WorldWideScience

Sample records for pool swell velocity

  1. Pool swell sub-scale testing and code comparison

    International Nuclear Information System (INIS)

    Elisson, K.

    1981-01-01

    The main objective of the experiment was to investigate the pool swell dynamics in general and the forces on the lowered central part of the diaphragm between drywell and wetwell in particular. Apart from the high speed camera pressure transducers and strain gauges were used to monitor the transient. Data was recorded on a 14 channel FM recorder and then digitalised and plotted. In total more than one hundred tests were performed including parametric variations of for example geometry, break flow, initial drywell pressure and initial water level. In parallel to this experiment pool swell calculations have been performed with the computer codes COPTA and STEALTH. COPTA which is a lumped mass code for pressure suppression containment analysis has a slug pool swell mode. STEALTH which is a general purpose lagrangian hydrodynamics code has been used in a 2-D axisymmetric version. The STEALTH code has been used to calculate the radial variations in the vertical displacement and velocity of the pool surface and to predict the load on the lowered central part of the diaphragm. A comparison between the calculations and the experimental data indicates that both codes are sufficiently correct in their description of the pool swell transient. (orig.)

  2. CFD modeling of pool swell during large break LOCA

    International Nuclear Information System (INIS)

    Yan, Jin; Bolger, Francis; Li, Guangjun; Mintz, Saul; Pappone, Daniel

    2009-01-01

    GE had conducted a series of one-third scale three-vent air tests in support the horizontal vent pressure suppression system used in Mark III containment design for General Electric BWR plants. During the test, the air-water interface has been tracked by conductivity probes. There are many pressure monitors inside the test rig. The purpose of the test was to provide a basis for the pool swell load definition for the Mark III containment. In this paper, a transient 3-Dimensional CFD model of the one-third scale Mark III suppression pool swell process is constructed. The Volume of Fluid (VOF) multiphase model is used to explicitly track the interface between the water liquid and the air. The CFD results such as flow velocity, pressure, interface locations are compared to those from the test. Through the comparisons, a technical approach to numerically model the pool swell phenomenon is established and benchmarked. (author)

  3. Mark II pressure suppression containment systems: an analytical model of the pool swell phenomenon

    International Nuclear Information System (INIS)

    Ernst, R.J.; Ward, M.G.

    1976-12-01

    A one-dimensional pool swell model of the dynamic and thermodynamic conditions in the suppression chamber following a postulated loss-of-coolant accident (LOCA) is described. The pool swell phenomena is approximated by a constant thickness water slug, which is accelerated upward by the difference between the air bubble pressure acting below the pool and the wetwell air space pressure acting above the pool surface. The transient bubble pressure is computed using the known drywell pressure history and a quasi-steady compressible vent flow model. Comparisons of model predictions with pool swell experimental data are favorable and show the model is based on a conservative interpretation of the physical phenomena involved

  4. Study on velocity distribution in a pool by submersible mixers

    International Nuclear Information System (INIS)

    Tian, F; Shi, W D; Lu, X N; Chen, B; Jiang, H

    2012-01-01

    To study the distribution of submersible mixers and agitating effect in the sewage treatment pool, Pro/E software was utilized to build the three-dimensional model. Then, the large-scale computational fluid dynamics software FLUENT6.3 was used. ICEM software was used to build unstructured grid of sewage treatment pool. After that, the sewage treatment pool was numerically simulated by dynamic coordinate system technology and RNG k-ε turbulent model and PIOS algorithm. The macro fluid field and each section velocity flow field distribution were analyzed to observe the efficiency of each submersible mixer. The average velocity and mixing area in the sewage pool were studied simultaneously. Results show that: the preferred project B, two submersible mixers speed is 980 r/min, and setting angles are all 30°. Fluid mixing area in the pool has reached more than 95%. Under the action of two mixers, the fluid in the sewage pool form a continuous circulating water flow. The fluid is mixed adequately and average velocity of fluid in the pool is at around 0.241m/s, which agreed with the work requirements. Consequently it can provide a reference basis for practical engineering application of submersible mixers by using this method.

  5. Determination of the swelling velocity of different wood species and tissues depending on the cutting direction on microtome section level

    Science.gov (United States)

    Stuckenberg, Peter; Wenderdel, Christoph; Zauer, Mario

    2018-06-01

    Swelling velocity in dependence on the anatomical cutting direction of yew [Taxus baccata L.] and boxwood [Buxus sempervirens L.] was determined at temperature of 20 °C and at relative humidity of 10% and 100%. The investigations, conducted on a microtome section level, showed a similar behaviour for specimens of both wood species. It was possible to determine that the swelling velocity for yew and boxwood increases in its anatomical cutting directions. The longitudinal direction showed the lowest value, the tangential direction, by distinction, the highest value. Furthermore, a significant influence of early wood and late wood content on the swelling velocity for yew was detected.

  6. Condensation in a two-phase pool

    International Nuclear Information System (INIS)

    Duffey, R.B.; Hughes, E.D.

    1991-01-01

    We consider the case of vapor condensation in a liquid pool, when the heat transfer is controlled by heat losses through the walls. The analysis is based on drift flux theory for phase separation in the pool, and determines the two-phase mixture height for the pool. To our knowledge this is the first analytical treatment of this classic problem that gives an explicit result, previous work having established the result for the evaporative case. From conservation of mass and energy in a one-dimensional steady flow, together with a void relation between the liquid and vapor fluxes, we determine the increase in the mixture level from the base level of the pool. It can be seen that the thermal and hydrodynamic influences are separable. Thus, the thermal influence of the wall heat transfer appears through its effect on the condensing length L*, so that at high condensation rates the pool is all liquid, and at low rates overflows (the level swell or foaming effect). Similarly, the phase separation effect hydrodynamically determines the height via the relative velocity of the mixture to the entering flux. We examine some practical applications of this result to level swell in condensing flows, and also examine some limits in ideal cases

  7. Pressure suppression pool hydrodynamic studies for horizontal vent exit of Indian PHWR containment

    International Nuclear Information System (INIS)

    Mohan, N.; Bajaj, S.S.; Saha, P.

    1994-01-01

    The standard Indian PHWR incorporates a pressure suppression type of containment system with a suppression pool.The design of KAPS (Kakrapar Atomic Power Station) suppression pool system adopts a modified system of downcomers having horizontal vents as compared to vertical vents of NAPS (Narora Atomic Power Station). Hydrodynamic studies for vertical vents have been reported earlier. This paper presents hydrodynamic studies for horizontal type vent system during LOCA. These studies include the phenomenon of vent clearing (where the water slug standing in downcomer initially is injected to wetwell due to rapid pressurization of drywell) followed by pool swell (elevation of pool water due to formation of bubbles due to air mass entering pool at the exit of horizontal vents from drywell). The analysis performed for vent clearing and pool swell is based on rigorous thermal hydraulic calculation consisting of conservation of air-steam mixture mass, momentum and thermal energy and mass of air. Horizontal vent of downcomer is modelled in such a way that during steam-air flow, variation of flow area due to oscillating water surface in downcomer could be considered. Calculation predicts that the vent gets cleared in about 1.0 second and the corresponding downward slug velocity in the downcomer is 4.61 m/sec. The maximum pool swell for a conservative lateral expansion is calculated to be 0.56 m. (author). 3 refs., 12 figs

  8. Generalized multidemensional propagation velocity equations for pool-boiling superconducting windings

    International Nuclear Information System (INIS)

    Christensen, E.H.; O'Loughlin, J.M.

    1984-09-01

    Several finite difference, finite element detailed analyses of propagation velocities in up to three dimensions in pool-boiling windings have been conducted for different electromagnetic and cryogenic environments. Likewise, a few full scale simulated winding and magnet tests have measured propagation velocities. These velocity data have been correlated in terms of winding thermophysical parameters. This analysis expresses longitudinal and transverse propagation velocities in the form of power function regression equations for a wide variety of windings and electromagnetic and thermohydraulic environments. The generalized velocity equations are considered applicable to well-ventilated, monolithic conductor windings. These design equations are used piecewise in a gross finite difference mode as functions of field to predict the rate of normal zone growth during quench conditions. A further check of the validity of these predictions is available through total predicted quench durations correlated with actual quench durations of large magnets

  9. Hotspot swells revisited

    Science.gov (United States)

    King, Scott D.; Adam, Claudia

    2014-10-01

    The first attempts to quantify the width and height of hotspot swells were made more than 30 years ago. Since that time, topography, ocean-floor age, and sediment thickness datasets have improved considerably. Swell heights and widths have been used to estimate the heat flow from the core-mantle boundary, constrain numerical models of plumes, and as an indicator of the origin of hotspots. In this paper, we repeat the analysis of swell geometry and buoyancy flux for 54 hotspots, including the 37 considered by Sleep (1990) and the 49 considered by Courtillot et al. (2003), using the latest and most accurate data. We are able to calculate swell geometry for a number of hotspots that Sleep was only able to estimate by comparison with other swells. We find that in spite of the increased resolution in global bathymetry models there is significant uncertainty in our calculation of buoyancy fluxes due to differences in our measurement of the swells’ width and height, the integration method (volume integration or cross-sectional area), and the variations of the plate velocities between HS2-Nuvel1a (Gripp and Gordon, 1990) and HS3-Nuvel1a (Gripp and Gordon, 2002). We also note that the buoyancy flux for Pacific hotspots is in general larger than for Eurasian, North American, African and Antarctic hotspots. Considering that buoyancy flux is linearly related to plate velocity, we speculate that either the calculation of buoyancy flux using plate velocity over-estimates the actual vertical flow of material from the deep mantle or that convection in the Pacific hemisphere is more vigorous than the Atlantic hemisphere.

  10. Hydrodynamics of AHWR gravity driven water pool under simulated LOCA conditions

    International Nuclear Information System (INIS)

    Thangamani, I.; Verma, Vishnu; Ali, Seik Mansoor

    2015-01-01

    The Advanced Heavy Water Reactor (AHWR) employs a double containment concept with a large inventory of water within the Gravity Driven Water Pool (GDWP) located at a high elevation within the primary containment building. GDWP performs several important safety functions in a passive manner, and hence it is essential to understand the hydrodynamics that this pool will be subjected to in case of an accident such as LOCA. In this paper, a detailed thermal hydraulic analysis for AHWR containment transients is presented for postulated LOCA scenarios involving RIH break sizes ranging from 2% to 50%. The analysis is carried out using in-house containment thermal hydraulics code 'CONTRAN'. The blowdown mass and energy discharge data for each break size, along with the geometrical details of the AHWR containment forms the main input for the analysis. Apart from obtaining the pressure and temperature transients within the containment building, the focus of this work is on simulating the hydrodynamic phenomena of vent clearing and pool swell occurring in the GDWP. The variation of several key parameters such as primary containment V1 and V2 volume pressure, temperature and V1-V2 differential pressure with time, BOP rupture time, vent clearing velocity, effect of pool swell on the V2 air-space pressure, GDWP water level etc. are discussed in detail and important findings are highlighted. Further, the effect of neglecting the pool swell phenomenon on the containment transients is also clearly brought out by a comparative study. The numerical studies presented in this paper give insight into containment transients that would be useful to both the system designer as well as the regulator. (author)

  11. A simple parameterization for the rising velocity of bubbles in a liquid pool

    International Nuclear Information System (INIS)

    Park, Sung Hoon; Park, Chang Hwan; Lee, Jin Yong; Lee, Byung Chul

    2017-01-01

    The determination of the shape and rising velocity of gas bubbles in a liquid pool is of great importance in analyzing the radioactive aerosol emissions from nuclear power plant accidents in terms of the fission product release rate and the pool scrubbing efficiency of radioactive aerosols. This article suggests a simple parameterization for the gas bubble rising velocity as a function of the volume-equivalent bubble diameter; this parameterization does not require prior knowledge of bubble shape. This is more convenient than previously suggested parameterizations because it is given as a single explicit formula. It is also shown that a bubble shape diagram, which is very similar to the Grace's diagram, can be easily generated using the parameterization suggested in this article. Furthermore, the boundaries among the three bubble shape regimes in the E_o–R_e plane and the condition for the bypass of the spheroidal regime can be delineated directly from the parameterization formula. Therefore, the parameterization suggested in this article appears to be useful not only in easily determining the bubble rising velocity (e.g., in postulated severe accident analysis codes) but also in understanding the trend of bubble shape change due to bubble growth

  12. A simple parameterization for the rising velocity of bubbles in a liquid pool

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sung Hoon [Dept. of Environmental Engineering, Sunchon National University, Suncheon (Korea, Republic of); Park, Chang Hwan; Lee, Jin Yong; Lee, Byung Chul [FNC Technology, Co., Ltd., Yongin (Korea, Republic of)

    2017-06-15

    The determination of the shape and rising velocity of gas bubbles in a liquid pool is of great importance in analyzing the radioactive aerosol emissions from nuclear power plant accidents in terms of the fission product release rate and the pool scrubbing efficiency of radioactive aerosols. This article suggests a simple parameterization for the gas bubble rising velocity as a function of the volume-equivalent bubble diameter; this parameterization does not require prior knowledge of bubble shape. This is more convenient than previously suggested parameterizations because it is given as a single explicit formula. It is also shown that a bubble shape diagram, which is very similar to the Grace's diagram, can be easily generated using the parameterization suggested in this article. Furthermore, the boundaries among the three bubble shape regimes in the E{sub o}–R{sub e} plane and the condition for the bypass of the spheroidal regime can be delineated directly from the parameterization formula. Therefore, the parameterization suggested in this article appears to be useful not only in easily determining the bubble rising velocity (e.g., in postulated severe accident analysis codes) but also in understanding the trend of bubble shape change due to bubble growth.

  13. Velocity Fields Measurement of Natural Circulation Flow inside a Pool Using PIV Technique

    International Nuclear Information System (INIS)

    Kim, Seok; Kim, Dong Eok; Youn, Young Jung; Euh, Dong Jin; Song, Chul Hwa

    2012-01-01

    Thermal stratification is encountered in large pool of water increasingly being used as heat sink in new generation of advanced reactors. These large pools at near atmospheric pressure provide a heat sink for heat removal from the reactor or steam generator, and the containment by natural circulation as well as a source of water for core cooling. For examples, the PAFS (passive auxiliary feedwater system) is one of the advanced safety features adopted in the APR+ (Advanced Power Reactor Plus), which is intended to completely replace the conventional active auxiliary feedwater system. The PAFS cools down the steam generator secondary side and eventually removes the decay heat from the reactor core by adopting a natural convection mechanism. In a pool, the heat transfer from the PCHX (passive condensation heat exchanger) contributed to increase the pool temperature up to the saturation condition and induce the natural circulation flow of the PCCT (passive condensate cooling tank) pool water. When a heat rod is placed horizontally in a pool of water, the fluid adjacent to the heat rod gets heated up. In the process, its density reduces and by virtue of the buoyancy force, the fluid in this region moves up. After reaching the top free surface, the heated water moves towards the other side wall of the pool along the free surface. Since this heated water is cooling, it goes downward along the wall at the other side wall. Above heater rod, a natural circulation flow is formed. However, there is no flow below heater rod until pool water temperature increases to saturation temperature. In this study, velocity measurement was conducted to reveal a natural circulation flow structure in a small pool using PIV (particle image velocimetry) measurement technique

  14. Radiation swelling diagram of chromium-nickel austenitic steels

    Energy Technology Data Exchange (ETDEWEB)

    Gol' tsev, V.P.; Bulyga, V.V.

    1983-01-01

    The diagram of radiation swelling of the gas-cooled reactor core materials is presented. The swelling diagram is built on the basis of the relationships existing between the damaging dose and maximum swelling and takes an account of the temperature corresponding to maximum swelling. The analysis of the estimated data on swelling show that for the same temperatures especially with damaging dose above 30 displ./at., large scattering of swelling absolute values obtained during utilization of different empirical expressions, is observed. The scattering of material swelling values of the fuel elements irradiated under identical conditions results from a variety of gas content in the material of cans in the process of void formation. The displacement of swelling temperature maximum finds explanation in various rates of damaging dose attainment, the temperature swelling maximum being displaced to the side of large values during the increase of the velocity of atomic displacement upon irradiation (displ./atx sec). The suggested characteristic of steel swelling gives the idea about the behaviour of materisls upon neutron irradiation and can be useful for developing of the core elements of the gas-cooled reactors.

  15. The swelling of nucleons in nuclei and the Roper resonance

    International Nuclear Information System (INIS)

    Desplanques, B.

    1988-01-01

    Conditions where some swelling of the nucleon occurs, and, in particular the relation of this effect with the attractive character of the force acting on it, are studied. It is found that short range repulsive correlations can turn the swelling into a shrinking, in spite of a globally attractive interaction, whereas repulsive velocity dependent forces can lead to some swelling. The role of the Roper resonance in this nucleon change of size is considered in some detail

  16. The Reynolds number dependence of the velocity field in the BNL Jet-in-Pool water experiments

    International Nuclear Information System (INIS)

    Szczepura, R.T.

    1981-02-01

    The water Jet-in-Pool experiment at Berkeley Nuclear Laboratories consists of an axisymmetric sudden expansion. A series of measurements was performed in this rig, using a single-channel Laser/Doppler Anemometer system, over a Reynolds number range of 1.4 x 10 4 - 6.1 x 10 4 to determine any dependence in the flow. The mean axial velocity data showed a slight variation, but the root-mean-square fluctuations of the axial velocity had a far more pronounced dependence. This was attributed to upstream conditions in the rig, specifically the nozzle used for injecting the central portion of the flow. The variations in the mean velocity data are sufficiently small for one set of data to act as a basis for calculations at any Reynolds number when a simple closure scheme such as a prescribed effective viscosity is used. However the variation in turbulence parameters will complicate the use of second-order closure schemes and this will be examined further. (author)

  17. Reliability of Arch dams subject to concrete swelling

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, J.M.; Silva, H.S.; Pinho, S. de [Laboratorio Nacional de Engenharia Civil (LNEC), Lisboa (Portugal)] [and others

    1995-12-31

    In this report, results of several studies are presented. The main aim of those studies was to assess the reliability of the three arch dams, in which swelling occurred due to alkali- aggregate reactions in various stages of development and having different effects on their reliability: the Cahora-Bassa dam, in Mozambique, where swelling accumulated up to the moment are very moderate and their development is apparently homogeneous; Santa-Luzia dam, in Portugal, where accumulated swelling have already considerable magnitude, nevertheless, important fissuration has not been observed up to the moment due to the homogeneous development of the swelling process; Alto-Ceira dam, also in Portugal, where accumulated swelling have also considerable magnitude but with a heterogeneous development, causing in conjunction with thermal variations important fissuration. Mention is made of mineralogical, chemical and petrographic analyses carried out for identification of the nature of reactions developed in each case and the back-analysis and other technics used in the assessment of the magnitude and distribution of swelling. Results are presented of measurement tests of the ultrasonic pulse velocity, used both in the assessment of alterations in the physical properties of concretes and in the determination of the depth of fissuration. Results are also presented of tests for characterisation of the rheology of integral concrete. Lastly, considerations are made about the reliability of the works on the basis of studies and the results of analyses of the state of stress, performed by means of the finite element method, by assuming for either visco-elastic or visco-elastic-plastic behaviour.

  18. Transcranial doppler sonography in two patients who underwent decompressive craniectomy for traumatic brain swelling: report of two cases

    Directory of Open Access Journals (Sweden)

    Bor-Seng-Shu Edson

    2004-01-01

    Full Text Available The role of decompressive craniectomy in the treatment of severe posttraumatic cerebral swelling remains quite a controversial issue. To the best of our knowledge, there is no study demonstrating the effect of decompressive craniectomy on cerebral blood flow (CBF velocity by means of transcranial Doppler sonography (TCD. We present two patients who developed traumatic brain swelling and uncontrollable intracranial hypertension with coma and signs of transtentorial herniation. One patient underwent bifrontal, while the second, unilateral, frontotemporoparietal decompressive craniectomy with dural expansion. In both patients, TCD examinations were performed immediately before and after surgery to study the cerebral hemodynamic changes related to the operations. Pre and postoperative TCD examinations demonstrated a significant increase in blood flow velocity in the intracranial arteries in both subjects. In conclusion, our cases suggest that decompressive craniectomy with dural expansion may result in elevation of CBF velocity in patients with massive brain swelling. The increase in CBF velocity appears to occur not only in the decompressed hemisphere, but also on the opposite side.

  19. Shale fabric and velocity anisotropy : a study from Pikes Peak Waseca Oil Pool, Saskatchewan

    Energy Technology Data Exchange (ETDEWEB)

    Newrick, R.T.; Lawton, D.C. [Calgary Univ., AB (Canada). Dept. of Geology and Geophysics

    2004-07-01

    The stratigraphic sequence of the Pikes Peaks region in west-central Saskatchewan consists of a thick sequence of shale overlying interbedded sandstones, shale and coal from the Mannville Group. Hydrocarbons exist in the Waseca, Sparky and General Petroleum Formations in the Pikes Peak region. The primary objective of this study was to examine the layering of clay minerals in the shale and to find similarities or differences between samples that may be associated with velocity anisotropy. Anisotropy is of key concern in areas with thick shale sequences. Several processing algorithms include corrections for velocity anisotropy in order for seismic images to be well focused and laterally positioned. This study also estimated the Thomsen parameters of anisotropy through field studies. The relationship between the shale fabric and anisotropy was determined by photographic core samples from Pike Peak using a scanning electron microscope. Shale from two wells in the Waseca Oil Pool demonstrated highly variable fabric over a limited vertical extent. No layering of clay minerals was noted at the sub-centimetre scale. Transverse isotropy of the stratigraphy was therefore considered to be mainly intrinsic. 7 refs., 3 tabs., 9 figs.

  20. Upper crustal structure of the Hawaiian Swell from seafloor compliance measurements

    Science.gov (United States)

    Doran, A. K.; Laske, G.

    2017-12-01

    We present new constraints on elastic properties of the marine sediments and crust surrounding the Hawaiian Islands derived from seafloor compliance measurements. We analyze long-period seismic and pressure data collected during the Plume-Lithosphere Undersea Mantle Experiment [Laske et al, 2009], a deployment consisting of nearly 70 broadband ocean-bottom seismometers with an array aperture of over 1000 kilometers. Our results are supported by previous reflection & refraction studies and by direct sampling of the crust from regional drilling logs. We demonstrate the importance of simultaneously modeling density, compressional velocity, and shear velocity, the former two of which are often ignored during compliance investigations. We find variable sediment thickness and composition across the Hawaiian Swell, with the thickest sediments located within the Hawaiian Moat. Improved resolution of near-surface structure of the Hawaiian Swell is crucially important to improve tomographic images of the underlying lithosphere and asthenosphere and to address outstanding questions regarding the size, source, and location of the hypothesized mantle plume.

  1. Measurement of void swelling in thick non-uniformly irradiated 304 stainless steel blocks using nondestructive ultrasonic techniques

    International Nuclear Information System (INIS)

    Garner, F.A.; Okita, T.; Isobe, Y.; Etoh, J.; Sagisaka, M.; Matsunaga, T.; Freyer, P.D.; Huang, Y.; Wiezorek, J.M.K.; Porter, D.L.

    2015-01-01

    Void swelling is of potential importance in PWR austenitic internals, especially in components that will see higher doses during plant lives beyond 40 years. Proactive surveillance of void swelling is required to identify its emergence before swelling reaches levels that cause high levels of embrittlement and distortion. Non-destructive measurements of ultrasonic velocity can measure swelling at fractions of a percent. To demonstrate the feasibility of this technique for PWR application we have investigated five blocks of 304 stainless steel that were irradiated in the EBR-II fast reactor. These blocks were of hexagonal cross-section, with thickness of about 50 mm and lengths of about 218-245 mm. They were subjected to significant axial and radial gradients in gamma heating, temperature and dpa rate, producing complex internal distributions of swelling, reaching about 3.5% maximum at an off-center mid-core position. Swelling decreases both the density and the elastic moduli, thereby impacting the ultrasonic velocity. Concurrently, carbide precipitates form, producing increases in density and decreases in elastic moduli. Using blocks from both low and high dpa levels it was possible to separate the ultrasonic contributions of voids and carbides. Time-of-flight ultrasonic measurements were used to non-destructively measure the internal distribution of void swelling. These distributions were confirmed using non-destructive profilometry followed by destructive cutting to provide density change and electron microscopy data. It was demonstrated that the four measurement types produce remarkably consistent results. Therefore ultrasonic measurements offer great promise for in-situ surveillance of voids in PWR core internals. (authors)

  2. Large-scale solvent-swelling-based amplification of microstructured sharkskin

    International Nuclear Information System (INIS)

    Pan, Junfeng; Chen, Huawei; Zhang, Deyuan; Zhang, Xin; Yuan, Liming; Aobo, Li

    2013-01-01

    Sophisticated biomimetic microstructures/nanostructures have attracted attention worldwide, but their fabrication technique significantly restricts their application. This study uses natural sharkskin to investigate amplification (i.e., the bioscaling forming process) and thus acquire a complex microstructure that cannot be fabricated by traditional micromachining techniques. The bioscaling forming process adjusts the optimal function region of natural surfaces by utilizing the solvent-swelling effect of polydimethylsiloxane. To accurately replicate amplified sharkskin, the swelling ratio and rate in gaseous and liquid n-hexane were investigated. Epoxy resin was used to produce a positive sharkskin mold. A comparison between the microstructure of the original and amplified sharkskin shows that the swelling ratio can reach a maximum of 34% with gaseous n-hexane and 39% with liquid n-hexane. The accuracy of bioscaling forming was higher than 95%. The drag-reducing effect was also tested. When the sharkskin was amplified 1.34 times, the optimal velocity range of the drag reduction moved from 5.0 to 3.5 m s −1 . (paper)

  3. Experimental characterization of the weld pool flow in a TIG configuration

    Science.gov (United States)

    Stadler, M.; Masquère, M.; Freton, P.; Franceries, X.; Gonzalez, J. J.

    2014-11-01

    Tungsten Inert Gas (TIG) welding process relies on heat transfer between plasma and work piece leading to a metallic weld pool. Combination of different forces produces movements on the molten pool surface. One of our aims is to determine the velocity on the weld pool surface. This provides a set of data that leads to a deeper comprehension of the flow behavior and allows us to validate numerical models used to study TIG parameters. In this paper, two diagnostic methods developed with high speed imaging for the determination of velocity of an AISI 304L stainless steel molten pool are presented. Application of the two methods to a metallic weld pool under helium with a current intensity of 100 A provides velocity values around 0.70 m/s which are in good agreement with literature works.

  4. Foot, leg, and ankle swelling

    Science.gov (United States)

    Swelling of the ankles - feet - legs; Ankle swelling; Foot swelling; Leg swelling; Edema - peripheral; Peripheral edema ... Foot, leg, and ankle swelling is common when the person also: Is overweight Has a blood clot in the leg Is older Has ...

  5. Osmotic de-swelling and swelling of latex dispersions

    International Nuclear Information System (INIS)

    Bonnet-Gonnet, Cecile

    1993-01-01

    This research thesis reports the comparison of, on the one hand, direct measurements of de-swelling resistance of latex dispersions obtained by osmotic pressure with, on the other hand, predictions made by models of electrostatic interactions. This resistance is explained in the case of sulphate-stabilised polystyrene particles (direct repulsion between charged particles), and in the case of copolymer (ps-pba) particles covered by an amphiphilic polymer (interactions between surface macromolecules and polymers). The study of de-swelling and swelling cycles highlights the existence of thresholds beyond which the concentrated dispersion has some cohesion. This irreversibility can be modelled by a Van der Waals attraction. The role of hydrophobic forces in latex destabilisation is studied [fr

  6. Mark I BWR pool dynamics: a preliminary investigation into effects of downcomer spacing

    International Nuclear Information System (INIS)

    McCauley, E.W.; Meier, J.K.

    1977-02-01

    A series of experiments were performed to study the effects of downcomer spacing on the growth characteristics of air bubbles. It was found that the momentum of the water thrown up by an air bubble increased with air supply pressure and decreased downcomer spacing. A jet of water formed below the bubble could lead to greater localized loadings on above-pool structures than by the pool swell above the top of the bubble

  7. Suppression pool dynamics. Annual report, 1 July 1976--30 June 1977

    International Nuclear Information System (INIS)

    Chan, C.K.; Chiou, H.H.; Lee, B.K.C.; Dhir, V.K.; Liu, C.Y.; Catton, I.

    1978-02-01

    The work performed at UCLA to study the transient thermal-hydraulic phenomena induced by the motion of submerged air and steam bubbles in a boiling water reactor (BWR) pressure suppression pool, following a loss-of-coolant accident is described. The air transients, which include vent clearing, bubble growth, and pool swelling, were investigated by a series of air-water tests. These tests were performed in a cylindrical plexiglas test chamber. Gas was injected downward through different-diameter pipes, placed in the middle of the test chamber, which was filled with water at room temperature

  8. Mitochondrial Swelling Induced by Glutathione

    Science.gov (United States)

    Lehninger, Albert L.; Schneider, Marion

    1959-01-01

    Reduced glutathione, in concentrations approximating those occurring in intact rat liver, causes swelling of rat liver mitochondria in vitro which is different in kinetics and extent from that yielded by L-thyroxine. The effect is also given by cysteine, which is more active, and reduced coenzyme A, but not by L-ascorbate, cystine, or oxidized glutathione. The optimum pH is 6.5, whereas thyroxine-induced swelling is optimal at pH 7.5. The GSH-induced swelling is not inhibited by DNP or dicumarol, nor by high concentrations of sucrose, serum albumin, or polyvinylpyrrolidone, in contrast to thyroxine-induced swelling. ATP inhibits the GSH swelling, but ADP and AMP are ineffective. Mn-+ is a very potent inhibitor, but Mg++ is ineffective. Ethylenediaminetetraacetate is also an effective inhibitor of GSH-induced swelling. The respiratory inhibitors amytal and antimycin A do not inhibit the swelling action of GSH, but cyanide does; these findings are consistent with the view that the oxidation-reduction state of the respiratory chain between cytochrome c and oxygen is a determinant of GSH-induced swelling. Reversal of GSH-induced swelling by osmotic means or by ATP in KCl media could not be observed. Large losses of nucleotides and protein occur during the swelling by GSH, suggesting that the action is irreversible. The characteristically drastic swelling action of GSH could be prevented if L-thyroxine was also present in the medium. PMID:13630941

  9. Swelling and swelling resistance possibilities of austenitic stainless steels in fusion reactors

    International Nuclear Information System (INIS)

    Maziasz, P.J.

    1983-01-01

    Fusion reactor helium generation rates in stainless steels are intermediate to those found in EBR-II and HFIR, and swelling in fusion reactors may differ from the fission swelling behavior. Advanced titanium-modified austenitic stainless steels exhibit much better void swelling resistance than AISI 316 under EBR-II (up to approx. 120 dpa) and HFIR (up to approx. 44 dpa) irradiations. The stability of fine titanium carbide (MC) precipitates plays an important role in void swelling resistance for the cold-worked titanium-modified steels irradiated in EBR-II. Futhermore, increased helium generation in these steels can (a) suppress void conversion, (b) suppress radiation-induced solute segregation (RIS), and (c) stabilize fine MC particles, if sufficient bubble nucleation occurs early in the irradation. The combined effects of helium-enhanced MC stability and helium-suppressed RIS suggest better void swelling resistance in these steels for fusion service than under EBR-II irradiation

  10. Numerical investigation of nucleate pool boiling heat transfer

    Directory of Open Access Journals (Sweden)

    Stojanović Andrijana D.

    2016-01-01

    Full Text Available Multidimensional numerical simulation of the atmospheric saturated pool boiling is performed. The applied modelling and numerical methods enable a full representation of the liquid and vapour two-phase mixture behaviour on the heated surface, with included prediction of the swell level and heated wall temperature field. In this way the integral behaviour of nucleate pool boiling is simulated. The micro conditions of bubble generation at the heated wall surface are modelled by the bubble nucleation site density, the liquid wetting contact angle and the bubble grow time. The bubble nucleation sites are randomly located within zones of equal size, where the number of zones equals the nucleation site density. The conjugate heat transfer from the heated wall to the liquid is taken into account in wetted heated wall areas around bubble nucleation sites. The boiling curve relation between the heat flux and the heated wall surface temperature in excess of the saturation temperature is predicted for the pool boiling conditions reported in the literature and a good agreement is achieved with experimentally measured data. The influence of the nucleation site density on the boiling curve characteristic is confirmed. In addition, the influence of the heat flux intensity on the spatial effects of vapour generation and two-phase flow are shown, such as the increase of the swell level position and the reduced wetting of the heated wall surface by the heat flux increase. [Projekat Ministarstva nauke Republike Srbije, br. TR-33018 i br. OI-174014

  11. PIV measurements of turbulent jet and pool mixing produced by a steam jet discharge in a subcooled water pool

    International Nuclear Information System (INIS)

    Choo, Yeon Jun; Song, Chul-Hwa

    2010-01-01

    This experimental research is on the fluid-dynamic features produced by a steam injection into a subcooled water pool. The relevant phenomena could often be encountered in water cooled nuclear power plants. Two major topics, a turbulent jet and the internal circulation produced by a steam injection, were investigated separately using a particle image velocimetry (PIV) as a non-intrusive optical measurement technique. Physical domains of both experiments have a two-dimensional axi-symmetric geometry of which the boundary and initial conditions can be readily and well defined. The turbulent jet experiments with the upward discharging configuration provide the parametric values for quantitatively describing a turbulent jet such as the self-similar velocity profile, central velocity decay, spreading rate, etc. And in the internal circulation experiments with the downward discharging configuration, typical flow patterns in a whole pool region are measured in detail, which reveals both the local and macroscopic characteristics of the mixing behavior in a pool. This quantitative data on the condensing jet-induced mixing behavior in a pool could be utilized as benchmarking for a CFD simulation of relevant phenomena.

  12. Prediction of pool void fraction by new drift flux correlation

    International Nuclear Information System (INIS)

    Kataoka, I.; Ishii, M.

    1986-06-01

    A void fraction for a bubbling or boiling pool system is one of the important parameters in analyzing heat and mass transfer processes. Using the drift flux formulation, correlations for the pool void fraction have been developed in collaboration with a large number of experimental data. It has been found that the drift velocity in a pool system depends upon vessel diameter, system pressure, gas flux and fluid physical properties. The results show that the relative velocity and void fraction can be quite different from those predicted by conventional correlations. In terms of the rise velocity, four different regimes are identified. These are bubbly, churn-turbulent, slug and cap bubble regimes. The present correlations are shown to agree with the experimental data over wide ranges of parameters such as vessel diameter, system pressure, gas flux and physical properties. 39 refs., 41 figs

  13. Swelling, mechanical and friction properties of PVA/PVP hydrogels after swelling in osmotic pressure solution.

    Science.gov (United States)

    Shi, Yan; Xiong, Dangsheng; Liu, Yuntong; Wang, Nan; Zhao, Xiaoduo

    2016-08-01

    The potential of polyvinyl alcohol/polyvinylpyrrolidone (PVA/PVP) hydrogels as articular cartilage replacements was in vitro evaluated by using a macromolecule-based solution to mimic the osmotic environment of cartilage tissue. The effects of osmotic pressure solution on the morphology, crystallinity, swelling, mechanical and friction properties of PVA/PVP hydrogels were investigated by swelling them in non-osmotic and osmotic pressure solutions. The results demonstrated that swelling ratio and equilibrium water content were greatly reduced by swelling in osmotic solution, and the swelling process was found to present pseudo-Fickian diffusion character. The crystallization degree of hydrogels after swelling in osmotic solution increased more significantly when it compared with that in non-osmotic solution. After swelling in osmotic solution for 28days, the compressive tangent modulus and storage modulus of hydrogels were significantly increased, and the low friction coefficient was reduced. However, after swelling in the non-osmotic solution, the compressive tangent modulus and friction coefficient of hydrogels were comparable with those of as-prepared hydrogels. The better material properties of hydrogels in vivo than in vitro evaluation demonstrated their potential application in cartilage replacement. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Microscopic bubble behaviour in suppression pool during wetwell venting

    Science.gov (United States)

    Zablackaite, G.; Nagasaka, H.; Kikura, H.

    2017-10-01

    During a severe accident PCV failure should be avoided and fission products inside PCV should be confined as much as possible. In order to minimize FPs release, Wetwell venting is conducted by releasing steam-non-condensable gas mixture carrying FPs from the Drywell to Suppression Pool. Steam is condensed by subcooled water in the pool, and most of FPs are retained into water. The removal of FP in the water pool is referred to as “Pool Scrubbing effect”. Hydrodynamic parameters of bubbles have impact on pool scrubbing effect. However, there is only few data available to evaluate quantitatively the bubble behaviour under depressurization and/or thermal stratification conditions. Series of experiments were conducted to evaluate the influence of temperature distribution, non-condensable gas content and pressure in the Wetwell on bubble behaviour. Bubbles were visualized using High Speed Camera and adopting shadowgraphy technique. Applying Particle Tracking Velocimetry, bubble velocity and size distribution were obtained from recorded images. Experimental results show that with increasing suppression pool temperature, bubbles reaching the pool surface decreased in size and traveling velocity became slower. In pressurized wetwell, bubble behaviour was similar to that in the heated up suppression pool case, although bubble parameters were similar to the low temperature case. Higher air content induced water surface movement and bubbles were smaller due to break up.

  15. Swelling characteristics of buffer material

    International Nuclear Information System (INIS)

    Suzuki, Hideaki; Fujita, Tomoo

    1999-12-01

    After emplacement of the engineered barrier system (EBS), it is expected that the near-field environment will be impacted by phenomena such as heat dissipation by conduction and other heat transfer mechanism, infiltration of groundwater from the surrounding rock into the EBS, generation of swelling pressure in the buffer due to water infiltration and the stress imposed by the overburden pressure. These phenomena are not all independent, but can be strongly influenced by, and coupled with, each other. Evaluating these coupled thermo-hydro-mechanical phenomena is important in order to clarify the initial transient behavior of the engineered barrier system within the near-field. This report describes the results on measurement of swelling amount and stress at boundary built up under restraint condition with water uptake. The following results are identified. (1) The swelling stress of buffer material at saturated condition tends to be independent of effects of pore water pressure and synthetic sea water, and to decrease with increasing temperature. The swelling stress can be explained by the effective dry density. (2) The strain due to swelling estimated from the results of the swelling amount of buffer material is proportional to swelling stress. (3) The swelling stress and strain under unsaturated condition increase with water uptake. (author)

  16. Laboratory study of the Flandres clay swelling

    International Nuclear Information System (INIS)

    Khaddaj, Said

    1992-01-01

    The first chapter contains a survey about the swelling of soils, and about the experimental methods used to characterize this phenomenon. A classification of soils in function of their swelling potential is proposed. The second chapter deals with the properties of Flandres clay. Chemical and mineralogical compositions, mechanical properties and free swell index are given. The third chapter contains a presentation of the study of the swelling potential of Flandres clay using the oedometer. Four methods are described and used (free-swell, different pressures, pre-swell and direct-swell). A numerical simulation of free-swell tests is also given. The fourth chapter includes a presentation of the study of the swelling behaviour of Flandres clay using a triaxial cell. Three methods are used: free-swell, pre-swell and different-pressures. The last chapter contains a parametric study of the swelling behaviour of Flandres clay. The influence of some parameters such as sample thickness, initial water content, vertical load and load history is presented. (author) [fr

  17. Experimental investigation on the weld pool formation process in plasma keyhole arc welding

    Science.gov (United States)

    Van Anh, Nguyen; Tashiro, Shinichi; Van Hanh, Bui; Tanaka, Manabu

    2018-01-01

    This paper seeks to clarify the weld pool formation process in plasma keyhole arc welding (PKAW). We adopted, for the first time, the measurement of the 3D convection inside the weld pool in PKAW by stereo synchronous imaging of tungsten tracer particles using two sets of x-ray transmission systems. The 2D convection on the weld pool surface was also measured using zirconia tracer particles. Through these measurements, the convection in a wide range of weld pools from the vicinity of the keyhole to the rear region was successfully visualized. In order to discuss the heat transport process in a weld pool, the 2D temperature distribution on the weld pool surface was also measured by two-color pyrometry. The results of the comprehensive experimental measurement indicate that the shear force due to plasma flow is found to be the dominant driving force in the weld pool formation process in PKAW. Thus, heat transport in a weld pool is considered to be governed by two large convective patterns near the keyhole: (1) eddy pairs on the surface (perpendicular to the torch axis), and (2) eddy pairs on the bulk of the weld pool (on the plane of the torch). They are formed with an equal velocity of approximately 0.35 m s-1 and are mainly driven by shear force. Furthermore, the flow velocity of the weld pool convection becomes considerably higher than that of other welding processes, such as TIG welding and GMA welding, due to larger plasma flow velocity.

  18. Spinal cord swelling and candidiasis

    International Nuclear Information System (INIS)

    Ho, K.; Gronseth, G.; Aldrich, M.; Williams, A.

    1982-01-01

    Fusiform swelling of the spinal cord was noted myelographically in a patient with Hodgkin's disease. Autopsy revealed that the swelling was cauused by Candida infection of the spinal cord. It is suggested that fungal infection be included in the differential diagnosis of spinal cord swelling in the immunsupporessed cancer patient. (orig.)

  19. Spinal cord swelling and candidiasis

    Energy Technology Data Exchange (ETDEWEB)

    Ho, K.; Gronseth, G.; Aldrich, M.; Williams, A.

    1982-11-01

    Fusiform swelling of the spinal cord was noted myelographically in a patient with Hodgkin's disease. Autopsy revealed that the swelling was caused by Candida infection of the spinal cord. It is suggested that fungal infection be included in the differential diagnosis of spinal cord swelling in the immunosuppressed cancer patient.

  20. Volume-heated boiling pool flow behavior and application to transition phase accident conditions

    International Nuclear Information System (INIS)

    Ginsberg, T.; Jones, O.C. Jr.; Chen, J.C.

    1978-01-01

    Observations of two-phase flow fields in volume-heated boiling pools are reported. Photographic observations, together with pool-average void fraction measurements are presented. Flow regime transition criteria derived from the measurements are discussed. The churn-turbulent flow regime was the dominant regime for superficial vapor velocities up to nearly five times the Kutateladze dispersal velocity. Within this range of conditions, a churn-turbulent drift flux model provides a reasonable prediction of the pool-average void fraction data. The results of the experiment and analyses are extrapolated to transition phase conditions. It is shown that intense pool boil-up could occur where the pool-average void fraction would be greater than 0.6 for steel vaporization rates equivalent to power levels greater than one percent of nominal LMFBR power density

  1. New set of convective heat transfer coefficients established for pools and validated against CLARA experiments for application to corium pools

    Energy Technology Data Exchange (ETDEWEB)

    Michel, B., E-mail: benedicte.michel@irsn.fr

    2015-05-15

    Highlights: • A new set of 2D convective heat transfer correlations is proposed. • It takes into account different horizontal and lateral superficial velocities. • It is based on previously established correlations. • It is validated against recent CLARA experiments. • It has to be implemented in a 0D MCCI (molten core concrete interaction) code. - Abstract: During an hypothetical Pressurized Water Reactor (PWR) or Boiling Water Reactor (BWR) severe accident with core meltdown and vessel failure, corium would fall directly on the concrete reactor pit basemat if no water is present. The high temperature of the corium pool maintained by the residual power would lead to the erosion of the concrete walls and basemat of this reactor pit. The thermal decomposition of concrete will lead to the release of a significant amount of gases that will modify the corium pool thermal hydraulics. In particular, it will affect heat transfers between the corium pool and the concrete which determine the reactor pit ablation kinetics. A new set of convective heat transfer coefficients in a pool with different lateral and horizontal superficial gas velocities is modeled and validated against the recent CLARA experimental program. 155 tests of this program, in two size configurations and a high range of investigated viscosity, have been used to validate the model. Then, a method to define different lateral and horizontal superficial gas velocities in a 0D code is proposed together with a discussion about the possible viscosity in the reactor case when the pool is semi-solid. This model is going to be implemented in the 0D ASTEC/MEDICIS code in order to determine the impact of the convective heat transfer in the concrete ablation by corium.

  2. Analysis of key hardware factors and countermeasure for restricting 49-2 swimming pool reactor lifetime

    International Nuclear Information System (INIS)

    Zhang Yadong; Guo Yue; Yang Xiao; Wang Yiwei; Wang Zhanwen

    2013-01-01

    Safe operation is the most important factor to determine the lifetime of aged 49-2 swimming pool reactor. In this paper, the hardware factors of lifetime were analyzed, such as the pool concrete aging, corrosion of aluminum container and primary coolant system, and graphite swelling etc., and then the corresponding measures such as surveillance, prevention and maintenance were purposed. The results show that 49-2 swimming pool reactor can continue to operate safely due to that container is safe under 8 degree earthquake, the reactor is safe on flood level of once per millennium, adding dam break, and the ageing condition of primary coolant system and container is acceptable. (authors)

  3. Side Effects: Edema (Swelling)

    Science.gov (United States)

    Edema is a condition in which fluid builds up in your body’s tissues. The swelling may be caused by chemotherapy, cancer, and conditions not related to cancer. Learn about signs of edema, including swelling in your feet, ankles, and legs.

  4. Experimental evidence for stress enhanced swelling

    International Nuclear Information System (INIS)

    Bates, J.F.; Gilbert, E.R.

    1976-01-01

    Experimental evidence is presented which shows that the application of a biaxial stress during irradiation can increase the magnitude of irradiation-induced swelling observed in tubular specimens. It is shown that this increase in swelling is linear below the proportional elastic limit of the material and decreases above this value of stress. In the linear region a relationship is found between total swelling and stress free swelling. The phenomenon of reduced swelling is evaluated on the basis of increased cold work due to pre-irradiation straining. This analysis yields a relationship of dislocation density proportional to stress to the 3.82 power. Additional analyses using dislocation density proportional to sigma 2 (sigma = hoop stress) yield a similar but sharper decrease in swelling after the proportional elastic limit is reached. (Auth.)

  5. Effect of metallurgical variables on void swelling

    International Nuclear Information System (INIS)

    Johnston, W.G.; Lauritzen, T.; Rosolowski, J.H.; Turkalo, A.M.

    1976-01-01

    The mechanism of void swelling is reviewed briefly and the anticipated effects of metallurgical variables are described. Experimental results showing the effects of metallurgical variables are reviewed, most of the work being done by simulation methods employing charged particle bombardments to simulate reactor damage. Although the early emphasis was on structural variables such as grain size, cold work and precipitates to control swelling, it now seems that the practical reduction of swelling will be achieved by modifying alloy composition. Void swelling is strongly influenced by the relative amounts of Fe, Cr, and Ni in an alloy; the amount of swelling can be varied by three orders of magnitude by changing the relative amounts of the three elements in an austenitic ternary alloy. The effect of composition on swelling of a simple ferritic alloy will also be described. The swelling of a simple austenitic alloy of Fe, Cr, and Ni can be reduced by certain minor element additions. The most effective swelling inhibitors are Si, Ti, Zr, and Nb, and combinations of Si and Ti are synergetic. Swelling reductions of two orders of magnitude have been achieved with combined additions. Predictions of swelling in commercial solid solution alloys are made on the basis of the present knowledge of the effects of major composition and minor element additions. The predictions agree with experimental results. For more complex commercial alloys, predictions are made for the effects on swelling of heat treatments that cause changes in matrix composition. In some cases, heat treatment is expected to change the peak swelling by more than a factor of ten, and to shift the peak swelling temperature by almost 100 0 C. Sensitivity of swelling to detailed matrix composition places emphasis on the need for developing understanding of the stability of structure and local composition in an irradiation environment

  6. An inexpensive instrument for measuring wave exposure and water velocity

    Science.gov (United States)

    Figurski, J.D.; Malone, D.; Lacy, J.R.; Denny, M.

    2011-01-01

    Ocean waves drive a wide variety of nearshore physical processes, structuring entire ecosystems through their direct and indirect effects on the settlement, behavior, and survivorship of marine organisms. However, wave exposure remains difficult and expensive to measure. Here, we report on an inexpensive and easily constructed instrument for measuring wave-induced water velocities. The underwater relative swell kinetics instrument (URSKI) is a subsurface float tethered by a short (<1 m) line to the seafloor. Contained within the float is an accelerometer that records the tilt of the float in response to passing waves. During two field trials totaling 358 h, we confirmed the accuracy and precision of URSKI measurements through comparison to velocities measured by an in situ acoustic Doppler velocimeter and those predicted by a standard swell model, and we evaluated how the dimensions of the devices, its buoyancy, and sampling frequency can be modified for use in a variety of environments.

  7. Swelling kinetics of several residues from Shenhua coal extraction

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Mei-xia; Shui, Heng-fu; Wang, Zhi-cai [Anhui University of Technology, Maanshan (China). School of Chemistry and Chemical Engineering

    2008-08-15

    In order to understand the mechanism of swelling and the relation between swelling behavior and solvent extraction, the swelling kinetics of residues from Shenhua coal extracted by CS{sub 2}/NMP with different mixing ratios were studied in different solvents. The result shows that the swelling rates of extraction residues increase along with swelling temperature. The swelling rate in polar solvent NMP is much higher than that in non-polar solvent THN. Solvent extraction has a great effect on the swelling of extraction residues. The swelling activation energy of extraction residues increases and the swelling rate decreases with the increase of extraction yield. The swelling activation energies of extraction residues in NMP and THN are less than 10 kJ/mol, suggesting that the swelling process is controlled by solvent molecular diffusion in coal structure. 22 refs., 2 figs., 7 tabs.

  8. Soil shrinkage characteristics in swelling soils

    International Nuclear Information System (INIS)

    Taboada, M.A.

    2004-01-01

    The objectives of this presentation are to understand soil swelling and shrinkage mechanisms, and the development of desiccation cracks, to distinguish between soils having different magnitude of swelling, as well as the consequences on soil structural behaviour, to know methods to characterize soil swell/shrink potential and to construct soil shrinkage curves, and derive shrinkage indices, as well to apply them to assess soil management effects

  9. The Future of Swelling Elastomers: An Elastomer Manufacturer's View of Swelling Elastomer Developments and Market Trends

    Directory of Open Access Journals (Sweden)

    R Seyger

    2013-06-01

    Full Text Available Swelling elastomers have gained acceptance as very effective products for creating sealing in various industries, including those creating energy from fossil fuels and geothermal resources. This paper outlines the research and development work being conducted not only in the application of these elastomers but also in the development work required to create new generations of elastomers. It touches on fundamental research into the mechanics of swelling with the intent to create a better and more predictable sealing as well as more advanced elastomers. It lifts the veil on the direction of work being done on new elastomers being developed in order to enable a better control of swelling. By doing so, the research is opening up field of applications for new equipment designs and mechanical possibilities in the future. Additionally, it addresses the need for a better and more in-depth dialogue between both chemical and mechanical engineers, and the elastomer companies and their customers on the potential that both swelling and non-swelling elastomers can offer to the industry as a whole.

  10. Prediction for swelling characteristics of compacted bentonite

    International Nuclear Information System (INIS)

    Komine, H.; Ogata, N.

    1996-01-01

    Compacted bentonites are attracting greater attention as back-filling (buffer) materials for high-level nuclear waste repositories. For this purpose, it is very important to quantitatively evaluate the swelling characteristics of compacted bentonite. New equations for evaluating the relationship between the swelling deformation of compacted bentonite and the distance between two montmorillonite layers are derived. New equations for evaluating the ion concentration of pore water and the specific surface of bentonite, which significantly influence the swelling characteristics of compacted bentonite, are proposed. Furthermore, a prediction method for the swelling characteristics of compacted bentonite is presented by combining the new equations with the well-known theoretical equations of repulsive and attractive forces between two montmorillonite layers. The applicability of this method was investigated by comparing the predicted results with laboratory test results on the swelling deformation and swelling pressure of compacted bentonites. (author) 31 refs., 8 tabs., 12 figs

  11. Fission product induced swelling of U–Mo alloy fuel

    International Nuclear Information System (INIS)

    Kim, Yeon Soo; Hofman, G.L.

    2011-01-01

    Highlights: ► We measured fuel swelling of U–Mo alloy by fission products at temperatures below 250 °C. ► We quantified the swelling portion of U–Mo by fission gas bubbles. ► We developed an empirical model as a function of fission density. - Abstract: Fuel swelling of U–Mo alloy was modeled using the measured data from samples irradiated up to a fission density of ∼7 × 10 27 fissions/m 3 at temperatures below ∼250 °C. The overall fuel swelling was measured from U–Mo foils with as-fabricated thickness of 250 μm. Volume fractions occupied by fission gas bubbles were measured and fuel swelling caused by the fission gas bubbles was quantified. The portion of fuel swelling by solid fission products including solid and liquid fission products as well as fission gas atoms not enclosed in the fission gas bubbles is estimated by subtracting the portion of fuel swelling by gas bubbles from the overall fuel swelling. Empirical correlations for overall fuel swelling, swelling by gas bubbles, and swelling by solid fission products were obtained in terms of fission density.

  12. Ultrasound-assisted swelling of bacterial cellulose

    OpenAIRE

    Song, J.; Su, Jing; Loureiro, Ana; Sá, M.; Cavaco-Paulo, Artur; Kim, Hye Rim; Silva, Carla

    2017-01-01

    Bacterial cellulose (BC) was obtained by static cultivation using commercial BC gel from scoby. BC membranes (oven dried and freeze-dried) were swelled with 8% NaOH, in absence and in presence of ultrasound (US), for 30, 60 and 90 min. The influence of swelling conditions on both physico-chemical properties and molecules entrapment was evaluated. Considering the highest levels of entrapment, an optimum swelling procedure was established: 8% NaOH for 30 min. at room temperature in the presence...

  13. Experiments on Pool-riffle Sequences with Multi-fractional Sediment Bed During Floods

    Science.gov (United States)

    Rodriguez, J. F.; Vahidi, E.; Bayat, E.; de Almeida, G. A. M.; Saco, P. M.

    2017-12-01

    The morphodynamics of pools and riffles has been the subject of research for over a century and has more recently attracted intense attention for their central role in providing habitat diversity conditions, both in terms of flow and substrate. Initial efforts to explain the long-term stability of the pool-riffle (PR) sequences (often referred to as self-maintenance) focused almost exclusively on cross sectional flow characteristics (either average or near bed velocity or shear stress), using episodic shifts in higher shear stress or velocities from riffles to pools during floods (i.e. reversal conditions) as an indication of the long-term self-maintenance of the structures.. However, less attention has been paid to the interactions of flow unsteadiness, sediment supply and sedimentological contrasts as the drivers for maintaining PR sequences. Here we investigate these effects through laboratory experiments on a scaled-down PR sequence of an existing gravel bed river. Froude similitude and equality of Shields' number were applied to scale one- to four-year recurrence flood events and sediment size distributions, respectively. We conducted experiments with different hydrographs and different sedimentological conditions. In each experiment we continuously measured velocities and shear stresses (using acoustic velocity profilers) bed levels (using a bed profiler) and bed grain size distribution (using an automatic digital technique on the painted bed sediments) during the hydrographs. Our results show that the most important factors for self-maintenance were the sediment bed composition, the level of infilling of the pool and the sediment supply grainsize distribution. These results highlight the need to consider the time varying sedimentological characteristics of a PR sequence to assess its capacity for self-maintenance.

  14. Fuel swelling importance in PCI mechanistic modelling

    International Nuclear Information System (INIS)

    Arimescu, V.I.

    2005-01-01

    Under certain conditions, fuel pellet swelling is the most important factor in determining the intensity of the pellet-to-cladding mechanical interaction (PCMI). This is especially true during power ramps, which lead to a temperature increase to a higher terminal plateau that is maintained for hours. The time-dependent gaseous swelling is proportional to temperature and is also enhanced by the increased gas atom migration to the grain boundary during the power ramp. On the other hand, gaseous swelling is inhibited by a compressive hydrostatic stress in the pellet. Therefore, PCMI is the net result of combining gaseous swelling and pellet thermal expansion with the opposing feedback from the cladding mechanical reaction. The coupling of the thermal and mechanical processes, mentioned above, with various feedback loops is best simulated by a mechanistic fuel code. This paper discusses a mechanistic swelling model that is coupled with a fission gas release model as well as a mechanical model of the fuel pellet. The role of fuel swelling is demonstrated for typical power ramps at different burn-ups. Also, fuel swelling plays a significant role in avoiding the thermal instability for larger gap fuel rods, by limiting the potentially exponentially increasing gap due to the positive feedback loop effect of increasing fission gas release and the associated over-pressure inside the cladding. (author)

  15. Effects of stress on swelling in reactor fuel cladding

    International Nuclear Information System (INIS)

    Bates, J.F.; Gilbert, E.R.

    1977-01-01

    The purpose of this report is to describe the effect of stress on swelling in both annealed and 20% cold worked 316 stainless steel. An effect of stress on swelling in irradiated metals has been postulated for some time. Low fluence data confirmed that indeed a tensile stress can increase swelling in irradiated annealed 316 stainless steel and that the maximum swelling occurs at an intermediate stress level which is approximately equal to the proportional elastic limit of the material. The specimens discussed above were examined by transmission electron microscopy and an effect of stress on the microstructure of the annealed and 20% cold worked 316 specimens has been observed. Howver, as yet, copious swelling had not occurred in the 20% cold worked material. Specimens of 20% cold worked 316 fabricated from the same heat of material as those described above have now been irradiated to sufficiently high neutron fluences that swelling has occurred in both the annealed and cold worked conditions. Swelling increases linearly with stress for both materials. However, for solution annealed 316, swelling reaches a maximum at approximately 136 MPa, whereupon further increases in stress result in reduced swelling. It is felt that this reduction in swelling is related to the onset of plastic yielding in the material. The swelling observed in the 20% CW 316 and the solution annealed 316 below the maximum swelling stress can be adequately described by an equation of the form: S = S 0 (1 + Psigma). No strong effect of stress on changing the incubation period associated with void nucleation was found. (Auth.)

  16. Irradiation swelling in self-ion irradiated niobium

    International Nuclear Information System (INIS)

    Bajaj, R.; Shiels, S.A.; Hall, B.O.; Fenske, G.R.

    1987-01-01

    This paper presents initial results of an investigation of swelling mechanisms in a model body centered cubic (bcc) metal, niobium, irradiated at elevated temperatures (0.3 T/sub m/ to 0.6 T/sub m/) where T/sub m/ = melting point in K. The objective of this work is to achieve an understanding of the elevated temperature swelling in bcc metals, which are the prime candidate alloys and composite matrix materials for space reactor applications. Niobium was irradiated with 5.3 MeV Nb ++ ions, at temperatures ranging from 700 0 C to 1300 0 C, to a nominal dose of 50 dpa at a dose rate of 6 x 10 -3 dpas. Swelling was observed over a temperature range of 700 0 C to 1200 0 C, with a peak swelling of 7% at 900 0 C. The microstructural data, obtained from transmission electron microscopy, were compared to the predictions of the theoretical model developed during this program. A reasonable agreement was obtained between the experimental measurements of swelling and theoretical predictions by adjusting both the niobium-oxygen binding energy and the incubation dose for swelling to realistic values

  17. Measurements in large JP-4 pool fires

    International Nuclear Information System (INIS)

    Keltner, N.R.; Kent, L.A.; Schneider, M.E.

    1987-01-01

    Over the past four years, Sandia National Laboratories has conducted a number of large pool fire tests to evaluate the design of radioactive material (RAM) shipping containers. Some of these tests have been designed to define the thermal environment and some have been used for certification testing. In each test there have been a number of fire diagnostic measurements. The simplest sets of diagnostics have involved measurements of temperature at several elevations on arrays of towers, measurements of hot wall heat flux with small calorimeters suspended from the towers, the average fuel recession rate, and the wind speed and direction. The most complex sets of diagnostics have included the above and in various tests added radiometers in the lower flame zone, centerline velocity measurements at a number of elevations, radiometers and calorimeters at the fuel surface, large cylindrical and flat plate calorimeters, infrared imaging, time resolved fuel recession rates, and a variety of soot particle concentration and size measurements made in the plume with a tethered balloon and an instrumented airplane. All of the large fires have been conducted in a 9.1 m by 18.3 m pool using JP-4 as the fuel. Typical duration is one-half hour. Covering all of the results is beyond the scope of a single paper. Conditionally sampled temperature and velocity measurements from one fire will be presented; for this fire, a 20 cm layer of fuel was floated on 61 cm of water. Pool surface heat flux, fuel recession rate data, and smoke emission data from a second fire are given. Because the wind has a strong effect on the temperature and velocity measurements, conditional sampling has been used to try to obtain data during periods of low winds. 10 refs., 3 figs

  18. Imaging chemical reactions - 3D velocity mapping

    Science.gov (United States)

    Chichinin, A. I.; Gericke, K.-H.; Kauczok, S.; Maul, C.

    Visualising a collision between an atom or a molecule or a photodissociation (half-collision) of a molecule on a single particle and single quantum level is like watching the collision of billiard balls on a pool table: Molecular beams or monoenergetic photodissociation products provide the colliding reactants at controlled velocity before the reaction products velocity is imaged directly with an elaborate camera system, where one should keep in mind that velocity is, in general, a three-dimensional (3D) vectorial property which combines scattering angles and speed. If the processes under study have no cylindrical symmetry, then only this 3D product velocity vector contains the full information of the elementary process under study.

  19. Volume-heated boiling pool behavior and application to transition phase accident conditions

    International Nuclear Information System (INIS)

    Ginsberg, T.; Jones, O.C. Jr.; Chen, J.C.

    1978-01-01

    Observations of two-phase flow fields in volume-heated boiling pools are reported. Photographic observations, together with pool-average void fraction measurements are presented. Flow regime transition criterial derived from the measurements are discussed. The churn-turbulent flow regime was the dominant regime for superficial vapor velocity. Within this range of conditions, a churn-turbulent drift flux model provides a reasonable prediction of the pool-average void fraction data. The results of the experiment and analysis are extrapolated to transition phase conditions. It is shown that intense pool boil-up could occur where the pool-average void fraction would be greater than 0.6 for steel vaporization rates equivalent to power levels greater than one percent of nominal LMFBR power density. (author)

  20. A scale model to evaluate water evaporation from indoor swimming pools

    Energy Technology Data Exchange (ETDEWEB)

    Asdrubali, F. [Department of Industrial Engineering, University of Perugia, Via G. Duranti 67, 06125 Perugia (Italy)

    2009-03-15

    The evaluation of water evaporation from indoor swimming pools is a topic of considerable practical interest, since evaporation may cause the highest energy consumption of the pool plant. A purposely designed experimental apparatus was used to measure the water evaporation rate from a pool scale model inserted into a climatic chamber to control environmental conditions. The experimental data were obtained varying various parameters such as water temperature, air temperature, relative humidity and air velocity. The results were used to propose a prediction model for water evaporation which was compared to other methods found in the literature, showing a good agreement. (author)

  1. Analysis of the General Electric Company swell tests with RELAP4/MOD7

    International Nuclear Information System (INIS)

    Fischer, S.R.; Hendrix, C.E.

    1979-01-01

    The RELAP4/MOD7 nuclear reactor transient analysis code, presently being developed by EG and G Idaho, Inc., will incorporate several significant improvements over earlier versions of RELAP4. As part of the development of RELAP4/MOD7, a thorough assessment of the capability of the code to simulate water reactor LOCA phenomena is being made. This assessment is accomplished in part by comparing results from code calculations with test data from experimental facilities. Simulations of the General Electric Company (GE) level swell tests were performed as part of the code checkout. In these tests, a pressurized vessel partially filled with nearly saturated water was blown down through a simulated break located near the top of the vessel. Comparison of RELAP4 calculations with data from these experiments indicates that the code has the capability to model the unequal phase velocity flow and resulting density gradients that might occur in a BWR steam line break transient. Comparisons of RELAP4 calculations with data from two level swell experiments are presented

  2. The swelling hadrons

    International Nuclear Information System (INIS)

    Rho, M.

    1992-01-01

    The notion of a 'swelled world' for strong interactions is introduced, followed by a discussion on some phenomenological consequences of the 'dropping' meson and baryon masses in dense and/or hot nuclear matter. (author) 26 refs

  3. Recurrent painful calf swelling associated with gout.

    Science.gov (United States)

    Kovarsky, J; Young, M B

    1978-01-01

    A 30-year-old man had a recurrent painful calf swelling associated with gout that mimicked thrombophlebitis and possibly muscle tear. This painful calf swelling occurred in the absence of a subjective history of arthritis of the knee. A constellation of clinical signs was highly suggestive that gout was the cause of the painful calf swellings. Patients with similar conditions, after careful exclusion of thrombophlebitis, might be spared unnecessary and potentially dangerous anticoagulation or surgical intervention by early diagnosis of gout.

  4. Study on velocity field in a wire wrapped fuel pin bundle of sodium cooled reactor. Detailed velocity distribution in a subchannel

    International Nuclear Information System (INIS)

    Sato, Hiroyuki; Kobayashi, Jun; Miyakoshi, Hiroyuki; Kamide, Hideki

    2009-01-01

    A sodium cooled fast reactor is designed to attain a high burn-up core in a feasibility study on commercialized fast reactor cycle systems. In high burn-up fuel subassemblies, deformation of fuel pin due to the swelling and thermal bowing may decrease local flow velocity via change of flow area in the subassembly and influence the heat removal capability. Therefore, it is of importance to obtain the flow velocity distribution in a wire wrapped pin bundle. A 2.5 times enlarged 7-pin bundle water model was applied to investigate the detailed velocity distribution in an inner subchannel surrounded by 3 pins with wrapping wire. The test section consisted of a hexagonal acrylic duct tube and fluorinated resin pins which had nearly the same refractive index with that of water and a high light transmission rate. The velocity distribution in an inner subchannel with the wrapping wire was measured by PIV (Particle Image Velocimetry) through the front and lateral sides of the duct tube. In the vertical velocity distribution in a narrow space between the pins, the wrapping wire decreased the velocity downstream of the wire and asymmetric flow distribution was formed between the pin and wire. In the horizontal velocity distribution, swirl flow around the wrapping wire was obviously observed. The measured velocity data are useful for code validation of pin bundle thermalhydraulics. (author)

  5. Sediment transport through self-adjusting, bedrock-walled waterfall plunge pools

    Science.gov (United States)

    Scheingross, Joel S.; Lamb, Michael P.

    2016-05-01

    Many waterfalls have deep plunge pools that are often partially or fully filled with sediment. Sediment fill may control plunge-pool bedrock erosion rates, partially determine habitat availability for aquatic organisms, and affect sediment routing and debris flow initiation. Currently, there exists no mechanistic model to describe sediment transport through waterfall plunge pools. Here we develop an analytical model to predict steady-state plunge-pool depth and sediment-transport capacity by combining existing jet theory with sediment transport mechanics. Our model predicts plunge-pool sediment-transport capacity increases with increasing river discharge, flow velocity, and waterfall drop height and decreases with increasing plunge-pool depth, radius, and grain size. We tested the model using flume experiments under varying waterfall and plunge-pool geometries, flow hydraulics, and sediment size. The model and experiments show that through morphodynamic feedbacks, plunge pools aggrade to reach shallower equilibrium pool depths in response to increases in imposed sediment supply. Our theory for steady-state pool depth matches the experiments with an R2 value of 0.8, with discrepancies likely due to model simplifications of the hydraulics and sediment transport. Analysis of 75 waterfalls suggests that the water depths in natural plunge pools are strongly influenced by upstream sediment supply, and our model provides a mass-conserving framework to predict sediment and water storage in waterfall plunge pools for sediment routing, habitat assessment, and bedrock erosion modeling.

  6. Differential Response of Neural Cells to Trauma-Induced Swelling In Vitro.

    Science.gov (United States)

    Jayakumar, A R; Taherian, M; Panickar, K S; Shamaladevi, N; Rodriguez, M E; Price, B G; Norenberg, M D

    2018-02-01

    Brain edema and the associated increase in intracranial pressure are major consequences of traumatic brain injury (TBI) that accounts for most early deaths after TBI. We recently showed that acute severe trauma to cultured astrocytes results in cell swelling. We further examined whether trauma induces cell swelling in neurons and microglia. We found that severe trauma also caused cell swelling in cultured neurons, whereas no swelling was observed in microglia. While severe trauma caused cell swelling in both astrocytes and neurons, mild trauma to astrocytes, neurons, and microglia failed to cell swelling. Since extracellular levels of glutamate are increased in brain post-TBI and microglia are known to release cytokine, and direct exposure of astrocytes to these molecules are known to stimulate cell swelling, we examined whether glutamate or cytokines have any additive effect on trauma-induced cell swelling. Exposure of cultured astrocytes to trauma caused cell swelling, and such swelling was potentiated by the exposure of traumatized astrocytes to glutamate and cytokines. Conditioned medium (CM) from traumatized astrocytes had no effect on neuronal swelling post-trauma, while CM from traumatized neurons and microglia potentiated the effect of trauma on astrocyte swelling. Further, trauma significantly increased the Na-K-Cl co-transporter (NKCC) activity in neurons, and that inhibition of NKCC activity diminished the trauma-induced neuronal swelling. Our results indicate that a differential sensitivity to trauma-induced cell swelling exists in neural cells and that neurons and microglia are likely to be involved in the potentiation of the astrocyte swelling post-trauma.

  7. Vascular Impulse Technology versus elevation in the treatment of posttraumatic swelling of extremity fractures: study protocol for a randomized controlled trial.

    Science.gov (United States)

    Schnetzke, Marc; Swartman, Benedict; Bonnen, Isabel; Keil, Holger; Schüler, Svenja; Grützner, Paul A; Franke, Jochen

    2017-02-16

    Fractures of the extremities are often complicated by a variable degree of swelling secondary to hemorrhage and soft tissue injury. Patients typically require up to 7 days of inpatient bed rest and elevation to reduce swelling to an acceptable level for operative treatment with internal fixation. Alternatively, an intermittent pneumatic compression device, such as the Vascular Impulse Technology (VIT) system, can be used at the injured extremity to reduce the posttraumatic swelling. The VIT system consists of a pneumatic compressor that intermittently rapidly inflates a bladder positioned under the arch of the hand or the foot, which results in compression of the venous hand or foot plexus. That intermittent compression induces an increased venous velocity and aims to reduce the soft tissue swelling of the affected extremity. The VIT study is a prospective, monocenter, randomized controlled trial to compare the VIT system with elevation in the treatment of posttraumatic swelling in the case of a fracture of the upper and lower extremity. This study will include 280 patients with fractures of the upper and the lower extremity with nine different injury types. For each of the nine injury types a separate randomization to the two intervention groups (VIT group or control group) will be performed. The primary outcome parameter is the time taken for the swelling to resolve sufficiently to permit surgery. A separate analysis for each of the nine injury types will be performed. In the proposed study, the effectiveness of the VIT system in the treatment of posttraumatic swelling of upper and lower extremity fractures will be evaluated. German Clinical Trial Register, No. DRKS00010510 . Registered on 17 July 2016.

  8. Swelling and infusion of tea in tea bags.

    Science.gov (United States)

    Yadav, Geeta U; Joshi, Bhushan S; Patwardhan, Ashwin W; Singh, Gurmeet

    2017-07-01

    The present study deals with swelling and infusion kinetics of tea granules in tea bags. The swelling and infusion kinetics of tea bags differing in tea loading and tea bag shapes were compared with loose tea. Increment in temperature and dipping frequency of tea bag in hot water increased the infusion kinetics of tea bags. Reduction in particle size enhanced the swelling and infusion kinetics of tea in a tea bag. The effects of tea particle size, tea bag dipping rate, loading of tea granules in tea bag and tea bag shapes on infusion kinetics were investigated. Increase in tea loading in tea bags resulted in reduced infusion kinetics. Double chambered tea bag showed the highest swelling (30%) and infusion kinetics (8.30% Gallic acid equivalence) while single chambered tea bags showed the lowest kinetics, amongst the various bags studied. The swelling and infusion kinetics of loose tea was always faster and higher than that of tea bags. It was found that overall effect of percentage filling of tea granules and height of tea bed in a tea bag affects tea infusion kinetics the most. Weibull model was found to be in good agreement with the swelling data.

  9. Two-phase mixture level swell and liquid entrainment/off-take in a vessel during rapid depressurization

    International Nuclear Information System (INIS)

    Kim, Chang Hyun

    2004-02-01

    swelled two-phase mixture level. The ultrasonic sensor measured the two-phase mixture level with a maximum error of 1.77% and has been adopted for the measurement of two-phase mixture level in the entrainment and off-take experiment. The capacitance probe highly under-predicted the level data in the high void fraction region. The cause of the error is identified as the change of the dielectric constant when the probe is applied to the measurement of the two-phase mixture levels. A correction method for the capacitance probe is proposed by correcting the change of the dielectric constant of the two-phase mixture. The correction method for the capacitance probe produces an r.m.s. error of 5.4%. The RELAP5/MOD3 code has been assessed with the present experimental data and the existing pool void correlations based on the drift flux model. The Kataoka-Ishii correlation shows the best agreement with the present experimental data with an r.m.s. error of 2.5%. The RELAP5/MOD3 results are very similar to the present experimental data when j g + is higher than 1.768. However, RELAP5/MOD3 code over-predicts the present void fraction data when j g + is lower than 1.768 since linear interpolation is used between Zuber-Findlay and Kataoka-Ishii correlations with the coefficients proposed by Rouhani. In the third experiment, an experimental study has been performed in order to investigate the effects of the superficial air velocity in the vessel and the distance between the surface and the break on the liquid entrainment and off-take through the break at the top of a vessel. A correlation for the droplet entrainment, E fg , through the break at the top of a vessel has been developed in terms of j g * /h * . The present experimental data are proportional to the 7 th power of j g * /h * and have higher values of E fg than those of the existing pool entrainment data due to (a) the pulling toward the break of the liquid deen trained on the top wall of the vessel and (b) the existence of a

  10. Swelling and outgassing of heavily-irradiated lithium hydride

    International Nuclear Information System (INIS)

    Souers, P.C.; Ackerman, F.J.; Biel, T.J.; Bigwood, J.; Brite, V.; Christensen, L.D.; Folkers, C.L.; Gede, V.; Griffith, C.M.; Huss, E.B.; Lindahl, R.; McCreary, T.; Otsuki, H.H.; Pond, R.L.; Snider, G.D.; Stanhope, C.; Stump, R.K.; Vanderhoofven, F.; Tsugawa, R.T.; Anderson, J.L.; Carstens, D.W.H.; Drumhiller, W.L.; Lewis, W.B.; Nasise, J.E.; Pretzel, F.E.; Szklarz, E.G.; Vier, D.T.; Bowman, R.C. Jr.; Attalla, A.

    1988-01-01

    Twenty-two years worth of data on lithium deuteride-tritide (Li(D, T)) from three national laboratories is presented. The percent linear swelling and the outgassing of hydrogen isotopes and 3 He for samples stored at 243 to 438 K are presented in summary tables. In some cases, up to a full half-life of tritium (12 years) has been spent in the study. Initial tritium concentrations range from 2 to 98 at%. The precision of the swelling is considered, and the evidence is ambiguous as to whether temperature cycling and handling affects swelling. The early outgassing is all hydrogen, but it turns to helium at long lines. The outgassing levels out for each sample but the amount outgassed varies wildly from sample to sample. At linear swellings beyond 11%, behavior becomes erratic. A maximum linear swelling of 23% is seen for one sample at 5000 days. (orig.)

  11. Numerical modelling of methanol liquid pool fires

    Science.gov (United States)

    Prasad, Kuldeep; Li, Chiping; Kailasanath, K.; Ndubizu, Chuka; Ananth, Ramagopal; Tatem, P. A.

    1999-12-01

    The focus of this paper is on numerical modelling of methanol liquid pool fires. A mathematical model is first developed to describe the evaporation and burning of a two-dimensional or axisymmetric pool containing pure liquid methanol. Then, the complete set of unsteady, compressible Navier-Stokes equations for reactive flows are solved in the gas phase to describe the convection of the fuel gases away from the pool surface, diffusion of the gases into the surrounding air and the oxidation of the fuel into product species. Heat transfer into the liquid pool and the metal container through conduction, convection and radiation are modelled by solving a modified form of the energy equation. Clausius-Clapeyron relationships are invoked to model the evaporation rate of a two-dimensional pool of pure liquid methanol. The governing equations along with appropriate boundary and interface conditions are solved using the flux-corrected transport algorithm. Numerical results exhibit a flame structure that compares well with experimental observations. Temperature profiles and burning rates were found to compare favourably with experimental data from single- and three-compartment laboratory burners. The model predicts a puffing frequency of approximately 12 Hz for a 1 cm diameter methanol pool in the absence of any air co-flow. It is also observed that increasing the air co-flow velocity helps in stabilizing the diffusion flame, by pushing the vortical structures away from the flame region.

  12. Swelling in neutron-irradiated titanium alloys

    International Nuclear Information System (INIS)

    Peterson, D.T.

    1982-04-01

    Immersion density measurements have been performed on a series of titanium alloys irradiated in EBR-II to a fluence of 5 x 10 22 n/cm 2 (E > 0.1 MeV) at 450 and 550 0 C. The materials irradiated were the near-alpha alloys Ti-6242S and Ti-5621S, the alpha-beta alloy Ti-64, and the beta alloy Ti-38644. Swelling was observed in all alloys with the greater swelling being observed at 550 0 C. Microstructural examination revealed the presence of voids in all alloys. Ti-38644 was found to be the most radiation resistant. Ti-6242S and Ti-5621S also displayed good radiation resistance, whereas considerable swelling and precipitation were observed in Ti-64 at 550 0 C

  13. Heat transfer characteristics around a single heated rod immersed in sodium pool with gas jet injection

    International Nuclear Information System (INIS)

    Hideto Niikura; Kazuo Soga; Ken-ichiro Sugiyama; Akira Yamaguchi

    2005-01-01

    In a steam generator using liquid sodium, water intensely reacts with sodium when it leaks out from a heat transfer tube. It is important to evaluate the influence of sodium-water reaction to surrounding tubes and the shell. Hence, it has been desired to develop the simulation code for the evaluation of sodium-water reaction. From this viewpoint, the Japan Nuclear Cycle is now developing the SERAPHIM code. We reported a preliminary study to establish an experimental method for a single heated rod immersed in sodium pool with steam jet impingement planned in the near future as well as to obtain a preliminary data to verify the adequacy of SERAPHIM code. We first measured local and mean heat transfer coefficients around a horizontal single heated rod immersed in a water pool and a sodium pool with a limited volume in the experimental apparatus. It was confirmed that the mean heat transfer coefficients fairly agreed with the existing data for natural convection in water and sodium. Secondary we measured local and mean heat transfer coefficients around a horizontal single heated rod with Ar gas jet impingement immersed in the limited water pool and in the limited sodium pool. It was clearly observed that the local heat transfer coefficients in the sodium pool keep almost the same values in every angle regardless of increase in Ar gas jet velocity varied from about 8.7m/s to about 78m/s. On the other hand, it was confirmed in the water pool that local heat transfer coefficients on the forward stagnation side exposed in the Ar gas jet impingement increase with increasing the jet velocity while the local heat transfer coefficients on the opposite surface keep almost same values regardless of increase in the velocity. (authors)

  14. Effect of gamma irradiation on nylon 6 films : swelling study

    International Nuclear Information System (INIS)

    Singh, L.P.; Chaudhuri, N.K.

    1980-01-01

    This paper reports on swelling studies of γ-irradiated nylon 6 films undertaken to investigate the effects of γ-irradiation in finer details. Benzyl alcohol has been used as the swelling agent. The kinetics of weight swelling of γ-irradiated nylon 6 films in benzyl alcohol was studied at different irradiation doses in the range 0 - 28.8 Mrad. It is observed that with increasing irradiation dose upto 14.4 Mrad the swelling, and hence the diffusion process are retarded; moreover, the sigmoidal nature of the percentage weight swelling vs (time)sup(1/2) plot is augmented. Above this critical dose the swelling and diffusion processes are accelerated. Besides, the sigmoidal behaviour recedes and is converted into linear behaviour at 28.8 Mrad. This behaviour indicates that a relaxation-controlled non-Fickian diffusion process is at work below 28.8 Mrad while at 28.8 Mrad a Fickian process is established. A significant effect on the equilibrium swelling in benzyl alcohol is observed. The plot of equilibrium weight swelling vs irradiation dose at 23deg C shows an initial decrease of swelling upto 3.6 Mrad at which swelling starts decreasing at accelerated rate in the dose range 3.6 - 7.6 Mrad. The rate slows down appreciably between 7.00 and 14.4 Mrad, above which there is a rapid fall. The results are correlated with scission and crosslinking processes through relative viscosity determination of formic acid solutions of the irradiated samples. It is established by combining viscosity data with kinetics and equilibrium swelling data that, besides scission, crosslinking processes are also at work in nylon 6 in the irradiation dose range 0 - 3.6 Mrad. It has been possible to bring out this point because the swelling technique seems to be preferentially sensitive towards crosslinking. (author)

  15. Investigation of Pre- and Post-Swelling Behavior of Elastomeric Material

    Directory of Open Access Journals (Sweden)

    M Akhtar

    2013-06-01

    Full Text Available In the last ten years, a new type of modern polymer, known as swelling elastomer, has been used extensively as a sealing element in the oil and gas industry. These elastomers have been instrumental in various new applications such as water shut off, zonal isolation, and sidetracking. Though swell packers can significantly reduce costs and increase productivity, their failure can lead to serious losses. The integrity and reliability of swelling elastomer seals under different field conditions is a major concern. The investigation of changes in material behavior over a specified swelling period is a necessary first step for performance evaluation of elastomer seals. The current study is based on experimental analysis of changes in geometric and mechanical behavior (hardness, tensile, compressive, bulk of an elastomeric material due to swelling. Tests were carried out before and after various stages of swelling. Specimens were placed in saline water (0.6% and 12% concentrations at a temperature of 50°C, with the total swelling period being one month. Swelling, hardness, compression, and bulk tests were conducted using disc samples, while ring samples were used for tensile experiments. A small test rig was designed and constructed for determination of bulk modulus. Stress-strain curves under tension and compression, and pressure volumetric-strain curves were obtained for specimens subjected to different swelling periods. Due to the fast-swell nature of the elastomer, there were sharp changes in mechanical properties within the first few days of swelling for both salinities. Elastic modulus derived from tensile and compressive tests showed a 90% decrease in the first few days. Bulk modulus showed fluctuation in its variation with an increasing swelling period. There was a small effect of salinity only during the first 5 or 6 days.

  16. Swelling of spinel after low-dose neutron irradiation

    International Nuclear Information System (INIS)

    Coghlan, W.A.; Clinard, F.W. Jr.; Itoh, N.; Greenwood, L.R.

    1986-01-01

    Swelling was determined in samples of single-crystal MgAl 2 O 4 spinel, irradiated to doses as high as 8 x 10 22 n/m 2 (E > 0.1 MeV) at approx. =50 0 C in the Omega West Reactor. Swelling effectively saturated at approx. =2 x 10 22 n/m 2 which corresponds to a damage level of only approx. =2 x 10 -3 dpa. In addition subsequent measurements after irradiation have revealed that the samples continued swelling for several weeks. These results imply that irradiation defects begin to interact by recombination and aggregation at low damage levels in this material at 50 0 C and perhaps continue to cluster at room temperature after irradiation. Rate equations have been employed to determine defect concentrations at saturation. Results to date show that the observed swelling is consistent with the number of surviving defects if swelling per Frenkel defect pair is taken to be one atomic volume

  17. Effect of pre-swelling of coal on its liquefaction properties

    Energy Technology Data Exchange (ETDEWEB)

    Hengfu Shui; Zhicai Wang; Meixia Cao [Anhui University of Technology, Ma' anshan (China). School of Chemistry & Chemical Engineering

    2007-07-01

    The effects of pre-swelling of Shenhua coal on its liquefaction property were studied in this paper. It was found that pre-swelling treatments of Shenhua coal in three solvents, i.e toluene (TOL), N-methyl-2-pyrrolidinone (NMP) and tetralin (THN) increased its liquefaction conversion, and the liquefied product distributions were also quite different. Removal of the pre-swelling solvent from the swollen coals further increased the liquefaction conversion compared to that of the swollen coals with the swelling solvent existed in them. It was found that oil and gas yields for the liquefaction of swollen coals in NMP and TOL with swelling solvent existed dramatically decreased. Pre-swelling in THN at 120{sup o}C gave the highest liquefaction conversion, however the liquefaction conversion decreased with the increase of pre-swelling temperature in the case of NMP. TG and FTIR analyses of raw coal, the swollen coals and liquefied products were carried out and the mechanism of the effects of pre-swelling of coal on its extraction and liquefaction behaviors were probed in the paper. 12 refs., 6 figs., 3 tabs.

  18. Swelling behavior of titanium-modified AISI 316 alloys

    International Nuclear Information System (INIS)

    Garner, F.A.; Brager, H.R.; Puigh, R.J.

    1984-01-01

    It appears that titanium additions to stainless steels covering a wide compositional range around the specifications of AISI 316 result only in an increased delay period before neutron-induced void swelling proceeds. Once swelling is initiated the post transient behavior of both annealed and cold-worked titanium-modified steels is quite consistent with that of AISI 316, approaching a relatively temperature-independent swelling rate of approx. 1% per dpa

  19. Void fraction for gas bubbling in shallow viscous pools-application to molten core concrete interaction

    International Nuclear Information System (INIS)

    Journeau, C.; Haquet, J.F.

    2005-01-01

    During Molten Core-Concrete Interaction, the concrete will release gases (mainly steam and carbon oxides) that will flow through the corium pool. To obtain reliable heat transfer prediction, it is necessary to model the void fraction in the pool as a function of the gas mass flow (or superficial velocity at the interface). A series of simulant-materials have been performed with water-air and sugar syrup-air in order to study how the drift model could be applied to a shallow pool (where the bubbly flow is not fully developed) and to liquids which are more viscous (with higher Morton numbers) than water. The bubble average diameter was estimated around 3 mm with spherical to ellipsoidal shapes. For all the configurations, even with the shallowest pools (6 cm height for 38 cm diameter) the experimental void fractions follow the drift-model relationship. In water, the distribution coefficient C 0 tends to the classical value of 1.2 while the drift velocity V jg tends to the 23 cm/s predicted by Ishii (1975) model for churn flows. For the more viscous syrup, the drift velocity tends to 13 cm/s which is significantly lower than the value obtained from the Ishii correlation for bubbly or churn flows (established for water). These results are then applied to MCCI experimental configurations. (authors)

  20. Site-Specific Pre-Swelling-Directed Morphing Structures of Patterned Hydrogels.

    Science.gov (United States)

    Wang, Zhi Jian; Hong, Wei; Wu, Zi Liang; Zheng, Qiang

    2017-12-11

    Morphing materials have promising applications in various fields, yet how to program the self-shaping process for specific configurations remains a challenge. Herein we show a versatile approach to control the buckling of individual domains and thus the outcome configurations of planar-patterned hydrogels. By photolithography, high-swelling disc gels were positioned in a non-swelling gel sheet; the swelling mismatch resulted in out-of-plain buckling of the disc gels. To locally control the buckling direction, masks with holes were used to guide site-specific swelling of the high-swelling gel under the holes, which built a transient through-thickness gradient and thus directed the buckling during the subsequent unmasked swelling process. Therefore, various configurations of an identical patterned hydrogel can be programmed by the pre-swelling step with different masks to encode the buckling directions of separate domains. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Swelling behavior of γ-ray irradiated elastomers in boiling spray solution

    International Nuclear Information System (INIS)

    Yagi, Toshiaki; Kusama, Yasuo; Ito, Masayuki; Okada, Sohei; Yoshikawa, Masahito; Yoshida, Kenzo

    1983-05-01

    Elastomers swelled significantly by water sorption during a simulated LOCA test, and this phenomenon could cause the deterioration of their mechanical and electrical properties. Many factors like as radiation, heat, the composition of spray solution, types of elastomers and their formulation, related to the phenomenon. A relationship between swelling properties of the formulation-known various elastomers and the pre-aging conditions such as radiation dose and thermal aging period was studied by measuring their swelling behaviors in boiling spray solution (water and chemical solution). All eight elastomers tested showed remarkable swelling with an increase of radiation dose when they irradiated in air. A swelling in boiling water was about twice of in chemical solution. Some types of Neoprene and Hypalons had an optimum swelling dose where they showed the maxima. Over this dose, the swelling ratio decreased with dose. When irradiated under vacuum, its swelling ratio became significantly lower than that of exposed in air. This attributed the swelling phenomena closely related to radiation oxidation degradation. (author)

  2. The extrudate swell of HDPE: Rheological effects

    Science.gov (United States)

    Konaganti, Vinod Kumar; Ansari, Mahmoud; Mitsoulis, Evan; Hatzikiriakos, Savvas G.

    2017-05-01

    The extrudate swell of an industrial grade high molecular weight high-density polyethylene (HDPE) in capillary dies is studied experimentally and numerically using the integral K-BKZ constitutive model. The non-linear viscoelastic flow properties of the polymer resin are studied for a broad range of large step shear strains and high shear rates using the cone partitioned plate (CPP) geometry of the stress/strain controlled rotational rheometer. This allowed the determination of the rheological parameters accurately, in particular the damping function, which is proven to be the most important in simulating transient flows such as extrudate swell. A series of simulations performed using the integral K-BKZ Wagner model with different values of the Wagner exponent n, ranging from n=0.15 to 0.5, demonstrates that the extrudate swell predictions are extremely sensitive to the Wagner damping function exponent. Using the correct n-value resulted in extrudate swell predictions that are in excellent agreement with experimental measurements.

  3. Calculation simulation of equivalent irradiation swelling for dispersion nuclear fuel

    International Nuclear Information System (INIS)

    Cai Wei; Zhao Yunmei; Gong Xin; Ding Shurong; Huo Yongzhong

    2015-01-01

    The dispersion nuclear fuel was regarded as a kind of special particle composites. Assuming that the fuel particles are periodically distributed in the dispersion nuclear fuel meat, the finite element model to calculate its equivalent irradiation swelling was developed with the method of computational micro-mechanics. Considering irradiation swelling in the fuel particles and the irradiation hardening effect in the metal matrix, the stress update algorithms were established respectively for the fuel particles and metal matrix. The corresponding user subroutines were programmed, and the finite element simulation of equivalent irradiation swelling for the fuel meat was performed in Abaqus. The effects of the particle size and volume fraction on the equivalent irradiation swelling were investigated, and the fitting formula of equivalent irradiation swelling was obtained. The results indicate that the main factors to influence equivalent irradiation swelling of the fuel meat are the irradiation swelling and volume fraction of fuel particles. (authors)

  4. Characterization of fuel swelling in helium-bonded carbide fuel pins

    International Nuclear Information System (INIS)

    Louie, D.L.Y.

    1987-08-01

    This work is not only the first attempt at characterizing the swelling of (U,Pu)C fuel pellets, but it also represents the only detailed examinations on carbide fuel swelling at high fuel burnups (4 to 16 at. %). This characterization includes the contributions of fission gases, cracks and solid fission products to fuel swelling. Significantly, the contributions of fission gases and cracks were determined by using the image analysis technique (IAT) which allows researchers to take areal measurements of the irradiated fuel porosity and cracks from the photographs of metallographic fuel samples. However, because areal measurements for varying depths in the fuel pellet could not be obtained, the crack areal measurements could not be converted into volumetric quantities. Consequently, in this situation, an areal fuel swelling analysis was used. The macroscopic fission-gas induced fuel swelling (MAS) caused by fission-gas bubbles and pores > 1 μm was determined using the measured irradiated fuel porosity because the measuring range of IAT is limited to bubbles and pores >1 μm. Conversely, for fuel swelling induced by fission-gas bubbles < 1 μm, the microscopic fission-gas induced fuel swelling (MIS) was estimated using an areal fuel swelling model

  5. An Experimental Study on Burning Characteristics of n-Heptane/Ethanol Mixture Pool Fires in a Reduced Scaled Tunnel

    Science.gov (United States)

    Yozgatligil, Ahmet; Shafee, Sina

    2016-11-01

    Fire accidents in recent decades have drawn attention to safety issues associated with the design, construction and maintenance of tunnels. A reduced scale tunnel model constructed based on Froude scaling technique is used in the current work. Mixtures of n-heptane and ethanol are burned with ethanol volumetric fraction up to 30 percent and the longitudinal ventilation velocity varying from 0.5 to 2.5 m/s. The burning rates of the pool fires are measured using a precision load cell. The heat release rates of the fires are calculated according to oxygen calorimetry method and the temperature distributions inside the tunnel are also measured. Results of the experiments show that the ventilation velocity variation has a significant effect on the pool fire burning rate, smoke temperature and the critical ventilation velocity. With increased oxygen depletion in case of increased ethanol content of blended pool fires, the quasi-steady heat release rate values tend to increase as well as the ceiling temperatures while the combustion duration decreases.

  6. Tracking the attenuation and nonbreaking dissipation of swells using altimeters

    Science.gov (United States)

    Jiang, Haoyu; Stopa, Justin E.; Wang, He; Husson, Romain; Mouche, Alexis; Chapron, Bertrand; Chen, Ge

    2016-02-01

    A method for systematically tracking swells across oceanic basins is developed by taking advantage of high-quality data from space-borne altimeters and wave model output. The evolution of swells is observed over large distances based on 202 swell events with periods ranging from 12 to 18 s. An empirical attenuation rate of swell energy of about 4 × 10-7 m-1 is estimated using these observations, and the nonbreaking energy dissipation rates of swells far away from their generating areas are also estimated using a point source model. The resulting acceptance range of nonbreaking dissipation rates is -2.5 to 5.0 × 10-7 m-1, which corresponds to a dissipation e-folding scales of at least 2000 km for steep swells, to almost infinite for small-amplitude swells. These resulting rates are consistent with previous studies using in-situ and synthetic aperture radar (SAR) observations. The frequency dispersion and angular spreading effects during swell propagation are discussed by comparing the results with other studies, demonstrating that they are the two dominant processes for swell height attenuation, especially in the near field. The resulting dissipation rates from these observations can be used as a reference for ocean engineering and wave modeling, and for related studies such as air-sea and wind-wave-turbulence interactions.

  7. Use of additive material to stabilize the soil swelling

    Science.gov (United States)

    Parsaee, B.; Estabragh, A. R.; Bordbar, A. T.; Eskandari, G. H.

    2009-04-01

    Change volume increasing of soil, because of increase in its humidity content causes appearing of swelling phenomenon in the soil. This phenomenon has created a lot of damages in the building which is constructed on this kind of soils. Usage the additive materials which stabilize the swelling, has been the subject of many researches. In this research the Potential expansibility of the expansive soils, which were stabilized by additive materials such as Lime, cement and coal ash, was investigated. To get this purpose, by preparing soil samples mixed with upper additive material, changes of potential swelling of stabilized soils were compared. The results revealed that usage of these stabilizing materials caused the decrease in destructive effects due to swelling of soils to some extent. Keywords: swelling, soil stabilizing, additive material, coal ash

  8. Helium-induced blistering and volume swelling in nickel

    International Nuclear Information System (INIS)

    Fenske, G.R.

    1980-01-01

    The results of an experimental investigation of helium-induced blistering are presented. The goal of the research was to examine the mechanisms involved in blistering by observing the microstructure of the implanted region using transmission electron microscopy (TEM). In particular, the volume swelling was measured as a function of the implant depth, and compared to experimental skin thicknesses in order to determine if the skin separated at the maximum volume swelling, or at the end of the swelling profile

  9. Thermal-hydraulic analysis of the OSURR pool for power upgrade with natural convection core cooling

    International Nuclear Information System (INIS)

    Ha, J.J.; Aldemir, T.

    1988-01-01

    Natural convection mode core cooling will be maintained in the LEU conversion/power upgrade of The Ohio State University Research Reactor (OSURR) to 250-500 kW. The pool water will be cooled by a water-glycol-air and a water-water heat exchanger. A plume disperser will be installed in the pool to minimize evaporation from the pool top and to maintain the dose rate due to N-16 activity within allowable levels. The minimization of the pool heat removal system operation costs necessitates maximizing the inlet temperature to the water-glycol-air heat exchanger. For the maximization process, the change in the pool temperature and velocity fields have to be investigated as a function of: location and orientation of the heat removal system components and the plume disperser in the pool; mass flow rate through the plume disperser. The velocity and temperature fields in the pool are determined using COMMIX-1A. The computational system model accounts for the presence of all the pool components (i.e. core, thermal column, beam ports, ion chamber, guide tubes, rabbit, neutron source etc.). The results show that: (1) Both the heat removal system inlet point and the plume disperser have to be located close to the top of the core. (2) Using a disperser system consisting of several pipes may be more feasible than a single unit. (3) For high disperser flow, the disperser jet has to be almost parallel to the top of the core to prevent flow reversal in coolant channels. (4) More than one disperser system may be necessary to create an inversion layer in the pool

  10. Swelling characteristics of Gaomiaozi bentonite and its prediction

    Directory of Open Access Journals (Sweden)

    De'an Sun

    2014-04-01

    Full Text Available Gaomiaozi (GMZ bentonite has been chosen as a possible matrix material of buffers/backfills in the deep geological disposal to isolate the high-level radioactive waste (HLRW in China. In the Gaomiaozi deposit area, calcium bentonite in the near surface zone and sodium bentonite in the deeper zone are observed. The swelling characteristics of GMZ sodium and calcium bentonites and their mixtures with sand wetted with distilled water were studied in the present work. The test results show that the relationship between the void ratio and swelling pressure of compacted GMZ bentonite-sand mixtures at full saturation is independent of the initial conditions such as the initial dry density and water content, but dependent on the ratio of bentonite to sand. An empirical method was accordingly proposed allowing the prediction of the swelling deformation and swelling pressure with different initial densities and bentonite-sand ratios when in saturated conditions. Finally, the swelling capacities of GMZ Na- and Ca-bentonites and Kunigel Na-bentonite are compared.

  11. Morphing of geometric composites via residual swelling.

    Science.gov (United States)

    Pezzulla, Matteo; Shillig, Steven A; Nardinocchi, Paola; Holmes, Douglas P

    2015-08-07

    Understanding and controlling the shape of thin, soft objects has been the focus of significant research efforts among physicists, biologists, and engineers in the last decade. These studies aim to utilize advanced materials in novel, adaptive ways such as fabricating smart actuators or mimicking living tissues. Here, we present the controlled growth-like morphing of 2D sheets into 3D shapes by preparing geometric composite structures that deform by residual swelling. The morphing of these geometric composites is dictated by both swelling and geometry, with diffusion controlling the swelling-induced actuation, and geometric confinement dictating the structure's deformed shape. Building on a simple mechanical analog, we present an analytical model that quantitatively describes how the Gaussian and mean curvatures of a thin disk are affected by the interplay among geometry, mechanics, and swelling. This model is in excellent agreement with our experiments and numerics. We show that the dynamics of residual swelling is dictated by a competition between two characteristic diffusive length scales governed by geometry. Our results provide the first 2D analog of Timoshenko's classical formula for the thermal bending of bimetallic beams - our generalization explains how the Gaussian curvature of a 2D geometric composite is affected by geometry and elasticity. The understanding conferred by these results suggests that the controlled shaping of geometric composites may provide a simple complement to traditional manufacturing techniques.

  12. Effect of Rhodococcus sp. on desulfurization, swelling and extraction of coal

    Energy Technology Data Exchange (ETDEWEB)

    Wang De-qiang; Shui Heng-fu [University of Technology of Anhui, Maanshang (China). School of Chemical Engineering

    2006-08-15

    Bio-desulfurization of coal by rhodococcus sp. was studied. Some kinds of coal were swelled with different organic solvents, and then the swelled coals were treated by rhodococcus sp. The results show that the ratios of desulfurization of coals increase after they are swelled, especially swelled with NMP, the ratio is more than 80%. The swelling and extraction of coal were also studied after the coal had been treated by rhodococcus sp. The results show that the ratios of swelling increase more than 65%, but the extraction yield decreases for the coal treated by rhodococcus sp. 11 refs., 5 tabs.

  13. PPOOLEX experiments on stratification and mixing in the wet well pool

    International Nuclear Information System (INIS)

    Laine, J.; Puustinen, M.; Raesaenen, A.; Tanskanen, V.

    2011-03-01

    This report summarizes the results of the thermal stratification and mixing experiments carried out in 2010 with the scaled down, two compartment PPOOLEX test facility designed and constructed at LUT. Steam was blown into the thermally insulated dry well compartment and from there through the DN200 vertical blowdown pipe to the condensation pool filled with sub-cooled water. The main purpose of the experiment series was to generate verification data for evaluating the capability of GOTHIC and APROS codes to predict stratification and mixing phenomena. Another objective was to test the sound velocity measurement system. Altogether five experiments were carried out. The experiments consisted of a small steam flow rate stratification period and of a mixing period with continuously or stepwise increasing flow rate. The dry well structures were heated up to the level of approximately 90 deg. C before the actual experiments. The initial water bulk temperature was 20 deg. C. When the steam flow rate was low enough (typically ∼100-150 g/s) temperatures below the blowdown pipe outlet remained constant while increasing heat-up occurred towards the pool surface layers indicating strong thermal stratification of the wet well pool water. During the stratification period the highest measured temperature difference between pool bottom and surface was approximately 40 deg. C. During the mixing period total mixing of the pool volume was not achieved in any of the experiments. The bottom layers heated up significantly but never reached the same temperature as the topmost layers. The lowest measured temperature difference between the pool bottom and surface was 7-8 deg. C. According to the test results, it seems that a small void fraction doesn't have an effect on the speed of sound in water and that the acquired sound velocity measurement system cannot be used for the estimation of void fraction in the wet well water pool. However, more tests on this issue have to be executed

  14. PPOOLEX experiments on stratification and mixing in the wet well pool

    Energy Technology Data Exchange (ETDEWEB)

    Laine, J.; Puustinen, M.; Raesaenen, A.; Tanskanen, V. (Lappeenranta Univ. of Technology, Nuclear Safety Research Unit (Finland))

    2011-03-15

    This report summarizes the results of the thermal stratification and mixing experiments carried out in 2010 with the scaled down, two compartment PPOOLEX test facility designed and constructed at LUT. Steam was blown into the thermally insulated dry well compartment and from there through the DN200 vertical blowdown pipe to the condensation pool filled with sub-cooled water. The main purpose of the experiment series was to generate verification data for evaluating the capability of GOTHIC and APROS codes to predict stratification and mixing phenomena. Another objective was to test the sound velocity measurement system. Altogether five experiments were carried out. The experiments consisted of a small steam flow rate stratification period and of a mixing period with continuously or stepwise increasing flow rate. The dry well structures were heated up to the level of approximately 90 deg. C before the actual experiments. The initial water bulk temperature was 20 deg. C. When the steam flow rate was low enough (typically approx100-150 g/s) temperatures below the blowdown pipe outlet remained constant while increasing heat-up occurred towards the pool surface layers indicating strong thermal stratification of the wet well pool water. During the stratification period the highest measured temperature difference between pool bottom and surface was approximately 40 deg. C. During the mixing period total mixing of the pool volume was not achieved in any of the experiments. The bottom layers heated up significantly but never reached the same temperature as the topmost layers. The lowest measured temperature difference between the pool bottom and surface was 7-8 deg. C. According to the test results, it seems that a small void fraction doesn't have an effect on the speed of sound in water and that the acquired sound velocity measurement system cannot be used for the estimation of void fraction in the wet well water pool. However, more tests on this issue have to be

  15. Ageing effects on swelling behaviour of compacted GMZ01 bentonite

    Energy Technology Data Exchange (ETDEWEB)

    Ye, W.M., E-mail: ye_tju@tongji.edu.cn [Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, Shanghai 200092 (China); United Research Center for Urban Environment and Sustainable Development, the Ministry of Education, China, Shanghai 200092 (China); Lai, X.L.; Liu, Y. [Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, Shanghai 200092 (China); Chen, Y.G. [Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, Shanghai 200092 (China); United Research Center for Urban Environment and Sustainable Development, the Ministry of Education, China, Shanghai 200092 (China); Cui, Y.J. [Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, Shanghai 200092 (China); Ecole des Ponts Paris Tech, UR Navier/CERMES (France)

    2013-12-15

    Highlights: • Ageing effects on compacted GMZ01 bentonite are investigated. • Swelling property decreases with ageing and influenced by initial conditions. • Ageing effects are mainly attributed to the bonding effects and the hydration of smectites. - Abstract: Ageing effects on the swelling properties of compacted GMZ01 bentonite are investigated in this paper. Samples were compacted to prescribed dry densities and water contents and kept for ageing under constant volume and K{sub 0} confined conditions for target days of 0, 1, 7, 15, 30 and 90. Then, swelling deformation and swelling pressure tests were performed on the aged samples. Results indicate that both the swelling deformation and swelling pressure decrease with ageing time, with a more significant decrease at the first few days of ageing. Ageing effects are more pronounced for samples with large dry density and high water content. At the same initial dry density and water content, samples aged under constant volume conditions show much smaller decrease of swelling pressure compared to that of samples aged under K{sub 0} confined conditions. The decrease of swelling potential of samples with ageing days is mainly attributed to the bonding effects and the internal redistribution of water within the bentonite, which was confirmed by the changes of microstructure of samples with ageing.

  16. Measurements and observations on microscopic swelling in MX-type fuels

    International Nuclear Information System (INIS)

    Ronchi, C.; Ray, I.L.F.; Thiele, H.; Laar, J. van de.

    1978-01-01

    Microscopic swelling has been investigated by electron microscopy in several MX-type fuels, irradiated in fast and thermal neutron flux. The results show that fission gas bubbles in these compounds grow to large sizes if the in-pile fuel temperature rises above a critical value (swelling critical temperature Tsub(C)). A comparison has been made of the swelling rates in fuels of different composition, showing that Tsub(C) increases from carbides to nitrides. In fuels subjected to in-pile restructuring (highly rated) He-bonded pins microscopic swelling is affected by pore and grain boundary migration. The influence of these phenomena on the fuel swelling performance has been discussed

  17. Molten pool characterization of laser lap welded copper and aluminum

    Science.gov (United States)

    Xue, Zhiqing; Hu, Shengsun; Zuo, Di; Cai, Wayne; Lee, Dongkyun; Elijah, Kannatey-Asibu, Jr.

    2013-12-01

    A 3D finite volume simulation model for laser welding of a Cu-Al lap joint was developed using ANSYS FLUENT to predict the weld pool temperature distribution, velocity field, geometry, alloying element distribution and transition layer thickness—all key attributes and performance characteristics for a laser-welded joint. Melting and solidification of the weld pool was simulated with an enthalpy-porosity formulation. Laser welding experiments and metallographic examination by SEM and EDX were performed to investigate the weld pool features and validate the simulated results. A bowl-shaped temperature field and molten pool, and a unique maximum fusion zone width were observed near the Cu-Al interface. Both the numerical simulation and experimental results indicate an arch-shaped intermediate layer of Cu and Al, and a gradual transition of Cu concentration from the aluminum plate to the copper plate with high composition gradient. For the conditions used, welding with Cu on top was found to result in a better weld joint.

  18. Molten pool characterization of laser lap welded copper and aluminum

    International Nuclear Information System (INIS)

    Xue, Zhiqing; Hu, Shengsun; Zuo, Di; Cai, Wayne; Lee, Dongkyun; Elijah, Kannatey-Asibu Jr

    2013-01-01

    A 3D finite volume simulation model for laser welding of a Cu–Al lap joint was developed using ANSYS FLUENT to predict the weld pool temperature distribution, velocity field, geometry, alloying element distribution and transition layer thickness—all key attributes and performance characteristics for a laser-welded joint. Melting and solidification of the weld pool was simulated with an enthalpy-porosity formulation. Laser welding experiments and metallographic examination by SEM and EDX were performed to investigate the weld pool features and validate the simulated results. A bowl-shaped temperature field and molten pool, and a unique maximum fusion zone width were observed near the Cu–Al interface. Both the numerical simulation and experimental results indicate an arch-shaped intermediate layer of Cu and Al, and a gradual transition of Cu concentration from the aluminum plate to the copper plate with high composition gradient. For the conditions used, welding with Cu on top was found to result in a better weld joint. (paper)

  19. Film boiling heat transfer from a hot sphere falling in two-phase pool

    International Nuclear Information System (INIS)

    Bang, K. H.; Kim, K. Y.

    1998-01-01

    The purpose of the present study is to experimentally investigate film boiling heat trasfer from a hot sphere falling in steam-water two-phase pool, which is the key heat transfer mode in molten fuel and coolant mixing. To measure film boiling heat transfer coefficients on a spere falling in two-phase pool, a heated sphere with a thermocouple embedded at the center is dropped in a vertical tube filled with steam-water mixture. The present experiment is unique in making the heated sphere fall through the two-phase pool while the previous experiments were performed with stationary spheres in flowing fluid. The falling speed of the sphere is measured using a set of magnet pickup coils distributed along the tube. The ranges of the experimental conditions are: spere fall speed 0-0.5 m/s, average void fraction 0-25,% steam superficial velocity 0-0.25 m/s. The results show that the forced convection film boiling heat transfer coefficient decrease slightly as the steam superficial velocity (void fraction) is increased

  20. Enhancement of the SPARC90 code to pool scrubbing events under jet injection regime

    Energy Technology Data Exchange (ETDEWEB)

    Berna, C., E-mail: ceberes@iie.upv.es [Instituto de Ingeniería Energética, Universitat Politècnica de València (UPV), Camino de Vera 14, 46022 Valencia (Spain); Escrivá, A.; Muñoz-Cobo, J.L. [Instituto de Ingeniería Energética, Universitat Politècnica de València (UPV), Camino de Vera 14, 46022 Valencia (Spain); Herranz, L.E., E-mail: luisen.herranz@ciemat.es [Unit of Nuclear Safety Research Division of Nuclear Fission, CIEMAT, Avda. Complutense 22, 28040 Madrid (Spain)

    2016-04-15

    Highlights: • Review of the most recent literature concerning submerged jets. • Emphasize all variables and processes occurring along the jet region. • Highlight the gaps of knowledge still existing related to submerged jets. • Enhancement of SPARC90-Jet to estimate aerosol removal under jet injection regime. • Validation of the SPARC90-Jet results against pool scrubbing experimental data. - Abstract: Submerged gaseous jets may have an outstanding relevance in many industrial processes and may be of particular significance in severe nuclear accident scenarios, like in the Fukushima accident. Even though pool scrubbing has been traditionally associated with low injection velocities, there are a number of potential scenarios in which fission product trapping in aqueous ponds might also occur under jet injection regime (like SGTR meltdown sequences in PWRs and SBO ones in BWRs). The SPARC90 code was developed to determine the fission product trapping in pools during severe accidents. The code assumes that carrier gas arrives at the water ponds at low or moderate velocities and it forms a big bubble that eventually detaches from the injection pipe. However, particle laden gases may enter the water at very high velocities resulting in a submerged gas jet instead. This work presents the fundamentals, major hypotheses and changes introduced into the code in order to estimate particle removal during gas injection in pools under the jet regime (SPARC90-Jet). A simplified and reliable approach to submerged jet hydrodynamics has been implemented on the basis of updated equations for jet hydrodynamics and aerosol removal, so that gas–liquid and droplet-particles interactions are described. The code modifications have been validated as far as possible. However, no suitable hydrodynamic tests have been found in the literature, so that an indirect validation has been conducted through comparisons against data from pool scrubbing experiments. Besides, this validation

  1. Enhancement of the SPARC90 code to pool scrubbing events under jet injection regime

    International Nuclear Information System (INIS)

    Berna, C.; Escrivá, A.; Muñoz-Cobo, J.L.; Herranz, L.E.

    2016-01-01

    Highlights: • Review of the most recent literature concerning submerged jets. • Emphasize all variables and processes occurring along the jet region. • Highlight the gaps of knowledge still existing related to submerged jets. • Enhancement of SPARC90-Jet to estimate aerosol removal under jet injection regime. • Validation of the SPARC90-Jet results against pool scrubbing experimental data. - Abstract: Submerged gaseous jets may have an outstanding relevance in many industrial processes and may be of particular significance in severe nuclear accident scenarios, like in the Fukushima accident. Even though pool scrubbing has been traditionally associated with low injection velocities, there are a number of potential scenarios in which fission product trapping in aqueous ponds might also occur under jet injection regime (like SGTR meltdown sequences in PWRs and SBO ones in BWRs). The SPARC90 code was developed to determine the fission product trapping in pools during severe accidents. The code assumes that carrier gas arrives at the water ponds at low or moderate velocities and it forms a big bubble that eventually detaches from the injection pipe. However, particle laden gases may enter the water at very high velocities resulting in a submerged gas jet instead. This work presents the fundamentals, major hypotheses and changes introduced into the code in order to estimate particle removal during gas injection in pools under the jet regime (SPARC90-Jet). A simplified and reliable approach to submerged jet hydrodynamics has been implemented on the basis of updated equations for jet hydrodynamics and aerosol removal, so that gas–liquid and droplet-particles interactions are described. The code modifications have been validated as far as possible. However, no suitable hydrodynamic tests have been found in the literature, so that an indirect validation has been conducted through comparisons against data from pool scrubbing experiments. Besides, this validation

  2. Swell Propagation over Indian Ocean Region

    Directory of Open Access Journals (Sweden)

    Suchandra A. Bhowmick

    2011-06-01

    Full Text Available Swells are the ocean surface gravity waves that have propagated out of their generating fetch to the distant coasts without significant attenuation. Therefore they contain a clear signature of the nature and intensity of wind at the generation location. This makes them a precursor to various atmospheric phenomena like distant storms, tropical cyclones, or even large scale sea breeze like monsoon. Since they are not affected by wind once they propagate out of their generating region, they cannot be described by regional wave models forced by local winds. However, their prediction is important, in particular, for ship routing and off shore structure designing. In the present work, the propagation of swell waves from the Southern Ocean and southern Indian Ocean to the central and northern Indian Ocean has been studied. For this purpose a spectral ocean Wave Model (WAM has been used to simulate significant wave height for 13 years from 1993–2005 using NCEP blended winds at a horizontal spatial resolution of 1° × 1°. It has been observed that Indian Ocean, with average wave height of approximately 2–3 m during July, is mostly dominated by swell waves generated predominantly under the extreme windy conditions prevailing over the Southern Ocean and southern Indian Ocean. In fact the swell waves reaching the Indian Ocean in early or mid May carry unique signatures of monsoon arriving over the Indian Subcontinent. Pre-monsoon month of April contains low swell waves ranging from 0.5–1 m. The amplitudes subsequently increase to approximately 1.5–2 meters around 7–15 days prior to the arrival of monsoon over the Indian Subcontinent. This embedded signature may be utilized as one of the important oceanographic precursor to the monsoon onset over the Indian Ocean.

  3. Helium-induced blistering and volume swelling in nickel

    International Nuclear Information System (INIS)

    Fenske, G.R.

    1979-01-01

    The results of an experimental investigation of He-induced blistering are presented. The mechanisms involved in blistering were examined by observing the microstructure of the implanted region using TEM. The volume swelling was measured as a function of the implant depth. The investigation revealed factors important in understanding the mechanisms involved in blister formation. First, a direct comparison of measured skin-thicknesses with the location of the maximum volume swelling demonstrated that the skin separates at the peak swelling depth, not at the end of the swelling profile. Second, an examination of the assumptions that have been used to predict skin-thicknesses revealed that the differences between predicted and measured skin thicknesses at low energies can be attributed to: failure to account for volume swelling in the skin, using a Gaussian approximation to the range profile, or one generated with a Monte-Carlo code, and uncertainties in the electronic stopping powers. Beyond a certain dose, the density of cavities in the peak-swelling region decreased with increasing dose; indicating that cavity coalescence does occur. A calculation of the He concentration required to fracture the load-bearing cross section between the cavities revealed that a sufficient quantity of He was available to generate the required gas pressures. These observations indicate that models based on coalescence followed by gas-driven deformation provide an accurate description of the mechanisms involved in blistering; and they can accurately predict skin thicknesses at low energies

  4. Void swelling behaviour of austenitic stainless steel during electron irradiation

    International Nuclear Information System (INIS)

    Sheng Zhongqi; Xiao Hong; Peng Feng; Ti Zhongxin

    1994-04-01

    The irradiation swelling behaviour of 00Cr17Ni14Mo2 austenitic stainless steel (AISI 316L) was investigated by means of high voltage electron microscope. Results showed that in solution annealed condition almost no swelling incubation period existed, and the swelling shifted from the transition period to the steady-state one when the displacement damage was around 40 dpa. In cold rolled condition there was evidently incubation period, and when the displacement damage was up to 84 dpa the swelling still remained in the transition period. The average size and density of voids in both conditions were measured, and the factors, which influenced the void swelling, were discussed. (3 figs.)

  5. Swelling of structural materials in fast neutron reactors

    International Nuclear Information System (INIS)

    Seran, J.L.

    1983-06-01

    The physical origin of swelling in irradiated materials and the main parameters acting on swelling of SS 316 are examined: temperature, neutron dose, dose rate, chemical composition, strain hardening. Results obtained, in Rapsodie and Phenix reactors, with fuel cans and with the hexagonal tube containing the fuel pins are analyzed and compared with results found in litterature. In conclusion hot swelling of SS 316 is too important at high doses and is will be replaced by austenitic steels stabilized by Ti and ferritic steels or high nickel steels with structural hardening [fr

  6. Effect of gas atoms on swelling of austenitic stainless steel

    International Nuclear Information System (INIS)

    Igata, N.; Eguchi, N.; Nishibe, E.; Naito, A.

    1994-01-01

    There have been many studies on the effect of He on swelling, however not so many on the effect of nitrogen on swelling. In this study the effect of nitrogen on swelling of 316 steel was investigated under HVEM irradiation for establishing a model of swelling. The nitrogen content was changed from 0.083 to 0.002 wt%, and for the comparison 321 steel containing Ti was used. Irradiation was performed by HVEM at 500 C under 2x10 -3 dpa/s. The dislocation loop number density in the early stage was nearly equal to the cavity number density formed later and both increased with nitrogen content. The swelling increased and decreased through the maximum as the nitrogen content increased. The result was explained by the model of swelling. As for 321 steel, no cavities were found under HVEM until 6 dpa at 500 C. This suggests the effect of scavenging of nitrogen by Ti. ((orig.))

  7. Thyroid swellings in the art of the Italian Renaissance.

    Science.gov (United States)

    Sterpetti, Antonio V; De Toma, Giorgio; De Cesare, Alessandro

    2015-09-01

    Thyroid swellings in the art of the Italian Renaissance are sporadically reported in the medical literature. Six hundred paintings and sculptures from the Italian Renaissance, randomly selected, were analyzed to determine the prevalence of personages with thyroid swellings and its meaning. The prevalence of personages with thyroid swellings in the art of Italian Renaissance is much higher than previously thought. This phenomenon was probably secondary to iodine deficiency. The presence of personages with thyroid swelling was related to specific meanings the artists wanted to show in their works. Even if the function and the role of the thyroid were discovered only after thyroidectomy was started to be performed, at the beginning of the 19th century, artists of the Italian Renaissance had the intuition that thyroid swellings were related to specific psychological conditions. Artistic intuition and sensibility often comes before scientific demonstration, and it should be a guide for science development. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. A STUDY ON PAROTID SWELLINGS

    Directory of Open Access Journals (Sweden)

    Alli Muthiah

    2017-03-01

    Full Text Available BACKGROUND Swellings of the parotid gland are of special interest to a surgeon’s keen eye. These lesions are not only involved in diseases isolated to the parotid, but can also present as a part of a generalised systemic disorder, medical or surgical. For a surgeon, the interests lie in the probable origin of the swelling, its involvement of the facial nerve, the variability in behaviour, regarding the operability criteria and its postoperative complications. 1 A comprehensive knowledge of the anatomy of the parotid and the prediction of the swelling behaviour can help not only in the diagnosis, but also in ensuring an apt management of the lesion and the patient. 2 This cohort study was conducted to analyse the following in our institution. The incidence of various parotid swellings to discuss accuracy of FNAC in comparison to the histopathological reports. The various surgical modalities of treatment of parotid swellings applied. MATERIALS AND METHODS The cohort study, which included 45 patients was conducted at Kilpauk Medical College Hospital and Government Royapettah Hospital from September 2010 to October 2012. Data was collected from the patients after obtaining an informed consent. The demographic details of the patients and history of their swelling was taken. The patients were examined and basic investigations performed. Details regarding the FNAC report, surgical and nonsurgical management were noted. Postoperative complications were documented. The final histopathological report was analysed and compared with the FNAC report. RESULTS Parotid lesions are commonest cases in our study. Benign tumours are more common than malignant lesions. This study found to correlate with world statistics. Investigations, clinical findings and treatment correlate well with world statistical records. CONCLUSION The analysis of the data of the study conducted at our institution provided us with the following results- Parotid lesions comprised of the

  9. Effect of pressure on the transient swelling rate of oxide fuel

    International Nuclear Information System (INIS)

    Gruber, E.E.

    1982-04-01

    An analysis of the transient swelling rate of oxide fuel, based on fission-gas bubble conditions calculated with the FRAS3 code, has been developed and implemented in the code. The need for this capability arises in the coupling of the FRAS3 fission-gas analysis code to the FPIN fuel-pin mechanics code. An efficient means of closely coupling the calculations of swelling strains and stresses between the modules is required. The present analysis provides parameters that allow the FPIN calculation to proceed through a fairly large time step, using estimated swelling rates, to calculate the stresses. These stress values can then be applied in the FRAS3 detailed calculation to refine the swelling calculation, and to provide new values for the parameters to estimate the swelling in the next time step. The swelling rates were calculated for two representative transients and used to estimate swelling over a short time period for various stress levels

  10. 13 CFR 120.611 - Pools backing Pool Certificates.

    Science.gov (United States)

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Pools backing Pool Certificates. 120.611 Section 120.611 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION BUSINESS LOANS Secondary Market Certificates § 120.611 Pools backing Pool Certificates. (a) Pool characteristics. As set...

  11. Spectral partitioning and swells in the black sea

    NARCIS (Netherlands)

    van Vledder, G.P.; Akpınar, Adem; Lynett, P.

    2016-01-01

    The swell climate of the Black Sea has been determined using a long-term 31-year wave hindcast with the thirdgeneration spectral wave model SWAN in combination with spectral partitioning. This technique enables decomposing wave spectra into individual wave systems representing wind seas or swells

  12. Molecular accessibility in solvent swelled coals. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kispert, L.D.

    1994-04-01

    The conversion of coal by an economically feasible catalytic method requires the catalyst to diffuse into the coal sample so that hydrogenation catalysis can occur from within as well as the normal surface catalysis. Thus an estimate of the size, shape, and reactivity, of the pores in the coal before and after the swelling with different solvents is needed so that an optimum sized catalyst will be used. This study characterizes the accessible area found in Argonne Premium Coal Samples (APCS) using a EPR spin probe technique. The properties deduced in this manner correlate well with the findings deduced from SANS, NMR, SEM, SAXS and light scattering measurements. The use of nitroxide spin probes with swelling solvents is a simple way in which to gain an understanding of the pore structure of coals, how it changes in the presence of swelling solvents and the chemistry that occurs at the pore wall. Hydrogen bonding sites occur primarily in low-rank coals and vary in reactive strength as rank is varied. Unswelled coals contain small, spherical pores which disappear when coal is swelled in the presence of polar solvents. Swelling studies of polystyrene-divinyl benzene copolymers implied that coal is polymeric, contains significant quantities of covalent cross-links and the covalent cross-link density increases with rank.

  13. Study of 316 stainless steel swelling due to neutron irradiation

    International Nuclear Information System (INIS)

    Furutani, Gen; Konishi, Takao

    2000-01-01

    Large stresses will be generated in the austenitic stainless steel core internals of pressurized water reactors (PWRs) if excessive swelling occurs after long periods of operation. As a result, deformation or stress corrosion cracking (SCC) could occur in the core internals. However, data on the swelling of irradiated austenitic stainless steel in actual PWRs is limited. In this study, mechanical tests, measurement of produced helium amount and analysis using transmission electron microscopes were carried out on a cold-worked (CW) 316 stainless steel flux thimble tube irradiated up to approximately 35 dpa in a Japanese PWR. The swelling was evaluated to be approximately 0.02%. This level of swelling was much lower than the swelling of the more than several percent that has been observed in fast breeder reactors. (author)

  14. Evaluation of the swelling behaviour of iota-carrageenan in monolithic matrix tablets.

    Science.gov (United States)

    Kelemen, András; Buchholcz, Gyula; Sovány, Tamás; Pintye-Hódi, Klára

    2015-08-10

    The swelling properties of monolithic matrix tablets containing iota-carrageenan were studied at different pH values, with measurements of the swelling force and characterization of the profile of the swelling curve. The swelling force meter was linked to a PC by an RS232 cable and the measured data were evaluated with self-developed software. The monitor displayed the swelling force vs. time curve with the important parameters, which could be fitted with an Analysis menu. In the case of iota-carrageenan matrix tablets, it was concluded that the pH and the pressure did not influence the swelling process, and the first section of the swelling curve could be fitted by the Korsmeyer-Peppas equation. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Partial swelling of latex particles by two monomers

    NARCIS (Netherlands)

    Noel, E.F.J.; Maxwell, I.A.; German, A.L.

    1993-01-01

    The swelling of polymeric latex particles with solvent and monomer is of great importance for the emulsion polymn. process in regard to compn. drift and rate of polymn. For the monomer combination, Me acrylate-vinyl acetate, both satn. and partial swelling were detd. exptl. Theories for satn.

  16. Radiation-induced creep and swelling

    International Nuclear Information System (INIS)

    Heald, P.T.

    1977-01-01

    The physical basis for radiation induced creep and swelling is reviewed. The interactions between the point defects and dislocations are recalled since these interactions are ultimately responsible for the observable deformation phenomena. Both the size misfit interaction and the induced inhomogeneity interaction are considered since the former gives rise to irradiation swelling while the latter, which depends on both internal and external stresses, results in irradiation creep. The defect kinetics leading to the deformation processes are discussed in terms of chemical rate theory. The rate equations for the spatially averaged interstitial and vacancy concentrations are expressed in terms of the microstructural sink strengths and the solution of these equations leads to general expressions for the deformation rates

  17. The Darfur Swell, Africa: Gravity constraints on its isostatic compensation

    Science.gov (United States)

    Crough, S. Thomas

    The free-air gravity anomaly observed over the Darfur Swell is explainable by local isostatic balance with a root approximately 50 km deep on average. This root depth is similar to that inferred beneath other African domes and beneath oceanic midplate swells, suggesting that the Darfur Swell is a hotspot uplift created by lithospheric reheating.

  18. Factors which determine the swelling rate of austenitic stainless steels

    International Nuclear Information System (INIS)

    Garner, F.A.; Wolfer, W.G.

    1983-01-01

    Once void nucleation subsides, the swelling rate of many austenitic alloys becomes rather insensitive to variables that control the transient regime of swelling. Models are presented which describe the roles of nickel, chromium and silicon in void nucleation. The relative insensitivity of steady-state swelling to temperature, displacement rate and composition is also discussed

  19. Swelling-induced chloride current in glioblastoma proliferation, migration, and invasion.

    Science.gov (United States)

    Wong, Raymond; Chen, Wenliang; Zhong, Xiao; Rutka, James T; Feng, Zhong-Ping; Sun, Hong-Shuo

    2018-01-01

    Glioblastoma (GBM) remains as the most common and aggressive brain tumor. The survival of GBM has been linked to the aberrant activation of swelling-induced chloride current I Cl,swell . In this study, we investigated the effects of I Cl,swell on cell viability, proliferation, and migration in the human GBM cell lines, U251 and U87, using a combination of patch clamp electrophysiology, MTT, colony formation, wound healing assays and Western immunoblotting. First, we showed that the specific inhibitor of I Cl,swell , DCPIB, potently reduced the I Cl,swell in U87 cells. Next, in both U87 and U251 cells, we found that DCPIB reduced GBM viability, proliferation, colony formation, migration, and invasion. In addition, our Western immunoblot assay showed that DCPIB-treated U251 cells had a reduction in JAK2, STAT3, and Akt phosphorylation, thus, suggesting that DCPIB potentially suppresses GBM functions through inhibition of the JAK2/STAT3 and PI3K/Akt signaling pathways. Therefore, the I Cl,swell may be a potential drug target for GBM. © 2017 Wiley Periodicals, Inc.

  20. Kinetics of electrically and chemically induced swelling in polyelectrolyte gels

    Science.gov (United States)

    Grimshaw, P. E.; Nussbaum, J. H.; Grodzinsky, A. J.; Yarmush, M. L.

    1990-09-01

    Controlled swelling and shrinking of polyelectrolyte gels is useful for regulating the transport of solutes into, out of, and through these materials. A macroscopic continuum model is presented to predict the kinetics of swelling in polyelectrolyte gel membranes induced by augmentation of electrostatic swelling forces arising from membrane fixed charge groups. The model accounts for ionic transport within the membrane, electrodiffusion phenomena, dissociation of membrane charge groups, intramembrane fluid flow, and mechanical deformation of the membrane matrix. Model predictions are compared with measurements of chemically and electrically induced swelling and shrinking in crosslinked polymethacrylic acid (PMAA) membranes. Large, reversible changes in PMAA membrane hydration were observed after changing the bath pH or by applying an electric field to modify the intramembrane ionic environment and fixed charge density. A relatively slow swelling process and more rapid shrinking for both chemical and electrical modulation of the intramembrane pH are observed. The model indicates that retardation of membrane swelling is dominated by diffusion-limited reaction of H+ ions with membrane charge groups, and that the more rapid shrinking is limited primarily by mechanical processes.

  1. Hereditary angioedema: a bradykinin-mediated swelling disorder.

    Science.gov (United States)

    Björkqvist, Jenny; Sala-Cunill, Anna; Renné, Thomas

    2013-03-01

    Edema is tissue swelling and is a common symptom in a variety of diseases. Edema form due to accumulation of fluids, either through reduced drainage or increased vascular permeability. There are multiple vascular signalling pathways that regulate vessel permeability. An important mediator that increases vascular leak is the peptide hormone bradykinin, which is the principal agent in the swelling disorder hereditary angioedema. The disease is autosomal dominant inherited and presents clinically with recurrent episodes of acute swelling that can be life-threatening involving the skin, the oropharyngeal, laryngeal, and gastrointestinal mucosa. Three different types of hereditary angiodema exist in patients. The review summarises current knowledge on the pathophysiology of hereditary angiodema and focuses on recent experimental and pharmacological findings that have led to a better understanding and new treatments for the disease.

  2. Spinal-cord swelling in acute multiple sclerosis

    International Nuclear Information System (INIS)

    Kikuchi, Seiji; Tashiro, Kunio; Naganuma, Mutsuo; Hida, Kazutoshi; Iwasaki, Yoshinobu; Abe, Hiroshi; Miyasaka, Kazuo

    1986-01-01

    Despite the frequent involvement of the spinal cord by multiple sclerosis, reports concerning neuroradiological findings regarding these lesions have been limited; most of them have demonstrated a normal or small spinal cord. Two cases of acute paraparesis showed evidence of spinal-cord swelling on myelography and CT myelography, initially suggesting the diagnosis of an intramedullary tumor. Spinal-cord swelling was demonstrated more clearly on CT myelography than on conventional myelography. The diagnosis of multiple sclerosis was made with the aid of the CSF findings, the clinical course, and the contracting-cord sign. The ''contracting-cord sign'' means the diminution of the spinal-cord diameter in the chronic stage. Since acute multiple sclerosis may produce spinal-cord swelling simulating a tumor, careful investigations are necessary to avoid unwarranted surgical interventions. (author)

  3. Effect of seawater and high-temperature history on swelling characteristics of bentonite

    International Nuclear Information System (INIS)

    Tanaka, Yukihisa; Nakamura, Kunihiko

    2005-01-01

    In the case of construction of repository for nuclear waste near the coastal area, the effect of seawater on swelling characteristics of bentonite as an engineering as an engineering barrier should be considered. Effects of high-temperature history on swelling characteristics of bentonite should also be considered because nuclear waste generates heat. Thus, in this study, swelling characteristics of bentonite on the conditions of high temperature history and seawater are investigated. The results of this study imply that : (1) Swelling strain of sodium bentonite or transformed sodium bentonite decrease as the salinity of water increases, whereas those of calcium bentonite are not affected by salinity of the water. (2) Quantitative evaluation method for swelling strain and swelling pressure of several kinds of bentonites under brine is proposed. (3) Using distilled water, swelling strain and swelling pressure of sodium bentonite with high-temperature history is less than those without high-temperature history. (author)

  4. Relationship between phase development and swelling of AISI 316 during temperature changes

    International Nuclear Information System (INIS)

    Yang, W.J.S.; Garner, F.A.

    1982-04-01

    The effect of temperature changes on radiation-induced swelling and phase development of AISI 316 has been examined for specimens irradiated in two different experiments. The formation of radiation-stable phases at low temperature appears to precede swelling but these phases tend to dissolve when subsequently subjected to higher temperature. Phases which develop at high temperature persist when the temperature is subsequently lowered. Once nucleated at low temperatures, voids tend to persist without reduction in density at higher temperatures. However, a new round of void nucleation occurs when the temperature is decreased during irradiation. If the swelling has entered the steady-state swelling regime prior to the temperature change, there is no effect on the subsequent swelling rate. For temperature changes that occur before the end of the transient swelling regime, substantial changes can occur in the swelling behavior, particularly if the changes occur in the range around 500 0 . The isothermal swelling behavior of AISI 316 is much less sensitive to irradiation temperature than previously envisioned

  5. Swelling Characteristics and Tensile Properties of Natural Fiber ...

    African Journals Online (AJOL)

    The swelling behavior and tensile strength of natural fiber-reinforced plastic in premium motor spirit (PMS), dual purpose kerosene (DPK) and sea water have been studied. Composite formed by reinforcing polyester resin with Okam fibers was immersed in the selected solvents for 16 weeks (4 months). Swelling ...

  6. A study on the swelling characteristics of a potential buffer material : Effect of ionic strength and temperature on the swelling pressure

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Owan; Cho, Won Jin; Chun, Kwan Sik [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-04-01

    This study is intended to investigate the effect of ionic strength and temperature on the swelling pressure of bentonite. The dry density for compacted bentonite was adjusted between 1.4 Mg/m{sup 3} - 1.8 Mg/m{sup 3}. The effect of temperature was tested at 20 deg C, 40 deg C, 60 deg C, 80 deg C, and the effect of ionic strength with distilled water, synthetic ground water, and 0.01 M - 0.1 M NaCl solution. The swelling pressure decreased with increasing ionic strength, and its dependency got lower at high dry density. Temperature had negligible effect on the swelling pressure of compacted bentonite, which could be explained by the change in hydration pressure, osmotic pressure, and pore water pressure in accordance with temperature. The swelling pressure of compacted bentonite with low dry density was dominated mainly by osmosis. However, hydration was thought to become important at higher dry density, compared with the osmosis. 32 refs., 11 figs., 4 tabs. (Author)

  7. Maintenance of an obstruction-forced pool in a gravel-bed channel: streamflow, channel morphology, and sediment transport.

    Science.gov (United States)

    Richard D. Woodsmith; Marwan A. Hassan

    2005-01-01

    Maintenance of pool morphology in a stream channel with a mobile bed requires hydraulic conditions at moderate to high flows that route bed load through the pool as it is delivered from upstream. Through field measurements of discharge, vertical velocity profiles, bed load transport, and streambed scour, fill, and grain-size distribution, we found that maintenance of a...

  8. Simulation of pool scrubbing experiments using BUSCA

    International Nuclear Information System (INIS)

    Dehbi, A.; Guentay, S.

    1994-01-01

    BUSCA-PSI is a computer code which predicts the aerosol scrubbing taking place when gas bubbles containing fission products rise through stagnant pools of water after a postulated severe accident. A Lagrangian formulation is adopted to follow the path of a bubble as it rises toward the surface of the pool. The BUSCA model includes most aerosol removal mechanisms which are thought to be significant, namely: Jet Impaction at tile orifice, Convection/Diffusiophoresis during steam condensation, Thermophoresis, Sedimentation, Centrifugal Impaction during bubble rise, and Brownian Diffusion. The hydraulic modelling offers a variety of options for the initial globule volume, the stable bubble size, tile bubble rise velocity, and the bubble shape. The heat and mass transfer part of tile model uses correlations found in the relevant literature. BUSCA simulations were performed to determine the decontamination factor (DF) dependence on key aerosol and thermal hydraulic parameters. The decontamination factor increases with height, pool temperature subcooling, and steam content. The decontamination factor exhibits a parabolic dependence on the particle radius. At low particle sizes, the DF is high due to Brownian Diffusion which is the dominant removal mechanism. The DF hits a minimum and then increases with particle size as Centrifugal Impaction and Sedimentation become important. In separate calculations, BUSCA was used to the simulate the aerosol scrubbing experiments performed by EPRI. For cold pool tests, the predicted scrubbing efficiencies were in a good, conservative agreement with the data for both Tin and CsI, and the discrepancies were within the reported measurement errors. For hot pool tests, the code systematically underpredicted the scrubbing DF's; this is potentially due to condensation in the gas space above the pool, a situation not currently modelled by BUSCA. The code was also tested against data produced by the Tepco-Toshiba-Hitachi experiments. The

  9. Swelling on the inner aspect of the lower lip

    Directory of Open Access Journals (Sweden)

    Irfan Mohamad

    2014-08-01

    Full Text Available A 14-year-old man presented with 1-month history of swelling on the inner aspect of his lower lip. The swelling was painless; however, it disturbed his speech. There was no contact bleeding but had a positive history of habitual lip biting. Examination showed a single 0.5 × 1 cm2 soft oval-shaped swelling with well-circumscribed margin (Figures 1 and 2. On palpation, the mass was non-tender and had a cystic or fluctuant sensation.

  10. Fission induced swelling of U–Mo/Al dispersion fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeon Soo, E-mail: yskim@anl.gov [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Jeong, G.Y. [Ulsan National Institute of Science and Technology, 50 UNIST-gil, Eonyang-eup, Uljoo-gun, Ulsan 689-798 (Korea, Republic of); Park, J.M. [Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Robinson, A.B. [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-6188 (United States)

    2015-10-15

    Fission-induced swelling of U–Mo/Al dispersion fuel meat was measured using microscopy images obtained from post-irradiation examination. The data of reduced-size plate-type test samples and rod-type test samples were employed for this work. A model to predict the meat swelling of U–Mo/Al dispersion fuel was developed. This model is composed of several submodels including a model for interaction layer (IL) growth between U–Mo and Al matrix, a model for IL thickness to IL volume conversion, a correlation for the fission-induced swelling of U–Mo alloy particles, a correlation for the fission-induced swelling of IL, and models of U–Mo and Al consumption by IL growth. The model was validated using full-size plate data that were not included in the model development.

  11. Comparison of FISGAS swelling and gas release predictions with experiment

    International Nuclear Information System (INIS)

    Ostensen, R.W.

    1979-01-01

    FISGAS calculations were compared to fuel swelling data from the FD1 tests and to gas release data from the FGR39 test. Late swelling and gas release predictions are satisfactory if vacancy depletion effects are added to the code. However, early swelling predictions are not satisfactory, and early gas release predictions are very poor. Explanation of these discrepancies is speculative

  12. Assessment of void swelling in austenitic stainless steel PWR core internals

    International Nuclear Information System (INIS)

    Chung, H.M.

    2006-01-01

    As many pressurized water reactors (PWRs) age and life extension of the aged plants is considered, void swelling behavior of austenitic stainless steel (SS) core internals has become the subject of increasing attention. In this report, the available database on void swelling and density change of austenitic SSs was critically reviewed. Irradiation conditions, test procedures, and microstructural characteristics were carefully examined, and key factors that are important to determine the relevance of the database to PWR conditions were evaluated. Most swelling data were obtained from steels irradiated in fast breeder reactors at temperatures >385 C and at dose rates that are orders of magnitude higher than PWR dose rates. Even for a given irradiation temperature and given steel, the integral effects of dose and dose rate on void swelling should not be separated. It is incorrect to extrapolate swelling data on the basis of 'progressive compounded multiplication' of separate effects of factors such as dose, dose rate, temperature, steel composition, and fabrication procedure. Therefore, the fast reactor data should not be extrapolated to determine credible void swelling behavior for PWR end-of-life (EOL) or life-extension conditions. Although the void swelling data extracted from fast reactor studies is extensive and conclusive, only limited amounts of swelling data and information have been obtained on microstructural characteristics from discharged PWR internals or steels irradiated at temperatures and at dose rates comparable to those of a PWR. Based on this relatively small amount of information, swelling in thin-walled tubes and baffle bolts in a PWR is not considered a concern. As additional data and relevant research becomes available, the newer results should be integrated with existing data, and the worthiness of this conclusion should continue to be scrutinized. PWR baffle reentrant corners are the most likely location to experience high swelling rates, and

  13. Flow velocity calculation to avoid instability in a typical research reactor core

    International Nuclear Information System (INIS)

    Oliveira, Carlos Alberto de; Mattar Neto, Miguel

    2011-01-01

    Flow velocity through a research reactor core composed by MTR-type fuel elements is investigated. Core cooling capacity must be available at the same time that fuel-plate collapse must be avoided. Fuel plates do not rupture during plate collapse, but their lateral deflections can close flow channels and lead to plate over-heating. The critical flow velocity is a speed at which the plates collapse by static instability type failure. In this paper, critical velocity and coolant velocity are evaluated for a typical MTR-type flat plate fuel element. Miller's method is used for prediction of critical velocity. The coolant velocity is limited to 2/3 of the critical velocity, that is a currently used criterion. Fuel plate characteristics are based on the open pool Australian light water reactor. (author)

  14. Study of swelling behavior in ArF resist during development by the QCM method (3): observations of swelling layer elastic modulus

    Science.gov (United States)

    Sekiguchi, Atsushi

    2013-03-01

    The QCM method allows measurements of impedance, an index of swelling layer viscosity in a photoresist during development. While impedance is sometimes used as a qualitative index of change in the viscosity of the swelling layer, it has to date not been used quantitatively, for data analysis. We explored a method for converting impedance values to elastic modulus (Pa), a coefficient expressing viscosity. Applying this method, we compared changes in the viscosity of the swelling layer in an ArF resist generated during development in a TMAH developing solution and in a TBAH developing solution. This paper reports the results of this comparative study.

  15. Neurofibromas as bilateral cystic chest wall swellings. | Ugare ...

    African Journals Online (AJOL)

    A 35 year old male farmer presented with soft bilateral posterior chest wall swellings. He had no similar swellings elsewhere. There were no associated symptoms, except cosmetic deformity and discomfort when he lies on his back. A clinical diagnosis of posterior chest wall lipomata was made. However at surgery, the two ...

  16. Swell propagation across a wide continental shelf

    OpenAIRE

    Hendrickson, Eric J.

    1996-01-01

    The effects of wave refraction and damping on swell propagation across a wide continental shelf were examined with data from a transect of bottom pressure recorders extending from the beach to the shelf break near Duck, North Carolina. The observations generally show weak variations in swell energy across the shelf during benign conditions, in qualitative agreement with predictions of a spectral refraction model. Although the predicted ray trajectories are quite sensitive to the irregular she...

  17. The wind sea and swell waves climate in the Nordic seas

    Science.gov (United States)

    Semedo, Alvaro; Vettor, Roberto; Breivik, Øyvind; Sterl, Andreas; Reistad, Magnar; Soares, Carlos Guedes; Lima, Daniela

    2015-02-01

    A detailed climatology of wind sea and swell waves in the Nordic Seas (North Sea, Norwegian Sea, and Barents Sea), based on the high-resolution reanalysis NORA10, developed by the Norwegian Meteorological Institute, is presented. The higher resolution of the wind forcing fields, and the wave model (10 km in both cases), along with the inclusion of the bottom effect, allowed a better description of the wind sea and swell features, compared to previous global studies. The spatial patterns of the swell-dominated regional wave fields are shown to be different from the open ocean, due to coastal geometry, fetch dimensions, and island sheltering. Nevertheless, swell waves are still more prevalent and carry more energy in the Nordic Seas, with the exception of the North Sea. The influence of the North Atlantic Oscillation on the winter regional wind sea and swell patterns is also presented. The analysis of the decadal trends of wind sea and swell heights during the NORA10 period (1958-2001) shows that the long-term trends of the total significant wave height (SWH) in the Nordic Seas are mostly due to swell and to the wave propagation effect.

  18. How Much Do Ultrathin Polymers with Intrinsic Microporosity Swell in Liquids?

    KAUST Repository

    Ogieglo, Wojciech

    2016-09-13

    As synthetic membrane materials, polymers with intrinsic microporosity (PIMs) have demonstrated unprecedented permeation and molecular-separation properties. Here, we report the swelling characteristics of submicron-thick supported films of spirobisindane-based PIMs, PIM-1 and PIM-6FDA-OH, for six organic solvents and water using in situ spectroscopic ellipsometry. Surprisingly, PIMs swell significantly in most organic solvents, with swelling factors (SF = h/h) as high as 2.5. This leads to the loss of the ultrarigid character of the polymer and produces equilibrated liquid-like swollen films. Filling of the excess frozen-in fractional free volume with liquid was discovered next to swelling-induced polymer matrix dilation. Water hardly swells the polymer matrix, but it penetrates into the intrinsic microporous structure. This study is the first to provide fundamental swelling data for PIMs, leading to better comprehension of their permeation properties. Such an understanding is indispensable for applications such as solvent filtration, natural-gas separation, and ion retention in flow batteries.

  19. How Much Do Ultrathin Polymers with Intrinsic Microporosity Swell in Liquids?

    Science.gov (United States)

    Ogieglo, Wojciech; Ghanem, Bader; Ma, Xiaohua; Pinnau, Ingo; Wessling, Matthias

    2016-10-06

    As synthetic membrane materials, polymers with intrinsic microporosity (PIMs) have demonstrated unprecedented permeation and molecular-separation properties. Here, we report the swelling characteristics of submicron-thick supported films of spirobisindane-based PIMs, PIM-1 and PIM-6FDA-OH, for six organic solvents and water using in situ spectroscopic ellipsometry. Surprisingly, PIMs swell significantly in most organic solvents, with swelling factors (SF = h swollen /h dry ) as high as 2.5. This leads to the loss of the ultrarigid character of the polymer and produces equilibrated liquid-like swollen films. Filling of the excess frozen-in fractional free volume with liquid was discovered next to swelling-induced polymer matrix dilation. Water hardly swells the polymer matrix, but it penetrates into the intrinsic microporous structure. This study is the first to provide fundamental swelling data for PIMs, leading to better comprehension of their permeation properties. Such an understanding is indispensable for applications such as solvent filtration, natural-gas separation, and ion retention in flow batteries.

  20. How Much Do Ultrathin Polymers with Intrinsic Microporosity Swell in Liquids?

    KAUST Repository

    Ogieglo, Wojciech; Ghanem, Bader; Ma, Xiaohua; Pinnau, Ingo; Wessling, Matthias

    2016-01-01

    As synthetic membrane materials, polymers with intrinsic microporosity (PIMs) have demonstrated unprecedented permeation and molecular-separation properties. Here, we report the swelling characteristics of submicron-thick supported films of spirobisindane-based PIMs, PIM-1 and PIM-6FDA-OH, for six organic solvents and water using in situ spectroscopic ellipsometry. Surprisingly, PIMs swell significantly in most organic solvents, with swelling factors (SF = h/h) as high as 2.5. This leads to the loss of the ultrarigid character of the polymer and produces equilibrated liquid-like swollen films. Filling of the excess frozen-in fractional free volume with liquid was discovered next to swelling-induced polymer matrix dilation. Water hardly swells the polymer matrix, but it penetrates into the intrinsic microporous structure. This study is the first to provide fundamental swelling data for PIMs, leading to better comprehension of their permeation properties. Such an understanding is indispensable for applications such as solvent filtration, natural-gas separation, and ion retention in flow batteries.

  1. Experimental investigations of two-phase mixture level swell and axial void fraction distribution under high pressure, low heat flux conditions in rod bundle geometry

    International Nuclear Information System (INIS)

    Anklam, T.M.; White, M.D.

    1981-01-01

    Experimental data is reported from a series of quasi-steady-state two-phase mixture level swell and void fraction distribution tests. Testing was performed at ORNL in the Thermal Hydraulic Test Facility - a large electrically heated test loop configured to produce conditions similar to those expected in a small break loss of coolant accident. Pressure was varied from 2.7 to 8.2 MPa and linear power ranged from 0.33 to 1.95 kW/m. Mixture swell was observed to vary linearly with the total volumetric vapor generation rate over the power range of primary interest in small break analysis. Void fraction data was fit by a drift-flux model and both the drift-velocity and concentration parameter were observed to decrease with increasing pressure

  2. Swelling of the buffer of KBS-3V deposition hole

    International Nuclear Information System (INIS)

    Lempinen, A.

    2006-12-01

    At the time of the installation of spent nuclear fuel canister in the KBS-3V deposition hole, empty space is left around bentonite buffer for technical reasons. The gap between the buffer and the canister is about 10 mm, and the gap between the buffer and the rock is 30 to 35 mm. In this study, the swelling of the buffer to fill the gaps was simulated, when the gaps are initially filled with water and no external water is available. The model used here is a thermodynamical model for swelling clay, with parameters determined for bentonite. The simulations presented here were performed with Freefem++ software, which is a finite element application for partial differential equations. These equations come from the material model. The simulation results show that the swelling fills the outer gaps in few years, but no significant swelling pressure is generated. For swelling pressure, external water supply is required. (orig.)

  3. Reassessment of the swelling behavior of AISI 304 stainless steel

    International Nuclear Information System (INIS)

    Garner, F.A.; Porter, D.L.

    1982-03-01

    Published swelling data derived from EBR-II irradiations of AISI 304 and 304L have been reanalyzed in light of insights gained from irradiation of AISI 316 and Fe-15Cr-25Ni. The primary influence of temperature, displacement rate and compositional variations in the 300 series stainless steels lies in the duration of the transient regime of swelling and not in the steady-state or constant swelling rate regime

  4. Influence of applied stress on swelling behavior in Type 304 stainless steel

    International Nuclear Information System (INIS)

    Igata, N.; Fujihira, T.; Kohno, Y.; Tsunakawa, M.

    1984-01-01

    The swelling behavior of Type 304 stainless steel during stress application was investigated by means of electron irradiation using a high-voltage electron microscope (HVEM). The dose dependence of swelling under stress is similar to the linearafter-incubation swelling scheme of other electron irradiation studies. The effect of applied stress on the swelling characteristics appeared through the control of incubation regime of swelling rather than of the swelling rate. The incubation dose first increases, then decreases, and increases again with increasing applied stress. The prominent finding in this study, based on the advantage of HVEM in situ observation, is that the saturated void density is equal to the number density of interstitial dislocation loops observed in the early stage of irradiation. Essentially, applied stress affects the loop nucleation process. The dislocation loop density then affects the incubation dose of swelling through its control of dislocation behavior and the saturation dose of dislocation density

  5. Effect of synthesis parameters on polymethacrylic acid xerogel structures and equilibrium swelling

    Science.gov (United States)

    Panić, V.; Jovanović, J.; Adnadjević, B.; Velicković, S.

    2009-09-01

    Hydrogels based on crosslinked polymethacrylic acid were synthesized via free-radical polymerization in aqueous solution, using N,N'-methylene bisacrylamide as a crosslinking agent and 2,2'-azobis-[2-(2-imidazolin-2-yl)propane] dihydrochloride as an initiator. The influence of the reaction parameters (the neutralization degree of methacrylic acid and the initial monomer concentration) on the equilibrium swelling degree, the swelling kinetic parameters and the basic structural properties of xerogels was investigated. The change of synthesis parameters leads to the change of the basic structural parameters of xerogel, as well as the equilibrium swelling degree and the initial swelling rate of the hydrogels. It is found that there are power form relationships between the equilibrium swelling degree, the initial swelling rate and the structural xerogel’s properties and the change of the neutralization degree of monomer, i.e. the monomer concentration. The examined correlations proved that the crosslinking density is the crucial parameter which determines all the other investigated structural and swelling parameters.

  6. Swelling pressures of a potential buffer material for high-level waste repository

    International Nuclear Information System (INIS)

    Lee, Jae Owan; Cho, Won Jin; Chun, Kwan Sik

    1999-01-01

    The swelling pressure of a potential buffer material was measured and the effect of dry density, bentonite content and initial water content on the swelling pressure was investigated to provide the information for the selection of buffer material in a high-level waste repository. Swelling tests were carried out according to Box-Behnken's experimental design. Measured swelling pressures were in the wide range of 0.7 Kg/cm 2 to 190.2 Kg/cm 2 under given experimental conditions. Based upon the experimental data, a 3-factor polynomial swelling model was suggested to analyze the effect of dry density, bentonite content and initial water content on the swelling pressure. The swelling pressure increased with an increase in the dry density and bentonite content, while it decreased with increasing the initial water content and, beyond about 12 wt.% of the initial water content, levelled to nearly constant value. (author). 21 refs., 10 figs., 4 tabs

  7. Mechanism of swelling suppression in phosphorous-modified Fe-Ni-Cr alloys

    International Nuclear Information System (INIS)

    Lee, E.H.; Mansur, L.K.

    1986-01-01

    Five simple alloys were ion irradiated at 948 0 K in an experiment designed to investigate the mechanism of swelling suppression associated with phosphorous additions. One of the alloys was the simple ternary Fe-15Ni-13Cr, another had 0.05% P added and the other three had further additions of the phosphide precipitate-forming elements Ti and/or Si. Ion irradiations were carried out with heavy ions only (Ni or Fe) or with heavy ions followed by dual heavy ions and helium. The ternary with and without P swelled readily early in dose with or without helium. The other three alloys only showed swelling in the presence of helium and exhibited a long delay in dose prior to the onset of swelling. These displayed fine distributions of Fe 2 P type phosphide precipitates enhanced by irradiation. The phosphide particles gave rise to very high concentrations of stable helium filled cavities at the precipitate matrix interfaces. The results were analyzed in terms of the theory of cavity swelling. The accumulation of the critical number of gas atoms in an individual cavity is required in the theory for point defect driven swelling to begin. It is concluded that the primary mechanism leading to swelling suppression is therefore the dilution of injected helium over a very large number of cavities. It is suggested that this mechanism may offer a key for alloy design for swelling resistance in high helium environments

  8. Hysteresis in clay swelling induced by hydrogen bonding: accurate prediction of swelling states

    NARCIS (Netherlands)

    Tambach, T.J.; Bolhuis, P.G.; Hensen, E.J.M.; Smit, B.

    2006-01-01

    We perform grand-canonical molecular simulations to study the molecular mechanism of clay swelling hysteresis as a function of the relative humidity. In particular, we focus on the transition from the one- to the two-layer hydrate and the influence of three types of counterions (Li+, Na+, and K+).

  9. The Compressibility and Swell of Mixtures for Sand-Clay Liners

    Directory of Open Access Journals (Sweden)

    Muawia A. Dafalla

    2017-01-01

    Full Text Available Sand-clay liners utilize expansive clay to act as a filler to occupy the voids in the sand and thus reduce the hydraulic conductivity of the mixture. The hydraulic conductivity and transfer of water and other substances through sand-clay mixtures are of prime concern in the design of liners and hydraulic barriers. Many successful research studies have been undertaken to achieve appropriate mixtures that satisfy hydraulic conductivity requirements. This study investigates compressibility and swelling properties of mixtures to ensure that they were acceptable for light structures, roads, and slabs on grade. A range of sand-expansive clay mixtures were investigated for swell and compression properties. The swelling and compressibility indices were found to increase with increasing clay content. The use of highly expansive material can result in large volume changes due to swell and shrinkage. The inclusion of less expansive soil material as partial replacement of bentonite by one-third to two-thirds is found to reduce the compressibility by 60% to 70% for 10% and 15% clay content, respectively. The swelling pressure and swell percent were also found significantly reduced. Adding less expansive natural clay to bentonite can produce liners that are still sufficiently impervious and at the same time less problematic.

  10. Influence of solutes on heavy ion induced void-swelling in binary copper alloys

    International Nuclear Information System (INIS)

    Leister, K.H.

    1983-05-01

    As radiation induced swelling of metals depends on their constitution, swelling of copper and copper alloys with low solute concentration is studied. Diffusion coefficients and solubility of solute in copper were used as criteria of selection of the alloys. The samples were irradiated by 200keV copper ions. Swelling and void densities were measured by transmission electron microscopy. The measurements show low dependence of swelling upon the diffusibility of the solute in the solvent and a strong dependence on their concentration. Alloys of 0.1at% solute show more swelling than pure copper, and alloys of 1at% show less swelling under the irradiation conditions. The different swelling behavior in Cu-Ni alloys is due to the different void densities. (orig.) [de

  11. Swelling and microstructure of neutrons irradiated 316 Ti SS

    International Nuclear Information System (INIS)

    Seran, J.L.; Le Naour, L.; Grosjean, P.; Hugon, M.P.; Carteret, Y.; Maillard, A.

    1984-06-01

    The analysis of the behaviour of fuel pins irradiated in the same RAPSODIE subassembly, shows that titanium has a marked beneficial effect on the swelling resistance of CW 316 SS in a large range of temperature. This effect is particularly visible at high temperature since CW 316 Ti SS does not swell above 550 0 C up to a dose of 100 French dpa. The results obtained on samples irradiated in a RAPSODIE experimental rig give us confirmation of the good behaviour of CW 316 Ti SS which swells less and at smaller temperature than the other steels of the 316 series such as SA 316 Ti or aged SA 316 Ti. The swelling differences between some of these materials can be associated to different microstructures which are also very different from the ones obtained on the irradiated steels aged in the same time and temperature conditions

  12. Conjugated heat transfer of natural convection in pool with internal heat sources and convection in the tube

    International Nuclear Information System (INIS)

    Li Longjian; Liu Hongtao; Cui Wenzhi

    2007-01-01

    The conjugated heat transfer of natural convection in pool with internal heat source and the forced convection in the tube was analyzed, and the corresponding three-dimensional physical and mathematical model was proposed. A control volume based finite element method was employed to solve numerically the problem. The computations were performed for different internal heat source intensity of the pool and the different flow velocity in the tube. The computed heat transfer coefficients on the inner and outer wall showed well consistency of those calculated with the empirical correlations. Compared with the measured total heat transfer coefficients between the fluids in and out of the tube, the computed ones showed also the well consistency, which implied that the numerical model proposed in this paper was reliable. The research results revealed that the total heat transfer coefficients between the fluids were strongly affected by the internal heat source intensity of the pool liquid and the flow velocity in the tube. (authors)

  13. Investigating the swelling pressure of compacted crushed-Callovo-Oxfordian clay-stone

    International Nuclear Information System (INIS)

    Tang, C. S.; Tang, A. M.; Cui, Y. J.; Delage, P.; Schroeder, C.; De Laure, E.

    2011-01-01

    This paper presents an experimental study on the swelling pressure of heavily compacted crushed Callovo-Oxfordian (COx) clay-stone at a dry unit mass ρ d =2.0 Mg/m 3 using four different methods: constant-volume, swell-reload, zero-swell and adjusted constant-volume method. Results show that the swelling pressure varies in the range of 1-5 MPa and depends significantly on the test method. From the constant-volume tests, it is observed that the swelling behavior during wetting is a function of the suction and depends on both the hydration paths and wetting conditions (e.g. vapor-wetting or liquid-wetting). The swelling pressure decreases significantly with saturation time. To identify the microstructure changes of specimens before and after wetting, mercury intrusion porosimetry (MIP) and scanning electron microscopy (SEM) tests were performed. It is observed that, after wetting, the large inter-aggregate pores observed in the as-compacted specimen are no longer apparent; the whole pattern is characterized by a general swell of hydrated clay particles, rendering the soil more homogenous. Results from MIP indicated that wetting caused a significant reduction of the entrance diameter of the dominant inter-aggregate pores from 2.1 to 0.5μm whereas intra-aggregate pores were not significantly influenced. (authors)

  14. Theory of void swelling, irradiation creep and growth

    International Nuclear Information System (INIS)

    Wood, M.H.; Bullough, R.; Hayns, M.R.

    Recent progress in our understanding of the fundamental mechanisms involved in swelling, creep and growth of materials subjected to irradiation is reviewed. The topics discussed are: the sink types and their strengths in the lossy continuum; swelling and void distribution analysis, including recent work on void nucleation; and, irradiation creep and growth of zirconium and zircaloy are taken as an example

  15. Swelling behavior of several bituminous coals and their thermally treated coals

    Energy Technology Data Exchange (ETDEWEB)

    Shui, Heng-fu; Cao, Mei-xia; Wang, Zhi-cai [Anhui University of Technology, Maanshan (China). School of Chemistry & Chemical Engineering

    2007-07-01

    The swelling behavior in different solvents of 4 bituminous coals with different ranks and their residues from extraction by CS{sub 2}/NMP mixed solvent (l:1 in volume) were measured. The change in swelling property of the four coals thermally treated at different temperature was observed. The results show that the swelling ratio decreases with increasing rank of coal. For lower rank bituminous coals the swelling ratios in polar solvent are higher than those in non-polar solvent, and this difference decreases with increasing rank. The cross-linking densities of the four residues decrease, and the swelling ratios increase compared with those of raw coals. The swelling ratios of the four thermally treated coals under 150{sup o}C in CS{sub 2} increase, suggesting the decrease in crosslinking density of them. When the thermal treatment temperature increases to 240{sup o}C, the swelling rations of the other three coals in NMP and CS{sub 2} increase again except gas coal, demonstrating the further decrease in crosslinking density. This result is coincident with the extraction yield change in the mixed solvent of the thermally treated coal. For example, the extraction yield of lean coal treated at 240{sup o}C increases from 6.9% to 17.3%. FT-IR results show the removal of oxygen group of the thermally treated coals. This may explain the increase in swelling ratio and extraction yield in the mixed solvent of coal after thermal treatment. The cross-linking density of the thermally treated coal decreases because of the break of hydrogen bonds due to removal of C = 0 and -OH oxygen groups during the thermal treatment, resulting in the increases of swelling ratio and extraction yield in the mixed solvent of thermally treated coal compared with those of raw coal. 15 refs., 3 figs., 6 tabs.

  16. Overview of the swelling behavior of 316 stainless steel

    International Nuclear Information System (INIS)

    Garner, F.A.

    1985-01-01

    The austenitic stainless steel designated as A1S1 316 is currently being used as the major structural material for fast breeder reactors in the United States, Britain and France. Efforts are now underway in each country to optimize the swelling resistance of this alloy for further application to both fission and fusion power generating devices. The optimization effort requires knowledge of the factors which control swelling in order that appropriate compositional and fabricational modifications can be made to the alloy specification. The swelling data for this alloy are reviewed and the conclusion is reached that optimization efforts must focus on the incubation or transient regime of swelling rather than the post-transient or ''steady-state'' regime. Attempts to reduce the swelling of this steel by solute modification have focused on elements such as phosphorous and titanium. It is shown that the action of these solutes is manifested only in their ability to extend the transient regime. It is also shown that irradiation at high helium/dpa ratios does not appear to change the conclusions of this study. Another important conclusion is that small differences in reactor environmental history can have a larger influence than either helium or solutes

  17. Overview of the swelling behavior of 316 stainless steel

    International Nuclear Information System (INIS)

    Garner, F.A.

    1984-01-01

    The austenitic stainless steel designated as AISI 316 is currently being used as the major structural material for fast breeder reactors in the United States, Britain and France. Efforts are now underway in each country to optimize the swelling resistance of this alloy for further application to both fission and fusion power generating devices. The optimization effort requires knowledge of the factors which control swelling in order that appropriate compositional and fabricational modifications can be made to the alloy specification. The swelling data for this alloy are reviewed and the conclusion is reached that optimization efforts must focus on the incubation or transient regime of swelling rather than the post-transient or ''steady-state'' regime. Attempts to reduce the swelling of this steel by solute modification have focused on elements such as phosphorus and titanium. It is shown that the action of these solutes is manifested only in their ability to extend the transient regime. It is also shown that irradiation at high helium/dpa ratios does not appear to change the conclusions of this study. Another important conclusion is that small differences in reactor environmental history can have a larger influence than either helium or solutes. 31 refs., 27 figs., 1 tab

  18. The imaging diagnosis of diffuse brain swelling due to severe brain trauma

    International Nuclear Information System (INIS)

    Shen Jianqiang; Hu Jiawang

    2008-01-01

    Objective: To discuss the clinical and pathological characteristics and the imaging types of the diffuse brain swelling due to severe brain trauma. Methods: The clinical data and CT and MR images on 48 cases with diffuse brain swelling due to severe brain trauma were analyzed. Results: Among these 48 cases of the diffuse brain swelling due to severe brain trauma, 33 cases were complicated with brain contusions (including 12 cases brain diffuse axonal injury, 1 case infarct of the right basal ganglion), 31 cases were complicated with hematoma (epidural, subdural or intracerebral), 27 cases were complicated with skull base fracture, and 10 cases were complicated with subarachnoid hematoma. The CT and MR imaging of the diffuse brain swelling included as followed: (1) Symmetrically diffuse brain swelling in both cerebral hemispheres with cerebral ventricles decreased or disappeared, without median line shift. (2)Diffuse brain swelling in one side cerebral hemisphere with cerebral ventricles decreased or disappeared at same side, and median line shift to other side. (3) Subarachnoid hematoma or little subcortex intracerebral hematoma were complicated. (4) The CT value of the cerebral could be equal, lower or higher comparing with normal. Conclusion: The pathological reason of diffuse brain swelling was the brain vessel expanding resulting from hypothalamus and brainstem injured in severe brain trauma. There were four CT and MR imaging findings in diffuse brain swelling. The diffuse brain swelling without hematoma may be caused by ischemical reperfusion injury. (authors)

  19. Recent experimental and theoretical insights on the swelling of austenitic alloys

    International Nuclear Information System (INIS)

    Garner, F.A.; Wolfer, W.G.

    1983-01-01

    Once void nucleation subsides, the swelling rate of many austenitic alloys becomes rather insensitive to the variables that determine the duration of the transient regime of swelling. Models are presented which describe the roles of nickel, chromium and silicon in void nucleation. The relative insensitivity of steady-state swelling to temperature and composition is also discussed

  20. Postoperative Submandibular Gland Swelling following Craniotomy under General Anesthesia

    Directory of Open Access Journals (Sweden)

    Haruka Nakanishi

    2015-01-01

    Full Text Available Objective. Reporting of a rare case of postoperative submandibular gland swelling following craniotomy. Case Report. A 33-year-old male underwent resection for a brain tumor under general anesthesia. The tumor was resected via a retrosigmoid suboccipital approach and the patient was placed in a lateral position with his face down and turned to the right. Slight swelling of the right submandibular gland was observed just after the surgery. Seven hours after surgery, edematous change around the submandibular gland worsened and he required emergent reintubation due to airway compromise. The cause of submandibular gland swelling seemed to be an obstruction of the salivary duct due to surgical positioning. Conclusion. Once submandibular swelling and edematous change around the submandibular gland occur, they can worsen and compromise the air way within several hours after operation. Adequate precaution must be taken for any predisposing skull-base surgery that requires strong cervical rotation and flexion.

  1. Swelling in neutron irradiated nickel-base alloys

    International Nuclear Information System (INIS)

    Brager, H.R.; Bell, W.L.

    1972-01-01

    Inconel 625, Incoloy 800 and Hastelloy X were neutron irradiated at 500 to 700 0 C. It was found that of the three alloys investigated, Inconel 625 offers the greatest swelling resistance. The superior swelling resistance of Inconel 625 relative to that of Hastelloy-X is probably related to differences in the concentrations of the minor rather than major alloy constituents, and can involve (a) enhanced recombination of defects in the Inconel 625 and (b) preferential attraction of vacancies to incoherent precipitates. (U.S.)

  2. Study of mixed convection in sodium pool

    International Nuclear Information System (INIS)

    Wang Zhou; Chen Yan

    1995-01-01

    The mixed convection phenomena in the sodium pool of fast reactor have been studied systematically by the two dimensional modeling method. A generalized concept of circumferential line in the cylindrical coordinates was proposed to overcome the three dimensional effect induced by the pool geometry in an analysis of two dimensional modeling. A method of sub-step in time was developed for solving the turbulent equations. The treatments on the boundary condition for the auxiliary velocity field have been proposed, and the explanation of allowing the flow function method to be used in the flow field in presence of a mass source term was given. As examples of verification, the experiments were conducted with water flow in a rectangular cavity. The results from theoretical analysis were applied to the numerical computation for the mixed convection in the cavity. The mechanism of stratified flow in the cavity was studied. A numerical calculation was carried out for the mixed convection in hot plenum of a typical fast reactor

  3. Cell swelling and volume regulation

    DEFF Research Database (Denmark)

    Hoffmann, Else Kay

    1992-01-01

    The extracellular space in the brain is typically 20% of the tissue volume and is reduced to at least half its size under conditions of neural insult. Whether there is a minimum size to the extracellular space was discussed. A general model for cell volume regulation was presented, followed...... by a discussion on how many of the generally involved mechanisms are identified in neural cells and (or) in astrocytes. There seems to be clear evidence suggesting that parallel K+ and Cl- channels mediate regulatory volume decrease in primary cultures of astrocytes, and a stretch-activated cation channel has...... been reported. The role of the different channels was discussed. A taurine leak pathway is clearly activated after cell swelling both in astrocytes and in neurones. The relations between the effect of glutamate and cell swelling were discussed. Discussion on the clearance of potassium from...

  4. Development and validation of constitutive equation of HBS irradiation swelling considering hydrostatic pressure

    International Nuclear Information System (INIS)

    Gao Lijun; Jiang Shengyao; Yu Jiyang; Chen Bingde; Xiao Zhong

    2014-01-01

    The mechanism of hydrostatic pressure affecting the irradiation swelling of UO_2 high burnup structure was analyzed. Three basic assumptions used to develop the constitutive equation of irradiation swelling were made accordingly. It is concluded that hydrostatic pressure imposes an important impact on irradiation swelling mainly through compressing the UO_2 high burnup structure pores. Based on the already developed correlation of the irradiation swelling of UO_2 high burnup structure, pore shrinkage due to the application of hydrostatic pressure and thus the reduction of irradiation swelling of UO_2 high burnup structure were determined quantitatively, and the constitutive equation of irradiation swelling of UO_2 high burnup structure considering the hydrostatic pressure was constructed successfully. The constitutive equation is validated using available irradiation swelling data of UO_2 high burnup structure, which demonstrates its reasonability. (authors)

  5. Calcium in the Mechanism of Ammonia-Induced Astrocyte Swelling

    Science.gov (United States)

    Jayakumar, A.R.; Rao, K.V. Rama; Tong, X.Y; Norenberg, M.D.

    2016-01-01

    Brain edema, due largely to astrocyte swelling, is an important clinical problem in patients with acute liver failure. While mechanisms underlying astrocyte swelling in this condition are not fully understood, ammonia and associated oxidative/nitrosative stress (ONS) appear to be involved. Mechanisms responsible for the increase in reactive oxygen/nitrogen species (RONS) and their role in ammonia-induced astrocyte swelling, however, are poorly understood. Recent studies have demonstrated a transient increase in intracellular Ca2+ in cultured astrocytes exposed to ammonia. As Ca2+ is a known inducer of RONS, we investigated potential mechanisms by which Ca2+ may be responsible for the production of RONS and cell swelling in cultured astrocytes after treatment with ammonia. Exposure of cultured astrocytes to ammonia (5 mM) increased the formation of free radicals, including nitric oxide, and such increase was significantly diminished by treatment with the Ca2+ chelator BAPTA-AM. We then examined the activity of Ca2+-dependent enzymes that are known to generate RONS and found that ammonia significantly increased the activities of NADPH oxidase (NOX), constitutive nitric oxide synthase (cNOS) and phospholipase A2 (PLA2) and such increases in activity were significantly diminished by BAPTA. Pretreatment of cultures with 7-nitroindazole, apocyanin and quinacrine, respective inhibitors of cNOS, NOX and PLA2, all significantly diminished RONS production. Additionally, treatment of cultures with BAPTA or with inhibitors of cNOS, NOX and PLA2 reduced ammonia-induced astrocyte swelling. These studies suggest that the ammonia-induced rise in intracellular Ca2+ activates free radical producing enzymes that ultimately contribute to the mechanism of astrocyte swelling. PMID:19393035

  6. Hawaii ESI: POOLS (Anchialine Pool Points)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for anchialine pools in Hawaii. Anchialine pools are small, relatively shallow coastal ponds that occur...

  7. Microstructure and anisotropic swelling behaviour of compacted bentonite/sand mixture

    Directory of Open Access Journals (Sweden)

    Simona Saba

    2014-04-01

    Full Text Available Pre-compacted elements (disks, torus of bentonite/sand mixture are candidate materials for sealing plugs of radioactive waste disposal. Choice of this material is mainly based on its swelling capacity allowing all gaps in the system to be sealed, and on its low permeability. When emplaced in the gallery, these elements will start to absorb water from the host rock and swell. Thereby, a swelling pressure will develop in the radial direction against the host rock and in the axial direction against the support structure. In this work, the swelling pressure of a small scale compacted disk of bentonite and sand was experimentally studied in both radial and axial directions. Different swelling kinetics were identified for different dry densities and along different directions. As a rule, the swelling pressure starts increasing quickly, reaches a peak value, decreases a little and finally stabilises. For some dry densities, higher peaks were observed in the radial direction than in the axial direction. The presence of peaks is related to the microstructure change and to the collapse of macro-pores. In parallel to the mechanical tests, microstructure investigation at the sample scale was conducted using microfocus X-ray computed tomography (μCT. Image observation showed a denser structure in the centre and a looser one in the border, which was also confirmed by image analysis. This structure heterogeneity in the radial direction and the occurrence of macro-pores close to the radial boundary of the sample can explain the large peaks observed in the radial swelling pressure evolution. Another interesting result is the higher anisotropy found at lower bentonite dry densities, which was also analysed by means of μCT observation of a sample at low bentonite dry density after the end of test. It was found that the macro-pores, especially those between sand grains, were not filled by swelled bentonite, which preserved the anisotropic microstructure caused by

  8. Effect of pool turbulence on direct contact condensation at a steam/water interface

    International Nuclear Information System (INIS)

    Jackson, J.D.; Zhao, C.L.; Doerffer, S.; Byrne, J.E.; Falaki, H.

    2000-01-01

    Measurements of direct contact condensation beat transfer have been made for the case where the process takes place at the horizontal interface between saturated steam and a pool of water in a vertical cylindrical test section. A submerged vertical jet of subcooled water was injected upwards on the axis to promote the condensation and water was withdrawn at the same rate from the bottom of the pool. In conjunction with the above study, measurements of the turbulent velocity fluctuations just below a free surface produced by the injection of a vertical submerged jet have been measured using hot film anemometry on an isothermal air-water test facility of similar geometry for similar flow conditions at ambient temperature. A correlation is proposed in terms of a Stanton number based on turbulent velocity fluctuation near the interface on the liquid-side. Our results are in good agreement with those of others for similar configurations when compared in terms of condensation Stanton number. (author)

  9. Numerical modelling of inert gas bubble rising in liquid metal pool

    International Nuclear Information System (INIS)

    Pradeep, Arjun; Sharma, Anil Kumar; Ponraju, D.; Nashine, B K.

    2016-01-01

    Two-phase flow finds several applications in safe operation of Sodium-cooled Fast Reactor (SFR). Numerical modelling of bubble rise dynamics in liquid metal pool of SFR is essential for the evaluation of residence time and shape changes, which are of utmost importance for simulating associated heat and mass transfer processes involved in reactor safety. A numerical model has been developed based on OpenFOAM for the evaluation of two-dimensional inert gas bubble rise dynamics in stagnant liquid metal pool. The governing model equations are discretized and solved using the Volume of Fluid based solver available in OpenFOAM with appropriate initial and boundary conditions. The model has been validated with available numerical benchmark results for laminar transient two-phase flow. The model has been used to evaluate velocity and rise trajectory of argon gas bubble with different diameters through a pool of liquid sodium. (author)

  10. Cash pooling

    OpenAIRE

    Lozovaya, Karina

    2009-01-01

    This work makes a mention of cash management. At next chapter describes two most known theoretical models of cash management -- Baumol Model and Miller-Orr Model. Principal part of work is about cash pooling, types of cash pooling, cash pooling at Czech Republic and influence of cash pooling over accounting and taxes.

  11. Flow behavior of volume-heated boiling pools: implications with respect to transition phase accident conditions

    International Nuclear Information System (INIS)

    Ginsberg, T.; Jones, O.C. Jr.; Chen, J.C.

    1979-01-01

    Observations of two-phase flow fields in single-component volume-heated boiling pools were made. Photographic observations, together with pool-average void fraction measurements, indicate that the churn-turbulent flow regime is stable for superficial vapor velocities up to nearly five times the Kutateladze dispersal limit. Within this range of conditions, a churn-turbulent drift flux model provides a reasonable prediction of the pool-average void fraction data. An extrapolation of the data to transition phase accident conditions suggests that intense boilup could occur where the pool-average void fraction would be >0.6 for steel vaporization rates equivalent to power levels >1% of nominal liquid-metal fast breeder reactor power density. The extended stability of bubbly flow to unusually large vapor fluxes and void fractions, observed in some experiments, is a major unresolved issue

  12. Mechanism of disintegrant action of polacrilin potassium: Swelling or wicking?

    Directory of Open Access Journals (Sweden)

    Mrudula Hemant Bele

    2012-02-01

    Full Text Available The effect of particle size, pH of medium, and presence of lubricant on the swelling behaviour, water uptake properties and disintegrant performance of polacrilin potassium was examined. Particle size did not affect the bulk swelling of disintegrant particles when measured as settling volume, but increased the water uptake and decreased the disintegration time of tablets containing this disintegrant. An increase in the pH of the medium from acidic to neutral increased the bulk swelling of the particles, whereas it decreased water uptake and disintegrant performance. Addition of lubricant had no effect on settling volume, but decreased the water uptake rate and the disintegrant performance significantly. It is concluded that wicking, i.e. capillary action, rather than swelling, is the major factor that contributes to the disintegration behaviour of polacrilin potassium.

  13. BILATERAL CYSTIC SWELLING OVER SCAPULA-An Unusual Presentation of Filariasis

    Directory of Open Access Journals (Sweden)

    Deepak Kumar

    2018-05-01

    Full Text Available Lymphatic filariasis is a parasitic infection commonly known as elephantiasis. Filariasis presents as hydrocele, genital/scrotal swelling, adenolymphangitis (ADL, swelling of limbs, and genitalia. The causative agent resides in lymphatic channels and causes its obstructions leading to lymphedema. In India, males commonly present with hydrocele and females with lymphedema. Filariasis presenting as bilateral cystic swelling over the scapula is very rare even in endemic areas like India. Wuchereria bancrofti is the common causative agent of filarial infections in India. Here, we present a rare case of filariasis presenting as bilateral cystic swelling over the scapula. The imaging findings are discussed in the case report, which leads us to the diagnosis with further confirmation on microscopy by the presence of microfilariae within the cyst.No such case has been reported in the literature.

  14. The Swelling of Rat Liver Mitochondria by Thyroxine and its Reversal

    Science.gov (United States)

    Lehninger, Albert L.; Ray, Betty Lou; Schneider, Marion

    1959-01-01

    The in vitro swelling action of L-thyroxine on rat liver mitochondria as examined photometrically represents an acceleration of a process which the mitochondria are already inherently capable of undergoing spontaneously, as indicated by the identical kinetic characteristics and the extent of thyroxine-induced and spontaneous swelling, the nearly identical pH dependence, and the fact that sucrose has a specific inhibitory action on both types of swelling. However, thyroxine does not appear to be a "catalyst" or coenzyme since it does not decrease the temperature coefficient of spontaneous swelling. The temperature coefficient is very high, approximately 6.0 near 20°. Aging of mitochondria at 0° causes loss of thyroxine sensitivity which correlates closely with the loss of bound DPN from the mitochondria, but not with loss of activity of the respiratory chain or with the efficiency of oxidative phosphorylation. Tests with various respiratory chain inhibitors showed that the oxidation state of bound DPN may be a major determinant of thyroxine sensitivity; the oxidation state of the other respiratory carriers does not appear to influence sensitivity to thyroxine. These facts and other considerations suggest that a bound form of mitochondrial DPN is the "target" of the action of thyroxine. The thyroxine-induced swelling is not reversed by increasing the osmolar concentration of external sucrose, but can be "passively" or osmotically reversed by adding the high-particle weight solute polyvinylpyrrolidone. The mitochondrial membrane becomes more permeable to sucrose during the swelling reaction. On the other hand, thyroxine-induced swelling can be "actively" reversed by ATP in a medium of 0.15 M KCl or NaCl but not in a 0.30 M sucrose medium. The action of ATP is specific; ADP, Mn++, and ethylenediaminetetraacetate are not active. It is concluded that sucrose is an inhibitor of the enzymatic relationship between oxidative phosphorylation and the contractility and

  15. Muzzle size, paranasal swelling size and body mass in Mandrillus leucophaeus.

    Science.gov (United States)

    Elton, Sarah; Morgan, Bethan J

    2006-04-01

    The drill (Mandrillus leucophaeus), a forest-living Old World monkey, is highly sexually dimorphic, with males exhibiting extreme secondary sexual characteristics, including growth of paranasal swellings on the muzzle. In this study, the size of the secondary bone that forms the paranasal swellings on the muzzles of drills was assessed in relation to body mass proxies. The relationship between the overall size of the muzzle and surrogate measures of body mass was also examined. In female drills, muzzle breadth was positively correlated with two proxies of overall body mass, greatest skull length and upper M1 area. However, there was no such correlation in males. Paranasal swellings in males also appeared to have no significant relationship to body mass proxies. This suggests that secondary bone growth on the muzzles of male drills is independent of overall body size. Furthermore, this secondary bone appears to be vermiculate, probably developing rapidly and in an irregular manner, with no correlation in the sizes of paranasal swelling height and breadth. However, various paranasal swelling dimensions were related to the size of the muzzle. It is suggested that the growth of the paranasal swellings and possibly the muzzle could be influenced by androgen production and reflect testes size and sperm motility. The size and appearance of the paranasal swellings may thus be an indicator of reproductive quality both to potential mates and male competitors. Further work is required to investigate the importance of the paranasal swellings as secondary sexual characteristics in Mandrillus and the relationship between body size and secondary sexual characteristics. Attention should also be paid to the mechanisms and trajectories of facial growth in Mandrillus.

  16. STUDY OF A SOIL WITH SWELLING AND SHRINKING PHENOMENA

    Directory of Open Access Journals (Sweden)

    G. Rogobete

    2012-12-01

    Full Text Available Vertisols are deep clayey soils, with more than 45 % clay, dominated by clay minerals, such as smectites, that expand upon wetting and shrink upon drying. The most important physical characteristics of Vertisols are a low hydraulic conductivity and stickiness when wet and high flow of water through the cracks when dry. They become very hard when dry and in all the time are difficult to work. During the rainy season, the cracks disappear and the soil becomes sticky and plastic with a very slippery surface which makes Vertisols in – trafficable when wet. Water movement in soil that change volume with water content is not well understood and management of swelling soil remains problematic. Swelling or shrinking result in vertical displacement of the wet soil, which involves gravitational work and contributes to an overburden component to the total potential of the soil water. Many swelling soil crack and the network of cracks provides pathways for rapid flow of water which prejudice application of theory based on Darcian flow. One – dimensional flow of water in a swelling system requires material balance equation for both the aqueous and solid phases. The analytical data offers some values particle – size distribution, compression, swelling degree and pressure, plasticity index, elastic modulus, triaxial shear, angle of shear and load carrying capacity in order to realize a foundation study for some constructions.

  17. Effects of Swelling Processes on the Particle Morphology of Porous P(MMA-EGDMA) Particles via Seeded Two-step Swelling Method

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    1 Results Porous functional polymer particles have been drawing great interest for their applications in many fields such as ion exchange,polymeric carrier,biomedicine,biochemistry,cosmetics,plastic pigments,and were first prepared by suspension polymerization in 1 950 s.Since 1990's,some approaches such as seeded emulsion polymerization method,dynamic monomer swelling method,activated swelling method and multi-step seeded method[1-4] have been used by many researchers to synthesize this kind of polymer...

  18. Experimental study on heat pipe heat removal capacity for passive cooling of spent fuel pool

    International Nuclear Information System (INIS)

    Xiong, Zhenqin; Wang, Minglu; Gu, Hanyang; Ye, Cheng

    2015-01-01

    Highlights: • A passively cooling SFP heat pipe with an 8.2 m high evaporator was tested. • Heat removed by the heat pipe is in the range of 3.1–16.8 kW. • The heat transfer coefficient of the evaporator is 214–414 W/m 2 /K. • The heat pipe performance is sensitive to the hot water temperature. - Abstract: A loop-type heat pipe system uses natural flow with no electrically driven components. Therefore, such a system was proposed to passively cool spent fuel pools during accidents to improve nuclear power station safety especially for station blackouts such as those in Fukushima. The heat pipe used for a spent fuel pool is large due to the spent fuel pool size. An experimental heat pipe test loop was developed to estimate its heat removal capacity from the spent fuel pool during an accident. The 7.6 m high evaporator is heated by hot water flowing vertically down in an assistant tube with a 207-mm inner diameter. R134a was used as the potential heat pipe working fluid. The liquid R134a level was 3.6 m. The tests were performed for water velocities from 0.7 to 2.1 × 10 −2 m/s with water temperatures from 50 to 90 °C and air velocities from 0.5 m/s to 2.5 m/s. The results indicate significant heat is removed by the heat pipe under conditions that may occur in the spent fuel pool

  19. Evaluation Methodology for Void Swelling Susceptibility of APR1400 Reactor Vessel Internals for U.S. NRC Design Certification

    Energy Technology Data Exchange (ETDEWEB)

    Kweon, Hyeong Do; Lee, Do Hwan [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    The APR1400 RVI (Reactor Vessel Internals) operates in harsh conditions, such as long term exposure to neutron irradiation, high temperatures, reactor coolant environment, and other operating loads. Therefore, even though the RVI components are mainly made of austenitic stainless steel which is well known to have good mechanical and corrosion-resistive properties, these operating conditions. The aging is characterized by a chromium depletion along grain boundaries of austenitic stainless steel, a decrease in ductility and fracture toughness of the steel, an increase in yield and ultimate strength of the steel, and a potential volume change due to void formation in the steel. For these reasons, under certain conditions of stress, temperature, and level of irradiation, the void swelling which is one of the challenging degradation mechanisms affecting the integrity of the RVI may appear at specific locations of the RVI, especially due to high neutron fluence and high temperature under localized gamma heating and low velocity of coolant flow. To assess the effects of operating neutron fluences, temperatures and stresses on the material properties changes and the susceptibility to the void swelling, the evaluation methodology of the APR1400 RVI components for U.S. NRC Design Certification was suggested in this paper. The approach to the evaluation is summarized as follows: 1. RVI component list of the APR1400 is collected. 2. Initial screening to determine the evaluation scope is completed using the design values of fluences. 3. Functionality assessments (radiation transport analysis, CFD analysis, structural analysis) are sequentially performed. 4. Susceptibility to the void swelling is identified through ANSYS/USERMAT module. KHNP believes that the proposed methodology which is based on the EPRI works for operating reactors is the best way to evaluate the void swelling for new reactors such as the APR1400.

  20. Effect of crosslinker on the swelling and adsorption properties of ...

    Indian Academy of Sciences (India)

    tinence products and as a material for improving the water retention ... showed lower swelling capacity and higher swelling rate than the other ..... The presence of mobile chlo- ...... We thank the Department of Science and Technology for the.

  1. Molecular accessibility in solvent swelled coals. Quarterly report, [September--November, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Kispert, L.D.

    1993-11-01

    This quarter, experiments were performed on the use of binary swelling solvents in molecular accessibility in coal conversion. These experiments consisted of accessibility measurements of spin probe VII (TEMPAMINE) in Toluene swelled Illinois No. 6 APCS coal. The toluene was spiked with amounts of pyridine which ranged in concentration from 500 ppm to 10%. The experiments were done in triplicate to gain information about the experimental error involved in the procedure. It was shown that oscillations occur in the concentration of spin probe retained as the amount of pyridine that is added to the swelling solvent is increased. These oscillations decrease in intensity as the concentration of pyridine in the solvent solution is increased up to 2% pyridine (0.2mLs pyridine in 10mLs toluene). From a 2% pyridine concentration to a 5% concentration, there is no significant change in the retention of spin probe VII. An increase in retention is observed when the concentration of pyridine is increased to 6% and 7% successively, followed by a large decrease at 8% and 9% pyridine. The largest changes in spin probe retention are observed for concentrations of pyridine less than 0.5%. A three fold increase in spin probe retention is observed upon the addition of 500 ppm pyridine in the toluene swelling solvent, which indicates that small amounts of a strong swelling solvent could be used to improve molecular accessibility 91% in coals swelled in an otherwise weak swelling solvent.

  2. Steam CFD simulation of injection in suppression pool

    International Nuclear Information System (INIS)

    Naveen Samad, A.M.; Ghosh, Sumana

    2015-01-01

    Boiling water reactor (BWR) is one of the common types of electricity generating nuclear reactor. Suppression pool system is a major component of the BWR which has to be designed efficiently for the safe operations. During some accidents like Loss of Coolant Accident (LOCA) large amount of steam are injected to the pressure suppression system resulting in increase in temperature of the pool and thereby increasing the pressure. The present work discuss about the Computational Fluid Dynamics (CFD) simulation of steam injected to the wet well of BWR through the blow down pipes and there by investigating the hydrodynamic and thermal characteristics of the system. The simulations were carried out for three different steam injection velocities. The numerical simulations were performed with ANSYS FLUENT using multiphase 3D Volume of Fluid (VOF) model and k-ε model was adopted for modelling turbulence flow. (author)

  3. Scrotal Swelling as a Complication of Hydrochlorothiazide Induced Acute Pancreatitis

    Directory of Open Access Journals (Sweden)

    Ivan Nikiforov

    2015-01-01

    Full Text Available Background. Scrotal swelling is a rare complication of acute pancreatitis with few reported cases in the literature. In this case report, we present a 59-year-old male with hydrochlorothiazide induced pancreatitis who developed scrotal swelling. Case Presentation. A 59-year-old male presented to the emergency department with sharp epigastric abdominal pain that radiated to the back and chest. On physical examination, he had abdominal tenderness and distention with hypoactive bowel sounds. Computed tomography (CT scan of the abdomen showed acute pancreatitis. The patient’s condition deteriorated and he was admitted to the intensive care unit (ICU. After he improved and was transferred out of the ICU, the patient developed swelling of the scrotum and penis. Ultrasound (US of the scrotum showed large hydrocele bilaterally with no varicoceles or testicular masses. Good blood flow was observed for both testicles. The swelling diminished over the next eight days with the addition of Lasix and the patient was discharged home in stable condition. Conclusion. Scrotal swelling is a rare complication of acute pancreatitis. It usually resolves spontaneously with conservative medical management such as diuretics and elevation of the legs.

  4. Stress-enhanced swelling of metal during irradiation

    International Nuclear Information System (INIS)

    Garner, F.A.; Gilbert, E.R.; Porter, D.L.

    1980-04-01

    Data are available which show that stress plays a major role in the development of radiation-induced void growth in AISI 316 and many other alloys. Earlier experiments came to the opposite conclusion and are shown to have investigated stress levels which inadvertantly cold-worked the material. Stress-affected swelling spans the entire temperature range in fast reactor irradiations and accelerates with increasing irradiatin temperature. It also appears to operate in all alloy starting conditions investigated. Two major microstructural mechanisms appear to be causing the enhancement of swelling, which for tensile stresses is manifested primarily as a decrease in the incubation period. These mechanisms are stress-induced changes in the interstitial capture efficiency of voids and stress-induced changes in the vacancy emission rate of various microstructural components. There also appears to be an enhancement of intermetallic phase formation with applied stress and this is shown to increase swelling by accelerating the microchemical evolution that precedes void growth at high temperature. This latter consideration complicates the extrapolation of these data to compressive stress states

  5. Detailed analysis of uranium silicide dispersion fuel swelling

    International Nuclear Information System (INIS)

    Hofmann, G.L.; Ryu, Woo-Seog

    1991-01-01

    Swelling of U 3 Si and U 3 Si 2 is analyzed. The growth of fission gas bubbles appears to be affected by fission rate, fuel loading, and micro structural change taking place in the fuel compounds during irradiation. Several mechanisms are explored to explain the observations. The present work is aimed at a better understanding of the basic swelling phenomenon in order to accurately model irradiation behavior of uranium silicide dispersion fuel. (orig.)

  6. Stress-affected microstructural development and creep-swelling interrelationship

    International Nuclear Information System (INIS)

    Brager, H.R.; Garner, F.A.; Gilbert, E.R.; Flinn, J.E.; Wolfer, W.G.

    1977-05-01

    Macroscopic measurement of the deformations arising from swelling and creep during neutron irradiation indicate that both processes are dependent on the magnitude and possibly the sign of the applied stress state. Current modeling efforts also indicate that a strong interaction exists between swelling and creep through the stress state. Because the macroscopic distortions arise from the integrated microscopic strains associated with specific microstructural elements, the effect of applied stress on microstructural development has been studied

  7. Swelling behavior of manganese-bearing AISI 216 steel

    International Nuclear Information System (INIS)

    Gelles, D.S.; Garner, F.A.

    1984-01-01

    The inclusion of 8.5 wt % manganese in AISI 216 does not appear to alter the swelling behavior from that found to be typical of austenitic alloys with comparable levels of other austentite-stabilizing elements. The swelling in AISI 216 in EBR-II is quite insensitive to irradiation temperature in the range 400-650 0 C. Microscopy reveals that this may arise from the low level of precipitation that occurs in the alloy

  8. Comparison of swelling for structural materials on neutron and ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Loomis, B.A.

    1986-03-01

    The swelling of V-base alloys, Type 316 stainless steel, Fe-25Ni-15Cr alloys, ferritic steels, Cu, Ni, Nb-1% Zr, and Mo on neutron irradiation is compared with the swelling for these materials on ion irradiation. The results of this comparison show that utilization of the ion-irradiation technique provides for a discriminative assessment of the potential for swelling of candidate materials for fusion reactors.

  9. Swell impact on wind stress and atmospheric mixing in a regional coupled atmosphere-wave model

    DEFF Research Database (Denmark)

    Wu, Lichuan; Rutgersson, Anna; Sahlée, Erik

    2016-01-01

    Over the ocean, the atmospheric turbulence can be significantly affected by swell waves. Change in the atmospheric turbulence affects the wind stress and atmospheric mixing over swell waves. In this study, the influence of swell on atmospheric mixing and wind stress is introduced into an atmosphere-wave-coupled...... regional climate model, separately and combined. The swell influence on atmospheric mixing is introduced into the atmospheric mixing length formula by adding a swell-induced contribution to the mixing. The swell influence on the wind stress under wind-following swell, moderate-range wind, and near......-neutral and unstable stratification conditions is introduced by changing the roughness length. Five year simulation results indicate that adding the swell influence on atmospheric mixing has limited influence, only slightly increasing the near-surface wind speed; in contrast, adding the swell influence on wind stress...

  10. Thermal effects on granules and direct determination of swelling ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-08-04

    Aug 4, 2009 ... DEA. UAA. Abidjan. Côte d'Ivoire, pp. 25-28. Larrigue S, Alvarez G, Cuvelier G, Flick D (2008). Swelling kinetics of waxy maize and starches at high temperatures and heating rates. Carbohydr. Polym. 73: 148-155. Leach HW, MC Cowen LD, Schoch JJ (1959). Structure of the starch granule swelling and ...

  11. Prediction of Swelling Behavior of Addis Ababa Expansive Soil ...

    African Journals Online (AJOL)

    In this study a simple hyperbolic mathematical model is used to predict the swelling behavior of an expansive soil from Addis Ababa. The main parameters that are needed to run the model are the applied pressure and initial dry density. The other parameters of the model including the initial slope of the swell-time curve, the ...

  12. Swelling pressure and water absorption property of compacted granular bentonite during water absorption

    International Nuclear Information System (INIS)

    Oyamada, T.; Komine, H.; Murakami, S.; Sekiguchi, T.; Sekine, I.

    2012-01-01

    Document available in extended abstract form only. Bentonite is currently planned to be used as buffer materials in engineered barrier of radioactive waste disposal. Granular bentonites are expected as the materials used in constructions as buffer materials by in-situ compaction methods. After applying these buffer materials, it is expected that the condition of the buffer area changes in long-term by the seepage of groundwater into buffer area. Therefore, it is important to understand water movement and swelling behavior of the buffer materials for evaluating the performance of engineered barrier. In this study, we investigated water absorption property and swelling pressure of compacted granular bentonite. Specifically, the process of swelling pressure and amount of water absorption of granular bentonite-GX (Kunigel-GX, produced at the Tsukinuno mine in Japan) were observed by laboratory tests. To discuss the influence of maximum grain size of bentonite particle on swelling pressure and water absorption property, two types of samples were used. One is granular sample which is Bentonite-GX controlled under 2 mm the maximum grain size, the other is milled sample which is Bentonite-GX with the maximum grain size under 0.18 mm by milling with the agate mortar. In addition, the mechanism on the swelling pressure of compacted granular bentonite was considered and discussed. In the cases of granular sample, swelling pressure increases rapidly, then gradually continues to increase up to maximum value. In the cases of milled sample, swelling pressure also increases rapidly at first. However, then its value decreases before progressing of gradual increase continues. Especially, this trend was clearly observed at a relatively low dry density. At the peaks of these curves, the swelling pressure of granular samples is lower than that of milled samples. In addition, the increasing of swelling pressure by the time the peak observed during the process of swelling pressure from

  13. Mathematical modelling of liquid transport in swelling pharmaceutical immediate release tablets.

    Science.gov (United States)

    Markl, Daniel; Yassin, Samy; Wilson, D Ian; Goodwin, Daniel J; Anderson, Andrew; Zeitler, J Axel

    2017-06-30

    Oral dosage forms are an integral part of modern health care and account for the majority of drug delivery systems. Traditionally the analysis of the dissolution behaviour of a dosage form is used as the key parameter to assess the performance of a drug product. However, understanding the mechanisms of disintegration is of critical importance to improve the quality of drug delivery systems. The disintegration performance is primarily impacted by the hydration and subsequent swelling of the powder compact. Here we compare liquid ingress and swelling data obtained using terahertz pulsed imaging (TPI) to a set of mathematical models. The interlink between hydration kinetics and swelling is described by a model based on Darcy's law and a modified swelling model based on that of Schott. Our new model includes the evolution of porosity, pore size and permeability as a function of hydration time. Results obtained from two sets of samples prepared from pure micro-crystalline cellulose (MCC) indicate a clear difference in hydration and swelling for samples of different porosities and particle sizes, which are captured by the model. Coupling a novel imaging technique, such as TPI, and mathematical models allows better understanding of hydration and swelling and eventually tablet disintegration. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  14. Deformation mechanisms in a coal mine roadway in extremely swelling soft rock.

    Science.gov (United States)

    Li, Qinghai; Shi, Weiping; Yang, Renshu

    2016-01-01

    The problem of roadway support in swelling soft rock was one of the challenging problems during mining. For most geological conditions, combinations of two or more supporting approaches could meet the requirements of most roadways; however, in extremely swelling soft rock, combined approaches even could not control large deformations. The purpose of this work was to probe the roadway deformation mechanisms in extremely swelling soft rock. Based on the main return air-way in a coal mine, deformation monitoring and geomechanical analysis were conducted, as well as plastic zone mechanical model was analysed. Results indicated that this soft rock was potentially very swelling. When the ground stress acted alone, the support strength needed in situ was not too large and combined supporting approaches could meet this requirement; however, when this potential released, the roadway would undergo permanent deformation. When the loose zone reached 3 m within surrounding rock, remote stress p ∞ and supporting stress P presented a linear relationship. Namely, the greater the swelling stress, the more difficult it would be in roadway supporting. So in this extremely swelling soft rock, a better way to control roadway deformation was to control the releasing of surrounding rock's swelling potential.

  15. Mathematical modeling of cryogenic spills onto quiescent sea waters followed by pool fires of liquefied natural gas (LNG)

    International Nuclear Information System (INIS)

    Esteves, Alan Silva; Reis Parise, José Alberto

    2013-01-01

    Spill and combustion of a pool as a result of a spreading of liquefied natural gas (LNG) at sea from punctures on carrier hulls is presented. Models from literature combined mechanisms of flow thorough an orifice, formation of a semicircular pool, vaporization of a cryogenic fluid by boiling and pool fire heating, ignition, non-premixed turbulent fire with variation with height of the emissive power of the ‘visible’ plume, burning of fuel along the ‘luminous’ zone (fire base) and radiation emitted by gray gases and soot particles from the combustion zone. A review of the experimental data on vaporization velocity and burning rate is presented. Predictions agreed well with existing experimental data and other models. The model simulated fires from 1 to 5 m diameter holes in vessel geometries of 125,000 and 265,000 m 3 . Predictions are plausible, and robust enough to be applied in industrial practice. The construction of an LNG terminal involves, among other parameters, the prediction of thermal radiation fields emitted by pool fires. This is to evaluate safe distances to vulnerable resources around the facility. -- Highlights: • More than 20 orifice models published since 1969 were reviewed. • Flow parameter adjusted with proxy equations for a ∗,max and t * v within 1/3 ≤ ϕ ≤ 30. • Review of experimental of data for vaporization velocities covered since 1978. • The axial emissive power along the fire plume increases with vaporization velocity. • Plume height/diameter ratio of termal plume was nearly insensitive to the scale up of carrier cargo capacity

  16. Investigation of voltage swell mitigation using STATCOM

    International Nuclear Information System (INIS)

    Razak, N A Abdul; Jaafar, S; Hussain, I S

    2013-01-01

    STATCOM is one of the best applications of a self commutated FACTS device to control power quality problems in the distribution system. This project proposed a STATCOM model with voltage control mechanism. DQ transformation was implemented in the controller system to achieve better estimation. Then, the model was used to investigate and analyse voltage swell problem in distribution system. The simulation results show that voltage swell could contaminate distribution network with unwanted harmonic frequencies. Negative sequence frequencies give harmful effects to the network. System connected with proposed STATCOM model illustrates that it could mitigate this problems efficiently.

  17. Detailed analysis of uranium silicide dispersion fuel swelling

    International Nuclear Information System (INIS)

    Hofman, G.L.; Ryu, Woo-Seog.

    1989-01-01

    Swelling of U 3 Si and U 3 Si 2 is analyzed. The growth of fission gas bubbles appears to be affected by fission rate, fuel loading, and microstructural change taking place in the fuel compounds during irradiation. Several mechanisms are explored to explain the observations. The present work is aimed at a better understanding of the basic swelling phenomenon in order to accurately model irradiation behavior of uranium silicide disperson fuel. 5 refs., 10 figs

  18. Mesoporous block-copolymer nanospheres prepared by selective swelling.

    Science.gov (United States)

    Mei, Shilin; Jin, Zhaoxia

    2013-01-28

    Block-copolymer (BCP) nanospheres with hierarchical inner structure are of great interest and importance due to their possible applications in nanotechnology and biomedical engineering. Mesoporous BCP nanospheres with multilayered inner channels are considered as potential drug-delivery systems and templates for multifunctional nanomaterials. Selective swelling is a facile pore-making strategy for BCP materials. Herein, the selective swelling-induced reconstruction of BCP nanospheres is reported. Two poly(styrene-block-2-vinylpyridine) (PS-b-P2VP) samples with different compositions (PS(23600)-b-P2VP(10400) and PS(27700)-b-P2VP(4300)) are used as model systems. The swelling reconstruction of PS-b-P2VP in ethanol, 1-pyrenebutyric acid (PBA)/ethanol, or HCl/ethanol (pH = 2.61) is characterized by scanning electron microscopy and transmission electron microscopy. It is observed that the length of the swellable block in BCP is a critical factor in determining the behavior and nanostructures of mesoporous BCP nanospheres in selective swelling. Moreover, it is demonstrated that the addition of PBA modifies the swelling structure of PS(23600)-b-P2VP(10400) through the interaction between PBA and P2VP blocks, which results in BCP nanospheres with patterned pores of controllable size. The patterned pores can be reversibly closed by annealing the mesoporous BCP nanospheres in different selective solvents. The controllable and reversible open/closed reconstruction of BCP nanospheres can be used to enclose functional nanoparticles or drugs inside the nanospheres. These mesoporous BCP nanospheres are further decorated with gold nanoparticles by UV photoreduction. The enlarged decoration area in mesoporous BCP nanospheres will enhance their activity and sensitivity as a catalyst and electrochemical sensor. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Modelling of U-Mo/Al Dispersion fuel fission induced swelling and creep

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Gwan Yoon; Sohn, Dong Seong [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of); Kim, Yeon Soo [Argonne National Laboratory, Argonne (United States)

    2014-05-15

    In a Dispersion fuel which U-Mo particles are dispersed in Al metal matrix, a similar phenomenon forming a bulge region was observed but it is difficult to quantify and construct a model for explaining creep and swelling because of its complex microstructure change during irradiation including interaction layer (IL) and porosity formation. In a Dispersion fuel meat, fission product induces fuel particles swelling and it has to be accommodated by the deformation of the Al matrix and newly formed IL during irradiation. Then, it is reasonable that stress from fuel swelling in the complex structure should be relaxed by local adjustments of particles, Al matrix, and IL. For analysis of U-Mo/Al Dispersion fuel creep, the creep of U-Mo particle, Al matrix, and IL should be considered. Moreover, not only fuel particle swelling and IL growth, but also fuel and Al matrix consumptions due to IL formation are accounted in terms of their volume fraction changes during irradiation. In this work, fuel particles, Al matrix and IL are treated in a way of homogenized constituents: Fuel particles, Al matrix and IL consist of an equivalent meat during irradiation. Meat volume swelling of two representative plates was measured: One (Plate A) was a pure Al matrix with 6g/cc uranium loading, the other (Plate B) a silicon added Al matrix with 8g/cc uranium loading. The meat swelling of calculated as a function of burnup. The meat swelling of calculation and measurement was compared and the creep rate coefficients for Al and IL were estimated by repetitions. Based on assumption that only the continuous phase of Al-IL combined matrix accommodated the stress from fuel particle swelling and it was allowed to have creep deformation, the homogenization modeling was performed. The meat swelling of two U-Mo/Al Dispersion fuel plates was modeled by using homogenization model.

  20. Modelling of U-Mo/Al Dispersion fuel fission induced swelling and creep

    International Nuclear Information System (INIS)

    Jeong, Gwan Yoon; Sohn, Dong Seong; Kim, Yeon Soo

    2014-01-01

    In a Dispersion fuel which U-Mo particles are dispersed in Al metal matrix, a similar phenomenon forming a bulge region was observed but it is difficult to quantify and construct a model for explaining creep and swelling because of its complex microstructure change during irradiation including interaction layer (IL) and porosity formation. In a Dispersion fuel meat, fission product induces fuel particles swelling and it has to be accommodated by the deformation of the Al matrix and newly formed IL during irradiation. Then, it is reasonable that stress from fuel swelling in the complex structure should be relaxed by local adjustments of particles, Al matrix, and IL. For analysis of U-Mo/Al Dispersion fuel creep, the creep of U-Mo particle, Al matrix, and IL should be considered. Moreover, not only fuel particle swelling and IL growth, but also fuel and Al matrix consumptions due to IL formation are accounted in terms of their volume fraction changes during irradiation. In this work, fuel particles, Al matrix and IL are treated in a way of homogenized constituents: Fuel particles, Al matrix and IL consist of an equivalent meat during irradiation. Meat volume swelling of two representative plates was measured: One (Plate A) was a pure Al matrix with 6g/cc uranium loading, the other (Plate B) a silicon added Al matrix with 8g/cc uranium loading. The meat swelling of calculated as a function of burnup. The meat swelling of calculation and measurement was compared and the creep rate coefficients for Al and IL were estimated by repetitions. Based on assumption that only the continuous phase of Al-IL combined matrix accommodated the stress from fuel particle swelling and it was allowed to have creep deformation, the homogenization modeling was performed. The meat swelling of two U-Mo/Al Dispersion fuel plates was modeled by using homogenization model

  1. Swelling of whey and egg white protein hydrogels with stranded and particulate microstructures.

    Science.gov (United States)

    Li, Hui; Zhao, Lei; Chen, Xiao Dong; Mercadé-Prieto, Ruben

    2016-02-01

    Swelling of protein hydrogels in alkaline conditions strongly depends on the gel microstructure. Stranded transparent gels swell as predicted using a modified Flory-Rehner model with the net protein charge. Particulate opaque gels swell very differently, with a sudden increase at a narrow pH range. Its swelling is not controlled by the protein charge, but by the destruction of the non-covalent interactions. Comparable dissolution thresholds, one with pH and another with the degree of swelling, are observed in both types of microstructures. These conclusions are valid for both whey protein isolate (WPI) gels and egg white gels, suggesting that they are universal for all globular proteins that can form such microscructures. Differences are observed, however, from the prevalent chemical crosslinks in each protein system. Non-covalent interactions dominate WPI gels; when such interactions are destroyed at pH≥11.5 the gels swell extensively and eventually dissolve. In egg white gels, the higher degree of disulphide crosslinking allows extensive swelling when non-covalent interactions are destroyed, but dissolution only occurs at pH≥13 when covalent crosslinks are cleaved. The current study highlights that the microstructure of protein hydrogels, a unique particularity of protein systems compared to other synthetic hydrogels, defines swelling. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Influence of network topology on the swelling of polyelectrolyte nanogels.

    Science.gov (United States)

    Rizzi, L G; Levin, Y

    2016-03-21

    It is well-known that the swelling behavior of ionic nanogels depends on their cross-link density; however, it is unclear how different topologies should affect the response of the polyelectrolyte network. Here we perform Monte Carlo simulations to obtain the equilibrium properties of ionic nanogels as a function of salt concentration Cs and the fraction f of ionizable groups in a polyelectrolyte network formed by cross-links of functionality z. Our results indicate that the network with cross-links of low connectivity result in nanogel particles with higher swelling ratios. We also confirm a de-swelling effect of salt on nanogel particles.

  3. Molecular accessibility in solvent swelled coals

    Energy Technology Data Exchange (ETDEWEB)

    Kispert, L.D.

    1993-02-01

    An EPR technique developed in this lab is being used to determine the pore size and number distribution changes after swelling the coal samples with various solvents. Stable nitroxide radical spin probes of different sizes, shapes and reactivity are dissolved in an appropriate solvent, the coal sample is added to the resulting solution, stirred over night at elevated temperature, filtered, washed with a non swelling solvent to eliminate any spin probes that are not trapped in the pores and the spin concentration is measured. Comparing these spin probe measurements to DRIFT data have shown that the relative number distribution of acidic functionalities can be accurately predicted by the spin probe method. The spin probe method had also been used to predict the increase in elongated voids in Pittsburgh No. 8 (APCS No. 4) upon swelling with pyridine in agreement with independent SANS data. NMR relaxation data show that it is possible to deduce the pore (accessibility) distribution as a function of size (up to 6 mn). It has also been possible by variable temperature and ENDOR measurements to determine the presence of hydrogen bonding as a function of pore shape and size. The advantage of the EPR method is that it permits molecules of selected shape and size to be used as probes of accessible regions of coal, thus providing information on the importance of molecular shape.

  4. Solar swimming pool

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    This report examines the feasibility of using solar collectors to heat the water in a previously unheated outdoor swimming pool. The solar system is used in conjunction with a pool blanket, to conserve heat when the pool is not in use. Energy losses through evaporation can be reduced by as much as 70% by a pool blanket. A total of 130 m{sup 2} of highly durable black synthetic collectors were installed on a support structure at a 30{degree} angle from the horizontal, oriented to the south. Circulation of pool water though the collectors, which is controlled by a differential thermostat, was done with the existing pool pump. Before installation the pool temperature averaged 16{degree}C; after installation it ranged from 20{degree} to 26{degree}C. It was hard to distinguish how much pool heating was due to the solar system and how much heat was retained by the pool blanket. However, the pool season was extended by five weeks and attendance tripled. 2 figs.

  5. Improved swelling resistance for PCA austenitic stainless steel under HFIR irradiation through microstructural control

    International Nuclear Information System (INIS)

    Maziasz, P.J.; Braski, D.N.

    1983-01-01

    Six microstructural variants of Prime Candidate Alloy (PCA) were evaluated for swelling resistance during HFIR irradiation, together with several heats of type 316 stainless steel (316). Swelling was negligible in all the steels at 300 0 C after approx. 44 dpa. At 500 to 600 0 C 25%-cold-worked PCA showed better void swelling resistance than type 316 at approx. 44 dpa. There was less swelling variability among alloys at 400 0 C, but again 25%-cold-worked PCA was the best. Microstructurally, swelling resistance correlated with development of fine, stable bubbles whereas high swelling was due to coarser distributions of bubbles becoming unstable and converting to voids (bias-driven cavities)

  6. Effects of tensile and compressive stresses on irradiation-induced swelling in AISI 316

    International Nuclear Information System (INIS)

    Lauritzen, T.; Bell, W.L.; Konze, G.M.; Rosa, J.M.; Vaidyanathan, S.; Garner, F.A.

    1985-05-01

    The results of two recent experiments indicate that the current perception of stress-affected swelling needs revision. It appears that compressive stresses do not delay swelling as previously modeled but actually accelerate swelling at a rate comparable to that induced by tensile stresses

  7. Experimental and theoretical/numerical study of evaporation from shallow pools of organic liquids, at simulated work place conditions

    Energy Technology Data Exchange (ETDEWEB)

    Lennert, Anne Spandet

    1998-04-01

    The rate of evaporation from shallow pools of organic liquids was measured together with the global pollutant concentration distribution in a test chamber simulating work place conditions at room temperature. factorial data cover three liquids with different volatility, three pool geometries, and three room convective velocities in the range usually met in occupational hygiene. The data are compared to 6 semi-empirical correlations for mass tranfer employed in occupational hygiene and to 5 analytical correlations for boundary layer theory derived by the Reynolds analogy to heat transfer. The semi-empirical correlations generally showed a fair agreement for all experimental data, but tended to underestimate the evaporation especially at the lowest air velocity. All analytical correlations strongly underestimated all experimental data. A new simple correlation predicting evaporation rate based on the data was suggested. Three-dimensional CFD-predictions for laminar flow are in fair agreement with the data on the evaporation rates for the experiment that covers three organic compounds, all pool geometries and the two lowest levels of the air velocity. The global pollutant concentration distribution in case of convective air flow cannot be predicted by the model developed by Roach. If knowledge of the evaporation rate and pollutant concentration at some distance from the source were available, the predicted global pollutant concentration distribution by the model suggested by Scheff. offered a fair agreement with observed data. The box model suggested by Sinden generally offered a fair performance but tended to underestimate the pollutant concentration in region close to the source. Preliminary three-dimensional CFD-predictions of the pollutant concentration distribution in the test chamber covering the data with the lowest air velocity were in fair agreement with the average pollutant concentration but overestimated the average velocity. (au) 29 refs.

  8. Estimates of the eigenvalues of operator arising in swelling pressure model

    International Nuclear Information System (INIS)

    Kanguzhin, Baltabek; Zhapsarbayeva, Lyailya

    2016-01-01

    Swelling pressures from materials confined by structures can cause structural deformations and instability. Due to the complexity of interactions between expansive solid and solid-liquid equilibrium, the forces exerting on retaining structures from swelling are highly nonlinear. This work is our initial attempt to study a simplistic spectral problem based on the Euler-elastic beam theory and some simplistic swelling pressure model. In this work estimates of the eigenvalues of some initial/boundary value problem for nonlinear Euler-elastic beam equation are obtained.

  9. Swelling behaviour of Early Jurassic shales when exposed to water vapour

    Science.gov (United States)

    Houben, Maartje; Barnhoorn, Auke; Peach, Colin; Drury, Martyn

    2017-04-01

    The presence of water in mudrocks has a largely negative impact on production of gas, due to the fact that water causes swelling of the rock. Removing the water from the mudrock on the other hand could potentially shrink the rock and increase the matrix permeability. Investigation of the swelling/shrinkage behaviour of the rock during exposure to water vapour is of key importance in designing and optimizing unconventional production strategies. We have used outcrop samples of the Whitby Mudstone and the Posidonia shale [1], potential unconventional sources for gas in North-western Europe, to measure the swelling and shrinkage behaviour. Subsamples, 1 mm cubes, were prepared by the Glass Workshop at Utrecht University using a high precision digitally controlled diamond wafering saw cooled by air. The mm cubes were then exposed to atmospheres with different relative humidities either in an Environmental Scanning Electron Microscope (ESEM) or in a 3D dilatometer. So that the sample responses to exposure of water vapour could be measured. Parallel to the bedding we found a swelling strain between 0.5 and 1.5 %, perpendicular to the bedding though swelling strain varied between 1 and 3.5%. Volumetric swelling strain varied between 1 and 2% at a maximum relative humidity of 95%. Volumetric swelling strains measured in the Early Toarcian Shales are similar to the ones found in coal [2], where the results suggest that it might be possible to increase permeability in the reservoir by decreasing the in-situ water activity due to shrinkage of the matrix. [1] M.E. Houben, A. Barnhoorn, L. Wasch, J. Trabucho-Alexandre, C. J. Peach, M.R. Drury (2016). Microstructures of Early Jurassic (Toarcian) shales of Northern Europe, International Journal of Coal Geology, 165, 76-89. [2] Jinfeng Liu, Colin J. Peach, Christopher J. Spiers (2016). Anisotropic swelling behaviour of coal matrix cubes exposed to water vapour: Effects of relative humidity and sample size, International Journal of

  10. On the swelling of ion exchange resins used in Swedish nuclear power plants

    International Nuclear Information System (INIS)

    Nilsson, A.C.; Hoegfeldt, E.; Muhammed, M.

    1988-03-01

    Ion exchange resins are used in nuclear power plants for purification and decontamination of water. In some of the cases, the spent resins are solidified by drying at elevated temperatures and then molded together with bitumen before final disposal. The objective of the present work is to study the swelling behavior of such resins and describe it with a model that permits calculation of the water uptake into the bituminized resins and the external swelling pressure that might develop by the swelling resins under repository conditions. The experimental part of the study comprises the swelling of ion exchange resins upon their exposure to water vapour before and after thermal treatment under conditions simulating those used in the various solidification processes. Seven different resins were studied in different chemical forms; H + , N + and OH - , So 4 2- for the cation an anion exchangers respectively. For each resin, water uptake, density and volume were measured at different water activities at 25 degrees C. The swelling pressure for all resins studied was calculated. A slight increase in swelling pressure after thermal treatment could be observed, especially for anion exchangers. The apparent molar volume of water in the resin phase has been determined and the swelling free energies of swelling has been calculated from experimental data at 25 degrees C and estimated at 0 degrees C. (authors)

  11. Role of Defects in Swelling and Creep of Irradiated SiC

    Energy Technology Data Exchange (ETDEWEB)

    Szlufarska, Izabela [Univ. of Wisconsin, Madison, WI (United States); Voyles, Paul [Univ. of Wisconsin, Madison, WI (United States); Sridharan, Kumar [Univ. of Wisconsin, Madison, WI (United States); Katoh, Yutai [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-01-16

    Silicon carbide is a promising cladding material because of its high strength and relatively good corrosion resistance. However, SiC is brittle and therefore SiC-based components need to be carefully designed to avoid cracking and failure by fracture. In design of SiC-based composites for nuclear reactor applications it is essential to take into account how mechanical properties are affected by radiation and temperature, or in other words, what strains and stresses develop in this material due to environmental conditions. While thermal strains in SiC can be predicted using classical theories, radiation-induced strains are much less understood. In particular, it is critical to correctly account for radiation swelling and radiation creep, which contribute significantly to dimensional instability of SiC under radiation. Swelling typically increases logarithmically with radiation dose and saturates at relatively low doses (damage levels of a few dpa). Consequently, swelling-induced stresses are likely to develop within a few months of operation of a reactor. Radiation-induced volume swelling in SiC can be as high as 2%, which is significantly higher than the cracking strain of 0.1% in SiC. Swelling-induced strains will lead to enormous stresses and fracture, unless these stresses can be relaxed via some other mechanism. An effective way to achieve stress relaxation is via radiation creep. Although it has been hypothesized that both radiation swelling and radiation creep are driven by formation of defect clusters, existing models for swelling and creep in SiC are limited by the lack of understanding of specific defects that form due to radiation in the range of temperatures relevant to fuel cladding in light water reactors (LWRs) (<1000°C). For example, defects that can be detected with traditional transmission electron microscopy (TEM) techniques account only for 10-45% of the swelling measured in irradiated SiC. Here, we have undertaken an integrated experimental and

  12. Role of Defects in Swelling and Creep of Irradiated SiC

    International Nuclear Information System (INIS)

    Szlufarska, Izabela; Voyles, Paul; Sridharan, Kumar; Katoh, Yutai

    2016-01-01

    Silicon carbide is a promising cladding material because of its high strength and relatively good corrosion resistance. However, SiC is brittle and therefore SiC-based components need to be carefully designed to avoid cracking and failure by fracture. In design of SiC-based composites for nuclear reactor applications it is essential to take into account how mechanical properties are affected by radiation and temperature, or in other words, what strains and stresses develop in this material due to environmental conditions. While thermal strains in SiC can be predicted using classical theories, radiation-induced strains are much less understood. In particular, it is critical to correctly account for radiation swelling and radiation creep, which contribute significantly to dimensional instability of SiC under radiation. Swelling typically increases logarithmically with radiation dose and saturates at relatively low doses (damage levels of a few dpa). Consequently, swelling-induced stresses are likely to develop within a few months of operation of a reactor. Radiation-induced volume swelling in SiC can be as high as 2%, which is significantly higher than the cracking strain of 0.1% in SiC. Swelling-induced strains will lead to enormous stresses and fracture, unless these stresses can be relaxed via some other mechanism. An effective way to achieve stress relaxation is via radiation creep. Although it has been hypothesized that both radiation swelling and radiation creep are driven by formation of defect clusters, existing models for swelling and creep in SiC are limited by the lack of understanding of specific defects that form due to radiation in the range of temperatures relevant to fuel cladding in light water reactors (LWRs) (<1000°C). For example, defects that can be detected with traditional transmission electron microscopy (TEM) techniques account only for 10-45% of the swelling measured in irradiated SiC. Here, we have undertaken an integrated experimental and

  13. Decreased STAT3 Phosphorylation Mediates Cell Swelling in Ammonia-Treated Astrocyte Cultures

    Directory of Open Access Journals (Sweden)

    Arumugam R. Jayakumar

    2016-12-01

    Full Text Available Brain edema, due largely to astrocyte swelling, and the subsequent increase in intracranial pressure and brain herniation, are major complications of acute liver failure (ALF. Elevated level of brain ammonia has been strongly implicated in the development of astrocyte swelling associated with ALF. The means by which ammonia brings about astrocyte swelling, however, is incompletely understood. Recently, oxidative/nitrosative stress and associated signaling events, including activation of mitogen-activated protein kinases (MAPKs, as well as activation of the transcription factor, nuclear factor-kappaB (NF-κB, have been implicated in the mechanism of ammonia-induced astrocyte swelling. Since these signaling events are known to be regulated by the transcription factor, signal transducer and activator of transcription 3 (STAT3, we examined the state of STAT3 activation in ammonia-treated cultured astrocytes, and determined whether altered STAT3 activation and/or protein expression contribute to the ammonia-induced astrocyte swelling. STAT3 was found to be dephosphorylated (inactivated at Tyrosine705 in ammonia-treated cultured astrocytes. Total STAT3 protein level was also reduced in ammonia-treated astrocytes. We also found a significant increase in protein tyrosine phosphatase receptor type-1 (PTPRT-1 protein expression in ammonia-treated cultured astrocytes, and that inhibition of PTPRT-1 enhanced the phosphorylation of STAT3 after ammonia treatment. Additionally, exposure of cultured astrocytes to inhibitors of protein tyrosine phosphatases diminished the ammonia-induced cell swelling, while cultured astrocytes over-expressing STAT3 showed a reduction in the astrocyte swelling induced by ammonia. Collectively, these studies strongly suggest that inactivation of STAT3 represents a critical event in the mechanism of the astrocyte swelling associated with acute liver failure.

  14. Swelling variability of reference steels in HVEM studies

    International Nuclear Information System (INIS)

    Garner, F.A.; Mastel, B.

    1975-09-01

    A series of low-fluence electron irradiation experiments (0-15 dpa) were conducted on 316 stainless steels to explore the effects of the following variables: heat variations, FTR duct vs tubes, fabrication, annealing, Si content. Conclusions: the swelling rate became constant (max 1.3 percent/dpa) in all irradiations after an incubation period, which is variable. There is no difference in the steady-state swelling rate between various FTR heats, for annealing temperature variations, or for variation of Si content from 0.4 to 2 percent

  15. Effect of temperature on swelling and bubble growth in metals

    International Nuclear Information System (INIS)

    Tiwari, G.P.

    1982-01-01

    The effect of temperature on the swelling of copper-boron alloys has been studied in the temperature range of 900-1040deg C. It is observed that beyond 1030deg C, swelling as well as the rate of bubble growth decrease. Similar characteristics of the bubble growth have been observed in aluminium-boron alloys also. At 590deg C, the bubble growth in aluminium-boron alloys is faster as compared to that at 640deg C. It thus appears that the swelling as well as the growth of the gas bubble are retarded at temperatures near the melting point in metals. Possible reasons for this kind of behaviour are discussed. (author)

  16. Theoretical and experimental studies of thermal stratification in hot and cold pools of PFBR

    International Nuclear Information System (INIS)

    Velusamy, K.; Titus, G.; Rajakumar, A.; Ravichandran, G.; Padmakumar, G.; Vaidyanathan, G.; Kale, R.D.; Chetal, S.C.; Bhoje, S.B.

    1994-01-01

    Results of experimental studies carried out in two water models of size 1/24 and 1/15, to assess the free level fluctuation in the hot pool of PFBR are presented. The results when extrapolated to the prototype gives a ripple height of 50 mm. The results of thermal stratification studies carried out in 1/24 scale model, using hot and cold water indicates that the interface velocity can be correlated with the Richardson number. The paper also gives the details of computer codes developed for the estimation of flow and temperature fields in the pools. (author)

  17. Water-Triggered Dimensional Swelling of Cellulose Nanofibril Films: Instant Observation Using Optical Microscope

    International Nuclear Information System (INIS)

    Qing, Y.; Wu, Y.; Li, X.; Qing, Y.; Cai, Z.

    2013-01-01

    To understand the swelling behavior of cellulose nano fibril (CNF) films, the dimensional variation of untreated and phenol formaldehyde modified CNF (CNF/PF) films soaked in distilled water was examined in situ with microscopic image recording combined with pixel calculation. Results showed that a dramatic thickness increase exhibited in both CNF and CNF/PF films, despite being at different swelling levels. Compared to thickness swelling, however, the width expansion for these films is negligible. Such significant difference in dimensional swelling for CNF and PF modified films is mainly caused by nano fibril deposition and their meso structure. However, addition of PF modifier has a positive effect on the constraint of water absorption and thickness swelling, which is strongly dependent on PF loadings

  18. Radiation swelling of steels with lath martensite-austenic structure

    International Nuclear Information System (INIS)

    Sagaradze, V.V.; Pavlov, V.A.; Alyab'ev, V.M.; Lapin, S.S.; Ermishkin, V.A.; Antonova, O.V.

    1987-01-01

    Influence of electron radiation in the column of the JEM-1000 electron microscope on radiation swelling of austenite as austenitic fields and thin plates surrounded by α-martensite crystals is investigated. Formation of lath structure of alternating dispersive plates of martensite and invert austenite formed as a result of partial inverse martensite transformation α→γ is shown to restrain radiation swelling and formation of vacancy voids in stainless steels

  19. Numerical analysis on pool boiling using user defined function

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Sung Uk; Jeon, Byong Guk; Kim, Seok; Euh, Dong-Jin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    PAFS (passive auxiliary feedwater system) adopted in the APR+ (Advanced Power Reactor Plus) of Korea is one such application. When PAFS is activated with an actuation signal, steam from the steam generator passes through heat exchanger tubes submerged in a water tank of the PAFS. Outside these heat exchanger tubes, nucleate boiling phenomena appears. In the present work, a numerical study is reported on three-dimensional transient state pool boiling of water having an immersed heat source. The velocity vector fields during the decrease in the water level are numerically investigated in a pool, and the accuracy of the results is checked by comparing the experimental results conducted using the PIV techniques by Kim et al. These numerical results can be used as basic research data for an analysis and prediction of the natural circulation phenomena in the cooling tank of the passive safety system in a nuclear power plant.

  20. Overnight corneal swelling with high and low powered silicone hydrogel lenses.

    Science.gov (United States)

    Moezzi, Amir M; Fonn, Desmond; Varikooty, Jalaiah; Simpson, Trefford L

    2015-01-01

    To compare central corneal swelling after eight hours of sleep in eyes wearing four different silicone hydrogel lenses with three different powers. Twenty-nine neophyte subjects wore lotrafilcon A (Dk, 140), balafilcon A (Dk, 91), galyfilcon A (Dk, 60) and senofilcon A (Dk, 103) lenses in powers -3.00, -10.00 and +6.00 D on separate nights, in random order, and on one eye only. The contra-lateral eye (no lens) served as the control. Central corneal thickness was measured using a digital optical pachometer before lens insertion and immediately after lens removal on waking. For the +6.00 D and -10.00 D, lotrafilcon A induced the least swelling and galyfilcon A the most. The +6.00 D power, averaged across lens materials, induced significantly greater central swelling than the -10.00 and -3.00 D (Re-ANOVA, p<0.001), (7.7±2.9% vs. 6.8±2.8% and 6.5±2.5% respectively) but there was no difference between -10.00 and -3.00 D. Averaged for power, lotrafilcon A induced the least (6.2±2.8%) and galyfilcon A the most (7.6±3.0%) swelling at the center (Re-ANOVA, p<0.001). Central corneal swelling with +6.00 D was significantly greater than -10.00 D lens power despite similar levels of average lens transmissibility of these two lens powers. The differences in corneal swelling of the lens wearing eyes are consistent with the differences in oxygen transmission of the silicone hydrogel lenses. In silicone hydrogel lenses central corneal swelling is mainly driven by central lens oxygen transmissibility. Copyright © 2013 Spanish General Council of Optometry. Published by Elsevier Espana. All rights reserved.

  1. Mitigation of Voltage Swells by Static Series Compensator

    DEFF Research Database (Denmark)

    Awad, Hilmy; Blaabjerg, Frede

    2004-01-01

    Swells and overvoltages can cause overheating, tripping or even destruction of industrial equipment such as motor drives and control relays. This paper investigates the possibility of employing the Static Series Compensator (SSC) to mitigate voltage swells/overvoltages. In the case of voltage...... is lower than a predetermined voltage level, the active power is employed to charge the ESC to this voltage level; 2) otherwise, the overvoltage protection of the SSC must operate. This paper also applies an overvoltage protection scheme based on a combination of a dc resistor with a chopper and the valves...

  2. Increase of volume swelling by a temperature gradient

    International Nuclear Information System (INIS)

    Herschbach, K.; Schneider, W.; Stober, T.

    1996-11-01

    The temperature gradient in the cladding of a Fast Reactor fuel pin leads to increased dilatation compared to material irradiations. Investigations of a specially designed fuel pin reached the conclusion that the cause is enhanced volume swelling. It is induced by He-bubbles, which migrate upwards the temperature gradient and coalesce. The critical size of nuclei for void swelling is thus reached much faster. Consequently, the p in deformation is larger than expected from materials irradiations, in the present case (DIN 1.4981 sa) by about 50%. (orig.) [de

  3. Ion irradiation-induced swelling and hardening effect of Hastelloy N alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, S.J. [Key Laboratory of Artificial Micro-and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Li, D.H.; Chen, H.C.; Lei, G.H.; Huang, H.F.; Zhang, W.; Wang, C.B. [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Yan, L., E-mail: yanlong@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Fu, D.J. [Key Laboratory of Artificial Micro-and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Tang, M. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2017-06-15

    The volumetric swelling and hardening effect of irradiated Hastelloy N alloy were investigated in this paper. 7 MeV and 1 MeV Xe ions irradiations were performed at room temperature (RT) with irradiation dose ranging from 0.5 to 27 dpa. The volumetric swelling increases with increasing irradiation dose, and reaches up to 3.2% at 27 dpa. And the irradiation induced lattice expansion is also observed. The irradiation induced hardening initiates at low ion dose (≤1dpa) then saturates with higher ion dose. The irradiation induced volumetric swelling may be ascribed to excess atomic volume of defects. The irradiation induced hardening may be explained by the pinning effect where the defects can act as obstacles for the free movement of dislocation lines. And the evolution of the defects' size and number density could be responsible for the saturation of hardness. - Highlights: •Irradiation Swelling: The irradiation induced volumetric swelling increases with ion dose. •Irradiation Hardening: The irradiation hardening initiates below 1 dpa, then saturates with higher ion dose (1–10 dpa). •Irradiation Mechanism: The irradiation phenomena are ascribed to the microstructural evolution of the irradiation defects.

  4. Applications of the theory of cavity growth to dual-ion swelling experiments

    International Nuclear Information System (INIS)

    Hayns, M.R.; Mansur, L.K.

    1980-01-01

    The rate theory of cavity growth is applied to study the effects of helium gas on cavity swelling. The variation of swelling with temperature is emphasized: (1) expressions are derived showing that the primary effect of the helium is in pressurizing cavities and that a secondary effect is in altering the microstructural sink strengths. The expressions simplify in the parameter range of engineering interest such that the temperature regime of swelling is predicted to shift upward in approximately direct proportion to the cavity gas pressure; (2) recent experimental data on swelling of a pure stainless steel type alloy under dual-nickel and helium-ion bombardment is interpreted. Helium-free, helium-coimplanted, and helium-preimplanted swelling results can be explained by the theory. It is necessary to account for the partitioning of the helium to dislocations as well as to cavities in order to explain the experimental results for helium coimplantation; (3) model studies for physically reasonable parameters reveal the importance of the He/dpa ratio

  5. A rare cause of calf swelling: the Morel-Lavallee lesion.

    LENUS (Irish Health Repository)

    Moriarty, J M

    2011-03-01

    Calf swelling is a common clinical presentation with a wide and varied differential diagnosis. The Morel-Lavallee is a rare cause of subcutaneous swelling, caused by post-traumatic shearing of the hypodermis from the underlying fascia. The potential space so created fills with blood, lymph and necrotic fat giving specific findings on MR evaluation.

  6. Effect of pre-swelling of coal on its solvent extraction and liquefaction properties

    Energy Technology Data Exchange (ETDEWEB)

    Hengfu Shui; Zhicai Wang; Meixia Cao [Anhui University of Technology, Ma' anshan (China). School of Chemistry and Chemical Engineering

    2008-10-15

    Effects of pre-swelling of coal on solvent extraction and liquefaction properties were studied with Shenhua coal. It was found that pre-swelling treatments of the coal in three solvents, i.e., toluene (TOL), N-methyl-2-pyrrolidinone (NMP) and tetralin (THN) increased its extraction yield and liquefaction conversion, and differed the liquefied product distributions. The pre-swollen coals after removing the swelling solvents showed increased conversion in liquefaction compared with that of the swollen coals in the presence of swelling solvents. It was also found that the yields of (oil + gas) in liquefaction of the pre-swollen coals with NMP and TOL dramatically decreased in the presence of swelling solvent. TG and FTIR analyses of the raw coal, the swollen coals and the liquefied products were carried out in order to investigate the mechanism governing the effects of pre-swelling treatment on coal extraction and liquefaction. The results showed that the swelling pre-treatment could disrupt some non-covalent interactions of the coal molecules, relax its network structure and loosened the coal structure. It would thus benefit diffusion of a hydrogen donor solvent into the coal structure during liquefaction, and also enhance the hydrogen donating ability of the hydrogen-rich species derived from the coal. 21 refs., 4 figs., 3 tabs.

  7. Lepromatous leprosy presenting as a swelling in the neck

    Directory of Open Access Journals (Sweden)

    Dogra Devraj

    1999-01-01

    Full Text Available A 25-year-old electrician presented with gradually, asymptomatic swelling on left of the neck since 2 years. The swelling which was initially diagnosed as cervical lymphadenitis by the internist represented the enlarged left great auricular nerve. Cutaneous examination revealed an ill-defined, hypoaesthetic macule with minimal atrophy on the pinna of the left ear. The histopathology of the nerve showed a lepromatous neuritis with bacteriological index (BI of 5+.

  8. Molecular Dynamics Study of Crystalline Swelling of Montmorillonite as Affected by Interlayer Cation Hydration

    Science.gov (United States)

    Li, Hongliang; Song, Shaoxian; Dong, Xianshu; Min, Fanfei; Zhao, Yunliang; Peng, Chenliang; Nahmad, Yuri

    2018-04-01

    Swelling of montmorillonite (Mt) is an important factor for many industrial applications. In this study, crystalline swelling of alkali-metal- and alkaline-earth-metal-Mt has been studied through energy optimization and molecular dynamics simulations using the clay force field by Materials Studio 8.0. The delamination and exfoliation of Mt are primarily realized by crystalline swelling caused by the enhanced interlayer cation hydration. The initial position of the interlayer cations and water molecules is the dominated factor for the accuracy of the Mt simulations. Crystalline swelling can be carried out in alkali-metal-Mt and Mg-Mt but with difficulty in Ca-Mt, Sr-Mt and Ba-Mt. The crystalline swelling capacity values are in the order Na-Mt > K-Mt > Cs-Mt > Mg-Mt. This order of crystalline swelling of Mt in the same group can be attributed to the differences between the interlayer cation hydration strengths. In addition, the differences in the crystalline swelling between the alkali-metal-Mt and alkaline-earth-metal-Mt can be primarily attributed to the valence of the interlayer cations.

  9. Buoy observations of the influence of swell on wind waves in the open ocean

    Energy Technology Data Exchange (ETDEWEB)

    Violante-Carvalho, N.; Robinson, I.S. [University of Southampton (United Kingdom). Oceanography Centre; Ocampo-Torres, F.J. [CICESE, Ensenada (Mexico). Dpto. de Oceanografia Fisica

    2004-04-01

    The influence of longer (swell) on shorter, wind sea waves is examined using an extensive database of directional buoy measurements obtained from a heave-pitch-roll buoy moored in deep water in the South Atlantic. This data set is unique for such an investigation due to the ubiquitous presence of a young swell component propagating closely in direction and frequency with the wind sea, as well as a longer, opposing swell. Our results show, within the statistical limits of the regressions obtained from our analysis when compared to measurements in swell free environments, that there is no obvious influence of swell on wind sea growth. For operational purposes in ocean engineering this means that power-laws from fetch limited situations describing the wind sea growth can be applied in more realistic situations in the open sea when swell is present. (author)

  10. Swelling pressure in compacted bentonite below 0°C

    International Nuclear Information System (INIS)

    Birgersson, Martin; Karnland, Ola; Nilsson, Ulf

    2010-01-01

    Document available in extended abstract form only. Bentonite is a common component in many concepts for underground storage of high level radioactive waste. During its lifetime, an underground repository will be subject to various ambient temperatures. Backfilled tunnels, shafts and investigation bore holes closest to ground level will experience periods of temperature below 0 deg. C. From a safety assessment perspective, it is therefore essential to investigate and understand the behavior of bentonite below 0 deg. C. A large set of laboratory tests have been performed where fully water saturated samples of bentonites have been exposed to temperatures in the range -10 deg. C - +25 deg. C. The swelling pressure response has been recorded continuously. The samples have been varied with respect to bentonite type (e.g. calcium or sodium dominated), smectite content and density. The general observation is that the pressure of the bentonite lowers in a temperature range between 0 deg. C and a specific (negative) temperature T c , which is strongly correlated to the swelling pressure measured above 0 deg. C. Consequently, Tc decreases (i.e. becomes more negative) with increased density or smectite content. At T c , swelling pressure is completely lost. Furthermore, a very weak pressure dependence is observed at temperatures above 0 deg. C. This dependence is however strictly dependent on sample density. For any type of bentonite at high enough densities above 0 deg. C, the slope of the P-T curve is negative and becomes more negative with increasing density. For Na-dominated bentonites at lower densities, on the other hand, the slope is positive. An important observation is that no pressure increase was observed for any of the tested bentonite samples as the transition to temperatures below 0 deg. C was made. Since water expands as it freezes, this observation indicates that no ice is formed in compacted bentonite as the 0 deg. C level is passed. The observed swelling

  11. Variations in swells along Eastern Arabian Sea during the summer monsoon

    Digital Repository Service at National Institute of Oceanography (India)

    Johnson, G.; SanilKumar, V.; Sanjiv, P.C.; Singh, J.; Pednekar, P.S.; AshokKumar, K.; Dora, G.U.; Gowthaman, R.

    A study was carried out to find the variation in wave characteristics along the eastern Arabian Sea and the influence of swells in the nearshore waves at 3 locations during summer monsoon in 2010. Percentage of swells in the measured waves was 75...

  12. Cell Swelling Activates Phospholipase A2 in Ehrlich Ascites Tumor Cells

    DEFF Research Database (Denmark)

    Thoroed, S.M.; Lauritzen, L.; Lambert, I.H.

    1997-01-01

    Ehrlich ascites tumor cells! loaded with H-labeled arachidonic acid and C-labeled stearic acid for two hours, were washed and transferred to either isotonic or hypotonic media containing BSA to scavenge the labeled fatty acids released from the cells. During the first two minutes of hypo......-osmotic exposure the rate of H-labeled arachidonic acid release is 3.3 times higher than that observed at normal osmolality. Cell swelling also causes an increase in the production of C-stearic acid-labeled lysophosphatidylcholine. This indicates that a phospholipase A is activated by cell swelling in the Ehrlich...... cells. Within the same time frame there is no swelling-induced increase in C-labeled stearic acid release nor in the synthesis of phosphatidyl C-butanol in the presence of C-butanol. Furthermore, U7312, an inhibitor of phospholipase C, does not affect the swelling induced release of C...

  13. Structural evaluation of fast reactor core restraint with irradiation creep-swelling opposition effects

    International Nuclear Information System (INIS)

    Kalinowski, J.E.

    1979-01-01

    Irradiation creep and swelling correlations are derived from primary loading in-reactor experiments in which irradiation creep and swelling act in the same direction. When correlation uncertainty bands are applied in core restraint evaluations, significant variability in sub-assembly behavior is predicted. For example, sub-assemblies in the outer core region where neutron flux and duct temperature gradients are significant exhibit bowing responses ranging from a creep dominated outward bow to a swelling dominated inward bow. Furthermore, solutions based on upper bound and lower bound correlation uncertainty combinations are observed to cross-over indicating that such combinations are physically unrealistic in the assessment of creep-swelling opposition effects. In order to obtain realistic upper and lower bound sub-assembly responses, judgement must be applied in the selection of creep-swelling equation uncertainty combinations. Experimental programs have been defined which will provide the needed basic as well as prototypic creep-swelling opposition data for reference and advanced sub-assembly duct alloys. The first of these is an irradiation of cylindrical capsules subjected to a through-wall temperature gradient. This test which is presently underway in the EBR-II reactor will provide the data needed to refine irradiation creep and swelling correlations and their associated uncertainties when applied to core restraint evaluations. Restrained pin and duct bowing experiments in FFTF have also been defined. These will provide the prototypic data necessary to verify irradiated duct bowing methodology. The results of this experimental program are expected to reduce creep and swelling uncertainties and permit better definition of the design window for load plane gaps. (orig.)

  14. Effect of irradiation damage and helium on the swelling and structure of vanadium-base alloys

    International Nuclear Information System (INIS)

    Chung, H.M.; Loomis, B.A.; Smith, D.L.

    1993-12-01

    Swelling behavior and microstructural evolution of V-Ti, V-Cr-Ti, and V-Ti-Si alloys were investigated after irradiation at 420--600C up to 114 dpa. The alloys exhibited swelling maxima between 30 and 80 dpa and swelling decreased on irradiation to higher dpa. This is in contrast to the monotonically increasing swelling of binary alloys that contain Fe, Ni, Cr, Mo, W, and Si. Precipitation of dense Ti 5 Si 3 promotes good resistance to swelling of the Ti-containing alloys and it was concluded that Ti of >3 wt.% and 400--1000 wppm Si are necessary to effectively suppress swelling. Swelling was minimal in V-4Cr-4Ti, identified as the most promising alloy based on good mechanical properties and superior resistance to irradiation embrittlement. V-20Ti doped with B exhibited somewhat higher swelling because of He generation. Lithium atoms, generated from transmutation of 10 B, formed γ-LiV 2 O 5 precipitates and did not seem to produce undesirable effects on mechanical properties

  15. High dose stainless steel swelling data on interior and peripheral oxide fuel pins

    International Nuclear Information System (INIS)

    Boltax, A.; Foster, J.P.; Nayak, U.P.

    1983-01-01

    High dose (2 x 10 23 n/cm 2 , E > 0.1 Mev) swelling data obtained on 20% cold-worked AISI 316 stainless steel (N-lot) cladding from mixed-oxide fuel pins show large differences in swelling incubation dose due to pre-incubation dose temperature changes. Circumferential swelling variations of 1.5 to 4 times were found in peripheral fuel pin cladding which experienced 30 to 60 deg C temperature changes due to movement in a temperature gradient. Consideration is given to the implications of these results to low swelling materials development and core design. (author)

  16. Interaction of irradiation creep and swelling in the creep disappearance regime

    International Nuclear Information System (INIS)

    Garner, F.A.; Toloczko, M.B.

    1992-01-01

    The objective of this effort is to determine the relationship between applied stresses and irradiation-induced dimensional changes in structural metals for fusion applications. Reanalysis of an earlier data set derived from irradiation of long creep tubes in EBR-II at 550 C has shown that the creep-swelling coupling coefficient is relatively independent of temperature at ∼0.6 x 10 -2 MPa -1 , but falls with increases in the swelling rate, especially at high stress levels. The action of stress-affected swelling and carbide precipitation exert different influences on the derivation of this coefficient

  17. Anesthetic concerns in a huge congenital sublingual swelling obscuring airway access

    Directory of Open Access Journals (Sweden)

    Nilesh Kumar

    2015-01-01

    Full Text Available Presence of intraoral pathology poses a great challenge during management of pediatric airway. We report management of big intraoral cystic swelling physically occupying the entire oral cavity restricting access to airway. Preintubation aspiration of swelling was done to decrease its size and make room for airway manipulation, followed by laryngoscopy and intubation in lateral position. Airway patency is at risk in postoperative period also, in this case, though the swelling decreased in size postoperatively but presence of significant edema required placement of tongue stitch and modified nasopharyngeal airway. Case report highlights simple maneuvers to manage a difficult case.

  18. Episodic swell growth inferred from variable uplift of the Cape Verde hotspot islands

    Science.gov (United States)

    Ramalho, R.; Helffrich, G.; Cosca, M.; Vance, D.; Hoffmann, D.; Schmidt, D.N.

    2010-01-01

    On the Beagle voyage, Charles Darwin first noted the creation and subsidence of ocean islands, establishing in geology's infancy that island freeboard changes with time. Hotspot ocean islands have an obvious mechanism for freeboard change through the growth of the bathymetric anomaly, or swell, on which the islands rest. Models for swell development indicate that flexural, thermal or dynamic pressure contributions, as well as spreading of melt residue from the hotspot, can all contribute to island uplift. Here we test various models for swell development using the uplift histories for the islands of the Cape Verde hotspot, derived from isotopic dating of marine terraces and subaerial to submarine lava-flow morphologies. The island uplift histories, in conjunction with inter-island spacing, uplift rate and timing differences, rule out flexural, thermal or dynamic pressure contributions. We also find that uplift cannot be reconciled with models that advocate the spreading of melt residue in swell development unless swell growth is episodic. Instead, we infer from the uplift histories that two processes have acted to raise the islands during the past 6 Myr. During an initial phase, mantle processes acted to build the swell. Subsequently, magmatic intrusions at the island edifice caused 350 m of local uplift at the scale of individual islands. Finally, swell-wide uplift contributed a further 100 m of surface rise.

  19. Radiation-induced void swelling in metals and alloys

    International Nuclear Information System (INIS)

    Zelinskij, V.F.; Neklyudov, I.M.; Ozhigov, L.S.; Reznichenko, Eh.A.; Rozhkov, V.V.; Chernyaeva, T.T.

    1979-01-01

    Main regularities in the development of radiation-induced void swelling are considered. Special attention is paid to consideration of a possibility to obtain information on material behaviour under conditions of reactor irradiation proceeding from the data of simulation experiments and to methods of rate control, for the processes which occur in material during irradiation and further annealing by the way of rationalized alloying, of thermomechanical treatment and programmed change of irradiation conditions under operation. Problems of initiation and growth of voids in irradiated materials are discussed as well as the ways to decrease the rate of radiation-induced void swelling

  20. Swelling and fracturing of borides under neutron irradiation

    International Nuclear Information System (INIS)

    Krainy, A.G.; Ogorodnikov, V.V.; Grinik, E.U.; Chirko, L.I.; Shinakov, A.A.

    1994-01-01

    The neutron irradiation of high temperature borides, which are included in boron-containing reactor materials, results in high internal stresses, leading to considerable swelling and micro- and macro-fracturing. Experimental results over a large range of temperature and fluences, show a change of damage mechanism for borides within 400-530 C: the macro-cracking with formation of annular and radial cracks is observed below this temperature zone. The accumulation of micro-fractures and the process of gas swelling take place at irradiation temperatures above 530 C. The effect of the high internal stresses is compared to external pressure. 12 refs., 4 figs

  1. On the calculation of the free surface temperature of gas-tungsten-arc weld pools from first principles

    International Nuclear Information System (INIS)

    Choo, R.T.C.; Szekely, J.; David, S.A.

    1992-01-01

    By combining a mathematical model of the welding arc and of the weld pool, calculations are presented here to describe the free surface temperature of weld pools for spot welding operations. The novel aspects of the treatment include the calculation of the heat and current fluxes falling on the free weld pool surface from first principles, a realistic allowance for heat losses due to vaporization, and a realistic allowance for the temperature dependence of the surface tension. The most important finding reported in this article is that the free surface temperature of weld pools appears to be limited by Marangoni convection, rather than heat losses due to vaporization. Furthermore, it was found that once thermocapillary flow can produce high enough surface velocities (>25 cm/s), the precise nature of the relationship between temperature and surface tension will become less important

  2. Development of a swelling equation for 20%-CW 316 in a fusion device

    International Nuclear Information System (INIS)

    1980-01-01

    The difficulties involved in the development of swelling correlations for AISI 316 in fusion environments are discussed. A set of void and bubble-swelling correlations has been developed which incorporates the limited available data from EBR-II and HFIR irradiations. It appears that at high fluences helium may play a minor role in the determination of total swelling over a considerable temperature range

  3. The prevention of curcumin against rat liver mitochondrial swelling induced by tert-butylhydroperoxide

    Directory of Open Access Journals (Sweden)

    S. Susilowati

    2006-09-01

    Full Text Available Liver diseases have been a medical problem which is difficult to manage. Some of the problems in the treatment of these diseases lie in the lack of reliable drug available. Curcumin, an active ingredient of the rhizomes of plant Curcuma has been investigated in the treatment of various disorders incuding liver diseases. The therapeutic effects of curcumin on liver diseases have been thought to be associated to its antioxidative properties. In the present study, we investigated the effects of curcumin on mitochondrial swelling in vitro induced by tert-butylhydroperoxide (t-BuOOH. Liver mitochondria were homogeneously isolated from Sprague-Dawley rats (the relative specific activity of succinate dehydrogenase was 35.73 ± 2.78. Addition of 90 µM of t-BuOOH caused a typical 2-phase swelling of the mitochondria. The pattern of swelling was influenced by various factors such as buffer composition, concentrations of t-BuOOH, amount of isolation buffer and mitochondrial proteins and incubation temperature.The swelling could be reduced by as much as 85 ± 3% by 2.50 µM of curcumin. At lower (1.25 µM or higher (5.00 µM concentrations, the protection against swelling by curcumin were less effective (respectively were 41 ± 3% and 77 ± 6%. Swelling might occur due to the opening of mitochondrial transition pore and could be an initial indication in the cascade process leading to cell death. The inhibition of t-BuOOH-induced mitochondrial swelling by curcumin might be because of the antioxidant effects of the compound. (Med J Indones 2006; 15:131-6 Keywords: mitochondria, swelling, tert-butylhydroperoxide, curcumin

  4. The effect of low dose rate irradiation on the swelling of 12% cold-worked 316 stainless steel

    International Nuclear Information System (INIS)

    Allen, T. R.

    1999-01-01

    In pressurized water reactors (PWRs), stainless steel components are irradiated at temperatures that may reach 400 C due to gamma heating. If large amounts of swelling (>10%) occur in these reactor internals, significant swelling related embrittlement may occur. Although fast reactor studies indicate that swelling should be insignificant at PWR temperatures, the low dose rate conditions experienced by PWR components may possibly lead to significant swelling. To address these issues, JNC and ANL have collaborated to analyze swelling in 316 stainless steel, irradiated in the EBR-II reactor at temperatures from 376-444 C, at dose rates between 4.9 x 10 -8 and 5.8 x 10 -7 dpa/s, and to doses of 56 dpa. For these irradiation conditions, the swelling decreases markedly at temperatures less than approximately 386 C, with the extrapolated swelling at 100 dpa being around 3%. For temperatures greater than 386 C, the swelling extrapolated to 100 dpa is around 9%. For a factor of two difference in dose rate, no statistically significant effect of dose rate on swelling was seen. For the range of dose rates analyzed, the swelling measurements do not support significant (>10%) swelling of 316 stainless steel in PWRs

  5. Study on the irradiation swelling of U3Si2-Al dispersion fuel

    International Nuclear Information System (INIS)

    Xing Zhonghu; Ying Shihao

    2001-01-01

    The dominant modeling mechanisms on irradiation swelling of U 3 Si 2 -Al dispersion fuel are introduced. The core of dispersion fuel is looked to as micro-fuel elements of continuous matrix. The formation processes of gas bubbles in the fuel phase are described through the behavior mechanisms of fission gases. The swelling in the fuel phase causes the interaction between fuel particles and metal matrix, and the metal matrix can restrain the irradiation swelling of fuel particles. The developed code can predict irradiation-swelling values according to the parameters of fuel elements and irradiation conditions, and the predicted values are in agreement with the measured results

  6. Nucleon swelling and the Nolen-Schiffer anomaly

    International Nuclear Information System (INIS)

    Epele, L.N.; Garcia Canal, C.A.; Fanchiotti, H.; Mendez Galain, R.

    1987-01-01

    A previously proposed explanation of the Nolen-Schiffer anomaly based on the nucleon swelling inside a nuclei is reanalyzed. We found a clear incompatibility beetween this proposal and the experimental results. (orig.)

  7. Optical scatter imaging of cellular and mitochondrial swelling in brain tissue models of stroke

    Science.gov (United States)

    Johnson, Lee James

    2001-08-01

    The severity of brain edema resulting from a stroke can determine a patient's survival and the extent of their recovery. Cellular swelling is the microscopic source of a significant part of brain edema. Mitochondrial swelling also appears to be a determining event in the death or survival of the cells that are injured during a stroke. Therapies for reducing brain edema are not effective in many cases and current treatments of stroke do not address mitochondrial swelling at all. This dissertation is motivated by the lack of a complete understanding of cellular swelling resulting from stroke and the lack of a good method to begin to study mitochondrial swelling resulting from stroke in living brain tissue. In this dissertation, a novel method of detecting mitochondrial and cellular swelling in living hippocampal slices is developed and validated. The system is used to obtain spatial and temporal information about cellular and mitochondrial swelling resulting from various models of stroke. The effect of changes in water content on light scatter and absorption are examined in two models of brain edema. The results of this study demonstrate that optical techniques can be used to detect changes in water content. Mie scatter theory, the theoretical basis of the dual- angle scatter ratio imaging system, is presented. Computer simulations based on Mie scatter theory are used to determine the optimal angles for imaging. A detailed account of the early systems is presented to explain the motivations for the system design, especially polarization, wavelength and light path. Mitochondrial sized latex particles are used to determine the system response to changes in scattering particle size and concentration. The dual-angle scatter ratio imaging system is used to distinguish between osmotic and excitotoxic models of stroke injury. Such distinction cannot be achieved using the current techniques to study cellular swelling in hippocampal slices. The change in the scatter ratio is

  8. Swelling of Fe-Mn and Fe-Cr-Mn alloys at high neutron fluence

    International Nuclear Information System (INIS)

    Garner, F.A.; Brager, H.R.

    1986-06-01

    Swelling data on neutron-irradiated simple Fe-Cr-Mn and Fe-Mn alloys, as well as commercial Fe-Cr-Mn base alloys are now becoming available at exposure levels approaching 50 dpa. The swelling rate decreases from the ∼1%/dpa found at lower exposures, probably due to the extensive formation of ferritic phases. As expected, commercial alloys swell less than the simple alloys

  9. Improved swelling resistance for PCA austenitic stainless steel under HFIR irradiation through microstructural control

    International Nuclear Information System (INIS)

    Maziasz, P.J.; Braski, D.N.

    1984-01-01

    Swelling evaluation of PCA variants and 20%-cold-worked (N-Lot) type 316 stainless steel (CW 316) at 300 to 600 0 C was extended to 44 dpa. Swelling was negligible in all the steels at 300 0 C after approx. 44 dpa. At 500 to 600 0 C 25%-cold-worked PCA showed better void swelling resistance than type 316 at approx. 44 dpa. There was less swelling variation among alloys at 400 0 C, but again 25%-cold-worked PCA was the best

  10. DART model for irradiation-induced swelling of dispersion fuel elements including aluminum-fuel interaction

    International Nuclear Information System (INIS)

    Rest, J.; Hofman, G.L.

    1997-01-01

    The Dispersion Analysis Research Tool (DART) contains models for fission-gas-induced fuel swelling, interaction of fuel with the matrix aluminum, for the resultant reaction-product swelling, and for the calculation of the stress gradient within the fuel particle. The effects of an aluminide shell on fuel particle swelling are evaluated. Validation of the model is demonstrated by a comparison of DART calculations of fuel swelling of U 3 SiAl-Al and U 3 Si 2 -Al for various dispersion fuel element designs with the data

  11. Mechanisms affecting swelling in alloys with precipitates

    International Nuclear Information System (INIS)

    Mansur, L.K.; Haynes, M.R.; Lee, E.H.

    1980-01-01

    In alloys under irradiation many mechanisms exist that couple phase instability to cavity swelling. These are compounded with the more familiar mechanisms associated with point defect behavior and the evolution of microstructure. The mechanisms may be classified according to three modes of operation. Some affect cavity swelling directly by cavity-precipitate particle association, others operate indirectly by precipitate-induced changes in sinks other than cavities and finally there are mechanisms that are mediated by precipitate-induced changes in the host matrix. The physics of one mechanism of each type is developed in detail and the results compared where possible to experimental measurements. In particular, we develop the theory necessary to treat the effects on swelling of precipitation-induced changes in overall sink density; precipitation-induced changes in point defect trapping by solute depletion and creation of precipitate particle-matrix interfacial trap sites; and preciwill come from waste wood available locally requiring minimal energy for recovery and transportation to the site. The applicant is strongly considering the use of a solar preheating unit anium southward as well as to deeper dened al half-lives with experimental ones, over a range of 24 orders of magnitude was obtained. This is a strong argument that the alpha decay could be considered a fission process with very high mass asymmetry and charge density asymmetry

  12. Se of polymers to control clay swelling

    Energy Technology Data Exchange (ETDEWEB)

    Slobod, R L; Beiswanger, J P.G.

    1968-01-01

    The injection of water to displace oil is one of the main methods used to increase oil recovery. High injection rates are generally desired, and in some cases the flood will not be economic unless high rates are maintained. The presence of clays which swell in the presence of water offers a complication to the problem of maintaining adequate injectivity. In the course of this study it was observed that certain polymers, when present in dilute concentrations in the water, had the ability to reduce the response of these clays to fresh water. Two polymers, one an anionic and the other nonionic, were found to be very effective in controlling the clays present in Berea cores. Successful control of clay swelling was obtained by use of solutions containing as little as 1.0 ppM of polymer, but at this low concentration appreciable volumes of treating solution were required. These results suggest that some minimum amount of polymer must be adsorbed to prevent clay swelling. In Berea sandstone this minimum amount appeared to be of the order of 0.03 mg per cc of pore space. A series of tests made using 10.0 ppM polymer showed that the polymer could be made through the porous system in which 0.066 per mg of polymer was adsorbed per cc of pore space.

  13. Influence of microorganisms on swelling behavior of smectites

    International Nuclear Information System (INIS)

    Viefhaus, Hanna; Schanz, Tom

    2012-01-01

    Document available in extended abstract form only. Considerable interaction of smectitic clay minerals and water leads to the pronounced seal effect needed for barrier materials in the toxic and nuclear waste storage. Nano-structural processes on the molecular level cause macroscopic material properties such as fluid/ion permeability and volume change/swelling pressure development, that are taken into account when characterizing the barrier material. In situ behavior results from a combination of specific influence factors (e.g. electrolyte concentration, temperature, pH-value) due to the great dependence on the environmental conditions of clay water interaction. Considering this aspect, the origin of change in chemical and physical variables become relevant. Particularly in terms of naturally existing and rapid changing factors such as microbial activity. Due to the biodiversity of microorganisms and their individual diversity of metabolism processes, many species have been studied with respect to the influence on the different soil properties. In this study, the effects created by microbial biocenose have been the object of investigation. This corresponds to natural conditions rather than the isolated species. The present study concerns the swelling behavior of smectitic clay with respect to the influence of induced microbial accumulation. Two types of smectites were studied, Calcigel (Ca 2+ -ions embedded between the silicate layers) and MX80 (Na + -ions embedded). A natural silt was mixed at a ratio of 70:30 for the dry mass with smectites, this provided an amount of microbial portfolio. Using the mixtures, samples were created (20 mm height, 70 mm diameter) with two types of water contents. They exhibited the same dry densities of 1.495 g/cm 3 (Calcigel) and 1.386 g/cm 3 (MX80). Water adsorption was permitted through the contact of the sample with the liquid phase and also unhindered volume change in one dimension. The addition of nutrients to the liquid phase

  14. Effect of heating and pore water salinity on the swelling characteristics of bentonite buffer

    International Nuclear Information System (INIS)

    Dhawan, Sarita; Rao, M. Sudhakar

    2010-01-01

    Document available in extended abstract form only. Changes in swell potential of bentonite-sand mixture as a function of temperature and pore water salinity were measured. Bentonite dried at 105 deg. C and sand was mixed in 50:50 ratio by weight for study. The bentonite sand mix was compacted to 1.83 Mg/m 3 dry density and 13.8% water content (mixed with distilled water) obtained from Modified proctor compaction test for all test conditions. For the first series, the mix was prepared using distilled water as molding fluid. The compacted samples were dried at temperatures 50 deg. C and 80 deg. C for time periods 2 to 45 days. Dried samples were assembled in oedometer cells and allowed to swell under load of 6.25 kPa. In second series, bentonite sand mixes were prepared with 1000 ppm Na, 1000 ppm K, 1000 ppm Ca and 1000 ppm Mg solutions using chloride salts to achieve water content of 13.8%. The mixes were then compacted and dried at 80 deg. C for 15 days and allowed to swell in oedometer assembly. In third series of experiments, bentonite sand mix were compacted with distilled water as molding fluid and heated at 80 deg. C for 15 days. The dried samples were then swollen inundating with solutions simulating less saline granitic ground water and a moderately saline groundwater. The swell behavior is compared with samples without heating treatment. For samples prepared with distilled water and heated, the swell potential reduced up to 10-28% on heating compared to sample without any heating. The swell reduction varied depending on temperature and time period. The volumetric shrinkage varied from 1.4 to 3.3% of original volume of compacted sample on heating. Addition of sand was found effective in controlling shrinkage caused by heating. For samples prepared with salt solutions with no heating and inundated with distilled water for swell, the swell potential reduced from 12-20% compared to sample mixed and inundated with distilled water. The reduction in swell

  15. Effect of seawater on consistency, infiltration rate and swelling characteristics of montmorillonite clay

    Directory of Open Access Journals (Sweden)

    Mohie Eldin Elmashad

    2016-08-01

    Full Text Available This paper presents the results of an experimental investigation performed to quantify the effect of mixing clayey soils with saltwater on consistency and swelling characteristics of clays. Massive natural clay deposits and compacted clay backfills either exist or are used in certain important and sensitive applications such as dams, liners, barriers and buffers in waste disposal facilities. In many cases, the clay deposits in these applications are subjected to saltwater. However, in standard laboratory classification tests, distilled or potable water are usually used in mixing test samples. This may lead to faulty interpretation of the actual in-situ consistency and volume change behaviors. In this research, an attempt is made to quantify the changes in consistency and swelling of clay soils from various locations around the Nile valley and possessing a wide range of consistency, when mixed with natural seawater with different salt concentrations. The results showed that the increase of the salt concentration of the mixing water may result in major decrease in the liquid limit and swelling characteristics of high plasticity montmorillonite clays. The reduction in the swelling of the clay soils is also proportional to the rate of saltwater infiltration. In an attempt to correlate the swelling of clays to the rate of water infiltration, a new simplified laboratory apparatus is proposed where swelling and infiltration are measured in one simple test “the swelling infiltrometer”.

  16. On grain size dependent void swelling in pure copper irradiated with fission neutrons

    International Nuclear Information System (INIS)

    Singh, B.N.; Eldrup, M.; Golubov, S.I.; Zinkle, S.J.

    2001-03-01

    The effect of grain size on void swelling has its origin in the intrinsic property of grain boundaries as neutral and unsaturable sinks for both vacancies and self-interstitial atoms (SIAs). The phenomenon was investigated already in the 1970s and it was demonstrated that the grain size dependent void swelling measured under irradiation producing only Frenkel pairs could be satisfactorily explained in terms of the standard rate theory (SRT) and dislocation bias. Experimental results reported in the 1980s demonstrated, on the other hand, that the effect of grain boundaries on void swelling under cascade damage conditions was radically different and could not be explained in terms of the SRT. In an effort to understand the source of this significant difference, the effect of grain size on void swelling under cascade damage conditions has been investigated both experimentally and theoretically in pure copper irradiated with fission neutrons at 623K to a dose level of ∼0.3 dpa (displacement per atom). The post-irradiation defect microstructure including voids was investigated using transmission electron microscopy and positron annihilation spectroscopy. The evolution of void swelling was calculated within the framework of the production bias model (PBM) and the SRT. The grain size dependent void swelling measured experimentally is in good accord with the theoretical results obtained using PMB. Implications of these results on modeling of void swelling under cascade damage conditions are discussed. (au)

  17. Bias factors for radiation creep, growth and swelling

    International Nuclear Information System (INIS)

    Nichols, F.A.

    1980-01-01

    Central to the present concepts of the origin of the radiation-induced creep, growth and swelling phenomena is the relative interaction of interstitials and vacancies with various sinks. Radiation-induced climb of dislocations, which figures in many theories of radiation creep and growth, requires the absorption of an excess of either vacancies or interstitials. On the other hand, radiation swelling requires the absorption of an excess of vacancies to effect void growth. These relative preferences are normally expressed in theoretical models by certain bias factors, or capture efficiencies, usually assumed to be constant. Several attempts have been made to estimate their magnitude theoretically but all are seen to involve errors or physically unrealistic assumptions. We present here a unified treatment in which these various bias factors are estimated in a self-consistent model which incorporates, for the first time, all the essential physics, i.e., defect production, interactions of both vacancies and interstitials with sinks and the presence of two types of sinks. We present quantitative evaluations for the SIPA creep model and for radiation swelling, and compare with previous estimates of these phenomena. (orig.)

  18. Characterization and swelling-deswelling properties of wheat straw cellulose based semi-IPNs hydrogel.

    Science.gov (United States)

    Liu, Jia; Li, Qian; Su, Yuan; Yue, Qinyan; Gao, Baoyu

    2014-07-17

    A novel wheat straw cellulose-g-poly(potassium acrylate)/polyvinyl alcohol (WSC-g-PKA/PVA) semi-interpenetrating polymer networks (semi-IPNs) hydrogel was prepared by polymerizing wheat straw and an aqueous solution of acrylic acid (AA), and further semi-interpenetrating with PVA occurred during the chemosynthesis. The swelling and deswelling properties of WSC-g-PKA/PVA semi-IPNs hydrogel and WSC-g-PKA hydrogel were studied and compared in various pH solutions, salt solutions, temperatures, particle sizes and ionic strength. The results indicated that both hydrogels had the largest swelling capacity at pH=6, and the effect of ions on the swelling of hydrogels was in the order: Na(+)>K(+)>Mg(2+)>Ca(2+). The Schott's pseudo second order model can be effectively used to evaluate swelling kinetics of hydrogels. Moreover, the semi-IPNs hydrogel had improved swelling-deswelling properties compared with that of WSC-g-PKA hydrogel. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Effect of Guci powder on toe swelling induced by egg white in rats

    Science.gov (United States)

    Xie, Guoqi; Hao, Shaojun; Shen, Huiling; Ma, Zhenzhen; Zhang, Xuehui; Zhang, Zhengchen

    2018-04-01

    To observe the effect of Guci Powder on foot swelling induced by egg white in rats. 50 male rats were randomly divided into normal saline group (n=10), white vinegar group (n=10) and Guning lotion group (n=10). There were 10 rats in the high-dose group and 10 in the low-dose group. The rats in each group were treated with the drug on the left and right feet of the rats. 0.5 hours after the last administration, the rats in each group were inflamed. The left hindsole plantar volume was measured respectively, so that the difference of the posterior toe volume before inflammation was taken as the swelling degree, and the swelling degree of each group was calculated. Compared with physiological saline group, the rats' egg white toe swelling (Pegg white toe in rats was inhibited at 0.5˜2h (Pegg white in rats, and the external application of bone spur powder has anti-inflammatory and swelling effect.

  20. Managing Chemotherapy Side Effects: Swelling (Fluid Retention)

    Science.gov (United States)

    N ational C ancer I nstitute Managing Chemotherapy Side Effects Swelling (Fluid retention) “My hands and feet were swollen and puffy. My nurse helped me understand why I had to stop eating salty ...

  1. A SIPA-based theory of irradiation creep in the low swelling rate regime

    International Nuclear Information System (INIS)

    Garner, F.A.; Woo, C.H.

    1991-11-01

    A model is presented which describes the major facets of the relationships between irradiation creep, void swelling and applied stress. The increasing degree of anisotropy in distribution of dislocation Burger's vectors with stress level plays a major role in this model. Although bcc metals are known to creep and swell at lower rates than fcc metals, it is predicted that the creep-swelling coupling coefficient is actually larger

  2. Thermal ramp rate effects on mixed-oxide fuel swelling/gas release

    International Nuclear Information System (INIS)

    Hinman, C.A.; Randklev, E.H.

    1979-01-01

    Macroscopic swelling behavior of PNL-10 was compared to that of PNL-2 fuel and it was found that the swelling-threshold behavior is similar for similar thermal conditions. Transient fission gas release for the PNL-10 fuel is very similar to that observed for the PNL-2 fuel for similar thermal conditions

  3. Effects of swelling forces on the durability of wood adhesive bonds

    Science.gov (United States)

    Blake M. Hofferber; Edward Kolodka; Rishawn Brandon; Robert J. Moon; Charles R. Frihart

    2006-01-01

    The purpose of this study was to investigate the role of wood swelling on performance of wood-adhesive bonds (resorcinol formaldehyde, epoxy, emulsion polymerisocyanate), for untreated and acetylated wood. Effects of these treatments on measured strain anisotropy and swelling stress were measured and then related to compressive shear strength and percentage wood...

  4. Polymerization of alanine in the presence of a non-swelling montmorillonite

    Science.gov (United States)

    Paecht-Horowitz, M.; Lahav, N.

    1977-01-01

    Alanine, starting from alanine-adenylate, has been polymerized in the presence of non-swelling Al-montmorillonite. The yield of polymerization is much lower than that obtained in the presence of swelling Na-montmorillonite. The possibility that the changing interlayer spacing in Na-montmorillonite might be responsible for its catalytic properties, is discussed.

  5. Modified swelling pressure apparatus using vapor pressure technique for compacted bentonite

    International Nuclear Information System (INIS)

    Nishimura, Tomoyoshi

    2012-01-01

    Document available in extended abstract form only. bentonite. The compacted bentonite is found in unsaturated conditions before applying of swelling due to absorption. The behaviour of compacted bentonite is not consistent with the principle and concepts of classical, saturated soil mechanics. An unsaturated soil theoretical framework using soil water characteristic curve has been fairly established over the past several decades. The soil-water characteristic curve is a relationship between soil moisture and soil suction obtained by the axis translation technique, vapor pressure technique or osmotic suction control which is a key feature in unsaturated soil mechanics. The soil-water characteristic curve can be used for prediction of the shear strength, volume change and hydraulic conductivity. Cui et al. 2002 indicated soil-water characteristic curve of expansive clay soil in high soil suction ranges using osmotic suction technique. Tripathy et al. 2010 described the soil-water characteristic curve both using the axis translation technique and vapor pressure technique in the entire soil suction ranges. Nishimura and Koseki 2011 measured suction of bentonite applied high soil suction due vapor pressure using a chilled mirror dew point potentiometer (WP4-T of DECAGON Device). The bentonite with gravimetric water content of 18 % indicated soil suction of 2.8 MPa at least. It is predicted that suction efforts to swelling pressure and shear strength of unsaturated compacted bentonite. This study focuses on the influence of suction on both swelling pressure and shear strength of compacted bentonite. The soil-water characteristic curve (SWCC) tests were conducted for compacted bentonite using both axis-translation technique and vapor pressure technique. The SWCC had a range from 0 kPa to 296 MPa in suction. The compacted bentonite having two different soil suctions were prepared for swelling pressure tests. Newly swelling pressure testing apparatus was developed in order

  6. Evolution of swelling pressure of cohesive-frictional, rough and elasto-plastic granulates

    OpenAIRE

    Luding, Stefan; Bauer, Erich; Jiang, Mingjing; Liu, Fang; Bolton, Malcolm

    2010-01-01

    The subject of this study is the modeling of the evolution of the swell-ing pressure of granulates with cohesive-frictional, rough and elasto-plastic “mi-croscopic” contact properties. The spherical particles are randomly arranged in a periodic cubic space with a fixed volume so that an increase of the particle size – i.e. swelling that can be caused by intake of some fluid – is accompanied by a de-crease of the void space. An analytical function is proposed that properly de-scribes the (macr...

  7. Void swelling in fast reactor irradiated high purity binary iron-chromium alloys

    International Nuclear Information System (INIS)

    Little, E.A.; Stow, D.A.

    The void swelling characteristics of a series of high purity binary iron-chromium alloys containing 0 - 615 0 C. The void swelling behaviour can be qualitatively rationalized in terms of point defect trapping and precipitation processes involving chromium atoms

  8. Fission-induced recrystallization effect on intergranular bubble-driven swelling in U-Mo fuel

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Linyun; Mei, Zhi-Gang; Yacout, Abdellatif M.

    2017-10-01

    We have developed a mesoscale phase-field model for studying the effect of recrystallization on the gas-bubble-driven swelling in irradiated U-Mo alloy fuel. The model can simulate the microstructural evolution of the intergranular gas bubbles on the grain boundaries as well as the recrystallization process. Our simulation results show that the intergranular gas-bubble-induced fuel swelling exhibits two stages: slow swelling kinetics before recrystallization and rapid swelling kinetics with recrystallization. We observe that the recrystallization can significantly expedite the formation and growth of gas bubbles at high fission densities. The reason is that the recrystallization process increases the nucleation probability of gas bubbles and reduces the diffusion time of fission gases from grain interior to grain boundaries by increasing the grain boundary area and decreasing the diffusion distance. The simulated gas bubble shape, size distribution, and density on the grain boundaries are consistent with experimental measurements. We investigate the effect of the recrystallization on the gas-bubble-driven fuel swelling in UMo through varying the initial grain size and grain aspect ratio. We conclude that the initial microstructure of fuel, such as grain size and grain aspect ratio, can be used to effectively control the recrystallization and therefore reduce the swelling in U-Mo fuel.

  9. Swelling behaviour of stones and its interest in conservation. An appraisal

    Directory of Open Access Journals (Sweden)

    Delgado Rodrigues, J.

    2001-12-01

    Full Text Available Swelling can be defined as the volume increase experienced by any solid body when wetted. Many lithotypes (carbonate rocks, sandstones, igneous rocks have expansive components in their composition; anhydrite and clay minerals are the two best-known expansive components in stone materials. Swelling strain can be easily quantified and swelling pressure determination is accessible in many geotechnical laboratories. This paper deals with the decay of stone due to swelling of clays and discusses the ways to take the swelling behaviour into account when the assessment of stone durability is concerned. It analyses the role of swelling in stone conservation and reviews some cases where this decay mechanism has a relevant role, explicit or implicitly.

    La expansibilidad puede ser definida como el incremento de volumen que un cuerpo sólido experimenta cuando es humedecido. Muchos tipos litológicos (rocas carbonatadas, areniscas, rocas ígneas tienen componentes expansivos en su composición; la anhidrita y los minerales arcillosos son los dos componentes expansivos más conocidos. La expansibilidad puede ser medida con facilidad y la determinación de la presión de hinchamiento se puede efectuar en muchos laboratorios de geotecnia. Este trabajo trata del problema de la degradación de los materiales rocosos debida a la expansión de las arcillas y discute las formas de tenerla en cuenta cuando interesa evaluar la durabilidad de esos materiales. Se analiza el papel de la expansibilidad en la conservación de la piedra y se hace una revisión de algunos casos en los que la degradación por expansión tiene un papel relevante, explícito o implícito.

  10. Relationship between equivalent chromium content and irradiation-induced swelling in 316 stainless steel

    International Nuclear Information System (INIS)

    Bates, J.F.; Guthrie, G.L.

    1974-12-01

    A correlation is noted between equivalent chromium content and resistance to irradiation induced swelling in various 316 stainless steel specimens which have slightly different chemical compositions. Several examples are cited where an increased concentration of an α-stabilizing minor constituent results in decreased swelling. It is shown that the relative swelling resistance of alloys having the same carbon and equivalent nickel contents is higher for those alloys with the higher equivalent chromium content

  11. The effect of solvent swelling for the production of ashless coal

    Energy Technology Data Exchange (ETDEWEB)

    Aylin Kurman; Sultan Giray; Ozgur Sonmez [Cukurova University, Adana (Turkey). Chemistry Department, Art& Science Faculty

    2005-07-01

    Two Turkish coal (a bituminous and a brown coal) were extracted with NMP-CS2 (1:1 v/v) and NMP-EDA (1:17, v/v) at room conditions and with NMP and NMP/EDA under reflux. To obtain any effect of solvent swelling on extraction yield coals were also extracted at same conditions after swelling with NMP and EDA. The extraction yield was maximum in the NMP-CS2 mixed solvent for higher ranked coal, suggesting a synergistic effect of the system. It was possible to extract over 35 % of sub-bituminous coal by using NMP- CS2. The extraction of same coal with NMP under reflux gave an extraction yield of 33% suggesting the useful effect of solvent swelling and heat during the reflux period. A positive effect of pre-swelling with NMP and EDA on extraction yield and recovery of solid extracts were observed , especially for brown coal sample. Following the extraction, solid extracts were produced with less than 0.12 % in ash content for almost all extraction conditions.

  12. Propionate induces cell swelling and K+ accumulation in shark rectal gland

    International Nuclear Information System (INIS)

    Feldman, G.M.; Ziyadeh, F.N.; Mills, J.W.; Booz, G.W.; Kleinzeller, A.

    1989-01-01

    Small organic anions have been reported to induce cell solute accumulation and swelling. To investigate the mechanism of swelling, we utilized preparations of rectal gland cells from Squalus acanthias incubated in medium containing propionate. Propionate causes cells to swell by diffusing across membranes in its nonionic form, acidifying cell contents, and activating the Na+-H+ antiporter. The Na+-H+ exchange process tends to correct intracellular pH (pHi), and thus it maintains a favorable gradient for propionic acid diffusion and allows propionate to accumulate. Activation of the Na+-H+ antiport also facilitates Na+ entry into the cell and Nai accumulation. At the same time Na+-K+-ATPase activity, unaffected by propionate, replaces Nai with Ki, whereas the K+ leak rate, decreased by propionate, allows Ki to accumulate. As judged by 86 Rb+ efflux, the reduction in K+ leak was not due to propionate-induced cell acidification or reduction in Cli concentration. Despite inducing cell swelling, propionate did not disrupt cell structural elements and F actin distribution along cell membranes

  13. Propionate induces cell swelling and K+ accumulation in shark rectal gland

    Energy Technology Data Exchange (ETDEWEB)

    Feldman, G.M.; Ziyadeh, F.N.; Mills, J.W.; Booz, G.W.; Kleinzeller, A. (Mount Desert Island Biological Laboratory, Salsbury Cove, ME (USA))

    1989-08-01

    Small organic anions have been reported to induce cell solute accumulation and swelling. To investigate the mechanism of swelling, we utilized preparations of rectal gland cells from Squalus acanthias incubated in medium containing propionate. Propionate causes cells to swell by diffusing across membranes in its nonionic form, acidifying cell contents, and activating the Na+-H+ antiporter. The Na+-H+ exchange process tends to correct intracellular pH (pHi), and thus it maintains a favorable gradient for propionic acid diffusion and allows propionate to accumulate. Activation of the Na+-H+ antiport also facilitates Na+ entry into the cell and Nai accumulation. At the same time Na+-K+-ATPase activity, unaffected by propionate, replaces Nai with Ki, whereas the K+ leak rate, decreased by propionate, allows Ki to accumulate. As judged by {sup 86}Rb+ efflux, the reduction in K+ leak was not due to propionate-induced cell acidification or reduction in Cli concentration. Despite inducing cell swelling, propionate did not disrupt cell structural elements and F actin distribution along cell membranes.

  14. Temporomandibular joint osteochondromatosis: an unusual cause of preauricular swelling.

    LENUS (Irish Health Repository)

    Phelan, Eimear

    2012-02-01

    We report an unusual and rare cause of preauricular swelling and review the most recent literature concerning synovial osteochondromatosis of the temporomandibular joint. We report the clinical and radiologic findings of a case of synovial osteochondromatosis of the temporomandibular joint that presented as preauricular swelling in a female patient. This disease typically affects large joints; fewer than 100 cases reported in the literature affect the temporomandibular joint. This case illustrates that disorders of the temporomandibular joint should also be included in the differential diagnosis of patients who present with a preauricular mass.

  15. Exciting Pools

    Science.gov (United States)

    Wright, Bradford L.

    1975-01-01

    Advocates the creation of swimming pool oscillations as part of a general investigation of mechanical oscillations. Presents the equations, procedure for deriving the slosh modes, and methods of period estimation for exciting swimming pool oscillations. (GS)

  16. Mechanisms of astrocytic K(+) clearance and swelling under high extracellular K(+) concentrations.

    Science.gov (United States)

    Murakami, Shingo; Kurachi, Yoshihisa

    2016-03-01

    In response to the elevation of extracellular K(+) concentration ([K(+)]out), astrocytes clear excessive K(+) to maintain conditions necessary for neural activity. K(+) clearance in astrocytes occurs via two processes: K(+) uptake and K(+) spatial buffering. High [K(+)]out also induces swelling in astrocytes, leading to edema and cell death in the brain. Despite the importance of astrocytic K(+) clearance and swelling, the underlying mechanisms remain unclear. Here, we report results from a simulation analysis of astrocytic K(+) clearance and swelling. Astrocyte models were constructed by incorporating various mechanisms such as intra/extracellular ion concentrations of Na(+), K(+), and Cl(-), cell volume, and models of Na,K-ATPase, Na-K-Cl cotransporter (NKCC), K-Cl cotransporter, inwardly-rectifying K(+) (KIR) channel, passive Cl(-) current, and aquaporin channel. The simulated response of astrocyte models under the uniform distribution of high [K(+)]out revealed significant contributions of NKCC and Na,K-ATPase to increases of intracellular K(+) and Cl(-) concentrations, and swelling. Moreover, we found that, under the non-uniform distribution of high [K(+)]out, KIR channels localized at synaptic clefts absorbed excess K(+) by depolarizing the equivalent potential of K(+) (E K) above membrane potential, while K(+) released through perivascular KIR channels was enhanced by hyperpolarizing E K and depolarizing membrane potential. Further analysis of simulated drug effects revealed that astrocyte swelling was modulated by blocking each of the ion channels and transporters. Our simulation analysis revealed controversial mechanisms of astrocytic K(+) clearance and swelling resulting from complex interactions among ion channels and transporters.

  17. Experimental study on swelling character of statics-compacted bentonite-sand mixture

    International Nuclear Information System (INIS)

    Cui Suli; Zhang Huyuan; Liu Jisheng; Liang Jian

    2010-01-01

    In the high-level radioactive waste (HLW) geological disposal projects barrier system, there are two types for constructing buffer/backfill material in preconceived: locale field-pressed and locale-build by prefab lock. Statics-Compacted is needed for both footrill padding in the locale field-pressed and locale-build by prefab lock. Laboratory tests were conducted on statics-compacted mixture of GMZ001 bentonite and quartz sand in different addition. The results obtained indicated that in the semi-log coordinates, the form of the P-time and e-time curves were sigmoid,the same as dynamic-compacted specime. The swelling character of statics-compacted specime were also as well as dynamic-compacted specime, that is with the increase of initial dry density, the maximum swelling pressure were exponential increase and maximum swelling strain increase linearly. These made it clear that the methods of making specime have no effect on the swelling character of bentonite-sand mixture, so methods for constructing buffer/backfill material can be selected free as needed in the construction site. The validity of regression relationship received by dynamic-compacted specime test was verified, and the coefficients for the regression equation were revised in a greater range of initial dry density. Based on the comprehensive analysis of experimental results, it is concluded that addition of 10-30% quartz sand and 1.60-1.80 g/cm 3 for initial dry density to GMZ001 bentonite-sand mixture is suitable for the swelling quality. (authors)

  18. Swelling, Mechanics, and Thermal/Chemical Stability of Hydrogels Containing Phenylboronic Acid Side Chains

    Directory of Open Access Journals (Sweden)

    Arum Kim

    2017-12-01

    Full Text Available We report here studies of swelling, mechanics, and thermal stability of hydrogels consisting of 20 mol % methacrylamidophenylboronic acid (MPBA and 80 mol % acrylamide (AAm, lightly crosslinked with methylenebisacrylamide (Bis. Swelling was measured in solutions of fixed ionic strength, but with varying pH values and fructose concentrations. Mechanics was studied by compression and hold. In the absence of sugar or in the presence of fructose, the modulus was mostly maintained during the hold period, while a significant stress relaxation was seen in the presence of glucose, consistent with reversible, dynamic crosslinks provided by glucose, but not fructose. Thermal stability was determined by incubating hydrogels at pH 7.4 at room temperature, and 37, 50, and 65 °C, and monitoring swelling. In PBS (phosphate buffered saline solutions containing 9 mM fructose, swelling remained essentially complete for 50 days at room temperature, but decreased substantially with time at the higher temperatures, with accelerated reduction of swelling with increasing temperature. Controls indicated that over long time periods, both the MPBA and AAm units were experiencing conversion to different species.

  19. Black liquor devolatilization and swelling - a detailed droplet model and experimental validation

    International Nuclear Information System (INIS)

    Jaervinen, M.; Zevenhoven, R.; Vakkilainen, E.; Forssen, M.

    2003-01-01

    In this paper, we present results from a new detailed physical model for single black liquor droplet pyrolysis and swelling, and validate them against experimental data from a non-oxidizing environment using two different reactor configurations. In the detailed model, we solve for the heat transfer and gas phase mass transfer in the droplet and thereby, the intra-particle gas-char and gas-gas interactions during drying and devolatilization can be studied. In the experimental part, the mass change, the swelling behaviour, and the volume fraction of larger voids, i.e. cenospheres in the droplets were determined in a non-oxidizing environment. The model gave a good correlation with experimental swelling and mass loss data. Calculations suggest that a considerable amount of the char can be consumed before the entire droplet has experienced the devolatilization and drying stages of combustion. Char formed at the droplet surface layer is generally consumed by gasification with H 2 O flowing outwards from the droplet interior. The extent of char conversion during devolatilization and the rate of devolatilization are greatly affected by swelling and the formation of larger voids in the particle. The more the particle swells and the more homogeneous the particle structure is, the larger is the conversion of char at the end of devolatilization

  20. Impurities effect on the swelling of neutron irradiated beryllium

    International Nuclear Information System (INIS)

    Donne, M.D.; Scaffidi-Argentina, F.

    1995-01-01

    An important factor controlling the swelling behaviour of fast neutron irradiated beryllium is the impurity content which can strongly affect both the surface tension and the creep strength of this material. Being the volume swelling of the old beryllium (early sixties) systematically higher than that of the more modem one (end of the seventies), a sensitivity analysis with the aid of the computer code ANFIBE (ANalysis of Fusion Irradiated BEryllium) to investigate the effect of these material properties on the swelling behaviour of neutron irradiated beryllium has been performed. Two sets of experimental data have been selected: the first one named Western refers to quite recently produced Western beryllium, whilst the second one, named Russian refers to relatively old (early sixties) Russian beryllium containing a higher impurity rate than the Western one. The results obtained with the ANFIBE Code were assessed by comparison with experimental data and the used material properties were compared with the data available in the literature. Good agreement between calculated and measured values has been found

  1. Effects of the Charge Ions Strength on the Swelling of Organic-Inorganic Nanogels

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Qin; Lu, Xiangguo; Wang, Jing; Guo, Qi; Niu, Liwei [Northeast Petroleum University, Daqing (China)

    2016-07-15

    The swelling behavior and swelling mechanism of hydrogels can be greatly affected by the charge strength of ions in them. To investigate such effects, we prepared two gels: a carboxylic acid gel (CAG) and a poly (2-acrylamide–methyl propane sulfonic acid) gel (SAG) based on starchy polyacrylamide (PAM) nanocomposite gels, both with montmorillonite, which underwent in situ intercalation, and used them as probes in swelling experiments. The equilibrium swelling rates (ESRs) of the hydrogels in both salt water and acidic water strongly depended on the charge strength of the ions in the chains. SAG had a higher ESR than CAG at the same mole ratio of polymer/water, which is attributed to the greater electrostatic repulsion between the strong electrolyte ions of SAG. Both water salinity and hydrogen ion contact of the hydrogels weakened ESR with the enhancement of charge ionic strength. The downward trend of ESR with increasing concentration of salt or hydrogen ions became weaker in SAG compared to CAG, which is attributed to the shielding and deprotonation effects of the strong electrolyte ions. Regarding the swelling mechanism, the chain relaxation occurred in neutral and acidic solutions for SAG and in neutral and weak acidic solutions for CAG, but water diffusion dominated in strong acidic solutions for CAG, leading to different swelling behaviors.

  2. Altered osmotic swelling behavior of proteoglycan-depleted bovine articular cartilage using high frequency ultrasound

    International Nuclear Information System (INIS)

    Wang, Q; Zheng, Y P; Leung, G; Mak, A F T; Lam, W L; Guo, X; Lu, H B; Qin, L

    2008-01-01

    Swelling behavior is an electrochemical mechanical property of articular cartilage. It plays an important role in weight bearing and joint lubrication. In this study, the altered transient and inhomogeneous swelling behavior of the degenerated articular cartilage was observed and quantified in situ using ultrasound. Three groups of bovine patellar articular cartilage samples (n = 10 x 3) were obtained and digested by trypsin for 10, 20 and 30 min respectively to mimic different levels of degeneration. The osmotic-free shrinkage and swelling behavior induced by changing the concentration of the bathing saline solution from 0.15 M to 2 M and then back to 0.15 M were characterized using high-frequency ultrasound (central frequency = 35 MHz) before and after digestion. It was found that the degenerated cartilage specimens showed a weaker shrinkage-swelling behavior compared with the normal cartilage samples. However, no significant differences in the peak shrinkage or swelling strains were observed between different groups. The absolute values of the peak shrinkage strain significantly (p < 0.05) decreased by 45.4%, 42.1% and 50.6% respectively after the trypsin digestion for 10, 20 and 30 min, but such significance was not demonstrated for the peak swelling strains. Due to the potential alterations in the collagen-PG matrix during trypsin digestion, the correlation between the swelling strain and the shrinkage strain of the degenerated samples changed slightly in comparison with the normal samples. The proposed ultrasound method has been successfully used to measure the transient and inhomogeneous swelling behavior of the degenerated articular cartilage and has the potential for the characterization of osteoarthritis

  3. Cell swelling activates separate taurine and chloride channels in Ehrlich mouse ascites tumor cells

    DEFF Research Database (Denmark)

    Lambert, Ian Henry; Hoffmann, Else Kay

    1994-01-01

    The taurine efflux from Ehrlich ascites tumor cells is stimulated by hypotonic cell swelling. The swelling-activated taurine efflux is unaffected by substitution of gluconate for extracellular Cl– but inhibited by addition of MK196 (anion channel blocker) and 4,4 -diisothiocyanostilbene-2......,2 -disulfonic acid (DIDS; anion channel and anion exchange blocker) and by depolarization of the cell membrane. This is taken to indicate that taurine does not leave the osmotically swollen Ehrlich cells in exchange for extracellular Cl–, i.e., via the anion exchanger but via a MK196- and DIDS-sensitive channel...... that is potential dependent. An additional stimulation of the swelling-activated taurine efflux is seen after addition of arachidonic acid and oleic acid. Cell swelling also activates a Mini Cl– channel. The Cl– efflux via this Cl– channel, in contrast to the swelling-activated taurine efflux, is unaffected by DIDS...

  4. PREVENTION OF PHOSPHATE - INDUCED MITOCHONDRIAL SWELLING

    Science.gov (United States)

    Kroll, Arnold J.; Kuwabara, Toichiro

    1962-01-01

    The prevention of phosphate-induced mitochondrial swelling in the whole retina of the rabbit was studied with the electron microscope. It was found that a mixture of ATP, Mg++, and bovine serum albumin protected the mitochondria in vitro. This finding confirmed the results obtained spectrophotometrically with isolated rat liver mitochondria by Lehninger. PMID:13927020

  5. Unusual presentation of ulcerative postauricular swelling as ...

    African Journals Online (AJOL)

    The swelling became ulcerative and associated with progressive tinnitus and hoarseness of voice. The patient was investigated. Fine‑needle aspiration cytology suggested sebaceous cell carcinoma. Then excision biopsy was done, and histopathological examination of excised tissue confirmed the diagnosis. Extraorbital ...

  6. Swelling of copper-aluminum and copper-nickel alloys in FFTF-MOTA at approximately 4500C

    International Nuclear Information System (INIS)

    Garner, F.A.; Brager, H.R.

    1986-06-01

    Pure copper appears to swell with an S-shaped behavior at 450 0 C, tending to saturate at higher fluence levels. The addition of solutes such as aluminum and nickel at 5 wt % leads to an extended transient regime and thereby a reduction in swelling at low to moderate fast neutron exposures. The addition of these elements also leads to an increase in the saturation level of swelling, however, resulting in an increase in swelling relative to that of pure copper at high fluence

  7. Charge-regularized swelling kinetics of polyelectrolyte gels: Elasticity and diffusion

    Science.gov (United States)

    Sen, Swati; Kundagrami, Arindam

    2017-11-01

    We apply a recently developed method [S. Sen and A. Kundagrami, J. Chem. Phys. 143, 224904 (2015)], using a phenomenological expression of osmotic stress, as a function of polymer and charge densities, hydrophobicity, and network elasticity for the swelling of spherical polyelectrolyte (PE) gels with fixed and variable charges in a salt-free solvent. This expression of stress is used in the equation of motion of swelling kinetics of spherical PE gels to numerically calculate the spatial profiles for the polymer and free ion densities at different time steps and the time evolution of the size of the gel. We compare the profiles of the same variables obtained from the classical linear theory of elasticity and quantitatively estimate the bulk modulus of the PE gel. Further, we obtain an analytical expression of the elastic modulus from the linearized expression of stress (in the small deformation limit). We find that the estimated bulk modulus of the PE gel decreases with the increase of its effective charge for a fixed degree of deformation during swelling. Finally, we match the gel-front locations with the experimental data, taken from the measurements of charged reversible addition-fragmentation chain transfer gels to show an increase in gel-size with charge and also match the same for PNIPAM (uncharged) and imidazolium-based (charged) minigels, which specifically confirms the decrease of the gel modulus value with the increase of the charge. The agreement between experimental and theoretical results confirms general diffusive behaviour for swelling of PE gels with a decreasing bulk modulus with increasing degree of ionization (charge). The new formalism captures large deformations as well with a significant variation of charge content of the gel. It is found that PE gels with large deformation but same initial size swell faster with a higher charge.

  8. Effect of compression therapy on knee swelling and pain after total knee arthroplasty

    DEFF Research Database (Denmark)

    Munk, Stig; Jensen, Niels J. F.; Andersen, Ida Bøgh

    2013-01-01

    PURPOSE: Knee swelling after total knee arthroplasty may impair postoperative mobilisation and training, and as medical elastic compression stockings are well tolerated and effective to prevent oedema, haematoma and postoperative pain after venous surgery, we wanted to study whether this effect...... could be transferred to total knee arthroplasty surgery reducing postoperative swelling and pain and thereby facilitating mobilisation and improving patient-reported knee function. METHODS: In a randomised controlled study, 88 patients were randomised to use either a medical elastic compression stocking...... or no stocking from the first postoperative day and the following 4 weeks after total knee arthroplasty. Outcome measures were knee, calf and ankle swelling, knee flexion, pain and patient-reported knee function. RESULTS: Seventy per cent of the swelling had occurred before application of the stocking the day...

  9. Engineering Significant of Swelling Soils

    OpenAIRE

    Behzad Kalantari

    2012-01-01

    This study describes some of the most important swelling characters of expansive soils when used as foundation materials to support various types of civil engineering structures. Expansive soils are considered among difficult foundation materials and expand upon wetting and shrink upon losing moisture. They are considered problematic soils for architectural and civil engineers. These types of soils may cause minor to major structural damages to pavements as well as buildings. It is therefore ...

  10. Effects of solute interstitial elements on swelling of stainless steel

    International Nuclear Information System (INIS)

    Stiegler, J.O.; Leitnaker, J.M.; Bloom, E.E.

    1975-01-01

    High-purity stainless steel (HPS), equivalent to type 316 stainless steel in major alloy elements but with greatly reduced interstitial elements and manganese contents, was irradiated in the temperature range 725 to 875 K to fluences ranging from 1.0 to 3.5 x 10 26 neutrons/m 2 (>0.1 MeV). The HPS swelled 20 to 50 times more than commercial grade 316 stainless steel (316 SS), and about the same as commercial-purity nickel, which has about the same interstitial content as HPS. A fine-grained 316 SS in which interstitial elements but not manganese were precipitated by thermomechanical treatments also showed exaggerated swelling, approaching that of HPS, which suggests that swelling in commercial stainless steels is retarded by small amounts of interstitial elements normally present in them and not by the major alloying elements. Interstitials tend to precipitate from solution during irradiation, and bulk extractions of precipitate particles were made to evaluate the extent of the precipitation reactions. At both 643 and 853 K precipitation was clearly enhanced by irradiation significantly enough to alter the matrix composition, which suggests that swelling may be increased at high fluences over that predicted by extrapolation of lower fluence data. These observations are discussed in terms of potential behaviour of fuel cladding materials and of the validity and interpretation of accelerated schemes for simulating neutron damage. (author)

  11. The role of bulk recombination in the theory of void swelling

    International Nuclear Information System (INIS)

    Hayns, M.R.

    1978-01-01

    Bulk point defect recombination in the rate theory of void swelling is considered in two ways. First the importance of recombination in the overall void swelling problem is assessed in the light of current experimental data on the temperature dependence of the sink densities. It is found that the assumption that recombination is negligible at and above the peak swelling temperature is not generally true, and is often the reverse of this. Secondly recombination is included in the sink strengths themselves very much in the same spirit as the interactive correction terms have been for losses to other sinks. An approximate numerical procedure has been used to evaluate the resulting coupled sink strengths. Using only the corrections to the cavity sink strengths we have shown that these new terms are only significant at temperatures well in excess of the swelling peak in ST316 under HVEM irradiations and that they need not be included as a general rule in rate theory calculations. Comparisons with a mathematical, perturbation theory treatment of the same problem and with full numerical cellular model results confirm the usefulness of the prsent method. (author)

  12. Swelling of austenitic iron-nickelchromium ternary alloys during fast neutron irradiation

    International Nuclear Information System (INIS)

    Garner, F.A.; Brager, H.R.

    1984-01-01

    Swelling data are now available for 15 iron-nickel-chromium ternary alloys irradiated to exposures as high as 110 displacements per atom (dpa) in Experimental Breeder Reactor-II (EBR-II) between 400 and 650 0 C. These data confirm trends observed at lower exposure levels and extend the generality of earlier conclusions to cover a broader range of composition and temperature. It appears that all austenitic iron-nickel-chromium ternary alloys eventually approach an intrinsic swelling rate of about1%/dpa over a range of temperature even wider than studied in this experiment. The duration of the transient regime that precedes the attainment of this rate is quite sensitive to nickel and chromium content, however. At nickel and chromium levels typical of 300 series steels, swelling does not saturate at engineering-relevant levels. However, there appears to be a tendency toward saturation that increases with declining temperature, increasing nickel and decreasing chromium levels. Comparisons of these results are made with those of similar studies conducted with charged particles. Conclusions are then drawn concerning the validity of charged particle simulation studies to determine the compositional and temperature dependence of swelling

  13. Micro-bubble morphologies following drop impacts onto a pool surface

    KAUST Repository

    Thoroddsen, Sigurdur T; Thoraval, M.-J.; Takehara, K.; Etoh, T.G.

    2012-01-01

    When a drop impacts at low velocity onto a pool surface, a hemispheric air layer cushions and can delay direct contact. Herein we use ultra-high-speed video to study the rupture of this layer, to explain the resulting variety of observed distribution of bubbles. The size and distribution of micro-bubbles is determined by the number and location of the primary punctures. Isolated holes lead to the formation of bubble necklaces when the edges of two growing holes meet, whereas bubble nets are produced by regular shedding of micro-bubbles from a sawtooth edge instability. For the most viscous liquids the air film contracts more rapidly than the capillary-viscous velocity through repeated spontaneous ruptures of the edge. From the speed of hole opening and the total volume of micro-bubbles we conclude that the air sheet ruptures when its thickness approaches ?100.

  14. Micro-bubble morphologies following drop impacts onto a pool surface

    KAUST Repository

    Thoroddsen, Sigurdur T.

    2012-10-01

    When a drop impacts at low velocity onto a pool surface, a hemispheric air layer cushions and can delay direct contact. Herein we use ultra-high-speed video to study the rupture of this layer, to explain the resulting variety of observed distribution of bubbles. The size and distribution of micro-bubbles is determined by the number and location of the primary punctures. Isolated holes lead to the formation of bubble necklaces when the edges of two growing holes meet, whereas bubble nets are produced by regular shedding of micro-bubbles from a sawtooth edge instability. For the most viscous liquids the air film contracts more rapidly than the capillary-viscous velocity through repeated spontaneous ruptures of the edge. From the speed of hole opening and the total volume of micro-bubbles we conclude that the air sheet ruptures when its thickness approaches ?100.

  15. Vortex-induced buckling of a viscous drop impacting a pool

    KAUST Repository

    Li, Erqiang

    2017-07-20

    We study the intricate buckling patterns which can form when a viscous drop impacts a much lower viscosity miscible pool. The drop enters the pool by its impact inertia, flattens, and sinks by its own weight while stretching into a hemispheric bowl. Upward motion along the outer bottom surface of this bowl produces a vortical boundary layer which separates along its top and rolls up into a vortex ring. The vorticity is therefore produced in a fundamentally different way than for a drop impacting a pool of the same liquid. The vortex ring subsequently advects into the bowl, thereby stretching the drop liquid into ever thinner sheets, reaching the micron level. The rotating motion around the vortex pulls in folds to form multiple windings of double-walled toroidal viscous sheets. The axisymmetric velocity field thereby stretches the drop liquid into progressively finer sheets, which are susceptible to both axial and azimuthal compression-induced buckling. The azimuthal buckling of the sheets tends to occur on the inner side of the vortex ring, while their folds can be stretched and straightened on the outside edge. We characterize the total stretching from high-speed video imaging and use particle image velocimetry to track the formation and evolution of the vortex ring. The total interfacial area between the drop and the pool liquid can grow over 40-fold during the first 50 ms after impact. Increasing pool viscosity shows entrapment of a large bubble on top of the drop, while lowering the drop viscosity produces intricate buckled shapes, appearing at the earliest stage and being promoted by the crater motions. We also present an image collage of the most intriguing and convoluted structures observed. Finally, a simple point-vortex model reproduces some features from the experiments and shows variable stretching along the wrapping sheets.

  16. Swimming-pool piles

    International Nuclear Information System (INIS)

    Trioulaire, M.

    1959-01-01

    In France two swimming-pool piles, Melusine and Triton, have just been set in operation. The swimming-pool pile is the ideal research tool for neutron fluxes of the order of 10 13 . This type of pile can be of immediate interest to many research centres, but its cost must be reduced and a break with tradition should be observed in its design. It would be an advantage: - to bury the swimming-pool; - to reject the experimental channel; - to concentrate the cooling circuit in the swimming-pool; - to carry out all manipulations in the water; - to double the core. (author) [fr

  17. Fractional cable equation for general geometry: A model of axons with swellings and anomalous diffusion

    Science.gov (United States)

    López-Sánchez, Erick J.; Romero, Juan M.; Yépez-Martínez, Huitzilin

    2017-09-01

    Different experimental studies have reported anomalous diffusion in brain tissues and notably this anomalous diffusion is expressed through fractional derivatives. Axons are important to understand neurodegenerative diseases such as multiple sclerosis, Alzheimer's disease, and Parkinson's disease. Indeed, abnormal accumulation of proteins and organelles in axons is a hallmark of these diseases. The diffusion in the axons can become anomalous as a result of this abnormality. In this case the voltage propagation in axons is affected. Another hallmark of different neurodegenerative diseases is given by discrete swellings along the axon. In order to model the voltage propagation in axons with anomalous diffusion and swellings, in this paper we propose a fractional cable equation for a general geometry. This generalized equation depends on fractional parameters and geometric quantities such as the curvature and torsion of the cable. For a cable with a constant radius we show that the voltage decreases when the fractional effect increases. In cables with swellings we find that when the fractional effect or the swelling radius increases, the voltage decreases. Similar behavior is obtained when the number of swellings and the fractional effect increase. Moreover, we find that when the radius swelling (or the number of swellings) and the fractional effect increase at the same time, the voltage dramatically decreases.

  18. Molecular accessibility in solvent swelled coals. Quarterly report, [April--June 1993

    Energy Technology Data Exchange (ETDEWEB)

    Kispert, L.D.

    1993-08-01

    The effect of weathering (oxidation and dehydration upon exposure to air) on the molecular accessibility of potential catalysts was studied by the EPR spin probe technique. Fresh samples of all 8 APCS coals were exposed to air for periods up to 36 days. Weathering produced significant effects on the retention of spin probes in most of the APCS coals under 91 % carbon (dmmf). It was determined that the lower ranked coal (Beulah Zap and Wyodak) under went a structural collapse which precluded retention of even spin probe VIII. However, medium ranked coals exhibited improved retention upon weathering when swelled in toluene. Swelling with pyridine opened up small pores for 81--86% carbon which is not observed for swelling with toluene. Changes in coal structure were successfully followed by the EPR spin probe method. A detailed analysis of the data collected from the swelling of coals oxidized in a moisture free environment was completed to differentiate between weathering and oxidation. Eight vacuum dried APCS coals were oxidized in an enclosed, pure oxygen, moisture free environment, and the effects of oxidation alone on coal structure were studied by the intercalation of EPR spin probes. The data shows a factor of 5 increase in spin probe retention for some coals oxidized in O{sub 2} versus air., suggesting a large increase in oxidized material. Particular care was taken during the swelling procedures to avoid exposure of the coal samples to air or moisture. EPR spectra were then obtained for these 300 samples.

  19. Multipurpose Compensation Scheme for Voltage Sag/Swell and Selective Harmonics Elimination in Distribution Systems

    Directory of Open Access Journals (Sweden)

    Mustafa Inci

    2018-01-01

    Full Text Available Voltage harmonics, sag, and swell are the most harmful disturbances in distribution systems. This paper introduces a novel effective controller method for simultaneous compensation of both voltage sag/swell and voltage harmonics by using multifunctional dynamic voltage restorer. In proposed controller method called FFT with integrated ISRF, ISRF detects the magnitudes of voltage sag/swell quickly and precisely, and FFT extracts the selective components of voltage harmonics very effectively. The proposed method integrates the superior properties of ISRF and FFT methods. FFT integrated ISRF is applied for the first time to provide the compensation of both sag/swell and selective harmonics together. The proposed system has ability to compensate symmetrical/asymmetrical sag/swell and symmetrical/asymmetrical selective harmonics which are 5th, 7th, 11th and 13th. The controlled system is modelled in PSCAD/EMDTC and compared with conventional methods. The performance results verify that the proposed method compensates voltage disturbances effectively in the system.

  20. What Causes Ankle Swelling During Pregnancy - And What Can I do About it?

    Science.gov (United States)

    ... the ankles or calves. Some research suggests that foot massage and reflexology, which involves applying pressure to certain areas of the feet, hands and ears, might help decrease foot and ankle swelling during pregnancy. Also, swelling doesn' ...

  1. Void swelling and segregation in dilute nickel alloys

    International Nuclear Information System (INIS)

    Potter, D.I.; Rehn, L.E.; Okamoto, P.R.; Wiedersich, H.

    1977-01-01

    Five binary alloys containing 1 at.% of Al, Ti, Mo, Si and Be in nickel were irradiated at temperatures from 525 to 675 0 C with 3.5-MeV 58 Ni + ions. The resultant microstructures were examined by TEM, and void diameters, number densities and swelling are presented for each alloy over the temperature interval investigated. A systematic relation between solute misfit (size factor) and void swelling is established for these alloys. Solute concentration profiles near the irradiated surface were determined and these also exhibited a systematic behavior--undersize solutes segregated to the surface, whereas oversize solutes were depleted. The results are consistent with calculations based on strong interstitial-solute trapping by undersize solutes and vacancy-solute trapping by oversize solutes that are weak interstitial traps

  2. Swelling kinetics and impregnation of PLA with thymol under supercritical CO2 conditions

    Directory of Open Access Journals (Sweden)

    Milovanović Stoja L.

    2016-01-01

    Full Text Available The present work was aimed to study swelling kinetics of polylactic acid (PLA and its impregnation with thymol in supercritical carbon dioxide (scCO2 medium. The influences of temperature and soaking time on the swelling kinetics and impregnation yield of PLA cylindrical disc and film were investigated. Swelling experiments were performed in a high pressure view cell at 10 MPa and temperatures of 40°C, 60°C and 75°C for 2 to 24 h. On the basis of swelling kinetics, pressure of 10 MPa and temperature of 40°C were chosen for supercritical solvent impregnation (SSI of the PLA samples during 2 to24 h. The highest swelling extent was observed for the PLA monolith after 24 h treatment with pure scCO2 (7.5% and scCO2 with thymol (118.3%. It was shown that sufficiently high amount of thymol can be loaded into both PLA monolith and film using SSI after only 2 h (10.0% and 6.6%, respectively. Monolith and film of PLA impregnated with thymol could be suitable for active food packaging and sterile medical disposables.

  3. Water swelling properties of the electron beam irradiated PVA-g-AAc hydrogels

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qingguo, E-mail: qwang@qust.edu.cn [Key Laboratory of Rubber-Plastics of Ministry of Education, Qingdao University of Science and Technology, Qingdao 266042 (China); Shandong Provincial Key Laboratory of Rubber-Plastics, Qingdao 266042 (China); Zhou, Xue; Zeng, Jinxia; Wang, Jizeng [Key Laboratory of Rubber-Plastics of Ministry of Education, Qingdao University of Science and Technology, Qingdao 266042 (China)

    2016-02-01

    In this paper, the electron beam irradiation technology being more suitable for the industry application is explored to fabricate the acrylic acid (AAc) monomer-grafted polyvinyl alcohol (PVA-g-AAc) hydrogels. ATR-IR spectra of the PVA-g-AAc hydrogels shows an obvious absorption peak of the −C=O group at 1701 cm{sup −1}, indicating that the AAc monomers were grafted onto the PVA macromolecules. This paper also studied some effects of the mass ratio of PVA/AAc, pH of buffer solution and irradiation dosage on the water swelling properties of the electron beam irradiated PVA-g-AAc hydrogels. The water swelling ratio of PVA-g-AAc hydrogels decreases with increased irradiation dosage and mass ratio of PVA/AAc, whereas swelling ratio increases with increased pH of buffer solution and soaking time. The water-swelling behavior of PVA-g-AAc hydrogels occurred easily in an alkaline environment, particularly in a buffer solution with pH 9.2. Both PVA-g-AAc hydrogels (PVA/AAc = 1/5, w/w) irradiated with 5 kilogray (kGy) and PVA-g-AAc hydrogels (PVA/AAc = 1/1, w/w) irradiated with 15 kGy could easily absorb water and lead to high water swelling ratios (up to about 600%), which are potential candidates to meet the requirements for some biomedical applications.

  4. Clayey landslide initiation and acceleration strongly modulated by soil swelling

    Science.gov (United States)

    Schulz, William; Smith, Joel B.; Wang, Gonghui; Jiang, Yao; Roering, Joshua J.

    2018-01-01

    Largely unknown mechanisms restrain motion of clay-rich, slow-moving landslides that are widespread worldwide and rarely accelerate catastrophically. We studied a clayey, slow-moving landslide typical of thousands in northern California, USA, to decipher hydrologic-mechanical interactions that modulate landslide dynamics. Similar to some other studies, observed pore-water pressures correlated poorly with landslide reactivation and speed. In situ and laboratory measurements strongly suggested that variable pressure along the landslide's lateral shear boundaries resulting from seasonal soil expansion and contraction modulated its reactivation and speed. Slope-stability modeling suggested that the landslide's observed behavior could be predicted by including transient swell pressure as a resistance term, whereas modeling considering only transient hydrologic conditions predicted movement 5–6 months prior to when it was observed. All clayey soils swell to some degree; hence, our findings suggest that swell pressure likely modulates motion of many landslides and should be considered to improve forecasts of clayey landslide initiation and mobility.

  5. Hygroscopic Swelling Determination of Cellulose Nanocrystal (CNC) Films by Polarized Light Microscopy Digital Image Correlation.

    Science.gov (United States)

    Shrestha, Shikha; Diaz, Jairo A; Ghanbari, Siavash; Youngblood, Jeffrey P

    2017-05-08

    The coefficient of hygroscopic swelling (CHS) of self-organized and shear-oriented cellulose nanocrystal (CNC) films was determined by capturing hygroscopic strains produced as result of isothermal water vapor intake in equilibrium. Contrast enhanced microscopy digital image correlation enabled the characterization of dimensional changes induced by the hygroscopic swelling of the films. The distinct microstructure and birefringence of CNC films served in exploring the in-plane hygroscopic swelling at relative humidity values ranging from 0% to 97%. Water vapor intake in CNC films was measured using dynamic vapor sorption (DVS) at constant temperature. The obtained experimental moisture sorption and kinetic profiles were analyzed by fitting with Guggenheim, Anderson, and deBoer (GAB) and Parallel Exponential Kinetics (PEK) models, respectively. Self-organized CNC films showed isotropic swelling, CHS ∼0.040 %strain/%C. By contrast, shear-oriented CNC films exhibited an anisotropic swelling, resulting in CHS ∼0.02 and ∼0.30 %strain/%C, parallel and perpendicular to CNC alignment, respectively. Finite element analysis (FEA) further predicted moisture diffusion as the predominant mechanism for swelling of CNC films.

  6. The effect of swelling agent on the pore characteristics of mesoporous hydroxyapatite nanoparticles

    Directory of Open Access Journals (Sweden)

    L. Bakhtiari

    2015-06-01

    Full Text Available The effect of swelling agent on the physicochemical properties of mesoporous hydroxyapatite particles synthesized by self-assembly process has been investigated. Cetyl trimethylammonium bromide (CTAB and 1-dodecanethiol were used as soft template and swelling agent respectively. The results of the field emission scanning electron microscopy (FESEM, X-ray diffraction (XRD, simultaneous thermal analysis (STA, Brunauer-Emmett-Teller (BET surface area, small-angle X-ray diffraction and Fourier transform infrared spectroscopy (FTIR assessments revealed that in the case of low concentration, 1-dodecanethiol performed as swelling agent and caused an increase in the pore size. However, at higher concentrations it led to the formation of microemulsion and foamy structures. The optimum swelling agent: surfactant mass ratio in synthesis of mesoporous hydroxyapatite particles with high pore volume was determined to be around 2.1 in this study.

  7. Network Modelling of the Influence of Swelling on the Transport Behaviour of Bentonite

    Directory of Open Access Journals (Sweden)

    Ignatios Athanasiadis

    2016-12-01

    Full Text Available Wetting of bentonite is a complex hydro-mechanical process that involves swelling and, if confined, significant structural changes in its void structure. A coupled structural transport network model is proposed to investigate the effect of wetting of bentonite on retention conductivity and swelling pressure response. The transport network of spheres and pipes, representing voids and throats, respectively, relies on Laplace–Young’s equation to model the wetting process. The structural network uses a simple elasto-plastic approach without hardening to model the rearrangement of the fabric. Swelling is introduced in the form of an eigenstrain in the structural elements, which are adjacent to water filled spheres. For a constrained cell, swelling is shown to produce plastic strains, which result in a reduction of pipe and sphere spaces and, therefore, influence the conductivity and retention behaviour.

  8. The effect of swelling agent on the pore characteristics of mesoporous hydroxyapatite nanoparticles

    Institute of Scientific and Technical Information of China (English)

    L. Bakhtiari; J. Javadpour; H.R. Rezaie; M. Erfan; M.A. Shokrgozar

    2015-01-01

    The effect of swelling agent on the physicochemical properties of mesoporous hydroxyapatite particles synthesized by self-assembly process has been investigated. Cetyl trimethylammonium bromide (CTAB) and 1-dodecanethiol were used as soft template and swelling agent respectively. The results of the field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), simultaneous thermal analysis (STA), Brunauer-Emmett-Teller (BET) surface area, small-angle X-ray diffraction and Fourier transform infrared spectroscopy (FTIR) assessments revealed that in the case of low concentration, 1-dodecanethiol performed as swelling agent and caused an increase in the pore size. However, at higher concentrations it led to the formation of microemulsion and foamy structures. The optimum swelling agent:surfactant mass ratio in synthesis of mesoporous hydroxyapatite particles with high pore volume was determined to be around 2.1 in this study.

  9. On grain-size-dependent void swelling in pure copper irradiated with fission neutrons

    DEFF Research Database (Denmark)

    Singh, Bachu Narain; Eldrup, Morten Mostgaard; Zinkle, S.J.

    2002-01-01

    The effect of grain size on void swelling has its origin in the intrinsic property of grain boundaries as neutral and unsaturable sinks for both vacancies and self-interstitial atoms. The phenomenon had already been investigated in the 1970s and it was demonstrated that the grain......-size-dependent void swelling measured under irradiation producing only Frenkel pairs could be satisfactorily explained in terms of the standard rate theory (SRT) and dislocation bias. Experimental results reported in the 1980s demonstrated, on the other hand, that the effect of grain boundaries on void swelling under...

  10. Visualization and measurement of liquid velocity field of gas-liquid metal two-phase flow using neutron radiography

    International Nuclear Information System (INIS)

    Saito, Yasushi; Suzuki, Tohru; Matsubayashi, Masahito

    2000-01-01

    In a core melt accident of a fast breeder reactor, a possibility of re-criticality is anticipated in the molten fuel-steel mixture pool. One of the mechanisms to suppress the re-criticality is the boiling of steel in the molten fuel-steel mixture pool because of the negative void reactivity effect. To evaluate the reactivity change due to boiling, it is necessary to know the characteristics of gas-liquid two-phase flow in the molten fuel-steel mixture pool. For this purpose, boiling bubbles in a molten fuel-steel mixture pool were simulated by adiabatic gas bubbles in a liquid metal pool to study the basic characteristics of gas-liquid metal two-phase mixture. Visualization of the two-phase mixture and measurements of liquid phase velocity and void fraction were conducted by using neutron radiography and image processing techniques. From these measurements, the basic characteristics of gas-liquid metal two-phase mixture were clarified. (author)

  11. Bowing-reactivity trends in EBR-II assuming zero-swelling ducts

    International Nuclear Information System (INIS)

    Meneghetti, D.

    1994-01-01

    Predicted trends of duct-bowing reactivities for the Experimental Breeder Reactor II (EBR-II) are correlated with predicted row-wise duct deflections assuming use of idealized zero-void-swelling subassembly ducts. These assume no irradiation induced swellings of ducts but include estimates of the effects of irradiation-creep relaxation of thermally induced bowing stresses. The results illustrate the manners in which at-power creeps may affect subsequent duct deflections at zero power and thereby the trends of the bowing component of a subsequent power reactivity decrement

  12. Molecular accessibility in solvent swelled coals. Quarterly report

    Energy Technology Data Exchange (ETDEWEB)

    Kispert, L.D.

    1993-02-01

    An EPR technique developed in this lab is being used to determine the pore size and number distribution changes after swelling the coal samples with various solvents. Stable nitroxide radical spin probes of different sizes, shapes and reactivity are dissolved in an appropriate solvent, the coal sample is added to the resulting solution, stirred over night at elevated temperature, filtered, washed with a non swelling solvent to eliminate any spin probes that are not trapped in the pores and the spin concentration is measured. Comparing these spin probe measurements to DRIFT data have shown that the relative number distribution of acidic functionalities can be accurately predicted by the spin probe method. The spin probe method had also been used to predict the increase in elongated voids in Pittsburgh No. 8 (APCS No. 4) upon swelling with pyridine in agreement with independent SANS data. NMR relaxation data show that it is possible to deduce the pore (accessibility) distribution as a function of size (up to 6 mn). It has also been possible by variable temperature and ENDOR measurements to determine the presence of hydrogen bonding as a function of pore shape and size. The advantage of the EPR method is that it permits molecules of selected shape and size to be used as probes of accessible regions of coal, thus providing information on the importance of molecular shape.

  13. Spinal Cord Swelling and Alterations in Hydrostatic Pressure After Acute Injury

    Science.gov (United States)

    2016-10-01

    management ! of! such! patients.! However,! this! swelling! has! largely! been! neglected! in! SCI,! despite! being! consistently!observed.!!Even!after... management !of!acute!SCI.!As!an!example!of!how!swelling,!increased!intraparenchymal! pressure,! and! its! effects! on! perfusion! are! factored! into! clinical...Yucatan! 22=Jul=15! 2014! 18.5! duraplasty! Completed! 7743! Football ! Yucatan! 22=Jul=15! 3482! 18.5! SCI!only! Completed! 7730! Golf! Yucatan! 29=Jul=15

  14. Penis swelling due to foreign body reaction after injection of silicone.

    Science.gov (United States)

    Plaza, Tobias; Lautenschlager, Stephan

    2010-09-01

    A 19-year-old man presented with phimosis and painful swelling of the penis four weeks after augmentation with silicone in Thailand. Histology revealed a foreign body reaction to silicone. Infectious causes were ruled out. Granulomatous foreign body reactions to silicone are common, but there are few case reports on reactions following silicone injection for penis enlargement. Foreign body reactions should be included in the differential diagnosis of penis swelling.

  15. Spent fuel storage pool

    International Nuclear Information System (INIS)

    Murakami, Naoshi.

    1996-01-01

    Fences are disposed to a fuel exchange floor surrounding the upper surface of a fuel pool for preventing overflow of pool water. The fences comprise a plurality of flat boards arranged in parallel with each other in the longitudinal direction while being vertically inclined, and slits are disposed between the boards for looking down the pool. Further, the fences comprise wide boards and are constituted so as to be laid horizontally on the fuel exchange floor in a normal state and uprisen by means of the signals from an earthquake sensing device. Even if pool water is overflow from the fuel pool by the vibrations occurred upon earthquake and flown out to the floor of the fuel exchange floor, the overflow from the fuel exchange floor is prevented by the fences. An operator who monitors the fuel pool can observe the inside of the fuel pool through the slits formed to the fences during normal operation. The fences act as resistance against overflowing water upon occurrence of an earthquake thereby capable of reducing the overflowing amount of water due to the vibrations of pool water. The effect of preventing overflowing water can be enhanced. (N.H.)

  16. Numerical Simulation Of The Treatment Of Soil Swelling Using Grid Geocell Columns

    Directory of Open Access Journals (Sweden)

    Fattah Mohammed Y.

    2015-06-01

    Full Text Available In this paper, a method for the treatment of the swelling of expansive soil is numerically simulated. The method is simply based on the embedment of a geogrid (or a geomesh in the soil. The geogrid is extended continuously inside the volume of the soil where the swell is needed to be controlled and orientated towards the direction of the swell. Soils with different swelling potentials are employed: bentonite base-Na and bentonite base-Ca samples in addition to kaolinite mixed with bentonite. A numerical analysis was carried out by the finite element method to study the swelling soil's behavior and investigate the distribution of the stresses and pore water pressures around the geocells beneath the shallow footings. The ABAQUS computer program was used as a finite element tool, and the soil is represented by the modified Drucker-Prager/cap model. The geogrid surrounding the geocell is assumed to be a linear elastic material throughout the analysis. The soil properties used in the modeling were experimentally obtained. It is concluded that the degree of saturation and the matric suction (the negative pore water pressure decrease as the angle of friction of the geocell column material increases due to the activity of the sand fill in the dissipation of the pore water pressure and the acceleration of the drainage through its function as a drain. When the plasticity index and the active depth (the active zone is considered to be equal to the overall depth of the clay model increase, the axial movement (swelling movement and matric suction, as a result of the increase in the axial forces, vary between this maximum value at the top of the layer and the minimum value in the last third of the active depth and then return to a consolidation at the end of the depth layer.

  17. Methodology for determining void swelling at very high damage under ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Getto, E., E-mail: embecket@umich.edu [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Sun, K. [Department of Materials Science Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Taller, S.; Monterrosa, A.M.; Jiao, Z. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Was, G.S. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Department of Materials Science Engineering, University of Michigan, Ann Arbor, MI 48109 (United States)

    2016-08-15

    At very high damage levels in ion irradiated samples, the decrease in effective density of the irradiated material due to void swelling can lead to errors in quantifying swelling. HT9 was pre-implanted with 10 appm He and subjected to a raster-scanned beam with a damage rate of ∼1 × 10{sup −3} dpa/s at 460{sup o}C. Voids were characterized from 0 to 1300 nm. Fixed damage rate and fixed depth methods were developed to account for damage-dependent porosity increase and resulting dependence on depth. The fixed depth method was more appropriate as it limits undue effects from the injected interstitial while maintaining a usable void distribution. By keeping the depth fixed and accounting for the change in damage rate due to reduced density, the steady state swelling rate was 10% higher than calculation of swelling from raw data. This method is easily translatable to other materials, ion types and energies and limits the impact of the injected interstitial.

  18. [A woman with a postoperative lumbar swelling].

    Science.gov (United States)

    Hulshof, Hanna M; Elsenburg, Patric H J M; Frequin, Stephan T F M

    2013-01-01

    A 65-year-old woman had developed a large lumbar swelling in a period of four weeks following lumbar laminectomy. An MRI-scan revealed a large fluid collection, which had formed from the spinal canal. The diagnosis 'liquorcele', a rare complication of spine surgery, was established.

  19. Liquid-liquid mixing by gas injection in a pool configuration

    International Nuclear Information System (INIS)

    Corradini, M.L.

    1994-02-01

    An experimental apparatus was designed and constructed to study the mixing process of two immiscible liquids, in a pool configuration, by bottom gas injection. The apparatus consisted of a vertical pyrex conduit of 15.2 centimeters of internal diameter. To the lower part of the conduit was attached a porous plate through which the gas was injected. The experiments were photographically recorded. The pictures were digitized and a method was developed to quantify the mixing region thickness. This method requires knowledge of the void fraction, for each liquid, as a function of the superficial gas velocity. Because of this, void fraction was measured for the bubbly and churn flow regimes, in a pool configuration for every liquid. A new correlation, based on the drift flux model, is proposed for void fraction as a function of superficial gas velocity. It has been observed that mixing can start either in bubbly or churn flow regimes, depending on the liquid pair properties. Three mechanistic models were derived to aid in correlating the data, two for bubbly flow and one for churn flow. A transition region between these two flow regimes, was deduced, but not directly measured. A set of correlations was developed from the models and it is proposed to be implemented in current codes that model Molten Core Concrete Interactions (MCCI). The implications that the present work has on MCCI have been described. It can be deduced that mixing between the oxidic and the metallic phases will occur during the interaction

  20. Carrageenan-based semi-IPN nanocomposite hydrogels: Swelling kinetic and slow release of sequestrene Fe 138 fertilizer

    Directory of Open Access Journals (Sweden)

    Mohammad Kazem Bahrami

    2016-09-01

    Full Text Available Nanocomposite hydrogels based on kappa-carrageenan were synthesized by incorporating natural sodium montmorillonite (Cloisite nanoclay. Acrylamide (AAm and methylenebisacrylamide (MBA were used as a monomer and a crosslinker, respectively. Effects of reaction variables on the swelling kinetics were studied. The results revealed that the rate of swelling for nanocomposites with high content of MBA was higher than those of nanocomposites consisting of low content of MBA. Similar to the effect of MBA, the rate of swelling enhanced as the carrageenan content was decreased. The influence of clay content on swelling rate was not remarkable. The experimental swelling data were evaluated by pseudo-first-order and pseudo-second-order kinetic models. The swelling data described well by pseudo-second-order kinetic model. Sequestrene Fe 138 (Sq as an agrochemical was loaded into nanocomposites and releasing of this active agent from nanocomposites was studied. The clay-free hydrogel released the whole loaded Sq; whereas the presence of clay restricted the release of Sq.

  1. Swelling of radiation crosslinked acrylamide-based microgels and their potential applications

    Energy Technology Data Exchange (ETDEWEB)

    Abd El-Rehim, H.A. [National Center for Radiation Research and Technology, Atomic Energy Authority, P.O. Box 29 Nasr City, Cairo (Egypt)]. E-mail: ha_rehim@hotmail.com

    2005-10-01

    Crosslinked polyacrylamide PAAm and acrylamide-Na-acrylate P(AAm-Na-AAc) microgels were prepared by electron beam irradiation. It was found that the dose required for crosslinking depends on the polymer moisture content, so that the dose to obtain PAAm of maximum gel fraction was over 40 and 20 kGy for dry and moist PAAm, respectively. The structural changes in irradiated PAAm were investigated using FTIR and SEM. The swelling property of such microgels in distilled water and real urine solution was determined and crosslinked polymers reached their equilibrium swelling state in a few minutes. As the gel content and crosslinking density decrease, the swelling of the microgels increases. The ability of the microgels to absorb and retain large amount of solutions suggested their possible uses in horticulture and in hygienic products such as disposable diapers.

  2. Swelling of radiation crosslinked acrylamide-based microgels and their potential applications

    International Nuclear Information System (INIS)

    Abd El-Rehim, H.A.

    2005-01-01

    Crosslinked polyacrylamide PAAm and acrylamide-Na-acrylate P(AAm-Na-AAc) microgels were prepared by electron beam irradiation. It was found that the dose required for crosslinking depends on the polymer moisture content, so that the dose to obtain PAAm of maximum gel fraction was over 40 and 20 kGy for dry and moist PAAm, respectively. The structural changes in irradiated PAAm were investigated using FTIR and SEM. The swelling property of such microgels in distilled water and real urine solution was determined and crosslinked polymers reached their equilibrium swelling state in a few minutes. As the gel content and crosslinking density decrease, the swelling of the microgels increases. The ability of the microgels to absorb and retain large amount of solutions suggested their possible uses in horticulture and in hygienic products such as disposable diapers

  3. Progression of asymptomatic optic disc swelling to non-arteritic anterior ischaemic optic neuropathy.

    Science.gov (United States)

    Subramanian, Prem S; Gordon, Lynn K; Bonelli, Laura; Arnold, Anthony C

    2017-05-01

    The time of onset of optic disc swelling in non-arteritic anterior ischaemic optic neuropathy (NAION) is not known, and it is commonly assumed to arise simultaneously with vision loss. Our goal is to report the presence and persistence of optic disc swelling without initial vision loss and its subsequent evolution to typical, symptomatic NAION. Clinical case series of patients with optic disc swelling and normal visual acuity and visual fields at initial presentation who progressed to have vision loss typical of NAION. All subjects underwent automated perimetry, disc photography and optic coherence tomography and/or fluorescein angiography to evaluate optic nerve function and perfusion. Four patients were found to have sectoral or diffuse optic disc swelling without visual acuity or visual field loss; the fellow eye of all four had either current or prior NAION or a 'disc at risk' configuration. Over several weeks of clinical surveillance, each patient experienced sudden onset of visual field and/or visual acuity loss typical for NAION. Current treatment options for NAION once vision loss occurs are limited and may not alter the natural history of the disorder. Subjects with NAION may have disc swelling for 2-10 weeks prior to the occurrence of visual loss, and with the development of new therapeutic agents, treatment at the time of observed disc swelling could prevent vision loss from NAION. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  4. Effect of light impurities on the early stage of swelling in austenitic stainless steel

    International Nuclear Information System (INIS)

    Igata, N.

    1998-01-01

    The objective of this study is to analyse the early stage of swelling and clarify the role of light impurities (nitrogen) in swelling of austenitic stainless steel. Recent results show that light impurities affect the swelling of 316 stainless steel under HVEM irradiation up to 10 dpa. At low concentration of light impurities the radiation swelling increases then decreases through the maximum as the concentration of light impurities increases. In the present paper the theoretical model is presented for the explanation of this effect. The model is based on the two factors: the influence of absorbed impurities on the voids caused by the production of an additional gas pressure in voids for their stabilization and the effect of impurities segregated around the surface of voids by the lowering of surface tension. These two affects are taken into account in the calculations of the critical size and the growth rate of cavities. The theoretical predictions on the radiation swelling rate dependent on the impurity concentration and temperature coincided with the experimental results on 316 stainless steel irradiated by HVEM. (orig.)

  5. Influence of effective stress on swelling pressure of expansive soils

    Directory of Open Access Journals (Sweden)

    Baille Wiebke

    2016-01-01

    Full Text Available The volume change and shear strength behaviour of soils are controlled by the effective stress. Recent advances in unsaturated soil mechanics have shown that the effective stress as applicable to unsaturated soils is equal to the difference between the externally applied stress and the suction stress. The latter can be established based on the soil-water characteristic curve (SWCC of the soil. In the present study, the evolution of swelling pressure in compacted bentonite-sand mixtures was investigated. Comparisons were made between magnitudes of applied suction, suction stress, and swelling pressure.

  6. Swelling of biological and semiflexible polyelectrolytes.

    Science.gov (United States)

    Dobrynin, Andrey V; Carrillo, Jan-Michael Y

    2009-10-21

    We have developed a theoretical model of swelling of semiflexible (biological) polyelectrolytes in salt solutions. Our approach is based on separation of length scales which allowed us to split a chain's electrostatic energy into two parts that describe local and remote electrostatic interactions along the polymer backbone. The local part takes into account interactions between charged monomers that are separated by distances along the polymer backbone shorter than the chain's persistence length. These electrostatic interactions renormalize chain persistence length. The second part includes electrostatic interactions between remote charged pairs along the polymer backbone located at distances larger than the chain persistence length. These interactions are responsible for chain swelling. In the framework of this approach we calculated effective chain persistence length and chain size as a function of the Debye screening length, chain degree of ionization, bare persistence length and chain degree of polymerization. Our crossover expression for the effective chain's persistence length is in good quantitative agreement with the experimental data on DNA. We have been able to fit experimental datasets by using two adjustable parameters: DNA ionization degree (α = 0.15-0.17) and a bare persistence length (l(p) = 40-44 nm).

  7. Development of advanced austenitic stainless steels resistant to void swelling under irradiation

    International Nuclear Information System (INIS)

    Rouxel, Baptiste

    2016-01-01

    In the framework of studies about Sodium Fast Reactors (SFR) of generation IV, the CEA is developing new austenitic steel grades for the fuel cladding. These steels demonstrate very good mechanical properties but their use is limited because of the void swelling under irradiation. Beyond a high irradiation dose, cavities appear in the alloys and weaken the material. The reference material in France is a 15Cr/15Ni steel, named AIM1, stabilized with titanium. This study try to understand the role played by various chemical elements and microstructural parameters on the formation of the cavities under irradiation, and contribute to the development of a new grade AIM2 more resistant to swelling. In an analytical approach, model materials were elaborated with various chemical compositions and microstructures. Ten grades were cast with chemical variations in Ti, Nb, Ni and P. Four specific microstructures for each alloy highlighted the effect of dislocations, solutes or nano-precipitates on the void swelling. These materials were characterized using TEM and SANS, before irradiation with Fe"2"+ (2 MeV) ions in the order to simulate the damages caused by neutrons. Comparing the irradiated microstructures, it is demonstrated that the solutes have a dominating effect on the formation of cavities. Specifically titanium in solid solution reduces the swelling whereas niobium does not show this effect. Finally, a matrix enriched by 15% to 25% of nickel is still favorable to limit swelling in these advanced austenitic stainless steels. (author) [fr

  8. A volatile tracer-assisted headspace analytical technique for determining the swelling capacity of superabsorbent polymers.

    Science.gov (United States)

    Zhang, Shu-Xin; Jiang, Ran; Chai, Xin-Sheng

    2017-09-01

    This paper reports on a new method for the determination of swelling capacity of superabsorbent polymers by a volatile tracer-assisted headspace gas chromatography (HS-GC). Toluene was used as a tracer and added to the solution for polymers swelling test. Based on the differences of the tracer partitioned between the vapor and hydrogel phase before and after the polymer's swelling capacity, a transition point (corresponding to the material swelling capacity) can be observed when plotting the GC signal of toluene vs. the ratio of solution added to polymers. The present method has good precision (RSDpolymers at the elevated temperatures. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Clozapine- induced recurrent and transient parotid gland swelling

    African Journals Online (AJOL)

    effect of clozapine, may sometimes cause salivary gland swelling. Rarely, the ... side effect of clozapine to the attention of clinicians is to discuss its pathogenesis. Informed ... selective muscarinic M4 receptor agonist. Eur J Pharmacol 1994;.

  10. Swelling Kinetics of Waxy Maize Starch

    Science.gov (United States)

    Desam, Gnana Prasuna Reddy

    Starch pasting behavior greatly influences the texture of a variety of food products such as canned soup, sauces, baby foods, batter mixes etc. The annual consumption of starch in the U.S. is 3 million metric tons. It is important to characterize the relationship between the structure, composition and architecture of the starch granules with its pasting behavior in order to arrive at a rational methodology to design modified starch of desirable digestion rate and texture. In this research, polymer solution theory was applied to predict the evolution of average granule size of starch at different heating temperatures in terms of its molecular weight, second virial coefficient and extent of cross-link. Evolution of granule size distribution of waxy native maize starch when subjected to heating at constant temperatures of 65, 70, 75, 80, 85 and 90 C was characterized using static laser light scattering. As expected, granule swelling was more pronounced at higher temperatures and resulted in a shift of granule size distribution to larger sizes with a corresponding increase in the average size by 100 to 120% from 13 mum to 25-28 mum. Most of the swelling occurred within the first 10 min of heating. Pasting behavior of waxy maize at different temperatures was also characterized from the measurements of G' and G" for different heating times. G' was found to increase with temperature at holding time of 2 min followed by its decrease at larger holding times. This behavior is believed to be due to the predominant effect of swelling at small times. However, G" was insensitive to temperature and holding times. The structure of waxy maize starch was characterized by cryoscanning electron microscopy. Experimental data of average granule size vs time at different temperatures were compared with model predictions. Also the Experimental data of particle size distribution vs particle size at different times and temperatures were compared with model predictions.

  11. Differences in the Load-Velocity Profile Between 4 Bench-Press Variants.

    Science.gov (United States)

    García-Ramos, Amador; Pestaña-Melero, Francisco Luis; Pérez-Castilla, Alejandro; Rojas, Francisco Javier; Haff, Guy Gregory

    2018-03-01

    To compare the load-velocity relationship between 4 variants of the bench-press (BP) exercise. The full load-velocity relationship of 30 men was evaluated by means of an incremental loading test starting at 17 kg and progressing to the individual 1-repetition maximum (1RM) in 4 BP variants: concentric-only BP, concentric-only BP throw (BPT), eccentric-concentric BP, and eccentric-concentric BPT. A strong and fairly linear relationship between mean velocity (MV) and %1RM was observed for the 4 BP variants (r 2  > .96 for pooled data and r 2  > .98 for individual data). The MV associated with each %1RM was significantly higher in the eccentric-concentric technique than in the concentric-only technique. The only significant difference between the BP and BPT variants was the higher MV with the light to moderate loads (20-70%1RM) in the BPT using the concentric-only technique. MV was significantly and positively correlated between the 4 BP variants (r = .44-.76), which suggests that the subjects with higher velocities for each %1RM in 1 BP variant also tend to have higher velocities for each %1RM in the 3 other BP variants. These results highlight the need for obtaining specific equations for each BP variant and the existence of individual load-velocity profiles.

  12. Operation and maintenance techniques of pool and pool water purification system in IMEF

    Energy Technology Data Exchange (ETDEWEB)

    Soong, Woong Sup

    1999-03-01

    IMEF pool is used pass way between pool and hot cell in order to inlet and outlet of fuel pin in cask. All operation is performed conforming with naked eyes. Therefore floating matter is filtered so as to easy under water handling. Also radioactivity in pool water is controlled according to the nuclear law, radioactivity ration maintained less than 15mR/hr on pool side. Perfect operation and maintenance can be achieved well trained operator. Result obtained from the perfection can give more influence over restrain, spreading contamination of radioactivity materials. This report describes operation and maintenance technique of pool water purification system in IMEF. (Author). 7 refs., 13 figs.

  13. Operation and maintenance techniques of pool and pool water purification system in IMEF

    International Nuclear Information System (INIS)

    Soong, Woong Sup

    1999-03-01

    IMEF pool is used pass way between pool and hot cell in order to inlet and outlet of fuel pin in cask. All operation is performed conforming with naked eyes. Therefore floating matter is filtered so as to easy under water handling. Also radioactivity in pool water is controlled according to the nuclear law, radioactivity ration maintained less than 15mR/hr on pool side. Perfect operation and maintenance can be achieved well trained operator. Result obtained from the perfection can give more influence over restrain, spreading contamination of radioactivity materials. This report describes operation and maintenance technique of pool water purification system in IMEF. (Author). 7 refs., 13 figs

  14. A Simple Optical Model for the Swelling Evaluation in Polymer Nanocomposites

    Directory of Open Access Journals (Sweden)

    Anna De Girolamo Del Mauro

    2009-01-01

    In particular, the behavior of poly(2-hydroxyethyl methacrylate (PHEMA and of carbon black/PHEMA nanocomposite layers, used for volatile organic compounds (VOCs detection, was investigated and measured under ethanol vapors exposure (max 1%. The method is very sensitive and the swelling in the range of only few nanometers can be measured. Interestingly, we have found that the nanocomposite undergoes a more pronounced swelling process with respect to pristine polymer. Ethanol diffusion coefficients in the nanocomposite were evaluated.

  15. Effect of laser and/or electron beam irradiation on void swelling in SUS316L austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Subing [School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Yang, Zhanbing, E-mail: yangzhanbing@ustb.edu.cn [School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083 (China); State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083 (China); Wang, Hui [School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Watanabe, Seiichi; Shibayama, Tamaki [Center for Advanced Research of Energy and Materials, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628 (Japan)

    2017-05-15

    Large amounts of void swelling still limit the application of austenitic stainless steels in nuclear reactors due to radiation-induced lattice point defects. In this study, laser and/or beam irradiation was conducted in a temperature range of 573–773 K to explore the suppression of void swelling. The results show that during sequential laser-electron beam irradiation, the void nucleation is enhanced because of the vacancy clusters and void nuclei formed under pre-laser irradiation, causing greater void swelling than single electron beam irradiation. However, simultaneous laser-electron dual-beam irradiation exhibits an obvious suppression effect on void swelling due to the enhanced recombination between interstitials and vacancies in the temperature range of 573–773 K; especially at 723 K, the swelling under simultaneous dual-beam irradiation is 0.031% which is only 22% of the swelling under electron beam irradiation (0.137%). These results provide new insight into the suppression of void swelling during irradiation. - Highlights: •The temperature dependence of void swelling under simultaneous laser-electron dual-beam irradiation has been investigated. •Pre-laser irradiation enhances void nucleation at temperatures from 573 K to 773 K. •Simultaneous laser-electron dual-beam irradiation suppresses void swelling in the temperature range of 573–773 K.

  16. Characterization of calcium, phosphate and peroxide interactions in activation of mitochondrial swelling using derivative of the swelling curves

    Czech Academy of Sciences Publication Activity Database

    Drahota, Zdeněk; Endlicher, R.; Staňková, P.; Rychtrmoc, D.; Milerová, Marie; Červinková, Z.

    2012-01-01

    Roč. 44, č. 3 (2012), s. 309-315 ISSN 0145-479X R&D Projects: GA MZd(CZ) NT12370 Grant - others:GA ČR(CZ) GP305/09/P145 Institutional support: RVO:67985823 Keywords : mitochondrial swelling * mitochondrial permeability transition pore * Calcium, phosphate and peroxide interactions Subject RIV: FG - Pediatrics Impact factor: 1.604, year: 2012

  17. The temperature dependence of void swelling of fast reactor irradiated 316 stainless steel

    International Nuclear Information System (INIS)

    Bramman, J.I.; Brown, C.

    The swelling versus temperature profile for cold-worked M316 stainless steel irradiated in DFR to fluences around 6.5 x 10 22 n.cm -2 (E > 0.1 MeV) is singly-peaked with maximum swelling at just below 600 0 C. The underlying microstructural features are discussed

  18. SIMULASI GELOMBANG EKSTRIM AKIBAT SWELL DI INDONESIA MENGGUNAKAN MODEL WAVEWATCH-III

    Directory of Open Access Journals (Sweden)

    Muhammad Najib Habibie

    2015-01-01

    menyebabkan superposisi antara swell dan pasang surut dan menambah ketinggian swell.   Indonesia lies between Hindia and Pacific ocean, it caused hight risk in extreme wave from both of them. One of extreme wave events occured on May 17-19, 2007. This event damaged many infrastructure over western coast of Sumatra until southern Nusa Tenggara. The purpose of this research is to investigate WAVEWATCH-III performance to simulate the extreme wave in Indonesia waters. 10 m of wind from Global Forcasting System (GFS and bathimetry from US Geological Survey (USGS used as input model to simulate the wind wave on global and regional domain during May 1-31, 2007, and than verified by ERA-Interim data. The simulation shown that these extreme wave event triggered by tropical cyclone in Cape of Hope, southern of Africa. The cyclone caused persistent wind more than 22 m/s speed and leads to Indonesia waters. This condition took place during May 4-10, 2007 and generated extreme wave more than 3 meter over the western coast of Sumatra, the southern coast of Java to Flores. The extreme wave considered as swell. The persistent wind generated wind sea and grown to swell leads to Indonesia waters across Hindian Ocean. The model has been verified by ERA-Interim reanalysis data, it has a good correlation (0,92-0,97 and MAE between 0,13-0,45 m. But the model data higher than ERA-Interim because the resolution of the model higher too. Based on the simulation, more than 20 seconds wave period recorded in coastal areas. This hundreds meters of wavelength having setup due to bottom friction, so these wave are destructive and dangerous. These event resembling with spring tide, so superposition about swell and tide caused wave setup.

  19. A Study on the Violent Interactions of an Immiscible Drop impacting on a Superheated Pool

    KAUST Repository

    Alchalabi, Mohamad

    2014-05-01

    ABSTRACT A Study on the Violent Interactions of an Immiscible Drop Impacting on a Superheated Pool Mohamad Alchalabi The interactions between two immiscible liquids of different temperatures can be violent to the extent of causing harm to individuals, or damage to equipment, especially when used in the industry. Only a few studies investigated these interactions but they could not produce the violent interactions often reported by the industry, and therefore their results did not help much to develop clear understanding of the dynamics of these interactions. In this work, a high speed imaging system operated at 100,000 frames per second was utilized to record the events and phenomena taking place upon the impact of Perfluorohexane droplet at room temperature onto a hot soybean oil pool at temperatures as high as 300 ºC. The impact velocity was varied by varying the height of the droplet before it pinches off under its own weight. The recorded events identified the occurrence of vortex ring vapor explosions, weak and strong nucleate boiling, and film boiling. An impact velocity vs. oil temperature diagram identifying the regions in which each of these phenomena takes place was generated, and the dynamics driving their occurrences were explored. The vortex ring vapor explosions were found to become less violent as the impact velocity was increased, which was attributed to the existence of a smaller amount of liquid Perfluorohexane within the rings at high speed impacts, which does evaporate but does not expand violently. Weak nucleate boiling occurred at very high impact velocities relatively. As the temperature is increased, however, they start 5 turning into strong nucleate boiling. The strong nucleate boiling usually starts right upon impact, and when the temperature of the oil at one impact velocity is increased, it starts turning into film boiling, in which the liquid Perfluorohexane is covered by a vapor layer of its own vapor.

  20. Swimming pool granuloma

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/001357.htm Swimming pool granuloma To use the sharing features on this page, please enable JavaScript. A swimming pool granuloma is a long-term (chronic) skin ...

  1. How Do Organic Vapors Swell Ultra-Thin PIM-1 Films?

    KAUST Repository

    Ogieglo, Wojciech

    2017-06-22

    Dynamic sorption of ethanol and toluene vapor into ultra-thin supported PIM-1 films down to 6 nm are studied with a combination of in-situ spectroscopic ellipsometry and in-situ X-ray reflectivity. Both ethanol and toluene significantly swell the PIM-1 matrix and, at the same time, induce persistent structural relaxations of the frozen-in glassy PIM-1 morphology. For ethanol below 20 nm three effects were identified. First, the swelling magnitude at high vapor pressures is reduced by about 30% as compared to thicker films. Second, at low penetrant activities (below 0.3 p/p0) films below 20 nm are able to absorb slightly more penetrant as compared with thicker films despite similar swelling magnitude. Third, for the ultra-thin films the onset of the dynamic penetrant-induced glass transition Pg has been found to shift to higher values indicating higher resistance to plasticization. All of these effects are consistent with a view where immobilization of the super-glassy PIM-1 at the substrate surface leads to an arrested, even more rigid and plasticization-resistant, yet still very open, microporous structure. PIM-1 in contact with the larger and more condensable toluene shows very complex, heterogeneous swelling dynamics and two distinct penetrant-induced relaxation phenomena, probably associated with the film outer surface and the bulk, are detected. Following the direction of the penetrant\\'s diffusion the surface seems to plasticize earlier than the bulk and the two relaxations remain well separated down to 6 nm film thickness, where they remarkably merge to form just a single relaxation.

  2. Micromechanical Characterization of Hydrogels Undergoing Swelling and Dissolution at Alkaline pH

    Directory of Open Access Journals (Sweden)

    Wei Hu

    2017-11-01

    Full Text Available The swelling of polyelectrolyte hydrogels usually depends on the pH, and if the pH is high enough degradation can occur. A microindentation device was developed to dynamically test these processes in whey protein isolate hydrogels at alkaline pH 7–14. At low alkaline pH the shear modulus decreases during swelling, consistent with rubber elasticity theory, yet when chemical degradation occurs at pH ≥ 11.5 the modulus decreases quickly and extensively. The apparent modulus was constant with the indentation depth when swelling predominates, but gradients were observed when fast chemical degradation occurs at 0.05–0.1 M NaOH. In addition, these profiles were constant with time when dissolution rates are also constant, the first evidence that a swollen layer with steady state mechanical properties is achieved despite extensive dissolution. At >0.5 M NaOH, we provide mechanical evidence showing that most interactions inside the gels are destroyed, gels were very weak and hardly swell, yet they still dissolve very slowly. Microindentation can provide complementary valuable information to study the degradation of hydrogels.

  3. Swimming pool hydraulics and their significance for public pools. Bedeutung der Beckenhydraulik in oeffentlichen Schwimmbaedern

    Energy Technology Data Exchange (ETDEWEB)

    Gansloser, G

    1989-11-01

    The term of swimming pool hydraulics means the process of letting in and drawing off water to and from the pool while ensuring that no inadmissible water-borne contaminant concentrations will occur anywhere within the pool. Measurements were performed on a pool to study the significance of correct pool hydraulics. The author points out that a wrong water recirculation design will bring to nought the effects of an elaborate water treatment system; by contrast, poor pool water quality can be greatly improved by redesigning the pool water hydraulics approach. In principle, systems with with water inlet at one side and water outlet at the far side will fall short of hygienic requirements. (BWI).

  4. Assessment of ASTEC-CPA pool scrubbing models against POSEIDON-II and SGTR-ARTIST data

    International Nuclear Information System (INIS)

    Herranz, Luis E.; Fontanet, Joan

    2009-01-01

    Aerosol scrubbing in pools mitigates the potential source term in key severe accident scenarios in PWRs and BWRs. Even though models were extensively validated in the past, a thorough and systematic validation under key challenging conditions is missing. Some of those conditions are high injection velocity, high pool temperature and/or presence of submerged structures. In particular, in-code models have been neither updated nor validated based on the most recent experimental data. The POSEIDON-II and the SGTR-ARTIST projects produced sets of data under conditions of utmost interest for pool scrubbing validation: high temperature and submerged structures. This paper investigates the response of models encapsulated in the CPA module of the ASTEC code in the simulation of those experimental set-ups. The influence of key pool scrubbing variables like steam fraction, water depth, gas flow-rate and particle size has been analyzed. Additionally, comparisons to stand-alone code (i.e., SPARC90) responses have also been obtained, so that prediction-to-data deviations can be discussed and attributed to either model grounds and/or model implementation in integral accident codes. This work has demonstrated that ASTEC-CPA limitations to capture fundamental trends of aerosol pool scrubbing are substantial (although the SGTR scenarios should not be properly considered within the CPA scope) and they stem from both original models (i.e., SPARC90) and model implementation. This work has been carried out within the European SARNET project of the VI Framework Program of EURATOM. (author)

  5. Severe Embrittlement of Neutron Irradiated Austenitic Steels Arising from High Void Swelling

    International Nuclear Information System (INIS)

    Neustroev, V.S.; Garner, F.

    2007-01-01

    Full text of publication follows: Data are presented from BOR-60 irradiations showing that significant radiation-induced swelling causes severe embrittlement in austenitic stainless steels, reducing the service life of structural components. Similar loss of ductility is expected when swelling arises in fusion and light water reactor environments. Above 7-16% swelling there is complete loss of ductility, with the onset of ductility loss beginning at lower swelling in ring-pull tensile tests than for flat tensile specimens. For steels that develop extensive precipitation during irradiation, the critical swelling level is even lower. A model is presented to demonstrate the effect of voids acting alone to produce the embrittlement. Although voids are not very effective hardeners, they are very effective to generate stress concentrations between voids. The stress concentration ratio increases strongly when the void diameter exceeds ∼40% of the void-to-void separation distance. When the volume fraction of voids is rather high (about 16 % and higher), a geometric situation develops where it is possible to create an intense field of deformation glide planes residing at an angle of 45 deg. to the void-to-void axis. Significant localized flow then proceeds on these planes for specimen stress levels that are significantly lower than the yield stress. Voids also segregate nickel to their surfaces such that flow localization occurs in the low-nickel inter-void regions to produce strain-induced martensite, which is further accelerated by stress concentrations at the advancing crack tip, leading to catastrophic failure. (authors)

  6. Encephalocele presenting as lower lid swelling: A rare case report

    Directory of Open Access Journals (Sweden)

    Vaibhav Kumar Jain

    2018-01-01

    Full Text Available Encephalocele is a rare congenital abnormality characterized by abnormal protrusion of brain and meninges through an opening in the skull. We report an 8-year-old girl who presented with a swelling in the right lower lid for the last 6 years. In her infancy, she had undergone surgery for a very small swelling located in the right nasolacrimal area. On further clinicoradiological evaluation, anterior encephalocele was diagnosed. This case highlights the uncommon site of anterior encephalocele; misdiagnosis and mismanagement of which could result in dreaded complications such as meningitis and cerebrospinal fluid leaking fistula formation.

  7. Study of void fraction and mixing of immiscible liquids in a pool configuration by an upward gas flow

    International Nuclear Information System (INIS)

    Casas, J.C.; Corradini, M.L.

    1992-01-01

    In this paper, investigations are performed to study the mixing between immiscible liquids in a pool configuration due to an upward gas flow. A water-R113 system is sued in the bubbly/churn-turbulent regimes to determine the effects of the unagitated pool depth on layer mixing. The superficial gas velocity at which full mixing is attained is observed to increase with the pool depth, although it is concluded that this is a weak dependency. Mixing in the churn-turbulent regime is studied with Wood's metal-water and Wood's metal-silicone fluid (100 cS) as pairs of fluids. Additional past mixing data from six other fluids are also included in the data base. A criterion is proposed to determine if two liquids will entrain in bubbly or churn-turbulent flow. Correlations are derived that, for a set of given conditions, allow prediction of the mixing state (mixed or segregated) of a system. Because of the indirect method of measuring the mixed layer thickness, pool void fraction experiments are also performed. For the case of water and R113, the effect of unagitated pool depth on the void fraction is studied

  8. Evaluation on therapeutic effect of de-compressive craniectomies for patients with diffuse brain swelling

    International Nuclear Information System (INIS)

    Xiao Sanchao; Zhang Changrong; Zuo Yi; Zhou Xiaowei; Li Jian

    2000-01-01

    Objective: To evaluate the therapeutic effect of de-compressive craniectomies in acute traumatic patients with diffuse brain swelling. Methods: 23 patients with acute posttraumatic diffuse brain swelling admitted and confirmed by X-CT were randomly treated by surgical de-compressive craniectomies (operative group). Their treated results were compared with those of another 11 patients treated conservatively (non-operative group) at the same period. Results: The mortality rate was similar in both operative and nonoperative groups. Conclusion: The de-compressive craniectomy operation has no value and not valid for treatment of acute posttraumatic diffuse brain swelling

  9. PDA: Pooled DNA analyzer

    Directory of Open Access Journals (Sweden)

    Lin Chin-Yu

    2006-04-01

    Full Text Available Abstract Background Association mapping using abundant single nucleotide polymorphisms is a powerful tool for identifying disease susceptibility genes for complex traits and exploring possible genetic diversity. Genotyping large numbers of SNPs individually is performed routinely but is cost prohibitive for large-scale genetic studies. DNA pooling is a reliable and cost-saving alternative genotyping method. However, no software has been developed for complete pooled-DNA analyses, including data standardization, allele frequency estimation, and single/multipoint DNA pooling association tests. This motivated the development of the software, 'PDA' (Pooled DNA Analyzer, to analyze pooled DNA data. Results We develop the software, PDA, for the analysis of pooled-DNA data. PDA is originally implemented with the MATLAB® language, but it can also be executed on a Windows system without installing the MATLAB®. PDA provides estimates of the coefficient of preferential amplification and allele frequency. PDA considers an extended single-point association test, which can compare allele frequencies between two DNA pools constructed under different experimental conditions. Moreover, PDA also provides novel chromosome-wide multipoint association tests based on p-value combinations and a sliding-window concept. This new multipoint testing procedure overcomes a computational bottleneck of conventional haplotype-oriented multipoint methods in DNA pooling analyses and can handle data sets having a large pool size and/or large numbers of polymorphic markers. All of the PDA functions are illustrated in the four bona fide examples. Conclusion PDA is simple to operate and does not require that users have a strong statistical background. The software is available at http://www.ibms.sinica.edu.tw/%7Ecsjfann/first%20flow/pda.htm.

  10. Swelling of cross-linked polymers: interpretations and misinterpretations

    Czech Academy of Sciences Publication Activity Database

    Dušek, Karel; Dušková-Smrčková, Miroslava

    2017-01-01

    Roč. 254, 20 August (2017), s. 102 ISSN 0065-7727. [ACS National Meeting & Exposition /254./. 20.08.2017-24.08.2017, Washington] Institutional support: RVO:61389013 Keywords : swelling * cross-linked polymer Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science

  11. A study on the swelling behavior of poly(acrylic acid) hydrogels obtained by electron beam crosslinking

    Science.gov (United States)

    Sheikh, N.; Jalili, L.; Anvari, F.

    2010-06-01

    Poly(acrylic acid) (PAA) hydrogels were prepared by using electron beam (EB) crosslinking of PAA homopolymer from its aqueous solutions. The swelling behavior of the hydrogels was studied as a function of the concentration of PAA solution, radiation dose, pH of the swelling medium and swelling time. Also the environmental pH effect on the water diffusion mode into hydrogels was investigated. These hydrogels clearly showed pH-sensitive swelling behavior with Fickian type of diffusion in the stomach-like pH medium (pH 1.3) and non-Fickian type in the intestine-like pH medium (pH 6.8).

  12. A study on the swelling behavior of poly(acrylic acid) hydrogels obtained by electron beam crosslinking

    International Nuclear Information System (INIS)

    Sheikh, N.; Jalili, L.; Anvari, F.

    2010-01-01

    Poly(acrylic acid) (PAA) hydrogels were prepared by using electron beam (EB) crosslinking of PAA homopolymer from its aqueous solutions. The swelling behavior of the hydrogels was studied as a function of the concentration of PAA solution, radiation dose, pH of the swelling medium and swelling time. Also the environmental pH effect on the water diffusion mode into hydrogels was investigated. These hydrogels clearly showed pH-sensitive swelling behavior with Fickian type of diffusion in the stomach-like pH medium (pH 1.3) and non-Fickian type in the intestine-like pH medium (pH 6.8).

  13. Specimen Machining for the Study of the Effect of Swelling on CGR in PWR Environment.

    Energy Technology Data Exchange (ETDEWEB)

    Teysseyre, Sebastien Paul [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-06-01

    This report describes the preparation of ten specimens to be used for the study of the effect of swelling on the propagation of irradiation assisted stress corrosion cracking cracks. Four compact tension specimens, four microscopy plates and two tensile specimens were machined from a AISI 304 material that was irradiated up to 33 dpa. The specimens had been machined such as to represent the behavior of materials with 3.7%swelling and <2% swelling.

  14. Swelling in several commercial alloys irradiated to very high neutron fluence

    International Nuclear Information System (INIS)

    Gelles, D.S.; Pintler, J.S.

    1984-01-01

    Swelling values have been obtained from a set of commercial alloys irradiated in EBR-II to a peak fluence of 2.5 x 10 23 n/cm 2 (E > 0.1 MeV) or approx. 125 dpa covering the range 400 to 650 0 C. The alloys can be ranked for swelling resistance from highest to lowest as follows: the martensitic and ferritic alloys, the niobium based alloys, the precipitation strengthened iron and nickel based alloys, the molybdenum alloys and the austenitic alloys

  15. Porewater salinity and the development of swelling pressure in bentonite-based buffer and backfill materials

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, D.A. [Atomic Energy of Canada Limited (Canada)

    2000-06-01

    At the depths proposed for a nuclear fuel waste repository, it is likely that saline groundwater conditions will be encountered in the granitic rocks of Finland and Canada. The potential for saline groundwater to influence of the ability of bentonite-based buffer and backfilling materials to swell and thereby generate swelling pressure has been reviewed. Based on the data collected from existing literature, it would appear that porewater salinities as high as 100 g/l will not compromise the ability of confined, bentonite-based materials to develop a swelling pressure of at least 100 kPa on its confinement, provided the effective clay dry density (ECDD), exceeds approximately 0.9 Mg/m{sup 3}. At densities less than approximately 0.9 Mg/m{sup 3} the swelling pressure of bentonite-based materials may be reduced and become sensitive to salt concentration. The influence of porewater salinity on swelling pressure can be compared on the basis of the ECDD required to develop 100 kPa of swelling pressure. In order to generate 100 kPa of swelling pressure an ECDD of approximately 0.7 Mg/m{sup 3} is required to be present under fresh water or brackish porewater conditions. This density would need to be increased to approximately 0.9 Mg/m{sup 3} where the groundwater conditions were saline. The impact that groundwater salinity will have on density specifications for buffer and backfilling materials are discussed with reference to the nuclear fuel waste disposal concepts of Finland and Canada. (orig.)

  16. 13 CFR 120.1706 - Pool Originator's retained interest in Pool.

    Science.gov (United States)

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Pool Originator's retained interest in Pool. 120.1706 Section 120.1706 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION BUSINESS LOANS Establishment of SBA Secondary Market Guarantee Program for First Lien Position 504 Loan...

  17. Fission product release in conditions of a spent fuel pool severe accident

    International Nuclear Information System (INIS)

    Ohai, Dumitru

    2007-01-01

    Full text: Depending on the residence time, fuel burnup, and fuel rack configuration, there may be sufficient decay heat for the fuel clad to heat up, swell, and burst in case of a loss of pool water. Initiating event categories can be: loss of offsite power from events initiated by severe weather, internal fire, loss of pool cooling, loss of coolant inventory, seismic event, aircraft impact, tornado, missile attack. The breach in the clad releases the radioactive gases present in the gap between the fuel and clad, what is called 'gap release'. If the fuel continues to heat up, the zirconium clad will reach the point of rapid oxidation in air. This reaction of zirconium and air, or zirconium and steam is exothermic. The energy released from the reaction, combined with the fuel's decay energy, can cause the reaction to become self-sustaining and ignite the zirconium. The increase in heat from the oxidation reaction can also raise the temperature in adjacent fuel assemblies and propagate the oxidation reaction. Simultaneously, the sintered UO 2 pellets resulting from pins destroying are oxidized. Due to the self-disintegration of pellets by oxidation, fission gases and low volatile fission products are released. The release rate, the chemical nature and the amount of fission products depend on powder granulation distribution and environmental conditions. The zirconium burning and pellets self-disintegration will result in a significant release of spent fuel fission products that will be dispersed from the reactor site. (author)

  18. Bearing and Swelling Properties of Randomly Distributed Waste Jute Reinforced Soil

    Directory of Open Access Journals (Sweden)

    Murat Ozturk

    2017-10-01

    Full Text Available In this study, waste jute, which was provided from textile companies, was investigated to define effect of waste jute on swelling and bearing behavior of the sand used. Three different water content (17, 19 and 21% and four different waste jute addition amount at different percentages (0, 1, 2, and 3 by mass of dry soil were selected as design variables. With defined variables Swelling Ratio and California Bearing Ratio (CBR tests were conducted. According to test results it is concluded that minimum swelling ratio was observed in the test containing 3% jute with 19% water content and the highest value of CBR was observed in the sample containing 2% jute with 16% water content. In addition to that, CBR values of unreinforced samples were decreased when water content increased from 16% to 21%. However, CBR values of reinforced samples increased with increasing water content from 19% to 21%.

  19. Swelling in cold-worked 316 stainless steels irradiated in a PWR

    Energy Technology Data Exchange (ETDEWEB)

    Fukuya, Koji; Fujii, Katsuhiko [Institute of Nuclear Safety System Inc., Mihama, Fukui (Japan)

    2001-09-01

    Swelling behavior in a cold-worked 316 stainless steel irradiated up to 53 dpa in a PWR at 290-320degC was examined using high resolution transmission electron microscopy. Small cavities with the average diameter of 1 nm were observed in the samples irradiated to doses above 3 dpa. The average diameter did not increase with increasing in dose. The maximum swelling was as low as 0.042%. The measured helium content and the cavity morphology led to the conclusion that the cavities were helium bubbles. A comparison of the observed cavity microstructure with data from FBR, HFIR and ATR irradiation showed that the cavity structure in PWR at 320degC or less was similar to those in HFIR and ATR irradiation but quite different from those in FBR condition. From a calculation based on the cavity data and kinetic models the incubation dose of swelling was estimated to be higher than 80dpa in the present irradiation condition. (author)

  20. Critical parameters controlling irradiation swelling in beryllium

    International Nuclear Information System (INIS)

    Dubinko, V.I.

    1995-01-01

    Radiation effects in beryllium can hardly be explained within a framework of the conventional theory based on the bias concept due to elastic interaction difference (EID) between vacancies and self-interstitial atoms (SIAs) since beryllium belongs to hexagonal close-packed metals where diffusion has been shown to be anisotropic. Diffusional anisotropy difference (DAD) between point defects changes the cavity bias for their absorption and leads to dependence of the dislocation bias on the distribution of dislocations over crystallographic directions. On the other hand, the elastic interaction between point defects and cavities gives rise to the size and gas pressure dependencies of the cavity bias, resulting in new critical quantities for bubble-void transition effects at low temperature irradiation. In the present paper, we develop the concept of the critical parameters controlling irradiation swelling with account of both DAD and EID, and take care of thermal effects as well since they are of major importance for beryllium which has an anomalously low self-diffusion activation energy. Experimental data on beryllium swelling are analyzed on the basis of the present theory. (orig.)

  1. Numerical studies of temperature effect on the extrusion fracture and swell of plastic micro-pipe

    Science.gov (United States)

    Ren, Zhong; Huang, Xingyuan; Xiong, Zhihua

    2018-03-01

    Temperature is a key factor that impacts extrusion forming quality of plastic micro-pipe. In this study, the effect of temperature on extrusion fracture and swell of plastic micro-pipe was investigated by numerical method. Under a certain of the melt’s flow volume, the extrusion pattern, extrusion swelling ratio of melt are obtained under different temperatures. Results show that the extrusion swelling ratio of plastic micro-pipe decreases with increasing of temperature. In order to study the reason of temperature effect, the physical distributions of plastic micro-pipe are gotten. Numerical results show that the viscosity, pressure, stress value of melt are all decreased with the increasing of temperature, which leads to decrease the extrusion swell and fracture phenomenon for the plastic micro-pipe.

  2. Structure and radiation induced swelling of steels and alloys

    International Nuclear Information System (INIS)

    Parshin, A.M.

    1983-01-01

    Regularities of vacancy void formation and radiation induced swelling of austenitic chromium-nickel steels and alloyse ferritic steels as well as titanium α-alloys under radiation by light and heavy ions and neutrons are considered. Possible methods for preparation of alloys with increased resistance to radiation swelling are described. Accounting for investigations into ferritic steels and α-alloys of titanium the basic way of weakening vacancy smelling is development of continuous homogeneous decomposition of solid solution using alloying with vividly expressed incubation period at a certain volumetric dilatation as well as decompositions of the type of ordering, K-state, lamination of solid solutions, etc. Additional alloying of solid solutions is also shown to be necessary for increasing recrystallization temperature of cold-deformed steel

  3. Loss of knee-extension strength is related to knee swelling after total knee arthroplasty

    DEFF Research Database (Denmark)

    Holm, Bente; Kristensen, Morten T; Bencke, Jesper

    2010-01-01

    To examine whether changes in knee-extension strength and functional performance are related to knee swelling after total knee arthroplasty (TKA).......To examine whether changes in knee-extension strength and functional performance are related to knee swelling after total knee arthroplasty (TKA)....

  4. Velocity field measurement in micro-bubble emission boiling

    International Nuclear Information System (INIS)

    Ito, Daisuke; Saito, Yasushi; Natazuka, Jun

    2017-01-01

    Liquid inlet behavior to a heat surface in micro-bubble emission boiling (MEB) was investigated by flow measurement using particle image velocimetry (PIV). Subcooled pool boiling experiments under atmospheric pressure were carried out using a heat surface with a diameter of 10 mm. An upper end of a heater block made of copper was used as the heat surface. Working fluid was the deionized water and the subcooling was varied from 40 K to 70 K. Three K-type thermocouples were installed in the copper block to measure the temperature gradient, and the heat flux and wall superheat were estimated from these temperature data to make a boiling curve. The flow visualization around the heat surface was carried out using a high-speed video camera and a light sheet. The microbubbles generated in the MEB were used as tracer particles and the velocity field was obtained by PIV analysis of the acquired image sequence. As a result, the higher heat fluxes than the critical heat flux could be obtained in the MEB region. In addition, the distribution characteristics of the velocity in MEB region were studied using the PIV results and the location of the stagnation point in the velocity fields was discussed. (author)

  5. Swell activated chloride channel function in human neutrophils

    Energy Technology Data Exchange (ETDEWEB)

    Salmon, Michael D. [Leukocyte and Ion Channel Research Laboratory, School of Health and Biosciences, University of East London, Stratford Campus, London E15 4LZ (United Kingdom); Ahluwalia, Jatinder, E-mail: j.ahluwalia@uel.ac.uk [Leukocyte and Ion Channel Research Laboratory, School of Health and Biosciences, University of East London, Stratford Campus, London E15 4LZ (United Kingdom)

    2009-04-17

    Non-excitable cells such as neutrophil granulocytes are the archetypal inflammatory immune cell involved in critical functions of the innate immune system. The electron current generated (I{sub e}) by the neutrophil NADPH oxidase is electrogenic and rapidly depolarises the membrane potential. For continuous function of the NADPH oxidase, I{sub e} has to be balanced to preserve electroneutrality, if not; sufficient depolarisation would prevent electrons from leaving the cell and neutrophil function would be abrogated. Subsequently, the depolarisation generated by the neutrophil NADPH oxidase I{sub e} must be counteracted by ion transport. The finding that depolarisation required counter-ions to compensate electron transport was followed by the observation that chloride channels activated by swell can counteract the NADPH oxidase membrane depolarisation. In this mini review, we discuss the research findings that revealed the essential role of swell activated chloride channels in human neutrophil function.

  6. Status of research and modelling of water-pool scrubbing

    International Nuclear Information System (INIS)

    Ramsdale, S.A.; Bamford, G.J.; Fishwick, S.; Starkie, H.C.

    1992-11-01

    A critical review has been performed of the modelling and experimental data on aerosol and vapour retention in water pools. This involved the systematic comparison of available computer codes, and the selection of the most suitable code for further improvement and future inclusion in the Ester code. Busca was the code selected, and has now been extended to model the condensation of steam onto aerosol particles, taking into account curvature and solute effects. It has also been extended to treat the enhanced rise velocity of swarms of bubbles. Busca was then validated against the best available experimental data, namely data from ACE Phase A and the EPRI experiments. Agreement of the code with experiments was generally very satisfactory

  7. Modeling multidomain hydraulic properties of shrink-swell soils

    Science.gov (United States)

    Stewart, Ryan D.; Abou Najm, Majdi R.; Rupp, David E.; Selker, John S.

    2016-10-01

    Shrink-swell soils crack and become compacted as they dry, changing properties such as bulk density and hydraulic conductivity. Multidomain models divide soil into independent realms that allow soil cracks to be incorporated into classical flow and transport models. Incongruously, most applications of multidomain models assume that the porosity distributions, bulk density, and effective saturated hydraulic conductivity of the soil are constant. This study builds on a recently derived soil shrinkage model to develop a new multidomain, dual-permeability model that can accurately predict variations in soil hydraulic properties due to dynamic changes in crack size and connectivity. The model only requires estimates of soil gravimetric water content and a minimal set of parameters, all of which can be determined using laboratory and/or field measurements. We apply the model to eight clayey soils, and demonstrate its ability to quantify variations in volumetric water content (as can be determined during measurement of a soil water characteristic curve) and transient saturated hydraulic conductivity, Ks (as can be measured using infiltration tests). The proposed model is able to capture observed variations in Ks of one to more than two orders of magnitude. In contrast, other dual-permeability models assume that Ks is constant, resulting in the potential for large error when predicting water movement through shrink-swell soils. Overall, the multidomain model presented here successfully quantifies fluctuations in the hydraulic properties of shrink-swell soil matrices, and are suitable for use in physical flow and transport models based on Darcy's Law, the Richards Equation, and the advection-dispersion equation.

  8. Benthic assemblages of rock pools in northern Portugal: seasonal and between-pool variability

    Directory of Open Access Journals (Sweden)

    Iacopo Bertocci

    2012-11-01

    Full Text Available We investigated the seasonal (winter vs summer and within season and spatial (between-pool variability of benthic assemblages of rock pools at mid-intertidal level along the shore of Viana do Castelo (North Portugal. Physical traits of rock pools, including size, depth and position along the shore, were also compared between pools. While pools did not differ for any of the examined physical traits, results indicated a clear seasonal difference in the structure of assemblages, including a total of 49 macroalgal and 13 animal taxa. This finding was driven by six taxa that are more abundant in winter (the reef-forming polychaete Sabellaria alveolata, the articulated coralline algae Corallina spp., the brown alga Bifurcaria bifurcata, the encrusting coralline alga Lithophyllum incrustans, the red alga Chondracanthus acicularis and the grazing snails Gibbula spp. and four algal taxa that are more abundant in summer (the invasive brown Sargassum muticum, the green Ulva spp., the kelp Laminaria ochroleuca and the filamentous red Ceramium spp.. These data provide a new contribution to the knowledge of rock pool systems and have potential implications for monitoring programmes aimed at assessing ecological modifications related to natural and anthropogenic disturbances and for identifying processes responsible for the variability of rock pool assemblages.

  9. GRSIS program to predict fission gas release and swelling behavior of metallic fast reactor fuel

    International Nuclear Information System (INIS)

    Lee, Chan Bock; Lee, Byung Ho; Nam, Cheol; Sohn, Dong Seong

    1999-03-01

    A mechanistic model of fission gas release and swelling for the U-(Pu)-Zr metallic fuel in the fast reactor, GRSIS (Gas Release and Swelling in ISotropic fuel matrix) was developed. Fission gas bubbles are assumed to nucleate isotropically from the gas atoms in the metallic fuel matrix since they can nucleate at both the grain boundaries and the phase boundaries which are randomly distributed inside the grain. Bubbles can grow to larger size by gas diffusion and coalition with other bubbles so that they are classified as three classes depending upon their sizes. When bubble swelling reaches the threshold value, bubbles become interconnected each other to make the open channel to the external free space, that is, the open bubbles and then fission gases inside the interconnected open bubbles are released instantaneously. During the irradiation, fission gases are released through the open bubbles. GRSIS model can take into account the fuel gap closure by fuel bubble swelling. When the fuel gap is closed by fuel swelling, the contact pressure between fuel and cladding in relation to the bubble swelling and temperature is calculated. GRSIS model was validated by comparison with the irradiation test results of U-(Pu)-Zr fuels in ANL as well as the parametric studies of the key variable in the model. (author). 13 refs., 1 tab., 22 figs

  10. GRSIS program to predict fission gas release and swelling behavior of metallic fast reactor fuel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chan Bock; Lee, Byung Ho; Nam, Cheol; Sohn, Dong Seong

    1999-03-01

    A mechanistic model of fission gas release and swelling for the U-(Pu)-Zr metallic fuel in the fast reactor, GRSIS (Gas Release and Swelling in ISotropic fuel matrix) was developed. Fission gas bubbles are assumed to nucleate isotropically from the gas atoms in the metallic fuel matrix since they can nucleate at both the grain boundaries and the phase boundaries which are randomly distributed inside the grain. Bubbles can grow to larger size by gas diffusion and coalition with other bubbles so that they are classified as three classes depending upon their sizes. When bubble swelling reaches the threshold value, bubbles become interconnected each other to make the open channel to the external free space, that is, the open bubbles and then fission gases inside the interconnected open bubbles are released instantaneously. During the irradiation, fission gases are released through the open bubbles. GRSIS model can take into account the fuel gap closure by fuel bubble swelling. When the fuel gap is closed by fuel swelling, the contact pressure between fuel and cladding in relation to the bubble swelling and temperature is calculated. GRSIS model was validated by comparison with the irradiation test results of U-(Pu)-Zr fuels in ANL as well as the parametric studies of the key variable in the model. (author). 13 refs., 1 tab., 22 figs.

  11. Sea and swell along west coast of India: Study based on measured data

    Digital Repository Service at National Institute of Oceanography (India)

    SanilKumar, V.; AshokKumar, K.; Pednekar, P.; Gowthaman, R.

    Conference on Harbour and Ocean Engineering 12-14, Dec. 2007, at NITK, Surathkal 736 SEA AND SWELL...@nio.org pprem@nio.org rgowtham@nio.org Ocean Engineering Division National Institute of Oceanography Dona Paula, Goa 403 004 India ABSTRACT Separation of sea and swell from the measured data is important for studying the wind wave dynamics...

  12. The influence of pool geometry and induced flow patterns in rock scour by high-velocity plunging jets

    OpenAIRE

    Almeida Manso, Pedro Filipe de; Schleiss, Anton

    2007-01-01

    The dissipation of energy of flood discharges from water releasing structures of dams is often done by plunging jets diffusing in water and impacting on the riverbed downstream. The construction of expensive concrete structures for energy dissipation can be avoided but the assessment of the scour evolution is mandatory for dam safety. The scour growth rate and shape depend on the riverbed geology. The geometry of scour may influence the turbulent flow pattern in the pool, the dynamic loadings...

  13. Modeling the controllable pH-responsive swelling and pore size of networked alginate based biomaterials.

    Science.gov (United States)

    Chan, Ariel W; Neufeld, Ronald J

    2009-10-01

    Semisynthetic network alginate polymer (SNAP), synthesized by acetalization of linear alginate with di-aldehyde, is a pH-responsive tetrafunctionally linked 3D gel network, and has potential application in oral delivery of protein therapeutics and active biologicals, and as tissue bioscaffold for regenerative medicine. A constitutive polyelectrolyte gel model based on non-Gaussian polymer elasticity, Flory-Huggins liquid lattice theory, and non-ideal Donnan membrane equilibria was derived, to describe SNAP gel swelling in dilute and ionic solutions containing uni-univalent, uni-bivalent, bi-univalent or bi-bi-valent electrolyte solutions. Flory-Huggins interaction parameters as a function of ionic strength and characteristic ratio of alginates of various molecular weights were determined experimentally to numerically predict SNAP hydrogel swelling. SNAP hydrogel swells pronouncedly to 1000 times in dilute solution, compared to its compact polymer volume, while behaving as a neutral polymer with limited swelling in high ionic strength or low pH solutions. The derived model accurately describes the pH-responsive swelling of SNAP hydrogel in acid and alkaline solutions of wide range of ionic strength. The pore sizes of the synthesized SNAP hydrogels of various crosslink densities were estimated from the derived model to be in the range of 30-450 nm which were comparable to that measured by thermoporometry, and diffusion of bovine serum albumin. The derived equilibrium swelling model can characterize hydrogel structure such as molecular weight between crosslinks and crosslinking density, or can be used as predictive model for swelling, pore size and mechanical properties if gel structural information is known, and can potentially be applied to other point-link network polyelectrolytes such as hyaluronic acid gel.

  14. Alloys of nickel-iron and nickel-silicon do not swell under fast neutron irradiation

    International Nuclear Information System (INIS)

    Silvestre, G.; Silvent, A.; Regnard, C.; Sainfort, G.

    1975-01-01

    This research is concerned with the effect of fast-neutron irradiation on the swelling of nickel and nickel alloys. Ni-Fe (0-60at%Fe) and Ni-Si (0-8at%Si) were studied, and the fluences were in the range 10 20 -4.3x10 22 n/cm 2 . In dilute alloys, the added elements are dissolved and reduce swelling, silicon being particularly effective. In more concentrated alloys, irradiation of Ni-Fe and Ni-Si alloys brings about the formation of plate-shaped precipitates of Ni 3 X and these alloys do not swell. (Auth.)

  15. Leukoencephalopathy with swelling in children and adolescents: MRI patterns and differential diagnosis

    International Nuclear Information System (INIS)

    Knaap, M.S. van der; Valk, J.; Barth, P.G.; Smit, L.M.E.; Engelen, B.G.M. van; Tortori Donati, P.

    1995-01-01

    In children, several neurological disorders are characterised by spongiform leukoencephalopathy. MRI of the brain typically shows white matter swelling, but does not enable differentiation of the various underlying disorders. The aim of this article is optimisation of the diagnostic value of MRI in leukoencephalopathy accompanied by swelling. MRI-based inclusion criteria were met by 20 patients in our database. The images were analysed using a detailed scoring list. In 13 of the 20 patients the clinical diagnosis was known (11 definite and 2 probable diagnoses). Characteristic MRI abnormalities could be defined in these patients. Of the 7 patients without a diagnosis, 5 had identical MRI abnormalities: diffuse hemisphere swelling and typical cysts in frontoparietal subcortical white matter and the tips of the temporal lobes. The clinical picture was also similar in these patients, suggesting a similar disease. (orig.). With 10 figs., 2 tabs

  16. A contribution to the better understanding of swelling in soils and soft rocks

    Directory of Open Access Journals (Sweden)

    Ana Petkovšek

    2010-12-01

    Full Text Available Swelling and shrinkage of sediments rich with clay belong to geologically conditioned risk factors. Economicloss as the consequence of volume changes in the geological catchment area of buildings and infrastructuralobjects is immense. Untimely detected swelling causes higher prices and unnecessary delays during the construction.In those cases when deep cuts and underground spaces are used as intervention into highly preconsolidatedsoils and soft rock with clay contents, failures of embankments and improperly designed supporting measures dueto swelling are not infrequent. Also periodic appearance of landslides at certain areas can be the consequence ofswelling. Some countries, such as the USA, introduced the guidelines and standards for the detection, assessmentand handling with swellable geological materials decades ago. Due to some other more urgent geologically conditionedrisks, such as landslides, earthquakes and constructions on soft ground, in Slovenia the development ofknowledge in the area of swelling soils was several years behind the knowledge in the rest of the world. With theconstruction of the Slovenian-Hungarian railway connection after 1998, motorways and the introduction of newknowledge about soil suction, also Slovenian experts were introduced to a different dimension of the problem ofswelling soils, as well as some important experiences were learned and new possibilities for the investigation andunderstanding of volume behaviour of swelling soils were opened. This is especially important for the predictedweather extremes, as only adequate knowledge will allow us to adequately explain any new phenomena in theground and prepare appropriate protection.

  17. Drop Impact on to Moving Liquid Pools

    Science.gov (United States)

    Muñoz-Sánchez, Beatriz Natividad; Castrejón-Pita, José Rafael; Castrejón-Pita, Alfonso Arturo; Hutchings, Ian M.

    2014-11-01

    The deposition of droplets on to moving liquid substrates is an omnipresent situation both in nature and industry. A diverse spectrum of phenomena emerges from this simple process. In this work we present a parametric experimental study that discerns the dynamics of the impact in terms of the physical properties of the fluid and the relative velocity between the impacting drop and the moving liquid pool. The behaviour ranges from smooth coalescence (characterized by little mixing) to violent splashing (generation of multiple satellite droplets and interfacial vorticity). In addition, transitional regimes such as bouncing and surfing are also found. We classify the system dynamics and show a parametric diagram for the conditions of each regime. This work was supported by the EPSRC (Grant EP/H018913/1), the Royal Society, Becas Santander Universidades and the International Relationships Office of the University of Extremadura.

  18. Testing of Local Velocity Transducer Used at Sodium Thermal Hydraulic Test Facilities

    International Nuclear Information System (INIS)

    Kim, Tae Joon; Eoh, Jae Hyuk; Hwang, In Koo; Jeong, Ji Young; Kim, Jong Man; Lee, Yong Bum; Kim, Yeong Il

    2012-01-01

    KAERI (Korea Atomic Energy Research Institute) will perform a test for a thermal hydraulic simulation with STELLA-1 for a Component Performance Test Sodium Loop in the year 2012, and subsequently it will construct for STELLA-2 for a Sodium Thermalhydraulic Experimental Facility in the year 2016. The STELLA-2 consists of a scaled reactor vessel with a core of electric heaters, four IHXs, two PHTS pumps, two DHXs, and two AHXs. In STELLA-2, several kinds of flow measurements exists. In this paper, the local velocity transducer as a prototype tested in IPPE (in Russia), was manufactured as a prototype by a shop in KAERI. This local velocity transducer will be used to measure the flow rate in a pool

  19. Water Vapor Sensors Based on the Swelling of Relief Gelatin Gratings

    Directory of Open Access Journals (Sweden)

    Sergio Calixto

    2015-01-01

    Full Text Available We report on a novel device to measure relative humidity. The sensor is based on surface diffraction gratings made of gelatin. This material swells and shrinks according to the content of water vapor in air. By sending a light beam to the grating, diffracted orders appear. Due to the gelatin swelling or shrinking, first order intensity changes according to the relative humidity. Calibration curves relating intensity versus relative humidity have been found. The fabrication process of diffraction gratings and the testing of the prototype sensing devices are described.

  20. Big city consultants shut down our pool : a shocking community pool gets checked for stray voltage

    Energy Technology Data Exchange (ETDEWEB)

    Lynch, P. [Power Line Systems Engineering Inc., Markham, ON (Canada)

    2009-12-15

    This article discussed an investigation conducted at a community pool where swimmers complained of receiving electrical shocks both in the pool and on the pool's deck area. Electrical measurements taken at the pool revealed current flows from the pool water to various points around the deck area. Measured current flow in the pool area was 30 amps even when the main pool service breaker was opened to shut off power to the entire facility. Thirty amps of primary neutral current was then measured on the primary side aerial neutral in front of the pool. A 10 amp primary feeder from the pool joined up with the complex's primary neutral wire to increase the neutral current to 40 amps. The combined 40 amps current then returned to the secondary side of a nearby utility transformer substation. The study showed that the underground wet low-resistance grounded surface area of the pool was attracting the 30 amps of utility current from the surrounding ground area. The local utility disconnected the primary and secondary neutral interconnection at the pool's main 600-volt step-down transformer. The pool deck was removed in order to install additional copper bonding grounds. In order to avert serious injuries, many experts propose that all electric utilities should be required by law to reconfigure their power systems to prevent primary power neutral currents from entering private buildings. 1 tab., 2 figs.

  1. Swelling and irradiation creep of neutron irradiated 316Ti and 15-15Ti steels

    International Nuclear Information System (INIS)

    Maillard, A.; Touron, H.; Seran, J.L.; Chalony, A.

    1992-01-01

    The global behavior, the swelling and irradiation creep resistances of cold worked 316Ti and 15-15Ti, two variants of austenitic steels in use as core component materials of the French fast reactors, are compared. The 15-15Ti leads to a significant improvement due to an increase in the incubation dose swelling. The same phenomena observed on 316Ti are found on 15-15Ti. All species without fuel like samples, wrappers or empty clad swell and creep less than fuel pin cladding irradiated in the same conditions. To explain the swelling difference, as for 316Ti, thermal gradient is also invoked but the irradiation creep difference is not yet clearly understood. To predict the behavior of clads it is indispensable to study the species themselves and to use specific rules. All results confirm the good behavior of 15-15Ti, the best behavior being obtained with the 1% Si doped version irradiated up to 115 dpa

  2. poolHiTS: A Shifted Transversal Design based pooling strategy for high-throughput drug screening

    Directory of Open Access Journals (Sweden)

    Woolf Peter J

    2008-05-01

    Full Text Available Abstract Background A key goal of drug discovery is to increase the throughput of small molecule screens without sacrificing screening accuracy. High-throughput screening (HTS in drug discovery involves testing a large number of compounds in a biological assay to identify active compounds. Normally, molecules from a large compound library are tested individually to identify the activity of each molecule. Usually a small number of compounds are found to be active, however the presence of false positive and negative testing errors suggests that this one-drug one-assay screening strategy can be significantly improved. Pooling designs are testing schemes that test mixtures of compounds in each assay, thereby generating a screen of the whole compound library in fewer tests. By repeatedly testing compounds in different combinations, pooling designs also allow for error-correction. These pooled designs, for specific experiment parameters, can be simply and efficiently created using the Shifted Transversal Design (STD pooling algorithm. However, drug screening contains a number of key constraints that require specific modifications if this pooling approach is to be useful for practical screen designs. Results In this paper, we introduce a pooling strategy called poolHiTS (Pooled High-Throughput Screening which is based on the STD algorithm. In poolHiTS, we implement a limit on the number of compounds that can be mixed in a single assay. In addition, we show that the STD-based pooling strategy is limited in the error-correction that it can achieve. Due to the mixing constraint, we show that it is more efficient to split a large library into smaller blocks of compounds, which are then tested using an optimized strategy repeated for each block. We package the optimal block selection algorithm into poolHiTS. The MATLAB codes for the poolHiTS algorithm and the corresponding decoding strategy are also provided. Conclusion We have produced a practical version

  3. A numerical investigation of the effects of membrane swelling in polymer electrolyte fuel cells

    International Nuclear Information System (INIS)

    Tiss, Faysal; Chouikh, Ridha; Guizani, Amenallah

    2013-01-01

    Highlights: ► Membrane water content is controlled by the operating conditions in the cathode. ► When the membrane is in contact with water, only pore size varies. ► Membrane water content increase by increasing the functioning temperature. ► Good agreement between computational results and previous reported experimental data. - Abstract: A two-dimensional computational fluid dynamics model of PEM fuel cell is developed by taking into account the electrochemical, mass and heat transfer process occurring in the cathode compartment. Additionally, this model includes the effect of water content in the membrane swelling phenomenon. Several parameters such as gases temperature, inlet velocity and membrane characteristics are too investigated to establish their effect on the PEM fuel cell performance. The membrane water content and the air fraction variation in the gas channel are examined for diverse values of Reynolds number. In particular, the desirable inlet flow for enhancing the performance of the PEM fuel cell is determined by examining membrane water content patterns. The methodology in this study is useful to the control of water management and gas diffusion layer design

  4. Splenogonadal fusion: a forgotten cause of testicular swelling in ...

    African Journals Online (AJOL)

    swelling in children. Mohamad ... report describes a 25-month-old male child who presented with left .... conditions such as mumps, malaria, leukemia, trauma, and ... Splenogonadal fusion and testicular cancer: case report and review of.

  5. Swelling of Superabsorbent Poly(Sodium-Acrylate Acrylamide) Hydrogels and Influence of Chemical Structure on Internally Cured Mortar

    Science.gov (United States)

    Krafcik, Matthew J.; Erk, Kendra A.

    Superabsorbent hydrogel particles show promise as internal curing agents for high performance concrete (HPC). These gels can absorb and release large volumes of water and offer a solution to the problem of self-dessication in HPC. However, the gels are sensitive to ions naturally present in concrete. This research connects swelling behavior with gel-ion interactions to optimize hydrogel performance for internal curing, reducing the chance of early-age cracking and increasing the durability of HPC. Four different hydrogels of poly(sodium-acrylate acrylamide) are synthesized and characterized with swelling tests in different salt solutions. Depending on solution pH, ionic character, and gel composition, diffrerent swelling behaviors are observed. As weight percent of acrylic acid increases, gels demonstrate higher swelling ratios in reverse osmosis water, but showed substantially decreased swelling when aqueous cations are present. Additionally, in multivalent cation solutions, overshoot peaks are present, whereby the gels have a peak swelling ratio but then deswell. Multivalent cations interact with deprotonated carboxylic acid groups, constricting the gel and expelling water. Mortar containing hydrogels showed reduced autogenous shrinkage and increased relative humidity.

  6. Laboratory tests of hydraulic fracturing and swell healing

    DEFF Research Database (Denmark)

    Thunbo, Christensen Claes; Foged, Christensen Helle; Foged, Niels

    1998-01-01

    New laboratory test set-ups and test procedures are described - for testing the formation of hydraulically induced fractures as well as the potential for subsequent fracture closurefrom the relase of a swelling potential. The main purpose with the tests is to provide information on fracturing str...

  7. Quantitative analysis of swelling on annealing of hydrogen ion implanted diamond single crystals

    International Nuclear Information System (INIS)

    Kuznetsov, G.F.

    2006-01-01

    Local swelling observed upon high-temperature annealing of natural diamond single crystals implanted by 350-keV hydrogen ions with a dose of 12 10 16 cm 2 is studied. Based on room-temperature measurements, Griffith cracking criterion in combination with gas law, model quantitative calculations of the swelling size and the amount of hydrogen molecules in a swelling have been carried out for the first time. At room temperature, T 1 293 K, the amount of local elastic stresses in the upper layer of the diamond is counterbalanced by inner hydrogen pressure. Behavior of the gas bubbles with the annealing temperature increase up to 1693 K and repeated annealing at a temperature of 1743 K has been calculated [ru

  8. Study of swelling by simulation

    International Nuclear Information System (INIS)

    Gilbon, D.; Le Naour, L.; Didout, G.

    1983-06-01

    Fuel cans and hexagonal tubes containing the pins must withstand high irradiation doses (220 or even 275 dpa) with a low swelling. Qualification of a new alloy for claddings requires several years of irradiation on a reactor. For a fast first selection simulation by 1MeV electron or heavy ions enhance radiation damages. Principles of these techniques are recalled and some examples mainly with steel 316 are given. Results are compared with results obtained in reactor to determine simulation limits. The method is not valid in the case of a structural instability of the irradiated material in a reactor [fr

  9. Relationship between swelling and elastic properties in neutron-irradiated 316 stainless steel

    International Nuclear Information System (INIS)

    Bates, J.F.

    1976-04-01

    The results encompass elastic property measurements on several alloys, which differ in silicon, molybdenum and phosphorus contents but have a nominal 316 stainless steel composition. It is shown that there is a good correlation between the initial shear modulus of the material and the resultant swelling rate of that material. It is also shown that the bias factor concept does not satisfactorily account for the observed compositional sensitivity of swelling in the alloys investigated. 6 fig

  10. A novel multiphysic model for simulation of swelling equilibrium of ionized thermal-stimulus responsive hydrogels

    Science.gov (United States)

    Li, Hua; Wang, Xiaogui; Yan, Guoping; Lam, K. Y.; Cheng, Sixue; Zou, Tao; Zhuo, Renxi

    2005-03-01

    In this paper, a novel multiphysic mathematical model is developed for simulation of swelling equilibrium of ionized temperature sensitive hydrogels with the volume phase transition, and it is termed the multi-effect-coupling thermal-stimulus (MECtherm) model. This model consists of the steady-state Nernst-Planck equation, Poisson equation and swelling equilibrium governing equation based on the Flory's mean field theory, in which two types of polymer-solvent interaction parameters, as the functions of temperature and polymer-network volume fraction, are specified with or without consideration of the hydrogen bond interaction. In order to examine the MECtherm model consisting of nonlinear partial differential equations, a meshless Hermite-Cloud method is used for numerical solution of one-dimensional swelling equilibrium of thermal-stimulus responsive hydrogels immersed in a bathing solution. The computed results are in very good agreements with experimental data for the variation of volume swelling ratio with temperature. The influences of the salt concentration and initial fixed-charge density are discussed in detail on the variations of volume swelling ratio of hydrogels, mobile ion concentrations and electric potential of both interior hydrogels and exterior bathing solution.

  11. Tensile, swelling and morphological properties of bentonite-filled acrylonitrile butadiene rubber composites

    Science.gov (United States)

    Lotfi, Muhamad Nadhli Amin; Ismail, Hanafi; Othman, Nadras

    2017-10-01

    Tensile, swelling and morphological properties of bentonite filled acrylonitrile butadiene rubber (NBR/Bt) composites were studied. The experiments were conducted at room temperature by using two rolled mill, universal testing machine (INSTRON), and American Standard Testing Method (ASTM) D471 for compounding, tensile testing, and swelling test, respectively. Results obtained indicated that a better tensile strength, elongation at break and tensile modulus were recorded as compared to the pure NBR particularly up to 90 phr of Bt loading. However, swelling (%) exhibited the opposite trend where the liquid uptake by the composites was indirectly proportional with the increasing of Bt loading. Scanning electron microscopy (SEM) used on the tensile fractured surface of the NBR/Bt composites have shown that the fillers were well embedded in the NBR matrix, for Bt loading up to 90 phr. The agglomeration of fillers occurred for Bt loading exceeding 90 phr.

  12. Swelling and gas release of grain-boundary pores in uranium dioxide

    International Nuclear Information System (INIS)

    Schrire, D.I.

    1983-12-01

    The swelling and gas release of overpressured grain boundary pores is sintered unirradiated uranium dioxide were investigated under isothermal conditions. The pores became overpressured when the ambient pressure was reduced, and the excess pressure driving force caused growth and interconnection of the pores, leading to eventual gas release. Swelling was measured continuously by a linear variable differential transformer, and open and closed porosity fractions were determined after the tests by immersion density and quantitative microscopy measurements. The sinter porosity consisted of pores situated on grain faces, grain edges, and grain corners. Isolated pores maintained their equilibrium shape while growing, without any measurable change in dihedral angle. Interconnection occurred predominantly along grain edges, without any evidence of pore sharpening or crack propagation at low driving forces. Extensive open porosity occurred at a threshold density of about 85% TD. There was an almost linear dependence of the initial swelling rate on the driving force, with an activation energy of 200+- 8 kJ/mole, in good agreement with published values of the activation energy for grain boundary diffusion

  13. Influence of nickel and beryllium content on swelling behavior of copper irradiated with fast neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Singh, B.N.; Garner, F.A.; Edwards, D.J. [Pacific Northwest National Lab., Richland, WA (United States); Evans, J.H.

    1996-10-01

    In the 1970`s, the effects of nickel content on the evolution of dislocation microstructures and the formation and growth of voids in Cu-Ni alloys were studied using 1 MeV electrons in a high voltage electron microscope. The swelling rate was found to decrease rapidly with increasing nickel content. The decrease in the swelling rate was associated with a decreasing void growth rate with increasing nickel content at irradiation temperatures up to 450{degrees}C. At 500{degrees}C, both void size and swelling rate were found to peak at 1 and 2% Ni, respectively, and then to decrease rapidly with increasing nickel content. However, recent work has demonstrated that the swelling behavior of Cu-5%Ni irradiated with fission neutrons is very similar for that of pure copper. The present experiments were designed to investigate this apparent discrepancy.

  14. Dynamic swelling of tunable full-color block copolymer photonic gels via counterion exchange.

    Science.gov (United States)

    Lim, Ho Sun; Lee, Jae-Hwang; Walish, Joseph J; Thomas, Edwin L

    2012-10-23

    One-dimensionally periodic block copolymer photonic lamellar gels with full-color tunability as a result of a direct exchange of counteranions were fabricated via a two-step procedure comprising the self-assembly of a hydrophobic block-hydrophilic polyelectrolyte block copolymer, polystyrene-b-poly(2-vinyl pyridine) (PS-b-P2VP), followed by sequential quaternization of the P2VP layers in 1-bromoethane solution. Depending on the hydration characteristics of each counteranion, the selective swelling of the block copolymer lamellar structures leads to large tunability of the photonic stop band from blue to red wavelengths. More extensive quaternization of the P2VP block allows the photonic lamellar gels to swell more and red shift to longer wavelength. Here, we investigate the dynamic swelling behavior in the photonic gel films through time-resolved in situ measurement of UV-vis transmission. We model the swelling behavior using the transfer matrix method based on the experimentally observed reflectivity data with substitution of appropriate counterions. These tunable structural color materials may be attractive for numerous applications such as high-contrast displays without using a backlight, color filters, and optical mirrors for flexible lasing.

  15. Thermodynamic understanding on swelling pressure of bentonite buffer

    International Nuclear Information System (INIS)

    Sato, Haruo

    2007-01-01

    Smectite (montmorillonite) is a major clay mineral constituent of the bentonite buffer and backfilling materials to be used for the geological disposal of high-level radioactive waste. Swelling pressure of the bentonite buffer occurring in the permeation process of moisture was estimated based on thermodynamic theory and the thermodynamic data of interlayer water in smectite in this study. The relative partial molar Gibbs free energies (ΔG H2O ) of water on the smectite surface were measured as a function of water content (0-83%) in a dry density range of 0.6-0.9 Mg/m 3 . Purified Na-smectite of which interlayer cations were exchanged with Na + ions and soluble salts were completely removed, was used in this study. Obtained ΔG H2O decreased with an increase of water content in the range of water content lower than about 40%, and similar trends were obtained to data of Kunipia-F bentonite (Na-bentonite) of which smectite content was approximately 100 wt.%. From the specific surface area of smectite (ca. 800 m 2 /g) and the correlation between ΔG H2O and water content, water affected from the surface of smectite was estimated to be up to approximately 2 water layers. Swelling pressure versus smectite partial density (montmorillonite partial density) was estimated based on ΔG H2O from the chemical potential balance of water in equilibrium between the free water and moisturized smectite, and compared to data measured for various kinds of bentonites of which smectite contents were respectively different. The estimated swelling pressures were in good agreement with the measured data. (author)

  16. swelling characteristics and tensile properties of natural fiber rei

    African Journals Online (AJOL)

    USER

    The swelling behavior and tensile strength of natural fiber-reinforced plastic in premium motor spirit (PMS), dual ... with fibers usually of glass fiber, Kevlar and carbon have gained ... NIGERIAN JOURNAL OF TECHNOLOGY, VOL. 27 NO.2 ...

  17. Pool scrubbing

    International Nuclear Information System (INIS)

    Lopez-Jimenez, J.; Herranz, J.; Escudero, M.J.; Espigares, M.M.; Peyres, V.; Polo, J.; Kortz, Ch.; Koch, M.K.; Brockmeier, U.; Unger, H.; Dutton, L.M.C.; Smedley, Ch.; Trow, W.; Jones, A.V.; Bonanni, E.; Calvo, M.; Alonso, A.

    1996-12-01

    The Source Term Project in the Third Frame Work Programme of the European Union Was conducted under and important joined effort on pool scrubbing research. CIEMAT was the Task Manager of the project and several other organizations participated in it: JRC-Ispra, NNC Limited, RUB-NES and UPM. The project was divided into several tasks. A peer review of the models in the pool scrubbing codes SPARC90 and BUSCA-AUG92 was made, considering the different aspects in the hydrodynamic phenomenology, particle retention and fission product vapor abortions. Several dominant risk accident sequences were analyzed with MAAP, SPARC90 and BUSCA-AUG92 codes, and the predictions were compared. A churn-turbulent model was developed for the hydrodynamic behaviour of the pool. Finally, an experimental programme in the PECA facility of CIEMAT was conducted in order to study the decontamination factor under jet injection regime, and the experimental observations were compared with the SPARC and BUSCA codes. (Author)

  18. Production bias: A proposed modification of the driving force for void swelling under cascade damage conditions

    International Nuclear Information System (INIS)

    Woo, C.H.; Garner, F.A.

    1991-11-01

    A new concept of point-defect production as the main driving force for void swelling under cascade damage conditions is proposed. This concept takes into account the recombination and formation of immobile clusters and loops of vacancies and interstitials in the cascade region. The life times of the clusters and loops due to desolution are strong functions of the temperature, as well as their vacancy and interstitial nature. The resulting biased production of free point defects from the internal sources is shown to be a strong driving force for void swelling. The characteristics of void swelling due to production bias are described and compared with experimental results. We conclude that the production bias concept provides a good description of void swelling under cascade damage conditions

  19. Production bias: A proposed modification of the driving force for void swelling under cascade damage conditions

    International Nuclear Information System (INIS)

    Woo, C.H.; Singh, B.N.; Garner, F.A.

    1992-01-01

    A new concept of point defect production as the main driving force for void swelling under cascade damage conditions is proposed. This concept takes into account the recombination and formation of immobile clusters and loops of vacancies and interstitials in the cascade region. The lifetimes of the clusters and loops due to desolution are strong functions of the temperature, as well as their vacancy and interstitial nature. The resulting biased production of free point defects from the internal sources is shown to be a strong driving force for void swelling. The characteristics of void swelling due to production bias are described and compared with experimental results. We conclude that the production bias concept provides a good description of void swelling under cascade damage conditions. (orig.)

  20. Irradiation creep and swelling of AISI 316 to exposures of 130 dpa at 385?400$deg;C

    Science.gov (United States)

    Garner, F. A.; Porter, D. L.

    1988-07-01

    The creep and swelling of AISI 316 stainless steel have been studied at 385 to 400°C in EBR-II to doses of 130 dpa. Most creep capsules were operated at constant stress and temperature but mid-life changes in these variables were also made. This paper concentrates on the behavior of the 20% cold-worked condition but five other conditions were also studied. Swelling at ⩽ 400° C was found to lose the sensitivity to stress exhibited at higher temperatures while the creep rate was found to retain linear dependencies on both stress and swelling rate. The creep coefficients extracted at 400°C agree with those found in other experiments conducted at higher temperatures. In the temperature range of ⩽ 400° C, swelling is in the recombinationdominated regime and the swelling rate falls strongly away from the ~1%/dpa rate observed at higher temperatures. These lower rates of creep and swelling, coupled with the attainment of high damage levels without failure, encourage the use of AISI 316 in the construction of water-cooled fusion first walls operating at temperatures below 400°C.

  1. Inhibition of VEGF Signaling Reduces Diabetes-Exacerbated Brain Swelling, but Not Infarct Size, in Large Cerebral Infarction in Mice.

    Science.gov (United States)

    Kim, Eunhee; Yang, Jiwon; Park, Keun Woo; Cho, Sunghee

    2017-12-30

    In light of repeated translational failures with preclinical neuroprotection-based strategies, this preclinical study reevaluates brain swelling as an important pathological event in diabetic stroke and investigates underlying mechanism of the comorbidity-enhanced brain edema formation. Type 2 (mild), type 1 (moderate), and mixed type 1/2 (severe) diabetic mice were subjected to transient focal ischemia. Infarct volume, brain swelling, and IgG extravasation were assessed at 3 days post-stroke. Expression of vascular endothelial growth factor (VEGF)-A, endothelial-specific molecule-1 (Esm1), and the VEGF receptor 2 (VEGFR2) was determined in the ischemic brain. Additionally, SU5416, a VEGFR2 inhibitor, was treated in the type 1/2 diabetic mice, and stroke outcomes were determined. All diabetic groups displayed bigger infarct volume and brain swelling compared to nondiabetic mice, and the increased swelling was disproportionately larger relative to infarct enlargement. Diabetic conditions significantly increased VEGF-A, Esm1, and VEGFR2 expressions in the ischemic brain compared to nondiabetic mice. Notably, in diabetic mice, VEGFR2 mRNA levels were positively correlated with brain swelling, but not with infarct volume. Treatment with SU5416 in diabetic mice significantly reduced brain swelling. The study shows that brain swelling is a predominant pathological event in diabetic stroke and that an underlying event for diabetes-enhanced brain swelling includes the activation of VEGF signaling. This study suggests consideration of stroke therapies aiming at primarily reducing brain swelling for subjects with diabetes.

  2. Effects of tunneling on groundwater flow and swelling of clay-sulfate rocks

    Science.gov (United States)

    Butscher, Christoph; Einstein, Herbert H.; Huggenberger, Peter

    2011-11-01

    Swelling of clay-sulfate rocks is a major threat in tunneling. It is triggered by the transformation of the sulfate mineral anhydrite into gypsum as a result of water inflow in anhydrite-containing layers after tunnel excavation. The present study investigates the hydraulic effects of tunneling on groundwater flow and analyzes how hydraulic changes caused by excavation lead to water inflow into anhydrite-containing layers in the tunnel area. Numerical groundwater models are used to conduct scenario simulations that allow one to relate hydrogeological conditions to rock swelling. The influence of the topographic setting, the excavation-damaged zone around the tunnel, the sealing effect of the tunnel liner, and the geological configuration are analyzed separately. The analysis is performed for synthetic situations and is complemented by a case study from a tunnel in Switzerland. The results illustrate the importance of geological and hydraulic information when assessing the risk of swelling at an actual site.

  3. Kimura's disease: A case presentation of postauricular swelling ...

    African Journals Online (AJOL)

    Kimura's disease: A case presentation of postauricular swelling. A Rajesh, T Prasanth, V.C. Naga Sirisha, M.D.S. Azmi. Abstract. Kimura's disease (KD) is a rare chronic inflammatory disease of subcutaneous tissues and occurs predominantly in head and neck region. It is seen primarily in young Asian males. Typical clinical ...

  4. Swelling dynamics of zwitterionic copolymers: The effects of concentration and type of anion and cation

    NARCIS (Netherlands)

    de Grooth, Joris; Ogieglo, Wojciech; de Vos, Wiebe Matthijs; Girones nogue, Miriam; Nijmeijer, Dorothea C.; Benes, Nieck Edwin

    2014-01-01

    The effect of different salts and their concentration on the swelling of zwitterionic copolymers has been investigated for bulk polymer samples as well as for thin films. Relatively low ratios of the zwitterionic monomer already radically change the swelling properties of the copolymer. Increasing

  5. Journal of EEA, Vol. 30, 2013 PREDICTION OF SWELLING ...

    African Journals Online (AJOL)

    dell

    Dakshanamurthy [8] to represent the swelling-time relationship by a hyperbolic equation. A versatile mathematical model presented by. Richard and Abbott [9] has been used to represent the stress-strain spectrum of different types of concrete as well as ...

  6. Measurement of Aortic Pulse Wave Velocity With a Connected Bathroom Scale.

    Science.gov (United States)

    Campo, David; Khettab, Hakim; Yu, Roger; Genain, Nicolas; Edouard, Paul; Buard, Nadine; Boutouyrie, Pierre

    2017-09-01

    Measurement of arterial stiffness should be more available. Our aim was to show that aortic pulse wave velocity can be reliably measured with a bathroom scale combining the principles of ballistocardiography (BCG) and impedance plethysmography on a single foot. The calibration of the bathroom scale was conducted on a group of 106 individuals. The aortic pulse wave velocity was measured with the SphygmoCor in the supine position. Three consecutive measurements were then performed on the Withings scale in the standing position. This aorta-leg pulse transit time (alPTT) was then converted into a velocity with the additional input of the height of the person. Agreement between the SphygmoCor and the bathroom scale so calibrated is assessed on a separate group of 86 individuals, following the same protocol. The bias is 0.25 m·s-1 and the SE 1.39 m·s-1. This agreement with Sphygmocor is "acceptable" according to the ARTERY classification. The alPTT correlated well with cfPTT with (Spearman) R = 0.73 in pooled population (cal 0.79, val 0.66). The aorta-leg pulse wave velocity correlated with carotid-femoral pulse wave velocity with R = 0.76 (cal 0.80, val 0.70). Estimation of the aortic pulse wave velocity is feasible with a bathroom scale. Further investigations are needed to improve the repeatability of measurements and to test their accuracy in different populations and conditions. © The Author 2017. Published by Oxford University Press on behalf of American Journal of Hypertension.

  7. Response of slow and fast muscle to hypothyroidism: maximal shortening velocity and myosin isoforms

    Science.gov (United States)

    Caiozzo, V. J.; Herrick, R. E.; Baldwin, K. M.

    1992-01-01

    This study examined both the shortening velocity and myosin isoform distribution of slow- (soleus) and fast-twitch (plantaris) skeletal muscles under hypothyroid conditions. Adult female Sprague-Dawley rats were randomly assigned to one of two groups: control (n = 7) or hypothyroid (n = 7). In both muscles, the relative contents of native slow myosin (SM) and type I myosin heavy chain (MHC) increased in response to the hypothyroid treatment. The effects were such that the hypothyroid soleus muscle expressed only the native SM and type I MHC isoforms while repressing native intermediate myosin and type IIA MHC. In the plantaris, the relative content of native SM and type I MHC isoforms increased from 5 to 13% and from 4 to 10% of the total myosin pool, respectively. Maximal shortening velocity of the soleus and plantaris as measured by the slack test decreased by 32 and 19%, respectively, in response to hypothyroidism. In contrast, maximal shortening velocity as estimated by force-velocity data decreased only in the soleus (-19%). No significant change was observed for the plantaris.

  8. Hardness and swelling behaviour of epoxidized natural rubber/recycled acrylonitrile-butadiene rubber (ENR 50/NBRr) blends

    Science.gov (United States)

    Ahmad, Hazwani Syaza; Ismail, Hanafi; Rashid, Azura A.

    2017-07-01

    This recent work is to investigate the hardness and swelling behaviour of epoxidized natural rubber/recycled acrylonitrile-butadiene rubber (ENR 50/NBRr) blends. ENR 50/NBRr blends were prepared by two-roll mills with five different loading of NBRr from 5 to 35 phr. Results indicated that the hardness of ENR 50/NBRr blends increased as recycled NBR increased due to the improvement in crosslink density of the blends. Increasing NBRr content gives ENR 50/NBRr blends better resistance towards swelling. Higher degree of crosslinking will increase the swelling resistance and reduce the penetration of toluene into the blends. The presence of polar group in ENR 50 and NBRr give better hardness properties and swelling behaviour of the ENR 50/NBRr blends compared to the NR/NBRr blends.

  9. Influences of neutralization of superabsorbent hydrogel from hydroxyethyl cellulose on water swelling capacities

    Science.gov (United States)

    Adair, Ajaman; Klinpituksa, Pairote; Kaesaman, Azizon

    2017-08-01

    In this research, superabsorbent hydrogels were synthesized by graft copolymerization of hydroxyethyl cellulose (HEC) and polyacrylamide (PAM) under the initiation of potassium persulfate (KPS). The polymer networks were constructed using N,N'-methylenebisacrylamide (MBA), and the reaction was performed in an aqueous solution. The extent of grafting products was evaluated form grafting efficiency (%GE) and percentage of add-ons at HEC/AM ratios of 1: 10. The water swelling capacities, in terms of swelling capacity and weight loss, of resultant superabsorbent polymers (SAPs) after solvent extraction were determined for swelling behaviors. The result showed that the SAP had poor water absorption of approximately up to 23 g/g. To enhance swelling capacity of SAPs, an alkaline hydrolysis was done by using two types of alkaline bases, i.e., 2 M NaOH and 2 M KOH solution. The obtained treatment SAPs were neutralized by washing with distilled water and 0.5 M HCl until the liquors pH was nearly 7. They were found that the treatment SAPs showed the highest water absorption up to 317 g/g. Influences of various fluids pH values ranging between 4 and 10, on water swelling capacities of SAPs were also investigated. Under optimal pH value, the highest water absorptions of SAP was 382 g/g. To confirm the grafting reaction of PAM onto HEC backbone, FT-IR analysis was used. The results revealed absorption bands of the HEC backbone and new absorption bands from the grafted copolymer. Furthermore, the FT-IR spectrum was proved that washing with distilled water can alter the chemical functional group of SAPs.

  10. The Time Course of Knee Swelling Post Total Knee Arthroplasty and Its Associations with Quadriceps Strength and Gait Speed.

    Science.gov (United States)

    Pua, Yong-Hao

    2015-07-01

    This study examines the time course of knee swelling post total knee arthroplasty (TKA) and its associations with quadriceps strength and gait speed. Eighty-five patients with unilateral TKA participated. Preoperatively and on post-operative days (PODs) 1, 4, 14, and 90, knee swelling was measured using bioimpedance spectrometry. Preoperatively and on PODs 14 and 90, quadriceps strength was measured using isokinetic dynamometry while fast gait speed was measured using the timed 10-meter walk. On POD1, knee swelling increased ~35% from preoperative levels after which, knee swelling reduced but remained at ~11% above preoperative levels on POD90. In longitudinal, multivariable analyses, knee swelling was associated with quadriceps weakness (P<0.01) and slower gait speed (P=0.03). Interventions to reduce post-TKA knee swelling may be indicated to improve quadriceps strength and gait speed. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Evaluation of permeability and swelling pressure of compacted bentonite using a calcium hydroxide solution

    International Nuclear Information System (INIS)

    Aoyagi, Takayoshi; Maeda, Munehiro; Mihara, Morihiro; Tanaka, Masuhiro

    1998-12-01

    Tests to determine the swelling pressure, permeability, compressive strength and elastic modulus of Ca-Na exchanged bentonite, Na-bentonite and Ca-bentonite at the Power Reactor and Nuclear Fuel Development Corporation have mainly used distilled water. However, disposal facilities for TRU waste will use cementateous material for packaging, backfill as well as structural support. In this case, a large amount of calcium will dissolve in groundwater flowing through the cementateous material. Therefore, it is important to investigate the mechanical properties of bentonite in calcium-rich water as part of the disposal research program for TRU waste. In order to understand the effect of the chemical composition of water on the basic mechanical properties of bentonite - part of evaluating the disposal concepts for TRU waste disposal - we tested the permeability of compacted bentonite under saturated conditions using a calcium hydroxide solution. The aqueous solution represents water dominated by the calcium component. Na-bentonite, Ca-Na exchanged bentonite and Ca-bentonite were used for swelling pressure measurement tests and permeability testing. Measures of the maximum and equilibrium swelling pressure as well as permeability we obtained. The dry density of bentonite was varied between tests. Results show that swelling pressure and permeability are dependent on dry density. In separate tests using Ca-bentonite, the bentonite-mixing rate was varied as an independent parameter. Results show that there is little change in the swelling pressure and permeability between tests using calcium hydroxide solution and distilled water for all bentonite types. (author)

  12. Granular MX-80 bentonite as buffer material: a focus on swelling characteristics

    International Nuclear Information System (INIS)

    Rizzi, M.; Laloui, L.; Salager, S.; Marschall, P.

    2010-01-01

    Document available in extended abstract form only. The Swiss High Level Waste (HLW) disposal concept envisages the emplacement of the waste canisters in horizontal tunnels excavated at a depth of several hundred meters in an over-consolidated clay-stone formation. After waste emplacement the disposal tunnels are backfilled with MX-80 granular bentonite. Research activities are presented in this paper, aimed at characterising the geomechanical behaviour of the MX-80 granular bentonite and at providing the theoretical framework for modelling its response to thermo-hydro- mechanical (THM) perturbations. From the experimental point of view, a series of tests has been designed in order to extract constitutive data and to assess the temperature and suction effects on the mechanical behaviour of the bentonite, paying particular attention in the investigation to the swelling behaviour of the material. As for the theoretical framework an elasto-plastic constitutive model has been developed to take into account those coupled processes of stress, capillary pressure, and temperature to which the bentonite will be submitted,. Bentonite is mainly composed of the smectite mineral montmorillonite with a high swelling capacity which may provide sufficient sealing properties to seal the tunnel without gaps and to restore the buffer continuity. In fact, as bentonite hydrates in the repositories it will expand in those areas where it is allowed and will exert a swelling pressure where the material is confined. The results of both confined and free swelling tests are presented. Confined tests are aiming at determining the pressure applied by the material during complete saturation under isochoric conditions, whereas in the free swelling tests the strain on hydration is measured. Some results from confined swelling tests at ambient temperature are presented. The specimen is compacted uniaxially directly in the cells, the initial dry density being chosen in the range between 1.6 and 1

  13. Ion-induced swelling of ODS ferritic alloy MA957 tubing to 500 dpa

    Energy Technology Data Exchange (ETDEWEB)

    Toloczko, M.B., E-mail: mychailo.toloczko@pnnl.gov [Pacific Northwest National Laboratory, Richland, WA 99354 (United States); Garner, F.A. [Radiation Effects Consulting, Richland, WA 99354 (United States); Voyevodin, V.N.; Bryk, V.V.; Borodin, O.V.; Mel’nychenko, V.V.; Kalchenko, A.S. [Kharkov Institute of Physics and Technology, Kharkov (Ukraine)

    2014-10-15

    In order to study the potential swelling behavior of the ODS ferritic alloy MA957 at very high dpa levels, specimens were prepared from pressurized tubes that were unirradiated archives of tubes previously irradiated in FFTF to doses as high as 110 dpa. These unirradiated specimens were irradiated with 1.8 MeV Cr{sup +} ions to doses ranging from 100 to 500 dpa and examined by transmission electron microscopy. No co-injection of helium or hydrogen was employed. It was shown that compared to several tempered ferritic/martensitic steels irradiated in the same facility, these tubes were rather resistant to void swelling, reaching a maximum value of only 4.5% at 500 dpa and 450 °C. In this fine-grained material, the distribution of swelling was strongly influenced by the presence of void denuded zones along the grain boundaries.

  14. Water uptake, migration and swelling characteristics of unsaturated and saturated, highly compacted bentonite

    International Nuclear Information System (INIS)

    Pusch, R.

    1980-09-01

    The report presents the results of a number of laboratory tests and field observations to form the basis of a physical and mathematical model that can be used for predicting water uptake and swelling in highly compacted bentonite components of an actual deposition plant. The clay buffer masses have been suggested as barriers in the Swedish KBS concepts. Two commercially available bentonites were used for the production of samples. The rate of water uptake suggests a mathematical model based on a simple diffusion equation. The rate is determined by the access of water and thousands of years may pass before saturation is obtained. The rate of swelling is governed by the negative pore pressure and the permeability. There is reasonable agreement with field observations. The observed swelling potential of old smectite-rich clays has offered the evidence. (G.B.)

  15. Design of hydrotherapy exercise pools.

    Science.gov (United States)

    Edlich, R F; Abidin, M R; Becker, D G; Pavlovich, L J; Dang, M T

    1988-01-01

    Several hydrotherapy pools have been designed specifically for a variety of aquatic exercise. Aqua-Ark positions the exerciser in the center of the pool for deep-water exercise. Aqua-Trex is a shallow underwater treadmill system for water walking or jogging. Swim-Ex generates an adjustable laminar flow that permits swimming without turning. Musculoskeletal conditioning can be accomplished in the above-ground Arjo shallow-water exercise pool. A hydrotherapy pool also can be custom designed for musculoskeletal conditioning in its shallow part and cardiovascular conditioning in a deeper portion of the pool. Regardless of the type of exercise, there is general agreement that the specific exercise conducted in water requires significantly more energy expenditure than when the same exercise is performed on land.

  16. Swelling of pure copper and copper alloys after high fluence irradiation in FFTF [Fast Flux Test Facility] at approximately 4500C

    International Nuclear Information System (INIS)

    Garner, F.A.; Brager, H.R.

    1986-03-01

    The swelling of pure copper and various copper-base alloys has been determined at 47.2 dpa after irradiation in FFTF-MOTA at ∼450 0 C. Data are also becoming available at 63.3 dpa. The alloys tend to fall into two broad categories, those that swell appreciably, sometimes with an S-shaped behavior, and those that resist swelling to very high neutron exposures. It appears that copper may have an intrinsic swelling rate of ∼1%/dpa that is often not reached due to its tendency toward saturation of swelling. The most swelling-resistant alloys examined to date are CuAl25, MZC and Cu-2.0Be

  17. Detection of radiographically occult-ankle fractures. Positive predictive value of post-traumatic soft-tissue swelling

    International Nuclear Information System (INIS)

    Kumar, M.; Caruana, E.

    2000-01-01

    The objective of this study was to assess the value of soft-tissue swelling on plain radiographs as a predictor of radiographically occult fracture, after acute ankle injury (trauma). Patients with acute ankle trauma and plain radiographic evidence of soft-tissue swelling were included in this study. Patients were excluded if ankle trauma was sustained more than 48 hours previously or if fracture was visible on plain radiographs. All subjects (n=25) underwent computed tomography (CT) of the ankle in sagittal and coronal planes. Size of soft-tissue swelling was measured from initial Antero-posterior (AP) radiographs. The subjects in the study were placed into two groups according to whether a fracture was identified on CT or not. The results identified that those subjects without a fracture demonstrated by CT, had a soft-tissue swelling of less than 12.6 mm, while those with over 17.1mm swelling, showed a fracture on CT. Twelve patients (48 per cent) had radiographically occult fractures identified with CT. Fracture sites included: Talus/Talar Dome (n=9), posterior or lateral malleolos (n=2), distal tibia/fibula (n=1). CT detected significant soft-tissue injuries in six patients (24 per cent), composed of damaged anterior talo-fibular ligament (n=4), torn flexor tendons (n=1), and damaged fibular calcaneal ligament (n=1). One patient also showed gas in the talar dome. This study concludes that presence of a large soft-tissue swelling on plain radiographs after acute ankle trauma suggests an underlying fracture. A soft-tissue swelling of >15 mm is a reasonable threshold to prompt further imaging. Helical computed tomography provides good visualisation of subtle bone injuries and may detect clinically important soft-tissue injuries. While the study has a small sample, there is clear evidence that there is a trend worth investigating. Future research will seek to investigate a larger sample. Copyright (1999) Australian Institute of Radiography

  18. Mechanism of activation of liver glycogen synthase by swelling

    NARCIS (Netherlands)

    Meijer, A. J.; Baquet, A.; Gustafson, L.; van Woerkom, G. M.; Hue, L.

    1992-01-01

    The mechanism linking the stimulation of liver glycogen synthesis to swelling induced either by amino acids or hypotonicity was studied in hepatocytes, in gel-filtered liver extracts, and in purified preparations of particulate glycogen to which glycogen-metabolizing enzymes are bound. High

  19. Polymer-Induced Swelling of Solid-Supported Lipid Membranes

    Directory of Open Access Journals (Sweden)

    Martin Kreuzer

    2015-12-01

    Full Text Available In this paper, we study the interaction of charged polymers with solid-supported 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC membranes by in-situ neutron reflectivity. We observe an enormous swelling of the oligolamellar lipid bilayer stacks after incubation in solutions of poly(allylamine hydrochloride (PAH in D2O. The positively charged polyelectrolyte molecules interact with the lipid bilayers and induce a drastic increase in their d-spacing by a factor of ~4. Temperature, time, and pH influence the swollen interfacial lipid linings. From our study, we conclude that electrostatic interactions introduced by the adsorbed PAH are the main cause for the drastic swelling of the lipid coatings. The DMPC membrane stacks do not detach from their solid support at T > Tm. Steric interactions, also introduced by the PAH molecules, are held responsible for the stabilizing effect. We believe that this novel system offers great potential for fundamental studies of biomembrane properties, keeping the membrane’s natural fluidity and freedom, decoupled from a solid support at physiological conditions.

  20. Swimming pool cleaner poisoning

    Science.gov (United States)

    Swimming pool cleaner poisoning occurs when someone swallows this type of cleaner, touches it, or breathes in ... The harmful substances in swimming pool cleaner are: Bromine ... copper Chlorine Soda ash Sodium bicarbonate Various mild acids

  1. Counterion-induced swelling of ionic microgels

    Science.gov (United States)

    Denton, Alan R.; Tang, Qiyun

    2016-10-01

    Ionic microgel particles, when dispersed in a solvent, swell to equilibrium sizes that are governed by a balance between electrostatic and elastic forces. Tuning of particle size by varying external stimuli, such as pH, salt concentration, and temperature, has relevance for drug delivery, microfluidics, and filtration. To model swelling of ionic microgels, we derive a statistical mechanical theorem, which proves exact within the cell model, for the electrostatic contribution to the osmotic pressure inside a permeable colloidal macroion. Applying the theorem, we demonstrate how the distribution of counterions within an ionic microgel determines the internal osmotic pressure. By combining the electrostatic pressure, which we compute via both Poisson-Boltzmann theory and molecular dynamics simulation, with the elastic pressure, modeled via the Flory-Rehner theory of swollen polymer networks, we show how deswelling of ionic microgels with increasing concentration of particles can result from a redistribution of counterions that reduces electrostatic pressure. A linearized approximation for the electrostatic pressure, which proves remarkably accurate, provides physical insight and greatly eases numerical calculations for practical applications. Comparing with experiments, we explain why soft particles in deionized suspensions deswell upon increasing concentration and why this effect may be suppressed at higher ionic strength. The failure of the uniform ideal-gas approximation to adequately account for counterion-induced deswelling below close packing of microgels is attributed to neglect of spatial variation of the counterion density profile and the electrostatic pressure of incompletely neutralized macroions.

  2. Hydric transfer in swelling clayey soils: influence of confinement

    International Nuclear Information System (INIS)

    Rolland, S.

    2002-01-01

    Description of imbibition and swelling mechanisms in clayey soils represents an important stake in different scientific domains such as agronomy, geotechnics or petroleum industry. The aim of the present work is to show the effects of hydro-mechanical couplings during imbibition in a swelling clayey medium, under different confinement conditions. Our material is a bentonite-silt mixture, prepared with a known water content and compacted with a double-piston technique. This method allows us to produce uniform soil samples, in terms of humidity and bulk density. Experiments related to bottom imbibition are then carried out for three types of mechanical boundary conditions (free, oedometric, fixed volume). The non-intrusive dual-energy gamma-ray technique is used to assess the local variation of bulk density and humidity. Finally, the three imbibition kinetics are compared for each experiment in terms of hydraulic diffusivity, described in a Lagrangian way. (author)

  3. Efficient pooling designs for library screening

    OpenAIRE

    Bruno, William J.; Knill, Emanuel; Balding, David J.; Bruce, D. C.; Doggett, N. A.; Sawhill, W. W.; Stallings, R. L.; Whittaker, Craig C.; Torney, David C.

    1994-01-01

    We describe efficient methods for screening clone libraries, based on pooling schemes which we call ``random $k$-sets designs''. In these designs, the pools in which any clone occurs are equally likely to be any possible selection of $k$ from the $v$ pools. The values of $k$ and $v$ can be chosen to optimize desirable properties. Random $k$-sets designs have substantial advantages over alternative pooling schemes: they are efficient, flexible, easy to specify, require fewer pools, and have er...

  4. Swelling induced by alpha decay in monazite and zirconolite ceramics: A XRD and TEM comparative study

    Science.gov (United States)

    Deschanels, X.; Seydoux-Guillaume, A. M.; Magnin, V.; Mesbah, A.; Tribet, M.; Moloney, M. P.; Serruys, Y.; Peuget, S.

    2014-05-01

    Zirconolite and monazite matrices are potential ceramics for the containment of actinides (Np, Cm, Am, Pu) which are produced over the reprocessing of spent nuclear fuel. Actinides decay mainly through the emission of alpha particles, which in turn causes most ceramics to undergo structural and textural changes (amorphization and/or swelling). In order to study the effects of alpha decays on the above mentioned ceramics two parallel approaches were set up. The first involved the use of an external irradiation source, Au, which allowed the deposited recoil energy to be simulated. The second was based on short-lived actinide doping with 238Pu, (i.e. an internal source), via the incorporation of plutonium oxide into both the monazite and zirconolite structures during synthesis. In both types of irradiation experiments, the zirconolite samples became amorphous at room temperature with damage close to 0.3 dpa; corresponding to a critical dose of 4 × 1018 α g-1 (i.e. ∼1.3 × 1021 keV cm-3). Both zirconolite samples also showed the same degree of macroscopic swelling at saturation (∼6%), with ballistic processes being the predominant damaging effect. In the case of the monazite however, the macroscopic swelling and amorphization were dependent on the nature of the irradiation. Externally, (Au), irradiated samples became amorphous while also demonstrating a saturation swelling of up to 8%. In contrast to this, the swelling of the 238Pu doped samples was much smaller at ∼1%. Also, unlike the externally (Au) irradiated monazite these 238Pu doped samples remained crystalline up to 7.5 × 1018 α g-1 (0.8 dpa). XRD, TEM and swelling measurements were used to fully characterize and interpret this behavior. The low swelling and the conservation of the crystalline state of 238Pu doped monazite samples indicates that alpha annealing took place within this material.

  5. The numerical simulation on swelling factor and extraction rate of a tight crude oil and SC-CO2 system

    Science.gov (United States)

    Zou, Hongjun; Gong, Houjian; Li, Yajun; Dong, Mingzhe

    2018-03-01

    A method was established to study swelling and extraction between CO2 and crude oil, and the influences of pressure, temperature and molecular weight were investigated. Firstly, laboratory analysis was conducted to determine the pseudo-component and other parameters of the crude oil. Then swelling and extraction of the crude oil and SC-CO2 system were calculated by computer simulation. The results show that the pressure and temperature have little influence on the swelling and extraction between CO2 and crude oil when the mole fraction of CO2 is lower. A higher pressure and temperature is more beneficial to the interaction of CO2 and crude oil, while the swelling and extraction will not be obvious when the system is miscible. And the smaller the molecular weight of the oil is, the larger the maximum value of the swelling factor of CO2 and crude oil changes. The study of swelling and extraction plays an important role in the oilfield stimulation.

  6. Stepwise swelling of a thin film of lamellae-forming poly(styrene-b- butadiene) in cyclohexane vapor

    KAUST Repository

    Di, Zhenyu; Posselt, Dorthe; Smilgies, Detlef Matthias; Li, Ruipeng; Rauscher, Markus; Potemkin, Igor I.; Papadakis, Christine M.

    2012-01-01

    We investigated the swelling of a thin film of lamellae-forming poly(styrene-b-butadiene) in cyclohexane vapor. The vapor pressure and thus the degree of swelling of the film are increased in a stepwise manner using a custom-built sample cell. The resulting structural changes during and after each step were followed in situ using time-resolved grazing-incidence small-angle X-ray scattering (GISAXS). During the first step, the lamellar thickness increases strongly, before it decreases again. At the same time, the full width at half-maximum (FWHM) of the diffuse Bragg reflection along the film normal has a sharp maximum. These observations point to the formation of new lamellae. During the subsequent swelling steps, the lamellar thickness overshoots only weakly. The behavior thus resembles qualitatively our previous results on a similar thin film during swelling in saturated vapor of cyclohexane; however, it deviates from earlier theoretical predictions. We propose a theory that is quantitatively correct for the description of the dependence of the lamellar thickness on the polymer volume fraction in the late stage of the swelling steps. © 2012 American Chemical Society.

  7. Stepwise swelling of a thin film of lamellae-forming poly(styrene-b- butadiene) in cyclohexane vapor

    KAUST Repository

    Di, Zhenyu

    2012-06-26

    We investigated the swelling of a thin film of lamellae-forming poly(styrene-b-butadiene) in cyclohexane vapor. The vapor pressure and thus the degree of swelling of the film are increased in a stepwise manner using a custom-built sample cell. The resulting structural changes during and after each step were followed in situ using time-resolved grazing-incidence small-angle X-ray scattering (GISAXS). During the first step, the lamellar thickness increases strongly, before it decreases again. At the same time, the full width at half-maximum (FWHM) of the diffuse Bragg reflection along the film normal has a sharp maximum. These observations point to the formation of new lamellae. During the subsequent swelling steps, the lamellar thickness overshoots only weakly. The behavior thus resembles qualitatively our previous results on a similar thin film during swelling in saturated vapor of cyclohexane; however, it deviates from earlier theoretical predictions. We propose a theory that is quantitatively correct for the description of the dependence of the lamellar thickness on the polymer volume fraction in the late stage of the swelling steps. © 2012 American Chemical Society.

  8. Genistein inhibited ammonia induced astrocyte swelling by inhibiting NF-κB activation-mediated nitric oxide formation.

    Science.gov (United States)

    Dai, Hongliang; Jia, Guizhi; Wang, Wei; Liang, Chunguang; Han, Siyu; Chu, Minghui; Mei, Xifan

    2017-06-01

    Our previous study has indicated the involvement of epidermal growth factor receptor (EGFR) transactivation in ammonia-induced astrocyte swelling, which represents a major pathogenesis of brain edema in hepatic encephalopathy. In this study, we examined the effect of genistein, a naturally occurred broad-spectrum protein tyrosine kinase (PTK) inhibitor, on ammonia-induced cell swelling. We found that genistein pretreatment significantly prevented ammonia-induced astrocyte swelling. Mechanistically, ammonia triggered EGFR/extracellular signal-regulated kinase (ERK) association and subsequent ERK phosphorylation were alleviated by genistein pretreatment. Moreover, ammonia-induced NF-κB nuclear location, iNOS expression, and consequent NO production were all prevented by AG1478 and genistein pretreatment. This study suggested that genistein could alleviate ammonia-induced astrocyte swelling, which may be, at least partly, related to its PTK-inhibiting activity and repression of NF-κB mediated iNOS-derived NO accumulation.

  9. 21 CFR 1250.89 - Swimming pools.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Swimming pools. 1250.89 Section 1250.89 Food and... SANITATION Sanitation Facilities and Conditions on Vessels § 1250.89 Swimming pools. (a) Fill and draw swimming pools shall not be installed or used. (b) Swimming pools of the recirculation type shall be...

  10. Simplified modeling of HM behavior of swelling clays for nuclear waste disposal buffers

    International Nuclear Information System (INIS)

    Hoxha, Dashnor; Belayachi, Naima; Do, Duc-Phi; Poutrel, Adrien; Wendling, Jacques

    2010-01-01

    Document available in extended abstract form only. The swelling clays are extensively studied these last decades in relation with many industrial applications: foundations in civil engineering, sealing of waste disposals., etc. Especially in the case of waste disposals buffers the swelling pressure and its kinetics are of great importance. In the research programme of ANDRA (French National Radioactive Waste Management Agency), a mixing of bentonite MX80 with 30% of sands has been chosen as a buffering material. The modelling of behaviour of this material has been object of several works and several sophisticated models have been proposed. However as the practice of nuclear waste disposals proves, the needs for robust and simple models, able to describe the most important features of buffers, are yet to be meet by engineers and researches. This paper aims at a simplified model for the buffers behaviour based upon an extension of previous works and laboratory results. As discussed and proposed by many authors modeling of swelling clays behavior needs to consider both crystalline and osmotic swelling. While molecular dynamics could be used to understand the relation between the structure of clay minerals and its swelling properties a multiscale approach counting for chemical and hydro-mechanical couplings in various scale is revealed to give insights on the mechanisms governing clayey soil swelling. However in many industrial application large scale problems would be considered for which macroscopic and robust models should be used. From macroscopic point of view, basically two alternative approaches are used: effective stress approach and so called independent stress state variables. For an isotropic material, the volumetric strain of unsaturated media predicted by BBM model, could be written as a function of: the mean stress of applied mechanical stress, the air pressure, the suction (or pore pressure where the media is fully saturated), the drained bulk

  11. Swelling/deswelling of polyacrylamide gels in aqueous NaCl solution

    Indian Academy of Sciences (India)

    Swelling kinetics of water-swollen polyacrylamide (PAAm) hydrogels (WSG) was investigated in various ... parameter, χ, were calculated and found to decrease with increase in [NaCl]. Collective ..... in other words, increase in hydrophilicity.

  12. Investigations On Water Circulation in Animal Sea-Water Basins – On the Example of Seals′ Breeding Pools

    Directory of Open Access Journals (Sweden)

    Zima Piotr

    2017-04-01

    Full Text Available This paper presents general comments concerning investigations on water circulation in animal breeding pools containing sea water. As an example are given results of computer simulation of water circulation in seals′ breeding pools situated in Marine Station at Hel, belonging to Oceanographic Institute , Gdansk University. A mathematical model of three main pools was prepared with taking into account their inflow and outflow water supply points. Next, the object indication ( tracer tests were done with the use of mathematical modelling as well as in-situ measurements. For description of flow field in steady conditions a simplified model of 2D flow in the form of Helmholtz biharmonic equation of stream function , recalculated then into velocity vector components, was used. The equation , supplemented with appropriate boundary conditions , was solved numerically by using the finite differences method. The spreading of a substance dissolved in water (tracer was analyzed by solving 2D equation of transient advecting - dispersing transport. To solve it the finite volumes method was applied. The applied model was verified by conducting the indication tests with the use of the rhodamine WT as a tracer. The obtained results made it possible to reconstruct water circulation within the seals′ pools and identify stagnation zones in which water circulation may be made difficult.

  13. Simulation of droplet impact onto a deep pool for large Froude numbers in different open-source codes

    Science.gov (United States)

    Korchagova, V. N.; Kraposhin, M. V.; Marchevsky, I. K.; Smirnova, E. V.

    2017-11-01

    A droplet impact on a deep pool can induce macro-scale or micro-scale effects like a crown splash, a high-speed jet, formation of secondary droplets or thin liquid films, etc. It depends on the diameter and velocity of the droplet, liquid properties, effects of external forces and other factors that a ratio of dimensionless criteria can account for. In the present research, we considered the droplet and the pool consist of the same viscous incompressible liquid. We took surface tension into account but neglected gravity forces. We used two open-source codes (OpenFOAM and Gerris) for our computations. We review the possibility of using these codes for simulation of processes in free-surface flows that may take place after a droplet impact on the pool. Both codes simulated several modes of droplet impact. We estimated the effect of liquid properties with respect to the Reynolds number and Weber number. Numerical simulation enabled us to find boundaries between different modes of droplet impact on a deep pool and to plot corresponding mode maps. The ratio of liquid density to that of the surrounding gas induces several changes in mode maps. Increasing this density ratio suppresses the crown splash.

  14. The thermal performance of a loop-type heat pipe for passively removing residual heat from spent fuel pool

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Zhenqin [School of Nuclear Science and Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai 200240 (China); Gu, Hanyang, E-mail: guhanyang@stu.edu.cn [School of Nuclear Science and Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai 200240 (China); Wang, Minglu [School of Nuclear Science and Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai 200240 (China); Cheng, Ye [Shanghai Nuclear Engineering Research and Design Institute, Shanghai 200233 (China)

    2014-12-15

    Highlights: • Feasibility of applying loop-type heat pipes for SFP is studied. • The heat transfer rate of the heat pipes was tested. • The heat transfer coefficient was between 200 and 490 W/m{sup 2}/s. • The effect of the water temperature is dominant. • Three kinds of the filling ratio 27%, 21% and 14% are compared. - Abstract: Heat pipe is an efficient heat transfer device without electrically driven parts. Therefore large-scale loop type heat pipe systems have potential uses for passively removing heat from spent fuel pools and reactor cores under the accidental conditions to improve the safety of the nuclear power station. However, temperature difference between the hot water in the spent fuel pool and the ambient air which is the heat sink is small, in the range of 20–60 °C. To understand and predict the heat removal capacity of such a large scale loop type heat pipe in the situation similar to the accidental condition of the spent fuel pool (SFP) for the design purpose, a loop-type heat pipe with a very high and large evaporator has been fabricated and was tested using ammonia as the working fluid. The evaporator with inner diameter of 65 mm and length of 7.6 m is immersed in a hot water tube which simulate the spent fuel pool. The condenser of the loop-type heat pipe is cooled by the air. The tests were performed with the velocity of the hot water in the tube in the range of 0.7–2.1 × 10{sup −2} m/s, the hot water inlet temperature between 50 and 90 °C and the air velocity ranging from 0.5 m/s to 2.5 m/s. Three kinds of the ammonia volumetric filling ratio in the heat pipe were tested, i.e. 27%, 21% and 14%. It is found that the heat transfer rate was in the range of 1.5–14.9 kW, and the heat transfer coefficient of evaporator was between 200 and 490 W/m{sup 2}/s. It is feasible to use the large scale loop type heat pipe to passively remove the residual heat from SFP. Furthermore, the effect of air velocity, air temperature, water flow

  15. The thermal performance of a loop-type heat pipe for passively removing residual heat from spent fuel pool

    International Nuclear Information System (INIS)

    Xiong, Zhenqin; Gu, Hanyang; Wang, Minglu; Cheng, Ye

    2014-01-01

    Highlights: • Feasibility of applying loop-type heat pipes for SFP is studied. • The heat transfer rate of the heat pipes was tested. • The heat transfer coefficient was between 200 and 490 W/m 2 /s. • The effect of the water temperature is dominant. • Three kinds of the filling ratio 27%, 21% and 14% are compared. - Abstract: Heat pipe is an efficient heat transfer device without electrically driven parts. Therefore large-scale loop type heat pipe systems have potential uses for passively removing heat from spent fuel pools and reactor cores under the accidental conditions to improve the safety of the nuclear power station. However, temperature difference between the hot water in the spent fuel pool and the ambient air which is the heat sink is small, in the range of 20–60 °C. To understand and predict the heat removal capacity of such a large scale loop type heat pipe in the situation similar to the accidental condition of the spent fuel pool (SFP) for the design purpose, a loop-type heat pipe with a very high and large evaporator has been fabricated and was tested using ammonia as the working fluid. The evaporator with inner diameter of 65 mm and length of 7.6 m is immersed in a hot water tube which simulate the spent fuel pool. The condenser of the loop-type heat pipe is cooled by the air. The tests were performed with the velocity of the hot water in the tube in the range of 0.7–2.1 × 10 −2 m/s, the hot water inlet temperature between 50 and 90 °C and the air velocity ranging from 0.5 m/s to 2.5 m/s. Three kinds of the ammonia volumetric filling ratio in the heat pipe were tested, i.e. 27%, 21% and 14%. It is found that the heat transfer rate was in the range of 1.5–14.9 kW, and the heat transfer coefficient of evaporator was between 200 and 490 W/m 2 /s. It is feasible to use the large scale loop type heat pipe to passively remove the residual heat from SFP. Furthermore, the effect of air velocity, air temperature, water flow rate and

  16. Swelling characteristics of sand-bentonite mixtures under one-dimensional stress

    International Nuclear Information System (INIS)

    Cui, Hongbin; Sun, De'an; Matsuoka, Hajime; Xu Yongfu

    2004-01-01

    Based on the concept that the maximum water volume absorbed by unit volume of montmorillonite is constant, the swelling deformation of sand-bentonite mixtures is uniquely characterized using the void ratio of montmorillonite, which is defined by the ratio of water volume to montomorillonite volume. The relationship between the montmorillonite void ratio and overburden pressure at fully swelling is independent of the initial compaction condition and the sand-bentonite mixture ratio, and is a linear line in their log scale. When overburden pressure is large enough and/or the bentonite ratio of the mixture is small, the measured plots deviate from the line. A method for predicting the limited overburden pressure which is linearly correlated with the montmorillonite void ratio is proposed and verified using the concept of the skeleton void ratio. (author)

  17. Enhanced transduction of photonic crystal dye lasers for gas sensing via swelling polymer film

    DEFF Research Database (Denmark)

    Smith, Cameron; Lind, Johan Ulrik; Christiansen, Mads Brøkner

    2011-01-01

    We present the enhanced transduction of a photonic crystal dye laser for gas sensing via deposition of an additional swelling polymer film. Device operation involves swelling of the polymer film during exposure to specific gases, leading to a change in total effective refractive index. Experimental...... in its application to other intracavity-based detection schemes to enable gas sensing. © 2011 Optical Society of America....

  18. Modal analysis of pool door in water tank

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kang Soo; Jeong, Kyeong Hoon; Park, Chan Gook; Koo, In Soo [KAERI, Daejeon (Korea, Republic of)

    2012-10-15

    A pool door is installed at the chase of the pool gate by means of an overhead crane in the building of a research reactor. The principal function of the pool door, which is located between the reactor pool and service pool, is to separate the reactor pool from the service pool for the maintenance and/or the removal of the equipment either in the reactor pool or service pool. The pool door consists of stainless steel plates supported by structural steel frames and sealing components. The pool door is equipped with double inflatable gaskets. The configuration of the pool door is shown in Figure 1. The FEM analysis and theoretical calculation by the formula were performed to evaluate the natural frequency for the pool door in the water. The results from the two methods were compared.

  19. Activity-dependent astrocyte swelling is mediated by pH-regulating mechanisms.

    Science.gov (United States)

    Larsen, Brian Roland; MacAulay, Nanna

    2017-10-01

    During neuronal activity in the mammalian brain, the K + released into the synaptic space is initially buffered by the astrocytic compartment. In parallel, the extracellular space (ECS) shrinks, presumably due to astrocytic cell swelling. With the Na + /K + /2Cl - cotransporter and the Kir4.1/AQP4 complex not required for the astrocytic cell swelling in the hippocampus, the molecular mechanisms underlying the activity-dependent ECS shrinkage have remained unresolved. To identify these molecular mechanisms, we employed ion-sensitive microelectrodes to measure changes in ECS, [K + ] o and [H + ] o /pH o during electrical stimulation of rat hippocampal slices. Transporters and receptors responding directly to the K + and glutamate released into the extracellular space (the K + /Cl - cotransporter, KCC, glutamate transporters and G protein-coupled receptors) did not modulate the extracellular space dynamics. The HCO3--transporting mechanism, which in astrocytes mainly constitutes the electrogenic Na + / HCO3- cotransporter 1 (NBCe1), is activated by the K + -mediated depolarization of the astrocytic membrane. Inhibition of this transporter reduced the ECS shrinkage by ∼25% without affecting the K + transients, pointing to NBCe1 as a key contributor to the stimulus-induced astrocytic cell swelling. Inhibition of the monocarboxylate cotransporters (MCT), like-wise, reduced the ECS shrinkage by ∼25% without compromising the K + transients. Isosmotic reduction of extracellular Cl - revealed a requirement for this ion in parts of the ECS shrinkage. Taken together, the stimulus-evoked astrocytic cell swelling does not appear to occur as a direct effect of the K + clearance, as earlier proposed, but partly via the pH-regulating transport mechanisms activated by the K + -induced astrocytic depolarization and the activity-dependent metabolism. © 2017 Wiley Periodicals, Inc.

  20. Development of two-dimensional hot pool model and analysis of the ULOHS accident in KALIMER design

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Bum; Jeong, K. S.; Hahn, H. D

    2000-10-01

    In the new version of HP2D program, the variation model of the hot pool sodium level is added so that the temperature and velocity profiles can be predicted more accurately than old version. To verify and validate the developed new version model, comparison of the MONJU experimental data with the predicted one is performed and analyzed. And also the ULOHS(Unprotected Loss of Heat Sink) accident in the KALIMER design is performed and analyzed.

  1. Development of two-dimensional hot pool model and analysis of the ULOHS accident in KALIMER design

    International Nuclear Information System (INIS)

    Lee, Yong Bum; Jeong, K. S.; Hahn, H. D.

    2000-10-01

    In the new version of HP2D program, the variation model of the hot pool sodium level is added so that the temperature and velocity profiles can be predicted more accurately than old version. To verify and validate the developed new version model, comparison of the MONJU experimental data with the predicted one is performed and analyzed. And also the ULOHS(Unprotected Loss of Heat Sink) accident in the KALIMER design is performed and analyzed

  2. Numerical modelling of pressure suppression pools with CFD and FEM codes

    Energy Technology Data Exchange (ETDEWEB)

    Paettikangas, T.; Niemi, J.; Timperi, A. (VTT Technical Research Centre of Finland (Finland))

    2011-06-15

    Experiments on large-break loss-of-coolant accident for BWR is modeled with computational fluid (CFD) dynamics and finite element calculations. In the CFD calculations, the direct-contact condensation in the pressure suppression pool is studied. The heat transfer in the liquid phase is modeled with the Hughes-Duffey correlation based on the surface renewal model. The heat transfer is proportional to the square root of the turbulence kinetic energy. The condensation models are implemented with user-defined functions in the Euler-Euler two-phase model of the Fluent 12.1 CFD code. The rapid collapse of a large steam bubble and the resulting pressure source is studied analytically and numerically. Pressure source obtained from simplified calculations is used for studying the structural effects and FSI in a realistic BWR containment. The collapse results in volume acceleration, which induces pressure loads on the pool walls. In the case of a spherical bubble, the velocity term of the volume acceleration is responsible of the largest pressure load. As the amount of air in the bubble is decreased, the peak pressure increases. However, when the water compressibility is accounted for, the finite speed of sound becomes a limiting factor. (Author)

  3. Depleted depletion drives polymer swelling in poor solvent mixtures.

    Science.gov (United States)

    Mukherji, Debashish; Marques, Carlos M; Stuehn, Torsten; Kremer, Kurt

    2017-11-09

    Establishing a link between macromolecular conformation and microscopic interaction is a key to understand properties of polymer solutions and for designing technologically relevant "smart" polymers. Here, polymer solvation in solvent mixtures strike as paradoxical phenomena. For example, when adding polymers to a solvent, such that all particle interactions are repulsive, polymer chains can collapse due to increased monomer-solvent repulsion. This depletion induced monomer-monomer attraction is well known from colloidal stability. A typical example is poly(methyl methacrylate) (PMMA) in water or small alcohols. While polymer collapse in a single poor solvent is well understood, the observed polymer swelling in mixtures of two repulsive solvents is surprising. By combining simulations and theoretical concepts known from polymer physics and colloidal science, we unveil the microscopic, generic origin of this collapse-swelling-collapse behavior. We show that this phenomenon naturally emerges at constant pressure when an appropriate balance of entropically driven depletion interactions is achieved.

  4. Influence of Sulfonated-Kaolin On Cationic Exchange Capacity Swelling Degree and Morphology of Chitosan/Kaolin Composites

    Directory of Open Access Journals (Sweden)

    Ozi Adi Saputra

    2016-06-01

    Full Text Available Preparation of sulfonated-kaolin (sKao has been conducted and used as filler on chitosan matrix via solution casting method, namely chitosan/sKao (Cs/sKao. Swelling degree, cationic exchange capacity and thermal stability were evaluated to determine chitosan/sKao membranes performance as proton exchange membrane in fuel cell. Functional group analysis of chitosan, sKao and synthesized products were studied using Fourier Transform Infra-Red (FTIR spectroscopy. In this study, swelling degree and swelling area of Cs/sKao are also studied to determine of membrane ability to swelling which compare to unmodified chitosan/kaolin (Cs/Kao. The presence of sKao in chitosan matrix was able to improve cationic exchange capacity (CEC which proved by morphological study of membrane surface after CEC test. Moreover, Thermal stability of Cs/sKao showed the membrane has meet requirement for PEM application.

  5. Disease prevalence and snail predation associated with swell-generated damage on the threatened coral, Acropora palmata (Lamarck

    Directory of Open Access Journals (Sweden)

    Allan Joseph Bright

    2016-05-01

    Full Text Available Disturbances such as tropical storms cause coral mortality and reduce coral cover as a direct result of physical damage. Storms can be one of the most important disturbances in coral reef ecosystems, and it is crucial to understand their long-term impacts on coral populations. The primary objective of this study was to determine trends in disease prevalence and snail predation on damaged and undamaged colonies of the threatened coral species, Acropora palmata, following an episode of heavy ocean swells in the US Virgin Islands (USVI. At three sites on St. Thomas and St. John, colonies of A. palmata were surveyed monthly over one year following a series of large swells in March 2008 that fragmented 30 to 93% of colonies on monitored reefs. Post-disturbance surveys conducted from April 2008 through March 2009 showed that swell-generated damage to A. palmata caused negative indirect effects that compounded the initial direct effects of physical disturbance. During the 12 months after the swell event, white pox disease prevalence was 41% higher for colonies that sustained damage from the swells than for undamaged colonies (df = 207, p = 0.01 with greatest differences in disease prevalence occurring during warm water months. In addition, the corallivorous snail, Coralliophila abbreviata, was 46% more abundant on damaged corals than undamaged corals during the 12 months after the swell event (df = 207, p = 0.006.

  6. Disease prevalence and snail predation associated with swell-generated damage on the threatened coral, Acropora palmata (Lamarck)

    Science.gov (United States)

    Bright, Allan J.; Rogers, Caroline S.; Brandt, Marilyn E.; Muller, Erinn; Smith, Tyler B.

    2016-01-01

    Disturbances such as tropical storms cause coral mortality and reduce coral cover as a direct result of physical damage. Storms can be one of the most important disturbances in coral reef ecosystems, and it is crucial to understand their long-term impacts on coral populations. The primary objective of this study was to determine trends in disease prevalence and snail predation on damaged and undamaged colonies of the threatened coral species, Acropora palmata, following an episode of heavy ocean swells in the US Virgin Islands (USVI). At three sites on St. Thomas and St. John, colonies of A. palmata were surveyed monthly over 1 year following a series of large swells in March 2008 that fragmented 30–93% of colonies on monitored reefs. Post-disturbance surveys conducted from April 2008 through March 2009 showed that swell-generated damage to A. palmata caused negative indirect effects that compounded the initial direct effects of physical disturbance. During the 12 months after the swell event, white pox disease prevalence was 41% higher for colonies that sustained damage from the swells than for undamaged colonies (df = 207, p = 0.01) with greatest differences in disease prevalence occurring during warm water months. In addition, the corallivorous snail, Coralliophila abbreviata, was 46% more abundant on damaged corals than undamaged corals during the 12 months after the swell event (df = 207, p = 0.006).

  7. Development of a bentonite free swelling model in an elastoplastic framework

    International Nuclear Information System (INIS)

    Navarro, V.; Asensio, L.; Yustres, A.; Alonso, J.; Pintado, X.

    2012-01-01

    Document available in extended abstract form only. The aim of this work is to develop a Hydro-Chemo-Mechanical (HcM) model able to consistently reproduce the whole swelling process of both unsaturated and saturated bentonites. The Barcelona Expansive Model (BExM) was taken as a starting point, as it has been satisfactorily applied to model the behaviour of compacted bentonites. However, its suitability for the analysis of free swelling has not been proved, namely for the case when porosities reach values close to and over 0.9 and the soil becomes disarranged. These conditions mean pulling BExM further away from the domain for which it was initially conceived. For this reason, a modified formulation of BExM has been developed. It has been named m/BExM. In order to explain the high swelling ability of bentonites, it is assumed that the distortion of the water structure induced by the clay sheets begins to have a significant effect also in macro water structure when the micro void ratio goes beyond a certain threshold value and the confining forces do not exceed the repulsive forces. Accordingly, macro water will experience a decrease in its chemical potential, and the voids in which this phenomenon takes part will act as sinks, increasing their volume and causing an important raise of macro-porosity (disarrangement of the soil macro skeleton). When this phenomenon starts, the micro strain rate is greater than that of the macro disarrangement. Nonetheless, when the micro void ratio reaches high values, the disarrangement becomes more significant. The variation of the micro void ratio with the swelling pressure is described with an exponential law. The developed formulation takes into account the geochemical effects by using a modified swelling pressure, in keeping with the proposal of Karnland et al. (2005) when working with a saline solution of relevant concentration. The presence of sodium and calcium cations, as well as that of a generic polyvalent anion (by

  8. Extracranial soft-tissue swelling: a normal postmortem radiographic finding or a sign of trauma?

    International Nuclear Information System (INIS)

    Strouse, P.J.; Caplan, M.; Owings, C.L.

    1998-01-01

    Objective. To determine if extracranial soft-tissue swelling is an expected postmortem finding or a sign of trauma. Materials and methods. Extracranial soft-tissue thickness was measured at 5 standardized locations on postmortem skull films obtained of 18 infants with no evidence of trauma on autopsy. The same measurements were performed on the skull films of 100 living children, all less than 3 years old and without clinical history of trauma. Results. Extracranial soft tissues measured only slightly greater in the postmortem group than on films of living children; however, the difference did achieve statistical significance. Conclusion. Minimal extracranial soft-tissue swelling is a normal finding on a postmortem skeletal survey. The presence of substantial or asymmetric extracranial soft-tissue swelling should be viewed with suspicion for trauma. (orig.)

  9. Extracranial soft-tissue swelling: a normal postmortem radiographic finding or a sign of trauma?

    Energy Technology Data Exchange (ETDEWEB)

    Strouse, P.J. [Section of Pediatric Radiology, University of Michigan Medical Center, Ann Arbor (United States); Caplan, M. [Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan (United States); Owings, C.L. [Department of Pediatrics and Communicable Diseases, C. S. Mott Children`s Hospital, Ann Arbor, Michigan (United States)

    1998-08-01

    Objective. To determine if extracranial soft-tissue swelling is an expected postmortem finding or a sign of trauma. Materials and methods. Extracranial soft-tissue thickness was measured at 5 standardized locations on postmortem skull films obtained of 18 infants with no evidence of trauma on autopsy. The same measurements were performed on the skull films of 100 living children, all less than 3 years old and without clinical history of trauma. Results. Extracranial soft tissues measured only slightly greater in the postmortem group than on films of living children; however, the difference did achieve statistical significance. Conclusion. Minimal extracranial soft-tissue swelling is a normal finding on a postmortem skeletal survey. The presence of substantial or asymmetric extracranial soft-tissue swelling should be viewed with suspicion for trauma. (orig.) With 2 tabs., 5 refs.

  10. Modeling injected interstitial effects on void swelling in self-ion irradiation experiments

    Energy Technology Data Exchange (ETDEWEB)

    Short, M.P., E-mail: hereiam@mit.edu [Dept. of Nuclear Science and Engineering, Massachusetts Institute of Technology (United States); Gaston, D.R. [Idaho National Laboratory (United States); Jin, M. [Dept. of Nuclear Science and Engineering, Massachusetts Institute of Technology (United States); Shao, L. [Dept. of Nuclear Engineering, Texas A& M University (United States); Garner, F.A. [Radiation Effects Consulting, LLC (United States)

    2016-04-01

    Heavy ion irradiations at high dose rates are often used to simulate slow and expensive neutron irradiation experiments. However, many differences in the resultant modes of damage arise due to unique aspects of heavy ion irradiation. One such difference was recently shown in pure iron to manifest itself as a double peak in void swelling, with both peaks located away from the region of highest displacement damage. In other cases involving a variety of ferritic alloys there is often only a single peak in swelling vs. depth that is located very near the ion-incident surface. We show that these behaviors arise due to a combination of two separate effects: 1) suppression of void swelling due to injected interstitials, and 2) preferential sinking of interstitials to the ion-incident surface, which are very sensitive to the irradiation temperature and displacement rate. Care should therefore be used in collection and interpretation of data from the depth range outside the Bragg peak of ion irradiation experiments, as it is shown to be more complex than previously envisioned. - Highlights: • A model of the spatially dependent point defect kinetics equations with injected interstitials has been implemented. • The results predict a double peak in the void nucleation rate, helping to explain a recent experiment. • The double peak is predicted to be evident within a narrow (+/− 30 °C) temperature window for self-irradiation of pure iron. • The ballistic damage profile may not match the resultant void swelling profile from ion irradiation experiments.

  11. Effect of Ge, Sn, Sb on the resistance to swelling of austenitic alloys irradiated by 1 MeV electrons

    International Nuclear Information System (INIS)

    Dubuisson, P.; Levy, V.; Seran, J.L.

    1987-01-01

    The effect of new solute elements namely Ge, Sn and Sb on the void swelling resistance of austenitic alloys irradiated with 1 MeV electrons has been studied. Except for tin in Ti-modified 316, all solute improve the swelling resistance of base alloys. Tin addition shifts the swelling peak of 316 S.S. to high temperature. In fact, these solute additions have the same qualitative effect on the swelling components: they enhance the void density and decrease strongly void growth rate. This effect is opposite to the one of usual swelling inhibitors such as Si or Ti which decrease the void density. We have explained this influence on the void nucleation and void growth by introducing a strong interaction between vacancies and solute atoms in a void growth model

  12. Numerical modeling of sodium fire – Part II: Pool combustion and combined spray and pool combustion

    International Nuclear Information System (INIS)

    Sathiah, Pratap; Roelofs, Ferry

    2014-01-01

    Highlights: • A CFD based method is proposed for the simulation of sodium pool combustion. • A sodium evaporation based model is proposed to model sodium pool evaporation. • The proposed method is validated against sodium pool experiments of Newman and Payne. • The results obtained using the proposed method are in good agreement with the experiments. - Abstract: The risk of sodium-air reaction has received considerable attention after the sodium-fire accident in Monju reactor. The fires resulting from the sodium-air reaction can be detrimental to the safety of a sodium fast reactor. Therefore, predicting the consequences of a sodium fire is important from a safety point of view. A computational method based on CFD is proposed here to simulate sodium pool fire and understand its characteristics. The method solves the Favre-averaged Navier-Stokes equation and uses a non-premixed mixture fraction based combustion model. The mass transfer of sodium vapor from the pool surface to the flame is obtained using a sodium evaporation model. The proposed method is then validated against well-known sodium pool experiments of Newman and Payne. The flame temperature and location predicted by the model are in good agreement with experiments. Furthermore, the trends of the mean burning rate with initial pool temperature and oxygen concentration are captured well. Additionally, parametric studies have been performed to understand the effects of pool diameter and initial air temperature on the mean burning rate. Furthermore, the sodium spray and sodium pool combustion models are combined to simulate simultaneous spray and pool combustion. Simulations were performed to demonstrate that the combined code could be applied to simulate this. Once sufficiently validated, the present code can be used for safety evaluation of a sodium fast reactor

  13. Numerical modeling of sodium fire – Part II: Pool combustion and combined spray and pool combustion

    Energy Technology Data Exchange (ETDEWEB)

    Sathiah, Pratap, E-mail: pratap.sathiah78@gmail.com [Shell Global Solutions Ltd., Brabazon House, Concord Business Park, Threapwood Road, Manchester M220RR (United Kingdom); Roelofs, Ferry, E-mail: roelofs@nrg.eu [Nuclear Research and Consultancy Group (NRG), Westerduinweg 3, 1755ZG Petten (Netherlands)

    2014-10-15

    Highlights: • A CFD based method is proposed for the simulation of sodium pool combustion. • A sodium evaporation based model is proposed to model sodium pool evaporation. • The proposed method is validated against sodium pool experiments of Newman and Payne. • The results obtained using the proposed method are in good agreement with the experiments. - Abstract: The risk of sodium-air reaction has received considerable attention after the sodium-fire accident in Monju reactor. The fires resulting from the sodium-air reaction can be detrimental to the safety of a sodium fast reactor. Therefore, predicting the consequences of a sodium fire is important from a safety point of view. A computational method based on CFD is proposed here to simulate sodium pool fire and understand its characteristics. The method solves the Favre-averaged Navier-Stokes equation and uses a non-premixed mixture fraction based combustion model. The mass transfer of sodium vapor from the pool surface to the flame is obtained using a sodium evaporation model. The proposed method is then validated against well-known sodium pool experiments of Newman and Payne. The flame temperature and location predicted by the model are in good agreement with experiments. Furthermore, the trends of the mean burning rate with initial pool temperature and oxygen concentration are captured well. Additionally, parametric studies have been performed to understand the effects of pool diameter and initial air temperature on the mean burning rate. Furthermore, the sodium spray and sodium pool combustion models are combined to simulate simultaneous spray and pool combustion. Simulations were performed to demonstrate that the combined code could be applied to simulate this. Once sufficiently validated, the present code can be used for safety evaluation of a sodium fast reactor.

  14. 10 CFR 36.63 - Pool water purity.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Pool water purity. 36.63 Section 36.63 Energy NUCLEAR... § 36.63 Pool water purity. (a) Pool water purification system must be run sufficiently to maintain the conductivity of the pool water below 20 microsiemens per centimeter under normal circumstances. If pool water...

  15. Anisotropically Swelling Gels Attained through Axis-Dependent Crosslinking of MOF Crystals.

    Science.gov (United States)

    Ishiwata, Takumi; Kokado, Kenta; Sada, Kazuki

    2017-03-01

    Anisotropically deforming objects have attracted considerable interest for use in molecular machines and artificial muscles. Herein, we focus on a new approach based on the crystal crosslinking of organic ligands in a pillared-layer metal-organic framework (PLMOF). The approach involves the transformation from crosslinked PLMOF to polymer gels through hydrolysis of the coordination bonds between the organic ligands and metal ions, giving a network polymer that exhibits anisotropic swelling. The anisotropic monomer arrangement in the PLMOF underwent axis-dependent crosslinking to yield anisotropically swelling gels. Therefore, the crystal crosslinking of MOFs should be a useful method for creating actuators with designable deformation properties. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Ion irradiation studies on the void swelling behavior of a titanium modified D9 alloy

    Science.gov (United States)

    Balaji, S.; Mohan, Sruthi; Amirthapandian, S.; Chinnathambi, S.; David, C.; Panigrahi, B. K.

    2015-12-01

    The sensitivity of Positron Annihilation Spectroscopy (PAS) for probing vacancy defects and their environment is well known. Its applicability in determination of swelling and the peak swelling temperature was put to test in our earlier work on ion irradiated D9 alloys [1]. Upon comparison with the peak swelling temperature determined by conventional step height measurements it was found that the peak swelling temperature determined using PAS was 50 K higher. It was conjectured that the positrons trapping in the irradiation induced TiC precipitation could have caused the shift. In the present work, D9 alloys have been implanted with 100 appm helium ions and subsequently implanted with 2.5 MeV Ni ions up to peak damage of 100 dpa. The nickel implantations have been carried out through a range of temperatures between 450 °C and 650 °C. The evolution of cavities and TiC precipitates at various temperatures has been followed by TEM and this report provides an experimental verification of the conjecture.

  17. Effect of Lime on characteristics of consolidation, strength, swelling and plasticity of fine grained soil

    Science.gov (United States)

    Estabragh, A. R.; Bordbar, A. T.; Parsaee, B.; Eskandari, Gh.

    2009-04-01

    Using Lime as an additive material to clayey soil is one of the best effective technique in building the soil structures to get some purposes such as soil stabilization, soil reinforcement and decreasing soil swelling. In this research the effect of Lime on geotechnical characteristics of a clayey soil was investigated. Soil specimen types used in this study were consisted of clayey soil as the control treatment and clay mixed with different weight fractions of lime, 4, 6, 8 & 10 percent. Some experiments such as CBR, atterburg limits, compaction, consolidation and swelling was conducted on specimens. Results revealed that adding lime to soil would change its physical and mechanical properties. Adding lime increase the compression strength and consolidation coefficient and decrease swelling potential and maximum dry density. According to the results, Atterburg experiments show that presence of lime in soil increase the liquid limit of low plasticity soil and decrease the liquid limit of high plasticity soil, but totally it decreases the plasticity index of soils. Key words: soil stabilization, lime, compression strength, swelling, atterburg limits, compaction

  18. Model of large pool fires

    Energy Technology Data Exchange (ETDEWEB)

    Fay, J.A. [Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)]. E-mail: jfay@mit.edu

    2006-08-21

    A two zone entrainment model of pool fires is proposed to depict the fluid flow and flame properties of the fire. Consisting of combustion and plume zones, it provides a consistent scheme for developing non-dimensional scaling parameters for correlating and extrapolating pool fire visible flame length, flame tilt, surface emissive power, and fuel evaporation rate. The model is extended to include grey gas thermal radiation from soot particles in the flame zone, accounting for emission and absorption in both optically thin and thick regions. A model of convective heat transfer from the combustion zone to the liquid fuel pool, and from a water substrate to cryogenic fuel pools spreading on water, provides evaporation rates for both adiabatic and non-adiabatic fires. The model is tested against field measurements of large scale pool fires, principally of LNG, and is generally in agreement with experimental values of all variables.

  19. Model of large pool fires

    International Nuclear Information System (INIS)

    Fay, J.A.

    2006-01-01

    A two zone entrainment model of pool fires is proposed to depict the fluid flow and flame properties of the fire. Consisting of combustion and plume zones, it provides a consistent scheme for developing non-dimensional scaling parameters for correlating and extrapolating pool fire visible flame length, flame tilt, surface emissive power, and fuel evaporation rate. The model is extended to include grey gas thermal radiation from soot particles in the flame zone, accounting for emission and absorption in both optically thin and thick regions. A model of convective heat transfer from the combustion zone to the liquid fuel pool, and from a water substrate to cryogenic fuel pools spreading on water, provides evaporation rates for both adiabatic and non-adiabatic fires. The model is tested against field measurements of large scale pool fires, principally of LNG, and is generally in agreement with experimental values of all variables

  20. Current status of gas migration and swelling experiments using engineering scale model for immediate depth disposal in Japan

    International Nuclear Information System (INIS)

    Higashihara, Tomohiro; Ono, Makoto; Kawaragi, Chie; Saito, Shigeyuki

    2010-01-01

    In intermediate depth disposal facility of radioactive waste in Japan, waste is surrounded with bentonite layer to retard interaction of the waste and groundwater, because the bentonite layer saturated with the groundwater has very low hydraulic conductivity. On the other hand, it is important to confirm stability of barrier system for stress generated together with swelling of the bentonite and to understand effect of increase of gas pressure because of generation of hydrogen gas by corrosion of metallic waste. To understand and evaluate the swelling behavior of the bentonite layer, JNES carries out the experiment. In the experiments, we carry out the swelling experiment to examine the swelling behavior of the bentonite layer and the gas migration experiment to understand the gas migration behavior in the bentonite layer, using engineering scale model of the disposal facility. The swelling experiment has been in operation since June 2010. After this experiment, the gas migration experiment will start in July 2011. (orig.)

  1. Impact of salt form and molecular weight of chitosan on swelling and drug release from chitosan matrix tablets.

    Science.gov (United States)

    Huanbutta, Kampanart; Cheewatanakornkool, Kamonrak; Terada, Katsuhide; Nunthanid, Jurairat; Sriamornsak, Pornsak

    2013-08-14

    Magnetic resonance imaging (MRI) and gravimetric techniques were used to assess swelling and erosion behaviors of hydrophilic matrix tablets made of chitosan. The impact of salt form, molecular weight (MW) and dissolution medium on swelling behavior and drug (theophylline) release was studied. The matrix tablets made of chitosan glycolate (CGY) showed the greatest swelling in both acid and neutral media, compared to chitosan aspartate, chitosan glutamate and chitosan lactate. MRI illustrated that swelling region of CGY in both media was not different in the first 100 min but glassy region (dry core) in 0.1N HCl was less than in pH 6.8 buffer. The tablets prepared from chitosan with high MW swelled greater than those of low MW. Moreover, CGY can delay drug release in the acid condition due to thick swollen gel and low erosion rate. Therefore, CGY may be suitably applied as sustained drug release polymer or enteric coating material. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Assessment of the Swelling Pressure of the Green Clay of Tangier (Morocco Compared with the Soil-Moisture Conditions

    Directory of Open Access Journals (Sweden)

    El Bahlouli Tarik

    2014-04-01

    Full Text Available The swelling phenomenon appears seriously when changing the soil-moisture conditions. The swelling pressure induced by the expansive soil can causes unfavourable problems or instability for the civil structures. So, understanding the soil behavior is considered a valuable work for engineers and consultants in the geotechnical and civil engineering sectors. In reality, the assessment of the swelling pressure of expansive soil depends, first of all, of test conditions related to the change of soil-moisture, as it happens, the influence of the combination “loading-start wetting” and also the unloading process after saturation. To this end, we establish an experimental study on the green clay of Tangier to evaluate the swelling pressure by using oedometer apparatus. Secondly, attention is bore to the combination “initial water content-dry density”, another factor related to the change of the soil-moisture, to show the influence of initial state condition on the swelling pressure.

  3. Dermal collagen and lipid deposition correlate with tissue swelling and hydraulic conductivity in murine primary lymphedema.

    Science.gov (United States)

    Rutkowski, Joseph M; Markhus, Carl Erik; Gyenge, Christina C; Alitalo, Kari; Wiig, Helge; Swartz, Melody A

    2010-03-01

    Primary lymphedema is a congenital pathology of dysfunctional lymphatic drainage characterized by swelling of the limbs, thickening of the dermis, and fluid and lipid accumulation in the underlying tissue. Two mouse models of primary lymphedema, the Chy mouse and the K14-VEGFR-3-Ig mouse, both lack dermal lymphatic capillaries and exhibit a lymphedematous phenotype attributable to disrupted VEGFR-3 signaling. Here we show that the differences in edematous tissue composition between these two models correlated with drastic differences in hydraulic conductivity. The skin of Chy mice possessed significantly higher levels of collagen and fat, whereas K14-VEGFR-3-Ig mouse skin composition was relatively normal, as compared with their respective wild-type controls. Functionally, this resulted in a greatly increased dermal hydraulic conductivity in K14-VEGFR3-Ig, but not Chy, mice. Our data suggest that lymphedema associated with increased collagen and lipid accumulation counteracts an increased hydraulic conductivity associated with dermal swelling, which in turn further limits interstitial transport and swelling. Without lipid and collagen accumulation, hydraulic conductivity is increased and overall swelling is minimized. These opposing tissue responses to primary lymphedema imply that tissue remodeling--predominantly collagen and fat deposition--may dictate tissue swelling and govern interstitial transport in lymphedema.

  4. Grewia Gum 1: Some Mechanical and Swelling Properties of ...

    African Journals Online (AJOL)

    Purpose: To study the mechanical and dynamic swelling properties of grewia gum, evaluate its compression behaviour and determine the effect of drying methods on its properties. Methods: Compacts (500 mg) of both freeze-dried and air-dried grewia gum were separately prepared by compression on a potassium bromide ...

  5. Thermodynamics of swelling of latex particles with two monomers

    NARCIS (Netherlands)

    Maxwell, I.A.; Kurja, J.; van Doremaele, G.H.J.; German, A.L.

    1992-01-01

    The partitioning of 2 monomers between the latex particle, monomer droplet, and aq. phases of an emulsion polymer latex are measured at satn. swelling of the latex particle phase (corresponding to intervals I and II of an emulsion polymn.). The monomer (Me acrylate, Bu acrylate, styrene) and polymer

  6. Release of Water Soluble Drugs from Dynamically Swelling POLY(2-HYDROXYETHYL Methacrylate - CO - Methacrylic Acid) Hydrogels.

    Science.gov (United States)

    Kou, Jim Hwai-Cher

    In this study, ionizable copolymers of HEMA and methacrylic acid (MA) are investigated for their potential use in developing pH dependent oral delivery systems. Because of the MA units, these gels swell extensively at high pH. Since solute diffusion in the hydrophilic polymers depends highly on the water content of the matrix, it is anticipated that the release rate will be modulated by this pH induced swelling. From a practical point of view, the advantage of the present system is that one can minimize drug loss in the stomach and achieve a programmed release in intestine. This approach is expected to improve delivery of acid labile drugs or drugs that cause severe gastrointestinal side effects. This work mainly focuses on the basic understanding of the mechanism involved in drug release from the poly(HEMA -co- MA) gels, especially under dynamic swelling conditions. Equilibrium swelling is first characterized since water content is the major determinant of transport properties in these gels. Phenylpropanolamine (PPA) is chosen as the model drug for the release study and its diffusion characteristics in the gel matrix determined. The data obtained show that the PPA diffusivity follows the free volume theory of Yasuda, which explains the accelerating effect of swelling on drug release. A mathematical model based on a diffusion mechanism has been developed to describe PPA release from the swelling gels. Based on this model, several significant conclusions can be drawn. First, the release rate can be modulated by the aspect ratio of the cylindrical geometry, and this has a practical implication in dosage form design. Second, the release rate can be lowered quite considerably if the dimensional increase due to swelling is significant. Consequently, it is the balance between the drug diffusivity increase and the gel dimensional growth that determines the release rate from the swelling matrix. Third, quasi-steady release kinetics, which are characteristic of swelling

  7. Preparation of high water-swelling agricultural starch hydrogels by 60Co γ-radiation grafting

    International Nuclear Information System (INIS)

    Wang Qingjun; Quan Yiwu; Chen Qingmin

    2003-01-01

    The starch grafted acrylic acid was used to synthesize water-swelling hydrogels by 60 Co γ-radiation grafting technique. With radiation dose of about 7 kGy, the crosslinking reagent amount of 0.001%-0.1%, the pH value 5-8 and the starch amount of 10%-30%, we can produce 600 times water-swelling hydrogels which are of high performance, low cost and suitable for agriculture

  8. Erythrocyte swelling and membrane hole formation in hypotonic media as studied by conductometry.

    Science.gov (United States)

    Pribush, A; Meyerstein, D; Hatskelzon, L; Kozlov, V; Levi, I; Meyerstein, N

    2013-02-01

    Hypoosmotic swelling of erythrocytes and the formation of membrane holes were studied by measuring the dc conductance (G). In accordance with the theoretical predictions, these processes are manifested by a decrease in G followed by its increase. Thus, unlike the conventional osmotic fragility test, the proposed methodological approach allows investigations of both the kinetics of swelling and the erythrocyte fragility. It is shown that the initial rate of swelling and the equilibrium size of the cells are affected by the tonicity of a hypotonic solution and the membrane rheological properties. Because the rupture of biological membranes is a stochastic process, a time-dependent increase in the conductance follows an integral distribution function of the membrane lifetime. The main conclusion which stems from reported results is that information about rheological properties of red blood cell (RBC) membranes and the resistivity of RBCs to a certain osmotic shock may be extracted from conductance signals.

  9. Characterization of indoor and outdoor pool fires with active calorimetry

    International Nuclear Information System (INIS)

    Koski, J.A.; Gill, W.; Gritzo, L.A.; Kent, L.A.; Wix, S.D.

    1994-01-01

    A water cooled, 1 m x 1 m, vertical calorimeter panel has been used in conjunction with other fire diagnostics to characterize a 6 m x 6 m outdoor and three 3 m x 3 m indoor JP-4 pool fires. Measurements reported include calorimeter surface heat flux and surface temperatures, flame temperatures, and gas flow velocities in the fire. From the data, effective radiative absorption coefficients for various zones in the fires have been estimated. The outdoor test was conducted at Sandia's Coyote Canyon test facility, while indoor tests were conducted at the indoor SMokE Reduction Facility (SMERF) at the same location. The measurements provide data useful in calibrating simple analytic fire models intended for the analysis of packages containing hazardous materials

  10. Midface swelling reveals nasofrontal dermal sinus

    International Nuclear Information System (INIS)

    Houneida, Zaghouani Ben Alaya; Manel, Limeme; Latifa, Harzallah; Habib, Amara; Dejla, Bakir; Chekib, Kraiem

    2012-01-01

    Nasofrontal dermal sinuses are very rare and generally occur in children. This congenital malformation can be revealed by midface swelling, which can be complicated by local infection or neuromeningitis. Such complications make the dermal sinus a life-threatening disease. Two cases of nasofrontal dermal sinuses are reported in this work. The first case is an 11-month-old girl who presented with left orbitonasal soft tissue swelling accompanied by inflammation. Physical examination found fever, left orbitonasal thickening, and a puncture hole letting out pus. Computed tomography revealed microabscesses located at the left orbitonasal soft tissues, a frontal bone defect, and an intracranial cyst. Magnetic resonance imaging showed the transosseous tract between the glabella and the brain and affirmed the epidermoid nature of the intracranial cyst. The second case is a 7-year-old girl who presented with a nasofrontal non-progressive mass that intermittently secreted a yellow liquid through an external orifice located at the glabella. MRI revealed a cystic mass located in the deep layer of the glabellar skin related to an epidermoid cyst with a nasofrontal dermal sinus tract. In both cases, surgical excision was performed, and pathological confirmation was made for the diagnoses of dermal sinuses. The postoperative course was favorable. Through these cases, the authors stress the role of imaging methods in confirming the diagnosis and looking for associated cysts (dermoid and epidermoid) to improve recognition of this rare disease. Knowledge of the typical clinical presentations, imaging manifestations, and most common sites of occurrence of this malformation are needed to formulate a differential diagnosis.

  11. A new scleroglucan/borax hydrogel: swelling and drug release studies.

    Science.gov (United States)

    Coviello, Tommasina; Grassi, Mario; Palleschi, Antonio; Bocchinfuso, Gianfranco; Coluzzi, Gina; Banishoeib, Fateme; Alhaique, Franco

    2005-01-31

    The aim of the work was the characterization of a new polysaccharidic physical hydrogel, obtained from Scleroglucan (Sclg) and borax, following water uptake and dimension variations during the swelling process. Furthermore, the release of molecules of different size (Theophylline (TPH), Vitamin B12 (Vit. B12) and Myoglobin (MGB)) from the gel and from the dried system used as a matrix for tablets was studied. The increase of weight of the tablets with and without the loaded drugs was followed together with the relative variation of the dimensions. The dry matrix, in the form of tablets was capable, during the swelling process, to incorporate a relevant amount of solvent (ca. 20 g water/g dried matrix), without dissolving in the medium, leading to a surprisingly noticeable anisotropic swelling that can be correlated with a peculiar supramolecular structure of the system induced by compression. Obtained results indicate that the new hydrogel can be suitable for sustained drug release formulations. The delivery from the matrix is deeply dependent on the size of the tested model drugs. The experimental release data obtained from the gel were satisfactorily fitted by an appropriate theoretical approach and the relative drug diffusion coefficients in the hydrogel were estimated. The release profiles of TPH, Vit. B12 and MGB from the tablets have been analyzed in terms of a new mathematical approach that allows calculating of permeability values of the loaded drugs.

  12. Thermohydraulic behavior of liquid metal pool submitted to electronic bombardment

    International Nuclear Information System (INIS)

    Brun, Patrice

    1998-01-01

    This thesis deals with the thermohydraulics of liquid metal molten by an electron beam. We study the relationship between the liquid metal pool and the vapor rate. The aim is to find good conditions increasing the metal vapor rate. In first place, energy losses are identified. Mains are convection (buoyancy and thermo-capillary) strengthen by the deformation of the molten pool. The first action is to reduce the liquid interface deformation with a transient spot realized by scanning the electron beam. I find that in this case, the optimum vapor rate is obtained when the crossing time of the beam is smaller than characteristic time of formation of the cavity, but greater than the heating time of the surface. Secondly, I impose forces to change the morphology of the flow. Two actions are tried: magnetic field application and rotating motion of the crucible. External magnetic field application may reduce convective flow, by the creation of a magnetic brake. But in my experiment, magnetic field deteriorates electron beam before to be effective. Results obtained by the rotating motion of the crucible approve this choice to reduce energy losses and increase vapor rate. This growth of vapor rate is due to an expansion of the emitted vapor source and an increase of the central temperature of the molten pool. Nevertheless with the increase of the rotation velocity and after the optimum vapor rate, I note that the flow is not axisymmetric. My observation give to think about instabilities that are developed by baroclinic waves. The comparison of my works with the Eady's linear theory gives good results. (author) [fr

  13. Analysis of flashing and swelling phenomena in tanks of nuclear power plants; the importance of bubble growth dynamics and bubble transport models with size tracking

    Energy Technology Data Exchange (ETDEWEB)

    Cerezo A, E [University of Caribe, Department of Basics Sciences and Engineering, Lote 1, Manzana 1, Region 78, esq. Fracc. Tabachines, 77500 Cancun, Quintana Roo (Mexico); Munoz C, J L [Department of Chemical and Nuclear Engineering, Polytechnic University of Valencia, Camino de Vera 14, 46022 Valencia (Spain)

    2004-07-01

    This paper presents a non-equilibrium model to describe flashing phenomena in tanks and cooling pools. The present model is based on Watanabe's work that we have extended by developing a realistic model for the growth of bubbles. We have made the corresponding venting model, continuity equation, gas and liquid phase energy conservation equations for the model. This model takes into account both drag and virtual mass force. The dynamics of bubble growth plays an important role in two-phase phenomena such as flashing. In our model the growth rate is assumed to be limited by the heat conduction in the liquid. The results of the analytic model were compared with the experimental data of Watanabe [1]. The results have shown that the present model evaluates fairly accurately the pressure evolution, the void fraction and the swelling level of a tank.

  14. Analysis of flashing and swelling phenomena in tanks of nuclear power plants; the importance of bubble growth dynamics and bubble transport models with size tracking

    Energy Technology Data Exchange (ETDEWEB)

    Cerezo A, E. [University of Caribe, Department of Basics Sciences and Engineering, Lote 1, Manzana 1, Region 78, esq. Fracc. Tabachines, 77500 Cancun, Quintana Roo (Mexico)]. E-mail: ecerezo@unicaribe.edu.mx; Munoz C, J.L. [Department of Chemical and Nuclear Engineering, Polytechnic University of Valencia, Camino de Vera 14, 46022 Valencia (Spain)

    2004-07-01

    This paper presents a non-equilibrium model to describe flashing phenomena in tanks and cooling pools. The present model is based on Watanabe's work that we have extended by developing a realistic model for the growth of bubbles. We have made the corresponding venting model, continuity equation, gas and liquid phase energy conservation equations for the model. This model takes into account both drag and virtual mass force. The dynamics of bubble growth plays an important role in two-phase phenomena such as flashing. In our model the growth rate is assumed to be limited by the heat conduction in the liquid. The results of the analytic model were compared with the experimental data of Watanabe [1]. The results have shown that the present model evaluates fairly accurately the pressure evolution, the void fraction and the swelling level of a tank.

  15. Effect of grain morphology on gas bubble swelling in UMo fuels – A 3D microstructure dependent Booth model

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Shenyang, E-mail: shenyang.hu@pnnl.gov; Burkes, Douglas; Lavender, Curt A.; Joshi, Vineet

    2016-11-15

    A three dimensional microstructure dependent swelling model is developed for studying the fission gas swelling kinetics in irradiated nuclear fuels. The model is extended from the Booth model [1] in order to investigate the effect of heterogeneous microstructures on gas bubble swelling kinetics. As an application of the model, the effect of grain morphology, fission gas diffusivity, and spatially dependent fission rate on swelling kinetics are simulated in UMo fuels. It is found that the decrease of grain size, the increase of grain aspect ratio for the grain having the same volume, and the increase of fission gas diffusivity (fission rate) cause the increase of swelling kinetics. Other heterogeneities such as second phases and spatially dependent thermodynamic properties including diffusivity of fission gas, sink and source strength of defects could be naturally integrated into the model to enhance the model capability.

  16. Swelling of a Zirconium Oxide Film

    International Nuclear Information System (INIS)

    Henderson, Mark; Hawley, Adrian; White, John; Rennie, Adrian

    2005-01-01

    Full text: The structural changes that cause the change in the interlayer spacing of a surfactanttemplated zirconium oxide film have been studied using neutron diffractometry. We report that the film after drying on a glass substrate swells slightly through the addition of benzene by up to 4 Aangstroem on a lattice parameter of about 36 Aangstroem. The (001) and (002) diffraction peaks positions, widths and areas of a swollen film were then monitored by neutron diffraction as a function of benzene desorption. Disorder of the lamellar mesophase is considered as a cause of the observed effects on the diffraction signals. (authors)

  17. Swelling and tribological properties of melt-mixed fluoroelastomer/nitrile rubber blends under crude oil

    Science.gov (United States)

    Tagelsir, Yasin; Li, San-Xi; Lv, Xiaoren; Wang, Shijie; Wang, Song; Osman, Zeinab

    2018-01-01

    The melt-mixed fluoroelastomer (FKM)/ nitrile rubber (NBR) blends of (90/10, 80/20, 70/30, 60/40 and 50/50) ratios with same hardness were prepared, and their swelling and tribological properties under crude oil were investigated for the purpose of developing high performance cost-effective elastomers meeting requirement of oil extraction progressive cavity pump stator. Differential scanning calorimetry confirmed compatible blend system for all blends. Field emission scanning electron microscopy (FE-SEM) showed co-continuous morphology of 200-400 nm phase size for all blends, expect FKM/NBR (90/10) which exhibited partially continuous phase morphology of 100-250 nm phase size. The results of swelling and linear wear tests under crude oil indicated that swelling percentage, coefficient of friction and specific wear rate of FKM/NBR blends were much better than NBR, with FKM/NBR (90/10 and 80/20) showing swelling percentage and specific wear rate very close to FKM. Attenuated total reflectance-Fourier transform infrared spectroscopy disclosed that fracture of macromolecular chains was the main mechanochemical effect of unswollen and swollen worn surfaces, in addition to oxygenated degradation detected with increasing NBR ratio in the blends. The fracture of macromolecular chains resulted in slight fatigue wear mechanism, which was also confirmed by FE-SEM of the worn surfaces.

  18. POOL WATER TREATMENT AND COOLING SYSTEM DESCRIPTION DOCUMENT

    International Nuclear Information System (INIS)

    King, V.

    2000-01-01

    The Pool Water Treatment and Cooling System is located in the Waste Handling Building (WHB), and is comprised of various process subsystems designed to support waste handling operations. This system maintains the pool water temperature within an acceptable range, maintains water quality standards that support remote underwater operations and prevent corrosion, detects leakage from the pool liner, provides the capability to remove debris from the pool, controls the pool water level, and helps limit radiological exposure to personnel. The pool structure and liner, pool lighting, and the fuel staging racks in the pool are not within the scope of the Pool Water Treatment and Cooling System. Pool water temperature control is accomplished by circulating the pool water through heat exchangers. Adequate circulation and mixing of the pool water is provided to prevent localized thermal hotspots in the pool. Treatment of the pool water is accomplished by a water treatment system that circulates the pool water through filters, and ion exchange units. These water treatment units remove radioactive and non-radioactive particulate and dissolved solids from the water, thereby providing the water clarity needed to conduct waste handling operations. The system also controls pool water chemistry to prevent advanced corrosion of the pool liner, pool components, and fuel assemblies. Removal of radioactivity from the pool water contributes to the project ALARA (as low as is reasonably achievable) goals. A leak detection system is provided to detect and alarm leaks through the pool liner. The pool level control system monitors the water level to ensure that the minimum water level required for adequate radiological shielding is maintained. Through interface with a demineralized water system, adequate makeup is provided to compensate for loss of water inventory through evaporation and waste handling operations. Interface with the Site Radiological Monitoring System provides continuous

  19. Swelling and hydraulic properties of Ca-bentonite for the buffer of a waste repository

    International Nuclear Information System (INIS)

    Lee, J.O.; Cho, W.J.; Kang, C.H.; Chun, K.S.

    2001-01-01

    Swelling and hydraulic tests were carried out to provide the information for the selection of buffer material in a radioactive waste repository. Ca-bentonite and de-ionized water were used for the tests. The swelling pressures of compacted bentonite were in the wide range of 0.7 Kg/cm 2 to 190.2 Kg/cm 2 , and they largely increased with an increase in the dry density and bentonite content. However, the swelling pressures decreased with increasing the initial water content and beyond about 12 wt.% of the initial water content, leveled off to a nearly constant value. The hydraulic conductivities were lower than 10 -11 m/s for the compacted bentonite with the dry density higher than 1.4 Mg/m 3 . They increased with increasing temperature in the range of 20 deg. C to 150 deg. C. (author)

  20. Linking natural microstructures with numerical modeling of pinch-and-swell structures

    Science.gov (United States)

    Peters, Max; Berger, Alfons; Herwegh, Marco; Regenauer-Lieb, Klaus

    2016-04-01

    For a variety of geological problems, the change from homogeneous to localized deformation and the establishment of steady-state conditions are equally important. Here, we show that pinch-and-swell structures are ideal candidates for the study of the switch in deformation style and mechanism during ductile creep. We present an interdisciplinary approach to the onset of pinch-and-swell structures and to the flow conditions during pre- to post-localization stages in ductile rocks. For this reason, naturally boudinaged calcite veins, embedded in a calc-mylonite, and their microfabrics were investigated quantitatively. Remnants of slightly deformed calcite hosts build up the swells, showing twinning and minor dislocation glide as crystal plastic deformation mechanisms which are accompanied by subgrain rotation recrystallization (SGR). Towards the pinches, we find a gradient of severe grain size reduction through progressive SGR, developing a characteristic dislocation creep crystallographic preferred orientation (CPO). Along this gradient, the finest recrystallized calcite grains appear randomly oriented, expressed by a "smearing-out" of the CPO and missing systematics of misorientation angles in the most extended areas. We interpret this microstructure as a switch from dislocation dominated creep to grain boundary sliding processes. Further, we show that the onset of boudinage is independent on both the original orientation and grain size of calcite hosts. We implemented these microstructural observations into a layered elasto-visco-plastic finite element framework, tracing variations in grain size (Peters et al., 2015). We base the microstructural evolution on thermo-mechanical-chemical principles and end-member flow laws (Herwegh et al., 2014). The simulated pinch-and-swell structures indicate that low strain rates in the swells favor dislocation creep, whereas accelerated rates provoke continuous grain size reduction allowing strain accommodation by diffusion creep

  1. The swelling behavior of Ti-stabilized austenitic steels used as structural materials of fissile subassemblies in Phenix

    International Nuclear Information System (INIS)

    Seran, J.L.; Touron, H.; Maillard, A.; Dubuisson, P.; Hugot, J.P.; Blanchard, P.; Pelletier, M.

    1988-06-01

    In this paper we analyse the main results obained on pressurized tubes, fissile pins and hexagonal cans, allowing us to characterize the swelling and irradiation creep resistance of Ti-Mod. austenitic steels, used as reference materials for the fast breeder subassembly. After having compared the global behavior of 316Ti and 15-15Ti steels irradiated as fissile pins we examine in more detail the leading variables acting on swelling and irradiation creep resistance of CW 316Ti clads and wrappers. The irradiation creep associated to the principal mechanical stresses (sodium pressure for the wrapper, fission gas pressure for the clad) explain the plastic deformation observed on the wrappers not on the clads. Fissile pins swell more and the scatter of the results is larger than for wrappers or samples. It does not seem possible to invoque flux or primary stress differences to explain this fact. On the opposite the thermal gradient in the thickness of the components appears to be a significant parameter. In fissile pins it gives rise to a swelling gradient observed by electron microscopy that must be taken into account when comparing to the wrapper. As compared to CW 316Ti, CW 15-15Ti is an important improvement since its incubation dose for swelling is far beyond 100 dpa. Further more since it swelling temperature dependence does not seem to be as important as for 316Ti, it should be less sensitive to the effect of thermal gradients

  2. Bilateral optic nerve swelling after thyroidectomy followed by a course of radioiodine therapy

    Directory of Open Access Journals (Sweden)

    Ioyleva E.E.

    2018-03-01

    Full Text Available The most common cancer of the endocrine system is thyroid cancer, representing 1.0–1.5 % all newly diagnosed cases of cancer. According to the cancer society of Russia, the thyroid cancer in children is much rarer than in adults. Thyroid cancer in children and adolescents is characterized by an adverse clinical course and a high risk of developing metastases in the lymph nodes. The main method of treatment for pediatric thyroid cancer is total thyroidectomy with central neck lymph node dissection followed by radioactive iodine therapy. In foreign and domestic literature, complications of the organ of vision, namely, changes of the optic disc, after surgical treatment for thyroid cancer are poorly understood. The risk of transient hypocalcemia and hypothyroidism increases after thyroidectomy. In the literature, there are two reported cases of the optic nerve swelling combined with hypoparathyroidism and hypocalcemia. While hypocalcemia intracranial hypertension and swelling of the optic nerves are often recorded. In this article, the authors present their own clinical observation of a 13-year-old patient after thyroidectomy and radioactive iodine therapy with detailed analysis of the clinical data and study results. According to the survey of the patient, bilateral swelling of the optic disc was revealed, which could occur due to hypothyroid state. Objective: to identify the cause of the development of bilateral optic nerve swelling in a patient after thyroidectomy and treatment course with radioactive iodine.

  3. How Do Organic Vapors Swell Ultra-Thin PIM-1 Films?

    KAUST Repository

    Ogieglo, Wojciech; Rahimi, Khosrow; Rauer, Sebastian Bernhard; Ghanem, Bader; Ma, Xiao-Hua; Pinnau, Ingo; Wessling, Matthias

    2017-01-01

    Dynamic sorption of ethanol and toluene vapor into ultra-thin supported PIM-1 films down to 6 nm are studied with a combination of in-situ spectroscopic ellipsometry and in-situ X-ray reflectivity. Both ethanol and toluene significantly swell

  4. Pool scrubbing models for iodine components

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, K [Battelle Ingenieurtechnik GmbH, Eschborn (Germany)

    1996-12-01

    Pool scrubbing is an important mechanism to retain radioactive fission products from being carried into the containment atmosphere or into the secondary piping system. A number of models and computer codes has been developed to predict the retention of aerosols and fission product vapours that are released from the core and injected into water pools of BWR and PWR type reactors during severe accidents. Important codes in this field are BUSCA, SPARC and SUPRA. The present paper summarizes the models for scrubbing of gaseous Iodine components in these codes, discusses the experimental validation, and gives an assessment of the state of knowledge reached and the open questions which persist. The retention of gaseous Iodine components is modelled by the various codes in a very heterogeneous manner. Differences show up in the chemical species considered, the treatment of mass transfer boundary layers on the gaseous and liquid sides, the gas-liquid interface geometry, calculation of equilibrium concentrations and numerical procedures. Especially important is the determination of the pool water pH value. This value is affected by basic aerosols deposited in the water, e.g. Cesium and Rubidium compounds. A consistent model requires a mass balance of these compounds in the pool, thus effectively coupling the pool scrubbing phenomena of aerosols and gaseous Iodine species. Since the water pool conditions are also affected by drainage flow of condensate water from different regions in the containment, and desorption of dissolved gases on the pool surface is determined by the gas concentrations above the pool, some basic limitations of specialized pool scrubbing codes are given. The paper draws conclusions about the necessity of coupling between containment thermal-hydraulics and pool scrubbing models, and proposes ways of further simulation model development in order to improve source term predictions. (author) 2 tabs., refs.

  5. Pool scrubbing models for iodine components

    International Nuclear Information System (INIS)

    Fischer, K.

    1996-01-01

    Pool scrubbing is an important mechanism to retain radioactive fission products from being carried into the containment atmosphere or into the secondary piping system. A number of models and computer codes has been developed to predict the retention of aerosols and fission product vapours that are released from the core and injected into water pools of BWR and PWR type reactors during severe accidents. Important codes in this field are BUSCA, SPARC and SUPRA. The present paper summarizes the models for scrubbing of gaseous Iodine components in these codes, discusses the experimental validation, and gives an assessment of the state of knowledge reached and the open questions which persist. The retention of gaseous Iodine components is modelled by the various codes in a very heterogeneous manner. Differences show up in the chemical species considered, the treatment of mass transfer boundary layers on the gaseous and liquid sides, the gas-liquid interface geometry, calculation of equilibrium concentrations and numerical procedures. Especially important is the determination of the pool water pH value. This value is affected by basic aerosols deposited in the water, e.g. Cesium and Rubidium compounds. A consistent model requires a mass balance of these compounds in the pool, thus effectively coupling the pool scrubbing phenomena of aerosols and gaseous Iodine species. Since the water pool conditions are also affected by drainage flow of condensate water from different regions in the containment, and desorption of dissolved gases on the pool surface is determined by the gas concentrations above the pool, some basic limitations of specialized pool scrubbing codes are given. The paper draws conclusions about the necessity of coupling between containment thermal-hydraulics and pool scrubbing models, and proposes ways of further simulation model development in order to improve source term predictions. (author) 2 tabs., refs

  6. Computational simulation of the natural circulation occurring in an experimental test section of a pool type research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, Francisco R.T. do; Lima Junior, Carlos A.S.; Oliveira, Andre F.S. de; Affonso, Renato R.W.; Faccini, Jose L.H.; Moreira, Maria L., E-mail: rogerio.tdn@gmail.com, E-mail: souzalima_ca@ien.gov.br, E-mail: oliveira.afelipe@gmail.com, E-mail: raoniwa@yahoo.com.br, E-mail: faccini@ien.gov.br, E-mail: malu@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    The present work presents a computational simulation of the natural circulation phenomenon developing in an experimental test section of a pool type research reactor. The test section has been designed using a reduced scale in height 1:4.7 in relation to a pool type 30 MW research reactor prototype. It comprises a cylindrical vessel, which is opened to atmosphere, and representing the reactor pool; a natural circulation pipe, a lower plenum, and a heater containing electrical resistors in rectangular plate format, which represents the fuel elements, with a chimney positioned on the top of the resistor assembly. In the computational simulation, it was used a commercial CFD software, without any turbulence model. Besides, in the presence of the natural circulation, a laminar flow has been assumed and the equations of the mass conservation, momentum and energy were solved by the finite element method. In addition, the results of the simulation are presented in terms of velocities and temperatures differences, respectively: at inlet and outlet of the heater and of the natural circulation pipe. (author)

  7. Computational simulation of the natural circulation occurring in an experimental test section of a pool type research reactor

    International Nuclear Information System (INIS)

    Nascimento, Francisco R.T. do; Lima Junior, Carlos A.S.; Oliveira, Andre F.S. de; Affonso, Renato R.W.; Faccini, Jose L.H.; Moreira, Maria L.

    2015-01-01

    The present work presents a computational simulation of the natural circulation phenomenon developing in an experimental test section of a pool type research reactor. The test section has been designed using a reduced scale in height 1:4.7 in relation to a pool type 30 MW research reactor prototype. It comprises a cylindrical vessel, which is opened to atmosphere, and representing the reactor pool; a natural circulation pipe, a lower plenum, and a heater containing electrical resistors in rectangular plate format, which represents the fuel elements, with a chimney positioned on the top of the resistor assembly. In the computational simulation, it was used a commercial CFD software, without any turbulence model. Besides, in the presence of the natural circulation, a laminar flow has been assumed and the equations of the mass conservation, momentum and energy were solved by the finite element method. In addition, the results of the simulation are presented in terms of velocities and temperatures differences, respectively: at inlet and outlet of the heater and of the natural circulation pipe. (author)

  8. Stepwise Swelling of a Thin Film of Lamellae-Forming Poly(styrene-b-butadiene) in Cyclohexane Vapor

    DEFF Research Database (Denmark)

    Di, Zhenyu; Posselt, Dorthe; Smilgies, Detlef-M.

    2012-01-01

    We investigated the swelling of a thin film of lamellae-forming poly(styrene-b-butadiene) in cyclohexane vapor. The vapor pressure and thus the degree of swelling of the film are increased in a stepwise manner using a custom-built sample cell. The resulting structural changes during and after each...

  9. Self-formed waterfall plunge pools in homogeneous rock

    Science.gov (United States)

    Scheingross, Joel S.; Lo, Daniel Y.; Lamb, Michael P.

    2017-01-01

    Waterfalls are ubiquitous, and their upstream propagation can set the pace of landscape evolution, yet no experimental studies have examined waterfall plunge pool erosion in homogeneous rock. We performed laboratory experiments, using synthetic foam as a bedrock simulant, to produce self-formed waterfall plunge pools via particle impact abrasion. Plunge pool vertical incision exceeded lateral erosion by approximately tenfold until pools deepened to the point that the supplied sediment could not be evacuated and deposition armored the pool bedrock floor. Lateral erosion of plunge pool sidewalls continued after sediment deposition, but primarily at the downstream pool wall, which might lead to undermining of the plunge pool lip, sediment evacuation, and continued vertical pool floor incision in natural streams. Undercutting of the upstream pool wall was absent, and our results suggest that vertical drilling of successive plunge pools is a more efficient waterfall retreat mechanism than the classic model of headwall undercutting and collapse in homogeneous rock.

  10. Some aspects of in-pile swelling of fissile materials, 1. part: non-alloyed α uranium

    International Nuclear Information System (INIS)

    Mikailoff, H.

    1964-01-01

    An examination has been carried out of non-alloyed uranium samples, having various structural states, cold-worked and recrystallized, as-cast and β-treated, and irradiated at temperatures of between 450 and 600 C and with burn-ups from 1300 to 5500 MW days/metric ton. These samples swelled because of precipitation of the fission gases the porosity thus produced has a morphology depending mainly on the type of deformation to which the metal has been subjected and which is due to in-pile growth. The most homogeneous distribution of pores, and thus that leading to the minimum swelling, is only observed in the material having a marked [010] texture in which the growth and perhaps the thermal cycling introduce little or no strain. For other materials the deformation /swelling association causes a more rapid destruction of the samples either by cracking when the deformation is due to twinning, or by pronounced swelling localized in the bands when deformation is due to slipping. Finally the fission-gas precipitation considerably facilitates, above 500 C, the germination and growth of the intergranular cracks which can then develop at low stresses. (author) [fr

  11. Drainage and Landscape Evolution in the Bighorn Basin Accompanying Advection of the Yellowstone Hotspot Swell Through North America

    Science.gov (United States)

    Guerrero, E. F.; Meigs, A.

    2012-12-01

    Mantle plumes have been recognized to express themselves on the surface as long wavelength and low amplitude topographic swells. These swells are measured as positive geoid anomalies and include shorter wavelength topographic features such as volcanic edifices and pre-exisitng topography. Advection of the topographic swell is expected as the lithosphere passes over the plume uplift source. The hot spot swell occurs in the landscape as transient signal that is expressed with waxing and waning topography. Waxing topography occurs at the leading edge of the swell and is expressed as an increase in rock uplift that is preserved by rivers and landscapes. Advection of topography predicts a shift in a basin from deposition to incision, an increase in convexity of a transverse river's long profile and a lateral river migration in the direction of advection. The Yellowstone region has a strong positive geoid anomaly and the volcanic signal, which have been interpreted as the longer and shorter wavelength topographic expressions of the hot spot. These expressions of the hot spot developed in a part of North America with a compounded deformation and topographic history. Previous studies of the Yellowstone topographic swell have concentrated on the waning or trailing signal preserved in the Snake River Plain. Our project revisits the classic geomorphology study area in the Bighorn Basin of Wyoming and Montana, which is in leading edge of the swell. Present models identify the swell as having a 400 km in diameter and that it is centered on the Yellowstone caldera. If we assume advection to occur in concert with the caldera eruptive track, the Yellowstone swell has migrated to the northeast at a rate of 3 cm yr-1 and began acting on the Bighorn Basin's landscape between 3 and 2 Ma. The Bighorn Basin has an established history of a basin-wide switch from deposition to incision during the late Pliocene, yet the age control on the erosional evolution of the region is relative. This

  12. Modeling the Impacts of Suspended Sediment Concentration and Current Velocity on Submersed Vegetation in an Illinois River Pool, USA

    National Research Council Canada - National Science Library

    Best, Elly

    2004-01-01

    This technical note uses a modeling approach to examine the impacts of suspended sediment concentrations and current velocity on the persistence of submersed macrophytes in a shallow aquatic system...

  13. Patent pools: Intellectual property rights and competition.

    NARCIS (Netherlands)

    Rodriguez, V.F.

    2010-01-01

    Patent pools do not correct all problems associated with patent thickets. In this respect, patent pools might not stop the outsider problem from striking pools. Moreover, patent pools can be expensive to negotiate, can exclude patent holders with smaller numbers of patents or enable a group of major

  14. Cell swelling and glycogen metabolism in hepatocytes from fasted rats

    NARCIS (Netherlands)

    Gustafson, L. A.; Jumelle-Laclau, M. N.; van Woerkom, G. M.; van Kuilenburg, A. B.; Meijer, A. J.

    1997-01-01

    Cell swelling is known to increase net glycogen production from glucose in hepatocytes from fasted rats by activating glycogen synthase. Since both active glycogen synthase and phosphorylase are present in hepatocytes, suppression of flux through phosphorylase may also contribute to the net increase

  15. Mechanical interaction buffer/backfill. Finite element calculations of the upward swelling of the buffer against both dry and saturated backfill

    Energy Technology Data Exchange (ETDEWEB)

    Boergesson, Lennart (Clay Technology AB, Lund (Sweden)); Hernelind, Jan (5T-Engineering AB, Vaesteraas (Sweden))

    2009-10-15

    The mechanical interaction between the buffer material in the deposition hole and the backfill material in the deposition tunnel is an important process in the safety assessment since the primary function of the backfill is to keep the buffer in place and not allow it to expand too much and thereby loose too much of its density and barrier properties. In order to study the upwards swelling of the buffer and the subsequent density reduction a number of finite element calculations have been performed. The calculations have been done with the FE-program Abaqus with 3D-models of a deposition hole and the deposition tunnel. In order to refine the modelling only the two extreme cases of completely un-wetted (dry) and completely water saturated (wet) backfill have been modelled. For the wet case the influence of different factors has been studied while only one calculation of the dry case has been done. The calculated upwards swelling of the buffer varied between 2 and 15 cm for the different wet cases while it was about 10 cm for the dry case. In the wet reference case the E-modulus of the block and pellets fillings was 50 MPa and 3.24 MPa respectively, the friction angle between the buffer and the rock and canister was 8.7 deg and there were no swelling pressure from the backfill. There is a strong influence of the friction angle on both the upwards swelling and the canister heave. The friction is important for preventing especially canister displacements. The unrealistic case of no friction yielded strong unacceptable influence on the buffer with an upwards swelling of 15 cm and a strong heave of 5 cm of the canister. The influence of the backfill stiffness is as expected strong. Both buffer swelling and canister heave are twice as large at the E-modulus E = 25 MPa than at the E-modulus E = 100 MPa. The influence of the stiffness of the pellets filling is not strong since there are no pellets on the floor in the model used. The influence of the swelling pressure of the

  16. Mechanical interaction buffer/backfill. Finite element calculations of the upward swelling of the buffer against both dry and saturated backfill

    International Nuclear Information System (INIS)

    Boergesson, Lennart; Hernelind, Jan

    2009-10-01

    The mechanical interaction between the buffer material in the deposition hole and the backfill material in the deposition tunnel is an important process in the safety assessment since the primary function of the backfill is to keep the buffer in place and not allow it to expand too much and thereby loose too much of its density and barrier properties. In order to study the upwards swelling of the buffer and the subsequent density reduction a number of finite element calculations have been performed. The calculations have been done with the FE-program Abaqus with 3D-models of a deposition hole and the deposition tunnel. In order to refine the modelling only the two extreme cases of completely un-wetted (dry) and completely water saturated (wet) backfill have been modelled. For the wet case the influence of different factors has been studied while only one calculation of the dry case has been done. The calculated upwards swelling of the buffer varied between 2 and 15 cm for the different wet cases while it was about 10 cm for the dry case. In the wet reference case the E-modulus of the block and pellets fillings was 50 MPa and 3.24 MPa respectively, the friction angle between the buffer and the rock and canister was 8.7 deg and there were no swelling pressure from the backfill. There is a strong influence of the friction angle on both the upwards swelling and the canister heave. The friction is important for preventing especially canister displacements. The unrealistic case of no friction yielded strong unacceptable influence on the buffer with an upwards swelling of 15 cm and a strong heave of 5 cm of the canister. The influence of the backfill stiffness is as expected strong. Both buffer swelling and canister heave are twice as large at the E-modulus E = 25 MPa than at the E-modulus E = 100 MPa. The influence of the stiffness of the pellets filling is not strong since there are no pellets on the floor in the model used. The influence of the swelling pressure of the

  17. Hawaiian volcanic propagation and Hawaiian swell asymmetry : evidence of northwestward flow of the deep upper mantle

    NARCIS (Netherlands)

    Cox, RT

    1999-01-01

    Bathymetry and the geoid anomaly of the northern flank of the Hawaiian swell is broader and higher than the southern flank, and it is characterized by higher heat flow than the axis or southern flank. It is here proposed that the northern flank of the Hawaiian swell has been augmented by heat

  18. Transitory spinal cord swelling in a 6-year-old boy with Guillain-Barre syndrome

    International Nuclear Information System (INIS)

    Delhaas, T.; Kamphuis, D.J.; Witkamp, T.D.

    1998-01-01

    A 6-year-old boy developed progressive motor weakness and areflexia. The clinical picture, combined with electrophysiological findings, indicated a diagnosis of Guillain-Barre syndrome (GBS). MRI on admission revealed spinal cord swelling and increased signal intensity within the cord. It is concluded that, since a degree of central nervous system involvement can occasionally be part of the spectrum of GBS, swelling of the spinal cord without contrast enhancement does not exclude a diagnosis of GBS. (orig.)

  19. A study on burning behavior and convective flows in Methanol pool fires bound by ice

    DEFF Research Database (Denmark)

    Farahani, Hamed Farmahini; Jomaas, Grunde; Rangwala, Ali S.

    2017-01-01

    conditions to analyze burning parameters of methanol, 2- in a square glass tray with outside dimensions of 10 × 10 cm and a depth of 5 cm to obtain flow field of methanol pool with a two-dimensional PIV (Particle Image Velocimetry) system. The results of the experiments of the first part show the cold...... of the cavity. The analysis of the results obtained by the PIV system showed the velocity magnitudes and flow patterns in the liquid-phase of icy methanol fire significantly change over the course of burning. In the instants after ignition a horizontal flow induced by Marangoni near the surface was observed......An experimental study on methanol pool fires bound by ice was carried to research the burning behavior and flow field (within the liquid-phase) of methanol. The experiments were conducted in two parts: 1- in a cylindrical ice cavity/pan (10.2 cm diameter and 6 cm depth) at three different...

  20. Simulation of high fluence swelling behavior in technological materials

    International Nuclear Information System (INIS)

    Garner, F.A.; Powell, R.W.; Diamond, S.; Lauritzen, T.; Rowcliffe, A.F.; Sprague, J.A.; Keefer, D.

    1977-06-01

    The U.S. Breeder Reactor Program is employing charged particle irradiation experiments at accelerated displacement rates to simulate neutron-induced microstructural changes in materials of technological interest. Applications of the simulation technique range from the study of fundamental microstructural mechanisms to the development of predictions of the high fluence swelling behavior of candidate alloys for breeder reactor ducts and fuel cladding. An exact equivalence probably cannot be established between all facets of the microstructural evolution which occurs in the disparate charged-particle and neutron environments. To aid in the correlation of data developed in the two environments an assessment has been made of the factors influencing the simulation process. A series of intercorrelation programs and analysis activities have been conducted to identify and explore the relevant phenomena. The factors found to exert substantial influence on the correlation process fall into two categories, one which deals with those variables which are atypical of the neutron environment and one which deals with the additional factors which arise due to the large differences in displacement rate of the two irradiation environments. While the various simulation techniques have been invaluable in determining the basic mechanisms and parametric dependencies of swelling, the potential of these tools in the confident prediction of swelling at high neutron fluence has yet to be realized. The basic problem lies in the inability of the simulation technique to reproduce the early microstructural development in the period that precedes and encompasses the incubation of voids. The concepts of temperature shift and dose equivalency have also been found to be more complicated than previously imagined. Preconditioning of metals in a neutron environment prior to simulation testing is now being employed in order to provide more appropriate starting microstructures