic effects in a declining vertebrate population

    Directory of Open Access Journals (Sweden)

    Larsson Mikael

    2010-02-01

    Full Text Available Abstract Background Inbreeding and loss of genetic diversity are expected to increase the extinction risk of small populations, but detailed tests in natural populations are scarce. We combine long-term population and fitness data with those from two types of molecular markers to examine the role of genetic effects in a declining metapopulation of southern dunlins Calidris alpina schinzii, an endangered shorebird. Results The decline is associated with increased pairings between related individuals, including close inbreeding (as revealed by both field observations of parentage and molecular markers. Furthermore, reduced genetic diversity seems to affect individual fitness at several life stages. Higher genetic similarity between mates correlates negatively with the pair's hatching success. Moreover, offspring produced by related parents are more homozygous and suffer from increased mortality during embryonic development and possibly also after hatching. Conclusions Our results demonstrate strong genetic effects in a rapidly declining population, emphasizing the importance of genetic factors for the persistence of small populations.

  13. Population structure and genetic diversity of Sudanese native chickens

    African Journals Online (AJOL)

    The objectives of this study were to analyze genetic diversity and population structure of Sudanese native chicken breeds involved in a conservation program. Five Sudanese native chicken breeds were compared with populations studied previously, which included six purebred lines, six African populations and one ...

  14. Estimation and management of genetic diversity in small populations of plains zebra (Equus quagga) in KwaZulu-Natal, South Africa.

    Science.gov (United States)

    Bowland, A E.; Bishop, K S.; Taylor, P J.; Lamb, J; van der Bank, F H.; van Wyk, E; York, D

    2001-06-01

    Plains zebras (Equus quagga antiquorum) occur in few large, but many small, isolated populations in KwaZulu-Natal. Problems identified in small populations include reduced striping patterns on hind quarters, smaller size, elevated mortality rates and high number of still-births. Inbreeding may be implicated. Population viability analysis (PVA) was conducted with a computer model (VORTEX), and DNA and allozyme analyses were conducted to test the findings of the model. Using standard methods, DNA (PCR-RAPD) and allozyme diversity was assessed in blood samples from 72 plains zebra from four KwaZulu-Natal Nature Conservation Services (KZN-NCS) protected areas: Umfolozi Game Reserve (UGR), Albert Falls (AFNR), Vernon Crookes (VCNR) and Harold Johnson (HJNR) Nature Reserves. Populations of the latter three, small-sized (9-110 individuals) populations were seeded from the same source population (UGR: current population of 2000) during the past 25 years. Information from PCR-RAPD and allozyme analyses were compared with each other as well as to that predicted by population genetic modelling (using VORTEX). Allozyme heterozygosities were consistently high in all populations (12.1-12.9%), with no observable losses associated with reduced population size. On the other hand, percentage loss of polymorphism (20-39%) calculated from the PCR-RAPD study appeared to be positively correlated with the loss of heterozygosity predicted by population viability analysis (PVA), and negatively correlated with population size. On the basis of the above results, a policy of translocation was advocated for small, intensely managed populations of zebras, whereby a harem should be translocated every five years for a population size of nine (HJNR), while for a population size of 110 (VCNR) translocations should take place every 15 years if heterozygosity is to be maintained at more than 90% within each population over 100 years.

  15. Genetic diversity and landscape genetic structure of otter (Lutra lutra) populations in Europe

    DEFF Research Database (Denmark)

    Mucci, Nadia; Arrendal, Johanna; Ansorge, Hermann

    2010-01-01

    Eurasian otter populations strongly declined and partially disappeared due to global and local causes (habitat destruction, water pollution, human persecution) in parts of their continental range. Conservation strategies, based on reintroduction projects or restoration of dispersal corridors...... and landscape genetic analyses however indicate that local populations are genetically differentiated, perhaps as consequence of post-glacial demographic fluctuations and recent isolation. These results delineate a framework that should be used for implementing conservation programs in Europe, particularly...

  16. Reducing bias in population and landscape genetic inferences: the effects of sampling related individuals and multiple life stages.

    Science.gov (United States)

    Peterman, William; Brocato, Emily R; Semlitsch, Raymond D; Eggert, Lori S

    2016-01-01

    In population or landscape genetics studies, an unbiased sampling scheme is essential for generating accurate results, but logistics may lead to deviations from the sample design. Such deviations may come in the form of sampling multiple life stages. Presently, it is largely unknown what effect sampling different life stages can have on population or landscape genetic inference, or how mixing life stages can affect the parameters being measured. Additionally, the removal of siblings from a data set is considered best-practice, but direct comparisons of inferences made with and without siblings are limited. In this study, we sampled embryos, larvae, and adult Ambystoma maculatum from five ponds in Missouri, and analyzed them at 15 microsatellite loci. We calculated allelic richness, heterozygosity and effective population sizes for each life stage at each pond and tested for genetic differentiation (F ST and D C ) and isolation-by-distance (IBD) among ponds. We tested for differences in each of these measures between life stages, and in a pooled population of all life stages. All calculations were done with and without sibling pairs to assess the effect of sibling removal. We also assessed the effect of reducing the number of microsatellites used to make inference. No statistically significant differences were found among ponds or life stages for any of the population genetic measures, but patterns of IBD differed among life stages. There was significant IBD when using adult samples, but tests using embryos, larvae, or a combination of the three life stages were not significant. We found that increasing the ratio of larval or embryo samples in the analysis of genetic distance weakened the IBD relationship, and when using D C , the IBD was no longer significant when larvae and embryos exceeded 60% of the population sample. Further, power to detect an IBD relationship was reduced when fewer microsatellites were used in the analysis.

  17. Reducing bias in population and landscape genetic inferences: the effects of sampling related individuals and multiple life stages

    Directory of Open Access Journals (Sweden)

    William Peterman

    2016-03-01

    Full Text Available In population or landscape genetics studies, an unbiased sampling scheme is essential for generating accurate results, but logistics may lead to deviations from the sample design. Such deviations may come in the form of sampling multiple life stages. Presently, it is largely unknown what effect sampling different life stages can have on population or landscape genetic inference, or how mixing life stages can affect the parameters being measured. Additionally, the removal of siblings from a data set is considered best-practice, but direct comparisons of inferences made with and without siblings are limited. In this study, we sampled embryos, larvae, and adult Ambystoma maculatum from five ponds in Missouri, and analyzed them at 15 microsatellite loci. We calculated allelic richness, heterozygosity and effective population sizes for each life stage at each pond and tested for genetic differentiation (FST and DC and isolation-by-distance (IBD among ponds. We tested for differences in each of these measures between life stages, and in a pooled population of all life stages. All calculations were done with and without sibling pairs to assess the effect of sibling removal. We also assessed the effect of reducing the number of microsatellites used to make inference. No statistically significant differences were found among ponds or life stages for any of the population genetic measures, but patterns of IBD differed among life stages. There was significant IBD when using adult samples, but tests using embryos, larvae, or a combination of the three life stages were not significant. We found that increasing the ratio of larval or embryo samples in the analysis of genetic distance weakened the IBD relationship, and when using DC, the IBD was no longer significant when larvae and embryos exceeded 60% of the population sample. Further, power to detect an IBD relationship was reduced when fewer microsatellites were used in the analysis.

  18. The value of some Corsican sub-populations for genetic association studies

    Directory of Open Access Journals (Sweden)

    Vona Giuseppe

    2008-07-01

    Full Text Available Abstract Background Genetic isolates with a history of a small founder population, long-lasting isolation and population bottlenecks represent exceptional resources in the identification of disease genes. In these populations the disease allele reveals Linkage Disequilibrium (LD with markers over significant genetic intervals, therefore facilitating disease locus identification. In a previous study we examined the LD extension on the Xq13 region in three Corsican sub-populations from the inner mountainous region of the island. On the basis of those previous results we have proposed a multistep procedure to carry out studies aimed at the identification of genes involved in complex diseases in Corsica. A prerequisite to carry out the proposed multi-step procedure was the presence of different degrees of LD on the island and a common genetic derivation of the different Corsican sub-populations. In order to evaluate the existence of these conditions in the present paper we extended the analysis to the Corsican coastal populations. Methods Samples were analyzed using seven dinucleotide microsatellite markers on chromosome Xq13-21: DXS983, DXS986, DXS8092, DXS8082, DXS1225, DXS8037 and DXS995 spanning approximately 4.0 cM (13.3 Mb. We have also investigated the distribution of the DXS1225-DXS8082 haplotype which has been recently proposed as a good marker of population genetic history due to its low recombination rate. Results the results obtained indicate a decrease of LD on the island from the central mountainous toward the coastal sub-populations. In addition the analysis of the DXS1225-DXS8082 haplotype revealed: 1 the presence of a particular haplotype with high frequency; 2 the derivation from a common genetic pool of the sub-populations examined in the present study. Conclusion These results indicate the Corsican sub-populations useful for the fine mapping of genes contributing to complex diseases.

  19. Population genetic structure of the blue-fronted Amazon (Amazona aestiva, Psittacidae: Aves) based on nuclear microsatellite loci: implications for conservation.

    Science.gov (United States)

    Leite, K C E; Seixas, G H F; Berkunsky, I; Collevatti, R G; Caparroz, R

    2008-09-09

    The blue-fronted Amazon (Amazona aestiva) is a widely distributed Neotropical parrot and one of the most captured parrots in nature to supply the illegal trade of wild animals. The objectives of the present study were to analyze the genetic structure of A. aestiva to identify management units and support conservation planning and to verified if A. aestiva populations have undergone a recent bottleneck due to habitat loss and capture for the pet trade. The genetic structure was accessed by analyzing six microsatellite loci in 74 individuals of A. aestiva, including samples from the two subspecies (A. a. aestiva and A. a. xanthopteryx), from five populations: four in Brazil and one in Argentina. A significant genetic differentiation (theta = 0.007, p = 0.005) could be detected only between the most distant populations, Tocantins and Argentina, localized at the northeast and southwest limits of the sample sites, respectively. There was no evidence of inbreeding within or between populations, suggesting random mating among individuals. These results suggest a clinal distribution of genetic variability, as observed for variation in plumage color of the two A. aestiva subspecies. Bottleneck analysis did not show a recent reduction in population size. Thus, for the management and conservation of the species, the populations from Argentina and Tocantins should be considered as different management units, and the other populations from the center of the geographical distribution as another management unit.

  20. Population Genetic Status of the Western Indian Ocean

    African Journals Online (AJOL)

    Abstract—Population genetics offers a useful technique for studying the population structure of marine organisms and has relevance to both systematics and the conservation of biodiversity. The Western Indian Ocean (WIO) is faced with increasing evidence of degradation and effective management initiatives are needed to ...

  1. Both population size and patch quality affect local extinctions and colonizations

    OpenAIRE

    Franzén, Markus; Nilsson, Sven G.

    2009-01-01

    Currently, the habitat of many species is fragmented, resulting in small local populations with individuals occasionally dispersing between the remaining habitat patches. In a solitary bee metapopulation, extinction probability was related to both local bee population sizes and pollen resources measured as host plant population size. Patch size, on the other hand, had no additional predictive power. The turnover rate of local bee populations in 63 habitat patches over 4 years was high, with 7...

  2. Analysis of genetic structure in Melia volkensii (Gurke.) populations ...

    African Journals Online (AJOL)

    Administrator

    2Farm Forestry Programme, Kenya Forestry Research Institute, P. O. Box 20412, Nairobi, Kenya. Accepted 5 ... were used to estimate genetic distances between populations and for construction of neighbour-joining phenograms. Analysis of Molecular Variance (AMOVA) indicated significant genetic differentiation between ...

  3. Low genetic diversity of Phytophthora infestans population in potato ...

    African Journals Online (AJOL)

    AJL

    genetic diversity of P. infestans and geographical origin. These results provided a foundation for making integrated control measures in the future. Key words: Phytophthora infestans, population genetics, simple-sequence repeat (SSR), potato late blight. INTRODUCTION. Phytophthora infestans (Mont.) de Bary, causing the ...

  4. Population genetics of the malaria vector Anopheles aconitus in China and Southeast Asia.

    Science.gov (United States)

    Chen, Bin; Harbach, Ralph E; Walton, Catherine; He, Zhengbo; Zhong, Daibin; Yan, Guiyun; Butlin, Roger K

    2012-12-01

    Anopheles aconitus is a well-known vector of malaria and is broadly distributed in the Oriental Region, yet there is no information on its population genetic characteristics. In this study, the genetic differentiation among populations was examined using 140 mtDNA COII sequences from 21 sites throughout Southern China, Myanmar, Vietnam, Thailand, Laos and Sri Lanka. The population in Sri Lanka has characteristic rDNA D3 and ITS2, mtDNA COII and ND5 haplotypes, and may be considered a distinct subspecies. Clear genetic structure was observed with highly significant genetic variation present among population groups in Southeast Asia. The greatest genetic diversity exists in Yunnan and Myanmar population groups. All population groups are significantly different from one another in pairwise Fst values, except Northern Thailand with Central Thailand. Mismatch distributions and extremely significant F(s) values suggest that the populations passed through a recent demographic expansion. These patterns are discussed in relation to the likely biogeographic history of the region and compared to other Anopheles species. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Genetic Variation in Past and Current Landscapes: Conservation Implications Based on Six Endemic Florida Scrub Plants

    Directory of Open Access Journals (Sweden)

    Eric S. Menges

    2010-01-01

    Full Text Available If genetic variation is often positively correlated with population sizes and the presence of nearby populations and suitable habitats, landscape proxies could inform conservation decisions without genetic analyses. For six Florida scrub endemic plants (Dicerandra frutescens, Eryngium cuneifolium, Hypericum cumulicola, Liatris ohlingerae, Nolina brittoniana, and Warea carteri, we relate two measures of genetic variation, expected heterozygosity and alleles per polymorphic locus (APL, to population size and landscape variables. Presettlement areas were estimated based on soil preferences and GIS soils maps. Four species showed no genetic patterns related to population or landscape factors. The other two species showed significant but inconsistent patterns. For Liatris ohlingerae, APL was negatively related to population density and weakly, positively related to remaining presettlement habitat within 32 km. For Nolina brittoniana, APL increased with population size. The rather weak effects of population area/size and both past and current landscape structures suggest that genetic variation needs to be directly measured and not inferred for conservation planning.

  6. Genetic Variation in Past and Current Landscapes: Conservation Implications Based on Six Endemic Florida Scrub Plants

    International Nuclear Information System (INIS)

    Menges, E.S.; Pickert, R.; Dolan, R.W.; Yahr, R.; Gordon, D.R.

    2010-01-01

    If genetic variation is often positively correlated with population sizes and the presence of nearby populations and suitable habitats, landscape proxies could inform conservation decisions without genetic analyses. For six Florida scrub endemic plants (Dicerandra frutescens, Eryngium cuneifolium, Hypericum cumulicola, Liatris ohlingerae, Nolina brittoniana, and Warea carteri), we relate two measures of genetic variation, expected heterozygosity and alleles per polymorphic locus (APL), to population size and landscape variables. Presettlement areas were estimated based on soil preferences and GIS soils maps. Four species showed no genetic patterns related to population or landscape factors. The other two species showed significant but inconsistent patterns. For Liatris ohlingerae, APL was negatively related to population density and weakly, positively related to remaining presettlement habitat within 32 km. For Nolina brittoniana, APL increased with population size. The rather weak effects of population area/size and both past and current landscape structures suggest that genetic variation needs to be directly measured and not inferred for conservation planning.

  7. Molecular genetic diversity in populations of the stingless bee Plebeia remota: A case study

    Directory of Open Access Journals (Sweden)

    Flávio de Oliveira Francisco

    2013-01-01

    Full Text Available Genetic diversity is a major component of the biological diversity of an ecosystem. The survival of a population may be seriously threatened if its genetic diversity values are low. In this work, we measured the genetic diversity of the stingless bee Plebeia remota based on molecular data obtained by analyzing 15 microsatellite loci and sequencing two mitochondrial genes. Population structure and genetic diversity differed depending on the molecular marker analyzed: microsatellites showed low population structure and moderate to high genetic diversity, while mitochondrial DNA (mtDNA showed high population structure and low diversity in three populations. Queen philopatry and male dispersal behavior are discussed as the main reasons for these findings.

  8. Intercoalescence time distribution of incomplete gene genealogies in temporally varying populations, and applications in population genetic inference.

    Science.gov (United States)

    Chen, Hua

    2013-03-01

    Tracing back to a specific time T in the past, the genealogy of a sample of haplotypes may not have reached their common ancestor and may leave m lineages extant. For such an incomplete genealogy truncated at a specific time T in the past, the distribution and expectation of the intercoalescence times conditional on T are derived in an exact form in this paper for populations of deterministically time-varying sizes, specifically, for populations growing exponentially. The derived intercoalescence time distribution can be integrated to the coalescent-based joint allele frequency spectrum (JAFS) theory, and is useful for population genetic inference from large-scale genomic data, without relying on computationally intensive approaches, such as importance sampling and Markov Chain Monte Carlo (MCMC) methods. The inference of several important parameters relying on this derived conditional distribution is demonstrated: quantifying population growth rate and onset time, and estimating the number of ancestral lineages at a specific ancient time. Simulation studies confirm validity of the derivation and statistical efficiency of the methods using the derived intercoalescence time distribution. Two examples of real data are given to show the inference of the population growth rate of a European sample from the NIEHS Environmental Genome Project, and the number of ancient lineages of 31 mitochondrial genomes from Tibetan populations. © 2013 Blackwell Publishing Ltd/University College London.

  9. Genome-wide distribution of genetic diversity and linkage disequilibrium in a mass-selected population of maritime pine

    Science.gov (United States)

    2014-01-01

    Background The accessibility of high-throughput genotyping technologies has contributed greatly to the development of genomic resources in non-model organisms. High-density genotyping arrays have only recently been developed for some economically important species such as conifers. The potential for using genomic technologies in association mapping and breeding depends largely on the genome wide patterns of diversity and linkage disequilibrium in current breeding populations. This study aims to deepen our knowledge regarding these issues in maritime pine, the first species used for reforestation in south western Europe. Results Using a new map merging algorithm, we first established a 1,712 cM composite linkage map (comprising 1,838 SNP markers in 12 linkage groups) by bringing together three already available genetic maps. Using rigorous statistical testing based on kernel density estimation and resampling we identified cold and hot spots of recombination. In parallel, 186 unrelated trees of a mass-selected population were genotyped using a 12k-SNP array. A total of 2,600 informative SNPs allowed to describe historical recombination, genetic diversity and genetic structure of this recently domesticated breeding pool that forms the basis of much of the current and future breeding of this species. We observe very low levels of population genetic structure and find no evidence that artificial selection has caused a reduction in genetic diversity. By combining these two pieces of information, we provided the map position of 1,671 SNPs corresponding to 1,192 different loci. This made it possible to analyze the spatial pattern of genetic diversity (H e ) and long distance linkage disequilibrium (LD) along the chromosomes. We found no particular pattern in the empirical variogram of H e across the 12 linkage groups and, as expected for an outcrossing species with large effective population size, we observed an almost complete lack of long distance LD. Conclusions These

  10. Asymptotic distributions of coalescence times and ancestral lineage numbers for populations with temporally varying size.

    Science.gov (United States)

    Chen, Hua; Chen, Kun

    2013-07-01

    The distributions of coalescence times and ancestral lineage numbers play an essential role in coalescent modeling and ancestral inference. Both exact distributions of coalescence times and ancestral lineage numbers are expressed as the sum of alternating series, and the terms in the series become numerically intractable for large samples. More computationally attractive are their asymptotic distributions, which were derived in Griffiths (1984) for populations with constant size. In this article, we derive the asymptotic distributions of coalescence times and ancestral lineage numbers for populations with temporally varying size. For a sample of size n, denote by Tm the mth coalescent time, when m + 1 lineages coalesce into m lineages, and An(t) the number of ancestral lineages at time t back from the current generation. Similar to the results in Griffiths (1984), the number of ancestral lineages, An(t), and the coalescence times, Tm, are asymptotically normal, with the mean and variance of these distributions depending on the population size function, N(t). At the very early stage of the coalescent, when t → 0, the number of coalesced lineages n - An(t) follows a Poisson distribution, and as m → n, $$n\\left(n-1\\right){T}_{m}/2N\\left(0\\right)$$ follows a gamma distribution. We demonstrate the accuracy of the asymptotic approximations by comparing to both exact distributions and coalescent simulations. Several applications of the theoretical results are also shown: deriving statistics related to the properties of gene genealogies, such as the time to the most recent common ancestor (TMRCA) and the total branch length (TBL) of the genealogy, and deriving the allele frequency spectrum for large genealogies. With the advent of genomic-level sequencing data for large samples, the asymptotic distributions are expected to have wide applications in theoretical and methodological development for population genetic inference.

  11. Genetic structure of a unique admixed population: implications for medical research.

    Science.gov (United States)

    Patterson, Nick; Petersen, Desiree C; van der Ross, Richard E; Sudoyo, Herawati; Glashoff, Richard H; Marzuki, Sangkot; Reich, David; Hayes, Vanessa M

    2010-02-01

    STATEMENT: In naming population groups, we think a chief aim is to use terms that the group members use themselves, or find familiar and comfortable. The terms used in this manuscript to describe populations are as historically correct as possible and are chosen so as not to offend any population group. Two of the authors (DCP and REvdR) belong to the Coloured population, with one of the authors (REvdR) having contributed extensively to current literature on the history of the Coloured people of South Africa and served as Vice-President of the South African Institute of Race Relations. According to the 2001 South African census (http://www.statssa.gov.za/census01/HTML/CInBrief/CIB2001.pdf), "Statistics South Africa continues to classify people by population group, in order to monitor progress in moving away from the apartheid-based discrimination of the past. However, membership of a population group is now based on self-perception and self-classification, not on a legal definition. Five options were provided on the questionnaire, Black African, Coloured, Indian or Asian, White and Other. Responses in the category 'Other' were very few and were therefore imputed". We have elected to use the term Bushmen rather than San to refer to the hunter-gatherer people of Southern Africa. Although they have no collective name for themselves, this decision was based on the term Bushmen (or Bossiesman) being the more familiar to the communities themselves, while the term San is the more accepted academic classification. Understanding human genetic structure has fundamental implications for understanding the evolution and impact of human diseases. In this study, we describe the complex genetic substructure of a unique and recently admixed population arising approximately 350 years ago as a direct result of European settlement in South Africa. Analysis was performed using over 900 000 genome-wide single nucleotide polymorphisms in 20 unrelated ancestry-informative marker selected

  12. Genetic variability in the population of the endemic bee Anthophora ...

    African Journals Online (AJOL)

    The genetic diversity and spatial genetic population structure of the solitary bee Anthophora pauperata Walker 1871, a species endemic to St Katherine Protectorate, were studied by RAPD markers in seven wadis in the St Katherine Protectorate, South Sinai, Egypt. High levels of genetic diversity were found, mostly within ...

  13. Mapping of the stochastic Lotka-Volterra model to models of population genetics and game theory

    Science.gov (United States)

    Constable, George W. A.; McKane, Alan J.

    2017-08-01

    The relationship between the M -species stochastic Lotka-Volterra competition (SLVC) model and the M -allele Moran model of population genetics is explored via timescale separation arguments. When selection for species is weak and the population size is large but finite, precise conditions are determined for the stochastic dynamics of the SLVC model to be mappable to the neutral Moran model, the Moran model with frequency-independent selection, and the Moran model with frequency-dependent selection (equivalently a game-theoretic formulation of the Moran model). We demonstrate how these mappings can be used to calculate extinction probabilities and the times until a species' extinction in the SLVC model.

  14. Conservation genetics of threatened Hippocampus guttulatus in vulnerable habitats in NW Spain: temporal and spatial stability of wild populations with flexible polygamous mating system in captivity.

    Directory of Open Access Journals (Sweden)

    Almudena López

    Full Text Available This study was focused on conservation genetics of threatened Hippocampus guttulatus on the Atlantic coast of NW Iberian Peninsula. Information about spatial structure and temporal stability of wild populations was obtained based on microsatellite markers, and used for monitoring a captive breeding program firstly initiated in this zone at the facilities of the Institute of Marine Research (Vigo, Spain. No significant major genetic structure was observed regarding the biogeographical barrier of Cape Finisterre. However, two management units under continuous gene flow are proposed based on the allelic differentiation between South-Atlantic and Cantabrian subpopulations, with small to moderate contemporary effective size based on single-sample methods. Temporal stability was observed in South-Atlantic population samples of H. guttulatus for the six-year period studied, suggesting large enough effective population size to buffer the effects of genetic drift within the time frame of three generations. Genetic analysis of wild breeders and offspring in captivity since 2009 allowed us to monitor the breeding program founded in 2006 in NW Spain for this species. Similar genetic diversity in the renewed and founder broodstock, regarding the wild population of origin, supports suitable renewal and rearing processes to maintain genetic variation in captivity. Genetic parentage proved single-brood monogamy in the wild and in captivity, but flexible short- and long-term mating system under captive conditions, from strict monogamy to polygamy within and/or among breeding seasons. Family analysis showed high reproductive success in captivity under genetic management assisted by molecular relatedness estimates to avoid inbreeding. This study provides genetic information about H. guttulatus in the wild and captivity within an uncovered geographical range for this data deficient species, to be taken into account for management and conservation purposes.

  15. Alu polymorphic insertions reveal genetic structure of north Indian populations.

    Science.gov (United States)

    Tripathi, Manorama; Tripathi, Piyush; Chauhan, Ugam Kumari; Herrera, Rene J; Agrawal, Suraksha

    2008-10-01

    The Indian subcontinent is characterized by the ancestral and cultural diversity of its people. Genetic input from several unique source populations and from the unique social architecture provided by the caste system has shaped the current genetic landscape of India. In the present study 200 individuals each from three upper-caste and four middle-caste Hindu groups and from two Muslim populations in North India were examined for 10 polymorphic Alu insertions (PAIs). The investigated PAIs exhibit high levels of polymorphism and average heterozygosity. Limited interpopulation variance and genetic flow in the present study suggest admixture. The results of this study demonstrate that, contrary to common belief, the caste system has not provided an impermeable barrier to genetic exchange among Indian groups.

  16. The population genomic landscape of human genetic structure, admixture history and local adaptation in Peninsular Malaysia.

    Science.gov (United States)

    Deng, Lian; Hoh, Boon Peng; Lu, Dongsheng; Fu, Ruiqing; Phipps, Maude E; Li, Shilin; Nur-Shafawati, Ab Rajab; Hatin, Wan Isa; Ismail, Endom; Mokhtar, Siti Shuhada; Jin, Li; Zilfalil, Bin Alwi; Marshall, Christian R; Scherer, Stephen W; Al-Mulla, Fahd; Xu, Shuhua

    2014-09-01

    Peninsular Malaysia is a strategic region which might have played an important role in the initial peopling and subsequent human migrations in Asia. However, the genetic diversity and history of human populations--especially indigenous populations--inhabiting this area remain poorly understood. Here, we conducted a genome-wide study using over 900,000 single nucleotide polymorphisms (SNPs) in four major Malaysian ethnic groups (MEGs; Malay, Proto-Malay, Senoi and Negrito), and made comparisons of 17 world-wide populations. Our data revealed that Peninsular Malaysia has greater genetic diversity corresponding to its role as a contact zone of both early and recent human migrations in Asia. However, each single Orang Asli (indigenous) group was less diverse with a smaller effective population size (N(e)) than a European or an East Asian population, indicating a substantial isolation of some duration for these groups. All four MEGs were genetically more similar to Asian populations than to other continental groups, and the divergence time between MEGs and East Asian populations (12,000--6,000 years ago) was also much shorter than that between East Asians and Europeans. Thus, Malaysian Orang Asli groups, despite their significantly different features, may share a common origin with the other Asian groups. Nevertheless, we identified traces of recent gene flow from non-Asians to MEGs. Finally, natural selection signatures were detected in a batch of genes associated with immune response, human height, skin pigmentation, hair and facial morphology and blood pressure in MEGs. Notable examples include SYN3 which is associated with human height in all Orang Asli groups, a height-related gene (PNPT1) and two blood pressure-related genes (CDH13 and PAX5) in Negritos. We conclude that a long isolation period, subsequent gene flow and local adaptations have jointly shaped the genetic architectures of MEGs, and this study provides insight into the peopling and human migration

  17. Population Genetics of the Endemic Hawaiian Species Chrysodracon hawaiiensis and Chrysodracon auwahiensis (Asparagaceae: Insights from RAPD and ISSR Variation

    Directory of Open Access Journals (Sweden)

    Pei-Luen Lu

    2016-08-01

    Full Text Available The genus Chrysodracon has six endemic species in the Hawaii Islands. Chrysodracon hawaiiensis is endemic to Hawaii Island and was described as a distinct species in 1980. It was listed as an endangered species on the International Union for the Conservation of Nature and Natural Resources (IUCN Red List in 1997. This woody plant species was, at one time, common in exposed dry forests, but it became very rare due to grazing pressure and human development. The tree species Chrysodracon auwahiensis (C. auwahiensis, endemic to Maui and Molokai, still has large adult populations in dry lands of the islands, but unfortunately no regeneration from seed has been reported in those areas for many years. The two endemic species were examined using the molecular technique of random amplified polymorphic DNA (RAPD and inter simple sequence repeats (ISSR to determine the genetic structure of the populations and the amount of variation. Both species possess similar genetic structure. Larger and smaller populations of both species contain similar levels of genetic diversity as determined by the number of polymorphic loci, estimated heterozygosity, and Shannon’s index of genetic diversity. Although population diversity of Chrysodracon hawaiiensis (C. hawaiiensis is thought to have remained near pre-disturbance levels, population size continues to decline as recruitment is either absent or does not keep pace with senescence of mature plants. Conservation recommendations for both species are suggested.

  18. "The Theory was Beautiful Indeed": Rise, Fall and Circulation of Maximizing Methods in Population Genetics (1930-1980).

    Science.gov (United States)

    Grodwohl, Jean-Baptiste

    2017-08-01

    Describing the theoretical population geneticists of the 1960s, Joseph Felsenstein reminisced: "our central obsession was finding out what function evolution would try to maximize. Population geneticists used to think, following Sewall Wright, that mean relative fitness, W, would be maximized by natural selection" (Felsenstein 2000). The present paper describes the genesis, diffusion and fall of this "obsession", by giving a biography of the mean fitness function in population genetics. This modeling method devised by Sewall Wright in the 1930s found its heyday in the late 1950s and early 1960s, in the wake of Motoo Kimura's and Richard Lewontin's works. It seemed a reliable guide in the mathematical study of deterministic effects (the study of natural selection in populations of infinite size, with no drift), leading to powerful generalizations presenting law-like properties. Progress in population genetics theory, it then seemed, would come from the application of this method to the study of systems with several genes. This ambition came to a halt in the context of the influential objections made by the Australian mathematician Patrick Moran in 1963. These objections triggered a controversy between mathematically- and biologically-inclined geneticists, with affected both the formal standards and the aims of population genetics as a science. Over the course of the 1960s, the mean fitness method withered with the ambition of developing the deterministic theory. The mathematical theory became increasingly complex. Kimura re-focused his modeling work on the theory of random processes; as a result of his computer simulations, Lewontin became the staunchest critic of maximizing principles in evolutionary biology. The mean fitness method then migrated to other research areas, being refashioned and used in evolutionary quantitative genetics and behavioral ecology.

  19. Simulation of Micron-Sized Debris Populations in Low Earth Orbit

    Science.gov (United States)

    Xu, Y.-L.; Matney, M.; Liou, J.-C.; Hyde, J. L.; Prior, T. G.

    2010-01-01

    The update of ORDEM2000, the NASA Orbital Debris Engineering Model, to its new version . ORDEM2010, is nearly complete. As a part of the ORDEM upgrade, this paper addresses the simulation of micro-debris (greater than 10 micron and smaller than 1 mm in size) populations in low Earth orbit. The principal data used in the modeling of the micron-sized debris populations are in-situ hypervelocity impact records, accumulated in post-flight damage surveys on the space-exposed surfaces of returned spacecrafts. The development of the micro-debris model populations follows the general approach to deriving other ORDEM2010-required input populations for various components and types of debris. This paper describes the key elements and major steps in the statistical inference of the ORDEM2010 micro-debris populations. A crucial step is the construction of a degradation/ejecta source model to provide prior information on the micron-sized objects (such as orbital and object-size distributions). Another critical step is to link model populations with data, which is rather involved. It demands detailed information on area-time/directionality for all the space-exposed elements of a shuttle orbiter and damage laws, which relate impact damage with the physical properties of a projectile and impact conditions such as impact angle and velocity. Also needed are model-predicted debris fluxes as a function of object size and impact velocity from all possible directions. In spite of the very limited quantity of the available shuttle impact data, the population-derivation process is satisfactorily stable. Final modeling results obtained from shuttle window and radiator impact data are reasonably convergent and consistent, especially for the debris populations with object-size thresholds at 10 and 100 micron.

  20. Unexpected high genetic diversity in small populations suggests maintenance by associative overdominance

    DEFF Research Database (Denmark)

    Schou, Mads F.; Loeschcke, Volker; Bechsgaard, Jesper

    2017-01-01

    fragmented populations. More genetic diversity was retained in areas of low recombination, suggesting that associative overdominance, driven by disfavoured homozygosity of recessive deleterious alleles, is responsible for the maintenance of genetic diversity in smaller populations. Consistent...

  1. Sixty years of anthropogenic pressure: a spatio-temporal genetic analysis of brown trout populations subject to stocking and population declines

    DEFF Research Database (Denmark)

    Hansen, Michael Møller; Fraser, Dylan J.; Meier, Kristian

    2009-01-01

    Analyses of historical samples can provide invaluable information on changes to the genetic composition of natural populations resulting from human activities. Here, we analyse 21 microsatellite loci in historical (archived scales from 1927 to 1956) and contemporary samples of brown trout (Salmo...... trutta) from six neighbouring rivers in Denmark, to compare the genetic structure of wild populations before and after population declines and stocking with nonlocal strains of hatchery trout. We show that all populations have been strongly affected by stocking, with admixture proportions ranging from 14...... differences among populations in hatchery trout admixture proportions. Despite significant changes to the genetic composition within populations over time, dispersal rates among populations were roughly similar before and after stocking. We also assessed whether population declines or introgression...

  2. Estimating the contribution of genetic variants to difference in incidence of disease between population groups

    Science.gov (United States)

    Moonesinghe, Ramal; Ioannidis, John PA; Flanders, W Dana; Yang, Quanhe; Truman, Benedict I; Khoury, Muin J

    2012-01-01

    Genome-wide association studies have identified multiple genetic susceptibility variants to several complex human diseases. However, risk-genotype frequency at loci showing robust associations might differ substantially among different populations. In this paper, we present methods to assess the contribution of genetic variants to the difference in the incidence of disease between different population groups for different scenarios. We derive expressions for the contribution of a single genetic variant, multiple genetic variants, and the contribution of the joint effect of a genetic variant and an environmental factor to the difference in the incidence of disease. The contribution of genetic variants to the difference in incidence increases with increasing difference in risk-genotype frequency, but declines with increasing difference in incidence between the two populations. The contribution of genetic variants also increases with increasing relative risk and the contribution of joint effect of genetic and environmental factors increases with increasing relative risk of the gene–environmental interaction. The contribution of genetic variants to the difference in incidence between two populations can be expressed as a function of the population attributable risks of the genetic variants in the two populations. The contribution of a group of genetic variants to the disparity in incidence of disease could change considerably by adding one more genetic variant to the group. Any estimate of genetic contribution to the disparity in incidence of disease between two populations at this stage seems to be an elusive goal. PMID:22333905

  3. Estimating the contribution of genetic variants to difference in incidence of disease between population groups.

    Science.gov (United States)

    Moonesinghe, Ramal; Ioannidis, John P A; Flanders, W Dana; Yang, Quanhe; Truman, Benedict I; Khoury, Muin J

    2012-08-01

    Genome-wide association studies have identified multiple genetic susceptibility variants to several complex human diseases. However, risk-genotype frequency at loci showing robust associations might differ substantially among different populations. In this paper, we present methods to assess the contribution of genetic variants to the difference in the incidence of disease between different population groups for different scenarios. We derive expressions for the contribution of a single genetic variant, multiple genetic variants, and the contribution of the joint effect of a genetic variant and an environmental factor to the difference in the incidence of disease. The contribution of genetic variants to the difference in incidence increases with increasing difference in risk-genotype frequency, but declines with increasing difference in incidence between the two populations. The contribution of genetic variants also increases with increasing relative risk and the contribution of joint effect of genetic and environmental factors increases with increasing relative risk of the gene-environmental interaction. The contribution of genetic variants to the difference in incidence between two populations can be expressed as a function of the population attributable risks of the genetic variants in the two populations. The contribution of a group of genetic variants to the disparity in incidence of disease could change considerably by adding one more genetic variant to the group. Any estimate of genetic contribution to the disparity in incidence of disease between two populations at this stage seems to be an elusive goal.

  4. Evidence for genetic differentiation at the microgeographic scale in Phlebotomus papatasi populations from Sudan

    Directory of Open Access Journals (Sweden)

    Khalid Noteila M

    2012-11-01

    Full Text Available Abstract Background Cutaneous Leishmaniasis (CL is endemic in Sudan. It is caused by Leishmania major parasites and transmitted by Phlebotomus papatasi sandflies. Recently, uncommon clinical manifestations of CL have been reported. Moreover, L. donovani parasites that cause Visceral Leishmaniasis (VL have been isolated from CL lesions of some patients who contracted the disease in Khartoum State, Central Sudan with no history of travelling to VL endemic sites on south-eastern Sudan. Because different clinical manifestations and the parasite behaviour could be related to genetic differentiation, or even sub-structuring within sandfly vector populations, a population genetic study was conducted on P. papatasi populations collected from different localities in Khartoum State known for their uncommon CL cases and characterized by contrasting environmental conditions. Methods A set of seven microsatellite loci was used to investigate the population structure of P. papatasi samples collected from different localities in Khartoum State, Central Sudan. Populations from Kassala State, Eastern Sudan and Egypt were also included in the analyses as outgroups. The level of genetic diversity and genetic differentiation among natural populations of P. papatasi was determined using FST statistics and Bayesian assignments. Results Genetic analyses revealed significant genetic differentiation (FST between the Sudanese and the Egyptian populations. Within the Sudanese P. papatasi populations, one population from Gerif West, Khartoum State, exhibited significant genetic differentiation from all other populations including those collected as near as 22 km. Conclusion The significant genetic differentiation of Gerif West P. papatasi population from other Sudanese populations may have important implication for the epidemiology of leishmaniasis in Khartoum State and needs to be further investigated. Primarily, it could be linked to the unique location of Gerif West

  5. Assessment of genetic variation among four populations of Small ...

    African Journals Online (AJOL)

    From the findings, it can be concluded that the SEA goats in this study showed high in population genetic variation, which implies that there is good scope for their further improvement through selection within populations. The Sukuma population, which has fairly high inbreeding, is moderately differentiated from Pare, Sonjo ...

  6. Local Climate Heterogeneity Shapes Population Genetic Structure of Two Undifferentiated Insular Scutellaria Species.

    Science.gov (United States)

    Hsiung, Huan-Yi; Huang, Bing-Hong; Chang, Jui-Tse; Huang, Yao-Moan; Huang, Chih-Wei; Liao, Pei-Chun

    2017-01-01

    Spatial climate heterogeneity may not only affect adaptive gene frequencies but could also indirectly shape the genetic structure of neutral loci by impacting demographic dynamics. In this study, the effect of local climate on population genetic variation was tested in two phylogenetically close Scutellaria species in Taiwan. Scutellaria taipeiensis , which was originally assumed to be an endemic species of Taiwan Island, is shown to be part of the widespread species S. barbata based on the overlapping ranges of genetic variation and climatic niches as well as their morphological similarity. Rejection of the scenario of "early divergence with secondary contact" and the support for multiple origins of populations of S. taipeiensis from S. barbata provide strong evolutionary evidence for a taxonomic revision of the species combination. Further tests of a climatic effect on genetic variation were conducted. Regression analyses show nonlinear correlations among any pair of geographic, climatic, and genetic distances. However, significantly, the bioclimatic variables that represent the precipitation from late summer to early autumn explain roughly 13% of the genetic variation of our sampled populations. These results indicate that spatial differences of precipitation in the typhoon season may influence the regeneration rate and colonization rate of local populations. The periodic typhoon episodes explain the significant but nonlinear influence of climatic variables on population genetic differentiation. Although, the climatic difference does not lead to species divergence, the local climate variability indeed impacts the spatial genetic distribution at the population level.

  7. Population genetics models of local ancestry.

    Science.gov (United States)

    Gravel, Simon

    2012-06-01

    Migrations have played an important role in shaping the genetic diversity of human populations. Understanding genomic data thus requires careful modeling of historical gene flow. Here we consider the effect of relatively recent population structure and gene flow and interpret genomes of individuals that have ancestry from multiple source populations as mosaics of segments originating from each population. This article describes general and tractable models for local ancestry patterns with a focus on the length distribution of continuous ancestry tracts and the variance in total ancestry proportions among individuals. The models offer improved agreement with Wright-Fisher simulation data when compared to the state-of-the art and can be used to infer time-dependent migration rates from multiple populations. Considering HapMap African-American (ASW) data, we find that a model with two distinct phases of "European" gene flow significantly improves the modeling of both tract lengths and ancestry variances.

  8. Fine-scale population genetic structure of the Bengal tiger (Panthera tigris tigris) in a human-dominated western Terai Arc Landscape, India.

    Science.gov (United States)

    Singh, Sujeet Kumar; Aspi, Jouni; Kvist, Laura; Sharma, Reeta; Pandey, Puneet; Mishra, Sudhanshu; Singh, Randeep; Agrawal, Manoj; Goyal, Surendra Prakash

    2017-01-01

    Despite massive global conservation strategies, tiger populations continued to decline until recently, mainly due to habitat loss, human-animal conflicts, and poaching. These factors are known to affect the genetic characteristics of tiger populations and decrease local effective population sizes. The Terai Arc Landscape (TAL) at the foothills of the Himalaya is one of the 42 source sites of tigers around the globe. Therefore, information on how landscape features and anthropogenic factors affect the fine-scale spatial genetic structure and variation of tigers in TAL is needed to develop proper management strategies for achieving long-term conservation goals. We document, for the first time, the genetic characteristics of this tiger population by genotyping 71 tiger samples using 13 microsatellite markers from the western region of TAL (WTAL) of 1800 km2. Specifically, we aimed to estimate the genetic variability, population structure, and gene flow. The microsatellite markers indicated that the levels of allelic diversity (MNA = 6.6) and genetic variation (Ho = 0.50, HE = 0.64) were slightly lower than those reported previously in other Bengal tiger populations. We observed moderate gene flow and significant genetic differentiation (FST= 0.060) and identified the presence of cryptic genetic structure using Bayesian and non-Bayesian approaches. There was low and significantly asymmetric migration between the two main subpopulations of the Rajaji Tiger Reserve and the Corbett Tiger Reserve in WTAL. Sibship relationships indicated that the functionality of the corridor between these subpopulations may be retained if the quality of the habitat does not deteriorate. However, we found that gene flow is not adequate in view of changing land use matrices. We discuss the need to maintain connectivity by implementing the measures that have been suggested previously to minimize the level of human disturbance, including relocation of villages and industries, prevention of

  9. Genetical pressures and social organization in small mammal populations

    International Nuclear Information System (INIS)

    Berry, R.J.

    1978-01-01

    Inherited variation is often useful for detecting and measuring ecological pressures in natural populations. For example, changes in allele and genotypic frequencies at the gene locus controlling the haemoglobin β chain in Mus musculus samples trapped on an isolated Welsh island have provided information about different mechanisms of death at different times of year and about the influence of social structure on genetical constitution. Notwithstanding, considerable caution has to be exercised in interpreting genetical changes, since detectable varients are often no more than linked markers of physiologically important gene loci, while habitat, deme, or ageing differences may be obscured in pooled data, such as are represented by concepts like overall allozymic heterozygosity. For these reasons, genetical studies on wild populations are likely to be most profitable when the contribution of individual genes to physiological or behavioral traits can be analyzed; it is at this level that genetics and ecology properly complement each other

  10. Genetic diversity and population structure of the endangered marsupial Sarcophilus harrisii (Tasmanian devil)

    DEFF Research Database (Denmark)

    Miller, Webb; Hayes, Vanessa M.; Ratan, Aakrosh

    2011-01-01

    The Tasmanian devil (Sarcophilus harrisii) is threatened with extinction because of a contagious cancer known as Devil Facial Tumor Disease. The inability to mount an immune response and to reject these tumors might be caused by a lack of genetic diversity within a dwindling population. Here we...... that the observed low genetic diversity in today's population preceded the Devil Facial Tumor Disease disease outbreak by at least 100 y. Using a genetically characterized breeding stock based on the genome sequence will enable preservation of the extant genetic diversity in future Tasmanian devil populations....

  11. Effective population size and evolutionary dynamics in outbred ...

    Indian Academy of Sciences (India)

    populations of fruit flies is not primarily driven by new mutations, but rather by changes in the frequency of ..... Drift simulation: The sex ratio, total population size and ...... Gillespie J. H. 1994a Substitution processes in molecular evolution. II.

  12. Family size and effective population size in a hatchery stock of coho salmon (Oncorhynchus kisutch)

    Science.gov (United States)

    Simon, R.C.; McIntyre, J.D.; Hemmingsen, A.R.

    1986-01-01

    Means and variances of family size measured in five year-classes of wire-tagged coho salmon (Oncorhynchus kisutch) were linearly related. Population effective size was calculated by using estimated means and variances of family size in a 25-yr data set. Although numbers of age 3 adults returning to the hatchery appeared to be large enough to avoid inbreeding problems (the 25-yr mean exceeded 4500), the numbers actually contributing to the hatchery production may be too low. Several strategies are proposed to correct the problem perceived. Argument is given to support the contention that the problem of effective size is fairly general and is not confined to the present study population.

  13. Quantifying spatial genetic structuring in mesophotic populations of the precious coral Corallium rubrum.

    Science.gov (United States)

    Costantini, Federica; Carlesi, Lorenzo; Abbiati, Marco

    2013-01-01

    While shallow water red coral populations have been overharvested in the past, nowadays, commercial harvesting shifted its pressure on mesophotic organisms. An understanding of red coral population structure, particularly larval dispersal patterns and connectivity among harvested populations is paramount to the viability of the species. In order to determine patterns of genetic spatial structuring of deep water Corallium rubrum populations, for the first time, colonies found between 58-118 m depth within the Tyrrhenian Sea were collected and analyzed. Ten microsatellite loci and two regions of mitochondrial DNA (mtMSH and mtC) were used to quantify patterns of genetic diversity within populations and to define population structuring at spatial scales from tens of metres to hundreds of kilometres. Microsatellites showed heterozygote deficiencies in all populations. Significant levels of genetic differentiation were observed at all investigated spatial scales, suggesting that populations are likely to be isolated. This differentiation may by the results of biological interactions, occurring within a small spatial scale and/or abiotic factors acting at a larger scale. Mitochondrial markers revealed significant genetic structuring at spatial scales greater then 100 km showing the occurrence of a barrier to gene flow between northern and southern Tyrrhenian populations. These findings provide support for the establishment of marine protected areas in the deep sea and off-shore reefs, in order to effectively maintain genetic diversity of mesophotic red coral populations.

  14. Geographic distribution of genetic diversity in populations of Rio Grande Chub Gila pandora

    Science.gov (United States)

    Galindo, Rene; Wilson, Wade; Caldwell, Colleen A.

    2016-01-01

    In the southwestern United States (US), the Rio Grande chub (Gila pandora) is state-listed as a fish species of greatest conservation need and federally listed as sensitive due to habitat alterations and competition with non-native fishes. Characterizing genetic diversity, genetic population structure, and effective number of breeders will assist with conservation efforts by providing a baseline of genetic metrics. Genetic relatedness within and among G. pandora populations throughout New Mexico was characterized using 11 microsatellite loci among 15 populations in three drainage basins (Rio Grande, Pecos, Canadian). Observed heterozygosity (HO) ranged from 0.71–0.87 and was similar to expected heterozygosity (0.75–0.87). Rio Ojo Caliente (Rio Grande) had the highest allelic richness (AR = 15.09), while Upper Rio Bonito (Pecos) had the lowest allelic richness (AR = 6.75). Genetic differentiation existed among all populations with the lowest genetic variation occurring within the Pecos drainage. STRUCTURE analysis revealed seven genetic clusters. Populations of G. pandora within the upper Rio Grande drainage (Rio Ojo Caliente, Rio Vallecitos, Rio Pueblo de Taos) had high levels of admixture with Q-values ranging from 0.30–0.50. In contrast, populations within the Pecos drainage (Pecos River and Upper Rio Bonito) had low levels of admixture (Q = 0.94 and 0.87, respectively). Estimates of effective number of breeders (N b ) varied from 6.1 (Pecos: Upper Rio Bonito) to 109.7 (Rio Grande: Rio Peñasco) indicating that populations in the Pecos drainage are at risk of extirpation. In the event that management actions are deemed necessary to preserve or increase genetic diversity of G. pandora, consideration must be given as to which populations are selected for translocation.

  15. Genetic structure of local populations of Lutzomyia longipalpis (Diptera: Psychodidae) in central Colombia.

    Science.gov (United States)

    Munstermann, L E; Morrison, A C; Ferro, C; Pardo, R; Torres, M

    1998-01-01

    Lutzomyia longipalpis (Lutz & Neiva), the sand fly vector of American visceral leishmaniasis in the New World tropics, has a broad but discontinuous geographical distribution from southern Mexico to Argentina. A baseline for population genetic structure and genetic variability for this species was obtained by analyzing 5 local, peridomestic populations at the approximate center of its distribution, the Magdalena River Valley of central Colombia. Three populations of L. longipalpis from El Callejón, a small rural community, were compared with 2 populations from neighboring areas 12 and 25 km distant for genetic variation at 15 isoenzyme loci. The mean heterozygosity ranged from 11 to 16%, with 1.2 to 2.3 alleles detected per locus. Nei's genetic distances among the populations were very low, ranging from 0.001 to 0.007. Gene flow estimates based on FST indicated high levels of gene flow among local L. longipalpis populations, with minimal population substructuring.

  16. Evaluating manta ray mucus as an alternative DNA source for population genetics study: underwater-sampling, dry-storage and PCR success

    Directory of Open Access Journals (Sweden)

    Tom Kashiwagi

    2015-08-01

    Full Text Available Sharks and rays are increasingly being identified as high-risk species for extinction, prompting urgent assessments of their local or regional populations. Advanced genetic analyses can contribute relevant information on effective population size and connectivity among populations although acquiring sufficient regional sample sizes can be challenging. DNA is typically amplified from tissue samples which are collected by hand spears with modified biopsy punch tips. This technique is not always popular due mainly to a perception that invasive sampling might harm the rays, change their behaviour, or have a negative impact on tourism. To explore alternative methods, we evaluated the yields and PCR success of DNA template prepared from the manta ray mucus collected underwater and captured and stored on a Whatman FTA™ Elute card. The pilot study demonstrated that mucus can be effectively collected underwater using toothbrush. DNA stored on cards was found to be reliable for PCR-based population genetics studies. We successfully amplified mtDNA ND5, nuclear DNA RAG1, and microsatellite loci for all samples and confirmed sequences and genotypes being those of target species. As the yields of DNA with the tested method were low, further improvements are desirable for assays that may require larger amounts of DNA, such as population genomic studies using emerging next-gen sequencing.

  17. Genetic structure of the threatened West-Pannonian population of Great Bustard (Otis tarda

    Directory of Open Access Journals (Sweden)

    Jose L. Horreo

    2016-03-01

    Full Text Available The genetic diversity, population structure and gene flow of the Great Bustards (Otis tarda living in Austria-Slovakia-West Hungary (West-Pannonian region, one of the few populations of this globally threatened species that survives across the Palaearctic, has been assessed for the first time in this study. Fourteen recently developed microsatellite loci identified one single population in the study area, with high values of genetic diversity and gene flow between two different genetic subunits. One of these subunits (Heideboden was recognized as a priority for conservation, as it could be crucial to maintain connectivity with the central Hungarian population and thus contribute to keeping contemporary genetic diversity. Current conservation efforts have been successful in saving this threatened population from extinction two decades ago, and should continue to guarantee its future survival.

  18. Genetic differentiation between sympatric and allopatric wintering populations of Snow Geese

    Science.gov (United States)

    Humphries, E.M.; Peters, J.L.; Jonsson, J.E.; Stone, R.; Afton, A.D.; Omland, K.E.

    2009-01-01

    Blackwater National Wildlife Refuge on the Delmarva Peninsula, Maryland, USA has been the wintering area of a small population of Lesser Snow Geese (Chen caerulescens caerulescens; LSGO) since the 1930s. Snow Geese primarily pair in wintering areas and gene flow could be restricted between this and other LSGO wintering populations. Winter pair formation also could facilitate interbreeding with sympatric but morphologically differentiated Greater Snow Geese (C. c. atlantica; GSGO).We sequenced 658 bp of the mitochondrial DNA control region for 68 Snow Geese from East Coast and Louisiana wintering populations to examine the level of genetic differentiation among populations and subspecies. We found no evidence for genetic differentiation between LSGO populations but, consistent with morphological differences, LSGO and GSGO were significantly differentiated. We also found a lack of genetic differentiation between different LSGO morphotypes from Louisiana. We examined available banding data and found the breeding range of Delmarva LSGO overlaps extensively with LSGO that winter in Louisiana, and documented movements between wintering populations. Our results suggest the Delmarva population of LSGO is not a unique population unit apart from Mid-Continent Snow Geese. ?? 2009 by the Wilson Ornithological Society.

  19. The population genetics of cultivation: domestication of a traditional Chinese medicine, Scrophularia ningpoensis Hemsl. (Scrophulariaceae.

    Directory of Open Access Journals (Sweden)

    Chuan Chen

    Full Text Available BACKGROUND: Domestic cultivation of medicinal plants is an important strategy for protecting these species from over harvesting. Some species of medicinal plants have been brought into cultivation for more than hundreds years. Concerns about severe loss of genetic diversity and sustainable cultivation can potentially limit future use of these valuable plants. Genetic studies with comprehensive sampling of multiple medicinal species by molecular markers will allow for assessment and management of these species. Here we examine the population genetic consequences of cultivation and domestication in Scrophularia ningpoensis Hemsl. We used chloroplast DNA and genomic AFLP markers to clarify not only the effects of domestication on genetic diversity, but also determine the geographic origins of cultivars and their genetic divergence from native populations. These results will allow both better management of cultivated populations, but also provide insights for crop improvement. RESULTS: Twenty-one cpDNA haplotypes of S. ningpoensis were identified. Wild populations contain all haplotypes, whereas only three haplotypes were found in cultivated populations with wild populations having twice the haplotype diversity of cultivated populations. Genetic differentiation between cultivated populations and wild populations was significant. Genomic AFLP markers revealed similar genetic diversity patterns. Furthermore, Structure analysis grouped all wild populations into two gene pools; two of which shared the same gene pool with cultivated S. ningpoensis. The result of Neighbor-Joining analysis was consistent with the structure analysis. In principal coordinate analysis, three cultivated populations from Zhejiang Province grouped together and were separated from other cultivated populations. CONCLUSIONS: These results suggest that cultivated S. ningpoensis has experienced dramatic loss of genetic diversity under anthropogenic influence. We postulate that strong

  20. The population genetics of cultivation: domestication of a traditional Chinese medicine, Scrophularia ningpoensis Hemsl. (Scrophulariaceae).

    Science.gov (United States)

    Chen, Chuan; Li, Pan; Wang, Rui-Hong; Schaal, Barbara A; Fu, Cheng-Xin

    2014-01-01

    Domestic cultivation of medicinal plants is an important strategy for protecting these species from over harvesting. Some species of medicinal plants have been brought into cultivation for more than hundreds years. Concerns about severe loss of genetic diversity and sustainable cultivation can potentially limit future use of these valuable plants. Genetic studies with comprehensive sampling of multiple medicinal species by molecular markers will allow for assessment and management of these species. Here we examine the population genetic consequences of cultivation and domestication in Scrophularia ningpoensis Hemsl. We used chloroplast DNA and genomic AFLP markers to clarify not only the effects of domestication on genetic diversity, but also determine the geographic origins of cultivars and their genetic divergence from native populations. These results will allow both better management of cultivated populations, but also provide insights for crop improvement. Twenty-one cpDNA haplotypes of S. ningpoensis were identified. Wild populations contain all haplotypes, whereas only three haplotypes were found in cultivated populations with wild populations having twice the haplotype diversity of cultivated populations. Genetic differentiation between cultivated populations and wild populations was significant. Genomic AFLP markers revealed similar genetic diversity patterns. Furthermore, Structure analysis grouped all wild populations into two gene pools; two of which shared the same gene pool with cultivated S. ningpoensis. The result of Neighbor-Joining analysis was consistent with the structure analysis. In principal coordinate analysis, three cultivated populations from Zhejiang Province grouped together and were separated from other cultivated populations. These results suggest that cultivated S. ningpoensis has experienced dramatic loss of genetic diversity under anthropogenic influence. We postulate that strong artificial selection for medicinal quality has

  1. Genetic variability and population structure of Plasmodium falciparum parasite populations from different malaria ecological regions of Kenya.

    Science.gov (United States)

    Ingasia, Luicer A; Cheruiyot, Jelagat; Okoth, Sheila Akinyi; Andagalu, Ben; Kamau, Edwin

    2016-04-01

    Transmission intensity, movement of human and vector hosts, biogeographical features, and malaria control measures are some of the important factors that determine Plasmodium falciparum parasite genetic variability and population structure. Kenya has different malaria ecologies which might require different disease intervention methods. Refined parasite population genetic studies are critical for informing malaria control and elimination strategies. This study describes the genetic diversity and population structure of P. falciparum parasites from the different malaria ecological zones in Kenya. Twelve multi-locus microsatellite (MS) loci previously described were genotyped in 225 P. falciparum isolates collected between 2012 and 2013 from five sites; three in lowland endemic regions (Kisumu, Kombewa, and Malindi) and two in highland, epidemic regions (Kisii and Kericho). Parasites from the lowland endemic and highland epidemic regions of western Kenya had high genetic diversity compared to coastal lowland endemic region of Kenya [Malindi]. The Kenyan parasites had a mean genetic differentiation index (FST) of 0.072 (p=0.011). The multi-locus genetic analysis of the 12 MS revealed all the parasites had unique haplotypes. Significant linkage disequilibrium (LD) was observed in all the five parasite populations. Kisumu had the most significant index of association values (0.16; pKenya after introduction of the artemether-lumefantrine is important in refining the spread of drug resistant strains and malaria transmission for more effective control and eventual elimination of malaria in Kenya. Copyright © 2015. Published by Elsevier B.V.

  2. Genetic Background and Population Genetics of Hungarian Brown Trout Populations Using PCR-RFLP and Microsatellite Markers

    Directory of Open Access Journals (Sweden)

    Ágnes Ősz

    2015-12-01

    4 University of West Hungary, Mosonmagyaróvár Vár 2., 9200 Mosonmagyaróvár, Hungary Based on the analyses of the mitochondrial DNA of several European brown trout populations, five evolutionary lineages of brown trout were indentified (Atlantic, Danubian, Mediterranean, Adriatic, Marble. The species is bred primarily for stock enhancement of natural waters, however the most hatchery-maintained broodstocks originate from the Atlantic lineage. Due to the hydrogeography of Hungary our stocks should theoretically belong to the Danubian lineage; however, this has not been investigated earlier by genetic studies. For our genetic analysis, 702 fin clips were collected from two brown trout broodstocks (Lillafüred and Szilvásvárad as well as populations of natural streams (Bán, Jósva, Kemence, Apátkút, Bittva and Kölöntés in Hungary. Sequencing of the control region in mitochondrial DNA, three PCR-RFLP (mitochondrial DNA control region, lactate dehydrogenase and somatolactin genes and five microsatellite markers were used to distinguish between Danubian and Atlantic lineages of brown trout. The proportion of the mitochondrial haplotype of the Danubian lineage was low, with the exception of the Apátkúti, Kölöntés streams and Szilvásvárad broodstock. Analyses of nuclear PCR-RFLP and microsatellites markers showed various distributions of alleles characteristic of the Atlantic or Danubian lineages, although the Atlantic genotype has dominated in all population. In case of the analyses of microsatellites the polymorphism varied greatly at all locations. In addition we found several alleles that were not described earlier in other populations. Those alleles probably would be typical of Hungarian brown trout populations. Overall the populations were effectively in Hardy-Weinberg equilibrium for both PCR-RFLP and microsatellite markers. The remarkably high proportion of allochthonous Atlantic alleles in the analyzed sites is a clear indicator of the import

  3. Sample Size Calculations for Population Size Estimation Studies Using Multiplier Methods With Respondent-Driven Sampling Surveys.

    Science.gov (United States)

    Fearon, Elizabeth; Chabata, Sungai T; Thompson, Jennifer A; Cowan, Frances M; Hargreaves, James R

    2017-09-14

    While guidance exists for obtaining population size estimates using multiplier methods with respondent-driven sampling surveys, we lack specific guidance for making sample size decisions. To guide the design of multiplier method population size estimation studies using respondent-driven sampling surveys to reduce the random error around the estimate obtained. The population size estimate is obtained by dividing the number of individuals receiving a service or the number of unique objects distributed (M) by the proportion of individuals in a representative survey who report receipt of the service or object (P). We have developed an approach to sample size calculation, interpreting methods to estimate the variance around estimates obtained using multiplier methods in conjunction with research into design effects and respondent-driven sampling. We describe an application to estimate the number of female sex workers in Harare, Zimbabwe. There is high variance in estimates. Random error around the size estimate reflects uncertainty from M and P, particularly when the estimate of P in the respondent-driven sampling survey is low. As expected, sample size requirements are higher when the design effect of the survey is assumed to be greater. We suggest a method for investigating the effects of sample size on the precision of a population size estimate obtained using multipler methods and respondent-driven sampling. Uncertainty in the size estimate is high, particularly when P is small, so balancing against other potential sources of bias, we advise researchers to consider longer service attendance reference periods and to distribute more unique objects, which is likely to result in a higher estimate of P in the respondent-driven sampling survey. ©Elizabeth Fearon, Sungai T Chabata, Jennifer A Thompson, Frances M Cowan, James R Hargreaves. Originally published in JMIR Public Health and Surveillance (http://publichealth.jmir.org), 14.09.2017.

  4. GENETIC CONTRIBUTION OF RAM ON LITTER SIZE IN ŠUMAVA SHEEP

    Directory of Open Access Journals (Sweden)

    Jitka Schmidová

    2015-09-01

    Full Text Available The objective of the present study was to quantify the service sire effect in terms of (co variance components of born and weaned lambs number and to propose models for the potential inclusion of this effect in the linear equations for breeding value estimation. The database with 21,324 lambings in Šumava sheep from 1992- 2013 was used. The basic model equation for the analysis of variance of litter size contained effects of ewe´s age at lambing, contemporary group, permanent environmental effect of ewe and direct additive genetic effect of ewe. Two modifications of the basic model were used for estimation of service sire effect. The proportions of variance for the service sire effect for number of born and weaned lambs were 2.1% and 2.0%, when service sire was not included into relationship matrix; while included into the relationship matrix and dividing effect into genetic contribution and permanent environment effect refer that nongenetic effect seems to be bigger than genetic (0.013 vs. 0.009 for number of born and 0.017 vs. 0.004 for number of weaned. Changes in other variance components were relatively low, except of contemporary group. Model including service sire effect as a simple random effect without genetic relationship matrix inclusion is recommended for genetic evaluation of litter size traits.

  5. Population-genetic approach to standardization of radiation and non-radiation factors

    International Nuclear Information System (INIS)

    Telnov, I.

    2006-01-01

    population level. Of 65 analyses of association between diseases and unfavorable effects and various genetic polymorphic systems, 27 had negative results. Other 38 had significant, i.e. positive results. Respective G.S.R.R. varied accordingly in the range from 1.2 to 2.5. Averaged G.S.R.R. for some genetic systems ranged from 1.4 to 1.9. More stable and closer values of averaged G.S.R.R. calculated for various categories of effects: pathologies due to radiation and non-radiation factors - 1.51; non-tumor (1,47) and tumor (1,54) diseases; average life expectancy - 1.34. Population-averaged or integral value of G.S.R.R. was about 1.5. This value can be used as genetic predisposition coefficient (C.G.P.) for correction in averaging of environmental population level factors. Such correction can be done by decreasing of permissible standard value by the value of C.G.P. to calculate population-genetic standard. It should be noted that population-genetic standards decrease risk of development of unfavorable consequences due to effect of environmental factors in individuals with genetic predisposition to the general population level. An important advantage of this approach is that there is no need to account for all existing variations of genetic predisposition to multiform unfavorable environmental factors

  6. Population Genetics of the São Tomé Caecilian (Gymnophiona: Dermophiidae: Schistometopum thomense) Reveals Strong Geographic Structuring

    Science.gov (United States)

    Stoelting, Ricka E.; Measey, G. John; Drewes, Robert C.

    2014-01-01

    Islands provide exciting opportunities for exploring ecological and evolutionary mechanisms. The oceanic island of São Tomé in the Gulf of Guinea exhibits high diversity of fauna including the endemic caecilian amphibian, Schistometopum thomense. Variation in pigmentation, morphology and size of this taxon over its c. 45 km island range is extreme, motivating a number of taxonomic, ecological, and evolutionary hypotheses to explain the observed diversity. We conducted a population genetic study of S. thomense using partial sequences of two mitochondrial DNA genes (ND4 and 16S), together with morphological examination, to address competing hypotheses of taxonomic or clinal variation. Using Bayesian phylogenetic analysis and Spatial Analysis of Molecular Variance, we found evidence of four geographic clades, whose range and approximated age (c. 253 Kya – 27 Kya) are consistent with the spread and age of recent volcanic flows. These clades explained 90% of variation in ND4 (φCT = 0.892), and diverged by 4.3% minimum pairwise distance at the deepest node. Most notably, using Mismatch Distributions and Mantel Tests, we identified a zone of population admixture that dissected the island. In the northern clade, we found evidence of recent population expansion (Fu's Fs = −13.08 and Tajima's D = −1.80) and limited dispersal (Mantel correlation coefficient = 0.36, p = 0.01). Color assignment to clades was not absolute. Paired with multinomial regression of chromatic data, our analyses suggested that the genetic groups and a latitudinal gradient together describe variation in color of S. thomense. We propose that volcanism and limited dispersal ability are the likely proximal causes of the observed genetic structure. This is the first population genetic study of any caecilian and demonstrates that these animals have deep genetic divisions over very small areas in accordance with previous speculations of low dispersal abilities. PMID:25171066

  7. Genetic Diversity, Population Structure, and Heritability of Fruit Traits in Capsicum annuum

    Science.gov (United States)

    Naegele, Rachel P.; Mitchell, Jenna; Hausbeck, Mary K.

    2016-01-01

    Cultivated pepper (Capsicum annuum) is a phenotypically diverse species grown throughout the world. Wild and landrace peppers are typically small-fruited and pungent, but contain many important traits such as insect and disease resistance. Cultivated peppers vary dramatically in size, shape, pungency, and color, and often lack resistance traits. Fruit characteristics (e.g. shape and pericarp thickness) are major determinants for cultivar selection, and their association with disease susceptibility can reduce breeding efficacy. This study evaluated a diverse collection of peppers for mature fruit phenotypic traits, correlation among fruit traits and Phytophthora fruit rot resistance, genetic diversity, population structure, and trait broad sense heritability. Significant differences within all fruit phenotype categories were detected among pepper lines. Fruit from Europe had the thickest pericarp, and fruit from Ecuador had the thinnest. For fruit shape index, fruit from Africa had the highest index, while fruit from Europe had the lowest. Five genetic clusters were detected in the pepper population and were significantly associated with fruit thickness, end shape, and fruit shape index. The genetic differentiation between clusters ranged from little to very great differentiation when grouped by the predefined categories. Broad sense heritability for fruit traits ranged from 0.56 (shoulder height) to 0.98 (pericarp thickness). When correlations among fruit phenotypes and fruit disease were evaluated, fruit shape index was negatively correlated with pericarp thickness, and positively correlated with fruit perimeter. Pepper fruit pericarp, perimeter, and width had a slight positive correlation with Phytophthora fruit rot, whereas fruit shape index had a slight negative correlation. PMID:27415818

  8. Extensive genetic diversity, unique population structure and evidence of genetic exchange in the sexually transmitted parasite Trichomonas vaginalis.

    Directory of Open Access Journals (Sweden)

    Melissa D Conrad

    Full Text Available Trichomonas vaginalis is the causative agent of human trichomoniasis, the most common non-viral sexually transmitted infection world-wide. Despite its prevalence, little is known about the genetic diversity and population structure of this haploid parasite due to the lack of appropriate tools. The development of a panel of microsatellite makers and SNPs from mining the parasite's genome sequence has paved the way to a global analysis of the genetic structure of the pathogen and association with clinical phenotypes.Here we utilize a panel of T. vaginalis-specific genetic markers to genotype 235 isolates from Mexico, Chile, India, Australia, Papua New Guinea, Italy, Africa and the United States, including 19 clinical isolates recently collected from 270 women attending New York City sexually transmitted disease clinics. Using population genetic analysis, we show that T. vaginalis is a genetically diverse parasite with a unique population structure consisting of two types present in equal proportions world-wide. Parasites belonging to the two types (type 1 and type 2 differ significantly in the rate at which they harbor the T. vaginalis virus, a dsRNA virus implicated in parasite pathogenesis, and in their sensitivity to the widely-used drug, metronidazole. We also uncover evidence of genetic exchange, indicating a sexual life-cycle of the parasite despite an absence of morphologically-distinct sexual stages.Our study represents the first robust and comprehensive evaluation of global T. vaginalis genetic diversity and population structure. Our identification of a unique two-type structure, and the clinically relevant phenotypes associated with them, provides a new dimension for understanding T. vaginalis pathogenesis. In addition, our demonstration of the possibility of genetic exchange in the parasite has important implications for genetic research and control of the disease.

  9. Extensive genetic diversity, unique population structure and evidence of genetic exchange in the sexually transmitted parasite Trichomonas vaginalis.

    Science.gov (United States)

    Conrad, Melissa D; Gorman, Andrew W; Schillinger, Julia A; Fiori, Pier Luigi; Arroyo, Rossana; Malla, Nancy; Dubey, Mohan Lal; Gonzalez, Jorge; Blank, Susan; Secor, William E; Carlton, Jane M

    2012-01-01

    Trichomonas vaginalis is the causative agent of human trichomoniasis, the most common non-viral sexually transmitted infection world-wide. Despite its prevalence, little is known about the genetic diversity and population structure of this haploid parasite due to the lack of appropriate tools. The development of a panel of microsatellite makers and SNPs from mining the parasite's genome sequence has paved the way to a global analysis of the genetic structure of the pathogen and association with clinical phenotypes. Here we utilize a panel of T. vaginalis-specific genetic markers to genotype 235 isolates from Mexico, Chile, India, Australia, Papua New Guinea, Italy, Africa and the United States, including 19 clinical isolates recently collected from 270 women attending New York City sexually transmitted disease clinics. Using population genetic analysis, we show that T. vaginalis is a genetically diverse parasite with a unique population structure consisting of two types present in equal proportions world-wide. Parasites belonging to the two types (type 1 and type 2) differ significantly in the rate at which they harbor the T. vaginalis virus, a dsRNA virus implicated in parasite pathogenesis, and in their sensitivity to the widely-used drug, metronidazole. We also uncover evidence of genetic exchange, indicating a sexual life-cycle of the parasite despite an absence of morphologically-distinct sexual stages. Our study represents the first robust and comprehensive evaluation of global T. vaginalis genetic diversity and population structure. Our identification of a unique two-type structure, and the clinically relevant phenotypes associated with them, provides a new dimension for understanding T. vaginalis pathogenesis. In addition, our demonstration of the possibility of genetic exchange in the parasite has important implications for genetic research and control of the disease.

  10. Dynamics of genetic processes in chronically irradiated populations of small mammals

    International Nuclear Information System (INIS)

    Ryabokon', N.I.; Goncharova, R.I.; Smolich, I.I.; Kapitanova, N.P.; Nikitchenko, N.V.

    2000-01-01

    The distinctive features of dynamics of mutagenesis in mammalian populations under chronic low-intensive irradiation were first revealed. The main of them is gradual increase in mutability in somatic cells and embryonal lethality during series of irradiated generations of animals (bank vole - Clethrionomys glareolus). The data obtained strongly suggest that there are oppositely directed processes in natural populations after irradiation of more than 20 generations of animals: on the one hand, accumulation of mutations (genetic load of populations) and pre-mutation events which increase genome instability of germ and somatic cells in consecutive generations of animals, and on the other, formation of genetic radio adaptation through better functioning protection systems. In this period of micro evolution in chronically irradiated populations, the frequencies of genetic damages could be higher if the radiation adaptation doesn't form. (authors)

  11. Genetic structure of South African Nguni (Zulu) sheep populations reveals admixture with exotic breeds.

    Science.gov (United States)

    Selepe, Mokhethi Matthews; Ceccobelli, Simone; Lasagna, Emiliano; Kunene, Nokuthula Winfred

    2018-01-01

    The population of Zulu sheep is reported to have declined by 7.4% between 2007 and 2011 due to crossbreeding. There is insufficient information on the genetic diversity of the Zulu sheep populations in the different area of KwaZulu Natal where they are reared. The study investigated genetic variation and genetic structure within and among eight Zulu sheep populations using 26 microsatellite markers. In addition, Damara, Dorper and South African Merino breeds were included to assess the genetic relationship between these breeds and the Zulu sheep. The results showed that there is considerable genetic diversity among the Zulu sheep populations (expected heterozygosity ranging from 0.57 to 0.69) and the level of inbreeding was not remarkable. The structure analysis results revealed that Makhathini Research Station and UNIZULU research station share common genetic structure, while three populations (Nongoma, Ulundi and Nquthu) had some admixture with the exotic Dorper breed. Thus, there is a need for sustainable breeding and conservation programmes to control the gene flow, in order to stop possible genetic dilution of the Zulu sheep.

  12. Genetic structure of South African Nguni (Zulu sheep populations reveals admixture with exotic breeds.

    Directory of Open Access Journals (Sweden)

    Mokhethi Matthews Selepe

    Full Text Available The population of Zulu sheep is reported to have declined by 7.4% between 2007 and 2011 due to crossbreeding. There is insufficient information on the genetic diversity of the Zulu sheep populations in the different area of KwaZulu Natal where they are reared. The study investigated genetic variation and genetic structure within and among eight Zulu sheep populations using 26 microsatellite markers. In addition, Damara, Dorper and South African Merino breeds were included to assess the genetic relationship between these breeds and the Zulu sheep. The results showed that there is considerable genetic diversity among the Zulu sheep populations (expected heterozygosity ranging from 0.57 to 0.69 and the level of inbreeding was not remarkable. The structure analysis results revealed that Makhathini Research Station and UNIZULU research station share common genetic structure, while three populations (Nongoma, Ulundi and Nquthu had some admixture with the exotic Dorper breed. Thus, there is a need for sustainable breeding and conservation programmes to control the gene flow, in order to stop possible genetic dilution of the Zulu sheep.

  13. A Genetic Study of Wild Populations and Evolution A Genetic Study of Wild Populations and Evolution

    Directory of Open Access Journals (Sweden)

    Hovanitz William

    1944-06-01

    Full Text Available The determination of the scientific basis of heredity within the last two decades and the verification of the principal conclusions in many different plants and animals has made possible the application of analytical methods in the study of variations in wild populations. As with the physical and chemical sciences, genetics has been enabled to make use of mathematics to compound (often theoretically out of simple units, the genes, the complexity known as an organism, much in the same way as a chemist compounds molecules with atoms and the physicist compounds atoms with protons and electrons. The determination of the scientific basis of heredity within the last two decades and the verification of the principal conclusions in many different plants and animals has made possible the application of analytical methods in the study of variations in wild populations. As with the physical and chemical sciences, genetics has been enabled to make use of mathematics to compound (often theoretically out of simple units, the genes, the complexity known as an organism, much in the same way as a chemist compounds molecules with atoms and the physicist compounds atoms with protons and electrons.

  14. Genetic variability of sexual size dimorphism in a natural population ...

    Indian Academy of Sciences (India)

    Unknown

    Most animal species exhibit sexual size dimorphism (SSD). SSD is a trait difficult to ...... 26, 15–28. Charnov E. L. 1982 The theory of sex allocation. Princeton .... success in Drosophila melanogaster: the roles of male and female behavior. Anim ...

  15. Population genetic variation in the tree fern Alsophila spinulosa (Cyatheaceae): effects of reproductive strategy.

    Science.gov (United States)

    Wang, Ting; Su, Yingjuan; Li, Yuan

    2012-01-01

    Essentially all ferns can perform both sexual and asexual reproduction. Their populations represent suitable study objects to test the population genetic effects of different reproductive systems. Using the diploid homosporous fern Alsophila spinulosa as an example species, the main purpose of this study was to assess the relative impact of sexual and asexual reproduction on the level and structure of population genetic variation. Inter-simple sequence repeats analysis was conducted on 140 individuals collected from seven populations (HSG, LCH, BPC, MPG, GX, LD, and ZHG) in China. Seventy-four polymorphic bands discriminated a total of 127 multilocus genotypes. Character compatibility analysis revealed that 50.0 to 70.0% of the genotypes had to be deleted in order to obtain a tree-like structure in the data set from populations HSG, LCH, MPG, BPC, GX, and LD; and there was a gradual decrease of conflict in the data set when genotypes with the highest incompatibility counts were successively deleted. In contrast, in population ZHG, only 33.3% of genotypes had to be removed to achieve complete compatibility in the data set, which showed a sharp decline in incompatibility upon the deletion of those genotypes. All populations examined possessed similar levels of genetic variation. Population ZHG was not found to be more differentiated than the other populations. Sexual recombination is the predominant source of genetic variation in most of the examined populations of A. spinulosa. However, somatic mutation contributes most to the genetic variation in population ZHG. This change of the primary mode of reproduction does not cause a significant difference in the population genetic composition. Character compatibility analysis represents an effective approach to separate the role of sexual and asexual components in shaping the genetic pattern of fern populations.

  16. Population genetic variation in the tree fern Alsophila spinulosa (Cyatheaceae: effects of reproductive strategy.

    Directory of Open Access Journals (Sweden)

    Ting Wang

    Full Text Available BACKGROUND: Essentially all ferns can perform both sexual and asexual reproduction. Their populations represent suitable study objects to test the population genetic effects of different reproductive systems. Using the diploid homosporous fern Alsophila spinulosa as an example species, the main purpose of this study was to assess the relative impact of sexual and asexual reproduction on the level and structure of population genetic variation. METHODOLOGY/PRINCIPAL FINDINGS: Inter-simple sequence repeats analysis was conducted on 140 individuals collected from seven populations (HSG, LCH, BPC, MPG, GX, LD, and ZHG in China. Seventy-four polymorphic bands discriminated a total of 127 multilocus genotypes. Character compatibility analysis revealed that 50.0 to 70.0% of the genotypes had to be deleted in order to obtain a tree-like structure in the data set from populations HSG, LCH, MPG, BPC, GX, and LD; and there was a gradual decrease of conflict in the data set when genotypes with the highest incompatibility counts were successively deleted. In contrast, in population ZHG, only 33.3% of genotypes had to be removed to achieve complete compatibility in the data set, which showed a sharp decline in incompatibility upon the deletion of those genotypes. All populations examined possessed similar levels of genetic variation. Population ZHG was not found to be more differentiated than the other populations. CONCLUSIONS/SIGNIFICANCE: Sexual recombination is the predominant source of genetic variation in most of the examined populations of A. spinulosa. However, somatic mutation contributes most to the genetic variation in population ZHG. This change of the primary mode of reproduction does not cause a significant difference in the population genetic composition. Character compatibility analysis represents an effective approach to separate the role of sexual and asexual components in shaping the genetic pattern of fern populations.

  17. Structure and genetic diversity of natural Brazilian pepper populations (Schinus terebinthifolius Raddi).

    Science.gov (United States)

    Álvares-Carvalho, S V; Duarte, J F; Santos, T C; Santos, R M; Silva-Mann, R; Carvalho, D

    2016-06-17

    In the face of a possible loss of genetic diversity in plants due the environmental changes, actions to ensure the genetic variability are an urgent necessity. The extraction of Brazilian pepper fruits is a cause of concern because it results in the lack of seeds in soil, hindering its distribution in space and time. It is important to address this concern and explore the species, used by riparian communities and agro-factories without considering the need for keeping the seeds for natural seed banks and for species sustainability. The objective of this study was to evaluate the structure and the genetic diversity in natural Brazilian pepper populations (Schinus terebinthifolius Raddi). Twenty-two alleles in 223 individuals were identified from eight forest remnants located in the states of Minas Gerais, Espírito Santo, and Sergipe. All populations presented loci in Hardy-Weinberg equilibrium deviation. Four populations presented six combinations of loci in linkage disequilibrium. Six exclusive alleles were detected in four populations. Analysis of molecular variance showed the absence of diversity between regions and that between the populations (GST) was 41%. Genetic diversity was structured in seven clusters (ΔK7). Brazilian pepper populations were not structured in a pattern of isolation by distance and present genetic bottleneck. The populations São Mateus, Canastra, Barbacena, and Ilha das Flores were identified as management units and may support conservation projects, ecological restoration and in implementation of management plans for Brazilian pepper in the State of Sergipe.

  18. Population genetics of the westernmost distribution of the glaciations-surviving black truffle Tuber melanosporum.

    Science.gov (United States)

    García-Cunchillos, Iván; Sánchez, Sergio; Barriuso, Juan José; Pérez-Collazos, Ernesto

    2014-04-01

    The black truffle (Tuber melanosporum Vittad.) is an important natural resource due to its relevance as a delicacy in gastronomy. Different aspects of this hypogeous fungus species have been studied, including population genetics of French and Italian distribution ranges. Although those studies include some Spanish populations, this is the first time that the genetic diversity and genetic structure of the wide geographical range of the natural Spanish populations have been analysed. To achieve this goal, 23 natural populations were sampled across the Spanish geographical distribution. ISSR technique demonstrated its reliability and capability to detect high levels of polymorphism in the species. Studied populations showed high levels of genetic diversity (h N  = 0.393, h S  = 0.678, Hs = 0.418), indicating a non threatened genetic conservation status. These high levels may be a consequence of the wide distribution range of the species, of its spore dispersion by animals, and by its evolutionary history. AMOVA analysis showed a high degree of genetic structure among populations (47.89%) and other partitions as geographical ranges. Bayesian genetic structure analyses differentiated two main Spanish groups separated by the Iberian Mountain System, and showed the genetic uniqueness of some populations. Our results suggest the survival of some of these populations during the last glaciation, the Spanish southern distribution range perhaps surviving as had occurred in France and Italy, but it is also likely that specific northern areas may have acted as a refugia for the later dispersion to other calcareous areas in the Iberian Peninsula and probably France.

  19. Population Genetics of Three Dimensional Range Expansions

    Science.gov (United States)

    Lavrentovich, Maxim; Nelson, David

    2014-03-01

    We develop a simple model of genetic diversity in growing spherical cell clusters, where the growth is confined to the cluster surface. This kind of growth occurs in cells growing in soft agar, and can also serve as a simple model of avascular tumors. Mutation-selection balance in these radial expansions is strongly influenced by scaling near a neutral, voter model critical point and by the inflating frontier. We develop a scaling theory to describe how the dynamics of mutation-selection balance is cut off by inflation. Genetic drift, i.e., local fluctuations in the genetic diversity, also plays an important role, and can lead to the extinction even of selectively advantageous strains. We calculate this extinction probability, taking into account the effect of rough population frontiers.

  20. Genetic structure and diversity of three Colombian southwest afrodescendent populations using 8 STR's

    International Nuclear Information System (INIS)

    Guauque Olarte, Sandra; Fuentes Pardo, Angela Patricia; Cardenas Henao, Heiber; Barreto, Guillermo

    2010-01-01

    To estimate the diversity, structure and genetic flow in three Colombian southwest afrodescendent populations (Buenaventura, Mulalo y Tumaco), the alleles revealed by 8 autosomal STR's were analyzed in 78 no-related individuals, by the use of PCR and comparison with specific allelic ladders for every system resolved by polyacrylamide gel (8%). the results were compared with 2 Amerindian populations (Awa-Kuaikier and Coyaima) and 2 mixed Colombian populations (Valle del Cauca and Cauca). For the afrodescendent and Amerindian populations was found moderate diversity (h between 0.768±0.414 and 0.796±0.424), in contrast, the mixed population showed higher rates (>0.803), which is probably caused by mixing with Amerindians, that also can explain the high endogamy seen in mixed populations. The AMOVA exhibited moderate genetic structure between the afrodescendent populations (FST= 0.098; p<0.05), but higher between the three ethnical groups compared (FST=0.26723; p<0.05). The closer genetics distances are in favor of Tumaco and Buenaventura, supported for the migration rate found (34.298), which was the same inside of Amerindian and mixed populations. Maybe, because Mulalo is a closed isolated population, its differences in front others afrodescendent populations are explained. The neighbor-joining tree showed nearest relations among Amerindian and mixed populations, furthermore, the ancestral character for the afrodescendents. That sustains the idea of genetic flow maintained between the 3 ethnical groups, principally between Amerindian and mixed populations, supported because the genetic differences, migration rates and Amerindian matrilineality reported in the literature