WorldWideScience

Sample records for polyvinylidene fluoride-based polymeric

  1. Preparation and characterization of poly(vinyl sulfone)- and poly(vinylidene fluoride)-based electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Choe, H.S.; Giaccai, J.; Alamgir, M.; Abraham, K.M. [EIC Labs., Inc., Norwood, MA (United States)

    1995-10-01

    A novel group of polymer electrolytes based on poly(vinyl sulfone) (PVS) and poly(vinylidene fluoride) (PVdF) polymers, plasticized with highly conductive solutions of LiClO{sub 4}, LiN(CF{sub 3}SO{sub 2}){sub 2} or LiAsF{sub 6} dissolved in ethylene carbonate, propylene carbonate, sulfolane, or mixtures thereof, was prepared via in situ photopolymerization and solution casting, respectively. The polymer electrolytes were characterized from conductivity and cyclic voltammetry data. It was found that solutions of Li salts in the vinyl sulfone monomer were highly conductive at room temperature with conductivities of 0.6 to 1.3 x 10{sup -3} {Omega}{sup -1}cm{sup -1} at 30{sup o}C, but the conductivities decreased by about 10{sup 3} times on polymerizing. Conversely, the conductivities increased by about 10{sup 2} to 10{sup 4} times on incorporating plasticizing solvents into the solid polymer electrolytes, suggesting that ionic mobility is the primary factor affecting the conductivities of solid polymer electrolytes. The highest conductivity exhibited by PVS-based electrolyte was 3.74 x 10{sup -4} {Omega}{sup -1}cm{sup -1} and that by PVdF-based electrolyte was 1.74 x 10{sup -3} {Omega}{sup -1}cm{sup -1}, at 30{sup o}C. The PVS-based electrolytes were found to be stable to oxidation up to potentials ranging between 4.5 and 4.8 V, while the stable potential limits for PVdF-based electrolytes were between 3.9 and 4.3 V vs. Li{sup +}/Li. (author)

  2. “Self-Peel-Off” Transfer Produces Ultrathin Polyvinylidene-Fluoride-Based Flexible Nanodevices

    KAUST Repository

    Tai, Yanlong; Lubineau, Gilles

    2017-01-01

    Here, a new strategy, self-peel-off transfer, for the preparation of ultrathin flexible nanodevices made from polyvinylidene-fluoride (PVDF) is reported. In this process, a functional pattern of nanoparticles is transferred via peeling from a

  3. A Novel Poly(vinylidene fluoride)-Based 4-Miktoarm Star Terpolymer: Synthesis and Self-Assembly

    KAUST Repository

    Patil, Yogesh Raghunath; Bilalis, Panagiotis; Polymeropoulos, George; Almahdali, Sarah; Hadjichristidis, Nikolaos; Rodionov, Valentin

    2018-01-01

    A well-defined amphiphilic miktoarm polymer incorporating poly(vinylidene fluoride) (PVDF), polystyrene (PS), and poly(ethylene glycol) (PEG) blocks was synthesized via a combination of atom-transfer radical polymerization (ATRP), iodine transfer radical polymerization (ITP), and copper-catalyzed azide-alkyne cycloaddition (CuAAC). Morphology and self-assembly of this star polymer were examined in organic solvents and in water. The aggregates formed in water were found to possess unusual frustrated topology due to immiscibility of PS and PVDF. The polymer was evaluated for transport of small hydrophobic molecules in water.

  4. A Novel Poly(vinylidene fluoride)-Based 4-Miktoarm Star Terpolymer: Synthesis and Self-Assembly

    KAUST Repository

    Patil, Yogesh Raghunath

    2018-03-15

    A well-defined amphiphilic miktoarm polymer incorporating poly(vinylidene fluoride) (PVDF), polystyrene (PS), and poly(ethylene glycol) (PEG) blocks was synthesized via a combination of atom-transfer radical polymerization (ATRP), iodine transfer radical polymerization (ITP), and copper-catalyzed azide-alkyne cycloaddition (CuAAC). Morphology and self-assembly of this star polymer were examined in organic solvents and in water. The aggregates formed in water were found to possess unusual frustrated topology due to immiscibility of PS and PVDF. The polymer was evaluated for transport of small hydrophobic molecules in water.

  5. “Self-Peel-Off” Transfer Produces Ultrathin Polyvinylidene-Fluoride-Based Flexible Nanodevices

    KAUST Repository

    Tai, Yanlong

    2017-02-23

    Here, a new strategy, self-peel-off transfer, for the preparation of ultrathin flexible nanodevices made from polyvinylidene-fluoride (PVDF) is reported. In this process, a functional pattern of nanoparticles is transferred via peeling from a temporary substrate to the final PVDF film. This peeling process takes advantage of the differences in the work of adhesion between the various layers (the PVDF layer, the nanoparticle-pattern layer and the substrate layer) and of the high stresses generated by the differential thermal expansion of the layers. The work of adhesion is mainly guided by the basic physical/chemical properties of these layers and is highly sensitive to variations in temperature and moisture in the environment. The peeling technique is tested on a variety of PVDF-based functional films using gold/palladium nanoparticles, carbon nanotubes, graphene oxide, and lithium iron phosphate. Several PVDF-based flexible nanodevices are prepared, including a single-sided wireless flexible humidity sensor in which PVDF is used as the substrate and a double-sided flexible capacitor in which PVDF is used as the ferroelectric layer and the carrier layer. Results show that the nanodevices perform with high repeatability and stability. Self-peel-off transfer is a viable preparation strategy for the design and fabrication of flexible, ultrathin, and light-weight nanodevices.

  6. Phononic band gap and wave propagation on polyvinylidene fluoride-based acoustic metamaterials

    Directory of Open Access Journals (Sweden)

    Oral Oltulu

    2016-12-01

    Full Text Available In the present work, the acoustic band structure of a two-dimensional phononic crystal (PC containing an organic ferroelectric (PVDF-polyvinylidene fluoride and topological insulator (SnTe was investigated by the plane-wave-expansion (PWE method. Two-dimensional PC with square lattices composed of SnTe cylindrical rods embedded in the PVDF matrix is studied to find the allowed and stop bands for the waves of certain energy. Phononic band diagram ω = ω(k for a 2D PC, in which non-dimensional frequencies ωa/2πc (c-velocity of wave were plotted vs. the wavevector k along the Г–X–M–Г path in the square Brillouin zone shows five stop bands in the frequency range between 10 and 110 kHz. The ferroelectric properties of PVDF and the unusual properties of SnTe as a topological material give us the ability to control the wave propagation through the PC over a wide frequency range of 103–106 Hz. SnTe is a discrete component that allows conducting electricity on its surface but shows insulator properties through its bulk volume. Tin telluride is considered as an acoustic topological insulator as the extension of topological insulators into the field of “topological phononics”.

  7. Poly(vinylidene fluoride)-based ion track membranes with different pore diameters and shapes. SEM observations and conductometric analysis

    International Nuclear Information System (INIS)

    Nuryanthi, Nunung; Yamaki, Tetsuya; Koshikawa, Hiroshi; Asano, Masaharu; Enomoto, Kazuyuki; Sawada, Shin-ichi; Maekawa, Yasunari; Voss, Kay-Obbe; Trautmann, Christina; Neumann, Reinhard

    2010-01-01

    Poly(vinylidene fluoride) (PVDF) membranes with conical and cylindrical nanopores were prepared in a controlled manner by the ion-track technique, which involved heavy-ion beam irradiation and subsequent alkaline etching. The etching behavior mainly depended on the energy deposition of the ion beams, and thus its depth distribution, estimated by theoretical simulation, was successfully applied to control the shapes and diameters of the etched pores. Scanning electron microscopy (SEM) and electrolytic conductometry provided an insight into the critical experimental parameters. Interestingly, applying a higher voltage to the conductometry cell promoted track etching up to breakthrough probably because electrophoretic migration of the dissolved products occurred out of each pore. (author)

  8. Enhanced electric polarization and breakdown strength in the all-organic sandwich-structured poly(vinylidene fluoride-based dielectric film for high energy density capacitor

    Directory of Open Access Journals (Sweden)

    Yue Zhang

    2017-07-01

    Full Text Available It is essential to develop the dielectric energy storage capacitor for the modern electrical and electronic equipment. Here, the all-organic sandwich-structured composite with superior breakdown strength and delayed saturation polarization is presented. Furthermore, the energy storage characteristics of the composite are enhanced by the poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene fiber and the redistribution of local electric field. The dielectric permittivity of composite increases to ∼16, and the discharged energy density is high to ∼8.7 J/cm3 at 360 kV/mm, and the breakdown strength is up to ∼408 kV/mm. The excellent performance of the composite broadens the application in the field of power electronics industry.

  9. Significantly Enhanced Dielectric Performances and High Thermal Conductivity in Poly(vinylidene fluoride)-Based Composites Enabled by SiC@SiO2 Core-Shell Whiskers Alignment.

    Science.gov (United States)

    He, Dalong; Wang, Yao; Song, Silong; Liu, Song; Deng, Yuan

    2017-12-27

    Design of composites with ordered fillers arrangement results in anisotropic performances with greatly enhanced properties along a specific direction, which is a powerful tool to optimize physical properties of composites. Well-aligned core-shell SiC@SiO 2 whiskers in poly(vinylidene fluoride) (PVDF) matrix has been achieved via a modified spinning approach. Because of the high aspect ratio of SiC whiskers, strong anisotropy and significant enhancement in dielectric constant were observed with permittivity 854 along the parallel direction versus 71 along the perpendicular direction at 20 vol % SiC@SiO 2 loading, while little increase in dielectric loss was found due to the highly insulating SiO 2 shell. The anisotropic dielectric behavior of the composite is perfectly understood macroscopically to have originated from anisotropic intensity of interfacial polarization based on an equivalent circuit model of two parallel RC circuits connected in series. Furthermore, finite element simulations on the three-dimensional distribution of local electric field, polarization, and leakage current density in oriented SiC@SiO 2 /PVDF composites under different applied electrical field directions unambiguously revealed that aligned core-shell SiC@SiO 2 whiskers with a high aspect ratio significantly improved dielectric performances. Importantly, the thermal conductivity of the composite was synchronously enhanced over 7 times as compared to that of PVDF matrix along the parallel direction at 20 vol % SiC@SiO 2 whiskers loading. This study highlights an effective strategy to achieve excellent comprehensive properties for high-k dielectrics.

  10. Controlled Grafting of Poly(methyl methacrylate) Brushes on Poly(vinylidene fluoride) Powders by Surface-initiated Atom Transfer Radical Polymerization

    Institute of Scientific and Technical Information of China (English)

    TANG Zhaoqi; LI Wei; LIU Lanqin; HUANG Lei; ZHOU Jin; YU Haiyin

    2009-01-01

    Controlled grafting of well-defined polymer brushes of methyl methacrylate (MMA) on the poly(vinylidene fluoride) (PVDF) powders was carded out by the surface-initiated atom transfer radical polymerization (ATRP). The ATRP initiator was anchored on the PVDF surface by alkaline treatment, followed by UV-induced bromination; then methyl methacrylate (MMA) was grafted onto the brominated PVDF by the ATRP technique. The chemical composition changes of PVDF were characterized by Fourier transform-infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS). FT-IR and XPS results clearly indicated the successful graft of poly(methyl methacrylate) onto the PVDF surface.

  11. Graft polymerization of acrylic acid and methacrylic acid onto poly(vinylidene fluoride) powder in presence of metallic salt and sulfuric acid

    Science.gov (United States)

    Deng, Bo; Yu, Yang; Zhang, Bowu; Yang, Xuanxuan; Li, Linfan; Yu, Ming; Li, Jingye

    2011-02-01

    Poly(vinylidene fluoride) (PVDF) powder was grafted with acrylic acid (AAc) or methacrylic acid (MAA) by the pre-irradiation induced graft polymerization technique. The presence of graft chains was proven by FT-IR spectroscopy. The degree of grafting (DG) was calculated by the acid-base back titration method. The synergistic effect of acid and Mohr's salt on the grafting kinetics was examined. The results indicated that adding sulfuric acid and Mohr's salt simultaneously in AAc or MAA solutions led to a strong enhancement in the degree of grafting. The grafted PVDF powder was cast into microfiltration (MF) membranes using the phase inversion method and some properties of the obtained MF membranes were characterized.

  12. Graft polymerization of acrylic acid and methacrylic acid onto poly(vinylidene fluoride) powder in presence of metallic salt and sulfuric acid

    Energy Technology Data Exchange (ETDEWEB)

    Deng Bo [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, No. 2019, Jialuo Road, Jiading Dist., 201800 Shanghai (China); Yu Yang; Zhang Bowu; Yang Xuanxuan [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, No. 2019, Jialuo Road, Jiading Dist., 201800 Shanghai (China); Graduate University of Chinese Academy of Sciences, No. 19, Yuquan Road, Shijingshan Dist., 100049 Beijing (China); Li Linfan; Yu Ming [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, No. 2019, Jialuo Road, Jiading Dist., 201800 Shanghai (China); Li Jingye, E-mail: jingyeli@sinap.ac.c [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, No. 2019, Jialuo Road, Jiading Dist., 201800 Shanghai (China)

    2011-02-15

    Poly(vinylidene fluoride) (PVDF) powder was grafted with acrylic acid (AAc) or methacrylic acid (MAA) by the pre-irradiation induced graft polymerization technique. The presence of graft chains was proven by FT-IR spectroscopy. The degree of grafting (DG) was calculated by the acid-base back titration method. The synergistic effect of acid and Mohr's salt on the grafting kinetics was examined. The results indicated that adding sulfuric acid and Mohr's salt simultaneously in AAc or MAA solutions led to a strong enhancement in the degree of grafting. The grafted PVDF powder was cast into microfiltration (MF) membranes using the phase inversion method and some properties of the obtained MF membranes were characterized.

  13. Graft polymerization of acrylic acid and methacrylic acid onto poly(vinylidene fluoride) powder in presence of metallic salt and sulfuric acid

    International Nuclear Information System (INIS)

    Deng Bo; Yu Yang; Zhang Bowu; Yang Xuanxuan; Li Linfan; Yu Ming; Li Jingye

    2011-01-01

    Poly(vinylidene fluoride) (PVDF) powder was grafted with acrylic acid (AAc) or methacrylic acid (MAA) by the pre-irradiation induced graft polymerization technique. The presence of graft chains was proven by FT-IR spectroscopy. The degree of grafting (DG) was calculated by the acid-base back titration method. The synergistic effect of acid and Mohr's salt on the grafting kinetics was examined. The results indicated that adding sulfuric acid and Mohr's salt simultaneously in AAc or MAA solutions led to a strong enhancement in the degree of grafting. The grafted PVDF powder was cast into microfiltration (MF) membranes using the phase inversion method and some properties of the obtained MF membranes were characterized.

  14. Zwitterionic sulfobetaine-grafted poly(vinylidene fluoride) membrane surface with stably anti-protein-fouling performance via a two-step surface polymerization

    International Nuclear Information System (INIS)

    Li Qian; Bi Qiuyan; Zhou Bo; Wang Xiaolin

    2012-01-01

    A zwitterionic polymer, poly(3-(methacryloylamino) propyl-dimethyl-(3-sulfopropyl) ammonium hydroxide) (poly(MPDSAH)) was successfully grafted in high density from the surface of poly(vinylidene fluoride) (PVDF) hollow fiber membrane via a two-step polymerization. Poly(2-hydroxyethyl methacrylate) (poly(HEMA)) chains were firstly grafted from outside surface of PVDF membrane through atom transfer radical polymerization (ATRP) to provide the initiation sites for subsequent cerium (Ce (IV))-induced graft copolymerization of polyMPDSAH in the presence of N,N′-ethylene bisacrylamide (EBAA) as a cross-linking agent. Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS) confirmed that the EBAA could stimulate zwitterionic polymers grafting onto the membrane surface. The dense poly(MPDSAH) layers on the PVDF membrane surface were revealed by the scanning electron microscope (SEM). The mechanical property of PVDF membrane was improved by the zwitterionic surface layers. The gravimetry results indicated the grafting amount increased to 520 μg/cm 2 for a copolymerization time of more than 3 h. Static and dynamic water contact angle measurements showed that the surface hydrophilicity of the PVDF membranes was significantly enhanced. As the grafting amount reached 513 μg cm -2 , the value of contact angle dropped to 22.1° and the amount of protein adsorption decreased to zero. The cyclic experiments for BSA solution filtration demonstrated that the extent of protein fouling was significantly reduced and most of the fouling was reversible. The grafted polymer layer on the PVDF membrane showed a good stability during the membrane cleaning process. The experimental results concluded a good prospect in obtaining the sulfobetaine-modified PVDF membranes with high mechanical strength, good anti-protein-fouling performance, and long-term stability via the two-step polymerization.

  15. Zwitterionic sulfobetaine-grafted poly(vinylidene fluoride) membrane surface with stably anti-protein-fouling performance via a two-step surface polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Li Qian; Bi Qiuyan; Zhou Bo [Membrane Technology and Engineering Research Center, Department of Chemical Engineering, Tsinghua University, Beijing 100084 (China); Wang Xiaolin, E-mail: xl-wang@tsinghua.edu.cn [Membrane Technology and Engineering Research Center, Department of Chemical Engineering, Tsinghua University, Beijing 100084 (China)

    2012-03-01

    A zwitterionic polymer, poly(3-(methacryloylamino) propyl-dimethyl-(3-sulfopropyl) ammonium hydroxide) (poly(MPDSAH)) was successfully grafted in high density from the surface of poly(vinylidene fluoride) (PVDF) hollow fiber membrane via a two-step polymerization. Poly(2-hydroxyethyl methacrylate) (poly(HEMA)) chains were firstly grafted from outside surface of PVDF membrane through atom transfer radical polymerization (ATRP) to provide the initiation sites for subsequent cerium (Ce (IV))-induced graft copolymerization of polyMPDSAH in the presence of N,N Prime -ethylene bisacrylamide (EBAA) as a cross-linking agent. Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS) confirmed that the EBAA could stimulate zwitterionic polymers grafting onto the membrane surface. The dense poly(MPDSAH) layers on the PVDF membrane surface were revealed by the scanning electron microscope (SEM). The mechanical property of PVDF membrane was improved by the zwitterionic surface layers. The gravimetry results indicated the grafting amount increased to 520 {mu}g/cm{sup 2} for a copolymerization time of more than 3 h. Static and dynamic water contact angle measurements showed that the surface hydrophilicity of the PVDF membranes was significantly enhanced. As the grafting amount reached 513 {mu}g cm{sup -2}, the value of contact angle dropped to 22.1 Degree-Sign and the amount of protein adsorption decreased to zero. The cyclic experiments for BSA solution filtration demonstrated that the extent of protein fouling was significantly reduced and most of the fouling was reversible. The grafted polymer layer on the PVDF membrane showed a good stability during the membrane cleaning process. The experimental results concluded a good prospect in obtaining the sulfobetaine-modified PVDF membranes with high mechanical strength, good anti-protein-fouling performance, and long-term stability via the two-step polymerization.

  16. Surface modification of poly(vinylidene fluoride) membrane with hydrophilic and anti-fouling performance via a two-step polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Gui-E; Sun, Li; Huang, Hui-Hong; Liu, Yan-Jun [Shanghai Institute of Technology, Shanghai (China); Xu, Zhen-Liang; Yang, Hu [East China University of Science and Technology, Shanghai (China)

    2015-12-15

    The surface modification of poly (vinylidene fluoride) (PVDF) membrane was performed via a two-step polymerization reactions. Poly (acrylic acid) (PAAc) was first grafted onto the membrane surface for the preparation of PVDF-g-PAAc membrane, and then poly (ethylene glycol) 200 (PEG 200) was immobilized on the membrane surface by the esterification reaction for the fabrication of PVDF-g-PEGA membrane. Attenuated total reflectance (ATR) FTIR, X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), and protein adsorption, water flux, water content and dynamic contact angle were conducted to characterize the structures and performance of the resultant PVDF membranes. The experimental results showed that the adsorption of bovine serum albumin (BSA) on the PVDF-g-PEGA membrane decreased about 80% when the grafting ratio reached to 15 wt%, compared with the pristine PVDF membrane. Moreover, the water contact angle of the membrane dropped to 60.5o, while the membrane pore sizes remained little changed.

  17. Preparation and characterization of poly(vinylidene fluoride) based composite electrolytes for electrochemical devices

    International Nuclear Information System (INIS)

    Karabelli, D.; Leprêtre, J.-C.; Cointeaux, L.; Sanchez, J.-Y.

    2013-01-01

    Highlights: • Macroporous PVdF based membranes for electrochemical applications were prepared with support materials. • Woven PET and PA fabrics and non-woven cellulose paper are used as support materials. • Porous structure of PVdF was obtained on the support material. • Interaction between the electrolyte solvent and the composite material played an important role on the mechanical properties. • Compared to the pure PVdF separators, enhanced mechanical strength was obtained for composite separators, without decreasing the ionic conductivity. -- Abstract: PVdF-based separators are very promising materials in electrochemical energy storage systems but they suffer from fairly poor mechanical properties. To overcome this drawback, composite PVdF separators were fabricated and characterized in electrolytes of Li-ion batteries and supercapacitors. Macroporous PVdF composite separators were prepared by phase inversion method using PA and PET, and non-woven cellulose as support layers. Ionic conductivity and thermomechanical analyses were performed using electrolytes of Li-ion batteries and supercapacitors. The composite approach allowed a tremendous increase of the mechanical performances of the separator (between 340 and 750 MPa) compared to the unreinforced PVdF separator (56 MPa), without compromising the ionic conductivities (up to 15.6 mS cm −1 )

  18. Advanced fluoride-based materials for energy conversion

    CERN Document Server

    Nakajima, Tsuyoshi

    2015-01-01

    Advanced Fluoride-Based Materials for Energy Conversion provides thorough and applied information on new fluorinated materials for chemical energy devices, exploring the electrochemical properties and behavior of fluorinated materials in lithium ion and sodium ion batteries, fluoropolymers in fuel cells, and fluorinated carbon in capacitors, while also exploring synthesis applications, and both safety and stability issues. As electronic devices, from cell phones to hybrid and electric vehicles, are increasingly common and prevalent in modern lives and require dependable, stable chemical energy devices with high-level functions are becoming increasingly important. As research and development in this area progresses rapidly, fluorine compounds play a critical role in this rapid progression. Fluorine, with its small size and the highest electronegativity, yields stable compounds under various conditions for utilization as electrodes, electrolytes, and membranes in energy devices. The book is an ideal reference f...

  19. Polyvinylidene fluoride film as a capacitor dielectric

    Science.gov (United States)

    Dematos, H. V.

    1981-01-01

    Thin strips of polyvinylidene fluoride film (PVDF) with vacuum deposited electrodes were made into capacitors by conventional winding and fabrication techniques. These devices were used to identify and evaluate the performance characteristics offered by the PVDF in metallized film capacitors. Variations in capacitor parameters with temperature and frequence were evaluated and compared with other dielectric films. Their impact on capacitor applications is discussed.

  20. Effects of configurational changes on molecular dynamics in polyvinylidene fluoride and poly(vinylidene fluoride-trifluoroethylene) ferroelectric polymers

    Energy Technology Data Exchange (ETDEWEB)

    Jalarvo, N., E-mail: jalarvonh@ornl.gov, E-mail: abhijit.pramanick@gmail.com, E-mail: omardiallos@ornl.gov [Jülich Centre for Neutron Science, Forschungszentrum Jülich GmbH, 52428 Jülich (Germany); Chemical and Engineering Materials Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Pramanick, A., E-mail: jalarvonh@ornl.gov, E-mail: abhijit.pramanick@gmail.com, E-mail: omardiallos@ornl.gov [Department of Physics and Materials Science, City University of Hong Kong, Kowloon (Hong Kong); Do, C. [Biology and Soft-Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Diallo, S. O., E-mail: jalarvonh@ornl.gov, E-mail: abhijit.pramanick@gmail.com, E-mail: omardiallos@ornl.gov [Chemical and Engineering Materials Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2015-08-24

    We present a comparative study of proton dynamics in unpoled non-ferroelectric polymer polyvinylidene fluoride (PVDF) and in its trifluoroethylene containing ferroelectric copolymer (with 70/30 molar proportion), using quasi-elastic neutron scattering. The neutron data reveal the existence of two distinct types of molecular motions in the temperature range investigated. The slower motion, which is characterized in details here, is ascribed to protons jump diffusion along the polymeric carbon chains, while the faster motion could be attributed to localized rotational motion of methylene groups. At temperatures below the Curie point (T{sub c} ∼ 385 K) of the composite polymer, the slower diffusive mode experiences longer relaxation times in the ferroelectric blend than in the bare PVDF, although the net corresponding diffusion coefficient remains comparatively the same in both polymers with characteristic activation energy of E{sub A} ≈ 27–33 kJ/mol. This arises because of a temperature dependent jump length r{sub 0}, which we observe to be effectively longer in the copolymer, possibly due to the formation of ordered ferroelectric domains below T{sub c}. Above T{sub c}, there is no appreciable difference in r{sub 0} between the two systems. This observation directly relates the known dependence of T{sub c} on molar ratio to changes in r{sub 0}, providing fundamental insight into the ferroelectric properties of PVDF-based copolymers.

  1. Properties and Applications of the β Phase Poly(vinylidene fluoride

    Directory of Open Access Journals (Sweden)

    Liuxia Ruan

    2018-02-01

    Full Text Available Poly(vinylidene fluoride, PVDF, as one of important polymeric materials with extensively scientific interests and technological applications, shows five crystalline polymorphs with α, β, γ, δ and ε phases obtained by different processing methods. Among them, β phase PVDF presents outstanding electrical characteristics including piezo-, pyro-and ferroelectric properties. These electroactive properties are increasingly important in applications such as energy storage, spin valve devices, biomedicine, sensors and smart scaffolds. This article discusses the basic knowledge and character methods for PVDF fabrication and provides an overview of recent advances on the phase modification and recent applications of the β phase PVDF are reported. This study may provide an insight for the development and utilization for β phase PVDF nanofilms in future electronics.

  2. Preparation of TiO2 hollow fibers using poly(vinylidene fluoride) hollow fiber microfiltration membrane as a template

    International Nuclear Information System (INIS)

    Lu Haiqiang; Zhang Lixiong; Xing Weihong; Wang Huanting; Xu Nanping

    2005-01-01

    TiO 2 hollow fibers were successfully prepared by using poly(vinylidene fluoride) hollow fiber microfiltration membrane as a template. The preparation procedure includes repeated impregnation of the TiO 2 precursor in the pores of the polymeric membrane, and calcination to burn off the template, producing the TiO 2 hollow fibers. The TiO 2 hollow fibers were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). TiO 2 hollow fibers with other structures, such as honeycomb monolith and spring, were also prepared by preshaping the polymeric membranes into the honeycomb structure and spring, respectively. The phase structure of the TiO 2 hollow fibers could be readily adjusted by changing the calcination temperature

  3. Manufacturing of Dysprosium-Iron Alloys by Electrolysis in Fluoride-Based Electrolytes: Oxide Solubility Determinations

    Science.gov (United States)

    Martinez, Ana Maria; Støre, Anne; Osen, Karen Sende

    2018-04-01

    Electrolytic production of light rare earth elements and alloys takes place in a fluoride-based electrolyte using rare earth oxides as raw material. The optimization of this method, mainly in terms of the energy efficiency and environmental impact control, is rather challenging. Anode effects, evolution of fluorine-containing compounds, and side cathode reactions could largely be minimized by a good control of the amount of rare earth oxide species dissolved in the fluoride-based electrolyte and their dissolution rate. The oxide content of the fluoride melts REF3-LiF (RE = Nd, Dy) at different compositions and temperatures were experimentally determined by carbothermal analysis of melt samples. The highest solubility values of oxide species, added as Dy2O3 and Dy2(CO3)3, were obtained to be of ca. 3 wt pct (expressed as Dy2O3) in the case of the equimolar DyF3-LiF melt at 1323 K (1050 °C). The oxide saturation values increased with the amount of REF3 present in the molten bath and the working temperature.

  4. Microporous gel electrolytes based on amphiphilic poly(vinylidene fluoride-co-hexafluoropropylene) for lithium batteries

    International Nuclear Information System (INIS)

    Yu Shicheng; Chen Lie; Chen Yiwang; Tong Yongfen

    2012-01-01

    Poly(vinylidene fluoride-co-hexafluoropropylene) grafted poly(poly(ethylene glycol) methyl ether methacrylate) (PVDF-HFP-g-PPEGMA) is simply prepared by single-step synthesis directly via atom transfer radical polymerization (ATRP) of poly(ethylene glycol) methyl ether methacrylate (PEGMA) from poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP). Thermal, mechanical, swelling and electrochemical properties, as well as microstructures of the prepared polymer electrolytes, are evaluated and the effects of the various contents and average molecular weights of PEGMA on those properties are also been investigated. By phase inversion technique, the copolymer membranes tend to form well-defined microporous morphology with the increase of content and average molecular weight of PEGMA, due to the competition and cooperation between the hydrophilic PEGMA segments and hydrophobic PVDF-HFP. When these membranes are gelled with 1 M LiCF 3 SO 3 in ethylene carbonate (EC)/propylene carbonate (PC) (1:1, v/v), their saturated electrolyte uptakes (up to 323.5%) and ion conductivities (up to 2.01 × 10 -3 S cm -1 ) are dramatically improved with respect to the pristine PVDF-HFP, ascribing to the strong affinity of the hydrophilic PEGMA segments with the electrolytes. All the polymer electrolytes are electrochemically stable up to 4.7 V versus Li/Li + , and show good mechanical properties. Coin cells based on the polymer electrolytes show stable charge-discharge cycles and deliver discharge capacities to LiFePO 4 is up to 156 mAh g -1 .

  5. Elektroaktive polymerer

    DEFF Research Database (Denmark)

    West, K.

    Traditionelt tænker vi på polymerer (plastik) som elektrisk isolerende materialer - det som er udenpå ledningerne. I dag kender vi imidlertid også polymerer med intrinsisk elektrisk ledningsevne, og plast er på vej ind i anvendelser, der tidligereudelukkende var baseret på metaller og uorganiske...... halvledere. Hertil kommer, at en del af de ledende polymerer kan stimuleres til at skifte mellem en ledende og en halvledende tilstand, hvorved de ændret både form og farve. I foredraget gives der enrække eksempler på anvendelse af polymerer som elektriske komponenter - rækkende fra polymer elektronik over...

  6. Effects of Gamma Irradiation on Polyvinylidene Fluoride Thin Films

    Science.gov (United States)

    Madivalappa, Shivaraj; Jali, V. M.

    2018-02-01

    Polyvinylidene fluoride thin films were synthesized by Sol-Gel method with spin rate of 3000 rpm for 30 sec on ITO glass substrates and were annealed at 170 C. The films were irradiated by Gamma radiation with different doses (10, 30, 40 and 50 kGy). XRD and FTIR spectra have been obtained to identify the presence of α / β phases. Mean crystallite size was calculated by Scherer’s equation. Different vibrational bands were identified and percentage of β phase was determined by FTIR analysis. Optical properties like band gap, refractive index, optical activation energy have been determined. Surface morphology and compositions of pristine and gamma irradiated PVDF thin films were confirmed respectively, by SEM and Energy dispersive X-ray analysis. The comparison of the structural and optical optical properties of pristine PVDF polymer film has been made with those of the Gamma irradiated films.

  7. Radiation-induced crosslinking of poly(vinylidene fluoride)

    International Nuclear Information System (INIS)

    Makuuchi, Keizo

    1977-07-01

    The factors influencing radiation-induced crosslinking efficiency of poly(vinylidene fluoride) (PVdF) have been studied. Results of the basic research on irradiation conditions (dose rate and atmosphere) and initial physical properties of PVdF (structure of molecular chain and molecular mobility of chain segment) showed that crosslinking efficiency is raised in irradiation at high temperature above 50 0 C under vacuum in the presence of an absorbent for the evolved hydrogen fluoride. The crosslinking reaction is also accelerated with irregular molecular structure such as head-to-head bond in main chain. High crosslinking efficiency is obtained by addition of a polyfunctional monomer having good solubility with PVdF. Mechanical properties of PVdF, the strength at high temperature near the melting point in particular, are improved by crosslinking in the presence of a polyfunctional monomer. (auth.)

  8. Manufacturing of Dysprosium-Iron Alloys by Electrolysis in Fluoride-Based Electrolytes. Electrolysis in a Laboratory-Scale Cell

    Science.gov (United States)

    Martinez, Ana Maria; Osen, Karen Sende; Støre, Anne; Gudbrandsen, Henrik; Kjos, Ole Sigmund; Solheim, Asbjørn; Wang, Zhaohui; Oury, Alexandre; Namy, Patrick

    2018-04-01

    Electrolytic production of light rare earth elements and rare earth alloys with transition elements takes place in a fluoride-based electrolyte using rare earth oxides as raw material. The optimization of this method, mainly in terms of the energy efficiency and environmental impact control, is rather challenging. Anode effects, evolution of fluorine-containing compounds and side cathode reactions could largely be minimized by good control of the amount of rare earth oxide species dissolved in the fluoride-based electrolyte and their dissolution rate. The Dy2O3 feed rate needed for stable cell operation was studied by following up the anode voltage and gas analysis. On-line analysis of the cell off-gases by FTIR showed that the electrochemical reaction for the formation of Dy-Fe alloy gives mainly CO gas and that CF4 is starting to evolve gradually at anode voltages of ca. 3.25 V. The limiting current density for the discharge of the oxide ions at the graphite anode was in the range of 0.1 to 0.18 A cm-2 at dissolved Dy2O3 contents of ca. 1 wt pct. Modeling of the laboratory cell reactor was also carried out by implementing two models, i.e., an electrical model simulating the current density distribution at the electrodes and a laminal bubbly flow model that explains the electrolyte velocity induced by gas bubble production at the anode.

  9. Influence of temperature on the mechanical behavior of polyvinylidene fluoride

    International Nuclear Information System (INIS)

    Goncalez, Viviane; Pasqualino, Ilson Paranhos; Costa, Marysilvia Ferreira da

    2009-01-01

    Polyvinylidene fluoride (PVDF) is a semicrystalline polymer that presents four crystalline phases being the non polar alpha phase the most common. Due to the very good chemical stability as well a good mechanical properties, PVDF is successfully employed as pressure barrier layers in risers. Meanwhile, its long time behavior in the presence of temperature and in direct contact with fluids is not yet well established. In this work, PVDF stress-strain behavior and stress relaxation with temperature were investigated. It was observed a decrease in elasticity modulus with increasing temperature although the decrease was not linear with temperature increase. The temperature increase also caused the decrease in the relaxation modulus (G(t)). It was also observed that samples strained up to 10% showed a more drastic decrease in modulus compared to samples strained up to 5% regardless the temperature. This behavior was expected and it was attributed to the fact that larger deformation associated to temperature facilitates mobility of the amorphous chains. Through the analysis of x-ray diffraction (XRD) it was observed that the structure was not change after relaxation tests regardless of the test temperature. Experimental results were used to validate the numerical model developed where good correlation with the experimental results were observed. (author)

  10. Gamma irradiation effects on poly(vinylidene fluoride) films

    International Nuclear Information System (INIS)

    Ribeiro, Geise; Zen, Heloisa A.; Geraldes, Adriana N.; Souza, Camila P.; Parra, Duclerc F.; Lima, Luis Filipe C.P.; Lugao, Ademar B.

    2009-01-01

    In this work, the properties of Poly(vinylidene fluoride) PVDF films after exposing to gamma radiation at different doses (5, 10 and 15 kGy) were investigated. PVDF is a semicrystalline polymer that shows good properties in terms of chemical, thermal and electrical stabilities. The gamma radiation is a convenient and effective way of modification perfluorinated and partially fluorinated polymers such as PVDF. The properties of the pristine and irradiated PVDF films were studied by infrared spectroscopy, thermal analysis (TGA and DSC) and mechanical measurements at room temperature and at melting temperature of the PVDF. The infrared spectra of the irradiated PVDF samples do not present significant alterations in the absorption bands at all irradiated doses. The results obtained by thermal analysis indicate that the radiation does not alter significantly the decomposition temperature of the pristine PVDF film. Tensile strength measurements at room temperature before and after exposition to gamma radiation showed decrease of elongation at rupture in relation of pristine PVDF, suggesting that the radiation caused the crosslinking or chain scission of the PVDF film. (author)

  11. Surface zwitterionicalization of poly(vinylidene fluoride) membranes from the entrapped reactive core-shell silica nanoparticles.

    Science.gov (United States)

    Zhu, Li-Jing; Zhu, Li-Ping; Zhang, Pei-Bin; Zhu, Bao-Ku; Xu, You-Yi

    2016-04-15

    We demonstrate the preparation and properties of poly(vinylidene fluoride) (PVDF) filtration membranes modified via surface zwitterionicalization mediated by reactive core-shell silica nanoparticles (SiO2 NPs). The organic/inorganic hybrid SiO2 NPs grafted with poly(methyl meth acrylate)-block-poly(2-dimethylaminoethyl methacrylate) copolymer (PMMA-b-PDMAEMA) shell were prepared by surface-initiated reversible addition fragmentation chain transfer (SI-RAFT) polymerization and then used as a membrane-making additive of PVDF membranes. The PDMAEMA exposed on membrane surface and pore walls were quaternized into zwitterionic poly(sulfobetaine methacrylate) (PSBMA) using 1,3-propane sultone (1,3-PS) as the quaternization agent. The membrane surface chemistry and morphology were analyzed by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM), respectively. The hydrophilicity, permeability and antifouling ability of the investigated membranes were evaluated in detail. It was found that the PSBMA chains brought highly-hydrophilic and strong fouling resistant characteristics to PVDF membranes due to the powerful hydration of zwitterionic surface. The SiO2 cores and PMMA chains in the hybrid NPs play a role of anchors for the linking of PSBMA chains to membrane surface. Compared to the traditional strategies for membrane hydrophilic modification, the developed method in this work combined the advantages of both blending and surface reaction. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Chelating polymeric membranes

    KAUST Repository

    Peinemann, Klaus-Viktor; Villalobos Vazquez de la Parra, Luis Francisco; Hilke, Roland

    2015-01-01

    microporous chelating polymeric membrane. Embodiments include, but are not limited to, microporous chelating polymeric membranes, device comprising the membranes, and methods of using and making the same.

  13. Radiation-induced grafting of styrene onto poly-vinylidene fluoride) film by simultaneous method with two different solvents

    International Nuclear Information System (INIS)

    Ferreira, H.P.; Parra, D.F.; Lugao, A.B.

    2011-01-01

    Complete text of publication follows. Radiation-induced grafting to create membranes with ion exchange capacity in fluorinated polymers has been studied for applications such as fuel cells, filtration and waste treatment and polymeric actuators due to their good physical and chemical properties. In this work, radiation-induced grafting of styrene into poly(vinylidene fluoride) (PVDF) films with 0.125 mm thickness at doses of 1 and 2.5 kGy in the presence of a styrene/N,N- dimethylformamide (DMF) solution (1:1, v/v) and at doses of 20, 40 and 80 kGy in presence of a styrene/toluene solution (1:1, v/v) at dose rate of 5 kGy h-1 was carried out by simultaneous method under nitrogen atmosphere and at room temperature, using gamma-rays form a Co-60. The films were characterized before and after modification by the grafting yield (GY), infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and thermogravimetry (TG/DTG). GY results shows that grafting increases with dose, and it was possible to confirm the grafting of styrene by FT-IR due to the new characteristics peaks and by the TG and DSC due to changes in thermal behavior of the grafted material. Results showed that the system allows the homogeneous grafting of styrene into PVDF using gamma irradiation at doses as low as 1 kGy when DMF is used and heterogeneous grafting when toluene is used, showing the importance of the solvent nature during the simultaneous method.

  14. A two-step annealing process for enhancing the ferroelectric properties of poly(vinylidene fluoride) (PVDF) devices

    KAUST Repository

    Park, Jihoon; Kurra, Narendra; AlMadhoun, M. N.; Odeh, Ihab N.; Alshareef, Husam N.

    2015-01-01

    We report a simple two-step annealing scheme for the fabrication of stable non-volatile memory devices employing poly(vinylidene fluoride) (PVDF) polymer thin-films. The proposed two-step annealing scheme comprises the crystallization

  15. Piezoelectricity and pyroelectricity in polyvinylidene fluoride - Influence of the lattice structure

    Science.gov (United States)

    Purvis, C. K.; Taylor, P. L.

    1983-01-01

    Piezoelectric and pyroelectric responses of beta-phase (Phase I) polyvinylidene fluoride are predicted for a model system of polarizable point dipoles. The model incorporates the influence of the orthorhombic crystal structure by including the dependence of the internal electric field on the lattice parameters. Strong anisotropy in the piezoelectric response under uniaxial stress is predicted as a consequence of the orthorhombic lattice structure. Predictions are found to be in reasonable agreement with room-temperature experimental data.

  16. Positive temperature coefficient of magnetic anisotropy in polyvinylidene fluoride (PVDF)-based magnetic composites

    OpenAIRE

    Liu, Yiwei; Wang, Baomin; Zhan, Qingfeng; Tang, Zhenhua; Yang, Huali; Liu, Gang; Zuo, Zhenghu; Zhang, Xiaoshan; Xie, Yali; Zhu, Xiaojian; Chen, Bin; Wang, Junling; Li, Run-Wei

    2014-01-01

    The magnetic anisotropy is decreased with increasing temperature in normal magnetic materials, which is harmful to the thermal stability of magnetic devices. Here, we report the realization of positive temperature coefficient of magnetic anisotropy in a novel composite combining β-phase polyvinylidene fluoride (PVDF) with magnetostrictive materials (magnetostrictive film/PVDF bilayer structure). We ascribe the enhanced magnetic anisotropy of the magnetic film at elevated temperature to the st...

  17. Thermal Stability and Magnetic Properties of Polyvinylidene Fluoride/Magnetite Nanocomposites

    OpenAIRE

    Ouyang, Zen-Wei; Chen, Erh-Chiang; Wu, Tzong-Ming

    2015-01-01

    This work describes the thermal stability and magnetic properties of polyvinylidene fluoride (PVDF)/magnetite nanocomposites fabricated using the solution mixing technique. The image of transmission electron microscopy for PVDF/magnetite nanocomposites reveals that the 13 nm magnetite nanoparticles are well distributed in PVDF matrix. The electroactive β-phase and piezoelectric responses of PVDF/magnetite nanocomposites are increased as the loading of magnetite nanoparticles increases. The pi...

  18. Does the copolymer poly(vinylidene cyanide-tricyanoethylene) possess piezoelectricity?

    Science.gov (United States)

    Wang, Zhi-Yin; Su, Ke-He; Xu, Qiong

    2012-10-01

    The geometry, energy, internal rotation barrier, dipole moment, and molecular polarizability of the α- and β-chain models of poly(vinylidene cyanide-tricyanoethylene) [P(VDCN-TrCN)] were studied with density functional theory at the B3PW91/6-31G(d) level. The effects of the chain length and the TrCN content on the copolymer chain stability, the chain conformation, and the electrical properties of P(VDCN-TrCN) were examined and compared with those of poly(vinylidene fluoride-trifluoroethylene) and PVDCN to gauge whether P(VDCN-TrCN) would be expected to possess substantial piezoelectricity. The results of this study showed that the stability of the β conformation increases and the energy difference per monomer unit between the β- and α-chains decreases with increasing TrCN. However, introducing TrCN into VDCN will not significantly enhance the radius of curvature of the P(VDCN-TrCN) chains. The average dipole moment per monomer unit in the β-chain is affected by the chain curvature and the TrCN content. The amount of piezoelectricity present in P(VDCN-TrCN) is slightly smaller than that in PVDCN, and is less than that in poly(vinylidene fluoride-trifluoroethylene).

  19. "Click" i polymerer 2

    DEFF Research Database (Denmark)

    Hvilsted, Søren

    2012-01-01

    "Click"-reaktioner til fremstilling af ledende polymerer med funktionelle håndtag og bipolymermaterialer......"Click"-reaktioner til fremstilling af ledende polymerer med funktionelle håndtag og bipolymermaterialer...

  20. Conducting Polymeric Materials

    DEFF Research Database (Denmark)

    Hvilsted, Søren

    2016-01-01

    The overall objective of this collection is to provide the most recent developments within the various areas of conducting polymeric materials. The conductivity of polymeric materials is caused by electrically charged particles, ions, protons and electrons. Materials in which electrons...

  1. Impacts of recessed gate and fluoride-based plasma treatment approaches toward normally-off AlGaN/GaN HEMT.

    Science.gov (United States)

    Heo, Jun-Woo; Kim, Young-Jin; Kim, Hyun-Seok

    2014-12-01

    We report two approaches to fabricating high performance normally-off AIGaN/GaN high-electron mobility transistors (HEMTs). The fabrication techniques employed were based on recessed-metal-insulator-semiconductor (MIS) gate and recessed fluoride-based plasma treatment. They were selectively applied to the area under the gate electrode to deplete the two-dimensional electron gas (2-DEG) density. We found that the recessed gate structure was effective in shifting the threshold voltage by controlling the etching depth of gate region to reduce the AIGaN layer thickness to less than 8 nm. Likewise, the CF4 plasma treatment effectively incorporated negatively charged fluorine ions into the thin AIGaN barrier so that the threshold voltage shifted to higher positive values. In addition to the increased threshold voltage, experimental results showed a maximum drain current and a maximum transconductance of 315 mA/mm and 100 mS/mm, respectively, for the recessed-MIS gate HEMT, and 340 mA/mm and 330 mS/mm, respectively, for the fluoride-based plasma treated HEMT.

  2. Analysis of FT-IR for dosimetric characterization of poly(vinylidene fluoride - hexafluoropropylene) irradiated with high doses of gamma radiation

    International Nuclear Information System (INIS)

    Liz, Otavio Souza Rocha; Medeiros, Adriana de Souza

    2011-01-01

    Polymeric materials when exposed to ionizing radiation undergo changes such as the crosslinking and chain oxidation. Recently, the optical absorption intensities in the ultraviolet visible region (273 nm) due to radio- induction of conjugated C=C bonds in P(VDF-TrFE) copolymers has been successfully used for high dose dosimetry purposes in gamma fields ranging from 0.1 to 200 kGy. In this context, the interest of performing a systematic investigation on another fluorinated copolymer of PVDF, the (Polyvinylidene fluoride - hexa fluoro propylene) [P(VDF- HFP)] has come to light, not only for UV-VIS range but also for the near and medium infrared ranges. In this investigation FTIR and UV-Vis spectra, acquired before and after irradiation, were used to investigate the relationship between optical absorbance and delivered gamma doses ranging from 100 to 3,000 kGy. The results indicate that the absorption band at 1729 cm-1, originated by the chain oxidation through the radioinduction of C=O bonds, presents an unambiguous behavior with the delivered gamma doses in a very large extension, ranging from 0 to 1,000 kGy. This results lead to conclude that P(VDF-HFP) copolymer shows excellent dosimetric properties which make it able to be investigated as a high dose dosimeter

  3. Temperature dependence of working characteristics of piezoelectric sensors based on polyvinylidene fluoride

    Directory of Open Access Journals (Sweden)

    Revenyuk T. A.

    2011-04-01

    Full Text Available It has been found that the piezoelectric sensors produced on the basis of electrified films of polyvinylidene fluoride (PVDF work reliably in the temperature range from –20°C to +80°C. At the operating temperature of 80°C d33 piezocoefficient decreases by 2% during two years that is permissible. At higher temperatures irreversible reduction of the piezocoefficient was observed. The lowest temperature of the working range is close to the glass transition temperature of the amorphous phase of PVDF. Annealing of the films at 80°C ensures stabile characteristics of the sensors within a few years.

  4. Preparation and properties of poly(vinylidene fluoride nanocomposites blended with graphene oxide coated silica hybrids

    Directory of Open Access Journals (Sweden)

    Q. Fu

    2012-04-01

    Full Text Available Graphene oxide coated silica hybirds (SiO2-GO were fabricated through electrostatic assembly in this work, then blended with poly(vinylidene fluoride (PVDF by solution mixing to make PVDF nanocomposites. The interfacial interaction was investigated by scanning electron microscopy (SEM, polarized optical microscopy (POM and Fourier transform infrared spectroscopy (FTIR. The results showed that the interfacial interaction was enhanced by adding of SiO2-GO and strong hydrogen bonds were observed. The as-made nanocomposites were investigated using standard tensile test and dynamic mechanical analysis (DMA measurements, mechanical properties of PVDF with SiO2-GO hybrids showed limited improvement.

  5. Morphology and performance of polyvinylidene fluoride/perfluoro sulphonic acid hollow fiber ultrafiltration blend membranes

    International Nuclear Information System (INIS)

    Yuan, Guo-Lin; Xu, Zhen-Liang; Wei, Yong-Ming; Yu, Li-Yun

    2009-01-01

    Polyvinylidene fluoride-perfluoro sulphonic acid hollow fibre ultrafiltration blend membranes were prepared by wet-spinning method. Polyvinylpyrrolidone and ethanol aqueous solutions were employed as additive and coagulants, respectively. The effect of Polyvinylpyrrolidone concentration in the dopes and ethanol concentration in the coagulants on morphology and performance of Polyvinylidene fluoride -perfluoro sulphonic acid hollow fibre ultrafiltration blend membranes were investigated. Blend membranes were characterized in terms of precipitation kinetics, morphology, thermal property and separation performance. The results showed that the increments of Polyvinylpyrrolidone concentration in the dopes and ethanol concentration in coagulants both resulted in higher pure water permeation flux and worse rejection (R) of bovine serum albumin (with the increment of Polyvinylpyrrolidone concentration from 0 to 5 wt% in the dopes, pure water permeation increased from 41.7 L.m -2 .h -1 to 134 L.m -2 .h -1 and R decreased from 99.8% to 84.4% as well as with the increase in ethanol concentration in coagulants from 0 to 40 wt%, pure water permeation increased from 33.5 L.m -2 .h- 1 to 123 L.m -2 .h -1 and R decreased from 97.7% to 88.7%). However, the proportion of sponge-like structure in the cross-section of membranes decreased with the increasing Polyvinylpyrrolidone concentration in the dopes and the proportion increased with the increased ethanol concentration in the coagulations. In addition, the location of the sponge-like structure in the cross-section of membranes was significantly influenced by ethanol concentrations in the coagulants and differential scanning calorimeter results revealed that the crystallinity (X c ) of the blend membrane was in accordance with the proportion of sponge-like structure. These behaviours were attributed to the different roles of Polyvinylpyrrolidone in the dopes and ethanol in the coagulants, respectively. Polyvinylidene fluoride

  6. Polymerization Using Phosphazene Bases

    KAUST Repository

    Zhao, Junpeng

    2015-09-01

    In the recent rise of metal-free polymerization techniques, organic phosphazene superbases have shown their remarkable strength as promoter/catalyst for the anionic polymerization of various types of monomers. Generally, the complexation of phosphazene base with the counterion (proton or lithium cation) significantly improves the nucleophilicity of the initiator/chain end resulting in highly enhanced polymerization rates, as compared with conventional metalbased initiating systems. In this chapter, the general features of phosphazenepromoted/catalyzed polymerizations and the applications in macromolecular engineering (synthesis of functionalized polymers, block copolymers, and macromolecular architectures) are discussed with challenges and perspectives being pointed out.

  7. Human Mesenchymal Stem Cells Growth and Osteogenic Differentiation on Piezoelectric Poly(vinylidene fluoride Microsphere Substrates

    Directory of Open Access Journals (Sweden)

    R. Sobreiro-Almeida

    2017-11-01

    Full Text Available The aim of this work was to determine the influence of the biomaterial environment on human mesenchymal stem cell (hMSC fate when cultured in supports with varying topography. Poly(vinylidene fluoride (PVDF culture supports were prepared with structures ranging between 2D and 3D, based on PVDF films on which PVDF microspheres were deposited with varying surface density. Maintenance of multipotentiality when cultured in expansion medium was studied by flow cytometry monitoring the expression of characteristic hMSCs markers, and revealed that cells were losing their characteristic surface markers on these supports. Cell morphology was assessed by scanning electron microscopy (SEM. Alkaline phosphatase activity was also assessed after seven days of culture on expansion medium. On the other hand, osteoblastic differentiation was monitored while culturing in osteogenic medium after cells reached confluence. Osteocalcin immunocytochemistry and alizarin red assays were performed. We show that flow cytometry is a suitable technique for the study of the differentiation of hMSC seeded onto biomaterials, giving a quantitative reliable analysis of hMSC-associated markers. We also show that electrosprayed piezoelectric poly(vinylidene fluoride is a suitable support for tissue engineering purposes, as hMSCs can proliferate, be viable and undergo osteogenic differentiation when chemically stimulated.

  8. Applied bioactive polymeric materials

    CERN Document Server

    Carraher, Charles; Foster, Van

    1988-01-01

    The biological and biomedical applications of polymeric materials have increased greatly in the past few years. This book will detail some, but not all, of these recent developments. There would not be enough space in this book to cover, even lightly, all of the major advances that have occurred. Some earlier books and summaries are available by two of this book's Editors (Gebelein & Carraher) and these should be consul ted for additional information. The books are: "Bioactive Polymeric Systems" (Plenum, 1985); "Polymeric Materials In Medication" (Plenum, 1985); "Biological Acti vi ties of Polymers" (American Chemical Society, 1982). Of these three, "Bioacti ve Polymeric Systems" should be the most useful to a person who is new to this field because it only contains review articles written at an introductory level. The present book primarily consists of recent research results and applications, with only a few review or summary articles. Bioactive polymeric materials have existed from the creation of life...

  9. Low temperature internal friction on γ-irradiated polyvinylidene fluoride (PVDF)

    International Nuclear Information System (INIS)

    Callens, A.; Eersels, L.; De Batist, R.

    1978-01-01

    A least-squares fitting of the below room temperature part of the internal friction spectra, obtained by the torsion pendulum technique on as-received and γ-irradiated (up to 1 Grad) strips and fibres of polyvinylidene fluoride by a superposition of single Debye functions, reveals that the spectral component features are determined not only by purely amorphous chain characteristics but also by the dose-dependence of crystallinity. A careful analysis of the relaxation spectra confirms that at least one relaxation effect (approximately 236 K) is created upon irradiation. The analysis of the dose dependence of the characteristics of the β (glass transition; approximately 220 K) and βsub(u) (apparent upper glass transition; approximately 270 K) relaxations, suggests the probable influence of crystallinity on the molecular motion in the amorphous phase. The increase of the intensity of the γ relaxation (approximately 190 K) is related to the irradiation-induced crystallite degradation. (author)

  10. Tapered Fiber Coated with Hydroxyethyl Cellulose/Polyvinylidene Fluoride Composite for Relative Humidity Sensor

    Directory of Open Access Journals (Sweden)

    M. Z. Muhammad

    2013-01-01

    Full Text Available A simple relative humidity (RH sensor is demonstrated using a tapered fiber coated with hydroxyethyl cellulose/polyvinylidene fluoride (HEC/PVDF composite as a probe. This coating acts as an inner cladding whose refractive index decreases with the rise in humidity and thus allows more light to be transmitted in humid state. A difference of up to 0.89 dB of the transmitted optical power is observed when RH changes from 50% to 80% in case of the silica fiber probe. The proposed sensor has a sensitivity of about 0.0228 dB/%RH with a slope linearity of more than 99.91%. In case of the plastic optical fiber (POF probe, the output voltage of the sensor increases linearly with a sensitivity of 0.0231 mV/%RH and a linearity of more than 99.65% as the relative humidity increases from 55% to 80%.

  11. Improved Dielectric Properties of Polyvinylidene Fluoride Nanocomposite Embedded with Poly(vinylpyrrolidone)-Coated Gold Nanoparticles

    KAUST Repository

    Toor, Anju

    2017-01-25

    A novel nanocomposite dielectric was developed by embedding polyvinylpyrrolidone (PVP)-encapsulated gold (Au) nanoparticles in the polyvinylidene fluoride (PVDF) polymer matrix. The surface functionalization of Au nanoparticles with PVP facilitates favorable interaction between the particle and polymer phase, enhancing nanoparticle dispersion. To study the effect of entropic interactions on particle dispersion, nanocomposites with two different particle sizes (5 and 20 nm in diameter) were synthesized and characterized. A uniform particle distribution was observed for nanocomposite films consisting of 5 nm Au particles, in contrast to the film with 20 nm particles. The frequency-dependent dielectric permittivity and the loss tangent were studied for the nanocomposite films. These results showed the effectiveness of PVP ligand in controlling the agglomeration of Au particles in the PVDF matrix. Moreover, the study showed the effect of particle concentration on their spatial distribution in the polymer matrix and the dielectric properties of nanocomposite films.

  12. Structural and Optical Changes of Poly-Vinylidene Fluoride by Electron Irradiation at High Dose Rate

    International Nuclear Information System (INIS)

    Jaleh, B.; Fakhri, P.; Borhani, M.; Habibi, S.; Noroozi, M.

    2012-01-01

    Poly-vinylidene fluoride films were prepared and irradiated by 10MeV electrons at different doses ranging from 50 to 300kGy with a dose rate of 10kGy/s. The FTIR results indicated that no major phase content change was observed. The optical absorption spectra indicated that the electron irradiation results in shifting of the absorption peak, appearance of a new peak and increasing the band gap (Eg). These changes may be due to the breaking of polymer chains and creation of new defects. The X-ray diffraction analysis of samples indicated that the crystallinity did not show any major changes. Concerning the gel fraction measurements, it was observed that gel fraction increases with increasing the dose, where it is an indication of the formation of cross-linked films.

  13. A super hydrophilic modification of poly(vinylidene fluoride) (PVDF) nanofibers: By in situ hydrothermal approach

    Science.gov (United States)

    Sheikh, Faheem A.; Zargar, Mohammad Afzal; Tamboli, Ashif H.; Kim, Hern

    2016-11-01

    Nanofibers fabricated from Poly(vinylidene fluoride) (PVDF) possesses potential applications in the field of filtrations, because of their excellent resistance towards harsh chemicals. However, the hydrophobicity restricts its further application. In this work, we focus on optimal parameters for post-electrospun tethering of Poly(vinyl alcohol) (PVA) as superhydrophilic domain onto each individual PVDF nanofibers by exploiting the in situ hydrothermal approach. The results indicated an increase in nanofiber diameters due to coating of PVA and improved surface wettability of PVDF nanofibers. The tensile tests of nanofibers indicated that mechanical properties of PVDF nanofibers could be sharply tuned from rigid to ductile. Furthermore, the studies strongly suggest that in situ hydrothermal treatment of post-electrospun nanofibers can improve the water contact angle and these nanofibers can be used in varied applications (e.g., in water purification systems).

  14. Stretchable Kirigami Polyvinylidene Difluoride Thin Films for Energy Harvesting: Design, Analysis, and Performance

    Science.gov (United States)

    Hu, Nan; Chen, Dajing; Wang, Dong; Huang, Shicheng; Trase, Ian; Grover, Hannah M.; Yu, Xiaojiao; Zhang, John X. J.; Chen, Zi

    2018-02-01

    Kirigami, a modified form of origami which includes cutting, has been used to improve material stretchability and compliance. However, this technique is, so far, underexplored in patterning piezoelectric materials towards developing efficient and mechanically flexible thin-film energy generators. Motivated by existing kirigami-based applications, we introduce interdigitated cuts to polyvinylidene fluoride (PVDF) films to evaluate the effect on voltage generation and stretchability. Our results from theoretical analysis, numerical simulations, and experimental tests show that kirigami PVDF films exhibit an extended strain range while still maintaining significant voltage generation compared to films without cuts. Various cutting patterns are studied, and it is found that films with denser cuts have a larger voltage output. This kirigami design can enhance the properties of existing piezoelectric materials and help to integrate tunable PVDF generators into biomedical devices.

  15. Doping and band gap control at poly(vinylidene fluoride)/graphene interface

    Science.gov (United States)

    Cai, Jia; Wang, Jian-Lu; Gao, Heng; Tian, Bobo; Gong, Shi-Jing; Duan, Chun-Gang; Chu, Jun-Hao

    2018-05-01

    Using the density-functional first-principles calculations, we investigate the electronic structures of poly(vinylidene fluoride) PVDF/graphene composite systems. The n- and p-doping of graphene can be flexibly switched by reversing the ferroelectric polarization of PVDF, without scarifying the intrinsic π-electron band dispersions of graphene that are usually undermined by chemical doping. The doping degree is also dependent on the thickness of PVDF layers, which will get saturated when PVDF is thick enough. In PVDF/bilayer graphene (BLG) heterostructure, the doping degree directly determines the local energy gap of the charged BLG. The sandwich structure of PVDF/BLG/PVDF can further enhance the local energy gap as well as keep the electric neutrality of BLG, which will be of great application potentials in graphene-based nanoelectronics.

  16. Effect of electron irradiation on poly(vinylidene fluoride-trifluoroethylene) 56/44 mol% copolymers

    International Nuclear Information System (INIS)

    Guo, S S; Zhao, X-Z; Lu, S G; Lau, S T; Chan, H L W

    2004-01-01

    High-energy electron-irradiated poly(vinylidene fluoride-trifluoroethylene) 56/44 mol% copolymers are studied in a broad dose ranging from 0 to 110 Mrad. The experimental results are obtained by differential scanning calorimetry (DSC), x-ray diffraction, dielectric constant, dc conductivity and polarization hysteresis loop based on structural changes and dielectric relaxation behaviour. All the x-ray and DSC results show that both the crystalline and polar ordering decreased after irradiation, indicating a partial recovery from trans-gauche bonds to local trans bonds (polar ordering). The dielectric relaxation peaks, obeying the Vogel-Fulcher Law, indicate that the copolymers have transformed from a normal ferroelectric to a relaxor ferroelectric. It is also found that dc conductivity can be modulated with electron irradiation, as well as the hysteresis loop characteristics

  17. Improved Dielectric Properties of Polyvinylidene Fluoride Nanocomposite Embedded with Poly(vinylpyrrolidone)-Coated Gold Nanoparticles

    KAUST Repository

    Toor, Anju; So, Hongyun; Pisano, Albert P.

    2017-01-01

    A novel nanocomposite dielectric was developed by embedding polyvinylpyrrolidone (PVP)-encapsulated gold (Au) nanoparticles in the polyvinylidene fluoride (PVDF) polymer matrix. The surface functionalization of Au nanoparticles with PVP facilitates favorable interaction between the particle and polymer phase, enhancing nanoparticle dispersion. To study the effect of entropic interactions on particle dispersion, nanocomposites with two different particle sizes (5 and 20 nm in diameter) were synthesized and characterized. A uniform particle distribution was observed for nanocomposite films consisting of 5 nm Au particles, in contrast to the film with 20 nm particles. The frequency-dependent dielectric permittivity and the loss tangent were studied for the nanocomposite films. These results showed the effectiveness of PVP ligand in controlling the agglomeration of Au particles in the PVDF matrix. Moreover, the study showed the effect of particle concentration on their spatial distribution in the polymer matrix and the dielectric properties of nanocomposite films.

  18. Synthesis and crystalline properties of CdS incorporated polyvinylidene fluoride (PVDF) composite film

    Science.gov (United States)

    Patel, Arunendra Kumar; Sunder, Aishwarya; Mishra, Shweta; Bajpai, Rakesh

    2018-05-01

    This paper gives an insight on the synthesis and crystalline properties of Polyvinylidene Fluoride (PVDF) (host matrix) composites impregnated with Cadmium Sulphide (CdS) using Dimethyl formamide (DMF) as the base, prepared by the well known solvent casting technique. The effect of doping concentration of CdS in to the PVDF matrix was studied using X-ray diffraction technique. The structural properties like crystallinity Cr, interplanar distance d, average size of the crystalline region (D), and average inter crystalline separation (R) have been estimated for the developed composite. The crystallinity index, crystallite size and inter crystalline separation is increasing with increase in the concentration of CdS in to the PVDF matrix while the interplanar distance d is decreasing.

  19. Buffer layer investigations on MFIS capacitors consisting of ferroelectric poly[vinylidene fluoride trifluoroethylene

    International Nuclear Information System (INIS)

    Henkel, K; Seime, B; Paloumpa, I; Mueller, K; Schmeisser, D

    2010-01-01

    In this paper we present capacitance-voltage (CV) measurements on metal-ferroelectric-insulator-semiconductor (MFIS) capacitors with poly[vinylidene fluoride trifluoroethylene] (P[VDF/TrFE] as ferroelectric layer and SiO 2 , Al 2 O 3 and HfO 2 as buffering insulator layer. In order to discuss our data in a quantitative manner we perform fits to the data based on a model proposed by Miller and McWorther. The improvement of the polarization values and subsequently its effect on the hysteresis of the CV curve by the successive shrinking of the buffer layer thickness and the following choice of a high-k buffer material is demonstrated. Our data underline that a saturated polarization of P[VDF/TrFE] cannot be controlled with a SiO 2 buffer layer and the insertion of a high-k buffer layer is essential for further improvements of the characteristics of MFIS stacks.

  20. Clay nanocomposites based on poly(vinylidene fluoride-co-hexafluoropropylene): Structure and properties

    KAUST Repository

    Kelarakis, Antonios

    2010-01-01

    Structure-properties relationships in poly(vinylidene fluoride-co-hexafluoropropylene), PVDF-HFP, clay nanocomposites are reported for the first time. Addition of organically modified clays to PVDF-HFP promotes an α to β transformation of the polymer crystals. The degree of transformation depends on the nature of the clay surface modifier and scales with the strength of the interactions between the clay and the polymer. The nanocomposites exhibit significant increases in elongation to failure compared to the neat copolymer. In addition, their dielectric permittivity is higher over a wide temperature range. Their mechanical and dielectric properties scale similar to the amount of the β phase present in the nanocomposites. © 2009 Elsevier Ltd. All rights reserved.

  1. Thermally Stable, Piezoelectric and Pyroelectric Polymeric Substrates and Method Relating Thereto

    Science.gov (United States)

    Simpson, Joycelyn O. (Inventor); St.Clair, Terry L. (Inventor)

    1995-01-01

    Production of an electric voltage in response to mechanical excitation (piezoelectricity) or thermal excitation (pyroelectricity) requires a material to have a preferred dipole orientation in its structure. This preferred orientation or polarization occurs naturally in some crystals such as quartz and can be induced into some ceramic and polymeric materials by application of strong electric or mechanical fields. For some materials, a combination of mechanical and electrical orientation is necessary to completely polarize the material. The only commercially available piezoelectric polymer is poly(vinylidene fluoride) (PVF2). However, this polymer has material and process limitations which prohibit its use in numerous device applications where thermal stability is a requirement. By the present invention, thermally stable, piezoelectric and pyroelectric polymeric substrates were prepared from polymers having a softening temperature greater than 1000C. A metal electrode material is deposited onto the polymer substrate and several electrical leads are attached to it. The polymer substrate is heated in a low dielectric medium to enhance molecular mobility of the polymer chains. A voltage is then applied to the polymer substrate inducing polarization. The voltage is then maintained while the polymer substrate is cooled 'freezing in' the molecular orientation. The novelty of the invention resides in the process of preparing the piezoelectric and pyroelectric polymeric substrate. The nonobviousness of the invention is found in heating the polymeric substrate in a low dielectric medium while applying a voltage.

  2. Polymeric bicontinuous microemulsions

    DEFF Research Database (Denmark)

    Bates, F.S.; Maurer, W.W.; Lipic, P.M.

    1997-01-01

    High molecular weight block copolymers can be viewed as macromolecular surfactants when blended with thermodynamically incompatible homopolymers. This Letter describes the formation of polymeric bicontinuous microemulsions in nurtures containing a model diblock copolymer and two homopolymers. Alt...

  3. Polymerization Using Phosphazene Bases

    KAUST Repository

    Zhao, Junpeng; Hadjichristidis, Nikolaos; Schlaad, Helmut

    2015-01-01

    . In this chapter, the general features of phosphazenepromoted/catalyzed polymerizations and the applications in macromolecular engineering (synthesis of functionalized polymers, block copolymers, and macromolecular architectures) are discussed with challenges

  4. Design of poly(vinylidene fluoride)-g-p(hydroxyethyl methacrylate-co-N-isopropylacrylamide) membrane via surface modification for enhanced fouling resistance and release property

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Guili [Nanyang Environment and Water Research Institute, Interdisciplinary Graduate School, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141 (Singapore); Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141 (Singapore); School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459 (Singapore); Chen, Wei Ning, E-mail: WNChen@ntu.edu.sg [School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459 (Singapore)

    2017-03-15

    Highlights: • PVDF modified membranes were designed by grafting PNIPAAm, PHEMA and their copolymer. • Fouling resistance and release property of membrane were both improved after modification. • Bacterial attachment and detachment were investigated to evaluate fouling release property. • Improvement of the antifouling property was justified by surface property analysis. • The copolymer modified membrane exhibited higher performance to release foulant. - Abstract: Thermo-sensitive polymer poly(N-isopropylacrylamide) (PNIPAAm), hydrophilic polymer poly(hydroxyethyl methacrylate) (PHEMA) and copolymer p(hydroxyethyl methacrylate-co-N-isopropylacrylamide) [P(HEMA-co-NIPAAm)] were synthesized onto poly(vinylidene fluoride) (PVDF) membrane via atom transfer radical polymerization (ATRP) in order to improve not only fouling resistance but also fouling release property. The physicochemical properties of membranes including hydrophilicity, morphology and roughness were examined by contact angle analyzer, scanning electron microscopy (SEM), and atomic force microscopy (AFM), respectively. The antifouling property of membranes was improved remarkably after surface modification according to protein and bacterial adhesion testing, and filtration experiment. Minimum protein adsorption and bacterial adhesion were both obtained on PVDF-g-P(HEMA-co-NIPAAm) membrane, with reduction by 44% and 71% respectively compared to the pristine membrane. The minimum bacterial cells after detachment at 25 °C were observed on the PVDF-g-P(HEMA-co-NIPAAm) membrane with the detachment rate of 77%, indicating high fouling release property. The filtration testing indicated that the copolymer modified membrane exhibited high resistance to protein fouling and the foulant on the surface was released and removed easily by washing, suggesting high fouling release and easy-cleaning capacity. This study provides useful insight in the combined “fouling resistance” and “fouling release

  5. Design of poly(vinylidene fluoride)-g-p(hydroxyethyl methacrylate-co-N-isopropylacrylamide) membrane via surface modification for enhanced fouling resistance and release property

    International Nuclear Information System (INIS)

    Zhao, Guili; Chen, Wei Ning

    2017-01-01

    Highlights: • PVDF modified membranes were designed by grafting PNIPAAm, PHEMA and their copolymer. • Fouling resistance and release property of membrane were both improved after modification. • Bacterial attachment and detachment were investigated to evaluate fouling release property. • Improvement of the antifouling property was justified by surface property analysis. • The copolymer modified membrane exhibited higher performance to release foulant. - Abstract: Thermo-sensitive polymer poly(N-isopropylacrylamide) (PNIPAAm), hydrophilic polymer poly(hydroxyethyl methacrylate) (PHEMA) and copolymer p(hydroxyethyl methacrylate-co-N-isopropylacrylamide) [P(HEMA-co-NIPAAm)] were synthesized onto poly(vinylidene fluoride) (PVDF) membrane via atom transfer radical polymerization (ATRP) in order to improve not only fouling resistance but also fouling release property. The physicochemical properties of membranes including hydrophilicity, morphology and roughness were examined by contact angle analyzer, scanning electron microscopy (SEM), and atomic force microscopy (AFM), respectively. The antifouling property of membranes was improved remarkably after surface modification according to protein and bacterial adhesion testing, and filtration experiment. Minimum protein adsorption and bacterial adhesion were both obtained on PVDF-g-P(HEMA-co-NIPAAm) membrane, with reduction by 44% and 71% respectively compared to the pristine membrane. The minimum bacterial cells after detachment at 25 °C were observed on the PVDF-g-P(HEMA-co-NIPAAm) membrane with the detachment rate of 77%, indicating high fouling release property. The filtration testing indicated that the copolymer modified membrane exhibited high resistance to protein fouling and the foulant on the surface was released and removed easily by washing, suggesting high fouling release and easy-cleaning capacity. This study provides useful insight in the combined “fouling resistance” and “fouling release

  6. Radical-Mediated Enzymatic Polymerizations

    Science.gov (United States)

    Zavada, Scott R.; Battsengel, Tsatsral; Scott, Timothy F.

    2016-01-01

    Polymerization reactions are commonly effected by exposing monomer formulations to some initiation stimulus such as elevated temperature, light, or a chemical reactant. Increasingly, these polymerization reactions are mediated by enzymes―catalytic proteins―owing to their reaction efficiency under mild conditions as well as their environmental friendliness. The utilization of enzymes, particularly oxidases and peroxidases, for generating radicals via reduction-oxidation mechanisms is especially common for initiating radical-mediated polymerization reactions, including vinyl chain-growth polymerization, atom transfer radical polymerization, thiol–ene step-growth polymerization, and polymerization via oxidative coupling. While enzyme-mediated polymerization is useful for the production of materials intended for subsequent use, it is especially well-suited for in situ polymerizations, where the polymer is formed in the place where it will be utilized. Such polymerizations are especially useful for biomedical adhesives and for sensing applications. PMID:26848652

  7. Chelating polymeric membranes

    KAUST Repository

    Peinemann, Klaus-Viktor

    2015-01-22

    The present application offers a solution to the current problems associated with recovery and recycling of precious metals from scrap material, discard articles, and other items comprising one or more precious metals. The solution is premised on a microporous chelating polymeric membrane. Embodiments include, but are not limited to, microporous chelating polymeric membranes, device comprising the membranes, and methods of using and making the same.

  8. Organic fouling behavior of superhydrophilic polyvinylidene fluoride (PVDF) ultrafiltration membranes functionalized with surface-tailored nanoparticles: Implications for organic fouling in membrane bioreactors

    KAUST Repository

    Liang, Shuai; Qi, Genggeng; Xiao, Kang; Sun, Jianyu; Giannelis, Emmanuel P.; Huang, Xia; Elimelech, Menachem

    2014-01-01

    This study systematically investigates the organic fouling behavior of a superhydrophilic polyvinylidene fluoride (PVDF) ultrafiltration membrane functionalized via post-fabrication tethering of surface-tailored silica nanoparticles to poly

  9. The effect of core and lanthanide ion dopants in sodium fluoride-based nanocrystals on phagocytic activity of human blood leukocytes

    International Nuclear Information System (INIS)

    Sojka, Bartlomiej; Liskova, Aurelia; Kuricova, Miroslava; Banski, Mateusz; Misiewicz, Jan; Dusinska, Maria; Horvathova, Mira; Ilavska, Silvia; Szabova, Michaela; Rollerova, Eva; Podhorodecki, Artur; Tulinska, Jana

    2017-01-01

    Sodium fluoride-based β-NaLnF4 nanoparticles (NPs) doped with lanthanide ions are promising materials for application as luminescent markers in bio-imaging. In this work, the effect of NPs doped with yttrium (Y), gadolinium (Gd), europium (Eu), thulium (Tm), ytterbium (Yb) and terbium (Tb) ions on phagocytic activity of monocytes and granulocytes and the respiratory burst was examined. The surface functionalization of <10-nm NPs was performed according to our variation of patent pending ligand exchange method that resulted in meso-2,3-dimercaptosuccinic acid (DMSA) molecules on their surface. Y-core-based NCs were doped with Eu ions, which enabled them to be excited with UV light wavelengths. Cultures of human peripheral blood (n = 8) were in vitro treated with five different concentrations of eight NPs for 24 h. In summary, neither type of nanoparticles is found toxic with respect to conducted test; however, some cause toxic effects (they have statistically significant deviations compared to reference) in some selected doses tested. Both core types of NPs (Y-core and Gd-core) impaired the phagocytic activity of monocytes the strongest, having minimal or none whatsoever influence on granulocytes and respiratory burst of phagocytic cells. The lowest toxicity was observed in Gd-core, Yb, Tm dopants and near-infrared nanoparticles. Clear dose-dependent effect of NPs on phagocytic activity of leukocytes and respiratory burst of cells was observed for limited number of samples.

  10. The effect of core and lanthanide ion dopants in sodium fluoride-based nanocrystals on phagocytic activity of human blood leukocytes

    Science.gov (United States)

    Sojka, Bartlomiej; Liskova, Aurelia; Kuricova, Miroslava; Banski, Mateusz; Misiewicz, Jan; Dusinska, Maria; Horvathova, Mira; Ilavska, Silvia; Szabova, Michaela; Rollerova, Eva; Podhorodecki, Artur; Tulinska, Jana

    2017-02-01

    Sodium fluoride-based β-NaLnF4 nanoparticles (NPs) doped with lanthanide ions are promising materials for application as luminescent markers in bio-imaging. In this work, the effect of NPs doped with yttrium (Y), gadolinium (Gd), europium (Eu), thulium (Tm), ytterbium (Yb) and terbium (Tb) ions on phagocytic activity of monocytes and granulocytes and the respiratory burst was examined. The surface functionalization of toxic with respect to conducted test; however, some cause toxic effects (they have statistically significant deviations compared to reference) in some selected doses tested. Both core types of NPs (Y-core and Gd-core) impaired the phagocytic activity of monocytes the strongest, having minimal or none whatsoever influence on granulocytes and respiratory burst of phagocytic cells. The lowest toxicity was observed in Gd-core, Yb, Tm dopants and near-infrared nanoparticles. Clear dose-dependent effect of NPs on phagocytic activity of leukocytes and respiratory burst of cells was observed for limited number of samples.

  11. The effect of core and lanthanide ion dopants in sodium fluoride-based nanocrystals on phagocytic activity of human blood leukocytes

    Energy Technology Data Exchange (ETDEWEB)

    Sojka, Bartlomiej [Wroclaw University of Science and Technology, Department of Experimental Physics (Poland); Liskova, Aurelia; Kuricova, Miroslava [Slovak Medical University, Medical Faculty, Department of Immunology and Immunotoxicology (Slovakia); Banski, Mateusz; Misiewicz, Jan [Wroclaw University of Science and Technology, Department of Experimental Physics (Poland); Dusinska, Maria [Norwegian Institute for Air Research, Health Effects Laboratory, Department of Environmental Chemistry (Norway); Horvathova, Mira; Ilavska, Silvia; Szabova, Michaela [Slovak Medical University, Medical Faculty, Department of Immunology and Immunotoxicology (Slovakia); Rollerova, Eva [Slovak Medical University, Faculty of Public Health, Department of Toxicology (Slovakia); Podhorodecki, Artur, E-mail: artur.p.podhorodecki@pwr.edu.pl [Wroclaw University of Science and Technology, Department of Experimental Physics (Poland); Tulinska, Jana, E-mail: jana.tulinska@szu.sk [Slovak Medical University, Medical Faculty, Department of Immunology and Immunotoxicology (Slovakia)

    2017-02-15

    Sodium fluoride-based β-NaLnF4 nanoparticles (NPs) doped with lanthanide ions are promising materials for application as luminescent markers in bio-imaging. In this work, the effect of NPs doped with yttrium (Y), gadolinium (Gd), europium (Eu), thulium (Tm), ytterbium (Yb) and terbium (Tb) ions on phagocytic activity of monocytes and granulocytes and the respiratory burst was examined. The surface functionalization of <10-nm NPs was performed according to our variation of patent pending ligand exchange method that resulted in meso-2,3-dimercaptosuccinic acid (DMSA) molecules on their surface. Y-core-based NCs were doped with Eu ions, which enabled them to be excited with UV light wavelengths. Cultures of human peripheral blood (n = 8) were in vitro treated with five different concentrations of eight NPs for 24 h. In summary, neither type of nanoparticles is found toxic with respect to conducted test; however, some cause toxic effects (they have statistically significant deviations compared to reference) in some selected doses tested. Both core types of NPs (Y-core and Gd-core) impaired the phagocytic activity of monocytes the strongest, having minimal or none whatsoever influence on granulocytes and respiratory burst of phagocytic cells. The lowest toxicity was observed in Gd-core, Yb, Tm dopants and near-infrared nanoparticles. Clear dose-dependent effect of NPs on phagocytic activity of leukocytes and respiratory burst of cells was observed for limited number of samples.

  12. Radiation induced emulsion polymerization

    International Nuclear Information System (INIS)

    Stannett, V.T.; Stahel, E.P.

    1990-01-01

    High energy radiation is particularly favored for the initiation of emulsion polymerization. The yield of free radicals, for example, from the radiolysis of the aqueous phase, is high; G(radical) values of 5-7. In addition, the rather special kinetics associated with emulsion polymerization lead, in general, to very large kinetic chain lengths, even with 'non-ideal' monomers such as vinyl acetate. Together, high polymerization rates at low doses become possible. There are some important advantages of radiation polymerization compared with chemical initiators, such as potassium persulfate. Perhaps the most important among them is the temperature independence of the initiation step. This makes low temperature polymerization very accessible. With monomers such as vinyl acetate, where chain termination to monomer is predominant, low temperatures lead to often highly desirable higher molecular weights. With styrene, the classical ideally behaved monomer, there are the advantages such as, for example, the feasibility of using cationic monomers. These and some attendant disadvantages are discussed in detail, including pilot plant studies

  13. Plasma polymerization by Softplasma

    DEFF Research Database (Denmark)

    Jiang, J.; Wu, Zhenning; Benter, Maike

    2008-01-01

    , external electrode, and electrodeless microwave or high frequency reactors. [3] Softplasma™ is an internal electrode plasma setup powered by low frequenc~ gower supply. It was developed in late 90s for surface treatment of silicone rubber. [ ]- 5] It is a low pressure, low electron density, 3D homogenous......In the late 19th century, the first depositions - known today as plasma polymers, were reported. In the last century, more and more research has been put into plasma polymers. Many different deposition systems have been developed. [1, 2] Shi F. F. broadly classified them into internal electrode...... plasma. In this study, we are presenting the surface modification"pf polymers by plasma polymerization using Softplasma™. Softplasma™ can be used for two major types of polymerization: polymerization of vinyl monomers, where plasma acts as initiator; chemical vapour deposition, where plasma acts...

  14. Linear optical absorption response of poly(vinylidene fluoride - trifluoroethylene) copolymers to high gamma dose

    International Nuclear Information System (INIS)

    Medeiros, Adriana S.

    2009-01-01

    Poly(vinylidene fluoride) [PVDF] is a semicrystalline linear homopolymer composed by the repetition of CH 2 - CF 2 monomers. The Poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] is a copolymer which is obtained with the random introduction of fluorinated CHF-CF 2 monomers in the PVDF main chain. PVDF, and also its copolymers with TrFE contents ranging from 18 to 63 wt. %, have long been studied for their striking ferroelectric properties and their applications in actuators, transducers and ferroelectric memory. Recent research work around the world have demonstrated that, for TrFE contents ranging from with 30 to 50 wt. %, the copolymer can have its ferroelectric properties modified by high doses of ionizing radiation, with the appearing of radio-induced relaxor ferroelectric features. These studies have lead us to investigate the possible use of these copolymers as high dose dosemeters, once the reported amount of induced C=C conjugated bonds after X-ray, UV and gamma irradiation seems to be a function of the delivered radiation dose. In a first investigation for doses ranging from 0.1 to 100 kGy we found out a linear relation between the gamma radiation dose and the absorption peak intensities in the UV region of the spectrum, i.e., at 223 and 274 nm. The absorption peak at 223 nm is the most sensitive to gamma rays and can be used for detecting gamma doses ranging from 0.3 to 75 kGy. Simultaneously, the absorption peak at 274 nm can be used for doses ranging from 1 to 100 kGy. Now, in the present work, we extended the investigation to gamma doses up to 3 MGy. Particularly, this study is focused in the optical absorption peak at 274 nm, corresponding to the radio-induction of triplets of conjugated C=C double bonds. The investigation revealed a linear correlation between the gamma dose and peak intensity at 274 nm for gamma doses ranging from 0.1 to more than 750 KGy, with a huge extension of the original usable dose range. Calorimetric data revealed a

  15. Inflation of a Polymeric Menbrane

    DEFF Research Database (Denmark)

    Kristensen, Susanne B.; Larsen, Johannes R.; Hassager, Ole

    1998-01-01

    We consider an axisymmetric polymeric membrane inflated by a uniform pressure difference acting across the membrane.......We consider an axisymmetric polymeric membrane inflated by a uniform pressure difference acting across the membrane....

  16. Polymerized and functionalized triglycerides

    Science.gov (United States)

    Plant oils are useful sustainable raw materials for the development of new chemical products. As part of our research emphasis in sustainability and green polymer chemistry, we have explored a new method for polymerizing epoxidized triglycerides with the use of fluorosulfonic acid. Depending on the ...

  17. Polymerization by radiation. Application

    International Nuclear Information System (INIS)

    Romero, M.; Fernandez Miranda, J.

    1997-01-01

    Achieved results of the research work done in the field of radiation polymerization are summarized. Developing new chromatographic matrices, the radiation grafting of Glycidyl methacrylate on the surface of Low Density Polyethylene beads was studied. The dependence of both, the grafted degree and width of the grafted layer, with the radiation dose applied, is presented

  18. RAFT polymerization mediated bioconjugation strategies

    OpenAIRE

    Bulmuş, Volga

    2011-01-01

    This review aims to highlight the use of RAFT polymerization in the synthesis of polymer bioconjugates. It covers two main bioconjugation strategies using the RAFT process: (i) post-polymerization bioconjugations using pre-synthesized reactive polymers, and (ii) bioconjugations via in situ polymerization using biomolecule-modified monomers or chain transfer agents. © 2011 The Royal Society of Chemistry.

  19. Efficiency of Polymeric Membrane Graphene Oxide-TiO2 for Removal of Azo Dye

    Directory of Open Access Journals (Sweden)

    Elahe Dadvar

    2017-01-01

    Full Text Available Achieving the desired standard of drinking water quality has been one of the concerns across water treatment plants in the developing countries. Processes such as grid chamber, coagulation, sedimentation, clarification, filtration, and disinfection are typically used in water purification plants. Among these methods, unit filtration which employs polymers is one of the new technologies. There have been many studies about the use of semiconductive TiO2 with graphene oxide (GO on the base of different polymeric membranes for the removal of azo dyes, especially methylene blue (MB. Polymeric GO-TiO2 membranes have high photocatalytic, antifouling property and permeate the flux removal of organic pollutants. The aim of this study was to investigate the characteristics of different polymeric membranes such as anionic perfluorinated polymer (Nafion, cellulose acetate, polycarbonate (PC, polysulfone fluoride (PSF, and polyvinylidene fluoride (PVDF. The result of this study showed that the GO-TiO2 membrane can be used in the field of water treatment and will be used for the removal of polycyclic aromatic hydrocarbons (PAHs from wastewater.

  20. Glucose Sensing Using Capacitive Biosensor Based on Polyvinylidene Fluoride Thin Film

    Directory of Open Access Journals (Sweden)

    Ambran Hartono

    2018-01-01

    Full Text Available A polyvinylidene fluoride (PVDF film-based capacitive biosensor was developed for glucose sensing. This device consists of a PVDF film sandwiched between two electrodes. A capacitive biosensor measures the dielectric properties of the dielectric layers at the interface between the electrolyte and the electrode. A glucose oxidase (GOx enzyme was immobilized onto the electrode to oxidize glucose. In practice, the biochemical reaction of glucose with the GOx enzyme generates free electron carriers. Consequently, the potential difference between the electrodes is increased, resulting in a measurable voltage output of the biosensor. The device was tested for various glucose concentrations in the range of 0.013 to 5.85 M, and various GOx enzyme concentrations between 4882.8 and 2.5 million units/L. We found that the sensor output increased with increasing glucose concentration up to 5.85 M. These results indicate that the PVDF film-based capacitive biosensors can be properly applied to glucose sensing and provide opportunities for the low-cost fabrication of glucose-based biosensors based on PVDF materials.

  1. Anomalous piezoelectric properties of poly(vinylidene fluoride-trifluoroethylene)/ionic liquid gels

    Science.gov (United States)

    Fukagawa, Miki; Koshiba, Yasuko; Fukushima, Tatsuya; Morimoto, Masahiro; Ishida, Kenji

    2018-04-01

    Piezoelectric gels were prepared from low-volatile ionic liquid (IL) 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([Emim][TFSI]) gels, and their structural, ferroelectric, and piezoelectric properties were investigated. Poly(vinylidene fluoride-trifluoroethylene) P(VDF-TrFE)/IL gels were formed using thermally reversible physical gels. The structural characterization indicated that the P(VDF-TrFE) molecules in the gels predominantly formed a ferroelectric phase (Form I) of P(VDF-TrFE). Polarization switching peaks were clearly observed using a three-layer stacked device structure. The coercive field of the P(VDF-TrFE)/IL gels substantially decreased to 4-9 MV/m, and their remnant polarizations were maintained at 63-71 mC/m2, which is similar to that for typical solid-state P(VDF-TrFE). Finally, the P(VDF-TrFE)/IL gel films exhibited a piezoelectric response, and the highest piezoelectric coefficient was ˜300 pm/V at an applied voltage frequency of 4 kHz.

  2. Effects of substrate on piezoelectricity of electrospun poly(vinylidene fluoride)-nanofiber-based energy generators.

    Science.gov (United States)

    Lee, Byoung-Sun; Park, Boongik; Yang, Ho-Sung; Han, Jin Woo; Choong, Chweelin; Bae, Jihyun; Lee, Kihwan; Yu, Woong-Ryeol; Jeong, Unyong; Chung, U-In; Park, Jong-Jin; Kim, Ohyun

    2014-03-12

    We report the effects of various substrates and substrate thicknesses on electrospun poly(vinylidene fluoride) (PVDF)-nanofiber-based energy harvesters. The electrospun PVDF nanofibers showed an average diameter of 84.6 ± 23.5 nm. A high relative β-phase fraction (85.2%) was achieved by applying high voltage during electrospinning. The prepared PVDF nanofibers thus generated considerable piezoelectric potential in accordance with the sound-driven mechanical vibrations of the substrates. Slide glass, poly(ethylene terephthalate), poly(ethylene naphthalate), and paper substrates were used to investigate the effects of the intrinsic and extrinsic substrate properties on the piezoelectricity of the energy harvesters. The thinnest paper substrate (66 μm) with a moderate Young's modulus showed the highest voltage output (0.4885 V). We used high-performance 76, 66, and 33 μm thick papers to determine the effect of paper thickness on the output voltage. The thinnest paper substrate resulted in the highest voltage output (0.7781 V), and the numerical analyses of the sound-driven mechanical deformation strongly support the hypothesis that substrate thickness has a considerable effect on piezoelectric performance.

  3. Spontaneous high piezoelectricity in poly(vinylidene fluoride) nanoribbons produced by iterative thermal size reduction technique.

    Science.gov (United States)

    Kanik, Mehmet; Aktas, Ozan; Sen, Huseyin Sener; Durgun, Engin; Bayindir, Mehmet

    2014-09-23

    We produced kilometer-long, endlessly parallel, spontaneously piezoelectric and thermally stable poly(vinylidene fluoride) (PVDF) micro- and nanoribbons using iterative size reduction technique based on thermal fiber drawing. Because of high stress and temperature used in thermal drawing process, we obtained spontaneously polar γ phase PVDF micro- and nanoribbons without electrical poling process. On the basis of X-ray diffraction (XRD) analysis, we observed that PVDF micro- and nanoribbons are thermally stable and conserve the polar γ phase even after being exposed to heat treatment above the melting point of PVDF. Phase transition mechanism is investigated and explained using ab initio calculations. We measured an average effective piezoelectric constant as -58.5 pm/V from a single PVDF nanoribbon using a piezo evaluation system along with an atomic force microscope. PVDF nanoribbons are promising structures for constructing devices such as highly efficient energy generators, large area pressure sensors, artificial muscle and skin, due to the unique geometry and extended lengths, high polar phase content, high thermal stability and high piezoelectric coefficient. We demonstrated two proof of principle devices for energy harvesting and sensing applications with a 60 V open circuit peak voltage and 10 μA peak short-circuit current output.

  4. Preparation and properties of homogeneous-reinforced polyvinylidene fluoride hollow fiber membrane

    International Nuclear Information System (INIS)

    Zhang Xuliang; Xiao Changfa; Hu Xiaoyu; Bai Qianqian

    2013-01-01

    Highlights: ► The homogeneous-reinforced method has been adopted firstly in preparing of PVDF membranes. ► The HR membranes have a favorable interfacial bonding between the coating layer and the matrix membrane. ► The better performance of the HR membranes in protein solution can indirectly improve the service life of membranes. - Abstract: Homogeneous-reinforced (HR) polyvinylidene fluoride (PVDF) hollow fiber membranes include PVDF polymer solutions (coating layer) and the matrix membrane prepared through the dry-wet spinning process. The performance of HR membranes varies with the polymer concentration in the polymer solutions and is characterized in terms of pure water flux, rejection of protein, porosity, infiltration property, a mechanical strength test, and morphology observations by a field emission scanning electron microscope (FESEM). The results of this study indicate that the tensile strength of the HR PVDF membranes decreases slights compared with that of the matrix membrane, but the elongation at break increases much more and the hollow fiber membranes are endowed with better flexibility performance. The HR PVDF hollow fiber membranes have a favorable interfacial bonding between the coating layer and the matrix membrane, as shown by FESEM. The infiltration property is characterized by the contact angle experiments. Pure water flux decreases while the rejection ratio with an increase in polymer concentration increasing. The protein solution flux of the HR PVDF membranes is higher than that of the matrix membrane after 100 min of infiltration.

  5. Effect of Preparation Methods on Crystallization Behavior and Tensile Strength of Poly(vinylidene fluoride) Membranes.

    Science.gov (United States)

    Liu, Jie; Lu, Xiaolong; Wu, Chunrui

    2013-11-21

    Poly(vinylidene fluoride) (PVDF) membranes were prepared by non solvent induced phase separation (NIPS), melt spinning and the solution-cast method. The effect of preparation methods with different membrane formation mechanisms on crystallization behavior and tensile strength of PVDF membranes was investigated. Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR) and X-ray diffraction (XRD) were employed to examine the crystal form of the surface layers and the overall membranes, respectively. Spherulite morphologies and thermal behavior of the membranes were studied by polarized light optical microscopy (PLO) and differential scanning calorimetry (DSC) separately. It was found that the crystallization behavior of PVDF membranes was closely related to the preparation methods. For membranes prepared by the NIPS method, the skin layers had a mixture of α and β phases, the overall membranes were predominantly α phase, and the total crystallinity was 60.0% with no spherulite. For melt spinning membranes, the surface layers also showed a mixture of α and β phases, the overall membranes were predominantly α phase. The total crystallinity was 48.7% with perfect spherulites. Whereas the crystallization behavior of solution-cast membranes was related to the evaporation temperature and the additive, when the evaporation temperature was 140 °C with a soluble additive in the dope solution, obvious spherulites appeared. The crystalline morphology of PVDF exerted a great influence on the tensile strength of the membranes, which was much higher with perfect spherulites.

  6. Ultra-Sensitive Strain Sensor Based on Flexible Poly(vinylidene fluoride) Piezoelectric Film

    Science.gov (United States)

    Lu, Kai; Huang, Wen; Guo, Junxiong; Gong, Tianxun; Wei, Xiongbang; Lu, Bing-Wei; Liu, Si-Yi; Yu, Bin

    2018-03-01

    A flexible 4 × 4 sensor array with 16 micro-scale capacitive units has been demonstrated based on flexible piezoelectric poly(vinylidene fluoride) (PVDF) film. The piezoelectricity and surface morphology of the PVDF were examined by optical imaging and piezoresponse force microscopy (PFM). The PFM shows phase contrast, indicating clear interface between the PVDF and electrode. The electro-mechanical properties show that the sensor exhibits excellent output response and an ultra-high signal-to-noise ratio. The output voltage and the applied pressure possess linear relationship with a slope of 12 mV/kPa. The hold-and-release output characteristics recover in less than 2.5 μs, demonstrating outstanding electro-mechanical response. Additionally, signal interference between the adjacent arrays has been investigated via theoretical simulation. The results show the interference reduces with decreasing pressure at a rate of 0.028 mV/kPa, highly scalable with electrode size and becoming insignificant for pressure level under 178 kPa.

  7. Dimerization Products of Chloroprene are Background Contaminants Emitted from ALTEF (Polyvinylidene Difluoride) Gas Sampling Bags.

    Science.gov (United States)

    Kwak, Jae; Fan, Maomian; Martin, Jennifer A; Ott, Darrin K; Grigsby, Claude C

    2017-01-01

    Gas sampling bags have been used for collecting air samples. Tedlar bags are most commonly used, but bleed background chemicals such as N,N-dimethylacetamide and phenol. It is often necessary to remove the contaminant by flushing the bags with pure nitrogen or air. In this study, we identified four chloroprene dimerization products as background contaminants emitted from ALTEF bags that are made of a proprietary polyvinylidene difluoride (PVDF). No monomer chloroprene was detected in the bags analyzed. All of the dimers gradually increased once bags were filled with nitrogen due to diffusion from the bag surface. Flushing the bags with nitrogen reduced their concentrations, but was not effective for removing the contaminants. When the bags that had been flushed with nitrogen 5 times were left for 24 h, they increased again, indicating that the dimers were constantly emitted from the ALTEF bag surface. To our knowledge, these compounds have never been demonstrated in ALTEF or other PVDF bags. Our finding indicates that ALTEF might be incorporated with Neoprene (chloroprene-based polymer) during its manufacturing process.

  8. Preparation of antifouling poly(vinylidene fluoride) membranes via different coating methods using a zwitterionic copolymer

    International Nuclear Information System (INIS)

    Ma, Wenzhong; Rajabzadeh, Saeid; Matsuyama, Hideto

    2015-01-01

    Graphical abstract: - Highlights: • We successfully coated the poly(MPC-co-BMA) copolymer on the ultrafiltration membrane. • The hydrophilicity and antifouling were improved by coating poly(MPC-co-BMA). • The flow-through method showed better anti-fouling properties compared with immersion method. • P(MPC-co-BMA) was quite stable on the coated membranes. - Abstract: To reduce the fouling resistance of poly(vinylidene fluoride) membranes, a copolymer of 2-methacryloyloxyethyl phosphorylcholine (MPC) and n-butyl methacrylate (BMA) [poly(MPC-co-BMA)] was coated on a membrane and into its pores from an aqueous solution using two different methods, the immersion and flow-through methods. The effects of poly(MPC-co-BMA) coating on the water flux, surface morphology, and fouling propensity of three types of commercial ultrafiltration membranes with molecular-weight cutoffs ranging from 50 to 250 kDa were investigated. The fouling resistances of modified membranes to bovine serum albumin were compared to those of the unmodified membranes. The evaluation of X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy of the modified membranes confirmed that poly(MPC-co-BMA) was coated on the membrane surfaces. Although both modification methods effectively prevented protein fouling, the flow-through coating method demonstrated a better antifouling propensity. The coated copolymer stability results indicated that the coated copolymer layer on the membrane surface using both coating methods was quite stable even after ultrasonic treatment.

  9. Preparation and characterization of functional poly(vinylidene fluoride) (PVDF) membranes with ultraviolet-absorbing property

    Science.gov (United States)

    Dong, Li; Liu, Xiangdong; Xiong, Zhengrong; Sheng, Dekun; Lin, Changhong; Zhou, Yan; Yang, Yuming

    2018-06-01

    We first reported a strategy to prepare functional poly(vinylidene fluoride) (PVDF) membranes with excellent ultraviolet-absorbing property through chemically induced grafting. Herein, the polymerizable ultraviolet (UV) absorber 2-hydroxy-4-(3-methacryloxy-2-hydroxylpropoxy) benzophenone (BPMA) made by ourselves was grafted onto the PVDF chains that have been pretreated with tetraethylammonium hydroxide (TEAH) alkaline solution. Moreover, the effect of experiment conditions such as the alkali and monomer concentrations, alkali treatment time on the UV-absorbing property of the obtained PVDF-g-PBPMA membranes were studied in detail. The chemical structure of the modified membranes was confirmed by 1H NMR, FT-IR and XPS measurements. Meanwhile, the thermal and UV-absorbing properties were characterized by TGA, DSC and UV-Vis spectrophotometer, respectively. The results indicated that BPMA side chains were successfully introduced onto PVDF backbones. Most importantly, the obtained PVDF-g-PBPMA membranes exhibited excellent UV-absorbing property. The transmittance of UV light at 300 nm decreased to as low as 0.02% and the UV light below 388 nm could be completely absorbed by the PVDF-g-PBPMA membrane made under optimal condition.

  10. Electronic properties and optical absorption of graphene-polyvinylidene fluoride nanocomposites: A theoretical study

    Energy Technology Data Exchange (ETDEWEB)

    Chopra, Siddheshwar, E-mail: schopra1@amity.edu

    2017-01-15

    Graphene/polyvinylidene fluoride (graphene/PVDF) nanocomposites were studied using Density functional theory (DFT)/Time dependent density functional theory (TDDFT) calculations. Five nanocomposite configurations were constructed. Electronic properties like binding energy, electronic gap and work function were calculated. The most stable structure was determined. The electronic gap of graphene shifts from semiconducting to conducting, on nanocomposite formation. Workfunction of the most stable nanocomposite was 4.34eV ± 0.05eV, close to that of the pristine graphene (4.33eV ± 0.05eV). Thermochemical analysis showed that the adsorption is spontaneous above ∼870 K, and endothermic in nature. TDDFT calculations were performed for B3LYP, LSDA, BHHLYP and PBE0 functionals. B3LYP and PBE0 are suitable in describing optical absorption. Optical gap of graphene shrinks, and light absorption gets enhanced on nanocomposite formation. - Highlights: • Various properties of graphene-PVDF nanocomposites were studied theoretically. • Electronic gap of graphene shifts to conducting nature, on composite formation. • Adsorption is spontaneous above ∼870 K, and endothermic in nature. • B3LYP and PBE0 functionals are suitable in describing absorption. • Optical absorption gets enhanced on nanocomposite formation.

  11. Fibronectin adsorption and cell response on electroactive poly(vinylidene fluoride) films

    International Nuclear Information System (INIS)

    Ribeiro, C; Panadero, J A; Sencadas, V; Lanceros-Méndez, S; Tamaño, M N; Moratal, D; Salmerón-Sánchez, M; Gómez Ribelles, J L

    2012-01-01

    Due to the large potential of electroactive materials in novel tissue engineering strategies, the aim of this work is to determine if the crystalline phase and/or the surface electrical charge of electroactive poly(vinylidene fluoride), PVDF, have influence on the biological response in monolayer cell culture. Non-polar α-PVDF and electroactive β-PVDF were prepared. The β-PVDF films were poled by corona discharge to show negative or positive electrical surface charge density. It has been concluded that hydrophilicity of the PVDF substrates depends significantly on crystalline phase and polarity. Furthermore, by means of atomic force microscopy and an enzyme-linked immunosorbent assay test, it has been shown that positive or negative poling strongly influences the behavior of β-PVDF supports with respect to fibronectin (FN) adsorption, varying the exhibition of adhesion ligands of adsorbed FN. Culture of MC3T3-E1 pre-osteoeblasts proved that cell proliferation depends on surface polarity as well. These results open the viability of cell culture stimulation by mechanical deformation of a piezoelectric substrate that results in varying electrical charge densities on the substrate surface. (paper)

  12. Fluorine incorporation into SnO2 nanoparticles by co-milling with polyvinylidene fluoride

    Science.gov (United States)

    Senna, Mamoru; Turianicová, Erika; Šepelák, Vladimír; Bruns, Michael; Scholz, Gudrun; Lebedkin, Sergei; Kübel, Christian; Wang, Di; Kaňuchová, Mária; Kaus, Maximilian; Hahn, Horst

    2014-04-01

    Fluorine was incorporated into SnO2 nanoparticles from polyvinylidene fluoride (PVdF) by co-milling. The incorporation process was triggered by an oxidative partial decomposition of PVdF due to the abstraction of oxygen atoms, and began soon after milling with a simultaneous decrease in the crystallite size of SnO2 from 56 nm to 19 nm, and increase in the lattice strain by a factor 7. Appearance of D and G Raman peaks indicated that the decomposition of PVdF was accompanied by the formation of nanometric carbon species. Decomposing processes of PVdF were accompanied by the continuous change in the states of F, with a decrease of C-F in PVdF and increase in Sn-F. This indicates the gradual incorporation of F into SnO2, by replacing a part of oxygen in the oxide with fluorine. These serial mechanochemical reaction processes were discussed on the basis of X-ray diffractometry, FT-IR, Raman and UV-Vis diffuse reflectance spectroscopy, transmission electron microscopy, F1s, Sn3d and C1s X-ray photoelectron spectroscopy and Auger electron spectra, as well as magic angle spinning NMR spectroscopy of 19F and 119Sn. The present findings serve as an initial stage of incorporating fluorine into SnO2 via a solvent-free solid-state process, toward the rational fabrication of fluorine doped SnO2 powders.

  13. Degradation studies of transparent conductive electrodes on electroactive poly(vinylidene fluoride for uric acid measurements

    Directory of Open Access Journals (Sweden)

    Vanessa F Cardoso, Pedro Martins, Gabriela Botelho, Luis Rebouta, Senentxu Lanceros-Méndez and Graca Minas

    2010-01-01

    Full Text Available Biochemical analysis of physiological fluids using, for example, lab-on-a-chip devices requires accurate mixing of two or more fluids. This mixing can be assisted by acoustic microagitation using a piezoelectric material, such as the β-phase of poly(vinylidene fluoride (β-PVDF. If the analysis is performed using optical absorption spectroscopy and β-PVDF is located in the optical path, the material and its conductive electrodes must be transparent. Moreover, if, to improve the transmission of the ultrasonic waves to the fluids, the piezoelectric transducer is placed inside the fluidic structures, its degradation must be assessed. In this paper, we report on the degradation properties of transparent conductive oxides, namely, indium tin oxide (ITO and aluminum-doped zinc oxide, when they are used as electrodes for providing acoustic microagitation. The latter promotes mixing of chemicals involved in the measurement of uric acid concentration in physiological fluids. The results are compared with those for aluminum electrodes. We find that β-PVDF samples with ITO electrodes do not degrade either with or without acoustic microagitation.

  14. Preparation and properties of homogeneous-reinforced polyvinylidene fluoride hollow fiber membrane

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Xuliang [State Key Laboratory of Hollow Fiber Membrane Materials and Processes, Tianjin Polytechnic University, Tianjin 300387 (China); Xiao Changfa, E-mail: xiaotjpu@163.com [State Key Laboratory of Hollow Fiber Membrane Materials and Processes, Tianjin Polytechnic University, Tianjin 300387 (China); Hu Xiaoyu; Bai Qianqian [State Key Laboratory of Hollow Fiber Membrane Materials and Processes, Tianjin Polytechnic University, Tianjin 300387 (China)

    2013-01-01

    Highlights: Black-Right-Pointing-Pointer The homogeneous-reinforced method has been adopted firstly in preparing of PVDF membranes. Black-Right-Pointing-Pointer The HR membranes have a favorable interfacial bonding between the coating layer and the matrix membrane. Black-Right-Pointing-Pointer The better performance of the HR membranes in protein solution can indirectly improve the service life of membranes. - Abstract: Homogeneous-reinforced (HR) polyvinylidene fluoride (PVDF) hollow fiber membranes include PVDF polymer solutions (coating layer) and the matrix membrane prepared through the dry-wet spinning process. The performance of HR membranes varies with the polymer concentration in the polymer solutions and is characterized in terms of pure water flux, rejection of protein, porosity, infiltration property, a mechanical strength test, and morphology observations by a field emission scanning electron microscope (FESEM). The results of this study indicate that the tensile strength of the HR PVDF membranes decreases slights compared with that of the matrix membrane, but the elongation at break increases much more and the hollow fiber membranes are endowed with better flexibility performance. The HR PVDF hollow fiber membranes have a favorable interfacial bonding between the coating layer and the matrix membrane, as shown by FESEM. The infiltration property is characterized by the contact angle experiments. Pure water flux decreases while the rejection ratio with an increase in polymer concentration increasing. The protein solution flux of the HR PVDF membranes is higher than that of the matrix membrane after 100 min of infiltration.

  15. Electronic properties and optical absorption of graphene-polyvinylidene fluoride nanocomposites: A theoretical study

    International Nuclear Information System (INIS)

    Chopra, Siddheshwar

    2017-01-01

    Graphene/polyvinylidene fluoride (graphene/PVDF) nanocomposites were studied using Density functional theory (DFT)/Time dependent density functional theory (TDDFT) calculations. Five nanocomposite configurations were constructed. Electronic properties like binding energy, electronic gap and work function were calculated. The most stable structure was determined. The electronic gap of graphene shifts from semiconducting to conducting, on nanocomposite formation. Workfunction of the most stable nanocomposite was 4.34eV ± 0.05eV, close to that of the pristine graphene (4.33eV ± 0.05eV). Thermochemical analysis showed that the adsorption is spontaneous above ∼870 K, and endothermic in nature. TDDFT calculations were performed for B3LYP, LSDA, BHHLYP and PBE0 functionals. B3LYP and PBE0 are suitable in describing optical absorption. Optical gap of graphene shrinks, and light absorption gets enhanced on nanocomposite formation. - Highlights: • Various properties of graphene-PVDF nanocomposites were studied theoretically. • Electronic gap of graphene shifts to conducting nature, on composite formation. • Adsorption is spontaneous above ∼870 K, and endothermic in nature. • B3LYP and PBE0 functionals are suitable in describing absorption. • Optical absorption gets enhanced on nanocomposite formation.

  16. Preparation of antifouling poly(vinylidene fluoride) membranes via different coating methods using a zwitterionic copolymer

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Wenzhong; Rajabzadeh, Saeid; Matsuyama, Hideto, E-mail: matuyama@kobe-u.ac.jp

    2015-12-01

    Graphical abstract: - Highlights: • We successfully coated the poly(MPC-co-BMA) copolymer on the ultrafiltration membrane. • The hydrophilicity and antifouling were improved by coating poly(MPC-co-BMA). • The flow-through method showed better anti-fouling properties compared with immersion method. • P(MPC-co-BMA) was quite stable on the coated membranes. - Abstract: To reduce the fouling resistance of poly(vinylidene fluoride) membranes, a copolymer of 2-methacryloyloxyethyl phosphorylcholine (MPC) and n-butyl methacrylate (BMA) [poly(MPC-co-BMA)] was coated on a membrane and into its pores from an aqueous solution using two different methods, the immersion and flow-through methods. The effects of poly(MPC-co-BMA) coating on the water flux, surface morphology, and fouling propensity of three types of commercial ultrafiltration membranes with molecular-weight cutoffs ranging from 50 to 250 kDa were investigated. The fouling resistances of modified membranes to bovine serum albumin were compared to those of the unmodified membranes. The evaluation of X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy of the modified membranes confirmed that poly(MPC-co-BMA) was coated on the membrane surfaces. Although both modification methods effectively prevented protein fouling, the flow-through coating method demonstrated a better antifouling propensity. The coated copolymer stability results indicated that the coated copolymer layer on the membrane surface using both coating methods was quite stable even after ultrasonic treatment.

  17. A procedure for Alcian blue staining of mucins on polyvinylidene difluoride membranes.

    Science.gov (United States)

    Dong, Weijie; Matsuno, Yu-ki; Kameyama, Akihiko

    2012-10-16

    The isolation and characterization of mucins are critically important for obtaining insight into the molecular pathology of various diseases, including cancers and cystic fibrosis. Recently, we developed a novel membrane electrophoretic method, supported molecular matrix electrophoresis (SMME), which separates mucins on a polyvinylidene difluoride (PVDF) membrane impregnated with a hydrophilic polymer. Alcian blue staining is widely used to visualize mucopolysaccharides and acidic mucins on both blotted membranes and SMME membranes; however, this method cannot be used to stain mucins with a low acidic glycan content. Meanwhile, periodic acid-Schiff staining can selectively visualize glycoproteins, including mucins, but is incompatible with glycan analysis, which is indispensable for mucin characterizations. Here we describe a novel staining method, designated succinylation-Alcian blue staining, for visualizing mucins on a PVDF membrane. This method can visualize mucins regardless of the acidic residue content and shows a sensitivity 2-fold higher than that of Pro-Q Emerald 488, a fluorescent periodate Schiff-base stain. Furthermore, we demonstrate the compatibility of this novel staining procedure with glycan analysis using porcine gastric mucin as a model mucin.

  18. Low Energy Gamma Radiation Induced Effects on Ultrasonic Velocity and Acoustic Parameters in Polyvinylidene Fluoride Solution

    Directory of Open Access Journals (Sweden)

    S. S. Kulkarni

    2016-01-01

    Full Text Available The modification of polyvinylidene fluoride (PVDF polymer properties with irradiation is of interest as it possesses unique piezo-, pyro-, and ferroelectric properties. In this paper, we report the results of acoustic parameters of irradiated PVDF mixed with dimethylacetamide (DMAC solution with low energy γ-source (Cs-137. The polymer solution covered with mica film assures only γ-ray passage and the duration was increased from 18 to 50 hours to achieve the higher dose rate. The dose rate was estimated using the strength of the radioactive source and the duration of the exposure. The ultrasonic velocity (v, density (ρ, and viscosity (η of 0.2 wt% and 0.5 wt% PVDF dissolved in pure DMAC solution, irradiated with different dose rate were measured using ultrasonic interferometer (Mittal make, Pyknometer, and Oswald’s viscometer, respectively. It is observed that the values of v, ρ, and η change with dose rate. The acoustic parameters such as adiabatic compressibility (β, intermolecular free path length (Lf, acoustic impedance (Z, relative association (RA, ultrasonic attenuation (α/f2, and relaxation time (τ are calculated using the experimental data. These results are interpreted in terms of the solute-solvent interaction in a polymer solution and scissoring chain damage.

  19. Preparation and Preliminary Dialysis Performance Research of Polyvinylidene Fluoride Hollow Fiber Membranes

    Science.gov (United States)

    Zhang, Qinglei; Lu, Xiaolong; Liu, Juanjuan; Zhao, Lihua

    2015-01-01

    In this study, the separation properties of Polyvinylidene fluoride (PVDF) hollow fiber hemodialysis membranes were improved by optimizing membrane morphology and structure. The results showed that the PVDF membrane had better mechanical and separation properties than Fresenius Polysulfone High-Flux (F60S) membrane. The PVDF membrane tensile stress at break, tensile elongation and bursting pressure were 11.3 MPa, 395% and 0.625 MPa, respectively. Ultrafiltration (UF) flux of pure water reached 108.2 L∙h−1∙m−2 and rejection of Albumin from bovine serum was 82.3%. The PVDF dialyzers were prepared by centrifugal casting. The influences of membrane area and simulate fluid flow rate on dialysis performance were investigated. The results showed that the clearance rate of urea and Lysozyme (LZM) were improved with increasing membrane area and fluid flow rate while the rejection of albumin from bovine serum (BSA) had little influence. The high-flux PVDF dialyzer UF coefficient reached 62.6 mL/h/mmHg. The PVDF dialyzer with membrane area 0.69 m2 has the highest clearance rate to LZM and urea. The clearance rate of LZM was 66.8% and urea was 87.7%. PMID:25807890

  20. Nanofiltration membranes based on polyvinylidene fluoride nanofibrous scaffolds and crosslinked polyethyleneimine networks

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seong-Jik [Hankyong National University, Department of Bioresources and Rural Systems Engineering (Korea, Republic of); Cheedrala, Ravi Kumar; Diallo, Mamadou S., E-mail: mdiallo@kaist.ac.kr [Korea Advanced Institute of Science and Technology (KAIST), Graduate School of Energy, Environment, Water and Sustainability (EEWS) (Korea, Republic of); Kim, Changmin; Kim, In S. [Gwangju Institute of Science and Technology (GIST), Department of Environmental Science and Engineering (Korea, Republic of); Goddard, William A. [Korea Advanced Institute of Science and Technology (KAIST), Graduate School of Energy, Environment, Water and Sustainability (EEWS) (Korea, Republic of)

    2012-07-15

    In this article, we describe the synthesis of new and ion-selective nanofiltration (NF) membranes using polyvinylidene fluoride (PVDF) nanofibers and hyperbranched polyethylenimine (PEI) as building blocks. These new nanofibrous composite (NFC) membranes consist of crosslinked hyperbranched PEI networks supported by PVDF nanofibrous scaffolds that are electrospun onto commercial PVDF microfiltration (MF) membranes. A major objective of our study was to fabricate positively charged NF membranes that can be operated at low pressure with high water flux and improved rejection for monovalent cations. To achieve this, we investigated the effects of crosslinker chemistry on membrane properties (morphology, composition, hydrophobicity, and zeta potential) and membrane performance (salt rejection and permeate flux) in aqueous solutions (2,000 mg/L) of four salts (NaCl, MgCl{sub 2}, Na{sub 2}SO{sub 4}, and MgSO{sub 4}) at pH 4, 6, and 8. We found that an NFC-PVDF membrane with a network of PEI macromolecules crosslinked with trimesoyl chloride has a high water flux ({approx}30 L m{sup -2} h{sup -1}) and high rejections for MgCl{sub 2} ({approx}88 %) and NaCl ({approx}65 %) at pH 6 using a pressure of 7 bar. The overall results of our study suggest that PVDF nanofibers and hyperbranched PEI are promising building blocks for the fabrication of high performance NF membranes for water purification.

  1. Nanofiltration membranes based on polyvinylidene fluoride nanofibrous scaffolds and crosslinked polyethyleneimine networks

    International Nuclear Information System (INIS)

    Park, Seong-Jik; Cheedrala, Ravi Kumar; Diallo, Mamadou S.; Kim, Changmin; Kim, In S.; Goddard, William A.

    2012-01-01

    In this article, we describe the synthesis of new and ion-selective nanofiltration (NF) membranes using polyvinylidene fluoride (PVDF) nanofibers and hyperbranched polyethylenimine (PEI) as building blocks. These new nanofibrous composite (NFC) membranes consist of crosslinked hyperbranched PEI networks supported by PVDF nanofibrous scaffolds that are electrospun onto commercial PVDF microfiltration (MF) membranes. A major objective of our study was to fabricate positively charged NF membranes that can be operated at low pressure with high water flux and improved rejection for monovalent cations. To achieve this, we investigated the effects of crosslinker chemistry on membrane properties (morphology, composition, hydrophobicity, and zeta potential) and membrane performance (salt rejection and permeate flux) in aqueous solutions (2,000 mg/L) of four salts (NaCl, MgCl 2 , Na 2 SO 4 , and MgSO 4 ) at pH 4, 6, and 8. We found that an NFC–PVDF membrane with a network of PEI macromolecules crosslinked with trimesoyl chloride has a high water flux (∼30 L m −2 h −1 ) and high rejections for MgCl 2 (∼88 %) and NaCl (∼65 %) at pH 6 using a pressure of 7 bar. The overall results of our study suggest that PVDF nanofibers and hyperbranched PEI are promising building blocks for the fabrication of high performance NF membranes for water purification.

  2. Development of a Wearable Controller for Gesture-Recognition-Based Applications Using Polyvinylidene Fluoride.

    Science.gov (United States)

    Van Volkinburg, Kyle; Washington, Gregory

    2017-08-01

    This paper reports on a wearable gesture-based controller fabricated using the sensing capabilities of the flexible thin-film piezoelectric polymer polyvinylidene fluoride (PVDF) which is shown to repeatedly and accurately discern, in real time, between right and left hand gestures. The PVDF is affixed to a compression sleeve worn on the forearm to create a wearable device that is flexible, adaptable, and highly shape conforming. Forearm muscle movements, which drive hand motions, are detected by the PVDF which outputs its voltage signal to a developed microcontroller-based board and processed by an artificial neural network that was trained to recognize the generated voltage profile of right and left hand gestures. The PVDF has been spatially shaded (etched) in such a way as to increase sensitivity to expected deformations caused by the specific muscles employed in making the targeted right and left gestures. The device proves to be exceptionally accurate both when positioned as intended and when rotated and translated on the forearm.

  3. Degradation studies of transparent conductive electrodes on electroactive poly(vinylidene fluoride) for uric acid measurements

    International Nuclear Information System (INIS)

    Cardoso, Vanessa F; Minas, Graca; Martins, Pedro; Rebouta, Luis; Lanceros-Mendez, Senentxu; Botelho, Gabriela

    2010-01-01

    Biochemical analysis of physiological fluids using, for example, lab-on-a-chip devices requires accurate mixing of two or more fluids. This mixing can be assisted by acoustic microagitation using a piezoelectric material, such as the β-phase of poly(vinylidene fluoride) (β-PVDF). If the analysis is performed using optical absorption spectroscopy and β-PVDF is located in the optical path, the material and its conductive electrodes must be transparent. Moreover, if, to improve the transmission of the ultrasonic waves to the fluids, the piezoelectric transducer is placed inside the fluidic structures, its degradation must be assessed. In this paper, we report on the degradation properties of transparent conductive oxides, namely, indium tin oxide (ITO) and aluminum-doped zinc oxide, when they are used as electrodes for providing acoustic microagitation. The latter promotes mixing of chemicals involved in the measurement of uric acid concentration in physiological fluids. The results are compared with those for aluminum electrodes. We find that β-PVDF samples with ITO electrodes do not degrade either with or without acoustic microagitation.

  4. Radiation polymerization of tetrafluoroethylene

    International Nuclear Information System (INIS)

    Kadoi, H.; Lugao, A.B.; Oikawa, H.

    1984-01-01

    Tetrafluoroethylene (TFE) monomer was obtained by means of the pyrolysis of chlorodifluoromethane (R-22). The experiments were carried out in quartz tube with temperature between 700 0 and 800 0 C. The principal reaction of the pyrolysis is considered to be: 2CHClF2 ----> C 2 F 4 +2HCl. However, by-products such as HF, C 3 F 6 , C 2 HClF 4 , C 4 F 8 etc are also produced in the pyrolysis process. The conversions of R-22 varied from 30 to 50%, depending upon the temperature, pressure and flow rate of R-22 in the furnace. Finally the TFE monomer of purity higher than 99.98% was obtained by fractional distillation in low temperatures ranging from -10 0 to -30 0 C. The bulk polymerization of this monomer induced by γ-rays from 3000Ci cobalt-60 source was studied at various temperatures (room temperature, 0 0 , -23 0 and -78 0 C). The monomers were introduced into stainless steel vessels of 15 and 60 ml volume under vacuum. The control of polymerization reaction was rather hard at temperatures higher than -23 0 C due to the difficulty of removing the heat of reaction. However, the polymerization at -78 0 C was very easy to control. The white polymer particles were obtained in agglomerated state. The IR spectra of the polymers were consistent with those of commercial products. The melting points of samples were between 326 0 and 331 0 C. (Author) [pt

  5. Clay nanoparticles effects on performance and morphology of poly(vinylidene fluoride membranes

    Directory of Open Access Journals (Sweden)

    A. C. D. Morihama

    2014-03-01

    Full Text Available In this study, a comparison between neat poly(vinylidene fluoride (PVDF membrane and composite (PVDF-Nanoclay and PVDF-PVP-Nanoclay membranes is presented. All membranes were synthesized by the phase inversion process, using 18% PVDF, n-methylpyrrolidone as solvent and water as the non-solvent. Demineralized water cross-flow permeation tests were conducted to evaluate the membranes performance. Scanning electron microscopy (SEM images of the membranes surface and cross-section and water contact angle measurements were used to estimate additives effects on membranes morphology. The results indicate that dopant addition affected membrane permeate flux and morphology. The 4% nanoclay composite membrane resulted in the highest ultrapure water permeability (0.9130 m³.m-2.h-1.MPa-1, lower hydraulic resistance (3.27´10+12.m-1, lower contact angle (87.1º and highest surface porosity (0.95%. Furthermore, it was verified that the membrane surface porosity increased with increasing clay nanoparticles concentrations. It was observed that the morphology of the membranes with clay nanoparticle addition is characterized by a thin surface layer, with macro-pores, a thin bottom layer, which has a sponge-like structure with micro-pores and a thick intermediate layer, with finger-like pores and macro-pores. It was also verified that the introduction of PVP promotes a denser morphology compared with membranes without it. Based on the SEM surface and cross-sectional images and permeability tests, it became evident that the internal pore morphology plays an important role in membrane performance, because the higher the frequency and extent of the finger-like pores in the intermediate layer the higher is the membrane permeability. These preliminary results indicated that the use of nanoclay as an additive for membrane casting is a promising procedure for improving membrane performance for water and wastewater treatment.

  6. DEVELOPMENT AND CHARACTERIZATION OF POLYVINYLIDENE FLUORIDE - IMIDAZOLIUM FUNCTIONALIZED POLYSULFONE BLEND ANION EXCHANGE MEMBRANE

    Directory of Open Access Journals (Sweden)

    S. VELU

    2015-09-01

    Full Text Available Anion exchange membrane (AEM is one of the core components of an alkaline fuel cell influencing the fuel cell’s performance, durability and stability. Out of the many anion exchange membranes reported so far, imidazolium functionalized polysulfone (PSf-ImOH membrane has been identified to have high hydroxide ionic conductivity, reaching up to 50 mS cm-1 at 20oC. However, at high levels of ion exchange capacity, the membrane’s water uptake and swelling ratio increases significantly with temperature thus destabilizing it and making it unfit for potential use in high temperature alkaline fuel cells. This limitation of PSf-ImOH membranes has been overcome by blending it with polyvinylidene fluoride (PVDF polymer, which is a thermally stable and highly hydrophobic polymer. PSf-ImOH membrane with a high degree of chloromethylation (180% was synthesized and blended with PVDF at different weight ratios (PVDF / PSf-ImOH: 30/70, 50/50 and 70/30 to create a series of novel anion exchange membranes. The prepared membranes were characterized to study their structure, water uptake, swelling ratio, solubility in low boiling water soluble solvents, thermal stability, ion exchange capacity (IEC and ionic conductivity (IC at different temperatures. The 70% PVDF blend membrane demonstrated the better performance in terms of IEC, IC and water uptake properties compared to other membranes. Comparative studies on the water uptake and IC variation between the 70% PVDF blend membrane and pure PSfImOH membrane (having the same IEC as that of the blend membrane, clearly indicated the superiority and the promising use of the blend membrane in alkaline fuel cell especially for high temperature working condition.

  7. Poly(vinylidene fluoride-hexafluoropropylene) polymer electrolyte for paper-based and flexible battery applications

    Energy Technology Data Exchange (ETDEWEB)

    Aliahmad, Nojan; Shrestha, Sudhir; Varahramyan, Kody [Department of Electrical & Computer Engineering, Indiana University-Purdue University Indianapolis (IUPUI), Indianapolis, IN, 46202 (United States); Integrated Nanosystems Development Institute (INDI), Indiana University-Purdue University Indianapolis (IUPUI), Indianapolis, IN, 46202 (United States); Agarwal, Mangilal, E-mail: agarwal@iupui.edu [Department of Electrical & Computer Engineering, Indiana University-Purdue University Indianapolis (IUPUI), Indianapolis, IN, 46202 (United States); Integrated Nanosystems Development Institute (INDI), Indiana University-Purdue University Indianapolis (IUPUI), Indianapolis, IN, 46202 (United States); Department of Mechanical Engineering, Indiana University-Purdue University Indianapolis (IUPUI), Indianapolis, IN, 46202 (United States)

    2016-06-15

    Paper-based batteries represent a new frontier in battery technology. However, low-flexibility and poor ionic conductivity of solid electrolytes have been major impediments in achieving practical mechanically flexible batteries. This work discuss new highly ionic conductive polymer gel electrolytes for paper-based battery applications. In this paper, we present a poly(vinylidene fluoride-hexafluoropropylene) (PVDH-HFP) porous membrane electrolyte enhanced with lithium bis(trifluoromethane sulphone)imide (LiTFSI) and lithium aluminum titanium phosphate (LATP), with an ionic conductivity of 2.1 × 10{sup −3} S cm{sup −1}. Combining ceramic (LATP) with the gel structure of PVDF-HFP and LiTFSI ionic liquid harnesses benefits of ceramic and gel electrolytes in providing flexible electrolytes with a high ionic conductivity. In a flexibility test experiment, bending the polymer electrolyte at 90° for 20 times resulted in 14% decrease in ionic conductivity. Efforts to further improving the flexibility of the presented electrolyte are ongoing. Using this electrolyte, full-cell batteries with lithium titanium oxide (LTO) and lithium cobalt oxide (LCO) electrodes and (i) standard metallic current collectors and (ii) paper-based current collectors were fabricated and tested. The achieved specific capacities were (i) 123 mAh g{sup −1} for standard metallic current collectors and (ii) 99.5 mAh g{sup −1} for paper-based current collectors. Thus, the presented electrolyte has potential to become a viable candidate in paper-based and flexible battery applications. Fabrication methods, experimental procedures, and test results for the polymer gel electrolyte and batteries are presented and discussed.

  8. Photocatalytic Degradation of Oil using Polyvinylidene Fluoride/Titanium Dioxide Composite Membrane for Oily Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Rusli Ummi Nadiah

    2016-01-01

    Full Text Available Production of industrial wastewater is increasing as the oil and gas industry grows rapidly over the years. The constituents in the industrial wastewater such as organic and inorganic matters, dispersed and lubricant oil and metals which have high toxicity become the major concern to the environment and ecosystem. There are many technologies are being used for oil removal from industrial wastewater. However, there are still needs to find an effective technology to treat oily wastewater before in can be discharge safely to the environment. Membrane technology is an attractive separation technology to treat oily wastewater. The aim of this study is to fabricate polyvinylidene/titanium dioxide (PVDF/TiO2 composite membrane with further treatment using hot pressed method to enhance the adhesion between TiO2 with the membrane surfaces. In this study the structural and physical properties of fabricated membrane were conducted using X-ray diffraction (XRD and Fourier transform infrared spectroscopy (FTIR respectively. The photocatalytic degradation of oil was measured using UV-Vis Spectroscopy. The FTIR results confirmed that, hot pressed PVDF/TiO2 membrane TiO2 was successfully deposited onto PVDF membranes surface and XRD results shows that the XRD pattern of PVDF//TiO2 found that the crystalline structure was remained unchanged after hot pressed. Clear water was obtained after synthetic oily wastewater was exposed to visible light for at least 6 hours. In conclusion, PVDF/TiO2 composite membrane can be a potential candidate to degrade oil in oily wastewater and suggested to possess an excellent performance if perform simultaneously with membrane separation process.

  9. Poly(vinylidene fluoride-hexafluoropropylene polymer electrolyte for paper-based and flexible battery applications

    Directory of Open Access Journals (Sweden)

    Nojan Aliahmad

    2016-06-01

    Full Text Available Paper-based batteries represent a new frontier in battery technology. However, low-flexibility and poor ionic conductivity of solid electrolytes have been major impediments in achieving practical mechanically flexible batteries. This work discuss new highly ionic conductive polymer gel electrolytes for paper-based battery applications. In this paper, we present a poly(vinylidene fluoride-hexafluoropropylene (PVDH-HFP porous membrane electrolyte enhanced with lithium bis(trifluoromethane sulphoneimide (LiTFSI and lithium aluminum titanium phosphate (LATP, with an ionic conductivity of 2.1 × 10−3 S cm−1. Combining ceramic (LATP with the gel structure of PVDF-HFP and LiTFSI ionic liquid harnesses benefits of ceramic and gel electrolytes in providing flexible electrolytes with a high ionic conductivity. In a flexibility test experiment, bending the polymer electrolyte at 90° for 20 times resulted in 14% decrease in ionic conductivity. Efforts to further improving the flexibility of the presented electrolyte are ongoing. Using this electrolyte, full-cell batteries with lithium titanium oxide (LTO and lithium cobalt oxide (LCO electrodes and (i standard metallic current collectors and (ii paper-based current collectors were fabricated and tested. The achieved specific capacities were (i 123 mAh g−1 for standard metallic current collectors and (ii 99.5 mAh g−1 for paper-based current collectors. Thus, the presented electrolyte has potential to become a viable candidate in paper-based and flexible battery applications. Fabrication methods, experimental procedures, and test results for the polymer gel electrolyte and batteries are presented and discussed.

  10. The relaxational behaviour of poly-(vinylidene fluoride) before and after gamma-irradiation

    International Nuclear Information System (INIS)

    Callens, A.

    The main purpose of this work was to investigate how molecular chain reorganization may affect the physical property of polymers. This may be done by the analysis of the as received and post-irradiation relaxation spectra of the semi-crystalline linear chain polymer polyvinylidene fluoride (PVDF), which has been gamma-irradiated up to doses of 1 grad. The effects of the irradiation on the material are primarly main chain cross-linking production of unsaturated bonds and crystallite degradation. To reach a complete interpretation of the relaxation spectra, it is necessary to incorporate a third phase into the analysis besides the amorphous viscoelastic region (AVR) and the crystalline viscoelastic region (CVR), the intermediate phase. The amorphous phase (AVR) is at the origin of the relaxation effects occurring in the temperature region below room temperature. The saturation like behaviour of the cross-linking in the amorphous phase is at the origin of the intensity decrease, temperature shift and peak broadening of the beta relaxation. There is a large amount of evidence that in the neighbourhood of the beta relaxation, relaxation effects are created through irradiation, as mainly revealed by TSD-spectra (thermalloy stimulated depolarisation). The intensity of the gamma relaxation, gradually increases with dose, which has been attributed to the production of disordered chain from the debris of radiation enhanced crystallite destruction. The relaxation effect, occuring at the temperatures between AVR and CVR, is assigned to the long amorphous chain segments attached partly to the crystallites, mainly from the consideration of the similarity of the dose enhanced decrease in intensity of both beta and βsub(μ)-effects. The increase with dose of the intensity of the α1 relaxation, which has been classified within CVR, confirms the grainboundary hypothesis. The second component of CVR (α2 relaxation) is due to relaxation effects of molecular chains belonging to the

  11. Poly(vinylidene fluoride-hexafluoropropylene) polymer electrolyte for paper-based and flexible battery applications

    Science.gov (United States)

    Aliahmad, Nojan; Shrestha, Sudhir; Varahramyan, Kody; Agarwal, Mangilal

    2016-06-01

    Paper-based batteries represent a new frontier in battery technology. However, low-flexibility and poor ionic conductivity of solid electrolytes have been major impediments in achieving practical mechanically flexible batteries. This work discuss new highly ionic conductive polymer gel electrolytes for paper-based battery applications. In this paper, we present a poly(vinylidene fluoride-hexafluoropropylene) (PVDH-HFP) porous membrane electrolyte enhanced with lithium bis(trifluoromethane sulphone)imide (LiTFSI) and lithium aluminum titanium phosphate (LATP), with an ionic conductivity of 2.1 × 10-3 S cm-1. Combining ceramic (LATP) with the gel structure of PVDF-HFP and LiTFSI ionic liquid harnesses benefits of ceramic and gel electrolytes in providing flexible electrolytes with a high ionic conductivity. In a flexibility test experiment, bending the polymer electrolyte at 90° for 20 times resulted in 14% decrease in ionic conductivity. Efforts to further improving the flexibility of the presented electrolyte are ongoing. Using this electrolyte, full-cell batteries with lithium titanium oxide (LTO) and lithium cobalt oxide (LCO) electrodes and (i) standard metallic current collectors and (ii) paper-based current collectors were fabricated and tested. The achieved specific capacities were (i) 123 mAh g-1 for standard metallic current collectors and (ii) 99.5 mAh g-1 for paper-based current collectors. Thus, the presented electrolyte has potential to become a viable candidate in paper-based and flexible battery applications. Fabrication methods, experimental procedures, and test results for the polymer gel electrolyte and batteries are presented and discussed.

  12. Highly Hydrophilic Polyvinylidene Fluoride (PVDF) Ultrafiltration Membranes via Postfabrication Grafting of Surface-Tailored Silica Nanoparticles

    KAUST Repository

    Liang, Shuai

    2013-07-24

    Polyvinylidene fluoride (PVDF) has drawn much attention as a predominant ultrafiltration (UF) membrane material due to its outstanding mechanical and physicochemical properties. However, current applications suffer from the low fouling resistance of the PVDF membrane due to the intrinsic hydrophobic property of the membrane. The present study demonstrates a novel approach for the fabrication of a highly hydrophilic PVDF UF membrane via postfabrication tethering of superhydrophilic silica nanoparticles (NPs) to the membrane surface. The pristine PVDF membrane was grafted with poly(methacrylic acid) (PMAA) by plasma induced graft copolymerization, providing sufficient carboxyl groups as anchor sites for the binding of silica NPs, which were surface-tailored with amine-terminated cationic ligands. The NP binding was achieved through a remarkably simple and effective dip-coating technique in the presence or absence of the N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (EDC)/N-hydroxysuccinimide (NHS) cross-linking process. The properties of the membrane prepared from the modification without EDC/NHS cross-linking were comparable to those for the membrane prepared with the EDC/NHS cross-linking. Both modifications almost doubled the surface energy of the functionalized membranes, which significantly improved the wettability of the membrane and converted the membrane surface from hydrophobic to highly hydrophilic. The irreversibly bound layer of superhydrophilic silica NPs endowed the membranes with strong antifouling performance as demonstrated by three sequential fouling filtration runs using bovine serum albumin (BSA) as a model organic foulant. The results suggest promising applications of the postfabrication surface modification technique in various membrane separation areas. © 2013 American Chemical Society.

  13. Development of Polyvinylidene fluoride (PVDF)-ZIF-8 Membrane for Wastewater Treatment

    Science.gov (United States)

    Ibrahim, N. A.; Wirzal, M. D. H.; Nordin, N. A. H.; Halim, N. S. Abd

    2018-04-01

    Nowadays, the water shortage problem following the urbanization and increasing pollution of natural water source have increased the awareness to treat wastewater. Membrane filtration is often used in wastewater treatment plants to filter out more residual activated sludge from aeration process in the secondary stage. However, fouling is the main concern due to the fact it can happen to any membrane application. Antifouling properties in membrane can be improved by blending membranes with fillers or additives to make them more hydrophilic. This study aims to improve the antifouling properties in polyvinylidene fluoride (PVDF) membranes while optimizing the loading of Zeolitic imidazolate framework-8 (ZIF-8) fillers; at different loading (2.0 wt. %, 4.0 wt. %, 6.0 wt. %, 8.0 wt. % and 10.0 wt. %). Manual hand-casting of flat sheet membrane was done and the fabricated membranes were tested for their filterability against pure water and domestic wastewater. Both permeability tests showed that PVDF with 8% ZIF-8 membrane was the most permeable with a pure water and wastewater permeability of 150 L/m2.h.bar and 94 L/m2.h.bar, respectively. The pure water permeability of PVDF with 8% ZIF-8 membrane increases for about 130% compared to the pure PVDF membrane. The turbidity test of the initial feed and final permeate of wastewater, PVDF with 8% ZIF-8 membrane also gave out the highest reduction rate at 87%, which is 36% higher than that of pure PVDF membrane. It can be deduced that 8% of ZIF-8 is the ideal loading to PVDF in improving its antifouling properties to be used in domestic wastewater treatment.

  14. Radiation chemistry of polymeric system

    International Nuclear Information System (INIS)

    Machi, Sueo; Ishigaki, Isao

    1978-01-01

    Among wide application of radiation in the field of polymer chemistry, practices of polymerization, graft polymerization, bridging, etc. are introduced hereinafter. As for the radiation sources of radiation polymerization, in addition to the 60 Co-γ ray with long permeation distance which has been usually applied, electron beam accelerators with high energy, large current and high reliability have come to be produced, and the liquid phase polymerization by electron beam has attracted attention industrially. Concerning polymerizing reactions, explanations were given to electron beam polymerization under high dose rate, the polymerization in supercooling state or under high pressure, and emulsifying polymerization. As for radiation bridging, radiation is applied for the bridging of hydrogel, acceleration of bridging and improvement of radiation resistance. It is also utilized for reforming membranes by graft polymerization, and synthesis of polymers for medical use. Application of fixed enzymes in the medical field has been investigated by fixing various enzymes by low temperature γ-ray polymerization with glassy monomers such as HEMA. (Kobatake, H.)

  15. Packaging based on polymeric materials

    Directory of Open Access Journals (Sweden)

    Jovanović Slobodan M.

    2005-01-01

    Full Text Available In the past two years the consumption of common in the developed countries world wide (high tonnage polymers for packaging has approached a value of 50 wt.%. In the same period more than 50% of the packaging units on the world market were made of polymeric materials despite the fact that polymeric materials present 17 wt.% of all packaging materials. The basic properties of polymeric materials and their environmental and economical advantages, providing them such a position among packaging materials, are presented in this article. Recycling methods, as well as the development trends of polymeric packaging materials are also presented.

  16. Phosphazene-promoted anionic polymerization

    KAUST Repository

    Zhao, Junpeng

    2014-01-01

    In the recent surge of metal-free polymerization techniques, phosphazene bases have shown their remarkable potential as organic promoters/catalysts for the anionic polymerization of various types of monomers. By complexation with the counterion (e.g. proton or lithium cation), phosphazene base significantly improve the nucleophilicity of the initiator/chain-end resulting in rapid and usually controlled anionic/quasi-anionic polymerization. In this review, we will introduce the general mechanism, i.e. in situ activation (of initiating sites) and polymerization, and summarize the applications of such a mechanism on macromolecular engineering toward functionalized polymers, block copolymers and complex macromolecular architectures.

  17. Synthesis of magnetic polymeric microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Gervald, A Yu; Gritskova, Inessa A; Prokopov, Nikolai I [M.V. Lomonosov Moscow State Academy of Fine Chemical Technology, Moscow (Russian Federation)

    2010-05-13

    The key types of magnetic polymeric microspheres are considered. Methods of synthesis of different types of magnetic nanoparticles and of preparation of stable magnetic fluids on their basis are outlined. The overview of the methods for the manufacture of magnetic polymeric microspheres is presented. The effect of the synthesis conditions on the characteristics of magnetic polymeric microspheres such as the diameter and the particle size distribution and the content of magnetic material is discussed by particular examples. The application fields of magnetic polymeric microspheres are briefly surveyed.

  18. Synthesis of magnetic polymeric microspheres

    International Nuclear Information System (INIS)

    Gervald, A Yu; Gritskova, Inessa A; Prokopov, Nikolai I

    2010-01-01

    The key types of magnetic polymeric microspheres are considered. Methods of synthesis of different types of magnetic nanoparticles and of preparation of stable magnetic fluids on their basis are outlined. The overview of the methods for the manufacture of magnetic polymeric microspheres is presented. The effect of the synthesis conditions on the characteristics of magnetic polymeric microspheres such as the diameter and the particle size distribution and the content of magnetic material is discussed by particular examples. The application fields of magnetic polymeric microspheres are briefly surveyed.

  19. Mechanocatalytic polymerization and cross-linking in a polymeric matrix

    NARCIS (Netherlands)

    Jakobs, R.T.M.; Ma, Shuang; Sijbesma, R.P.

    2013-01-01

    A latent olefin metathesis catalyst, bearing two polymeric NHC ligands, was embedded in a semicrystalline polymer matrix containing cyclic olefins. The catalyst was activated by straining the solid material under compression, resulting in polymerization and cross-linking reactions of the monomers in

  20. Flexible carbon nanofiber/polyvinylidene fluoride composite membranes as interlayers in high-performance Lithiumsbnd Sulfur batteries

    Science.gov (United States)

    Wang, Zhenhua; Zhang, Jing; Yang, Yuxiang; Yue, Xinyang; Hao, Xiaoming; Sun, Wang; Rooney, David; Sun, Kening

    2016-10-01

    Traditionally polyvinylidene fluoride membranes have been used in applications such as membrane distillation, wastewater treatment, desalination and separator fabrication. Within this work we demonstrate that a novel carbon nanofiber/polyvinylidene fluoride (CNF/PVDF) composite membrane can be used as an interlayer for Lithiumsbnd Sulfur (Lisbnd S) batteries yielding both high capacity and long cycling life. This PVDF membrane is shown to effectively separate dissolved lithium polysulfide with the high electronic conductivity CNF not only reducing the internal resistance in the sulfur cathode but also helping immobilize the polysulfide through its abundant nanospaces. The resulting Lisbnd S battery assembled with the CNF/PVDF composite membrane effectively solves the polysulfide permeation problem and exhibits excellent electrochemical performance. It is further shown that the CNF/PVDF electrode has an excellent cycling stability and retains a capacity of 768.6 mAh g-1 with a coulombic efficiency above 99% over 200 cycles at 0.5C, which is more than twice that of a cell without CNF/PVDF (374 mAh g-1). In addition, the low-cost raw materials and the simple preparation process of CNF/PVDF composite membrane is also amenable for industrial production.

  1. Comparison of neat and photo-crosslinked polyvinylidene fluoride-co-hexafluoropropylene thin film dielectrics formed by spin-coating

    International Nuclear Information System (INIS)

    Iyore, O.D.; Roodenko, K.; Winkler, P.S.; Noriega, J.R.; Vasselli, J.J.; Chabal, Y.J.; Gnade, B.E.

    2013-01-01

    We report the characterization of photo-crosslinked polyvinylidene fluoride-co-hexafluoropropylene (PVDF-HFP) thin film, metal–insulator–metal capacitors fabricated using standard semiconductor processing techniques. We characterize the capacitors using in-situ vibrational spectroscopy during thermally-assisted poling and correlate the Fourier transform infrared spectroscopy (FTIR) results with X-ray diffraction (XRD) results. FTIR analysis of the neat PVDF-HFP showed α → β transformations during poling at room temperature and at 55 °C. α → β transformations were observed for the crosslinked polymer only during poling at 55 °C. XRD data revealed that photo-crosslinking caused the polymer to partially crystallize into the β-phase. The similar behavior of the neat and crosslinked samples at 55 °C suggests that a higher activation energy was needed for α → β transformations in crosslinked PVDF-HFP during poling. Electrical measurements showed that photo-crosslinking had no significant effect on the dielectric constant and dielectric loss of PVDF-HFP. However, the dielectric strength and maximum energy density of the crosslinked polymer were severely reduced. - Highlights: • Polyvinylidene fluoride-hexafluoropropylene (PVDF-HFP) dielectrics were studied. • Phase transformations were observed only at 55 °C for the crosslinked PVDF-HFP. • Crosslinking had no strong effect on the dielectric constant of PVDF-HFP. • Breakdown strengths were 620 MVm −1 and 362 MVm −1 for neat and crosslinked films

  2. Comparison of neat and photo-crosslinked polyvinylidene fluoride-co-hexafluoropropylene thin film dielectrics formed by spin-coating

    Energy Technology Data Exchange (ETDEWEB)

    Iyore, O.D.; Roodenko, K.; Winkler, P.S. [Materials Science and Engineering Department, The University of Texas at Dallas, Richardson, TX 75080 (United States); Noriega, J.R.; Vasselli, J.J. [Electrical Engineering Department, The University of Texas at Tyler, Tyler, TX 75799 (United States); Chabal, Y.J. [Materials Science and Engineering Department, The University of Texas at Dallas, Richardson, TX 75080 (United States); Gnade, B.E., E-mail: gnade@utdallas.edu [Materials Science and Engineering Department, The University of Texas at Dallas, Richardson, TX 75080 (United States)

    2013-12-02

    We report the characterization of photo-crosslinked polyvinylidene fluoride-co-hexafluoropropylene (PVDF-HFP) thin film, metal–insulator–metal capacitors fabricated using standard semiconductor processing techniques. We characterize the capacitors using in-situ vibrational spectroscopy during thermally-assisted poling and correlate the Fourier transform infrared spectroscopy (FTIR) results with X-ray diffraction (XRD) results. FTIR analysis of the neat PVDF-HFP showed α → β transformations during poling at room temperature and at 55 °C. α → β transformations were observed for the crosslinked polymer only during poling at 55 °C. XRD data revealed that photo-crosslinking caused the polymer to partially crystallize into the β-phase. The similar behavior of the neat and crosslinked samples at 55 °C suggests that a higher activation energy was needed for α → β transformations in crosslinked PVDF-HFP during poling. Electrical measurements showed that photo-crosslinking had no significant effect on the dielectric constant and dielectric loss of PVDF-HFP. However, the dielectric strength and maximum energy density of the crosslinked polymer were severely reduced. - Highlights: • Polyvinylidene fluoride-hexafluoropropylene (PVDF-HFP) dielectrics were studied. • Phase transformations were observed only at 55 °C for the crosslinked PVDF-HFP. • Crosslinking had no strong effect on the dielectric constant of PVDF-HFP. • Breakdown strengths were 620 MVm{sup −1} and 362 MVm{sup −1} for neat and crosslinked films.

  3. Fabrication of a polyvinylidene difluoride fiber with a metal core and its application as directional air flow sensor

    Science.gov (United States)

    Bian, Yixiang; Liu, Rongrong; Hui, Shen

    2016-09-01

    We fabricated a sensitive air flow detector that mimic the sensing mechanism found at the tail of some insects. [see Y. Yang, A. Klein, H. Bleckmann and C. Liu, Appl. Phys. Lett. 99(2) (2011); J. J. Heys, T. Gedeon, B. C. Knott and Y. Kim, J. Biomech. 41(5), 977 (2008); J. Tao and X. Yu, Smart Mat. Struct. 21(11) (2012)]. Our bionic airflow sensor uses a polyvinylidene difluoride (PVDF) microfiber with a molybdenum core which we produced with the hot extrusion tensile method. The surface of the fiber is partially coated with conductive silver adhesive that serve as surface electrodes. A third electrode, the metal core is used to polarize polyvinylidene difluoride (PVDF) under the surface electrodes. The cantilever beam structure of the prepared symmetric electrodes of metal core piezoelectric fiber (SMPF) is used as the artificial hair airflow sensor. The surface electrodes are used to measure output voltage. Our theoretical and experimental results show that the SMPF responds fast to air flow changes, the output charge has an exponential correlation with airflow velocity and a cosine relation with the direction of airflow. Our bionic airflow sensor with directional sensing ability can also measure air flow amplitude. [see H. Droogendijk, R. G. P. Sanders and G. J. M. Krijnen, New J. Phys. 15 (2013)]. By using two surface electrodes, our sensing circuit further improves sensitivity.

  4. Surface potential-governed cellular osteogenic differentiation on ferroelectric polyvinylidene fluoride trifluoroethylene films.

    Science.gov (United States)

    Tang, Bolin; Zhang, Bo; Zhuang, Junjun; Wang, Qi; Dong, Lingqing; Cheng, Kui; Weng, Wenjian

    2018-05-02

    Surface potential of biomaterials can dramatically influence cellular osteogenic differentiation. In this work, a wide range of surface potential on ferroelectric polyvinylidene fluoride trifluoroethylene (P(VDF-TrFE)) films was designed to get insight into the interfacial interaction of cell-charged surface. The P(VDF-TrFE) films poled by contact electric poling at various electric fields obtained well stabilized surface potential, with wide range from -3 to 915 mV. The osteogenic differentiation level of cells cultured on the films was strongly dependent on surface potential and reached the optimum at 391 mV in this system. Binding specificity assay indicated that surface potential could effectively govern the binding state of the adsorbed fibronectin (FN) with integrin. Molecular dynamic (MD) simulation further revealed that surface potential brought a significant difference in the relative distance between RGD and synergy PHSRN sites of adsorbed FN, resulting in a distinct integrin-FN binding state. These results suggest that the full binding of integrin α5β1 with both RGD and PHSRN sites of FN possesses a strong ability to activate osteogenic signaling pathway. This work sheds light on the underlying mechanism of osteogenic differentiation behavior on charged material surfaces, and also provides a guidance for designing a reasonable charged surface to enhance osteogenic differentiation. The ferroelectric P(VDF-TrFE) films with steady and a wide range of surface potential were designed to understand underlying mechanism of cell-charged surface interaction. The results showed that the charged surface well favored upregulation of osteogenic differentiation of MC3T3-E1 cells, and more importantly, a highest level occurred on the film with a moderate surface potential. Experiments and molecular dynamics simulation demonstrated that the surface potential could govern fibronectin conformation and then the integrin-fibronectin binding. We propose that a full binding

  5. Phase Change Activation and Characterization of Spray-Deposited Poly(vinylidene) Fluoride Piezoelectric Thin Films

    Science.gov (United States)

    Riosbaas, Miranda Tiffany

    Structural safety and integrity continues to be an issue of utmost concern in our world today. Existing infrastructures in civil, commercial, and military applications are beginning to see issues associated with age and environmental conditions. In addition, new materials are being put to service that are not yet fully characterized and understood when it comes to long term behavior. In order to assess the structural health of both old and new materials, it is necessary to implement a technique for monitoring wear and tear. Current methods that are being used today typically depend on visual inspection techniques or handheld instruments. These methods are not always ideal for large structures as they become very tedious leading to a substantial amount of both time and money spent. More recently, composite materials have been introduced into applications that can benefit from high strength-to-weight ratio materials. However, the use of more complex materials (such as composites) leads to a high demand of structural health monitoring techniques, since the damage is often internal and not visible to the naked eye. The work performed in this thesis examines the methods that can be used for phase change activation and characterization of sprayable poly(vinylidene) fluoride (PVDF) thin films in order to exploit their piezoelectric characteristics for sensing applications. PVDF is widely accepted to exist in four phases: alpha, beta, gamma, and delta. Alpha phase PVDF is produced directly from the melt and exhibits no piezoelectric properties. The activation or transition from α phase to some combination of beta and/or gamma phase PVDF leads to a polarizable piezoelectric thin film to be used in sensing applications. The work herein presents the methods used to activate phase change in PVDF, such as mechanical stretching, annealing, and chemical composition, to be able to implement PVDF as an impact detection sensor. The results and analysis provided in this thesis will

  6. Crystallographic features of poly(vinylidene fluoride) film upon an attractive substrate of KBr.

    Science.gov (United States)

    Huang, Rui; Wang, Gang; Guo, Shuo; Wang, Ke; Fu, Qiang

    2017-10-18

    Among all the polymorphs of poly(vinylidene fluoride) (PVDF), the polar γ-form possesses the highest melting point and electrical breakdown strength as well as the strongest solvent and irradiation resistance, which are beneficial for the durability of PVDF products. Since the γ-form is neither kinetically favorable nor the most thermodynamically stable, it is still difficult to attain the exclusive γ-polymorph, particularly in the case of neat PVDF. In this study, the melt isothermal crystallization of PVDF films was carried out between two KBr wafers. Owing to the characteristics of KBr wafer, including no IR absorbance and high optical transmittance, the crystallographic features originating from the KBr substrate can be conveniently elucidated through the in situ inspected techniques of FTIR and PLM. The KBr wafers significantly accelerated the crystallization kinetics of α-crystals, and then readily triggered the solid-state α- to γ-transformation of the pre-formed α-spherulites, resulting in a 10 μm-thick, neat PVDF film with an absolute crystallinity of 35% and a relative γ fraction as high as 94%. When the film thickness was increased to 40 μm, the crystallization rate of the α-form was still rapid, but the solid-state transformation was not appreciable. These interesting crystallographic phenomena are attributed to the existence of ion-dipole interaction between the -CF 2 or -CH 2 of PVDF chains and the surface of KBr wafer. Unlike most traditional substrate-dominated crystallizations that prevail in a surface epitaxy manner, in which the target films are of ultra-thin thickness (of the order of 10 nm), the ion-dipole interaction promotes the effective thickness to a ten micron level, which enables its production and application at scalable level. Moreover, the triggering of α- to γ-transformation via external fields could be an alternative for achieving the γ-dominant PVDF products, particularly when the introduction of external additives is

  7. Collaborative Research: Polymeric Multiferroics

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Shenqiang [Temple Univ., Philadelphia, PA (United States). College of Engineering

    2017-04-20

    The goal of this project is to investigate room temperature magnetism and magnetoelectric coupling of polymeric multiferroics. A new family of molecular charge-transfer crystals has been emerged as a fascinating opportunity for the development of all-organic electrics and spintronics due to its weak hyperfine interaction and low spin-orbit coupling; nevertheless, direct observations of room temperature magnetic spin ordering have yet to be accomplished in organic charge-transfer solids. Furthermore, room temperature magnetoelectric coupling effect hitherto known multiferroics, is anticipated in organic donor-acceptor complexes because of magnetic field effects on charge-transfer dipoles, yet this is also unexplored. The PI seeks to fundamental understanding of the control of organic crystals to demonstrate and explore room temperature multiferroicity. The experimental results have been verified through the theoretical modeling.

  8. Polymerization with freezing

    International Nuclear Information System (INIS)

    Ben-Naim, E; Krapivsky, P L

    2005-01-01

    Irreversible aggregation processes involving reactive and frozen clusters are investigated using the rate equation approach. In aggregation events, two clusters join irreversibly to form a larger cluster; additionally, reactive clusters may spontaneously freeze. Frozen clusters do not participate in merger events. Generally, freezing controls the nature of the aggregation process, as demonstrated by the final distribution of frozen clusters. The cluster mass distribution has a power-law tail, F k ∼k -γ , when the freezing process is sufficiently slow. Different exponents, γ = 1 and 3, are found for the constant and the product aggregation rates, respectively. For the latter case, the standard polymerization model, either no gels, or a single gel, or even multiple gels, may be produced

  9. Self-Assembled Colloidal Particle Clusters from In Situ Pickering-Like Emulsion Polymerization via Single Electron Transfer Mechanism.

    Science.gov (United States)

    Yuan, Jinfeng; Zhao, Weiting; Pan, Mingwang; Zhu, Lei

    2016-08-01

    A simple route is reported to synthesize colloidal particle clusters (CPCs) from self-assembly of in situ poly(vinylidene fluoride)/poly(styrene-co-tert-butyl acrylate) [PVDF/P(St-co-tBA)] Janus particles through one-pot seeded emulsion single electron transfer radical polymerization. In the in situ Pickering-like emulsion polymerization, the tBA/St/PVDF feed ratio and polymerization temperature are important for the formation of well-defined CPCs. When the tBA/St/PVDF feed ratio is 0.75 g/2.5 g/0.5 g and the reaction temperature is 35 °C, relatively uniform raspberry-like CPCs are obtained. The hydrophobicity of the P(St-co-tBA) domains and the affinity of PVDF to the aqueous environment are considered to be the driving force for the self-assembly of the in situ formed PVDF/P(St-co-tBA) Janus particles. The resultant raspberry-like CPCs with PVDF particles protruding outward may be promising for superhydrophobic smart coatings. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Polymeric micelles for drug targeting.

    Science.gov (United States)

    Mahmud, Abdullah; Xiong, Xiao-Bing; Aliabadi, Hamidreza Montazeri; Lavasanifar, Afsaneh

    2007-11-01

    Polymeric micelles are nano-delivery systems formed through self-assembly of amphiphilic block copolymers in an aqueous environment. The nanoscopic dimension, stealth properties induced by the hydrophilic polymeric brush on the micellar surface, capacity for stabilized encapsulation of hydrophobic drugs offered by the hydrophobic and rigid micellar core, and finally a possibility for the chemical manipulation of the core/shell structure have made polymeric micelles one of the most promising carriers for drug targeting. To date, three generations of polymeric micellar delivery systems, i.e. polymeric micelles for passive, active and multifunctional drug targeting, have arisen from research efforts, with each subsequent generation displaying greater specificity for the diseased tissue and/or targeting efficiency. The present manuscript aims to review the research efforts made for the development of each generation and provide an assessment on the overall success of polymeric micellar delivery system in drug targeting. The emphasis is placed on the design and development of ligand modified, stimuli responsive and multifunctional polymeric micelles for drug targeting.

  11. Organometallic Polymeric Conductors

    Science.gov (United States)

    Youngs, Wiley J.

    1997-01-01

    For aerospace applications, the use of polymers can result in tremendous weight savings over metals. Suitable polymeric materials for some applications like EMI shielding, spacecraft grounding, and charge dissipation must combine high electrical conductivity with long-term environmental stability, good processability, and good mechanical properties. Recently, other investigators have reported hybrid films made from an electrically conductive polymer combined with insulating polymers. In all of these instances, the films were prepared by infiltrating an insulating polymer with a precursor for a conductive polymer (either polypyrrole or polythiophene), and oxidatively polymerizing the precursor in situ. The resulting composite films have good electrical conductivity, while overcoming the brittleness inherent in most conductive polymers. Many aerospace applications require a combination of properties. Thus, hybrid films made from polyimides or other engineering resins are of primary interest, but only if conductivities on the same order as those obtained with a polystyrene base could be obtained. Hence, a series of experiments was performed to optimize the conductivity of polyimide-based composite films. The polyimide base chosen for this study was Kapton. 3-MethylThiophene (3MT) was used for the conductive phase. Three processing variables were identified for producing these composite films, namely time, temperature, and oxidant concentration for the in situ oxidation. Statistically designed experiments were used to examine the effects of these variables and synergistic/interactive effects among variables on the electrical conductivity and mechanical strength of the films. Multiple linear regression analysis of the tensile data revealed that temperature and time have the greatest effect on maximum stress. The response surface of maximum stress vs. temperature and time (for oxidant concentration at 1.2 M) is shown. Conductivity of the composite films was measured for

  12. Optimization of poly(vinylidene fluoride-trifluoroethylene) films as non-volatile memory for flexible electronics

    KAUST Repository

    Mao, Duo

    2010-05-01

    The impact of thermal treatment and thickness on the polarization and leakage current of poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] copolymer thin film capacitors has been studied. The evolution of the film morphology, crystallinity and bonding orientation as a function of annealing temperature and thickness were characterized using multiple techniques. Electrical performance of the devices was correlated with the material properties. It was found that annealing at or slightly above the Curie temperature (Tc) is the optimal temperature for high polarization, smooth surface morphology and low leakage current. Higher annealing temperature (but below the melting temperature Tm) favors larger size β crystallites through molecular chain self-organization, resulting in increased film roughness, and the vertical polarization tends to saturate. Metal-Ferroelectric-Metal (MFM) capacitors consistently achieved Ps, Pr and Vc of 8.5 μC/cm2, 7.4 μC/cm2 and 10.2 V, respectively.

  13. Reflection and Transmission Coefficient of Yttrium Iron Garnet Filled Polyvinylidene Fluoride Composite Using Rectangular Waveguide at Microwave Frequencies

    Science.gov (United States)

    Soleimani, Hassan; Abbas, Zulkifly; Yahya, Noorhana; Shameli, Kamyar; Soleimani, Hojjatollah; Shabanzadeh, Parvaneh

    2012-01-01

    The sol-gel method was carried out to synthesize nanosized Yttrium Iron Garnet (YIG). The nanomaterials with ferrite structure were heat-treated at different temperatures from 500 to 1000 °C. The phase identification, morphology and functional groups of the prepared samples were characterized by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR), respectively. The YIG ferrite nanopowder was composited with polyvinylidene fluoride (PVDF) by a solution casting method. The magnitudes of reflection and transmission coefficients of PVDF/YIG containing 6, 10 and 13% YIG, respectively, were measured using rectangular waveguide in conjunction with a microwave vector network analyzer (VNA) in X-band frequencies. The results indicate that the presence of YIG in polymer composites causes an increase in reflection coefficient and decrease in transmission coefficient of the polymer. PMID:22942718

  14. Remarkable improvement of the wear resistance of poly(vinylidene difluoride) by incorporating polyimide powder and carbon nanofibers

    Science.gov (United States)

    Min, Chunying; Liu, Dengdeng; Shen, Chen; Zhang, Qiaqia; Shen, Xiaojuan; Zhang, Kan

    2017-10-01

    Poly(vinylidene difluoride) (PVDF) composites reinforced via adding different fillers have attracted wide attention in the field of dielectric materials, but few have been reported in the tribological area. In this paper, the effect of polyimide (PI) powder and carbon nanofibers (CF) as reinforcement phases on the friction and wear performance of PVDF composites has been investigated. It was found that PI powder enhances the mechanical and tribological properties of PVDF and especially as the content of the PI powder reaches 5 wt%. In addition, CF and PI exhibited synergistic effect on the tribological properties of PVDF. With PVDF containing 5 wt% PI powder and 20 wt% CF, the friction and wear behavior of the PVDF composite showed the best performance. PVDF, PI powder and CF can form a consistent network structure, which prevents the polymer molecular chains from moving or deformation, decreasing the wear loss of PVDF composites.

  15. A two-step annealing process for enhancing the ferroelectric properties of poly(vinylidene fluoride) (PVDF) devices

    KAUST Repository

    Park, Jihoon

    2015-01-01

    We report a simple two-step annealing scheme for the fabrication of stable non-volatile memory devices employing poly(vinylidene fluoride) (PVDF) polymer thin-films. The proposed two-step annealing scheme comprises the crystallization of the ferroelectric gamma-phase during the first step and enhancement of the PVDF film dense morphology during the second step. Moreover, when we extended the processing time of the second step, we obtained good hysteresis curves down to 1 Hz, the first such report for ferroelectric PVDF films. The PVDF films also exhibit a coercive field of 113 MV m-1 and a ferroelectric polarization of 5.4 μC cm-2. © The Royal Society of Chemistry 2015.

  16. Optimization of poly(vinylidene fluoride-trifluoroethylene) films as non-volatile memory for flexible electronics

    KAUST Repository

    Mao, Duo; Quevedo-Ló pez, Manuel Angel Quevedo; Stiegler, Harvey J.; Gnade, Bruce E.; Alshareef, Husam N.

    2010-01-01

    The impact of thermal treatment and thickness on the polarization and leakage current of poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] copolymer thin film capacitors has been studied. The evolution of the film morphology, crystallinity and bonding orientation as a function of annealing temperature and thickness were characterized using multiple techniques. Electrical performance of the devices was correlated with the material properties. It was found that annealing at or slightly above the Curie temperature (Tc) is the optimal temperature for high polarization, smooth surface morphology and low leakage current. Higher annealing temperature (but below the melting temperature Tm) favors larger size β crystallites through molecular chain self-organization, resulting in increased film roughness, and the vertical polarization tends to saturate. Metal-Ferroelectric-Metal (MFM) capacitors consistently achieved Ps, Pr and Vc of 8.5 μC/cm2, 7.4 μC/cm2 and 10.2 V, respectively.

  17. Novel poly(vinylidene fluoride-trifluoroethylene)/poly(ethylene oxide) blends for battery separators in lithium-ion applications

    International Nuclear Information System (INIS)

    Costa, C.M.; Nunes-Pereira, J.; Rodrigues, L.C.; Silva, M.M.; Ribelles, J.L. Gomez; Lanceros-Méndez, S.

    2013-01-01

    Highlights: ► New P(VDF-TrFE)/PEO polymer blends were prepared for battery separator. ► The porosity and hydrophilicity degree are tailored within this blend. ► Ionic conductivity depends on PEO presence and is stable with temperature. ► High ionic conductivity of 0.25 mS cm −1 for the 60/40 blend. -- Abstract: Polymer blends based on poly(vinylidene fluoride-trifluoroethylene)/poly(ethylene oxide), P(VDF-TrFE)/PEO for Li-ion battery separator applications have been prepared through solvent casting technique. The microstructure, hydrophilicity and electrolyte uptake strongly depend on PEO content within the blend. The best value of ionic conductivity at room temperature was 0.25 mS cm −1 for the 60/40 membrane. The membranes are electrochemically stable

  18. Modeling of Structure Effect for Ferroelectric Capacitor Based on Poly(vinylidene fluoride-trifluoroethylene Ultrathin Films

    Directory of Open Access Journals (Sweden)

    Long Li

    2017-12-01

    Full Text Available The characteristics of ferroelectric capacitors with poly(vinylidene fluoride-trifluoroethlene (P(VDF-TrFE films have been studied at different structures of cell electrodes. It is suggested that the effect of electrode structures could induce changes of performance. Remarkably, cells with line electrodes display a better polarization and fatigue resistance than those with flat electrodes. For P(VDF-TrFE ultrathin films with different electrode structures, the models of charge compensation mechanism for depolarization field and domain fatigue decomposition are used to explain the effect of electrode structure. Furthermore, the driving voltage based on normal speed-functionality is designed, and the testing results show that the line electrode structure could induce a robust switching, which is determined by the free charges concentration in active layer. These findings provide an effective route to design the optimum structure for a ferroelectric capacitor based on P(VDF-TrFE copolymer ultrathin film.

  19. How Chain Intermixing Dictates the Polymorphism of PVDF in Poly(vinylidene fluoride/Polymethylmethacrylate Binary System during Recrystallization: A Comparative Study on Core–Shell Particles and Latex Blend

    Directory of Open Access Journals (Sweden)

    Yue Li

    2017-09-01

    Full Text Available In the past few decades, Poly(vinylidene fluoride/Polymethylmethacrylate (PVDF/PMMA binary blend has attracted substantial attention in the scientific community due to possible intriguing mechanical, optical and ferroelectric properties that are closely related to its multiple crystal structures/phases. However, the effect of PMMA phase on the polymorphism of PVDF, especially the relationship between miscibility and polymorphism, remains an open question and is not yet fully understood. In this work, three series of particle blends with varied levels of miscibility between PVDF and PMMA were prepared via seeded emulsion polymerization: PVDF–PMMA core–shell particle (PVDF@PMMA with high miscibility; PVDF/PMMA latex blend with modest miscibility; and PVDF@c–PMMA (crosslinked PMMA core–shell particle with negligible miscibility. The difference in miscibility, and the corresponding morphology and polymorphism were systematically studied to correlate the PMMA/PVDF miscibility with PVDF polymorphism. It is of interest to observe that the formation of polar β/γ phase during melt crystallization could be governed in two ways: dipole–dipole interaction and fast crystallization. For PVDF@PMMA and PVDF/PMMA systems, in which fast crystallization was unlikely triggered, higher content of β/γ phase, and intense suppression of crystallization temperature and capacity were observed in PVDF@PMMA, because high miscibility favored a higher intensity of overall dipole–dipole interaction and a longer interaction time. For PVDF@c–PMMA system, after a complete coverage of PVDF seeds by PMMA shells, nearly pure β/γ phase was obtained owing to the fast homogeneous nucleation. This is the first report that high miscibility between PVDF and PMMA could favor the formation of β/γ phase.

  20. De fysica van polymere materialen

    NARCIS (Netherlands)

    Struik, L.C.E.

    1987-01-01

    Rede, uitgesproken ter gelegenheid van de aanvaarding van het ambt van buitengewoon hoogleraar in de fysica van polymere materialen aan de Universitelt Twente op donderdag 22 januarì 1987 door Dr.lr. L.C.E. Struik.

  1. Phosphazene-promoted anionic polymerization

    KAUST Repository

    Zhao, Junpeng; Hadjichristidis, Nikolaos; Gnanou, Yves

    2014-01-01

    .e. in situ activation (of initiating sites) and polymerization, and summarize the applications of such a mechanism on macromolecular engineering toward functionalized polymers, block copolymers and complex macromolecular architectures.

  2. Schlenk Techniques for Anionic Polymerization

    KAUST Repository

    Ratkanthwar, Kedar; Zhao, Junpeng; Zhang, Hefeng; Hadjichristidis, Nikolaos; Mays, Jimmy

    2015-01-01

    Anionic polymerization-high vacuum techniques (HVTs) are doubtlessly the most prominent and reliable experimental tools to prepare polymer samples with well-defined and, in many cases, complex macromolecular architectures. Due to the high demands

  3. Pulsed-laser polymerization in compartmentalized liquids. 1. Polymerization in vesicles

    NARCIS (Netherlands)

    Jung, M.; Casteren, van I.A.; Monteiro, M.J.; Herk, van A.M.; German, A.L.

    2000-01-01

    Polymerization in vesicles is a novel type of polymerization in heterogeneous media, leading to parachute-like vesicle-polymer hybrid morphologies. To explore the kinetics of vesicle polymerizations and to learn more about the actual locus of polymerization we applied the pulsed-laser polymerization

  4. Polyolefin nanocomposites in situ polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Galland, Griselda Barrera; Fim, Fabiana de C.; Milani, Marceo A.; Silva, Silene P. da; Forest, Tadeu; Radaelli, Gislaine, E-mail: griselda.barrera@ufrgs.br [Universidade Federal do Rio Grande de Sul - UFRGS, Porto Alegre, RS (Brazil); Basso, Nara R.S. [Pontificia Universidade Catolica do Rio Grande do Sul, Porto Alegre, RS (Brazil); Quijada, Raul [Universidad de Chile, Santiago (Chile)

    2011-07-01

    Polyethylene and polypropylene nanocomposites using grapheme nanosheets and treated chrysotile have been synthesized by in situ polymerization using metallocene catalysts. The fillers have been submitted to acid, thermal and/ou ultrasound treatments before to introduce them into the polymerization reactor. A complete characterization of the fillers has been done. The nanocomposites have been characterized by SEM, TEM, DRX and AFM. The thermal, mechanic -dynamic, mechanical and electrical properties of the nanocomposites are discussed. (author)

  5. Polyolefin nanocomposites in situ polymerization

    International Nuclear Information System (INIS)

    Galland, Griselda Barrera; Fim, Fabiana de C.; Milani, Marceo A.; Silva, Silene P. da; Forest, Tadeu; Radaelli, Gislaine; Basso, Nara R.S.; Quijada, Raul

    2011-01-01

    Polyethylene and polypropylene nanocomposites using grapheme nanosheets and treated chrysotile have been synthesized by in situ polymerization using metallocene catalysts. The fillers have been submitted to acid, thermal and/ou ultrasound treatments before to introduce them into the polymerization reactor. A complete characterization of the fillers has been done. The nanocomposites have been characterized by SEM, TEM, DRX and AFM. The thermal, mechanic -dynamic, mechanical and electrical properties of the nanocomposites are discussed. (author)

  6. Electroactivity in Polymeric Materials

    CERN Document Server

    2012-01-01

    Electroactivity in Polymeric Materials provides an in-depth view of the theory of electroactivity and explores exactly how and why various electroactive phenomena occur. The book explains the theory behind electroactive bending (including ion-polymer-metal-composites –IPMCs), dielectric elastomers, electroactive contraction, and electroactive contraction-expansion cycles.  The book also balances theory with applications – how electroactivity can be used – drawing inspiration from the manmade mechanical world and the natural world around us.  This book captures: A complete introduction to electroactive materials including examples and recent developments The theory and applications of numerous topics like electroactive bending of dielectric elastomers and electroactive contraction and expansion New topics, such as biomimetic applications and energy harvesting This is a must-read within the electroactive community, particularly for professionals and graduate students who are interested in the ...

  7. Enhance the Pyroelectricity of Polyvinylidene Fluoride by Graphene-Oxide Doping

    Directory of Open Access Journals (Sweden)

    Yuh-Chung Hu

    2014-04-01

    Full Text Available The high quality properties and benefits of graphene-oxide have generated an active area of research where many investigations have shown potential applications in various technological fields. This paper proposes a methodology for enhancing the pyro-electricity of PVDF by graphene-oxide doping. The PVDF film with graphene-oxide is prepared by the sol-gel method. Firstly, PVDF and graphene-oxide powders are dispersed into dimethylformamide as solvent to form a sol solution. Secondly, the sol solution is deposited on a flexible ITO/PET substrate by spin-coating. Thirdly, the particles in the sol solution are polymerized through baking off the solvent to produce a gel in a state of a continuous network of PVDF and graphene-oxide. The final annealing process pyrolyzes the gel and form a β-phase PVDF film with graphene-oxide doping. A complete study on the process of the graphene oxide doping of PVDF is accomplished. Some key points about the process are addressed based on experiments. The solutions to some key issues are found in this work, such as the porosity of film, the annealing temperature limitation by the use of flexible PET substrate, and the concentrations of PVDF and graphene-oxide.

  8. Dynamic pyroelectric response of composite based on ferroelectric copolymer of poly(vinylidene fluoride-trifluoroethylene) and ferroelectric ceramics of barium lead zirconate titanate

    Energy Technology Data Exchange (ETDEWEB)

    Solnyshkin, A.V. [Tver State University, Department of Condensed Matter Physics, Tver (Russian Federation); National Research University ' ' MIET' ' , Department of Intellectual Technical Systems, Zelenograd, Moscow (Russian Federation); Morsakov, I.M.; Bogomolov, A.A. [Tver State University, Department of Condensed Matter Physics, Tver (Russian Federation); Belov, A.N.; Vorobiev, M.I.; Shevyakov, V.I.; Silibin, M.V. [National Research University ' ' MIET' ' , Department of Intellectual Technical Systems, Zelenograd, Moscow (Russian Federation); Shvartsman, V.V. [University of Duisburg-Essen, Institute for Materials Science, Essen (Germany)

    2015-10-15

    In this work, pyroelectric properties of composite films on the basis of poly(vinylidene fluoride-trifluoroethylene) copolymer with a various level of ferroelectric ceramics inclusions of barium lead zirconate titanate solid solution were investigated by the dynamic method. The composite films were prepared by the solvent cast method. The unusual spike-like dynamic response with a quasi-stationary component was observed. It is supposed that composite films may be effectively used for pyroelectric applications. (orig.)

  9. Polymeric media for tritium fixation

    International Nuclear Information System (INIS)

    Franz, J.A.; Burger, L.L.

    1975-01-01

    The synthesis and leach testing of several polymeric media for tritium fixation are presented. Tritiated bakelite, poly(acrylonitrile) and polystyrene successfully fixed tritium. Tritium leach rates at the tracer level appear to be negligible. Advantages and disadvantages of the processes are discussed, and further bench-scale investigations underway are reported. Rough cost estimates are presented for the different media and are compared with alternate approaches such as deep-well injection and long-term tank storage. Polymeric media costs are high compared to deep-well storage and are of the same order of magnitude per liter of water as for isotopic enrichment. With this limitation, polymeric media can be economically feasible only for highly concentrated tritiated wastes. It is recommended that the bakelite and polystyrene processes be examined on a larger scale to permit more accurate cost analysis and process design. (auth)

  10. Olefin metathesis and metathesis polymerization

    CERN Document Server

    Ivin, K J

    1997-01-01

    This book is a follow-up to Ivins Olefin Metathesis, (Academic Press, 1983). Bringing the standard text in the field up to date, this Second Edition is a result of rapid growth in the field, sparked by the discovery of numerous well-defined metal carbene complexes that can act as very efficient initiators of all types of olefin metathesis reaction, including ring-closing metathesis of acyclic dienes, enynes, and dienynes; ring-opening metathesis polymerizationof cycloalkenes, acyclic diene metathesis polymerization; and polymerization of alkynes, as well as simple olefin metathesis. Olefin Metathesis and Metathesis Polymerization provides a broad, up-to-date account of the subject from its beginnings in 1957 to the latest applications in organic synthesis. The book follows the same format as the original, making it useful toteachers and to researchers, and will be of particular interest to those working in the fields of organic chemistry, polymer chemistry, organometallic chemistry, catalysis, materials scien...

  11. On-demand photoinitiated polymerization

    Science.gov (United States)

    Boydston, Andrew J; Grubbs, Robert H; Daeffler, Chris; Momcilovic, Nebojsa

    2013-12-10

    Compositions and methods for adjustable lenses are provided. In some embodiments, the lenses contain a lens matrix material, a masking compound, and a prepolymer. The lens matrix material provides structure to the lens. The masking compound is capable of blocking polymerization or crosslinking of the prepolymer, until photoisomerization of the compound is triggered, and the compound is converted from a first isomer to a second isomer having a different absorption profile. The prepolymer is a composition that can undergo a polymerization or crosslinking reaction upon photoinitiation to alter one or more of the properties of the lenses.

  12. Pentafluorosulfanyl Substituents in Polymerization Catalysis.

    Science.gov (United States)

    Kenyon, Philip; Mecking, Stefan

    2017-10-04

    Highly electron-withdrawing pentafluorosulfanyl groups were probed as substituents in an organometallic catalyst. In Ni(II) salicylaldiminato complexes as an example case, these highly electron-withdrawing substituents allow for polymerization of ethylene to higher molecular weights with reduced branching due to significant reductions in β-hydrogen elimination. Combined with the excellent functional group tolerance of neutral Ni(II) complexes, this suppression of β-hydrogen elimination allows for the direct polymerization of ethylene in water to nanocrystal dispersions of disentangled, ultrahigh-molecular-weight linear polyethylene.

  13. Radiation Induced Polymerization of Pyrrole

    International Nuclear Information System (INIS)

    Sarada Idris; Ratnam, C.T.; Ahmad Ashrif Abu Bakar

    2016-01-01

    We demonstrate the polymerization of pyrrole by gamma irradiation. The pyrrole films were exposed to gamma ray from cobalt 60 source at doses ranging from 0 to 150 kGy. The films were subjected to structural and morphological analyses by using FTIR, SEM and AFM techniques. Similar studies were also made on pristine pyrrole film which serve as control. Results revealed that pyrrole has been successfully polymerized through irradiation induced reactions. The SEM images depicted the formation of cauliflower shape upon gamma irradiation. The structural changes of pyrrole also evidenced by FTIR spectra. Surface topography and roughness of pyrrole before and after gamma irradiation found to show significant differences. (author)

  14. Functionalization and Polymerization on the CNT Surfaces

    KAUST Repository

    Albuerne, Julio

    2013-07-01

    In this review we focus on the current status of using carbon nanotube (CNT) as a filler for polymer nanocomposites. Starting with the historical background of CNT, its distinct properties and the surface functionalization of the nanotube, the three different surface polymerization techniques, namely grafting "from", "to" and "through/in between" were discussed. Wider focus has been given on "grafting from" surface initiated polymerizations, including atom transfer radical polymerization (ATRP), reversible addition fragmentation chain-transfer (RAFT) Polymerization, nitroxide mediated polymerization (NMP), ring opening polymerization (ROP) and other miscellaneous polymerization methods. The grafting "to" and "through / in between" also discussed and compared with grafting from polymerization. The merits and shortcomings of all three grafting methods were discussed and the bottleneck issue in grafting from method has been highlighted. Furthermore the current and potential future industrial applications were deliberated. Finally the toxicity issue of CNTs in the final product has been reviewed with the limited available literature knowledge. © 2013 Bentham Science Publishers.

  15. High Vacuum Techniques for Anionic Polymerization

    KAUST Repository

    Ratkanthwar, Kedar; Hadjichristidis, Nikolaos; Mays, Jimmy

    2015-01-01

    Anionic polymerization high vacuum techniques (HVTs) are the most suitable for the preparation of polymer samples with well-defined complex macromolecular architectures. Though HVTs require glassblowing skill for designing and making polymerization

  16. Novel polymeric materials from triglycerides

    Science.gov (United States)

    Triglycerides are good platforms for new polymeric products that can substitute for petroleum-based materials. As part of our research emphasis in sustainability and green polymer chemistry, we have explored a number of reactions in efforts to produce a wide range of value-added products. In this ...

  17. Novel solid state polymeric batteries

    Energy Technology Data Exchange (ETDEWEB)

    Patrick, A.; Glasse, M.; Latham, R.; Linford, R.

    1986-01-01

    AC conductivity measurements have been performed on a number of polymeric electrolytes containing Mg, Ca, Sr and Zn perchlorates and Mg and Ca thiocyanates. The electrolytes were characterized using DSC. Results are reported of preliminary tests of cells incorporating anodes of the above metals. 11 refs.

  18. Reactive surfactants in heterophase polymerization

    NARCIS (Netherlands)

    Guyot, A.; Tauer, K.; Asua, J.M.; Es, van J.J.G.S.; Gauthier, C.; Hellgren, A.C.; Sherrington, D.C.; Montoya-Goni, A.; Sjöberg, M.; Sindt, O.; Vidal, F.F.M.; Unzue, M.; Schoonbrood, H.A.S.; Schipper, E.T.W.M.; Lacroix-Desmazes, P.

    1999-01-01

    This paper summarizes the work carried out during 3 years in a Network of the program "Human Capital and Mobility" of the European Union CHRX 93-0159 entitled "Reactive surfactants in heterophase polymerization for high performance polymers". A series of about 25 original papers will be published in

  19. Biodegradable polymeric prodrugs of naltrexone

    NARCIS (Netherlands)

    Bennet, D.B.; Li, X.; Adams, N.W.; Kim, S.W.; Hoes, C.J.T.; Hoes, C.J.T.; Feijen, Jan

    1991-01-01

    The development of a biodegradable polymeric drug delivery system for the narcotic antagonist naltrexone may improve patient compliance in the treatment of opiate addiction. Random copolymers consisting of the ¿-amino acids N5-(3-hydroxypropyl--glutamine and -leucine were synthesized with equimolar

  20. Impressive nonlinear optical response exhibited by Poly(vinylidene fluoride) (PVDF)/reduced graphene oxide (RGO) nanocomposite films

    Science.gov (United States)

    Sabira, K.; Saheeda, P.; Divyasree, M. C.; Jayalekshmi, S.

    2017-12-01

    In the present work, the nonlinear optical properties of free-standing films of Poly(vinylidene fluoride) (PVDF)/reduced graphene oxide (RGO) nanocomposite are investigated to assess their suitability as efficient optical limiters. The PVDF/RGO nanocomposite films are generated by mixing different concentrations of RGO as the filler, with PVDF, using solution casting method. The XRD and FTIR data of these nanocomposite films confirm the enhancement in the β phase of PVDF when RGO is added to PVDF, which is one of the prime factors, enhancing the nonlinear response of the nanocomposite. The open aperture and closed aperture Z-scan technique under nanosecond excitation (532 nm, 7 ns) is used to investigate the nonlinear optical characteristics of the PVDF/RGO nanocomposite films. These films are found to exhibit two photon absorption assisted optical non linearity in the nanosecond regime. The highlight of the present work is the observation of quite low values of the normalized transmittance and low optical limiting threshold power in free standing films of PVDF/RGO nanocomposite. These flexible, free-standing and stable nanocomposite films offer high application prospects in the design of efficient optical limiting devices of any desired size or shape.

  1. Polyvinylidene Fluoride Micropore Membranes as Solid-Phase Extraction Disk for Preconcentration of Nanoparticulate Silver in Environmental Waters.

    Science.gov (United States)

    Zhou, Xiao-Xia; Lai, Yu-Jian; Liu, Rui; Li, Sha-Sha; Xu, Jing-Wen; Liu, Jing-Fu

    2017-12-05

    Efficient separation and preconcentration of trace nanoparticulate silver (NAg) from large-volume environmental waters is a prerequisite for reliable analysis and therefore understanding the environmental processes of silver nanoparticles (AgNPs). Herein, we report the novel use of polyvinylidene fluoride (PVDF) filter membrane for disk-based solid phase extraction (SPE) of NAg in 1 L of water samples with the disk-based SPE system, which consists of a syringe pump and a syringe filter holder to embed the filter membrane. While the PVDF membrane can selectively adsorb NAg in the presence of Ag + , aqueous solution of 2% (m/v) FL-70 is found to efficiently elute NAg. Analysis of NAg is performed following optimization of filter membrane and elution conditions with an enrichment factor of 1000. Additionally, transmission electron microscopy (TEM), UV-vis spectroscopy, and size-exclusion chromatography coupled with ICP-MS (SEC-ICP-MS) analysis showed that the extraction gives rise to no change in NAg size or shape, making this method attractive for practical applications. Furthermore, feasibility of the protocol is verified by applying it to extract NAg in four real waters with recoveries of 62.2-80.2% at 0.056-0.58 μg/L spiked levels. This work will facilitate robust studies of trace NAg transformation and their hazard assessments in the environment.

  2. Influence of miscibility phenomenon on crystalline polymorph transition in poly(vinylidene fluoride)/acrylic rubber/clay nanocomposite hybrid.

    Science.gov (United States)

    Abolhasani, Mohammad Mahdi; Naebe, Minoo; Jalali-Arani, Azam; Guo, Qipeng

    2014-01-01

    In this paper, intercalation of nanoclay in the miscible polymer blend of poly(vinylidene fluoride) (PVDF) and acrylic rubber(ACM) was studied. X-ray diffraction was used to investigate the formation of nanoscale polymer blend/clay hybrid. Infrared spectroscopy and X-ray analysis revealed the coexistence of β and γ crystalline forms in PVDF/Clay nanocomposite while α crystalline form was found to be dominant in PVDF/ACM/Clay miscible hybrids. Flory-Huggins interaction parameter (B) was used to further explain the miscibility phenomenon observed. The B parameter was determined by combining the melting point depression and the binary interaction model. The estimated B values for the ternary PVDF/ACM/Clay and PVDF/ACM pairs were all negative, showing both proper intercalation of the polymer melt into the nanoclay galleries and the good miscibility of PVDF and ACM blend. The B value for the PVDF/ACM blend was almost the same as that measured for the PVDF/ACM/Clay hybrid, suggesting that PVDF chains in nanocomposite hybrids interact with ACM chains and that nanoclay in hybrid systems is wrapped by ACM molecules.

  3. Influence of miscibility phenomenon on crystalline polymorph transition in poly(vinylidene fluoride/acrylic rubber/clay nanocomposite hybrid.

    Directory of Open Access Journals (Sweden)

    Mohammad Mahdi Abolhasani

    Full Text Available In this paper, intercalation of nanoclay in the miscible polymer blend of poly(vinylidene fluoride (PVDF and acrylic rubber(ACM was studied. X-ray diffraction was used to investigate the formation of nanoscale polymer blend/clay hybrid. Infrared spectroscopy and X-ray analysis revealed the coexistence of β and γ crystalline forms in PVDF/Clay nanocomposite while α crystalline form was found to be dominant in PVDF/ACM/Clay miscible hybrids. Flory-Huggins interaction parameter (B was used to further explain the miscibility phenomenon observed. The B parameter was determined by combining the melting point depression and the binary interaction model. The estimated B values for the ternary PVDF/ACM/Clay and PVDF/ACM pairs were all negative, showing both proper intercalation of the polymer melt into the nanoclay galleries and the good miscibility of PVDF and ACM blend. The B value for the PVDF/ACM blend was almost the same as that measured for the PVDF/ACM/Clay hybrid, suggesting that PVDF chains in nanocomposite hybrids interact with ACM chains and that nanoclay in hybrid systems is wrapped by ACM molecules.

  4. Effects of polarization of polar semiconductor on electrical properties of poly(vinylidene fluoride-trifluoroethylene)/ZnO heterostructures

    International Nuclear Information System (INIS)

    Yamada, Hiroaki; Yoshimura, Takeshi; Fujimura, Norifumi

    2015-01-01

    The electrical properties of heterostructures composed of poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) and ZnO with different crystallographic polarities, i.e., O- and Zn-polar ZnO, were investigated. Distinct differences in the capacitance-voltage and polarization-voltage characteristics between the P(VDF-TrFE)/O- and Zn-polar ZnO were obtained in the depletion regions of ZnO. The band configurations were determined by X-ray photoelectron spectroscopy (XPS) using a synchrotron radiation beam to analyze the differences in the electrical properties of the P(VDF-TrFE)/O- and Zn-polar ZnO. The XPS spectra indicated that the valence band maximum of P(VDF-TrFE) is 2.9 and 2.7 eV higher than Zn- and O-polar ZnO, respectively. Thus, both structures have staggered band configurations with large valence band offsets, and the spontaneous polarization of ZnO is less effective on the band lineup. The electrical properties of the P(VDF-TrFE)/ZnO heterostructures are modulated through carrier generation because of the polarization-mediated interface charges and the staggered band alignments of the P(VDF-TrFE)/ZnO with a large valence band offset

  5. Facile fabrication of highly ordered poly(vinylidene fluoride-trifluoroethylene) nanodot arrays for organic ferroelectric memory

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Huajing [Department of Applied Physics, The Hong Kong Polytechnic University (PolyU) Hunghom, Kowloon (Hong Kong); Department of Chemistry, Tsinghua University, Beijing 100084 (China); Yan, Qingfeng, E-mail: yanqf@mail.tsinghua.edu.cn, E-mail: jiyan.dai@polyu.edu.hk; Geng, Chong; Li, Qiang [Department of Chemistry, Tsinghua University, Beijing 100084 (China); Chan, Ngai Yui; Au, Kit; Ng, Sheung Mei; Leung, Chi Wah; Wa Chan, Helen Lai; Dai, Jiyan, E-mail: yanqf@mail.tsinghua.edu.cn, E-mail: jiyan.dai@polyu.edu.hk [Department of Applied Physics, The Hong Kong Polytechnic University (PolyU) Hunghom, Kowloon (Hong Kong); Yao, Jianjun [Asylum Research, Oxford Instruments, Shanghai 200233 (China); Guo, Dong [Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190 (China)

    2016-01-07

    Nano-patterned ferroelectric materials have attracted significant attention as the presence of two or more thermodynamically equivalent switchable polarization states can be employed in many applications such as non-volatile memory. In this work, a simple and effective approach for fabrication of highly ordered poly(vinylidene fluoride–trifluoroethylene) P(VDF-TrFE) nanodot arrays is demonstrated. By using a soft polydimethylsiloxane mold, we successfully transferred the 2D array pattern from the initial monolayer of colloidal polystyrene nanospheres to the imprinted P(VDF-TrFE) films via nanoimprinting. The existence of a preferred orientation of the copolymer chain after nanoimprinting was confirmed by Fourier transform infrared spectra. Local polarization switching behavior was measured by piezoresponse force microscopy, and each nanodot showed well-formed hysteresis curve and butterfly loop with a coercive field of ∼62.5 MV/m. To illustrate the potential application of these ordered P(VDF-TrFE) nanodot arrays, the writing and reading process as non-volatile memory was demonstrated at a relatively low voltage. As such, our results offer a facile and promising route to produce arrays of ferroelectric polymer nanodots with improved piezoelectric functionality.

  6. Influence of Miscibility Phenomenon on Crystalline Polymorph Transition in Poly(Vinylidene Fluoride)/Acrylic Rubber/Clay Nanocomposite Hybrid

    Science.gov (United States)

    Abolhasani, Mohammad Mahdi; Naebe, Minoo; Jalali-Arani, Azam; Guo, Qipeng

    2014-01-01

    In this paper, intercalation of nanoclay in the miscible polymer blend of poly(vinylidene fluoride) (PVDF) and acrylic rubber(ACM) was studied. X-ray diffraction was used to investigate the formation of nanoscale polymer blend/clay hybrid. Infrared spectroscopy and X-ray analysis revealed the coexistence of β and γ crystalline forms in PVDF/Clay nanocomposite while α crystalline form was found to be dominant in PVDF/ACM/Clay miscible hybrids. Flory-Huggins interaction parameter (B) was used to further explain the miscibility phenomenon observed. The B parameter was determined by combining the melting point depression and the binary interaction model. The estimated B values for the ternary PVDF/ACM/Clay and PVDF/ACM pairs were all negative, showing both proper intercalation of the polymer melt into the nanoclay galleries and the good miscibility of PVDF and ACM blend. The B value for the PVDF/ACM blend was almost the same as that measured for the PVDF/ACM/Clay hybrid, suggesting that PVDF chains in nanocomposite hybrids interact with ACM chains and that nanoclay in hybrid systems is wrapped by ACM molecules. PMID:24551141

  7. Facile fabrication of highly ordered poly(vinylidene fluoride-trifluoroethylene) nanodot arrays for organic ferroelectric memory

    International Nuclear Information System (INIS)

    Fang, Huajing; Yan, Qingfeng; Geng, Chong; Li, Qiang; Chan, Ngai Yui; Au, Kit; Ng, Sheung Mei; Leung, Chi Wah; Wa Chan, Helen Lai; Dai, Jiyan; Yao, Jianjun; Guo, Dong

    2016-01-01

    Nano-patterned ferroelectric materials have attracted significant attention as the presence of two or more thermodynamically equivalent switchable polarization states can be employed in many applications such as non-volatile memory. In this work, a simple and effective approach for fabrication of highly ordered poly(vinylidene fluoride–trifluoroethylene) P(VDF-TrFE) nanodot arrays is demonstrated. By using a soft polydimethylsiloxane mold, we successfully transferred the 2D array pattern from the initial monolayer of colloidal polystyrene nanospheres to the imprinted P(VDF-TrFE) films via nanoimprinting. The existence of a preferred orientation of the copolymer chain after nanoimprinting was confirmed by Fourier transform infrared spectra. Local polarization switching behavior was measured by piezoresponse force microscopy, and each nanodot showed well-formed hysteresis curve and butterfly loop with a coercive field of ∼62.5 MV/m. To illustrate the potential application of these ordered P(VDF-TrFE) nanodot arrays, the writing and reading process as non-volatile memory was demonstrated at a relatively low voltage. As such, our results offer a facile and promising route to produce arrays of ferroelectric polymer nanodots with improved piezoelectric functionality

  8. Switching characteristics for ferroelectric random access memory based on RC model in poly(vinylidene fluoride-trifluoroethylene) ultrathin films

    Energy Technology Data Exchange (ETDEWEB)

    Liu, ChangLi [Department of Physics, East China University of Science and Technology, Shanghai 200237 (China); Complex and Intelligent System Research Center, East China University of Science and Technology, Shanghai 200237 (China); Wang, XueJun [Complex and Intelligent System Research Center, East China University of Science and Technology, Shanghai 200237 (China); Zhang, XiuLi [Department of Physics, East China University of Science and Technology, Shanghai 200237 (China); School of Fundamental Studies, Shanghai University of Engineering Science, Shanghai 201620 (China); Du, XiaoLi [School of Fundamental Studies, Shanghai University of Engineering Science, Shanghai 201620 (China); Xu, HaiSheng, E-mail: hsxu@ecust.edu.cn [Department of Physics, East China University of Science and Technology, Shanghai 200237 (China); Kunshan Hisense Electronics Co., Ltd., Kunshan, Jiangsu 215300 (China)

    2016-05-15

    The switching characteristic of the poly(vinylidene fluoride-trifluoroethlene) (P(VDF-TrFE)) films have been studied at different ranges of applied electric field. It is suggest that the increase of the switching speed upon nucleation protocol and the deceleration of switching could be related to the presence of a non-ferroelectric layer. Remarkably, a capacitor and resistor (RC) links model plays significant roles in the polarization switching dynamics of the thin films. For P(VDF-TrFE) ultrathin films with electroactive interlayer, it is found that the switching dynamic characteristics are strongly affected by the contributions of resistor and non-ferroelectric (non-FE) interface factors. A corresponding experiment is designed using poly(3,4-ethylene dioxythiophene):poly(styrene sulfonic) (PEDOT-PSSH) as interlayer with different proton concentrations, and the testing results show that the robust switching is determined by the proton concentration in interlayer and lower leakage current in circuit to reliable applications of such polymer films. These findings provide a new feasible method to enhance the polarization switching for the ferroelectric random access memory.

  9. Physical and chemical changes induced by 70 MeV carbon ions in polyvinylidene difluoride (PVDF) polymer

    International Nuclear Information System (INIS)

    Virk, H.S.; Chandi, P.S.; Srivastava, A.K.

    2001-01-01

    Physical and chemical changes induced by 70 MeV carbon ions ( 12 C 5+ ) have been investigated in bulk polyvinylidene fluoride (PVDF) polymer. The induced changes have been studied with respect to their optical, chemical and structural response using UV-visible, FTIR and XRD techniques. The ion fluences ranging from 2.5x10 11 to 9x10 13 ions cm -2 have been used to study the irradiation effects. It has been observed that at the fluence of 9x10 13 ions cm -2 the PVDF sample became brittle and practically it was not possible to handle it for any further measurements. The recorded UV-visible spectra show that the optical absorption increases with increasing fluence, indicating maximum absorption at 200 nm. An interesting feature of UV-visible spectra is that dips change into peaks and vice versa with increase of fluence. In the FTIR spectra, development of new peaks at 1714 and 3692 cm -1 along with disappearance of peaks at 2363 and 3025 cm -1 and shifting of peak at 2984-2974 cm -1 have been observed due to high energy irradiation, indicating the chemical changes induced by 12 C 5+ . The diffraction pattern of PVDF indicates that this polymer is semi-crystalline in nature; a large decrease in the diffraction intensity indicates decrease in crystallinity. Increase in crystallite size has also been observed due to heavy ion irradiation

  10. Enhanced antifouling behaviours of polyvinylidene fluoride membrane modified through blending with nano-TiO2/polyethylene glycol mixture

    International Nuclear Information System (INIS)

    Zhang, Jie; Wang, Zhiwei; Zhang, Xingran; Zheng, Xiang; Wu, Zhichao

    2015-01-01

    Graphical abstract: - Highlights: • Nano-TiO 2 /polyethylene glycol (PEG) mixture was used to modify PVDF membranes. • The steric hindrance effects of PEG enabled the dispersion of nanoparticles. • The energy barrier between SMP and modified membranes was increased. • The modification by nano-TiO 2 /PEG well improved the anti-fouling ability. - Abstract: Titanium dioxide (TiO 2 ) nanoparticles/polyethylene glycol (PEG) mixture was used to modify polyvinylidene fluoride (PVDF) membranes aiming to improve their antifouling ability. The use of PEG could improve the dispersion of nanoparticles thanks to steric hindrance effects. Test results showed that compared to the original PVDF membrane, the modified membranes had higher hydrophilicity and lower negative Zeta potential, facilitating membrane fouling control. The extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) analysis indicated that the addition of TiO 2 nanoparticles improved their electron donor monopolarity, i.e., enhanced electron-donating ability. The interaction energy barrier between soluble microbial products (SMP) and membrane surfaces was also improved, indicating that anti-fouling ability of the modified membrane was elevated. The optimal dosage of nano-TiO 2 was found to be 0.15%, and further increase of dosage resulted in the aggregation of nanoparticles which consequently impaired the modification efficiency. Quartz crystal microbalance with dissipation (QCM-D) monitoring and SMP filtration tests confirmed the antifouling ability of the modified membrane

  11. Temperature dependence of coercive field and fatigue in poly(vinylidene fluoride-trifluoroethylene) copolymer ultra-thin films

    International Nuclear Information System (INIS)

    Zhang Xiuli; Xu Haisheng; Zhang Yanni

    2011-01-01

    The experimental intrinsic coercive field of ferroelectric poly(vinylidene fluoride-trifluoethylene) copolymer films, with both bottom and top gold electrodes is measured at a wide temperature range. In the lower temperature region from -20 to 25 deg. C, the temperature dependence of coercive field shows good agreement with the prediction by the Landau-Ginzburg (LG) mean-field theory. In the higher temperature region from 25 to 80 deg. C, the coercive field shows a slow decrease with the increased temperature, where the LG theory is not applicable any more. The temperature-dependent changes in the polymer chains have been analysed. A reversible 'inherent fatigue' is observed from the partially recovered remanent polarization after re-annealing a fatigued P(VDF-TrFE) film. FTIR spectra indicate that the interchain spacing does not change from 10 to 10 7 switching cycles while the degree of all-trans ferroelectric phase decreases gradually with applied switching cycles. After a re-annealing treatment, ferroelectric phase recovers and dipoles at the boundary of crystallites acquire much higher energy.

  12. Cross-Selectivity Enhancement of Poly(vinylidene fluoride-hexafluoropropylene-Based Sensor Arrays for Detecting Acetone and Ethanol

    Directory of Open Access Journals (Sweden)

    Ali Daneshkhah

    2017-03-01

    Full Text Available Two methods for cross-selectivity enhancement of porous poly(vinylidene fluoride-hexafluoropropylene (PVDF-HFP/carbon black (CB composite-based resistive sensors are provided. The sensors are tested with acetone and ethanol in the presence of humid air. Cross-selectivity is enhanced using two different methods to modify the basic response of the PVDF-HFP/CB sensing platform. In method I, the adsorption properties of PVDF-HFP/CB are altered by adding a polyethylene oxide (PEO layer or by treating with infrared (IR. In method II, the effects of the interaction of acetone and ethanol are enhanced by adding diethylene carbonate (DEC or PEO dispersed in DEC (PEO/DEC to the film. The results suggest the approaches used in method I alter the composite ability to adsorb acetone and ethanol, while in method II, they alter the transduction characteristics of the composite. Using these approaches, sensor relative response to acetone was increased by 89% compared with the PVDF-HFP/CB untreated film, whereas sensor relative response to ethanol could be decreased by 57% or increased by 197%. Not only do these results demonstrate facile methods for increasing sensitivity of PVDF-HFP/CB film, used in parallel they demonstrate a roadmap for enhancing system cross-selectivity that can be applied to separate units on an array. Fabrication methods, experimental procedures and results are presented and discussed.

  13. Largely enhanced dielectric properties of carbon nanotubes/polyvinylidene fluoride binary nanocomposites by loading a few boron nitride nanosheets

    International Nuclear Information System (INIS)

    Yang, Minhao; Zhao, Hang; He, Delong; Bai, Jinbo

    2016-01-01

    The ternary nanocomposites of boron nitride nanosheets (BNNSs)/carbon nanotubes (CNTs)/polyvinylidene fluoride (PVDF) are fabricated via a combination of solution casting and extrusion-injection processes. The effects of BNNSs on the electrical conductivity, dielectric behavior, and microstructure changes of CNTs/PVDF binary nanocomposites are systematically investigated. A low percolation value (f_c) for the CNTs/PVDF binary system is obtained due to the integration of solution and melting blending procedures. Two kinds of CNTs/PVDF binary systems with various CNTs contents (f_C_N_T_s) as the matrix are discussed. The results reveal that compared with CNTs/PVDF binary systems at the same f_C_N_T_s, the ternary BNNSs/CNTs/PVDF nanocomposites exhibit largely enhanced dielectric properties due to the improvement of the CNTs dispersion state and the conductive network. The dielectric constant of CNTs/PVDF binary nanocomposite with 6 vol. % CNTs (f_C_N_T_s   f_c), it displays a 43.32% improvement from 1325 to 1899 after the addition of 3 vol. % BNNSs. The presence of BNNSs facilitates the formation of the denser conductive network. Meanwhile, the ternary BNNSs/CNTs/PVDF systems exhibit a low dielectric loss. The adjustable dielectric properties could be obtained by employing the ternary systems due to the microstructure changes of nanocomposites.

  14. High Thermal Gradient in Thermo-electrochemical Cells by Insertion of a Poly(Vinylidene Fluoride) Membrane

    Science.gov (United States)

    Hasan, Syed Waqar; Said, Suhana Mohd; Sabri, Mohd Faizul Mohd; Bakar, Ahmad Shuhaimi Abu; Hashim, Nur Awanis; Hasnan, Megat Muhammad Ikhsan Megat; Pringle, Jennifer M.; Macfarlane, Douglas R.

    2016-07-01

    Thermo-Electrochemical cells (Thermocells/TECs) transform thermal energy into electricity by means of electrochemical potential disequilibrium between electrodes induced by a temperature gradient (ΔT). Heat conduction across the terminals of the cell is one of the primary reasons for device inefficiency. Herein, we embed Poly(Vinylidene Fluoride) (PVDF) membrane in thermocells to mitigate the heat transfer effects - we refer to these membrane-thermocells as MTECs. At a ΔT of 12 K, an improvement in the open circuit voltage (Voc) of the TEC from 1.3 mV to 2.8 mV is obtained by employment of the membrane. The PVDF membrane is employed at three different locations between the electrodes i.e. x = 2 mm, 5 mm, and 8 mm where ‘x’ defines the distance between the cathode and PVDF membrane. We found that the membrane position at x = 5 mm achieves the closest internal ΔT (i.e. 8.8 K) to the externally applied ΔT of 10 K and corresponding power density is 254 nWcm-2 78% higher than the conventional TEC. Finally, a thermal resistivity model based on infrared thermography explains mass and heat transfer within the thermocells.

  15. A small graphene oxide sheet/polyvinylidene fluoride bilayer actuator with large and rapid responses to multiple stimuli.

    Science.gov (United States)

    Xu, Guochuang; Zhang, Miao; Zhou, Qinqin; Chen, Hongwu; Gao, Tiantian; Li, Chun; Shi, Gaoquan

    2017-11-16

    A high-performance actuator should be able to deliver large-shape deformations, fast actuations and sensitive responses to multiple stimuli. Here, we report such an actuator constructed from one layer of polyvinylidene fluoride (PVDF) with a high coefficient of thermal expansion (CTE), and another layer of small sheets of graphene oxide (SGO) with a negative CTE. The opposite deformations of both actuation layers make the SGO/PVDF bilayer actuator highly sensitive to the temperature stimulus with a large bending sensitivity of 1.5 cm -1 °C -1 . Upon irradiation with 60 mW cm -2 infrared light, this SGO/PVDF bilayer actuator displayed an extremely rapid tip displacement rate of 140 mm s -1 . Furthermore, this actuator can also sensitively respond to moisture because of its SGO layer, showing a curvature change from -22 to 13 cm -1 upon changing the relative humidity (RH) from 11% to 86%. This actuator can generate a contractile or relaxed stress 18 times that of mammalian skeletal muscle, under light irradiation or moisture with a response time as short as 1 s, being capable of lifting an object with a weight 80 times that of itself. Furthermore, it also showed excellent stability and repeatability.

  16. Enhanced antifouling behaviours of polyvinylidene fluoride membrane modified through blending with nano-TiO{sub 2}/polyethylene glycol mixture

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jie [State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092 (China); Wang, Zhiwei, E-mail: zwwang@tongji.edu.cn [State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092 (China); Zhang, Xingran [State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092 (China); Zheng, Xiang, E-mail: zhengxiang7825@163.com [School of Environment and Natural Resources, Renmin University of China, Beijing, 100872 (China); Wu, Zhichao [State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092 (China)

    2015-08-01

    Graphical abstract: - Highlights: • Nano-TiO{sub 2}/polyethylene glycol (PEG) mixture was used to modify PVDF membranes. • The steric hindrance effects of PEG enabled the dispersion of nanoparticles. • The energy barrier between SMP and modified membranes was increased. • The modification by nano-TiO{sub 2}/PEG well improved the anti-fouling ability. - Abstract: Titanium dioxide (TiO{sub 2}) nanoparticles/polyethylene glycol (PEG) mixture was used to modify polyvinylidene fluoride (PVDF) membranes aiming to improve their antifouling ability. The use of PEG could improve the dispersion of nanoparticles thanks to steric hindrance effects. Test results showed that compared to the original PVDF membrane, the modified membranes had higher hydrophilicity and lower negative Zeta potential, facilitating membrane fouling control. The extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) analysis indicated that the addition of TiO{sub 2} nanoparticles improved their electron donor monopolarity, i.e., enhanced electron-donating ability. The interaction energy barrier between soluble microbial products (SMP) and membrane surfaces was also improved, indicating that anti-fouling ability of the modified membrane was elevated. The optimal dosage of nano-TiO{sub 2} was found to be 0.15%, and further increase of dosage resulted in the aggregation of nanoparticles which consequently impaired the modification efficiency. Quartz crystal microbalance with dissipation (QCM-D) monitoring and SMP filtration tests confirmed the antifouling ability of the modified membrane.

  17. Novel electrospun polyvinylidene fluoride-graphene oxide-silver nanocomposite membranes with protein and bacterial antifouling characteristics

    Directory of Open Access Journals (Sweden)

    C. Liu

    2018-04-01

    Full Text Available We developed and fabricated novel polyvinylidene fluoride (PVDF-(0.5–2%Ag and PVDF-(0.5–2%Ag-1% graphene oxide (GO nanocomposite membranes with antifouling properties through electrospinning. Silver nanoparticles (AgNPs were in situ synthesized from silver nitrate precursor directly. The tensile properties, wetting, antifouling characteristics of pristine PVDF and its nanocomposite membranes were studied. Tensile tests showed that the addition of 0.5–2% AgNPs to PVDF improves its elastic modulus and tensile strength markedly. A further increase in both tensile modulus and strength of PVDF were obtained by hybridizing AgNPs with 1% GO. Water contact angle measurements revealed that the incorporation of AgNPs or AgNPs/GO nanofillers into PVDF decreases its degree of hydrophobicity. This led to the nanocomposite membranes having higher water flux permeation. In addition, AgNPs and AgNPs/GO fillers played a crucial role against protein and bacterial fouling of the resulting composite membranes. The antibacterial activities of electrospun nanocomposite membranes were assessed against Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus. On the basis of water contact angle, water permeation flux and antifouling results, electrospun PVDF-2% Ag-GO composite membrane was found to exhibit excellent filtration performance, protein antifouling and bactericidal activities. Thus such a fibrous nanocomposite is considered as a high-potential membrane for water purification and disinfection applications.

  18. Electroactive Phase Induced Bi4Ti3O12-Poly(Vinylidene Difluoride) Composites with Improved Dielectric Properties

    Science.gov (United States)

    Bhardwaj, Sumit; Paul, Joginder; Chand, Subhash; Raina, K. K.; Kumar, Ravi

    2015-10-01

    Lead-free ceramic-polymer composite films containing Bi4Ti3O12 (BIT) nanocrystals as the active phase and poly(vinylidene difluoride) as the passive matrix were synthesized by spin coating. The films' structural, morphological, and dielectric properties were systemically investigated by varying the weight fraction of BIT. Formation of electroactive β and γ phases were strongly affected by the presence of BIT nanocrystals. Analysis was performed by Fourier-transform infrared and Raman spectroscopy. Morphological studies confirmed the homogeneous dispersion of BIT particles within the polymer matrix. The composite films had dielectric constants as high as 52.8 and low dielectric loss of 0.1 at 100 Hz when the BIT content was 10 wt.%. We suggest that the enhanced electroactive phase content of the polymer matrix and interfacial polarization may contribute to the improved dielectric performance of these composite films. Dielectric modulus analysis was performed to enable understanding of the dielectric relaxation process. Non-Debye-type relaxation behavior was observed for the composite films at high temperature.

  19. Facile fabrication of highly ordered poly(vinylidene fluoride-trifluoroethylene) nanodot arrays for organic ferroelectric memory

    Science.gov (United States)

    Fang, Huajing; Yan, Qingfeng; Geng, Chong; Chan, Ngai Yui; Au, Kit; Yao, Jianjun; Ng, Sheung Mei; Leung, Chi Wah; Li, Qiang; Guo, Dong; Wa Chan, Helen Lai; Dai, Jiyan

    2016-01-01

    Nano-patterned ferroelectric materials have attracted significant attention as the presence of two or more thermodynamically equivalent switchable polarization states can be employed in many applications such as non-volatile memory. In this work, a simple and effective approach for fabrication of highly ordered poly(vinylidene fluoride-trifluoroethylene) P(VDF-TrFE) nanodot arrays is demonstrated. By using a soft polydimethylsiloxane mold, we successfully transferred the 2D array pattern from the initial monolayer of colloidal polystyrene nanospheres to the imprinted P(VDF-TrFE) films via nanoimprinting. The existence of a preferred orientation of the copolymer chain after nanoimprinting was confirmed by Fourier transform infrared spectra. Local polarization switching behavior was measured by piezoresponse force microscopy, and each nanodot showed well-formed hysteresis curve and butterfly loop with a coercive field of ˜62.5 MV/m. To illustrate the potential application of these ordered P(VDF-TrFE) nanodot arrays, the writing and reading process as non-volatile memory was demonstrated at a relatively low voltage. As such, our results offer a facile and promising route to produce arrays of ferroelectric polymer nanodots with improved piezoelectric functionality.

  20. Unzipped multiwalled carbon nanotubes-incorporated poly(vinylidene fluoride) nanocomposites with enhanced interface and piezoelectric β phase.

    Science.gov (United States)

    He, Linghao; Xia, Guangmei; Sun, Jing; Zhao, Qiaoling; Song, Rui; Ma, Zhi

    2013-03-01

    An improved method is described for the fabrication of poly(vinylidene fluoride) (PVDF)/carbon nanotubes (CNTs) hybrid materials to solve intrinsic limitation of CNTs. In this study, multiwalled carbon nanotubes (MWCNTs) were unzipped by an oxidative unzipping process before dispersing in PVDF matrix, and unzipped MWCNTs (μCNTs) with different unzipping degrees were obtained through controlling the amounts of oxidant (KMnO(4)). Due to the increased available interface area and specific interaction between the oxygen-containing groups (such as >C=O) in μCNTs and the >CF(2) group of PVDF, the dispersion of μCNTs in PVDF matrix is tremendously improved. The resulting PVDF/μCNTs nanocomposites were characterized by wide angle X-ray diffraction, Fourier transform infrared spectroscopy, differential scanning calorimetry, scanning electron microscopy, and transmission electron microscopy. It is found that μCNTs nucleate PVDF crystallization and enhance piezoelectric β phase with a concomitant decrease of α phase. This is particularly true for the nanocomposites including the μCNTs with higher unzipping degree, in which the mass crystallinity and content of β phase (F(β)) were enhanced, implied by the increased piezoelectric constant d(33). In addition, the increased storage modulus (E') tested by dynamic mechanical analysis confirmed that μCNTs were more effective than pristine MWNTs in terms of reinforcing polymers. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Graphene Ink Laminate Structures on Poly(vinylidene difluoride) (PVDF) for Pyroelectric Thermal Energy Harvesting and Waste Heat Recovery.

    Science.gov (United States)

    Zabek, Daniel; Seunarine, Kris; Spacie, Chris; Bowen, Chris

    2017-03-15

    Thermal energy can be effectively converted into electricity using pyroelectrics, which act as small scale power generator and energy harvesters providing nanowatts to milliwatts of electrical power. In this paper, a novel pyroelectric harvester based on free-standing poly(vinylidene difluoride) (PVDF) was manufactured that exploits the high thermal radiation absorbance of a screen printed graphene ink electrode structure to facilitate the conversion of the available thermal radiation energy into electrical energy. The use of interconnected graphene nanoplatelets (GNPs) as an electrode enable high thermal radiation absorbance and high electrical conductivity along with the ease of deposition using a screen print technique. For the asymmetric structure, the pyroelectric open-circuit voltage and closed-circuit current were measured, and the harvested electrical energy was stored in an external capacitor. For the graphene ink/PVDF/aluminum system the closed circuit pyroelectric current improves by 7.5 times, the open circuit voltage by 3.4 times, and the harvested energy by 25 times compared to a standard aluminum/PVDF/aluminum system electrode design, with a peak energy density of 1.13 μJ/cm 3 . For the pyroelectric device employed in this work, a complete manufacturing process and device characterization of these structures are reported along with the thermal conductivity of the graphene ink. The material combination presented here provides a new approach for delivering smart materials and structures, wireless technologies, and Internet of Things (IoT) devices.

  2. Frequency dependence of electrical properties of polyvinylidene fluoride/graphite electrode waste/natural carbon black composite

    Science.gov (United States)

    Insiyanda, D. R.; Indayaningsih, N.; Prihandoko, B.; Subhan, A.; Khaerudini, D. S.; Widodo, H.; Destyorini, F.; Chaer, A.

    2018-03-01

    Polyvinylidene fluoride (PVdF) is a semi-crystalline thermoplastic material with remarkably high piezoelectric coefficient and an attractive polymer matrix for micro-composite with superior mechanical and electrical properties. The conductive filler is obtained from Graphite Electrode Waste (GEW) and Natural Carbon Black (NCB). The variation of composite content (%) of PVdF/NCB/GEW were 100/0/0, 95/5/0, 95/0/5, 95/2.5/2.5. This experiment employed dry dispersion method for material mixing. The materials were then moulded using hot press machine with compression parameters of P = 5.5 MPa, T = 150 °C, t = 60 minutes, A = 5×5×(0.2 - 0.4) cm3. The electrical conductivity properties of pure PVdF, as well as PVdF/GEW, PVdF/NCB, and PVdF/NCB/GEW composites were investigated in a frequency range of 100 to 100000 Hz. The PVdF/GEW sample obtained the highest electrical conductivity. It is concluded that GEW and NCB can be incorporated into PVdF as a conductive filler to increase the conductivity of conductive material composite without solvent.

  3. Polarization tunable photogenerated carrier transfer of CH3NH3PbI3/polyvinylidene fluoride heterostructure

    Science.gov (United States)

    Yang, Kang; Deng, Zun-Yi; Feng, Hong-Jian

    2017-10-01

    The integration of ferroelectrics and organic-inorganic halide perovskites could be a promising way to facilitate the separation of electron-hole pairs and charge extraction for the application of solar cells. To explore the effect of the external ferroelectric layer on the CH3NH3PbI3 (MAPbI3) side, we perform first-principles calculations to study the charge transfer properties of the MAPbI3/polyvinylidene fluoride (PVDF) heterostructure. Our calculations demonstrate that the ferroelectric polarization pointing to the PVDF side can clearly facilitate the separation of photo-induced carriers and enhance charge extraction from MAPbI3, while opposite polarization direction hinders the charge extraction and collection. Notably, the carrier behavior at the interface is strongly tuned by the electric field associated with the ferroelectric polarization. In addition, excited state simulation confirms the tunable charge transfer of the MAPbI3/PVDF heterojunction. Therefore, the polarization-driven charge transfer mechanism provides a route for fabricating the ferroelectrics-based high-efficiency photovoltaics and switchable diode devices.

  4. Poly(vinylidene fluoride) modification induced by gamma irradiation for application as ionic polymer-metal composite

    International Nuclear Information System (INIS)

    Ferreira, Henrique Perez

    2011-01-01

    Gamma-radiation-induced grafting of styrene into poly(vinylidene fluoride) (PVDF) films with 0.125 mm thickness at doses from 1 to 100 kGy in the presence of a styrene/N,N- dimethylformamide (DMF) solution (1:1, v/v) and styrene/toluene (1:1, v/v) at dose rate of 5 kGy h-1 was carried out by simultaneous method under nitrogen atmosphere at room temperature, using gamma rays from a Co-60. After grafting reactions, the polymer was then sulfonated in chlorosulfonic acid/1,2-dichloroethane (2 and 10%) for 3 hours. The films were characterized before and after modification by calculating the degree of grafting (DOG), infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and thermogravimetry (TG/DTG). DOG results show that grafting increases with dose, and varies enormously depending on the solvent used, with DOGs about 20 times greater in DMF than in toluene. It was possible to confirm the grafting of styrene by FT-IR due to the appearance of the new characteristic peaks and by the TG and DSC which exhibited changes in the thermal behavior of the grafted/sulfonated material. Sulfonated material was also characterized by ion exchange capacity (IEC) showed that both DOG and sulfonic acid concentration increase IEC values. Results showed that it is possible to obtain materials with ion exchange capacity of possible application as ionic polymer-metal composites. (author)

  5. Preparation of novel poly(vinylidene fluoride)/TiO2 photocatalysis membranes for use in direct contact membrane distillation

    Science.gov (United States)

    Li, Yukun; Dong, Shuying; Zhu, Liang

    2018-03-01

    Immobilization of TiO2 is a potential approach to obtain photocatalytic membranes that could eliminate concentration polarization in sewage disposal for direct contact membrane distillation (DCMD) process. A simple non-solvent-induced phase separation (NIPS) method was proposed to prepare poly(vinylidene fluoride) (PVDF) membrane, and the double-coating technology was further used to prepare the self-cleaning membranes with different TiO2 content. The effects of TiO2 nano-particles on membrane crystal form, morphology, porosity, pore size, pore size distribution, hydrophobicity, permeation, and photocatalytic efficiency were investigated, respectively. The flux of the prepared membranes is higher than the membrane (MS) provided by Membrane Solutions, LLC, in DCMD process. The contact angle between water and membrane could be increased 22° by introducing photocatalytic layer containing TiO2. During the photocatalytic test, 65.78-96.31% degrading rate of 15 mg/L Rhodamine B (RhB) was achieved. The relative flux of the membrane T-3 can be recovered to 0.96 in photocatalysis-membrane reactor for 8 h UV radiation. The fabricated membrane has great potential in high-salty dyeing wastewater treatment due to its high hydrophobicity and photocatalytic capability. [Figure not available: see fulltext.

  6. Kinetic investigations of graft copolymerization of sodium styrene sulfonate onto electron beam irradiated poly(vinylidene fluoride) films

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoud Nasef, Mohamed, E-mail: mahmoudeithar@fkkksa.utm.m [Institute of Hydrogen Economy, International City Campus, Universiti Teknologi Malaysia, Jalan Semarak, 54100 Kuala Lumpur (Malaysia); Chemical Engineering Department, Faculty of Chemical and Natural Resources Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor (Malaysia); Saidi, Hamdani [Institute of Hydrogen Economy, International City Campus, Universiti Teknologi Malaysia, Jalan Semarak, 54100 Kuala Lumpur (Malaysia); Chemical Engineering Department, Faculty of Chemical and Natural Resources Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor (Malaysia); Mohd Dahlan, Khairul Zaman [Radiation Processing Technology Division, Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor (Malaysia)

    2011-01-15

    Graft copolymerization of sodium styrene sulfonate (SSS) onto electron beam (EB) irradiated poly(vinylidene fluoride) (PVDF) films was investigated to find out a simple preparation process for sulfonic acid proton exchange membranes with respect to monomer concentration, absorbed dose, temperature, film thickness and storage time. The reaction order of the monomer concentration and absorbed dose of grafting was found to be 2.84 and 1.20, respectively. The overall activation energy for graft copolymerization reaction was calculated to be 11.36 kJ/mol. The initial rate of grafting was found to decrease with an increase in the film thickness. The trapped radicals in the irradiated PVDF films remained effective in initiating the reaction without considerable loss in grafting level up to 180 days, when stored under -60 {sup o}C. The presence and distribution of polystyrene sulfonate grafts in the obtained membranes were observed by Fourier transform infrared (FTIR) spectroscopic analysis, scanning optical microscope and scanning transmission electron microscopy (STEM) coupled with X-ray energy dispersive (EDX), respectively.

  7. Switching characteristics for ferroelectric random access memory based on RC model in poly(vinylidene fluoride-trifluoroethylene) ultrathin films

    International Nuclear Information System (INIS)

    Liu, ChangLi; Wang, XueJun; Zhang, XiuLi; Du, XiaoLi; Xu, HaiSheng

    2016-01-01

    The switching characteristic of the poly(vinylidene fluoride-trifluoroethlene) (P(VDF-TrFE)) films have been studied at different ranges of applied electric field. It is suggest that the increase of the switching speed upon nucleation protocol and the deceleration of switching could be related to the presence of a non-ferroelectric layer. Remarkably, a capacitor and resistor (RC) links model plays significant roles in the polarization switching dynamics of the thin films. For P(VDF-TrFE) ultrathin films with electroactive interlayer, it is found that the switching dynamic characteristics are strongly affected by the contributions of resistor and non-ferroelectric (non-FE) interface factors. A corresponding experiment is designed using poly(3,4-ethylene dioxythiophene):poly(styrene sulfonic) (PEDOT-PSSH) as interlayer with different proton concentrations, and the testing results show that the robust switching is determined by the proton concentration in interlayer and lower leakage current in circuit to reliable applications of such polymer films. These findings provide a new feasible method to enhance the polarization switching for the ferroelectric random access memory.

  8. Preparations of spherical polymeric particles from Tanzanian ...

    African Journals Online (AJOL)

    Spherical Polymeric Particles (SPP) have been prepared from Tanzanian Cashew Nut Shell Liquid (CNSL) by suspension polymerization technique involving either step-growth or chain- growth polymerization mechanisms. The sizes of the SPP, which ranged from 0.1 to 2.0 mm were strongly influenced by the amounts of ...

  9. Improved PVDF membrane performance by doping extracellular polymeric substances of activated sludge.

    Science.gov (United States)

    Guan, Yan-Fang; Huang, Bao-Cheng; Qian, Chen; Wang, Long-Fei; Yu, Han-Qing

    2017-04-15

    Polyvinylidene fluoride (PVDF) membrane has been widely applied in water and wastewater treatment because of its high mechanical strength, thermal stability and chemical resistance. However, the hydrophobic nature of PVDF membrane makes it readily fouled, substantially reducing water flux and overall membrane rejection ability. In this work, an in-situ blending modifier, i.e., extracellular polymeric substances (EPS) from activated sludge, was used to enhance the anti-fouling ability of PVDF membrane. Results indicate that the pure water flux of the membrane and its anti-fouling performance were substantially improved by blending 8% EPS into the membrane. By introducing EPS, the membrane hydrophilicity was increased and the cross section morphology was changed when it interacted with polyvinl pyrrolidone, resulting in the formation of large cavities below the finger-like pores. In addition, the fraction of pores with a size of 100-500 nm increased, which was also beneficial to improving membrane performance. Surface thermodynamic calculations indicate the EPS-functionalized membrane had a higher cohesion free energy, implying its good pollutant rejection and anti-fouling ability. This work provides a simple, efficient and cost-effective method to improve membrane performance and also extends the applications of EPS. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Impact of polymeric membrane filtration of oil sands process water on organic compounds quantification.

    Science.gov (United States)

    Moustafa, Ahmed M A; Kim, Eun-Sik; Alpatova, Alla; Sun, Nian; Smith, Scott; Kang, Seoktae; Gamal El-Din, Mohamed

    2014-01-01

    The interaction between organic fractions in oil sands process-affected water (OSPW) and three polymeric membranes with varying hydrophilicity (nylon, polyvinylidene fluoride and polytetrafluoroethylene) at different pHs was studied to evaluate the impact of filtration on the quantification of acid-extractable fraction (AEF) and naphthenic acids (NAs). Four functional groups predominated in OSPW (amine, phosphoryl, carboxyl and hydroxyl) as indicated by the linear programming method. The nylon membranes were the most hydrophilic and exhibited the lowest AEF removal at pH of 8.7. However, the adsorption of AEF on the membranes increased as the pH of OSPW decreased due to hydrophobic interactions between the membrane surfaces and the protonated molecules. The use of ultra pressure liquid chromatography-high resolution mass spectrometry (UPLC/HRMS) showed insignificant adsorption of NAs on the tested membranes at pH 8.7. However, 26±2.4% adsorption of NAs was observed at pH 5.3 following the protonation of NAs species. For the nylon membrane, excessive carboxylic acids in the commercial NAs caused the formation of negatively charged assisted hydrogen bonds, resulting in increased adsorption at pH 8.2 (25%) as compared to OSPW (0%). The use of membranes for filtration of soluble compounds from complex oily wastewaters before quantification analysis of AEF and NAs should be examined prior to application.

  11. Glycine Polymerization on Oxide Minerals

    Science.gov (United States)

    Kitadai, Norio; Oonishi, Hiroyuki; Umemoto, Koichiro; Usui, Tomohiro; Fukushi, Keisuke; Nakashima, Satoru

    2017-06-01

    It has long been suggested that mineral surfaces played an important role in peptide bond formation on the primitive Earth. However, it remains unclear which mineral species was key to the prebiotic processes. This is because great discrepancies exist among the reported catalytic efficiencies of minerals for amino acid polymerizations, owing to mutually different experimental conditions. This study examined polymerization of glycine (Gly) on nine oxide minerals (amorphous silica, quartz, α-alumina and γ-alumina, anatase, rutile, hematite, magnetite, and forsterite) using identical preparation, heating, and analytical procedures. Results showed that a rutile surface is the most effective site for Gly polymerization in terms of both amounts and lengths of Gly polymers synthesized. The catalytic efficiency decreased as rutile > anatase > γ-alumina > forsterite > α- alumina > magnetite > hematite > quartz > amorphous silica. Based on reported molecular-level information for adsorption of Gly on these minerals, polymerization activation was inferred to have arisen from deprotonation of the NH3 + group of adsorbed Gly to the nucleophilic NH2 group, and from withdrawal of electron density from the carboxyl carbon to the surface metal ions. The orientation of adsorbed Gly on minerals is also a factor influencing the Gly reactivity. The examination of Gly-mineral interactions under identical experimental conditions has enabled the direct comparison of various minerals' catalytic efficiencies and has made discussion of polymerization mechanisms and their relative influences possible Further systematic investigations using the approach reported herein (which are expected to be fruitful) combined with future microscopic surface analyses will elucidate the role of minerals in the process of abiotic peptide bond formation.

  12. Glycine Polymerization on Oxide Minerals.

    Science.gov (United States)

    Kitadai, Norio; Oonishi, Hiroyuki; Umemoto, Koichiro; Usui, Tomohiro; Fukushi, Keisuke; Nakashima, Satoru

    2017-06-01

    It has long been suggested that mineral surfaces played an important role in peptide bond formation on the primitive Earth. However, it remains unclear which mineral species was key to the prebiotic processes. This is because great discrepancies exist among the reported catalytic efficiencies of minerals for amino acid polymerizations, owing to mutually different experimental conditions. This study examined polymerization of glycine (Gly) on nine oxide minerals (amorphous silica, quartz, α-alumina and γ-alumina, anatase, rutile, hematite, magnetite, and forsterite) using identical preparation, heating, and analytical procedures. Results showed that a rutile surface is the most effective site for Gly polymerization in terms of both amounts and lengths of Gly polymers synthesized. The catalytic efficiency decreased as rutile > anatase > γ-alumina > forsterite > α- alumina > magnetite > hematite > quartz > amorphous silica. Based on reported molecular-level information for adsorption of Gly on these minerals, polymerization activation was inferred to have arisen from deprotonation of the NH 3 + group of adsorbed Gly to the nucleophilic NH 2 group, and from withdrawal of electron density from the carboxyl carbon to the surface metal ions. The orientation of adsorbed Gly on minerals is also a factor influencing the Gly reactivity. The examination of Gly-mineral interactions under identical experimental conditions has enabled the direct comparison of various minerals' catalytic efficiencies and has made discussion of polymerization mechanisms and their relative influences possible Further systematic investigations using the approach reported herein (which are expected to be fruitful) combined with future microscopic surface analyses will elucidate the role of minerals in the process of abiotic peptide bond formation.

  13. Analysis of FT-IR for dosimetric characterization of poly(vinylidene fluoride - hexafluoropropylene) irradiated with high doses of gamma radiation; Analise de FT-IR para caracterizacao dosimetrica do poli(fluoreto de vinilideno - hexafluorpropileno) irradiado com altas doses de radiacao gama

    Energy Technology Data Exchange (ETDEWEB)

    Liz, Otavio Souza Rocha; Medeiros, Adriana de Souza [Universidade Federal de Minas Gerais (DEN/UFMG), Belo Horizonte, MG (Brazil). Dept. de Engenharia Nuclear; Faria, Luiz Oliveira de, E-mail: farialo@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-10-26

    Polymeric materials when exposed to ionizing radiation undergo changes such as the crosslinking and chain oxidation. Recently, the optical absorption intensities in the ultraviolet visible region (273 nm) due to radio- induction of conjugated C=C bonds in P(VDF-TrFE) copolymers has been successfully used for high dose dosimetry purposes in gamma fields ranging from 0.1 to 200 kGy. In this context, the interest of performing a systematic investigation on another fluorinated copolymer of PVDF, the (Polyvinylidene fluoride - hexa fluoro propylene) [P(VDF- HFP)] has come to light, not only for UV-VIS range but also for the near and medium infrared ranges. In this investigation FTIR and UV-Vis spectra, acquired before and after irradiation, were used to investigate the relationship between optical absorbance and delivered gamma doses ranging from 100 to 3,000 kGy. The results indicate that the absorption band at 1729 cm-1, originated by the chain oxidation through the radioinduction of C=O bonds, presents an unambiguous behavior with the delivered gamma doses in a very large extension, ranging from 0 to 1,000 kGy. This results lead to conclude that P(VDF-HFP) copolymer shows excellent dosimetric properties which make it able to be investigated as a high dose dosimeter

  14. β-Phase poly(vinylidene fluoride) films encouraged more homogeneous cell distribution and more significant deposition of fibronectin towards the cell–material interface compared to α-phase poly(vinylidene fluoride) films

    Energy Technology Data Exchange (ETDEWEB)

    Low, Y.K.A.; Zou, X. [School of Materials Science and Engineering, Nanyang Technological University, N4.1 50 Nanyang Avenue, Singapore 639798 (Singapore); Fang, Y.M. [School of Computer Engineering, Nanyang Technological University, N4 50 Nanyang Avenue, Singapore 639798 (Singapore); Wang, J.L. [School of Materials Science and Engineering, Nanyang Technological University, N4.1 50 Nanyang Avenue, Singapore 639798 (Singapore); Lin, W.S. [School of Computer Engineering, Nanyang Technological University, N4 50 Nanyang Avenue, Singapore 639798 (Singapore); Boey, F.Y.C. [School of Materials Science and Engineering, Nanyang Technological University, N4.1 50 Nanyang Avenue, Singapore 639798 (Singapore); Ng, K.W., E-mail: kwng@ntu.edu.sg [School of Materials Science and Engineering, Nanyang Technological University, N4.1 50 Nanyang Avenue, Singapore 639798 (Singapore)

    2014-01-01

    The piezoelectric response from β-phase poly(vinylidene fluoride) (PVDF) can potentially be exploited for biomedical application. We hypothesized that α and β-phase PVDF exert direct but different influence on cellular behavior. α- and β-phase PVDF films were synthesized through solution casting and characterized with FT-IR, XRD, AFM and PFM to ensure successful fabrication of α and β-phase PVDF films. Cellular evaluation with L929 mouse fibroblasts over one-week was conducted with AlamarBlue® metabolic assay and PicoGreen® proliferation assay. Immunostaining of fibronectin investigated the extent and distribution of extracellular matrix deposition. Image saliency analysis quantified differences in cellular distribution on the PVDF films. Our results showed that β-phase PVDF films with the largest area expressing piezoelectric effect elicited highest cell metabolic activity at day 3 of culture. Increased fibronectin adsorption towards the cell–material interface was shown on β-phase PVDF films. Image saliency analysis showed that fibroblasts on β-phase PVDF films were more homogeneously distributed than on α-phase PVDF films. Taken collectively, the different molecular packing of α and β-phase PVDF resulted in differing physical properties of films, which in turn induced differences in cellular behaviors. Further analysis of how α and β-phase PVDF may evoke specific cellular behavior to suit particular application will be intriguing. - Highlights: • β-Phase PVDF exhibited strongest piezoelectric effects compared to α-phase PVDF. • β-Phase PVDF induced more homogeneous cell distribution than α-phase PVDF. • β-Phase PVDF encouraged more fibronectin deposition at the cell–material interface.

  15. Click polymerization for the synthesis of reduction-responsive polymeric prodrug

    Science.gov (United States)

    Zhang, Xiaojin; Wang, Hongquan; Dai, Yu

    2018-05-01

    Click polymerization is a powerful polymerization technique for the construction of new macromolecules with well-defined structures and multifaceted functionalities. Here, we synthesize reduction-responsive polymeric prodrug PEG- b-(PSS- g-MTX)- b-PEG containing disulfide bonds and pendant methotrexate (MTX) via two-step click polymerization followed by conjugating MTX to pendant hydroxyl. MTX content in polymeric prodrug is 13.5%. Polymeric prodrug is able to form polymeric micelles by self-assembly in aqueous solution. Polymeric micelles are spherical nanoparticles with tens of nanometers in size. Of note, polymeric micelles are reduction-responsive due to disulfide bonds in the backbone of PEG- b-(PSS- g-MTX)- b-PEG and could release pendant drugs in the presence of the reducing agents such as dl-dithiothreitol (DTT).

  16. SCATTERING FROM RAMIFIED POLYMERIC SYSTEMS

    Directory of Open Access Journals (Sweden)

    M.Benhamou

    2004-01-01

    Full Text Available Here, of great interest to us is a quantitative study of the scattering properties from ramified polymeric systems of arbitrary topology. We consider three types of systems, namely ramified polymers in solution, ramified polymer blends, or ternary mixtures made of two ramified polymers of different chemical nature immersed in a good solvent. To achieve the goal of the study, use is made of the Random Phase Approximation. First we determine the exact expression of the form factor of an ideal ramified polymer of any topology, from which we extract the exact expression of its gyration radius. Using the classical Zimm's formulae and the exact form factor, we determine all scattering properties of these three types of ramified polymeric systems. The main conclusion is that ramification of the chains induces drastic changes of the scattering properties.

  17. Polymeric nanoparticles for optical sensing.

    Science.gov (United States)

    Canfarotta, Francesco; Whitcombe, Michael J; Piletsky, Sergey A

    2013-12-01

    Nanotechnology is a powerful tool for use in diagnostic applications. For these purposes a variety of functional nanoparticles containing fluorescent labels, gold and quantum dots at their cores have been produced, with the aim of enhanced sensitivity and multiplexing capabilities. This work will review progress in the application of polymeric nanoparticles in optical diagnostics, both for in vitro and in vivo detection, together with a discussion of their biodistribution and biocompatibility. © 2013.

  18. Polymeric Coatings for Combating Biocorrosion

    Science.gov (United States)

    Guo, Jing; Yuan, Shaojun; Jiang, Wei; Lv, Li; Liang, Bin; Pehkonen, Simo O.

    2018-03-01

    Biocorrosion has been considered as big trouble in many industries and marine environments due to causing great economic loss. The main disadvantages of present approaches to prevent corrosion include being limited by environmental factors, being expensive, inapplicable to field, and sometimes inefficient. Studies show that polymer coatings with anti-corrosion and anti-microbial properties have been widely accepted as a novel and effective approach to preventbiocorrosion. The main purpose of this review is to summarize up the progressive status of polymer coatings used for combating microbially-induced corrosion. Polymers used to synthesize protective coatings are generally divided into three categories: i) traditional polymers incorporated with biocides, ii) antibacterial polymers containing quaternary ammonium compounds, and iii) conductive polymers. The strategies to synthesize polymer coatings resort mainly to grafting anti-bacterial polymers from the metal substrate surface using novel surface-functionalization approaches, such as free radical polymerization, chemically oxidative polymerization and surface-initiated atom transfer radical polymerization, as opposed to the traditional approaches of dip coating or spin coating.

  19. Non-equilibrium supramolecular polymerization.

    Science.gov (United States)

    Sorrenti, Alessandro; Leira-Iglesias, Jorge; Markvoort, Albert J; de Greef, Tom F A; Hermans, Thomas M

    2017-09-18

    Supramolecular polymerization has been traditionally focused on the thermodynamic equilibrium state, where one-dimensional assemblies reside at the global minimum of the Gibbs free energy. The pathway and rate to reach the equilibrium state are irrelevant, and the resulting assemblies remain unchanged over time. In the past decade, the focus has shifted to kinetically trapped (non-dissipative non-equilibrium) structures that heavily depend on the method of preparation (i.e., pathway complexity), and where the assembly rates are of key importance. Kinetic models have greatly improved our understanding of competing pathways, and shown how to steer supramolecular polymerization in the desired direction (i.e., pathway selection). The most recent innovation in the field relies on energy or mass input that is dissipated to keep the system away from the thermodynamic equilibrium (or from other non-dissipative states). This tutorial review aims to provide the reader with a set of tools to identify different types of self-assembled states that have been explored so far. In particular, we aim to clarify the often unclear use of the term "non-equilibrium self-assembly" by subdividing systems into dissipative, and non-dissipative non-equilibrium states. Examples are given for each of the states, with a focus on non-dissipative non-equilibrium states found in one-dimensional supramolecular polymerization.

  20. Novel polyvinylidene fluoride nanofiltration membrane blended with functionalized halloysite nanotubes for dye and heavy metal ions removal

    International Nuclear Information System (INIS)

    Zeng, Guangyong; He, Yi; Zhan, Yingqing; Zhang, Lei; Pan, Yang; Zhang, Chunli; Yu, Zongxue

    2016-01-01

    Highlights: • A novel PVDF nanofiltration membrane was prepared by incorporation of A-HNTs. • HNTs dispersed well in membrane matrix after APTES modification. • The membrane exhibited excellent hydrophilicity and antifouling properties. • A high dye and heavy metal ions removal was realized by membrane separation. - Abstract: Membrane separation is an effective method for the removal of hazardous materials from wastewater. Halloysite nanotubes (HNTs) were functionalized with 3-aminopropyltriethoxysilane (APTES), and novel polyvinylidene fluoride (PVDF) nanofiltration membranes were prepared by blending with various concentrations of APTES grafted HNTs (A-HNTs). The morphology structure of the membranes were characterized by scanning electron microscope (SEM) and atomic force microscopy (AFM). The contact angle (CA), pure water flux (PWF) and antifouling capacity of membranes were investigated in detail. In addition, the separation performance of membranes were reflected by the removal of dye and heavy metal ions in simulated wastewater. The results revealed that the hydrophilicity of A-HNTs blended PVDF membrane (A-HNTs@PVDF) was enhanced significantly. Owing to the electrostatic interaction between membrane surface and dye molecules, the dye rejection ratio of 3% A-HNTs@PVDF membrane reached 94.9%. The heavy metal ions rejection ratio and adsorption capacity of membrane were also improved with the addition of A-HNTs. More importantly, A-HNTs@PVDF membrane exhibited excellent rejection stability and reuse performances after several times fouling and washing tests. It can be expected that the present work will provide insight into a new method for membrane modification in the field of wastewater treatment.

  1. Preparation and Characterization of a Cross-linked Matrimid/Polyvinylidene Fluoride Composite Membrane for H2/N2 Separation

    Directory of Open Access Journals (Sweden)

    Mahmood Esmaeilipur

    2017-01-01

    Full Text Available A double layer composite membrane was fabricated by matrimid 5218 as a selective layer on polyvinylidene fluoride (PVDF, a porous asymmetric membrane, as a sublayer. The effect of chemical cross-linking of Matrimid 5218 by ethylenediamine (EDA was investigated on gas transport properties of the corresponding membrane. The permeability levels of hydrogen (H2 and nitrogen (N2 were measured through the fabricated composite membranes at 25°C under pressure range of 2-8 bar. Scanning electron microscopy (SEM was used for morphological observations of the composite membranes. The Matrimid membranes before and after cross-linking modification were characterized by the Fourier transform infrared (FTIR spectroscopy, X-ray diffraction (XRD and density measurement. The FTIR results showed the conversion of imide functional groups into amide through the crosslinking reaction in Matrimid. The XRD results demonstrated a reduction in d-spacing between the polymer chains through cross-linking reaction. Measuring the density of each membrane's partial selective layer and calculating the corresponding fractional free volume revealed an increase in the density and reduced free volumes in Matrimid through the cross-linking reaction. Moreover, by increasing the EDA concentration, the gas permeability in each membrane decreased significantly for nitrogen compared to hydrogen which could be related to lower gas diffusivity through chain packing due to cross-linking of the polymer. The H2/N2 selectivity at 2 bar increased through the cross-linking modification from 56.5 for the pure Matrimid to 79.4 for the composite membrane containing 12 wt% EDA. The effect of pressure on gas permeability through the composite membranes was investigated and the results found to be in agreement with the behavior of less soluble gases in the glassy polymers. Moreover, the H2/N2 selectivity decreased first at low EDA content (0-4 wt%, before reaching a constant value at 8 wt% EDA and

  2. Novel polyvinylidene fluoride nanofiltration membrane blended with functionalized halloysite nanotubes for dye and heavy metal ions removal

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Guangyong [State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500 (China); College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500 (China); Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, Sichuan 610500 (China); He, Yi, E-mail: heyi@swpu.edu.cn [State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500 (China); College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500 (China); Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, Sichuan 610500 (China); Zhan, Yingqing; Zhang, Lei; Pan, Yang; Zhang, Chunli; Yu, Zongxue [State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500 (China); College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500 (China)

    2016-11-05

    Highlights: • A novel PVDF nanofiltration membrane was prepared by incorporation of A-HNTs. • HNTs dispersed well in membrane matrix after APTES modification. • The membrane exhibited excellent hydrophilicity and antifouling properties. • A high dye and heavy metal ions removal was realized by membrane separation. - Abstract: Membrane separation is an effective method for the removal of hazardous materials from wastewater. Halloysite nanotubes (HNTs) were functionalized with 3-aminopropyltriethoxysilane (APTES), and novel polyvinylidene fluoride (PVDF) nanofiltration membranes were prepared by blending with various concentrations of APTES grafted HNTs (A-HNTs). The morphology structure of the membranes were characterized by scanning electron microscope (SEM) and atomic force microscopy (AFM). The contact angle (CA), pure water flux (PWF) and antifouling capacity of membranes were investigated in detail. In addition, the separation performance of membranes were reflected by the removal of dye and heavy metal ions in simulated wastewater. The results revealed that the hydrophilicity of A-HNTs blended PVDF membrane (A-HNTs@PVDF) was enhanced significantly. Owing to the electrostatic interaction between membrane surface and dye molecules, the dye rejection ratio of 3% A-HNTs@PVDF membrane reached 94.9%. The heavy metal ions rejection ratio and adsorption capacity of membrane were also improved with the addition of A-HNTs. More importantly, A-HNTs@PVDF membrane exhibited excellent rejection stability and reuse performances after several times fouling and washing tests. It can be expected that the present work will provide insight into a new method for membrane modification in the field of wastewater treatment.

  3. Dielectric properties of composite based on ferroelectric copolymer of poly(vinylidene fluoride-trifluoroethylene and ferroelectric ceramics of barium lead zirconate titanate

    Directory of Open Access Journals (Sweden)

    A. V. Solnyshkin

    2017-10-01

    Full Text Available A study of dielectric properties of composite films on the base of poly(vinylidene fluoride-trifluoroethylene copolymer P(VDF-TrFE and ferroelectric ceramics of barium lead zirconate titanate (BPZT solid solution is presented in this work. The composite films containing up to 50 vol.% of BPZT grains with size ∼1μm were prepared by the solvent cast method. Frequency dependences of real and imaginary components of the complex permittivity were determined. The concentration dependence of the dielectric constant was discussed.

  4. Production efficiency of micellar casein concentrate using polymeric spiral-wound microfiltration membranes.

    Science.gov (United States)

    Beckman, S L; Zulewska, J; Newbold, M; Barbano, D M

    2010-10-01

    Most current research has focused on using ceramic microfiltration (MF) membranes for micellar casein concentrate production, but little research has focused on the use of polymeric spiral-wound (SW) MF membranes. A method for the production of a serum protein (SP)-reduced micellar casein concentrate using SW MF was compared with a ceramic MF membrane. Pasteurized (79°C, 18s) skim milk (1,100 kg) was microfiltered at 50°C [about 3 × concentration] using a 0.3-μm polyvinylidene fluoride spiral-wound membrane, bleed-and-feed, 3-stage process, using 2 diafiltration stages, where the retentate was diluted 1:2 with reverse osmosis water. Skim milk, permeate, and retentate were analyzed for SP content, and the reduction of SP from skim milk was determined. Theoretically, 68% of the SP content of skim milk can be removed using a single-stage 3× MF. If 2 subsequent water diafiltration stages are used, an additional 22% and 7% of the SP can be removed, respectively, giving a total SP removal of 97%. Removal of SP greater than 95% has been achieved using a 0.1-μm pore size ceramic uniform transmembrane pressure (UTP) MF membrane after a 3-stage MF with diafiltration process. One stage of MF plus 2 stages of diafiltration of 50°C skim milk using a polyvinylidene fluoride polymeric SW 0.3-μm membrane yielded a total SP reduction of only 70.3% (stages 1, 2, and 3: 38.6, 20.8, and 10.9%, respectively). The SP removal rate for the polymeric SW MF membrane was lower in all 3 stages of processing (stages 1, 2, and 3: 0.05, 0.04, and 0.03 kg/m(2) per hour, respectively) than that of the comparable ceramic UTP MF membrane (stages 1, 2, and 3: 0.30, 0.11, and 0.06 kg/m(2) per hour, respectively), indicating that SW MF is less efficient at removing SP from 50°C skim milk than the ceramic UTP system. To estimate the number of steps required for the SW system to reach 95% SP removal, the third-stage SP removal rate (27.4% of the starting material SP content) was used to

  5. Nanoporous Polymeric Grating-Based Biosensors

    KAUST Repository

    Gao, Tieyu

    2012-05-02

    We demonstrate the utilization of an interferometrically created nanoporous polymeric gratings as a platform for biosensing applications. Aminopropyltriethoxysilane (APTES)-functionalized nanoporous polymeric gratings was fabricated by combining holographic interference patterning and APTES-functionalization of pre-polymer syrup. The successful detection of multiple biomolecules indicates that the biofunctionalized nanoporous polymeric gratings can act as biosensing platforms which are label-free, inexpensive, and applicable as high-throughput assays. Copyright © 2010 by ASME.

  6. Nanoporous Polymeric Grating-Based Biosensors

    KAUST Repository

    Gao, Tieyu; Hsiao, Vincent; Zheng, Yue Bing; Huang, Tony Jun

    2012-01-01

    We demonstrate the utilization of an interferometrically created nanoporous polymeric gratings as a platform for biosensing applications. Aminopropyltriethoxysilane (APTES)-functionalized nanoporous polymeric gratings was fabricated by combining holographic interference patterning and APTES-functionalization of pre-polymer syrup. The successful detection of multiple biomolecules indicates that the biofunctionalized nanoporous polymeric gratings can act as biosensing platforms which are label-free, inexpensive, and applicable as high-throughput assays. Copyright © 2010 by ASME.

  7. Volumetric polymerization shrinkage of contemporary composite resins

    OpenAIRE

    Nagem Filho, Halim; Nagem, Haline Drumond; Francisconi, Paulo Afonso Silveira; Franco, Eduardo Batista; Mondelli, Rafael Francisco Lia; Coutinho, Kennedy Queiroz

    2007-01-01

    The polymerization shrinkage of composite resins may affect negatively the clinical outcome of the restoration. Extensive research has been carried out to develop new formulations of composite resins in order to provide good handling characteristics and some dimensional stability during polymerization. The purpose of this study was to analyze, in vitro, the magnitude of the volumetric polymerization shrinkage of 7 contemporary composite resins (Definite, Suprafill, SureFil, Filtek Z250, Fill ...

  8. Graft copolymerization of N-vinyl-2-pyrrolidone onto pre-irradiated poly(vinylidene fluoride) powder

    International Nuclear Information System (INIS)

    Xu Chenqi; Huang Wei; Zhou Yongfeng; Yan Deyue; Chen Shutao; Huang Hua

    2012-01-01

    Graft copolymerization of N-vinyl-2-pyrrolidone (NVP) onto 60 Co γ-ray pre-irradiated poly (vinylidene fluoride) (PVDF) powder was investigated to find out the relationship between the degree of grafting (DG) and various factors, including monomer concentration, irradiation dose, reaction time, catalyst and so on. The DG can be calculated by comparing the amount of nitrogen element in the resulting copolymer (PVDF-g-PVP) powder with that in PVP on the basis of element analysis. The presence of PVP in the resulting PVDF powder was confirmed by the comparative studies of pristine PVDF and grafted PVDF powder through Fourier transform infrared (FTIR) spectroscopy, nuclear magnetic resonance (NMR), X-ray photoelectron spectroscopy (XPS), thermo gravimetric analyzer (TGA) and differential scanning calorimetry (DSC), respectively. When the reaction was performed at the monomer concentration of 20% (vol.) and the absorbed dose of 40 kGy for 3 h in water, the max. DG of 17.7% was obtained. - Highlights: ► We modify pristine PVDF powders with NVP by the pre-irradiated graft polymerization. ► The various factors influencing the degree of grafting are investigated in detail. ► The optimal condition of graft polymerization is obtained. ► The polymerization is processed at 20% (vol.) of NVP and 40kGy for 3 hours in water. ► The maximum degree of grafting is 17.7 % at such a condition.

  9. Polymeric membrane materials for artificial organs.

    Science.gov (United States)

    Kawakami, Hiroyoshi

    2008-01-01

    Many polymeric materials have already been used in the field of artificial organs. However, the materials used in artificial organs are not necessarily created with the best material selectivity and materials design; therefore, the development of synthesized polymeric membrane materials for artificial organs based on well-defined designs is required. The approaches to the development of biocompatible polymeric materials fall into three categories: (1) control of physicochemical characteristics on material surfaces, (2) modification of material surfaces using biomolecules, and (3) construction of biomimetic membrane surfaces. This review will describe current issues regarding polymeric membrane materials for use in artificial organs.

  10. High Vacuum Techniques for Anionic Polymerization

    KAUST Repository

    Ratkanthwar, Kedar

    2015-09-01

    Anionic polymerization high vacuum techniques (HVTs) are the most suitable for the preparation of polymer samples with well-defined complex macromolecular architectures. Though HVTs require glassblowing skill for designing and making polymerization reactor, it is the best way to avoid any termination of living polymers during the number of steps for the synthesis of polymers with complex structure. In this chapter, we describe the different polymerization reactors and HVTs for the purification of monomers, solvents, and other reagents for anionic polymerization as well as few model reactions for the synthesis of polymers with simple to complex structure.

  11. Twin screw extruders as polymerization reactors for a free radical homo polymerization

    NARCIS (Netherlands)

    Ganzeveld, K.J.; Janssen, L.P.B.M.

    The bulk polymerization of n-butylmethacrylate was investigated in a counter-rotating twin screw extruder. It appeared that the gel effect, occurring with bulk polymerizations, affected the polymerization progress very strongly. Due to this effect the conversion of the reaction is independent of the

  12. Spinnability and Characteristics of Polyvinylidene Fluoride (PVDF)-based Bicomponent Fibers with a Carbon Nanotube (CNT) Modified Polypropylene Core for Piezoelectric Applications.

    Science.gov (United States)

    Glauß, Benjamin; Steinmann, Wilhelm; Walter, Stephan; Beckers, Markus; Seide, Gunnar; Gries, Thomas; Roth, Georg

    2013-07-03

    This research explains the melt spinning of bicomponent fibers, consisting of a conductive polypropylene (PP) core and a piezoelectric sheath (polyvinylidene fluoride). Previously analyzed piezoelectric capabilities of polyvinylidene fluoride (PVDF) are to be exploited in sensor filaments. The PP compound contains a 10 wt % carbon nanotubes (CNTs) and 2 wt % sodium stearate (NaSt). The sodium stearate is added to lower the viscosity of the melt. The compound constitutes the fiber core that is conductive due to a percolation CNT network. The PVDF sheath's piezoelectric effect is based on the formation of an all-trans conformation β phase, caused by draw-winding of the fibers. The core and sheath materials, as well as the bicomponent fibers, are characterized through different analytical methods. These include wide-angle X-ray diffraction (WAXD) to analyze crucial parameters for the development of a crystalline β phase. The distribution of CNTs in the polymer matrix, which affects the conductivity of the core, was investigated by transmission electron microscopy (TEM). Thermal characterization is carried out by conventional differential scanning calorimetry (DSC). Optical microscopy is used to determine the fibers' diameter regularity (core and sheath). The materials' viscosity is determined by rheometry. Eventually, an LCR tester is used to determine the core's specific resistance.

  13. Design and Synthesis of SnO_2 Nanosheets/Nickel/Polyvinylidene Fluoride Ternary Composite as Free-standing, Flexible Electrode for Lithium Ion Batteries

    International Nuclear Information System (INIS)

    Zhang, Yan; Xiao, Qizhen; Lei, Gangtie; Li, Zhaohui; Li, Xiaojing

    2015-01-01

    In this report, we have designed a novel SnO_2 nanosheets/nickel/polyvinylidene fluoride ternary composite as anode materials for lithium ion batteries. The SnO_2 nanosheets are uniformly coated on the surface of nickel/polyvinylidene fluoride conductive fiber, as confirmed by XRD, SEM, and TEM characterizations. As an anode material for lithium ion batteries, this as-prepared ternary composite delivers a high capacity of 865.4 mAh g"−"1 at 200 mA g"−"1 after 60 cycles. Furthermore, the SnO_2 in this composite material exhibits a good capacity retention as well as rate capability. This result indicates the completely reversible reaction between Li_4_._4Sn and SnO_2, greatly improving the specific capacity of SnO_2. The ternary SnO_2/Ni/PVDF composite limits the volume expansion on lithium insertion, and buffer spaces during charge/discharge, resulting in the excellent cyclic performances.

  14. Effects of CO{sub 2} activation on electrochemical performance of microporous carbons derived from poly(vinylidene fluoride)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seul-Yi; Park, Soo-Jin, E-mail: sjpark@inha.ac.kr

    2013-11-15

    In this work, we have prepared microporous carbons (MPCs) derived from poly(vinylidene fluoride) (PVDF), and the physical activation of MPCs using CO{sub 2} gas is subsequently carried out with various activation temperatures to investigate the electrochemical performance. PVDF is successfully converted into MPCs with a high specific surface area and well-developed micropores. After CO{sub 2} activation, the specific surface areas of MPCs (CA-MPCs) are enhanced by 12% compared with non-activated MPCs. With increasing activation temperature, the micropore size distributions of A-MPCs also become narrower and shift to larger pore size. It is also confirmed that the CO{sub 2} activation had developed the micropores and introduced the oxygen-containing groups to MPCs′ surfaces. From the results, the specific capacitances of the electrodes in electric double layer capacitors (EDLCs) based on CA-MPCs are distinctly improved through CO{sub 2} activation. The highest specific capacitance of the A-MPCs activated at 700 °C is about 125 F/g, an enhancement of 74% in comparison with NA-MPCs, at a discharge current of 2 A/g in a 6 M KOH electrolyte solution. We also found that micropore size of 0.67 nm has a specific impact on the capacitance behaviors, besides the specific surface area of the electrode samples. - Graphical abstract: The A-MPC samples with high specific surface area (ranging from 1030 to 1082 m{sup 2}/g), corresponding to micropore sizes of 0.67 and 0.72 nm, and with the amount of oxygen-containing groups ranging from 3.2% to 4.4% have been evaluated as electrodes for EDLC applications. . Display Omitted - Highlights: • Microporous carbons (MPCs) were synthesized without activation process. • Next, we carried out the CO{sub 2} activation of MPCs with activation temperatures. • It had developed the micropores and introduced the O-functional groups to MPCs. • The highest specific capacitance: 125 F/g, an increase of 74% compared to MPCs.

  15. Effects of CO2 activation on electrochemical performance of microporous carbons derived from poly(vinylidene fluoride)

    International Nuclear Information System (INIS)

    Lee, Seul-Yi; Park, Soo-Jin

    2013-01-01

    In this work, we have prepared microporous carbons (MPCs) derived from poly(vinylidene fluoride) (PVDF), and the physical activation of MPCs using CO 2 gas is subsequently carried out with various activation temperatures to investigate the electrochemical performance. PVDF is successfully converted into MPCs with a high specific surface area and well-developed micropores. After CO 2 activation, the specific surface areas of MPCs (CA-MPCs) are enhanced by 12% compared with non-activated MPCs. With increasing activation temperature, the micropore size distributions of A-MPCs also become narrower and shift to larger pore size. It is also confirmed that the CO 2 activation had developed the micropores and introduced the oxygen-containing groups to MPCs′ surfaces. From the results, the specific capacitances of the electrodes in electric double layer capacitors (EDLCs) based on CA-MPCs are distinctly improved through CO 2 activation. The highest specific capacitance of the A-MPCs activated at 700 °C is about 125 F/g, an enhancement of 74% in comparison with NA-MPCs, at a discharge current of 2 A/g in a 6 M KOH electrolyte solution. We also found that micropore size of 0.67 nm has a specific impact on the capacitance behaviors, besides the specific surface area of the electrode samples. - Graphical abstract: The A-MPC samples with high specific surface area (ranging from 1030 to 1082 m 2 /g), corresponding to micropore sizes of 0.67 and 0.72 nm, and with the amount of oxygen-containing groups ranging from 3.2% to 4.4% have been evaluated as electrodes for EDLC applications. . Display Omitted - Highlights: • Microporous carbons (MPCs) were synthesized without activation process. • Next, we carried out the CO 2 activation of MPCs with activation temperatures. • It had developed the micropores and introduced the O-functional groups to MPCs. • The highest specific capacitance: 125 F/g, an increase of 74% compared to MPCs

  16. Schlenk Techniques for Anionic Polymerization

    KAUST Repository

    Ratkanthwar, Kedar

    2015-09-01

    Anionic polymerization-high vacuum techniques (HVTs) are doubtlessly the most prominent and reliable experimental tools to prepare polymer samples with well-defined and, in many cases, complex macromolecular architectures. Due to the high demands for time and skilled technical personnel, HVTs are currently used in only a few research laboratories worldwide. Instead, most researchers in this filed are attracted to more facile Schlenk techniques. The basic principle of this technique followed in all laboratories is substantially the same, i.e. the use of alternate vacuum and inert gas atmosphere in glass apparatus for the purification/charging of monomer, solvents, additives, and for the manipulation of air-sensitive compounds such as alkyl metal initiators, organometallic or organic catalysts. However, it is executed quite differently in each research group in terms of the structure of Schlenk apparatus (manifolds, connections, purification/storage flasks, reactors, etc.), the use of small supplementary devices (soft tubing, cannulas, stopcocks, etc.) and experimental procedures. The operational methods are partly purpose-oriented while also featured by a high flexibility, which makes it impossible to describe in detail each specific one. In this chapter we will briefly exemplify the application of Schlenk techniques for anionic polymerization by describing the performance of a few experiments from our own work.

  17. Polymeric implant of methylprednisolone for spinal injury ...

    African Journals Online (AJOL)

    Polymeric implant of methylprednisolone for spinal injury: preparation and characterization. Bo Yin, Jian-Jun Ji, Ming Yang. Abstract. Purpose: To improve the effectiveness and reduce the systemic side effects of methylprednisolone in traumatic spinal injuries, its polymeric implants were prepared using chitosan and sodium ...

  18. TEMPO addition into pre-irradiated fluoropolymers and living-radical graft polymerization of styrene for preparation of polymer electrolyte membranes

    Energy Technology Data Exchange (ETDEWEB)

    Sawada, Shin-ichi, E-mail: sawada.shinnichi@jaea.go.j [Conducting Polymer Materials Research Group, Quantum Beam Science Directorate, Japan Atomic Energy Agency (JAEA), 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Department of Nuclear Engineering and Management, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Suzuki, Akihiro; Terai, Takayuki [Department of Nuclear Engineering and Management, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Maekawa, Yasunari, E-mail: maekawa.yasunari@jaea.go.j [Conducting Polymer Materials Research Group, Quantum Beam Science Directorate, Japan Atomic Energy Agency (JAEA), 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan)

    2010-04-15

    We prepared proton exchange membranes (PEMs) by 2,2,6,6-tetramethylpiperidinyl-1-oxy (TEMPO)-mediated living-radical graft polymerization (LRGP) of styrene into fluoropolymer films and subsequent sulfonation. Poly(vinylidene fluoride) (PVDF) and poly(ethylene-co-tetrafluoroethylene) (ETFE) films were first irradiated and then treated with TEMPO solutions in various solvents. TEMPO addition was confirmed by the test of styrene grafting into TEMPO-treated films at 60 deg. C, at which the LRGP never proceeds. This test enabled us to differentiate the LRGP from the conventional graft polymerization. In order to gain a deep insight about TEMPO-addition reaction, the TEMPO-penetration behavior into the base polymer films was examined by a permeation experiment and computer simulation. Xylene and dioxane were appropriate solvents for the complete introduction of TEMPO into PVDF and ETFE films, respectively. Then, the LRGP of styrene was performed based on the fully TEMPO-capped films at 125 deg. C with various solvents. By using an alcoholic solvent, the degree of grafting was enhanced and it reached a maximum of 38%. This grafted film was sulfonated to prepare a PEM showing an ion exchange capacity of 2.2 meq/g and proton conductivity of 1.6x10{sup -1} S/cm.

  19. Nanoparticles from a controlled polymerization process

    International Nuclear Information System (INIS)

    Tirumala, V.R.; Caneba, G.T.; Dar, Y.; Wang, H.-H.; Mancini, D.C.

    2003-01-01

    Free-radical retrograde precipitation polymerization process in the past has shown excellent control characteristics over reaction rate, molecular weight, and in the entrapment of live radicals for the generation of block copolymers. The same principle has now been extended to study the reaction confinement to a nanoscale region. Nanosized polymer particles have been reported to form from block copolymers, conventional precipitation polymerization methods, or through emulsion polymerization approaches. In this work, we present a new method of generating nanosized polymer particles by polymerizing the monomer in an environment that precipitates the polymer above the lower critical solution temperature. The nanoparticles have been characterized by both tapping-mode atomic force microscopy observations and in situ synchrotron time-resolved small-angle X-ray scattering analysis. The results from both the techniques showed the formation of nanoparticles in the size range of 15-30 nm, directly from the polymerization process.

  20. Fluid Effects in Polymers and Polymeric Composites

    CERN Document Server

    Weitsman, Y Jack

    2012-01-01

    Fluid Effects in Polymers and Polymeric Composites, written by the late Dr. Y. Jack Weitsman, addresses the wide range of parameters that affect the interaction of fluids with polymers and polymeric composites. The book aims at broadening the scope of available data, mostly limited up to this time to weight-gain recordings of fluid ingress into polymers and composites, to the practical circumstances of fluctuating exposure. Various forms of experimental data are given, in conjunction with theoretical models derived from basic scientific principles, and correlated with severity of exposure conditions and interpreted by means of rationally based theoretical models. The practical implications of the effects of fluids are discussed. The issue of fluid effects on polymers and polymeric composites is of concern to engineers and scientists active in aerospace and naval structures, as an increasing portion of these structures are made of polymeric composites and employ polymeric adhesives as a joining device. While...

  1. Modeling liquid crystal polymeric devices

    Science.gov (United States)

    Gimenez Pinto, Vianney Karina

    The main focus of this work is the theoretical and numerical study of materials that combine liquid crystal and polymer. Liquid crystal elastomers are polymeric materials that exhibit both the ordered properties of the liquid crystals and the elastic properties of rubbers. Changing the order of the liquid crystal molecules within the polymer network can induce shape change. These materials are very valuable for applications such as actuators, sensors, artificial muscles, haptic displays, etc. In this work we apply finite element elastodynamics simulations to study the temperature induced shape deformation in nematic elastomers with complex director microstructure. In another topic, we propose a novel numerical method to model the director dynamics and microstructural evolution of three dimensional nematic and cholesteric liquid crystals. Numerical studies presented in this work are in agreement with experimental observations and provide insight into the design of application devices.

  2. Polymerization of lanthanide acrylonitrile complexes.

    Science.gov (United States)

    el-Mossalamy, El-Sayed H; Khalil, Ahmed A

    2002-01-01

    The molecular complexes of some lanthanides scandium (Sc3+), yttrium (Y3+), lanthanum (La3+), gadolinium (Gd3+), cerium (Ce3+) and ytterbium (Yb3) have been studies in dimethyl formamide (DMF) spectrophtometrically equilibrium constants (K), molar extintion coefficient (epsilon), energy of transition (E) and free energy (delta G*) were calculated. The polymerization of acrylonitrile has been studied and investigated in the presence of Sc3+, Y3+, La3+, Gd3+, Ce3+, and Yb3+ ions. The IR spectra of the formed AN-M (III) Br3 polymer complexes show the absence of the C identical to N band and the presence of two new bands corresponding to NH2 and OH groups. Magnetic moment values and the thermal stabilities of homopolymer and the polymer complexes were studied by means of thermogravimetric analysis and the activation energies for degradation were calculated.

  3. Polymeric materials from renewable resources

    Energy Technology Data Exchange (ETDEWEB)

    Frollini, Elisabete; Rodrigues, Bruno V. M.; Silva, Cristina G. da; Castro, Daniele O.; Ramires, Elaine C.; Oliveira, Fernando de; Santos, Rachel P. O. [Macromolecular Materials and Lignocellulosic Fibers Group, Center for Research on Science and Technology of BioResources, Institute of Chemistry of São Carlos, University of São Paulo, CP 780, 13560-970 São Carlos, São Paulo (Brazil)

    2016-05-18

    The goals of our studies have been the use of renewable raw materials in the preparation of polymeric materials with diversified properties. In this context, lignosulfonate, which is produced in large scale around the world, but not widely used in the production of polymeric materials, was used to replace phenol and polyols in the preparation of phenolic- (Ligno-PH) and polyurethane-type (Ligno-PU) polymers, respectively. These polymers were used to prepare composites reinforced with sisal lignocellulosic fibers. The use of lignosulfonate in the formulation of both types of polymers was beneficial, because in general composites with improved properties, specially impact strength, were obtained. Composites were also prepared from the so called “biopolyethylene” (HDPE), curaua lignocellulosic fiber, and castor oil (CO). All composites HDBPE/CO/Fiber exhibited higher impact strength, when compared to those of the corresponding HDBPE/Fiber. These results, combined with others (eg SEM images of the fractured surfaces) indicated that, in addition to acting as a plasticizer, this oil may have acted as a compatibilizer of the hydrophilic fiber with the hydrophobic polymer. The set of results indicated that (i) mats with nano (diameter ≤ 100nm) and/or ultrafine (submicron scale) fibers were produced, (ii) hybrid fibers were produced (bio-based mats composites), (iii) cellulosic pulp (CP) and/or lignin (Lig) can be combined with PET matrices to control properties such as stiffness and hydrophilicity of the respective mats. Materials with diversified properties were prepared from high content of renewable raw materials, thus fulfilling the proposed targets.

  4. Polymeric materials from renewable resources

    Science.gov (United States)

    Frollini, Elisabete; Rodrigues, Bruno V. M.; da Silva, Cristina G.; Castro, Daniele O.; Ramires, Elaine C.; de Oliveira, Fernando; Santos, Rachel P. O.

    2016-05-01

    The goals of our studies have been the use of renewable raw materials in the preparation of polymeric materials with diversified properties. In this context, lignosulfonate, which is produced in large scale around the world, but not widely used in the production of polymeric materials, was used to replace phenol and polyols in the preparation of phenolic- (Ligno-PH) and polyurethane-type (Ligno-PU) polymers, respectively. These polymers were used to prepare composites reinforced with sisal lignocellulosic fibers. The use of lignosulfonate in the formulation of both types of polymers was beneficial, because in general composites with improved properties, specially impact strength, were obtained. Composites were also prepared from the so called "biopolyethylene" (HDPE), curaua lignocellulosic fiber, and castor oil (CO). All composites HDBPE/CO/Fiber exhibited higher impact strength, when compared to those of the corresponding HDBPE/Fiber. These results, combined with others (eg SEM images of the fractured surfaces) indicated that, in addition to acting as a plasticizer, this oil may have acted as a compatibilizer of the hydrophilic fiber with the hydrophobic polymer. The set of results indicated that (i) mats with nano (diameter ≤ 100nm) and/or ultrafine (submicron scale) fibers were produced, (ii) hybrid fibers were produced (bio-based mats composites), (iii) cellulosic pulp (CP) and/or lignin (Lig) can be combined with PET matrices to control properties such as stiffness and hydrophilicity of the respective mats. Materials with diversified properties were prepared from high content of renewable raw materials, thus fulfilling the proposed targets.

  5. Efficiency of serum protein removal from skim milk with ceramic and polymeric membranes at 50 degrees C.

    Science.gov (United States)

    Zulewska, J; Newbold, M; Barbano, D M

    2009-04-01

    Raw milk (2,710 kg) was separated at 4 degrees C, the skim milk was pasteurized (72 degrees C, 16 s), split into 3 batches, and microfiltered using pilot-scale ceramic uniform transmembrane pressure (UTP; Membralox model EP1940GL0.1microA, 0.1 microm alumina, Pall Corp., East Hills, NY), ceramic graded permeability (GP; Membralox model EP1940GL0.1microAGP1020, 0.1 microm alumina, Pall Corp.), and polymeric spiral-wound (SW; model FG7838-OS0x-S, 0.3 microm polyvinylidene fluoride, Parker-Hannifin, Process Advanced Filtration Division, Tell City, IN) membranes. There were differences in flux among ceramic UTP, ceramic GP, and polymeric SW microfiltration membranes (54.08, 71.79, and 16.21 kg/m2 per hour, respectively) when processing skim milk at 50 degrees C in a continuous bleed-and-feed 3x process. These differences in flux among the membranes would influence the amount of membrane surface area required to process a given volume of milk in a given time. Further work is needed to determine if these differences in flux are maintained over longer processing times. The true protein contents of the microfiltration permeates from UTP and GP membranes were higher than from SW membranes (0.57, 0.56, and 0.38%, respectively). Sodium-dodecyl-sulfate-PAGE gels for permeates revealed a higher casein proportion in GP and SW permeate than in UTP permeate, with the highest passage of casein through the GP membrane under the operational conditions used in this study. The slight cloudiness of the permeates produced using the GP and SW systems may have been due to the presence of a small amount of casein, which may present an obstacle in their use in applications when clarity is an important functional characteristic. More beta-lactoglobulin passed through the ceramic membranes than through the polymeric membrane. The efficiency of removal of serum proteins in a continuous bleed-and-feed 3x process at 50 degrees C was 64.40% for UTP, 61.04% for GP, and 38.62% for SW microfiltration

  6. Method for forming polymerized microfluidic devices

    Science.gov (United States)

    Sommer, Gregory J.; Hatch, Anson V.; Wang, Ying-Chih; Singh, Anup K.; Renzi, Ronald F.; Claudnic, Mark R.

    2013-03-12

    Methods for making a microfluidic device according to embodiments of the present invention include defining.about.cavity. Polymer precursor solution is positioned in the cavity, and exposed to light to begin the polymerization process and define a microchannel. In some embodiments, after the polymerization process is partially complete, a solvent rinse is performed, or fresh polymer precursor introduced into the microchannel. This may promote removal of unpolymerized material from the microchannel and enable smaller feature sizes. The polymer precursor solution may contain an iniferter. Polymerized features therefore may be capped with the iniferter, which is photoactive. The iniferter may aid later binding of a polyacrylamide gel to the microchannel surface.

  7. AZIDE-ALKYNE CLICK POLYMERIZATION: AN UPDATE

    Institute of Scientific and Technical Information of China (English)

    Hong-kun Li; Jing-zhi Sun; An-jun Qin; Ben Zhong Tang

    2012-01-01

    The great achievements of click chemistry have encouraged polymer scientists to use this reaction in their field.This review assembles an update of the advances of using azide-alkyne click polymerization to prepare functional polytriazoles (PTAs) with linear and hyperbranched structures.The Cu(Ⅰ)-mediated click polymerization furnishes 1,4-regioregular PTAs,whereas,the metal-free click polymerization of propiolates and azides produces PTAs with 1,4-regioisomer contents up to 90%.The PTAs display advanced functions,such as aggregation-induced emission,thermal stability,biocompatibility and optical nonlinearity.

  8. Origin of piezoelectricity in an electrospun poly(vinylidene fluoride-trifluoroethylene) nanofiber web-based nanogenerator and nano-pressure sensor.

    Science.gov (United States)

    Mandal, Dipankar; Yoon, Sun; Kim, Kap Jin

    2011-06-01

    A single stage electrospinning process can give rise to preferentially oriented induced dipoles in poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] nanofibers. The piezoelectricity of as-electrospun P(VDF-TrFE) nanofiber webs opens up new possibilities for their use as a flexible nanogenerators and nano-pressure sensors. In this work, the origin of the piezoelectricity has been spotlighted by randomization of the induced dipoles at the Curie temperature and analyzed by polarized FT-IR spectroscopic techniques as well as by detecting the piezoelectric signal from a nano-pressure sensor. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Grafting of styrene onto poly(vinylidene fluoride) films by gamma irradiation; Enxertia de estireno em filmes de poli(fluoreto de vinilideno) induzida por irradiacao gama

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, H.P.; Souza, C.P. de; Parra, D.F.; Lugao, A.B., E-mail: hp.ferreira@yahoo.com.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Quimica e Meio Ambiente

    2010-07-01

    Radiation induced grafting of styrene onto poly(vinylidene fluoride) (PVDF) was studied owing to the crescent interest in use of grafted films to produce membranes with ion exchange capability. A Cobalt-60 source was used, with doses of 5 and 10 kGy, at dose rate of 5 kGy.h{sup -1}, at room temperature, inert atmosphere and according to the simultaneous method. Solutions of styrene/toluene (1:1, v/v) and styrene/N,N-dimethylformamide (DMF) (1:1, v/v) were used. The films were characterized by FT-IR spectroscopy (Infrared Spectroscopy), Differential Scanning Calorimetry (DSC), Thermogravimetric Measurement (TG) and the degree of grafting (DOG) were calculated gravimetrically. Results shown that in studied conditions, DMF allow greatest DOG than toluene and that increasing the irradiation dose correspond an increase in DOG. Infrared and thermal analyses confirmed the presence in the grafted polymers. (author)

  10. Self-assembly of poly(vinylidene fluoride–polystyrene block copolymers in solution: Effects of the length of polystyrene block and solvent compositions

    Directory of Open Access Journals (Sweden)

    Yao Wu

    2017-09-01

    Full Text Available We report the first preliminary and extensive study on the solution self-assembly behaviors of poly(vinylidene fluoride–b-polystyrene (PVDF–PS block copolymers. The two PVDF–PS polymers we examined have the same length of PVDF block with number averaged repeating unit of 180, but distinctly different lengths of PS block with number averaged repeating unit of 125 and 1202. The self-assembly experiments were carried out in a series of mixture solutions containing a good solvent N,N-dimethylformamide and a selective solvent with different ratios. Our results showed that the self-assembly process was greatly affected by the two factors we examined, i.e. the length of the PS block and the solvent composition. We hope that our study could stimulate more research on the self-assembly of PVDF-containing polymers in solution.

  11. Nanocomposite multilayer capacitors comprising BaTiO3@TiO2 and poly(vinylidene fluoride-hexafluoropropylene for dielectric-based energy storage

    Directory of Open Access Journals (Sweden)

    Mojtaba Rahimabady

    2014-04-01

    Full Text Available Multilayer dielectric capacitors were fabricated from nanocomposite precursor comprised of BaTiO3@TiO2 core–shell nanosized particles and poly(vinylidene fluoride–hexafluoropropylene (P(VDF–HFP polymer matrix (20 vol%. The multilayer capacitors showed very high discharge speed and high discharged energy density of around 2.5 J/cm3 at its breakdown field (~ 166 MV/m. The energy density of the nanocomposite multilayer capacitors was substantially higher than the energy density of commercially used power capacitors. Low cost, flexible structure, high discharge rate and energy density suggest that the nanocomposite multilayer capacitors are promising for energy storage applications in many power devices and systems.

  12. Enhancement of stability for lithium oxygen batteries by employing electrolytes gelled by poly(vinylidene fluoride-co-hexafluoropropylene) and tetraethylene glycol dimethyl ether

    International Nuclear Information System (INIS)

    Zhang, Jinqiang; Sun, Bing; Xie, Xiuqiang; Kretschmer, Katja; Wang, Guoxiu

    2015-01-01

    Free-standing gel polymer electrolytes with poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) matrix plasticized with tetraethylene glycol dimethyl ether (TEGDME) were prepared and investigated. The as-prepared gel polymer electrolytes exhibited large operating window and acceptable ionic conductivity. When applied in lithium oxygen batteries, the gel polymer electrolyte could support a high initial discharge capacity of 2988 mAh g −1 when a carbon black electrode without catalyst was used as cathode. Furthermore, the battery with gel polymer electrolyte can last at least 50 cycles in the fixed capacity cycling, displaying an excellent stability. Detailed study reveals that the gelling process is essential for the cycling stability enhancement. With excellent electrochemical properties, the free-standing gel polymer electrolyte presented in this investigation has great application potentials in long-life lithium oxygen batteries.

  13. Synthesis and polymerization of vinyl triazolium ionic liquids

    Science.gov (United States)

    Luebke, David; Nulwala, Hunaid; Matyjaszewski, Krzysztof; Adzima, Brian

    2018-05-15

    Herein, we describe polymerized ionic liquids, demonstrate the synthesis of polymerized ionic liquids, and demonstrate the polymerization of triazolium monomers. One embodiment shows the polymeriazation of the triazolium monomers with bis(trifluoromethanesulfonyl)imide anions. In another embodiment we show the feasibility of copolymerizing with commodity monomers such as styrene using free radical polymerization techniques.

  14. Better flocculants by radiation induced polymerization

    International Nuclear Information System (INIS)

    Laizier, J.; Gaussens, G.

    1978-01-01

    The use of radiation induced polymerization should theoritically allow to prepare better flocculants. The testings of several products prepared by such a process shows that better properties are indeed obtained: better efficiencies, lower amounts needed, better overall properties [fr

  15. Compression Behavior of High Performance Polymeric Fibers

    National Research Council Canada - National Science Library

    Kumar, Satish

    2003-01-01

    Hydrogen bonding has proven to be effective in improving the compressive strength of rigid-rod polymeric fibers without resulting in a decrease in tensile strength while covalent crosslinking results in brittle fibers...

  16. Silicon dioxide obtained by Polymeric Precursor Method

    International Nuclear Information System (INIS)

    Oliveira, C.T.; Granado, S.R.; Lopes, S.A.; Cavalheiro, A.A.

    2011-01-01

    The Polymeric Precursor Method is able for obtaining several oxide material types with high surface area even obtained in particle form. Several MO 2 oxide types such as titanium, silicon and zirconium ones can be obtained by this methodology. In this work, the synthesis of silicon oxide was monitored by thermal analysis, XRD and surface area analysis in order to demonstrate the influence of the several synthesis and calcining parameters. Surface area values as higher as 370m2/g and increasing in the micropore volume nm were obtained when the material was synthesized by using ethylene glycol as polymerizing agent. XRD analysis showed that the material is amorphous when calcinated at 600°C in despite of the time of calcining, but the material morphology is strongly influenced by the polymeric resin composition. Using Glycerol as polymerizing agent, the pore size increase and the surface area goes down with the increasing in decomposition time, when compared to ethylene glycol. (author)

  17. Thermal polymerization of Moringa oleifera oil

    International Nuclear Information System (INIS)

    Melo, Tania M.S.; Novack, Katia M.; Leandro, Cristiano

    2011-01-01

    It is increasingly clear both for society and the scientific community, that is necessary to find alternatives to reduce the use of polymeric materials because of their damage to the environment. One way to minimize the environmental problems related to the use of polymers is try to make them quickly degradable. In this study it was obtained a material with polymeric appearance derived from heating of the vegetable oil extracted from seeds of Moringa oleifera. The resulting product is an interesting alternative to obtain polymeric materials that may have biodegradable characteristics, coming from a renewable source and low cost. Moringa oil can be used since it has a high content of unsaturated fatty acids, and its main constituent oleic acid. All samples were characterized by FTIR, NMR and GPC. It was obtained a polymeric material, malleable, high viscosity, with some elasticity, low crystallinity and no unpleasant odor. (author)

  18. Deformation and flow of polymeric materials

    CERN Document Server

    Münstedt, Helmut

    2014-01-01

    This book describes the properties of single polymer molecules and polymeric materials and the methods how to characterize them. Molar masses, molar mass distributions and branching structure are discussed in detail. These properties are decisive for a deeper understanding of structure/properties relationships of polymeric materials. This book therefore describes and discusses them in detail. The mechanical behavior as a function of time and temperature is a key subject of the book. The authors present it on the basis of many original results they have obtained in their long research careers. They present the temperature dependence of mechanical properties of various polymeric materials in a wide temperature range: from cryogenic temperatures to the melt. Besides an extensive data collection on the transitions of various different polymeric materials, they also carefully present the physical explanations of the observed phenomena. Glass transition and melting temperatures are discussed, particularly, with the...

  19. Polymerization of sodium methacrylate induced by irradiation

    International Nuclear Information System (INIS)

    Galvan S, A.

    1998-01-01

    This work has two objectives, first: it is pretended to localize the lines of carbon links in its IR spectra, and second: following the polymerization of sodium methacrylate according to that it is irradiated with gamma rays. (Author)

  20. Reverse-osmosis membranes by plasma polymerization

    Science.gov (United States)

    Hollahan, J. R.; Wydeven, T.

    1972-01-01

    Thin allyl amine polymer films were developed using plasma polymerization. Resulting dry composite membranes effectively reject sodium chloride during reverse osmosis. Films are 98% sodium chloride rejective, and 46% urea rejective.

  1. Bioadhesive polymeric platforms for transmucosal drug delivery ...

    African Journals Online (AJOL)

    Bioadhesive polymeric platforms for transmucosal drug delivery systems – a review. ... administration of certain classes of drugs, especially peptides and proteins. ... characteristics of desired bioadhesive polymers, this article then proceeds to ...

  2. Transformation kinetics of mixed polymeric substrates under ...

    African Journals Online (AJOL)

    bglucosidase and a-mannosidase were abundantly secreted in the growth medium. This research is the first report on mixed polymeric substrate biodegradation under sewer condition by A. niger, and could be considered as an open window on ...

  3. Design and fabrication of polymeric nanocomposites with conducting fillers as electronic nanomaterials

    Science.gov (United States)

    Mushibe, Eliud Kizito

    The growing demand for small, portable and high performance electronic devices has resulted in research activity for embedded electronic components. This offers prospects for the development of flexible electronic components that combines the use of organic and inorganic materials and can be produced on a roll-to-roll process. This dissertation presents advances in the fabrication and characterization of flexible polymeric nanocomposite thin films. Inorganic and synthetic metal nanostructures with high electrical and dielectric properties were employed as filler materials. The processability of these functional filler materials was achieved by dispersion in conventional polymer matrices such as polystyrene (PS), polymethylmethacrylate (PMMA) and poly(vinylidene fluoride) to afford electroactive polymeric composite materials. In the fabrication of inorganic nanostructures, a Tubes by Fiber Template technique was employed to afford submicron metal and metal oxide tubes. Silver and copper nanostructures were fabricated by electroless deposition on electrospun fiber templates. To obtain hollow, submicron tubes, the sacrificial polymer template materials were removed by a combination of solvent dissolution and thermal degradation under an inert atmosphere. Polyaniline thin film deposited on the fiber template was used as a binding interface to enhance uniform and continuous deposition of the metal. This was instrumental in fabricating tubes with varied wall thicknesses ranging from 50 to 300 nm obtained as a function of plating time. By doping electrically conducting polymers such as polyaniline, the conductivity can be modified. We describe the fabrication of highly conducting polyaniline nanostructures via template free synthesis. A novel approach that involves a combination of hydrochloric acid and camphorsulfonic acid dopant at low concentrations was adopted. This approach afforded nanofibers with diameters of 150 ± 50 nm and high electrical conductivity of 4.2

  4. Post polymerization cure shape memory polymers

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Thomas S.; Hearon, II, Michael Keith; Bearinger, Jane P.

    2017-01-10

    This invention relates to chemical polymer compositions, methods of synthesis, and fabrication methods for devices regarding polymers capable of displaying shape memory behavior (SMPs) and which can first be polymerized to a linear or branched polymeric structure, having thermoplastic properties, subsequently processed into a device through processes typical of polymer melts, solutions, and dispersions and then crossed linked to a shape memory thermoset polymer retaining the processed shape.

  5. Nucleotide Selectivity in Abiotic RNA Polymerization Reactions

    Science.gov (United States)

    Coari, Kristin M.; Martin, Rebecca C.; Jain, Kopal; McGown, Linda B.

    2017-09-01

    In order to establish an RNA world on early Earth, the nucleotides must form polymers through chemical rather than biochemical reactions. The polymerization products must be long enough to perform catalytic functions, including self-replication, and to preserve genetic information. These functions depend not only on the length of the polymers, but also on their sequences. To date, studies of abiotic RNA polymerization generally have focused on routes to polymerization of a single nucleotide and lengths of the homopolymer products. Less work has been done the selectivity of the reaction toward incorporation of some nucleotides over others in nucleotide mixtures. Such information is an essential step toward understanding the chemical evolution of RNA. To address this question, in the present work RNA polymerization reactions were performed in the presence of montmorillonite clay catalyst. The nucleotides included the monophosphates of adenosine, cytosine, guanosine, uridine and inosine. Experiments included reactions of mixtures of an imidazole-activated nucleotide (ImpX) with one or more unactivated nucleotides (XMP), of two or more ImpX, and of XMP that were activated in situ in the polymerization reaction itself. The reaction products were analyzed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to identify the lengths and nucleotide compositions of the polymerization products. The results show that the extent of polymerization, the degree of heteropolymerization vs. homopolymerization, and the composition of the polymeric products all vary among the different nucleotides and depend upon which nucleotides and how many different nucleotides are present in the mixture.

  6. Polymeric Nanogels Obtained by Radiation Technique

    Energy Technology Data Exchange (ETDEWEB)

    Ulanski, P.; Kadłubowski, A. K.; Olejnik,; Rokita, B.; Wach, R.; Rosiak, J. M. [Institute of Applied Radiation Chemistry, Technical University of Lodz, Lodz (Poland)

    2009-07-01

    Soft nanomaterials - polymeric nanogels and microgels - have made a fast and brilliant career, from an unwanted by-product of polymerization processes to an important and fashionable topic of interdisciplinary research in the fields of polymer chemistry and physics, materials science, pharmacy and medicine. Together with their larger analogues - macroscopic gels, most known in the form of water-swellable hydrogels - they have a broad field of actual and potential applications ranging from filler materials in coating industry to modern biomaterials.

  7. Nucleotide Selectivity in Abiotic RNA Polymerization Reactions.

    Science.gov (United States)

    Coari, Kristin M; Martin, Rebecca C; Jain, Kopal; McGown, Linda B

    2017-09-01

    In order to establish an RNA world on early Earth, the nucleotides must form polymers through chemical rather than biochemical reactions. The polymerization products must be long enough to perform catalytic functions, including self-replication, and to preserve genetic information. These functions depend not only on the length of the polymers, but also on their sequences. To date, studies of abiotic RNA polymerization generally have focused on routes to polymerization of a single nucleotide and lengths of the homopolymer products. Less work has been done the selectivity of the reaction toward incorporation of some nucleotides over others in nucleotide mixtures. Such information is an essential step toward understanding the chemical evolution of RNA. To address this question, in the present work RNA polymerization reactions were performed in the presence of montmorillonite clay catalyst. The nucleotides included the monophosphates of adenosine, cytosine, guanosine, uridine and inosine. Experiments included reactions of mixtures of an imidazole-activated nucleotide (ImpX) with one or more unactivated nucleotides (XMP), of two or more ImpX, and of XMP that were activated in situ in the polymerization reaction itself. The reaction products were analyzed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to identify the lengths and nucleotide compositions of the polymerization products. The results show that the extent of polymerization, the degree of heteropolymerization vs. homopolymerization, and the composition of the polymeric products all vary among the different nucleotides and depend upon which nucleotides and how many different nucleotides are present in the mixture.

  8. Volumetric polymerization shrinkage of contemporary composite resins

    Directory of Open Access Journals (Sweden)

    Halim Nagem Filho

    2007-10-01

    Full Text Available The polymerization shrinkage of composite resins may affect negatively the clinical outcome of the restoration. Extensive research has been carried out to develop new formulations of composite resins in order to provide good handling characteristics and some dimensional stability during polymerization. The purpose of this study was to analyze, in vitro, the magnitude of the volumetric polymerization shrinkage of 7 contemporary composite resins (Definite, Suprafill, SureFil, Filtek Z250, Fill Magic, Alert, and Solitaire to determine whether there are differences among these materials. The tests were conducted with precision of 0.1 mg. The volumetric shrinkage was measured by hydrostatic weighing before and after polymerization and calculated by known mathematical equations. One-way ANOVA (a or = 0.05 was used to determine statistically significant differences in volumetric shrinkage among the tested composite resins. Suprafill (1.87±0.01 and Definite (1.89±0.01 shrank significantly less than the other composite resins. SureFil (2.01±0.06, Filtek Z250 (1.99±0.03, and Fill Magic (2.02±0.02 presented intermediate levels of polymerization shrinkage. Alert and Solitaire presented the highest degree of polymerization shrinkage. Knowing the polymerization shrinkage rates of the commercially available composite resins, the dentist would be able to choose between using composite resins with lower polymerization shrinkage rates or adopting technical or operational procedures to minimize the adverse effects deriving from resin contraction during light-activation.

  9. Post polymerization cure shape memory polymers

    Science.gov (United States)

    Wilson, Thomas S; Hearon, Michael Keith; Bearinger, Jane P

    2014-11-11

    This invention relates to chemical polymer compositions, methods of synthesis, and fabrication methods for devices regarding polymers capable of displaying shape memory behavior (SMPs) and which can first be polymerized to a linear or branched polymeric structure, having thermoplastic properties, subsequently processed into a device through processes typical of polymer melts, solutions, and dispersions and then crossed linked to a shape memory thermoset polymer retaining the processed shape.

  10. Polymeric Nanogels Obtained by Radiation Technique

    International Nuclear Information System (INIS)

    Ulanski, P.; Kadłubowski, A.K.; Olejnik; Rokita, B.; Wach, R.; Rosiak, J.M.

    2009-01-01

    Soft nanomaterials - polymeric nanogels and microgels - have made a fast and brilliant career, from an unwanted by-product of polymerization processes to an important and fashionable topic of interdisciplinary research in the fields of polymer chemistry and physics, materials science, pharmacy and medicine. Together with their larger analogues - macroscopic gels, most known in the form of water-swellable hydrogels - they have a broad field of actual and potential applications ranging from filler materials in coating industry to modern biomaterials

  11. Stimuli-Responsive Polymeric Nanoparticles.

    Science.gov (United States)

    Liu, Xiaolin; Yang, Ying; Urban, Marek W

    2017-07-01

    There is increasing evidence that stimuli-responsive nanomaterials have become significantly critical components of modern materials design and technological developments. Recent advances in synthesis and fabrication of stimuli-responsive polymeric nanoparticles with built-in stimuli-responsive components (Part A) and surface modifications of functional nanoparticles that facilitate responsiveness (Part B) are outlined here. The synthesis and construction of stimuli-responsive spherical, core-shell, concentric, hollow, Janus, gibbous/inverse gibbous, and cocklebur morphologies are discussed in Part A, with the focus on shape, color, or size changes resulting from external stimuli. Although inorganic/metallic nanoparticles exhibit many useful properties, including thermal or electrical conductivity, catalytic activity, or magnetic properties, their assemblies and formation of higher order constructs are often enhanced by surface modifications. Section B focuses on selected surface reactions that lead to responsiveness achieved by decorating nanoparticles with stimuli-responsive polymers. Although grafting-to and grafting-from dominate these synthetic efforts, there are opportunities for developing novel synthetic approaches facilitating controllable recognition, signaling, or sequential responses. Many nanotechnologies utilize a combination of organic and inorganic phases to produce ceramic or metallic nanoparticles. One can envision the development of new properties by combining inorganic (metals, metal oxides) and organic (polymer) phases into one nanoparticle designated as "ceramers" (inorganics) and "metamers" (metallic). © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Nonperturbative Renormalization Group Approach to Polymerized Membranes

    Science.gov (United States)

    Essafi, Karim; Kownacki, Jean-Philippe; Mouhanna, Dominique

    2014-03-01

    Membranes or membrane-like materials play an important role in many fields ranging from biology to physics. These systems form a very rich domain in statistical physics. The interplay between geometry and thermal fluctuations lead to exciting phases such flat, tubular and disordered flat phases. Roughly speaking, membranes can be divided into two group: fluid membranes in which the molecules are free to diffuse and thus no shear modulus. On the other hand, in polymerized membranes the connectivity is fixed which leads to elastic forces. This difference between fluid and polymerized membranes leads to a difference in their critical behaviour. For instance, fluid membranes are always crumpled, whereas polymerized membranes exhibit a phase transition between a crumpled phase and a flat phase. In this talk, I will focus only on polymerized phantom, i.e. non-self-avoiding, membranes. The critical behaviour of both isotropic and anisotropic polymerized membranes are studied using a nonperturbative renormalization group approach (NPRG). This allows for the investigation of the phase transitions and the low temperature flat phase in any internal dimension D and embedding d. Interestingly, graphene behaves just as a polymerized membrane in its flat phase.

  13. The tempered polymerization of human neuroserpin.

    Directory of Open Access Journals (Sweden)

    Rosina Noto

    Full Text Available Neuroserpin, a member of the serpin protein superfamily, is an inhibitor of proteolytic activity that is involved in pathologies such as ischemia, Alzheimer's disease, and Familial Encephalopathy with Neuroserpin Inclusion Bodies (FENIB. The latter belongs to a class of conformational diseases, known as serpinopathies, which are related to the aberrant polymerization of serpin mutants. Neuroserpin is known to polymerize, even in its wild type form, under thermal stress. Here, we study the mechanism of neuroserpin polymerization over a wide range of temperatures by different techniques. Our experiments show how the onset of polymerization is dependent on the formation of an intermediate monomeric conformer, which then associates with a native monomer to yield a dimeric species. After the formation of small polymers, the aggregation proceeds via monomer addition as well as polymer-polymer association. No further secondary mechanism takes place up to very high temperatures, thus resulting in the formation of neuroserpin linear polymeric chains. Most interesting, the overall aggregation is tuned by the co-occurrence of monomer inactivation (i.e. the formation of latent neuroserpin and by a mechanism of fragmentation. The polymerization kinetics exhibit a unique modulation of the average mass and size of polymers, which might suggest synchronization among the different processes involved. Thus, fragmentation would control and temper the aggregation process, instead of enhancing it, as typically observed (e.g. for amyloid fibrillation.

  14. Characterization behavior of some polymeric composite ion exchangers

    International Nuclear Information System (INIS)

    El-Zahhar, A.A; Ahdel-Aziz, H.M.; Siyam, T.

    2005-01-01

    Polymeric composite resins were prepared by template polymerization process in aqueous solution. Thermogravimetric analysis (TGA), differential thermal analysis (DTA) and The X-ray diffraction patterns (XRD) were performed to evaluate the physico chemical properties of the different polymeric composite resins. The TGA and DTA clarify high thermal stability of prepared polymeric composite resins. XRD of prepared polymeric composite shows that there is crystalline structure of some resins while other are amorphous one

  15. Genotoxic evaluation of polymeric nanoparticles

    Directory of Open Access Journals (Sweden)

    Tamara Iglesias Alonso

    2015-06-01

    Full Text Available An important strategy for optimizing the therapeutic efficacy of many conventional drugs is the development of polymeric nanoparticles (NPs, as it may expand their activities, reduce their toxicity, increase their bioactivity and improve biodistribution. The main objective of this study was to evaluate the genotoxicity of 8 different poly (anhydride NPs designed for the oral administration of therapeutic compounds by using the comet assay in combination with the enzyme formamidopypiridine DNA-glycosylase (FPG. Furthermore, the mitogen capacity of the NPs was evaluated by the proliferation assay. All NPs were tested at four concentrations (0, 0.5, 1 and 2 mg/mL in Caco-2 cells after 3 hours of treatment while selected NPs were also tested after 24 h. The comet assay was performed immediately after the treatment and cell proliferation was assessed by counting the treated cells after their incubation at 37 °C for 48h. Cells treated with 1 µM of the photosensitizer Ro 19-8022 plus 5 min of light, as well as cells treated with 100 µM H2O2 were included as positive controls in all the experiments. All NPs studied did not result in any increase in the frequency of strand breaks or alkali-labile sites in Caco-2 cells but they induced a slight concentration-dependent increase in net FPG sensitive sites (oxidized and/or alkylated bases. Furthermore, treated cells did not show changes in levels of proliferation in comparison with the negative control.

  16. Survey and research on precision polymerization polymeric materials; Seimitsu jugo kobunshi zairyo ni kansuru chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Survey and research on the precision control of primary structure of polymeric materials and the precision evaluation technology have been conducted to develop advanced polymeric materials. It is proposed that the three basic processes of polymer synthesis, i.e., addition, condensation, and biomimesis, in forming the precision polymerization skeleton are to be covered through a centralized joint research effort with participation of industry, academia, and the government institute and under the leadership of researchers from academic institutions as the team leaders. For the study of technology trends, international conferences held in UK, Germany, and Hawaii are introduced, and domestic meetings, i.e., Annual Polymer Congress and Polymer Conference, are summarized. In addition, Precision Polymerization Forum and International Workshop on Precision Polymerization were held. The basic studies include a quantum-chemical elucidation of the elementary process in polymerization reaction, time-resolved analysis of polymerization process and polymer properties, synthesis of polymers with controlled microstructures by coordination polymerization using metal complexes, synthesis of polymer with controlled microstructures by precision polycondensation, molecular recognition in catalyst-reaction site, and synthesis of imprinting polymers. 246 refs., 117 figs., 14 tabs.

  17. Polymerization of N-(fluoro phenyl) maleimides

    International Nuclear Information System (INIS)

    Barrales-Rienda, J.M.; Ramos, J.G.; Chaves, M.S.

    1979-01-01

    Poly(N-aryl maleimide)s of characteristic structures have been synthesized and some of their physical properties studied. The polymerization of N-(fluoro phenyl) maleimides by free-radical initiation in bulk or in solution and by anionic catalyst have been studied to compare the characteristics of polymerization by γ-ray irradiation with that by free-radical initiation. The polymers were characterized by elemental analysis, intrinsic viscosity, spectroscopy (IR and NMR), programmed thermogravimetric analysis, and x-ray diffraction. Spectra of polymers prepared by radiation and anionic polymerization were nearly identical with those of polymers prepared by free-radical polymerization initiated by azobisisobutyronitrile in bulk or in solution and by the self-initiated thermal polymerization. A variety of reaction conditions were tried, but all attempts to change the molecular structure of the polymers were unsuccessful. Rates of thermal degradation for poly[N-(fluoro phenyl) maleimide]s have been analyzed by using a multiple-heating-rate procedure. Overall activation energy, order of reaction, and frequency factor have been evaluated. 6 figures, 8 tables

  18. Electrospun polymeric nanofibers for transdermal drug delivery

    Directory of Open Access Journals (Sweden)

    Mahya Rahmani

    2017-04-01

    Full Text Available Conventional transdermal drug delivery systems (TDDS have been designed for drug delivery through the skin. These systems use the permeability property of stratum corneum, the outermost surface layer of the skin. Applying polymeric micro and nanofibers in drug delivery has recently attracted great attention and the electrospinning technique is the preferred method for polymeric micro-nanofibers fabrication with a great potential for drug delivery. More studies in the field of nanofibers containing drug are divided two categories: first, preparation and characterization of nanofibers containing drug and second, investigation of their therapeutic applications. Drugs used in electrospun nanofibers can be categorized into three main groups, including antibiotics and antimicrobial agents, anti-inflammatory agents and vitamins with therapeutic applications. In this paper, we review the application of electrospun polymeric scaffolds in TDDS and also introduce several pharmaceutical and therapeutic agents which have been used in polymer nanofibrous patches.

  19. Biomimetic polymeric membranes for water treatment

    DEFF Research Database (Denmark)

    Habel, Joachim Erich Otto

    This project is about the interplay of the three major components of aquaporin based biomimetic polymeric membranes (ABPMs): Aquaporins (AQPs), amphiphilic block copolymers, serving as a vesicular matrix for the hydrophobic AQP exterior (proteopolymersomes) and a polymeric membrane as embedment....... The interplay of proteopolymersomes and polymeric mesh support (in this case polyethersulfone, PES) was examined via integration of proteopolymersomes in an active layer (AL) formed by interfacial polymerisation between a linker molecule in aqueous phase and another in organic phase on top of the PES....... The resulting thin-film composite (TFC) membrane was analyzed via cross-flow forward osmosis (FO), scanning electron microscopy (SEM), fourier-transformed infrared spectroscopy (FTIR), as well as in the non-supported form over FTIR and a specialized microfluidic visualization approach. Where no clear dierences...

  20. Cross-linking of polymeric materials

    International Nuclear Information System (INIS)

    Bloom, L.I.; Du Plessis, T.A.; Meij, G.O.

    1991-01-01

    The invention provides a method of producing a cured polymeric artifact from a polymeric thermoplastic starting material, the material of the artifact having reduced thermoplasticity relative to the starting material and exhibiting an enhanced degree of cross-linking relative to the starting material. The method includes subjecting a polymeric thermoplastic starting material, which is capable of being cross-linked by irradiation, to sufficient irradiation partially to cross-linked the starting material to produce a thermoplastic partially cross-linked intermediate material. The thermoplasticity of the intermediate material is then reduced by heating it to raise its melting point. The invention also provides a method of making a partially cross-linked feedstocks and a master batch for use in making such artifacts

  1. Laser microstructuring for fabricating superhydrophobic polymeric surfaces

    Science.gov (United States)

    Cardoso, M. R.; Tribuzi, V.; Balogh, D. T.; Misoguti, L.; Mendonça, C. R.

    2011-02-01

    In this paper we show the fabrication of hydrophobic polymeric surfaces through laser microstructuring. By using 70-ps pulses from a Q-switched and mode-locked Nd:YAG laser at 532 nm, we were able to produce grooves with different width and separation, resulting in square-shaped pillar patterns. We investigate the dependence of the morphology on the surface static contact angle for water, showing that it is in agreement with the Cassie-Baxter model. We demonstrate the fabrication of a superhydrophobic polymeric surface, presenting a water contact angle of 157°. The surface structuring method presented here seems to be an interesting option to control the wetting properties of polymeric surfaces.

  2. Inflation and Instability of a Polymeric Membrane

    DEFF Research Database (Denmark)

    Neergaard, Jesper; Hassager, Ole

    1999-01-01

    We consider an axisymmetric polymeric membrane inflated by a uniform pressure difference acting across the membrane. The polymeric materialis described by an arbitrary combination of a viscoelastic and a purely viscous component to the stress. Some viscoelastic materials described by a Mooney......-Rivlin model show a monotone increasingpressure during inflation of a spherical membrane. These materials develop a homogeneous membrane thickness in agreement with the Considere-Pearson condition. Molecularly based models such as the neo-Hookean, Doi-Edwards or Tom-Pom model show a pressure maximum when...... inflated. Membranesdescribed by these models develop a local thinning of the membrane which may lead to bursting in finite time....

  3. Polymeric materials obtained by electron beam irradiation

    International Nuclear Information System (INIS)

    Dragusin, M.; Moraru, R.; Martin, D.; Radoiu, M.; Marghitu, S.; Oproiu, C.

    1995-01-01

    Research activities in the field of electron beam irradiation of monomer aqueous solution to produce polymeric materials used for waste waters treatment, agriculture and medicine are presented. The technologies and special features of these polymeric materials are also described. The influence of the chemical composition of the solution to ba irradiated, absorbed dose level and absorbed dose rate level are discussed. Two kinds of polyelectrolytes, PA and PV types and three kinds of hydrogels, pAAm, pAAmNa and pNaAc types, the production of which was first developed with IETI-10000 Co-60 source and then adapted to the linacs built in Accelerator Laboratory, are described. (author)

  4. Mechanism and kinetics of addition polymerizations

    CERN Document Server

    Kucera, M

    1991-01-01

    This volume presents an up-to-date survey of knowledge concerning addition type polymerizations. It contains nine chapters, each of which covers a particular basic term. Whenever necessary, the phenomena are discussed from the viewpoint of both stationary and non-stationary state of radical, ionic (i.e. anionic and cationic) and coordination polymerization. Special attention has been paid to the propagation process. It provides not only a general overview but also information on important special cases (theoretical conditions of propagation, influence of external factors, controlled propagatio

  5. Polymeric matrix materials for infrared metamaterials

    Science.gov (United States)

    Dirk, Shawn M; Rasberry, Roger D; Rahimian, Kamyar

    2014-04-22

    A polymeric matrix material exhibits low loss at optical frequencies and facilitates the fabrication of all-dielectric metamaterials. The low-loss polymeric matrix material can be synthesized by providing an unsaturated polymer, comprising double or triple bonds; partially hydrogenating the unsaturated polymer; depositing a film of the partially hydrogenated polymer and a crosslinker on a substrate; and photopatterning the film by exposing the film to ultraviolet light through a patterning mask, thereby cross-linking at least some of the remaining unsaturated groups of the partially hydrogenated polymer in the exposed portions.

  6. Immobilization of biocatalysts for enzymatic polymerizations : Possibilities, advantages, applications

    NARCIS (Netherlands)

    Miletic, Nemanja; Nastasovic, Aleksandra; Loos, Katja; Miletić, Nemanja; Nastasović, Aleksandra

    Biotechnology also holds tremendous opportunities for realizing functional polymeric materials. Biocatalytic pathways to polymeric materials are an emerging research area with not only enormous scientific and technological promise, but also a tremendous impact on environmental issues. Many of the

  7. Polymerization Initiated at the Sidewalls of Carbon Nanotubes

    Science.gov (United States)

    Tour, James M.; Hudson, Jared L.

    2011-01-01

    A process has been developed for growing polymer chains via anionic, cationic, or radical polymerization from the side walls of functionalized carbon nanotubes, which will facilitate greater dispersion in polymer matrices, and will greatly enhance reinforcement ability in polymeric material.

  8. Interfacial Polymerization of Polyaniline Nanofibers Grafted to Au Surfaces

    National Research Council Canada - National Science Library

    Sawall, D

    2004-01-01

    .... The in-situ polymerization technique of these PANI nanofibers in the presence of sulfonated polystyrene allowed for the growth of PANI 2-D nanostructures embedded in the polymerized sulfonated host...

  9. Electrospun doping of carbon nanotubes and platinum nanoparticles into the β-phase polyvinylidene difluoride nanofibrous membrane for biosensor and catalysis applications.

    Science.gov (United States)

    Zhang, Panpan; Zhao, Xinne; Zhang, Xuan; Lai, Yue; Wang, Xinting; Li, Jingfeng; Wei, Gang; Su, Zhiqiang

    2014-05-28

    A novel β-phase polyvinylidene difluoride (PVDF) nanofibrous membrane decorated with multiwalled carbon nanotubes (MWCNTs) and platinum nanoparticles (PtNPs) was fabricated by an improved electrospinning technique. The morphology of the fabricated PVDF-MWCNT-PtNP nanofibrous membrane was observed by scanning electron microscopy, and the formation of high β-phase in the hybrid nanofibrous membrane was investigated by Fourier transform infrared spectroscopy and differential scanning calorimetry. The uniform dispersion of MWCNTs and PtNPs in the PVDF hybrid nanofibrous membrane and their interaction were explored by transmission electron microscopy and X-ray diffraction. For the first time, we utilized this created PVDF-MWCNT-PtNP nanofibrous membrane for biosensor and catalysis applications. The nonenzymatic amperometric biosensor with highly stable and sensitive, and selective detection of both H2O2 and glucose was successfully fabricated based on the electrospun PVDF-MWCNT-PtNP nanofibrous membrane. In addition, the catalysis of the hybrid nanofibrous membrane for oxygen reduction reaction was tested, and a good catalysis performance was found. We anticipate that the strategies utilized in this work will not only guide the further design of functional nanofiber-based biomaterials and biodevices but also extend the potential applications in energy storage, cytology, and tissue engineering.

  10. Improved Dielectric Properties and Energy Storage Density of Poly(vinylidene fluoride-co-hexafluoropropylene) Nanocomposite with Hydantoin Epoxy Resin Coated BaTiO3.

    Science.gov (United States)

    Luo, Hang; Zhang, Dou; Jiang, Chao; Yuan, Xi; Chen, Chao; Zhou, Kechao

    2015-04-22

    Energy storage materials are urgently demanded in modern electric power supply and renewable energy systems. The introduction of inorganic fillers to polymer matrix represents a promising avenue for the development of high energy density storage materials, which combines the high dielectric constant of inorganic fillers with supernal dielectric strength of polymer matrix. However, agglomeration and phase separation of inorganic fillers in the polymer matrix remain the key barriers to promoting the practical applications of the composites for energy storage. Here, we developed a low-cost and environmentally friendly route to modifying BaTiO3 (BT) nanoparticles by a kind of water-soluble hydantoin epoxy resin. The modified BT nanoparticles exhibited homogeneous dispersion in the ferroelectric polymer poly(vinylidene fluoride-co-hexafluoropropylene) (P(VDF-HFP)) matrix and strong interfacial adhesion with the polymer matrix. The dielectric constants of the nanocomposites increased significantly with the increase of the coated BT loading, while the dielectric loss of the nanocomposites was still as low as that of the pure P(VDF-HFP). The energy storage density of the nanocomposites was largely enhanced with the coated BT loading at the same electric field. The nanocomposite with 20 vol % BT exhibited an estimated maximum energy density of 8.13 J cm(-3), which was much higher than that of pure P(VDF-HFP) and other dielectric polymers. The findings of this research could provide a feasible approach to produce high energy density materials for practical application in energy storage.

  11. Enhanced electroactive and mechanical properties of poly(vinylidene fluoride) by controlling crystallization and interfacial interactions with low loading polydopamine coated BaTiO₃.

    Science.gov (United States)

    Jia, Nan; Xing, Qian; Liu, Xu; Sun, Jing; Xia, Guangmei; Huang, Wei; Song, Rui

    2015-09-01

    Poly(vinylidene fluoride) (PVDF) is a semi-crystalline polymer and the polar β-phase of PVDF shows superb electroactive properties. In order to enhance the β-phase of PVDF, extreme low content of BaTiO3 nanoparticles (BT-NPs) coated with polydopamine (Pdop) were incorporated into PVDF matrix by solution casting. The β-phase of the resulting PVDF nanocomposites film was dramatically increased and the d33 value reached 34.3±0.4 pCN(-1). It is found that the Pdop layer could improve the dispersibility and stability of the BT NPs in solution and endow the BT NPs good dispersity in the PVDF matrix. Moreover, the interfacial interaction between PVDF chains and the surface of BT-Pdop nanoparticles (BT-Pdop NPs) were revealed, in which the CF2 groups on PVDF could interact with the electron-rich plane of aromatic ring of Pdop moiety. This interaction, led to the increase of the crystallization activation energy as derived from the DSC nonisothermal crystallization measurement. The α-β crystal transformation, organization of interfacial interactions as well as the prevention of agglomeration of BT-NPs confer the improvement of mechanical and thermal properties of PVDF, such as toughness, tensile strength, elongation at break, and thermal conductivity. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. A fully packaged self-powered sensor based on near-field electrospun arrays of poly(vinylidene fluoride nano/micro fibers

    Directory of Open Access Journals (Sweden)

    Y.-K. Fuh

    2018-02-01

    Full Text Available Energy harvesting devices based on the triboelectric and piezoelectric principles have been widely developed to scavenge wasteful and tiny mechanical energy into usable electrical energy. In particular, triboelectric energy harvesting generators with relatively simpler structure and piezoelectric fiber-based counterpart with extremely light weight compositions showed a very promising application in the self-powered sensors. In this paper, a novel hybridization of graphenebased piezoelectric generator (GBPG and graphene-PET triboelectric generator (GPTG were simultaneously packaged. The integrated structure, graphene-based hybridized self-powered sensor (GHSPS, was demonstrated to be optically transparent and mechanically robust. For the piezoelectrically harvesting device, an in-situ poling and direct-write near-field electrospinning (NFES Poly(vinylidene fluoride (PVDF piezoelectric fibers were fabricated and integrated with a single layer chemical vapor deposition (CVD grown graphene. On the other hand for GPTG counterpart, two composite layers of a single layer graphene/PET simultaneously served as triboelectrically rubbing layers as well as bottom/top electrode. This GHSPS successfully superimposed both piezoelectric and triboelectric electricity and the synergistically higher output voltage/current/power were measured as ~6 V/280 nA/172 nW in one press-and-release cycle of finger induced motion. The proposed GHSPS showed a promising application in the field of self-powered sensors to be ubiquitously implemented in the future Industry 4.0 scenarios.

  13. Developing an Ear Prosthesis Fabricated in Polyvinylidene Fluoride by a 3D Printer with Sensory Intrinsic Properties of Pressure and Temperature

    Directory of Open Access Journals (Sweden)

    Ernesto Suaste-Gómez

    2016-03-01

    Full Text Available An ear prosthesis was designed in 3D computer graphics software and fabricated using a 3D printing process of polyvinylidene fluoride (PVDF for use as a hearing aid. In addition, the prosthesis response to pressure and temperature was observed. Pyroelectric and piezoelectric properties of this ear prosthesis were investigated using an astable multivibrator circuit, as changes in PVDF permittivity were observed according to variations of pressure and temperature. The results show that this prosthesis is reliable for use under different conditions of pressure (0 Pa to 16,350 Pa and temperature (2 °C to 90 °C. The experimental results show an almost linear and inversely proportional behavior between the stimuli of pressure and temperature with the frequency response. This 3D-printed ear prosthesis is a promising tool and has a great potentiality in the biomedical engineering field because of its ability to generate an electrical potential proportional to pressure and temperature, and it is the first time that such a device has been processed by the additive manufacturing process (3D printing. More work needs to be carried out to improve the performance, such as electrical stimulation of the nervous system, thereby extending the purpose of a prosthesis to the area of sensory perception.

  14. Flexible poly(ethylene carbonate)/garnet composite solid electrolyte reinforced by poly(vinylidene fluoride-hexafluoropropylene) for lithium metal batteries

    Science.gov (United States)

    He, Zijian; Chen, Long; Zhang, Bochen; Liu, Yongchang; Fan, Li-Zhen

    2018-07-01

    Solid-state electrolytes with high ionic conductivities, great flexibility, and easy processability are needed for high-performance solid-state rechargeable lithium batteries. In this work, we synthesize nanosized cubic Li6.25Al0.25La3Zr2O12 (LLZO) by solution combustion method and develop a flexible garnet-based composite solid electrolyte composed of LLZO, poly(ethylene carbonate) (PEC), poly(vinylidene fluoride-hexafluoropropylene) (P(VdF-HFP) and lithium bis(fluorosulfonyl)imide (LiFSI)). In the flexible composite solid electrolytes, LLZO nanoparticles, as ceramic matrix, have a positive effect on ionic conductivities and lithium ion transference number (tLi+). PEC, as a fast ion-conducting polymer, possesses high tLi+ inherently. P(VdF-HFP), as a binder, can strengthen mechanical properties. Consequently, the as-prepared composite solid electrolyte demonstrates high tLi+ (0.82) and superb thermal stability (remaining LLZO matrix after burning). All-solid-state LiFePO4|Li cells assembled with the flexible composite solid electrolyte deliver a high initial discharge specific capacity of 121.4 mAh g-1 and good cycling stability at 55 °C.

  15. Poly(vinylidene fluoride-co-hexafluoropropylene) phase inversion coating as a diffusion layer to enhance the cathode performance in microbial fuel cells

    KAUST Repository

    Yang, Wulin

    2014-12-01

    A low cost poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) phase inversion coating was developed as a cathode diffusion layer to enhance the performance of microbial fuel cells (MFCs). A maximum power density of 1430 ± 90 mW m-2 was achieved at a PVDF-HFP loading of 4.4 mg cm-2 (4:1 polymer:carbon black), with activated carbon as the oxygen reduction cathode catalyst. This power density was 31% higher than that obtained with a more conventional platinum (Pt) catalyst on carbon cloth (Pt/C) cathode with a poly(tetrafluoroethylene) (PTFE) diffusion layer (1090 ± 30 mW m-2). The improved performance was due in part to a larger oxygen mass transfer coefficient of 3 × 10-3 cm s-1 for the PVDF-HFP coated cathode, compared to 1.7 × 10-3 cm s -1 for the carbon cloth/PTFE-based cathode. The diffusion layer was resistant to electrolyte leakage up to water column heights of 41 ± 0.5 cm (4.4 mg cm-2 loading of 4:1 polymer:carbon black) to 70 ± 5 cm (8.8 mg cm-2 loading of 4:1 polymer:carbon black). This new type of PVDF-HFP/carbon black diffusion layer could reduce the cost of manufacturing cathodes for MFCs. © 2014 Elsevier B.V. All rights reserved.

  16. A hybrid strain and thermal energy harvester based on an infra-red sensitive Er3+ modified poly(vinylidene fluoride) ferroelectret structure.

    Science.gov (United States)

    Ghosh, Sujoy Kumar; Xie, Mengying; Bowen, Christopher Rhys; Davies, Philip R; Morgan, David J; Mandal, Dipankar

    2017-12-01

    In this paper, a novel infra-red (IR) sensitive Er 3+ modified poly(vinylidene fluoride) (PVDF) (Er-PVDF) film is developed for converting both mechanical and thermal energies into useful electrical power. The addition of Er 3+ to PVDF is shown to improve piezoelectric properties due to the formation of a self-polarized ferroelectric β-phase and the creation of an electret-like porous structure. In addition, we demonstrate that Er 3+ acts to enhance heat transfer into the Er-PVDF film due to its excellent infrared absorbance, which, leads to rapid and large temperature fluctuations and improved pyroelectric energy transformation. We demonstrate the potential of this novel material for mechanical energy harvesting by creating a durable ferroelectret energy harvester/nanogenerator (FTNG). The high thermal stability of the β-phase enables the FTNG to harvest large temperature fluctuations (ΔT ~ 24 K). Moreover, the superior mechanosensitivity, S M  ~ 3.4 VPa -1 of the FTNG enables the design of a wearable self-powered health-care monitoring system by human-machine integration. The combination of rare-earth ion, Er 3+ with the ferroelectricity of PVDF provides a new and robust approach for delivering smart materials and structures for self-powered wireless technologies, sensors and Internet of Things (IoT) devices.

  17. Ionic conductivity and electrochemical properties of nanocomposite polymer electrolytes based on electrospun poly(vinylidene fluoride-co-hexafluoropropylene) with nano-sized ceramic fillers

    Energy Technology Data Exchange (ETDEWEB)

    Raghavan, Prasanth; Zhao Xiaohui; Kim, Jae-Kwang; Manuel, James; Chauhan, Ghanshyam S. [Department of Chemical and Biological Engineering and Engineering Research Institute, Gyeongsang National University, 900 Gajwa-dong, Jinju 660-701 (Korea, Republic of); Ahn, Jou-Hyeon [Department of Chemical and Biological Engineering and Engineering Research Institute, Gyeongsang National University, 900 Gajwa-dong, Jinju 660-701 (Korea, Republic of)], E-mail: jhahn@gnu.ac.kr; Nah, Changwoon [Department of Polymer-Nano Science and Technology, Chonbuk National University, 664-14 Duckjin-dong, Jeonju 561-756 (Korea, Republic of)

    2008-12-30

    A series of nanocomposite polymer electrolytes (NCPEs) comprising nanoparticles of BaTiO{sub 3}, Al{sub 2}O{sub 3} or SiO{sub 2} were prepared by electrospinning technique. The nano-sized ceramic fillers were incorporated into poly(vinylidene fluoride-co-hexafluoropropylene) [P(VdF-HEP)] membranes during the electrospinning process. The resultant porous membranes are good absorbent of the liquid electrolyte and exhibit high electrolyte retention capacity. The presence of the ceramic nanoparticles has positive effect on the mechanical properties of the membranes. The ionic conductivity and the electrochemical stability window of the electrospun P(VdF-HFP)-based polymer are enhanced by the presence of the fillers. The cell Li/LiFePO{sub 4} based on the NCPE containing BaTiO{sub 3} delivers a discharge capacity of 164 mAh/g, which corresponds to 96.5% utilization of the active material. In comparison, the performance of Li/LiFePO{sub 4} cells with NCPEs containing Al{sub 2}O{sub 3} and SiO{sub 2} was observed to be lower with respective discharge capacities of 153 and 156 mAh/g. The enhanced performance of the BaTiO{sub 3}-based-NCPE is attributed mainly to its better interaction with the host polymer and compatibility with lithium metal.

  18. Preparation and Characterization of Novel Polyvinylidene Fluoride/2-Aminobenzothiazole Modified Ultrafiltration Membrane for the Removal of Cr(VI in Wastewater

    Directory of Open Access Journals (Sweden)

    Xiuju Wang

    2017-12-01

    Full Text Available Hexavalent chromium is one of the main heavy metal pollutants. As the environmental legislation becomes increasingly strict, seeking new technology to treat wastewater containing hexavalent chromium is becoming more and more important. In this research, a novel modified ultrafiltration membrane that could be applied to adsorb and purify water containing hexavalent chromium, was prepared by polyvinylidene fluoride (PVDF blending with 2-aminobenzothiazole via phase inversion. The membrane performance was characterized by evaluation of the instrument of membrane performance, infrared spectroscopy (FTIR, scanning electron microscope (SEM, and water contact angle measurements. The results showed that the pure water flux of the PVDF/2-aminobenzothiazole modified ultrafiltration membrane was 231.27 L/m2·h, the contact angle was 76.1°, and the adsorption capacity of chromium ion was 157.75 µg/cm2. The PVDF/2-aminobenzothiazole modified ultrafiltration membrane presented better adsorption abilities for chromium ion than that of the traditional PVDF membrane.

  19. Poly(vinylidene fluoride)/NH2-Treated Graphene Nanodot/Reduced Graphene Oxide Nanocomposites with Enhanced Dielectric Performance for Ultrahigh Energy Density Capacitor.

    Science.gov (United States)

    Cho, Sunghun; Lee, Jun Seop; Jang, Jyongsik

    2015-05-13

    This work describes a ternary nanocomposite system, composed of poly(vinylidene fluoride) (PVDF), NH2-treated graphene nanodots (GNDs), and reduced graphene oxides (RGOs), for use in high energy density capacitor. When the RGO sheets were added to PVDF matrix, the β-phase content of PVDF became higher than that of the pristine PVDF. The surface-treatment of GNDs with an ethylenediamine can promote the hydrogen bonding interactions between the GNDs and PVDF, which promote the formation of β-phase PVDF. This finding could be extended to combine the advantages of both RGO and NH2-treated GND for developing an effective and reliable means of preparing PVDF/NH2-treated GND/RGO nanocomposite. Relatively small amounts of NH2-treated GND/RGO cofillers (10 vol %) could make a great impact on the α → β phase transformation, dielectric, and ferroelectric properties of the ternary nanocomposite. The resulting PVDF/NH2-treated GND/RGO nanocomposite exhibited higher dielectric constant (ε' ≈ 60.6) and larger energy density (U(e) ≈ 14.1 J cm(-3)) compared with the pristine PVDF (ε' ≈ 11.6 and U(e) ≈ 1.8 J cm(-3)).

  20. Developing an Ear Prosthesis Fabricated in Polyvinylidene Fluoride by a 3D Printer with Sensory Intrinsic Properties of Pressure and Temperature.

    Science.gov (United States)

    Suaste-Gómez, Ernesto; Rodríguez-Roldán, Grissel; Reyes-Cruz, Héctor; Terán-Jiménez, Omar

    2016-03-04

    An ear prosthesis was designed in 3D computer graphics software and fabricated using a 3D printing process of polyvinylidene fluoride (PVDF) for use as a hearing aid. In addition, the prosthesis response to pressure and temperature was observed. Pyroelectric and piezoelectric properties of this ear prosthesis were investigated using an astable multivibrator circuit, as changes in PVDF permittivity were observed according to variations of pressure and temperature. The results show that this prosthesis is reliable for use under different conditions of pressure (0 Pa to 16,350 Pa) and temperature (2 °C to 90 °C). The experimental results show an almost linear and inversely proportional behavior between the stimuli of pressure and temperature with the frequency response. This 3D-printed ear prosthesis is a promising tool and has a great potentiality in the biomedical engineering field because of its ability to generate an electrical potential proportional to pressure and temperature, and it is the first time that such a device has been processed by the additive manufacturing process (3D printing). More work needs to be carried out to improve the performance, such as electrical stimulation of the nervous system, thereby extending the purpose of a prosthesis to the area of sensory perception.

  1. The effects of processing conditions on the surface morphology and hydrophobicity of polyvinylidene fluoride membranes prepared via vapor-induced phase separation

    Science.gov (United States)

    Peng, Yuelian; Fan, Hongwei; Ge, Ju; Wang, Shaobin; Chen, Ping; Jiang, Qi

    2012-12-01

    The present investigation reveals how the surface morphology and the hydrophobicity of polyvinylidene fluoride (PVDF) membranes, which were prepared via a vapor-induced phase separation method, were affected by the initial PVDF content in the casting solution and the air temperature. The surface morphology was characterized with scanning electron microscopy. A ternary phase diagram of PVDF/N, N-dimethylacetamide/water was constructed to explain the formation mechanism of the different morphologies. The results show that different membrane morphologies and hydrophobicities can be obtained by changing the processing conditions. Low air temperature and high PVDF contents facilitate the crystallization process, resulting in the formation of a porous skin and particle morphology, which increases the hydrophobicity of the surface. High air temperature and low PVDF contents are favorable for the formation of a net-like surface morphology via spinodal decomposition and lead to a superhydrophobic surface. Theoretical calculations were performed to testify that the net-like surface was more favorable for superhydrophobicity than the particle-based surface.

  2. Zwitterionic sulfobetaine-grafted poly(vinylidene fluoride) membrane with highly effective blood compatibility via atmospheric plasma-induced surface copolymerization.

    Science.gov (United States)

    Chang, Yung; Chang, Wan-Ju; Shih, Yu-Ju; Wei, Ta-Chin; Hsiue, Ging-Ho

    2011-04-01

    Development of nonfouling membranes to prevent nonspecific protein adsorption and platelet adhesion is critical for many biomedical applications. It is always a challenge to control the surface graft copolymerization of a highly polar monomer from the highly hydrophobic surface of a fluoropolymer membrane. In this work, the blood compatibility of poly(vinylidene fluoride) (PVDF) membranes with surface-grafted electrically neutral zwitterionic poly(sulfobetaine methacrylate) (PSBMA), from atmospheric plasma-induced surface copolymerization, was studied. The effect of surface composition and graft morphology, electrical neutrality, hydrophilicity and hydration capability on blood compatibility of the membranes were determined. Blood compatibility of the zwitterionic PVDF membranes was systematically evaluated by plasma protein adsorption, platelet adhesion, plasma-clotting time, and blood cell hemolysis. It was found that the nonfouling nature and hydration capability of grafted PSBMA polymers can be effectively controlled by regulating the grafting coverage and charge balance of the PSBMA layer on the PVDF membrane surface. Even a slight charge bias in the grafted zwitterionic PSBMA layer can induce electrostatic interactions between proteins and the membrane surfaces, leading to surface protein adsorption, platelet activation, plasma clotting and blood cell hemolysis. Thus, the optimized PSBMA surface graft layer in overall charge neutrality has a high hydration capability and the best antifouling, anticoagulant, and antihemolytic activities when comes into contact with human blood. © 2011 American Chemical Society

  3. Organic fouling behavior of superhydrophilic polyvinylidene fluoride (PVDF) ultrafiltration membranes functionalized with surface-tailored nanoparticles: Implications for organic fouling in membrane bioreactors

    KAUST Repository

    Liang, Shuai

    2014-08-01

    This study systematically investigates the organic fouling behavior of a superhydrophilic polyvinylidene fluoride (PVDF) ultrafiltration membrane functionalized via post-fabrication tethering of surface-tailored silica nanoparticles to poly(methacrylic acid)-grafted PVDF membrane surface. Sodium alginate (SA), Suwannee River natural organic matter (SRNOM), and bovine serum albumin (BSA) were used as model organic foulants to investigate the antifouling behavior of the superhydrophilic membrane with combined-fouling (mixture of foulants) and individual-fouling (single foulant) tests. A membrane bioreactor (MBR) plant supernatant was also used to verify the organic antifouling property of the superhydrophilic membrane under realistic conditions. Foulant size distributions and foulant-membrane interfacial forces were measured to interpret the observed membrane fouling behavior. Molecular weight cutoff measurements confirmed that membrane functionalization did not adversely affect the intrinsic membrane selectivity. Both filtration tests with the synthetic foulant-mixture solution (containing SA, SRNOM, and BSA) and MBR plant supernatant demonstrated the reliability and durability of the antifouling property of the superhydrophilic membrane. The conspicuous reduction in foulant-membrane interfacial forces for the functionalized membrane further verified the antifouling properties of the superhydrophilic membrane, suggesting great potential for applications in wastewater treatment. © 2014 Elsevier B.V.

  4. Vibrating polymeric microsieves: Antifouling strategies for microfiltration

    NARCIS (Netherlands)

    Girones nogue, Miriam; Akbarsyah, Imam J.; Bolhuis-Versteeg, Lydia A.M.; Lammertink, Rob G.H.; Wessling, Matthias

    2006-01-01

    Constant flux performance in time is achieved with polyethersulfone (PES) polymeric microsieves when filtering protein solutions, skimmed milk and white beer in combination with backpulsing. Such microsieves are fabricated by phase separation micromolding (PSμM) and possess pores around 2 μm. The

  5. Inflation and Failure of Polymeric Membranes

    DEFF Research Database (Denmark)

    Hassager, Ole; Neergaard, Jesper

    2000-01-01

    We consider the inflation of an axisymmetric polymeric membrane.Some membranes composed of viscoelastic materialsdescribed by a Mooney-Rivlin model show a monotone increasingpressure during inflation. These materialsdevelop a homogeneous membrane thickness in agreement with the Considere...... is found to stabilize the inflated polymer membrane....

  6. Gamma Radiation-Induced Template Polymerization Technique

    International Nuclear Information System (INIS)

    Siyam, T.

    2005-01-01

    Gamma radiation induced copolymerization of acrylamide sodiumacrylate (AM-AANa) in the presence and absence of the polymer additive was studied at low monomer concentration(1.4M/l). The results showed that the exponents of the dose rate for the polymerization rate was found to be 1.3 and 1.4 in the absence and in the presence of the polymer additive respectively. The molecular weight of the formed polymer increased by addition of the polymer to the system. In the presence of the polymer the comonomers polymerize on the added polymer. In the absence of the added polymer the comonomers polymerize according to the copolymerization process at the initial stage of the copolymerization. While at high conversion the residual comonomers polymerize on the formed macromolecular chains of the produced polymer. These studies showed that the copolymerization in the presence of added polymer is completely template copolymerization while in the absence of the polymer the copolymerization process is only template process with a high conversion

  7. Polymerization of epoxidized triglycerides with fluorosulfonic acid

    Science.gov (United States)

    The use of triglycerides as agri-based renewable raw materials for the development of new products is highly desirable in view of uncertain future petroleum prices. A new method of polymerizing epoxidized soybean oil has been devised with the use of fluorosulfonic acid. Depending on the reaction con...

  8. On viscoelastic instability in polymeric filaments

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Koblitz; Hassager, Ole

    1999-01-01

    The 3D Lagrangian Integral Method is used to simulate the effects of surface tension on the viscoelastic end-plate instability, occuring in the rapid extension of some polymeric filaments between parallel plates. It is shovn that the surface tension delays the onset of the instability. Furthermore...

  9. Polymeric additive performance in closed whitewater systems

    Science.gov (United States)

    T. H. Wegner

    1984-01-01

    “With more stringent requirements on discharge water quality and with escalating water treatment costs, water recycling within the paper mill is of growing importance. A serious problem resulting from more white-water recycling is reduced drainage and fiber or fines retention because of diminished polymeric additive performance. To provide better insight for overcoming...

  10. Latent tracks in polymeric etched track detectors

    International Nuclear Information System (INIS)

    Yamauchi, Tomoya

    2013-01-01

    Track registration properties in polymeric track detectors, including Poly(allyl diglycol carbonate), Bispenol A polycarbonate, Poly(ethylen terephtarate), and Polyimide, have been investigated by means of Fourie transform Infararede FT-IR spectrometry. Chemical criterion on the track formation threshold has been proposes, in stead of the conventional physical track registration models. (author)

  11. Bioactive Polymeric Materials for Tissue Repair

    Directory of Open Access Journals (Sweden)

    Diane R. Bienek

    2017-01-01

    Full Text Available Bioactive polymeric materials based on calcium phosphates have tremendous appeal for hard tissue repair because of their well-documented biocompatibility. Amorphous calcium phosphate (ACP-based ones additionally protect against unwanted demineralization and actively support regeneration of hard tissue minerals. Our group has been investigating the structure/composition/property relationships of ACP polymeric composites for the last two decades. Here, we present ACP’s dispersion in a polymer matrix and the fine-tuning of the resin affects the physicochemical, mechanical, and biological properties of ACP polymeric composites. These studies illustrate how the filler/resin interface and monomer/polymer molecular structure affect the material’s critical properties, such as ion release and mechanical strength. We also present evidence of the remineralization efficacy of ACP composites when exposed to accelerated acidic challenges representative of oral environment conditions. The utility of ACP has recently been extended to include airbrushing as a platform technology for fabrication of nanofiber scaffolds. These studies, focused on assessing the feasibility of incorporating ACP into various polymer fibers, also included the release kinetics of bioactive calcium and phosphate ions from nanofibers and evaluate the biorelevance of the polymeric ACP fiber networks. We also discuss the potential for future integration of the existing ACP scaffolds into therapeutic delivery systems used in the precision medicine field.

  12. Hyaluronan polymeric micelles for topical drug delivery

    Czech Academy of Sciences Publication Activity Database

    Šmejkalová, D.; Muthný, T.; Nešporová, K.; Hermannová, M.; Achbergerová, E.; Huerta-Angelesa, G.; Marek Svoboda, M.; Čepa, M.; Machalová, V.; Luptáková, Dominika; Velebný, V.

    2017-01-01

    Roč. 156, JAN 20 (2017), s. 86-96 ISSN 0144-8617 Institutional support: RVO:61388971 Keywords : Skin penetration * Polymeric micelle * Hyaluronan Subject RIV: CE - Biochemistry OBOR OECD: Biochemistry and molecular biology Impact factor: 4.811, year: 2016

  13. The Morphology of Emulsion Polymerized Latex Particles

    Science.gov (United States)

    Wignall, G. D.; Ramakrishnan, V. R.; Linne, M. A.; Klein, A.; Sperling, L. H.; Wai, M. P.; Gelman, R. A.; Fatica, M. G.; Hoerl, R. H.; Fisher, L. W.

    1987-11-01

    Under monomer starved feed conditions, emulsion polymerization of perdeuterated methyl methacrylate and styrene in the presence of preformed polymethylmethacrylate latexes resulted in particles with a core-shell morphology, as determined by small-angle neutron scattering (SANS) analysis for a hollow sphere. The locus of polymerization of the added deuterated monomer is therefore at the particle surface. In similar measurements a statistical copolymer of styrene and methyl methacrylate was used as seed particles for further polymerization of trideuteromethyl methacrylate. The resulting polymer latex was again shown to have a core-shell morphological structure as determined by SANS. SANS experiments were also undertaken on polystyrene latexes polymerized by equilibrium swelling methods, with deuterated polymer forming the first or second step. The experiments covered a molecular weight range of 6 x 10{sup 4} 10{sup 6} the molecular weights are consistent with the experimental errors, indicating that the deuterium labeled molecules are randomly distributed in the latex. These results led to the finding that the polymer chains were constrained in the latex particles by factors of 2 to 4 from the relaxed coil dimensions. For M molecules. Several models were examined, including the possible development of core-shell structures at lower molecular weights.

  14. Pressure-induced polymerization of phenoxyethyl acrylate

    Energy Technology Data Exchange (ETDEWEB)

    Kaminski, K; Wrzalik, R; Paluch, M; Ziolo, J [Institute of Physics, Silesian University, Uniwersytecka 4, 40-007 Katowice (Poland); Roland, C M [Naval Research Laboratory, Chemistry Division, Code 6120, Washington, DC 20375-5342 (United States)

    2008-06-18

    Polymerization of phenoxyethyl acrylate was induced without catalyst or initiators by the application of hydrostatic pressure at elevated temperature. Broadband dielectric and infrared spectroscopy were employed to follow the course of the reaction, which reached a degree of conversion of 60%. The structure of the obtained polymer was determined from density functional theory calculations.

  15. Immobilization of Trichoderma reesei by radiation polymerization

    International Nuclear Information System (INIS)

    Zhou Ruimin; Ma Zueteh; Kaetus, Isao; Kumakura, Minoro

    1993-01-01

    Immobilization of Trichoderma reesei was carried out by radiation polymerization. It was found that the activity of fixed cells increased with increasing surface area of the carrier and was affected by the concentration of monomer tetraethylenglycol dimethacrylate and the shape of the substrate composition and structure of cotton textile fabrics. (author)

  16. Polymerization of different lignins by laccase

    NARCIS (Netherlands)

    Mattinen, M.L.; Suortti, T.; Gosselink, R.J.A.; Argyropoulos, D.S.; Evtuguin, D.; Suurnäkki, A.; Jong, de E.; Tamminen, T.

    2008-01-01

    In this study the oxidative polymerization of different lignins, i.e. Flax Soda lignin, Spruce EMAL, and Eucalyptus Dioxane lignin by Trametes hirsuta laccase was compared. Initially the structures of the different lignins were compared by Fourier transform infrared spectroscopy. The reactivity of

  17. Interaction of acetamiprid with extracellular polymeric substances ...

    African Journals Online (AJOL)

    Extracellular polymeric substances (EPS) are important components of activated sludge and it plays an important role in removing pollutants. The interaction between EPS and organic pollutants is still little known. In the present study, the interaction of soluble/bound EPS with acetamiprid, a neonicotinoid insecticide, was ...

  18. Radiation sterilization of polymeric implant materials

    International Nuclear Information System (INIS)

    Bruck, S.D.; Mueller, E.P.

    1988-01-01

    High-energy irradiation sterilization of medical devices and implants composed of polymeric biomaterials that are in contact with tissue and/or blood, may adversely affect their long-term mechanical and/or biological performance (tissue and/or blood compatibility). Since many polymeric implants may contain trace quantities of catalysts and/or other additives, the effect of high-energy radiation on these additives, and possible synergistic effects with the polymer chains under the influence of high-energy radiation, must be considered. It is essential to indicate whether polymeric implants are used in short-term (acute) or long-term (chronic) applications. Relatively small changes in their physicochemical, mechanical, and biological properties may be tolerable in the short term, whereas similar changes may lead to catastrophic failures in long-term applications. Therefore, polymeric implants which are to be sterilized by high-energy irradiation should be carefully evaluated for long-term property changes which may be induced by the radiation

  19. Ion induced polymerization in benzene frozen films

    Energy Technology Data Exchange (ETDEWEB)

    Calcagno, G [Catania Univ. (Italy). Ist. di Fisica; Strazzulla, G [Catania Univ. (Italy). Osservatorio Astrofisico; Fichera, M; Foti, G [Catania Univ. (Italy). Ist. di Radiologia

    1983-07-01

    The cross section of the polymerization process induced by energetic protons colliding with frozen benzene layers has been measured. The results have been described by a simple theory and they show that the process is a volume one occurring along the ion track and interesting all of the crossed layers.

  20. Vinyl acetate polymerization by ionizing radiation

    International Nuclear Information System (INIS)

    Mesquita, Andrea Cercan

    2002-01-01

    The aim of this work is the synthesis and characterization of the poly(vinyl acetate) using the ionizing radiation. Six polymerizations of vinyl acetate were carried out using three techniques of polymerization: in bulk, emulsion and solution. In the technique of solution polymerization were used two solvents, the alcohol ethyl and the methylethylketone, in two proportions 1:0.5 and 1:1 related to the monomer. The solutions were irradiated with gamma rays from a 60 Co source, with dose rate between 5.25 kGy/h and 6.26 kGy/h. The polymers obtained were characterized by Fourier Transform Infrared Spectroscopy (FTIR). The glass transition temperature (Tg) was investigated by Differential Scanning Calorimeter (DSC). The molecular weight was analyzed by the technique of Gel Permeation Chromatography (GPC). Tests of density, hardness and Vicat softening temperature were carried out. The infrared spectroscopy and others results confirmed that the polymers obtained by polymerization of vinyl acetate in bulk, emulsion and solution, using ionizing radiation, really correspond at poly(vinyl acetate). (author)

  1. Microfluidic production of polymeric micro- and nanoparticles

    NARCIS (Netherlands)

    Serra, C.; Kahn, I.U.; Cortese, B.; Croon, de M.H.J.M.; Hessel, V.; Ono, T.; Anton, N.; Vandamme, Th.

    2013-01-01

    Polymeric micro- and nanoparticles have attracted a wide attention of researchers in various areas such as drug delivery, sensing, imaging, cosmetics, diagnostics, and biotechnology. However, processes with conventional equipment do not always allow a precise control of their morphology, size, size

  2. Characteristic emission in glutaraldehyde polymerized hemoglobin

    International Nuclear Information System (INIS)

    Ma Li; Wang Xiaojun

    2011-01-01

    Hemoglobin with different modifications has been investigated using spectroscopic techniques. A new emission at around 371 nm has been observed under excitation of 305 nm from glutaraldehyde polymerized human hemoglobin. Intensity and peak position of the emission are dependent on both oxidation state and ligand environment and the emission has been identified from the hemoglobin oligomer.

  3. Carboxyl-Functionalized Polymeric Microspheres Prepared by One-Stage Photoinitiated RAFT Dispersion Polymerization

    Directory of Open Access Journals (Sweden)

    Jianbo Tan

    2017-12-01

    Full Text Available Herein, we report a photoinitiated reversible addition-fragmentation chain transfer (RAFT dispersion copolymerization of methyl methacrylate (MMA and methyl methacrylic (MAA for the preparation of highly monodisperse carboxyl-functionalized polymeric microspheres. High rates of polymerization were observed, with more than 90% particle yields being achieved within 3 h of UV irradiation. Effects of reaction parameters (e.g., MAA concentration, RAFT agent concentration, photoinitiator concentration, and solvent composition were studied in detail, and highly monodisperse polymeric microspheres were obtained in most cases. Finally, silver (Ag composite microspheres were prepared by in situ reduction of AgNO3 using the carboxyl-functionalized polymeric microspheres as the template. The obtained Ag composite microspheres were able to catalyze the reduction of methylene blue (MB with NaBH4 as a reductant.

  4. SYNTHESIS OF BLOCK COPOLYMER BY INTEGRATED LIVING ANIONIC POLYMERIZATION-ATOM TRANSFER RADICAL POLYMERIZATION (ATRP)

    Institute of Scientific and Technical Information of China (English)

    Bing Liu; Feng Liu; Ning Luo; Sheng-kang Ying; Qing Liu

    2000-01-01

    Alpha-trichloroacetoxy terminated polystyrene oligomer (PS-CH2CH2OCOCCl3) and poly-(styrene-b-butadiene)oligomer [P(S-b-B)-CH2CH2OCOCCl3)] were synthesized by living anionic polymeri-zation using n-butyllithium as initiator.Then the PS-CH2CH2OCOCCl3 (PS-Cl3) or P(S-b-B)-CH2CH2O-COCCl3 (PSB-Cl3) was used as the macroinitiator in the polymerization of (meth)acrylates in the presence of CuX/bpy. AB diblock and ABC triblock copolymers were prepared by the integrated living anionic polymerization (LAP)-atom transfer radical polymerization (ATRP). The structures of the PSB-Cl3 and the P(S-b-MMA) were identified by FTIR and 1H-NMR spectrum, respectively. A new way to design block copolymers (the combination of LAP and ATRP) was developed.

  5. TRANSITION METAL CATALYSIS IN CONTROLLED RADICAL POLYMERIZATION: ATOM TRANSFER RADICAL POLYMERIZATION. (R826735)

    Science.gov (United States)

    Novel and diversified macromolecular structures, which include polymers with designed topologies (top), compostions (middle), and functionalities (bottom), can be prepared by atom transfer radical polymerization processes. These polymers can be synthesized from a large variety of...

  6. Experimental study of living free radical polymerization using trifunctional initiator and polymerization mediated by nitroxide

    International Nuclear Information System (INIS)

    Galhardo, Eduardo; Lona, Liliane M.F.

    2009-01-01

    Controlled free radical polymerization or living free radical polymerization has received increasing attention as a technique for the production of polymers with microstructure highly controlled. In particular, narrow molecular weight distributions are obtained with polydispersity very close to one. In this research it was investigate the controlled polymerization mediated by nitroxide, using a cyclic trifunctional peroxide. As long as we know, there are only publications in literature dealing with NMRP using mono- and bi-functional initiators. It was believed that the trifunctional peroxide can increase the rate of polymerization, since more free radicals are generated, if compared with initiators with lower functionality. Furthermore, the fact of the initiator be cyclic means that branches are not generated in the chains, which theoretically prevents an increase in polydispersity of the polymer. The effect of the dissociation constant of the trifunctional initiator in the velocity of the reaction was analyzed. (author)

  7. 21 CFR 870.3650 - Pacemaker polymeric mesh bag.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Pacemaker polymeric mesh bag. 870.3650 Section 870...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3650 Pacemaker polymeric mesh bag. (a) Identification. A pacemaker polymeric mesh bag is an implanted device used to hold a...

  8. FtsZ Polymerization Assays : Simple Protocols and Considerations

    NARCIS (Netherlands)

    Król, Ewa; Scheffers, Dirk-Jan

    2013-01-01

    During bacterial cell division, the essential protein FtsZ assembles in the middle of the cell to form the so-called Z-ring. FtsZ polymerizes into long filaments in the presence of GTP in vitro, and polymerization is regulated by several accessory proteins. FtsZ polymerization has been extensively

  9. THE EFFECTS OF N-2-HYDROXYETHYL-N-METHYL-P-TOLUIDINE ON METHYL METHACRYLATE RADICAL POLYMERIZATION AND ACRYLONITRILE PHOTOINDUCED POLYMERIZATION

    Institute of Scientific and Technical Information of China (English)

    QIU Kunyuan; ZHANG Zhanghua; FENG Xinde

    1992-01-01

    The effects of N-2-hydroxyethyl-N-methyl-p-toluidine (HMT) on MMA polymerization using organic peroxide as an initiator and on AN photoinduced polymerization have been investigated respectively. The kinetics of polymerization and the overall activation energy of polymerization were determined. Based on kinetics study and the end group analysis of the polymer obtained by UV spectrum method, the initiation mechanism is proposed.

  10. A theory for fracture of polymeric gels

    Science.gov (United States)

    Mao, Yunwei; Anand, Lallit

    2018-06-01

    A polymeric gel is a cross-linked polymer network swollen with a solvent. If the concentration of the solvent or the deformation is increased to substantial levels, especially in the presence of flaws, then the gel may rupture. Although various theoretical aspects of coupling of fluid permeation with large deformation of polymeric gels are reasonably well-understood and modeled in the literature, the understanding and modeling of the effects of fluid diffusion on the damage and fracture of polymeric gels is still in its infancy. In this paper we formulate a thermodynamically-consistent theory for fracture of polymeric gels - a theory which accounts for the coupled effects of fluid diffusion, large deformations, damage, and also the gradient effects of damage. The particular constitutive equations for fracture of a gel proposed in our paper, contain two essential new ingredients: (i) Our constitutive equation for the change in free energy of a polymer network accounts for not only changes in the entropy, but also changes in the internal energy due the stretching of the Kuhn segments of the polymer chains in the network. (ii) The damage and failure of the polymer network is taken to occur by chain-scission, a process which is driven by the changes in the internal energy of the stretched polymer chains in the network, and not directly by changes in the configurational entropy of the polymer chains. The theory developed in this paper is numerically implemented in an open-source finite element code MOOSE, by writing our own application. Using this simulation capability we report on our study of the fracture of a polymeric gel, and some interesting phenomena which show the importance of the diffusion of the fluid on fracture response of the gel are highlighted.

  11. NATO Advanced Study Institute on Ring-opening Metathesis Polymerization of Olefins and Polymerization of Alkynes

    CERN Document Server

    1998-01-01

    The first NATO Advanced Study Institute on Olefin Metathesis and Polymerization Catalysts was held on September 10-22, 1989 in Akcay, Turkey. Based on the fundamental research of RRSchrock, RGrubbs and K.B.Wagener in the field of ring opening metathesis polymerization (ROMP), acyclic diene metathesis (ADMET) and alkyne polymerization, these areas gained growing interest within the last years. Therefore the second NATO-ASI held on metathesis reactions was on Ring Opening Metathesis Po­ lymerization of Olefins and Polymerization of Alkynes on September 3-16, 1995 in Akcay, Turkey. The course joined inorganic, organic and polymer chemists to exchange their knowledge in this field. This volume contains the main and short lectures held in Akcay. To include ADMET reactions better into the title of this volume we changed it into: Metathesis Polymerization of Olefins and Alkyne Polymerization. This volume is addressed to research scientists, but also to those who start to work in the area of olefin metathesis and al...

  12. Antibiotic polymeric nanoparticles for biofilm-associated infection therapy.

    Science.gov (United States)

    Cheow, Wean Sin; Hadinoto, Kunn

    2014-01-01

    Polymeric nanoparticles are highly attractive as drug delivery vehicles due to their high structural integrity, stability during storage, ease of preparation and functionalization, and controlled release capability. Similarly, lipid-polymer hybrid nanoparticles, which retain the benefits of polymeric nanoparticles plus the enhanced biocompatibility and prolonged circulation time owed to the lipids, have recently emerged as a superior alternative to polymeric nanoparticles. Drug nanoparticle complex prepared by electrostatic interaction of oppositely charged drug and polyelectrolytes represents another type of polymeric nanoparticle. This chapter details the preparation, characterization, and antibiofilm efficacy testing of antibiotic-loaded polymeric and hybrid nanoparticles and antibiotic nanoparticle complex.

  13. Studies on Rate Enhancement of Polymerization in NMRP

    Institute of Scientific and Technical Information of China (English)

    HUANG Jian-ying; XU Miao-qing; YAN Ming-fa; CHEN Yi-hong; CHU Jia-yan; ZHUANG Jia-ming; DAI Li-zong; ZOU You-si

    2005-01-01

    In NMRP, the polymerization of MMA, the polymerization of St and the copolymerization of MMA with St were distinctly accelerated by the addition of a small amount of MN. The polymerization proceeds in a living fashion as indicated by the increase in molecular weight with the increase of time and conversion and a relatively low polydispersity. It has been found that the addition of MN results in a nearly one hundred times higher rate of the polymerization of MMA, a nearly twenty times higher rate of the polymerization of St and a nearly fifteen times higher rate of the copolymerization of St and MMA.

  14. Complex Macromolecular Architectures by Living Cationic Polymerization

    KAUST Repository

    Alghamdi, Reem D.

    2015-05-01

    Poly (vinyl ether)-based graft polymers have been synthesized by the combination of living cationic polymerization of vinyl ethers with other living or controlled/ living polymerization techniques (anionic and ATRP). The process involves the synthesis of well-defined homopolymers (PnBVE) and co/terpolymers [PnBVE-b-PCEVE-b-PSiDEGVE (ABC type) and PSiDEGVE-b-PnBVE-b-PSiDEGVE (CAC type)] by sequential living cationic polymerization of n-butyl vinyl ether (nBVE), 2-chloroethyl vinyl ether (CEVE) and tert-butyldimethylsilyl ethylene glycol vinyl ether (SiDEGVE), using mono-functional {[n-butoxyethyl acetate (nBEA)], [1-(2-chloroethoxy) ethyl acetate (CEEA)], [1-(2-(2-(t-butyldimethylsilyloxy)ethoxy) ethoxy) ethyl acetate (SiDEGEA)]} or di-functional [1,4-cyclohexanedimethanol di(1-ethyl acetate) (cHMDEA), (VEMOA)] initiators. The living cationic polymerizations of those monomers were conducted in hexane at -20 0C using Et3Al2Cl3 (catalyst) in the presence of 1 M AcOEt base.[1] The PCEVE segments of the synthesized block terpolymers were then used to react with living macroanions (PS-DPE-Li; poly styrene diphenyl ethylene lithium) to afford graft polymers. The quantitative desilylation of PSiDEGVE segments by n-Bu4N+F- in THF at 0 °C led to graft co- and terpolymers in which the polyalcohol is the outer block. These co-/terpolymers were subsequently subjected to “grafting-from” reactions by atom transfer radical polymerization (ATRP) of styrene to afford more complex macromolecular architectures. The base assisted living cationic polymerization of vinyl ethers were also used to synthesize well-defined α-hydroxyl polyvinylether (PnBVE-OH). The resulting polymers were then modified into an ATRP macro-initiator for the synthesis of well-defined block copolymers (PnBVE-b-PS). Bifunctional PnBVE with terminal malonate groups was also synthesized and used as a precursor for more complex architectures such as H-shaped block copolymer by “grafting-from” or

  15. Hyperbranched polymers from polymerization in solid state

    International Nuclear Information System (INIS)

    Tomaz, Vivian A.; Silva, Rafael; Muniz, Edvani C.; Rubira, Adley F.

    2009-01-01

    The macroscopic properties of polymers are directly related to the chemical characteristics of the monomeric units and also with the geometric arrangement of polymer chains. Thus, polymers were synthesized from two well-known chelators EDTA and EDA. We evaluated the conditions for the polymerization of the precursors in the solid state. The polymerization was carried out varying the proportions of reagents, aiming the polymers with different degrees of chain branching and the materials were characterized by FTIR. The materials obtained from the best condition for synthesis were purified by size-exclusion chromatography of and were subjected to characterization by FTIR and NMR of 1 H and 13 C. The content of end groups in these samples was determined by back titration. (author)

  16. Light-harvesting organic photoinitiators of polymerization.

    Science.gov (United States)

    Lalevée, Jacques; Tehfe, Mohamad-Ali; Dumur, Frédéric; Gigmes, Didier; Graff, Bernadette; Morlet-Savary, Fabrice; Fouassier, Jean-Pierre

    2013-02-12

    Two new photoinitiators with unprecedented light absorption properties are proposed on the basis of a suitable truxene skeleton where several UV photoinitiators PI units such as benzophenone and thioxanthone are introduced at the periphery and whose molecular orbitals MO can be coupled with those of the PI units: a red-shifted absorption and a strong increase of the molecular extinction coefficients (by a ≈ 20-1000 fold factor) are found. These compounds are highly efficient light-harvesting photoinitiators. The scope and practicality of these photoinitiators of polymerization can be dramatically expanded, that is, both radical and cationic polymerization processes are accessible upon very soft irradiation conditions (halogen lamp, LED…︁) thanks to the unique light absorption properties of the new proposed structures. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Studies on radiation-induced graft polymerization

    International Nuclear Information System (INIS)

    Omichi, Hideki

    1978-09-01

    Radiation-induced graft polymerization is used extensively to improve physical properties of polymers, but few processes are now commercialized. The reason for this is partly inadequate basic research on the reaction and partly the difficulty in developing the grafting process with large radiation source. Firstly, new techniques are proposed of studying kinetics of the graft polymerization in heterogeneous system. Based on the grafting yield, the molecular weight of graft chains, and the amount of radicals given by ESR and activation analysis, kinetic parameters are obtained and the reaction mechanism of grafting process is discussed. Secondly, the development of grafting process of poly (vinyl chloride)-butadiene is described. By study of the reaction, process design, construction and operation of the pilot plant, and economic analysis of the process, this process with 60 Co gamma ray sources is shown to be industrially promising. (author)

  18. Radiation-induced emulsion polymerization of tetrafluoroethylene

    International Nuclear Information System (INIS)

    Suwa, Takeshi

    1979-10-01

    The radiation-induced emulsifier-free emulsion polymerization of tetrafluoroethylene (TFE) has been studied at initial pressure 2 - 25 kg/cm 2 and temperature 30 0 - 110 0 C for dose rate 0.57 x 10 4 - 3.0 x 10 4 rad/hr. Polytetrafluoroethylene (PTFE), a hydrophobic polymer, forms as a stable latex in the absence of an emulsifier. Stability of the latex is governed by the dose rate/TFE pressure ratio; it increases with sufficient TFE monomer. PTFE particles produced in this polymerization system are stable due to the carboxyl end groups and adsorption of OH - and HF on the particles. PTFE latex of molecular weight higher than 2 x 10 7 is obtained by addition of a radical scavenger such as hydroquinone. The molecular weight of PTFE can be measured from the heat of crystallization conveniently with high reliability, which was found in the course of study on the melting and crystallization behavior. (author)

  19. Inflation and Instability of a Polymeric Membrane

    DEFF Research Database (Denmark)

    Hassager, Ole; Kristensen, Susanne Brogaard; Larsen, Johannes Ruben

    1999-01-01

    We consider an axisymmetric polymeric membrane inflated by a uniform pressure difference acting across the membrane. The polymeric material is described by an arbitrary combination of a viscoelastic and a purely viscous component to the stress. Some viscoelastic materials described by a Mooney......-Rivlin model show a monotone increasing pressure during inflation of a spherical membrane. These materials develop a homogeneous membrane thickness in agreement with the Considere-Pearson condition. Molecularly based models such as the neo-Hookean, Doi-Edwards or Tom-Pom model show a pressure maximum when...... inflated. Membranes described by these models develop a local thinning of the membrane which may lead to bursting in finite time. (C) 1999 Elsevier Science B.V. All rights reserved....

  20. Radiation polymerization of tetrafluoroethylene in freon-22

    International Nuclear Information System (INIS)

    Schnautz, N.G.; Thompson, J.C.

    1979-02-01

    The radiation-induced solution-polymerization of tetrafluoroethylene in Freon-22 has been investigated over a temperature range of - 62 degrees celcius to 0 degrees celcius. The rate of polymerization for the in-source process was found to be directly propertional to monomer concentration and an activation energy of only 7,66 kj/mole was calculated. The number-average molecular mass of the product PTFE ranged from 2X10 4 to 6X10 4 and was relatively independent of the usual reaction parameters. The rate of postpolymerization was also found to be directly proportional to monomer concentration. The postpolyerization process did not result in any enchancement of the initial PTFE molecular mass [af

  1. Self-folding micropatterned polymeric containers.

    Science.gov (United States)

    Azam, Anum; Laflin, Kate E; Jamal, Mustapha; Fernandes, Rohan; Gracias, David H

    2011-02-01

    We demonstrate self-folding of precisely patterned, optically transparent, all-polymeric containers and describe their utility in mammalian cell and microorganism encapsulation and culture. The polyhedral containers, with SU-8 faces and biodegradable polycaprolactone (PCL) hinges, spontaneously assembled on heating. Self-folding was driven by a minimization of surface area of the liquefying PCL hinges within lithographically patterned two-dimensional (2D) templates. The strategy allowed for the fabrication of containers with variable polyhedral shapes, sizes and precisely defined porosities in all three dimensions. We provide proof-of-concept for the use of these polymeric containers as encapsulants for beads, chemicals, mammalian cells and bacteria. We also compare accelerated hinge degradation rates in alkaline solutions of varying pH. These optically transparent containers resemble three-dimensional (3D) micro-Petri dishes and can be utilized to sustain, monitor and deliver living biological components.

  2. Polymeric membrane studied using slow positron beam

    International Nuclear Information System (INIS)

    Hung, W.-S.; Lo, C.-H.; Cheng, M.-L.; Chen Hongmin; Liu Guang; Chakka, Lakshmi; Nanda, D.; Tung, K.-L.; Huang, S.-H.; Lee, Kueir-Rarn; Lai, J.-Y.; Sun Yiming; Yu Changcheng; Zhang Renwu; Jean, Y.C.

    2008-01-01

    A radioisotope slow positron beam has been built at the Chung Yuan Christian University in Taiwan for the research and development in membrane science and technology. Doppler broadening energy spectra and positron annihilation lifetime have been measured as a function of positron energy up to 30 keV in a polyamide membrane prepared by the interfacial polymerization between triethylenetetraamine (TETA) and trimesoyl chloride (TMC) on modified porous polyacrylonitrile (PAN) asymmetric membrane. The multilayer structures and free-volume depth profile for this asymmetric membrane system are obtained. Positron annihilation spectroscopy coupled with a slow beam could provide new information about size selectivity of transporting molecules and guidance for molecular designs in polymeric membranes

  3. Radiation-induced polymerization of hydrogen cyanide

    International Nuclear Information System (INIS)

    Mozhaev, P.S.; Kichigina, G.A.; Kiryukhin, D.P.

    1995-01-01

    The chain reaction of HCN polymerization in a γ-radiation field does not occur at 77 K. When irradiated HCN is warmed up to ambient temperature, a polymer is formed. The heat of polymerization of HCN is 44.0±6.0 kJ/mol and the polymer yield reaches 2.5% for a dose of 725 kGy. Amorphous polymer products (with yields increasing up to 33.5%) and needle crystals (presumably HCN tetramer) are formed upon storage of irradiated HCN at room temperature. The polymer is stable below 700 K, has a conductivity of 3x10 -5 Ω -1 cm -f1 , and displays an EPR spectrum typical of polyconjugated systems. A radical mechanism of the formation of conjugated chain -C=N-C=N- is suggested. The tetramer is produced by a combination of aminocyanocarbene biradicals

  4. RAFT polymerization and some of its applications.

    Science.gov (United States)

    Moad, Graeme; Rizzardo, Ezio; Thang, San H

    2013-08-01

    Reversible addition-fragmentation chain transfer (RAFT) is one of the most robust and versatile methods for controlling radical polymerization. With appropriate selection of the RAFT agent for the monomers and reaction conditions, it is applicable to the majority of monomers subject to radical polymerization. The process can be used in the synthesis of well-defined homo-, gradient, diblock, triblock, and star polymers and more complex architectures, which include microgels and polymer brushes. In this Focus Review we describe how the development of RAFT and RAFT application has been facilitated by the adoption of continuous flow techniques using tubular reactors and through the use of high-throughput methodology. Applications described include the use of RAFT in the preparation of polymers for optoelectronics, block copolymer therapeutics, and star polymer rheology control agents. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Forming of Polymeric Tubular Micro-components

    DEFF Research Database (Denmark)

    Qin, Yi; Zhao, Jie; Anyasodor, Gerald

    2015-01-01

    platform for the production of functional polymeric tubular micro-components. The chapter gives background on the current market and process development trends, followed by description of materials, process configuration, tool design and machine development for each processing technology as well......This chapter is intended to provide an overview of three nontraditional shaping technologies for the forming of polymeric micro-tubes, which are hot embossing, blow molding, and cross rolling, as well as realization of a process chain and the integration of a modular machine-based manufacturing...... as strategy for integration of the technologies and equipment into a common platform. Finally, potential applications of the technologies and facilities developed are highlighted....

  6. Polyisoprene Nanoparticles Prepared by Polymerization in Microemulsion

    Directory of Open Access Journals (Sweden)

    Y. Apolinar

    2010-01-01

    Full Text Available Batch polymerization of isoprene was carried out at 25∘C in a normal microemulsion stabilized with sodium dodecyl sulfate and initiated with the redox couple tert-butyl hydroperoxide/tetraethylene-pentamine. Characterization by transmission electronic microscopy showed that polyisoprene nanoparticles with number-average diameter close to 20 nm were obtained. The low molecular weights obtained, as determined by gel permeation chromatography, were probably due to chain scission as inferred from the oxidative ambient at which polymerization was carried out. Microstructure calculated from infrared spectroscopy data indicates that the obtained polyisoprene contains around 80% total 1,4 units, which is in accordance with its glass transition temperature (-60.8∘C determined by differential scanning calorimetry.

  7. Pharmaceutical Applications of Polymeric Nano materials

    International Nuclear Information System (INIS)

    Wu, L.; Sun, L.

    2011-01-01

    With significant attention focused on nano science and nano technology in recent years, nano materials have been used in a wide variety of applications such as automotive, environmental, energy, catalysis, biomedical, drug delivery, and polymeric industries. Among those fields, the application of nano materials with pharmaceutical science is an emerging and rapidly growing field and has drawn increasing attention recently. Research and development in this field is mainly focused on several aspects such as the discoveries of novel functional nano materials, exploration on nanoparticles with controlled and targeted drug delivery characteristics, and investigation of bio functionalized and diagnostic nano materials. In this special issue, we have invited a few papers related to recent advances in pharmaceutical application of polymeric nano materials

  8. Surface modification of poly(vinylidene fluoride) hollow fibre membranes for biogas purification in a gas-liquid membrane contactor system.

    Science.gov (United States)

    Jin, Pengrui; Huang, Chuan; Li, Jiaxiang; Shen, Yadong; Wang, Liao

    2017-11-01

    The wetting of hollow fibre membranes decreases the performance of the liquid-gas membrane contactor for CO 2 capture in biogas upgrading. To solve this problem, in this work, a poly(vinylidene fluoride) (PVDF) hollow fibre membrane for a liquid-gas membrane contactor was coated with a superhydrophobic layer composed of a combination of hydrophobic SiO 2 nanoparticles and polydimethylsiloxane (PDMS) by the method of spray deposition. A rough layer of SiO 2 deposited on the PVDF membrane resulted in an enhanced surface hydrophobicity. The surface structure of the pristine PVDF significantly affected the homogeneity of the generated SiO 2 layer. A uniform surface coating on the PVDF upper layer resulted from the presence of micrometre and nanometre-sized roughness on the surface of the PVDF membrane, which was achieved with a SiO 2 concentration of 4.44 mg ml -1 (0.2 g/45 ml) in the coating solution. As a result, the water contact angle of the modified surface was recorded as 155 ± 3°, which is higher than that of the pristine surface. The high contact angle is advantageous for reducing the wetting of the membrane. Additional mass transfer resistance was introduced by the superhydrophobic layer. In addition, continuous CO 2 absorption tests were carried out in original and modified PVDF hollow fibre membrane contactors, using monoethanolamine (MEA) solution as the absorbent. A long-term stability test revealed that the modified PVDF hollow fibre membrane contactor was able to outperform the original membrane contactor and demonstrated outstanding long-term stability, suggesting that spray deposition is a promising approach to obtain superhydrophobic PVDF membranes for liquid-gas membrane absorption.

  9. 3D-printed poly(vinylidene fluoride)/carbon nanotube composites as a tunable, low-cost chemical vapour sensing platform

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, Z. C.; Christ, J. F.; Evans, K. A.; Arey, B. W.; Sweet, L. E.; Warner, M. G.; Erikson, R. L.; Barrett, C. A.

    2017-01-01

    We report the production of flexible, highly-conductive poly(vinylidene flouride) (PVDF) and multi-walled carbon nanotube (MWCNT) composites as filament feedstock for 3D-printing. This account further describes, for the first-time, fused deposition modelling (FDM) derived 3D-printed objects with chemiresistive properties in response to volatile organic compounds. The typically prohibitive thermal expansion and die swell characteristics of PVDF were minimized by the presence of MWCNTs in the composites enabling straightforward processing and printing. The nanotubes form a dispersed network as characterized by helium ion microscopy, contributing to excellent conductivity (1 x 10-2 S / cm). The printed composites contain little residual metal particulate relative to parts from commercial PLA-nanocomposite material visualized by micro X-ray computed tomography (μ-CT) and corroborated with thermogravimetric analysis. Printed sensing strips, with MWCNT loadings up to 15 % mass, function as reversible vapour sensors with the strongest responses arising with organic compounds capable of readily intercalating, and subsequently swelling the PVDF matrix (acetone and ethyl acetate). A direct correlation between MWCNT concentration and resistance change was also observed, with larger responses (up to 161 % after 3 minutes) generated with decreased MWCNT loadings. These findings highlight the utility of FDM printing in generating low-cost sensors that respond strongly and reproducibly to target vapours. Furthermore, the sensors can be easily printed in different geometries, expanding their utility to wearable form factors. The proposed formulation strategy may be tailored to sense diverse sets of vapour classes through structural modification of the polymer backbone and/or functionalization of the nanotubes within the composite.

  10. Electrospun poly(vinylidene fluoride) copolymer/octahydroxy-polyhedral oligomeric silsesquioxane nanofibrous mats as ionic liquid host: enhanced salt dissociation and its function in electrochromic device

    International Nuclear Information System (INIS)

    Zhou, Rui; Pramoda, Kumari Pallathadka; Liu, Wanshuang; Zhou, Dan; Ding, Guoqiang; He, Chaobin; Leong, Yew Wei; Lu, Xuehong

    2014-01-01

    Highlights: • The well dispersed POSS-OH promotes the dissociation of both LiClO 4 and BMIM + BF 4 − . • POSS-OH significantly increases the ionic conductivity and lithium transference number. • POSS-OH containing electrolyte improves the optical contrast of electrochromic device. - Abstract: Electrospun polymer nanofibrous mats loaded with ionic liquids (ILs) and lithium salts are promising non-volatile electrolytes owing to their high ionic conductivities. However, the large cations of ILs are difficult to diffuse into solid electrodes, whereas the lithium ions in ILs tend to form anionic complexes with the IL anions, reducing the number of free lithium ions. To address these issues, octa(3-hydroxy-3-methylbutyldimethylsiloxy) polyhedral oligomeric silsesquioxane (POSS-OH), which has large specific surface area and functionality number, is incorporated into electrospun poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-co-HFP) nanofibrous mats, and the mats are used to host LiClO 4 /1-butyl-3-methylimidazolium tetrafluoroborate (BMIM + BF 4 − ). It is found that POSS-OH can significantly increase both ionic conductivity and lithium transference number of the electrolytes owing to the Lewis acid-base interactions of POSS-OH with ClO 4 − and BF 4 − . The electrochromic device using the hybrid mat (with 5 wt% POSS-OH) loaded with LiClO 4 /BMIM + BF 4 − as the electrolyte shows significantly improved transmittance contrast and switching time, as a result of increased number of free lithium ions

  11. Pyroelectric energy harvesting using Olsen cycles in purified and porous poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] thin films

    International Nuclear Information System (INIS)

    Navid, Ashcon; Pilon, Laurent

    2011-01-01

    This paper is concerned with the direct conversion of heat into electricity using pyroelectric materials. The Olsen (or Ericsson) cycle was experimentally performed on three different types of 60/40 poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] copolymer samples, namely commercial, purified, and porous films. This cycle consists of two isoelectric field and two isothermal processes. The commercial and purified films were about 50 µm thick and produced a maximum energy density of 521 J l −1 and 426 J l −1 per cycle, respectively. This was achieved by successively dipping the films in cold and hot silicone oil baths at 25 and 110 °C under low and high applied electric fields of about 200 and 500 kV cm −1 , respectively. The 11 µm thick porous films achieved a maximum energy density of 188 J l −1 per cycle between 25 and 100 °C and electric field between 200 and 400 kV cm −1 . The performance of the purified and porous films suffered from their lower electrical resistivity and electric breakdown compared with commercial thin films. However, the energy densities of all 60/40 P(VDF-TrFE) films considered matched or exceeded those reported recently for 0.9Pb(Mg 1/3 Nb 2/3 )O 3 –0.10PbTiO 3 (0.9PMN–0.1PT) (186 J l −1 ) and Pb(Zn 1/3 Nb 2/3 ) 0.955 Ti 0.045 O 3 (243 J l −1 ) bulk ceramics. Furthermore, the results are discussed in light of recently proposed figures of merit for energy harvesting applications

  12. Single-Step Fabrication Using a Phase Inversion Method of Poly(vinylidene fluoride) (PVDF) Activated Carbon Air Cathodes for Microbial Fuel Cells

    KAUST Repository

    Yang, Wulin

    2014-10-14

    Air cathodes used in microbial fuel cells (MFCs) need to have high catalytic activity for oxygen reduction, but they must also be easy to manufacture, inexpensive, and watertight. A simple one-step, phase inversion process was used here to construct an inexpensive MFC cathode using a poly(vinylidene fluoride) (PVDF) binder and an activated carbon catalyst. The phase inversion process enabled cathode preparation at room temperatures, without the need for additional heat treatment, and it produced for the first time a cathode that did not require a separate diffusion layer to prevent water leakage. MFCs using this new type of cathode produced a maximum power density of 1470 ± 50 mW m–2 with acetate as a substrate, and 230 ± 10 mW m–2 with domestic wastewater. These power densities were similar to those obtained using cathodes made using more expensive materials or more complex procedures, such as cathodes with a polytetrafluoroethylene (PTFE) binder and a poly(dimethylsiloxane) (PDMS) diffusion layer, or a Pt catalyst. Even though the PVDF cathodes did not have a diffusion layer, they withstood up to 1.22 ± 0.04 m of water head (∼12 kPa) without leakage, compared to 0.18 ± 0.02 m for cathodes made using PTFE binder and PDMS diffusion layer. The cost of PVDF and activated carbon ($3 m–2) was less than that of the stainless steel mesh current collector ($12 m–2). PVDF-based AC cathodes therefore are inexpensive, have excellent performance in terms of power and water leakage, and they can be easily manufactured using a single phase inversion process at room temperature.

  13. Hemocompatibility of poly(vinylidene fluoride) membrane grafted with network-like and brush-like antifouling layer controlled via plasma-induced surface PEGylation.

    Science.gov (United States)

    Chang, Yung; Shih, Yu-Ju; Ko, Chao-Yin; Jhong, Jheng-Fong; Liu, Ying-Ling; Wei, Ta-Chin

    2011-05-03

    In this work, the hemocompatibility of PEGylated poly(vinylidene fluoride) (PVDF) microporous membranes with varying grafting coverage and structures via plasma-induced surface PEGylation was studied. Network-like and brush-like PEGylated layers on PVDF membrane surfaces were achieved by low-pressure and atmospheric plasma treatment. The chemical composition, physical morphology, grafting structure, surface hydrophilicity, and hydration capability of prepared membranes were determined to illustrate the correlations between grafting qualities and hemocompatibility of PEGylated PVDF membranes in contact with human blood. Plasma protein adsorption onto different PEGylated PVDF membranes from single-protein solutions and the complex medium of 100% human plasma were measured by enzyme-linked immunosorbent assay (ELISA) with monoclonal antibodies. Hemocompatibility of the PEGylated membranes was evaluated by the antifouling property of platelet adhesion observed by scanning electron microscopy (SEM) and the anticoagulant activity of the blood coagulant determined by testing plasma-clotting time. The control of grafting structures of PEGylated layers highly regulates the PVDF membrane to resist the adsorption of plasma proteins, the adhesion of platelets, and the coagulation of human plasma. It was found that PVDF membranes grafted with brush-like PEGylated layers presented higher hydration capability with binding water molecules than with network-like PEGylated layers to improve the hemocompatible character of plasma protein and blood platelet resistance in human blood. This work suggests that the hemocompatible nature of grafted PEGylated polymers by controlling grafting structures gives them great potential in the molecular design of antithrombogenic membranes for use in human blood.

  14. Evaluation of the antifouling and photocatalytic properties of poly(vinylidene fluoride) plasma-grafted poly(acrylic acid) membrane with self-assembled TiO2

    International Nuclear Information System (INIS)

    You, Sheng-Jie; Semblante, Galilee Uy; Lu, Shao-Chung; Damodar, Rahul A.; Wei, Ta-Chin

    2012-01-01

    Highlights: ► Plasma and grafting parameters that maximized TiO 2 binding sites were found. ► PVDF hydrophilicity was vastly improved compared to other modification techniques. ► At least 1.5% TiO 2 and 30 min UV exposure were needed to attain full flux recovery. ► Photocatalytic membranes could remove up to 42% of 50 mg/l RB5 dye. - Abstract: Immobilization of TiO 2 is a promising approach that produces antifouling and photocatalytic membranes that could help advance wastewater treatment and re-use processes. In this study, poly(acrylic acid) (PAA) was plasma-grafted on commercial poly(vinylidene fluoride) (PVDF) to introduce functional groups on the membrane surface that can support the nanoparticles. It was found that plasma treatment at 100 W for 120 s followed by liquid grafting with 70% aqueous AA at 60 °C for 2 h maximized the number of TiO 2 binding sites. Membrane hydrophilicity was tremendously enhanced by the self-assembly of TiO 2 , following a direct proportionality to TiO 2 loading. The membrane with 0.5% TiO 2 loading maintained the highest pure water flux and the best protein antifouling property. UV irradiation triggered the photodegradation of strongly bound foulants, but at least 1.5% TiO 2 and 30 min cumulative irradiation were necessary to completely recover the membrane's original performance. The TiO 2 -modified membranes removed 30–42% of 50 mg/l aqueous Reactive Black 5 (RB5) dye. The fabricated membranes demonstrate huge potential for use in membrane reactors with high hydrophilicity, fouling mitigation, and photocatalytic capability.

  15. Reusability of photocatalytic TiO{sub 2} and ZnO nanoparticles immobilized in poly(vinylidene difluoride)-co-trifluoroethylene

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, Sara, E-mail: sara.teixeira@nano.tu-dresden.de [Institute for Materials Science and Max Bergmann Center of Biomaterials, TU Dresden, 01062 Dresden (Germany); Martins, P.M. [Centro/Departamento de Física da Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Centro de Engenharia Biológica, Universidade do Minho, 4710-057 Braga (Portugal); Lanceros-Méndez, S. [Centro/Departamento de Física da Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal); BCMaterials, Parque Científico y Tecnológico de Bizkaia, 48160 Derio (Spain); IKERBASQUE, Basque Foundation for Science, Bilbao (Spain); Kühn, Klaus [Institute for Materials Science and Max Bergmann Center of Biomaterials, TU Dresden, 01062 Dresden (Germany); Cuniberti, Gianaurelio [Institute for Materials Science and Max Bergmann Center of Biomaterials, TU Dresden, 01062 Dresden (Germany); Dresden Center for Computational Materials Science (DCCMS), TU Dresden, 01062 Dresden (Germany); Center for Advancing Electronics Dresden, TU Dresden, 01062 Dresden (Germany)

    2016-10-30

    Highlights: • Performance of immobilized TiO{sub 2} and ZnO nanoparticles in P(VDF-TrFE) membranes. • Photocatalytic degradation of methylene blue under UV radiation. • Assessment of the reusability of the nanocomposites. • Ecofriendly and cost-effective process for water treatment. - Abstract: Pollutants present in water are increasingly becoming an important public health issue. After their transportation across the sewer network they can pass through the wastewater treatment plants (WWTPs) mostly unchanged because WWTPs are not designed to remove pollutants present at trace levels. Conventional treatments are therefore ineffective. Immobilized photocatalytic systems are thus an advantage for the treatment of contaminated water, because they are ecofriendly, cost-effective and allow reusability. This work reports on TiO{sub 2} and ZnO commercial nanoparticles immobilized in poly(vinylidene difluoride)-co-trifluoroethylene (P(VDF-TrFE)). Nanocomposites of P(VDF-TrFE) with different concentrations of TiO{sub 2} nanoparticles (5, 10, and 15 wt.%) and ZnO nanoparticles (15 wt.%) were produced by solvent casting and tested on the degradation of methylene blue, a model organic dye. Each nanocomposite was tested three times to assess its reusability. It is shown that increasing the photocatalyst concentration results in higher photocatalytic efficiencies; the degradation rates of 15% of TiO{sub 2} and ZnO are similar; and the photoactivity decreases 6%, 16%, 13%, and 11% after three utilizations, for TiO{sub 2} 5%, TiO{sub 2} 10%, TiO{sub 2} 15%, and ZnO 15%, respectively. Thus, the low decrease in the photocatalytic activity after three uses makes the nanocomposites suitable for applications in which reusability is an important key factor.

  16. EDOT polymerization at photolithographically patterned functionalized graphene

    Czech Academy of Sciences Publication Activity Database

    Kovaříček, Petr; Drogowska, Karolina; Melníková Komínková, Zuzana; Blechta, Václav; Bastl, Zdeněk; Gromadzki, Daniel; Fridrichová, Michaela; Kalbáč, Martin

    2017-01-01

    Roč. 113, MAR 2017 (2017), s. 33-39 ISSN 0008-6223 R&D Projects: GA MŠk LL1301; GA MŠk(CZ) LM2015073 Grant - others:AVČR PPPLZ(CZ) L200401551 Institutional support: RVO:61388955 Keywords : polymerization * electrochemical doping * graphene Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 6.337, year: 2016

  17. Emulsion polymerization with high energy radiation

    International Nuclear Information System (INIS)

    Stannett, V.T.; Stahel, E.P.

    1992-01-01

    High energy radiation, particularly that of cobalt-60 or caesium-137 gamma-rays, provides in principle an ideal initiator for emulsion polymerization. The high free radical yields from the radiolysis of the aqueous phase combined with the high kinetic chain lengths associated with emulsion polymerization lead to a highly effective utilization of the radiation. There are other important advantages compared with the use of chemical initiators such as potassium persulfate. These are outlined in the chapter, together with some attendant disadvantages. Radiation-induced initiation is temperature independent, and low temperature polymerizations can be conducted with ease. Monomers that mainly terminate their growing chains by chain transfer to monomer give higher molecular weights at lower temperatures. Industrially, vinyl acetate is an important example of such a monomer, and it has been studied using radiation initiation. Both laboratory and pilot plant studies have been carried out and reported. The results are summarized in this chapter. Styrene is the classical example of a material that under a number of conditions closely obeys the so-called ideal Smith-Ewart kinetics. It has been found that under similar conditions but substituting radiation for potassium persulfate as the initiator, ideal kinetics were closely followed. Most of the conventional and some non-standard vinyl and diene monomers have been studied to some extent with radiation-initiated polymerizations in emulsion. To conserve space however, this chapter presents and discusses the results obtained only with styrene and vinyl acetate, both in laboratory and pilot plant investigations. Other monomers and special situations are referenced either directly or to the other available reviews. (orig.)

  18. Personal Cooling Fabric Based on Polymeric Thermoelectrics

    Science.gov (United States)

    2016-07-28

    There are also concerns about environmental impact given their toxic heavy metal content. Despite these limitations and the lack of improvement in...polymeric TE materials were studied, they offered the additional advantages (over metallic materials) of low density, no toxic heavy metals (bismuth, lead...First, fluorene was reacted with two equivalents of bromoethane under basic conditions to afford 9,9’-diethyl fluorine , which was bromomethylated

  19. High-voltage polymeric insulated cables

    Energy Technology Data Exchange (ETDEWEB)

    Ross, A

    1987-01-01

    Reviews developments in high-voltage (here defined as 25 kV, 66 kV and 132 kV) polymeric insulated cables in the UK over the period 1979-1986, with particular reference to the experience of the Eastern Electricity Board. Outlines the background to the adoption of XPLE-insulated solid cable, and the design, testing, terminations, jointing and costs of 25 kV, 66 kV and 132 kV cables.

  20. Adaptive polymeric system for Hebbian type learning

    OpenAIRE

    2011-01-01

    Abstract We present the experimental realization of an adaptive polymeric system displaying a ?learning behaviour?. The system consists on a statistically organized networks of memristive elements (memory-resitors) based on polyaniline. In a such network the path followed by the current increments its conductivity, a property which makes the system able to mimic Hebbian type learning and have application in hardware neural networks. After discussing the working principle of ...

  1. Allylthioketone Mediated Free Radical Polymerization of Methacrylates

    Directory of Open Access Journals (Sweden)

    Feng Zhong

    2017-11-01

    Full Text Available By combination of high trapping free radical efficiency of the thioketone and resonance of the allylic radical, a new type of mediating agent, 1,3,3-triphenylprop-2-ene-1-thione (TPPT has been successfully synthesized, and then is used to study controlled free radical polymerization of methacrylates. Very stable TPPT radicals at the end of poly(methyl methacrylate (PMMA are detected in the polymerization of MMA using TPPT and AIBN as the control agent and initiator. The MALDI-TOF MS spectra are used to identify terminal groups of the resultant poly(glycidyl methacrylate (PGMA, and major component of the obtained polymer has the structure, (CH32(CNC-PGMA-C7H9O3. Chain extension reaction tests ascertain formation of the dead polymers during the polymer storage and purification process of the polymers. Owing to very slow fragmentation reaction of the TPPT-terminated polymethacrylate radical and addition reaction of this radical with a primary radical, the growing chain radicals are difficult to be regenerated, leading to an unobvious change of the molecular weight with monomer conversion. The molecular weights of polymers can be controlled by the ratios of monomer/initiator and TPPT/initiator. However, the first order kinetics of the polymerization and the polymers with narrow polydispersity are obtained, and these phenomena are discussed. This study provides useful information on how to design a better controlling agent.

  2. Comparison of potentials for polymeric liquids

    International Nuclear Information System (INIS)

    Jung, Hae Young

    2002-01-01

    Many theories for polymeric liquids are based on the concepts of cell, hole, free volume of lattice etc. In this theories, van der Waals potential, Lennard-Jones 6-12 potential and their modified potentials are commonly used. In this work, Mie(p,6)potential was applied to the Continuous Lattice Fluid Theory (which extends the discrete lattices of Lattice Fluid Theory to classically continuous lattices) and Dee-Walsch's Cell Theory (which modifies Flory's Equation of State Theory). Both of them are known to be successful theories for polymeric liquids. Thus, PVT values changing with p (the exponent in the repulsion potential) were calculated and compared with experimental values. And, calculated values of Lattice Fluid theory, Flory's Equation of State Theory and Cho-Sanchez Theory using perturbation method were also compared. Through the calculated results, van der Waals potential, Lennard-Jones 6-12 potential and Mie(p,6) potential for polymeric liquids were compared with each other

  3. Polymerization initated at sidewalls of carbon nanotubes

    Science.gov (United States)

    Tour, James M. (Inventor); Hudson, Jared L. (Inventor); Krishnamoorti, Ramanan (Inventor); Yurekli, Koray (Inventor); Mitchell, Cynthia A. (Inventor)

    2011-01-01

    The present invention is directed to aryl halide (such as aryl bromide) functionalized carbon nanotubes that can be utilized in anionic polymerization processes to form polymer-carbon nanotube materials with improved dispersion ability in polymer matrices. In this process the aryl halide is reacted with an alkyllithium species or is reacted with a metal to replace the aryl-bromine bond with an aryl-lithium or aryl-metal bond, respectively. It has further been discovered that other functionalized carbon nanotubes, after deprotonation with a deprotonation agent, can similarly be utilized in anionic polymerization processes to form polymer-carbon nanotube materials. Additionally or alternatively, a ring opening polymerization process can be performed. The resultant materials can be used by themselves due to their enhanced strength and reinforcement ability when compared to their unbound polymer analogs. Additionally, these materials can also be blended with pre-formed polymers to establish compatibility and enhanced dispersion of nanotubes in otherwise hard to disperse matrices resulting in significantly improved material properties. The resultant polymer-carbon nanotube materials can also be used in drug delivery processes due to their improved dispersion ability and biodegradability, and can also be used for scaffolding to promote cellular growth of tissue.

  4. KINETICS OF SUSPENDED EMULSION POLYMERIZATION OF METHYL METHACRYLATE

    Institute of Scientific and Technical Information of China (English)

    Yong-zhong Bao; Cheng-xi Wang; Zhi-ming Huang; Zhi-xue Weng

    2004-01-01

    The kinetics of suspended emulsion polymerization of methyl methacrylate (MMA), in which water acted as the dispersed phase and the mixture of MMA and cyclohexane as the continuous phase, was investigated. It showed that the initial polymerization rate (Rp0) and steady-state polymerization rate (Rp) were proportional to the mass ratio between water and oil phase, and increased as the polymerization temperature, the potassium persulphate concentration ([I]) and the Tween20 emulsifier concentration ([S]) increased. The relationships between the polymerization rate and [I] and [S] were obtained as follows: Rp0 ∝ [I]0.73[S]0.32 and Rp ∝ [I]0.71[S]0.23. The above exponents were close to those obtained from normal MMA emulsion polymerization. It also showed that the average molecular weight of the resulting poly(methyl methacrylate) decreased as the polymerization temperature, [I] and [S] increased. Thus, MMA suspended emulsion polymerization could be considered as a combination of many miniature emulsion polymerizations proceeding in water drops and obeyed the classical kinetics of MMA emulsion polymerization.

  5. Neutral Polymeric Micelles for RNA Delivery

    Science.gov (United States)

    Lundy, Brittany B.; Convertine, Anthony; Miteva, Martina; Stayton, Patrick S.

    2013-01-01

    RNA interference (RNAi) drugs have significant therapeutic potential but delivery systems with appropriate efficacy and toxicity profiles are still needed. Here, we describe a neutral, ampholytic polymeric delivery system based on conjugatable diblock polymer micelles. The diblock copolymer contains a hydrophilic poly[N-(2-hydroxypropyl) methacrylamide-co-N-(2-(pyridin-2- yldisulfanyl)ethyl)methacrylamide) (poly[HPMA-co-PDSMA]) segment to promote aqueous stability and facilitate thiol-disulfide exchange reactions, and a second ampholytic block composed of propyl acrylic acid (PAA), dimethylaminoethyl methacrylate (DMAEMA), and butyl methacrylate (BMA). The poly[(HPMA-co-PDSMA)-b-(PAA-co-DMAEMA-co-BMA)] was synthesized using Reversible Addition-Fragmentation chain Transfer (RAFT) polymerization with an overall molecular weight of 22,000 g/mol and a PDI of 1.88. Dynamic light scattering and fluorescence measurements indicated that the diblock copolymers self-assemble under aqueous conditions to form polymeric micelles with a hydrodynamic radius and critical micelle concentration of 25 nm and 25 μg/mL respectively. Red blood cell hemolysis experiments show that the neutral hydrophilic micelles have potent membrane destabilizing activity at endosomal pH values. Thiolated siRNA targeting glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was directly conjugated to the polymeric micelles via thiol exchange reactions with the pyridal disulfide groups present in the micelle corona. Maximum silencing activity in HeLa cells was observed at a 1:10 molar ratio of siRNA to polymer following a 48 h incubation period. Under these conditions 90 % mRNA knockdown and 65 % and protein knockdown of at 48 h was achieved with negligible toxicity. In contrast the polymeric micelles lacking a pH-responsive endosomalytic segment demonstrated negligible mRNA and protein knockdown under these conditions. The potent mRNA knockdown and excellent biocompatibility of the neutral siRNA conjugates

  6. Biodegradable Polyelectrolyte Obtained by Radiation Polymerization

    International Nuclear Information System (INIS)

    Craciun, G.; Martin, D.; Manaila, E.; Nemtanu, M.; Brasoveanu, M.; Ighigeanu, D.

    2009-01-01

    Poly electrolytes are water-soluble polymers carrying ionic charge along the polymer chain. Depending upon the charge, these polymers are anionic or cationic. The inherent solid - liquid separating efficiency makes these poly electrolytes a unique class of polymers which find extensive application in potable water, industrial raw and process water, municipal sewage treatment, mineral processing and metallurgy, oil drilling and recovery, etc. Also, due to their ability to produce advanced induced coagulation, a considerable amount of bacteria and viruses are precipitated together with the suspended solids. Especially the acrylamide polymers are very efficacious for water treatment but acrylamide is a toxic monomer and therefore their use are governed by international standards that provide the residual acrylamide monomer content (RAMC) in them be less than 0.05%. Under these circumstances our attention was focused on the following research steps that are presented in this paper: 1) Preparation of a special class of poly electrolytes, named Pn, with very low RAMC values, based on electron beam (EB), microwave (MW) and EB + MW induced co-polymerization of aqueous solutions containing appropriate mixtures of acrylamide (AMD) and acrylic acid (AA) monomers (AMD - AA co-polymers). The Pn were obtained by radiation technology with very small RAMC (under 0.01%) as well as in a wide range of molecular weights and charge densities. Very low AMD monomer content of Pn is due to the major advantages of radiation induced polymerization in aqueous solution containing monomers. Due to water presence in the EB irradiated system, irradiated water radicals facilitate the polymerization process and increase rate and level of monomers conversion in co-polymers. Also, once again, by the presence of water, which absorbs MW energy very strongly, the MW polymerization reaction rate is much enhanced resulting in a reaction time about 50-100 times lowers than by conventional heating. Also

  7. A new lithography of functional plasma polymerized thin films

    International Nuclear Information System (INIS)

    Kim, Sung-O

    2001-01-01

    The preparation of the resist for the vacuum lithography was carried out by plasma polymerization. The resist manufactured by plasma polymerization is a monomer produced by MMA (Methyl methacrylate). The functional groups of MMA appeared in the PPMMA (Plasma Polymerized Methyl methacrylate) as well, and this was confirmed through an analysis using FT-IR. The polymerization rate increased as a function of the plasma power and decreased as a function of the system pressure. The sensitivity and contrast of the plasma polymerized thin films were 15 μC/cm2 and 4.3 respectively. The size of the pattern manufactured by Vacuum Lithography using the plasma polymerized thin films was 100 nm

  8. Measurement and Analysis of in vitro Actin Polymerization

    Science.gov (United States)

    Doolittle, Lynda K.; Rosen, Michael K.; Padrick, Shae B.

    2014-01-01

    Summary The polymerization of actin underlies force generation in numerous cellular processes. While actin polymerization can occur spontaneously, cells maintain control over this important process by preventing actin filament nucleation and then allowing stimulated polymerization and elongation by several regulated factors. Actin polymerization, regulated nucleation and controlled elongation activities can be reconstituted in vitro, and used to probe the signaling cascades cells use to control when and where actin polymerization occurs. Introducing a pyrene fluorophore allows detection of filament formation by an increase in pyrene fluorescence. This method has been used for many years and continues to be broadly used, owing to its simplicity and flexibility. Here we describe how to perform and analyze these in vitro actin polymerization assays, with an emphasis on extracting useful descriptive parameters from kinetic data. PMID:23868594

  9. Polypropylene/graphite nanocomposites by in situ polymerization

    International Nuclear Information System (INIS)

    Milani, Marceo A.; Galland, Giselda B.; Quijada, Raul

    2011-01-01

    This work presents the synthesis of nanocomposites of polypropylene/graphite by in situ polymerization using metallocene catalyst and graphene nanosheets. Initially was analyzed which of the metallocene catalysts rac-Et(Ind) 2 ZrCl 2 or rac-Me 2 Si(Ind) 2 ZrCl 2 produces polypropylene with mechanical properties more relevant. Then it were performed the in situ polymerization reactions to obtain the nanocomposites. The polymeric materials were characterized by XRD, DSC, GPC and DMTA. (author)

  10. Investigations in the field of solid state polymerization Pt. 38

    International Nuclear Information System (INIS)

    Hardy, Gy.; Cser, F.; Nyitrai, K.; Fedorova, N.

    1980-01-01

    The stuctural and radiation chemical data of vinyl monomers with long chain paraffinic or cholesteric side groups are critically reviewed. Based on their structural and polymerization kinetical characteristics the monomers may be classified into three groups. Oblique layers are favourable for homogeneous topotactic polymerization. This is characterized by a low activation energy and a radiochemical efficiency very similar to that measured in liquid state polymerization. The tilted layers are not favourable for homogeneous topotactic polymerization. Allyl monomers yield polymers with higher molecular weights in the layer structure than in liquid states. (author)

  11. Nanoporous Polymeric Grating-Based Optical Biosensors (Preprint)

    National Research Council Canada - National Science Library

    Hsiao, Vincent K; Waldeisen, John R; Lloyd, Pamela F; Bunning, Timothy J; Huang, Tony J

    2007-01-01

    .... The fabrication process of the nanoporous polymeric grating involves holographic interference patterning and a functionalized pre-polymer syrup that facilitates the immobilization of biomolecules...

  12. Biocompatible Polymeric Materials Intended for Drug Delivery and Therapeutic Applications

    DEFF Research Database (Denmark)

    Hvilsted, Søren; Javakhishvili, Irakli; Bednarek, Melania

    2007-01-01

    of polymer blocks by “click chemistry”. An all polymerization strategy would imply preparing polymers by living/controlled techniques in such a manner that one block after polymerization can be converted to a macroinitiator enabling the second block to polymerize. The coupling strategy invariably inserts...... a linking unit, 1,4-triazol, resulting from the catalyzed, irreversible 1,3-dipolar cycloaddition reaction between an alkyne and an azide. Thus, this strategy necessitates the proper end functionalization of the polymeric building blocks. Fortunately the 1,4-triazol unit is FDA approved already existing...

  13. STUDIES ON VINYL POLYMERIZATION WITH INITIATION SYSTEM CONTAINING AMINE DERIVATIVES

    Institute of Scientific and Technical Information of China (English)

    QIU Kunyuan; ZHANG Jingyi; FENG Xinde(S. T. Voong)

    1983-01-01

    Two main types of amine-containing initiation systems were studied in this work. In the case of MMA polymerization initiated by BPO-amine (DMT, DHET, DMA) redox systems, it was found that the polymerization rate and colour stability of the polymer for different amine systems were in the following order: DMT≈DHET>DMA. Accordingly, BPO-DMT and BPO-DHET are effective initiators. In the case of MEMA polymerization by amine (DMT, DHET, DMA) alone, it was found that the polymerization rate and the percentage of conversion for these different amine systems were in the following order: DMT≥DHET>DMA. The polymerization rate and the percentage of conversion also increased with the increase of DMT concentration. From the kinetic investigation the rate equation of Rp=K [DMT]1/2 [MEMA]3/2 was obtained, and the overall activation energy of polymerization was calculated to be 34.3 KJ/mol (8.2 Kcal/mol). Moreover, the polymerization of MEMA in the presence of DMT was strongly inhibited by hydroquinone, indicating the polymerization being free radical in nature. From these results, the mechanism of MEMA polymerization initiated by amine was proposed.

  14. Online observation of emulsion polymerization by fluorescence technique

    CERN Document Server

    Rudschuck, S; Fuhrmann, J

    1999-01-01

    An online observation of local polarity via fluorescence spectroscopy was used to study the formation and growth of polymer particles during an emulsifier-free heterogeneous polymerization. The reaction mixture consisted of styrene dispersed in water and the polymerization was initiated by a macro-initiator (hydrolyzed propene-maleic acid copolymer with t-butyl perester groups). Pyrenyl probes were attached to the backbone of the initiator to analyze the heterogeneous reaction. The experimental results allow a clear distinction of different time regions during the heterogeneous polymerization. Information about the heating period, the latex formation, the particle growth and the final stage of the polymerization process (gel point) were obtained. (11 refs).

  15. Resveratrol immobilization and release in polymeric hydrogels

    International Nuclear Information System (INIS)

    Momesso, Roberta Grazzielli Ramos Alves Passarelli

    2010-01-01

    Resveratrol (3, 4', 5-trihydroxystilbene) is a polyphenolic produced by a wide variety of plants in response to injury and found predominantly in grape skins. This active ingredient has been shown to possess benefits for the health, such as the antioxidant capacity which is related to the prevention of several types of cancer and skin aging. However, the oral bioavailability of resveratrol is poor and makes its topical application interesting. The purpose of this study was to immobilize resveratrol in polymeric hydrogels to obtain a release device for topical use. The polymeric matrices composed of poli(N-vinyl-2-pyrrolidone) (PVP), poly(ethyleneglycol) (PEG) and agar or PVP and glycerol irradiated at 20 kGy dose were physical-chemically characterized by gel fraction and swelling tests and its preliminary biocompatibility by in vitro test of cytotoxicity using the technique of neutral red uptake. Due to low solubility of resveratrol in water, the addition of 2% ethanol to the matrices was verified. All matrices showed a high crosslinking degree, capacity of swelling and the preliminary cytotoxicity test showed nontoxicity effect. The devices were obtained by resveratrol immobilization in polymeric matrices, carried out in a one-or-two-steps process, that is, before or after irradiation, respectively. The one step resveratrol devices were characterized by gel fraction, swelling tests and preliminary biocompatibility, and their properties were maintained even after the resveratrol incorporation. The devices containing 0,05% of resveratrol obtained by one-step process and 0,1% of resveratrol obtained by two-steps process were submitted to the release test during 24 h. Resveratrol quantification was done by high performance liquid chromatography (HPLC). The results obtained in the kinetics of release showed that only the devices obtained by two-step process release the resveratrol, which demonstrate antioxidant capacity after the release. (author)

  16. Polymeric media for tritium fixation. Supplement I

    International Nuclear Information System (INIS)

    Franz, J.A.; Burger, L.L.

    1976-01-01

    Procedures for the fixation of tritium as TH or THO in two different polymeric media are described. The complete procedure for THO fixation in a polyureylene-polyurethane polumer, including polymer molding procedures and leach tests is presented. The catalytic tritiation of polystyrene under very mild conditions using a rhodium catalyst is also described. Thermal stabilities and cost estimates for the polymers examined under this program are discussed. Organic polymers were found to have attractive features for the fixation and storage of concentrated tritium wastes due to the convenience of fixation procedures and favorable properties of the resulting media

  17. Proteins and Peptides in Biomimetic Polymeric Membranes

    DEFF Research Database (Denmark)

    Perez, Alfredo Gonzalez

    2013-01-01

    This chapter discusses recent advances and the main advantages of block copolymers for functional membrane protein reconstitution in biomimetic polymeric membranes. A rational approach to the reconstitution of membrane proteins in a functional form can be addressed by a more holistic view by using...... other kind of nonbiological amphiphilic molecules. An interesting possibility could be the use of self-assembled proteins in a lipid-free membrane mimicking the capside of some viruses. The membrane proteins that have been more actively used in combination with block copolymer membranes are gramicidin...

  18. Polymeric biomaterials structure and function, v.1

    CERN Document Server

    Dumitriu, Severian

    2013-01-01

    Biomaterials have had a major impact on the practice of contemporary medicine and patient care. Growing into a major interdisciplinary effort involving chemists, biologists, engineers, and physicians, biomaterials development has enabled the creation of high-quality devices, implants, and drug carriers with greater biocompatibility and biofunctionality. The fast-paced research and increasing interest in finding new and improved biocompatible or biodegradable polymers has provided a wealth of new information, transforming this edition of Polymeric Biomaterials into a two-volume set. This volume

  19. Preparation of super absorbent by irradiation polymerization

    International Nuclear Information System (INIS)

    Hua Fengjun; Tan Chunhong; Qian Mengping

    1995-01-01

    A kind of absorbent is prepared by gamma-rays irradiated by reversed-phase suspension polymerization. Drying particles have 1400 (g/g) absorbency in de-ionic water. Effects of reactive conditions, e.g.: dose-rate, dose, monomer concentration, degree of monomer neutralization and crosslinking agents on absorbency in de-ionic water are discussed. The cause of absorbing de-ionic water by polymer is related to its network structure and ionic equilibrium in particle. Accordingly, a suit reactive condition is chosen for preparation of hydro gel spheres

  20. Immobilization of cellulase by radiation polymerization

    International Nuclear Information System (INIS)

    Kumakura, M.; Kaetsu, I.

    1983-01-01

    Immobilization of cellulase by radiation polymerization at low temperatures was studied. The enzymatic activity of immobilized cellulase pellets varied with the monomer, enzyme concentration, and the thickness of immobilized cellulase pellets. The optimum monomer concentration in the immobilization of cellulase was 30-50% at the pellet thickness of 1.0 mm, in which the enzymatic activity was 50%. The enzymatic activity of immobilized cellulase pellets was examined using various substrates such as cellobiose, carboxymethylcellulose, and paper pretreated by radiation. It was found that irradiated paper can be hydrolyzed by immobilized cellulase pellets. (author)

  1. Planar elongation of soft polymeric networks

    DEFF Research Database (Denmark)

    Jensen, Mette Krog; Hassager, Ole; Rasmussen, Henrik K.

    2010-01-01

    . To validate this new technique, soft polymeric networks of poly(propylene oxide) (PPO) were investigated during deformation. Particle tracking and video recording were used to detect to what extent the imposed strain rate and the sample perimeter remained constant. It was observed that, by using...... difference deviated more from the classical prediction due to the dynamic structures in the material. A modified Lodge model using characteristic parameters from linear viscoelastic measurements gave very good stress predictions at all Deborah numbers used in the quasi-linear regime....

  2. Polymeric Cantilever Arrays for Biosensing Applications

    DEFF Research Database (Denmark)

    Calleja, M.; Tamayo, J.; Johansson, Alicia

    2003-01-01

    We report the fabrication of arrays of polymeric cantilevers for biochemistry applications. The cantilevers are fabricated in the polymer SU-8. The use of a polymer as the component material for the cantilevers provides the sensors with very high sensitivity due to convenient mechanical material...... properties. The fabrication process is based on spin coating of the photosensitive polymer and near-ultraviolet exposure. The method allows obtaining well-controlled and uniform mechanical properties of the cantilevers. The elastic constant of the cantilevers was measured, and their dynamic response...

  3. Charpy Impact Test on Polymeric Molded Parts

    Directory of Open Access Journals (Sweden)

    Alexandra Raicu

    2012-09-01

    Full Text Available The paper presents the Charpy impact tests on the AcrylonitrileButadiene-Styrene (ABS polymeric material parts. The Charpy impact test, also known as the Charpy V-notch test, is a standardized strain rate test which determines the amount of energy absorbed by a material during fracture. This is a typical method described in ASTM Standard D 6110. We use for testing an Instron - Dynatup equipment which have a fully integrated hardware and software package that let us capture load information at very high speed from the impact tests.

  4. Polymeric materials for solar thermal applications

    CERN Document Server

    Köhl, Michael; Papillon, Philippe; Wallner, Gernot M; Saile, Sandrin

    2012-01-01

    Bridging the gap between basic science and technological applications, this is the first book devoted to polymers for solar thermal applications.Clearly divided into three major parts, the contributions are written by experts on solar thermal applications and polymer scientists alike. The first part explains the fundamentals of solar thermal energy especially for representatives of the plastics industry and researchers. Part two then goes on to provide introductory information on polymeric materials and processing for solar thermal experts. The third part combines both of these fields, dis

  5. Modelling degradation of bioresorbable polymeric medical devices

    CERN Document Server

    Pan, J

    2015-01-01

    The use of bioresorbable polymers in stents, fixation devices and tissue engineering is revolutionising medicine. Both industry and academic researchers are interested in using computer modelling to replace some experiments which are costly and time consuming. This book provides readers with a comprehensive review of modelling polymers and polymeric medical devices as an alternative to practical experiments. Chapters in part one provide readers with an overview of the fundamentals of biodegradation. Part two looks at a wide range of degradation theories for bioresorbable polymers and devices.

  6. Properties of immobilized papain by radiation polymerization

    International Nuclear Information System (INIS)

    Kumakura, Minoru; Kaetsu, Isao

    1984-01-01

    Papain was immobilized by the radiation polymerization of various monomers at low temperatures and the effects of the polymer matrix on the enzyme activity and thermal stability of the immobilized enzymes were studied. The activity of the immobilized enzymes prepared from monofunctional (acrylate and methacrylate) monomers was higher than that from bifunctional (bismethacrylate) monomers and that from polyoxyethylene dimethacrylate monomers increased with an increase in the number of oxyethylene units. The thermal stability of the immobilized enzymes prepared from hydrophilic monomers was higher than that from hydrophobic monomers and increased markedly with increasing monomer concentration. (author)

  7. Radiation-induced graft polymerization of amphiphilic monomers with different polymerization characteristics onto hydrophobic polysilane

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Hidenori; Iwasaki, Isao; Kunai, Yuichiro [Research Reactor Institute, Kyoto University, Asashironishi 2-1010, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan); Sato, Nobuhiro, E-mail: sato-n@rri.kyoto-u.ac.j [Research Reactor Institute, Kyoto University, Asashironishi 2-1010, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan); Matsuyama, Tomochika [Research Reactor Institute, Kyoto University, Asashironishi 2-1010, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan)

    2011-08-15

    The structures of poly(methyl-n-propylsilane) (PMPrS) amphiphilically modified through {gamma}-ray-induced graft polymerization were investigated with {sup 1}H NMR measurement. By the use of methyl methacrylate (MMA) or diethyl fumarate (DEF) as monomers for the graft polymerization, grafting yield rose with increasing total absorption dose and monomer concentrations, but decreased with increasing dose rate. This result means that grafting yield of modified PMPrS can be controlled by changing irradiation conditions. However, the number of PMMA or PDEF graft chains per PMPrS chain was estimated to be less than 1.0 by analysis of {sup 1}H NMR spectra, and this value was lower than that we had expected. To improve graft density, maleic anhydride (MAH), which is known as a non-homopolymerizable monomer in radical polymerization, was used as a monomer for grafting. As a result, high density grafting (one MAH unit for 4.2 silicon atoms) was attained. It demonstrates that the structure of {gamma}-ray-modified polysilane strongly depends on the polymerization characteristics of grafted monomers.

  8. A surface science model for the Phillips ethylene polymerization catalyst : thermal activation and polymerization activity

    NARCIS (Netherlands)

    Kimmenade, van E.M.E.; Kuiper, A.E.T.; Tamminga, Y.; Thuene, P.C.; Niemantsverdriet, J.W.

    2004-01-01

    A series of CrOx/SiO2/Si(100) model catalysts were tested for ethylene polymerization activity, varying chromium loading, and calcination temperature. Chromium coverage of the model catalyst, quantified by Rutherford backscattering spectrometry, decreases with increasing calcination temperature as

  9. Influence of casein on flux and passage of serum proteins during microfiltration using polymeric spiral-wound membranes at 50°C.

    Science.gov (United States)

    Zulewska, Justyna; Barbano, David M

    2013-04-01

    Raw milk (approximately 1,800 kg) was separated at 4°C, pasteurized (at 72°C for 16s), and split into 2 batches. One batch (620 kg) was microfiltered (MF) using pilot-scale ceramic uniform transmembrane pressure Membralox membranes (model EP1940GL0.1 μA, 0.1-μm alumina; Pall Corp., East Hills, NY) to produce retentate and permeate. The permeate from the MF uniform transmembrane pressure was casein-free skim milk (CFSM). The CFSM was MF using polymeric spiral-wound (SW) membranes (model FG7838-OS0x-S, 0.3 μm; Parker-Hannifin Corp., Process Advanced Filtration Division, Tell City, IN) at a concentration factor of 3× and temperature of 50°C. Following the processing of CFSM, the second batch of skim milk (1,105 kg) was processed using the same polymeric membranes to determine how casein content in the feed material for MF with polymeric membranes affects the performance of the system. There was little resistance to passage of milk serum proteins (SP) through a 0.3-μm polyvinylidene fluoride (PVDF) SW membrane at 50°C and no detectable increase in hydraulic resistance of the membrane when processing CFSM. Therefore, milk SP contributed little, if any, to fouling of the PVDF membrane. In contrast, when processing skim milk containing a normal concentration of casein, the flux was much lower than when processing CFSM (17.2 vs. 80.2 kg/m(2) per hour, respectively) and the removal of SP from skim milk with a single-pass 3× bleed-and-feed MF system was also much lower than from CFSM (35.2 vs. 59.5% removal, respectively). Thus, when processing skim milk with a PVDF SW membrane, casein was the major protein foulant that increased hydraulic resistance and reduced passage of SP through the membrane. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  10. Numerical simulation of anisotropic polymeric foams

    Directory of Open Access Journals (Sweden)

    Volnei Tita

    Full Text Available This paper shows in detail the modelling of anisotropic polymeric foam under compression and tension loadings, including discussions on isotropic material models and the entire procedure to calibrate the parameters involved. First, specimens of poly(vinyl chloride (PVC foam were investigated through experimental analyses in order to understand the mechanical behavior of this anisotropic material. Then, isotropic material models available in the commercial software AbaqusTM were investigated in order to verify their ability to model anisotropic foams and how the parameters involved can influence the results. Due to anisotropy, it is possible to obtain different values for the same parameter in the calibration process. The obtained set of parameters are used to calibrate the model according to the application of the structure. The models investigated showed minor and major limitations to simulate the mechanical behavior of anisotropic PVC foams under compression, tension and multi-axial loadings. Results show that the calibration process and the choice of the material model applied to the polymeric foam can provide good quantitative results and save project time. Results also indicate what kind and order of error one will get if certain choices are made throughout the modelling process. Finally, even though the developed calibration procedure is applied to specific PVC foam, it still outlines a very broad drill to analyze other anisotropic cellular materials.

  11. Functionalized nanoparticle interactions with polymeric membranes.

    Science.gov (United States)

    Ladner, D A; Steele, M; Weir, A; Hristovski, K; Westerhoff, P

    2012-04-15

    A series of experiments was performed to measure the retention of a class of functionalized nanoparticles (NPs) on porous (microfiltration and ultrafiltration) membranes. The findings impact engineered water and wastewater treatment using membrane technology, characterization and analytical schemes for NP detection, and the use of NPs in waste treatment scenarios. The NPs studied were composed of silver, titanium dioxide, and gold; had organic coatings to yield either positive or negative surface charge; and were between 2 and 10nm in diameter. NP solutions were applied to polymeric membranes composed of different materials and pore sizes (ranging from ≈ 2 nm [3 kDa molecular weight cutoff] to 0.2 μm). Greater than 99% rejection was observed of positively charged NPs by negatively charged membranes even though pore diameters were up to 20 times the NP diameter; thus, sorption caused rejection. Negatively charged NPs were less well rejected, but behavior was dependent not only on surface functionality but on NP core material (Ag, TiO(2), or Au). NP rejection depended more upon NP properties than membrane properties; all of the negatively charged polymeric membranes behaved similarly. The NP-membrane interaction behavior fell into four categories, which are defined and described here. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Degradable polymeric materials for osteosynthesis: Tutorial

    Directory of Open Access Journals (Sweden)

    D Eglin

    2008-12-01

    Full Text Available This report summarizes the state of the art and recent developments and advances in the use of degradable polymers devices for osteosynthesis. The current generation of biodegradable polymeric implants for bone repair utilising designs copied from metal implants, originates from the concept that devices should be supportive and as “inert” substitute to bone tissue. Today degradable polymeric devices for osteosynthesis are successful in low or mild load bearing applications. However, the lack of carefully controlled randomized prospective trials that document their efficacy in treating a particular fracture pattern is still an issue. Then, the choice between degradable and non-degradable devices must be carefully weighed and depends on many factors such as the patient age and condition, the type of fracture, the risk of infection, etc. The improvement of the biodegradable devices mechanical properties and their degradation behaviour will have to be achieved to broaden their use. The next generation of biodegradable implants will probably see the implementation of the recent gained knowledge in cell-material interactions and cells therapy, with a better control of the spatial and temporal interfaces between the material and the surrounding bone tissue.

  13. Chemical polymerization of aniline in phenylphosphinic acid

    Directory of Open Access Journals (Sweden)

    NICOLETA PLESU

    2005-10-01

    Full Text Available The chemical polymerization of aniline was performed in phenylphosphinic acid (APP medium using ammonium peroxidisulfate as the oxidizing agent, at 0 ºC and 25 ºC. The yield of polyaniline (PANI was about 60–69 %. The polymerization process required an induction time 8–10 times greater than in other acids (hydrochloric, sulfuric. The average density of the obtained polymer was 1.395 g cm-3 for PANI-salt and 1.203 g cm-3 for PANI-base. The acid capacity of PANI depends on the synthesis parameters and the maximum value was 15.02 meq/g polymer. The inherent viscosity of PANI was 0.662 dl/g at aniline/oxidant molar ratios >2 and 0 ºC. The oxidation state was a function of the synthesis parameters and lay between 0.553–0.625, as determined from UV-VIS and titration with TiCl3 data. The PANI samples were characterized by measurements of their density, inherent viscosity, conductivity, acid capacity, FTIR and UV-VIS spectrum, and thermogravimetric data.

  14. Novel distributed strain sensing in polymeric materials

    International Nuclear Information System (INIS)

    Abot, Jandro L; Song, Yi; Medikonda, Sandeep; Rooy, Nathan; Schulz, Mark J

    2010-01-01

    Monitoring the state of strain throughout an entire structure is essential to determine its state of stress, detect potential residual stresses after fabrication, and also to help to establish its integrity. Several sensing technologies are presently available to determine the strain in the surface or inside a structure. Large sensor dimensions, complex signal conditioning equipment, and difficulty in achieving a widely distributed system have however hindered their development into robust structural health monitoring techniques. Recently, carbon nanotube forests were spun into a microscale thread that is electrically conductive, tough, and easily tailorable. The thread was integrated into polymeric materials and used for the first time as a piezoresistive sensor to monitor strain and also to detect damage in the material. It is revealed that the created self-sensing polymeric materials are sensitive to normal strains above 0.07% and that the sensor thread exhibits a perfectly linear delta resistance–strain response above 0.3%. The longitudinal gauge factors were determined to be in the 2–5 range. This low cost and simple built-in sensor thread may provide a new integrated and distributed sensor technology that enables robust real-time health monitoring of structures

  15. Metallophilic interactions in polymeric group 11 thiols

    Science.gov (United States)

    Kolari, Kalle; Sahamies, Joona; Kalenius, Elina; Novikov, Alexander S.; Kukushkin, Vadim Yu.; Haukka, Matti

    2016-10-01

    Three polymeric group 11 transition metal polymers featuring metallophilic interactions were obtained directly via self-assembly of metal ions and 4-pyridinethiol ligands. In the cationic [Cu2(S-pyH)4]n2+ with [ZnCl4]n2- counterion (1) and in the neutral [Ag(S-py) (S-pyH)]n (2) 4-pyridinethiol (S-pyH) and its deprotonated form (S-py) are coordinated through the sulfur atom. Both ligands are acting as bridging ligands linking the metal centers together. In the solid state, the gold(I) polymer [Au(S-pyH)2]Cl (3) consists of the repeating cationic [Au(S-pyH)2]+ units held together by aurophilic interactions. Compound 1 is a zig-zag chain, whereas the metal chains in the structures of 2 and 3 are linear. The protonation level of the thiol ligand had an impact on the crystallization of polymers. Both nature of the metal center and reaction conditions affected the polymerization. QTAIM analysis confirmed direct metal-metal contacts only in polymers 1 and 3. In polymer 2, no theoretical evidence of argentophilic contacts was obtained even though the AgṡṡṡAg distance was found to be less than sum of the Bondi's van der Waals radius of silver.

  16. A pulse radiolysis study of emulsion polymerization

    International Nuclear Information System (INIS)

    McAskill, N.A.

    1976-01-01

    The emulsion polymerisation of slightly water soluble monomers such as styrene occurs initially in micelles of surfactant swollen with monomer and later in larger particles consisting of polymer swollen with monomer and stabilized with an outer layer of surfactant. There is considerable controversy on whether the reaction sites of polymerization are inside or on the surface of the particle or micelle. The relative amounts of micelle and particles present at various stages of the polymerization are also nuclear. In the present study the OH radical formed by pulse radiolysis has been used as a probe to investigate the site of solubilization of styrene in various surfactant micelles. Two products can be distinguished by UV spectrometry, a benzyl type radical formed by OH addition to the side chain of styrene and a cyclohexadienyl type radical formed by addition to the ring. Wide differences in the relative amounts of each product were observed suggesting that in some surfactants the styrene ring is buried inside the micelle whilst in other systems the styrene appears to be so solubilized at the interface leaving both the ring and the side chain open to attack by the OH radical. (author)

  17. Vinylimidazole-Based Asymmetric Ion Pair Comonomers: Synthesis, Polymerization Studies and Formation of Ionically Crosslinked PMMA

    NARCIS (Netherlands)

    Jana, S.; Vasantha, V.A.; Stubbs, L.P.; Parthiban, A.; Vancso, Gyula J.

    2013-01-01

    Vinylimidazole-based asymmetric ion pair comonomers (IPCs) which are free from nonpolymerizable counter ions have been synthesized, characterized and polymerized by free radical polymerization (FRP), atom transfer radical polymerization (ATRP), and reversible addition-fragmentation chain transfer

  18. Colloidal templating : a route towards controlled synthesis of functional polymeric nanoparticles

    NARCIS (Netherlands)

    Ali, S.I.

    2010-01-01

    Template-directed synthesis of polymeric nanoparticles offers better control over particle morphology, shape, structure, composition and properties compare to the conventional emulsion polymerization routes. For the production of anisotropic polymer-clay composite latex particles and polymeric

  19. Photocontrol in Complex Polymeric Materials: Fact or Illusion?

    Science.gov (United States)

    Jerca, Valentin Victor; Hoogenboom, Richard

    2018-06-04

    Photoswitches: Exciting recent progress realized in the field of light-controlled polymeric materials is highlighted. It is discussed how the rational choice of azobenzene molecules and their incorporation into complex materials by making use of physical interactions can lead to genuine photocontrollable polymeric systems. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Anisotropic microporous supports impregnated with polymeric ion-exchange materials

    Science.gov (United States)

    Friesen, Dwayne; Babcock, Walter C.; Tuttle, Mark

    1985-05-07

    Novel ion-exchange media are disclosed, the media comprising polymeric anisotropic microporous supports containing polymeric ion-exchange or ion-complexing materials. The supports are anisotropic, having small exterior pores and larger interior pores, and are preferably in the form of beads, fibers and sheets.

  1. Continuous fabrication of polymeric vesicles and nanotubes with fluidic channe

    NARCIS (Netherlands)

    Peng, F.; Deng, N.-N.; Tu, Y.; van Hest, J.C.M.; Wilson, D.A.

    2017-01-01

    Fluidic channels were employed to induce the self-assembly of poly(ethylene glycol)-b-polystyrene into polymeric vesicles and nanotubes. The laminar flow in the device enables controlled diffusion of two miscible liquids at the phase boundary, leading to the formation of homogeneous polymeric

  2. electrocatalytic reduction of oxygen at vapor phase polymerized poly ...

    African Journals Online (AJOL)

    Preferred Customer

    ABSTRACT. We successfully polymerized poly(3,4-ethylenedioxidethiophene) by vapor phase polymerization technique on rotating glassy carbon disk electrode. The catalytic activity of this electrode towards oxygen reduction reaction was investigated and showed remarkable activity. Rotating disk voltammetry was used to ...

  3. Electrocatalytic reduction of oxygen at vapor phase polymerized ...

    African Journals Online (AJOL)

    We successfully polymerized poly(3,4-ethylenedioxidethiophene) by vapor phase polymerization technique on rotating glassy carbon disk electrode. The catalytic activity of this electrode towards oxygen reduction reaction was investigated and showed remarkable activity. Rotating disk voltammetry was used to study the ...

  4. Polymerization Simulator for Introductory Polymer and Material Science Courses

    Science.gov (United States)

    Chirdon, William M.

    2010-01-01

    This work describes how molecular simulation of polymerization reactions can be used to enrich introductory polymer or material science courses to give students a deeper understanding of free-radical chain and stepwise growth polymerization reactions. These simulations have proven to be effective media for instruction that do not require material…

  5. Synthesis of Terpyridine-Terminated Polymers by Anionic Polymerization

    NARCIS (Netherlands)

    Guerrero-Sanchez, C.A.; Lohmeijer, B.G.G.; Meier, M.A.R.; Schubert, U.S.

    2005-01-01

    The synthesis of terpyridine-functionalized polystyrene was achieved by reacting 4‘-chloro-2,2‘:6‘,2‘ ‘-terpyridine (terminating agent) with "living" polymeric carbanions synthesized by anionic polymerization. The obtained polymers were characterized by gel permeation chromatography, nuclear

  6. Macromolecular Architectures Designed by Living Radical Polymerization with Organic Catalysts

    Directory of Open Access Journals (Sweden)

    Miho Tanishima

    2014-01-01

    Full Text Available Well-defined diblock and triblock copolymers, star polymers, and concentrated polymer brushes on solid surfaces were prepared using living radical polymerization with organic catalysts. Polymerizations of methyl methacrylate, butyl acrylate, and selected functional methacrylates were performed with a monofunctional initiator, a difunctional initiator, a trifunctional initiator, and a surface-immobilized initiator.

  7. 21 CFR 872.6070 - Ultraviolet activator for polymerization.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ultraviolet activator for polymerization. 872.6070 Section 872.6070 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... ultraviolet radiation intended to polymerize (set) resinous dental pit and fissure sealants or restorative...

  8. Polymerization of methyl methacrylate by diphenylamido bis (methylcyclopentadienyl) ytterbium complex

    Institute of Scientific and Technical Information of China (English)

    WANG, Yao-Rong(王耀荣); SHEN, Qi(沈琪); MA, Jia-Le(马家乐); ZHAO, Qun(赵群)

    2000-01-01

    Methyl methacrylate (MMA) was effectively polymerized by diphenylamido bis(methyicyclopentadienyl) ytterbium complex (MeCp)2YbNPh2(THF). Tne reaction can be carried out over a range of polymerization temperature from - 40℃ to 40℃ and gives the polyMMA with high molecular weights.The initiation mechanism was demonstrated by diphenylamidoterminated methyl methacrylate oligomer.

  9. Redox Polymerization of Methyl Methacrylate in the Fluorous Triphasic System

    Institute of Scientific and Technical Information of China (English)

    Shi Zhen CHEN; Yun Peng BAI; Zhao Long LI

    2006-01-01

    Methyl methacrylate (MMA) was polymerized by using of benzoyl peroxide (BPO) and N, N-dimethylaniline (DMA) as an redox initiator in fluorous triphasic system at room temperature.The polymerization was occurred in both initiator layer and monomer layer in a U-tube. It was found that PMMA obtained from the initiator layer with relatively narrow polydispersity.(PDI =1.38)

  10. Variables and advantages of the polymerization process in plasma

    International Nuclear Information System (INIS)

    Rojas, Andres F; Ortiz, Jairo A; Restrepo, Elizabeth; Devia Alfonso

    1998-01-01

    They are given to know the parameters that affect the polymerization process in plasma like they are: the kinetics, the electric joining, the variables related to the substrata and the interaction plasma/surface. Some advantages of the polymerization process are also presented with regard to the conventional processes

  11. Propene bulk polymerization kinetics: Role of prepolymerization and hydrogen

    NARCIS (Netherlands)

    Pater, J.T.M.; Weickert, G.; van Swaaij, Willibrordus Petrus Maria

    2003-01-01

    An experimental setup for the polymerization of liquid propylene was used to carry out main polymerizations with and without a prepolymerization step. Two types of prepolymerization are introduced: at a constant temperature and at rapidly increasing reactor temperatures. With the present catalyst

  12. prepared via atom transfer radical polymerization, reverse atom

    Indian Academy of Sciences (India)

    Synthesis and characterization of poly(2-ethylhexyl acrylate) prepared via atom transfer radical polymerization, reverse atom transfer radical polymerization and ... Zydex Industries, 25-A Gandhi Oil Mill Compound, Gorwa, Vadodara 390 016, India; Rubber Technology Centre, Indian Institute of Technology Kharagpur, ...

  13. Radiation-induced polymerization and radiation effect on polymers

    International Nuclear Information System (INIS)

    Seguchi, Tadao

    1977-12-01

    The processes of radiation-induced polymerization of monomers and also radiation effects on polymers have been studied by instrumental analyses of electron spin resonance (ESR), nuclear magnetic resonance (NMR) and electron microscopy. In radiation-induced polymerization, graft-copolymerization and absorbed state polymerization were taken up. For graft-copolymerization, monomers such as methylmethacrylate and butadiene were made to react with irradiated polyethylene, and behaviors of the initiating radicals and propagating radicals were followed under the reaction by ESR. For absorbed state polymerization, acrylonitrile/zeolite and methylmethacrylate/zeolite were chosen. Absorbed monomers were irradiated at 77 0 K and polymerized at room temperature. Active species and the concentrations were measured by ESR and the yields of polymer were observed by NMR. In radiation effect on polymers, polyvinylfluoride, polyvinylidenfluoride and polytetrafluoroethylene were taken up. Active species trapped in the polymer matrixes were identified and decay and reactivity of the species were also studied. On the basis of information from the electron microscopy and x-ray analysis, radiation effects on these polymers are described. In polytetrafluoroethylene produced by radiation polymerization, the relation between morphology and polymerization conditions and also the process of crystallization during polymerization were studied. (auth.)

  14. Preparation of polymer microspheres by radiation-induced polymerization

    International Nuclear Information System (INIS)

    Naka, Y.; Yamamoto, Y.; Yoshida, Y.; Tagawa, S.

    1995-01-01

    Cross-liking monomer, diethylene glycol dimethacrylate gives microspheres from organic solution by radiation-induced polymerization. /One of the remarkable result is that the number of the microspheres is not changing during the polymerization. Ethyl methacrylate, maleic anhydride, styrene and acrylamide are used as comonomers. These comonomers give the microspheres in the range of 0 to 0.4 as mol fractions. (author)

  15. Initiation of MMA polymerization by iniferters based on dithiocarbamates

    Directory of Open Access Journals (Sweden)

    Jovanović Slobodan M.

    2005-01-01

    Full Text Available Twelve modified dithiocarbamates and a thiuramdisulfide used for the initiation of methyl methacrylate (MMA polymerization were synthesized in this study. The polymerization of MMA was followed by determine the yield and molar mass of the obtained PMMA as a function of polymerization time. Four of the synthesized dithiocarbamates S-benzyl-N,N-dibenzyldithiocarbamate, S-allyl-N,N-dibenzyldithiocarbamate S-benzyl-N,N-diisobutyldithiocarbamate and S-benzoyl-N,N-diisobutyldithiocarbamate, as well as N,N,N',N'-tetrabenzylthiuramdisulfide acted as iniferters. They were active as the initiators of the photo and/or thermally initiated radical polymerization of MMA in bulk and inert solvents (benzene and toluene. S Benzyl - N,N - dibenzyldithiocarbamate can be successfully used for the initiation of MMA polymerization in a polar solvent such as dimethylacetamide.

  16. Fluoropolymer materials and architectures prepared by controlled radical polymerizations

    DEFF Research Database (Denmark)

    Hansen, Natanya Majbritt Louie; Jankova Atanasova, Katja; Hvilsted, Søren

    2007-01-01

    This review initially summarizes the mechanisms, merits and limitations of the three controlled radical polymerizations: nitroxide mediated polymerization (NMP), atom transfer radical polymerization (ATRP) or metal catalyzed living radical polymerization, and reversible addition–fragmentation chain...... transfer (RAFT) polymerization. This is followed by two parts, one dealing with homo- and copolymerizations of fluorinated methacrylates and acrylates, and a second where fluorinated styrenes, alone or in combination with other monomers, are the main issues. In these parts, initiators (including...... properties and functionalities that can be obtained from these novel fluorinated materials and architectures are especially emphasized. Thus, various amphiphilic, biocompatible or low energy materials, fluorinated nanoparticles and nanoporous films/membranes as well as materials for submicron and nanolevel...

  17. Modelling the Load Torques of Electric Drive for Polymerization Process

    Directory of Open Access Journals (Sweden)

    Andrzej Popenda

    2007-01-01

    Full Text Available The problems of mathematical modelling the load torques on shaft of driving motor designed for applications in polymerization reactors are presented in the paper. The real load of polymerization drive is determined as a function of angular velocity. Mentioned function results from friction in roll-formed slide bearing as well as from friction of ethylene molecules with mixer arms in polymerization reactor chamber. Application of mathematical formulas concerning the centrifugal ventilator is proposed to describe the mixer in reactor chamber. The analytical formulas describing the real loads of polymerization drive are applied in mathematical modelling the power unit of polymerization reactor with specially designed induction motor. The numerical analysis of transient states was made on the basis of formulated mathematical model. Examples of transient responses and trajectories resulting from analysis are presented in the paper.

  18. Studies on the polymerization of acrolein oxime, 6

    International Nuclear Information System (INIS)

    Masuda, Seizo; Tamai, Harumi; Ota, Tadatoshi; Torii, Munetomo; Tanaka, Masami.

    1979-01-01

    Radiation-induced polymerization and copolymerization of acrolein oxime are investigated in different solvents and at a wide range of temperature for obtaining information on the reaction mechanism. Acrolein oxime is polymerized ionically, irrespective of dryness of the sample. Arrhenius plots for the polymerization rate, which do not yield a linear relation, can be adequately approximated by two straight lines. An anionic mechanism is operative above the room temperature, while a cationic mechanism predominates below -23 0 C. The reaction in the intermediate temperature range proceeds by a competitive mechanism, and the rate of the anionic and cationic polymerizations becomes equal at the temperature near -5 0 C. The reaction rate is proportional to the square root of dose rate at room temperature and -23 0 C. On the basis of these data, it is proposed that the polymerization of acrolein oxime by γ-irradiation proceeds by free-ionic mechanisms. (author)

  19. Fabrication and manipulation of polymeric magnetic particles with magnetorheological fluid

    International Nuclear Information System (INIS)

    Rodríguez-López, Jaime; Shum, Ho Cheung; Elvira, Luis; Montero de Espinosa, Francisco; Weitz, David A.

    2013-01-01

    Polymeric magnetic microparticles have been created using a microfluidic device via ultraviolet (UV) polymerization of double emulsions, resulting in cores of magnetorheological (MR) fluids surrounded by polymeric shells. We demonstrate that the resultant particles can be manipulated magnetically to achieve triggered rupture of the capsules. This illustrates the great potential of our capsules for triggered release of active ingredients encapsulated in the polymeric magnetic microparticles. - Highlights: ► Polymeric microparticles encapsulating MR fluids have been fabricated. ► A double-emulsion-templated approach using microfluidic techniques has been used. ► The monodisperse microparticles obtained are easily manipulated under magnetic field. ► These microparticles have great potential for encapsulation-and-release applications.

  20. Dynamic bioactive stimuli-responsive polymeric surfaces

    Science.gov (United States)

    Pearson, Heather Marie

    This dissertation focuses on the design, synthesis, and development of antimicrobial and anticoagulant surfaces of polyethylene (PE), polypropylene (PP), and poly(tetrafluoroethylene) (PTFE) polymers. Aliphatic polymeric surfaces of PE and PP polymers functionalized using click chemistry reactions by the attachment of --COOH groups via microwave plasma reactions followed by functionalization with alkyne moieties. Azide containing ampicillin (AMP) was synthesized and subsequently clicked into the alkyne prepared PE and PP surfaces. Compared to non-functionalized PP and PE surfaces, the AMP clicked surfaces exhibited substantially enhanced antimicrobial activity against Staphylococcus aureus bacteria. To expand the biocompatibility of polymeric surface anticoagulant attributes, PE and PTFE surfaces were functionalized with pH-responsive poly(2-vinyl pyridine) (P2VP) and poly(acrylic acid) (PAA) polyelectrolyte tethers terminated with NH2 and COOH groups. The goal of these studies was to develop switchable stimuli-responsive polymeric surfaces that interact with biological environments and display simultaneous antimicrobial and anticoagulant properties. Antimicrobial AMP was covalently attached to --COOH terminal ends of protected PAA, while anticoagulant heparin (HEP) was attached to terminal --NH2 groups of P2VP. When pH 5.5, they collapse while the PAA segments extend. Such surfaces, when exposed to Staphylococcus aureus, inhibit bacterial growth due to the presence of AMP, as well as are effective anticoagulants due to the presence of covalently attached HEP. Comparison of these "dynamic" pH responsive surfaces with "static" surfaces terminated with AMP entities show significant enhancement of longevity and surface activity against microbial film formation. The last portion of this dissertation focuses on the covalent attachment of living T1 and Φ11 bacteriophages (phages) on PE and PTFE surface. This was accomplished by carbodiimide coupling between --COOH

  1. Cascade synthesis of chiral block copolymers combining lipase catalyzed ring opening polymerization and atom transfer radical polymerization

    NARCIS (Netherlands)

    Peeters, J.W.; Palmans, A.R.A.; Veld, M.A.J.; Scheijen, F.J.E.; Heise, A.; Meijer, E.W.

    2004-01-01

    The enantioselective polymerization of methyl-substituted -caprolactones using Novozym 435 as the catalyst was investigated. All substituted monomers could be polymerized except 6-methyl--caprolactone (6-MeCL), which failed to propagate after ring opening. Interestingly, an odd-even effect in the

  2. Development of synchrotron DSC/WAXD/SAXS simultaneous measurement system for polymeric materials at the BL40B2 in SPring-8 and its application to the study of crystal phase transitions of fluorine polymers

    International Nuclear Information System (INIS)

    Masunaga, Hiroyasu; Sasaki, Sono; Takata, Masaki; Inoue, Katsuaki; Ohta, Noboru; Yagi, Naoto; Tashiro, Kohji; Hanesaka, Makoto

    2007-01-01

    A new system of rapidly-scanning DSC/WAXD/SAXS simultaneous measurements has been successfully developed at the BL40B2 in SPring-8, Japan. The combination of the ultra-bright and highly-directional X-ray beams with the highly-sensitive two-dimensional (2D) detectors such as an imaging plate (IP), a CCD detector and a flat panel (FP) detector has made it possible to perform the rapidly-scanning time-resolved measurements of WAXD and SAXS for the polymeric materials subjected to the various kinds of external field like temperature, tensile force, magnetic field, hydrostatic pressure, and so on. The experimental data about the phase transitions of vinylidene fluoride-trifluoroethylene copolymer with VDF 82 mol% content and poly(vinylidene fluoride) form I have been presented as actual examples, where the phase transitions of the polar crystal consisting of planar-zigzag chains to the gauche-type high-temperature phase have been confirmed definitely and the remarkable change in lamellar stacking structure could be detected in the temperature region immediately below the melting point. (author)

  3. Polymeric molecular sieve membranes for gas separation

    Science.gov (United States)

    Dai, Sheng; Qiao, Zhenan; Chai, Songhai

    2017-08-15

    A porous polymer membrane useful in gas separation, the porous polymer membrane comprising a polymeric structure having crosslinked aromatic groups and a hierarchical porosity in which micropores having a pore size less than 2 nm are present at least in an outer layer of the porous polymer membrane, and macropores having a pore size of over 50 nm are present at least in an inner layer of the porous polymer membrane. Also described are methods for producing the porous polymer membrane in which a non-porous polymer membrane containing aromatic rings is subjected to a Friedel-Crafts crosslinking reaction in which a crosslinking molecule crosslinks the aromatic rings in the presence of a Friedel-Crafts catalyst and organic solvent under sufficiently elevated temperature, as well as methods for using the porous polymer membranes for gas or liquid separation, filtration, or purification.

  4. Colloid-templated multisectional porous polymeric fibers.

    Science.gov (United States)

    Song, Jung Hun; Kretzschmar, Ilona

    2008-10-07

    A fabrication method for porous polymeric fibers (PPFs) is reported. We show that a multisectional colloidal crystal can be assembled within a microcapillary by alternating dipping into colloidal solutions of varying size. Subsequent infiltration with curable polymer and washing with suitable solvents results in porous fibers with a cylindrical cross section. Along the length of the fiber, alternating sections of controlled length, pore size, and pore size distribution exist. These fibers present interesting materials for neural scaffolding, catalysis, and possibly photonics if produced with a high degree of crystallinity. The surface pores and bulk porosity of the fibers are characterized by variable-pressure scanning electron microscopy (vp-SEM). Careful analysis shows that the surface pores vary with the colloidal template diameter and polymer infiltration time.

  5. Designing Polymeric Microfluidic Platforms for Biomedical Applications

    DEFF Research Database (Denmark)

    Vedarethinam, Indumathi

    Micro- and Nanotechnology have the potential to offer a smart solution for diagnostics and academia research with rapid, low cost, robust analysis systems to facilitate biological analyses. New, high throughput microfluidic platforms have the potential to surpass in performance the conventional...... analyses systems in use today. The overall goal of this PhD project is to address two different areas using microfluidics : i) Chromosome analysis by metaphase FISH such a platform, if successful, can immediately substitute the routine, labor-intensive, glass slide-based FISH analyses in Clinical...... Cytogenetics laboratories. During the course of this project, initially the suitability of the polymeric chip substrate was tested and a microfluidic device was developed for performing interphase FISH analysis. With this device, the key factors involved in chromosome spreading crucial to FISH analysis were...

  6. Molecularly Imprinted Microrods via Mesophase Polymerization.

    Science.gov (United States)

    Parisi, Ortensia Ilaria; Scrivano, Luca; Candamano, Sebastiano; Ruffo, Mariarosa; Vattimo, Anna Francesca; Spanedda, Maria Vittoria; Puoci, Francesco

    2017-12-28

    The aim of the present research work was the synthesis of molecularly imprinted polymers (MIPs) with a rod-like geometry via "mesophase polymerization". The ternary lyotropic system consisting of sodium dodecyl sulfate (SDS), water, and decanol was chosen to prepare a hexagonal mesophase to direct the morphology of the synthesized imprinted polymers using theophylline, methacrylic acid, and ethylene glycol dimethacrylate as a drug model template, a functional monomer, and a crosslinker, respectively. The obtained molecularly imprinted microrods (MIMs) were assessed by performing binding experiments and in vitro release studies, and the obtained results highlighted good selective recognition abilities and sustained release properties. In conclusion, the adopted synthetic strategy involving a lyotropic mesophase system allows for the preparation of effective MIPs characterized by a rod-like morphology.

  7. Using Polymeric Scaffolds for Vascular Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Alida Abruzzo

    2014-01-01

    Full Text Available With the high occurrence of cardiovascular disease and increasing numbers of patients requiring vascular access, there is a significant need for small-diameter (<6 mm inner diameter vascular graft that can provide long-term patency. Despite the technological improvements, restenosis and graft thrombosis continue to hamper the success of the implants. Vascular tissue engineering is a new field that has undergone enormous growth over the last decade and has proposed valid solutions for blood vessels repair. The goal of vascular tissue engineering is to produce neovessels and neoorgan tissue from autologous cells using a biodegradable polymer as a scaffold. The most important advantage of tissue-engineered implants is that these tissues can grow, remodel, rebuild, and respond to injury. This review describes the development of polymeric materials over the years and current tissue engineering strategies for the improvement of vascular conduits.

  8. Watching Mobility Engendered by Actin Polymerization

    Science.gov (United States)

    Jee, Ah-Young; Granick, Steve; Tlusty, Tsvi

    We have been investigating hydrodynamic flows engendered in molecular systems by active motion. In fact, active directed motion is ubiquitous as a transport mechanism within cells and other systems, sometimes by the action of molecular motors as they move along cytoskeletal filaments, sometimes by the polymerization and depolymerization of filament themselves. To probe this situation, we have employed fluorescence correlation spectroscopy (FCS) in the STED mode (stimulation emission-depletion), this super-resolution approach allowing us to investigate molecular mobility as averaged over a spectrum of space scales: from areas of the optical diffraction limit or larger, to regions as small as 30 40 nm. This comparison of FCS-STED measurements when the projected area investigated varies by a factor of >10, reveals remarkable scale dependence of the mobility that we infer.

  9. Final Technical Report: Collaborative Research. Polymeric Muliferroics

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Shenqiang [Univ. of Kansas, Lawrence, KS (United States)

    2015-06-05

    The goal of this project is to investigate room temperature magnetism and magnetoelectric coupling of polymeric multiferroics. A new family of organic charge-transfer complexes has been emerged as a fascinating opportunity for the development of all-organic electrics and spintronics due to its weak hyperfine interaction and low spin-orbit coupling; nevertheless, direct observations of room temperature magnetic spin ordering have yet to be accomplished in organic charge-transfer complexes. Furthermore, room temperature magnetoelectric coupling effect hitherto known multiferroics, is anticipated in organic donor-acceptor complexes because of magnetic field effects on charge-transfer dipoles, yet this is also unexplored. The PIs seek to fundamental understanding of the synthetic control of organic complexes to demonstrate and explore room temperature multiferroicity.

  10. Plasma etching of electrospun polymeric nanofibres

    Energy Technology Data Exchange (ETDEWEB)

    Verdonck, Patrick [LSI-PSI-EPUSP, Av. Prof. Luciano Gualberto trav 3, 158, 05508-900 Sao Paulo, SP (Brazil)]. E-mail: verdonck@imec.be; Braga Caliope, Priscila [LSI-PSI-EPUSP, Av. Prof. Luciano Gualberto trav 3, 158, 05508-900 Sao Paulo, SP (Brazil); Moral Hernandez, Emilio del [LSI-PSI-EPUSP, Av. Prof. Luciano Gualberto trav 3, 158, 05508-900 Sao Paulo, SP (Brazil); Silva, Ana Neilde R. da [LSI-PSI-EPUSP, Av. Prof. Luciano Gualberto trav 3, 158, 05508-900 Sao Paulo, SP (Brazil); FATEC-SP, Pca Fernando Prestes, 30 Sao Paulo, SP (Brazil)

    2006-10-25

    Electrospun polymeric nanofibres have several applications because of their high surface area to volume and high length to diameter ratios. This paper investigates the influence of plasma etching on these fibres and the etching mechanisms. For the characterization, SEM analysis was performed to determine the forms and shapes of the fibres and SEM photos were analysed by the technique of mathematical morphology, in order to determine the area on the sample occupied by the fibres and the frequency distribution of the nanofibre diameters. The results showed that the oxygen plasma etches the nanofibres much faster when ion bombardment is present. The form of the fibres is not altered by the etching, indicating the possibility of transport of oxygen atoms over the fibre surface. The most frequent diameter, somewhat surprisingly, is not significantly dependent on the etching process, and remains of the order of 80 nm, indicating that fibres with smaller diameters are etched at high rates.

  11. Fluorescent polymeric nanocomposite films generated by surface-mediated photoinitiation of polymerization

    International Nuclear Information System (INIS)

    Avens, Heather J.; Chang, Erin L.; May, Allison M.; Berron, Brad J.; Seedorf, Gregory J.; Balasubramaniam, Vivek; Bowman, Christopher N.

    2011-01-01

    Incorporation of nanoparticles (NPs) into polymer films represents a valuable strategy for achieving a variety of desirable physical, optical, mechanical, and electrical attributes. Here, we describe and characterize the creation of highly fluorescent polymer films by entrapment of fluorescent NPs into polymer matrices through surface-mediated eosin photoinitiation reactions. Performing surface-mediated polymerizations with NPs combines the benefits of a covalently anchored film with the unique material properties afforded by NPs. The effects of monomer type, crosslinker content, NP size, and NP surface chemistry were investigated to determine their impact on the relative amount of NPs entrapped in the surface-bound films. The density of entrapped NPs was increased up to 6-fold by decreasing the NP diameter. Increasing the crosslinking agent concentration enabled a greater than 2-fold increase in the amount of NPs entrapped. Additionally, the monomer chemistry played a significant role as poly(ethylene glycol) diacrylate (PEGDA)-based monomer formulations entrapped a 10-fold higher density of carboxy-functionalized NPs than did acrylamide/bisacrylamide formulations, though the latter formulations ultimately immobilized more fluorophores by generating thicker films. In the context of a polymerization-based microarray biodetection platform, these findings enabled tailoring of the monomer and NP selection to yield a 200-fold improvement in sensitivity from 31 (±1) to 0.16 (±0.01) biotinylated target molecules per square micron. Similarly, in polymerization-based cell staining applications, appropriate monomer and NP selection enabled facile visualization of microscale, sub-cellular features. Careful consideration of monomer and NP selection is critical to achieve the desired properties in applications that employ surface-mediated polymerization to entrap NPs.

  12. Studies on atom transfer radical polymerization of acrylates and styrenes with controlled polymeric block structures

    OpenAIRE

    Ibrahim, Khalid

    2006-01-01

    Atom transfer radical polymerization (ATRP) was applied to homo and block copolymerization of vinyl monomers methacrylates, acrylates, and styrene with iron (FeCl2.4H2O) as the transition metal in most cases. As complexing ligand either a commercially available ligand (triphenyl phosphine) (PPh3) or synthetic aliphatic amines were used. As initiators, methyl 2-bromopropionate, ethyl 2-bromoisobutyrate, α,α-dichloroacetophenone, and poly(ethylene oxide) macroinitiator were employed. Block ...

  13. Influence of air humidity on polymeric microresonators

    International Nuclear Information System (INIS)

    Schmid, S; Kühne, S; Hierold, C

    2009-01-01

    The influence of air humidity on polymeric microresonators is investigated by means of three different resonator types. SU-8 microbeams, SU-8 microstrings and a silicon micromirror with SU-8 hinges are exposed to relative humidities between 3% and 60%. The shifts of the resonant frequencies as a function of the relative humidity (RH) are explained based on mechanical models which are extended with water absorption models in polymer materials. The dominant effect causing the resonant frequency change is evaluated for each structure type. The eigenfrequency of the microstrings and the micromirror in the out-of-plane mode, which both mainly are defined by the pre-stress of the polymeric structures, are found to be highly sensitive to changes of air humidity. The humidity-induced (hygrometric) volume expansion reversibly reduces the pre-stress which results in relative frequency changes of up to 0.78%/%RH for the microstrings. A maximum coefficient of humidity-induced volume expansion for SU-8 of α hyg = 52.3 ppm/%RH is evaluated by fitting the data with the analytical model. It was found that microstrings that were stored at 150 °C over 150 h are more moisture sensitive compared to structures that were stored at room temperature. For the SU-8 microbeams and the micromirror in the tilt mode, the eigenfrequency is mainly defined by the modulus of the polymer material. The measured relative resonant frequency changes were below 1% for the given RH range. For low RH values, antiplasticization is observed (the modulus increases) followed by a plasticization for increasing RH values

  14. Formation of polymeric toroidal-spiral particles.

    Science.gov (United States)

    Sharma, Vishal; Szymusiak, Magdalena; Shen, Hao; Nitsche, Ludwig C; Liu, Ying

    2012-01-10

    Compared to spherical matrices, particles with well-defined internal structure provide large surface to volume ratio and predictable release kinetics for the encapsulated payloads. We describe self-assembly of polymeric particles, whereby competitive kinetics of viscous sedimentation, diffusion, and cross-linking yield a controllable toroidal-spiral (T-S) structure. Precursor polymeric droplets are splashed through the surface of a less dense, miscible solution, after which viscous forces entrain the surrounding bulk solution into the sedimenting polymer drop to form T-S channels. The intricate structure forms because low interfacial tension between the two miscible solutions is dominated by viscous forces. The biocompatible polymer, poly(ethylene glycol) diacrylate (PEG-DA), is used to demonstrate the solidification of the T-S shapes at various configurational stages by UV-triggered cross-linking. The dimensions of the channels are controlled by Weber number during impact on the surface, and Reynolds number and viscosity ratio during subsequent sedimentation. We anticipate applications of the T-S particle in drug delivery, wherein diffusion through these T-S channels and the polymer matrix would offer parallel release pathways for molecules of different sizes. Polyphosphate, as a model macromolecule, is entrained in T-S particles during their formation. The in vitro release kinetics of polyphosphate from the T-S particles with various channel length and width is reported. In addition, self-assembly of T-S particles occurs in a single step under benign conditions for delicate macromolecules, and appears conducive to scaleup.

  15. Polymeric micelles as a drug carrier for tumor targeting

    Directory of Open Access Journals (Sweden)

    Neha M Dand

    2013-01-01

    Full Text Available Polymeric micelle can be targeted to tumor site by passive and active mechanism. Some inherent properties of polymeric micelle such as size in nanorange, stability in plasma, longevity in vivo, and pathological characteristics of tumor make polymeric micelles to be targeted at the tumor site by passive mechanism called enhanced permeability and retention effect. Polymeric micelle formed from the amphiphilic block copolymer is suitable for encapsulation of poorly water soluble, hydrophobic anticancer drugs. Other characteristics of polymeric micelles such as separated functionality at the outer shell are useful for targeting the anticancer drug to tumor by active mechanisms. Polymeric micelles can be conjugated with many ligands such as antibodies fragments, epidermal growth factors, α2 -glycoprotein, transferrine, and folate to target micelles to cancer cells. Application of heat and ultrasound are the alternative methods to enhance drug accumulation in tumoral cells. Targeting using micelles can also be done to tumor angiogenesis which is the potentially promising target for anticancer drugs. This review summarizes about recently available information regarding targeting the anticancer drug to the tumor site using polymeric micelles.

  16. Effect of overcharge on Li(Ni0.5Mn0.3Co0.2)O2/Graphite lithium ion cells with poly(vinylidene fluoride) binder. I - Microstructural changes in the anode

    Science.gov (United States)

    Dietz Rago, Nancy; Bareño, Javier; Li, Jianlin; Du, Zhijia; Wood, David L.; Steele, Leigh Anna; Lamb, Joshua; Spangler, Scott; Grosso, Christopher; Fenton, Kyle; Bloom, Ira

    2018-05-01

    Cells based on NMC/graphite, containing poly(vinylidene difluoride) (PVDF) binders in the positive and negative electrodes, were systematically overcharged to 100, 120, 140, 160, 180, and 250% state-of-charge (SOC). At 250% SOC the cell vented. Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) of the anodes showed several state-of-overcharge-dependent trends. Starting at 120% SOC, dendrites appeared and increased in concentration as the SOC increased. Dendrite morphology appeared to be dependent on whether the active material was on the "dull" or "shiny" side of the copper collector. Significantly more delamination of the active material from the collector was seen on the "shiny" side of the collector particularly at 180 and 250% SOC. Transition metals were detected at 120% SOC and increased in concentration as the SOC increased. There was considerable spatial heterogeneity in the microstructures across each laminate with several regions displaying complex layered structures.

  17. Intrinsic Embedded Sensors for Polymeric Mechatronics: Flexure and Force Sensing

    Directory of Open Access Journals (Sweden)

    Leif P. Jentoft

    2014-02-01

    Full Text Available While polymeric fabrication processes, including recent advances in additive manufacturing, have revolutionized manufacturing, little work has been done on effective sensing elements compatible with and embedded within polymeric structures. In this paper, we describe the development and evaluation of two important sensing modalities for embedding in polymeric mechatronic and robotic mechanisms: multi-axis flexure joint angle sensing utilizing IR phototransistors, and a small (12 mm, three-axis force sensing via embedded silicon strain gages with similar performance characteristics as an equally sized metal element based sensor.

  18. Intrinsic embedded sensors for polymeric mechatronics: flexure and force sensing.

    Science.gov (United States)

    Jentoft, Leif P; Dollar, Aaron M; Wagner, Christopher R; Howe, Robert D

    2014-02-25

    While polymeric fabrication processes, including recent advances in additive manufacturing, have revolutionized manufacturing, little work has been done on effective sensing elements compatible with and embedded within polymeric structures. In this paper, we describe the development and evaluation of two important sensing modalities for embedding in polymeric mechatronic and robotic mechanisms: multi-axis flexure joint angle sensing utilizing IR phototransistors, and a small (12 mm), three-axis force sensing via embedded silicon strain gages with similar performance characteristics as an equally sized metal element based sensor.

  19. Optical Properties of the Self-Assembling Polymeric Colloidal Systems

    Directory of Open Access Journals (Sweden)

    Alexandra Mocanu

    2013-01-01

    Full Text Available In the last decade, optical materials have gained much interest due to the high number of possible applications involving path or intensity control and filtering of light. The continuous emerging technology in the field of electrooptical devices or medical applications allowed the development of new innovative cost effective processes to obtain optical materials suited for future applications such as hybrid/polymeric solar cells, lasers, polymeric optical fibers, and chemo- and biosensing devices. Considering the above, the aim of this review is to present recent studies in the field of photonic crystals involving the use of polymeric materials.

  20. PPLA-cellulose nanocrystals nanocomposite prepared by in situ polymerization

    International Nuclear Information System (INIS)

    Paula, Everton L. de; Pereirea, Fabiano V.; Mano, Valdir

    2011-01-01

    This work reports the preparation and and characterization of a PLLA-cellulose nanocrystals nanocomposite obtained by in situ polymerization. The nanocomposite was prepared by ring opening polymerization of the lactide dimer in the presence of cellulose nanocrystals (CNCs) and the as-obtained materials was characterized using FTIR, DSC, XRD and TGA measurements. The incorporation of cellulose nanocrystals in PLLA using this method improved the thermal stability and increased the crystallinity of PLLA. These results indicate that the incorporation of CNCs by in situ polymerization improve thermal properties and has potential to improve also mechanical properties of this biodegradable polymer. (author)

  1. Atom transfer radical polymerization of styrene under pulsed microwave irradiation

    International Nuclear Information System (INIS)

    Cheng Zhenping; Zhu Xiulin; Zhou Nianchen; Zhu Jian; Zhang Zhengbiao

    2005-01-01

    A homogeneous solution atom transfer radical polymerization (ATRP) and reverse atom transfer radical polymerization (RATRP) of styrene (St) in N,N-dimethylformamide (DMF) were successfully carried out under pulsed microwave irradiation (PMI), using 1-bromo-1-phenylethane (1-PEBr)/CuCl/N,N,N',N'',N''-pentamethyldiethylenetriamine (PMDETA) as an initiating system at 85 deg. C and 2,2'-azo-bis-isobutyrontrile (AIBN)/CuCl 2 /PMDETA as an initiating system at 95 deg. C, respectively. The polymerization rates under PMI were greatly increased in comparison with those under identical conventional heating (CH)

  2. A Kinetic Study of the Emulsion Polymerization of Vinyl Acetate

    DEFF Research Database (Denmark)

    Friis, N.; Nyhagen, L.

    1973-01-01

    The emulsion polymerization of vinyl acetate was studied at 50°C. It was found that the rate of polymerization was proportional to the 0.5 power of the initiator concentration and the 0.25 power of the number of particles. The number of particles was proportional to the power 0.5 ± 0.......05 of the emulsifier concentration, but independent of the initiator concentration. The limiting viscosity number of the polymers produced was independent of the initiator concentration and number of polymer particles. It is suggested that the mechanism of vinyl acetate emulsion polymerization is similar...

  3. Synthesis of Amphiphilic Copolymwers by Atom Transfer Radical Polymerization

    DEFF Research Database (Denmark)

    Hansen, Natanya Majbritt Louie

    2007-01-01

    Fluorerede polymerer besidder en række enestående egenskaber såsom god biokom-patibilitet og lav overfladeenergi såvel som god kemisk og termisk stabilitet. Målsæt-ningen for denne afhandling var at fremstille fluorerede polymerer og copolymerer, der potentielt kunne finde anvendelse som...... egenskaber der genfindes i homopolymerer af den dominerende monomer i copolymeren. Som indikation af de nye materialers mulige vekselvirkning med omgivelserne udførtes omfattende studier af kontaktvinkler. Film fremstillet af de fluorerede copolymerer og polymerer udviste øget hydrofobicitet (vandafvisning...

  4. Polymeric drugs: Advances in the development of pharmacologically active polymers

    Science.gov (United States)

    Li, Jing; Yu, Fei; Chen, Yi; Oupický, David

    2015-01-01

    Synthetic polymers play a critical role in pharmaceutical discovery and development. Current research and applications of pharmaceutical polymers are mainly focused on their functions as excipients and inert carriers of other pharmacologically active agents. This review article surveys recent advances in alternative pharmaceutical use of polymers as pharmacologically active agents known as polymeric drugs. Emphasis is placed on the benefits of polymeric drugs that are associated with their macromolecular character and their ability to explore biologically relevant multivalency processes. We discuss the main therapeutic uses of polymeric drugs as sequestrants, antimicrobials, antivirals, and anticancer and anti-inflammatory agents. PMID:26410809

  5. A model of frontal polymerization using complex initiation

    Directory of Open Access Journals (Sweden)

    P. M. Goldfeder

    1999-01-01

    Full Text Available Frontal polymerization is a process in which a spatially localized reaction zone propagates into a monomer, converting it into a polymer. In the simplest case of free-radical polymerization, a mixture of monomer and initiator is placed in a test tube. A reaction is then initiated at one end of the tube. Over time, a self-sustained thermal wave, in which chemical conversion occurs, is produced. This phenomenon is possible because of the highly exothermic nature of the polymerization reactions.

  6. Using a novel rigid-fluoride polymer to control the interfacial thickness of graphene and tailor the dielectric behavior of poly(vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene) nanocomposites.

    Science.gov (United States)

    Han, Xianghui; Chen, Sheng; Lv, Xuguang; Luo, Hang; Zhang, Dou; Bowen, Chris R

    2018-01-24

    Polymer nanocomposites based on conductive fillers for high performance dielectrics have attracted increasing attention in recent years. However, a number of physical issues are unclear, such as the effect of interfacial thickness on the dielectric properties of the polymer nanocomposites, which limits the enhancement of permittivity. In this research, two core-shell structured reduced graphene oxide (rGO)@rigid-fluoro-polymer conducting fillers with different shell thicknesses are prepared using a surface-initiated reversible-addition-fragmentation chain transfer polymerization method, which are denoted as rGO@PTFMS-1 with a thin shell and rGO@PTFMS-2 with a thick shell. A rigid liquid crystalline fluoride-polymer poly{5-bis[(4-trifluoro-methoxyphenyl)oxycarbonyl]styrene} (PTFMS) is chosen for the first time to tailor the shell thicknesses of rGO via tailoring the degree of polymerization. The effect of interfacial thickness on the dielectric behavior of the P(VDF-TrFE-CTFE) nanocomposites with rGO and modified rGO is studied in detail. The results demonstrate that the percolation threshold of the nanocomposites increased from 0.68 vol% to 1.69 vol% with an increase in shell thickness. Compared to the rGO@PTFMS-1/P(VDF-TrFE-CTFE) composites, the rGO@PTFMS-2/P(VDF-TrFE-CTFE) composites exhibited a higher breakdown strength and a lower dielectric constant, which can be interpreted by interfacial polarization and the micro-capacitor model, resulting from the insulating nature of the rigid-polymer shell and the change of rGO's morphology. The findings provide an innovative approach to tailor dielectric composites, and promote a deeper understanding of the influence of interfacial region thickness on the dielectric performance.

  7. Method of preparing water purification membranes. [polymerization of allyl amine as thin films in plasma discharge

    Science.gov (United States)

    Hollahan, J. R.; Wydeven, T. J., Jr. (Inventor)

    1974-01-01

    Allyl amine and chemically related compounds are polymerized as thin films in the presence of a plasma discharge. The monomer compound can be polymerized by itself or in the presence of an additive gas to promote polymerization and act as a carrier. The polymerized films thus produced show outstanding advantages when used as reverse osmosis membranes.

  8. Reversible and Irreversible Binding of Nanoparticles to Polymeric Surfaces

    Directory of Open Access Journals (Sweden)

    Wolfgang H. Binder

    2009-01-01

    Full Text Available Reversible and irreversible binding of CdSe-nanoparticles and nanorods to polymeric surfaces via a strong, multiple hydrogen bond (= Hamilton-receptor/barbituric acid is described. Based on ROMP-copolymers, the supramolecular interaction on a thin polymer film is controlled by living polymerization methods, attaching the Hamilton-receptor in various architectures, and concentrations. Strong binding is observed with CdSe-nanoparticles and CdSe-nanorods, whose surfaces are equipped with matching barbituric acid-moieties. Addition of polar solvents, able to break the hydrogen bonds leads to the detachment of the nanoparticles from the polymeric film. Irreversible binding is observed if an azide/alkine-“click”-reaction is conducted after supramolecular recognition of the nanoparticles on the polymeric surface. Thus reversible or irreversible attachment of the nanosized objects can be achieved.

  9. Novel polymer coatings based on plasma polymerized 2-methoxyethyl acrylate

    DEFF Research Database (Denmark)

    Wu, Zhenning; Jiang, Juan; Benter, Maike

    2008-01-01

    plasma system[4]. The system named SoftPlasma™ is equipped with unique three-phase pulsed AC voltage. Low energy plasma polymerization has almost no thermal load for sensitive polymer materials[5]. Plasma polymerized coatings are highly cross-linked, pin-hole free and provide hydrophilic or hydrophobic...... properties[4-6]. We have exploited these possibilities and prepared plasma polymerized 2-methoxyethyl acrylate (PPMEA) coatings on various polymer substrates. The PPMEA coatings were optimized using various plasma polymerization conditions and characterized by X-ray photoelectron spectroscopy......, Fouriertransform infrared spectroscopy, Atomic force spectroscopy and Water contact-angle measurements. The microstructures ofPPMEA coatings with different thicknesses were also studied. For practical applications in mind, the coating stability was tested in different media (air, water, acetone, phosphate...

  10. Porous polymeric membranes with thermal and solvent resistance

    KAUST Repository

    Pulido, Bruno; Waldron, Christopher; Zolotukhin, M.G.; Nunes, Suzana Pereira

    2017-01-01

    Polymeric membranes are highly advantageous over their ceramic counterparts in terms of the simplicity of the manufacturing process, cost and scalability. Their main disadvantages are low stability at temperatures above 200 °C, and in organic

  11. Novel Polymeric Prodrugs of Valproic Acid as Anti- Epilepsy Drugs ...

    African Journals Online (AJOL)

    Epilepsy Drugs: Synthesis, Characterization and In-vitro ... The release of VPA from polymeric prodrugs was studied using cellophane ... pharmacokinetics and accessibility in market [8]. ..... between the drug and polymer chain can affect.

  12. Structural Analysis of Ciprofloxacin-Carbopol Polymeric Composites ...

    African Journals Online (AJOL)

    Erah

    Methods: The ciprofloxacin and Carbopol were mixed in water in a drug:polymer ratio of 1:5 ... and the Carbopol polymeric composites of the drug were obtained using a powder diffractometer. .... 2950 cm-1 represented alkenes and aromatic.

  13. Identification of a premature termination of DNA polymerization in ...

    Indian Academy of Sciences (India)

    2013-04-25

    Apr 25, 2013 ... strands to the 5′ end of the template strands, forming double- stranded DNA with ... duplex stem is important for high processive polymerization. HIV-1 reverse ... KF has been used as a model to study DNA polymerase.

  14. Electrochemical roles of extracellular polymeric substances in biofilms

    DEFF Research Database (Denmark)

    Xiao, Yong; Zhao, Feng

    2017-01-01

    Most microbial cells in nature are surrounded by extracellular polymeric substances (EPS), which are fundamental components and determine the physiochemical properties of a biofilm. This review highlights the EPS properties of conductivity and redox ability from an electrochemical perspective, em...

  15. Novel polymeric nanocomposites and porous materials prepared using organogels

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Wei-Chi; Tseng, Shen-Chen, E-mail: wclai@mail.tku.edu.t [Department of Chemical and Materials Engineering, Tamkang University, 151 Ying-chuan Road, Tamsui, Taipei 25137, Taiwan (China)

    2009-11-25

    We propose a new method for preparing polymeric nanocomposites and porous materials using self-assembled templates formed by 1,3:2,4-dibenzylidene sorbitol (DBS) organogels. DBS is capable of self-assembling into a 3D nanofibrillar network at relatively low concentrations in some organic solvents to produce organogels. In this study, we induced the formation of such physical cross-linked networks in styrene. Subsequently, we polymerized the styrene in the presence of chemical cross-linkers, divinyl benzene (DVB), with different amounts of DBS using thermal-initiated polymerization. The resulting materials were transparent, homogeneous polystyrene (PS) nanocomposites with both physical and chemical cross-links. The porous polymeric materials were obtained by solvent extraction of the DBS nanofibrils from the PS. Brunauer-Emmett-Teller (BET) measurements show that the amounts of DBS and DVB influenced the specific surface area after the removal of the DBS fibrils.

  16. Highly reflective polymeric substrates functionalized utilizing atomic layer deposition

    Science.gov (United States)

    Zuzuarregui, Ana; Coto, Borja; Rodríguez, Jorge; Gregorczyk, Keith E.; Ruiz de Gopegui, Unai; Barriga, Javier; Knez, Mato

    2015-08-01

    Reflective surfaces are one of the key elements of solar plants to concentrate energy in the receivers of solar thermal electricity plants. Polymeric substrates are being considered as an alternative to the widely used glass mirrors due to their intrinsic and processing advantages, but optimizing both the reflectance and the physical stability of polymeric mirrors still poses technological difficulties. In this work, polymeric surfaces have been functionalized with ceramic thin-films by atomic layer deposition. The characterization and optimization of the parameters involved in the process resulted in surfaces with a reflection index of 97%, turning polymers into a real alternative to glass substrates. The solution we present here can be easily applied in further technological areas where seemingly incompatible combinations of polymeric substrates and ceramic coatings occur.

  17. Highly reflective polymeric substrates functionalized utilizing atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Zuzuarregui, Ana, E-mail: a.zuzuarregui@nanogune.eu; Gregorczyk, Keith E. [CIC Nanogune Consolider, de Tolosa Hiribidea 76, 20018 San Sebastián (Spain); Coto, Borja; Ruiz de Gopegui, Unai; Barriga, Javier [IK4-Tekniker, Iñaki Goenaga 5, 20600 Eibar (Spain); Rodríguez, Jorge [Torresol Energy (SENER Group), Avda. de Zugazarte 61, 48930 Las Arenas (Spain); Knez, Mato [CIC Nanogune Consolider, de Tolosa Hiribidea 76, 20018 San Sebastián (Spain); IKERBASQUE Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao (Spain)

    2015-08-10

    Reflective surfaces are one of the key elements of solar plants to concentrate energy in the receivers of solar thermal electricity plants. Polymeric substrates are being considered as an alternative to the widely used glass mirrors due to their intrinsic and processing advantages, but optimizing both the reflectance and the physical stability of polymeric mirrors still poses technological difficulties. In this work, polymeric surfaces have been functionalized with ceramic thin-films by atomic layer deposition. The characterization and optimization of the parameters involved in the process resulted in surfaces with a reflection index of 97%, turning polymers into a real alternative to glass substrates. The solution we present here can be easily applied in further technological areas where seemingly incompatible combinations of polymeric substrates and ceramic coatings occur.

  18. Highly reflective polymeric substrates functionalized utilizing atomic layer deposition

    International Nuclear Information System (INIS)

    Zuzuarregui, Ana; Gregorczyk, Keith E.; Coto, Borja; Ruiz de Gopegui, Unai; Barriga, Javier; Rodríguez, Jorge; Knez, Mato

    2015-01-01

    Reflective surfaces are one of the key elements of solar plants to concentrate energy in the receivers of solar thermal electricity plants. Polymeric substrates are being considered as an alternative to the widely used glass mirrors due to their intrinsic and processing advantages, but optimizing both the reflectance and the physical stability of polymeric mirrors still poses technological difficulties. In this work, polymeric surfaces have been functionalized with ceramic thin-films by atomic layer deposition. The characterization and optimization of the parameters involved in the process resulted in surfaces with a reflection index of 97%, turning polymers into a real alternative to glass substrates. The solution we present here can be easily applied in further technological areas where seemingly incompatible combinations of polymeric substrates and ceramic coatings occur

  19. In-situ polymerization PLOT columns I: divinylbenzene

    Science.gov (United States)

    Shen, T. C.

    1992-01-01

    A novel method for preparation of porous-layer open-tubular (PLOT) columns is described. The method involves a simple and reproducible, straight-forward in-situ polymerization of monomer directly on the metal tube.

  20. Novel polymeric nanocomposites and porous materials prepared using organogels

    International Nuclear Information System (INIS)

    Lai, Wei-Chi; Tseng, Shen-Chen

    2009-01-01

    We propose a new method for preparing polymeric nanocomposites and porous materials using self-assembled templates formed by 1,3:2,4-dibenzylidene sorbitol (DBS) organogels. DBS is capable of self-assembling into a 3D nanofibrillar network at relatively low concentrations in some organic solvents to produce organogels. In this study, we induced the formation of such physical cross-linked networks in styrene. Subsequently, we polymerized the styrene in the presence of chemical cross-linkers, divinyl benzene (DVB), with different amounts of DBS using thermal-initiated polymerization. The resulting materials were transparent, homogeneous polystyrene (PS) nanocomposites with both physical and chemical cross-links. The porous polymeric materials were obtained by solvent extraction of the DBS nanofibrils from the PS. Brunauer-Emmett-Teller (BET) measurements show that the amounts of DBS and DVB influenced the specific surface area after the removal of the DBS fibrils.

  1. Synthesis of chiral polyaniline films via chemical vapor phase polymerization

    DEFF Research Database (Denmark)

    Chen, J.; Winther-Jensen, B.; Pornputtkul, Y.

    2006-01-01

    Electrically and optically active polyaniline films doped with (1)-(-)-10- camphorsulfonic acid were successfully deposited on nonconductive substrates via chemical vapor phase polymerization. The above polyaniline/ R- camphorsulfonate films were characterized by electrochemical and physical...

  2. Radiological response of ceramic and polymeric devices for breast brachytherapy

    International Nuclear Information System (INIS)

    Batista Nogueira, Luciana; Passos Ribeiro de Campos, Tarcisio

    2012-01-01

    In the present study, the radiological visibility of ceramic and polymeric devices implanted in breast phantom was investigated for future applications in brachytherapy. The main goal was to determine the radiological viability of ceramic and polymeric devices in vitro by performing simple radiological diagnostic methods such as conventional X-ray analysis and mammography due to its easy access to the population. The radiological response of ceramic and polymeric devices implanted in breast phantom was determined using conventional X-ray, mammography and CT analysis. - Highlights: ► Radiological visibility of ceramic and polymeric devices implanted in breast phantom. ► The barium incorporation in the seed improves the radiological contrast. ► Radiological monitoring shows the position, orientation and degradation of devices. ► Simple radiological methods such as X-ray and mammography were used for radiological monitoring.

  3. Direct Synthesis of Telechelic Polyethylene by Selective Insertion Polymerization

    KAUST Repository

    Jian, Zhongbao; Falivene, Laura; Boffa, Giusi; Sá nchez, Sheila Ortega; Caporaso, Lucia; Grassi, Alfonso; Mecking, Stefan

    2016-01-01

    A single-step route to telechelic polyethylene (PE) is enabled by selective insertion polymerization. PdII-catalyzed copolymerization of ethylene and 2-vinylfuran (VF) generates α,ω-di-furan telechelic polyethylene. Orthogonally reactive exclusively

  4. Use of polymeric dyes in lignin biodegradation assays

    International Nuclear Information System (INIS)

    Gold, M.H.; Alic, M.; Glenn, J.K.

    1988-01-01

    This paper reviews the historical use of various 14 C-radiolabeled and unlabeled substrates to screen for ligninolytic activity. The disadvantages of these assays are presented. The authors describe the development of assays utilizing polymeric dyes

  5. Mechanism of spontaneous hole formation in thin polymeric films

    DEFF Research Database (Denmark)

    Yu, Kaijia; Rasmussen, Henrik K.; Román Marín, José Manuel

    2012-01-01

    We show computationally that (molten) thin polymeric film containing nonequilibrium configurations originating from a solvent evaporation may develop holes spontaneously in the molten state, and that they appear delayed. Polymers above the glass transition temperature are liquids where the flow...

  6. Use of computed tomography in nondestructive testing of polymeric materials

    International Nuclear Information System (INIS)

    Persson, S.; Oestman, E.

    1985-01-01

    Computed tomography has been used to detect imperfections and to measure cross-link density gradients in polymeric products, such as airplane tires, rubber shock absorbers, and filament-wound high-pressure tanks

  7. CoCl2 reinforced polymeric nanocomposites of conjugated polymer ...

    Indian Academy of Sciences (India)

    Administrator

    biological and gas sensors, anti-corrosion protection coat- ings and microwave absorption.1–7 These polymeric mate- ... composite by the wet chemical method for direct current ... other hand, 4 g ammonium persulphate as an oxidant was.

  8. Surface science of single-site heterogeneous olefin polymerization catalysts

    OpenAIRE

    Kim, Seong H.; Somorjai, Gabor A.

    2006-01-01

    This article reviews the surface science of the heterogeneous olefin polymerization catalysts. The specific focus is on how to prepare and characterize stereochemically specific heterogeneous model catalysts for the Ziegler–Natta polymerization. Under clean, ultra-high vacuum conditions, low-energy electron irradiation during the chemical vapor deposition of model Ziegler–Natta catalysts can be used to create a “single-site” catalyst film with a surface structure that produces only isotactic ...

  9. Autocatalytic polymerization generates persistent random walk of crawling cells.

    Science.gov (United States)

    Sambeth, R; Baumgaertner, A

    2001-05-28

    The autocatalytic polymerization kinetics of the cytoskeletal actin network provides the basic mechanism for a persistent random walk of a crawling cell. It is shown that network remodeling by branching processes near the cell membrane is essential for the bimodal spatial stability of the network which induces a spontaneous breaking of isotropic cell motion. Details of the phenomena are analyzed using a simple polymerization model studied by analytical and simulation methods.

  10. In situ electron-beam polymerization stabilized quantum dot micelles.

    Science.gov (United States)

    Travert-Branger, Nathalie; Dubois, Fabien; Renault, Jean-Philippe; Pin, Serge; Mahler, Benoit; Gravel, Edmond; Dubertret, Benoit; Doris, Eric

    2011-04-19

    A polymerizable amphiphile polymer containing PEG was synthesized and used to encapsulate quantum dots in micelles. The quantum dot micelles were then polymerized using a "clean" electron beam process that did not require any post-irradiation purification. Fluorescence spectroscopy revealed that the polymerized micelles provided an organic coating that preserved the quantum dot fluorescence better than nonpolymerized micelles, even under harsh conditions. © 2011 American Chemical Society

  11. INITIATION EFFICIENCY f OF METHYL METHACRYLATE BULK RADICAL POLYMERIZATION

    Institute of Scientific and Technical Information of China (English)

    沈家骢; 田元; 王国斌; 杨梅林

    1990-01-01

    The values of the initiation efficiency f at various conversions in the bulk polymerization of MMA initiated by AIBME have first been determined according to a strict unsteady-state formula and based on the data of radical concentration and the termination rate constant determined using ESR method. A model of diffusion control initiation is proposed. The theory is well in agreement with the experiments during the whole process of polymerization.

  12. Interactions of ceramic, metallic and polymeric filters with gaseous contaminants

    International Nuclear Information System (INIS)

    Haider, A.M.; Ma, Ce; Shadman, Farhang

    1993-01-01

    Outgassing characteristics of ceramic, metallic, and polymeric fitters for H 2 O, O 2 , CO 2 , and CH 4 were explored using APIMS in this study. The outgassing data has been normalized with respect to the parameters that varied from one filter to the other. Hydrocarbon outgassing is also explored both at room temperature from freshly installed filters as well as at elevated temperatures. Polymeric filters appeared to be more transparent but did show hydrocarbon outgassing when heated to 50 C

  13. Transfer coating by electron initiated polymerization

    International Nuclear Information System (INIS)

    Nablo, S.V.

    1984-01-01

    The high speed and depth of cure possible with electron initiated monomer/oligomer coating systems provide many new opportunities for approaches to product finishing. Moreover, the use of transfer or cast coating using films or metallic surfaces offers the ability to precisely control the surface topology of liquid film surfaces during polymerization. Transfer coating such as with textiles has been a commercial process for many years and the synergistic addition of EB technology permits the manufacture of unusual new products. One of these, the casting paper used in the manufacture of vinyl and urethane fabrics, is the first EB application to use a drum surface for pattern replication in the coating. In this case the coated paper is cured against, and then released from, an engraved drum surface. Recent developments in the use of plastic films for transfer have been applied to the manufacture of transfer metallized and coated paper and paperboard products for packaging. Details of these and related processes are presented as well as a discussion of the typical product areas (e.g. photographic papers, release papers, magnetic media) using this high speed transfer technology

  14. Transfer coating by electron initiated polymerization

    International Nuclear Information System (INIS)

    Nablo, S.V.

    1985-01-01

    The high speed and depth of cure possible with electron initiated monomer/oligomer coating systems provide many new opportunities for approaches to product finishing. Moreover, the use of transfer or cast coating using films or metallic surfaces offers the ability to precisely control the surface topology of liquid film surfaces during polymerization. Transfer coating such as with textiles has been a commercial process for many years and the synergistic addition of EB technology permits the manufacture of unusual new products. One of these, the casting paper used in the manufacture of vinyl and urethane fabrics, is the first EB application to use a drum surface for pattern replication in the coating. In this case the coated paper is cured against, and then released from, an engraved drum surface. Recent developments in the use of plastic films for transfer have been applied to the manufacture of transfer metallized and coated paper and paperboard products for packaging. Details of these and related processes will be presented as well as a discussion of the typical product areas using this high speed transfer technology. (author)

  15. Gyrospun antimicrobial nanoparticle loaded fibrous polymeric filters

    Energy Technology Data Exchange (ETDEWEB)

    Eranka Illangakoon, U.; Mahalingam, S.; Wang, K. [Department of Mechanical Engineering, University College London, London WC1E 7JE (United Kingdom); Cheong, Y.-K. [School of Engineering and Technology, University of Hertfordshire, Hatfield AL10 9AB (United Kingdom); Canales, E. [Department of Civil, Environmental and Geomatic Engineering, University College London, London WC1E 7JE (United Kingdom); Ren, G.G. [School of Engineering and Technology, University of Hertfordshire, Hatfield AL10 9AB (United Kingdom); Cloutman-Green, E. [Department of Microbiology, Virology, and Infection Prevention Control, Great Ormond Street Hospital NHS Foundation Trust, London WCIN 3JH (United Kingdom); Edirisinghe, M., E-mail: m.edirisinghe@ucl.ac.uk [Department of Mechanical Engineering, University College London, London WC1E 7JE (United Kingdom); Ciric, L. [Department of Civil, Environmental and Geomatic Engineering, University College London, London WC1E 7JE (United Kingdom)

    2017-05-01

    A one step approach to prepare hybrid nanoparticle embedded polymer fibres using pressurised gyration is presented. Two types of novel antimicrobial nanoparticles and poly(methylmethacrylate) polymer were used in this work. X-ray diffraction analysis of the nanoparticles revealed Ag, Cu and W are the main elements present in them. The concentration of the polymer solution and the nanoparticle concentration had a significant influence on the fibre diameter, pore size and morphology. Fibres with a diameter in the range of 6–20 μm were spun using 20 wt% polymer solutions containing 0.1, 0.25 and 0.5 wt% nanoparticles under 0.3 MPa working pressure and a rotational speed of 36,000 rpm. Continuous, bead-free fibre morphologies were obtained for each case. The pore size in the fibres varied between 36 and 300 nm. Successful incorporation of the nanoparticles in polymer fibres was confirmed by energy dispersive x-ray analysis. The fibres were also gyrospun on to metallic discs to prepare filters which were tested for their antibacterial activity on a suspension of Pseudomonas aeruginosa. Nanoparticle loaded fibres showed higher antibacterial efficacy than pure poly(methylmethacrylate) fibres. - Highlights: • Nanoparticles containing Ag, Cu and W were studied for antimicrobial activity. • Hybrid nanoparticle-polymeric fibres were prepared using pressurised gyration. • Fibre characteristics were tailored using material and forming process variables. • Nanoparticle loaded fibre mats show higher antibacterial efficacy.

  16. Pressure-induced polymerization in substituted acetylenes

    Energy Technology Data Exchange (ETDEWEB)

    Chellappa, Raja S.; Dattelbaum, Dana M.; Sheffield, Stephen; Robbins, David (LANL)

    2012-04-10

    A fundamental understanding of shock-induced chemical reactions in organics is still lacking and there are limited studies devoted to determining reaction mechanisms, evolution of bonding, and effect of functional group substitutions. The fast timescale of reactions occurring during shock compression create significant experimental challenges (diagnostics) to fully quantify the mechanisms involved. Static compression combined with temperature provides a complementary route to investigate the equilibrium phase space and metastable intermediates under extreme P-T conditions. In this study, we present our results from our ongoing high pressure in situ synchrotron x-ray diffraction experiments on substituted acetylenes: tert-butyl acetylene [TBA: (CH{sub 3}){sub 3}-C=CH] and ethynyl trimethylsilane [ETMS: (CH{sub 3}){sub 3}-SiC=CH]. We observed that the onset pressure of chemical reactions (at room temperature) in these compounds is higher under static compression (TBA: 12 GPa and ETMS: 17.6 GPa) when compared to shock input pressures (TBA: 6.1 GPa and ETMS: 6.6 GPa). At elevated temperatures, reactivity was observed to occur at pressures comparable to shock conditions. The products were polymeric in nature, recovered to ambient conditions with little degradation.

  17. Thailand. Radiation-Polymerization in Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Nilubol, M.L. Anong; Greethong, Somkiart [Office of Atomic Energy for Peace, Bangkok (Thailand)

    1968-10-15

    Wood-plastic composites produced by means of radiation-induced polymerization of monomers impregnated into the wood have been the subject of study in many laboratories throughout the world. In general the processes are similar, and the differences that occur are due to variations in technique applied to the particular species of wood available in each country. In Thailand, treatment to improve the quality of wood is being carried out by scientists at the Forest Products Research Division of the Royal Forest Department, Ministry of Agriculture, with the aim of obtaining products which can stand up to weathering and termite attack. On the basis of their experience, certain types of wood suitable for impregnation have been selected for our study. The Office of Atomic Energy for Peace began studying the impregnation-irradiation of certain types of Thai wood in the hope that it might result in better utilization of poor quality wood. The use of irradiated-impregnated wood in Thailand is not necessary at present, since many different varieties of hard wood are available. The production of plywood does not even meet the demand of the local market, thus the introduction of this new technique is not an attractive proposal for the time being.

  18. Polymeric Biodegradable Stent Insertion in the Esophagus

    Directory of Open Access Journals (Sweden)

    Kai Yang

    2016-04-01

    Full Text Available Esophageal stent insertion has been used as a well-accepted and effective alternative to manage and improve the quality of life for patients diagnosed with esophageal diseases and disorders. Current stents are either permanent or temporary and are fabricated from either metal or plastic. The partially covered self-expanding metal stent (SEMS has a firm anchoring effect and prevent stent migration, however, the hyperplastic tissue reaction cause stent restenosis and make it difficult to remove. A fully covered SEMS and self-expanding plastic stent (SEPS reduced reactive hyperplasia but has a high migration rate. The main advantage that polymeric biodegradable stents (BDSs have over metal or plastic stents is that removal is not require and reduce the need for repeated stent insertion. But the slightly lower radial force of BDS may be its main shortcoming and a post-implant problem. Thus, strengthening support of BDS is a content of the research in the future. BDSs are often temporarily effective in esophageal stricture to relieve dysphagia. In the future, it can be expect that biodegradable drug-eluting stents (DES will be available to treat benign esophageal stricture, perforations or leaks with additional use as palliative modalities for treating malignant esophageal stricture, as the bridge to surgery or to maintain luminal patency during neoadjuvant chemoradiation.

  19. Bioactive Polymeric Nanoparticles for Periodontal Therapy.

    Science.gov (United States)

    Osorio, Raquel; Alfonso-Rodríguez, Camilo Andrés; Medina-Castillo, Antonio L; Alaminos, Miguel; Toledano, Manuel

    2016-01-01

    to design calcium and zinc-loaded bioactive and cytocompatible nanoparticles for the treatment of periodontal disease. PolymP-nActive nanoparticles were zinc or calcium loaded. Biomimetic calcium phosphate precipitation on polymeric particles was assessed after 7 days immersion in simulated body fluid, by scanning electron microscopy attached to an energy dispersive analysis system. Amorphous mineral deposition was probed by X-ray diffraction. Cell viability analysis was performed using oral mucosa fibroblasts by: 1) quantifying the liberated deoxyribonucleic acid from dead cells, 2) detecting the amount of lactate dehydrogenase enzyme released by cells with damaged membranes, and 3) by examining the cytoplasmic esterase function and cell membranes integrity with a fluorescence-based method using the Live/Dead commercial kit. Data were analyzed by Kruskal-Wallis and Mann-Whitney tests. Precipitation of calcium and phosphate on the nanoparticles surfaces was observed in calcium-loaded nanoparticles. Non-loaded nanoparticles were found to be non-toxic in all the assays, calcium and zinc-loaded particles presented a dose dependent but very low cytotoxic effect. The ability of calcium-loaded nanoparticles to promote precipitation of calcium phosphate deposits, together with their observed non-toxicity may offer new strategies for periodontal disease treatment.

  20. Polymeric and Ceramic Nanoparticles in Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Aura-Ileana Moreno-Vega

    2012-01-01

    Full Text Available Materials in the nanometer size range may possess unique and beneficial properties, which are very useful for different medical applications including stomatology, pharmacy, and implantology tissue engineering. The application of nanotechnology to medicine, known as nanomedicine, concerns the use of precisely engineered materials at this length scale to develop novel therapeutic and diagnostic modalities. Nanomaterials have unique physicochemical properties, such as small size, large surface area to mass ratio, and high reactivity, which are different from bulk materials of the same composition. Polymeric and ceramic nanoparticles have been extensively studied as particulate carriers in the pharmaceutical and medical fields, because they show promise as drug delivery systems as a result of their controlled- and sustained-release properties, subcellular size, and biocompatibility with tissue and cells. These properties can be used to overcome some of the limitations found in traditional therapeutic and diagnostic agents. Nanotechnology is showing promising developments in many areas and may benefit our health and welfare. However, a wide range of ethical issues has been raised by this innovative science. Many authorities believe that these advancements could lead to irreversible disasters if not limited by ethical guidelines.

  1. Recent progress of atomic layer deposition on polymeric materials

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Hong Chen; Ye, Enyi [Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634 (Singapore); Li, Zibiao, E-mail: lizb@imre.a-star.edu.sg [Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634 (Singapore); Han, Ming-Yong [Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634 (Singapore); Loh, Xian Jun, E-mail: lohxj@imre.a-star.edu.sg [Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634 (Singapore); Department of Materials Science and Engineering, National University of Singapore, Singapore 117574 (Singapore); Singapore Eye Research Institute, 20 College Road, Singapore 169856 (Singapore)

    2017-01-01

    As a very promising surface coating technology, atomic layer deposition (ALD) can be used to modify the surfaces of polymeric materials for improving their functions and expanding their application areas. Polymeric materials vary in surface functional groups (number and type), surface morphology and internal structure, and thus ALD deposition conditions that typically work on a normal solid surface, usually do not work on a polymeric material surface. To date, a large variety of research has been carried out to investigate ALD deposition on various polymeric materials. This paper aims to provide an in-depth review of ALD deposition on polymeric materials and its applications. Through this review, we will provide a better understanding of surface chemistry and reaction mechanism for controlled surface modification of polymeric materials by ALD. The integrated knowledge can aid in devising an improved way in the reaction between reactant precursors and polymer functional groups/polymer backbones, which will in turn open new opportunities in processing ALD materials for better inorganic/organic film integration and potential applications. - Highlights: • ALD deposition on different natural and synthetic polymer materials • Reaction mechanism based on the surface functional groups of polymers • Application of ALD-modified polymers in different fields.

  2. A qualitative chemometric study of resin composite polymerization

    Directory of Open Access Journals (Sweden)

    Regina Ferraz Mendes

    2008-01-01

    Full Text Available Objective: An experiment was carried out to assess the effect produced by different polymerization techniques on resin composite color after it has been immersed in coffee. Methods: Samples were manufactured using TPH Spectrum composite. It was polymerized for 10 or 40 seconds, with the light tip at one or zero millimeters from the resin surface, and afterwards the samples were immersed in coffee for 24 hours or 7 days. Ten different evaluators classified the samples according to their degree of staining. Results: The samples that were polymerized for 10 seconds were more susceptible to staining than the ones polymerized by 40 seconds. Samples immersed in coffee for 7 days were more susceptible to staining than the ones immersed for 24 hours. Conclusion: The variables polymerization time and immersion time were determinant in the staining susceptibility of the studied composite by coffee. However, there was no significant difference, irrespective of whether the resin was polymerized 10 or zero millimeters away from the resin surface.

  3. A comparison of three dimensional change in maxillary complete dentures between conventional heat polymerizing and microwave polymerizing techniques

    Directory of Open Access Journals (Sweden)

    Shinsuke Sadamori

    2007-03-01

    Full Text Available The purpose of this study was to measure and compare two different polymerizing processes, heat polymerizing (HP and microwave polymerizing (MP, on the three dimensional changes in the fitting surface and artificial teeth of maxillary complete dentures. A threedimensional coordinate measurement system was used to record distortion of the specimens. The distortion of the fitting surface was measured from the reference plane on the fitting side from which a coordinate system was set, and the movement of the artificial teeth and the distortion of the polished surface was measured from the reference plane of the artificial tooth side, from which a coordinate system was set. It was clearly showed that various distortions of denture specimens after polymerization process can be measured with this three-coordinate measuring machine. The study showed that the overall distortion of the fitting surface in HP specimens was shown to be larger than in MP ones.

  4. Microencapsulated Comb-Like Polymeric Solid-Solid Phase Change Materials via In-Situ Polymerization

    Directory of Open Access Journals (Sweden)

    Wei Li

    2018-02-01

    Full Text Available To enhance the thermal stability and permeability resistance, a comb-like polymer with crystallizable side chains was fabricated as solid-solid phase change materials (PCMs inside the cores of microcapsules and nanocapsules prepared via in-situ polymerization. In this study, the effects on the surface morphology and microstructure of micro/nanocapsules caused by microencapsulating different types of core materials (i.e., n-hexadecane, ethyl hexadecanoate, hexadecyl acrylate and poly(hexadecyl acrylate were systematically studied via field emission scanning electron microscope (FE-SEM and transmission electron microscope (TEM. The confined crystallization behavior of comb-like polymer PCMs cores was investigated via differential scanning calorimeter (DSC. Comparing with low molecular organic PCMs cores, the thermal stability of PCMs microencapsulated comb-like polymer enhanced significantly, and the permeability resistance improved obviously as well. Based on these resultant analysis, the microencapsulated comb-like polymeric PCMs with excellent thermal stability and permeability resistance showed promising foreground in the field of organic solution spun, melt processing and organic coating.

  5. Calcium fluoride based multifunctional nanoparticles for multimodal imaging

    Directory of Open Access Journals (Sweden)

    Marion Straßer

    2017-07-01

    Full Text Available New multifunctional nanoparticles (NPs that can be used as contrast agents (CA in different imaging techniques, such as photoluminescence (PL microscopy and magnetic resonance imaging (MRI, open new possibilities for medical imaging, e.g., in the fields of diagnostics or tissue characterization in regenerative medicine. The focus of this study is on the synthesis and characterization of CaF2:(Tb3+,Gd3+ NPs. Fabricated in a wet-chemical procedure, the spherical NPs with a diameter of 5–10 nm show a crystalline structure. Simultaneous doping of the NPs with different lanthanide ions, leading to paramagnetism and fluorescence, makes them suitable for MR and PL imaging. Owing to the Gd3+ ions on the surface, the NPs reduce the MR T1 relaxation time constant as a function of their concentration. Thus, the NPs can be used as a MRI CA with a mean relaxivity of about r = 0.471 mL·mg−1·s−1. Repeated MRI examinations of four different batches prove the reproducibility of the NP synthesis and determine the long-term stability of the CAs. No cytotoxicity of NP concentrations between 0.5 and 1 mg·mL−1 was observed after exposure to human dermal fibroblasts over 24 h. Overall this study shows, that the CaF2:(Tb3+,Gd3+ NPs are suitable for medical imaging.

  6. Peptide block copolymers by N-carboxyanhydride ring-opening polymerization and atom transfer radical polymerization: The effect of amide macroinitiators

    NARCIS (Netherlands)

    Habraken, G.J.M.; Koning, C.E.; Heise, A.

    2009-01-01

    The synthesis of polypeptide-containing block copolymers combining N-carboxyanhydride (NCA) ring-opening polymerization and atom transfer radical polymerization (ATRP) was investigated. An amide initiator comprising an amine function for the NCA polymerization and an activated bromide for ATRP was

  7. Cyanex based uranyl sensitive polymeric membrane electrodes.

    Science.gov (United States)

    Badr, Ibrahim H A; Zidan, W I; Akl, Z F

    2014-01-01

    Novel uranyl selective polymeric membrane electrodes were prepared using three different low-cost and commercially available Cyanex extractants namely, bis(2,4,4-trimethylpentyl) phosphinic acid [L1], bis(2,4,4-trimethylpentyl) monothiophosphinic acid [L2] and bis(2,4,4-trimethylpentyl) dithiophosphinic acid [L3]. Optimization and performance characteristics of the developed Cyanex based polymer membrane electrodes were determined. The influence of membrane composition (e.g., amount and type of ionic sites, as well as type of plasticizer) on potentiometric responses of the prepared membrane electrodes was studied. Optimized Cyanex-based membrane electrodes exhibited Nernstian responses for UO₂(2+) ion over wide concentration ranges with fast response times. The optimized membrane electrodes based on L1, L2 and L3 exhibited Nernstian responses towards uranyl ion with slopes of 29.4, 28.0 and 29.3 mV decade(-1), respectively. The optimized membrane electrodes based on L1-L3 showed detection limits of 8.3 × 10(-5), 3.0 × 10(-5) and 3.3 × 10(-6) mol L(-1), respectively. The selectivity studies showed that the optimized membrane electrodes exhibited high selectivity towards UO₂(2+) ion over large number of other cations. Membrane electrodes based on L3 exhibited superior potentiometric response characteristics compared to those based on L1 and L2 (e.g., widest linear range and lowest detection limit). The analytical utility of uranyl membrane electrodes formulated with Cyanex extractant L3 was demonstrated by the analysis of uranyl ion in different real samples for nuclear safeguards verification purposes. The results obtained using direct potentiometry and flow-injection methods were compared with those measured using the standard UV-visible and inductively coupled plasma spectroscopic methods. © 2013 Published by Elsevier B.V.

  8. Cargo Release from Polymeric Vesicles under Shear

    Directory of Open Access Journals (Sweden)

    Yingying Guo

    2018-03-01

    Full Text Available In this paper we study the release of cargo from polymeric nano-carriers under shear. Vesicles formed by two star block polymers— A 12 B 6 C 2 ( A B C and A 12 B 6 A 2 ( A B A —and one linear block copolymer— A 14 B 6 ( A B , are investigated using dissipative particle dynamics (DPD simulations. A - and C -blocks are solvophobic and B -block is solvophilic. The three polymers form vesicles of different structures. The vesicles are subjected to shear both in bulk and between solvophobic walls. In bulk shear, the mechanisms of cargo release are similar for all vesicles, with cargo travelling through vesicle membrane with no preferential release location. When sheared between walls, high cargo release rate is only observed with A B C vesicle after it touches the wall. For A B C vesicle, the critical condition for high cargo release rate is the formation of wall-polymersome interface after which the effect of shear rate in promoting cargo release is secondary. High release rate is achieved by the formation of solvophilic pathway allowing cargo to travel from the vesicle cavity to the vesicle exterior. The results in this paper show that well controlled target cargo release using polymersomes can be achieved with polymers of suitable design and can potentially be very useful for engineering applications. As an example, polymersomes can be used as carriers for surface active friction reducing additives which are only released at rubbing surfaces where the additives are needed most.

  9. Synthesis and characterization of superparamagnetic polymeric nanocapsules

    Energy Technology Data Exchange (ETDEWEB)

    Grillo, Renato; Fraceto, Leonardo Fernandes, E-mail: renato.grillo@ymail.com [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Sorocaba, SP (Brazil); Gallo, Juan; Grando Stroppa, Daniel; Carbo-Argibay, Enrique; Banõbre-Lopez, Manuel [International Iberian Nanotechnology Laboratory, Braga (Portugal); Lima, Renata de [Universidade de Sorocaba (UNISO), SP (Brazil)

    2016-07-01

    Full text: A wide variety of applications have been considered for superparamagnetic iron oxide nanoparticles (SPIONs), such as magnetic resonance imaging, cancer therapy and remediation of contaminants [1].Polymeric nanostructures (PNS) have also received great interest as suitable encapsulating agents and carriers due to their ability to influence the delivery profile. Hybrid nanosystems have been explored as a synergic approach that combines the modified active release induced by the polymer encapsulation and the intrinsic properties from the inorganic nanoparticles [2]. In this context, poly-ε-caprolactone nanocapsules containing different concentration of ∼8 nm superparamagnetic oleic acid coated magnetite (Fe{sub 3}O{sub 4}@OA) nanoparticles were developed. Successful incorporation of the magnetic nanoparticles was confirmed by transmission electron microscopy coupled with energy dispersive X-ray (TEM-EDX). Results showed that they accumulate preferentially in the outer organic membrane of the PNS. On the other hand, scanning electron microscopy and dynamic light scattering measurements showed a significant increase in particle size from ca. 400 to 800 nm. Magnetic measurements as a function of the applied magnetic field and temperature were performed in both vibrant sample (VSM) and superconducting quantum interference device magnetometers (SQUID). Hysteresis loops showed a superparamagnetic behavior with increasing saturation magnetization as magnetite concentration was progressively incorporated into the PNS. Zero-field cooled and field-cooled (ZFC-FC) magnetic curves showed a shift of the blocking temperature to higher temperatures as the content of magnetite increases in the capsules. These results are promising and contribute to a better understanding of the interaction between magnetic nanoparticles and PNS. References: [1] L. Zhang, W. Dong, H. Sun. Nanoscale 5, 7664-7684 (2013) [2] K.T. Nguyen and Y.L. Zhao. Acc. Chem. Res. 48, 3016-3025 (2015

  10. pH dependent polymeric micelle adsorption

    Energy Technology Data Exchange (ETDEWEB)

    McLean, S C; Gee, M L [The University of Melbourne, VIC (Australia). School of Chemistry

    2003-07-01

    Full text: Poly(2-vinylpyridine)-poly(ethylene oxide) (P2VP-PEO) shows potential as a possible drug delivery system for anti-tumour drugs since it forms pH dependent polymeric micelles. Hence to better understand the adsorption behaviour of this polymer we have studied the interaction forces between layers of P2VP-PEO adsorbed onto silica as a function of solution pH using an Atomic Force Microscope (AFM). When P2VP-PEO is initially adsorbed above the pKa of the P2VP block, P2VP-PEO adsorbs from solution as micelles that exist as either partially collapsed- or a hemi-micelles at the silica surface. Below the pKa of P2VP, the P2VP-PEO adsorbs as unimers, forming a compact layer with little looping and tailing into solution. When initial adsorption of P2VP-PEO is in the form of unimers, any driving force to self-assembly of the now charge neutral polymer is kinetically hindered. Hence, after initial adsorption at pH 3.6, a subsequent increase in pH to 6.6 results in a slow surface restructuring towards self-assembly and equilibrium. When the pH is increased from pH 6.6 to 9.7 there is a continuation of the evolution of the system to its equilibrium position during which the adsorbed P2VP-PEO unimers continue to 'unravel' from the surface, extending away from it, towards eventual complete surface self-assembly.

  11. A fractal nature for polymerized laminin.

    Directory of Open Access Journals (Sweden)

    Camila Hochman-Mendez

    Full Text Available Polylaminin (polyLM is a non-covalent acid-induced nano- and micro-structured polymer of the protein laminin displaying distinguished biological properties. Polylaminin stimulates neuritogenesis beyond the levels achieved by ordinary laminin and has been shown to promote axonal regeneration in animal models of spinal cord injury. Here we used confocal fluorescence microscopy (CFM, scanning electron microscopy (SEM and atomic force microscopy (AFM to characterize its three-dimensional structure. Renderization of confocal optical slices of immunostained polyLM revealed the aspect of a loose flocculated meshwork, which was homogeneously stained by the antibody. On the other hand, an ordinary matrix obtained upon adsorption of laminin in neutral pH (LM was constituted of bulky protein aggregates whose interior was not accessible to the same anti-laminin antibody. SEM and AFM analyses revealed that the seed unit of polyLM was a flat polygon formed in solution whereas the seed structure of LM was highly heterogeneous, intercalating rod-like, spherical and thin spread lamellar deposits. As polyLM was visualized at progressively increasing magnifications, we observed that the morphology of the polymer was alike independently of the magnification used for the observation. A search for the Hausdorff dimension in images of the two matrices showed that polyLM, but not LM, presented fractal dimensions of 1.55, 1.62 and 1.70 after 1, 8 and 12 hours of adsorption, respectively. Data in the present work suggest that the intrinsic fractal nature of polymerized laminin can be the structural basis for the fractal-like organization of basement membranes in the neurogenic niches of the central nervous system.

  12. A fractal nature for polymerized laminin.

    Science.gov (United States)

    Hochman-Mendez, Camila; Cantini, Marco; Moratal, David; Salmeron-Sanchez, Manuel; Coelho-Sampaio, Tatiana

    2014-01-01

    Polylaminin (polyLM) is a non-covalent acid-induced nano- and micro-structured polymer of the protein laminin displaying distinguished biological properties. Polylaminin stimulates neuritogenesis beyond the levels achieved by ordinary laminin and has been shown to promote axonal regeneration in animal models of spinal cord injury. Here we used confocal fluorescence microscopy (CFM), scanning electron microscopy (SEM) and atomic force microscopy (AFM) to characterize its three-dimensional structure. Renderization of confocal optical slices of immunostained polyLM revealed the aspect of a loose flocculated meshwork, which was homogeneously stained by the antibody. On the other hand, an ordinary matrix obtained upon adsorption of laminin in neutral pH (LM) was constituted of bulky protein aggregates whose interior was not accessible to the same anti-laminin antibody. SEM and AFM analyses revealed that the seed unit of polyLM was a flat polygon formed in solution whereas the seed structure of LM was highly heterogeneous, intercalating rod-like, spherical and thin spread lamellar deposits. As polyLM was visualized at progressively increasing magnifications, we observed that the morphology of the polymer was alike independently of the magnification used for the observation. A search for the Hausdorff dimension in images of the two matrices showed that polyLM, but not LM, presented fractal dimensions of 1.55, 1.62 and 1.70 after 1, 8 and 12 hours of adsorption, respectively. Data in the present work suggest that the intrinsic fractal nature of polymerized laminin can be the structural basis for the fractal-like organization of basement membranes in the neurogenic niches of the central nervous system.

  13. Self-Propagating Frontal Polymerization in Water at Ambient Pressure

    Science.gov (United States)

    Olten, Nesrin; Kraigsley, Alison; Ronney, Paul D.

    2003-01-01

    Advances in polymer chemistry have led to the development of monomers and initiation agents that enable propagating free-radical polymerization fronts to exist. These fronts are driven by the exothermicity of the polymerization reaction and the transport of heat from the polymerized product to the reactant monomer/solvent/initiator solution. The thermal energy transported to the reactant solution causes the initiator to decompose, yielding free radicals, which start the free radical polymerization process as discussed in recent reviews. The use of polymerization processes based on propagating fronts has numerous applications. Perhaps the most important of these is that it enables rapid curing of polymers without external heating since the polymerization process itself provides the high temperatures necessary to initiate and sustain polymerization. This process also enables more uniform curing of arbitrarily thick samples since it does not rely on heat transfer from an external source, which will necessarily cause the temperature history of the sample to vary with distance from the surface according to a diffusion-like process. Frontal polymerization also enables filling and sealing of structures having cavities of arbitrary shape without having to externally heat the structure. Water at atmospheric pressure is most convenient solvent to employ and the most important for practical applications (because of the cost and environmental issues associated with DMSO and other solvents). Nevertheless, to our knowledge, steady, self-propagating polymerization fronts have not been reported in water at atmospheric pressure. Currently, polymerization fronts require a high boiling point solvent (either water at high pressures or an alternative solvent such as dimethyl sulfoxide (DMSO) (boiling point 189 C at atmospheric pressure.) Early work on frontal polymerization, employed pressures up to 5000 atm in order to avoid boiling of the monomer/solvent/initiator solution. High

  14. Optical Fiber Sensors Based on Polymeric Sensitive Coatings

    Directory of Open Access Journals (Sweden)

    Pedro J. Rivero

    2018-03-01

    Full Text Available Polymer technology is one of the fastest growing fields of contemporary research due to the possibility of using a wide variety of synthetic chemical routes for obtaining a polymeric network with a well-defined structure, resulting in materials with outstanding macroscopic properties. Surface engineering techniques based on the implementation of polymeric structures can be used as an interesting tool for the design of materials with functional properties. In this sense, the use of fabrication techniques for the design of nanostructured polymeric coatings is showing an important growth due to the intrinsic advantages of controlling the structure at a nanoscale level because physical, chemical, or optical properties can be considerably improved in comparison with the bulk materials. In addition, the presence of these sensitive polymeric coatings on optical fiber is a hot topic in the scientific community for its implementation in different market niches because a wide variety of parameters can be perfectly measured with a high selectivity, sensitivity, and fast response time. In this work, the two main roles that a polymeric sensitive matrix can play on an optical fiber for sensing applications are evaluated. In a first section, the polymers are used as a solid support for the immobilization of specific sensitive element, whereas in the second section the polymeric matrix is used as the chemical transducer itself. Additionally, potential applications of the optical fiber sensors in fields as diverse as biology, chemistry, engineering, environmental, industry or medicine will be presented in concordance with these two main roles of the polymeric sensitive matrices.

  15. Smart polymeric materials in forms of fiber and film

    International Nuclear Information System (INIS)

    Sugo, Takanobu

    1998-01-01

    Chemical grafting: graft polymerization is a powerful technology to append novel functionality to base fibers, clothes, felts, films and others, while maintaining their original properties. As shown in Figure 1, while a gardener may use a pair of shears to cut the branch, to cut the molecular branch of a polymeric material, one can utilize the radiation energy. Effective utilization of the radiation energy can proceed to a novel reaction that is impossible for other conventional methods and develop a new material bearing outstanding functions. This technology is named radiation-induced graft polymerization (RIGP). In this article, the present research and development of novel functional polymeric materials by radiation-induced graft polymerization is described. The felt of intertwined fibers has been widely used as a filter to remove particles from air but not toxic gaseous compounds. However, by RIGP, one can transform the felt into a high functional filter that will absorb the toxic gaseous compounds while removing particles simultaneously. As a result, the RIGP technology, which is impossible by conventional technology, has enabled the development of a novel functional material that produce highly pure air. Commercialization of this filter for applications in a semiconductor manufacturing facility and as an air purifier is under process. Moreover, this filter can also be used to produce highly purified water by removing toxic heavy metals. Commercially available polyethylene films are also been transform into conductive separators by RIGP to increase the lifetime of a battery by more than five-fold. (J.P.N)

  16. Applications of polymeric micelles with tumor targeted in chemotherapy

    International Nuclear Information System (INIS)

    Ding Hui; Wang Xiaojun; Zhang Song; Liu Xinli

    2012-01-01

    Polymeric micelles (PMs) have gained more progress as a carrier system with the quick development of biological and nanoparticle techniques. In particular, PMs with smart targeting can deliver anti-cancer drugs directly into tumor cells at a sustained rate. PMs with core–shell structure (with diameters of 10 ∼ 100 nm) have been prepared by a variety of biodegradable and biocompatible polymers via a self-assembly process. The preparation of polymeric micelles with stimuli-responsive block copolymers or modification of target molecules on polymeric micelles’ surface are able to significantly improve the efficiency of drug delivery. Polymeric micelles, which have been considered as a novel promising drug carrier for cancer therapeutics, are rapidly evolving and being introduced in an attempt to overcome several limitations of traditional chemotherapeutics, including water solubility, tumor-specific accumulation, anti-tumor efficacy, and non-specific toxicity. This review describes the preparation of polymeric micelles and the targeted modification which greatly enhance the effects of chemotherapeutic agents.

  17. Thermodynamic Presynthetic Considerations for Ring-Opening Polymerization.

    Science.gov (United States)

    Olsén, Peter; Odelius, Karin; Albertsson, Ann-Christine

    2016-03-14

    The need for polymers for high-end applications, coupled with the desire to mimic nature's macromolecular machinery fuels the development of innovative synthetic strategies every year. The recently acquired macromolecular-synthetic tools increase the precision and enable the synthesis of polymers with high control and low dispersity. However, regardless of the specificity, the polymerization behavior is highly dependent on the monomeric structure. This is particularly true for the ring-opening polymerization of lactones, in which the ring size and degree of substitution highly influence the polymer formation properties. In other words, there are two important factors to contemplate when considering the particular polymerization behavior of a specific monomer: catalytic specificity and thermodynamic equilibrium behavior. This perspective focuses on the latter and undertakes a holistic approach among the different lactones with regard to the equilibrium thermodynamic polymerization behavior and its relation to polymer synthesis. This is summarized in a monomeric overview diagram that acts as a presynthetic directional cursor for synthesizing highly specific macromolecules; the means by which monomer equilibrium conversion relates to starting temperature, concentration, ring size, degree of substitution, and its implications for polymerization behavior are discussed. These discussions emphasize the importance of considering not only the catalytic system but also the monomer size and structure relations to thermodynamic equilibrium behavior. The thermodynamic equilibrium behavior relation with a monomer structure offers an additional layer of complexity to our molecular toolbox and, if it is harnessed accordingly, enables a powerful route to both monomer formation and intentional macromolecular design.

  18. Direct surface PEGylation of nanodiamond via RAFT polymerization

    International Nuclear Information System (INIS)

    Shi, Yingge; Liu, Meiying; Wang, Ke; Huang, Hongye; Wan, Qing; Tao, Lei; Fu, Lihua; Zhang, Xiaoyong; Wei, Yen

    2015-01-01

    Graphical abstract: In this paper, we describe an efficient, practical and novel method to modify ND via direct immobilization of chain transfer agent for RAFT polymerization. - Highlights: • Surface PEGylation of ND via RAFT polymerization. • ND with high water dispersibility and excellent biocompatibility. • Controlled living polymerization. - Abstract: Nanodiamond (ND) is a novel class of carbon nanomaterials, which has been extensively investigated for biomedical applications because of its small size, high surface area and excellent biocompatibility. However, the biomedical applications of unmodified ND are still largely restricted because of their poor dispersibility in both aqueous and organic medium. In this work, we reported a novel strategy for the surface modification of ND via reversible addition fragmentation chain transfer (RAFT) polymerization. For preparation of the PEGylated ND (pPEGMA-ND), chain transfer agent (CTA) was immobilized onto ND through reaction between the hydroxyl group of ND and the carboxyl group of CTA, which was used as the initiator for surface-initiated RAFT polymerization. The successful preparation of pPEGMA-ND was characterized by nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectra and thermal gravimetric analysis in detail. Results demonstrated that pPEGMA-ND exhibited enhanced water dispersibility and desirable biocompatibility, making it promising for biomedical applications.

  19. Plasma polymerized high energy density dielectric films for capacitors

    Science.gov (United States)

    Yamagishi, F. G.

    1983-01-01

    High energy density polymeric dielectric films were prepared by plasma polymerization of a variety of gaseous monomers. This technique gives thin, reproducible, pinhole free, conformable, adherent, and insoluble coatings and overcomes the processing problems found in the preparation of thin films with bulk polymers. Thus, devices are prepared completely in a vacuum environment. The plasma polymerized films prepared all showed dielectric strengths of greater than 1000 kV/cm and in some cases values of greater than 4000 kV/cm were observed. The dielectric loss of all films was generally less than 1% at frequencies below 10 kHz, but this value increased at higher frequencies. All films were self healing. The dielectric strength was a function of the polymerization technique, whereas the dielectric constant varied with the structure of the starting material. Because of the thin films used (thickness in the submicron range) surface smoothness of the metal electrodes was found to be critical in obtaining high dielectric strengths. High dielectric strength graft copolymers were also prepared. Plasma polymerized ethane was found to be thermally stable up to 150 C in the presence of air and 250 C in the absence of air. No glass transitions were observed for this material.

  20. Direct surface PEGylation of nanodiamond via RAFT polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Yingge [Department of Chemistry and Jiangxi Provincial Key Laboratory of New Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 (China); Liu, Meiying [Department of Chemistry and Jiangxi Provincial Key Laboratory of New Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Wang, Ke [Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084 (China); Huang, Hongye; Wan, Qing [Department of Chemistry and Jiangxi Provincial Key Laboratory of New Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Tao, Lei [Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084 (China); Fu, Lihua [School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 (China); Zhang, Xiaoyong, E-mail: xiaoyongzhang1980@gmail.com [Department of Chemistry and Jiangxi Provincial Key Laboratory of New Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Wei, Yen, E-mail: weiyen@tsinghua.edu.cn [Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084 (China)

    2015-12-01

    Graphical abstract: In this paper, we describe an efficient, practical and novel method to modify ND via direct immobilization of chain transfer agent for RAFT polymerization. - Highlights: • Surface PEGylation of ND via RAFT polymerization. • ND with high water dispersibility and excellent biocompatibility. • Controlled living polymerization. - Abstract: Nanodiamond (ND) is a novel class of carbon nanomaterials, which has been extensively investigated for biomedical applications because of its small size, high surface area and excellent biocompatibility. However, the biomedical applications of unmodified ND are still largely restricted because of their poor dispersibility in both aqueous and organic medium. In this work, we reported a novel strategy for the surface modification of ND via reversible addition fragmentation chain transfer (RAFT) polymerization. For preparation of the PEGylated ND (pPEGMA-ND), chain transfer agent (CTA) was immobilized onto ND through reaction between the hydroxyl group of ND and the carboxyl group of CTA, which was used as the initiator for surface-initiated RAFT polymerization. The successful preparation of pPEGMA-ND was characterized by nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectra and thermal gravimetric analysis in detail. Results demonstrated that pPEGMA-ND exhibited enhanced water dispersibility and desirable biocompatibility, making it promising for biomedical applications.

  1. Study on irradiated polymerization of acrylonitrile by NMR

    International Nuclear Information System (INIS)

    Zhao Xin; Lin Hao

    1999-01-01

    Sup 13 C CP/MAS spectra and nuclear Overhauser effects (NOE) at room temperature have been measured for acrylonitrile (AN) in homophase irradiated polymerization. With the increase of radiation dose the chemical shift of cracking peaks and NOE are variation. This implies that the polymerized mechanism of AN were changed with the variation of irradiated doses and dose rate. There is the stronger affinity electron group (-CN) in acrylonitrile monomer. It may be polymerized by various ways and mechanism and be gained the polymer of difference structures and molecular weight of polyacrylonitrile (PAN). Starmicarbon and Starker obtained higher molecular weight of polyacrylonitrile by peroxysulfate-pyrosulfite in oxidation-reduction system. The superhigh molecular weight of PAN was synthesized chemically according to the method of Wu et. al. by suspension polymerization. In this paper we discussed that the relative concentrations of steric dyads and triads in the chain structure in PAN and the irradiation polymerized mechanism of acrylonitrile monomer in room temperature by different dose and dose rate

  2. Characterization of polymeric microneedle arrays for transdermal drug delivery.

    Directory of Open Access Journals (Sweden)

    Yusuf K Demir

    Full Text Available Microfabrication of dissolvable, swellable, and biodegradable polymeric microneedle arrays (MNs were extensively investigated based in a nano sensitive fabrication style known as micromilling that is then combined with conventional micromolding technique. The aim of this study was to describe the polymer selection, and optimize formulation compounding parameters for various polymeric MNs. Inverse replication of micromilled master MNs reproduced with polydimethylsiloxane (PDMS, where solid out of plane polymeric MNs were subsequently assembled, and physicochemically characterized. Dissolvable, swellable, and biodegradable MNs were constructed to depth of less than 1 mm with an aspect ratio of 3.6, and 1/2 mm of both inter needle tip and base spacing. Micromolding step also enabled to replicate the MNs very precisely and accurate. Polymeric microneedles (MN precision was ranging from ± 0.18 to ± 1.82% for microneedle height, ± 0.45 to ± 1.42% for base diameter, and ± 0.22 to ± 0.95% for interbase spacing. Although dissolvable sodium alginate MN showed less physical robustness than biodegradable polylactic-co-glycolic acid MN, their thermogravimetric analysis is of promise for constructing these polymeric types of matrix devices.

  3. Factors affecting toxicity and efficacy of polymeric nanomedicines

    International Nuclear Information System (INIS)

    Igarashi, Eiki

    2008-01-01

    Nanomedicine is the application of nanotechnology to medicine. The purpose of this article is to review common characteristics of polymeric nanomedicines with respect to passive targeting. We consider several biodegradable polymeric nanomedicines that are between 1 and 100 nm in size, and discuss the impact of this technology on efficacy, pharmacokinetics, toxicity and targeting. The degree of toxicity of polymeric nanomedicines is strongly influenced by the biological conditions of the local environment, which influence the rate of degradation or release of polymeric nanomedicines. The dissemination of polymeric nanomedicines in vivo depends on the capillary network, which can provide differential access to normal and tumor cells. The accumulation of nanomedicines in the microlymphatics depends upon retention time in the blood and extracellular compartments, as well as the type of capillary endothelium surrounding specific tissues. Finally, the toxicity or efficacy of intact nanomedicines is also dependent upon tissue type, i.e., non-endocrine or endocrine tissue, spleen, or lymphatics, as well as tumor type

  4. Tubulin polymerization-stimulating activity of Ganoderma triterpenoids.

    Science.gov (United States)

    Kohno, Toshitaka; Hai-Bang, Tran; Zhu, Qinchang; Amen, Yhiya; Sakamoto, Seiichi; Tanaka, Hiroyuki; Morimoto, Satoshi; Shimizu, Kuniyoshi

    2017-04-01

    Tubulin polymerization is an important target for anticancer therapies. Even though the potential of Ganoderma triterpenoids against various cancer targets had been well documented, studies on their tubulin polymerization-stimulating activity are scarce. This study was conducted to evaluate the effect of Ganoderma triterpenoids on tubulin polymerization. A total of twenty-four compounds were investigated using an in vitro tubulin polymerization assay. Results showed that most of the studied triterpenoids exhibited microtuble-stabilizing activity to different degrees. Among the investigated compounds, ganoderic acid T-Q, ganoderiol F, ganoderic acid S, ganodermanontriol and ganoderic acid TR were found to have the highest activities. A structure-activity relationship (SAR) analysis was performed. Extensive investigation of the SAR suggests the favorable structural features for the tubulin polymerization-stimulating activity of lanostane triterpenes. These findings would be helpful for further studies on the potential mechanisms of the anticancer activity of Ganoderma triterpenoids and give some indications on the design of tubulin-targeting anticancer agents.

  5. Radiation initiated polymerization of trioxane and stabilization of polyoxymethylene

    International Nuclear Information System (INIS)

    Rao, M.H.; Ramanan, G.; Kunjappu, J.T.; Rao, K.N.

    1990-01-01

    Gamma ray induced polymerization of trioxane from an indigenous source (M/s. Nuchem Plastics, Faridabad) has been investigated by both in-source and post polymerization techniques. Impurity levels in the trioxane samples are determined and compared with those in an imported material. Critical evaluation of the results of its purification by different methods, viz. treatment with molecular sieves, crystallization from solvents and their variations, has been carried out prior to optimising the conditions of polymerization. A novel but simple purification procedure employing benzene as the solvent which is found to form a ternary azeotrope with trioxane and water has been developed. The effect of these purification methods on the polymerization efficiency and their dependence on the molecular weight of the polymer formed are also discussed. Experimental details of polymerizing trioxane in 10 kg scale are also described. To improve upon the thermal stabilty of the polyoxymethylene thus formed, protection of the free hydroxyl end groups (end-capping) has been achieved by an acetylation procedure using acetic anhydride in presence of catalytic amounts of sodium acetate. (author). 11 tabs., 4 figs

  6. Oxidative coupling and polymerization of pyrroles

    International Nuclear Information System (INIS)

    Hansen, Gregers Hendrik; Henriksen, Rikke Morck; Kamounah, Fadhil S.; Lund, Torben; Hammerich, Ole

    2005-01-01

    The electrochemical oxidation of 2,4-dimethyl-3-ethylpyrrole in acetonitrile has been studied using cyclic voltammetry, constant current coulometry, preparative electrolyses and ab initio calculations. The product analysis after the preparative electrolyses was carried out by HPLC combined with UV-vis and electrospray ionization MS detection. The aim of the work was to address some of the unresolved problems in the oxidative oligomerization and polymerization of alkylpyrroles. The title compound was chosen as a model for studies of pyrroles that are more basic than the solvent-supporting electrolyte system and for that reason are forced to serve as the base accepting the protons released during the coupling steps. The voltammograms obtained by cyclic voltammetry at a substrate concentration of 2 mM and voltage scan rates between 0.02 and 2 V s -1 showed a characteristic trace-crossing phenomenon that could be demonstrated by digital simulation to be related to that fact that the deprotonations of the initially formed dimer dication are slow with second order rate constants in the range 10 3 -10 4 M -1 s -1 . The relative stability of the different tautomers of the protonated pyrrole monomer and the corresponding 2,2'-dimer was determined by ab initio calculations at the RHF 6-31G(d) level. The studies also included investigations of the effects resulting from addition of a non-nucleophilic base, 2,6-di-tert-butylpyridine, to the voltammetry solutions. The major product observed after preparative electrolyses was a trimer the structure of which is proposed to include a central 2H-pyrrole unit. Since 2H-pyrroles are stronger bases than the corresponding 1H-pyrroles, the trimer is effectively protected against further oxidation by protonation. Two other trimers were observed as minor or trace products as well as a 1H,2H-dimer and several tetramers, also in trace amounts. In addition to the dimer, the trimers and the tetramers, a number of other minor products could be

  7. Curing mechanism of flexible aqueous polymeric coatings.

    Science.gov (United States)

    Irfan, Muhammad; Ahmed, Abid Riaz; Kolter, Karl; Bodmeier, Roland; Dashevskiy, Andriy

    2017-06-01

    The objective of this study was to explain curing phenomena for pellets coated with a flexible polymeric coating based on poly(vinyl acetate) (Kollicoat® SR 30D) with regard to the effect of starter cores, thickness of drug layer, adhesion of coating to drug-layered-cores as well as coating properties. In addition, appropriate approaches to eliminate the curing effect were identified. Sugar or MCC cores were layered with the model drugs carbamazepine, theophylline, propranolol HCl, tramadol HCl and metoprolol HCl using HPMC (5 or 25% w/w, based on drug) as a binder. Drug-layered pellets were coated with Kollicoat® SR 30D in a fluidized bed coater using TEC (10% w/w) as plasticizer and talc (35-100% w/w) as anti-tacking agent. Drug release, pellet properties (morphology, water uptake-weight loss and osmolality) and adhesion of the coating to the drug layer were investigated as a function of curing at 60°C or 60°C/75% RH for 24h. The film formation of the aqueous dispersion of Kollicoat® SR 30D was complete, and therefore, a strong curing effect (decrease in drug release) at elevated temperature and humidity (60°C/75% RH) could not be explained by the well-known hydroplasticization and the further gradual coalescence of the colloidal polymer particles. According to the provided mechanistic explanation, the observed curing effect was associated with (1) high flexibility of coating, (2) adhesion between coating and drug layer, (3) water retaining properties of the drug layer, and (4) osmotically active cores. Unwanted curing effects could be minimized/eliminated by the addition of talc or/and pore-forming water soluble polymers in the coating, increasing binder amount or applying an intermediate coating, by increasing the thickness of drug layer or using non-osmotic cores. A new insight into curing phenomena mainly associated with the adhesion between drug layer and coating was provided. Appropriate approaches to avoid unwanted curing effect were identified

  8. Microfluidic production of polymeric functional microparticles

    Science.gov (United States)

    Jiang, Kunqiang

    This dissertation focuses on applying droplet-based microfluidics to fabricate new classes of polymeric microparticles with customized properties for various applications. The integration of microfluidic techniques with microparticle engineering allows for unprecedented control over particle size, shape, and functional properties. Specifically, three types of microparticles are discussed here: (1) Magnetic and fluorescent chitosan hydrogel microparticles and their in-situ assembly into higher-order microstructures; (2) Polydimethylsiloxane (PDMS) microbeads with phosphorescent properties for oxygen sensing; (3) Macroporous microparticles as biological immunosensors. First, we describe a microfluidic approach to generate monodisperse chitosan hydrogel microparticles that can be further connected in-situ into higher-order microstructures. Microparticles of the biopolymer chitosan are created continuously by contacting an aqueous solution of chitosan at a microfluidic T-junction with a stream of hexadecane containing a nonionic detergent, followed by downstream crosslinking of the generated droplets by a ternary flow of glutaraldehyde. Functional properties of the microparticles can be easily varied by introducing payloads such as magnetic nanoparticles and/or fluorescent dyes into the chitosan solution. We then use these prepared microparticles as "building blocks" and assemble them into high ordered microstructures, i.e. microchains with controlled geometry and flexibility. Next, we describe a new approach to produce monodisperse microbeads of PDMS using microfluidics. Using a flow-focusing configuration, a PDMS precursor solution is dispersed into microdroplets within an aqueous continuous phase. These droplets are collected and thermally cured off-chip into soft, solid microbeads. In addition, our technique allows for direct integration of payloads, such as an oxygen-sensitive porphyrin dye, into the PDMS microbeads. We then show that the resulting dye

  9. Enantioselective Epoxide Polymerization Using a Bimetallic Cobalt Catalyst

    KAUST Repository

    Thomas, Renee M.

    2010-11-24

    A highly active enantiopure bimetallic cobalt complex was explored for the enantioselective polymerization of a variety of monosubstituted epoxides. The polymerizations were optimized for high rates and stereoselectivity, with s-factors (kfast/kslow) for most epoxides exceeding 50 and some exceeding 300, well above the threshold for preparative utility of enantiopure epoxides and isotactic polyethers. Values for mm triads of the resulting polymers are typically greater than 95%, with some even surpassing 98%. In addition, the use of a racemic catalyst allowed the preparation of isotactic polyethers in quantitative yields. The thermal properties of these isotactic polyethers are presented, with many polymers exhibiting high T m values. This is the first report of the rapid synthesis of a broad range of highly isotactic polyethers via the enantioselective polymerization of racemic epoxides. © 2010 American Chemical Society.

  10. Platinum porphyrins as ionophores in polymeric membrane electrodes

    DEFF Research Database (Denmark)

    Lvova, Larisa; Verrelli, Giorgio; Nardis, Sara

    2011-01-01

    A comparative study of Pt(II)- and Pt(IV)-porphyrins as novel ionophores for anion-selective polymeric membrane electrodes is performed. Polymeric membranes of different compositions, prepared by varying plasticizers, cationic and anionic additives and Pt porphyrins, have been examined...... within the electrode membranes, while those based on Pt(IV)TPPCl2 operate via a mixed mode carrier mechanism, evidencing also a partial reduction of the starting ionophore to Pt(II)TPP. Spectrophotometric measurements of thin polymeric films indicate that no spontaneous formation of hydroxide ion bridged...... porphyrin dimers occurs in the membrane plasticized both with high or low dielectric constant plasticizer, due to a low oxophilicity of central Pt. The computational study of various anion–Pt(IV)TPPCl2 complex formation by means of semi-empirical and density functional theory (DFT) methods revealed a good...

  11. Measurement of in vitro microtubule polymerization by turbidity and fluorescence.

    Science.gov (United States)

    Mirigian, Matthew; Mukherjee, Kamalika; Bane, Susan L; Sackett, Dan L

    2013-01-01

    Tubulin polymerization may be conveniently monitored by the increase in turbidity (optical density, or OD) or by the increase in fluorescence intensity of diamidino-phenylindole. The resulting data can be a quantitative measure of microtubule (MT) assembly, but some care is needed in interpretation, especially of OD data. Buffer formulations used for the assembly reaction significantly influence the polymerization, both by altering the critical concentration for polymerization and by altering the exact polymer produced-for example, by increasing the production of sheet polymers in addition to MT. Both the turbidity and the fluorescence methods are useful for demonstrating the effect of MT-stabilizing or -destabilizing additives. 2013 Published by Elsevier Inc.

  12. Polymeric salt bridges for conducting electric current in microfluidic devices

    Science.gov (United States)

    Shepodd, Timothy J [Livermore, CA; Tichenor, Mark S [San Diego, CA; Artau, Alexander [Humacao, PR

    2009-11-17

    A "cast-in-place" monolithic microporous polymer salt bridge for conducting electrical current in microfluidic devices, and methods for manufacture thereof is disclosed. Polymeric salt bridges are formed in place in capillaries or microchannels. Formulations are prepared with monomer, suitable cross-linkers, solvent, and a thermal or radiation responsive initiator. The formulation is placed in a desired location and then suitable radiation such as UV light is used to polymerize the salt bridge within a desired structural location. Embodiments are provided wherein the polymeric salt bridges have sufficient porosity to allow ionic migration without bulk flow of solvents therethrough. The salt bridges form barriers that seal against fluid pressures in excess of 5000 pounds per square inch. The salt bridges can be formulated for carriage of suitable amperage at a desired voltage, and thus microfluidic devices using such salt bridges can be specifically constructed to meet selected analytical requirements.

  13. Various aspects of ultrasound assisted emulsion polymerization process.

    Science.gov (United States)

    Korkut, Ibrahim; Bayramoglu, Mahmut

    2014-07-01

    In this paper, the effects of ultrasonic (US) power, pulse ratio, probe area and recipe composition were investigated on two process responses namely, monomer (methyl methacrylate, MMA) conversion and electrical energy consumption per mass of product polymer (PMMA). Pulsed mode US is more suitable than continuous mode US for emulsion polymerization. The probe (tip) area has little effect on the yield of polymerization when comparing 19 and 13 mm probes, 13 mm probe performing slightly better for high conversion levels. Meanwhile, large probe area is beneficial for high conversion efficiency of electric energy to US energy as well as for high radical generation yield per energy consumed. The conversion increased slightly and electrical energy consumption decreased substantially by using a recipe with high SDS and monomer concentrations. Conclusions presented in this paper may be useful for scale-up of US assisted emulsion polymerization. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Effects of polymeric carbohydrates on growth and development

    DEFF Research Database (Denmark)

    Knudsen, Knud Erik Bach

    , metabolized and net energy); available energy relative to protein is crucial for performance and carcass quality; second, the proportion of starch to NSP will influence rate and type of metabolites (glucose vs. SCFA) deriving from carbohydrate assimilation, and finally, type of starch (types A, B, and C......The main objective of the presentation is to provide insight into the role of polymeric carbohydrates in growth and development of pigs. Polymeric carbohydrates—starch and non-starch polysaccharides (NSP)—quantitatively represent the largest portion of the diets for pigs and are therefore...... at a slower and more constant rate and with SCFA being absorbed by passive diffusion. Type and levels of polymeric carbohydrates influence growth and development through different mechanisms; first, the proportion of starch to NSP plays an important role for the content of available energy (digestible...

  15. Conductive cotton prepared by polyaniline in situ polymerization using laccase.

    Science.gov (United States)

    Zhang, Ya; Dong, Aixue; Wang, Qiang; Fan, Xuerong; Cavaco-Paulo, Artur; Zhang, Ying

    2014-09-01

    The high-redox-potential catalyst laccase, isolated from Aspergillus, was first used as a biocatalyst in the oxidative polymerization of water-soluble conductive polyaniline, and then conductive cotton was prepared by in situ polymerization under the same conditions. The polymerization of aniline was performed in a water dispersion of sodium dodecylbenzenesulfonate (SDBS) micellar solution with atmospheric oxygen serving as the oxidizing agent. This method is ecologically clean and permits a greater degree of control over the kinetics of the reaction. The conditions for polyaniline synthesis were optimized. Characterizations of the conducting polyaniline and cotton were carried out using Fourier transform infrared spectroscopy, UV-vis spectroscopy, cyclic voltammetry, the fabric induction electrostatic tester, and the far-field EMC shielding effectiveness test fixture.

  16. Recent advances on polymeric membranes for membrane reactors

    KAUST Repository

    Buonomenna, M. G.

    2012-06-24

    Membrane reactors are generally applied in high temperature reactions (>400 °C). In the field of fine chemical synthesis, however, much milder conditions are generally applicable and polymeric membranes were applied without their damage. The successful use of membranes in membrane reactors is primary the result of two developments concerning: (i) membrane materials and (ii) membrane structures. The selection of a suited material and preparation technique depends on the application the membrane is to be used in. In this chapter a review of up to date literature about polymers and configuration catalyst/ membranes used in some recent polymeric membrane reactors is given. The new emerging concept of polymeric microcapsules as catalytic microreactors has been proposed. © 2012 Bentham Science Publishers. All rights reserved.

  17. Enantioselective Epoxide Polymerization Using a Bimetallic Cobalt Catalyst

    KAUST Repository

    Thomas, Renee M.; Widger, Peter C. B.; Ahmed, Syud M.; Jeske, Ryan C.; Hirahata, Wataru; Lobkovsky, Emil B.; Coates, Geoffrey W.

    2010-01-01

    A highly active enantiopure bimetallic cobalt complex was explored for the enantioselective polymerization of a variety of monosubstituted epoxides. The polymerizations were optimized for high rates and stereoselectivity, with s-factors (kfast/kslow) for most epoxides exceeding 50 and some exceeding 300, well above the threshold for preparative utility of enantiopure epoxides and isotactic polyethers. Values for mm triads of the resulting polymers are typically greater than 95%, with some even surpassing 98%. In addition, the use of a racemic catalyst allowed the preparation of isotactic polyethers in quantitative yields. The thermal properties of these isotactic polyethers are presented, with many polymers exhibiting high T m values. This is the first report of the rapid synthesis of a broad range of highly isotactic polyethers via the enantioselective polymerization of racemic epoxides. © 2010 American Chemical Society.

  18. Living atom transfer radical polymerization of 4-acetoxystyrene

    DEFF Research Database (Denmark)

    Gao, Bo; Chen, Xianyi; Ivan, Bela

    1997-01-01

    Living atom transfer radical polymerization (ATRP) of 4-acetoxystyrene (1), a protected 4-vinylphenol, leading to poly(4-acetoxystyrene) with well-defined molecular weight and narrow molecular weight distribution was carried out in bulk with a,a'-dibromoxylene(2)/CuBr/2,2-bipyridine(bpy) as initi......Living atom transfer radical polymerization (ATRP) of 4-acetoxystyrene (1), a protected 4-vinylphenol, leading to poly(4-acetoxystyrene) with well-defined molecular weight and narrow molecular weight distribution was carried out in bulk with a,a'-dibromoxylene(2)/CuBr/2,2-bipyridine......(bpy) as initiating system. A linear (M) over bar(n), versus monomer conversion plot was found in good accordance with the theoretical line, indicating 100% initiating efficiency. The polymerization is first order in respect to monomer up to about 70% monomer conversion. Deviations from linearity at higher conversion...

  19. Polymeric peptide pigments with sequence-encoded properties

    Energy Technology Data Exchange (ETDEWEB)

    Lampel, Ayala; McPhee, Scott A.; Park, Hang-Ah; Scott, Gary G.; Humagain, Sunita; Hekstra, Doeke R.; Yoo, Barney; Frederix, Pim W. J. M.; Li, Tai-De; Abzalimov, Rinat R.; Greenbaum, Steven G.; Tuttle, Tell; Hu, Chunhua; Bettinger, Christopher J.; Ulijn, Rein V.

    2017-06-08

    Melanins are a family of heterogeneous polymeric pigments that provide ultraviolet (UV) light protection, structural support, coloration, and free radical scavenging. Formed by oxidative oligomerization of catecholic small molecules, the physical properties of melanins are influenced by covalent and noncovalent disorder. We report the use of tyrosine-containing tripeptides as tunable precursors for polymeric pigments. In these structures, phenols are presented in a (supra-)molecular context dictated by the positions of the amino acids in the peptide sequence. Oxidative polymerization can be tuned in a sequence-dependent manner, resulting in peptide sequence–encoded properties such as UV absorbance, morphology, coloration, and electrochemical properties over a considerable range. Short peptides have low barriers to application and can be easily scaled, suggesting near-term applications in cosmetics and biomedicine.

  20. Gamma radiation-polymerized methacrylates used as heavy metals adsorbents

    International Nuclear Information System (INIS)

    Barrera D, C.; Roa M, G.; Balderas H, P.; Bilyeu, B.; Urena N, F.

    2009-01-01

    Heavy metal removal from aqueous solution is a priority research area since the actual methods are costly and a major drawback is the large amounts of sludge generated when applying traditional techniques. Adsorption is a physiochemical wastewater treatment process, which is gaining prominence as a means of producing high quality effluents, which are low in metal ion concentrations. The development of inexpensive adsorbents for the treatment of wastewater is an important area in environmental sciences. In this work we describe some of the physical and chemical phenomena that take place in the polymerization of methacrylates when gamma radiation is used. We explain how polymeric material characterization equipment are used for obtaining information regarding the material properties. Then we explain how the new polymeric material obtained can be use for the wastewater treatment. Finally, a comparison in the heavy metal removal from aqueous solution with other sorbent materials is presented. (Author)