WorldWideScience

Sample records for poly-d-glutamic acid antigenemia

  1. Intracellular synthesis of glutamic acid in Bacillus methylotrophicus SK19.001, a glutamate-independent poly(γ-glutamic acid)-producing strain.

    Science.gov (United States)

    Peng, Yingyun; Zhang, Tao; Mu, Wanmeng; Miao, Ming; Jiang, Bo

    2016-01-15

    Bacillus methylotrophicus SK19.001 is a glutamate-independent strain that produces poly(γ-glutamic acid) (γ-PGA), a polymer of D- and L-glutamic acids that possesses applications in food, the environment, agriculture, etc. This study was undertaken to explore the synthetic pathway of intracellular L- and D-glutamic acid in SK19.001 by investigating the effects of tricarboxylic acid cycle intermediates and different amino acids as metabolic precursors on the production of γ-PGA and analyzing the activities of the enzymes involved in the synthesis of L- and D-glutamate. Tricarboxylic acid cycle intermediates and amino acids could participate in the synthesis of γ-PGA via independent pathways in SK19.001. L-Aspartate aminotransferase, L-glutaminase and L-glutamate synthase were the enzymatic sources of L-glutamate. Glutamate racemase was responsible for the formation of D-glutamate for the synthesis of γ-PGA, and the synthetase had stereoselectivity for glutamate substrate. The enzymatic sources of L-glutamate were investigated for the first time in the glutamate-independent γ-PGA-producing strain, and multiple enzymatic sources of L-glutamate were verified in SK19.001, which will benefit efforts to improve production of γ-PGA with metabolic engineering strategies. © 2015 Society of Chemical Industry.

  2. Microbial production of poly-γ-glutamic acid.

    Science.gov (United States)

    Sirisansaneeyakul, Sarote; Cao, Mingfeng; Kongklom, Nuttawut; Chuensangjun, Chaniga; Shi, Zhongping; Chisti, Yusuf

    2017-09-05

    Poly-γ-glutamic acid (γ-PGA) is a natural, biodegradable and water-soluble biopolymer of glutamic acid. This review is focused on nonrecombinant microbial production of γ-PGA via fermentation processes. In view of its commercial importance, the emphasis is on L-glutamic acid independent producers (i.e. microorganisms that do not require feeding with the relatively expensive amino acid L-glutamic acid to produce γ-PGA), but glutamic acid dependent production is discussed for comparison. Strategies for improving production, reducing costs and using renewable feedstocks are discussed.

  3. Influence of Glutamic Acid on the Properties of Poly(xylitol glutamate sebacate Bioelastomer

    Directory of Open Access Journals (Sweden)

    Weifu Dong

    2013-11-01

    Full Text Available In order to further improve the biocompatibility of xylitol based poly(xylitol sebacate (PXS bioelastomer, a novel kind of amino acid based poly(xylitol glutamate sebacate (PXGS has been successfully prepared in this work by melt polycondensation of xylitol, N-Boc glutamic acid and sebacic acid. Differential scanning calorimetry (DSC results indicated the glass-transition temperatures could be decreased by feeding N-Boc glutamic acid. In comparison to PXS, PXGS exhibited comparable tensile strength and much higher elongation at break at the same ratio of acid/xylitol. The introduction of glutamic acid increased the hydrophilicity and in vitro degradation rate of the bioelastomer. It was found that PXGS exhibited excellent properties, such as tensile properties, biodegradability and hydrophilicity, which could be easily tuned by altering the feeding monomer ratios. The amino groups in the PXGS polyester side chains are readily functionalized, thus the biomelastomers can be considered as potential biomaterials for biomedical application.

  4. Genetic and metabolic engineering for microbial production of poly-γ-glutamic acid.

    Science.gov (United States)

    Cao, Mingfeng; Feng, Jun; Sirisansaneeyakul, Sarote; Song, Cunjiang; Chisti, Yusuf

    2018-05-28

    Poly-γ-glutamic acid (γ-PGA) is a natural biopolymer of glutamic acid. The repeating units of γ-PGA may be derived exclusively from d-glutamic acid, or l-glutamic acid, or both. The monomer units are linked by amide bonds between the α-amino group and the γ-carboxylic acid group. γ-PGA is biodegradable, edible and water-soluble. It has numerous existing and emerging applications in processing of foods, medicines and cosmetics. This review focuses on microbial production of γ-PGA via genetically and metabolically engineered recombinant bacteria. Strategies for improving production of γ-PGA include modification of its biosynthesis pathway, enhancing the production of its precursor (glutamic acid), and preventing loss of the precursor to competing byproducts. These and other strategies are discussed. Heterologous synthesis of γ-PGA in industrial bacterial hosts that do not naturally produce γ-PGA is discussed. Emerging trends and the challenges affecting the production of γ-PGA are reviewed. Copyright © 2018. Published by Elsevier Inc.

  5. Poly-gamma-glutamic acid a substitute of salivary protein statherin

    International Nuclear Information System (INIS)

    Qamar, Z.; Rahim, Z.B.H.A.; Fatima, T.

    2016-01-01

    The modus operandi of salivary proteins in reducing the kinetics of enamel dissolution during simulated caries challenges is thought to be associated with interaction of glutamic acid residues with human teeth surfaces. Japanese traditional food stuff natto is rich with chain of repeating glutamic acid residues linked by gamma-peptide bond and hence, named poly-gamma-glutamic acid (PGGA). It is a naturally occurring polypeptide and may therefore perform similar caries inhibitory functions as statherin. (author)

  6. Conformation of poly(γ-glutamic acid) in aqueous solution.

    Science.gov (United States)

    Muroga, Yoshio; Nakaya, Asami; Inoue, Atsuki; Itoh, Daiki; Abiru, Masaya; Wada, Kaori; Takada, Masako; Ikake, Hiroki; Shimizu, Shigeru

    2016-04-01

    Local conformation and overall conformation of poly(γ-DL-glutamic acid) (PγDLGA) and poly(γ-L-glutamic acid) (PγLGA) in aqueous solution was studied as a function of degree of ionization ε by (1) H-NMR, circular dichroism, and potentiometric titration. It was clarified that their local conformation is represented by random coil over an entire ε range and their overall conformation is represented by expanded random-coil in a range of ε > ε(*) , where ε(*) is about 0.3, 0.35, 0.45, and 0.5 for added-salt concentration of 0.02M, 0.05M, 0.1M, and 0.2M, respectively. In a range of ε acidic media. © 2015 Wiley Periodicals, Inc.

  7. Purification and characterization of gamma poly glutamic acid from newly Bacillus licheniformis NRC20.

    Science.gov (United States)

    Tork, Sanaa E; Aly, Magda M; Alakilli, Saleha Y; Al-Seeni, Madeha N

    2015-03-01

    γ-poly glutamic acid (γ-PGA) has received considerable attention for pharmaceutical and biomedical applications. γ-PGA from the newly isolate Bacillus licheniformis NRC20 was purified and characterized using diffusion distance agar plate, mass spectrometry and thin layer chromatography. All analysis indicated that γ-PGA is a homopolymer composed of glutamic acid. Its molecular weight was determined to be 1266 kDa. It was composed of L- and D-glutamic acid residues. An amplicon of 3050 represents the γ-PGA-coding genes was obtained, sequenced and submitted in genbank database. Its amino acid sequence showed high similarity with that obtained from B. licheniformis strains. The bacterium NRC 20 was independent of L-glutamic acid but the polymer production enhanced when cultivated in medium containing L-glutamic acid as the sole nitrogen source. Finally we can conclude that γ-PGA production from B. licheniformis NRC20 has many promised applications in medicine, industry and nanotechnology. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. pH-jump induced α-helix folding of poly-L-glutamic acid

    International Nuclear Information System (INIS)

    Donten, Mateusz L.; Hamm, Peter

    2013-01-01

    Highlights: ► pH-jump as truly biomimetic tool to initiate non-equilibrium dynamics of biomolecules. ► Design criteria to widen the applicability of pH-jumps are developed. ► Folding of poly-L-Glu in dependence of starting pH, pH jump size and helix length. ► Length dependence provides strong evidence for a nucleation–propagation scenario. - Abstract: pH jumps are a truly biomimetic technique to initiate non-equilibrium dynamics of biomolecules. In this work, the pH jump induced α-helix folding of poly-L-glutamic acid is investigated upon proton release from o-nitrobenzaldehyde. The aim of this work is twofold: On the one hand, design criteria of pH jump experiments are discussed, on the other hand, the folding mechanism of poly-L-glutamic acid is clarified by probing the IR response of the amide I band. Its folding kinetics is studied in dependence of the starting pD, the size of the pD jump and the length of the helix. While no dependence on the first two parameters could be detected, the folding time varies from 0.6 μs to 1.8 μs for helix lengths of 20 residue to 440 residue, respectively. It converges to a long-length limit at about 50 residue, a result which is attributed to a nucleation–propagation mechanism

  9. Glutamate dehydrogenase (RocG) in Bacillus licheniformis WX-02: Enzymatic properties and specific functions in glutamic acid synthesis for poly-γ-glutamic acid production.

    Science.gov (United States)

    Tian, Guangming; Wang, Qin; Wei, Xuetuan; Ma, Xin; Chen, Shouwen

    2017-04-01

    Poly-γ-glutamic acid (γ-PGA), a natural biopolymer, is widely used in cosmetics, medicine, food, water treatment, and agriculture owing to its features of moisture sequestration, cation chelation, non-toxicity and biodegradability. Intracellular glutamic acid, the substrate of γ-PGA, is a limiting factor for high yield in γ-PGA production. Bacillus subtilis and Bacillus licheniformis are both important γ-PGA producing strains, and B. subtilis synthesizes glutamic acid in vivo using the unique GOGAT/GS pathway. However, little is known about the glutamate synthesis pathway in B. licheniformis. The aim of this work was to characterize the glutamate dehydrogenase (RocG) in glutamic acid synthesis from B. licheniformis with both in vivo and in vitro experiments. By re-directing the carbon flux distribution, the rocG gene deletion mutant WX-02ΔrocG produced intracellular glutamic acid with a concentration of 90ng/log(CFU), which was only 23.7% that of the wild-type WX-02 (380ng/log(CFU)). Furthermore, the γ-PGA yield of mutant WX-02ΔrocG was 5.37g/L, a decrease of 45.3% compared to the wild type (9.82g/L). In vitro enzymatic assays of RocG showed that RocG has higher affinity for 2-oxoglutarate than glutamate, and the glutamate synthesis rate was far above degradation. This is probably the first study to reveal the glutamic acid synthesis pathway and the specific functions of RocG in B. licheniformis. The results indicate that γ-PGA production can be enhanced through improving intracellular glutamic acid synthesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Enhanced production of poly glutamic acid by Bacillus sp. SW1-2 ...

    African Journals Online (AJOL)

    Bacillus sp. SW1-2 producing poly glutamic acid (PGA), locally isolated from Eastern province in Saudi Arabia, was characterized and identified based on 16S rRNA gene sequencing. Phylogenetic analysis revealed its closeness to Bacillus megaterium. The homopolymer consists mainly of glutamic as indicated in the ...

  11. Draft Genome Sequences of Pseudomonas fluorescens BS2 and Pusillimonas noertemannii BS8, Soil Bacteria That Cooperate To Degrade the Poly-?-d-Glutamic Acid Anthrax Capsule

    OpenAIRE

    Stabler, Richard A.; Negus, David; Pain, Arnab; Taylor, Peter W.

    2013-01-01

    A mixed culture of Pseudomonas fluorescens BS2 and Pusillimonas noertemannii BS8 degraded poly-?-d-glutamic acid; when the 2 strains were cultured separately, no hydrolytic activity was apparent. Here we report the draft genome sequences of both soil isolates.

  12. Characterisation of neuroprotective efficacy of modified poly-arginine-9 (R9) peptides using a neuronal glutamic acid excitotoxicity model.

    Science.gov (United States)

    Edwards, Adam B; Anderton, Ryan S; Knuckey, Neville W; Meloni, Bruno P

    2017-02-01

    In a recent study, we highlighted the importance of cationic charge and arginine residues for the neuroprotective properties of poly-arginine and arginine-rich peptides. In this study, using cortical neuronal cultures and an in vitro glutamic acid excitotoxicity model, we examined the neuroprotective efficacy of different modifications to the poly-arginine-9 peptide (R9). We compared an unmodified R9 peptide with R9 peptides containing the following modifications: (i) C-terminal amidation (R9-NH2); (ii) N-terminal acetylation (Ac-R9); (iii) C-terminal amidation with N-terminal acetylation (Ac-R9-NH2); and (iv) C-terminal amidation with D-amino acids (R9D-NH2). The three C-terminal amidated peptides (R9-NH2, Ac-R9-NH2, and R9D-NH2) displayed neuroprotective effects greater than the unmodified R9 peptide, while the N-terminal acetylated peptide (Ac-R9) had reduced efficacy. Using the R9-NH2 peptide, neuroprotection could be induced with a 10 min peptide pre-treatment, 1-6 h before glutamic acid insult, or when added to neuronal cultures up to 45 min post-insult. In addition, all peptides were capable of reducing glutamic acid-mediated neuronal intracellular calcium influx, in a manner that reflected their neuroprotective efficacy. This study further highlights the neuroprotective properties of poly-arginine peptides and provides insight into peptide modifications that affect efficacy.

  13. Improved production of poly-γ-glutamic acid by Bacillus subtilis D7 isolated from Doenjang, a Korean traditional fermented food, and its antioxidant activity.

    Science.gov (United States)

    Lee, Na-Ri; Lee, Sang-Mee; Cho, Kwang-Sik; Jeong, Seong-Yun; Hwang, Dae-Youn; Kim, Dong-Seob; Hong, Chang-Oh; Son, Hong-Joo

    2014-06-01

    The objectives of this study was to improve poly-γ-glutamic acid (γ-PGA) production by Bacillus subtilis D7 isolated from a Korean traditional fermented food and to assess its antioxidant activity for applications in the cosmetics and pharmaceutical industries. Strain D7 produced γ-PGA in the absence of L-glutamic acid, indicating L-glutamic acid-independent production. However, the addition of L-glutamic acid increased γ-PGA production. Several tricarboxylic acid cycle intermediates and amino acids could serve as the metabolic precursors for γ-PGA production, and the addition of pyruvic acid and D-glutamic acid to culture medium improved the yield of γ-PGA markedly. The maximum yield of γ-PGA obtained was 24.93 ± 0.64 g/l in improved medium, which was about 5.4-fold higher than the yield obtained in basal medium. γ-PGA was found to have 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity (46.8 ± 1.5 %), hydroxyl radical scavenging activity (52.0 ± 1.8 %), 2,2'-azinobis-3-ethylbenzothiazoline-6-sulfonate (ABTS) radical scavenging activity (42.1 ± 1.8 %), nitric oxide scavenging activity (35.1 ± 1.3 %), reducing power (0.304 ± 0.008), and metal chelating activity (91.3 ± 3.5 %). These results indicate that γ-PGA has a potential use in the food, cosmetics, and biomedical industries for the development of novel products with radical scavenging activity. As far as we are aware, this is the first report to describe the antioxidant activityof γ-PGA produced by bacteria.

  14. Draft Genome Sequences of Pseudomonas fluorescens BS2 and Pusillimonas noertemannii BS8, Soil Bacteria That Cooperate To Degrade the Poly- -D-Glutamic Acid Anthrax Capsule

    KAUST Repository

    Stabler, R. A.

    2013-01-24

    A mixed culture of Pseudomonas fluorescens BS2 and Pusillimonas noertemannii BS8 degraded poly-γ-d-glutamic acid; when the 2 strains were cultured separately, no hydrolytic activity was apparent. Here we report the draft genome sequences of both soil isolates.

  15. Draft Genome Sequences of Pseudomonas fluorescens BS2 and Pusillimonas noertemannii BS8, Soil Bacteria That Cooperate To Degrade the Poly-γ-d-Glutamic Acid Anthrax Capsule.

    Science.gov (United States)

    Stabler, Richard A; Negus, David; Pain, Arnab; Taylor, Peter W

    2013-01-01

    A mixed culture of Pseudomonas fluorescens BS2 and Pusillimonas noertemannii BS8 degraded poly-γ-d-glutamic acid; when the 2 strains were cultured separately, no hydrolytic activity was apparent. Here we report the draft genome sequences of both soil isolates.

  16. Draft Genome Sequences of Pseudomonas fluorescens BS2 and Pusillimonas noertemannii BS8, Soil Bacteria That Cooperate To Degrade the Poly- -D-Glutamic Acid Anthrax Capsule

    KAUST Repository

    Stabler, R. A.; Negus, D.; Pain, Arnab; Taylor, P. W.

    2013-01-01

    A mixed culture of Pseudomonas fluorescens BS2 and Pusillimonas noertemannii BS8 degraded poly-γ-d-glutamic acid; when the 2 strains were cultured separately, no hydrolytic activity was apparent. Here we report the draft genome sequences of both soil isolates.

  17. NOVEL POLY-GLUTAMIC ACID FUNCTIONALIZED MICROFILTRATION MEMBRANES FOR SORPTION OF HEAVY METALS AT HIGH CAPACITY

    Science.gov (United States)

    Various sorbent/ion exchange materials have been reported in the literature for metal ion entrapment. We have developed a highly innovative and new approach to obtain high metal pick-up utilizing poly-amino acids (poly-L-glutamic acid, 14,000 MW) covalently attached to membrane p...

  18. Co-Production of Nattokinase and Poly (γ-Glutamic Acid Under Solid-State Fermentation Using Soybean and Rice Husk

    Directory of Open Access Journals (Sweden)

    Guangjun Nie

    2015-10-01

    Full Text Available ABSTRACTThe aim of this work was to study the co-production of nattokinase and poly (γ-glutamic acid by Bacillus subtilis natto with soybean and rice husk under solid-state fermentation (SSF. The results showed that the size of soybean particle and rice husk significantly improved the co-production of nattokinase and poly (γ-glutamic acid, yielding 2503.4 IU/gs and 320 mg/gs, respectively in the improved culture medium composed of 16.7% soybean flour and 13.3% rice husk with 70% water content. The yields increased by approximate 7- and 2-fold factor relative to their original ones. Thus, the co-production of nattokinase and poly (γ-glutamic acid under SSF could be considered as an efficient method to exploit agro-residues for economical production of some higher-value products.

  19. Rapid purification and plasticization of D-glutamate-containing poly-γ-glutamate from Japanese fermented soybean food natto.

    Science.gov (United States)

    Ashiuchi, Makoto; Oike, Shota; Hakuba, Hirofumi; Shibatani, Shigeo; Oka, Nogiho; Wakamatsu, Taisuke

    2015-12-10

    Poly-γ-glutamate (PGA) is a major component of mucilage derived from natto, a Japanese fermented food made from soybeans, and PGAs obtained under laboratory's conditions contain numerous d-glutamyl residues. Natto foods are thus promising as a source for nutritionally safe d-amino acids present in intact and digested polymers, although there is little information on the stereochemistry of PGA isolated directly from natto. Here, we describe the development of a new process for rapid purification of PGA using alum and determined the D-glutamate content of natto PGA by chiral high-performance liquid chromatographic analysis. Further, using hexadecylpyridinium cation (HDP(+)), which is a compound of toothpaste, we chemically transformed natto PGA into a new thermoplastic material, called DL-PGAIC. (1)H nuclear magnetic resonance and calorimetric measurements indicate that DL-PGAIC is a stoichiometric complex of natto PGA and HDP(+) with glass transition points of -16.8 °C and -3.1 °C. Then, DL-PGAIC began decomposing at 210°C, suggesting thermal stability suitable for use as a supramolecular soft plastic. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Enhanced Production of Poly-γ-glutamic Acid by Bacillus licheniformis TISTR 1010 with Environmental Controls.

    Science.gov (United States)

    Kongklom, Nuttawut; Shi, Zhongping; Chisti, Yusuf; Sirisansaneeyakul, Sarote

    2017-07-01

    Bacillus licheniformis TISTR 1010 was used for glutamic acid-independent production of poly-γ-glutamic acid (γ-PGA). A fed-batch production strategy was developed involving feedings of glucose, citric acid, and ammonium chloride at specified stages of the fermentation. With the dissolved oxygen concentration controlled at ≥50% of air saturation and the pH controlled at ~7.4, the fed-batch operation at 37 °C afforded a peak γ-PGA concentration of 39.9 ± 0.3 g L -1 with a productivity of 0.926 ± 0.006 g L -1  h -1 . The observed productivity was nearly threefold greater than previously reported for glutamic acid-independent production using the strain TISTR 1010. The molecular weight of γ-PGA was in the approximate range of 60 to 135 kDa.

  1. Combretastatin A4/poly(L-glutamic acid-graft-PEG conjugates self-assembled to nanoparticles

    Directory of Open Access Journals (Sweden)

    Yang Ou

    2018-03-01

    Full Text Available Combretastatin A4 (CA4 possesses varying ability to cause vascular disruption in tumors, while the short half-life, low water solubility and deactivation of many CA4 analogs during storage limited its antitumor efficacy and drug stability. A novel macromolecular conjugate of CA4 (CA4-PL was synthesized by covalent bonding of CA4 onto poly(L-glutamic acid-graft-polyethylene glycol (PLG-g-PEG via Yamaguchi reaction. The obtained CA4-PL was characterized by 1H NMR, GPC, and UV methods, and the properties of the nanoparticles composed of CA4-PL, including critical aggregation concentration, size and size distribution, and morphology, were investigated. CA4-PL can self-assemble to form micelle-like nanoparticles of 80~120 nm in diameter, which may have potential to improve the blood circulation period as well as the targetability of CA4, and find applications to treat various tumors when combined with traditional chemotherapy or radio therapy. Keywords: Combretastatin A4, Macromolecular conjugate, Poly(L-glutamic acid-graft-polyethylene glycol, Self-assemble, Nanoparticles

  2. Poly (γ-glutamic acid)/beta-TCP nanocomposites via in situ copolymerization: Preparation and characterization.

    Science.gov (United States)

    Shu, Xiu-Lin; Shi, Qing-Shan; Feng, Jin; Yang, Yun-Hua; Zhou, Gang; Li, Wen-Ru

    2016-07-01

    A series biodegradable poly (γ-glutamic acid)/beta-tricalcium phosphate (γ-PGA/TCP) nanocomposites were prepared which were composed of poly-γ-glutamic acid polymerized in situ with β-tricalcium phosphate and physiochemically characterized as bone graft substitutes. The particle size via dynamic light scattering, the direct morphological characterization via transmission electron microscopy and field emission scanning electron microscope, which showed that γ-PGA and β-TCP were combined compactly at 80℃, and the γ-PGA/TCP nanocomposites had homogenous and nano-sized grains with narrow particle size distributions. The water uptake and retention abilities, in vitro degradation properties, cytotoxicity in the simulated medium, and protein release of these novel γ-PGA/TCP composites were investigated. Cell proliferation in composites was nearly twice than β-TCP when checked in vitro using MC3T3 cell line. We also envision the potential use of γ-PGA/TCP systems in bone growth factor or orthopedic drug delivery applications in future bone tissue engineering applications. These observations suggest that the γ-PGA/TCP are novel nanocomposites with great potential for application in the field of bone tissue engineering. © The Author(s) 2016.

  3. Poly(γ-glutamic acid) and poly(γ-glutamic acid)-based nanocomplexes enhance type II collagen production in intervertebral disc.

    Science.gov (United States)

    Antunes, Joana C; Pereira, Catarina Leite; Teixeira, Graciosa Q; Silva, Ricardo V; Caldeira, Joana; Grad, Sibylle; Gonçalves, Raquel M; Barbosa, Mário A

    2017-01-01

    Intervertebral disc (IVD) degeneration often leads to low back pain, which is one of the major causes of disability worldwide, affecting more than 80% of the population. Although available treatments for degenerated IVD decrease symptoms' progression, they fail to address the underlying causes and to restore native IVD properties. Poly(γ-glutamic acid) (γ-PGA) has recently been shown to support the production of chondrogenic matrix by mesenchymal stem/stromal cells. γ-PGA/chitosan (Ch) nanocomplexes (NCs) have been proposed for several biomedical applications, showing advantages compared with either polymer alone. Hence, this study explores the potential of γ-PGA and γ-PGA/Ch NCs for IVD regeneration. Nucleotomised bovine IVDs were cultured ex vivo upon injection of γ-PGA (pH 7.4) and γ-PGA/Ch NCs (pH 5.0 and pH 7.4). Tissue metabolic activity and nucleus pulposus DNA content were significantly reduced when NCs were injected in acidic-buffered solution (pH 5.0). However, at pH 7.4, both γ-PGA and NCs promoted sulphated glycosaminoglycan production and significant type II collagen synthesis, as determined at the protein level. This study is a first proof of concept that γ-PGA and γ-PGA/Ch NCs promote recovery of IVD native matrix, opening new perspectives on the development of alternative therapeutic approaches for IVD degeneration.

  4. The Poly-γ-D-Glutamic Acid Capsule of Bacillus licheniformis, a Surrogate of Bacillus anthracis Capsule Induces Interferon-Gamma Production in NK Cells through Interactions with Macrophages.

    Science.gov (United States)

    Lee, Hae-Ri; Jeon, Jun Ho; Rhie, Gi-Eun

    2017-05-28

    The poly-γ- D -glutamic acid (PGA) capsule, a major virulence factor of Bacillus anthracis , provides protection of the bacterium from phagocytosis and allows its unimpeded growth in the host. We investigated crosstalk between murine natural killer (NK) cells and macrophages stimulated with the PGA capsule of Bacillus licheniformis , a surrogate of the B. anthracis capsule. PGA induced interferon-gamma production from NK cells cultured with macrophages. This effect was dependent on macrophage-derived IL-12 and cell-cell contact interaction with macrophages through NK cell receptor NKG2D and its ligand RAE-1. The results showed that PGA could enhance NK cell activation by inducing IL-12 production in macrophages and a contact-dependent crosstalk with macrophages.

  5. Deletion of genes involved in glutamate metabolism to improve poly-gamma-glutamic acid production in B. amyloliquefaciens LL3.

    Science.gov (United States)

    Zhang, Wei; He, Yulian; Gao, Weixia; Feng, Jun; Cao, Mingfeng; Yang, Chao; Song, Cunjiang; Wang, Shufang

    2015-02-01

    Here, we attempted to elevate poly-gamma-glutamic acid (γ-PGA) production by modifying genes involved in glutamate metabolism in Bacillus amyloliquefaciens LL3. Products of rocR, rocG and gudB facilitate the conversion from glutamate to 2-oxoglutarate in Bacillus subtillis. The gene odhA is responsible for the synthesis of a component of the 2-oxoglutarate dehydrogenase complex that catalyzes the oxidative decarboxylation of 2-oxoglutarate to succinyl coenzyme A. In-frame deletions of these four genes were performed. In shake flask experiments the gudB/rocG double mutant presented enhanced production of γ-PGA, a 38 % increase compared with wild type. When fermented in a 5-L fermenter with pH control, the γ-PGA yield of the rocR mutant was increased to 5.83 g/L from 4.55 g/L for shake flask experiments. The gudB/rocG double mutant produced 5.68 g/L γ-PGA compared with that of 4.03 g/L for the wild type, a 40 % increase. Those results indicated the possibility of improving γ-PGA production by modifying glutamate metabolism, and identified potential genetic targets to improve γ-PGA production.

  6. Enhancing poly-γ-glutamic acid production in Bacillus amyloliquefaciens by introducing the glutamate synthesis features from Corynebacterium glutamicum.

    Science.gov (United States)

    Feng, Jun; Quan, Yufen; Gu, Yanyan; Liu, Fenghong; Huang, Xiaozhong; Shen, Haosheng; Dang, Yulei; Cao, Mingfeng; Gao, Weixia; Lu, Xiaoyun; Wang, Yi; Song, Cunjiang; Wang, Shufang

    2017-05-22

    Poly-γ-glutamic acid (γ-PGA) is a valuable polymer with glutamate as its sole precursor. Enhancement of the intracellular glutamate synthesis is a very important strategy for the improvement of γ-PGA production, especially for those glutamate-independent γ-PGA producing strains. Corynebacterium glutamicum has long been used for industrial glutamate production and it exhibits some unique features for glutamate synthesis; therefore introduction of these metabolic characters into the γ-PGA producing strain might lead to increased intracellular glutamate availability, and thus ultimate γ-PGA production. In this study, the unique glutamate synthesis features from C. glutamicum was introduced into the glutamate-independent γ-PGA producing Bacillus amyloliquefaciens NK-1 strain. After introducing the energy-saving NADPH-dependent glutamate dehydrogenase (NADPH-GDH) pathway, the NK-1 (pHT315-gdh) strain showed slightly increase (by 9.1%) in γ-PGA production. Moreover, an optimized metabolic toggle switch for controlling the expression of ɑ-oxoglutarate dehydrogenase complex (ODHC) was introduced into the NK-1 strain, because it was previously shown that the ODHC in C. glutamicum was completely inhibited when glutamate was actively produced. The obtained NK-PO1 (pHT01-xylR) strain showed 66.2% higher γ-PGA production than the NK-1 strain. However, the further combination of these two strategies (introducing both NADPH-GDH pathway and the metabolic toggle switch) did not lead to further increase of γ-PGA production but rather the resultant γ-PGA production was even lower than that in the NK-1 strain. We proposed new metabolic engineering strategies to improve the γ-PGA production in B. amyloliquefaciens. The NK-1 (pHT315-gdh) strain with the introduction of NADPH-GDH pathway showed 9.1% improvement in γ-PGA production. The NK-PO1 (pHT01-xylR) strain with the introduction of a metabolic toggle switch for controlling the expression of ODHC showed 66.2% higher

  7. Poly(amino acid) functionalized maghemite and gold nanoparticles

    International Nuclear Information System (INIS)

    Perego, Davide; Manuel Domínguez-Vera, José; Gálvez, Natividad; Masciocchi, Norberto; Guagliardi, Antonietta

    2013-01-01

    Bimodal MRI/OI imaging probes are of great interest in nanomedicine. Although many organic polymers have been studied thoroughly for in vivo applications, reports on the use of poly(amino acid)s as coating polymers are scarce. In this paper, poly-(d-glutamic acid, d-lysine) (PGL) has been used for coating maghemite and gold nanoparticles. An advantage of this flexible and biocompatible polymer is that, once anchored to the nanoparticle surface, dangling lysine amino groups are available for the incorporation of new functionalities. As an example, Alexa Fluor derivatives have been attached to PGL-coated maghemite nanoparticles to obtain magnetic/fluorescent materials. These dual-property materials could be used as bimodal MRI/OI probes for in vivo imaging. (paper)

  8. pH-stimuli-responsive near-infrared optical imaging nanoprobe based on poly(γ-glutamic acid)/poly(β-amino ester) nanoparticles

    International Nuclear Information System (INIS)

    Park, Hye Sun; Lee, Jung Eun; Cho, Mi Young; Noh, Young-Woock; Lim, Yong Taik; Sung, Moon Hee; Poo, Haryoung; Hong, Kwan Soo

    2011-01-01

    pH-stimuli-responsive near-infrared optical imaging nanoprobes are designed and synthesized in this study in a facile one-step synthesis process based on the use of the biocompatible and biodegradable polymer poly(γ-glutamic acid) (γ-PGA)/poly(β-amino ester) (PBAE). PBAE has good transfection efficiency and promotes degradation properties under acidic conditions. This pH-responsive degradability can be used for the effective release of encapsulating materials after cellular uptake. As an optical imaging probe, indocyanine green (ICG) is an FDA-approved near-infrared fluorescent dye with a quenching property at a high concentration. In this regard, we focus here on the rapid degradation of PBAE in an acidic environment, in which the nanoparticles are disassembled. This allows the ICG dyes to show enhanced fluorescence signals after being releasing from the particles. We demonstrated this principle in cellular uptake experiments. We expect that the developed pH-stimuli-responsive smart nanoprobes can be applied in intracellular delivery signaling applications.

  9. High-level exogenous glutamic acid-independent production of poly-(γ-glutamic acid) with organic acid addition in a new isolated Bacillus subtilis C10.

    Science.gov (United States)

    Zhang, Huili; Zhu, Jianzhong; Zhu, Xiangcheng; Cai, Jin; Zhang, Anyi; Hong, Yizhi; Huang, Jin; Huang, Lei; Xu, Zhinan

    2012-07-01

    A new exogenous glutamic acid-independent γ-PGA producing strain was isolated and characterized as Bacillus subtilis C10. The factors influencing the endogenous glutamic acid supply and the biosynthesis of γ-PGA in this strain were investigated. The results indicated that citric acid and oxalic acid showed the significant capability to support the overproduction of γ-PGA. This stimulated increase of γ-PGA biosynthesis by citric acid or oxalic acid was further proved in the 10 L fermentor. To understand the possible mechanism contributing to the improved γ-PGA production, the activities of four key intracellular enzymes were measured, and the possible carbon fluxes were proposed. The result indicated that the enhanced level of pyruvate dehydrogenase (PDH) activity caused by oxalic acid was important for glutamic acid synthesized de novo from glucose. Moreover, isocitrate dehydrogenase (ICDH) and glutamate dehydrogenase (GDH) were the positive regulators of glutamic acid biosynthesis, while 2-oxoglutarate dehydrogenase complex (ODHC) was the negative one. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Cell proliferation on PVA/sodium alginate and PVA/poly(γ-glutamic acid) electrospun fiber

    International Nuclear Information System (INIS)

    Yang, Jen Ming; Yang, Jhe Hao; Tsou, Shu Chun; Ding, Chian Hua; Hsu, Chih Chin; Yang, Kai Chiang; Yang, Chun Chen; Chen, Ko Shao; Chen, Szi Wen; Wang, Jong Shyan

    2016-01-01

    To overcome the obstacles of easy dissolution of PVA nanofibers without crosslinking treatment and the poor electrospinnability of the PVA cross-linked nanofibers via electrospinning process, the PVA based electrospun hydrogel nanofibers are prepared with post-crosslinking method. To expect the electrospun hydrogel fibers might be a promising scaffold for cell culture and tissue engineering applications, the evaluation of cell proliferation on the post-crosslinking electrospun fibers is conducted in this study. At beginning, poly(vinyl alcohol) (PVA), PVA/sodium alginate (PVASA) and PVA/poly(γ-glutamic acid) (PVAPGA) electrospun fibers were prepared by electrospinning method. The electrospun PVA, PVASA and PVAPGA nanofibers were treated with post-cross-linking method with glutaraldehyde (Glu) as crosslinking agent. These electrospun fibers were characterized with thermogravimetry analysis (TGA) and their morphologies were observed with a scanning electron microscope (SEM). To support the evaluation and explanation of cell growth on the fiber, the study of 3T3 mouse fibroblast cell growth on the surface of pure PVA, SA, and PGA thin films is conducted. The proliferation of 3T3 on the electrospun fiber surface of PVA, PVASA, and PVAPGA was evaluated by seeding 3T3 fibroblast cells on these crosslinked electrospun fibers. The cell viability on electrospun fibers was conducted with water-soluble tetrazolium salt-1 assay (Cell Proliferation Reagent WST-1). The morphology of the cells on the fibers was also observed with SEM. The results of WST-1 assay revealed that 3T3 cells cultured on different electrospun fibers had similar viability, and the cell viability increased with time for all electrospun fibers. From the morphology of the cells on electrospun fibers, it is found that 3T3 cells attached on all electrospun fiber after 1 day seeded. Cell–cell communication was noticed on day 3 for all electrospun fibers. Extracellular matrix (ECM) productions were found and

  11. Cell proliferation on PVA/sodium alginate and PVA/poly(γ-glutamic acid) electrospun fiber

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jen Ming, E-mail: jmyang@mail.cgu.edu.tw [Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 333, Taiwan, ROC (China); Yang, Jhe Hao [Department of Electronic Engineering, Chang Gung University, Taoyuan, Taiwan, ROC (China); Tsou, Shu Chun; Ding, Chian Hua [Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 333, Taiwan, ROC (China); Hsu, Chih Chin [Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital at Keelung, Keelung, Taiwan, ROC (China); School of Traditional Chinese Medicine, Chang Gung University, Taoyuan, Taiwan, ROC (China); Yang, Kai Chiang [School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan, ROC (China); Yang, Chun Chen [Department of Chemical Engineering, Ming-Chi University of Science and Technology, New Taipei City, Taiwan, ROC (China); Chen, Ko Shao [Department of Materials Engineering, Tatung University, Taipei, Taiwan, ROC (China); Chen, Szi Wen [Department of Electronic Engineering, Chang Gung University, Taoyuan, Taiwan, ROC (China); Wang, Jong Shyan [Department of Physical Therapy and the Graduate Institute of Rehabilitation Science, Chang Gung University, Taoyuan, Taiwan, ROC (China)

    2016-09-01

    To overcome the obstacles of easy dissolution of PVA nanofibers without crosslinking treatment and the poor electrospinnability of the PVA cross-linked nanofibers via electrospinning process, the PVA based electrospun hydrogel nanofibers are prepared with post-crosslinking method. To expect the electrospun hydrogel fibers might be a promising scaffold for cell culture and tissue engineering applications, the evaluation of cell proliferation on the post-crosslinking electrospun fibers is conducted in this study. At beginning, poly(vinyl alcohol) (PVA), PVA/sodium alginate (PVASA) and PVA/poly(γ-glutamic acid) (PVAPGA) electrospun fibers were prepared by electrospinning method. The electrospun PVA, PVASA and PVAPGA nanofibers were treated with post-cross-linking method with glutaraldehyde (Glu) as crosslinking agent. These electrospun fibers were characterized with thermogravimetry analysis (TGA) and their morphologies were observed with a scanning electron microscope (SEM). To support the evaluation and explanation of cell growth on the fiber, the study of 3T3 mouse fibroblast cell growth on the surface of pure PVA, SA, and PGA thin films is conducted. The proliferation of 3T3 on the electrospun fiber surface of PVA, PVASA, and PVAPGA was evaluated by seeding 3T3 fibroblast cells on these crosslinked electrospun fibers. The cell viability on electrospun fibers was conducted with water-soluble tetrazolium salt-1 assay (Cell Proliferation Reagent WST-1). The morphology of the cells on the fibers was also observed with SEM. The results of WST-1 assay revealed that 3T3 cells cultured on different electrospun fibers had similar viability, and the cell viability increased with time for all electrospun fibers. From the morphology of the cells on electrospun fibers, it is found that 3T3 cells attached on all electrospun fiber after 1 day seeded. Cell–cell communication was noticed on day 3 for all electrospun fibers. Extracellular matrix (ECM) productions were found and

  12. A magnetic resonance study of the segmental motion and local conformations of poly-(L-glutamic acid) in aqueous solutions

    International Nuclear Information System (INIS)

    Tsutsumi, Akihiro; Perly, Bruno; Forchioni, Alain; Chachaty, Claude.

    1978-01-01

    A study was made on: ESR of spin labeled poly (L-glutamic acid) (PLGA); proton chemical shifts and vicinal coupling constants; pH dependences of proton and deuteron relaxations; proton relaxation enhancement in spin labeled PLGA; proton and carbon 13 relaxations in neutral solutions

  13. Effect of glucose on poly-γ-glutamic acid metabolism in Bacillus licheniformis.

    Science.gov (United States)

    Yu, Wencheng; Chen, Zhen; Ye, Hong; Liu, Peize; Li, Zhipeng; Wang, Yuanpeng; Li, Qingbiao; Yan, Shan; Zhong, Chuan-Jian; He, Ning

    2017-02-08

    Poly-gamma-glutamic acid (γ-PGA) is a promising macromolecule with potential as a replacement for chemosynthetic polymers. γ-PGA can be produced by many microorganisms, including Bacillus species. Bacillus licheniformis CGMCC2876 secretes γ-PGA when using glycerol and trisodium citrate as its optimal carbon sources and secretes polysaccharides when using glucose as the sole carbon source. To better understand the metabolic mechanism underlying the secretion of polymeric substances, SWATH was applied to investigate the effect of glucose on the production of polysaccharides and γ-PGA at the proteome level. The addition of glucose at 5 or 10 g/L of glucose decreased the γ-PGA concentration by 31.54 or 61.62%, respectively, whereas the polysaccharide concentration increased from 5.2 to 43.47%. Several proteins playing related roles in γ-PGA and polysaccharide synthesis were identified using the SWATH acquisition LC-MS/MS method. CcpA and CcpN co-enhanced glycolysis and suppressed carbon flux into the TCA cycle, consequently slowing glutamic acid synthesis. On the other hand, CcpN cut off the carbon flux from glycerol metabolism and further reduced γ-PGA production. CcpA activated a series of operons (glm and epsA-O) to reallocate the carbon flux to polysaccharide synthesis when glucose was present. The production of γ-PGA was influenced by NrgB, which converted the major nitrogen metabolic flux between NH 4 + and glutamate. The mechanism by which B. licheniformis regulates two macromolecules was proposed for the first time in this paper. This genetic information will facilitate the engineering of bacteria for practicable strategies for the fermentation of γ-PGA and polysaccharides for diverse applications.

  14. Comparison of immobilized poly-L-aspartic acid and poly-L-glutamic acid for chelation of metal cations

    International Nuclear Information System (INIS)

    Malachowski, Lisa; Holcombe, James A.

    2004-01-01

    Poly-L-aspartic acid (PLAsp) and poly-L-glutamic acid (PLGlu) were individually immobilized onto controlled pore glass (CPG) and compared according to their metal-binding capabilities in a solution of pH 7.0. The metal-binding capacities were calculated through the analysis of breakthrough curves generated by monitoring the metal concentrations on a flow injection-flame atomic absorption system. Capacities for individual metals were comparable and in the order of Cu 2+ >> Pb 2+ > Ni 2+ ∼ Cd 2+ > Co 2+ > Mn 2+ >> Na + . Elemental combustion analysis yielded polymer coverage on the CPG of approximately 4 x 10 12 to 5 x 10 12 chains/cm 2 , when average chain lengths were used in the calculations. Formation constants and site capacities of both polymers for Cd 2+ were determined through equilibrium and breakthrough studies. The maximum log K values for the strong sites were determined to be ∼13 for both PLAsp and for PLGlu. Additionally, the metal selectivity of PLAsp and PLGlu was evaluated when breakthrough curves were run with several metals present in solution at one time. Both polymers showed selectivities in the order of their single metal-binding capacities, i.e., Cu 2+ > Pb 2+ > Ni 2+ ∼ Cd 2+ . Both polymers exhibited similar binding trends and binding strengths for all of the metals studied. This likely reflects the absence of a predetermined tertiary structure of the polymers on the surface and the relatively high residue-per-metal ratio (∼20:1), which places less stringent requirements on the steric hindrance between the side chains and the resultant 'wrapping' of the peptide around the metal

  15. Conformations and molecular interactions of poly-γ-glutamic acid as a soluble microbial product in aqueous solutions

    OpenAIRE

    Wang, Ling-Ling; Chen, Jian-Tao; Wang, Long-Fei; Wu, Sha; Zhang, Guang-zhao; Yu, Han-Qing; Ye, Xiao-dong; Shi, Qing-Shan

    2017-01-01

    Soluble microbial products (SMPs) are of significant concern in the natural environment and in engineered systems. In this work, poly-γ-glutamic acid (γ-PGA), which is predominantly produced by Bacillus sp., was investigated in terms of pH-induced conformational changes and molecular interactions in aqueous solutions; accordingly, its sedimentation coefficient distribution and viscosity were also elucidated. Experimental results indicate that pH has a significant impact on the structure and m...

  16. Poly-γ-glutamic Acid Synthesis, Gene Regulation, Phylogenetic Relationships, and Role in Fermentation.

    Science.gov (United States)

    Hsueh, Yi-Huang; Huang, Kai-Yao; Kunene, Sikhumbuzo Charles; Lee, Tzong-Yi

    2017-12-07

    Poly-γ-glutamic acid (γ-PGA) is a biodegradable biopolymer produced by several bacteria, including Bacillus subtilis and other Bacillus species; it has good biocompatibility, is non-toxic, and has various potential biological applications in the food, pharmaceutical, cosmetic, and other industries. In this review, we have described the mechanisms of γ-PGA synthesis and gene regulation, its role in fermentation, and the phylogenetic relationships among various pgsBCAE , a biosynthesis gene cluster of γ-PGA, and pgdS , a degradation gene of γ-PGA. We also discuss potential applications of γ-PGA and highlight the established genetic recombinant bacterial strains that produce high levels of γ-PGA, which can be useful for large-scale γ-PGA production.

  17. Metabolome analysis reveals the effect of carbon catabolite control on the poly(γ-glutamic acid) biosynthesis of Bacillus licheniformis ATCC 9945.

    Science.gov (United States)

    Mitsunaga, Hitoshi; Meissner, Lena; Palmen, Thomas; Bamba, Takeshi; Büchs, Jochen; Fukusaki, Eiichiro

    2016-04-01

    Poly(γ-glutamic acid) (PGA) is a polymer composed of L- and/or D-glutamic acids that is produced by Bacillus sp. Because the polymer has various features as water soluble, edible, non-toxic and so on, it has attracted attention as a candidate for many applications such as foods, cosmetics and so on. However, although it is well known that the intracellular metabolism of Bacillus sp. is mainly regulated by catabolite control, the effect of the catabolite control on the PGA producing Bacillus sp. is largely unknown. This study is the first report of metabolome analysis on the PGA producing Bacillus sp. that reveals the effect of carbon catabolite control on the metabolism of PGA producing Bacillus licheniformis ATCC 9945. Results showed that the cells cultivated in glycerol-containing medium showed higher PGA production than the cells in glucose-containing medium. Furthermore, metabolome analysis revealed that the activators of CcpA and CodY, global regulatory proteins of the intracellular metabolism, accumulated in the cells cultivated in glycerol-containing and glucose-containing medium, respectively, with CodY apparently inhibiting PGA production. Moreover, the cells seemed to produce glutamate from citrate and ammonium using glutamine synthetase/glutamate synthase. Pulsed addition of di-ammonium hydrogen citrate, as suggested by the metabolome result, was able to achieve the highest value so far for PGA production in B. licheniformis. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  18. Surface grafting of poly(L-glutamates). 3. Block copolymerization

    NARCIS (Netherlands)

    Wieringa, RH; Siesling, EA; Werkman, PJ; Vorenkamp, EJ; Schouten, AJ

    2001-01-01

    This paper describes for the first time the synthesis of surface-grafted AB-block copolypeptides, consisting of poly(gamma -benzyl L-glutamate) (PBLG) as the A-block and poly(gamma -methyl L-glutamate) (PMLG) as the B-block. Immobilized primary amine groups of (,gamma -aminopropyl)triethoxysilane

  19. Influence of glutamic acid enantiomers on C-mineralization.

    Science.gov (United States)

    Formánek, Pavel; Vranová, Valerie; Lojková, Lea

    2015-02-01

    Seasonal dynamics in the mineralization of glutamic acid enantiomers in soils from selected ecosystems was determined and subjected to a range of treatments: ambient x elevated CO2 level and meadow x dense x thinned forest environment. Mineralization of glutamic acid was determined by incubation of the soil with 2 mg L- or D-glutamic acid g(-1) of dry soil to induce the maximum respiration rate. Mineralization of glutamic acid enantiomers in soils fluctuates over the course of a vegetation season, following a similar trend across a range of ecosystems. Mineralization is affected by environmental changes and management practices, including elevated CO2 level and thinning intensity. L-glutamic acid metabolism is more dependent on soil type as compared to metabolism of its D-enantiomer. The results support the hypothesis that the slower rate of D- compared to L- amino acid mineralization is due to different roles in anabolism and catabolism of the soil microbial community. © 2014 Wiley Periodicals, Inc.

  20. Effects of poly-γ-glutamic acid biopreparation (PGAB) on nitrogen conservation in the coastal saline soil

    Science.gov (United States)

    Chen, Lihua; Xu, Xianghong; Zhang, Huan; Han, Rui; Cheng, Yao; Tan, Xueyi; Chen, Xuanyu

    2017-04-01

    Water leaching is the major method to decrease soil salinity of the coastal saline soil. Conservation of soil nutrition in the soil ameliorating process is helpful to maintain soil fertility and prevent environment pollution. In the experiment, glutamic acid and poly-γ-glutamic acid (PGA) producing bacteria were isolated for manufacturing the PGA biopreparation (PGAB), and the effect of PGAB on the soil nitrogen (N) conservation was assayed. The glutamic acid and PGA producing bacteria were identified as Brevibacterium flavum and Bacillus amyloliquefaciens. After soil leached with water for 90 days, compared to control treatment, salt concentration of 0-30cm soil with PGAB treatment was lowered by 39.93%, however the total N loss was decreased by 65.37%. Compared to control, the microbial biomass N increased by 1.19 times at 0-30 cm soil with PGAB treatment. The populations of soil total bacteria, fungi, actinomyces, nitrogen fixing bacteria, ammonifying bacteria, nitrifying bacteria and denitrifying bacteria and biomass of soil algae were significantly increased in PGAB treatment, while anaerobic bacteria decreased (P 0.25 mm and 0.02 mm < diameter <0.25 mm were increased by 2.93 times and 26.79% respectively in PGAB treatment. The soil erosion-resistance coefficient of PGAB treatment increased by 50%. All these suggested that the PGAB conserved the soil nitrogen effectively in the process of soil water leaching and improved the coastal saline soil quality.

  1. Poly-γ-glutamic Acid Synthesis, Gene Regulation, Phylogenetic Relationships, and Role in Fermentation

    Science.gov (United States)

    Hsueh, Yi-Huang; Huang, Kai-Yao; Kunene, Sikhumbuzo Charles; Lee, Tzong-Yi

    2017-01-01

    Poly-γ-glutamic acid (γ-PGA) is a biodegradable biopolymer produced by several bacteria, including Bacillus subtilis and other Bacillus species; it has good biocompatibility, is non-toxic, and has various potential biological applications in the food, pharmaceutical, cosmetic, and other industries. In this review, we have described the mechanisms of γ-PGA synthesis and gene regulation, its role in fermentation, and the phylogenetic relationships among various pgsBCAE, a biosynthesis gene cluster of γ-PGA, and pgdS, a degradation gene of γ-PGA. We also discuss potential applications of γ-PGA and highlight the established genetic recombinant bacterial strains that produce high levels of γ-PGA, which can be useful for large-scale γ-PGA production. PMID:29215550

  2. Poly-γ-glutamic Acid Synthesis, Gene Regulation, Phylogenetic Relationships, and Role in Fermentation

    Directory of Open Access Journals (Sweden)

    Yi-Huang Hsueh

    2017-12-01

    Full Text Available Poly-γ-glutamic acid (γ-PGA is a biodegradable biopolymer produced by several bacteria, including Bacillus subtilis and other Bacillus species; it has good biocompatibility, is non-toxic, and has various potential biological applications in the food, pharmaceutical, cosmetic, and other industries. In this review, we have described the mechanisms of γ-PGA synthesis and gene regulation, its role in fermentation, and the phylogenetic relationships among various pgsBCAE, a biosynthesis gene cluster of γ-PGA, and pgdS, a degradation gene of γ-PGA. We also discuss potential applications of γ-PGA and highlight the established genetic recombinant bacterial strains that produce high levels of γ-PGA, which can be useful for large-scale γ-PGA production.

  3. Heat resistance and local structure of FeCl2-absorbed crosslinked poly(γ-glutamic acid)

    International Nuclear Information System (INIS)

    Nishida, T.; Kamezawa, H.; Hara, T.; Matsumoto, Y.

    2001-01-01

    Fiber of Japanese food natto (Bacillus subtilis) is known to be superabsorbent poly(γ-glutamic acid) (PGA). NaCl particles precipitate in FeCl 2 -absorbed crosslinked PGA when heated at crystallization temperature of 320 deg C for 10 to 60 min. After heat treatment the Moessbauer spectrum of FeCl 2 -crosslinked PGA consists of a quadrupole doublet due to FeCl 2 x 2H 2 O. The Moessbauer spectrum of anhydrous FeCl 2 reagent heated under the same condition shows an intense sextet due to α-Fe 2 O 3 . These results prove that the superabsorbent polymer, crosslinked PGA, has higher heat resistance. (author)

  4. Poly(ethylene oxide)-block-poly(glutamic acid) coated maghemite nanoparticles: in vitro characterization and in vivo behaviour

    International Nuclear Information System (INIS)

    Kaufner, L; Cartier, R; Wuestneck, R; Fichtner, I; Pietschmann, S; Bruhn, H; Schuett, D; Thuenemann, A F; Pison, U

    2007-01-01

    Positively charged superparamagnetic iron oxide (SPIO) particles of maghemite were prepared in aqueous solution and subsequently stabilized with poly(ethylene oxide)-block-poly(glutamic acid) (PEO-PGA) at a hydrodynamic diameter of 60 nm. Depending on the amount of PEO-PGA used, this is accompanied by a switching of their zeta potentials from positive to negative charge (-33 mV). As a prerequisite for in vivo testing, the PEO-PGA coated maghemite nanoparticles were evaluated to be colloidally stable in water and in physiological salt solution for longer than six months as well in various buffer systems under physiological pH and salt conditions (AFM, dynamic light scattering). We excluded toxic effects of the PEO-PGA coated maghemite nanoparticles. We demonstrated by in vivo MR-imaging and 111 In measurements a biodistribution of the nanoparticles into the liver comparable to carboxydextran coated superparamagnetic iron oxide nanoparticles (Resovist[reg]) as a reference nanoscaled MRI contrast medium. This was enforced by a detailed visualization of our nanoparticles by electron microscopy of liver tissue sections. Furthermore, our results indicate that 15% of the injected PEO-PGA coated maghemite nanoparticles circulate in the blood compartment for at least 60 min after i.v. application

  5. Development of Jerusalem artichoke resource for efficient one-step fermentation of poly-(γ-glutamic acid) using a novel strain Bacillus amyloliquefaciens NX-2S.

    Science.gov (United States)

    Qiu, Yibin; Sha, Yuanyuan; Zhang, Yatao; Xu, Zongqi; Li, Sha; Lei, Peng; Xu, Zheng; Feng, Xiaohai; Xu, Hong

    2017-09-01

    This study aimed to develop non-food fermentation for the cost-effective production of poly-(γ-glutamic acid) (γ-PGA) using a novel strain of Bacillus amyloliquefaciens NX-2S. The new isolate assimilated inulin more efficiently than other carbohydrates from Jerusalem artichoke, without hydrolytic treatment. To investigate the effect of inulin on γ-PGA production, the transcript levels of γ-PGA synthetase genes (pgsB, pgsC, pgsA), regulatory genes (comA, degQ, degS), and the glutamic acid biosynthesis gene (glnA) were analyzed; inulin addition upregulated these key genes. Without exogenous glutamate, strain NX-2S could produce 6.85±0.22g/L of γ-PGA during fermentation. Exogenous glutamate greatly enhances the γ-PGA yield (39.4±0.38g/L) and productivity (0.43±0.05g/L/h) in batch fermentation. Our study revealed a potential method of non-food fermentation to produce high-value products. Copyright © 2017. Published by Elsevier Ltd.

  6. Fabrication and characterization of novel multilayered structures by stereocomplexion of poly(D-lactic acid)/poly(L-lactic acid) and self-assembly of polyelectrolytes

    OpenAIRE

    Elena Dellacasa; Li Zhao; Gesheng Yang; Laura Pastorino; Gleb B. Sukhorukov

    2016-01-01

    The enantiomers poly(D-lactic acid) (PDLA) and poly(L-lactic acid) (PLLA) were alternately adsorbed directly on calcium carbonate (CaCO3) templates and on poly(styrene sulfonate) (PSS) and poly(allylamine hydrochloride) (PAH) multilayer precursors in order to fabricate a novel layer-by-layer (LBL) assembly. A single layer of poly(L-lysine) (PLL) was used as a linker between the (PDLA/PLLA)n stereocomplex and the cores with and without the polymeric (PSS/PAH)n/PLL multilayer precursor (PEM). N...

  7. Dual production of poly(3-hydroxybutyrate) and glutamate using variable biotin concentrations in Corynebacterium glutamicum.

    Science.gov (United States)

    Jo, Sung-Jin; Leong, Chean Ring; Matsumoto, Ken'ichiro; Taguchi, Seiichi

    2009-04-01

    We previously synthesized poly(3-hydroxybutyrate) [P(3HB)] in recombinant Corynebacterium glutamicum, a prominent producer of amino acids. In this study, a two-step cultivation was established for the dual production of glutamate and P(3HB) due to the differences in the optimal concentration of biotin. Glutamate was extracellularly produced first under the biotin-limited condition of 0.3 microg/L. Production was then shifted to P(3HB) by addition of biotin to a total concentration of 9 microg/L. The final products obtained were 18 g/L glutamate and 36 wt% of P(3HB).

  8. Alginate/Poly(γ-glutamic Acid) Base Biocompatible Gel for Bone Tissue Engineering

    Science.gov (United States)

    Chan, Wing P.; Kung, Fu-Chen; Kuo, Yu-Lin; Yang, Ming-Chen; Lai, Wen-Fu Thomas

    2015-01-01

    A technique for synthesizing biocompatible hydrogels by cross-linking calcium-form poly(γ-glutamic acid), alginate sodium, and Pluronic F-127 was created, in which alginate can be cross-linked by Ca2+ from Ca–γ-PGA directly and γ-PGA molecules introduced into the alginate matrix to provide pH sensitivity and hemostasis. Mechanical properties, swelling behavior, and blood compatibility were investigated for each hydrogel compared with alginate and for γ-PGA hydrogel with the sodium form only. Adding F-127 improves mechanical properties efficiently and influences the temperature-sensitive swelling of the hydrogels but also has a minor effect on pH-sensitive swelling and promotes anticoagulation. MG-63 cells were used to test biocompatibility. Gelation occurred gradually through change in the elastic modulus as the release of calcium ions increased over time and caused ionic cross-linking, which promotes the elasticity of gel. In addition, the growth of MG-63 cells in the gel reflected nontoxicity. These results showed that this biocompatible scaffold has potential for application in bone materials. PMID:26504784

  9. Influence of thermal processing on hydrolysis and stability of folate poly-gamma-glutamates in broccoli (Brassica oleracea var. italica), carrot (Daucus carota) and tomato (Lycopersicon esculentum).

    Science.gov (United States)

    Munyaka, Ann Wambui; Verlinde, Philippe; Mukisa, Ivan Muzira; Oey, Indrawati; Van Loey, Ann; Hendrickx, Marc

    2010-04-14

    The folate poly-gamma-glutamate profile, their concentrations, and hydrolysis by endogenous gamma-glutamyl hydrolase (GGH) were evaluated in broccoli, carrot and tomato. Further studies on the effect of time and temperature on folate poly-gamma-glutamate hydrolysis and stability were carried out in broccoli since this vegetable showed the highest long-chain and total folate poly-gamma-glutamate concentration. The evolution of l-ascorbic acid, total phenols and Trolox equivalent antioxidant capacity (TEAC) values was evaluated in parallel. Upon thermal inactivation of GGH prior to crushing, it was observed that broccoli, carrot and tomato contained poly-gamma-glutamates with one to seven glutamate residues but differed in the predominant poly-gamma-glutamates. Crushing of raw broccoli, carrot and tomato resulted in significant poly-gamma-glutamate profile changes in broccoli and carrot (indicating GGH-catalyzed hydrolysis) but not in tomato. In this study, the actual crushing of raw broccoli matrix had a greater effect on folate poly-gamma-glutamate hydrolysis than incubation conditions (0-30 min at 25-55 degrees C). During treatments at 25-140 degrees C, folate retention was higher at 80 and 100 degrees C than at the other temperatures. A similar trend in thermal stability was observed for folates, vitamin C, total phenols and TEAC value, an indication that conditions that result in endogenous antioxidants degradation might also result in folate degradation.

  10. Fabrication of superhydrophobic surfaces via CaCO3 mineralization mediated by poly(glutamic acid)

    Science.gov (United States)

    Cao, Heng; Yao, Jinrong; Shao, Zhengzhong

    2013-03-01

    Surfaces with micrometer and nanometer sized hierarchical structures were fabricated by an one-step in situ additive controlled CaCO3 mineralization method. After chemical modification, the surfaces with various morphologies showed superhydrophobicity in different states, which could be easily adjusted by the initial supersaturation of the mineralization solution (concentration of calcium ion and poly(glutamic acid)). Generally, the "lotus state" surface which was covered by a thick layer of tetrahedron-shaped CaCO3 particles to exhibit a contact angle (CA) of 157±1° and a very low contact angle hysteresis (CAH) (roll-off angle=1°) was produced under high supersaturation. On the other hands, the petal-like surface with flower-shaped calcite spherulites was obtained in a relative low supersaturation, which showed both high CA (156±2°) and CAH (180°) in a "Cassie impregnating wetting state".

  11. Chitosan/γ-poly(glutamic acid) scaffolds with surface-modified albumin, elastin and poly-l-lysine for cartilage tissue engineering.

    Science.gov (United States)

    Kuo, Yung-Chih; Ku, Hao-Fu; Rajesh, Rajendiran

    2017-09-01

    Cartilage has limited ability to self-repair due to the absence of blood vessels and nerves. The application of biomaterial scaffolds using biomimetic extracellular matrix (ECM)-related polymers has become an effective approach to production of engineered cartilage. Chitosan/γ-poly(glutamic acid) (γ-PGA) scaffolds with different mass ratios were prepared using genipin as a cross-linker and a freeze-drying method, and their surfaces were modified with elastin, human serum albumin (HSA) and poly-l-lysine (PLL). The scaffolds were formed through a complex between NH 3 + of chitosan and COO - of γ-PGA, confirmed by Fourier transform infrared spectroscopy, and exhibited an interconnected porous morphology in field emission scanning electron microscopy analysis. The prepared chitosan/γ-PGA scaffolds, at a 3:1 ratio, obtained the required porosity (90%), pore size (≥100μm), mechanical strength (compressive strength>4MPa, Young's modulus>4MPa) and biodegradation (30-60%) for articular cartilage tissue engineering applications. Surface modification of the scaffolds showed positive indications with improved activity toward cell proliferation (deoxyribonucleic acid), cell adhesion and ECM (glycoaminoglycans and type II collagen) secretion of bovine knee chondrocytes compared with unmodified scaffolds. In caspase-3 detection, elastin had a higher inhibitory effect on chondrocyte apoptosis in vitro, followed by HSA, and then PLL. We concluded that utilizing chitosan/γ-PGA scaffolds with surface active biomolecules, including elastin, HSA and PLL, can effectively promote the growth of chondrocytes, secrete ECM and improve the regenerative ability of cartilaginous tissues. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Solubilities of magnesium-L-ascorbate, calcium-L-ascorbate, magnesium-L-glutamate, magnesium-D-gluconate, calcium-D-gluconate, calcium-D-heptagluconate, L-aspartic acid, and 3-nitrobenzoic acid in water

    Energy Technology Data Exchange (ETDEWEB)

    Mishelevich, Alexander [Department of Chemical Engineering, Ben Gurion University of the Negev, Beer Sheva 84105 (Israel); Apelblat, Alexander [Department of Chemical Engineering, Ben Gurion University of the Negev, Beer Sheva 84105 (Israel)], E-mail: apelblat@bgu.ac.il

    2008-05-15

    The solubility in water of magnesium-L-ascorbate, calcium-L-ascorbate, magnesium-L-glutamate, magnesium-D-gluconate, calcium-D-gluconate, calcium-D-heptagluconate, L-aspartic acid, and 3-nitrobenzoic acid was determined in the 278.15 K to 343.15 K temperature range. The solubility of these compounds served to permit the evaluation of the apparent molar enthalpies of solution.

  13. Solubilities of magnesium-L-ascorbate, calcium-L-ascorbate, magnesium-L-glutamate, magnesium-D-gluconate, calcium-D-gluconate, calcium-D-heptagluconate, L-aspartic acid, and 3-nitrobenzoic acid in water

    International Nuclear Information System (INIS)

    Mishelevich, Alexander; Apelblat, Alexander

    2008-01-01

    The solubility in water of magnesium-L-ascorbate, calcium-L-ascorbate, magnesium-L-glutamate, magnesium-D-gluconate, calcium-D-gluconate, calcium-D-heptagluconate, L-aspartic acid, and 3-nitrobenzoic acid was determined in the 278.15 K to 343.15 K temperature range. The solubility of these compounds served to permit the evaluation of the apparent molar enthalpies of solution

  14. Polyglutamate copolymers as a tissue-engineering platform: polymer scaffold modification through aminolysis of poly(.gamma.-benzyl-L-glutamate-co-2,2,2-.gamma.-trichlorethyl-L-glutamate)

    Czech Academy of Sciences Publication Activity Database

    Svobodová, Jana; Rypáček, František

    2012-01-01

    Roč. 48, č. 1 (2012), s. 183-190 ISSN 0014-3057 R&D Projects: GA AV ČR KJB400500904; GA ČR GAP108/11/1857; GA MŠk 1M0538 Institutional research plan: CEZ:AV0Z40500505 Keywords : poly(.gamma.-benzyl-L-glutamate) * 2,2,2-.gamma.-trichlorethyl-L-glutamate * fibres Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.562, year: 2012

  15. Poly-γ-glutamic acid produced from Bacillus licheniformis CGMCC 2876 as a potential substitute for polyacrylamide in the sugarcane industry.

    Science.gov (United States)

    Yan, Shan; Yao, Haosheng; Chen, Zhen; Zeng, Shengquan; Xi, Xi; Wang, Yuanpeng; He, Ning; Li, Qingbiao

    2015-01-01

    As an environmentally friendly and industrially useful biopolymer, poly-γ-glutamic acid (γ-PGA) from Bacillus licheniformis CGMCC 2876 was characterized by the high-resolution mass spectrometry and (1)H NMR. A flocculating activity of 11,474.47 U mL(-1) obtained with γ-PGA, and the effects of carbon sources, ions, and chemical properties (D-/L-composition and molecular weight) on the production and flocculating activity of γ-PGA were discussed. Being a bioflocculant in the sugar refinery process, the color and turbidity of the sugarcane juice was IU 1,877.36 and IU 341.41 with 0.8 ppm of γ-PGA, respectively, which was as good as the most widely used chemically synthesized flocculant in the sugarcane industry--polyacrylamide with 1 ppm. The γ-PGA produced from B. licheniformis CGMCC 2876 could be a promising alternate of chemically synthesized flocculants in the sugarcane industry. © 2015 American Institute of Chemical Engineers.

  16. IgE binding to peanut allergens is inhibited by combined D-aspartic and D-glutamic acids.

    Science.gov (United States)

    Chung, Si-Yin; Reed, Shawndrika

    2015-01-01

    The objective of this study was to determine if D-amino acids (D-aas) bind and inhibit immunoglobulin E (IgE) binding to peanut allergens. D-aas such as D-Asp (aspartic acid), D-Glu (glutamic acid), combined D-[Asp/Glu] and others were each prepared in a cocktail of 9 other D-aas, along with L-amino acids (L-aas) and controls. Each sample was mixed with a pooled plasma from peanut-allergic donors, and tested by ELISA (enzyme-linked immunosorbent assay) and Western blots for IgE binding to peanut allergens. Results showed that D-[Asp/Glu] (4 mg/ml) inhibited IgE binding (75%) while D-Glu, D-Asp and other D-aas had no inhibitory effect. A higher inhibition was seen with D-[Asp/Glu] than with L-[Asp/Glu]. We concluded that IgE was specific for D-[Asp/Glu], not D-Asp or D-Glu, and that D-[Asp/Glu] was more reactive than was L-[Asp/Glu] in IgE inhibition. The finding indicates that D-[Asp/Glu] may have the potential for removing IgE or reducing IgE binding to peanut allergens in vitro. Published by Elsevier Ltd.

  17. Glutamic acid as anticancer agent: An overview.

    Science.gov (United States)

    Dutta, Satyajit; Ray, Supratim; Nagarajan, K

    2013-10-01

    The objective of the article is to highlight various roles of glutamic acid like endogenic anticancer agent, conjugates to anticancer agents, and derivatives of glutamic acid as possible anticancer agents. Besides these emphases are given especially for two endogenous derivatives of glutamic acid such as glutamine and glutamate. Glutamine is a derivative of glutamic acid and is formed in the body from glutamic acid and ammonia in an energy requiring reaction catalyzed by glutamine synthase. It also possesses anticancer activity. So the transportation and metabolism of glutamine are also discussed for better understanding the role of glutamic acid. Glutamates are the carboxylate anions and salts of glutamic acid. Here the roles of various enzymes required for the metabolism of glutamates are also discussed.

  18. Effects of aromatic amino acids on glutamate-induced neuronal cell death

    International Nuclear Information System (INIS)

    Zafar, Z.; Sumners, C.

    2005-01-01

    Glutamate accumulation is believed to lead to overstimulation of glutamate receptors which results in neuronal death. The protective effects of aromatic amino acids on glutamate induced neuronal cell death were examined using rat cerebral cortical neurons. Neuronal death is quantified by measuring lactate dehydrogenase (LDH) using a spectrophotometric microtiter plate reader (ELISA reader). Neuronal cells were incubated with varying doses of glutamate plus or minus the aromatic amino acid D-Phenylalanine (D-Phe) for different time periods to observe protection against cytotoxicity. Percent cytotoxicity was seen to follow a dose dependent rise with increasing concentrations of glutamate, reaching a plateau at around 100 -500 uM glutamate. Lower levels of cytotoxicity were achieved with cell exposed to D-Phe and Dibromo tyrosine (DBrT). 48-hour experimental runs were also carried out to further investigate the mode of action of D-Phe. It was found that the difference between cytotoxicity levels of control cells and protected cells was higher over longer time. (author)

  19. Changes in D-aspartic acid and D-glutamic acid levels in the tissues and physiological fluids of mice with various D-aspartate oxidase activities.

    Science.gov (United States)

    Han, Hai; Miyoshi, Yurika; Koga, Reiko; Mita, Masashi; Konno, Ryuichi; Hamase, Kenji

    2015-12-10

    D-Aspartic acid (D-Asp) and D-glutamic acid (D-Glu) are currently paid attention as modulators of neuronal transmission and hormonal secretion. These two D-amino acids are metabolized only by D-aspartate oxidase (DDO) in mammals. Therefore, in order to design and develop new drugs controlling the D-Asp and D-Glu amounts via regulation of the DDO activities, changes in these acidic D-amino acid amounts in various tissues are expected to be clarified in model animals having various DDO activities. In the present study, the amounts of Asp and Glu enantiomers in 6 brain tissues, 11 peripheral tissues and 2 physiological fluids of DDO(+/+), DDO(+/-) and DDO(-/-) mice were determined using a sensitive and selective two-dimensional HPLC system. As a result, the amounts of D-Asp were drastically increased with the decrease in the DDO activity in all the tested tissues and physiological fluids. On the other hand, the amounts of D-Glu were almost the same among the 3 strains of mice. The present results are useful for designing new drug candidates, such as DDO inhibitors, and further studies are expected. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Synthesis and Properties of Shape Memory Poly(γ-Benzyl-l-Glutamate-b-Poly(Propylene Glycol-b-Poly(γ-Benzyl-l-Glutamate

    Directory of Open Access Journals (Sweden)

    Lin Gu

    2017-12-01

    Full Text Available Shape memory polymers (SMPs have attracted much attention as an important class of stimuli-responsive materials for biomedical applications. For SMP-based biomaterials, in addition to suitable shape recovery performances, their mechanical properties, biodegradability, biocompatibility, and sterilizability needs to be considered. Polypeptides can satisfy the requirements outlined above. However, there are few reports on shape memory polypeptides. In this paper, shape memory poly(γ-benzyl-l-glutamate (PBLG-PPG-PBLG was synthesized by ring-opening polymerization of γ-benzyl-l-glutamate-N-carboxyanhydrides (BLG-NCA with poly(propylene glycol bis(2-aminopropyl ether as the macroinitiator. 1H Nuclear Magnetic Resonance (NMR and Fourier-Transform Infrared Spectroscopy (FTIR were used to characterize the structure of the obtained PBLG-PPG-PBLG. The FTIR analysis showed that PBLG-PPG-PBLG has α-helical and β-sheet structures. PBLG-PPG-PBLG has good shape memory properties, its shape recovery time is less than 120 s, and its shape recovery rate is 100%. In this study, we reported a simple synthetic method to obtain intelligent polypeptide materials, which will be used in many biomedical applications.

  1. Conversion of agroindustrial residues for high poly(γ-glutamic acid) production by Bacillus subtilis NX-2 via solid-state fermentation.

    Science.gov (United States)

    Tang, Bao; Xu, Hong; Xu, Zongqi; Xu, Cen; Xu, Zheng; Lei, Peng; Qiu, Yibin; Liang, Jinfeng; Feng, Xiaohai

    2015-04-01

    Poly(γ-glutamic acid) (γ-PGA) production by Bacillus subtilis NX-2 was carried out through solid-state fermentation with dry mushroom residues (DMR) and monosodium glutamate production residues (MGPR; a substitute of glutamate) for the first time. Dry shiitake mushroom residue (DSMR) was found to be the most suitable solid substrate among these DMRs; the optimal DSMR-to-MGPR ratio was optimized as 12:8. To increase γ-PGA production, industrial waste glycerol was added as a carbon source supplement to the solid-state medium. As a result, γ-PGA production increased by 34.8%. The batch fermentation obtained an outcome of 115.6 g kg(-1) γ-PGA and 39.5×10(8) colony forming units g(-1) cells. Furthermore, a satisfactory yield of 107.7 g kg(-1) γ-PGA was achieved by compost experiment on a scale of 50 kg in open air, indicating that economically large-scale γ-PGA production was feasible. Therefore, this study provided a novel method to produce γ-PGA from abundant and low-cost agroindustrial residues. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. The Degradation of 14C-Glutamic Acid by L-Glutamic Acid Decarboxylase.

    Science.gov (United States)

    Dougherty, Charles M; Dayan, Jean

    1982-01-01

    Describes procedures and semi-micro reaction apparatus (carbon dioxide trap) to demonstrate how a particular enzyme (L-Glutamic acid decarboxylase) may be used to determine the site or sites of labeling in its substrate (carbon-14 labeled glutamic acid). Includes calculations, solutions, and reagents used. (Author/SK)

  3. Macromolecular Colloids of Diblock Poly(amino acids) That Bind Insulin.

    Science.gov (United States)

    Constancis; Meyrueix; Bryson; Huille; Grosselin; Gulik-Krzywicki; Soula

    1999-09-15

    The diblock polymer poly(l-leucine-block-l-glutamate), bLE, was synthesized by acid hydrolysis of the ester poly(l-leucine-block-l-methyl glutamate). During the hydrolysis reaction the leucine block precipitates from the reaction mixture, forming nanosized particulate structures. These particles can be purified and further suspended in water or in 0.15 M phosphate saline buffer (PBS) to give stable, colloidal dispersions. TEM analysis shows the predominant particle form to be that of platelets with a diameter of 200 nm. Smaller cylindrical or spherical particles form a relatively minor fraction of the sample. After fractionation, analysis shows the platelets to be compositionally rich in leucine, while the spheres are glutamate-rich. (1)H NMR, CD, and X-ray diffraction indicate that the core of the platelets is composed of crystalline, helical leucine segments. The poly(l-glutamate) polyelectrolyte brush extending out from the two faces of the disk stabilizes individual particles from flocculation. At pH 7.4, the nanoparticles (platelets and cylinders) spontaneously adsorb proteins, such as insulin, directly from solution. Partial desorption of the protein in its native configuration can be induced by simple dilution. The reversibility of the insulin-nanoparticle complex is the basis for a potential new delivery system. Copyright 1999 Academic Press.

  4. Glutamic acid as anticancer agent: An overview

    OpenAIRE

    Dutta, Satyajit; Ray, Supratim; Nagarajan, K.

    2013-01-01

    The objective of the article is to highlight various roles of glutamic acid like endogenic anticancer agent, conjugates to anticancer agents, and derivatives of glutamic acid as possible anticancer agents. Besides these emphases are given especially for two endogenous derivatives of glutamic acid such as glutamine and glutamate. Glutamine is a derivative of glutamic acid and is formed in the body from glutamic acid and ammonia in an energy requiring reaction catalyzed by glutamine synthase. I...

  5. Simultaneous determination of D-aspartic acid and D-glutamic acid in rat tissues and physiological fluids using a multi-loop two-dimensional HPLC procedure.

    Science.gov (United States)

    Han, Hai; Miyoshi, Yurika; Ueno, Kyoko; Okamura, Chieko; Tojo, Yosuke; Mita, Masashi; Lindner, Wolfgang; Zaitsu, Kiyoshi; Hamase, Kenji

    2011-11-01

    For a metabolomics study focusing on the analysis of aspartic and glutamic acid enantiomers, a fully automated two-dimensional HPLC system employing a microbore-ODS column and a narrowbore-enantioselective column was developed. By using this system, a detailed distribution of D-Asp and D-Glu besides L-Asp and L-Glu in mammals was elucidated. For the total analysis concept, the amino acids were first pre-column derivatized with 4-fluoro-7-nitro-2,1,3-benzoxadiazole (NBD-F) to be sensitively and fluorometrically detected. For the non-stereoselective separation of the analytes in the first dimension a monolithic ODS column (750 mm × 0.53 mm i.d.) was adopted, and a self-packed narrowbore-Pirkle type enantioselective column (Sumichiral OA-2500S, 250 mm × 1.5 mm i.d.) was selected for the second dimension. In the rat plasma, RSD values for intra-day and inter-day precision were less than 6.8%, and the accuracy ranged between 96.1% and 105.8%. The values of LOQ of D-Asp and D-Glu were 5 fmol/injection (0.625 nmol/g tissue). The present method was successfully applied to the simultaneous determination of free aspartic acid and glutamic acid enantiomers in 7 brain areas, 11 peripheral tissues, plasma and urine of Wistar rats. Biologically significant D-Asp values were found in various tissue samples whereas for D-Glu the values were very low possibly indicating less significance. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Effects of phosphoenolpyruvate carboxylase desensitization on glutamic acid production in Corynebacterium glutamicum ATCC 13032.

    Science.gov (United States)

    Wada, Masaru; Sawada, Kazunori; Ogura, Kotaro; Shimono, Yuta; Hagiwara, Takuya; Sugimoto, Masakazu; Onuki, Akiko; Yokota, Atsushi

    2016-02-01

    Phosphoenolpyruvate carboxylase (PEPC) in Corynebacterium glutamicum ATCC13032, a glutamic-acid producing actinobacterium, is subject to feedback inhibition by metabolic intermediates such as aspartic acid and 2-oxoglutaric acid, which implies the importance of PEPC in replenishing oxaloacetic acid into the TCA cycle. Here, we investigated the effects of feedback-insensitive PEPC on glutamic acid production. A single amino-acid substitution in PEPC, D299N, was found to relieve the feedback control by aspartic acid, but not by 2-oxoglutaric acid. A simple mutant, strain R1, having the D299N substitution in PEPC was constructed from ATCC 13032 using the double-crossover chromosome replacement technique. Strain R1 produced glutamic acid at a concentration of 31.0 g/L from 100 g/L glucose in a jar fermentor culture under biotin-limited conditions, which was significantly higher than that of the parent, 26.0 g/L (1.19-fold), indicative of the positive effect of desensitized PEPC on glutamic acid production. Another mutant, strain DR1, having both desensitized PEPC and PYK-gene deleted mutations, was constructed in a similar manner using strain D1 with a PYK-gene deleted mutation as the parent. This mutation had been shown to enhance glutamic acid production in our previous study. Although marginal, strain D1 produced higher glutamic acid, 28.8 g/L, than ATCC13032 (1.11-fold). In contrast, glutamic acid production by strain DR-1 was elevated up to 36.9 g/L, which was 1.42-fold higher than ATCC13032 and significantly higher than the other three strains. The results showed a synergistic effect of these two mutations on glutamic acid production in C. glutamicum. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  7. Poly-γ-Glutamic Acid Nanoparticles Based Visible Light-Curable Hydrogel for Biomedical Application

    Directory of Open Access Journals (Sweden)

    József Bakó

    2016-01-01

    Full Text Available Nanoparticles and hydrogels have gained notable attention as promising potential for fabrication of scaffolds and delivering materials. Visible light-curable systems can allow for the possibility of in situ fabrication and have the advantage of optimal applicability. In this study nanogel was created from methacrylated poly-gamma-glutamic acid nanoparticles by visible (dental blue light photopolymerization. The average size of the particles was 80 nm by DLS, and the NMR spectra showed that the methacrylation rate was 10%. Polymerization time was 3 minutes, and a stable nanogel with a swelling rate of 110% was formed. The mechanical parameters of the prepared structure (compression stress 0.73 MPa, and Young’s modulus 0.93 MPa can be as strong as necessary in a real situation, for example, in the mouth. A retaining effect of the nanogel was found for ampicillin, and the biocompatibility of this system was tested by Alamar Blue proliferation assay, while the cell morphology was examined by fluorescence and laser scanning confocal microscopy. In conclusion, the nanogel can be used for drug delivery, or it can be suitable for a control factor in different systems.

  8. 3D FT-IR imaging spectroscopy of phase-separation in a poly(3-hydroxybutyrate)/poly(L-lactic acid) blend

    Science.gov (United States)

    Miriam Unger; Julia Sedlmair; Heinz W. Siesler; Carol Hirschmugl; Barbara Illman

    2014-01-01

    In the present study, 3D FT-IR spectroscopic imaging measurements were applied to study the phase separation of a poly(3-hydroxybutyrate) (PHB)/poly(L-lactic acid) (PLA) (50:50 wt.%) polymer blend film. While in 2D projection imaging the z-dependent information is overlapped, thereby complicating the analysis, FT-IR spectro-micro-tomography,...

  9. Enzymatic production of α-ketoglutaric acid from l-glutamic acid via l-glutamate oxidase.

    Science.gov (United States)

    Niu, Panqing; Dong, Xiaoxiang; Wang, Yuancai; Liu, Liming

    2014-06-10

    In this study, a novel strategy for α-ketoglutaric acid (α-KG) production from l-glutamic acid using recombinant l-glutamate oxidase (LGOX) was developed. First, by analyzing the molecular structure characteristics of l-glutamic acid and α-KG, LGOX was found to be the best catalyst for oxidizing the amino group of l-glutamic acid to a ketonic group without the need for exogenous cofactor. Then the LGOX gene was expressed in Escherichia coli BL21 (DE3) in a soluble and active form, and the recombinant LGOX activity reached to a maximum value of 0.59U/mL at pH 6.5, 30°C. Finally, the maximum α-KG concentration reached 104.7g/L from 110g/L l-glutamic acid in 24h, under the following optimum conditions: 1.5U/mL LGOX, 250U/mL catalase, 3mM MnCl2, 30°C, and pH 6.5. Copyright © 2014. Published by Elsevier B.V.

  10. Binding of L-glutamic acid to non-receptor materials

    International Nuclear Information System (INIS)

    Periyasamy, S.; Ito, M.; Chiu, T.H.

    1986-01-01

    [ 3 H]L-glutamic acid ([ 3 H]Glu) binding to microfuge tubes, glass fiber filters, and glass tubes was studied in 4 buffers (50 mM, pH 7.4 at 4 0 C). Binding assays were done at 0-4 0 C. Binding to these materials was negligible in the absence of external force, but was increased by suction or centrifugation in Tris-HCl or Tris-citrate buffer. The force-induced binding was much less or was eliminated in Tris-acetate or HEPES-KOH buffer. [ 3 H]Glu binding to microfuge tubes was inhibited by L- but not D- isomers of glutamate and aspartate. DL-2-amino-7-phosphonoheptanoic acid was without effect. Other compounds that showed low to moderate inhibitory activity were N-methyl-D-aspartate, quisqualate, L-glutamic acid diethyl ester. N-methyl-L-aspartate, kainate, and 2-amino-4-phosphonobutyrate. Binding was inhibited by denatured P 2 membrane preparation in Tris-acetate buffer was used. It is suggested that Tris-acetate or HEPES-KOH buffer should be used in the glutamate binding assay

  11. The application of glutamic acid alpha-decarboxylase for the valorization of glutamic acid

    NARCIS (Netherlands)

    Lammens, T.M.; Biase, De Daniela; Franssen, M.C.R.; Scott, E.L.; Sanders, J.P.M.

    2009-01-01

    Glutamic acid is an important constituent of waste streams from biofuels production. It is an interesting starting material for the synthesis of nitrogen containing bulk chemicals, thereby decreasing the dependency on fossil fuels. On the pathway from glutamic acid to a range of molecules, the

  12. Effects of glutamic acid analogues on identifiable giant neurones, sensitive to beta-hydroxy-L-glutamic acid, of an African giant snail (Achatina fulica Férussac).

    Science.gov (United States)

    Nakajima, T.; Nomoto, K.; Ohfune, Y.; Shiratori, Y.; Takemoto, T.; Takeuchi, H.; Watanabe, K.

    1985-01-01

    The effects of the seven glutamic acid analogues, alpha-kainic acid, alpha-allo-kainic acid, domoic acid, erythro-L-tricholomic acid, DL-ibotenic acid, L-quisqualic acid and allo-gamma-hydroxy-L-glutamic acid were examined on six identifiable giant neurones of an African giant snail (Achatina fulica Férussac). The neurones studied were: PON (periodically oscillating neurone), d-RPLN (dorsal-right parietal large neurone), VIN (visceral intermittently firing neurone), RAPN (right anterior pallial neurone), FAN (frequently autoactive neurone) and v-RCDN (ventral-right cerebral distinct neurone). Of these, d-RPLN and RAPN were excited by the two isomers (erythro- and threo-) of beta-hydroxy-L-glutamic acid (L-BHGA), whereas PON, VIN, FAN and v-RCDN were inhibited. L-Glutamic acid (L-Glu) had virtually no effect on these neurones. alpha-Kainic acid and domoic acid showed marked excitatory effects, similar to those of L-BHGA, on d-RPLN and RAPN. Their effective potency quotients (EPQs), relative to the more effective isomer of L-BHGA were: 0.3 for both substances on d-RPLN, and 1 for alpha-kainic acid and 3-1 for domoic acid on RAPN. alpha-Kainic acid also had excitatory effects on FAN and v-RCDN (EPQ for both: 0.3), which were inhibited by L-BHGA but excited by gamma-aminobutyric acid (GABA). Erythro-L-tricholomic acid showed marked effects, similar to those of L-BHGA, on VIN (EPQ: 0.3) and RAPN (EPQ: 3-1), but produced weaker effects on PON and d-RPLN (EPQ: 0.1). DL-Ibotenic acid produced marked effects, similar to those of L-BHGA, on PON, VIN (EPQ for both: 1) and RAPN (EPQ: 1-0.3), but had weak effects on d-RPLN (EPQ: less than 0.1) and FAN (EPQ: 0.1). It had excitatory effects on v-RCDN (EPQ: 0.1). This neurone was inhibited by L-BHGA but excited by GABA. L-Quisqualic acid showed the same effects as L-BHGA on all of the neurones examined (EPQ range 30-0.1). It was the most potent of the compounds tested on RAPN (EPQ: 30-10), FAN (EPQ: 30) and v-RCDN (EPQ: 3). alpha

  13. In vitro removal of toxic heavy metals by poly(γ-glutamic acid-coated superparamagnetic nanoparticles

    Directory of Open Access Journals (Sweden)

    Inbaraj BS

    2012-08-01

    Full Text Available Baskaran Stephen Inbaraj,1 Bing-Huei Chen1,21Department of Food Science, 2Graduate Institute of Medicine, Fu Jen University, Taipei, TaiwanBackground: Chelation therapy involving organic chelators for treatment of heavy metal intoxication can cause cardiac arrest, kidney overload, mineral deficiency, and anemia.Methods: In this study, superparamagnetic iron oxide nanoparticles (SPIONs modified with an edible biopolymer poly(γ-glutamic acid (PGA were synthesized by coprecipitation method, characterized and evaluated for their removal efficiency of heavy metals from a metal solution, and simulated gastrointestinal fluid (SGIF.Results: Instrumental characterization of bare- and PGA-SPIONs revealed 7% coating of PGA on SPIONs with a spherical shape and an iron oxide spinel structure belonging to magnetite. The particle sizes as determined from transmission electron microscopy images were 8.5 and 11.7 nm for bare- and PGA-SPIONs, respectively, while the magnetization values were 70.3 and 61.5 emu/g. Upon coating with PGA, the zeta potentials were shifted from positive to negative at most of the environmental pH (3–8 and biological pH (1–8, implying good dispersion in aqueous suspension and favorable conditions for heavy metal removal. Batch studies showed rapid removal of lead and cadmium with the kinetic rates estimated by pseudo-second-order model being 0.212 and 0.424 g/mg•min, respectively. A maximum removal occurred in the pH range 4–8 in deionized water and 5–8 in SGIF corresponding to most gastrointestinal pH except for the stomach. Addition of different ionic strengths (0.001–1 M sodium acetate and essential metals (Cu, Fe, Zn, Mg, Ca, and K did not show any marked influence on lead removal by PGA-SPIONs, but significantly reduced the binding of cadmium. Compared to deionized water, the lead removal from SGIF was high at all pH with the Langmuir monolayer removal capacity being 98.70 mg/g for the former and 147.71 mg/g for the

  14. Fluorescence studies on the aggregation behaviors of collagen modified with NHS-activated poly(γ-glutamic acid).

    Science.gov (United States)

    Zhang, Min; Yang, Junhui; Yang, Qili; Huang, Liulian; Wu, Hui; Chen, Lihui; Ding, Cuicui

    2018-06-01

    The poly(γ-glutamic acid)-NHS (γ-PGA-NHS) esters were used to endow collagen with both of excellent water-solubility and thermal stability via cross-linking reaction between γ-PGA-NHS and collagen. In the present work, the effect of γ-PGA-NHS on the aggregation of collagen molecules was studied by fluorescence techniques. The fluorescence emission spectra of pyrene in collagen solutions and the intrinsic fluorescence emission spectra of collagen suggested different effects of γ-PGA-NHS on collagen molecules: inhibiting aggregation below critical aggregation concentration (CAC) and promoting aggregation above CAC. The two-dimensional (2D) fluorescence correlation spectra indicated that the intermolecular hydrogen bonding and cross-linking between γ-PGA-NHS and collagen would influence the aggregation of collagen molecules. By the ultra-sensitive differential scanning calorimeter (VP-DSC), it was found that the main denaturational transition temperature (T m2 ) of modified collagen increased, while its calorimetric enthalpy changes (ΔH 2 ) decreased compared to those of native collagen, further indicating that the modification of γ-PGA-NHS influenced the aggregation of collagen molecules. The study provide useful information for the utilizing and or the processing of water-soluble collagen in aqueous solution in the fields such as cosmetics, health care products, tissue engineering and biomedical materials, etc. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. 21 CFR 182.1045 - Glutamic acid.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Glutamic acid. 182.1045 Section 182.1045 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN....1045 Glutamic acid. (a) Product. Glutamic acid. (b) [Reserved] (c) Limitations, restrictions, or...

  16. Effect of corona electric field on the production of gamma-poly glutamic acid based on bacillus natto

    Science.gov (United States)

    Qi, Hong; Na, Ri; Xin, Jiletu; Jie Xie, Ya; Guo, Jiu Feng

    2013-03-01

    Bacillus Natto is an important strain for gamma-poly glutamic acid (γ-PGA) production. The mutagenesis of Bacillus Natto 20646 under corona electric field and the screening of high γ-PGA producing mutant were investigated. A new mutant bacillus natto Ndlz01 was isolated from Bacillus Natto 20646 after mutation in corona electric field at 9kV for 2min. The Ndlz01 exhibited genetic stability of high γ-PGA producing ability even after five generation cultures. When the bacterium was mutated in streamer discharge state at 9kV for 2min, its death rate was more than 90%. Compared with the yield of γ-PGA based on the original Bacillus Natto 20646, the γ-PGA yield of mutant bacillus natto Ndlz01 increased from 2.6 to 5.94 g/L, with an increase rate of 129.78%.

  17. Effect of corona electric field on the production of gamma-poly glutamic acid based on bacillus natto

    International Nuclear Information System (INIS)

    Qi, Hong; Na, Ri; Xin, Jiletu; Xie, Ya Jie; Guo, Jiu Feng

    2013-01-01

    Bacillus Natto is an important strain for gamma-poly glutamic acid (γ-PGA) production. The mutagenesis of Bacillus Natto 20646 under corona electric field and the screening of high γ-PGA producing mutant were investigated. A new mutant bacillus natto Ndlz01 was isolated from Bacillus Natto 20646 after mutation in corona electric field at 9kV for 2min. The Ndlz01 exhibited genetic stability of high γ-PGA producing ability even after five generation cultures. When the bacterium was mutated in streamer discharge state at 9kV for 2min, its death rate was more than 90%. Compared with the yield of γ-PGA based on the original Bacillus Natto 20646, the γ-PGA yield of mutant bacillus natto Ndlz01 increased from 2.6 to 5.94 g/L, with an increase rate of 129.78%.

  18. Influence of assembling pH on the stability of poly(L-glutamic acid) and poly(L-lysine) multilayers against urea treatment.

    Science.gov (United States)

    Zhou, Jie; Wang, Bo; Tong, Weijun; Maltseva, Elena; Zhang, Gang; Krastev, Rumen; Gao, Changyou; Möhwald, Helmuth; Shen, Jiacong

    2008-04-01

    Polyelectrolyte multilayers of poly(L-glutamic acid) (PGA) and poly(L-lysine) (PLL) were built up using the layer-by-layer (LbL) technique in low pH (3.6, PM3.6) and in neutral pH (7.4, PM7.4) solutions. The multilayers were then treated with a concentrated urea (one kind of denaturant for proteins and polypeptides) solution (8M) and rinsed with corresponding buffer. The buildup and treatment processes were investigated by ultraviolet visible spectroscopy and ellipsometry. The surface morphology was observed by scanning force microscopy (SFM). The inner structures were determined by X-ray reflectometry and circular dichroism spectroscopy (CD). An exponential growth of the optical mass and the layer thickness was observed for both PM3.6 and PM7.4. After urea treatment, a significant mass loss for PM3.6 was found, while no mass change was recorded for PM7.4. The dominant driving force for PM7.4 is electrostatic interaction, resulting in multilayers with an abundant beta-sheet structure, which has higher stability against urea treatment. By contrast, the dominant driving force for PM3.6 is hydrogen bonding and hydrophobic interaction, which are sensitive to the urea treatment. The mechanism is substantiated by molecular mechanics calculation. This has offered a convenient pathway to mediate the multilayer properties, which is of great importance for potential applications.

  19. Efficacy of Poly(D,L-Lactic Acid-co-Glycolic acid)-Poly(Ethylene Glycol)-Poly(D,L-Lactic Acid-co-Glycolic Acid) Thermogel As a Barrier to Prevent Spinal Epidural Fibrosis in a Postlaminectomy Rat Model.

    Science.gov (United States)

    Li, Xiangqian; Chen, Lin; Lin, Hong; Cao, Luping; Cheng, Ji'an; Dong, Jian; Yu, Lin; Ding, Jiandong

    2017-04-01

    Experimental animal study. The authors conducted a study to determine the efficacy and safety of the poly(D,L-lactic acid-co-glycolic acid)-poly(ethylene glycol)-poly(D,L-lactic acid-co-glycolic acid) (PLGA-PEG-PLGA) thermogel to prevent peridural fibrosis in an adult rat laminectomy model. Peridural fibrosis often occurs after spinal laminectomy. It might cause persistent back and/or leg pain postoperatively and make a reoperation more difficult and dangerous. Various materials have been used to prevent epidural fibrosis, but only limited success has been achieved. The PLGA-PEG-PLGA thermogel was synthesized by us. Total L3 laminectomies were performed on 24 rats. The PLGA-PEG-PLGA thermogel or chitosan (CHS) gel (a positive control group) was applied to the operative sites in a blinded manner. In the control group, the L3 laminectomy was performed and the defect was irrigated with the NS solution 3 times. All the rats were killed 4 weeks after the surgery. The cytotoxicity of this thermogel was evaluated in vitro and the result demonstrated that no evidence of cytotoxicity was observed. The extent of epidural fibrosis, the area of epidural fibrosis, and the density of the fibroblasts and blood vessel were evaluated histologically. There were statistical differences among the PLGA-PEG-PLGA thermogel or CHS gel group compared with the control group. Although there was no difference between the PLGA-PEG-PLGA thermogel and CHS gel, the efficiency of the PLGA-PEG-PLGA thermogel was shown to be slightly improved compared with the CHS gel. The biocompatibility of the PLGA-PEG-PLGA thermogel was proven well. The application of this thermogel effectively reduced epidural scarring and prevented the subsequent adhesion to the dura mater. No side effects were noted in the rats.

  20. Biodegradable Poly(D,L-lactic-co-glycolic acid)-Based Micro ...

    African Journals Online (AJOL)

    ... drug encapsulation efficiency and release profile of PLGA mico/nanoparticles. The current knowledge of protein instability during preparation, storage and release from PLGA micro/nanoparticles and protein stabilization approaches has also been discussed in this review. Keywords: Poly(D, L-lactic-co-glycolic acid), ...

  1. Anti-inflammatory Chitosan/Poly-γ-glutamic acid nanoparticles control inflammation while remodeling extracellular matrix in degenerated intervertebral disc.

    Science.gov (United States)

    Teixeira, Graciosa Q; Leite Pereira, Catarina; Castro, Flávia; Ferreira, Joana R; Gomez-Lazaro, Maria; Aguiar, Paulo; Barbosa, Mário A; Neidlinger-Wilke, Cornelia; Goncalves, Raquel M

    2016-09-15

    Intervertebral disc (IVD) degeneration is one of the most common causes of low back pain (LBP), the leading disorder in terms of years lived with disability. Inflammation can play a role in LPB, while impairs IVD regeneration. In spite of this, different inflammatory targets have been purposed in the context of IVD regeneration. Anti-inflammatory nanoparticles (NPs) of Chitosan and Poly-(γ-glutamic acid) with a non-steroidal anti-inflammatory drug, diclofenac (Df), were previously shown to counteract a pro-inflammatory response of human macrophages. Here, the effect of intradiscal injection of Df-NPs in degenerated IVD was evaluated. For that, Df-NPs were injected in a bovine IVD organ culture in pro-inflammatory/degenerative conditions, upon stimulation with needle-puncture and interleukin (IL)-1β. Df-NPs were internalized by IVD cells, down-regulating IL-6, IL-8, MMP1 and MMP3, and decreasing PGE2 production, compared with IL-1β-stimulated IVD punches. Interestingly, at the same time, Df-NPs promoted an up-regulation of extracellular matrix (ECM) proteins, namely collagen type II and aggrecan. Allover, this study suggests that IVD treatment with Df-NPs not only reduces inflammation, but also delays and/or decreases ECM degradation, opening perspectives to new intradiscal therapies for IVD degeneration, based on the modulation of inflammation. Degeneration of the IVD is an age-related progressive process considered to be the major cause of spine disorders. The pro-inflammatory environment and biomechanics of the degenerated IVD is a challenge for regenerative therapies. The novelty of this work is the intradiscal injection of an anti-inflammatory therapy based on Chitosan (Ch)/Poly-(γ-glutamic acid) (γ-PGA) nanoparticles (NPs) with an anti-inflammatory drug (diclofenac, Df), previously developed by us. This drug delivery system was tested in a pro-inflammatory/degenerative intervertebral disc ex vivo model. The main findings support the success of an anti

  2. Preparation, Characterization and Properties of Alginate/Poly(γ-glutamic acid) Composite Microparticles.

    Science.gov (United States)

    Tong, Zongrui; Chen, Yu; Liu, Yang; Tong, Li; Chu, Jiamian; Xiao, Kecen; Zhou, Zhiyu; Dong, Wenbo; Chu, Xingwu

    2017-04-11

    Alginate (Alg) is a renewable polymer with excellent hemostatic properties and biocapability and is widely used for hemostatic wound dressing. However, the swelling properties of alginate-based wound dressings need to be promoted to meet the requirements of wider application. Poly( γ -glutamic acid) (PGA) is a natural polymer with high hydrophility. In the current study, novel Alg/PGA composite microparticles with double network structure were prepared by the emulsification/internal gelation method. It was found from the structure characterization that a double network structure was formed in the composite microparticles due to the ion chelation interaction between Ca 2+ and the carboxylate groups of Alg and PGA and the electrostatic interaction between the secondary amine group of PGA and the carboxylate groups of Alg and PGA. The swelling behavior of the composite microparticles was significantly improved due to the high hydrophility of PGA. Influences of the preparing conditions on the swelling behavior of the composites were investigated. The porous microparticles could be formed while compositing of PGA. Thermal stability was studied by thermogravimetric analysis method. Moreover, in vitro cytocompatibility test of microparticles exhibited good biocompatibility with L929 cells. All results indicated that such Alg/PGA composite microparticles are a promising candidate in the field of wound dressing for hemostasis or rapid removal of exudates.

  3. Preparation and properties of EDC/NHS mediated crosslinking poly (gamma-glutamic acid)/epsilon-polylysine hydrogels

    Energy Technology Data Exchange (ETDEWEB)

    Hua, Jiachuan [Key Laboratory of Advanced Textile Composites, Tianjin Polytechnic University, Ministry of Education, Tianjin 300387 (China); School of Textiles, Tianjin Polytechnic University, Tianjin 300387 (China); Li, Zheng, E-mail: lizheng_nx@163.com [Key Laboratory of Advanced Textile Composites, Tianjin Polytechnic University, Ministry of Education, Tianjin 300387 (China); School of Textiles, Tianjin Polytechnic University, Tianjin 300387 (China); Xia, Wen; Yang, Ning; Gong, Jixian [Key Laboratory of Advanced Textile Composites, Tianjin Polytechnic University, Ministry of Education, Tianjin 300387 (China); School of Textiles, Tianjin Polytechnic University, Tianjin 300387 (China); Zhang, Jianfei, E-mail: zhangjianfei1960@126.com [Key Laboratory of Advanced Textile Composites, Tianjin Polytechnic University, Ministry of Education, Tianjin 300387 (China); School of Textiles, Tianjin Polytechnic University, Tianjin 300387 (China); Qiao, Changsheng [Key Laboratory of Industrial Microbiology, Tianjin University of Science and Technology, Ministry of Education, Tianjin 300457 (China)

    2016-04-01

    In this paper, a novel pH-sensitive poly (amino acid) hydrogel based on poly γ-glutamic acid (γ-PGA) and ε-polylysine (ε-PL) was prepared by carbodiimide (EDC) and N-hydroxysuccinimide (NHS) mediated polymerization. The influence of PGA/PL molar ratio and EDC/NHS concentration on the structure and properties was studied. Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS) proved that hydrogels were crosslinked through amide bond linkage, and the conversion rate of a carboxyl group could reach 96%. Scanning electron microscopy (SEM) results showed a regularly porous structure with 20 μm pore size in average. The gelation time in the crosslink process of PGA/PL hydrogels was within less than 5 min. PGA/PL hydrogels had excellent optical performance that was evaluated by a novel optotype method. Furthermore, PGA/PL hydrogels were found to be pH-sensitive, which could be adjusted to the pH of swelling media intelligently. The terminal pH of swelling medium could be controlled at 5 ± 1 after equilibrium when the initial pH was within 3–11. The swelling kinetics was found to follow a Voigt model in deionized water but a pseudo-second-order model in normal saline and phosphate buffer solution, respectively. The differential swelling degrees were attributed to the swelling theory based on the different ratio of –COOH/–NH{sub 2} and pore size in hydrogels. The results of mechanical property indicated that PGA/PL hydrogels were soft and elastic. Moreover, PGA/PL hydrogels exhibited excellent biocompatibility by cell proliferation experiment. PGA/PL hydrogels could be degraded in PBS solution and the degradation rate was decreased with the increase of the molar ratio of PL. Considering the simple preparation process and pH-sensitive property, these PGA/PL hydrogels might have high potential for use in medical and clinical fields. - Highlights: • We prepared a biocompatible and degradable poly amino acids hydrogel via EDC

  4. A Glutamic Acid-Producing Lactic Acid Bacteria Isolated from Malaysian Fermented Foods

    Science.gov (United States)

    Zareian, Mohsen; Ebrahimpour, Afshin; Bakar, Fatimah Abu; Mohamed, Abdul Karim Sabo; Forghani, Bita; Ab-Kadir, Mohd Safuan B.; Saari, Nazamid

    2012-01-01

    l-glutamaic acid is the principal excitatory neurotransmitter in the brain and an important intermediate in metabolism. In the present study, lactic acid bacteria (218) were isolated from six different fermented foods as potent sources of glutamic acid producers. The presumptive bacteria were tested for their ability to synthesize glutamic acid. Out of the 35 strains showing this capability, strain MNZ was determined as the highest glutamic-acid producer. Identification tests including 16S rRNA gene sequencing and sugar assimilation ability identified the strain MNZ as Lactobacillus plantarum. The characteristics of this microorganism related to its glutamic acid-producing ability, growth rate, glucose consumption and pH profile were studied. Results revealed that glutamic acid was formed inside the cell and excreted into the extracellular medium. Glutamic acid production was found to be growth-associated and glucose significantly enhanced glutamic acid production (1.032 mmol/L) compared to other carbon sources. A concentration of 0.7% ammonium nitrate as a nitrogen source effectively enhanced glutamic acid production. To the best of our knowledge this is the first report of glutamic acid production by lactic acid bacteria. The results of this study can be further applied for developing functional foods enriched in glutamic acid and subsequently γ-amino butyric acid (GABA) as a bioactive compound. PMID:22754309

  5. Influence of the glutamic acid content of the diet on the catabolic rate of labelled glutamic acid in rats. 3

    International Nuclear Information System (INIS)

    Simon, O.; Wilke, A.; Bergner, H.

    1984-01-01

    Mal rats received during a 8 days experimental feeding period diets with different contents in glutamic acid. The daily feed intake was restricted to the energy maintenance level of 460 kJ/kg/sup 0.75/. The diet contained a mixture of L-amino acids corresponding to the pattern of egg protein except glutamic acid. Glutamic acid was added successively at 10 levels (0 to 14.8 % of dry matter) and the resulting diets were fed to groups of 4 animals each. At the end of the experimental feeding period 14 C- and 15 N-labelled glutamic acid were applied by intragastric infusion. CO 2 and 14 CO 2 excretion was measured during the following 4 hours and the urinary N and 15 N excretion during the following 24 hours. The CO 2 excretion decreased from 53 to 44 mmol CO 2 /100g body weight with increasing levels of dietary glutamic acid. This change seems to result from the increasing proportion of amino acids as an energetic fuel. While the amount of oxidized glutamic acid increased with increasing supplements of glutamic acid the relative 14 CO 2 excretion decreased from 57 to 48 % of the applied radioactivity. The urinary 15 N excretion during 24 hours was 31 % of the given amount of 15 N if no glutamic acid was included in the diet. This proportion increased successively up to 52 % in the case of the highest supply of glutamic acid. Because the total N excretion increased at the same extent as the 15 N excretion a complete mixing of the NH 2 groups resulting from glutamic acid due to desamination with the ammonia pool was assumed. No correlation between glutamic acid content of the diet and specific radioactivity of CO 2 or atom-% 15 N excess of urinary N was observed. (author)

  6. Influence of the glutamic acid content of the diet on the catabolic rate of labelled glutamic acid in rats. 2

    International Nuclear Information System (INIS)

    Wilke, A.; Simon, O.; Bergner, H.

    1984-01-01

    40 rats with a body weight of 100 g received 7 semisynthetic diets with different contents of glutamic acid and one diet contained whole-egg. A L-amino acid mixture corresponding to the pattern of egg protein was the protein source of the semisynthetic diets. Glutamic acid was supplemented succesively from 0 to 58 mol-% of the total amino acid content. On the 8th day of the experimental feeding the animals were labelled by subcutaneous injection of 14 C-glutamic acid. Subsequently the CO 2 and the 14 CO 2 excretion were measured for 24 hours. In this period 64 to 68 % of the injected radioactivity were recovered as 14 CO 2 . The curve pattern of 14 CO 2 excretion indicates two different processes of 14 CO 2 formation. One characterizing the direct degradation of glutamic acid to CO 2 with a high rate constant and a second one with a lower rate constant characterizing the 14 CO 2 formation via metabolites of glutamic acid. 77 % of the total 14 CO 2 excretion in 24 hours resulted from the direct oxidation of glutamic acid and 23 % from the oxidation of intermediates. When 14 CO 2 formation was measured 10 to 24 hours after injection of 14 C-glutamic acid a positive correlation to the content of glutamic acid in the diet was observed. The intestinal tissue contributes considerably to the catabolization of glutamic acid, however, there seems to exist an upper limit for this capacity. (author)

  7. Poly(γ-Glutamic Acid) as an Exogenous Promoter of Chondrogenic Differentiation of Human Mesenchymal Stem/Stromal Cells.

    Science.gov (United States)

    Antunes, Joana C; Tsaryk, Roman; Gonçalves, Raquel M; Pereira, Catarina Leite; Landes, Constantin; Brochhausen, Christoph; Ghanaati, Shahram; Barbosa, Mário A; Kirkpatrick, C James

    2015-06-01

    Cartilage damage and/or aging effects can cause constant pain, which limits the patient's quality of life. Although different strategies have been proposed to enhance the limited regenerative capacity of cartilage tissue, the full production of native and functional cartilaginous extracellular matrix (ECM) has not yet been achieved. Poly(γ-glutamic acid) (γ-PGA), a naturally occurring polyamino acid, biodegradable into glutamate residues, has been explored for tissue regeneration. In this work, γ-PGA's ability to support the production of cartilaginous ECM by human bone marrow mesenchymal stem/stromal cells (MSCs) and nasal chondrocytes (NCs) was investigated. MSC and NC pellets were cultured in basal medium (BM), chondrogenic medium (CM), and CM-γ-PGA-supplemented medium (CM+γ-PGA) over a period of 21 days. Pellet size/shape was monitored with time. At 14 and 21 days of culture, the presence of sulfated glycosaminoglycans (sGAGs), type II collagen (Col II), Sox-9, aggrecan, type XI collagen (Col XI), type X collagen (Col X), calcium deposits, and type I collagen (Col I) was analyzed. After excluding γ-PGA's cytotoxicity, earlier cell condensation, higher sGAG content, Col II, Sox-9 (day 14), aggrecan, and Col X (day 14) production was observed in γ-PGA-supplemented MSC cultures, with no signs of mineralization or Col I. These effects were not evident with NCs. However, Sox-9 (at day 14) and Col X (at days 14 and 21) were increased, decreased, or absent, respectively. Overall, γ-PGA improved chondrogenic differentiation of MSCs, increasing ECM production earlier in culture. It is proposed that γ-PGA incorporation in novel biomaterials has a beneficial impact on future approaches for cartilage regeneration.

  8. Glutamic Acid – the Main Dietary Amino Acid – and Blood Pressure: The INTERMAP Study

    Science.gov (United States)

    Stamler, Jeremiah; Brown, Ian J; Daviglus, Martha L; Chan, Queenie; Kesteloot, Hugo; Ueshima, Hirotsugu; Zhao, Liancheng; Elliott, Paul

    2009-01-01

    Background Data are available indicating an independent inverse relationship of dietary vegetable protein to the blood pressure (BP) of individuals. Here we assess whether BP is associated with glutamic acid intake (the predominant dietary amino acid, especially in vegetable protein) and with each of four other amino acids higher relatively in vegetable than animal protein (proline, phenylalanine, serine, cystine). Methods and Results Cross-sectional epidemiological study; 4,680 persons ages 40–59 -- 17 random population samples in China, Japan, U.K., U.S.A.; BP measurement 8 times at 4 visits; dietary data (83 nutrients, 18 amino acids) from 4 standardized multi-pass 24-hour dietary recalls and 2 timed 24-hour urine collections. Dietary glutamic acid (percent of total protein intake) was inversely related to BP. Across multivariate regression models (Model 1 controlled for age, gender, sample, through Model 5 controlled for 16 non-nutrient and nutrient possible confounders) estimated average BP differences associated with glutamic acid intake higher by 4.72% total dietary protein (2 s.d.) were −1.5 to −3.0 mm Hg systolic and −1.0 to −1.6 mm Hg diastolic (Z-values −2.15 to −5.11). Results were similar for the glutamic acid-BP relationship with each other amino acid also in the model, e.g., with control for 15 variables plus proline, systolic/diastolic pressure differences −2.7/−2.0 (Z −2.51, −2.82). In these 2-amino acid models, higher intake (2 s.d.) of each other amino acid was associated with small BP differences and Z-values. Conclusions Dietary glutamic acid may have independent BP lowering effects, possibly contributing to the inverse relation of vegetable protein to BP. PMID:19581495

  9. 21 CFR 182.1047 - Glutamic acid hydrochloride.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Glutamic acid hydrochloride. 182.1047 Section 182.1047 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Food Substances § 182.1047 Glutamic acid hydrochloride. (a) Product. Glutamic acid hydrochloride. (b...

  10. Rotavirus antigenemia in children is associated with viremia.

    Directory of Open Access Journals (Sweden)

    Sarah E Blutt

    2007-04-01

    Full Text Available Antigenemia is commonly detected in rotavirus-infected children. Although rotavirus RNA has been detected in serum, definitive proof of rotavirus viremia has not been shown. We aimed to analyze a defined patient population to determine if infectious virus could be detected in sera from children with rotavirus antigenemia.Serum samples obtained upon hospitalization from children with gastroenteritis (57 stool rotavirus-positive and 41 rotavirus-negative, children with diagnosed bronchiolitis of known (n = 58 or unknown (n = 17 viral etiology, children with noninfectious, nonchronic conditions (n = 17, and healthy adults (n = 28 were tested for rotavirus antigen by enzyme immunoassay (EIA. Results of serum antigen testing were assessed for association with clinical and immunological attributes of the children. Rotavirus antigenemia was detected in 90% (51/57 of children with rotavirus-positive stools, in 89% (8/9 of children without diarrhea but with rotavirus-positive stools, in 12% (2/17 of children with bronchiolitis of unknown etiology without gastroenteritis, and in 12% (5/41 of children with gastroenteritis but with rotavirus-negative stools. Antigenemia was not detected in sera from children with noninfectious nonchronic conditions, children with bronchiolitis of known etiology and no gastroenteritis, or healthy adults. Neither age nor timing of serum collection within eight days after onset of gastroenteritis significantly affected levels of antigenemia, and there was no correlation between antigenemia and viral genotype. However, there was a negative correlation between serum rotavirus antigen and acute rotavirus-specific serum IgA (r = -0.44, p = 0.025 and IgG (r = -0.40, p = 0.01 titers. We examined 11 antigen-positive and nine antigen-negative sera for infectious virus after three blind serial passages in HT-29 cells using immunofluorescence staining for rotavirus structural and nonstructural proteins. Infectious virus was detected in

  11. Rotavirus Antigenemia in Children Is Associated with Viremia

    Science.gov (United States)

    Blutt, Sarah E; Matson, David O; Crawford, Sue E; Staat, Mary Allen; Azimi, Parvin; Bennett, Berkeley L; Piedra, Pedro A; Conner, Margaret E

    2007-01-01

    Background Antigenemia is commonly detected in rotavirus-infected children. Although rotavirus RNA has been detected in serum, definitive proof of rotavirus viremia has not been shown. We aimed to analyze a defined patient population to determine if infectious virus could be detected in sera from children with rotavirus antigenemia. Methods and Findings Serum samples obtained upon hospitalization from children with gastroenteritis (57 stool rotavirus-positive and 41 rotavirus-negative), children with diagnosed bronchiolitis of known (n = 58) or unknown (n = 17) viral etiology, children with noninfectious, nonchronic conditions (n = 17), and healthy adults (n = 28) were tested for rotavirus antigen by enzyme immunoassay (EIA). Results of serum antigen testing were assessed for association with clinical and immunological attributes of the children. Rotavirus antigenemia was detected in 90% (51/57) of children with rotavirus-positive stools, in 89% (8/9) of children without diarrhea but with rotavirus-positive stools, in 12% (2/17) of children with bronchiolitis of unknown etiology without gastroenteritis, and in 12% (5/41) of children with gastroenteritis but with rotavirus-negative stools. Antigenemia was not detected in sera from children with noninfectious nonchronic conditions, children with bronchiolitis of known etiology and no gastroenteritis, or healthy adults. Neither age nor timing of serum collection within eight days after onset of gastroenteritis significantly affected levels of antigenemia, and there was no correlation between antigenemia and viral genotype. However, there was a negative correlation between serum rotavirus antigen and acute rotavirus-specific serum IgA (r = −0.44, p = 0.025) and IgG (r = −0.40, p = 0.01) titers. We examined 11 antigen-positive and nine antigen-negative sera for infectious virus after three blind serial passages in HT-29 cells using immunofluorescence staining for rotavirus structural and nonstructural proteins

  12. Interfacial electron transfer of glucose oxidase on poly(glutamic acid)-modified glassy carbon electrode and glucose sensing.

    Science.gov (United States)

    Zhou, Xuechou; Tan, Bingcan; Zheng, Xinyu; Kong, Dexian; Li, Qinglu

    2015-11-15

    The interfacial electron transfer of glucose oxidase (GOx) on a poly(glutamic acid)-modified glassy carbon electrode (PGA/GCE) was investigated. The redox peaks measured for GOx and flavin adenine dinucleotide (FAD) are similar, and the anodic peak of GOx does not increase in the presence of glucose in a mediator-free solution. These indicate that the electroactivity of GOx is not the direct electron transfer (DET) between GOx and PGA/GCE and that the observed electroactivity of GOx is ascribed to free FAD that is released from GOx. However, efficient electron transfer occurred if an appropriate mediator was placed in solution, suggesting that GOx is active. The PGA/GCE-based biosensor showed wide linear response in the range of 0.5-5.5 mM with a low detection limit of 0.12 mM and high sensitivity and selectivity for measuring glucose. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Radiometric microassay for glutamic acid decarboxylase

    Energy Technology Data Exchange (ETDEWEB)

    Maderdrut, J L [North Carolina Dept. of Mental Health, Raleigh (USA); North Carolina Univ., Chapel Hill (USA). School of Medicine)

    1979-01-01

    A simple method for purifying L-(/sup 3/H) glutamic acid and incubation conditions suitable for estimating L-glutamic acid decarboxylase activity are described. Routine and recycled cation-exchange procedure for separating ..gamma..-aminobutyric acid from L-glutamate are outlined and compared. Recycling increases the sensitivity of the cation-exchange method by 6-7 fold. L-Glutamate decarboxylase activity can be measured reliably in samples of embryonic neural tissue having wet-weights of approximately 1 ..mu..g. The cation-exchange method is compared with the anion-exchange and CO/sub 2/-trapping methods. L-Glutamate decarboxylase activity has been detected in the lumbar spinal cord of the chick embryo at Day 21/4 (stage 14) using the cation-exchange method. This is 5-6 days earlier than L-glutamate decarboxylase activity has been detected in embryonic neural tissue by previous investigators. L-Glutamate decarboxylase is present in the lumbar spinal cord at least as early as the birth of the first lumbar spinal cord neurons and at least 1-2 days before the initiation of synaptogenesis.

  14. Facile preparation of a cationic poly(amino acid) vesicle for potential drug and gene co-delivery

    Science.gov (United States)

    Ding, Jianxun; Xiao, Chunsheng; He, Chaoliang; Li, Mingqiang; Li, Di; Zhuang, Xiuli; Chen, Xuesi

    2011-12-01

    A novel pH-responsive poly(amino acid) grafted with oligocation was prepared through the combination of ring-opening polymerization (ROP) and subsequent atom transfer radical polymerization (ATRP). Firstly, poly(γ-2-chloroethyl-L-glutamate) (PCELG) with a pendent 2-chloroethyl group was synthesized through ROP of γ-2-chloroethyl-L-glutamate N-carboxyanhydride (CELG NCA) using n-hexylamine as the initiator. Then, PCELG was used to initiate the ARTP of 2-aminoethyl methacrylate hydrochloride (AMA), yielding poly(L-glutamate)-graft-oligo(2-aminoethyl methacrylate hydrochloride) (PLG-g-OAMA). The pKa of PLG-g-OAMA was 7.3 established by the acid-base titration method. The amphiphilic poly(amino acid) could directly self-assemble into a vesicle in PBS. The vesicle was characterized by TEM and DLS. Hydrophilic DOX·HCl was loaded into the hollow core of the vesicle. The in vitro release behavior of DOX·HCl from the vesicle in PBS could be adjusted by the solution pH. In vitro cell experiments revealed that the vesicle could reduce the toxicity of the DOX·HCl. In addition, the preliminary gel retardation assay displayed that PLG-g-OAMA could efficiently bind DNA at a PLG-g-OAMA/DNA weight ratio of 0.3 or above, indicating its potential use as a gene carrier. More in-depth studies of the PLG-g-OAMA vesicle for drug and gene co-delivery in vitro and in vivo are in progress.

  15. Study on optimal conditions and adsorption kinetics of copper from water by collodion membrane cross-linked poly-γ-glutamic acid

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Xiangting; Wang, Aiyin; Li, Guoxing; Dong, Xinjiao; Wu, Mingjiang [Wenzhou University, Wenzhou (China); Zheng, Xiaojie [Wenzhou Vocational College of Technology and Science, Wenzhou (China)

    2013-06-15

    Poly-γ-glutamic acid (γ-PGA) is a novel polyamino acid formed through microorganism fermentation and biosynthesis. In the present test, membrane (PGA-C) formation by γ-PGA and collodion was performed by using 0.1% glutaraldehyde as a cross-linking agent. A study was conducted on the PGA-C adsorption of Cu{sup 2+}, specifically the related adsorption equilibrium and kinetics, desorption and regeneration. The results show that with an initial solution pH=5.5 and at 318 K, the static adsorption isotherm behavior of PGA-C is in compliance with the Langmuir model and is beneficial to the adsorption of the metal. Meanwhile, with the reaction lasting for 30min, adsorption equilibrium was reached with a maximum adsorption capacity up to 7.431 mg/g. The entire reaction process follows the pseudo-second-order kinetics. By using PGA-C, good regeneration results were obtained after adsorption-generation-adsorption cycling with an HCl solution (0.1 mol/L) as regeneration liquid.

  16. Therapeutic effects of glutamic acid in piglets challenged with deoxynivalenol.

    Science.gov (United States)

    Wu, Miaomiao; Xiao, Hao; Ren, Wenkai; Yin, Jie; Tan, Bie; Liu, Gang; Li, Lili; Nyachoti, Charles Martin; Xiong, Xia; Wu, Guoyao

    2014-01-01

    The mycotoxin deoxynivalenol (DON), one of the most common food contaminants, primarily targets the gastrointestinal tract to affect animal and human health. This study was conducted to examine the protective function of glutamic acid on intestinal injury and oxidative stress caused by DON in piglets. Twenty-eight piglets were assigned randomly into 4 dietary treatments (7 pigs/treatment): 1) uncontaminated control diet (NC), 2) NC+DON at 4 mg/kg (DON), 3) NC+2% glutamic acid (GLU), and 4) NC+2% glutamic acid + DON at 4 mg/kg (DG). At day 15, 30 and 37, blood samples were collected to determine serum concentrations of CAT (catalase), T-AOC (total antioxidant capacity), H2O2 (hydrogen peroxide), NO (nitric oxide), MDA (maleic dialdehyde), DAO (diamine oxidase) and D-lactate. Intestinal morphology, and the activation of Akt/mTOR/4EBP1 signal pathway, as well as the concentrations of H2O2, MDA, and DAO in kidney, liver and small intestine, were analyzed at day 37. Results showed that DON significantly (Pglutamic acid supplementation according to the change of oxidative parameters in blood and tissues. Meanwhile, DON caused obvious intestinal injury from microscopic observations and permeability indicators, which was alleviated by glutamic acid supplementation. Moreover, the inhibition of DON on Akt/mTOR/4EBP1 signal pathway was reduced by glutamic acid supplementation. Collectively, these data suggest that glutamic acid may be a useful nutritional regulator for DON-induced damage manifested as oxidative stress, intestinal injury and signaling inhibition.

  17. Fabrication of high-performance poly(l-lactic acid)/lignin-graft-poly(d-lactic acid) stereocomplex films.

    Science.gov (United States)

    Liu, Rui; Dai, Lin; Hu, Li-Qiu; Zhou, Wen-Qin; Si, Chuan-Ling

    2017-11-01

    The need for green renewable alternatives such as lignin to traditional fillers has driven recent interest in polylactic acid blend materials. Herein, lignin-graft-polylactic acid copolymers (LG-g-PDLA, LG-g-PDLLA, and LG-g-PLLA) have been synthesized via ring-opening polymerization of d-, dl-, and l-lactic acid. Then poly(l-lactic acid)/lignin-graft-polylactic acid (PLLA/LG-g-PDLA, /LG-g-PDLLA, and /LG-g-PLLA) complex films have been prepared. The results showed that, compared with LG-g-PDLA and LG-g-PLLA, a small amount of LG-g-PDLA addition could improve the crystallization rate, reduce the glass transition temperature and cold crystallization temperature of PLLA due to the stereocomplex crystallites. The thermal stability, tensile strength and strain of the stereocomplex films were also enhanced. Moreover, the PLLA/LG-g-PDLA films have good ultraviolet resistance and excellent biocompatibility. This study provides a green approach to design advanced polylactic acid-based blends with renewable natural resources. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Fabrication and characterization of novel multilayered structures by stereocomplexion of poly(D-lactic acid/poly(L-lactic acid and self-assembly of polyelectrolytes

    Directory of Open Access Journals (Sweden)

    Elena Dellacasa

    2016-01-01

    Full Text Available The enantiomers poly(D-lactic acid (PDLA and poly(L-lactic acid (PLLA were alternately adsorbed directly on calcium carbonate (CaCO3 templates and on poly(styrene sulfonate (PSS and poly(allylamine hydrochloride (PAH multilayer precursors in order to fabricate a novel layer-by-layer (LBL assembly. A single layer of poly(L-lysine (PLL was used as a linker between the (PDLA/PLLAn stereocomplex and the cores with and without the polymeric (PSS/PAHn/PLL multilayer precursor (PEM. Nuclear magnetic resonance (NMR and gel permeation chromatography (GPC were used to characterize the chemical composition and molecular weight of poly(lactic acid polymers. Both multilayer structures, with and without polymeric precursor, were firstly fabricated and characterized on planar supports. A quartz crystal microbalance (QCM, attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR and ellipsometry were used to evaluate the thickness and mass of the multilayers. Then, hollow, spherical microcapsules were obtained by the removal of the CaCO3 sacrificial template. The chemical composition of the obtained microcapsules was confirmed by differential scanning calorimetry (DSC and wide X-ray diffraction (WXRD analyses. The microcapsule morphology was evaluated by scanning electron microscopy (SEM and transmission electron microscopy (TEM measurements. The experimental results confirm the successful fabrication of this innovative system, and its full biocompatibility makes it worthy of further characterization as a promising drug carrier for sustained release.

  19. Fabrication and characterization of novel multilayered structures by stereocomplexion of poly(D-lactic acid)/poly(L-lactic acid) and self-assembly of polyelectrolytes

    Science.gov (United States)

    Yang, Gesheng; Pastorino, Laura

    2016-01-01

    Summary The enantiomers poly(D-lactic acid) (PDLA) and poly(L-lactic acid) (PLLA) were alternately adsorbed directly on calcium carbonate (CaCO3) templates and on poly(styrene sulfonate) (PSS) and poly(allylamine hydrochloride) (PAH) multilayer precursors in order to fabricate a novel layer-by-layer (LBL) assembly. A single layer of poly(L-lysine) (PLL) was used as a linker between the (PDLA/PLLA)n stereocomplex and the cores with and without the polymeric (PSS/PAH)n/PLL multilayer precursor (PEM). Nuclear magnetic resonance (NMR) and gel permeation chromatography (GPC) were used to characterize the chemical composition and molecular weight of poly(lactic acid) polymers. Both multilayer structures, with and without polymeric precursor, were firstly fabricated and characterized on planar supports. A quartz crystal microbalance (QCM), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and ellipsometry were used to evaluate the thickness and mass of the multilayers. Then, hollow, spherical microcapsules were obtained by the removal of the CaCO3 sacrificial template. The chemical composition of the obtained microcapsules was confirmed by differential scanning calorimetry (DSC) and wide X-ray diffraction (WXRD) analyses. The microcapsule morphology was evaluated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) measurements. The experimental results confirm the successful fabrication of this innovative system, and its full biocompatibility makes it worthy of further characterization as a promising drug carrier for sustained release. PMID:26925356

  20. Elevated systemic glutamic acid level in the non-obese diabetic mouse is Idd linked and induces beta cell apoptosis.

    Science.gov (United States)

    Banday, Viqar Showkat; Lejon, Kristina

    2017-02-01

    Although type 1 diabetes (T1D) is a T-cell-mediated disease in the effector stage, the mechanism behind the initial beta cell assault is less understood. Metabolomic differences, including elevated levels of glutamic acid, have been observed in patients with T1D before disease onset, as well as in pre-diabetic non-obese diabetic (NOD) mice. Increased levels of glutamic acid damage both neurons and beta cells, implying that this could contribute to the initial events of T1D pathogenesis. We investigated the underlying genetic factors and consequences of the increased levels of glutamic acid in NOD mice. Serum glutamic acid levels from a (NOD×B6)F 2 cohort (n = 182) were measured. By genome-wide and Idd region targeted microsatellite mapping, genetic association was detected for six regions including Idd2, Idd4 and Idd22. In silico analysis of potential enzymes and transporters located in and around the mapped regions that are involved in glutamic acid metabolism consisted of alanine aminotransferase, glutamic-oxaloacetic transaminase, aldehyde dehydrogenase 18 family, alutamyl-prolyl-tRNA synthetase, glutamic acid transporters GLAST and EAAC1. Increased EAAC1 protein expression was observed in lysates from livers of NOD mice compared with B6 mice. Functional consequence of the elevated glutamic acid level in NOD mice was tested by culturing NOD. Rag2 -/- Langerhans' islets with glutamic acid. Induction of apoptosis of the islets was detected upon glutamic acid challenge using TUNEL assay. Our results support the notion that a dysregulated metabolome could contribute to the initiation of T1D. We suggest that targeting of the increased glutamic acid in pre-diabetic patients could be used as a potential therapy. © 2016 John Wiley & Sons Ltd.

  1. Protective effect of poly ({alpha}-L-glutamate) against UV and {gamma}-irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Furuta, Masakazu E-mail: mfuruta@riast.osakafu-u.ac.jp; Huy, Nguyen Quang; Tsuchiya, Akihito; Nakatsuka, Hiroshige; Hayashi, Toshio

    2004-10-01

    We occasionally found that poly ({alpha}-L-glutamate) showed a superior protective effect on enzymes against UV and {sup 60}Co-{gamma} irradiation. We selected papain and {alpha}-amylase as a model enzyme and irradiated the aqueous solution (10 mg/ml) of each enzyme with UV and {sup 60}Co-{gamma} rays in the presence of poly ({alpha}-L-glutamate) ({alpha}-PGA), poly (glucosyl oxyethyl methacrylate (GEMA)), and glucose (1.25% w/v each). The mixture of the three compounds has a significant protective effect on the activity of papain solution showing 40% of remaining activity twice as much as the control containing no additive at the dose of 15 kGy. Among them, {alpha}-PGA showed the highest protecting effect on the both papain and {alpha}-amylase even after 10-kGy irradiation at which 50% of the activity was retained. {alpha}-PGA also showed significant protective activity on {alpha}-amylase against UV both in solution and under dried state.

  2. Protective effect of poly (α-L-glutamate) against UV and γ-irradiation

    International Nuclear Information System (INIS)

    Furuta, Masakazu; Huy, Nguyen Quang; Tsuchiya, Akihito; Nakatsuka, Hiroshige; Hayashi, Toshio

    2004-01-01

    We occasionally found that poly (α-L-glutamate) showed a superior protective effect on enzymes against UV and 60 Co-γ irradiation. We selected papain and α-amylase as a model enzyme and irradiated the aqueous solution (10 mg/ml) of each enzyme with UV and 60 Co-γ rays in the presence of poly (α-L-glutamate) (α-PGA), poly (glucosyl oxyethyl methacrylate (GEMA)), and glucose (1.25% w/v each). The mixture of the three compounds has a significant protective effect on the activity of papain solution showing 40% of remaining activity twice as much as the control containing no additive at the dose of 15 kGy. Among them, α-PGA showed the highest protecting effect on the both papain and α-amylase even after 10-kGy irradiation at which 50% of the activity was retained. α-PGA also showed significant protective activity on α-amylase against UV both in solution and under dried state

  3. Poly(γ-glutamic acid)-coated lipoplexes loaded with Doxorubicin for enhancing the antitumor activity against liver tumors

    Science.gov (United States)

    Qi, Na; Tang, Bo; Liu, Guang; Liang, Xingsi

    2017-05-01

    The study was to develop poly-γ-glutamic acid (γ-PGA)-coated Doxorubicin (Dox) lipoplexes that enhance the antitumor activity against liver tumors. γ-PGA-coated lipoplexes were performed by electrostatistically attracting to the surface of cationic charge liposomes with anionic γ-PGA. With the increasing of γ-PGA concentration, the particle size of γ-PGA-coated Dox lipoplexes slightly increased, the zeta potential from positive shifted to negative, and the entrapment efficiency (EE) were no significant change. The release rate of γ-PGA-coated Dox lipoplexes slightly increased at acidic pH, the accelerated Dox release might be attributed to greater drug delivery to tumor cells, resulting in a higher antitumor activity. Especially, γ-PGA-coated Dox lipoplexes exhibited higher cellular uptake, significant in vitro cytotoxicity in HepG2 cells, and improved in vivo antitumor efficacy toward HepG2 hepatoma-xenografted nude models in comparison with Dox liposomes and free Dox solution. In addition, the analysis results via flow cytometry showed that γ-PGA-coated Dox lipoplexes induce S phase cell cycle arrest and significantly increased apoptosis rate of HepG2 cells. In conclusion, the presence of γ-PGA on the surface of Dox lipoplexes enhanced antitumor effects of liver tumors.

  4. Influence of the glutamic acid content of the diet on the catabolisc rate of labelled glutamic acid in rats. 1

    International Nuclear Information System (INIS)

    Bergner, H.; Wilke, A.; Simon, O.; Wolf, E.

    1984-01-01

    Male rats received in 8 groups of 10 animals each for a period of 7 days 7 synthetic diets and one semisynthetic diet on maintenance requirement level. A L-amino acid mixture corresponding to the pattern of egg protein without glutamic acid was the protein source of the synthetic diets. Glutamic acid was supplemented successively from 0 to 58 mol-% of the total amino acid content. The crude protein source of diet 8 was whole-egg powder. On the 8th day of experiment 5 animals per group were labelled by intragastric infusion with 14 C-glutamic acid. During the following 24 hours the excretion of CO 2 and 14 CO 2 was measured. Throughout the experimental feeding body weight was relative constant, however, when the synthetic diets were fed it was necessary to increase the daily amount of energy from 460 to 480 kJ/kg/sup 0.67/. The relative 14 CO 2 excretion within 24 hours was 68-75 % of the dose. However, the main part of the amount of radioactivity excreted during 24 hours was already found after 4 to 6 hours. Exponential functions calculated from the data of cumulative 14 CO 2 excretion suggest the existence of a fast process of 14 CO 2 formation directly from 14 C-glutamic acid, reaching a plateau within 2 hours and a slow process of oxidation of intermediates of glutamic acid metabolism, causing a continued 14 CO 2 formation even after 24 hours. The oxidation of 14 C-glutamic acid to CO 2 decreased 2 to 14 hours after labelling if the glutamic acid content of the diet increased. The same was found for the specific radioactivity of 14 CO 2 . A storage of intermediates of glutamic acid before degradation was assumed. (author)

  5. Cytomegalovirus pp65 antigenemia-guided pre-emptive treatment with ganciclovir after allogeneic stem transplantation: a single-center experience.

    Science.gov (United States)

    Manteiga, R; Martino, R; Sureda, A; Labeaga, R; Brunet, S; Sierra, J; Rabella, N

    1998-11-01

    The optimal prophylactic strategy for cytomegalovirus (CMV) disease after allogeneic hematopoietic stem cell transplantation has not yet been established. The aim of this study was to analyze our single-center experience with a uniform protocol of CMV antigenemia-guided pre-emptive treatment with ganciclovir (GCV) after allografting. Fifty-two consecutive adult patients, 48 of them transplanted from HLA-identical matched related donors were included. T cell-depleted marrow or peripheral blood were used in 21 cases. After engraftment, weekly blood samples were tested for CMV pp65 antigenemia and viremia (conventional cultures) until day +100. GCV was started if CMV antigenemia and/or CMV viremia were detected. CMV infection (CMV-I) was found in 19 patients (37%). Seven patients suffered from CMV disease (CMV-D), three colitis and four pneumonias. There was one death directly related to CMV-D and three further cases died from refractory GVHD with CMV-D. Only one patient developed CMV pneumonia without any previous positive antigenemia and/or viremia. Multivariate analysis identified grades II-IV acute GVHD (P = 0.02) and peripheral blood stem cell transplantation (P = 0.03) to be risk factors for developing CMV-I. In conclusion, this monitoring protocol allowed early treatment of CMV-I without progression to CMV-D. Pre-emptive therapy had the additional advantage of avoiding GCV administration in most of our allograft recipients.

  6. A radiometric microassay for glutamic acid decarboxylase

    International Nuclear Information System (INIS)

    Maderdrut, J.L.; North Carolina Univ., Chapel Hill

    1979-01-01

    A simple method for purifying L-[ 3 H] glutamic acid and incubation conditions suitable for estimating L-glutamic acid decarboxylase activity are described. Routine and recycled cation-exchange procedure for separating γ-aminobutyric acid from L-glutamate are outlined and compared. Recycling increases the sensitivity of the cation-exchange method by 6-7 fold. L-Glutamate decarboxylase activity can be measured reliably in samples of embryonic neural tissue having wet-weights of approximately 1 μg. The cation-exchange method is compared with the anion-exchange and CO 2 -trapping methods. L-Glutamate decarboxylase activity has been detected in the lumbar spinal cord of the chick embryo at Day 21/4 (stage 14) using the cation-exchange method. This is 5-6 days earlier than L-glutamate decarboxylase activity has been detected in embryonic neural tissue by previous investigators. L-Glutamate decarboxylase is present in the lumbar spinal cord at least as early as the birth of the first lumbar spinal cord neurons and at least 1-2 days before the initiation of synaptogenesis. (author)

  7. Effect of poly-α, γ, L-glutamic acid as a capping agent on morphology and oxidative stress-dependent toxicity of silver nanoparticles

    Directory of Open Access Journals (Sweden)

    Stevanović M

    2011-11-01

    Full Text Available Magdalena Stevanović1, Branimir Kovačević2, Jana Petković3, Metka Filipič3, Dragan Uskoković11Institute of Technical Sciences of Serbian Academy of Sciences and Arts, 2Institute of General and Physical Chemistry, Belgrade, Serbia; 3Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, SloveniaAbstract: Highly stable dispersions of nanosized silver particles were synthesized using a straightforward, cost-effective, and ecofriendly method. Nontoxic glucose was utilized as a reducing agent and poly- α, γ, L-glutamic acid (PGA, a naturally occurring anionic polymer, was used as a capping agent to protect the silver nanoparticles from agglomeration and render them biocompatible. Use of ammonia during synthesis was avoided. Our study clearly demonstrates how the concentration of the capping agent plays a major role in determining the dimensions, morphology, and stability, as well as toxicity of a silver colloidal solution. Hence, proper optimization is necessary to develop silver colloids of narrow size distribution. The samples were characterized by Fourier transform infrared spectroscopy, ultraviolet-visible spectroscopy, field-emission scanning electron microscopy, transmission electron microscopy, and zeta potential measurement. MTT assay results indicated good biocompatibility of the PGA-capped silver nanoparticles. Formation of intracellular reactive oxygen species was measured spectrophotometrically using 2,7-dichlorofluorescein diacetate as a fluorescent probe, and it was shown that the PGA-capped silver nanoparticles did not induce intracellular formation of reactive oxygen species.Keywords: silver nanoparticles, poly-α, γ, L-glutamic, green synthesis, morphology, cytotoxicity

  8. Poly-γ-Glutamic Acid: Biodegradable Polymer for Potential Protection of Beneficial Viruses

    Directory of Open Access Journals (Sweden)

    Ibrahim R. Khalil

    2016-01-01

    Full Text Available Poly-γ-glutamic acid (γ-PGA is a naturally occurring polymer, which due to its biodegradable, non-toxic and non-immunogenic properties has been used successfully in the food, medical and wastewater industries. A major hurdle in bacteriophage application is the inability of phage to persist for extended periods in the environment due to their susceptibility to environmental factors such as temperature, sunlight, desiccation and irradiation. Thus, the aim of this study was to protect useful phage from the harmful effect of these environmental factors using the γ-PGA biodegradable polymer. In addition, the association between γ-PGA and phage was investigated. Formulated phage (with 1% γ-PGA and non-formulated phage were exposed to 50 °C. A clear difference was noticed as viability of non-formulated phage was reduced to 21% at log10 1.3 PFU/mL, while phage formulated with γ-PGA was 84% at log10 5.2 PFU/mL after 24 h of exposure. In addition, formulated phage remained viable at log10 2.5 PFU/mL even after 24 h of exposure at pH 3 solution. In contrast, non-formulated phages were totally inactivated after the same time of exposure. In addition, non-formulated phages when exposed to UV irradiation died within 10 min. In contrast also phages formulated with 1% γ-PGA had a viability of log10 4.1 PFU/mL at the same exposure time. Microscopy showed a clear interaction between γ-PGA and phages. In conclusion, the results suggest that γ-PGA has an unique protective effect on phage particles.

  9. Prevention Effect of Poly-Gamma-Glutamic Acid on Tissue Damage Induced by Gamma Irradiation as a Natural Cross-Linker

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jaehun; Sung, Nakyun; Kim, Jeongsoo; Jo, Euri; Choi, Jongil; Park, Jongheum; Lee, Juwoon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, Kwangwon [Eulji Univ. Hospital, Daejeon (Korea, Republic of); Kwon, Jungkee [Chonbuk National Univ., Jeonju (Korea, Republic of); Kim, Taewoon [Jeonbuk Technopark, Jeonju (Korea, Republic of)

    2012-03-15

    This study was to determine the prevention effect of poly-gamma-glutamic acid (PGA) on tissue damage induced by gamma irradiation for development of xenograft. PGA (MW 2000 kDa) extracted from permeated soy bean (natto) was used in this study as natural compound, and glutaraldehyde (GA) and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) were used as a control, chemical based cross-linking agents. GA, EDC and PGA treated porcine tendons were gamma-irradiated at the dose of 30 kGy. Prevention effects against tissue damage were measured as the result of tensile strength, hydroxyproline contents and tissue morphological analysis. Tensile of porcine tendon was remarkably decreased by gamma irradiation, but increased in PGA treated group. Morphological analysis showed that collagen structure was broken by gamma irradiation, but attenuated by PGA treatment. Base on the results, it demonstrated that gamma irradiation can induce severe alteration of porcine tendon, but PGA can effectively improve the tissue damage.

  10. Prevention Effect of Poly-Gamma-Glutamic Acid on Tissue Damage Induced by Gamma Irradiation as a Natural Cross-Linker

    International Nuclear Information System (INIS)

    Kim, Jaehun; Sung, Nakyun; Kim, Jeongsoo; Jo, Euri; Choi, Jongil; Park, Jongheum; Lee, Juwoon; Lee, Kwangwon; Kwon, Jungkee; Kim, Taewoon

    2012-01-01

    This study was to determine the prevention effect of poly-gamma-glutamic acid (PGA) on tissue damage induced by gamma irradiation for development of xenograft. PGA (MW 2000 kDa) extracted from permeated soy bean (natto) was used in this study as natural compound, and glutaraldehyde (GA) and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) were used as a control, chemical based cross-linking agents. GA, EDC and PGA treated porcine tendons were gamma-irradiated at the dose of 30 kGy. Prevention effects against tissue damage were measured as the result of tensile strength, hydroxyproline contents and tissue morphological analysis. Tensile of porcine tendon was remarkably decreased by gamma irradiation, but increased in PGA treated group. Morphological analysis showed that collagen structure was broken by gamma irradiation, but attenuated by PGA treatment. Base on the results, it demonstrated that gamma irradiation can induce severe alteration of porcine tendon, but PGA can effectively improve the tissue damage

  11. Glutamic acid and folic acid production in aerobic and anaerobic probiotics

    Directory of Open Access Journals (Sweden)

    Zohre Taghi Abadi

    2018-03-01

    Full Text Available Introduction:From an industrial application or commercial point of view, glutamic acid is one of the most important amino acids and its microbial production has been reported from some bacteria. Regarding the role of probiotics to modulate human health and the ever-increasing demand of prebiotics in the food industry, in the current study, production of glutamic acid and folic acid from three probiotic bacteria (Bifidobacterium, Bifidobacterium bifidum, Sporolactobacillus was evaluated for the first time. Materials and methods: MRS broth and exclusive media was used for probiotic culture. The glutamic acid was identified using thin-layer chromatography and folic acid production was measured by folate kit. Each bacterium in terms of quality and quantity were measured by high pressure liquid chromatography. Results: Production of glutamic acid confirmed is based on the thin layer chromatography analysis and high pressure liquid chromatography results. In addition, it was observed that all three probiotics produce folic acid. The prevalence of folate in Bifidobacterium was measured as 315 mg/ml that was more than two other bacteria. Discussion and conclusion: To the best of our knowledge, this is the first report of microbial production of glutamic acid and folate from the probiotic bacteria. These beneficial bacteria can be used as a good source for mass production of these valuable compounds.

  12. Covalent defects restrict supramolecular self-assembly of homopolypeptides: case study of β2-fibrils of poly-L-glutamic acid.

    Directory of Open Access Journals (Sweden)

    Aleksandra Fulara

    Full Text Available Poly-L-glutamic acid (PLGA often serves as a model in studies on amyloid fibrils and conformational transitions in proteins, and as a precursor for synthetic biomaterials. Aggregation of PLGA chains and formation of amyloid-like fibrils was shown to continue on higher levels of superstructural self-assembly coinciding with the appearance of so-called β2-sheet conformation manifesting in dramatic redshift of infrared amide I' band below 1600 cm(-1. This spectral hallmark has been attributed to network of bifurcated hydrogen bonds coupling C = O and N-D (N-H groups of the main chains to glutamate side chains. However, other authors reported that, under essentially identical conditions, PLGA forms the conventional in terms of infrared characteristics β1-sheet structure (exciton-split amide I' band with peaks at ca. 1616 and 1683 cm(-1. Here we attempt to shed light on this discrepancy by studying the effect of increasing concentration of intentionally induced defects in PLGA on the tendency to form β1/β2-type aggregates using infrared spectroscopy. We have employed carbodiimide-mediated covalent modification of Glu side chains with n-butylamine (NBA, as well as electrostatics-driven inclusion of polylysine chains, as two different ways to trigger structural defects in PLGA. Our study depicts a clear correlation between concentration of defects in PLGA and increasing tendency to depart from the β2-structure toward the one less demanding in terms of chemical uniformity of side chains: β1-structure. The varying predisposition to form β1- or β2-type aggregates assessed by infrared absorption was compared with the degree of morphological order observed in electron microscopy images. Our results are discussed in the context of latent covalent defects in homopolypeptides (especially with side chains capable of hydrogen-bonding that could obscure their actual propensities to adopt different conformations, and limit applications in the field of

  13. Covalent Defects Restrict Supramolecular Self-Assembly of Homopolypeptides: Case Study of β2-Fibrils of Poly-L-Glutamic Acid

    Science.gov (United States)

    Fulara, Aleksandra; Hernik, Agnieszka; Nieznańska, Hanna; Dzwolak, Wojciech

    2014-01-01

    Poly-L-glutamic acid (PLGA) often serves as a model in studies on amyloid fibrils and conformational transitions in proteins, and as a precursor for synthetic biomaterials. Aggregation of PLGA chains and formation of amyloid-like fibrils was shown to continue on higher levels of superstructural self-assembly coinciding with the appearance of so-called β2-sheet conformation manifesting in dramatic redshift of infrared amide I′ band below 1600 cm−1. This spectral hallmark has been attributed to network of bifurcated hydrogen bonds coupling C = O and N-D (N-H) groups of the main chains to glutamate side chains. However, other authors reported that, under essentially identical conditions, PLGA forms the conventional in terms of infrared characteristics β1-sheet structure (exciton-split amide I′ band with peaks at ca. 1616 and 1683 cm−1). Here we attempt to shed light on this discrepancy by studying the effect of increasing concentration of intentionally induced defects in PLGA on the tendency to form β1/β2-type aggregates using infrared spectroscopy. We have employed carbodiimide-mediated covalent modification of Glu side chains with n-butylamine (NBA), as well as electrostatics-driven inclusion of polylysine chains, as two different ways to trigger structural defects in PLGA. Our study depicts a clear correlation between concentration of defects in PLGA and increasing tendency to depart from the β2-structure toward the one less demanding in terms of chemical uniformity of side chains: β1-structure. The varying predisposition to form β1- or β2-type aggregates assessed by infrared absorption was compared with the degree of morphological order observed in electron microscopy images. Our results are discussed in the context of latent covalent defects in homopolypeptides (especially with side chains capable of hydrogen-bonding) that could obscure their actual propensities to adopt different conformations, and limit applications in the field of synthetic

  14. In vivo siRNA delivery system for targeting to the liver by poly-l-glutamic acid-coated lipoplex

    Directory of Open Access Journals (Sweden)

    Yoshiyuki Hattori

    2014-01-01

    Full Text Available In this study, we developed anionic polymer-coated liposome/siRNA complexes (lipoplexes with chondroitin sulfate C (CS, poly-l-glutamic acid (PGA and poly-aspartic acid (PAA for siRNA delivery by intravenous injection, and evaluated the biodistribution and gene silencing effect in mice. The sizes of CS-, PGA- and PAA-coated lipoplexes were about 200 nm and their ζ-potentials were negative. CS-, PGA- and PAA-coated lipoplexes did not induce agglutination after mixing with erythrocytes. In terms of biodistribution, siRNAs after intravenous administration of cationic lipoplexes were largely observed in the lungs, but those of CS-, PGA- and PAA-coated lipoplexes were in both the liver and the kidneys, indicating that siRNA might be partially released from the anionic polymer-coated lipoplexes in the blood circulation and accumulate in the kidney, although the lipoplexes can prevent the agglutination with blood components. To increase the association between siRNA and cationic liposome, we used cholesterol-modified siRNA (siRNA-Chol for preparation of the lipoplexes. When CS-, PGA- and PAA-coated lipoplexes of siRNA-Chol were injected into mice, siRNA-Chol was mainly observed in the liver, not in the kidneys. In terms of the suppression of gene expression in vivo, apolipoprotein B (ApoB mRNA in the liver was significantly reduced 48 h after single intravenous injection of PGA-coated lipoplex of ApoB siRNA-Chol (2.5 mg siRNA/kg, but not cationic, CS- and PAA-coated lipoplexes. In terms of toxicity after intravenous injection, CS-, PGA- and PAA-coated lipoplexes did not increase GOT and GPT concentrations in blood. From these findings, PGA coatings for cationic lipoplex of siRNA-Chol might produce a systemic vector of siRNA to the liver.

  15. Improvement of poly-γ-glutamic acid biosynthesis in a moving bed biofilm reactor by Bacillus subtilis NX-2.

    Science.gov (United States)

    Jiang, Yongxiang; Tang, Bao; Xu, Zongqi; Liu, Kun; Xu, Zheng; Feng, Xiaohai; Xu, Hong

    2016-10-01

    The production of poly-γ-glutamic acid (γ-PGA) by Bacillus subtilis NX-2 using a moving bed biofilm reactor (MBBR) system was tested for the first time in this study. Polypropylene TL-2 was chosen as a suitable carrier, and γ-PGA concentration of 42.7±0.86g/L and productivity of 0.59±0.06g/(Lh) were obtained in batch fermentation. After application of the strategy of dissolved oxygen (DO)-stat feeding, higher γ-PGA concentration and productivity were achieved than with glucose feedback feeding. Finally, the repeated fed-batch cultures implemented in the MBBR system showed high stability, and the maximal γ-PGA concentration and productivity of 74.2g/L and 1.24g/(Lh) were achieved, respectively. In addition, the promotion of oxygen transfer by an MBBR carrier was well explained by a computational fluid dynamics (CFD) simulation. These results suggest that an MBBR system could be applied to large-scale γ-PGA production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Catalase purification from rat liver with iron-chelated poly(hydroxyethyl methacrylate-N-methacryloyl-(l)-glutamic acid) cryogel discs.

    Science.gov (United States)

    Göktürk, Ilgım; Perçin, Işık; Denizli, Adil

    2016-08-17

    In this study, iron-chelated poly(hydroxyethyl methacrylate-N-methacryloyl-(l)-glutamic acid) (PHEMAGA/Fe(3+)) cryogel discs were prepared. The PHEMAGA/Fe(3+) cryogel discs were characterized by elemental analysis, scanning electron microscopy, Fourier transform infrared spectroscopy, swelling tests, and surface area measurements. The PHEMAGA/Fe(3+) cryogel discs had large pores ranging from 10 to 100 µm with a swelling degree of 9.36 g H2O/g cryogel. Effects of pH, temperature, initial catalase concentration, and flow rate on adsorption capacity of the PHEMAGA/Fe(3+) cryogel discs were investigated. Maximum catalase adsorption capacity (62.6 mg/g) was obtained at pH 7.0, 25°C, and 3 mg/ml initial catalase concentration. The PHEMAGA/Fe(3+) cryogel discs were also tested for the purification of catalase from rat liver. After tissue homogenization, purification of catalase was performed using the PHEMAGA/Fe(3+) cryogel discs and catalase was obtained with a yield of 54.34 and 16.67 purification fold.

  17. Synthesis and evaluation of a glutamic acid-modified hPAMAM complex as a promising versatile gene carrier.

    Science.gov (United States)

    Hemmati, Mohammad; Kazemi, Bahram; Najafi, Farhood; Zarebkohan, Amir; Shirkoohi, Reza

    2016-01-01

    Hyperbranched poly(amidoamine) (HPAMAM), structurally analogous to polyamidoamine dendrimer (PAMAM) dendrimers, has been suggested to be an effective carrier for gene delivery. In the present study, glutamic acid-modified hPAMAM was developed as a novel non-viral gene carrier for the first time. The hPAMAM was synthesized by using a modified one-pot method. DNA was found to be bound to hPAMAM at different weight ratios (WhPAMAM/WDNA). The resulting HPAMAM-Glu20 was able to efficiently protect the encapsulated-DNA against degradation for over 2 h. In addition to low cytotoxicity, the transfection efficiency of hPAMAM-Glu20 represented much higher (p glutamic amino acid (Glu)-based gene delivery is an economical, effective and biocompatible method.

  18. Bacteriomimetic poly-γ-glutamic acid surface coating for hemocompatibility and safety of nanomaterials.

    Science.gov (United States)

    Shim, Gayong; Kim, Dongyoon; Kim, Jinyoung; Suh, Min Sung; Kim, Youn Kyu; Oh, Yu-Kyoung

    2017-08-01

    Poly-γ-glutamic acid (PGA), a major component of the bacterial capsule, is known to confer hydrophilicity to bacterial surfaces and protect bacteria from interactions with blood cells. We tested whether applying a bacteriomimetic surface coating of PGA modulates interactions of nanomaterials with blood cells or affects their safety and photothermal antitumor efficacy. Amphiphilic PGA (APGA), prepared by grafting phenylalanine residues to PGA, was used to anchor PGA to reduced graphene oxide (rGO) nanosheets, a model of hydrophobic nanomaterials. Surface coating of rGO with bacterial capsule-like APGA yielded APGA-tethered rGO nanosheets (ArGO). ArGO nanosheets remained stable in serum over 4 weeks, whereas rGO in plain form precipitated in serum within 5 minutes. Moreover, ArGO did not interact with blood cells, whereas rGO in plain form or as a physical mixture with PGA formed aggregates with blood cells. Mice administered ArGO at a dose of 50 mg/kg showed 100% survival and no hepatic or renal toxicity. No mice survived exposure at the same dose of rGO or a PGA/rGO mixture. Following intravenous administration, ArGO showed a greater distribution to tumors and prolonged tumor retention compared with other nanosheet formulations. Irradiation with near-infrared light completely ablated tumors in mice treated with ArGO. Our results indicate that a bacteriomimetic surface modification of nanomaterials with bacterial capsule-like APGA improves the stability in blood, biocompatibility, tumor distribution, and photothermal antitumor efficacy of rGO. Although APGA was used here to coat the surfaces of rGO, it could be applicable to coat surfaces of other hydrophobic nanomaterials.

  19. Poly-γ-Glutamic Acid Induces Apoptosis via Reduction of COX-2 Expression in TPA-Induced HT-29 Human Colorectal Cancer Cells

    Directory of Open Access Journals (Sweden)

    Eun Ju Shin

    2015-04-01

    Full Text Available Poly-γ-glutamic acid (PGA is one of the bioactive compounds found in cheonggukjang, a fast-fermented soybean paste widely utilized in Korean cooking. PGA is reported to have a number of beneficial health effects, and interestingly, it has been identified as a possible anti-cancer compound through its ability to promote apoptosis in cancer cells, although the precise molecular mechanisms remain unclear. Our findings demonstrate that PGA inhibits the pro-proliferative functions of the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA, a known chemical carcinogen in HT-29 human colorectal cancer cells. This inhibition was accompanied by hallmark apoptotic phenotypes, including DNA fragmentation and the cleavage of poly (ADP-ribose polymerase (PARP and caspase 3. In addition, PGA treatment reduced the expression of genes known to be overexpressed in colorectal cancer cells, including cyclooxygenase 2 (COX-2 and inducible nitric oxide synthase (iNOS. Lastly, PGA promoted activation of 5' adenosine monophosphate-activated protein (AMPK in HT-29 cells. Taken together, our results suggest that PGA treatment enhances apoptosis in colorectal cancer cells, in part by modulating the activity of the COX-2 and AMPK signaling pathways. These anti-cancer functions of PGA make it a promising compound for future study.

  20. [Determination of glutamic acid in biological material by capillary electrophoresis].

    Science.gov (United States)

    Narezhnaya, E; Krukier, I; Avrutskaya, V; Degtyareva, A; Igumnova, E A

    2015-01-01

    The conditions for the identification and determination of Glutamic acid by capillary zone electrophoresis without their preliminary derivatization have been optimized. The effect of concentration of buffer electrolyte and pH on determination of Glutamic acid has been investigated. It is shown that the 5 Mm borate buffer concentration and a pH 9.15 are optimal. Quantitative determination of glutamic acid has been carried out using a linear dependence between the concentration of the analyte and the area of the peak. The accuracy and reproducibility of the determination are confirmed by the method "introduced - found". Glutamic acid has been determined in the placenta homogenate. The duration of analysis doesn't exceed 30 minutes. The results showed a decrease in the level of glutamic acid in cases of pregnancy complicated by placental insufficiency compared with the physiological, and this fact allows to consider the level of glutamic acid as a possible marker of complicated pregnancy.

  1. Poly(dopamine) coating of 3D printed poly(lactic acid) scaffolds for bone tissue engineering

    International Nuclear Information System (INIS)

    Kao, Chia-Tze; Lin, Chi-Chang; Chen, Yi-Wen; Yeh, Chia-Hung; Fang, Hsin-Yuan; Shie, Ming-You

    2015-01-01

    3D printing is a versatile technique to generate large quantities of a wide variety of shapes and sizes of polymer. The aim of this study is to develop functionalized 3D printed poly(lactic acid) (PLA) scaffolds and use a mussel-inspired surface coating to regulate cell adhesion, proliferation and differentiation of human adipose-derived stem cells (hADSCs). We prepared PLA 3D scaffolds coated with polydopamine (PDA). The chemical composition and surface properties of PDA/PLA were characterized by XPS. PDA/PLA modulated hADSCs' responses in several ways. Firstly, adhesion and proliferation, and cell cycle of hADSCs cultured on PDA/PLA were significantly enhanced relative to those on PLA. In addition, the collagen I secreted from cells was increased and promoted cell attachment and cell cycle progression were depended on the PDA content. In osteogenesis assay, the ALP activity and osteocalcin of hADSCs cultured on PDA/PLA were significantly higher than seen in those cultured on pure PLA scaffolds. Moreover, hADSCs cultured on PDA/PLA showed up-regulation of the ang-1 and vWF proteins associated with angiogenic differentiation. Our results demonstrate that the bio-inspired coating synthetic PLA polymer can be used as a simple technique to render the surfaces of synthetic scaffolds active, thus enabling them to direct the specific responses of hADSCs. - Highlights: • A simple method of 3D printed poly(lactic acid) scaffold coated with PDA • Promoted proliferation of hADSCs on PDA/PLA scaffolds • Increased collagen I, cell cycle, and cell adhesion with a high PDA content • Up-regulation of angiogenic and osteogenic of hADSCs • A promising method for bioinspired surface modification on PLA using PDA

  2. Poly(dopamine) coating of 3D printed poly(lactic acid) scaffolds for bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Kao, Chia-Tze [School of Dentistry, Chung Shan Medical University, Taichung City, Taiwan (China); Department of Stomatology, Chung Shan Medical University Hospital, Taichung City, Taiwan (China); Lin, Chi-Chang [Department of Chemical and Materials Engineering, Tunghai University, Taichung City, Taiwan (China); Chen, Yi-Wen; Yeh, Chia-Hung [3D Printing Medical Research Center, China Medical University Hospital, Taichung City, Taiwan (China); Fang, Hsin-Yuan [3D Printing Medical Research Center, China Medical University Hospital, Taichung City, Taiwan (China); Department of Thoracic Surgery, China Medical University Hospital, Taichung City, Taiwan (China); School of Medicine, College of Medicine, College of Public Health, Taichung City, Taiwan (China); Shie, Ming-You, E-mail: eviltacasi@gmail.com [3D Printing Medical Research Center, China Medical University Hospital, Taichung City, Taiwan (China)

    2015-11-01

    3D printing is a versatile technique to generate large quantities of a wide variety of shapes and sizes of polymer. The aim of this study is to develop functionalized 3D printed poly(lactic acid) (PLA) scaffolds and use a mussel-inspired surface coating to regulate cell adhesion, proliferation and differentiation of human adipose-derived stem cells (hADSCs). We prepared PLA 3D scaffolds coated with polydopamine (PDA). The chemical composition and surface properties of PDA/PLA were characterized by XPS. PDA/PLA modulated hADSCs' responses in several ways. Firstly, adhesion and proliferation, and cell cycle of hADSCs cultured on PDA/PLA were significantly enhanced relative to those on PLA. In addition, the collagen I secreted from cells was increased and promoted cell attachment and cell cycle progression were depended on the PDA content. In osteogenesis assay, the ALP activity and osteocalcin of hADSCs cultured on PDA/PLA were significantly higher than seen in those cultured on pure PLA scaffolds. Moreover, hADSCs cultured on PDA/PLA showed up-regulation of the ang-1 and vWF proteins associated with angiogenic differentiation. Our results demonstrate that the bio-inspired coating synthetic PLA polymer can be used as a simple technique to render the surfaces of synthetic scaffolds active, thus enabling them to direct the specific responses of hADSCs. - Highlights: • A simple method of 3D printed poly(lactic acid) scaffold coated with PDA • Promoted proliferation of hADSCs on PDA/PLA scaffolds • Increased collagen I, cell cycle, and cell adhesion with a high PDA content • Up-regulation of angiogenic and osteogenic of hADSCs • A promising method for bioinspired surface modification on PLA using PDA.

  3. High Concentrations of Tranexamic Acid Inhibit Ionotropic Glutamate Receptors.

    Science.gov (United States)

    Lecker, Irene; Wang, Dian-Shi; Kaneshwaran, Kirusanthy; Mazer, C David; Orser, Beverley A

    2017-07-01

    The antifibrinolytic drug tranexamic acid is structurally similar to the amino acid glycine and may cause seizures and myoclonus by acting as a competitive antagonist of glycine receptors. Glycine is an obligatory co-agonist of the N-methyl-D-aspartate (NMDA) subtype of glutamate receptors. Thus, it is plausible that tranexamic acid inhibits NMDA receptors by acting as a competitive antagonist at the glycine binding site. The aim of this study was to determine whether tranexamic acid inhibits NMDA receptors, as well as α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid and kainate subtypes of ionotropic glutamate receptors. Tranexamic acid modulation of NMDA, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, and kainate receptors was studied using whole cell voltage-clamp recordings of current from cultured mouse hippocampal neurons. Tranexamic acid rapidly and reversibly inhibited NMDA receptors (half maximal inhibitory concentration = 241 ± 45 mM, mean ± SD; 95% CI, 200 to 281; n = 5) and shifted the glycine concentration-response curve for NMDA-evoked current to the right. Tranexamic acid also inhibited α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (half maximal inhibitory concentration = 231 ± 91 mM; 95% CI, 148 to 314; n = 5 to 6) and kainate receptors (half maximal inhibitory concentration = 90 ± 24 mM; 95% CI, 68 to 112; n = 5). Tranexamic acid inhibits NMDA receptors likely by reducing the binding of the co-agonist glycine and also inhibits α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid and kainate receptors. Receptor blockade occurs at high millimolar concentrations of tranexamic acid, similar to the concentrations that occur after topical application to peripheral tissues. Glutamate receptors in tissues including bone, heart, and nerves play various physiologic roles, and tranexamic acid inhibition of these receptors may contribute to adverse drug effects.

  4. Modification of Carboxymethyl Chitosan Film by Blending with Poly(benzyl L-glutamate)-block-poly(ethylene glycol) Copolymer

    International Nuclear Information System (INIS)

    Zhu, G.Z.; Gao, Q.C.; Liu, Y.Y.

    2013-01-01

    A series of water-soluble carboxymethyl chitosan (CMCS)/poly(benzyl L-glutamate)-block-poly(ethylene glycol) (PBLG-b-PEG) blend films with various CMCS/PBLG-b-PEG mol ratios were prepared by pervaporation method. Morphologies of CMCS/PBLG-b-PEG blend films were researched by scanning electron microscopy (SEM). Thermal, mechanical, and chemical properties of CMCS/PBLG-b-PEG blend films were investigated by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), tensile tests, and contact angle tests. It was revealed that the introduction of PBLG-b-PEG segments could greatly affect the morphology and the properties of CMCS films. (author)

  5. 40 CFR 721.3821 - L-Glutamic acid, N-(1-oxododecyl)-.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false L-Glutamic acid, N-(1-oxododecyl... Substances § 721.3821 L-Glutamic acid, N-(1-oxododecyl)-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as L-Glutamic acid, N-(1-oxododecyl)- (PMN P...

  6. Titration of poly(dA-dT) . poly(dA-dT) in solution at variable NaCl concentration.

    Science.gov (United States)

    Airoldi, Marta; Boicelli, C Andrea; Cadoni, Fabio; Gennaro, Giuseppe; Giomini, Marcello; Giuliani, Anna M; Giustini, Mauro

    2004-10-05

    CD and uv absorption data showed that high molecular weight poly(dA-dT) . poly(dA-dT), at 298 K, undergoes an acid-induced transition from B-double helix to random coil in NaCl solutions of different concentrations, ranging from 0.005 to 0.600M. Similarly, titration of the polynucleotide with a strong base causes duplex-to-single strands transition. The base- and acid-induced transitions were both reversible by back-titration (with an acid or, respectively, with a base): the apparent pKa were the same in both directions. However, the number of protons per titratable site (adenine N1) required to reach half-denaturation was in great excess over the stoichiometric value; to a much larger extent, the same effect was observed also for the deprotonation of the N3H sites of thymine. Moreover, in the basic denaturation experiments, at low salt concentrations ([NaCl]acid than calculated was needed to back-titrate the base excess to half-denaturation. Both effects could be qualitatively justified on the basis of the counterion condensation theory of polyelectrolytes and considering the energy barrier created by the negatively charged phosphodiester groups to the penetration of the OH- ions inside the double helix and the screening effect of the Na+ ions on such charges, in the deprotonation experiments.

  7. Complex formation between glutamic acid and molybdenum (VI)

    International Nuclear Information System (INIS)

    Gharib, Farrokh; Khorrami, S.A.; Sharifi, Sasan

    1997-01-01

    Equilibria of the reaction of molybdenum (VI) with L-glutamic acid have been studied in aqueous solution in the pH range 2.5 to 9.5, using spectrophotometric and optical rotation methods at constant ionic strength (0.15 mol dm -3 sodium perchlorate) and temperature 25 ± 0.1 degC. Our studies have shown that glutamic acid forms a mononuclear complex with Mo(VI) of the type MoO 3 L 2- at pH 5.5. The stability constant of this complexation and the dissociation constants of L-glutamic acid have been determined. (author). 17 refs., 2 figs., 4 tabs

  8. Cell proliferation on PVA/sodium alginate and PVA/poly(γ-glutamic acid) electrospun fiber.

    Science.gov (United States)

    Yang, Jen Ming; Yang, Jhe Hao; Tsou, Shu Chun; Ding, Chian Hua; Hsu, Chih Chin; Yang, Kai Chiang; Yang, Chun Chen; Chen, Ko Shao; Chen, Szi Wen; Wang, Jong Shyan

    2016-09-01

    To overcome the obstacles of easy dissolution of PVA nanofibers without crosslinking treatment and the poor electrospinnability of the PVA cross-linked nanofibers via electrospinning process, the PVA based electrospun hydrogel nanofibers are prepared with post-crosslinking method. To expect the electrospun hydrogel fibers might be a promising scaffold for cell culture and tissue engineering applications, the evaluation of cell proliferation on the post-crosslinking electrospun fibers is conducted in this study. At beginning, poly(vinyl alcohol) (PVA), PVA/sodium alginate (PVASA) and PVA/poly(γ-glutamic acid) (PVAPGA) electrospun fibers were prepared by electrospinning method. The electrospun PVA, PVASA and PVAPGA nanofibers were treated with post-cross-linking method with glutaraldehyde (Glu) as crosslinking agent. These electrospun fibers were characterized with thermogravimetry analysis (TGA) and their morphologies were observed with a scanning electron microscope (SEM). To support the evaluation and explanation of cell growth on the fiber, the study of 3T3 mouse fibroblast cell growth on the surface of pure PVA, SA, and PGA thin films is conducted. The proliferation of 3T3 on the electrospun fiber surface of PVA, PVASA, and PVAPGA was evaluated by seeding 3T3 fibroblast cells on these crosslinked electrospun fibers. The cell viability on electrospun fibers was conducted with water-soluble tetrazolium salt-1 assay (Cell Proliferation Reagent WST-1). The morphology of the cells on the fibers was also observed with SEM. The results of WST-1 assay revealed that 3T3 cells cultured on different electrospun fibers had similar viability, and the cell viability increased with time for all electrospun fibers. From the morphology of the cells on electrospun fibers, it is found that 3T3 cells attached on all electrospun fiber after 1day seeded. Cell-cell communication was noticed on day 3 for all electrospun fibers. Extracellular matrix (ECM) productions were found and

  9. Glutamic acid and its derivatives: candidates for rational design of anticancer drugs.

    Science.gov (United States)

    Ali, Imran; Wani, Waseem A; Haque, Ashanul; Saleem, Kishwar

    2013-05-01

    Throughout the history of human civilizations, cancer has been a major health problem. Its treatment has been interesting but challenging to scientists. Glutamic acid and its derivative glutamine are known to play interesting roles in cancer genesis, hence, it was realized that structurally variant glutamic acid derivatives may be designed and developed and, might be having antagonistic effects on cancer. The present article describes the state-of-art of glutamic acid and its derivatives as anticancer agents. Attempts have been made to explore the effectivity of drug-delivery systems based on glutamic acid for the delivery of anticancer drugs. Moreover, efforts have also been made to discuss the mechanism of action of glutamic acid derivatives as anticancer agents, clinical applications of glutamic acid derivatives, as well as recent developments and future perspectives of glutamic acid drug development have also been discussed.

  10. Direct laser writing of synthetic poly(amino acid) hydrogels and poly(ethylene glycol) diacrylates by two-photon polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Käpylä, Elli, E-mail: elli.kapyla@tut.fi [Department of Electronics and Communications Engineering, Tampere University of Technology, P.O. Box 692, 33101 Tampere (Finland); BioMediTech, Biokatu 10, 33520 Tampere (Finland); Sedlačík, Tomáš [Institute of Macromolecular Chemistry of the Academy of Sciences of the Czech Republic, Heyrovského nám. 2, 162 06 Praha 6, Břevnov, Prague (Czech Republic); Aydogan, Dogu Baran [Department of Electronics and Communications Engineering, Tampere University of Technology, P.O. Box 692, 33101 Tampere (Finland); BioMediTech, Biokatu 10, 33520 Tampere (Finland); Viitanen, Jouko [VTT Technical Research Centre of Finland, P.O. Box 1300, 33101 Tampere (Finland); Rypáček, František [Institute of Macromolecular Chemistry of the Academy of Sciences of the Czech Republic, Heyrovského nám. 2, 162 06 Praha 6, Břevnov, Prague (Czech Republic); Kellomäki, Minna [Department of Electronics and Communications Engineering, Tampere University of Technology, P.O. Box 692, 33101 Tampere (Finland); BioMediTech, Biokatu 10, 33520 Tampere (Finland)

    2014-10-01

    The additive manufacturing technique of direct laser writing by two-photon polymerization (2PP-DLW) enables the fabrication of three-dimensional microstructures with superior accuracy and flexibility. When combined with biomimetic hydrogel materials, 2PP-DLW can be used to recreate the microarchitectures of the extracellular matrix. However, there are currently only a limited number of hydrogels applicable for 2PP-DLW. In order to widen the selection of synthetic biodegradable hydrogels, in this work we studied the 2PP-DLW of methacryloylated and acryloylated poly(α-amino acid)s (poly(AA)s). The performance of these materials was compared to widely used poly(ethylene glycol) diacrylates (PEGdas) in terms of polymerization and damage thresholds, voxel size, line width, post-polymerization swelling and deformation. We found that both methacryloylated and acryloylated poly(AA) hydrogels are suitable to 2PP-DLW with a wider processing window than PEGdas. The poly(AA) with the highest degree of acryloylation showed the greatest potential for 3D microfabrication. - Highlights: • Methacryloylated and acryloylated poly(α-amino acid)s (poly(AA)s) were synthesized. • Direct laser writing by two-photon polymerization (2PP-DLW) of poly(AA)s is shown. • Poly(AA)s have wider processing windows than poly(ethylene glycol) diacrylates. • 3D poly(AA) structures with 80% water content were fabricated.

  11. Direct laser writing of synthetic poly(amino acid) hydrogels and poly(ethylene glycol) diacrylates by two-photon polymerization

    International Nuclear Information System (INIS)

    Käpylä, Elli; Sedlačík, Tomáš; Aydogan, Dogu Baran; Viitanen, Jouko; Rypáček, František; Kellomäki, Minna

    2014-01-01

    The additive manufacturing technique of direct laser writing by two-photon polymerization (2PP-DLW) enables the fabrication of three-dimensional microstructures with superior accuracy and flexibility. When combined with biomimetic hydrogel materials, 2PP-DLW can be used to recreate the microarchitectures of the extracellular matrix. However, there are currently only a limited number of hydrogels applicable for 2PP-DLW. In order to widen the selection of synthetic biodegradable hydrogels, in this work we studied the 2PP-DLW of methacryloylated and acryloylated poly(α-amino acid)s (poly(AA)s). The performance of these materials was compared to widely used poly(ethylene glycol) diacrylates (PEGdas) in terms of polymerization and damage thresholds, voxel size, line width, post-polymerization swelling and deformation. We found that both methacryloylated and acryloylated poly(AA) hydrogels are suitable to 2PP-DLW with a wider processing window than PEGdas. The poly(AA) with the highest degree of acryloylation showed the greatest potential for 3D microfabrication. - Highlights: • Methacryloylated and acryloylated poly(α-amino acid)s (poly(AA)s) were synthesized. • Direct laser writing by two-photon polymerization (2PP-DLW) of poly(AA)s is shown. • Poly(AA)s have wider processing windows than poly(ethylene glycol) diacrylates. • 3D poly(AA) structures with 80% water content were fabricated

  12. Adsorption of Amino Acids and Glutamic Acid-Based Surfactants on Imogolite Clays.

    Science.gov (United States)

    Bonini, Massimo; Gabbani, Alessio; Del Buffa, Stefano; Ridi, Francesca; Baglioni, Piero; Bordes, Romain; Holmberg, Krister

    2017-03-07

    Aluminum oxide surfaces are of utmost interest in different biotech applications, in particular for their use as adjuvants (i.e., booster of the immune response against infectious agents in vaccines production). In this framework, imogolite clays combine the chemical flexibility of an exposed alumina surface with 1D nanostructure. This work reports on the interaction between amino acids and imogolite, using turbidimetry, ζ-potential measurements, and Fourier transform infrared spectroscopy as main characterization tools. Amino acids with different side chain functional groups were investigated, showing that glutamic acid (Glu) has the strongest affinity for the imogolite surface. This was exploited to prepare a composite material made of a synthetic surfactant bearing a Glu polar head and a hydrophobic C 12 alkyl tail, adsorbed onto the surface of imogolite. The adsorption of a model drug (rhodamine B isothiocyanate) by the hybrid was evaluated both in water and in physiological saline conditions. The findings of this paper suggest that the combination between the glutamate headgroup and imogolite represents a promising platform for the fabrication of hybrid nanostructures with tailored functionalities.

  13. Branched chain amino acids maintain the molecular weight of poly(γ-glutamic acid) of Bacillus licheniformis ATCC 9945 during the fermentation.

    Science.gov (United States)

    Mitsunaga, Hitoshi; Meissner, Lena; Büchs, Jochen; Fukusaki, Eiichiro

    2016-10-01

    Poly(γ-glutamic acid) mainly produced by Bacillus spp. is an industrially important compound due to several useful features. Among them, molecular weight is an important characteristic affecting on the physical properties such as viscosities and negative charge densities. However, it is difficult to control the molecular size of PGA since it decreases during fermentation. Previous study reported that PGA produced in the media containing different carbon sources such as glucose and glycerol showed differences in molecular weight. Therefore in this study, the effect of carbon source on the PGA molecular weight was examined; with the aim of developing a strategy to maintain the high molecular weight of PGA during fermentation. Our result showed that the weight average molecular weight (Mw) of PGA of Bacillus licheniformis ATCC 9945 cultivated in the media containing PTS-sugars were higher than the medium containing glycerol (non-PTS). The result of metabolome analysis indicated the possibility of CodY (a global regulator protein) activation in the cells cultivated in the media containing PTS-sugars. To mimic this effect, branched-chain amino acids (BCAAs), which are activators of CodY, were added to a medium containing glycerol. As the result, the Mw of PGA in the BCAAs-supplemented media were maintained and high during the early production phase compared to the non BCAAs-supplemented medium. These results indicate that BCAAs can repress the PGA molecular weight reduction during fermentation in B. licheniformis ATCC 9945. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  14. Tubular scaffolds of gelatin and poly(ε-caprolactone)-block-poly(γ-glutamic acid) blending hydrogel for the proliferation of the primary intestinal smooth muscle cells of rats

    International Nuclear Information System (INIS)

    Jwo, Shyh-Chuan; Chiu, Chu-Hua; Hsieh, Ming-Fa; Tang, Shye-Jye

    2013-01-01

    The proper regeneration of intestinal muscle for functional peristalsis is the most challenging aspect of current small intestine tissue engineering. This study aimed to fabricate a hydrogel scaffold for the proliferation of intestinal smooth muscle cells (ISMCs). Tubular porous scaffolds of 10–20 wt% gelatin and 0.05–0.1 wt% poly(ε-caprolactone)-block-poly(γ-glutamic acid) blending hydrogel were cross-linked by carbodiimide and succinimide in an annular space of a glass mold. The scaffolds with higher gelatin contents degraded slower in the phosphate buffer solution. In rheological measurements, the hydrated scaffolds were elastic (all tangent delta <0.45); they responded differentially to frequency, indicating a complete viscoelastic property that is beneficial for soft tissue regeneration. Isolated rat ISMCs, with the characteristic biomarkers α-SMA, calponin and myh11, were loaded into the scaffolds by using either static or centrifugal methods. The average cell density inside the scaffolds increased in a time-dependent manner in most scaffolds of both seeding groups, although at early time points (seven days) the centrifugal seeding method trapped cells more efficiently and yielded a higher cell density than the static seeding method. The static seeding method increased the cell density from 7.5-fold to 16.3-fold after 28 days, whereas the centrifugal procedure produced a maximum increase of only 2.4-fold in the same period. In vitro degradation data showed that 50–80% of the scaffold was degraded by the 14th day. However, the self-secreted extracellular matrix maintained the integrity of the scaffolds for cell proliferation and spreading for up to 28 days. Confocal microscopic images revealed cell–cell contacts with the formation of a 3D network, demonstrating that the fabricated scaffolds were highly biocompatible. Therefore, these polymeric biomaterials hold great promise for in vivo applications of intestinal tissue engineering. (paper)

  15. Combination of aspartic acid and glutamic acid inhibits tumor cell proliferation.

    Science.gov (United States)

    Yamaguchi, Yoshie; Yamamoto, Katsunori; Sato, Yoshinori; Inoue, Shinjiro; Morinaga, Tetsuo; Hirano, Eiichi

    2016-01-01

    Placental extract contains several biologically active compounds, and pharmacological induction of placental extract has therapeutic effects, such as improving liver function in patients with hepatitis or cirrhosis. Here, we searched for novel molecules with an anti-tumor activity in placental extracts. Active molecules were separated by chromatographic analysis, and their antiproliferative activities were determined by a colorimetric assay. We identified aspartic acid and glutamic acid to possess the antiproliferative activity against human hepatoma cells. Furthermore, we showed that the combination of aspartic acid and glutamic acid exhibited enhanced antiproliferative activity, and inhibited Akt phosphorylation. We also examined in vivo tumor inhibition activity using the rabbit VX2 liver tumor model. The treatment mixture (emulsion of the amino acids with Lipiodol) administered by hepatic artery injection inhibited tumor cell growth of the rabbit VX2 liver. These results suggest that the combination of aspartic acid and glutamic acid may be useful for induction of tumor cell death, and has the potential for clinical use as a cancer therapeutic agent.

  16. Methylenetetrahydrofolate reductase deficiency alters levels of glutamate and γ-aminobutyric acid in brain tissue

    Directory of Open Access Journals (Sweden)

    N.M. Jadavji

    2015-06-01

    Full Text Available Methylenetetrahydrofolate reductase (MTHFR is an enzyme key regulator in folate metabolism. Deficiencies in MTHFR result in increased levels of homocysteine, which leads to reduced levels of S-adenosylmethionine (SAM. In the brain, SAM donates methyl groups to catechol-O-methyltransferase (COMT, which is involved in neurotransmitter analysis. Using the MTHFR-deficient mouse model the purpose of this study was to investigate levels of monoamine neurotransmitters and amino acid levels in brain tissue. MTHFR deficiency affected levels of both glutamate and γ-aminobutyric acid in within the cerebellum and hippocampus. Mthfr−/− mice had reduced levels of glutamate in the amygdala and γ-aminobutyric acid in the thalamus. The excitatory mechanisms of homocysteine through activation of the N-methyl-d-aspartate receptor in brain tissue might alter levels of glutamate and γ-aminobutyric acid.

  17. Mesenchymal stem cell recruitment by stromal derived factor-1-delivery systems based on chitosan/poly(γ-glutamic acid) polyelectrolyte complexes.

    Science.gov (United States)

    Gonçalves, Raquel M; Antunes, Joana C; Barbosa, Mário A

    2012-04-10

    Human mesenchymal stem cells (hMSCs) have an enormous potential for tissue engineering and cell-based therapies. With a potential of differentiation into multiple lineages and immune-suppression, these cells play a key role in tissue remodelling and regeneration. Here a method of hMSC recruitment is described, based on the incorporation of a chemokine in Chitosan (Ch)/Poly(γ-glutamic acid) (γ-PGA) complexes. Ch is a non-toxic, cationic polysaccharide widely investigated. γ-PGA is a hydrophilic, non-toxic, biodegradable and negatively charged poly-amino acid. Ch and γ-PGA, being oppositely charged, can be combined through electrostatic interactions. These biocompatible structures can be used as carriers for active substances and can be easily modulated in order to control the delivery of drugs, proteins, DNA, etc. Using the layer-by-layer method, Ch and γ-PGA were assembled into polyelectrolyte multilayers films (PEMs) with thickness of 120 nm. The chemokine stromal-derived factor-1 (SDF-1) was incorporated in these complexes and was continuously released during 120 h. The method of SDF-1 incorporation is of crucial importance for polymers assembly into PEMs and for the release kinetics of this chemokine. The Ch/γ-PGA PEMs with SDF-1 were able to recruit hMSCs, increasing the cell migration up to 6 fold to a maximum of 16.2 ± 4.9 cells/mm2. The controlled release of SDF-1 would be of great therapeutic value in the process of hMSC homing to injured tissues. This is the first study suggesting Ch/γ-PGA PEMs as SDF-1 reservoirs to recruit hMSCs, describing an efficient method of chemokine incorporation that allows a sustained released up to 5 days and that can be easily scaled-up.

  18. Mesenchymal stem cell recruitment by stromal derived factor-1-delivery systems based on chitosan/poly(γ-glutamic acid polyelectrolyte complexes

    Directory of Open Access Journals (Sweden)

    RM Gonçalves

    2012-04-01

    Full Text Available Human mesenchymal stem cells (hMSCs have an enormous potential for tissue engineering and cell-based therapies. With a potential of differentiation into multiple lineages and immune-suppression, these cells play a key role in tissue remodelling and regeneration. Here a method of hMSC recruitment is described, based on the incorporation of a chemokine in Chitosan (Ch/Poly(γ-glutamic acid (γ-PGA complexes. Ch is a non-toxic, cationic polysaccharide widely investigated. γ-PGA is a hydrophilic, non-toxic, biodegradable and negatively charged poly-amino acid. Ch and γ-PGA, being oppositely charged, can be combined through electrostatic interactions. These biocompatible structures can be used as carriers for active substances and can be easily modulated in order to control the delivery of drugs, proteins, DNA, etc. Using the layer-by-layer method, Ch and γ-PGA were assembled into polyelectrolyte multilayers films (PEMs with thickness of 120 nm. The chemokine stromal-derived factor-1 (SDF-1 was incorporated in these complexes and was continuously released during 120 h. The method of SDF-1 incorporation is of crucial importance for polymers assembly into PEMs and for the release kinetics of this chemokine. The Ch/γ-PGA PEMs with SDF-1 were able to recruit hMSCs, increasing the cell migration up to 6 fold to a maximum of 16.2 ± 4.9 cells/mm2. The controlled release of SDF-1 would be of great therapeutic value in the process of hMSC homing to injured tissues. This is the first study suggesting Ch/γ-PGA PEMs as SDF-1 reservoirs to recruit hMSCs, describing an efficient method of chemokine incorporation that allows a sustained released up to 5 days and that can be easily scaled-up.

  19. The glutamate receptor GluR5 agonist (S)-2-amino-3-(3-hydroxy-7,8-dihydro-6H-cyclohepta[d]isoxazol-4-yl)propionic acid and the 8-methyl analogue

    DEFF Research Database (Denmark)

    Clausen, Rasmus Prætorius; Naur, Peter; Kristensen, Anders Skov

    2009-01-01

    The design, synthesis, and pharmacological characterization of a highly potent and selective glutamate GluR5 agonist is reported. (S)-2-Amino-3-((RS)-3-hydroxy-8-methyl-7,8-dihydro-6H-cyclohepta[d]isoxazol-4-yl)propionic acid (5) is the 8-methyl analogue of (S)-2-amino-3-(3-hydroxy-7,8-dihydro-6H......-cyclohepta[d]isoxazol-4-yl)propionic acid ((S)-4-AHCP, 4). Compound 5 displays an improved selectivity profile compared to 4. A versatile stereoselective synthetic route for this class of compounds is presented along with the characterization of the binding affinity of 5 to ionotropic glutamate receptors (i......GluRs). Functional characterization of 5 at cloned iGluRs using a calcium imaging assay and voltage-clamp recordings show a different activation of GluR5 compared to (S)-glutamic acid (Glu), kainic acid (KA, 1), and (S)-2-amino-3-(3-hydroxy-5-tert-butyl-4-isoxazolyl)propionic acid ((S)-ATPA, 3) as previously...

  20. Cephalopod vision involves dicarboxylic amino acids: D-aspartate, L-aspartate and L-glutamate.

    Science.gov (United States)

    D'Aniello, Salvatore; Spinelli, Patrizia; Ferrandino, Gabriele; Peterson, Kevin; Tsesarskia, Mara; Fisher, George; D'Aniello, Antimo

    2005-03-01

    In the present study, we report the finding of high concentrations of D-Asp (D-aspartate) in the retina of the cephalopods Sepia officinalis, Loligo vulgaris and Octopus vulgaris. D-Asp increases in concentration in the retina and optic lobes as the animal develops. In neonatal S. officinalis, the concentration of D-Asp in the retina is 1.8+/-0.2 micromol/g of tissue, and in the optic lobes it is 5.5+/-0.4 micromol/g of tissue. In adult animals, D-Asp is found at a concentration of 3.5+/-0.4 micromol/g in retina and 16.2+/-1.5 micromol/g in optic lobes (1.9-fold increased in the retina, and 2.9-fold increased in the optic lobes). In the retina and optic lobes of S. officinalis, the concentration of D-Asp, L-Asp (L-aspartate) and L-Glu (L-glutamate) is significantly influenced by the light/dark environment. In adult animals left in the dark, these three amino acids fall significantly in concentration in both retina (approx. 25% less) and optic lobes (approx. 20% less) compared with the control animals (animals left in a diurnal/nocturnal physiological cycle). The reduction in concentration is in all cases statistically significant (P=0.01-0.05). Experiments conducted in S. officinalis by using D-[2,3-3H]Asp have shown that D-Asp is synthesized in the optic lobes and is then transported actively into the retina. D-aspartate racemase, an enzyme which converts L-Asp into D-Asp, is also present in these tissues, and it is significantly decreased in concentration in animals left for 5 days in the dark compared with control animals. Our hypothesis is that the dicarboxylic amino acids, D-Asp, L-Asp and L-Glu, play important roles in vision.

  1. Mutual diffusion coefficients of L-glutamic acid and monosodium L-glutamate in aqueous solutions at T = 298.15 K

    International Nuclear Information System (INIS)

    Ribeiro, Ana C.F.; Rodrigo, M.M.; Barros, Marisa C.F.; Verissimo, Luis M.P.; Romero, Carmen; Valente, Artur J.M.; Esteso, Miguel A.

    2014-01-01

    Highlights: • Interdiffusion coefficients of L-glutamic acid and sodium L-glutamate were measured. • The L-glutamic acid behaves as a monoprotic weak acid. • The sodium L-glutamate shows a symmetrical 1:1 non-associated behaviour. • Limiting diffusion coefficients and ionic conductivities were estimated. • Diffusion coefficients were discussed on the basis of the Onsager–Fuoss equations. - Abstract: Mutual diffusion coefficient values for binary aqueous solutions of both L-glutamic acid (H 2 Glu) and sodium L-glutamate (NaHGlu) were measured with the Taylor dispersion technique, at T = 298.15 K, and concentrations ranging from (0.001 to 0.100) mol · dm −3 . The results were discussed on the basis of the Onsager–Fuoss and the Nernst theoretical equations, by considering the H 2 Glu as a weak acid (monoprotic acid, with K 2 = 5.62 · 10 −5 ). The smaller values found for the acid with respect to those of the salt, confirm this association hypothesis. From the diffusion coefficient values at infinitesimal concentration, limiting ionic conductivities as well as the hydrodynamic radius of the hydrogen glutamate ion (HGlu − ) were derived and analyzed in terms of the chain methylene groups. The effect of different phenomena, such as association or complexation, were also taken into consideration and discussed. Values for the dissociation degree for H 2 Glu were also estimated

  2. Synthesis and distribution of L-glutamic acid with three different labels

    International Nuclear Information System (INIS)

    Cohen, M.B.; Spolter, Leonard; Chia Chin Chang; MacDonald, N.S.

    1982-01-01

    A study was performed to compare the distribution of C-11 L-glutamic acid, labeled on the carboxyl group of either the alpha or gamma carbon with that of N-13 L-glutamic acid in order to determine if the position of the label is of importance in the study of the distribution of glutamic acid

  3. Glutamic Acid Selective Chemical Cleavage of Peptide Bonds.

    Science.gov (United States)

    Nalbone, Joseph M; Lahankar, Neelam; Buissereth, Lyssa; Raj, Monika

    2016-03-04

    Site-specific hydrolysis of peptide bonds at glutamic acid under neutral aqueous conditions is reported. The method relies on the activation of the backbone amide chain at glutamic acid by the formation of a pyroglutamyl (pGlu) imide moiety. This activation increases the susceptibility of a peptide bond toward hydrolysis. The method is highly specific and demonstrates broad substrate scope including cleavage of various bioactive peptides with unnatural amino acid residues, which are unsuitable substrates for enzymatic hydrolysis.

  4. Excretion and intestinal absorption of tritiated glutamic acid by carp, Cyprinus Carpio

    International Nuclear Information System (INIS)

    Watabe, Terushia; Kistner, G.

    1986-01-01

    Excretion and intestinal absorption of tritiated glutamic acid by carp was investigated. Approximately 80% of orally administered tritium was excreted at a half life value of 1.4 h and an observed slower excretion of 7 days for the remainder. Tritium incorporated in glutamic acid was efficiently retained at the site of absorption, i.e. intestine, liver, gill, kidney, blood and muscle. A dual marking experiment using tritiated glutamic acid and 14 C-market glutamic acid showed higher excretion of tritium by factors 2.0 to 4.9 than that of 14 C. Tritiated glutamic acid is considered to be mainly incorporated in the citric acid cycle soon after administration and the release of tritium in tritiated water through the cycle is assumed as causing the initial rapid excretion of tritium in carp. The intestinal absorption of glutamic acid was likely to depend on its concentration in the administered solution. The maximum level of absorption is estimated to be 0.1 m mol/0.5 h for one year old carp. The results obtained here would make it possible to estimate the tritium contamination of fish due to tritiated glutamic acid entering the food chain. (orig.)

  5. Glutamine and glutamate: Nonessential or essential amino acids?

    Directory of Open Access Journals (Sweden)

    Malcolm Watford

    2015-09-01

    Full Text Available Glutamine and glutamate are not considered essential amino acids but they play important roles in maintaining growth and health in both neonates and adults. Although glutamine and glutamate are highly abundant in most feedstuffs there is increasing evidence that they may be limiting during pregnancy, lactation and neonatal growth, particularly when relatively low protein diets are fed. Supplementation of diets with glutamine, glutamate or both at 0.5 to 1.0% to both suckling and recently weaned piglets improves intestinal and immune function and results in better growth. In addition such supplementation to the sow prevents some of the loss of lean body mass during lactation, and increases milk glutamine content. However, a number of important questions related to physiological condition, species under study and the form and amount of the supplements need to be addressed before the full benefits of glutamine and glutamate supplementation in domestic animal production can be realized. Keywords: Amino acid, Glutamate, Glutamine, Lactation, Pregnancy, Growth

  6. A novel dendrimer based on poly (L-glutamic acid) derivatives as an efficient and biocompatible gene delivery vector

    International Nuclear Information System (INIS)

    Zeng Xin; Pan Shirong; Wang Chi; Wen Yuting; Wu Hongmei; Wang Cuifeng; Wu Chuanbin; Feng Min; Li Jie

    2011-01-01

    Non-viral gene delivery systems based on cationic polymers have faced limitations related to their relative low gene transfer efficiency, cytotoxicity and system instability in vivo. In this paper, a flexible and pompon-like dendrimer composed of poly (amidoamine) (PAMAM) G4.0 as the inner core and poly (L-glutamic acid) grafted low-molecular-weight polyethylenimine (PLGE) as the surrounding multiple arms was synthesized (MGI dendrimer). The novel MGI dendrimer was designed to combine the merits of size-controlled PAMAM G4.0 and the low toxicity and flexible chains of PLGE. In phosphate-buffered saline dispersions the well-defined DNA/MGI complex above a N/P ratio of 30 showed good stability with particle sizes of approximately 200 nm and a comparatively low polydispersity index. However, the particle size of the DNA/25 kDa polyethylenimine (DNA/PEI 25K) complex was larger than 700 nm under the same salt conditions. The shielding of the compact amino groups at the periphery of flexible PAMAM and biocompatible PLGE chains in MGI resulted in a dramatic decrease of the cytotoxicity compared to native PAMAM G4.0 dendrimer. The in vitro transfection efficiency of DNA/MGI dendrimer complex was higher than that of PAMAM G4.0 dendrimer. Importantly, in serum-containing medium, DNA/MGI complexes at their optimal N/P ratio maintained the same high levels of transfection efficiency as in serum-free medium, while the transfection efficiency of native PAMAM G4.0, PEI 25K and Lipofectamine 2000 were sharply decreased. In vivo gene delivery of pVEGF165/MGI complex into balloon-injured rabbit carotid arteries resulted in significant inhibition of restenosis by increasing VEGF165 expression in local vessels. Therefore, the pompon-like MGI dendrimer may be a promising vector candidate for efficient gene delivery in vivo.

  7. Biobased synthesis of acrylonitrile from glutamic acid

    NARCIS (Netherlands)

    Notre, le J.E.L.; Scott, E.L.; Franssen, M.C.R.; Sanders, J.P.M.

    2011-01-01

    Glutamic acid was transformed into acrylonitrile in a two step procedure involving an oxidative decarboxylation in water to 3-cyanopropanoic acid followed by a decarbonylation-elimination reaction using a palladium catalyst

  8. Distribution of radiolabeled L-glutamate and D-aspartate from blood into peripheral tissues in naive rats: Significance for brain neuroprotection

    International Nuclear Information System (INIS)

    Klin, Yael; Zlotnik, Alexander; Boyko, Matthew; Ohayon, Sharon; Shapira, Yoram; Teichberg, Vivian I.

    2010-01-01

    Research highlights: → Blood glutamate has a half-life time of 2-3 min. → Blood glutamate is submitted to rapid decarboxylation. → Blood glutamate and its metabolites are mainly absorbed in skeletal muscle and liver. → The skeletal muscle and liver are now targets for potential drugs affording brain neuroprotection. -- Abstract: Excess L-glutamate (glutamate) levels in brain interstitial and cerebrospinal fluids (ISF and CSF, respectively) are the hallmark of several neurodegenerative conditions such as stroke, traumatic brain injury or amyotrophic lateral sclerosis. Its removal could prevent the glutamate excitotoxicity that causes long-lasting neurological deficits. As in previous studies, we have established the role of blood glutamate levels in brain neuroprotection, we have now investigated the contribution of the peripheral organs to the homeostasis of glutamate in blood. We have administered naive rats with intravenous injections of either L-[1- 14 C] Glutamic acid (L-[1- 14 C] Glu), L-[G- 3 H] Glutamic acid (L-[G- 3 H] Glu) or D-[2,3- 3 H] Aspartic acid (D-[2,3- 3 H] Asp), a non-metabolized analog of glutamate, and have followed their distribution into peripheral organs. We have observed that the decay of the radioactivity associated with L-[1- 14 C] Glu and L-[G- 3 H] Glu was faster than that associated with glutamate non-metabolized analog, D-[2,3- 3 H] Asp. L-[1- 14 C] Glu was subjected in blood to a rapid decarboxylation with the loss of 14 CO 2 . The three major sequestrating organs, serving as depots for the eliminated glutamate and/or its metabolites were skeletal muscle, liver and gut, contributing together 92% or 87% of total L-[U- 14 C] Glu or D-[2,3- 3 H] Asp radioactivity capture. L-[U- 14 C] Glu and D-[2,3- 3 H] Asp showed a different organ sequestration pattern. We conclude that glutamate is rapidly eliminated from the blood into peripheral tissues, mainly in non-metabolized form. The liver plays a central role in glutamate metabolism

  9. Distribution of radiolabeled L-glutamate and D-aspartate from blood into peripheral tissues in naive rats: Significance for brain neuroprotection

    Energy Technology Data Exchange (ETDEWEB)

    Klin, Yael [Department of Neurobiology, The Weizmann Institute of Science, Rehovot 76100 (Israel); Zlotnik, Alexander; Boyko, Matthew; Ohayon, Sharon; Shapira, Yoram [The Division of Anesthesiology, Soroka Medical Center and Ben Gurion University of the Negev, Beer-Sheva (Israel); Teichberg, Vivian I., E-mail: Vivian.teichberg@weizmann.ac.il [Department of Neurobiology, The Weizmann Institute of Science, Rehovot 76100 (Israel)

    2010-09-03

    Research highlights: {yields} Blood glutamate has a half-life time of 2-3 min. {yields} Blood glutamate is submitted to rapid decarboxylation. {yields} Blood glutamate and its metabolites are mainly absorbed in skeletal muscle and liver. {yields} The skeletal muscle and liver are now targets for potential drugs affording brain neuroprotection. -- Abstract: Excess L-glutamate (glutamate) levels in brain interstitial and cerebrospinal fluids (ISF and CSF, respectively) are the hallmark of several neurodegenerative conditions such as stroke, traumatic brain injury or amyotrophic lateral sclerosis. Its removal could prevent the glutamate excitotoxicity that causes long-lasting neurological deficits. As in previous studies, we have established the role of blood glutamate levels in brain neuroprotection, we have now investigated the contribution of the peripheral organs to the homeostasis of glutamate in blood. We have administered naive rats with intravenous injections of either L-[1-{sup 14}C] Glutamic acid (L-[1-{sup 14}C] Glu), L-[G-{sup 3}H] Glutamic acid (L-[G-{sup 3}H] Glu) or D-[2,3-{sup 3}H] Aspartic acid (D-[2,3-{sup 3}H] Asp), a non-metabolized analog of glutamate, and have followed their distribution into peripheral organs. We have observed that the decay of the radioactivity associated with L-[1-{sup 14}C] Glu and L-[G-{sup 3}H] Glu was faster than that associated with glutamate non-metabolized analog, D-[2,3-{sup 3}H] Asp. L-[1-{sup 14}C] Glu was subjected in blood to a rapid decarboxylation with the loss of {sup 14}CO{sub 2}. The three major sequestrating organs, serving as depots for the eliminated glutamate and/or its metabolites were skeletal muscle, liver and gut, contributing together 92% or 87% of total L-[U-{sup 14}C] Glu or D-[2,3-{sup 3}H] Asp radioactivity capture. L-[U-{sup 14}C] Glu and D-[2,3-{sup 3}H] Asp showed a different organ sequestration pattern. We conclude that glutamate is rapidly eliminated from the blood into peripheral tissues

  10. Biochemical characterization of an autoradiographic method for studying excitatory amino acid receptors using L-[3H]glutamate

    International Nuclear Information System (INIS)

    Cincotta, M.; Summers, R.J.; Beart, P.M.

    1989-01-01

    A method was developed for radiolabeling excitatory amino acid receptors of rat brain with L-[ 3 H]glutamate. Effective labeling of glutamate receptors in slide-mounted 10-microns sections was obtained using a low incubation volume (0.15 ml) and rapid washing: a procedure where high ligand concentrations were achieved with minimal waste. Saturation experiments using [ 3 H]glutamate revealed a single binding site of micromolar affinity. The Bmax was trebled in the presence of Ca2+ (2.5 mM) and Cl- (20 mM) with no change in the Kd. Binding was rapid, saturable, stereospecific, and sensitive to glutamate receptor agonists. The proportions of [ 3 H]glutamate binding sensitive to N-methyl-D-aspartate (NMDA), kainate, and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) were 34, 54, and 51%, respectively. NMDA inhibited binding at a distinct subset of L-[ 3 H]glutamate sites, whereas AMPA and kainate competed for some common sites. Labeling of sections with L-[ 3 H]glutamate in the presence of the selective agonists allowed autoradiographic visualization of glutamate receptor subtypes in brain tissue

  11. Physicochemical properties of cross-linked poly-gamma-glutamic acid and its flocculating activity against kaolin suspension

    International Nuclear Information System (INIS)

    Taniguchi, M.; Kato, K.; Shimauchi, A.; Ping, X.; Fujita, K.; Tanaka, T.; Tarui, Y.; Hirasawa, E.

    2005-01-01

    Cross-linked poly-Gamma-glutamic acid (C-L Gamma-PGA) was prepared with Gamma-PGA irradiated with Gamma-PGA at various kGy values. The physicochemical properties including viscosity and water absorption capacity were compared between C-L Gamma-PGA and several typical flocculating agents. The viscosity of C-L Gamma-PGA increased with the dose of Gamma-lrradiatio, although the water absorption capacity of C-L Gamma-PGA did not, which showed a maximum of 1005.6 ml/g at 20 kGy. Flocculating activity against kaolin suspension was not observed for any of the test compounds when used singly. However, the activity of C-L Gamma-PGA markedly increased following the addition of polyaluminum chloride. The activity increased with temperature up to 80deg C and remained at 80 deg C of heat pretreatment for 1 h, but did not at more than 50 deg C of beat pretreatment for 24 h. The activity was also observed within a pH range of 4.5-10.0. Roth the water absorption capacity and flocculating activity of C-L Gamma-PGA decreased in parallel with increasing NaCl concentration, suggesting that the hocculating activity of C-L Gamma-PGA was associated with its water absorption capacity, rather than viscosity. An investigation of the effects of various cations on the flocculating activity of C-L Gamma-PGA showed that only trivalent catlons had a synergistic effect. The mechanism of C-L Gamma-PGA flocculating activity is discussed based on the results of preliminary experiments

  12. Poly-γ-Glutamic Acids Contribute to Biofilm Formation and Plant Root Colonization in Selected Environmental Isolates of Bacillus subtilis

    Science.gov (United States)

    Yu, Yiyang; Yan, Fang; Chen, Yun; Jin, Christopher; Guo, Jian-Hua; Chai, Yunrong

    2016-01-01

    Bacillus subtilis is long known to produce poly-γ-glutamic acids (γ-PGA) as one of the major secreted polymeric substances. In B. subtilis, the regulation of γ-PGA production and its physiological role are still unclear. B. subtilis is also capable of forming structurally complex multicellular communities, or biofilms, in which an extracellular matrix consisting of secreted proteins and polysaccharides holds individual cells together. Biofilms were shown to facilitate B. subtilis–plant interactions. In this study, we show that different environmental isolates of B. subtilis, all capable of forming biofilms, vary significantly in γ-PGA production. This is possibly due to differential regulation of γ-PGA biosynthesis genes. In many of those environmental isolates, γ-PGA seems to contribute to robustness and complex morphology of the colony biofilms, suggesting a role of γ-PGA in biofilm formation. Our evidence further shows that in selected B. subtilis strains, γ-PGA also plays a role in root colonization by the bacteria, pinpointing a possible function of γ-PGA in B. subtilis–plant interactions. Finally, we found that several pathways co-regulate both γ-PGA biosynthesis genes and genes for the biofilm matrix in B. subtilis, but in an opposing fashion. We discussed potential biological significance of that. PMID:27891125

  13. Treating Simple Tibia Fractures with Poly-DL-Lactic Acid Screw as a ...

    African Journals Online (AJOL)

    ) absorbable screw as a ... fractures. Keywords: Simple tibia fracture, Fracture healing time Poly-DL-lactic acid, Poly-DL-Lactic Acid, ..... bilateral cortex of the bone due to the weak anti- ... Hu YL, Yuan WQ, Wang LF, Liu HF, Jin D. A prospective.

  14. Bacterial-Derived Polymer Poly-γ-Glutamic Acid (γ-PGA)-Based Micro/Nanoparticles as a Delivery System for Antimicrobials and Other Biomedical Applications

    Science.gov (United States)

    Khalil, Ibrahim R.; Burns, Alan T. H.; Radecka, Iza; Kowalczuk, Marek; Khalaf, Tamara; Adamus, Grazyna; Johnston, Brian; Khechara, Martin P.

    2017-01-01

    In the past decade, poly-γ-glutamic acid (γ-PGA)-based micro/nanoparticles have garnered remarkable attention as antimicrobial agents and for drug delivery, owing to their controlled and sustained-release properties, low toxicity, as well as biocompatibility with tissue and cells. γ-PGA is a naturally occurring biopolymer produced by several gram-positive bacteria that, due to its biodegradable, non-toxic and non-immunogenic properties, has been used successfully in the medical, food and wastewater industries. Moreover, its carboxylic group on the side chains can offer an attachment point to conjugate antimicrobial and various therapeutic agents, or to chemically modify the solubility of the biopolymer. The unique characteristics of γ-PGA have a promising future for medical and pharmaceutical applications. In the present review, the structure, properties and micro/nanoparticle preparation methods of γ-PGA and its derivatives are covered. Also, we have highlighted the impact of micro/nanoencapsulation or immobilisation of antimicrobial agents and various disease-related drugs on biodegradable γ-PGA micro/nanoparticles. PMID:28157175

  15. Effect of poly-α, γ, L-glutamic acid as a capping agent on morphology and oxidative stress-dependent toxicity of silver nanoparticles

    Science.gov (United States)

    Stevanović, Magdalena; Kovačević, Branimir; Petković, Jana; Filipič, Metka; Uskoković, Dragan

    2011-01-01

    Highly stable dispersions of nanosized silver particles were synthesized using a straightforward, cost-effective, and ecofriendly method. Nontoxic glucose was utilized as a reducing agent and poly-α, γ, L-glutamic acid (PGA), a naturally occurring anionic polymer, was used as a capping agent to protect the silver nanoparticles from agglomeration and render them biocompatible. Use of ammonia during synthesis was avoided. Our study clearly demonstrates how the concentration of the capping agent plays a major role in determining the dimensions, morphology, and stability, as well as toxicity of a silver colloidal solution. Hence, proper optimization is necessary to develop silver colloids of narrow size distribution. The samples were characterized by Fourier transform infrared spectroscopy, ultraviolet-visible spectroscopy, field-emission scanning electron microscopy, transmission electron microscopy, and zeta potential measurement. MTT assay results indicated good biocompatibility of the PGA-capped silver nanoparticles. Formation of intracellular reactive oxygen species was measured spectrophotometrically using 2,7-dichlorofluorescein diacetate as a fluorescent probe, and it was shown that the PGA-capped silver nanoparticles did not induce intracellular formation of reactive oxygen species. PMID:22131829

  16. Polaron Hopping in Nano-scale Poly(dA–Poly(dT DNA

    Directory of Open Access Journals (Sweden)

    Singh Mahi

    2010-01-01

    Full Text Available Abstract We investigate the current–voltage relationship and the temperature-dependent conductance of nano-scale samples of poly(dA–poly(dT DNA molecules. A polaron hopping model has been used to calculate the I–V characteristic of nano-scale samples of DNA. This model agrees with the data for current versus voltage at temperatures greater than 100 K. The quantities G 0 , i 0 , and T 1d are determined empirically, and the conductivity is estimated for samples of poly(dA–poly(dT.

  17. 21 CFR 573.500 - Condensed, extracted glutamic acid fermentation product.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Condensed, extracted glutamic acid fermentation product. 573.500 Section 573.500 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND... fermentation product. Condensed, extracted glutamic acid fermentation product may be safely used in animal feed...

  18. 40 CFR 721.3820 - L-Glutamic acid, N-(1-oxododecyl)-, disodium salt.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false L-Glutamic acid, N-(1-oxododecyl... Specific Chemical Substances § 721.3820 L-Glutamic acid, N-(1-oxododecyl)-, disodium salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as L-Glutamic...

  19. Glutamic Acid as Enhancer of Protein Synthesis Kinetics in Hepatocytes from Old Rats.

    Science.gov (United States)

    Brodsky, V Y; Malchenko, L A; Butorina, N N; Lazarev Konchenko, D S; Zvezdina, N D; Dubovaya, T K

    2017-08-01

    Dense cultures of hepatocytes from old rats (~2 years old, body weight 530-610 g) are different from similar cultures of hepatocytes from young rats by the low amplitude of protein synthesis rhythm. Addition of glutamic acid (0.2, 0.4, or 0.6 mg/ml) into the culture medium with hepatocytes of old rats resulted in increase in the oscillation amplitudes of the protein synthesis rhythm to the level of young rats. A similar action of glutamic acid on the protein synthesis kinetics was observed in vivo after feeding old rats with glutamic acid. Inhibition of metabotropic receptors of glutamic acid with α-methyl-4-carboxyphenylglycine (0.01 mg/ml) abolished the effect of glutamic acid. The amplitude of oscillation of the protein synthesis rhythm in a cell population characterizes synchronization of individual oscillations caused by direct cell-cell communications. Hence, glutamic acid, acting as a receptor-dependent transmitter, enhanced direct cell-cell communications of hepatocytes that were decreased with aging. As differentiated from other known membrane signaling factors (gangliosides, norepinephrine, serotonin, dopamine), glutamic acid can penetrate into the brain and thus influence the communications and protein synthesis kinetics that are disturbed with aging not only in hepatocytes, but also in neurons.

  20. Inhibitory mechanism of l-glutamic acid on spawning of the starfish Patiria (Asterina) pectinifera.

    Science.gov (United States)

    Mita, Masatoshi

    2017-03-01

    l-Glutamic acid was previously identified as an inhibitor of spawning in the starfish Patiria (Asterina) pectinifera; this study examined how l-glutamic acid works. Oocyte release from ovaries of P. pectinifera occurred after germinal vesicle breakdown (GVBD) and follicular envelope breakdown (FEBD) when gonads were incubated ex vivo with either relaxin-like gonad-stimulating peptide (RGP) or 1-methyladenine (1-MeAde). l-Glutamic acid blocked this spawning phenotype, causing the mature oocytes to remain within the ovaries. Neither RGP-induced 1-MeAde production in ovarian follicle cells nor 1-MeAde-induced GVBD and FEBD was affected by l-glutamic acid. l-Glutamic acid may act through metabotropic receptors in the ovaries to inhibit spawning, as l-(+)-2-amino-4-phosphonobutyric acid, an agonist for metabotropic glutamate receptors, also inhibited spawning induced by 1-MeAde. Application of acetylcholine (ACH) to ovaries under inhibitory conditions with l-glutamic acid, however, brought about spawning, possibly by inducing contraction of the ovarian wall to discharge mature oocytes from the ovaries concurrently with GVBD and FEBD. Thus, l-glutamic acid may inhibit ACH secretion from gonadal nerve cells in the ovary. Mol. Reprod. Dev. 84: 246-256, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  1. Intramolecular synergistic effect of glutamic acid, cysteine and glycine against copper corrosion in hydrochloric acid solution

    International Nuclear Information System (INIS)

    Zhang Daquan; Xie Bin; Gao Lixin; Cai Qirui; Joo, Hyung Goun; Lee, Kang Yong

    2011-01-01

    The corrosion protection of copper by glutamic acid, cysteine, glycine and their derivative (glutathione) in 0.5 M hydrochloric acid solution has been studied by the electrochemical impedance spectroscopy and cyclic voltammetry. The inhibition efficiency of the organic inhibitors on copper corrosion increases in the order: glutathione > cysteine > cysteine + glutamic acid + glycine > glutamic acid > glycine. Maximum inhibition efficiency for cysteine reaches about 92.9% at 15 mM concentration level. The glutathione can give 96.4% inhibition efficiency at a concentration of 10 mM. The molecular structure parameters were obtained by PM3 (Parametric Method 3) semi-empirical calculation. The intramolecular synergistic effect of glutamic acid, cysteine and glycine moieties in glutathione is attributed to the lower energy of the lowest unoccupied molecular orbital (E LUMO ) level and to the excess hetero-atom adsorption centers and the bigger coverage on the copper surface.

  2. Hair dye-incorporated poly-γ-glutamic acid/glycol chitosan nanoparticles based on ion-complex formation

    Directory of Open Access Journals (Sweden)

    Lee HY

    2011-11-01

    Full Text Available Hye-Young Lee1,*, Young-IL Jeong2,*, Ki-Choon Choi31Anyang Science University, Anyang, Gyeonggi, South Korea; 2Chonnam National University Hwasun Hospital, Jeonnam, South Korea; 3Grassland and Forages Research Center, National Institute of Animal Science, Rural Development Administration, Chungnam, South Korea*These authors contributed equally to this work.Background: p-Phenylenediamine (PDA or its related chemicals are used more extensively than oxidative hair dyes. However, permanent hair dyes such as PDA are known to have potent contact allergy reactions in humans, and severe allergic reactions are problematic.Methods: PDA-incorporated nanoparticles were prepared based on ion-complex formation between the cationic groups of PDA and the anionic groups of poly(γ-glutamic acid (PGA. To reinforce PDA/PGA ion complexes, glycol chitosan (GC was added. PDA-incorporated nanoparticles were characterized using field-emission scanning electron microscopy, Fourier-transform infrared (FT-IR spectroscopy, dynamic light scattering, and powder X-ray diffractometry (XRD.Results: Nanoparticles were formed by ion-complex formation between the amine groups of PDA and the carboxyl groups of PGA. PDA-incorporated nanoparticles are small in size (<100 nm, and morphological observations showed spherical shapes. FT-IR spectra results showed that the carboxylic acid peak of PGA decreased with increasing PDA content, indicating that the ion complexes were formed between the carboxyl groups of PGA and the amine groups of PDA. Furthermore, the intrinsic peak of the carboxyl groups of PGA was also decreased by the addition of GC. Intrinsic crystalline peaks of PDA were observed by XRD. This crystalline peak of PDA was completely nonexistent when nanoparticles were formed by ion complex between PDA, PGA, and GC, indicating that PDA was complexed with PGA and no free drug existed in the formulation. During the drug-release experiment, an initial burst release of PDA was

  3. Development of a novel ultrasensitive enzyme immunoassay for human glutamic acid decarboxylase 65 antibody.

    Science.gov (United States)

    Numata, Satoshi; Katakami, Hideki; Inoue, Shinobu; Sawada, Hirotake; Hashida, Seiichi

    2016-07-01

    We developed a novel, ultrasensitive enzyme immunoassay (immune complex transfer enzyme immunoassay) for determination of glutamic acid decarboxylase autoantibody concentrations in serum samples from patients with type 2 diabetes. We developed an immune complex transfer enzyme immunoassay for glutamic acid decarboxylase autoantibody and measured glutamic acid decarboxylase autoantibody from 22 patients with type 1 diabetes, 29 patients with type 2 diabetes, and 32 healthy controls. A conventional ELISA kit identified 10 patients with type 1 diabetes and one patient with type 2 diabetes as glutamic acid decarboxylase autoantibody positive, whereas 15 patients with type 1 diabetes and six patients with type 2 diabetes were identified as glutamic acid decarboxylase autoantibody positive using immune complex transfer enzyme immunoassay. Immune complex transfer enzyme immunoassay is a highly sensitive and specific assay for glutamic acid decarboxylase autoantibody and might be clinically useful for diabetic onset prediction and early diagnosis. © The Author(s) 2016.

  4. Effect of Green Tea Extract/Poly-γ-Glutamic Acid Complex in Obese Type 2 Diabetic Mice

    Directory of Open Access Journals (Sweden)

    Ki-Cheor Bae

    2013-06-01

    Full Text Available BackgroundThe increasing prevalence of type 2 diabetes mellitus (T2DM is associated with the rapid spread of obesity. Obesity induces insulin resistance, resulting in β-cell dysfunction and thus T2DM. Green tea extract (GTE has been known to prevent obesity and T2DM, but this effect is still being debated. Our previous results suggested that circulating green tea gallated catechins (GCs hinders postprandial blood glucose lowering, regardless of reducing glucose and cholesterol absorption when GCs are present in the intestinal lumen. This study aimed to compare the effect of GTE with that of GTE coadministered with poly-γ-glutamic acid (γ-PGA, which is likely to inhibit the intestinal absorption of GCs.MethodsThe db/db mice and age-matched nondiabetic mice were provided with normal chow diet containing GTE (1%, γ-PGA (0.1%, or GTE+γ-PGA (1%:0.1% for 4 weeks.ResultsIn nondiabetic mice, none of the drugs showed any effects after 4 weeks. In db/db mice, however, weight gain and body fat gain were significantly reduced in the GTE+γ-PGA group compared to nondrug-treated db/db control mice without the corresponding changes in food intake and appetite. Glucose intolerance was also ameliorated in the GTE+γ-PGA group. Histopathological analyses showed that GTE+γ-PGA-treated db/db mice had a significantly reduced incidence of fatty liver and decreased pancreatic islet size. Neither GTE nor γ-PGA treatment showed any significant results.ConclusionThese results suggest that GTE+γ-PGA treatment than GTE or γ-PGA alone may be a useful tool for preventing both obesity and obesity-induced T2DM.

  5. Independent and additive effects of glutamic acid and methionine on yeast longevity.

    Science.gov (United States)

    Wu, Ziyun; Song, Lixia; Liu, Shao Quan; Huang, Dejian

    2013-01-01

    It is established that glucose restriction extends yeast chronological and replicative lifespan, but little is known about the influence of amino acids on yeast lifespan, although some amino acids were reported to delay aging in rodents. Here we show that amino acid composition greatly alters yeast chronological lifespan. We found that non-essential amino acids (to yeast) methionine and glutamic acid had the most significant impact on yeast chronological lifespan extension, restriction of methionine and/or increase of glutamic acid led to longevity that was not the result of low acetic acid production and acidification in aging media. Remarkably, low methionine, high glutamic acid and glucose restriction additively and independently extended yeast lifespan, which could not be further extended by buffering the medium (pH 6.0). Our preliminary findings using yeasts with gene deletion demonstrate that glutamic acid addition, methionine and glucose restriction prompt yeast longevity through distinct mechanisms. This study may help to fill a gap in yeast model for the fast developing view that nutrient balance is a critical factor to extend lifespan.

  6. Bioconversion of sugar cane molasses into glutamic acid by gamma irradiated corynebacterium glutamicum

    International Nuclear Information System (INIS)

    El-Batal, A.I.

    1996-01-01

    Corynebacterium glutamicum (ATCC 13058) was used for glutamic acid production from sugar cane molasses which contain sufficient. The addition of 5 units ml 4 of penicillin G was superior in glutamic acid production (11.5 g L 4 ). Tweens and their saturated fatty acids were effective on the accumulation of glutamic acid in the culture medium and the maximum yield (16.6 g L 4 ) was the addition of 5 mg ml 4 Tween 40. Gamma irradiation prior to Tween-40 treatment of bacterial cells resulted in an obvious increase in glutamic acid production and it was maximum (23.72 g L 4 ) at 0.1 k Gy exposure dose of inocula. 5 tabs

  7. Microscopic picture of the aqueous solvation of glutamic acid

    NARCIS (Netherlands)

    Leenders, E.J.M.; Bolhuis, P.G.; Meijer, E.J.

    2008-01-01

    We present molecular dynamics simulations of glutamic acid and glutamate solvated in water, using both density functional theory (DFT) and the Gromos96 force field. We focus on the microscopic aspects of the solvation−particularly on the hydrogen bond structures and dynamics−and investigate the

  8. Peptidyl prolyl isomerase Pin1-inhibitory activity of D-glutamic and D-aspartic acid derivatives bearing a cyclic aliphatic amine moiety.

    Science.gov (United States)

    Nakagawa, Hidehiko; Seike, Suguru; Sugimoto, Masatoshi; Ieda, Naoya; Kawaguchi, Mitsuyasu; Suzuki, Takayoshi; Miyata, Naoki

    2015-12-01

    Pin1 is a peptidyl prolyl isomerase that specifically catalyzes cis-trans isomerization of phosphorylated Thr/Ser-Pro peptide bonds in substrate proteins and peptides. Pin1 is involved in many important cellular processes, including cancer progression, so it is a potential target of cancer therapy. We designed and synthesized a novel series of Pin1 inhibitors based on a glutamic acid or aspartic acid scaffold bearing an aromatic moiety to provide a hydrophobic surface and a cyclic aliphatic amine moiety with affinity for the proline-binding site of Pin1. Glutamic acid derivatives bearing cycloalkylamino and phenylthiazole groups showed potent Pin1-inhibitory activity comparable with that of known inhibitor VER-1. The results indicate that steric interaction of the cyclic alkyl amine moiety with binding site residues plays a key role in enhancing Pin1-inhibitory activity. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Evaluation of scission and crosslinking yields in γ-irradiated poly(acrylic acid) and poly(methacrylic acid) from weight- and Ζ-average molecular weights determined by sedimentation equilibrium

    International Nuclear Information System (INIS)

    Hill, D.J.T.; O'Donnell, J.H.; Winzor, C.L.; Winzor, D.J.

    1990-01-01

    Weight- and Ζ-average molecular weights, M-bar W (D) and M-bar Ζ (D), of poly(methacrylic acid) (PMMA) and poly(acrylic acid) (PAA) have been determined by sedimentation equilibrium in the ultracentrifuge after various doses D of γ-radiation in vacuum. Relationships between [M i (0)/M i (D)-1]/D and D (i=w or Ζ), derived recently by O'Donnell and coworkers, have been used to determine radiation chemical yields for scission and crosslinking of G(S)=6.0, G(X)=0 for PMAA and G(S)=0, G(X)=0.44 for PAA. Allowance was necessary for the effects of COOH decomposition on the average values of the molecular weight and partial specific volume for irradiated PAA. (author)

  10. Glutamic acid decarboxylase isoform distribution in transgenic mouse septum: an anti-GFP immunofluorescence study.

    Science.gov (United States)

    Verimli, Ural; Sehirli, Umit S

    2016-09-01

    The septum is a basal forebrain region located between the lateral ventricles in rodents. It consists of lateral and medial divisions. Medial septal projections regulate hippocampal theta rhythm whereas lateral septal projections are involved in processes such as affective functions, memory formation, and behavioral responses. Gamma-aminobutyric acidergic neurons of the septal region possess the 65 and 67 isoforms of the enzyme glutamic acid decarboxylase. Although data on the glutamic acid decarboxylase isoform distribution in the septal region generally appears to indicate glutamic acid decarboxylase 67 dominance, different studies have given inconsistent results in this regard. The aim of this study was therefore to obtain information on the distributions of both of these glutamic acid decarboxylase isoforms in the septal region in transgenic mice. Two animal groups of glutamic acid decarboxylase-green fluorescent protein knock-in transgenic mice were utilized in the experiment. Brain sections from the region were taken for anti-green fluorescent protein immunohistochemistry in order to obtain estimated quantitative data on the number of gamma-aminobutyric acidergic neurons. Following the immunohistochemical procedures, the mean numbers of labeled cells in the lateral and medial septal nuclei were obtained for the two isoform groups. Statistical analysis yielded significant results which indicated that the 65 isoform of glutamic acid decarboxylase predominates in both lateral and medial septal nuclei (unpaired two-tailed t-test p glutamic acid decarboxylase isoform 65 in the septal region in glutamic acid decarboxylase-green fluorescent protein transgenic mice.

  11. How strong are strong poly(sulfonic acids)? An example of the poly(2-acrylamido-2-methyl-1-propanesulfonic acid)

    Czech Academy of Sciences Publication Activity Database

    Gospodinova, Natalia; Tomšík, Elena; Omelchenko, Olga

    2016-01-01

    Roč. 74, January (2016), s. 130-135 ISSN 0014-3057 R&D Projects: GA ČR(CZ) GA15-14791S Institutional support: RVO:61389013 Keywords : polyelectrolytes * strong poly(acids) * proton conductors Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.531, year: 2016

  12. 40 CFR 180.1187 - L-glutamic acid; exemption from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false L-glutamic acid; exemption from the... Exemptions From Tolerances § 180.1187 L-glutamic acid; exemption from the requirement of a tolerance. L-glutamic acid is exempt from the requirement of a tolerance on all food commodities when used in accordance...

  13. A novel stereospecific synthesis of 14C labeled 1-glutamic acid

    International Nuclear Information System (INIS)

    Wurz, R.E.; Kepner, R.E.; Webb, A.D.

    1989-01-01

    A stereospecific synthesis of 4- 14 C-1-glutamic acid was completed in five steps from sodium 2- 14 C-acetate. The morpholine derived enamine of ethyl pyruvate was reacted with ethyl 2- 14 C-bromoacetate to give after hydrolysis diethyl 4- 14 C-2-oxoglutarate. The 2-oxoglutarate was reacted with hydroxylamine hydrochloride to give diethyl 4-14C-2-hydroxyiminoglutarate which was then reduced with a LiAlH4, (-)-N-methylephedrine and 3,5-dimethylphenol mixture to give 4- 14 C-1-glutamic acid. The 4- 14 C-1-glutamic acid was used in investigations into the biosynthesis of gamma-lactones in sherries

  14. An NMR-based metabolomic approach to investigate the effects of supplementation with glutamic acid in piglets challenged with deoxynivalenol.

    Science.gov (United States)

    Wu, Miaomiao; Xiao, Hao; Ren, Wenkai; Yin, Jie; Hu, Jiayu; Duan, Jielin; Liu, Gang; Tan, Bie; Xiong, Xia; Oso, Abimbola Oladele; Adeola, Olayiwola; Yao, Kang; Yin, Yulong; Li, Tiejun

    2014-01-01

    Deoxynivalenol (DON) has various toxicological effects in humans and pigs that result from the ingestion of contaminated cereal products. This study was conducted to investigate the protective effects of dietary supplementation with glutamic acid on piglets challenged with DON. A total of 20 piglets weaned at 28 d of age were randomly assigned to receive 1 of 4 treatments (5 piglets/treatment): 1) basal diet, negative control (NC); 2) basal diet +4 mg/kg DON (DON); 3) basal diet +2% (g/g) glutamic acid (GLU); 4) basal diet +4 mg/kg DON +2% glutamic acid (DG). A 7-d adaptation period was followed by 30 days of treatment. A metabolite analysis using nuclear magnetic resonance spectroscopy (1H-NMR)-based metabolomic technology and the determination of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities for plasma, as well as the activity of Caspase-3 and the proliferation of epithelial cells were conducted. The results showed that contents of low-density lipoprotein, alanine, arginine, acetate, glycoprotein, trimethylamine-N-oxide (TMAO), glycine, lactate, and urea, as well as the glutamate/creatinine ratio were higher but high-density lipoprotein, proline, citrate, choline, unsaturated lipids and fumarate were lower in piglets of DON treatment than that of NC treatment (Pglutamic acid increased the plasma concentrations of proline, citrate, creatinine, unsaturated lipids, and fumarate, and decreased the concentrations of alanine, glycoprotein, TMAO, glycine, and lactate, as well as the glutamate/creatinine ratio (Pglutamic acid to DON treatment increased the plasma activities of SOD and GSH-Px and the proliferating cell nuclear antigen (PCNA) labeling indexes for the jejunum and ileum (Pglutamic acid has the potential to repair the injuries associated with oxidative stress as well as the disturbances of energy and amino acid metabolism induced by DON.

  15. Enhanced poly(γ-glutamic acid) production by H2 O2 -induced reactive oxygen species in the fermentation of Bacillus subtilis NX-2.

    Science.gov (United States)

    Tang, Bao; Zhang, Dan; Li, Sha; Xu, Zongqi; Feng, Xiaohai; Xu, Hong

    2016-09-01

    Effects of reactive oxygen species (ROS) on cell growth and poly(γ-glutamic acid) (γ-PGA) synthesis were studied by adding hydrogen peroxide to a medium of Bacillus subtilis NX-2. After optimizing the addition concentration and time of H 2 O 2 , a maximum concentration of 33.9 g/L γ-PGA was obtained by adding 100 µM H 2 O 2 to the medium after 24 H. This concentration was 20.6% higher than that of the control. The addition of diphenyleneiodonium chloride (ROS inhibitor) can interdict the effect of H 2 O 2 -induced ROS. Transcriptional levels of the cofactors and relevant genes were also determined under ROS stress to illustrate the possible metabolic mechanism contributing to the improve γ-PGA production. The transcriptional levels of genes belonging to the tricarboxylic acid cycle and electron transfer chain system were significantly increased by ROS, which decreased the NADH/NAD + ratio and increased the ATP levels, thereby providing more reducing power and energy for γ-PGA biosynthesis. The enhanced γ-PGA synthetic genes also directly promoted the formation of γ-PGA. This study was the first to use the ROS control strategy for γ-PGA fermentation and provided valuable information on the possible mechanism by which ROS regulated γ-PGA biosynthesis in B. subtilis NX-2. © 2015 International Union of Biochemistry and Molecular Biology, Inc.

  16. Glutamic Acid - Amino Acid, Neurotransmitter, and Drug - Is Responsible for Protein Synthesis Rhythm in Hepatocyte Populations in vitro and in vivo.

    Science.gov (United States)

    Brodsky, V Y; Malchenko, L A; Konchenko, D S; Zvezdina, N D; Dubovaya, T K

    2016-08-01

    Primary cultures of rat hepatocytes were studied in serum-free media. Ultradian protein synthesis rhythm was used as a marker of cell synchronization in the population. Addition of glutamic acid (0.2 mg/ml) to the medium of nonsynchronous sparse cultures resulted in detection of a common protein synthesis rhythm, hence in synchronization of the cells. The antagonist of glutamic acid metabotropic receptors MCPG (0.01 mg/ml) added together with glutamic acid abolished the synchronization effect; in sparse cultures, no rhythm was detected. Feeding rats with glutamic acid (30 mg with food) resulted in protein synthesis rhythm in sparse cultures obtained from the rats. After feeding without glutamic acid, linear kinetics of protein synthesis was revealed. Thus, glutamic acid, a component of blood as a non-neural transmitter, can synchronize the activity of hepatocytes and can form common rhythm of protein synthesis in vitro and in vivo. This effect is realized via receptors. Mechanisms of cell-cell communication are discussed on analyzing effects of non-neural functions of neurotransmitters. Glutamic acid is used clinically in humans. Hence, a previously unknown function of this drug is revealed.

  17. Multispectroscopic methods reveal different modes of interaction of anti cancer drug mitoxantrone with Poly(dG-dC).Poly(dG-dC) and Poly(dA-dT).Poly(dA-dT).

    Science.gov (United States)

    Awasthi, Pamita; Dogra, Shilpa; Barthwal, Ritu

    2013-10-05

    The interaction of mitoxantrone with alternating Poly(dG-dC).Poly(dG-dC) and Poly(dA-dT).Poly(dA-dT) duplex has been studied by absorption, fluorescence and Circular Dichroism (CD) spectroscopy at Drug to Phosphate base pair ratios D/P=20.0-0.04. Binding to GC polymer occurs in two distinct modes: partial stacking characterized by red shifts of 18-23nm at D/P=0.2-0.8 and external binding at D/P=1.0-20.0 whereas that to AT polymer occurs externally in the entire range of D/P. The binding constant and number of binding sites is 3.7×10(5)M(-1), 0.3 and 1.3× 10(4)M(-1), 1.5 in GC and AT polymers, respectively at low D/P ratios. CD binding isotherms show breakpoints at D/P=0.1, 0.5 and 0.25, 0.5 in GC and AT polymers, respectively. The intrinsic CD bands indicate that the distortions in GC polymer are significantly higher than that in AT polymer. Docking studies show partial insertion of mitoxantrone rings between to GC base pairs in alternating GC polymer. Side chains of mitoxantrone interact specifically with base pairs and DNA backbone. The studies are relevant to the understanding of suppression or inhibition of DNA cleavage on formation of ternary complex with topoisomerase-II enzyme and hence the anti cancer action. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. The neuroprotective efficacy of cell-penetrating peptides TAT, penetratin, Arg-9, and Pep-1 in glutamic acid, kainic acid, and in vitro ischemia injury models using primary cortical neuronal cultures.

    Science.gov (United States)

    Meloni, Bruno P; Craig, Amanda J; Milech, Nadia; Hopkins, Richard M; Watt, Paul M; Knuckey, Neville W

    2014-03-01

    Cell-penetrating peptides (CPPs) are small peptides (typically 5-25 amino acids), which are used to facilitate the delivery of normally non-permeable cargos such as other peptides, proteins, nucleic acids, or drugs into cells. However, several recent studies have demonstrated that the TAT CPP has neuroprotective properties. Therefore, in this study, we assessed the TAT and three other CPPs (penetratin, Arg-9, Pep-1) for their neuroprotective properties in cortical neuronal cultures following exposure to glutamic acid, kainic acid, or in vitro ischemia (oxygen-glucose deprivation). Arg-9, penetratin, and TAT-D displayed consistent and high level neuroprotective activity in both the glutamic acid (IC50: 0.78, 3.4, 13.9 μM) and kainic acid (IC50: 0.81, 2.0, 6.2 μM) injury models, while Pep-1 was ineffective. The TAT-D isoform displayed similar efficacy to the TAT-L isoform in the glutamic acid model. Interestingly, Arg-9 was the only CPP that displayed efficacy when washed-out prior to glutamic acid exposure. Neuroprotection following in vitro ischemia was more variable with all peptides providing some level of neuroprotection (IC50; Arg-9: 6.0 μM, TAT-D: 7.1 μM, penetratin/Pep-1: >10 μM). The positive control peptides JNKI-1D-TAT (JNK inhibitory peptide) and/or PYC36L-TAT (AP-1 inhibitory peptide) were neuroprotective in all models. Finally, in a post-glutamic acid treatment experiment, Arg-9 was highly effective when added immediately after, and mildly effective when added 15 min post-insult, while the JNKI-1D-TAT control peptide was ineffective when added post-insult. These findings demonstrate that different CPPs have the ability to inhibit neurodamaging events/pathways associated with excitotoxic and ischemic injuries. More importantly, they highlight the need to interpret neuroprotection studies when using CPPs as delivery agents with caution. On a positive note, the cytoprotective properties of CPPs suggests they are ideal carrier molecules to

  19. Displacement of DL-[3H]-2-amino-4-phosphonobutanoic acid ( [3H]APB) binding with methyl-substituted APB analogues and glutamate agonists

    International Nuclear Information System (INIS)

    Robinson, M.B.; Crooks, S.L.; Johnson, R.L.; Koerner, J.F.

    1985-01-01

    The binding of the excitatory amino acid antagonist DL-2-amino-4-phosphonobutanoic acid (DL-APB) to rat brain synaptic plasma membranes was characterized. As determined by Scatchard analysis, the binding was saturable and homogeneous with a Kd = 6.0 microM and Bmax = 380 pmol/mg of protein. The binding was dependent on the presence of Ca 2+ and Cl - ions and was diminished upon freezing. The association rate constant was 6.8 X 10(-3) microM -1 min -1 , and the dissociation rate constant was 2.0 X 10(-2) min -1 . The L isomers of APB, glutamate, and aspartate were more potent as displacers of APB binding than the D isomers. With the exception of kynurenic acid, all compounds examined in both systems were more potent as displacers of APB binding than as inhibitors of synaptic transmission. This difference in potency was most pronounced for agonists at dentate granule cells. L-Glutamate, D-glutamate, and L-glutamate tetrazole were between 140- and 7500-fold more potent as displacers of DL-APB binding than as inhibitors of synaptic transmission. D-2-Amino-5-phosphonopentanoic acid and alpha-methyl-APB were between 10- and 20-fold more potent as displacers of binding

  20. The synthesis and characterization of poly(γ-glutamic acid)-coated magnetite nanoparticles and their effects on antibacterial activity and cytotoxicity

    International Nuclear Information System (INIS)

    Stephen Inbaraj, B; Kao, T H; Tsai, T Y; Chiu, C P; Kumar, R; Chen, B H

    2011-01-01

    Magnetite nanoparticles (MNPs) modified with sodium and calcium salts of poly(γ-glutamic acid) (NaPGA and CaPGA) were synthesized by the coprecipitation method, followed by characterization and evaluation of their antibacterial and cytotoxic effects. Superparamagnetic MNPs are particularly attractive for magnetic driving as well as bacterial biofilm and cell targeting in in vivo applications. Characterization of synthesized MNPs by the Fourier transform infrared spectra and magnetization curves confirmed the PGA coating on MNPs. The mean diameter of NaPGA- and CaPGA-coated MNPs as determined by transmission electron microscopy was 11.8 and 14 nm, respectively, while the x-ray diffraction pattern revealed the as-synthesized MNPs to be pure magnetite. Based on agar dilution assay, both NaPGA- and CaPGA-coated MNPs showed a lower minimum inhibitory concentration in Salmonella enteritidis SE 01 than the commercial antibiotics linezolid and cefaclor, but the former was effective against Escherichia coli ATCC 8739 and Staphylococcus aureus ATCC 10832, whereas the latter was effective against Escherichia coli O157:H7 TWC 01. An in vitro cytotoxicity study in human skin fibroblast cells as measured by MTT assay implied the as-synthesized MNPs to be nontoxic. This outcome demonstrated that both γ-PGA-modified MNPs are cytocompatible and possess antibacterial activity in vitro, and thereby should be useful in in vivo studies for biomedical applications.

  1. The synthesis and characterization of poly({gamma}-glutamic acid)-coated magnetite nanoparticles and their effects on antibacterial activity and cytotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Inbaraj, B; Kao, T H; Tsai, T Y; Chiu, C P; Kumar, R; Chen, B H, E-mail: 002622@mail.fju.edu.tw [Department of Food Science, Fu Jen University, Taipei 242, Taiwan (China)

    2011-02-18

    Magnetite nanoparticles (MNPs) modified with sodium and calcium salts of poly({gamma}-glutamic acid) (NaPGA and CaPGA) were synthesized by the coprecipitation method, followed by characterization and evaluation of their antibacterial and cytotoxic effects. Superparamagnetic MNPs are particularly attractive for magnetic driving as well as bacterial biofilm and cell targeting in in vivo applications. Characterization of synthesized MNPs by the Fourier transform infrared spectra and magnetization curves confirmed the PGA coating on MNPs. The mean diameter of NaPGA- and CaPGA-coated MNPs as determined by transmission electron microscopy was 11.8 and 14 nm, respectively, while the x-ray diffraction pattern revealed the as-synthesized MNPs to be pure magnetite. Based on agar dilution assay, both NaPGA- and CaPGA-coated MNPs showed a lower minimum inhibitory concentration in Salmonella enteritidis SE 01 than the commercial antibiotics linezolid and cefaclor, but the former was effective against Escherichia coli ATCC 8739 and Staphylococcus aureus ATCC 10832, whereas the latter was effective against Escherichia coli O157:H7 TWC 01. An in vitro cytotoxicity study in human skin fibroblast cells as measured by MTT assay implied the as-synthesized MNPs to be nontoxic. This outcome demonstrated that both {gamma}-PGA-modified MNPs are cytocompatible and possess antibacterial activity in vitro, and thereby should be useful in in vivo studies for biomedical applications.

  2. Cooperative adsorption of critical metal ions using archaeal poly-γ-glutamate.

    Science.gov (United States)

    Hakumai, Yuichi; Oike, Shota; Shibata, Yuka; Ashiuchi, Makoto

    2016-06-01

    Antimony, beryllium, chromium, cobalt (Co), gallium (Ga), germanium, indium (In), lithium, niobium, tantalum, the platinoids, the rare-earth elements (including dysprosium, Dy), and tungsten are generally regarded to be critical (rare) metals, and the ions of some of these metals are stabilized in acidic solutions. We examined the adsorption capacities of three water-soluble functional polymers, namely archaeal poly-γ-glutamate (L-PGA), polyacrylate (PAC), and polyvinyl alcohol (PVA), for six valuable metal ions (Co(2+), Ni(2+), Mn(2+), Ga(3+), In(3+), and Dy(3+)). All three polymers showed apparently little or no capacity for divalent cations, whereas L-PGA and PAC showed the potential to adsorb trivalent cations, implying the beneficial valence-dependent selectivity of anionic polyelectrolytes with multiple carboxylates for metal ions. PVA did not adsorb metal ions, indicating that the crucial role played by carboxyl groups in the adsorption of crucial metal ions cannot be replaced by hydroxyl groups under the conditions. In addition, equilibrium studies using the non-ideal competitive adsorption model indicated that the potential for L-PGA to be used for the removal (or collection) of water-soluble critical metal ions (e.g., Ga(3+), In(3+), and Dy(3+)) was far superior to that of any other industrially-versatile PAC materials.

  3. Mimicking the biomolecular control of calcium oxalate monohydrate crystal growth: effect of contiguous glutamic acids.

    Science.gov (United States)

    Grohe, Bernd; Hug, Susanna; Langdon, Aaron; Jalkanen, Jari; Rogers, Kem A; Goldberg, Harvey A; Karttunen, Mikko; Hunter, Graeme K

    2012-08-21

    Scanning confocal interference microscopy (SCIM) and molecular dynamics (MD) simulations were used to investigate the adsorption of the synthetic polypeptide poly(l-glutamic acid) (poly-glu) to calcium oxalate monohydrate (COM) crystals and its effect on COM formation. At low concentrations (1 μg/mL), poly-glu inhibits growth most effectively in ⟨001⟩ directions, indicating strong interactions of the polypeptide with {121} crystal faces. Growth in directions was inhibited only marginally by 1 μg/mL poly-glu, while growth in directions did not appear to be affected. This suggests that, at low concentrations, poly-glu inhibits lattice-ion addition to the faces of COM in the order {121} > {010} ≥ {100}. At high concentrations (6 μg/mL), poly-glu resulted in the formation of dumbbell-shaped crystals featuring concave troughs on the {100} faces. The effects on crystal growth indicate that, at high concentrations, poly-glu interacts with the faces of COM in the order {100} > {121} > {010}. This mirrors MD simulations, which predicted that poly-glu will adsorb to a {100} terrace plane (most calcium-rich) in preference to a {121} (oblique) riser plane but will adsorb to {121} riser plane in preference to an {010} terrace plane (least calcium-rich). The effects of different poly-glu concentration on COM growth (1-6 μg/mL) may be due to variations between the faces in terms of growth mechanism and/or (nano)roughness, which can affect surface energy. In addition, 1 μg/mL might not be adequate to reach the critical concentration for poly-glu to significantly pin step movement on {100} and {010} faces. Understanding the mechanisms involved in these processes is essential for the development of agents to reduce recurrence of kidney stone disease.

  4. Theoretical study on keto-enol tautomerisation of glutarimide for exploration of the isomerisation reaction pathway of glutamic acid in proteins using density functional theory

    Science.gov (United States)

    Fukuyoshi, Shuichi; Nakayoshi, Tomoki; Takahashi, Ohgi; Oda, Akifumi

    2017-03-01

    In order to elucidate the reason why glutamic acid residues have lesser racemisation reactivity than asparaginic acid, we investigated the racemisation energy barrier of piperidinedione, which is the presumed intermediate of the isomerisation reaction of L-Glu to D-Glu, by density functional theory calculations. In two-water-molecule-assisted racemisation, the activation barrier for keto-enol isomerisation was 28.1 kcal/mol. The result showed that the activation barrier for the racemisation of glutamic acid residues was not different from that for the racemisation of aspartic acid residues. Thus, glutamic acid residues can possibly cause the racemisation reaction if the cyclic intermediate stably exists.

  5. Development of new force sensor using super-multilayer alternating laminated film comprising piezoelectric poly(l-lactic acid) and poly(d-lactic acid) films in the shape of a rectangle with round corners

    Science.gov (United States)

    Tajitsu, Yoshiro; Adachi, Yu; Nakatsuji, Takahiro; Tamura, Masataka; Sakamoto, Kousei; Tone, Takaaki; Imoto, Kenji; Kato, Atsuko; Yoshida, Testuo

    2017-10-01

    A new super-multilayer alternating laminated film in the shape of a rectangle with round corners has been developed. The super-multilayer film, which comprised piezoelectric poly(l-lactic acid) (PLLA) and poly(d-lactic acid) (PDLA) films, was wound with the number of turns on the order of from 100 to 1000 to form piezoelectric rolls. These piezoelectric rolls could generate an induced voltage of more than 95% of the initial voltage for over 10 s when a constant load was applied. The desired duration and magnitude of the piezoelectric response voltage were realized by adjusting the number of turns of the piezoelectric rolls. Similarly to many other conventional piezoelectrics, the piezoelectric rolls enable instantaneous load-dependent voltage generation and attenuation. The piezoelectric rolls are also lighter than conventional piezoelectric ceramics and can be used as a novel pressure sensor.

  6. Baseline dietary glutamic acid intake and the risk of colorectal cancer: The Rotterdam study.

    Science.gov (United States)

    Viana Veloso, Gilson G; Franco, Oscar H; Ruiter, Rikje; de Keyser, Catherina E; Hofman, Albert; Stricker, Bruno C; Kiefte-de Jong, Jessica C

    2016-03-15

    Animal studies have shown that glutamine supplementation may decrease colon carcinogenesis, but any relation with glutamine or its precursors has not been studied in humans. The primary aim of this study was to assess whether dietary glutamic acid intake was associated with colorectal cancer (CRC) risk in community-dwelling adults. A secondary aim was to evaluate whether the association could be modified by the body mass index (BMI). This study was embedded in the Rotterdam study, which included a prospective cohort from 1990 onward that consisted of 5362 subjects who were 55 years old or older and were free of CRC at the baseline. Glutamic acid was calculated as a percentage of the total protein intake with a validated food frequency questionnaire at the baseline. Incident cases of CRC were pathology-based. During follow-up, 242 subjects developed CRC. Baseline dietary glutamic acid intake was significantly associated with a lower risk of developing CRC (hazard ratio [HR] per percent increase in glutamic acid of protein, 0.78; 95% confidence interval [CI], 0.62-0.99). After stratification for BMI, the risk reduction for CRC by dietary glutamic acid was 42% for participants with a BMI ≤ 25 kg/m(2) (HR per percent increase in glutamic acid of protein, 0.58; 95% CI, 0.40-0.85), whereas no association was found in participants with a BMI > 25 kg/m(2) (HR per percent increase in glutamic acid of protein, 0.97; 95% CI, 0.73-1.31). Our data suggest that baseline dietary glutamic acid intake is associated with a lower risk of developing CRC, but this association may be mainly present in nonoverweight subjects. © 2015 American Cancer Society.

  7. Anti-herpes simplex virus 1 and immunomodulatory activities of a poly-γ- glutamic acid from Bacillus horneckiae strain APA of shallow vent origin.

    Science.gov (United States)

    Marino-Merlo, Francesca; Papaianni, Emanuela; Maugeri, Teresa L; Zammuto, Vincenzo; Spanò, Antonio; Nicolaus, Barbara; Poli, Annarita; Di Donato, Paola; Mosca, Claudia; Mastino, Antonio; Gugliandolo, Concetta

    2017-10-01

    Herpes simplex virus type 1 (HSV-1) is responsible of common and widespread viral infections in humans through the world, and of rare, but extremely severe, clinical syndromes in the central nervous system. The emergence of resistant strains to drugs actually in use encourages the searching for novel antiviral compounds, including those of natural origin. In this study, the recently described poly-γ-glutamic acid (γ-PGA-APA), produced by the marine thermotolerant Bacillus horneckiae strain APA, and previously shown to possess biological and antiviral activity, was evaluated for its anti-HSV-1 and immunomodulatory properties. The biopolymer hindered the HSV-1 infection in the very early phase of virus replication. In addition, the γ-PGA-APA was shown to exert low cytotoxicity and noticeable immunomodulatory activities towards TNF-α and IL-1β gene expression. Moreover, the capacity to positively modulate the transcriptional activity of the cytokine genes was paired with increased level of activation of the transcription factor NF-kB by γ-PGA-APA. Overall, as non-cytotoxic biopolymer able to contribute in the antiviral defense against HSV-1, γ-PGA-APA could lead to the development of novel natural drugs for alternative therapies.

  8. [A Multi-arm Placebo-controlled Study with Glutamic Acid Conducted in Rostock in 1953/1954].

    Science.gov (United States)

    Häßler, Frank; Weirich, Steffen

    2017-09-01

    A Multi-arm Placebo-controlled Study with Glutamic Acid Conducted in Rostock in 1953/1954 Glutamic acid was commonly used in the treatment of intellectually disabled children in the 50s. Koch reported first results of an observation of 140 children treated with glutamic acid in 1952. In this line is the multi-arm placebo-controlled study reported here. The original study protocols were available. 58 children with speech problems who attending a school of special needs received glutamic acid, or vitamin B, or St.-John's-wort. The effect of glutamic acid was in few cases an improvement of attention. On the other hand restlessness and stutter increased. The majority of all reported a weight loss. The treatment with vitamin B showed a positive effect concerning concentration. The treatment with St.-John's wort was stopped caused by headache and vomiting in eight of nine cases. The results of the study reported here are unpublished. The reason may be that until the 60s the effects of glutamic acid in the treatment of intellectually disabled children were in generally overestimated.

  9. From honeycomb- to microsphere-patterned surfaces of poly(lactic acid) and a starch-poly(lactic acid) blend via the breath figure method.

    Science.gov (United States)

    Duarte, Ana Rita C; Maniglio, Devid; Sousa, Nuno; Mano, João F; Reis, Rui L; Migliaresi, Claudio

    2017-01-26

    This study investigated the preparation of ordered patterned surfaces and/or microspheres from a natural-based polymer, using the breath figure and reverse breath figure methods. Poly(D,L-lactic acid) and starch poly(lactic acid) solutions were precipitated in different conditions - namely, polymer concentration, vapor atmosphere temperature and substrate - to evaluate the effect of these conditions on the morphology of the precipitates obtained. The possibility of fine-tuning the properties of the final patterns simply by changing the vapor atmosphere was also demonstrated here using a range of compositions of the vapor phase. Porous films or discrete particles are formed when the differences in surface tension determine the ability of polymer solution to surround water droplets or methanol to surround polymer droplets, respectively. In vitro cytotoxicity was assessed applying a simple standard protocol to evaluate the possibility to use these materials in biomedical applications. Moreover, fluorescent microscopy images showed a good interaction of cells with the material, which were able to adhere on the patterned surfaces after 24 hours in culture. The development of patterned surfaces using the breath figure method was tested in this work for the preparation of both poly(lactic acid) and a blend containing starch and poly(lactic acid). The potential of these films to be used in the biomedical area was confirmed by a preliminary cytotoxicity test and by morphological observation of cell adhesion.

  10. Titanium dioxide (TiO2) nanoparticles filled poly(d,l lactid acid) (PDLLA) matrix composites for bone tissue engineering

    NARCIS (Netherlands)

    Gerhardt, L.C.; Jell, G.M.R.; Boccaccini, A.R.

    2007-01-01

    Titanium dioxide (TiO2) nanoparticles were investigated for bone tissue engineering applications with regard to bioactivity and particle cytotoxicity. Composite films on the basis of poly(d,l lactid acid) (PDLLA) filled with 0, 5 and 30 wt% TiO2 nanoparticles were processed by solvent casting.

  11. Development of cytomegalovirus (CMV) disease may be predicted in HIV-infected patients by CMV polymerase chain reaction and the antigenemia test

    DEFF Research Database (Denmark)

    Dodt, K K; Jacobsen, P H; Hofmann, B

    1997-01-01

    ; OR: CMV PCR 10.0, antigenemia test 4.4 and CMV cultures 4.3. No clinical parameters had any significant predictive value in the stepwise multivariate model. CONCLUSIONS: The CMV PCR and the CMV antigenemia tests are both sensitive methods that may predict development of CMV disease up to several...... evaluated PCR and the antigenemia tests as methods for early detection of CMV disease. METHODS: Two-hundred HIV-seropositive subjects with CD4 T-cell counts below 100 x 10(6)/l were monitored with CMV polymerase chain reaction (PCR), the antigenemia test, blood cultures and CMV immunoglobulin (Ig) G and Ig...... showed that the CMV PCR, the antigenemia test and blood cultures all had significant predictive values for subsequent development of CMV disease with odds ratios (OR) of 30, 22 and 20. CMV serology had no predictive value. Multivariate analysis showed that the PCR method was superior to the other tests...

  12. Lysine and Glutamic Acids as the End Products of Multi-response of Optimized Fermented Medium by Mucor mucedo KP736529.

    Science.gov (United States)

    El-Hersh, Mohammed S; Saber, WesamEldin I A; El-Fadaly, Husain A; Mahmoud, Mohammed K

    Amino acids are important for living organisms, they acting as crucial for metabolic activities and energy generation, wherein the deficiency in these amino acids cause various physiological defects. The aim of this study is to investigate the effect of some nutritional factors on the amino acids production by Mucor mucedo KP736529 during fermentation intervals. Mucor mucedo KP736529 was selected according to proteolytic activity. Corn steep liquor and olive cake were used in the fermented medium during Placket-Burman and central composite design to maximize the production of lysine and glutamic acids. During the screening by Plackett-Burman design, olive cake and Corn Steep Liquor (CSL) had potential importance for the higher production of amino acids. The individual fractionation of total amino acids showed both lysine and glutamic as the major amino acids associated with the fermentation process. Moreover, the Central Composite Design (CCD) has been adopted to explain the interaction between olive cake and CSL on the production of lysine and glutamic acids. The model recorded significant F-value, with high values of R 2, adjusted R 2 and predicted R 2 for both lysine and glutamic, indicating the validity of the data. Solving equation for maximum production of lysine recorded theoretical levels of olive cake and CSL, being 2.58 and 1.83 g L -1, respectively, with predicting value of lysine at 1.470 μg mL -1, whereas the predicting value of glutamic acid reached 0.805 mg mL -1 at levels of 2.49 and 1.93 g L -1 from olive cake and CSL, respectively. The desirability function (D) showed the actual responses being 1.473±0.009 and 0.801±0.004 μg mL -1 for lysine and glutamic acids, respectively. The model showed adequate validity to be applied in a large-scale production of both lysine and glutamic acids.

  13. Transplantation of Nogo-66 receptor gene-silenced cells in a poly(D,L-lactic-co-glycolic acid) scaffold for the treatment of spinal cord injury★

    Science.gov (United States)

    Wang, Dong; Fan, Yuhong; Zhang, Jianjun

    2013-01-01

    Inhibition of neurite growth, which is in large part mediated by the Nogo-66 receptor, affects neural regeneration following bone marrow mesenchymal stem cell transplantation. The tissue engineering scaffold poly(D,L-lactide-co-glycolic acid) has good histocompatibility and can promote the growth of regenerating nerve fibers. The present study used small interfering RNA to silence Nogo-66 receptor gene expression in bone marrow mesenchymal stem cells and Schwann cells, which were subsequently transplanted with poly(D,L-lactide-co-glycolic acid) into the spinal cord lesion regions in rats. Simultaneously, rats treated with scaffold only were taken as the control group. Hematoxylin-eosin staining and immunohistochemistry revealed that at 4 weeks after transplantation, rats had good motor function of the hind limb after treatment with Nogo-66 receptor gene-silenced cells plus the poly(D,L-lactide-co-glycolic acid) scaffold compared with rats treated with scaffold only, and the number of bone marrow mesenchymal stem cells and neuron-like cells was also increased. At 8 weeks after transplantation, horseradish peroxidase tracing and transmission electron microscopy showed a large number of unmyelinated and myelinated nerve fibers, as well as intact regenerating axonal myelin sheath following spinal cord hemisection injury. These experimental findings indicate that transplantation of Nogo-66 receptor gene-silenced bone marrow mesenchymal stem cells and Schwann cells plus a poly(D,L-lactide-co-glycolic acid) scaffold can significantly enhance axonal regeneration of spinal cord neurons and improve motor function of the extremities in rats following spinal cord injury. PMID:25206713

  14. Effect of halloysite nanotubes on the thermal degradation behaviour of poly(.epsilon.-caprolactone)/poly(lactic acid) microfibrillar composites

    Czech Academy of Sciences Publication Activity Database

    Luyt, A. S.; Kelnar, Ivan

    2017-01-01

    Roč. 60, July (2017), s. 166-172 ISSN 0142-9418 R&D Projects: GA ČR(CZ) GA13-15255S Institutional support: RVO:61389013 Keywords : poly(lactic acid) * poly(epsilon-caprolactone) * halloysite nanotubes Subject RIV: JI - Composite Materials OBOR OECD: Composites (including laminates, reinforced plastics, cermets, combined natural and synthetic fibre fabrics Impact factor: 2.464, year: 2016

  15. 2-D DIGE proteomic profiles of three strains of Fusarium graminearum grown in agmatine or glutamic acid medium

    Directory of Open Access Journals (Sweden)

    Tommaso Serchi

    2016-03-01

    Full Text Available 2D DIGE proteomics data obtained from three strains belonging to Fusarium graminearum s.s. species growing in a glutamic acid or agmatine containing medium are provided.A total of 381 protein species have been identified which do differ for abundance among the two treatments and among the strains (ANOVA±1.3.Data on the diversity of protein species profiles between the two media for each strain are made available. Shared profiles among strains are discussed in Pasquali et al. [1].Here proteins that with diverse profile can be used to differentiate strains are highlighted. The full dataset allow to obtaining single strain proteomic profiles. Keywords: Comparative strain proteomics, Toxigenic fungi, Polyamines, Trichothecenes, Strain variability

  16. Synthesis and pharmacological evaluation of conformationally constrained glutamic acid higher homologues

    DEFF Research Database (Denmark)

    Tamborini, Lucia; Cullia, Gregorio; Nielsen, Birgitte

    2016-01-01

    Homologation of glutamic acid chain together with conformational constraint is a commonly used strategy to achieve selectivity towards different types of glutamate receptors. In the present work, starting from two potent and selective unnatural amino acids previously developed by us, we...... investigated the effects on the activity/selectivity profile produced by a further increase in the distance between the amino acidic moiety and the distal carboxylate group. Interestingly, the insertion of an aromatic ring as a spacer produced a low micromolar affinity NMDA ligand that might represent a lead...

  17. Synthesis of Biobased Succinonitrile from Glutamic Acid and Glutamine

    NARCIS (Netherlands)

    Lammens, T.M.; Nôtre, Le J.; Franssen, M.C.R.; Scott, E.L.; Sanders, J.P.M.

    2011-01-01

    Succinonitrile is the precursor of 1,4-diaminobutane, which is used for the industrial production of polyamides. This paper describes the synthesis of biobased succinonitrile from glutamic acid and glutamine, amino acids that are abundantly present in many plant proteins. Synthesis of the

  18. Techno-economic assessment of the production of bio-based chemicals from glutamic acid

    NARCIS (Netherlands)

    Lammens, T.M.; Gangarapu, S.; Franssen, M.C.R.; Scott, E.L.; Sanders, J.P.M.

    2012-01-01

    In this review, possible process steps for the production of bio-based industrial chemicals from glutamic acid are described, including a techno-economic assessment of all processes. The products under investigation were those that were shown to be synthesized from glutamic acid on lab-scale, namely

  19. Contribution of glutamate decarboxylase in Lactobacillus reuteri to acid resistance and persistence in sourdough fermentation.

    Science.gov (United States)

    Su, Marcia S; Schlicht, Sabine; Gänzle, Michael G

    2011-08-30

    Acid stress impacts the persistence of lactobacilli in industrial sourdough fermentations, and in intestinal ecosystems. However, the contribution of glutamate to acid resistance in lactobacilli has not been demonstrated experimentally, and evidence for the contribution of acid resistance to the competitiveness of lactobacilli in sourdough is lacking. It was therefore the aim of this study to investigate the ecological role of glutamate decarboxylase in L. reuteri. A gene coding for a putative glutamate decarboxylase, gadB, was identified in the genome of L. reuteri 100-23. Different from the organization of genetic loci coding for glutamate decarboxylase in other lactic acid bacteria, gadB was located adjacent to a putative glutaminase gene, gls3. An isogenic deletion mutant, L. reuteri ∆gadB, was generated by a double crossover method. L. reuteri 100-23 but not L. reuteri ∆gadB converted glutamate to γ-aminobutyrate (GABA) in phosphate butter (pH 2.5). In sourdough, both strains converted glutamine to glutamate but only L. reuteri 100-23 accumulated GABA. Glutamate addition to phosphate buffer, pH 2.5, improved survival of L. reuteri 100-23 100-fold. However, survival of L. reuteri ∆gadB remained essentially unchanged. The disruption of gadB did not affect growth of L. reuteri in mMRS or in sourdough. However, the wild type strain L. reuteri 100-23 displaced L. reuteri ∆gadB after 5 cycles of fermentation in back-slopped sourdough fermentations. The conversion of glutamate to GABA by L. reuteri 100-23 contributes to acid resistance and to competitiveness in industrial sourdough fermentations. The organization of the gene cluster for glutamate conversion, and the availability of amino acids in cereals imply that glutamine rather than glutamate functions as the substrate for GABA formation. The exceptional coupling of glutamine deamidation to glutamate decarboxylation in L. reuteri likely reflects adaptation to cereal substrates.

  20. Synthesis, binding affinity at glutamic acid receptors, neuroprotective effects, and molecular modeling investigation of novel dihydroisoxazole amino acids

    DEFF Research Database (Denmark)

    Conti, Paola; De Amici, Marco; Grazioso, Giovanni

    2005-01-01

    stereoisomers of the bicyclic analogue 5-amino-4,5,6,6a-tetrahydro-3aH-cyclopenta[d]isoxazole-3,5-dicarboxylic acid (+)-2, (-)-2, (+)-3, and (-)-3 were tested at ionotropic and metabotropic glutamate receptor subtypes. The most potent NMDA receptor antagonists [(+)-2, (-)-4, and (+)-5] showed a significant......The four stereoisomers of 5-(2-amino-2-carboxyethyl)-4,5-dihydroisoxazole-3-carboxylic acid(+)-4, (-)-4, (+)-5, and (-)-5 were prepared by stereoselective synthesis of two pairs of enantiomers, which were subsequently resolved by enzymatic procedures. These four stereoisomers and the four...

  1. The microbe-secreted isopeptide poly-γ-glutamic acid induces stress tolerance in Brassica napus L. seedlings by activating crosstalk between H2O2 and Ca2+

    Science.gov (United States)

    Lei, Peng; Pang, Xiao; Feng, Xiaohai; Li, Sha; Chi, Bo; Wang, Rui; Xu, Zongqi; Xu, Hong

    2017-01-01

    Poly-γ-glutamic acid (γ-PGA) is a microbe-secreted isopeptide that has been shown to promote growth and enhance stress tolerance in crops. However, its site of action and downstream signaling pathways are still unknown. In this study, we investigated γ-PGA-induced tolerance to salt and cold stresses in Brassica napus L. seedlings. Fluorescent labeling of γ-PGA was used to locate the site of its activity in root protoplasts. The relationship between γ-PGA-induced stress tolerance and two signal molecules, H2O2 and Ca2+, as well as the γ-PGA-elicited signaling pathway at the whole plant level, were explored. Fluorescent labeling showed that γ-PGA did not enter the cytoplasm but instead attached to the surface of root protoplasm. Here, it triggered a burst of H2O2 in roots by enhancing the transcription of RbohD and RbohF, and the elicited H2O2 further activated an influx of Ca2+ into root cells. Ca2+ signaling was transmitted via the stem from roots to leaves, where it elicited a fresh burst of H2O2, thus promoting plant growth and enhancing stress tolerance. On the basis of these observation, we propose that γ-PGA mediates stress tolerance in Brassica napus seedlings by activating an H2O2 burst and subsequent crosstalk between H2O2 and Ca2+ signaling. PMID:28198821

  2. Evaluation of glutamic acid and glycine as sources of nonessential amino acids for lake trout (Salvelinus namaycush) and rainbow trout (Salmo gairdnerii)

    Science.gov (United States)

    Hughes, S.G.

    1985-01-01

    1. A semi-purified test diet which contained either glutamic acid or glycine as the major source of nonessential amino acids (NEAA) was fed to lake and rainbow trout.2. Trout fed the diet containing glutamic acid consistently showed better growth and feed conversion efficiencies than those fed the diets containing glycine.3. The data indicate that these trout utilize glutamic acid more efficiently than glycine when no other major sources of NEAA are present.

  3. Conformational analysis of glutamic acid: a density functional approach using implicit continuum solvent model.

    Science.gov (United States)

    Turan, Başak; Selçuki, Cenk

    2014-09-01

    Amino acids are constituents of proteins and enzymes which take part almost in all metabolic reactions. Glutamic acid, with an ability to form a negatively charged side chain, plays a major role in intra and intermolecular interactions of proteins, peptides, and enzymes. An exhaustive conformational analysis has been performed for all eight possible forms at B3LYP/cc-pVTZ level. All possible neutral, zwitterionic, protonated, and deprotonated forms of glutamic acid structures have been investigated in solution by using polarizable continuum model mimicking water as the solvent. Nine families based on the dihedral angles have been classified for eight glutamic acid forms. The electrostatic effects included in the solvent model usually stabilize the charged forms more. However, the stability of the zwitterionic form has been underestimated due to the lack of hydrogen bonding between the solute and solvent; therefore, it is observed that compact neutral glutamic acid structures are more stable in solution than they are in vacuum. Our calculations have shown that among all eight possible forms, some are not stable in solution and are immediately converted to other more stable forms. Comparison of isoelectronic glutamic acid forms indicated that one of the structures among possible zwitterionic and anionic forms may dominate over the other possible forms. Additional investigations using explicit solvent models are necessary to determine the stability of charged forms of glutamic acid in solution as our results clearly indicate that hydrogen bonding and its type have a major role in the structure and energy of conformers.

  4. Mutations of the Corynebacterium glutamicum NCgl1221 Gene, Encoding a Mechanosensitive Channel Homolog, Induce l-Glutamic Acid Production▿

    OpenAIRE

    Nakamura, Jun; Hirano, Seiko; Ito, Hisao; Wachi, Masaaki

    2007-01-01

    Corynebacterium glutamicum is a biotin auxotroph that secretes l-glutamic acid in response to biotin limitation; this process is employed in industrial l-glutamic acid production. Fatty acid ester surfactants and penicillin also induce l-glutamic acid secretion, even in the presence of biotin. However, the mechanism of l-glutamic acid secretion remains unclear. It was recently reported that disruption of odhA, encoding a subunit of the 2-oxoglutarate dehydrogenase complex, resulted in l-gluta...

  5. Photothermal-modulated drug delivery and magnetic relaxation based on collagen/poly(γ-glutamic acid hydrogel

    Directory of Open Access Journals (Sweden)

    Cho SH

    2017-03-01

    Full Text Available Sun-Hee Cho,1,* Ahreum Kim,1,* Woojung Shin,2 Min Beom Heo,1 Hyun Jong Noh,1 Kwan Soo Hong,3,4 Jee-Hyun Cho,3,4 Yong Taik Lim1,2 1SKKU Advanced Institute of Nanotechnology (SAINT, 2School of Chemical Engineering, Sungkyunkwan University, Suwon, 3Bioimaging Research Team, Korea Basic Science Institute, Cheongju, 4Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea *These authors contributed equally to this work Abstract: Injectable and stimuli-responsive hydrogels have attracted attention in molecular imaging and drug delivery because encapsulated diagnostic or therapeutic components in the hydrogel can be used to image or change the microenvironment of the injection site by controlling various stimuli such as enzymes, temperature, pH, and photonic energy. In this study, we developed a novel injectable and photoresponsive composite hydrogel composed of anticancer drugs, imaging contrast agents, bio-derived collagen, and multifaceted anionic polypeptide, poly (γ-glutamic acid (γ-PGA. By the introduction of γ-PGA, the intrinsic temperature-dependent phase transition behavior of collagen was modified to a low viscous sol state at room temperature and nonflowing gel state around body temperature. The modified temperature-dependent phase transition behavior of collagen/γ-PGA hydrogels was also evaluated after loading of near-infrared (NIR fluorophore, indocyanine green (ICG, which could transform absorbed NIR photonic energy into thermal energy. By taking advantage of the abundant carboxylate groups in γ-PGA, cationic-charged doxorubicin (Dox and hydrophobic MnFe2O4 magnetic nanoparticles were also incorporated successfully into the collagen/γ-PGA hydrogels. By illumination of NIR light on the collagen/γ-PGA/Dox/ICG/MnFe2O4 hydrogels, the release kinetics of Dox and magnetic relaxation of MnFe2O4 nanoparticles could be modulated. The experimental results suggest that

  6. Poly(alkylene oxide) Copolymers for Nucleic Acid Delivery

    Science.gov (United States)

    2012-07-17

    Poly(alkylene oxide) Copolymers for Nucleic Acid Delivery Swati Mishra1,#, Lavanya Y. Peddada1,#, David I. Devore3,4, and Charles M. Roth1,2...Neil Raju for assistance with figures. Biographies Swati Mishra received her Ph.D. in Biomedical Engineering and Biotechnology from the University of...Kleiman N, Anderson RD, Gottlieb D, Karlsberg R, Snell J, Rocha- Singh K. Results from a phase II multicenter, double-blind placebo-controlled study of Del

  7. Plasma surface modification of poly (L-lactic acid) and poly (lactic-co-glycolic acid) films for improvement of nerve cells adhesion

    International Nuclear Information System (INIS)

    Khorasani, M.T.; Mirzadeh, H.; Irani, S.

    2008-01-01

    Radio frequency (RF) plasma treatment in O 2 was applied to modify the surface of poly (L-lactic acid) (PLLA) and poly (D,L-lactic acid-coglycolic acid) (PLGA) as biodegradable polymers. The surface structure, morphology, wettability and surface chemistry of treated films were characterized by water drop contact angle measurement, scanning electron microscope (SEM), optical invert microscope, differential scanning calorimetry (DSC) and ATIR-FTIR spectroscopy. The cell affinity of the oxygen plasma treated film was evaluated by nervous tissue B65 cell culture in stationary conditions. The results showed that the hydrophilicity increased greatly after O 2 plasma treatment. The results showed that improved cell adhesion was attributed to the combination of surface chemistry and surface wettability during plasma treatment. Cell culture results showed that B65 nervous cell attachment and growth on the plasma treated PLLA was much higher than an unmodified sample and PLGA. Surface hydrophilicity and chemical functional groups with high polar component play an important role in enhancing cell attachment and growth

  8. Poly(dopamine) coating of 3D printed poly(lactic acid) scaffolds for bone tissue engineering.

    Science.gov (United States)

    Kao, Chia-Tze; Lin, Chi-Chang; Chen, Yi-Wen; Yeh, Chia-Hung; Fang, Hsin-Yuan; Shie, Ming-You

    2015-11-01

    3D printing is a versatile technique to generate large quantities of a wide variety of shapes and sizes of polymer. The aim of this study is to develop functionalized 3D printed poly(lactic acid) (PLA) scaffolds and use a mussel-inspired surface coating to regulate cell adhesion, proliferation and differentiation of human adipose-derived stem cells (hADSCs). We prepared PLA 3D scaffolds coated with polydopamine (PDA). The chemical composition and surface properties of PDA/PLA were characterized by XPS. PDA/PLA modulated hADSCs' responses in several ways. Firstly, adhesion and proliferation, and cell cycle of hADSCs cultured on PDA/PLA were significantly enhanced relative to those on PLA. In addition, the collagen I secreted from cells was increased and promoted cell attachment and cell cycle progression were depended on the PDA content. In osteogenesis assay, the ALP activity and osteocalcin of hADSCs cultured on PDA/PLA were significantly higher than seen in those cultured on pure PLA scaffolds. Moreover, hADSCs cultured on PDA/PLA showed up-regulation of the ang-1 and vWF proteins associated with angiogenic differentiation. Our results demonstrate that the bio-inspired coating synthetic PLA polymer can be used as a simple technique to render the surfaces of synthetic scaffolds active, thus enabling them to direct the specific responses of hADSCs. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Synthesis, characterization, and biological evaluation of poly(L-γ-glutamyl-glutamine-paclitaxel nanoconjugate

    Directory of Open Access Journals (Sweden)

    Sang Van

    2010-10-01

    Full Text Available Sang Van1, Sanjib K Das1, Xinghe Wang1, Zhongling Feng1, Yi Jin1, Zheng Hou1, Fu Chen1, Annie Pham1, Nan Jiang1, Stephen B Howell2, Lei Yu11Nitto Denko Technical Corporation, Oceanside, CA, USA; 2Moores Cancer Center, University of California, La Jolla, San Diego, CA, USAAbstract: The purpose of this study was to develop a novel, highly water-soluble poly(L-γ-glutamyl-glutamine-paclitaxel nanoconjugate (PGG-PTX that would improve the therapeutic index of paclitaxel (PTX. PGG-PTX is a modification of poly(L-glutamic acid-paclitaxel conjugate (PGA-PTX in which an additional glutamic acid has been added to each glutamic side chain in the polymer. PGG-PTX has higher water-solubility and faster dissolution than PGA-PTX. Unlike PGA-PTX, PGG-PTX self-assembles into nanoparticles, whose size remains in the range of 12–15 nm over the concentration range from 25 to 2,000 µg/mL in saline. Its critical micellar concentration in saline was found to be ~25 µg/mL. The potency of PGG-PTX when tested in vitro against the human lung cancer H460 cell line was comparable to other known polymer-PTX conjugates. However, PGG-PTX possesses lower toxicity compared with PGA-PTX in mice. The maximum tolerated dose of PGG-PTX was found to be 350 mg PTX/kg, which is 2.2-fold higher than the maximum tolerated dose of 160 mg PTX/kg reported for the PGA-PTX. This result indicates that PGG-PTX was substantially less toxic in vivo than PGA-PTX.Keywords: nanoconjugates, poly(L-glutamic acid, poly(L-γ-glutamyl-glutamine-paclitaxel, nanoparticles, anticancer

  10. Glutamic acid promotes monacolin K production and monacolin K biosynthetic gene cluster expression in Monascus.

    Science.gov (United States)

    Zhang, Chan; Liang, Jian; Yang, Le; Chai, Shiyuan; Zhang, Chenxi; Sun, Baoguo; Wang, Chengtao

    2017-12-01

    This study investigated the effects of glutamic acid on production of monacolin K and expression of the monacolin K biosynthetic gene cluster. When Monascus M1 was grown in glutamic medium instead of in the original medium, monacolin K production increased from 48.4 to 215.4 mg l -1 , monacolin K production increased by 3.5 times. Glutamic acid enhanced monacolin K production by upregulating the expression of mokB-mokI; on day 8, the expression level of mokA tended to decrease by Reverse Transcription-polymerase Chain Reaction. Our findings demonstrated that mokA was not a key gene responsible for the quantity of monacolin K production in the presence of glutamic acid. Observation of Monascus mycelium morphology using Scanning Electron Microscope showed glutamic acid significantly increased the content of Monascus mycelium, altered the permeability of Monascus mycelium, enhanced secretion of monacolin K from the cell, and reduced the monacolin K content in Monascus mycelium, thereby enhancing monacolin K production.

  11. Air-stable nZVI formation mediated by glutamic acid: solid-state storable material exhibiting 2D chain morphology and high reactivity in aqueous environment

    Science.gov (United States)

    Siskova, Karolina; Tucek, Jiri; Machala, Libor; Otyepkova, Eva; Filip, Jan; Safarova, Klara; Pechousek, Jiri; Zboril, Radek

    2012-03-01

    We report a new chemical approach toward air-stable nanoscale zero-valent iron (nZVI). The uniformly sized (approx. 80 nm) particles, formed by the reduction of Fe(II) salt by borohydride in the presence of glutamic acid, are coated by a thin inner shell of amorphous ferric oxide/hydroxide and a secondary shell consisting of glutamic acid. The as-prepared nanoparticles stabilized by the inorganic-organic double shell create 2D chain morphologies. They are storable for several months under ambient atmosphere without the loss of Fe(0) relative content. They show one order of magnitude higher rate constant for trichlorethene decomposition compared with the pristine particles possessing only the inorganic shell as a protective layer. This is the first example of the inorganic-organic (consisting of low-molecular weight species) double-shell stabilized nanoscale zero-valent iron material being safely transportable in solid-state, storable on long-term basis under ambient conditions, environmentally acceptable for in situ applications, and extraordinarily reactive if contacted with reducible pollutants, all in one.

  12. Brain infection with Staphylococcus aureus leads to high extracellular levels of glutamate, aspartate, γ-aminobutyric acid, and zinc.

    Science.gov (United States)

    Hassel, Bjørnar; Dahlberg, Daniel; Mariussen, Espen; Goverud, Ingeborg Løstegaard; Antal, Ellen-Ann; Tønjum, Tone; Maehlen, Jan

    2014-12-01

    Staphylococcal brain infections may cause mental deterioration and epileptic seizures, suggesting interference with normal neurotransmission in the brain. We injected Staphylococcus aureus into rat striatum and found an initial 76% reduction in the extracellular level of glutamate as detected by microdialysis at 2 hr after staphylococcal infection. At 8 hr after staphylococcal infection, however, the extracellular level of glutamate had increased 12-fold, and at 20 hr it had increased >30-fold. The extracellular level of aspartate and γ-aminobutyric acid (GABA) also increased greatly. Extracellular Zn(2+) , which was estimated at ∼2.6 µmol/liter in the control situation, was increased by 330% 1-2.5 hr after staphylococcal infection and by 100% at 8 and 20 hr. The increase in extracellular glutamate, aspartate, and GABA appeared to reflect the degree of tissue damage. The area of tissue damage greatly exceeded the area of staphylococcal infiltration, pointing to soluble factors being responsible for cell death. However, the N-methyl-D-aspartate receptor antagonist MK-801 ameliorated neither tissue damage nor the increase in extracellular neuroactive amino acids, suggesting the presence of neurotoxic factors other than glutamate and aspartate. In vitro staphylococci incubated with glutamine and glucose formed glutamate, so bacteria could be an additional source of infection-related glutamate. We conclude that the dramatic increase in the extracellular concentration of neuroactive amino acids and zinc could interfere with neurotransmission in the surrounding brain tissue, contributing to mental deterioration and a predisposition to epileptic seizures, which are often seen in brain abscess patients. © 2014 Wiley Periodicals, Inc.

  13. Glutamate and GABA-metabolizing enzymes in post-mortem cerebellum in Alzheimer's disease: phosphate-activated glutaminase and glutamic acid decarboxylase.

    Science.gov (United States)

    Burbaeva, G Sh; Boksha, I S; Tereshkina, E B; Savushkina, O K; Prokhorova, T A; Vorobyeva, E A

    2014-10-01

    Enzymes of glutamate and GABA metabolism in postmortem cerebellum from patients with Alzheimer's disease (AD) have not been comprehensively studied. The present work reports results of original comparative study on levels of phosphate-activated glutaminase (PAG) and glutamic acid decarboxylase isoenzymes (GAD65/67) in autopsied cerebellum samples from AD patients and matched controls (13 cases in each group) as well as summarizes published evidence for altered levels of PAG and GAD65/67 in AD brain. Altered (decreased) levels of these enzymes and changes in links between amounts of these enzymes and other glutamate-metabolizing enzymes (such as glutamate dehydrogenase and glutamine synthetase-like protein) in AD cerebella suggest significantly impaired glutamate and GABA metabolism in this brain region, which was previously regarded as not substantially involved in AD pathogenesis.

  14. [Imbalance of system of glutamin - glutamic acid in the placenta and amniotic fluid at placental insufficiency].

    Science.gov (United States)

    Pogorelova, T N; Gunko, V O; Linde, V A

    2014-01-01

    Metabolism of glutamine and glutamic acid has been investigated in the placenta and amniotic fluid under conditions of placental insufficiency. The development of placental insufficiency is characterized by the increased content of glutamic acid and a decrease of glutamine in both placenta and amniotic fluid. These changes changes were accompanied by changes in the activity of enzymes involved in the metabolism of these amino acids. There was a decrease in glutamate dehydrogenase activity and an increase in glutaminase activity with the simultaneous decrease of glutamine synthetase activity. The compensatory decrease in the activity of glutamine keto acid aminotransferase did not prevent a decrease in the glutamine level. The impairments in the system glutamic acid-glutamine were more pronounced during the development of premature labor.

  15. Neuroprotective effects of the novel glutamate transporter inhibitor (-)-3-hydroxy-4,5,6,6a-tetrahydro-3aH-pyrrolo[3,4-d]-isoxazole-4-carboxylic acid, which preferentially inhibits reverse transport (glutamate release) compared with glutamate reuptake

    DEFF Research Database (Denmark)

    Colleoni, Simona; Jensen, Anders Asbjørn; Landucci, Elisa

    2008-01-01

    on the three hEAAT subtypes. (-)-HIP-A maintained the remarkable property, previously reported with the racemates, of inhibiting synaptosomal glutamate-induced [3H]D-aspartate release (reverse transport) at concentrations significantly lower than those inhibiting [3H]L-glutamate uptake. New data suggest...

  16. In vitro evidence for the brain glutamate efflux hypothesis

    DEFF Research Database (Denmark)

    Helms, Hans Christian; Madelung, Rasmus; Waagepetersen, Helle Sønderby

    2012-01-01

    resistance values of 1014 ± 70 O cm(2) , and (14) C-D-mannitol permeability values of 0.88 ± 0.13 × 10(-6) cm s(-1) . Unidirectional flux studies showed that L-aspartate and L-glutamate, but not D-aspartate, displayed polarized transport in the brain-to-blood direction, however, all three amino acids......The concentration of the excitotoxic amino acid, L-glutamate, in brain interstitial fluid is tightly regulated by uptake transporters and metabolism in astrocytes and neurons. The aim of this study was to investigate the possible role of the blood-brain barrier endothelium in brain L......-glutamate homeostasis. Transendothelial transport- and accumulation studies of (3) H-L-glutamate, (3) H-L-aspartate, and (3) H-D-aspartate in an electrically tight bovine endothelial/rat astrocyte blood-brain barrier coculture model were performed. After 6 days in culture, the endothelium displayed transendothelial...

  17. Immunodiagnosis of systemic aspergillosis. I. Antigenemia detected by radioimmunoassay in experimental infection

    International Nuclear Information System (INIS)

    Weiner, M.H.; Coats-Stephen, M.

    1979-01-01

    Because systemic aspergillosis is difficult to diagnose ante mortem, a study to improve immunodiagnosis was undertaken in a rabbit model of disseminated infection. We found that the predominant humoral response of infected animals was directed against four Aspergillus antigens identified by crossed immunoelectrophoresis. One of these antigens, a cell-wall carbohydrate, was purified by gel-filtration chromatography and was used to develop a radiommunoassay. The sensitivity of this assay was increased by testing for serum-bound antigen as well as for free antigen. When the sensitivity of the RIA was evaluated in the animal model, antigenemia was detected in 78% of 51 rabbits with disseminated infection and ante mortem in 86% of 42 rabbits with lethal infection. By contrast, with immunoprecipitin analysis only eight of 51 rabbits were positive for antigen, and six of 51 rabbits were positive for Aspergillus antibody. The specificity of the RIA was also tested. Negative controls for antigen included sera from 76 normal rabbits and sera from 25 rabbits with systemic candidiasis. The Candida control group is pertinent because 48% of these rabbits had specific Candida antigenemia detected by a mannan RIA. This study demonstrates that Aspergillus antigenemia occurs during the course of experimental disseminated aspergillosis and illustrates the potential of an Aspergillus antigen RIA for sensitive, specific immunodiagnosis of human infections

  18. Synthesis and aqueous phase behavior of thermoresponsive biodegradable poly(D,L-3-methylglycolide)-block-poly(ethyelene glycol)-block-poly(D,L-3-methylglycolide) triblock copolymers

    NARCIS (Netherlands)

    Zhong, Zhiyuan; Dijkstra, Pieter J.; Feijen, Jan; Kwon, Young-Min; Bae, You Han; Kim, Sung Wan

    2002-01-01

    Novel biodegradable thermosensitive triblock copolymers of poly(D,L-3-methylglycolide)-block-poly(ethylene glycol)-block-poly(D,L-3-methylglycolide) (PMG-PEG-PMG) have been synthesized. Ring-opening polymerization of D,L-3-methyl-glycolide (MG) initiated with poly(ethylene glycol) (PEG) and

  19. Synthesis and pharmacological evaluation of conformationally constrained glutamic acid higher homologues.

    Science.gov (United States)

    Tamborini, Lucia; Cullia, Gregorio; Nielsen, Birgitte; De Micheli, Carlo; Conti, Paola; Pinto, Andrea

    2016-11-15

    Homologation of glutamic acid chain together with conformational constraint is a commonly used strategy to achieve selectivity towards different types of glutamate receptors. In the present work, starting from two potent and selective unnatural amino acids previously developed by us, we investigated the effects on the activity/selectivity profile produced by a further increase in the distance between the amino acidic moiety and the distal carboxylate group. Interestingly, the insertion of an aromatic ring as a spacer produced a low micromolar affinity NMDA ligand that might represent a lead for the development of a new class of NMDA antagonists. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Integrated Analysis of the Transcriptome and Metabolome of Corynebacterium glutamicum during Penicillin-Induced Glutamic Acid Production.

    Science.gov (United States)

    Hirasawa, Takashi; Saito, Masaki; Yoshikawa, Katsunori; Furusawa, Chikara; Shmizu, Hiroshi

    2018-05-01

    Corynebacterium glutamicum is known for its ability to produce glutamic acid and has been utilized for the fermentative production of various amino acids. Glutamic acid production in C. glutamicum is induced by penicillin. In this study, the transcriptome and metabolome of C. glutamicum is analyzed to understand the mechanism of penicillin-induced glutamic acid production. Transcriptomic analysis with DNA microarray revealed that expression of some glycolysis- and TCA cycle-related genes, which include those encoding the enzymes involved in conversion of glucose to 2-oxoglutaric acid, is upregulated after penicillin addition. Meanwhile, expression of some TCA cycle-related genes, encoding the enzymes for conversion of 2-oxoglutaric acid to oxaloacetic acid, and the anaplerotic reactions decreased. In addition, expression of NCgl1221 and odhI, encoding proteins involved in glutamic acid excretion and inhibition of the 2-oxoglutarate dehydrogenase, respectively, is upregulated. Functional category enrichment analysis of genes upregulated and downregulated after penicillin addition revealed that genes for signal transduction systems are enriched among upregulated genes, whereas those for energy production and carbohydrate and amino acid metabolisms are enriched among the downregulated genes. As for the metabolomic analysis using capillary electrophoresis time-of-flight mass spectrometry, the intracellular content of most metabolites of the glycolysis and the TCA cycle decreased dramatically after penicillin addition. Overall, these results indicate that the cellular metabolism and glutamic acid excretion are mainly optimized at the transcription level during penicillin-induced glutamic acid production by C. glutamicum. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Poly(aniline-co-m-aminobenzoic acid) deposited on poly(vinyl ...

    Indian Academy of Sciences (India)

    Abstract. In this work, we have deposited poly(aniline-co-m-aminobenzoic acid) on poly(vinyl alcohol) (PVA) by in situ ... along the polyaniline (PANI) chain results in self dop- ing of PANI and ..... The value of electrical conductivity is found to be ...

  2. Molecular pharmacology of 4-substituted glutamic acid analogues at ionotropic and metabotropic excitatory amino acid receptors

    DEFF Research Database (Denmark)

    Bräuner-Osborne, Hans; Nielsen, B; Stensbøl, T B

    1997-01-01

    (subtypes 1alpha and 2), respectively, whereas (S)-4-methyleneglutamic acid showed high but rather non-selective affinity for the (RS)-2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionic acid (AMPA), kainic acid, NMDA and mGlu receptors (subtypes 1alpha and 2). Although none of the compounds were specific......The pharmacology of (2S,4R)-4-methylglutamic acid, (2S,4S)-4-methylglutamic acid and (S)- and (R)-4-methyleneglutamic acids (obtained in high chemical and enantiomeric purity from racemic 4-methyleneglutamic acid by chiral HPLC using a Crownpak CR(+) column), was examined in binding experiments...... using rat brain ionotropic glutamate receptors, and in functional assays using cloned metabotropic glutamate (mGlu) receptors. As a notable result of these studies, (2S,4R)-4-methylglutamic acid and (2S,4S)-4-methylglutamic acid were shown to be selective for kainic acid receptors and mGlu receptors...

  3. Fundamentals of poly(lactic acid) microstructure, crystallization behavior, and properties

    Science.gov (United States)

    Kang, Shuhui

    Poly(lactic acid) is an environmentally-benign biodegradable and sustainable thermoplastic material, which has found broad applications as food packaging films and as non-woven fibers. The crystallization and deformation mechanisms of the polymer are largely determined by the distribution of conformation and configuration. Knowledge of these mechanisms is needed to understand the mechanical and thermal properties on which processing conditions mainly depend. In conjunction with laser light scattering, Raman spectroscopy and normal coordinate analysis are used in this thesis to elucidate these properties. Vibrational spectroscopic theory, Flory's rotational isomeric state (RIS) theory, Gaussian chain statistics and statistical mechanics are used to relate experimental data to molecular chain structure. A refined RIS model is proposed, chain rigidity recalculated and chain statistics discussed. A Raman spectroscopic characterization method for crystalline and amorphous phase orientation has been developed. A shrinkage model is also proposed to interpret the dimensional stability for fibers and uni- or biaxially stretched films. A study of stereocomplexation formed by poly(l-lactic acid) and poly(d-lactic acid) is also presented.

  4. Sequential enzymatic synthesis and separation of 13N-L-glutamic acid and 13N-L-alanine

    International Nuclear Information System (INIS)

    Cohen, M.B.; Spolter, L.; MacDonald, M.; Chang, C.C.; Takahashi, J.

    1975-01-01

    The sequential enzymatic synthesis and separation of 13 N-L-glutamic acid and 13 N-L-alanine are described. Basically, that involves the synthesis of 13 N-L-glutamic acid by one enzyme, the transamination of the labeled glutamic acid to form 13 N-L-alanine by a second enzyme, and the separation of the two amino acids by rapid column chromatography. The 13 N-L-alanine was evaluated in animals by imaging and tissue distribution studies and showed good potential as a pancreatic imaging agent

  5. Double printing of hyaluronic acid/poly(glycidol) hybrid hydrogels with poly(ϵ-caprolactone) for MSC chondrogenesis

    NARCIS (Netherlands)

    Stichler, Simone; Böck, Thomas; Paxton, Naomi; Bertlein, Sarah; Levato, Riccardo; Schill, Verena; Smolan, Willi; Malda, Jos; Teßmar, Jörg; Blunk, Torsten; Groll, Jürgen

    2017-01-01

    This study investigates the use of allyl-functionalized poly(glycidol)s (P(AGE-co-G)) as a cytocompatible cross-linker for thiol-functionalized hyaluronic acid (HA-SH) and the optimization of this hybrid hydrogel as bioink for 3D bioprinting. The chemical cross-linking of gels with 10 wt.% overall

  6. MDMA decreases glutamic acid decarboxylase (GAD) 67-immunoreactive neurons in the hippocampus and increases seizure susceptibility: Role for glutamate.

    Science.gov (United States)

    Huff, Courtney L; Morano, Rachel L; Herman, James P; Yamamoto, Bryan K; Gudelsky, Gary A

    2016-12-01

    3,4-Methylenedioxy-methamphetamine (MDMA) is a unique psychostimulant that continues to be a popular drug of abuse. It has been well documented that MDMA reduces markers of 5-HT axon terminals in rodents, as well as humans. A loss of parvalbumin-immunoreactive (IR) interneurons in the hippocampus following MDMA treatment has only been documented recently. In the present study, we tested the hypothesis that MDMA reduces glutamic acid decarboxylase (GAD) 67-IR, another biochemical marker of GABA neurons, in the hippocampus and that this reduction in GAD67-IR neurons and an accompanying increase in seizure susceptibility involve glutamate receptor activation. Repeated exposure to MDMA (3×10mg/kg, ip) resulted in a reduction of 37-58% of GAD67-IR cells in the dentate gyrus (DG), CA1, and CA3 regions, as well as an increased susceptibility to kainic acid-induced seizures, both of which persisted for at least 30days following MDMA treatment. Administration of the NMDA antagonist MK-801 or the glutamate transporter type 1 (GLT-1) inducer ceftriaxone prevented both the MDMA-induced loss of GAD67-IR neurons and the increased vulnerability to kainic acid-induced seizures. The MDMA-induced increase in the extracellular concentration of glutamate in the hippocampus was significantly diminished in rats treated with ceftriaxone, thereby implicating a glutamatergic mechanism in the neuroprotective effects of ceftriaxone. In summary, the present findings support a role for increased extracellular glutamate and NMDA receptor activation in the MDMA-induced loss of hippocampal GAD67-IR neurons and the subsequent increased susceptibility to evoked seizures. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Improved stability and enhanced efficiency to degrade chlorimuron-ethyl by the entrapment of esterase SulE in cross-linked poly (γ-glutamic acid)/gelatin hydrogel

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Liqiang [State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang (China); University of Chinese Academy of Sciences, Beijing (China); Li, Xinyu; Li, Xu; Su, Zhencheng; Zhang, Chenggang; Xu, MingKai [State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang (China); Zhang, Huiwen, E-mail: hwzhang@iae.ac.cn [State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang (China)

    2015-04-28

    Highlights: • Esterase SulE was entrapped in a three-dimensional network of CPE. • CPE-SulE obviously improved thermostability, pH stability and reusability. • CPE-SulE displayed obviously enhanced efficiency in degrading chlorimuron-ethyl. • The three-dimensional network and kinetic parameters of CPE-SulE were analysed. • CPE-SulE possesses the great potential to remediate chlorimuron-ethyl contaminated in situ. - Abstract: Free enzymes often undergo some problems such as easy deactivation, low stability, and less recycling in biodegradation processes, especially in soil condition. A novel esterase SulE, which is responsible for primary degradation of a wide range of sulfonylurea herbicides by methyl or ethyl ester de-esterification, was expressed by strain Hansschlegelia sp. CHL1 and entrapped for the first time in an environment-friendly, biocompatible and biodegradable cross-linked poly (γ-glutamic acid)/gelatin hydrogel (CPE). The activity and stability of CPE-SulE were compared with free SulE under varying pH and temperature condition by measuring chlorimuron-ethyl residue. Meanwhile, the three-dimensional network of CPE-SulE was verified by scanning electron microscopy (SEM). The results showed that CPE-SulE obviously improved thermostability, pH stability and reusability compared with free SulE. Furthermore, CPE-SulE enhanced degrading efficiency of chlorimuron-ethyl in both soil and water system, especially in acid environment. The characteristics of CPE-SulE suggested the great potential to remediate chlorimuron-ethyl contaminated soils in situ.

  8. Improved stability and enhanced efficiency to degrade chlorimuron-ethyl by the entrapment of esterase SulE in cross-linked poly (γ-glutamic acid)/gelatin hydrogel

    International Nuclear Information System (INIS)

    Yang, Liqiang; Li, Xinyu; Li, Xu; Su, Zhencheng; Zhang, Chenggang; Xu, MingKai; Zhang, Huiwen

    2015-01-01

    Highlights: • Esterase SulE was entrapped in a three-dimensional network of CPE. • CPE-SulE obviously improved thermostability, pH stability and reusability. • CPE-SulE displayed obviously enhanced efficiency in degrading chlorimuron-ethyl. • The three-dimensional network and kinetic parameters of CPE-SulE were analysed. • CPE-SulE possesses the great potential to remediate chlorimuron-ethyl contaminated in situ. - Abstract: Free enzymes often undergo some problems such as easy deactivation, low stability, and less recycling in biodegradation processes, especially in soil condition. A novel esterase SulE, which is responsible for primary degradation of a wide range of sulfonylurea herbicides by methyl or ethyl ester de-esterification, was expressed by strain Hansschlegelia sp. CHL1 and entrapped for the first time in an environment-friendly, biocompatible and biodegradable cross-linked poly (γ-glutamic acid)/gelatin hydrogel (CPE). The activity and stability of CPE-SulE were compared with free SulE under varying pH and temperature condition by measuring chlorimuron-ethyl residue. Meanwhile, the three-dimensional network of CPE-SulE was verified by scanning electron microscopy (SEM). The results showed that CPE-SulE obviously improved thermostability, pH stability and reusability compared with free SulE. Furthermore, CPE-SulE enhanced degrading efficiency of chlorimuron-ethyl in both soil and water system, especially in acid environment. The characteristics of CPE-SulE suggested the great potential to remediate chlorimuron-ethyl contaminated soils in situ

  9. Fabrication and Protein Conjugation of Aligned Polypyrrole-Poly(L-lactic acid) Fibers Film with the Conductivity and Stability.

    Science.gov (United States)

    Qin, Jiabang; Huang, Zhongbing; Yin, Guangfu; Yang, Anneng; Han, Wei

    2016-03-01

    The conducting composite scaffold, including fiber-cores of aligned poly(L-lactic acid) (PLLA) and shell-layer of polypyrrole (PPy), was fabricated, and then bovine serum albumin (BSA) was conjugated on the PPy shell-layer. Aligned PLLA fibers (about 300 nm diameter) were obtained by electrospinning and rotating drum collection, and then coated by PPy nanoparticles (NPs, about 50 nm diameter) via chemical oxidation. The surface resistivity of PPy-PLLA fibers film were 0.971, 0.874 kΩ. cm at the fiber's vertical and parallel directions, respectively. The results of PPy-PLLA fibers film immersed in phosphate buffer saline for 8 d indicated that the fibers morphology and the film conductivity were not significantly changed, and the fluorescent images showed that FITC-labeled BSA (FITC-BSA) were successfully conjugated in the fibers film with carbodiimide chemistry, and the largest amount of FITC-BSA conjugated in the fibers film from 100 μg/mL proteins solution was 31.31 μg/cm2 due to lots of poly(glutamic acid) in surface-nanogrooves of the fibers surface. Under electrical stimulation of 100 mV, the fibers film was accompanied the release of all conjugated FITC-BSA with the detachment of some PPy NPs. These results suggested that PPy-PLLA fibers film would be potentially applied in the construction of degradable tissue engineering scaffold with protein factors, especially neurotrophic factors for nerve tissue repair.

  10. Determination of glutamine and glutamic acid in mammalian cell cultures using tetrathiafulvalene modified enzyme electrodes.

    Science.gov (United States)

    Mulchandani, A; Bassi, A S

    1996-01-01

    Tetrathiafulvalene (TTF) mediated amperometric enzyme electrodes have been developed for the monitoring of L-glutamine and L-glutamic acid in growing mammalian cell cultures. The detection of glutamine was accomplished by a coupled enzyme system comprised of glutaminase plus glutamate oxidase, while the detection of glutamic acid was carried out by a single enzyme, glutamate oxidase. The appropriate enzyme(s) were immoblized on the Triton-X treated surface of tetrathiafulvalene modified carbon paste electrodes by adsorption, in conjunction with entrapment by an electrochemically deposited copolymer film of 1,3-phenylenediamine and resorcinol. Operating conditions for the glutamine enzyme electrode were optimized with respect to the amount of enzymes immoblized, pH, temperature and mobile phase flow rate for operation in a flow injection (FIA) system. When applied to glutamine and glutamic acid measurements in mammalian cell culture in FIA, the results obtained with enzyme electrodes were in excellent agreement with those determined by enzymatic analysis.

  11. Examining the role of glutamic acid 183 in chloroperoxidase catalysis

    NARCIS (Netherlands)

    Yi, X.; Conesa, A.; Punt, P.J.; Hager, L.P.

    2003-01-01

    Site-directed mutagenesis has been used to investigate the role of glutamic acid 183 in chloroperoxidase catalysis. Based on the x-ray crystallographic structure of chloroperoxidase, Glu-183 is postulated to function on distal side of the heme prosthetic group as an acid-base catalyst in

  12. Synthesis and pharmacology of 3-hydroxy-delta2-isoxazoline-cyclopentane analogues of glutamic acid

    DEFF Research Database (Denmark)

    Conti, P; De Amici, M; Bräuner-Osborne, Hans

    2002-01-01

    The synthesis and pharmacology of two potential glutamic acid receptor ligands are described. Preparation of the bicyclic 3-hydroxy-delta2-isoxazoline-cyclopentane derivatives (+/-)-7 and (+/-)-8 was accomplished via 1,3-dipolar cycloaddition of bromonitrile oxide to suitably protected 1-amino......-cyclopent-3-enecarboxylic acids. Their structure was established using a combination of 1H NMR spectroscopy and molecular mechanics calculations carried out on the intermediate cycloadducts (+/-)-11 and (+/-)-12. Amino acid derivatives (+/-)-7 and (+/-)-8 were assayed at ionotropic and metabotropic glutamic...... acid receptor subtypes and their activity compared with that of trans-ACPD and cis-ACPD. The results show that the replacement of the omega-carboxylic group of the model compounds with the 3-hydroxy-delta2-isoxazoline moiety abolishes or reduces drastically the activity at the metabotropic glutamate...

  13. Effects of blending poly(D,L-lactide) with poly(ethylene glycol) on the higher-order crystalline structures of poly(ethylene glycol) as revealed by small-angle X-ray scattering

    International Nuclear Information System (INIS)

    Tien, N D; Kimura, G; Yamashiro, Y; Fujiwara, H; Sasaki, S; Sakurai, S; Hoa, T P; Mochizuki, M

    2011-01-01

    Effects of blending poly(lactic acid) (PLA) with poly(ethylene glycol) (PEG) on higher-order crystalline structures of PEG were examined using small-angle X-ray scattering (SAXS). For this purpose, the fact that two polymers are both crystalline makes situtation much complicated. To simplify, non-crystalline PLA is suitable. Thus, we used poly(D,L-lactic acid) (DLPLA), which is random copolymer comprising D- and L-lactic acid moieties. Multiple scattering peaks arising from the regular crystalline lamellar structure were observed for the PEG homopolymer and the blends. Surprisingly, the structure is much more regular for the blend DLPLA/PEG at composition of 20/80 wt.% than for the PEG homopolymer. Also for this blend sample as well as for a PEG homopolymer, very peculiar SAXS profiles were observed just 1 deg. C below T m of PEG. This is found to be a particle scattering of plate-like objects, which has never been reported for polymer blends or crystalline polymers. Futhermore, it was found that there was strong hysteresis of the higher-order structure formation.

  14. Potentiation of ovarian OCa-1 tumor radioresponse by poly (L-glutamic acid)-paclitaxel conjugate

    International Nuclear Information System (INIS)

    Li Chun; Ke Shi; Wu Qingping; Tansey, Wayne; Hunter, Nancy; Buchmiller, Lara M.; Milas, Luka; Charnsangavej, Chusilp; Wallace, Sidney

    2000-01-01

    Purpose: It has been shown that paclitaxel (TXL) can strongly enhance tumor cells' sensitivity to radiation. We examined whether the radiosensitizing effect of paclitaxel can be further enhanced when it is delivered systemically as a polymer-drug conjugate that provides enhanced tumor uptake and prolonged release of TXL in the tumor. Methods and Materials: C3Hf/Kam mice bearing 8-mm murine ovarian OCa-1 tumors were treated with i.v.-injected Poly(L-glutamic acid)-paclitaxel (PG-TXL) at an equivalent TXL dose of 80 mg/kg, followed 24 h later by single doses of local radiation ranging from 5 to 15 Gy. To determine how long the radiopotentiation persisted at extended times after PG-TXL administration, mice with OCa-1 tumors were given i.v. PG-TXL and 4, 24, 48, 72, 120, or 168 h later their tumors were irradiated at a dose of 10 Gy. Antitumor activity was determined by delay in tumor growth. Cell cycle distribution was assayed using flow cytometry. Tumor vascular volume was estimated using Tc-99 m-labeled red blood cells. Results: PG-TXL strongly potentiated the radioresponse of the OCa-1 tumor. The enhancement factors ranged from 2.79 to 4.28, depending on radiation dose, when PG-TXL preceded radiation by 24 h. The enhancement factor derived from radiation dose-response curves was as high as 5.13. The radiosensitizing effect of PG-TXL was also dependent on the interval between PG-TXL administration and radiation delivery, with greater enhancement been observed when the interval was decreased. The percentage of G2/M cells was significantly increased to 21.4% 48 h after PG-TXL but declined to a preinjection level of 14.8% 72 h after PG-TXL. PG-TXL only moderately increased the tumor vascular volume by 37% 24 h after PG-TXL administration. Conclusion: PG-TXL markedly potentiated response of OCa-1 tumor to radiation. When compared to literature data obtained from the same tumor model used here, PG-TXL exhibited stronger radiosensitization effect than TXL. Although its

  15. Magnetic Resonance Imaging of Therapy-Induced Necrosis Using Gadolinium-Chelated Polyglutamic Acids

    International Nuclear Information System (INIS)

    Jackson, Edward F.; Esparza-Coss, Emilio; Wen Xiaoxia; Ng, Chaan S.; Daniel, Sherita L.; Price, Roger E.; Rivera, Belinda; Charnsangavej, Chusilp; Gelovani, Juri G.; Li Chun

    2007-01-01

    Purpose: Necrosis is the most common morphologic alteration found in tumors and surrounding normal tissues after radiation therapy or chemotherapy. Accurate measurement of necrosis may provide an early indication of treatment efficacy or associated toxicity. The purpose of this report is to evaluate the selective accumulation of polymeric paramagnetic magnetic resonance (MR) contrast agents-gadolinium p-aminobenzyl-diethylenetriaminepentaacetic acid-poly(glutamic acid) (L-PG-DTPA-Gd and D-PG-DTPA-Gd)-in necrotic tissue. Methods and Materials: Two different solid tumor models, human Colo-205 xenograft and syngeneic murine OCA-1 ovarian tumors, were used in this study. Necrotic response was induced by treatment with poly(L-glutamic acid)-paclitaxel conjugate (PG-TXL). T 1 -weighted spin-echo images were obtained immediately and up to 4 days after contrast injection and compared with corresponding histologic specimens. Two low-molecular-weight contrast agents, DTPA-Gd and oligomeric(L-glutamic acid)-DTPA-Gd, were used as nonspecific controls. Results: Initially, there was minimal tumor enhancement after injection of either L-PG-DTPA-Gd or D-PG-DTPA-Gd, but rapid enhancement after injection of low-molecular-weight agents. However, polymeric contrast agents, but not low-molecular-weight contrast agents, caused sustained enhancement in regions of tumor necrosis in both tumors treated with PG-TXL and untreated tumors. These data indicate that high molecular weight, rather than in vivo biodegradation, is necessary for the specific localization of polymeric MR contrast agents to necrotic tissue. Moreover, biotinylated L-PG-DTPA-Gd colocalized with macrophages in the tumor necrotic areas, suggesting that selective accumulation of L- and D-PG-DTPA-Gd in necrotic tissue was mediated through residing macrophages. Conclusions: Our data suggest that MR imaging with PG-DTPA-Gd may be a useful technique for noninvasive characterization of treatment-induced necrosis

  16. Analysis of L-glutamic acid fermentation by using a dynamic metabolic simulation model of Escherichia coli.

    Science.gov (United States)

    Nishio, Yousuke; Ogishima, Soichi; Ichikawa, Masao; Yamada, Yohei; Usuda, Yoshihiro; Masuda, Tadashi; Tanaka, Hiroshi

    2013-09-22

    Understanding the process of amino acid fermentation as a comprehensive system is a challenging task. Previously, we developed a literature-based dynamic simulation model, which included transcriptional regulation, transcription, translation, and enzymatic reactions related to glycolysis, the pentose phosphate pathway, the tricarboxylic acid (TCA) cycle, and the anaplerotic pathway of Escherichia coli. During simulation, cell growth was defined such as to reproduce the experimental cell growth profile of fed-batch cultivation in jar fermenters. However, to confirm the biological appropriateness of our model, sensitivity analysis and experimental validation were required. We constructed an L-glutamic acid fermentation simulation model by removing sucAB, a gene encoding α-ketoglutarate dehydrogenase. We then performed systematic sensitivity analysis for L-glutamic acid production; the results of this process corresponded with previous experimental data regarding L-glutamic acid fermentation. Furthermore, it allowed us to predicted the possibility that accumulation of 3-phosphoglycerate in the cell would regulate the carbon flux into the TCA cycle and lead to an increase in the yield of L-glutamic acid via fermentation. We validated this hypothesis through a fermentation experiment involving a model L-glutamic acid-production strain, E. coli MG1655 ΔsucA in which the phosphoglycerate kinase gene had been amplified to cause accumulation of 3-phosphoglycerate. The observed increase in L-glutamic acid production verified the biologically meaningful predictive power of our dynamic metabolic simulation model. In this study, dynamic simulation using a literature-based model was shown to be useful for elucidating the precise mechanisms involved in fermentation processes inside the cell. Further exhaustive sensitivity analysis will facilitate identification of novel factors involved in the metabolic regulation of amino acid fermentation.

  17. Mechanical, thermal and morphological properties of glutaraldehyde crosslinked bovine pericardium followed by glutamic acid treatment

    Directory of Open Access Journals (Sweden)

    Gilberto Goissis

    2009-03-01

    Full Text Available Major problems with valve bioprostheses are associated with progressive structural deterioration and calcification, directly associated with the use of glutaraldehyde (GA. This work describes the effects of GA processing and borate/glutamic acid buffer treatment on the mechanical, thermal and morphological properties of 0.5% GA crosslinked bovine pericardium (BP. The results showed that while the treatment of 0.5% GA crosslinked BP with borate/glutamic acid significantly improves the mechanical properties, it had no visible effect on surface morphology. Better surface preservation was only achieved for BP pre-treated with a lower GA concentration followed by the conventional treatment (0.5% GA. Improvements in mechanical properties probably arises from structural changes probably involving the depolymerization of polymeric GA crosslinks and an increase electrostatic interaction due to covalent binding of glutamic acid to free carbonyl groups (Schiff base.The results indicate that the treatment GA crosslinked BP with borate/glutamic acid buffer may be an attractive procedure for the manufacture of heart valve bioprostheses.

  18. Glutamate oxidation in astrocytes: Roles of glutamate dehydrogenase and aminotransferases

    DEFF Research Database (Denmark)

    McKenna, Mary C; Stridh, Malin H; McNair, Laura Frendrup

    2016-01-01

    to the presynaptic neurons as the nonexcitatory amino acid glutamine. The cycle was initially thought to function with a 1:1 ratio between glutamate released and glutamine taken up by neurons. However, studies of glutamate metabolism in astrocytes have shown that a considerable proportion of glutamate undergoes...... the enzymes that mediate this conversion. Methods include pharmacological tools such as the transaminase inhibitor aminooxyacetic acid, studies using GDH knockout mice, and siRNA-mediated knockdown of GDH in astrocytes. Studies in brain slices incubated with [15N]glutamate demonstrated activity of GDH......The cellular distribution of transporters and enzymes related to glutamate metabolism led to the concept of the glutamate–glutamine cycle. Glutamate is released as a neurotransmitter and taken up primarily by astrocytes ensheathing the synapses. The glutamate carbon skeleton is transferred back...

  19. In-situ birth of MSCs multicellular spheroids in poly(L-glutamic acid)/chitosan scaffold for hyaline-like cartilage regeneration.

    Science.gov (United States)

    Zhang, Kunxi; Yan, Shifeng; Li, Guifei; Cui, Lei; Yin, Jingbo

    2015-12-01

    The success of mesenchymal stem cells (MSCs) based articular cartilage tissue engineering is limited by the presence of fibrous tissue in generated cartilage, which is associated with the current scaffold strategy that promotes cellular adhesion and spreading. Here we design a non-fouling scaffold based on amide bonded poly(l-glutamic acid) (PLGA) and chitosan (CS) to drive adipose stem cells (ASCs) to aggregate to form multicellular spheroids with diameter of 80-110 μm in-situ. To illustrate the advantage of the present scaffolds, a cellular adhesive scaffold based on the same amide bonded PLGA and CS was created through a combination of air-drying and freeze-drying to limit the hydration effect while also achieving porous structure. Compared to ASCs spreading along the surface of pores within scaffold, the dense mass of aggregated ASCs in PLGA/CS scaffold exhibited enhanced chondrogenic differentiation capacity, as determined by up-regulated GAGs and COL II expression, and greatly decreased COL I deposition during in vitro chondrogenesis. Furthermore, after 12 weeks of implantation, neo-cartilages generated by ASCs adhered on scaffold significantly presented fibrous matrix which was characterized by high levels of COL I deposition. However, neo-cartilage at 12 weeks post-implantation generated by PLGA/CS scaffold carrying ASC spheroids possessed similar high level of GAGs and COL II and low level of COL I as that in normal cartilage. The in vitro and in vivo results indicated the present strategy could not only promote chondrogenesis of ASCs, but also facilitate hyaline-like cartilage regeneration with reduced fibrous tissue formation which may attenuate cartilage degradation in future long-term follow-up. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Characterization of Polyelectrolyte Complex Formation Between Anionic and Cationic Poly(amino acids) and Their Potential Applications in pH-Dependent Drug Delivery.

    Science.gov (United States)

    Folchman-Wagner, Zoë; Zaro, Jennica; Shen, Wei-Chiang

    2017-06-30

    Polyelectrolyte complexes (PECs) are self-assembling nano-sized constructs that offer several advantages over traditional nanoparticle carriers including controllable size, biodegradability, biocompatibility, and lack of toxicity, making them particularly appealing as tools for drug delivery. Here, we discuss potential application of PECs for drug delivery to the slightly acidic tumor microenvironment, a pH in the range of 6.5-7.0. Poly(l-glutamic acid) (E n ), poly(l-lysine) (K n ), and a copolymer composed of histidine-glutamic acid repeats ((HE) n ) were studied for their ability to form PECs, which were analyzed for size, polydispersity, and pH sensitivity. PECs showed concentration dependent size variation at residue lengths of E 51 /K 55 and E 135 /K 127 , however, no complexes were observed when E 22 or K 21 were used, even in combination with the longer chains. (HE) 20 /K 55 PECs could encapsulate daunomycin, were stable from pH 7.4-6.5, and dissociated completely between pH 6.5-6.0. Conversely, the E 51-dauno /K 55 PEC dissociated between pH 4.0 and 3.0. These values for pH-dependent particle dissociation are consistent with the p K a 's of the ionizable groups in each formulation and indicate that the specific pH-sensitivity of (HE) 20-dauno /K 55 PECs is mediated by incorporation of histidine. This response within a pH range that is physiologically relevant to the acidic tumors suggests a potential application of these PECs in pH-dependent drug delivery.

  1. Effect of acid on the aggregation of poly(ethylene xide)-poly(propylene oxide)-poly(ethylene oxide) block copolymers.

    Science.gov (United States)

    Yang, Bin; Guo, Chen; Chen, Shu; Ma, Junhe; Wang, Jing; Liang, Xiangfeng; Zheng, Lily; Liu, Huizhou

    2006-11-23

    The acid effect on the aggregation of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymers EO(20)PO(70)EO(20) has been investigated by transmission electron microscopy (TEM), particle size analyzer (PSA), Fourier transformed infrared, and fluorescence spectroscopy. The critical micellization temperature for Pluronic P123 in different HCl aqueous solutions increases with the increase of acid concentration. Additionally, the hydrolysis degradation of PEO blocks is observed in strong acid concentrations at higher temperatures. When the acid concentration is low, TEM and PSA show the increase of the micelle mean diameter and the decrease of the micelle polydispersity at room temperature, which demonstrate the extension of EO corona and tendency of uniform micelle size because of the charge repulsion. When under strong acid conditions, the aggregation of micelles through the protonated water bridges was observed.

  2. Synthesis and Characterization of Chromium (III) Complexes with L-Glutamic Acid, Glycine and LCysteine

    OpenAIRE

    Kun Sri Budiasih; Chairil Anwar; Sri Juari Santosa; Hilda Ismail

    2013-01-01

    Some Chromium (III) complexes were synthesized with three amino acids: L Glutamic Acid, Glycine, and L-cysteine as the ligands, in order to provide a new supplement containing Cr(III) for patients with type 2 diabetes mellitus. The complexes have been prepared by refluxing a mixture of Chromium(III) chloride in aqueous solution with L-glutamic acid, Glycine, and L-cysteine after pH adjustment by sodium hydroxide. These complexes were characterized by Infrared and Uv-Vis s...

  3. Glutamic acid production from wheat by-products using enzymatic and acid hydrolysis

    NARCIS (Netherlands)

    Sari, Y.W.; Alting, A.C.; Floris, R.; Sanders, J.P.M.; Bruins, M.E.

    2014-01-01

    Glutamic acid (Glu) has potential as feedstock for bulk chemicals production. It has also been listed as one of the top twelve chemicals derived from biomass. Large amounts of cheaper Glu can be made available by enabling its production from biomass by-products, such as wheat dried distillers grains

  4. The effects of reactants ratios, reaction temperatures and times on Maillard reaction products of the L-ascorbic acid/L-glutamic acid system

    Directory of Open Access Journals (Sweden)

    Yong-Yan ZHOU

    2016-01-01

    Full Text Available Abstract The transformation law of the Maillard reaction products with three different reactants ratios - equimolar reactants, excess L-glutamic acid and excess L-ascorbic acid reaction respectively, five different temperatures, and different time conditions for the L-ascorbic acid / L-glutamic acid system were investigated. Results showed that, the increase of the reaction time and temperature led to the increase of the browning products, uncoloured intermediate products, as well as aroma compounds. Compared with the equimolar reaction system, the excess L-ascorbic acid reaction system produced more browning products and uncoloured intermediate products, while the aroma compounds production remained the same. In the excess L-glutamic acid system, the uncoloured intermediate products increased slightly, the browning products remained the same, while the aroma compounds increased.

  5. PP65 antigenemia in the diagnosis of cytomegalovirus infection in AIDS patients

    Directory of Open Access Journals (Sweden)

    RC Capela

    2012-01-01

    Full Text Available Cytomegalovirus causes significant morbidity and mortality in AIDS patients and those having undergone bone marrow or another transplant. PP65 antigenemia is based on detecting viral antigen in peripheral blood leukocytes through immunochemistry and by monitoring the infection in immunocompromised individuals. The present study aimed to set up this diagnostic technique in AIDS patients with active cytomegalovirus infection and verify its occurrence in the Botucatu region of São Paulo state, Brazil. Fifty patients, 35 men and 15 women aged from 24 to 69 years, were recruited from those attended at the Department of Tropical Diseases of Botucatu Medical School, UNESP, and divided into three groups according to CD4+ T lymphocyte counts and antiretroviral treatment. The control group comprised bone marrow transplant patients. Fourteen AIDS patients with low CD4+ cell counts tested positive for PP65 antigenemia, which could predict cytomegalovirus infection and indicate prophylactic treatment.

  6. Analysis of l-glutamic acid fermentation by using a dynamic metabolic simulation model of Escherichia coli

    Science.gov (United States)

    2013-01-01

    Background Understanding the process of amino acid fermentation as a comprehensive system is a challenging task. Previously, we developed a literature-based dynamic simulation model, which included transcriptional regulation, transcription, translation, and enzymatic reactions related to glycolysis, the pentose phosphate pathway, the tricarboxylic acid (TCA) cycle, and the anaplerotic pathway of Escherichia coli. During simulation, cell growth was defined such as to reproduce the experimental cell growth profile of fed-batch cultivation in jar fermenters. However, to confirm the biological appropriateness of our model, sensitivity analysis and experimental validation were required. Results We constructed an l-glutamic acid fermentation simulation model by removing sucAB, a gene encoding α-ketoglutarate dehydrogenase. We then performed systematic sensitivity analysis for l-glutamic acid production; the results of this process corresponded with previous experimental data regarding l-glutamic acid fermentation. Furthermore, it allowed us to predicted the possibility that accumulation of 3-phosphoglycerate in the cell would regulate the carbon flux into the TCA cycle and lead to an increase in the yield of l-glutamic acid via fermentation. We validated this hypothesis through a fermentation experiment involving a model l-glutamic acid-production strain, E. coli MG1655 ΔsucA in which the phosphoglycerate kinase gene had been amplified to cause accumulation of 3-phosphoglycerate. The observed increase in l-glutamic acid production verified the biologically meaningful predictive power of our dynamic metabolic simulation model. Conclusions In this study, dynamic simulation using a literature-based model was shown to be useful for elucidating the precise mechanisms involved in fermentation processes inside the cell. Further exhaustive sensitivity analysis will facilitate identification of novel factors involved in the metabolic regulation of amino acid fermentation. PMID

  7. Bioconversion of l-glutamic acid to α-ketoglutaric acid by an immobilized whole-cell biocatalyst expressing l-amino acid deaminase from Proteus mirabilis.

    Science.gov (United States)

    Hossain, Gazi Sakir; Li, Jianghua; Shin, Hyun-dong; Chen, Rachel R; Du, Guocheng; Liu, Long; Chen, Jian

    2014-01-01

    The goal of this work was to develop an immobilized whole-cell biocatalytic process for the environment-friendly synthesis of α-ketoglutaric acid (α-KG) from l-glutamic acid. We compared the suitability of Escherichia coli and Bacillus subtilis strains overexpressing Proteus mirabilisl-amino acid deaminase (l-AAD) as potential biocatalysts. Although both recombinant strains were biocatalytically active, the performance of B. subtilis was superior to that of E. coli. With l-glutamic acid as the substrate, α-KG production levels by membranes isolated from B. subtilis and E. coli were 55.3±1.73 and 21.7±0.39μg/mg protein/min, respectively. The maximal conversion ratio of l-glutamic acid to α-KG was 31% (w/w) under the following optimal conditions: 15g/L l-glutamic acid, 20g/L whole-cell biocatalyst, 5mM MgCl2, 40°C, pH 8.0, and 24-h incubation. Immobilization of whole cells with alginate increased the recyclability by an average of 23.33% per cycle. This work established an efficient one-step biotransformation process for the production of α-KG using immobilized whole B. subtilis overexpressing P. mirabilisl-AAD. Compared with traditional multistep chemical synthesis, the biocatalytic process described here has the advantage of reducing environmental pollution and thus has great potential for the large-scale production of α-KG. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Synthesis and pharmacology of 3-isoxazolol amino acids as selective antagonists at group I metabotropic glutamic acid receptors

    DEFF Research Database (Denmark)

    Madsen, U; Bräuner-Osborne, H; Frydenvang, Karla Andrea

    2001-01-01

    Using ibotenic acid (2) as a lead, two series of 3-isoxazolol amino acid ligands for (S)-glutamic acid (Glu, 1) receptors have been developed. Whereas analogues of (RS)-2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid [AMPA, (RS)-3] interact selectively with ionotropic Glu receptors (i......GluRs), the few analogues of (RS)-2-amino-3-(3-hydroxy-5-isoxazolyl)propionic acid [HIBO, (RS)-4] so far known typically interact with iGluRs as well as metabotropic Glu receptors (mGluRs). We here report the synthesis and pharmacology of a series of 4-substituted analogues of HIBO. The hexyl analogue 9 was shown...... to originate in (S)-11 (EC(50) = 395 microM, K(b) = 86 and 90 microM, respectively). Compound 9, administered icv, but not sc, was shown to protect mice against convulsions induced by N-methyl-D-aspartic acid (NMDA). Compounds 9 and 11 were resolved using chiral HPLC, and the configurational assignments...

  9. The selective conversion of glutamic acid in amino acid mixtures using glutamate decarboxylase--a means of separating amino acids for synthesizing biobased chemicals.

    Science.gov (United States)

    Teng, Yinglai; Scott, Elinor L; Sanders, Johan P M

    2014-01-01

    Amino acids (AAs) derived from hydrolysis of protein rest streams are interesting feedstocks for the chemical industry due to their functionality. However, separation of AAs is required before they can be used for further applications. Electrodialysis may be applied to separate AAs, but its efficiency is limited when separating AAs with similar isoelectric points. To aid the separation, specific conversion of an AA to a useful product with different charge behavior to the remaining compounds is desired. Here the separation of L-aspartic acid (Asp) and L-glutamic acid (Glu) was studied. L-Glutamate α-decarboxylase (GAD, Type I, EC 4.1.1.15) was applied to specifically convert Glu into γ-aminobutyric acid (GABA). GABA has a different charge behavior from Asp therefore allowing a potential separation by electrodialysis. Competitive inhibition and reduced operational stability caused by Asp could be eliminated by maintaining a sufficiently high concentration of Glu. Immobilization of GAD does not reduce the enzyme's initial activity. However, the operational stability was slightly reduced. An initial study on the reaction operating in a continuous mode was performed using a column reactor packed with immobilized GAD. As the reaction mixture was only passed once through the reactor, the conversion of Glu was lower than expected. To complete the conversion of Glu, the stream containing Asp and unreacted Glu might be recirculated back to the reactor after GABA has been removed. Overall, the reaction by GAD is specific to Glu and can be applied to aid the electrodialysis separation of Asp and Glu. © 2014 American Institute of Chemical Engineers.

  10. Regulation of dopamine D1 receptor dynamics within the postsynaptic density of hippocampal glutamate synapses.

    Directory of Open Access Journals (Sweden)

    Laurent Ladepeche

    Full Text Available Dopamine receptor potently modulates glutamate signalling, synaptic plasticity and neuronal network adaptations in various pathophysiological processes. Although key intracellular signalling cascades have been identified, the cellular mechanism by which dopamine and glutamate receptor-mediated signalling interplay at glutamate synapse remain poorly understood. Among the cellular mechanisms proposed to aggregate D1R in glutamate synapses, the direct interaction between D1R and the scaffold protein PSD95 or the direct interaction with the glutamate NMDA receptor (NMDAR have been proposed. To tackle this question we here used high-resolution single nanoparticle imaging since it provides a powerful way to investigate at the sub-micron resolution the dynamic interaction between these partners in live synapses. We demonstrate in hippocampal neuronal networks that dopamine D1 receptors (D1R laterally diffuse within glutamate synapses, in which their diffusion is reduced. Disrupting the interaction between D1R and PSD95, through genetical manipulation and competing peptide, did not affect D1R dynamics in glutamatergic synapses. However, preventing the physical interaction between D1R and the GluN1 subunit of NMDAR abolished the synaptic stabilization of diffusing D1R. Together, these data provide direct evidence that the interaction between D1R and NMDAR in synapses participate in the building of the dopamine-receptor-mediated signalling, and most likely to the glutamate-dopamine cross-talk.

  11. Structure-activity relationship of daptomycin analogues with substitution at (2S, 3R) 3-methyl glutamic acid position.

    Science.gov (United States)

    Lin, Du'an; Lam, Hiu Yung; Han, Wenbo; Cotroneo, Nicole; Pandya, Bhaumik A; Li, Xuechen

    2017-02-01

    Daptomycin is a highly effective lipopeptide antibiotic against Gram-positive pathogens. The presence of (2S, 3R) 3-methyl glutamic acid (mGlu) in daptomycin has been found to be important to the antibacterial activity. However the role of (2S, 3R) mGlu is yet to be revealed. Herein, we reported the syntheses of three daptomycin analogues with (2S, 3R) mGlu substituted by (2S, 3R) methyl glutamine (mGln), dimethyl glutamic acid and (2S, 3R) ethyl glutamic acid (eGlu), respectively, and their antibacterial activities. The detailed synthesis of dimethyl glutamic acid was also reported. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Poly(dA-dT).poly(dA-dT) two-pathway proton exchange mechanism. Effect of general and specific base catalysis on deuteration rates

    International Nuclear Information System (INIS)

    Hartmann, B.; Leng, M.; Ramstein, J.

    1986-01-01

    The deuteration rates of the poly(dA-dT).poly(dA-dT) amino and imino protons have been measured with stopped-flow spectrophotometry as a function of general and specific base catalyst concentration. Two proton exchange classes are found with time constants differing by a factor of 10 (4 and 0.4 s-1). The slower class represents the exchange of the adenine amino protons whereas the proton of the faster class has been assigned to the thymine imino proton. The exchange rates of these two classes of protons are independent of general and specific base catalyst concentration. This very characteristic behavior demonstrates that in our experimental conditions the exchange rates of the imino and amino protons in poly(dA-dT).poly(dA-dT) are limited by two different conformational fluctuations. We present a three-state exchange mechanism accounting for our experimental results

  13. Poly(amic acid)s and their poly(amide imide) counterparts containing azobenzene moieties: Characterization, imidization kinetics and photochromic properties

    Energy Technology Data Exchange (ETDEWEB)

    Konieczkowska, Jolanta [Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Sklodowska Str., 41-819 Zabrze (Poland); Institute of Chemistry, University of Silesia, 9 Szkolna Str., 40-006 Katowice (Poland); Janeczek, Henryk [Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Sklodowska Str., 41-819 Zabrze (Poland); Kozanecka-Szmigiel, Anna, E-mail: annak@if.pw.edu.pl [Faculty of Physics, Warsaw University of Technology, 75 Koszykowa Str., 00-662 Warszawa (Poland); Schab-Balcerzak, Ewa, E-mail: eschab-balcerzak@cmpw-pan.edu.pl [Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Sklodowska Str., 41-819 Zabrze (Poland)

    2016-09-01

    We report on a series of novel photochromic poly(amide imide)s and their poly(amic acid) precursors bearing azobenzene chromophores as the side groups. The chemical structures of the polymers were designed so that they exhibited an enhanced thermal stability combined with a large and stable birefringence photogenerated by light of the wavelengths belonging to a wide spectral range. The polymers possessed rigidly attached azochromophores in the content of either one or two per a repeating unit, which in the latter case differed in their structures. The imidization kinetics of the poly(amic acid)s was investigated by differential scanning calorimetry and the kinetic parameters were estimated using Ozawa and Kissinger methods. Measurements of the selected physical properties of the polymers, such as solubility, supramolecular structure, linear absorption, thermal stability, glass transition and photochromic response were performed and used for determination of the structure-property relations. The measurements of photochromic properties showed a very efficient generation of optical anisotropy upon blue and violet irradiation, for both the poly(amide imide)s containing two different chromophores in the repeating unit and for their precursors. For these poly(amide imide)s and for their precursors an exceptionally slow decrease in the photoinduced optical anisotropy in the dark was also observed. - Highlights: • Three azopoly(amide imide)s were obtained from azopoly(amic acid)s. • Chosen physicochemical properties and photochromic responses were measured. • Desired optical response was found for polymers with two azo-dyes in repeating unit. • Structure-property relations were shown.

  14. Effect of electronic coupling of Watson-Crick hopping in DNA poly(dA)-poly(dT)

    Science.gov (United States)

    Risqi, A. M.; Yudiarsah, E.

    2017-07-01

    Charge transport properties of poly(dA)-poly(dT) DNA has been studied by using thigh binding Hamiltonian approach. Molecule DNA that we use consist of 32 base pair of adenine (A) and thymine (T) and backbone is consist of phosphate and sugar. The molecule DNA is contacted electrode at both ends. Charge transport in molecule DNA depend on the environment, we studied the effect of electronic coupling of Watson-Crick hopping in poly(dA)-poly(dT) DNA to transmission probability and characteristic I-V. The electronic coupling constant influence charge transport between adenine-thymine base pairs at the same site. Transmission probability is studied by using transfer matrix and scattering matrix method, and the result of transmission probability is used to calculate the characteristic I-V by using formula Landauer Buttiker. The result shows that when the electronic coupling increase then transmission probability and characteristic I-V increase slightly.

  15. Evidence for increased cellular uptake of glutamate and aspartate in the rat hippocampus during kainic acid seizures. A microdialysis study using the "indicator diffusion' method

    DEFF Research Database (Denmark)

    Bruhn, T; Christensen, Thomas; Diemer, Nils Henrik

    1997-01-01

    Using a newly developed technique, based on microdialysis, which allows cellular uptake of glutamate and aspartate to be studied in awake animals, we investigated uptake of glutamate and aspartate in the hippocampal formation of rats during limbic seizures induced by systemical administration of ....... The results indicate that during KA-induced seizures, uptake of glutamate and aspartate is increased, possibly aimed at maintaining the extracellular homeostasis of these two excitatory amino acids.......Using a newly developed technique, based on microdialysis, which allows cellular uptake of glutamate and aspartate to be studied in awake animals, we investigated uptake of glutamate and aspartate in the hippocampal formation of rats during limbic seizures induced by systemical administration...... of kainic acid (KA). With [14C]mannitol as an extracellular reference substance, the cellular extraction of the test substance [3H]D-aspartate was measured at different stages of seizure-activity. The results were compared to those obtained in a sham operated control group. During severe generalized clonic...

  16. Identification and quantitation of new glutamic acid derivatives in soy sauce by UPLC/MS/MS.

    Science.gov (United States)

    Frerot, Eric; Chen, Ting

    2013-10-01

    Glutamic acid is an abundant amino acid that lends a characteristic umami taste to foods. In fermented foods, glutamic acid can be found as a free amino acid formed by proteolysis or as a non-proteolytic derivative formed by microorganisms. The aim of the present study was to identify different structures of glutamic acid derivatives in a typical fermented protein-based food product, soy sauce. An acidic fraction was prepared with anion-exchange solid-phase extraction (SPE) and analyzed by UPLC/MS/MS and UPLC/TOF-MS. α-Glutamyl, γ-glutamyl, and pyroglutamyl dipeptides, as well as lactoyl amino acids, were identified in the acidic fraction of soy sauce. They were chemically synthesized for confirmation of their occurrence and quantified in the selected reaction monitoring (SRM) mode. Pyroglutamyl dipeptides accounted for 770 mg/kg of soy sauce, followed by lactoyl amino acids (135 mg/kg) and γ-glutamyl dipeptides (70 mg/kg). In addition, N-succinoylglutamic acid was identified for the first time in food as a minor compound in soy sauce (5 mg/kg). Copyright © 2013 Verlag Helvetica Chimica Acta AG, Zürich.

  17. D-Lactic acid biosynthesis from biomass-derived sugars via Lactobacillus delbrueckii fermentation.

    Science.gov (United States)

    Zhang, Yixing; Vadlani, Praveen V

    2013-12-01

    Poly-lactic acid (PLA) derived from renewable resources is considered to be a good substitute for petroleum-based plastics. The number of poly L-lactic acid applications is increased by the introduction of a stereocomplex PLA, which consists of both poly-L and D-lactic acid and has a higher melting temperature. To date, several studies have explored the production of L-lactic acid, but information on biosynthesis of D-lactic acid is limited. Pulp and corn stover are abundant, renewable lignocellulosic materials that can be hydrolyzed to sugars and used in biosynthesis of D-lactic acid. In our study, saccharification of pulp and corn stover was done by cellulase CTec2 and sugars generated from hydrolysis were converted to D-lactic acid by a homofermentative strain, L. delbrueckii, through a sequential hydrolysis and fermentation process (SHF) and a simultaneous saccharification and fermentation process (SSF). 36.3 g L(-1) of D-lactic acid with 99.8 % optical purity was obtained in the batch fermentation of pulp and attained highest yield and productivity of 0.83 g g(-1) and 1.01 g L(-1) h(-1), respectively. Luedeking-Piret model described the mixed growth-associated production of D-lactic acid with a maximum specific growth rate 0.2 h(-1) and product formation rate 0.026 h(-1), obtained for this strain. The efficient synthesis of D-lactic acid having high optical purity and melting point will lead to unique stereocomplex PLA with innovative applications in polymer industry.

  18. Biodegradable poly(lactic acid)

    Indian Academy of Sciences (India)

    The fabrication of biodegradable poly(lactic acid) (PLA) microspheres containing total alkaloids of Caulis sinomenii was investigated. The formation, diameter, morphology and properties of the microspheres were characterized using Fourier transform infrared spectroscopy (FT–IR), laser particle size analyser and scanning ...

  19. Insight into the collagen assembly in the presence of lysine and glutamic acid: An in vitro study.

    Science.gov (United States)

    Liu, Xinhua; Dan, Nianhua; Dan, Weihua

    2017-01-01

    The aim of this study is to evaluate the effects of two different charged amino acids in collagen chains, lysine and glutamic acid, on the fibrillogenesis process of collagen molecules. The turbidity, zeta potential, and fiber diameter analysis suggest that introducing the positively charged lysine into collagen might improve the sizes or amounts of the self-assembled collagen fibrils significantly. Conversely, the negatively charged glutamic acid might restrict the self-assembly of collagen building blocks into a higher order structure. Meanwhile, the optimal fibrillogenesis condition is achieved when the concentration of lysine reaches to 1mM. Both scanning electron microscopy (SEM) and atomic force microscope (AFM) analysis indicates that compared to pure collagen fibrils, the reconstructed collagen-lysine co-fibrils exhibit a higher degree of inter-fiber entanglements with more straight and longer fibrils. Noted that the specific D-period patterns of the reconstructed collagen fibrils could be clearly discernible and the width of D-banding increases steadily after introducing lysine. Besides, the kinetic and thermodynamic collagen self-assembly analysis confirms that the rate constants of both the first and second assembly phase decrease after introducing lysine, and lysine could promote the process of collagen fibrillogenesis obeying the laws of thermodynamics. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Α-amino-β-fluorocyclopropanecarboxylic acids as a new tool for drug development: synthesis of glutamic acid analogs and agonist activity towards metabotropic glutamate receptor 4.

    Science.gov (United States)

    Lemonnier, Gérald; Lion, Cédric; Quirion, Jean-Charles; Pin, Jean-Philippe; Goudet, Cyril; Jubault, Philippe

    2012-08-01

    Herein we describe the diastereoselective synthesis of glutamic acid analogs and the evaluation of their agonist activity towards metabotropic glutamate receptor subtype 4 (mGluR4). These analogs are based on a monofluorinated cyclopropane core substituted with an α-aminoacid function. The potential of this new building block as a tool for the development of a novel class of drugs is demonstrated with racemic analog 11a that displayed the best agonist activity with an EC50 of 340 nM. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Development and Validation of a HPTLC Method for Simultaneous Estimation of L-Glutamic Acid and γ-Aminobutyric Acid in Mice Brain.

    Science.gov (United States)

    Sancheti, J S; Shaikh, M F; Khatwani, P F; Kulkarni, Savita R; Sathaye, Sadhana

    2013-11-01

    A new robust, simple and economic high performance thin layer chromatographic method was developed for simultaneous estimation of L-glutamic acid and γ-amino butyric acid in brain homogenate. The high performance thin layer chromatographic separation of these amino acid was achieved using n-butanol:glacial acetic acid:water (22:3:5 v/v/v) as mobile phase and ninhydrin as a derivatising agent. Quantitation of the method was achieved by densitometric method at 550 nm over the concentration range of 10-100 ng/spot. This method showed good separation of amino acids in the brain homogenate with Rf value of L-glutamic acid and γ-amino butyric acid as 21.67±0.58 and 33.67±0.58, respectively. The limit of detection and limit of quantification for L-glutamic acid was found to be 10 and 20 ng and for γ-amino butyric acid it was 4 and 10 ng, respectively. The method was also validated in terms of accuracy, precision and repeatability. The developed method was found to be precise and accurate with good reproducibility and shows promising applicability for studying pathological status of disease and therapeutic significance of drug treatment.

  2. Synthesis of new isoxazoline-based acidic amino acids and investigation of their affinity and selectivity profile at ionotropic glutamate receptors

    DEFF Research Database (Denmark)

    Pinto, Andrea; Conti, Paola; Grazioso, Giovanni

    2011-01-01

    The synthesis of four new isoxazoline-based amino acids being analogues of previously described glutamate receptor ligands is reported and their affinity for ionotropic glutamate receptors is analyzed in comparison with that of selected model compounds. Molecular modelling investigations have been...

  3. Markers of glutamate signaling in cerebrospinal fluid and serum from patients with bipolar disorder and healthy controls.

    Science.gov (United States)

    Pålsson, Erik; Jakobsson, Joel; Södersten, Kristoffer; Fujita, Yuko; Sellgren, Carl; Ekman, Carl-Johan; Ågren, Hans; Hashimoto, Kenji; Landén, Mikael

    2015-01-01

    Glutamate is the major excitatory neurotransmitter in the brain. Aberrations in glutamate signaling have been linked to the pathophysiology of mood disorders. Increased plasma levels of glutamate as well as higher glutamine+glutamate levels in the brain have been demonstrated in patients with bipolar disorder as compared to healthy controls. In this study, we explored the glutamate hypothesis of bipolar disorder by examining peripheral and central levels of amino acids related to glutamate signaling. A total of 215 patients with bipolar disorder and 112 healthy controls from the Swedish St. Göran bipolar project were included in this study. Glutamate, glutamine, glycine, L-serine and D-serine levels were determined in serum and in cerebrospinal fluid using high performance liquid chromatography with fluorescence detection. Serum levels of glutamine, glycine and D-serine were significantly higher whereas L-serine levels were lower in patients with bipolar disorder as compared to controls. No differences between the patient and control group in amino acid levels were observed in cerebrospinal fluid. The observed differences in serum amino acid levels may be interpreted as a systemic aberration in amino acid metabolism that affects several amino acids related to glutamate signaling. Copyright © 2014 Elsevier B.V. and ECNP. All rights reserved.

  4. Rich biotin content in lignocellulose biomass plays the key role in determining cellulosic glutamic acid accumulation by Corynebacterium glutamicum.

    Science.gov (United States)

    Wen, Jingbai; Xiao, Yanqiu; Liu, Ting; Gao, Qiuqiang; Bao, Jie

    2018-01-01

    Lignocellulose is one of the most promising alternative feedstocks for glutamic acid production as commodity building block chemical, but the efforts by the dominant industrial fermentation strain Corynebacterium glutamicum failed for accumulating glutamic acid using lignocellulose feedstock. We identified the existence of surprisingly high biotin concentration in corn stover hydrolysate as the determining factor for the failure of glutamic acid accumulation by Corynebacterium glutamicum . Under excessive biotin content, induction by penicillin resulted in 41.7 ± 0.1 g/L of glutamic acid with the yield of 0.50 g glutamic acid/g glucose. Our further investigation revealed that corn stover contained 353 ± 16 μg of biotin per kg dry solids, approximately one order of magnitude greater than the biotin in corn grain. Most of the biotin remained stable during the biorefining chain and the rich biotin content in corn stover hydrolysate almost completely blocked the glutamic acid accumulation. This rich biotin existence was found to be a common phenomenon in the wide range of lignocellulose biomass and this may be the key reason why the previous studies failed in cellulosic glutamic acid fermentation from lignocellulose biomass. The extended recording of the complete members of all eight vitamin B compounds in lignocellulose biomass further reveals that the major vitamin B members were also under the high concentration levels even after harsh pretreatment. The high content of biotin in wide range of lignocellulose biomass feedstocks and the corresponding hydrolysates was discovered and it was found to be the key factor in determining the cellulosic glutamic acid accumulation. The highly reserved biotin and the high content of their other vitamin B compounds in biorefining process might act as the potential nutrients to biorefining fermentations. This study creates a new insight that lignocellulose biorefining not only generates inhibitors, but also keeps nutrients

  5. Investigation of Complexation of Linear Poly(N-vinyl-2-pyrrolidone) with Poly(methacrylic acid-co-methyl methacrylate) Gel

    OpenAIRE

    Liu, Guoqin; Yan, Guojin; Zou, Wenjun; Li, Zhengxin

    2011-01-01

    The contraction of poly(methacrylic acid-co-methyl methacrylate) (P(MAA-co-MMA)) gel induced by complexation with linear poly(N-vinyl-2-pyrrolidone) (PVP) is quite different from that of poly(acrylic acid) (PAA) or poly(methacrylic acid) (PMAA) gel. It was found that the concentration of PVP has a strong effect on the complexation with P(MAA-co-MMA) gel. When PVP was introduced into the P(MAA-co-MMA) network, its dynamic mechanic properties vary greatly between complexed and uncomplexed netwo...

  6. Ionotropic glutamate receptors (iGluRs of the delta family (GluD1 and GluD2 and synaptogenesis

    Directory of Open Access Journals (Sweden)

    Muhammad Zahid Khan

    2017-08-01

    Full Text Available Glutamate delta-1 (GluD1 and glutamate delta-2 (GluD2 form the delta family of ionotropic glutamate receptors (iGluRs and are distinct from other (iGluRs in that they do not exhibit typical agonist-induced ion channel currents. Recent studies have demonstrated a crucial role of the delta receptors in synapse formation by interacting with presynaptic proteins such as Neurexin1. This review presents current knowledge regarding the expression, structure and function of Glu delta receptors (GluD1, GluD2 in brain, focusing on synapse formation, function and dysfunction.

  7. Synthesis and properties of radiation stabilized poly(α-amino acid)

    International Nuclear Information System (INIS)

    Nakagawa, T.; Shibata, T.

    1981-01-01

    In previous papers, one of the authors reported that modified poly(vinyl chloride) containing dithiocarbamate group has an excellent antiradiation property against γ-irradiation from the viewpoint of a negligibly small gaseous product, especially hydrogen chloride which was generated by radiolysis. Our studies of antiradiation polymers have now been extended to examine the stability of modified poly(α-amino acid) against γ-irradiation. Poly(α-amino acid) membranes have already been shown to be biologically compatible with blood and tissue. However, for practical uses of synthetic biomaterials, they would be required to be stable in the sterilization processing. The sterilization by γ-irradiation is more profitable for poly(α-amino acid) membranes which are less thermally stable. On the other hand, the transport of oxygen through poly(α-amino acid) membranes is of special interest because of the importance as a biomaterial for artificial lungs, skin and corneas. The purpose of the present study is to synthesize the antiradiation poly(α-amino acid) membranes by dithiocarbamate substitution, as well as to study the effect of dithiocarbamate substitution on the transport property of gases. (author)

  8. Effect of l-glutamic acid supplementation on performance and nitrogen balance of broilers fed low protein diets.

    Science.gov (United States)

    Bezerra, R M; Costa, F G P; Givisiez, P E N; Freitas, E R; Goulart, C C; Santos, R A; Souza, J G; Brandão, P A; Lima, M R; Melo, M L; Rodrigues, V P; Nogueira, E T; Vieira, D V G

    2016-06-01

    The aim of this study was to evaluate the effect of protein reduction and supplementation of l-glutamic acid in male broiler diets. A total of 648 chicks of the Cobb 500 strain were distributed in a completely randomized design with six treatments and six replications with eighteen birds per experimental unit. The study comprised pre-starter (1-7 days), starter (8-21 days), growth (22-35 days) and final (36-45 days) phases. The first treatment consisted of a control diet formulated according to the requirements of essential amino acids for each rearing phase. The second and third treatments had crude protein (CP) reduced by 1.8 and 3.6 percentage points (pp) in relation to the control diet respectively. In the fourth treatment, l-glutamic acid was added to provide the same glutamate level as the control diet, and in the last two treatments, the broilers were supplemented with 1 and 2 pp of glutamate above that of the control diet respectively. The reduction in CP decreased the performance of broilers and the supplementation of l-glutamic acid did not influence performance when supplied in the diets with excess of glutamate. The lowest excreted nitrogen values were observed in the control diet, and treatments 2 and 3, respectively, in comparison with treatments with the use of l-glutamic acid (5 and 6). Retention efficiency of nitrogen was better in the control diet and in the treatment with a reduction of 1.8 pp of CP. It was verified that the serum uric acid level decreased with the CP reduction. A reduction in CP levels of up to 21.3%, 18.8%, 18.32% and 17.57% is recommended in phases from 1 to 7, 8 to 21, 22 to 35 and at 36 to 42 days, respectively, with a level of glutamate at 5.32%, 4.73%, 4.57%, 4.38%, also in these phases. Journal of Animal Physiology and Animal Nutrition © 2015 Blackwell Verlag GmbH.

  9. Amino acid transamination is crucial for ischaemic cardioprotection in normal and preconditioned isolated rat hearts--focus on L-glutamate

    DEFF Research Database (Denmark)

    Løfgren, Bo; Povlsen, Jonas Agerlund; Rasmussen, Lars Ege

    2010-01-01

    We have found that cardioprotection by l-glutamate mimics protection by classical ischaemic preconditioning (IPC). We investigated whether the effect of IPC involves amino acid transamination and whether IPC modulates myocardial glutamate metabolism. In a glucose-perfused, isolated rat heart model...... subjected to 40 min global no-flow ischaemia and 120 min reperfusion, the effects of IPC (2 cycles of 5 min ischaemia and 5 min reperfusion) and continuous glutamate (20 mm) administration during reperfusion on infarct size and haemodynamic recovery were studied. The effect of inhibiting amino acid...... transamination was evaluated by adding the amino acid transaminase inhibitor amino-oxyacetate (AOA; 0.025 mm) during reperfusion. Changes in coronary effluent, interstitial (microdialysis) and intracellular glutamate ([GLUT](i)) concentrations were measured. Ischaemic preconditioning and postischaemic glutamate...

  10. Topochemical approach to efficiently produce main-chain poly(bile acid)s with high molecular weights.

    Science.gov (United States)

    Li, Weina; Li, Xuesong; Zhu, Wei; Li, Changxu; Xu, Dan; Ju, Yong; Li, Guangtao

    2011-07-21

    Based on a topochemical approach, a strategy for efficiently producing main-chain poly(bile acid)s in the solid state was developed. This strategy allows for facile and scalable synthesis of main-chain poly(bile acid)s not only with high molecular weights, but also with quantitative conversions and yields.

  11. Biomimetic scaffolds based on hydroxyapatite nanorod/poly(D,L) lactic acid with their corresponding apatite-forming capability and biocompatibility for bone-tissue engineering.

    Science.gov (United States)

    Nga, Nguyen Kim; Hoai, Tran Thanh; Viet, Pham Hung

    2015-04-01

    This study presents a facile synthesis of biomimetic hydroxyapatite nanorod/poly(D,L) lactic acid (HAp/PDLLA) scaffolds with the use of solvent casting combined with a salt-leaching technique for bone-tissue engineering. Field emission scanning electron microscopy, Fourier transform infrared spectroscopy, and energy-dispersive X-ray spectroscopy were used to observe the morphologies, pore structures of synthesized scaffolds, interactions between hydroxyapatite nanorods and poly(D,L) lactic acid, as well as the compositions of the scaffolds, respectively. Porosity of the scaffolds was determined using the liquid substitution method. Moreover, the apatite-forming capability of the scaffolds was evaluated through simulated body fluid (SBF) incubation tests, whereas the viability, attachment, and distribution of human osteoblast cells (MG 63 cell line) on the scaffolds were determined through alamarBlue assay and confocal laser microscopy after nuclear staining with 4',6-diamidino-2-phenylindole and actin filaments of a cytoskeleton with Oregon Green 488 phalloidin. Results showed that hydroxyapatite nanorod/poly(D,L) lactic acid scaffolds that mimic the structure of natural bone were successfully produced. These scaffolds possessed macropore networks with high porosity (80-84%) and mean pore sizes ranging 117-183 μm. These scaffolds demonstrated excellent apatite-forming capabilities. The rapid formation of bone-like apatites with flower-like morphology was observed after 7 days of incubation in SBFs. The scaffolds that had a high percentage (30 wt.%) of hydroxyapatite demonstrated better cell adhesion, proliferation, and distribution than those with low percentages of hydroxyapatite as the days of culture increased. This work presented an efficient route for developing biomimetic composite scaffolds, which have potential applications in bone-tissue engineering. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Dietary supplementation with arginine and glutamic acid modifies growth performance, carcass traits, and meat quality in growing-finishing pigs.

    Science.gov (United States)

    Hu, C J; Jiang, Q Y; Zhang, T; Yin, Y L; Li, F N; Deng, J P; Wu, G Y; Kong, X F

    2017-06-01

    Sixty Duroc × Large White × Landrace pigs with an average initial BW of 77.1 ± 1.3 kg were used to investigate the effects of dietary supplementation with arginine and glutamic acid on growth performance, carcass traits, and meat quality in growing-finishing pigs. The animals were randomly assigned to 1 of 5 treatment groups (12 pigs/group, male:female ratio 1:1). The pigs in the control group were fed a basal diet (basal diet group), and those in the experimental groups were fed the basal diet supplemented with 2.05% -alanine (isonitrogenous group), 1.0% -arginine (Arg group), 1% glutamic acid + 1.44% -alanine (Glu group), or 1.0% -arginine + 1.0% glutamic acid (Arg+Glu group). After a 60-d period of supplementation, growth performance, carcass traits, and meat quality were evaluated. The results showed no significant differences ( > 0.05) in growth performance and carcass traits of the pigs in the Arg group relative to the basal diet group; however, the longissimus dorsi (LD) muscle and back fat showed a decrease ( 0.05) on the final BW, phase 2 ADFI, and average daily weight gain in pigs but decreased ( acid composition without affecting growth performance and s.c. fat in pigs, providing a novel strategy to enhance meat quality in growing-finishing pigs.

  13. Inhibitors of glutamate dehydrogenase block sodium-dependent glutamate uptake in rat brain membranes

    Directory of Open Access Journals (Sweden)

    Brendan S Whitelaw

    2013-09-01

    Full Text Available We recently found evidence for anatomic and physical linkages between the astroglial Na+-dependent glutamate transporters (GLT-1/EAAT2 and GLAST/EAAT1 and mitochondria. In these same studies, we found that the glutamate dehydrogenase (GDH inhibitor, epigallocatechin-monogallate (EGCG, inhibits both glutamate oxidation and Na+-dependent glutamate uptake in astrocytes. In the present study, we extend this finding by exploring the effects of EGCG on Na+-dependent L-[3H]-glutamate (Glu uptake in crude membranes (P2 prepared from rat brain cortex. In this preparation, uptake is almost exclusively mediated by GLT-1. EGCG inhibited L-[3H]-Glu uptake in cortical membranes with an IC50 value of 230 µM. We also studied the effects of two additional inhibitors of GDH, hexachlorophene (HCP and bithionol (BTH. Both of these compounds also caused concentration-dependent inhibition of glutamate uptake in cortical membranes. Pre-incubating with HCP for up to 15 min had no greater effect than that observed with no pre-incubation, showing that the effects occur rapidly. HCP decreased the Vmax for glutamate uptake without changing the Km, consistent with a non-competitive mechanism of action. EGCG, HCP, and BTH also inhibited Na+-dependent transport of D-[3H]-aspartate (Asp, a non-metabolizable substrate, and [3H]-γ-aminobutyric acid (GABA. In contrast to the forebrain, glutamate uptake in crude cerebellar membranes (P2 is likely mediated by GLAST (EAAT1. Therefore, the effects of these compounds were examined in cerebellar membranes. In this region, none of these compounds had any effect on uptake of either L-[3H]-Glu or D-[3H]-Asp, but they all inhibited [3H]-GABA uptake. Together these studies suggest that GDH is preferentially required for glutamate uptake in forebrain as compared to cerebellum, and GDH may be required for GABA uptake as well. They also provide further evidence for a functional linkage between glutamate transport and mitochondria.

  14. Longitudinal acoustic properties of poly(lactic acid) and poly(lactic-co-glycolic acid)

    International Nuclear Information System (INIS)

    Parker, N G; Povey, M J W; Mather, M L; Morgan, S P

    2010-01-01

    Acoustics offers rich possibilities for characterizing and monitoring the biopolymer structures being employed in the field of biomedical engineering. Here we explore the rudimentary acoustic properties of two common biodegradable polymers: poly(lactic acid) and poly(lactic-co-glycolic acid). A pulse-echo technique is developed to reveal the bulk speed of sound, acoustic impedance and acoustic attenuation of small samples of the polymer across a pertinent temperature range of 0-70 0 C. The glass transition appears markedly as both a discontinuity in the first derivative of the speed of sound and a sharp increase in the acoustic attenuation. We further extend our analysis to consider the role of ethanol, whose presence is observed to dramatically modify the acoustic properties and reduce the glass transition temperature of the polymers. Our results highlight the sensitivity of acoustic properties to a range of bulk properties, including visco-elasticity, molecular weight, co-polymer ratio, crystallinity and the presence of plasticizers.

  15. Synthesis of novel N1-substituted bicyclic pyrazole amino acids and evaluation of their interaction with glutamate receptors

    DEFF Research Database (Denmark)

    Conti, Paola; Grazioso, Giovanni; di Ventimiglia, Samuele Joppolo

    2005-01-01

    N1-substituted bicyclic pyrazole amino acids (S)-9a-9c and (R)-9a-9c, which are conformationally constrained analogues of glutamic acid, were prepared via a strategy based on a 1,3-dipolar cycloaddition. The new amino acids were tested for activity at ionotropic and metabotropic glutamate receptors...

  16. Lignin poly(lactic acid) copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Olsson, Johan Vilhelm; Chung, Yi-Lin; Li, Russell Jingxian; Waymouth, Robert; Sattely, Elizabeth; Billington, Sarah; Frank, Curtis W.

    2017-02-14

    Provided herein are graft co-polymers of lignin and poly(lactic acid) (lignin-g-PLA copolymer), thermoset and thermoplastic polymers including them, methods of preparing these polymers, and articles of manufacture including such polymers.

  17. Influence of clay-nanofiller geometry on the structure and properties of poly(lactic acid)/thermoplastic polyurethane nanocomposites

    Czech Academy of Sciences Publication Activity Database

    Kelnar, Ivan; Kratochvíl, Jaroslav; Fortelný, Ivan; Kaprálková, Ludmila; Zhigunov, Alexander; Nevoralová, Martina; Kotrisová, M.; Khunová, V.

    2016-01-01

    Roč. 6, č. 36 (2016), s. 30755-30762 ISSN 2046-2069 R&D Projects: GA ČR(CZ) GA13-15255S Institutional support: RVO:61389013 Keywords : poly (epsilon-caprolactone) * poly (lactic acid) * microfibrillar composites Subject RIV: JI - Composite Materials Impact factor: 3.108, year: 2016

  18. Lipoic acid effects on glutamate and taurine concentrations in rat hippocampus after pilocarpine-induced seizures

    Directory of Open Access Journals (Sweden)

    P S Santos

    2011-01-01

    Full Text Available Pilocarpine-induced seizures can be mediated by increases in oxidative stress and by cerebral amino acid changes. The present research suggests that antioxidant compounds may afford some level of neuroprotection against the neurotoxicity of seizures in cellular level. The objective of the present study was to evaluate the lipoic acid (LA effects in glutamate and taurine contents in rat hippocampus after pilocarpine-induced seizures. Wistar rats were treated intraperitoneally (i.p. with 0.9% saline (Control, pilocarpine (400 mg/kg, Pilocarpine, LA (10 mg/kg, LA, and the association of LA (10 mg/kg plus pilocarpine (400 mg/kg, that was injected 30 min before of administration of LA (LA plus pilocarpine. Animals were observed during 24 h. The amino acid concentrations were measured using high-performance liquid chromatograph (HPLC. In pilocarpine group, it was observed a significant increase in glutamate content (37% and a decrease in taurine level (18% in rat hippocampus, when compared to control group. Antioxidant pretreatment significantly reduced the glutamate level (28% and augmented taurine content (32% in rat hippocampus, when compared to pilocarpine group. Our findings strongly support amino acid changes in hippocampus during seizures induced by pilocarpine, and suggest that glutamate-induced brain damage plays a crucial role in pathogenic consequences of seizures, and imply that strong protective effect could be achieved using lipoic acid through the release or decrease in metabolization rate of taurine amino acid during seizures.

  19. Investigation of Complexation of Linear Poly(N-vinyl-2-pyrrolidone with Poly(methacrylic acid-co-methyl methacrylate Gel

    Directory of Open Access Journals (Sweden)

    Guoqin Liu

    2011-01-01

    Full Text Available The contraction of poly(methacrylic acid-co-methyl methacrylate (P(MAA-co-MMA gel induced by complexation with linear poly(N-vinyl-2-pyrrolidone (PVP is quite different from that of poly(acrylic acid (PAA or poly(methacrylic acid (PMAA gel. It was found that the concentration of PVP has a strong effect on the complexation with P(MAA-co-MMA gel. When PVP was introduced into the P(MAA-co-MMA network, its dynamic mechanic properties vary greatly between complexed and uncomplexed networks. It had the following results: (1 the higher modulus ratio; (2 a slight contraction of gel.

  20. Selective fluorescent detection of aspartic acid and glutamic acid employing dansyl hydrazine dextran conjugate.

    Science.gov (United States)

    Nasomphan, Weerachai; Tangboriboonrat, Pramuan; Tanapongpipat, Sutipa; Smanmoo, Srung

    2014-01-01

    Highly water soluble polymer (DD) was prepared and evaluated for its fluorescence response towards various amino acids. The polymer consists of dansyl hydrazine unit conjugated into dextran template. The conjugation enhances higher water solubility of dansyl hydrazine moiety. Of screened amino acids, DD exhibited selective fluorescence quenching in the presence of aspartic acid (Asp) and glutamic acid (Glu). A plot of fluorescence intensity change of DD against the concentration of corresponding amino acids gave a good linear relationship in the range of 1 × 10(-4) M to 25 × 10(-3) M. This establishes DD as a potential polymeric sensor for selective sensing of Asp and Glu.

  1. Fermentation and recovery of L-glutamic acid from cassava starch hydrolysate by ion-exchange resin column

    Directory of Open Access Journals (Sweden)

    Nampoothiri K. Madhavan

    1999-01-01

    Full Text Available Investigations were carried out with the aim of producing L-glutamic acid from Brevibacterium sp. by utilizing a locally available starchy substrate, cassava (Manihot esculenta Crantz. Initial studies were carried out in shake flasks, which showed that even though the yield was high with 85-90 DE (Dextrose Equivalent value, the maximum conversion yield (~34% was obtained by using only partially digested starch hydrolysate, i.e. 45-50 DE. Fermentations were carried out in batch mode in a 5 L fermenter, using suitably diluted cassava starch hydrolysate, using a 85-90 DE value hydrolysate. Media supplemented with nutrients resulted in an accumulation of 21 g/L glutamic acid with a fairly high (66.3% conversation yield of glucose to glutamic acid (based on glucose consumed and on 81.74% theoretical conversion rate. The bioreactor conditions most conducive for maximum production were pH 7.5, temperature 30°C and an agitation of 180 rpm. When fermentation was conducted in fed-batch mode by keeping the residual reducing sugar concentration at 5% w/v, 25.0 g/L of glutamate was obtained after 40 h fermentation (16% more the batch mode. Chromatographic separation by ion-exchange resin was used for the recovery and purification of glutamic acid. It was further crystallized and separated by making use of its low solubility at the isoelectric point (pH 3.2.

  2. The dissolution of natural and artificial dusts in glutamic acid

    Science.gov (United States)

    Ling, Zhang; Faqin, Dong; Xiaochun, He

    2015-06-01

    This article describes the characteristics of natural dusts, industrial dusts, and artificial dusts, such as mineral phases, chemical components, morphological observation and size. Quartz and calcite are the main phases of natural dusts and industrial dusts with high SiO2 and CaO and low K2O and Na2O in the chemical composition. The dissolution and electrochemical action of dusts in glutamic acid liquor at the simulated human body temperature (37 °C) in 32 h was investigated. The potential harm that the dust could lead to in body glutamic acid acidic environment, namely biological activity, is of great importance for revealing the human toxicological mechanism. The changes of pH values and electric conductivity of suspension of those dusts were similar, increased slowly in the first 8 h, and then the pH values increased rapidly. The total amount of dissolved ions of K, Ca, Na, and Mg was 35.4 to 429 mg/kg, particularly Ca was maximal of 20 to 334 mg/kg. The total amount of dissolved ions of Fe, Zn, Mn, Pb, and Ba was 0.18 to 5.59 mg/kg and in Al and Si was 3.0 to 21.7 mg/kg. The relative solubility order of dusts in glutamic acid is wollastonite > serpentine > sepiolite, the cement plant industrial dusts > natural dusts > power plant industrial dusts. The wollastonite and cement plant industrial dusts have the highest solubility, which also have high content of CaO; this shows that there are a poorer corrosion-resisting ability and lower bio-resistibility. Sepiolite and power plant industrial dusts have lowest solubility, which also have high content of SiO2; this shows that there are a higher corrosion-resisting ability and stronger bio-resistibility.

  3. Gas-phase salt bridge interactions between glutamic acid and arginine

    NARCIS (Netherlands)

    Jaeqx, S.; Oomens, J.; Rijs, A.M.

    2013-01-01

    The gas-phase side chain-side chain (SC-SC) interaction and possible proton transfer between glutamic acid (Glu) and arginine (Arg) residues are studied under low-temperature conditions in an overall neutral peptide. Conformation-specific IR spectra, obtained with the free electron laser FELIX, in

  4. Catalysis of the Oligomerization of O-Phospho-Serine, Aspartic Acid, or Glutamic Acid by Cationic Micelles

    Science.gov (United States)

    Bohler, Christof; Hill, Aubrey R., Jr.; Orgel, Leslie E.

    1996-01-01

    Treatment of relatively concentrated aqueous solutions of 0-phospho-serine (50 mM), aspartic acid (100 mM) or glutamic acid (100 mM) with carbonyldiimidazole leads to the formation of an activated intermediate that oligomerizes efficiently. When the concentration of amino acid is reduced tenfold, few long oligomers can be detected. Positively-charged cetyltrimethyl ammonium bromide micelles concentrate the negatively-charged activated intermediates of the amino acids at their surfaces and catalyze efficient oligomerization even from dilute solutions.

  5. Poly(Aspartic Acid) Degradation by a Sphingomonas sp. Isolated from Freshwater

    OpenAIRE

    Tabata, Kenji; Kasuya, Ken-Ichi; Abe, Hideki; Masuda, Kozue; Doi, Yoshiharu

    1999-01-01

    A poly(aspartic acid) degrading bacterium (strain KT-1 [JCM10459]) was isolated from river water and identified as a member of the genus Sphingomonas. The isolate degraded only poly(aspartic acid)s of low molecular masses (

  6. Novel 1-hydroxyazole bioisosteres of glutamic acid. Synthesis, protolytic properties, and pharmacology

    DEFF Research Database (Denmark)

    Stensbøl, Tine B; Uhlmann, Peter; Morel, Sandrine

    2002-01-01

    A number of 1-hydroxyazole derivatives were synthesized as bioisosteres of (S)-glutamic acid (Glu) and as analogues of the AMPA receptor agonist (R,S)-2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid (AMPA, 3b). All compounds were subjected to in vitro pharmacological studies, including ...

  7. Annotating Enzymes of Uncertain Function: The Deacylation of d-Amino Acids by Members of the Amidohydrolase Superfamily

    Energy Technology Data Exchange (ETDEWEB)

    Cummings, J.; Fedorov, A; Xu, C; Brown, S; Fedorov, E; Babbitt, P; Almo, S; Raushel, F

    2009-01-01

    The catalytic activities of three members of the amidohydrolase superfamily were discovered using amino acid substrate libraries. Bb3285 from Bordetella bronchiseptica, Gox1177 from Gluconobacter oxidans, and Sco4986 from Streptomyces coelicolor are currently annotated as d-aminoacylases or N-acetyl-d-glutamate deacetylases. These three enzymes are 22-34% identical to one another in amino acid sequence. Substrate libraries containing nearly all combinations of N-formyl-d-Xaa, N-acetyl-d-Xaa, N-succinyl-d-Xaa, and l-Xaa-d-Xaa were used to establish the substrate profiles for these enzymes. It was demonstrated that Bb3285 is restricted to the hydrolysis of N-acyl-substituted derivatives of d-glutamate. The best substrates for this enzyme are N-formyl-d-glutamate (k{sub cat}/K{sub m} = 5.8 x 10{sup 6} M{sup -1} s{sup -1}), N-acetyl-d-glutamate (k{sub cat}/K{sub m} = 5.2 x 10{sup 6} M{sup -1} s{sup -1}), and l-methionine-d-glutamate (k{sub cat}/K{sub m} = 3.4 x 10{sup 5} M{sup -1} s{sup -1}). Gox1177 and Sco4986 preferentially hydrolyze N-acyl-substituted derivatives of hydrophobic d-amino acids. The best substrates for Gox1177 are N-acetyl-d-leucine (k{sub cat}/K{sub m} = 3.2 x 104 M{sup -1} s-1), N-acetyl-d-tryptophan (kcat/Km = 4.1 x 104 M-1 s-1), and l-tyrosine-d-leucine (kcat/Km = 1.5 x 104 M-1 s-1). A fourth protein, Bb2785 from B. bronchiseptica, did not have d-aminoacylase activity. The best substrates for Sco4986 are N-acetyl-d-phenylalanine and N-acetyl-d-tryptophan. The three-dimensional structures of Bb3285 in the presence of the product acetate or a potent mimic of the tetrahedral intermediate were determined by X-ray diffraction methods. The side chain of the d-glutamate moiety of the inhibitor is ion-paired to Arg-295, while the {alpha}-carboxylate is ion-paired with Lys-250 and Arg-376. These results have revealed the chemical and structural determinants for substrate specificity in this protein. Bioinformatic analyses of an additional {approx}250

  8. Effects of initial supersaturation on spontaneous precipitation of calcium carbonate in the presence of charged poly-L-amino acids.

    Science.gov (United States)

    Njegić-Dzakula, Branka; Falini, Giuseppe; Brecević, Ljerka; Skoko, Zeljko; Kralj, Damir

    2010-03-15

    Spontaneous precipitation of calcium carbonate was investigated in two precipitation systems: (1) with initial supersaturation lower than that corresponding to the solubility of amorphous calcium carbonate (ACC), at which vaterite precipitated, and (2) with initial supersaturation higher than that of ACC solubility, at which a mixture of calcite and vaterite was formed. After the addition of an acidic polypeptide, poly-L-glutamic acid (pGlu) or poly-L-aspartic acid (pAsp), into (1) a significant inhibition of nucleation, expressed as an increase in induction time, and growth of vaterite, perceived as a dead zone, was observed. Extent of inhibition decreased in the order: Inh(pAps)>Inh(pGlu)>Inh(pLys). The addition of a polypeptide into (2) caused the inhibition of precipitation and changed the morphology and polymorphic composition of the precipitate; only vaterite appeared at approximately c(pAsp)=3 ppm, c(pGlu)=6 ppm, or c(pLys)=7 ppm. This finding is explained as a consequence of kinetic constraints through the inhibition of calcite nucleation and stronger binding of acidic polypeptide by the calcite surfaces than by the vaterite surfaces. Laboratory precipitation studies using conditions that resemble those in living organism should be run at an initial supersaturation corresponding to the solubility of ACC as a limiting condition. 2009 Elsevier Inc. All rights reserved.

  9. Pharmacology of (S)-homoquisqualic acid and (S)-2-amino-5-phosphonopentanoic acid [(S)-AP5] at cloned metabotropic glutamate receptors

    DEFF Research Database (Denmark)

    Bräuner-Osborne, Hans; Krogsgaard-Larsen, P

    1998-01-01

    1 In this study we have determined the pharmacological profile of (S)-quisqualic acid, (S)-2-amino-4-phosphonobutyric acid ((S)-AP4) and their higher homologues (S)-homoquisqualic acid, (S)-2-amino-5-phosphonopentanoic acid ((S)-AP5), respectively, and (R)-AP5 at subtypes of metabotropic (S)-glutamic...... demonstrate that incorporation of an additional carbon atom into the backbone of (S)-glutamic acid and its analogues, to give the corresponding homologues, and replacement of the terminal carboxyl groups by isosteric acidic groups have profound effects on the pharmacological profiles at mGlu receptor subtypes...... acid (mGlu) receptors expressed in Chinese hamster ovary cells. 2 (S)-Quisqualic acid was a potent mGlu1/mGlu5 agonist (EC50 values of 1.1 microM and 0.055 microM, respectively) showing no activity at mGlu2 and weak agonism at mGlu4 (EC50 approximately 1000 microM). 3 (S)-Homoquisqualic acid displayed...

  10. AUTOANTIBODIES TO GLUTAMIC ACID DECARBOXYLASE AS A PATHOGENETIC MARKER OF TYPE I DIABETES MELLITUS

    Directory of Open Access Journals (Sweden)

    N. V. Piven

    2011-01-01

    Full Text Available Abstract. A new method of enzyme-linked immunosorbent assay (in solid-phase ELISA format has been developed to determine concentrations of autoantibodies to glutamic acid decarboxylase, as well as an evidencebased methodology is proposed for its medical implications, as a quantitative pathogenetic predictive marker of autoimmune diagnostics in type 1 diabetes mellitus. This technique could be implied for serial production of diagnostic reagent kits, aimed for detection of autoantibodies to glutamic acid decarboxylase by means of ELISA approach. (Med. Immunol., 2011, vol. 13, N 2-3, pp 257-260

  11. Detection of Glutamate and γ-aminobutyric Acid in Vitreous of Patients with Proliferative Diabetic Retinopathy

    Institute of Scientific and Technical Information of China (English)

    Juan Deng; De-Zheng Wu; Rulong Gao

    2000-01-01

    Purpose: To study the levels of glutamate and γ-aminobutyric acid (GABA) in vitreous of patients with proliferative diabetic retinopathy(PDR) and to investigate their roles in retinal ischemia.Method: Vitreous samples were collected from 25 patients (27 eyes) with PDR and 14patients ( 14 eyes) with idiopathic macular hole. Glutamate and GABA detection were performed by high-performance liquid chromatography (HPLC).Results: Patients with PDR had significantly higher concentrations of glutamate and GABA than the control group. The glutamate level has a significantly positive correlation with GABA level.Conclusion: Detection of glutamate and GABA in vitreous provides biochemical support for the mechanism and treatment of ischemic retinal damage in patients with PDR.

  12. Production of L-glutamic Acid with Corynebacterium glutamicum (NCIM 2168) and Pseudomonas reptilivora (NCIM 2598): A Study on Immobilization and Reusability.

    Science.gov (United States)

    Shyamkumar, Rajaram; Moorthy, Innasi Muthu Ganesh; Ponmurugan, Karuppiah; Baskar, Rajoo

    2014-07-01

    L-glutamic acid is one of the major amino acids that is present in a wide variety of foods. It is mainly used as a food additive and flavor enhancer in the form of sodium salt. Corynebacterium glutamicum (C. glutamicum) is one of the major organisms widely used for glutamic acid production. The study was dealing with immobilization of C. glutamicum and mixed culture of C. glutamicum and Pseudomonas reptilivora (P. reptilivora) for L-glutamic acid production using submerged fermentation. 2, 3 and 5% sodium alginate concentrations were used for production and reusability of immobilized cells for 5 more trials. The results revealed that 2% sodium alginate concentration produced the highest yield (13.026±0.247 g/l by C. glutamicum and 16.026±0.475 g/l by mixed immobilized culture). Moreover, reusability of immobilized cells was evaluated in 2% concentration with 5 more trials. However, when the number of cycles increased, the production of L-glutamic acid decreased. Production of glutamic acid using optimized medium minimizes the time needed for designing the medium composition. It also minimizes external contamination. Glutamic acid production gradually decreased due to multiple uses of beads and consequently it reduces the shelf life.

  13. Investigation of Localized Delivery of Diclofenac Sodium from Poly(D,L-Lactic Acid-co-Glycolic Acid)/Poly(Ethylene Glycol) Scaffolds Using an In Vitro Osteoblast Inflammation Model

    Science.gov (United States)

    Sidney, Laura E.; Heathman, Thomas R.J.; Britchford, Emily R.; Abed, Arif; Rahman, Cheryl V.

    2015-01-01

    Nonunion fractures and large bone defects are significant targets for osteochondral tissue engineering strategies. A major hurdle in the use of these therapies is the foreign body response of the host. Herein, we report the development of a bone tissue engineering scaffold with the ability to release anti-inflammatory drugs, in the hope of evading this response. Porous, sintered scaffolds composed of poly(D,L-lactic acid-co-glycolic acid) (PLGA) and poly(ethylene glycol) (PEG) were prepared with and without the anti-inflammatory drug diclofenac sodium. Analysis of drug release over time demonstrated a profile suitable for the treatment of acute inflammation with ∼80% of drug released over the first 4 days and a subsequent release of around 0.2% per day. Effect of drug release was monitored using an in vitro osteoblast inflammation model, comprised of mouse primary calvarial osteoblasts stimulated with proinflammatory cytokines interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and interferon-γ (IFN-γ). Levels of inflammation were monitored by cell viability and cellular production of nitric oxide (NO) and prostaglandin E2 (PGE2). The osteoblast inflammation model revealed that proinflammatory cytokine addition to the medium reduced cell viability to 33%, but the release of diclofenac sodium from scaffolds inhibited this effect with a final cell viability of ∼70%. However, releasing diclofenac sodium at high concentrations had a toxic effect on the cells. Proinflammatory cytokine addition led to increased NO and PGE2 production; diclofenac-sodium-releasing scaffolds inhibited NO release by ∼64% and PGE2 production by ∼52%, when the scaffold was loaded with the optimal concentration of drug. These observations demonstrate the potential use of PLGA/PEG scaffolds for localized delivery of anti-inflammatory drugs in bone tissue engineering applications. PMID:25104438

  14. Protective effects of dietary glycine and glutamic acid toward the toxic effects of oxidized mustard oil in rabbits.

    Science.gov (United States)

    Zeb, Alam; Rahman, Saleem Ur

    2017-01-25

    The protective role of glycine and glutamic acid against the toxic effects of oxidized oil was studied for the first time. Mustard seed oil was thermally oxidized and characterized for quality characteristics and polyphenolic composition using reversed phase HPLC-DAD. Significant changes in the quality characteristics occurred with thermal oxidation. Fourteen polyphenolic compounds were identified and quantified in oils. Quercetin-3-glucoside, quercetin-3-feruloylsophoroside, catechin, quercetin-3-rutinoside, quercetin-3,7-diglucoside, sinapic acid and vanillic acid hexoside were the major compounds in the fresh and oxidized oil. Oxidized, un-oxidized mustard oils, glycine and glutamic acid were given to rabbits alone or in combination. The biochemical responses were studied in terms of haematological and biochemical parameters and histopathology. It has been observed that biochemical and haematological parameters were adversely affected by the oxidized oil, while supplementation of both amino acids was beneficial in normalizing these parameters. Both amino acids alone have no significant effects, however, oxidized oil affected the liver by enhancing fat accumulation, causing hepatitis, reactive Kupffer cells and necrosis. The co-administration of oxidized oils with glycine or glutamic acid revealed significant recovery of the liver structure and function. In conclusion, glycine or glutamic acid is beneficial and protective against food toxicity and can be considered as an ameliorative food supplement.

  15. Biodegradation and Osteosarcoma Cell Cultivation on Poly(aspartic acid) Based Hydrogels.

    Science.gov (United States)

    Juriga, Dávid; Nagy, Krisztina; Jedlovszky-Hajdú, Angéla; Perczel-Kovách, Katalin; Chen, Yong Mei; Varga, Gábor; Zrínyi, Miklós

    2016-09-14

    Development of novel biodegradable and biocompatible scaffold materials with optimal characteristics is important for both preclinical and clinical applications. The aim of the present study was to analyze the biodegradability of poly(aspartic acid)-based hydrogels, and to test their usability as scaffolds for MG-63 osteoblast-like cells. Poly(aspartic acid) was fabricated from poly(succinimide) and hydrogels were prepared using natural amines as cross-linkers (diaminobutane and cystamine). Disulfide bridges were cleaved to thiol groups and the polymer backbone was further modified with RGD sequence. Biodegradability of the hydrogels was evaluated by experiments on the base of enzymes and cell culture medium. Poly(aspartic acid) hydrogels possessing only disulfide bridges as cross-links proved to be degradable by collagenase I. The MG-63 cells showed healthy, fibroblast-like morphology on the double cross-linked and RGD modified hydrogels. Thiolated poly(aspartic acid) based hydrogels provide ideal conditions for adhesion, survival, proliferation, and migration of osteoblast-like cells. The highest viability was found on the thiolated PASP gels while the RGD motif had influence on compacted cluster formation of the cells. These biodegradable and biocompatible poly(aspartic acid)-based hydrogels are promising scaffolds for cell cultivation.

  16. L-Glutamic acid production by Bacillus spp. isolated from vegetable ...

    African Journals Online (AJOL)

    Administrator

    2011-06-15

    Jun 15, 2011 ... 2Department of Botany and Microbiology, University of Ibadan, Ibadan, Oyo state, Nigeria. ... monosodium salt as a flavor enhancer in foods (Kikunae, ...... Madhavan KN, Ashok P (1996). Solid state fermentation for L – glutamic acid production using Brevibacterium sp. DSM 20411. J. Food. Sci. Technol.

  17. Central transport and distribution of labelled glutamic and aspartic acids to the cochlear nucleus in cats

    International Nuclear Information System (INIS)

    Kane, E.S.

    1979-01-01

    Tritiated L-glutamic acid or L-aspartic acid was injected unilaterally into the cochleas of adult cats, and 4 h-7 days later the localization of label was studied by light-microscopic autoradiography in sections of the brain stem. Consistent differences in labelling after glutamate and after aspartate suggest differences in their uptake, metabolic conversion and/or transport to the cochlear nucleus by cochlear fibers. The morphological differences shown here agree with the distribution of those two amino acids in the cat cochlear nucleus as shown by microchemical analyses. (author)

  18. Piezoelectric antibacterial fabric comprised of poly(l-lactic acid) yarn

    Science.gov (United States)

    Ando, Masamichi; Takeshima, Satoshi; Ishiura, Yutaka; Ando, Kanako; Onishi, Osamu

    2017-10-01

    A lactic acid monomer has an asymmetric carbon in the molecule, so there are optical isomer l- and d-type. The most widely used poly(lactic acid) (PLA) for commercial applications is poly(l-lactic acid) (PLLA). PLLA is the polymerization product of l-lactide. Certain treatments of PLLA can yield a film that exhibits shear piezoelectricity. Thus, piezoelectric PLLA fiber can be generated by micro slitting piezoelectric PLLA films or by a melt spinning method. We prepared left-handed helical multi fiber yarn (S-yarn) and right-handed helical yarn (Z-yarn) using piezoelectric PLLA fiber. PLLA exhibited shear mode piezoelectricity, causing the electric polarity of the yarn surface to be reversed on the S-yarn and Z-yarn when tension was applied. An SZ-yarn was produced by combining the S-yarn and Z-yarn, and fabric was prepared using the SZ-yarn. This study demonstrated that the fabric has a strong antibacterial effect, which is thought to be due to the strong electric field between the yarns. The field is generated by a piezoelectric effect when the fabric was extended and contracted.

  19. Depolarization-induced release of [(3)H]D-aspartate from GABAergic neurons caused by reversal of glutamate transporters

    DEFF Research Database (Denmark)

    Jensen, J B; Pickering, D S; Schousboe, A

    2000-01-01

    if glutamate in addition to gamma-aminobutyric acid (GABA) could be released from these cultures. The neurons were preloaded with [(3)H]D-aspartate and subsequently its release was followed during depolarization induced by a high potassium concentration or the alpha-amino-3-hydroxy-5-methyl-4......-isoxazolepropionic acid (AMPA) receptor agonists, AMPA and kainate. Depolarization of the neurons with 55 mM potassium increased the release of [(3)H]D-aspartate by more than 10-fold. When the non-specific calcium-channel blockers cobalt or lanthanum were included in the stimulation buffer with potassium......, the release of [(3)H]D-aspartate was decreased by about 40%. These results indicated that some of the released [(3)H]D-aspartate might originate from a vesicular pool. When AMPA was applied to the neurons, the release of [(3)H]D-aspartate was increased 2-fold and could not be prevented or decreased...

  20. Insight into the collagen assembly in the presence of lysine and glutamic acid: An in vitro study

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xinhua; Dan, Nianhua [Key Laboratory for Leather Chemistry and Engineering of the Education Ministry, Sichuan University, Chengdu, Sichuan 610065 (China); Research Center of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065 (China); Dan, Weihua, E-mail: danweihua_scu@126.com [Key Laboratory for Leather Chemistry and Engineering of the Education Ministry, Sichuan University, Chengdu, Sichuan 610065 (China); Research Center of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065 (China)

    2017-01-01

    The aim of this study is to evaluate the effects of two different charged amino acids in collagen chains, lysine and glutamic acid, on the fibrillogenesis process of collagen molecules. The turbidity, zeta potential, and fiber diameter analysis suggest that introducing the positively charged lysine into collagen might improve the sizes or amounts of the self-assembled collagen fibrils significantly. Conversely, the negatively charged glutamic acid might restrict the self-assembly of collagen building blocks into a higher order structure. Meanwhile, the optimal fibrillogenesis condition is achieved when the concentration of lysine reaches to 1 mM. Both scanning electron microscopy (SEM) and atomic force microscope (AFM) analysis indicates that compared to pure collagen fibrils, the reconstructed collagen-lysine co-fibrils exhibit a higher degree of inter-fiber entanglements with more straight and longer fibrils. Noted that the specific D-period patterns of the reconstructed collagen fibrils could be clearly discernible and the width of D-banding increases steadily after introducing lysine. Besides, the kinetic and thermodynamic collagen self-assembly analysis confirms that the rate constants of both the first and second assembly phase decrease after introducing lysine, and lysine could promote the process of collagen fibrillogenesis obeying the laws of thermodynamics. - Highlights: • The effects of two different charged amino acids in collagen chains on the collagen fibrillogenesis were evaluated. • The positively charged lysine could improve the sizes or amounts of self-assembled collagen fibrils. • The width of D-banding of the collagen-lysine co-fibrils increased steadily after introducing lysine. • The optimal fibrillogenesis was achieved when the concentration of lysine reached to 1 mM. • The kinetic and thermodynamic collagen self-assembly were both analyzed.

  1. Unusual differences in the reactivity of glutamic and aspartic acid in oxidative decarboxylation reactions

    NARCIS (Netherlands)

    But, Andrada; Wijst, van der Evie; Notre, le Jerome; Wever, Ron; Sanders, Johan P.M.; Bitter, Johannes H.; Scott, Elinor L.

    2017-01-01

    Amino acids are potential substrates to replace fossil feedstocks for the synthesis of nitriles via oxidative decarboxylation using vanadium chloroperoxidase (VCPO), H2O2 and bromide. Here the conversion of glutamic acid (Glu) and aspartic acid (Asp) was investigated. It was

  2. Molecular pharmacology of homologues of ibotenic acid at cloned metabotropic glutamic acid receptors

    DEFF Research Database (Denmark)

    Bräuner-Osborne, Hans; Nielsen, B; Krogsgaard-Larsen, P

    1998-01-01

    We have studied the effects of the enantiomers of 2-amino-3-(3-hydroxyisoxazol-5-yl)propionic acid (homoibotenic acid, HIBO) and analogues substituted with a methyl, bromo or butyl group in the four position of the ring at cloned metabotropic glutamate (mGlu) receptors expressed in Chinese hamster...... ovary (CHO) cells. In contrast to the parent compound ibotenic acid, which is a potent group I and II agonist, the (S)-forms of homoibotenic acid and its analogues are selective and potent group I antagonists whereas the (R)-forms are inactive both as agonists and antagonists at group I, II, and III m......Glu receptors. Interestingly, (S)-homoibotenic acid and the analogues display equal potency at both mGlu1alpha and mGlu5a with Ki values in the range of 97 to 490 microM, (S)-homoibotenic acid and (S)-2-amino-3-(4-butyl-3-hydroxyisoxazol-5-yl)propionic acid [(S)-4-butylhomoibotenic acid] displaying the lowest...

  3. Topological characterization of nanocrystalline cellulose reinforced Poly (lactic acid) and Poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) bionanocomposites

    Science.gov (United States)

    Bhat, A. H.; Dasan, Y. K.; Khan, Ihsan Ullah; Ahmad, Faiz; Ayoub, Muhammad

    2016-11-01

    This study was conducted to evaluate the morphological and barrier properties of nanocrystalline cellulose reinforced Poly (lactic acid) and Poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) bionanocomposites. Nanocrystalline cellulose was isolated from waste oil palm empty fruit bunch fiber using Sulphuric acid hydrolysis. Chemical modifications of nanocrystalline cellulose was performed to allow good compatibilization between fiber and the polymer matrices and also to improve dispersion of fillers. Bionanocomposite materials were produced from these nanocrystalline cellulose reinforced Poly (lactic acid) and Poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) using solvent casting and evaporation techniques. The properties of extracted nanocrystalline cellulose were examined using FT-IR spectroscopy, X-ray diffractometer, TEM and AFM. Besides that, the properties of bionanocomposites were examined through FESEM and oxygen permeability properties analysis. Better barrier and morphological properties were obtained for nanocrystalline cellulose reinforced bionanocomposites than for neat polymer blend.

  4. In vitro evidence for the brain glutamate efflux hypothesis: brain endothelial cells cocultured with astrocytes display a polarized brain-to-blood transport of glutamate.

    Science.gov (United States)

    Helms, Hans Christian; Madelung, Rasmus; Waagepetersen, Helle Sønderby; Nielsen, Carsten Uhd; Brodin, Birger

    2012-05-01

    The concentration of the excitotoxic amino acid, L-glutamate, in brain interstitial fluid is tightly regulated by uptake transporters and metabolism in astrocytes and neurons. The aim of this study was to investigate the possible role of the blood-brain barrier endothelium in brain L-glutamate homeostasis. Transendothelial transport- and accumulation studies of (3) H-L-glutamate, (3) H-L-aspartate, and (3) H-D-aspartate in an electrically tight bovine endothelial/rat astrocyte blood-brain barrier coculture model were performed. After 6 days in culture, the endothelium displayed transendothelial resistance values of 1014 ± 70 Ω cm(2) , and (14) C-D-mannitol permeability values of 0.88 ± 0.13 × 10(-6) cm s(-1) . Unidirectional flux studies showed that L-aspartate and L-glutamate, but not D-aspartate, displayed polarized transport in the brain-to-blood direction, however, all three amino acids accumulated in the cocultures when applied from the abluminal side. The transcellular transport kinetics were characterized with a K(m) of 69 ± 15 μM and a J(max) of 44 ± 3.1 pmol min(-1) cm(-2) for L-aspartate and a K(m) of 138 ± 49 μM and J(max) of 28 ± 3.1 pmol min(-1) cm(-2) for L-glutamate. The EAAT inhibitor, DL-threo-ß-Benzyloxyaspartate, inhibited transendothelial brain-to-blood fluxes of L-glutamate and L-aspartate. Expression of EAAT-1 (Slc1a3), -2 (Slc1a2), and -3 (Slc1a1) mRNA in the endothelial cells was confirmed by conventional PCR and localization of EAAT-1 and -3 in endothelial cells was shown with immunofluorescence. Overall, the findings suggest that the blood-brain barrier itself may participate in regulating brain L-glutamate concentrations. Copyright © 2012 Wiley Periodicals, Inc.

  5. Nanofiber mats composed of a chitosan-poly(d,l-lactic-co-glycolic acid)-poly(ethylene oxide) blend as a postoperative anti-adhesion agent.

    Science.gov (United States)

    Ko, Jae Eok; Ko, Young-Gwang; Kim, Won Il; Kwon, Oh Kyoung; Kwon, Oh Hyeong

    2017-10-01

    Postoperative tissue adhesion causes serious complications and suffering in 90% of patients after peritoneum surgery, while commercial anti-adhesion agents cannot completely prevent postoperative peritoneal adhesions. This study demonstrates electrospining of a blended solution of chitosan, poly(d,l-lactic-co-glycolic acid) (PLGA), and poly(ethylene oxide) (PEO) to fabricate a chitosan-based nanofibrous mat as a postoperative anti-adhesion agent. Rheological studies combined with scanning electron microscopy reveal that the spinnability of the chitosan-PLGA solution could be controlled by adjusting the blend ratio and concentration with average fiber diameter from 634 to 913 nm. Biodegradation of the nanofiber specimens showed accelerated hydrolysis by chitosan. Proliferation of fibroblasts and antimicrobial activity of nanofibers containing chitosan was analyzed. Abdominal defects with cecum adhesion in rats demonstrated that the blend nanofiber mats were effective in preventing tissue adhesion as a barrier (4 weeks after abdominal surgery) by coverage of exfoliated peritoneum and insufficient wound sites at the beginning of the wound healing process. Chitosan-PLGA-PEO blend nanofiber mats will provide a promising key as a postoperative anti-adhesion agent. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1906-1915, 2017. © 2016 Wiley Periodicals, Inc.

  6. Enhanced D-lactic acid production from renewable resources using engineered Lactobacillus plantarum.

    Science.gov (United States)

    Zhang, Yixing; Vadlani, Praveen V; Kumar, Amit; Hardwidge, Philip R; Govind, Revathi; Tanaka, Tsutomu; Kondo, Akihiko

    2016-01-01

    D-lactic acid is used as a monomer in the production of poly-D-lactic acid (PDLA), which is used to form heat-resistant stereocomplex poly-lactic acid. To produce cost-effective D-lactic acid by using all sugars derived from biomass efficiently, xylose-assimilating genes encoding xylose isomerase and xylulokinase were cloned into an L-lactate-deficient strain, Lactobacillus plantarum. The resulting recombinant strain, namely L. plantarum NCIMB 8826 ∆ldhL1-pLEM-xylAB, was able to produce D-lactic acid (at optical purity >99 %) from xylose at a yield of 0.53 g g(-1). Simultaneous utilization of glucose and xylose to produce D-lactic acid was also achieved by this strain, and 47.2 g L(-1) of D-lactic acid was produced from 37.5 g L(-1) glucose and 19.7 g L(-1) xylose. Corn stover and soybean meal extract (SBME) were evaluated as cost-effective medium components for D-lactic acid production. Optimization of medium composition using response surface methodology resulted in 30 % reduction in enzyme loading and 70 % reduction in peptone concentration. In addition, we successfully demonstrated D-lactic acid fermentation from corn stover and SBME in a fed-batch fermentation, which yielded 61.4 g L(-1) D-lactic acid with an overall yield of 0.77 g g(-1). All these approaches are geared to attaining high D-lactic acid production from biomass sugars to produce low-cost, highly thermostable biodegradable plastics.

  7. Interaction of the D-isomer of 4-methylene glutamate (4-MG) with an active site thiol group of γ-glutamylcysteine synthetase (γ-GCS)

    International Nuclear Information System (INIS)

    Simondsen, R.P.; Meister, A.

    1986-01-01

    γ-GCS has an SH-group at or close to the glutamate binding site. During efforts to find a covalently bound inhibitor, the authors examined interaction of the enzyme with 4-MG with the thought that a glutamate analog with an α,β-unsaturated moiety might bind to the glutamate site and react with the active site thiol. 4-MG is not a significant substrate, but inhibits in the usual assay. Preincubation of the enzyme with DL-4-MG inactivated markedly and to about the same extent as found after preincubation with half the concentration of D-4-MG (prepared by action of glutamate decarboxylase on DL-4-MG); L-4-MG did not inactivate. Inactivation by 4-MG was decreased in the presence of L-glutamate. Inactivation by 4-MG was prevented by prior treatment of the enzyme with cystamine, which forms a disulfide with the active site thiol. After inactivation of the enzyme with 4-[2- 14 C]MG followed by separation of the enzyme by gel filtration, 0.9 mole of label was found per mole of enzyme, amino acid analysis after acid hydrolysis of the labeled enzyme gave labeled products that include the expected adduct formed by reaction of cysteine with 4-MG

  8. Deterioration of the mechanical properties of calcium phosphate cements with Poly (γ-glutamic acid) and its strontium salt after in vitro degradation.

    Science.gov (United States)

    Liang, Ting; Gao, Chun-Xia; Yang, Lei; Saijilafu; Yang, Hui-Lin; Luo, Zong-Ping

    2017-11-01

    The mechanical reliability of calcium phosphate cements has restricted their clinical application in load-bearing locations. Although their mechanical strength can be improved using a variety of strategies, their fatigue properties are still unclear, especially after degradation. The evolutions of uniaxial compressive properties and the fatigue behavior of calcium phosphate cements incorporating poly (γ-glutamic acid) and its strontium salt after different in vitro degradation times were investigated in the present study. Compressive strength decreased from the 61.2±5.4MPa of the original specimen, to 51.1±4.4, 42.2±3.8, 36.8±2.4 and 28.9±3.2MPa following degradation for one, two, three and four weeks, respectively. Fatigue life under same loading condition also decreased with increasing degradation time. The original specimens remained intact for one million cycles (run-out) under a maximum stress of 30MPa. After degradation for one to four weeks, the specimens were able to withstand maximum stress of 20, 15, 10 and 10MPa, respectively until run-out. Defect volume fraction within the specimens increased from 0.19±0.021% of the original specimen to 0.60±0.19%, 1.09±0.04%, 2.68±0.64% and 7.18±0.34% at degradation time of one, two, three and four weeks, respectively. Therefore, we can infer that the primary cause of the deterioration of the mechanical properties was an increasing in micro defects induced by degradation, which promoted crack initiation and propagation, accelerating the final mechanical failure of the bone cement. This study provided the data required for enhancing the mechanical reliability of the calcium phosphate cements after different degradation times, which will be significant for the modification of load-bearing biodegradable bone cements to match clinical application. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Effects of substitute coated with hyaluronic acid or poly-lactic acid on implant fixation. Experimental study in ovariectomized and glucocorticoid treated sheep

    DEFF Research Database (Denmark)

    Andreasen, Christina M; Ding, Ming; Andersen, Thomas L

    2018-01-01

    Investigated in healthy animal models, hyaluronic acid (HyA) and poly-D,L -lactic acid (PDLLA) demonstrate osteoconductive properties when coated onto hydroxyapatite (HA) and β-tricalcium phosphate (βTCP) scaffolds. In this study, we examined the efficacy of HA/βTCP granules coated with HyA or PD...... formation, HyA and PDDLA are indeed considered valuable as new coating materials for composite ceramics when tested in a sheep model - even in bones of a compromised quality.......Investigated in healthy animal models, hyaluronic acid (HyA) and poly-D,L -lactic acid (PDLLA) demonstrate osteoconductive properties when coated onto hydroxyapatite (HA) and β-tricalcium phosphate (βTCP) scaffolds. In this study, we examined the efficacy of HA/βTCP granules coated with Hy...... allograft obtained from a healthy donor sheep (control), pure HA/βTCP, HA/βTCP-HyA or HA/βTCP-PDLLA. After 12 weeks, the bone formation adjacent to the implant surface was evaluated by histology and histomorphometry, while the implant fixation was measured by a push-out test. The investigation showed a bone...

  10. Biosynthesis of D-alanyl-lipoteichoic acid by Lactobacillus casei: interchain transacylation of D-alanyl ester residues

    International Nuclear Information System (INIS)

    Childs, W.C. III; Taron, D.J.; Neuhaus, F.C.

    1985-01-01

    Lipoteichoic acid (LTA) from Lactobacillus casei contains poly(glycerophosphate) substituted with D-alanyl ester residues. The distribution of these residues in the in vitro-synthesized polymer is uniform. Esterification of LTA with D-alanine may occur in one of two modes: (i) addition at random or (ii) addition at a defined locus in the poly(glycerophosphate) chain followed by redistribution of the ester residues. A time-dependent transacylation of these residues from D-[ 14 C]alanyl-lipophilic LTA to hydrophilic acceptor was observed. The hydrophilic acceptor was characterized as D-alanyl-hydrophilic LTA. This transacylation requires neither ATP nor the D-alanine incorporation system, i.e., the D-alanine activating enzyme and D-alanine:membrane acceptor ligase. No evidence for an enzyme-catalyzed transacylation reaction was observed. The authors propose that this process of transacylation may be responsible for the redistribution of D-alanyl residues after esterification to the poly(glycerophosphate). As a result, it is difficult to distinguish between these proposed modes of addition

  11. Use of Nonspecific, Glutamic Acid-Free, Media and High Glycerol or High Amylase as Inducing Parameters for Screening Bacillus Isolates Having High Yield of Polyglutamic Acid.

    Science.gov (United States)

    Baxi, Nandita N

    2014-01-01

    Out of fifty-five Bacillus isolates obtained from ten different regional locations and sources, seven showed the ability to consistently produce specific extracellular polymeric substance (EPS) on rich as well as synthetic but nonspecific media which did not contain glutamic acid. The isolates were identified as either Bacillus licheniformis or Bacillus subtilis. The EPS from all isolates was resistant to alpha protease, proteinase K, and was thus of high molecular weight. Further it was detected after SDS-PAGE by methylene blue but not by coomassie blue R staining as in case of proteins with high proportion of acidic amino acids. Cell-free EPS, after acid hydrolysis, showed absence of carbohydrates and presence of only glutamic acid. Thus the native the EPS from all seven isolates was confirmed to be gamma polyglutamic acid (PGA) and not exopolysaccharide. The Bacillus isolate T which produced maximum polymer on all media tested had higher amylase: protease activity as compared to other strains. If inoculum was developed in rich medium as compared to synthetic medium, the PGA produced increased by twofold in the subsequent synthetic production medium. Similarly, use of inoculum consisting of young and vegetative cells also increased the PGA production by twofold though amount of inoculum did not affect yield of PGA. Though PGA was produced in even in the absence of glutamic acid supplementation in the production medium by all isolates, the yield of PGA increased by fourfold in the presence glutamic acid and the maximum yield was 30 g/l for isolate K. The supplementation of glutamine instead of glutamic acid into the medium caused an increase in the viscosity of the non-Newtonian solution of PGA.

  12. Development of a Method to Isolate Glutamic Acid from Foodstuffs for a Precise Determination of Their Stable Carbon Isotope Ratio.

    Science.gov (United States)

    Kobayashi, Kazuhiro; Tanaka, Masaharu; Yatsukawa, Yoichi; Tanabe, Soichi; Tanaka, Mitsuru; Ohkouchi, Naohiko

    2018-01-01

    Recent growing health awareness is leading to increasingly conscious decisions by consumers regarding the production and traceability of food. Stable isotopic compositions provide useful information for tracing the origin of foodstuffs and processes of food production. Plants exhibit different ratios of stable carbon isotopes (δ 13 C) because they utilized different photosynthetic (carbon fixation) pathways and grow in various environments. The origins of glutamic acid in foodstuffs can be differentiated on the basis of these photosynthetic characteristics. Here, we have developed a method to isolate glutamic acid in foodstuffs for determining the δ 13 C value by elemental analyzer-isotope-ratio mass spectrometry (EA/IRMS) without unintended isotopic fractionation. Briefly, following acid-hydrolysis, samples were defatted and passed through activated carbon and a cation-exchange column. Then, glutamic acid was isolated using preparative HPLC. This method is applicable to measuring, with a low standard deviation, the δ 13 C values of glutamic acid from foodstuffs derived from C3 and C4 plants and marine algae.

  13. Effect of L-glutamic acid on the positive electrolyte for all-vanadium redox flow battery

    International Nuclear Information System (INIS)

    Liang, Xinxing; Peng, Sui; Lei, Ying; Gao, Chao; Wang, Nanfang; Liu, Suqin; Fang, Dong

    2013-01-01

    Highlights: ► Amino acid is used as additive for all-vanadium redox flow battery. ► The additive can significantly improve performance of positive electrolyte. ► Mechanism for the improvement is investigated. -- Abstract: L-Glutamic acid is used as an additive for the positive electrolyte of all-vanadium redox flow battery (VRFB), and its effect on the thermal stability and electrochemical activity is investigated. It is found that the addition of L-glutamic can significantly alleviate the precipitation of V 2 O 5 from positive electrolyte. The conservation rate of V(V) ion can be as high as 58% after 2 M V(V) solution being kept in 40 °C for 89 h. Besides, L-glutamic can also improve the mass transport and electrochemical performance of anolyte. A high coulombic efficiency of over 95% and energy efficiency of 74% are obtained. XPS spectra illustrate that L-glutamic can react with the surface of carbon felt electrode and introduce more oxygen-containing and nitrogen-containing groups, which should be responsible for the improvement of electrochemical performance

  14. The β-lactam clavulanic acid mediates glutamate transport-sensitive pain relief in a rat model of neuropathic pain

    DEFF Research Database (Denmark)

    Kristensen, P J; Gegelashvili, G; Munro, G

    2017-01-01

    -regulates glutamate transporters both in vitro and in vivo. Crucially, a similar up-regulation of glutamate transporters in human spinal astrocytes by clavulanic acid supports the development of novel β-lactam-based analgesics, devoid of antibacterial activity, for the clinical treatment of chronic pain.......BACKGROUND: Following nerve injury, down-regulation of astroglial glutamate transporters (GluTs) with subsequent extracellular glutamate accumulation is a key factor contributing to hyperexcitability within the spinal dorsal horn. Some β-lactam antibiotics can up-regulate GluTs, one of which......, ceftriaxone, displays analgesic effects in rodent chronic pain models. METHODS: Here, the antinociceptive actions of another β-lactam clavulanic acid, which possesses negligible antibiotic activity, were compared with ceftriaxone in rats with chronic constriction injury (CCI)-induced neuropathic pain...

  15. Immunodiagnosis of systemic aspergillosis. I. Antigenemia detected by radioimmunoassay in experimental infection. [/sup 125/I tracer technique

    Energy Technology Data Exchange (ETDEWEB)

    Weiner, M.H.; Coats-Stephen, M.

    1979-01-01

    Because systemic aspergillosis is difficult to diagnose ante mortem, a study to improve immunodiagnosis was undertaken in a rabbit model of disseminated infection. We found that the predominant humoral response of infected animals was directed against four Aspergillus antigens identified by crossed immunoelectrophoresis. One of these antigens, a cell-wall carbohydrate, was purified by gel-filtration chromatography and was used to develop a radiommunoassay. The sensitivity of this assay was increased by testing for serum-bound antigen as well as for free antigen. When the sensitivity of the RIA was evaluated in the animal model, antigenemia was detected in 78% of 51 rabbits with disseminated infection and ante mortem in 86% of 42 rabbits with lethal infection. By contrast, with immunoprecipitin analysis only eight of 51 rabbits were positive for antigen, and six of 51 rabbits were positive for Aspergillus antibody. The specificity of the RIA was also tested. Negative controls for antigen included sera from 76 normal rabbits and sera from 25 rabbits with systemic candidiasis. The Candida control group is pertinent because 48% of these rabbits had specific Candida antigenemia detected by a mannan RIA. This study demonstrates that Aspergillus antigenemia occurs during the course of experimental disseminated aspergillosis and illustrates the potential of an Aspergillus antigen RIA for sensitive, specific immunodiagnosis of human infections.

  16. Poly(Lactic Acid) Hemodialysis Membranes with Poly(Lactic Acid)-block-Poly(2-Hydroxyethyl Methacrylate) Copolymer As Additive: Preparation, Characterization, and Performance.

    Science.gov (United States)

    Zhu, Lijing; Liu, Fu; Yu, Xuemin; Xue, Lixin

    2015-08-19

    Poly(lactic acid) (PLA) hemodialysis membranes with enhanced antifouling capability and hemocompatibility were developed using poly(lactic acid)-block-poly(2-hydroxyethyl methacrylate) (PLA-PHEMA) copolymers as the blending additive. PLA-PHEMA block copolymers were synthesized via reversible addition-fragmentation (RAFT) polymerization from aminolyzed PLA. Gel permeation chromatography (GPC) and (1)H-nuclear magnetic resonance ((1)H NMR) were applied to characterize the synthesized products. By blending PLA with the amphiphilic block copolymer, PLA/PLA-PHEMA membranes were prepared by nonsolvent induced phase separation (NIPS) method. Their chemistry and structure were characterized with X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM) and atomic force microscopy (AFM). The results revealed that PLA/PLA-PHEMA membranes with high PLA-PHEMA contents exhibited enhanced hydrophilicity, water permeability, antifouling and hemocompatibility. Especially, when the PLA-PHEMA concentration was 15 wt %, the water flux of the modified membrane was about 236 L m(-2) h(-1). Its urea and creatinine clearance was more than 0.70 mL/min, lysozyme clearance was about 0.50 mL/min, BSA clearance was as less as 0.31 mL/min. All the results suggest that PLA-PHEMA copolymers had served as effective agents for optimizing the property of PLA-based membrane for hemodialysis applications.

  17. Identification of genetic determinants and enzymes involved with the amidation of glutamic acid residues in the peptidoglycan of Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    Teresa A Figueiredo

    2012-01-01

    Full Text Available The glutamic acid residues of the peptidoglycan of Staphylococcus aureus and many other bacteria become amidated by an as yet unknown mechanism. In this communication we describe the identification, in the genome of S. aureus strain COL, of two co-transcribed genes, murT and gatD, which are responsible for peptidoglycan amidation. MurT and GatD have sequence similarity to substrate-binding domains in Mur ligases (MurT and to the catalytic domain in CobB/CobQ-like glutamine amidotransferases (GatD. The amidation of glutamate residues in the stem peptide of S. aureus peptidoglycan takes place in a later step than the cytoplasmic phase--presumably the lipid phase--of the biosynthesis of the S. aureus cell wall precursor. Inhibition of amidation caused reduced growth rate, reduced resistance to beta-lactam antibiotics and increased sensitivity to lysozyme which inhibited culture growth and caused degradation of the peptidoglycan.

  18. Antimicrobial activity of poly(acrylic acid) block copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Gratzl, Günther, E-mail: guenther.gratzl@jku.at [Johannes Kepler University Linz, Institute for Chemical Technology of Organic Materials, Altenberger Str. 69, 4040 Linz (Austria); Paulik, Christian [Johannes Kepler University Linz, Institute for Chemical Technology of Organic Materials, Altenberger Str. 69, 4040 Linz (Austria); Hild, Sabine [Johannes Kepler University Linz, Institute of Polymer Science, Altenberger Str. 69, 4040 Linz (Austria); Guggenbichler, Josef P.; Lackner, Maximilian [AMiSTec GmbH and Co. KG, Leitweg 13, 6345 Kössen, Tirol (Austria)

    2014-05-01

    The increasing number of antibiotic-resistant bacterial strains has developed into a major health problem. In particular, biofilms are the main reason for hospital-acquired infections and diseases. Once formed, biofilms are difficult to remove as they have specific defense mechanisms against antimicrobial agents. Antimicrobial surfaces must therefore kill or repel bacteria before they can settle to form a biofilm. In this study, we describe that poly(acrylic acid) (PAA) containing diblock copolymers can kill bacteria and prevent from biofilm formation. The PAA diblock copolymers with poly(styrene) and poly(methyl methacrylate) were synthesized via anionic polymerization of tert-butyl acrylate with styrene or methyl methacrylate and subsequent acid-catalyzed hydrolysis of the tert-butyl ester. The copolymers were characterized via nuclear magnetic resonance spectroscopy (NMR), size-exclusion chromatography (SEC), Fourier transform infrared spectroscopy (FTIR), elemental analysis, and acid–base titrations. Copolymer films with a variety of acrylic acid contents were produced by solvent casting, characterized by atomic force microscopy (AFM) and tested for their antimicrobial activity against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. The antimicrobial activity of the acidic diblock copolymers increased with increasing acrylic acid content, independent of the copolymer-partner, the chain length and the nanostructure. - Highlights: • Acrylic acid diblock copolymers are antimicrobially active. • The antimicrobial activity depends on the acrylic acid content in the copolymer. • No salts, metals or other antimicrobial agents are needed.

  19. Antimicrobial activity of poly(acrylic acid) block copolymers

    International Nuclear Information System (INIS)

    Gratzl, Günther; Paulik, Christian; Hild, Sabine; Guggenbichler, Josef P.; Lackner, Maximilian

    2014-01-01

    The increasing number of antibiotic-resistant bacterial strains has developed into a major health problem. In particular, biofilms are the main reason for hospital-acquired infections and diseases. Once formed, biofilms are difficult to remove as they have specific defense mechanisms against antimicrobial agents. Antimicrobial surfaces must therefore kill or repel bacteria before they can settle to form a biofilm. In this study, we describe that poly(acrylic acid) (PAA) containing diblock copolymers can kill bacteria and prevent from biofilm formation. The PAA diblock copolymers with poly(styrene) and poly(methyl methacrylate) were synthesized via anionic polymerization of tert-butyl acrylate with styrene or methyl methacrylate and subsequent acid-catalyzed hydrolysis of the tert-butyl ester. The copolymers were characterized via nuclear magnetic resonance spectroscopy (NMR), size-exclusion chromatography (SEC), Fourier transform infrared spectroscopy (FTIR), elemental analysis, and acid–base titrations. Copolymer films with a variety of acrylic acid contents were produced by solvent casting, characterized by atomic force microscopy (AFM) and tested for their antimicrobial activity against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. The antimicrobial activity of the acidic diblock copolymers increased with increasing acrylic acid content, independent of the copolymer-partner, the chain length and the nanostructure. - Highlights: • Acrylic acid diblock copolymers are antimicrobially active. • The antimicrobial activity depends on the acrylic acid content in the copolymer. • No salts, metals or other antimicrobial agents are needed

  20. Supplementation of diets for weaned piglets withL-Valine and L-Glutamine+ L-Glutamic acid

    Directory of Open Access Journals (Sweden)

    Naiara Diedrich Rodrigues

    2015-10-01

    Full Text Available The objective of this study was to evaluate the effects of supplementation of diets for weaned piglets with L-valine and L-glutamine + L-glutamic acid on performance, frequency of diarrhea, organ weight, digesta pH, intestinal morphology, and economic viability. Seventy-two piglets with a live weight of 7.53 ± 0.84 kg and 24 days of age were used. The animals were submitted to the following four treatments from 24 to 46 days of age: diet not supplemented with amino acids (control diet, CD; diet supplemented with glutamine + glutamic acid (GD; diet supplemented with glutamine + glutamic acid + valine (GVD, and diet supplemented with valine (VD. Two sequential phases (pre-initial I and pre-initial II with a duration of 12 and 11 days, respectively, were established. A completely randomized design, consisting of six repetitions and three pigs per experimental unit, was used. Nine days after weaning, at 32 days of age, a piglet per pen was slaughtered for the evaluation of organ weight, digesta pH and intestinal morphology. All animals received a single diet from days 47 to 65. No effects on performance were observed during the pre-initial phases I and II; however, when the whole study period was considered (24 to 65 days of age, piglets fed GVD consumed less feed and exhibited better feed conversion than animals of the VD group. With respect to morphometric parameters, GD provided a greater ileal crypt depth than CD and VD. There was an economic advantage of diets supplemented with L-valine and L-glutamine + L-glutamic acid, validating their use in diets for weaned piglets until 46 days of age.

  1. Influence of additive L-phenylalanine on stabilization of metastable α-form of L-glutamic acid in cooling crystallization

    Science.gov (United States)

    Quang, Khuu Chau; Nhan, Le Thi Hong; Huyen, Trinh Thi Thanh; Tuan, Nguyen Anh

    2017-09-01

    The influence of additive amino acid L-phenylalanine on stabilization of metastable α-form of L-glutamic acid was investigated in cooling crystallization. The present study found that the additive L-phenylalanine could be used to stabilize the pure metastable α-form in L-glutamic acid crystallization, where the additive concentration of 0.05-0.1 (g/L) was sufficient to stabilize the 100% wt metastable α-form in solid product at L-glutamic acid concentration of 30-45 (g/L). Additionally, the present results indicated that the adsorption of additive L-phenylalanine on the (001) surface of α-form was more favorable than that of the β-form molecular, so the nucleation sites of stable β-form was occupied by additive molecular, which resulted in inhibition of nucleation and growth of β-form, allowing stabilization of metastable α-form.

  2. Development of Poly (Lactic Acid) Nanocomposite Films by Ionizing Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Dadbin, Susan; Naimian, Faranak; Akhavan, Azam; Hasanpoor, Sorour [Radiation Application Research School, Nuclear Science and Research Institute, North Kargar Ave., Tehran (Iran, Islamic Republic of)

    2009-07-01

    Poly (lactic acid) and poly (lactic acid) -montmorillonite (MMT) nanocomposite films have been prepared by solvent casting method. Films were irradiated with 60Co radiation facility at various doses in the range of 5 to30 kGy. The effect of gamma irradiation on mechanical properties of neat PLA and nanocomposites is evaluated by the data obtained from tensile testing measurements. The degree of crosslinking is measured by gel content method. Thermal behavior of nanocomposites is studied by differential scanning calorimetry (DSC) and thermal gravimetry analysis (TGA). The morphology of the nanocomposites is characterized by transmission electron microscopy (TEM) and X ray diffraction. Structural changes in poly (lactic acid) are studied by Fourier transform infrared (FTIR). (author)

  3. Development of Poly (Lactic Acid) Nanocomposite Films by Ionizing Radiation

    International Nuclear Information System (INIS)

    Dadbin, Susan; Naimian, Faranak; Akhavan, Azam; Hasanpoor, Sorour

    2009-01-01

    Poly (lactic acid) and poly (lactic acid) -montmorillonite (MMT) nanocomposite films have been prepared by solvent casting method. Films were irradiated with 60Co radiation facility at various doses in the range of 5 to30 kGy. The effect of gamma irradiation on mechanical properties of neat PLA and nanocomposites is evaluated by the data obtained from tensile testing measurements. The degree of crosslinking is measured by gel content method. Thermal behavior of nanocomposites is studied by differential scanning calorimetry (DSC) and thermal gravimetry analysis (TGA). The morphology of the nanocomposites is characterized by transmission electron microscopy (TEM) and X ray diffraction. Structural changes in poly (lactic acid) are studied by Fourier transform infrared (FTIR). (author)

  4. Thrombin immobilization to methacrylic acid grafted poly(3-hydroxybutyrate) and its in vitro application.

    Science.gov (United States)

    Akkaya, Alper; Pazarlioglu, Nurdan

    2013-01-01

    Poly(3-hydroxybutyrate) is nontoxic and biodegradable, with good biocompatibility and potential support for long-term implants. For this reason, it is a good support for enzyme immobilization. Enzyme immobilization could not be done directly because poly(3-hydroxybutyrate) has no functional groups. Therefore, modification should be done for enzyme immobilization. In this study, methacrylic acid was graft polymerized to poly(3-hydroxybutyrate) and thrombin was immobilized to polymethacrylic acid grafted poly(3-hydroxybutyrate). In fact, graft polymerization of methacrylic acid to poly(3-hydroxybutyrate) and thrombin immobilization was a model study. Biomolecule immobilized poly(3-hydroxybutyrate) could be used as an implant. Thrombin was selected as a biomolecule for this model study and it was immobilized to methacrylic acid grafted poly(3-hydroxybutyrate). Then the developed product was used to stop bleeding.

  5. Physicochemical properties of poly(lactic acid-co-glycolic acid film modified via blending with poly(butyl acrylate-co-methyl methacrylate

    Directory of Open Access Journals (Sweden)

    Guoquan Zhu

    2013-01-01

    Full Text Available A series of poly(lactic acid-co-glycolic acid (PLGA/poly(butyl acrylate-co-methyl methacrylate (P(BA-co-MMA blend films with different P(BA-co-MMA mole contents were prepared by casting the polymer blend solution in chloroform. Surface morphologies of the PLGAP(BA-co-MMA blend films were studied by scanning electron microscopy (SEM. Thermal, mechanical, and chemical properties of PLGAP(BA-co-MMA blend films were investigated by differential scanning calorimeter (DSC, thermogravimetric analysis (TGA, tensile tests, and surface contact angle tests. The introduction of P(BA-co-MMA could modify the properties of PLGA films.

  6. Antifungal Poly(lactic acid) Films Containing Thymol and Carvone

    OpenAIRE

    Boonruang Kanchana; Chinsirikul Wannee; Hararak Bongkot; Kerddonfag Noppadon; Chonhenchob Vanee

    2016-01-01

    The goal of this study was to develop antifungal poly(lactic acid) films for food packaging applications. The antifungal compounds, thymol and R-(-)-carvone were incorporated into poly(lactic acid) (PLA)-based polymer at 10, 15 and 20% by weight. Film converting process consists of three steps including melt blending, sheet extrusion and biaxial stretching. The incorporation of antifungal compounds into the polymer matrix resulted in decreased Tg and Tm, increased gas permeabilility, reduced ...

  7. A novel approach in acidic disinfection through inhibition of acid resistance mechanisms; Maleic acid-mediated inhibition of glutamate decarboxylase activity enhances acid sensitivity of Listeria monocytogenes.

    Science.gov (United States)

    Paudyal, Ranju; Barnes, Ruth H; Karatzas, Kimon Andreas G

    2018-02-01

    Here it is demonstrated a novel approach in disinfection regimes where specific molecular acid resistance systems are inhibited aiming to eliminate microorganisms under acidic conditions. Despite the importance of the Glutamate Decarboxylase (GAD) system for survival of Listeria monocytogenes and other pathogens under acidic conditions, its potential inhibition by specific compounds that could lead to its elimination from foods or food preparation premises has not been studied. The effects of maleic acid on the acid resistance of L. monocytogenes were investigated and found that it has a higher antimicrobial activity under acidic conditions than other organic acids, while this could not be explained by its pKa or Ka values. The effects were found to be more pronounced on strains with higher GAD activity. Maleic acid affected the extracellular GABA levels while it did not affect the intracellular ones. Maleic acid had a major impact mainly on GadD2 activity as also shown in cell lysates. Furthermore, it was demonstrated that maleic acid is able to partly remove biofilms of L. monocytogenes. Maleic acid is able to inhibit the GAD of L. monocytogenes significantly enhancing its sensitivity to acidic conditions and together with its ability to remove biofilms, make a good candidate for disinfection regimes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Capillary electrophoresis tandem mass spectrometry determination of glutamic acid and homocysteine's metabolites: Potential biomarkers of amyotrophic lateral sclerosis.

    Science.gov (United States)

    Cieslarova, Zuzana; Lopes, Fernando Silva; do Lago, Claudimir Lucio; França, Marcondes Cavalcante; Colnaghi Simionato, Ana Valéria

    2017-08-01

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that affects both lower and upper motor neurons, leading to muscle atrophy, paralysis, and death caused by respiratory failure or infectious complications. Altered levels of homocysteine, cysteine, methionine, and glutamic acid have been observed in plasma of ALS patients. In this context, a method for determination of these potential biomarkers in plasma by capillary electrophoresis tandem mass spectrometry (CE-MS/MS) is proposed herein. Sample preparation was carefully investigated, since sulfur-containing amino acids may interact with plasma proteins. Owing to the non-thiol sulfur atom in methionine, it was necessary to split sample preparation into two methods: i) determination of homocysteine and cysteine as S-acetyl amino acids; ii) determination of glutamic acid and methionine. All amino acids were separated within 25min by CE-MS/MS using 5molL -1 acetic acid as background electrolyte and 5mmolL -1 acetic acid in 50% methanol/H 2 O (v/v) as sheath liquid. The proposed CE-MS/MS method was validated, presenting RSD values below 6% and 11% for intra- and inter-day precision, respectively, for the middle concentration level within the linear range. The limits of detection ranged from 35 (homocysteine) to 268nmolL -1 (glutamic acid). The validated method was applied to the analysis of plasma samples from a group of healthy individuals and patients with ALS, showing the potential of glutamic acid and homocysteine metabolites as biomarkers of ALS. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Group I mGlu receptors potentiate synaptosomal [3H]glutamate release independently of exogenously applied arachidonic acid

    International Nuclear Information System (INIS)

    Reid, M.E.; Toms, N.J.; Bedingfield, J.S.; Roberts, P.J.

    1999-01-01

    In the current study, we have characterized group I metabotropic glutamate (mGlu) receptor enhancement of 4-aminopyridine (4AP)-evoked [ 3 H]glutamate release from rat cerebrocortical synaptosomes. The broad spectrum mGlu receptor agonist (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid ((1S,3R)-ACPD, 10 μM) increased 4AP-evoked [ 3 H]glutamate release (143.32±2.73% control) only in the presence of exogenously applied arachidonic acid; an effect reversed by the inclusion of bovine serum albumin (BSA, fatty acid free). In contrast, the selective group I mGlu receptor agonist (S)-3,5-dihydroxyphenylglycine (DHPG) potentiated (EC 50 =1.60±0.25 μM; E max =147.61±10.96% control) 4AP-evoked [ 3 H]glutamate release, in the absence of arachidonic acid. This potentiation could be abolished by either the selective mGlu 1 receptor antagonist (R,S)-1-aminoindan-1,5-dicarboxylic acid (AIDA, 1 mM) or the selective PKC inhibitor (Ro 31-8220, 10 μM) and was BSA-insensitive. The selective mGlu 5 receptor agonist (R,S)-2-chloro-5-hydroxyphenylglycine (CHPG, 300μM) was without effect. DHPG (100 μM) also potentiated both 30 mM and 50 mM K + -evoked [ 3 H]glutamate release (121.60±12.77% and 121.50±4.45% control, respectively). DHPG (100 μM) failed to influence both 4AP-stimulated 45 Ca 2+ influx and 50 mM K + -induced changes in synaptosomal membrane potential. Possible group I mGlu receptor suppression of tonic adenosine A 1 receptor, group II/III mGlu receptors or GABA B receptor activity is unlikely since 4AP-evoked [ 3 H]glutamate release was insensitive to the selective inhibitory receptor antagonists 8-cyclopentyl-1,3-dimethylxanthine, (R,S)-α-cyclopropyl-4-phosphonophenylglycine or CGP55845A, respectively. These data suggest an 'mGlu 1 receptor-like' receptor potentiates [ 3 H]glutamate release from cerebrocortical synaptosomes in the absence of exogenously applied arachidonic acid. This PKC dependent effect is unlikely to be via modulation of synaptosomal membrane

  10. Observation of the side chain O-methylation of glutamic acid or aspartic acid containing model peptides by electrospray ionization-mass spectrometry.

    Science.gov (United States)

    Atik, A Emin; Guray, Melda Z; Yalcin, Talat

    2017-03-15

    O-methylation of the side chains of glutamic acid (E) and aspartic acid (D) residues is generally observed modification when an acidified methanol/water (MeOH/dH 2 O) mixture is used as a solvent system during sample preparation for proteomic research. This chemical modification may result misidentification with endogenous protein methylation; therefore, a special care should be taken during sample handling prior to mass spectrometric analysis. In the current study, we systematically examined the extent of E/D methylation and C-terminus carboxyl group of synthetic model peptides in terms of different incubation temperatures, storage times, and added acid types as well as its percentages. To monitor these effects, C-terminus amidated and free acid forms of synthetic model peptides comprised of E or D residue(s) have been analyzed by electrospray ionization-mass spectrometry (ESI-MS). Additionally, LC-MS/MS experiments were performed to confirm the formation of methylated peptide product. The results showed that the rate of methylation was increased as the temperature increases along with prolong incubation times. Moreover, the extent of methylation was remarkably high when formic acid (FA) used as a protonation agent instead of acetic acid (AA). In addition, it was found that the degree of methylation was significantly decreased by lowering acid percentages in ESI solution. More than one acidic residue containing model peptides have been also used to explore the extent of multiple methylation reaction. Lastly, the ethanol (EtOH) and isopropanol (iPrOH) have been substituted separately with MeOH in sample preparation step to investigate the extent of esterification reaction under the same experimental conditions. However, in the positive perspective of view, this method can be used as a simple, rapid and cheap method for methylation of acidic residues under normal laboratory conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Synthesis, Characterization, and Nonlinear Optical Properties of P-Substituted Poly Gamma-Benzyl

    Science.gov (United States)

    Choi, Dong-Hoon

    Poly gamma-benzyl-L-glutamate (PBLG), poly gamma-p-fluorobenzyl -L-glutamate (PGLU(pFB)), poly gamma -p-nitrobenzyl-L-glutamate (PGLU(pNB)), and poly gamma-p-trifluoromethylbenzyl-L-glutamate (PGLU(pTFMB)) have been synthesized. These PBLG polymers show variations in the side chain conformations in the solid state and solution state. In the solid state, the side chain orientation was assigned to a longitudinal or transverse direction by virtue of the polarized infrared spectrum of each PBLG analogue. The characteristics of the lyotropic liquid crystalline behavior could be observed. The optical waveguiding property of these polymers facilitated measurement of the refractive index and the thickness of each polymer film. Poling the polymer films and using the simple reflection technique, the electro -optic coefficients of the PBLG analogues could be determined. The effect of the para substitution on benzyl ester as it effected the electro-optic coefficient and the relation between the dielectric properties and the electro-optic effect of each polymer were investigated. These studies were able to demonstrate which conformation of the side chain in para substituted poly gamma-benzyl -L-glutamates is a more favorable conformation for enhancing the electro-optic behavior of these polymers.

  12. Transfer of Natrialba asiatica B1T to Natrialba taiwanensis sp. nov. and description of Natrialba aegyptiaca sp. nov., a novel extremely halophilic, aerobic, non-pigmented member of the Archaea from Egypt that produces extracellular poly(glutamic acid).

    Science.gov (United States)

    Hezayen, F F; Rehm, B H; Tindall, B J; Steinbüchel, A

    2001-05-01

    A novel extremely halophilic member of the Archaea, strain 40T, was isolated from Egypt (Aswan). This isolate requires at least 1.6 M sodium chloride for growth and exhibits optimal growth between 37 and 42 degrees C. Determination of the entire 16S rRNA gene sequence revealed the highest similarity to the type strain of Natrialba asiatica (> 99%). Polar lipid analysis indicated that strain 40T and Natrialba asiatica have essentially identical compositions, indicating that the former is a member of genus Natrialba. However, physiological and biochemical data provided evidence that Natrialba asiatica strains B1T and 172P1T, as well as strain 40T, are sufficiently different to be divided in three different species. The G+C content of strain 40T was 61.5+/-0.6 mol%. In addition, DNA-DNA hybridization data supported the placement of the isolate in a new species in the genus Natrialba, Natrialba aegyptiaca sp. nov., and indicated that Natrialba asiatica strain B1T should also be placed in a separate species, Natrialba taiwanensis sp. nov. Morphological studies of strain 40T indicated clearly that this isolate appears in three completely different cell shapes (cocci, rods, tetrads) under different conditions of growth, including different sodium chloride concentrations and different growth temperatures. Another interesting property of strain 40T is the ability to produce an extracellular polymer, which was found to be composed predominantly of glutamic acid (85% w/w), representing poly(glutamic acid), carbohydrates (12.5% w/w) and unidentified compounds (2.5% w/w). Among the Archaea, production of an extracellular polysaccharide has been described for some members of the genera Haloferax and Haloarcula.

  13. Murine elongation factor 1 alpha (EF-1 alpha) is posttranslationally modified by novel amide-linked ethanolamine-phosphoglycerol moieties. Addition of ethanolamine-phosphoglycerol to specific glutamic acid residues on EF-1 alpha

    International Nuclear Information System (INIS)

    Whiteheart, S.W.; Shenbagamurthi, P.; Chen, L.; Cotter, R.J.; Hart, G.W.

    1989-01-01

    Elongation Factor 1 alpha (EF-1 alpha), an important eukaryotic translation factor, transports charged aminoacyl-tRNA from the cytosol to the ribosomes during poly-peptide synthesis. Metabolic radiolabeling with [ 3 H] ethanolamine shows that, in all cells examined, EF-1 alpha is the major radiolabeled protein. Radiolabeled EF-1 alpha has an apparent Mr = 53,000 and a basic isoelectric point. It is cytosolic and does not contain N-linked oligosaccharides. Trypsin digestion of murine EF-1 alpha generated two major [ 3 H]ethanolamine-labeled peptides. Three peptides were sequenced and were identical to two distinct regions of the human EF-1 alpha protein. Blank sequencing cycles coinciding with glutamic acid in the human cDNA-derived sequence were also found to release [ 3 H]ethanolamine, and compositional analysis of these peptides confirmed the presence of glutamic acid. Dansylation analysis demonstrates that the amine group of the ethanolamine is blocked. These results indicate that EF-1 alpha is posttranslationally modified by the covalent attachment of ethanolamine via an amide bond to at least two specific glutamic acid residues (Glu-301 and Glu-374). The hydroxyl group of the attached ethanolamine was shown by mass spectrometry and compositional analysis, to be further modified by the addition of a phosphoglycerol unit. This novel posttranslational modification may represent an important alteration of EF-1 alpha, comparable to the regulatory effects of posttranslational methylation of EF-1 alpha lysine residues

  14. Gold Nanoparticles Protected with Thiol-Derivatized Amphiphilic Poly( -caprolactone)-b-poly(acrylic acid)

    DEFF Research Database (Denmark)

    Javakhishvili, Irakli; Hvilsted, Søren

    2008-01-01

    Amphiphilic poly(c-caprolactone)-b-poly(acrylic acid) (HS-PCL-b-PAA) bearing thiol functionality at the PCL terminal has been synthesized by a combination of ring-opening polymerization (ROP) of c-caprolactone (c-CL), esterification of hydroxy chain end with protected mercaptoacetic acid, subsequ....... As a result stable, aggregation-free nanopaticles with moderate dispersity as estimated from UV-visible spectroscopy and transmission electron microscopy (TEM) data were obtained....... chromatography (SEC), nuclear magnetic resonance eR NMR) and infrared (FT IR) spectroscopy. The capacity of the resulting block copolymer in preparation of monolayer-protected gold nanoparticles has been examined by reduction of a gold salt in the presence of this macroligand under thiol-deficient conditions...

  15. Dietary intakes of glutamic acid and glycine are associated with stroke mortality in Japanese adults.

    Science.gov (United States)

    Nagata, Chisato; Wada, Keiko; Tamura, Takashi; Kawachi, Toshiaki; Konishi, Kie; Tsuji, Michiko; Nakamura, Kozue

    2015-04-01

    Dietary intakes of glutamic acid and glycine have been reported to be associated with blood pressure. However, the link between intakes of these amino acids and stroke has not been studied. We aimed to examine the association between glutamic acid and glycine intakes and the risk of mortality from stroke in a population-based cohort study in Japan. The analyses included 29,079 residents (13,355 men and 15,724 women) of Takayama City, Japan, who were aged 35-101 y and enrolled in 1992. Their body mass index ranged from 9.9 to 57.4 kg/m(2). Their diets were assessed by a validated food frequency questionnaire. Deaths from stroke were ascertained over 16 y. During follow-up, 677 deaths from stroke (328 men and 349 women) were identified. A high intake of glutamic acid in terms of a percentage of total protein was significantly associated with a decreased risk of mortality from total stroke in women after controlling for covariates; the HR (95% CI) for the highest vs. lowest quartile was 0.72 (0.53, 0.98; P-trend: 0.03). Glycine intake was significantly associated with an increased risk of mortality from total and ischemic stroke in men without history of hypertension at baseline; the HRs (95% CIs) for the highest vs. lowest tertile were 1.60 (0.97, 2.51; P-trend: 0.03) and 1.88 (1.01, 3.52; P-trend: 0.02), respectively. There was no association between animal or vegetable protein intake and mortality from total and any subtype of stroke. The data suggest that glutamic acid and glycine intakes may be associated with risk of stroke mortality. Given that this is an initial observation, our results need to be confirmed. © 2015 American Society for Nutrition.

  16. In vitro degradation of poly (L-co-D,L lactic acid containing PCL-T

    Directory of Open Access Journals (Sweden)

    Marcia Adriana Tomaz Duarte

    2014-01-01

    Full Text Available The application of polymer-based bioresorbable temporary devices in the medical field grows continuously, and professionals from several areas act to solve problems related to body functions lost due to diseases, accidents or natural wear. Here we study the influence from poly(caprolactonetriol (PCL-T on the degeneration process in the copolymer poly(L-co-DL-lactic acid (PLDLA membrane, by producing PLDLA/PCL-T blends with 90/10, 70/30 and 50/50 relative concentrations. The data for in vitro degradation showed that PCL-T decreases the rate of PLDLA. This was obtained with the following techniques: Differential Scanning Calorimetry (DSC, Thermogravimetric Analysis (TGA, Gel Permeation Chromatography (GPC and Scanning Electron Microscopy (SEM. Therefore, it is possible to vary the membrane degradation rate by changing the blend composition, which is a tool to tailor a biomaterial.

  17. Polymers with complexing properties. Simple poly(amino acids)

    Science.gov (United States)

    Roque, J. M.

    1978-01-01

    The free amino (0.3 equiv/residue) and carboxyl (0.5 equiv/residue) groups of thermal polylysine increased dramatically on treatment with distilled water. The total hydrolysis of such a polymer was abnormal in that only about 50% of the expected amino acids were recovered. Poly (lysine-co-alanine-co-glycine) under usual conditions hydrolyzed completely in 8 hours; whereas, when it was pretreated with diazomethane, a normal period of 24 hours was required to give (nearly) the same amounts of each free amino acid as compared with those obtained from the untreated polymer. The amino groups of the basic thermal poly(amino acids) were sterically hindered. The existence of nitrogen atoms linking two or three chains and reactive groups (anhydride, imine) were proposed.

  18. Low dose of L-glutamic acid attenuated the neurological dysfunctions and excitotoxicity in bilateral common carotid artery occluded mice.

    Science.gov (United States)

    Ramanathan, Muthiah; Abdul, Khadar K; Justin, Antony

    2016-10-01

    Glutamate, an excitatory neurotransmitter in the brain, produces excitotoxicity through its agonistic action on postsynaptic N-methyl-D-aspartate receptor, resulting in neurodegeneration. We hypothesized that the administration of low doses of glutamate in cerebral ischemia could attenuate the excitotoxicity in neurons through its autoreceptor regulatory mechanism, and thereby control neurodegeneration. To test the hypothesis, the effect of L-glutamic acid (L-GA) 400 μmol/l/kg was evaluated in a bilateral common carotid artery occlusion-induced global ischemic mouse model. Memantine was used as a positive control. Global ischemia in mice was induced by occlusion of both the common carotid artery (bilateral common carotid artery occlusion) for 20 min, followed by reperfusion injury. L-GA was infused slowly through the tail vein 30 min before the surgery and every 24 h thereafter until the end of the experiment. The time-dependent change in cerebral blood flow was monitored using a laser Doppler image analyzer. The neurotransmitters glutamate and γ-aminobutyric acid (GABA) and the neurobiochemicals ATP, glutathione, and nitric oxide were measured in the different regions of brain at 0, 24, 48, and 72 h after reperfusion injury. L-GA increased locomotor activity, muscle coordination, and cerebral blood flow in ischemic mice at 72 h after ischemic insult. L-GA reduced glutamate levels in the cortex, striatum, and hippocampus at 72 h, whereas GABA levels were elevated in all three brain regions studied. Further, L-GA elevated glutathione levels and attenuated nitric oxide levels, but failed to restore ATP levels 72 h after ischemia-reperfusion. We conclude that the gradual reduction of glutamate along with elevation of GABA in different brain regions could have contributed toward the neuroprotective effect of L-GA. Hence, a slow infusion of a low dose of L-GA could be beneficial in controlling excitotoxicity-induced neurodegeneration following ischemia.

  19. The periplasmic transaminase PtaA of Pseudomonas fluorescens converts the glutamic acid residue at the pyoverdine fluorophore to α-ketoglutaric acid.

    Science.gov (United States)

    Ringel, Michael T; Dräger, Gerald; Brüser, Thomas

    2017-11-10

    The periplasmic conversion of ferribactin to pyoverdine is essential for siderophore biogenesis in fluorescent pseudomonads, such as pathogenic Pseudomonas aeruginosa or plant growth-promoting Pseudomonas fluorescens The non-ribosomal peptide ferribactin undergoes cyclizations and oxidations that result in the fluorophore, and a strictly conserved fluorophore-bound glutamic acid residue is converted to a range of variants, including succinamide, succinic acid, and α-ketoglutaric acid residues. We recently discovered that the pyridoxal phosphate-containing enzyme PvdN is responsible for the generation of the succinamide, which can be hydrolyzed to succinic acid. Based on this, a distinct unknown enzyme was postulated to be responsible for the conversion of the glutamic acid to α-ketoglutaric acid. Here we report the identification and characterization of this enzyme in P. fluorescens strain A506. In silico analyses indicated a periplasmic transaminase in fluorescent pseudomonads and other proteobacteria that we termed PtaA for " p eriplasmic t ransaminase A " An in-frame-deleted ptaA mutant selectively lacked the α-ketoglutaric acid form of pyoverdine, and recombinant PtaA complemented this phenotype. The ptaA / pvdN double mutant produced exclusively the glutamic acid form of pyoverdine. PtaA is homodimeric and contains a pyridoxal phosphate cofactor. Mutation of the active-site lysine abolished PtaA activity and affected folding as well as Tat-dependent transport of the enzyme. In pseudomonads, the occurrence of ptaA correlates with the occurrence of α-ketoglutaric acid forms of pyoverdines. As this enzyme is not restricted to pyoverdine-producing bacteria, its catalysis of periplasmic transaminations is most likely a general tool for specific biosynthetic pathways. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Preparation of poly (styrene)-b-poly (acrylic acid)/{gamma}-Fe{sub 2}O{sub 3} composites

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, L.D. [School of Materials Science and Engineering, Shandong Polytechnic University, Key Laboratory of Processing and Testing Technology of Glass Functional Ceramics of Shandong Province, Daxue Road, Western University Science Park, Jinan 250353 (China); Liu, W.L., E-mail: wlliu@sdu.edu.cn [School of Materials Science and Engineering, Shandong Polytechnic University, Key Laboratory of Processing and Testing Technology of Glass Functional Ceramics of Shandong Province, Daxue Road, Western University Science Park, Jinan 250353 (China); Xiao, C.L.; Yao, J.S.; Fan, Z.P.; Sun, X.L.; Zhang, X.; Wang, L. [School of Materials Science and Engineering, Shandong Polytechnic University, Key Laboratory of Processing and Testing Technology of Glass Functional Ceramics of Shandong Province, Daxue Road, Western University Science Park, Jinan 250353 (China); Wang, X.Q. [State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100 (China)

    2011-12-15

    The use of a block copolymer, poly (styrene)-b-poly (acrylic acid) (PS-b-PAA) to prepare a magnetic nanocomposite was investigated. Poly (styrene)-poly (t-butyl acrylate) block copolymer, being synthesized by atom transfer radical polymerization, was hydrolyzed with hydrochloric acid for obtaining PS-b-PAA. The obtained PS-b-PAA was then compounded with the modified {gamma}-Fe{sub 2}O{sub 3}, and subsequently the magnetic nanocomposite was achieved. The products were characterized by {sup 1}H NMR, FTIR, gel permeation chromatography, thermogravimetric analysis, transmission electron microscopy and vibrating sample magnetometer. The results showed that the nanocomposites exhibited soft magnetism, with the mean diameter of 100 nm approximately. - Highlights: > Magnetic composites were prepared using {gamma}-Fe{sub 2}O{sub 3} and PS-b-PAA. > PS-b-PAA was synthesized by atom transfer radical polymerization. > The obtained composite exhibited soft magnetism.

  1. Polyelectrolyte Complex Nanoparticles of Poly(ethyleneimine) and Poly(acrylic acid): Preparation and Applications

    OpenAIRE

    Martin Müller; Bernd Keßler; Sebastian Poeschla; Bernhard Torger; Johanna Fröhlich

    2011-01-01

    In this contribution we outline polyelectrolyte (PEL) complex (PEC) nanoparticles, prepared by mixing solutions of the low cost PEL components poly(ethyleneimine) (PEI) and poly(acrylic acid) (PAC). It was found, that the size and internal structure of PEI/PAC particles can be regulated by process, media and structural parameters. Especially, mixing order, mixing ratio, PEL concentration, pH and molecular weight, were found to be sensible parameters to regulate the size (diameter) of spherica...

  2. Poly(hydroxyethyl methacrylate-co-methacryloylglutamic acid) nanospheres for adsorption of Cd2+ ions from aqueous solutions

    Science.gov (United States)

    Esen, Cem; Şenay, Raziye Hilal; Feyzioğlu, Esra; Akgöl, Sinan

    2014-02-01

    Poly(2-hydroxyethyl methacrylate-co- N-methacryloyl-( l)-glutamic acid) p(HEMA-MAGA) nanospheres have been synthesized, characterized, and used for the adsorption of Cd2+ ions from aqueous solutions. Nanospheres were prepared by surfactant free emulsion polymerization. The p(HEMA-MAGA) nanospheres were characterized by SEM, FTIR, zeta size, and elemental analysis. The specific surface area of nanospheres was found to be 1,779 m2/g. According to zeta size analysis results, average size of nanospheres is 147.3 nm with poly-dispersity index of 0.200. The goal of this study was to evaluate the adsorption performance of p(HEMA-MAGA) nanospheres for Cd2+ ions from aqueous solutions by a series of batch experiments. The Cd2+ concentration was determined by inductively coupled plasma-optical emission spectrometer. Equilibrium sorption experiments indicated a Cd2+ uptake capacity of 44.2 mg g-1 at pH 4.0 at 25 °C. The adsorption of Cd2+ ions increased with increasing pH and reached a plateau value at around pH 4.0. The data were successfully modeled with a Langmuir equation. A series of kinetics experiments was then carried out and a pseudo-second order equation was used to fit the experimental data. Desorption experiments which were carried out with nitric acid showed that the p(HEMA-MAGA) nanospheres could be reused without significant losses of their initial properties in consecutive adsorption and elution operations.

  3. Effect of surface modification of nanofibres with glutamic acid peptide on calcium phosphate nucleation and osteogenic differentiation of marrow stromal cells.

    Science.gov (United States)

    Karaman, Ozan; Kumar, Ankur; Moeinzadeh, Seyedsina; He, Xuezhong; Cui, Tong; Jabbari, Esmaiel

    2016-02-01

    Biomineralization is mediated by extracellular matrix (ECM) proteins with amino acid sequences rich in glutamic acid. The objective of this study was to investigate the effect of calcium phosphate deposition on aligned nanofibres surface-modified with a glutamic acid peptide on osteogenic differentiation of rat marrow stromal cells. Blend of EEGGC peptide (GLU) conjugated low molecular weight polylactide (PLA) and high molecular weight poly(lactide-co-glycolide) (PLGA) was electrospun to form aligned nanofibres (GLU-NF). The GLU-NF microsheets were incubated in a modified simulated body fluid for nucleation of calcium phosphate crystals on the fibre surface. To achieve a high calcium phosphate to fibre ratio, a layer-by-layer approach was used to improve diffusion of calcium and phosphate ions inside the microsheets. Based on dissipative particle dynamics simulation of PLGA/PLA-GLU fibres, > 80% of GLU peptide was localized to the fibre surface. Calcium phosphate to fibre ratios as high as 200%, between those of cancellous (160%) and cortical (310%) bone, was obtained with the layer-by-layer approach. The extent of osteogenic differentiation and mineralization of marrow stromal cells seeded on GLU-NF microsheets was directly related to the amount of calcium phosphate deposition on the fibres prior to cell seeding. Expression of osteogenic markers osteopontin, alkaline phosphatase (ALP), osteocalcin and type 1 collagen increased gradually with calcium phosphate deposition on GLU-NF microsheets. Results demonstrate that surface modification of aligned synthetic nanofibres with EEGGC peptide dramatically affects nucleation and growth of calcium phosphate crystals on the fibres leading to increased osteogenic differentiation of marrow stromal cells and mineralization. Copyright © 2013 John Wiley & Sons, Ltd.

  4. Acacetin inhibits glutamate release and prevents kainic acid-induced neurotoxicity in rats.

    Directory of Open Access Journals (Sweden)

    Tzu-Yu Lin

    Full Text Available An excessive release of glutamate is considered to be a molecular mechanism associated with several neurological diseases that causes neuronal damage. Therefore, searching for compounds that reduce glutamate neurotoxicity is necessary. In this study, the possibility that the natural flavone acacetin derived from the traditional Chinese medicine Clerodendrum inerme (L. Gaertn is a neuroprotective agent was investigated. The effect of acacetin on endogenous glutamate release in rat hippocampal nerve terminals (synaptosomes was also investigated. The results indicated that acacetin inhibited depolarization-evoked glutamate release and cytosolic free Ca(2+ concentration ([Ca(2+]C in the hippocampal nerve terminals. However, acacetin did not alter synaptosomal membrane potential. Furthermore, the inhibitory effect of acacetin on evoked glutamate release was prevented by the Cav2.2 (N-type and Cav2.1 (P/Q-type channel blocker known as ω-conotoxin MVIIC. In a kainic acid (KA rat model, an animal model used for excitotoxic neurodegeneration experiments, acacetin (10 or 50 mg/kg was administrated intraperitoneally to the rats 30 min before the KA (15 mg/kg intraperitoneal injection, and subsequently induced the attenuation of KA-induced neuronal cell death and microglia activation in the CA3 region of the hippocampus. The present study demonstrates that the natural compound, acacetin, inhibits glutamate release from hippocampal synaptosomes by attenuating voltage-dependent Ca(2+ entry and effectively prevents KA-induced in vivo excitotoxicity. Collectively, these data suggest that acacetin has the therapeutic potential for treating neurological diseases associated with excitotoxicity.

  5. RGD-modified poly(D,L-lactic acid nanoparticles enhance tumor targeting of oridonin

    Directory of Open Access Journals (Sweden)

    Xu J

    2012-01-01

    Full Text Available Jie Xu, Ji-Hui Zhao, Ying Liu, Nian-Ping Feng, Yong-Tai ZhangSchool of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of ChinaObjective: The purpose of this study was to develop an active targeting strategy to improve the therapeutic antitumor efficacy of oridonin (ORI, the main active ingredient in the medicinal herb Rabdosia rubescens.Methods: A modified spontaneous emulsification solvent diffusion method was used to prepare the ORI-loaded atactic poly(D,L-lactic acid nanoparticles (ORI-PLA-NPs. Surface cross-linking with the peptide Arg-Gly-Asp (RGD further modified the ORI-PLA-NPs, generating ORI-PLA-RGD-NPs. The NPs were characterized and release experiments were performed in vitro. The pharmacokinetics, tissue distribution, and antitumor activity of the NPs were studied in mice bearing hepatocarcinoma 22 (H22-derived tumors.Results: The ORI-PLA-NPs and ORI-PLA-RGD-NPs were smooth, sphere-like, and relatively uniform in size. The RGD surface modification slightly increased the mean particle size (95.8 nm for ORI-PLA-NPs versus 105.2 nm for ORI-PLA-RGD-NPs and considerably altered the surface electrical property (-10.19 mV for ORI-PLA-NPs versus -21.95 mV for ORI-PLA-RGD-NPs, but it had no obvious influence on ORI loading (8.23% ± 0.35% for ORI-PLA-NPs versus 8.02% ± 0.38% for ORI-PLA-RGD-NPs, entrapment efficiency (28.86% ± 0.93% for ORI-PLA-NPs versus 28.24% ± 0.81% for ORI-PLA-RGD-NPs, or the release of ORI. The pharmacokinetic properties of free ORI were improved by encapsulation in NPs, as shown by increased area under the concentration-time curve (11.89 ± 0.35 µg·mL-1 · h for ORI solution versus 22.03 ± 0.01 µg · mL-1 · h for ORI-PLA-RGD-NPs and prolonged mean retention time (2.03 ± 0.09 hours for ORI solution versus 8.68 ± 0.66 hours for ORI-PLA-RGD-NPs. In the tissue distribution study, more ORI targeted tumor tissue in the mice treated with ORI-PLA-RGD-NPs than with ORI

  6. Preparation of Rhodamine B Fluorescent Poly(methacrylic acid) Coated Gelatin Nanoparticles

    OpenAIRE

    Gan, Zhenhai; Ju, Jianhui; Zhang, Ting; Wu, Daocheng

    2011-01-01

    Poly(methacrylic acid) (PMAA)-coated gelatin nanoparticles encapsulated with fluorescent dye rhodamine B were prepared by the coacervation method with the aim to retard the release of rhodamine B from the gelatin matrix. With sodium sulfate as coacervation reagent for gelatin, a kind of biopolymer with excellent biocompatibility, the formed gelatin nanoparticles were cross-linked by formaldehyde followed by the polymerization of methacrylic acid coating. The fluorescent poly(methacrylic acid)...

  7. Environmental Comparison of Biobased Chemicals from Glutamic Acid with Their Petrochemical Equivalents

    NARCIS (Netherlands)

    Lammens, T.M.; Potting, J.; Sanders, J.P.M.; Boer, de I.J.M.

    2011-01-01

    Glutamic acid is an important constituent of waste streams from biofuels production. It is an interesting starting material for the synthesis of biobased chemicals, thereby decreasing the dependency on fossil fuels. The objective of this paper was to compare the environmental impact of four biobased

  8. Environmental comparison of biobased chemicals from glutamic acid with their petrochemical equivalents

    NARCIS (Netherlands)

    Lammens, T.M.; Potting, J.; Sanders, J.P.M.; Boer, de I.J.M.

    2012-01-01

    Glutamic acid is an important constituent of waste streams from biofuels production. It is an interesting starting material for the synthesis of biobased chemicals, thereby decreasing the dependency on fossil fuels. The objective of this paper was to compare the environmental impact of four biobased

  9. Unequal effect of ethanol-water on the stability of ct-DNA, poly[(dA-dT)]₂ and poly(rA)·poly(rU). Thermophysical properties.

    Science.gov (United States)

    Ruiz, Rebeca; Hoyuelos, Francisco J; Navarro, Ana M; Leal, José M; García, Begoña

    2015-01-21

    Ethanol affects unequally the thermal stability of DNA and RNA. It stabilizes RNA, while destabilizing DNA. The variation of the relative viscosity (η/η0) of [poly(dA-dT)]2 with temperature unveils transitions close to the respective denaturation temperature, calculated spectrophotometrically and calorimetrically. From the raw data densities and speeds of sound, the volumetric observables were calculated. In all cases studied, a change in sign from low to high ethanol content occurred for both partial molar volume (ϕV) and partial molar adiabatic compressibility (ϕK(S)). The minima, close to 10%, should correspond to the highest solvation and the maxima, close to 30%, to the lowest solvation. For 40-50% ethanol, the solvation increases again. The complex structure of ethanol-water, for which changes are observed in regions close to such critical concentrations, justifies the observed behaviour. The variation of ϕV and ϕK(S) was sharper for RNA compared with respect to DNA, indicating that the solvation sequence is poly(rA)·poly(rU) < ct-DNA < [poly(dA-dT)]2.

  10. Poly(glycerol adipate)-fatty acid esters as versatile nanocarriers

    DEFF Research Database (Denmark)

    Weiss, Verena M; Naolou, Toufik; Hause, Gerd

    2012-01-01

    Poly(glycerol adipate) (PGA) is a biodegradable polymer with promising features for nanoparticulate drug carrier systems. By acylation of PGA with fatty acids, composite systems with amphiphilic properties can be obtained. Variation of the fatty acid (laurate, stearate and behenate) and their sub...... and the nanoparticles. With their diverse particle shapes and internal structures as well as their different thermal behavior, aggregate states and polarities, the systems offer promising possibilities as delivery systems for lipophilic, amphiphilic and water soluble drugs.......Poly(glycerol adipate) (PGA) is a biodegradable polymer with promising features for nanoparticulate drug carrier systems. By acylation of PGA with fatty acids, composite systems with amphiphilic properties can be obtained. Variation of the fatty acid (laurate, stearate and behenate...

  11. Potentiation of insulin release in response to amino acid methyl esters correlates to activation of islet glutamate dehydrogenase activity

    DEFF Research Database (Denmark)

    Kofod, Hans; Lernmark, A; Hedeskov, C J

    1986-01-01

    Column perifusion of mouse pancreatic islets was used to study the ability of amino acids and their methyl esters to influence insulin release and activate islet glutamate dehydrogenase activity. In the absence of L-glutamine, L-serine and the methyl ester of L-phenylalanine, but neither L...... glutamate dehydrogenase activity showed that only the two methyl esters of L-phenylalanine and L-serine activated the enzyme. It is concluded that the mechanism by which methyl esters of amino acids potentiate insulin release is most likely to be mediated by the activation of pancreatic beta-cell glutamate...

  12. Solubilization, partial purification, and reconstitution of glutamate- and N-methyl-D-aspartate-activated cation channels from brain synaptic membranes

    International Nuclear Information System (INIS)

    Ly, A.M.; Michaelis, E.K.

    1991-01-01

    L-Glutamate-activated cation channel proteins from rat brain synaptic membranes were solubilized, partially purified, and reconstituted into liposomes. Optimal conditions for solubilization and reconstitution included treatment of the membranes with nonionic detergents in the presence of neutral phospholipids plus glycerol. Quench-flow procedures were developed to characterize the rapid kinetics of ion flux induced by receptor agonists. [ 14 C]Methylamine, a cation that permeates through the open channel of both vertebrate and invertebrate glutamate receptors, was used to measure the activity of glutamate receptor-ion channel complexes in reconstituted liposomes. L-Glutamate caused an increase in the rate of [ 14 C]methylamine influx into liposomes reconstituted with either solubilized membrane proteins or partially purified glutamate-binding proteins. Of the major glutamate receptor agonists, only N-methyl-D-aspartate activated cation fluxes in liposomes reconstituted with glutamate-binding proteins. In liposomes reconstituted with glutamate-binding proteins, N-methyl-D-aspartate- or glutamate-induced influx of NA + led to a transient increase in the influx of the lipid-permeable anion probe S 14 CN - . These results indicate the functional reconstitution of N-methyl-D-aspartate-sensitive glutamate receptors and the role of the ∼69-kDa protein in the function of these ion channels

  13. Stereocomplexation of low molecular weight poly(L-lactic acid) and high molecular weight poly(D-lactic acid), radiation crosslinking PLLA/PDLA stereocomplexes and their characterization

    International Nuclear Information System (INIS)

    Quynh, Tran Minh; Mai, Hoang Hoa; Lan, Pham Ngoc

    2013-01-01

    Poly(L-lactic acid)s (PLLAx) were synthesized from L-lactic acid by polycondensation. Different stereocomplexes were also obtained with equimolar mixtures of synthesized PLLAx and a commercial PDLA. The stereocomplexes were crosslinked with triallyl isocyanurate (TAIC) by gamma irradiation. Crosslinking density increased with radiation doses, the heavier the crosslinking network, the lower its swelling degree. The crosslinking structures were introduced in the stereocomplexes inhibiting the mobility for crystallization of PLLA molecules. Thermal and mechanical properties of PLA stereocomplexes were remarkably enhanced by radiation induced crosslinking. PLA stereocomplex does not seem to be degraded by PLLA degrading microorganisms existing in compost at room temperature, but the synthesized PLLA was significantly degraded. - Highlights: ► Complete PLA stereocomplex was obtained from synthesized PLLA and a commercial PDLA. ► Melting temperature of stereocomplex were much improved by gamma irradiation. ► Crosslinking network inhibited the mobility of polymeric chains for crystallization. ► Biodegradability of PLLA was reduced by stereocomplexation and crosslinking.

  14. Valine but not leucine or isoleucine supports neurotransmitter glutamate synthesis during synaptic activity in cultured cerebellar neurons

    DEFF Research Database (Denmark)

    Bak, Lasse Kristoffer; Johansen, Maja L.; Schousboe, Arne

    2012-01-01

    Synthesis of neuronal glutamate from a-ketoglutarate for neurotransmission necessitates an amino group nitrogen donor; however, it is not clear which amino acid(s) serves this role. Thus, the ability of the three branched-chain amino acids (BCAAs), leucine, isoleucine, and valine, to act as amino...... group nitrogen donors for synthesis of vesicular neurotransmitter glutamate was investigated in cultured mouse cerebellar (primarily glutamatergic) neurons. The cultures were superfused in the presence of (15) N-labeled BCAAs, and synaptic activity was induced by pulses of N-methyl-D-aspartate (300 µ......]valine was able to maintain the amount of vesicular glutamate during synaptic activity. This indicates that, among the BCAAs, only valine supports the increased need for synthesis of vesicular glutamate. © 2012 Wiley Periodicals, Inc....

  15. Circadian Regulation of Glutamate Transporters

    Directory of Open Access Journals (Sweden)

    Donají Chi-Castañeda

    2018-06-01

    Full Text Available L-glutamate is the major excitatory amino acid in the mammalian central nervous system (CNS. This neurotransmitter is essential for higher brain functions such as learning, cognition and memory. A tight regulation of extra-synaptic glutamate levels is needed to prevent a neurotoxic insult. Glutamate removal from the synaptic cleft is carried out by a family of sodium-dependent high-affinity transporters, collectively known as excitatory amino acid transporters. Dysfunction of glutamate transporters is generally involved in acute neuronal injury and neurodegenerative diseases, so characterizing and understanding the mechanisms that lead to the development of these disorders is an important goal in the design of novel treatments for the neurodegenerative diseases. Increasing evidence indicates glutamate transporters are controlled by the circadian system in direct and indirect manners, so in this contribution we focus on the mechanisms of circadian regulation (transcriptional, translational, post-translational and post-transcriptional regulation of glutamate transport in neuronal and glial cells, and their consequence in brain function.

  16. Late-onset anaphylaxis due to poly (γ-glutamic acid) in the soup of commercial cold Chinese noodles in a patient with allergy to fermented soybeans (natto).

    Science.gov (United States)

    Inomata, Naoko; Chin, Keishi; Nagashima, Mayumi; Ikezawa, Zenro

    2011-09-01

    Fermented soybeans (natto) have been reported to induce IgE-mediated, late-onset anaphylaxis without early-phase responses. However, the relevant allergens of natto allergy have never been identified. A 38-year-old man developed an anaphylactic reaction accompanied by flashing, generalized urticaria, conjunctival redness, and dyspnea 3 hours after ingestion of commercial cold Chinese noodles. He had avoided natto for the past year due to developing several anaphylactic reactions half a day after natto ingestion. The results of skin prick tests (SPTs) were strongly positive for natto and the soup of cold Chinese noodles. Furthermore, SPTs showed positive for poly (γ-glutamic acid) (PGA), which is a major constituent of natto mucilage, alone among all the ingredients of the cold Chinese noodle soup. Therefore, he was diagnosed with late-onset anaphylaxis to PGA contained in natto and the cold Chinese noodle soup. These results indicated that in the present case, the relevant allergen of late-onset anaphylaxis may have been PGA in all episodes and that the patient had been sensitized by PGA through natto ingestion. PGA is produced by Bacillus subtilis during fermentation and is a high-molecular, biodegradable polymer. The late onset is therefore, hypothesized to be due to a delayed absorption of PGA, as PGA biodegrades to peptides sufficiently small to be absorbed in the bowel. PGA has recently been applied to a wide range of fields such as foods, cosmetics, and medicine. Therefore, patients with late-onset anaphylaxis to PGA of natto should avoid not only natto but also other materials containing PGA.

  17. Poly(aspartic acid) (PAA) hydrolases and PAA biodegradation: current knowledge and impact on applications.

    Science.gov (United States)

    Hiraishi, Tomohiro

    2016-02-01

    Thermally synthesized poly(aspartic acid) (tPAA) is a bio-based, biocompatible, biodegradable, and water-soluble polymer that has a high proportion of β-Asp units and equivalent moles of D- and L-Asp units. Poly(aspartic acid) (PAA) hydrolase-1 and hydrolase-2 are tPAA biodegradation enzymes purified from Gram-negative bacteria. PAA hydrolase-1 selectively cleaves amide bonds between β-Asp units via an endo-type process, whereas PAA hydrolase-2 catalyzes the exo-type hydrolysis of the products of tPAA hydrolysis by PAA hydrolase-1. The novel reactivity of PAA hydrolase-1 makes it a good candidate for a biocatalyst in β-peptide synthesis. This mini-review gives an overview of PAA hydrolases with emphasis on their biochemical and functional properties, in particular, PAA hydrolase-1. Functionally related enzymes, such as poly(R-3-hydroxybutyrate) depolymerases and β-aminopeptidases, are compared to PAA hydrolases. This mini-review also provides findings that offer an insight into the catalytic mechanisms of PAA hydrolase-1 from Pedobacter sp. KP-2.

  18. Transport of acidic amino acids by human jejunal brush-border membrane vesicles

    International Nuclear Information System (INIS)

    Rajendran, V.M.; Harig, J.M.; Adams, M.B.; Ramaswamy, K.

    1987-01-01

    This study characterizes the transport of radiolabeled acidic amino acids into brush-border membrane vesicles prepared from human jejunum. The uptakes of L-glutamic, L-aspartic, and D-aspartic acids were stimulated by a Na + gradient. Concentrative uptake (resulting in an overshoot phenomenon) of these dicarboxylic amino acids occurred when there was an outward K + gradient. In addition, increasing K + gradients resulted in enhanced uptake of L-glutamic acid. This K + requirement is somewhat specific as Rb + and Cs + could enhance uptake to a limited extent, whereas Li + and choline + showed no enhancement. The presence of a K + gradient did not affect the affinity of the carrier system for L-glutamic acid but it did increase the V/sub max/. The presence of extravesicular anions having differing membrane permeabilities did not altar L-glutamic acid uptake indicating an absence of an effect of membrane potential on the transport process. Finally, the human transport system for L-glutamic acid appears to be specific for acidic amino acids as demonstrated by inhibition studies. The studies demonstrate a transport system in human jejunum specific for acidic amino acids that is energized by an inward Na + gradient and an outward K + gradient

  19. Antifungal Poly(lactic acid Films Containing Thymol and Carvone

    Directory of Open Access Journals (Sweden)

    Boonruang Kanchana

    2016-01-01

    Full Text Available The goal of this study was to develop antifungal poly(lactic acid films for food packaging applications. The antifungal compounds, thymol and R-(--carvone were incorporated into poly(lactic acid (PLA-based polymer at 10, 15 and 20% by weight. Film converting process consists of three steps including melt blending, sheet extrusion and biaxial stretching. The incorporation of antifungal compounds into the polymer matrix resulted in decreased Tg and Tm, increased gas permeabilility, reduced tensile strength and increased elongation at break of the antifungal PLA films.

  20. Utilization of barley or wheat bran to bioconvert glutamate to γ-aminobutyric acid (GABA).

    Science.gov (United States)

    Jin, Wen-Jie; Kim, Min-Ju; Kim, Keun-Sung

    2013-09-01

    This study deals with the utilization of agro-industrial wastes created by barley and wheat bran in the production of a value-added product, γ-aminobutyric acid (GABA). The simple and eco-friendly reaction requires no pretreatment or microbial fermentation steps but uses barley or wheat bran as an enzyme source, glutamate as a substrate, and pyridoxal 5'-phosphate (PLP) as a cofactor. The optimal reaction conditions were determined on the basis of the temperatures and times used for the decarboxylation reactions and the initial concentrations of barley or wheat bran, glutamate, and PLP. The optimal reactions produced 9.2 mM of GABA from 10 mM glutamate, yielding a 92% GABA conversion rate, when barley bran was used and 6.0 mM of GABA from 10 mM glutamate, yielding a 60% GABA conversion rate, when wheat bran was used. The results imply that barley bran is more efficient than wheat bran in the production of GABA. © 2013 Institute of Food Technologists®

  1. Poly(vinyl alcohol)/poly(acrylic acid)/TiO2/graphene oxide nanocomposite hydrogels for pH-sensitive photocatalytic degradation of organic pollutants

    International Nuclear Information System (INIS)

    Moon, Young-E; Jung, Gowun; Yun, Jumi; Kim, Hyung-Il

    2013-01-01

    Graphical abstract: The photocatalytic removal of pollutants was improved by the two-step mechanism based on the adsorption of pollutants by hydrogel and the effective decomposition by combination of TiO 2 and graphene oxide. -- Highlights: • pH sensitive PVA/PAAc hydrogels were prepared by radical polymerization and condensation reaction. • PVA/PAAc/TiO 2 /graphene oxide nanocomposite hydrogels were used for treatment of basic waste water. • Photocatalytic acitivity of TiO 2 was improved by incorporation of graphene oxide. • Photocatalytic decomposition by nanocomposite hydrogel was improved by increasing pH. -- Abstract: Poly(vinyl alcohol)/poly(acrylic acid)/TiO 2 /graphene oxide nanocomposite hydrogels were prepared using radical polymerization and condensation reaction for the photocatalytic treatment of waste water. Graphene oxide was used as an additive to improve the photocatalytic activity of poly(vinyl alcohol)/poly(acrylic acid)/TiO 2 nanocomposite hydrogels. Both TiO 2 and graphene oxide were immobilized in poly(vinyl alcohol)/poly(acrylic acid) hydrogel matrix for an easier recovery after the waste water treatment. The photocatalytic activity of poly(vinyl alcohol)/poly(acrylic acid)/TiO 2 /graphene oxide nanocomposite hydrogels was evaluated on the base of the degradation of pollutants by using UV spectrometer. The improved removal of pollutants was due to the two-step mechanism based on the adsorption of pollutants by nanocomposite hydrogel and the effective decomposition of pollutants by TiO 2 and graphene oxide. The highest swelling of nanocomposite hydrogel was observed at pH 10 indicating that poly(vinyl alcohol)/poly(acrylic acid)/TiO 2 /graphene oxide nanocomposite hydrogels were suitable as a promising system for the treatment of basic waste water

  2. Production of poly(β-l-malic acid) by Aureobasidium pullulans HA-4D under solid-state fermentation.

    Science.gov (United States)

    Xia, Jun; Li, Rongqing; He, Aiyong; Xu, Jiaxing; Liu, Xiaoyan; Li, Xiangqian; Xu, Jiming

    2017-11-01

    Poly(β-l-malic acid) (PMA) production by Aureobasidium pullulans HA-4D was carried out through solid-state fermentation (SSF) using agro-industrial residues. Maximum PMA production (75.4mg/g substrate) was obtained from a mixed substrate of sweet potato residue and wheat bran (1:1, w/w) supplemented with NaNO 3 (0.8%, w/w) and CaCO 3 (2%, w/w), with an initial moisture content of 70% and inoculum size of 13% (v/w) for 8days. Repeated-batch SSF was successfully conducted for 5 cycles with a high productivity. The scanning electron microscopy showed that the yeast-like cells of A. pullulans HA-4D could grow well on the solid substrate surface. Moreover, the cost analysis showed that the unit price of PMA in SSF was much lower than that of SmF. This is the first report on PMA production via SSF, and this study provided a new method to produce PMA from inexpensive agro-industrial residues. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. 3-Nitropropionic acid neurotoxicity in organotypic striatal and corticostriatal slice cultures is dependent on glucose and glutamate

    DEFF Research Database (Denmark)

    Storgaard, J; Kornblit, B T; Zimmer, J

    2000-01-01

    of lactate dehydrogenase in the medium and glutamic acid decarboxylase in tissue homogenates. 3-NPA toxicity (25-100 microM in 5 mM glucose, 24-48 h) appeared to be highly dependent on culture medium glucose levels. 3-NPA treatment caused also a dose-dependent lactate increase, reaching a maximum......Mitochondrial inhibition by 3-nitropropionic acid (3-NPA) causes striatal degeneration reminiscent of Huntington's disease. We studied 3-NPA neurotoxicity and possible indirect excitotoxicity in organotypic striatal and corticostriatal slice cultures. Neurotoxicity was quantified by assay...... of threefold increase above control at 100 microM. Both a high dose of glutamate (5 mM) and glutamate uptake blockade by dl-threo-beta-hydroxyaspartate potentiated 3-NPA neurotoxicity in corticostriatal slice cultures. Furthermore, striatum from corticostriatal cocultures was more sensitive to 3-NPA than...

  4. In vitro Degradation of Butanediamine-Grafted Poly(DL-Lactic acids)

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The degradation of butanediamine-grafted poly(DL-lactic acid) polymers (BDPLAs) in vitro together with PDLLA and maleic anhydride-grafted poly(DL-lactic acid) polymers (MPLAs) was investigated by observation of the changes of the pH value of incubation media, and weight loss ratio during degradation duration of 12 weeks. The results reveal that the acidity of PDLLA degradation products was weakened or neutralized by grafting butanediamine onto PDLLA. A uniform degradation of BDPLAs was observed in comparison with an acidity-induced auto-accelerating degradation featured by PDLLA and MPLAs. The biodegradation behaviors of BDPLAs can be adjusted by controlling the content of BDA. BDPLAs might be a new derivative of PDLLA-based biodegradable materials for medical applications without acidity-caused irritations and acidity-induced auto-accelerating degradation behavior as that of PDLLA.

  5. Glutamic Acid Residues in HIV-1 p6 Regulate Virus Budding and Membrane Association of Gag.

    Science.gov (United States)

    Friedrich, Melanie; Setz, Christian; Hahn, Friedrich; Matthaei, Alina; Fraedrich, Kirsten; Rauch, Pia; Henklein, Petra; Traxdorf, Maximilian; Fossen, Torgils; Schubert, Ulrich

    2016-04-25

    The HIV-1 Gag p6 protein regulates the final abscission step of nascent virions from the cell membrane by the action of its two late (L-) domains, which recruit Tsg101 and ALIX, components of the ESCRT system. Even though p6 consists of only 52 amino acids, it is encoded by one of the most polymorphic regions of the HIV-1 gag gene and undergoes various posttranslational modifications including sumoylation, ubiquitination, and phosphorylation. In addition, it mediates the incorporation of the HIV-1 accessory protein Vpr into budding virions. Despite its small size, p6 exhibits an unusually high charge density. In this study, we show that mutation of the conserved glutamic acids within p6 increases the membrane association of Pr55 Gag followed by enhanced polyubiquitination and MHC-I antigen presentation of Gag-derived epitopes, possibly due to prolonged exposure to membrane bound E3 ligases. The replication capacity of the total glutamic acid mutant E0A was almost completely impaired, which was accompanied by defective virus release that could not be rescued by ALIX overexpression. Altogether, our data indicate that the glutamic acids within p6 contribute to the late steps of viral replication and may contribute to the interaction of Gag with the plasma membrane.

  6. Frontal Glutamate and γ-Aminobutyric Acid Levels and Their Associations With Mismatch Negativity and Digit Sequencing Task Performance in Schizophrenia.

    Science.gov (United States)

    Rowland, Laura M; Summerfelt, Ann; Wijtenburg, S Andrea; Du, Xiaoming; Chiappelli, Joshua J; Krishna, Nithin; West, Jeffrey; Muellerklein, Florian; Kochunov, Peter; Hong, L Elliot

    2016-02-01

    Auditory mismatch negativity (MMN) is a biomarker for schizophrenia thought to reflect glutamatergic N-methyl-d-aspartate receptor function and excitatory-inhibitory neurotransmission balance. However, the association of glutamate level with MMN has not been directly examined in patients with schizophrenia, to our knowledge. To investigate the contributions of glutamate and γ-aminobutyric acid (GABA) to MMN and digit sequencing task (DST) performance, an assessment of verbal working memory, in schizophrenia. Fifty-three control participants from the community and 45 persons with schizophrenia from outpatient clinics completed an electroencephalographic session for MMN, magnetic resonance spectroscopy for glutamate and GABA, and a DST. The study dates were July 2011 to May 2014, and the dates of our analysis were May 2014 to August 2015. Glutamate, GABA, the ratio of glutamine to glutamate, MMN amplitude, and DST. Structural equation modeling was used to test the effects of neurochemistry and MMN amplitude on DST performance. The 45 persons with schizophrenia were a mean (SD) of 37.7 (12.8) years and the control participants were 37.1 (13.1) years. The schizophrenia group had a mean (SD) of 14.7 (12.1) years of illness. Mismatch negativity amplitude (F = 4.39, P = .04) and glutamate (F = 9.69, P = .002) were reduced in the schizophrenia group. Smaller MMN amplitude was significantly associated with lower GABA level (P = .008), lower glutamate level (P = .05), and higher ratio of glutamine to glutamate (P = .003). Reduced MMN amplitude was linked to poor verbal working memory in schizophrenia (P = .002). Modeling revealed that a proxy of glutamatergic function, indexed by the ratio of glutamine to glutamate, influenced a path from the ratio of glutamine to glutamate to MMN to verbal working memory (P = .38 [root-mean-square error of approximation, P GABA in MMN and verbal working memory deficits in schizophrenia has been

  7. Pervaporation of alcohol-toluene mixtures through polymer blend membranes of poly(acrylic acid) and poly(vinyl alcohol)

    NARCIS (Netherlands)

    Park, H.C.; Park, H.; Meertens, R.M.; Meertens, R.M.; Mulder, M.H.V.; Smolders, C.A.; Smolders, C.A.

    1994-01-01

    Homogeneous membranes were prepared by blending poly(acrylic acid) with poly(vinyl alcohol). These blend membranes were evaluated for the selective separation of alcohols from toluene by pervaporation. The flux and selectivity of the membranes were determined both as a function of the blend

  8. Characterisation of poly(lactic acid): poly(ethyleneoxide) (PLA:PEG) nanoparticles using the self-consistent theory modelling approach

    NARCIS (Netherlands)

    Heald, C.R.; Stolnik, S.; Matteis, De C.; Garnett, M.C.; Illum, L.; Davis, S.S.; Leermakers, F.A.M.

    2003-01-01

    Self-consistent field (SCF) modelling studies can be used to predict the properties of poly(lactic acid):poly(ethyleneoxide) (PLA:PEG) nanoparticles using the theory developed by Scheutjens and Fleer. Good agreement in the results between experimental and modelled data has been observed previously

  9. Central transport and distribution of labelled glutamic and aspartic acids to the cochlear nucleus in cats. An autoradiographic study

    Energy Technology Data Exchange (ETDEWEB)

    Kane, E S [University of Massachusetts Medical School, Worcester, MA (USA). Dept. of Anatomy

    1979-01-01

    Tritiated L-glutamic acid or L-aspartic acid was injected unilaterally into the cochleas of adult cats, and 4 h-7 days later the localization of label was studied by light-microscopic autoradiography in sections of the brain stem. Consistent differences in labelling after glutamate and after aspartate suggest differences in their uptake, metabolic conversion and/or transport to the cochlear nucleus by cochlear fibers. The morphological differences shown here agree with the distribution of those two amino acids in the cat cochlear nucleus as shown by microchemical analyses.

  10. Influence of Heavy Metal Powders on Rheological Properties of Poly(Lactic Acid)

    Science.gov (United States)

    Lebedev, S. M.; Gefle, O. S.; Amitov, E. T.; Berchuk, D. Yu.; Zhuravlev, D. V.

    2017-08-01

    Main properties of poly(lactic acid) (PLA) and composite materials on its basis filled with tungsten and lead powders are investigated. An anomalous decrease of the viscosity of melts of poly(lactic acid)/tungsten and poly(lactic acid)/lead composites is detected. The methods of differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and IR spectroscopy are used for investigation. It is shown that the temperature at which the composites filled with tungsten and lead begin to melt decreases by more than 8 and 3°C in comparison with neat PLA. Our investigations show impossibility of preparing radiation resistant polymer composites based on PLA filled with tungsten and lead powders.

  11. Delayed translocation of NGFI-B/RXR in glutamate stimulated neurons allows late protection by 9-cis retinoic acid

    International Nuclear Information System (INIS)

    Mathisen, Gro H.; Fallgren, Asa B.; Strom, Bjorn O.; Boldingh Debernard, Karen A.; Mohebi, Beata U.; Paulsen, Ragnhild E.

    2011-01-01

    Highlights: → NGFI-B and RXR translocate out of the nucleus after glutamate treatment. → Arresting NGFI-B/RXR in the nucleus protects neurons from excitotoxicity. → Late protection by 9-cis RA is possible due to a delayed translocation of NGFI-B/RXR. -- Abstract: Nuclear receptor and apoptosis inducer NGFI-B translocates out of the nucleus as a heterodimer with RXR in response to different apoptosis stimuli, and therefore represents a potential pharmacological target. We found that the cytosolic levels of NGFI-B and RXRα were increased in cultures of cerebellar granule neurons 2 h after treatment with glutamate (excitatory neurotransmitter in the brain, involved in stroke). To find a time-window for potential intervention the neurons were transfected with gfp-tagged expressor plasmids for NGFI-B and RXR. The default localization of NGFI-Bgfp and RXRgfp was nuclear, however, translocation out of the nucleus was observed 2-3 h after glutamate treatment. We therefore hypothesized that the time-window between treatment and translocation would allow late protection against neuronal death. The RXR ligand 9-cis retinoic acid was used to arrest NGFI-B and RXR in the nucleus. Addition of 9-cis retinoic acid 1 h after treatment with glutamate reduced the cytosolic translocation of NGFI-B and RXRα, the cytosolic translocation of NGFI-Bgfp observed in live neurons, as well as the neuronal death. However, the reduced translocation and the reduced cell death were not observed when 9-cis retinoic acid was added after 3 h. Thus, late protection from glutamate induced death by addition of 9-cis retinoic acid is possible in a time-window after apoptosis induction.

  12. Differential regulation of glutamate receptors in trigeminal ganglia following masseter inflammation

    OpenAIRE

    Lee, Jongseok; Ro, Jin Y.

    2007-01-01

    The present study examined whether N-methyl-D-aspartate receptor (NMDAR) and 5-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) subunits and group I metabotropic glutamate receptors (mGluRs) are constitutively expressed in trigeminal ganglia (TG) using Western blot analysis in male Sprague Dawley rats. We then investigated whether experimental induction of masseter inflammation influences glutamate receptor expressions by comparing the protein levels from naïve rats to th...

  13. Functional Properties of Plasticized Bio-Based Poly(Lactic Acid)_Poly(Hydroxybutyrate) (PLA_PHB) Films for Active Food Packaging

    OpenAIRE

    Burgos, Nuria; Armentano, Ilaria; Fortunati, Elena; Dominici, Franco; Luzi, Francesca; Fiori, Stefano; Cristofaro, Francesco; Visai, Livia; Jiménez, Alfonso; Kenny, José María

    2017-01-01

    Fully bio-based and biodegradable active films based on poly(lactic acid) (PLA) blended with poly(3-hydroxybutyrate) (PHB) and incorporating lactic acid oligomers (OLA) as plasticizers and carvacrol as active agent were extruded and fully characterized in their functional properties for antimicrobial active packaging. PLA_PHB films showed good barrier to water vapor, while the resistance to oxygen diffusion decreased with the addition of OLA and carvacrol. Their overall migration in aqueous f...

  14. Neuropathic Pain Following Poly-L-Lactic Acid (Sculptra) Injection.

    Science.gov (United States)

    Vrcek, Ivan; El-Sawy, Tarek; Chou, Eva; Allen, Theresa; Nakra, Tanuj

    Injectable fillers have become a prevalent means of facial rejuvenation and volume expansion. While typically well tolerated, serious complications have been reported. The authors present a case in which an otherwise healthy female with a history of multiple filler injections including poly-L-lactic acid, developed 3 weeks of neuropathic pain in the left temporal fossa following injection. To the best of the authors knowledge, neuropathic pain has not been reported as a complication following poly-L-lactic acid injection. The patient was treated with an injection of steroid and long-acting anesthetic with resolution of symptoms.

  15. Effect of Grafted Hydroquinone on the Acid-Base Properties of Poly(acrylic acid in the Presence of Copper (II

    Directory of Open Access Journals (Sweden)

    Nabila Bensacia

    2015-01-01

    Full Text Available Potentiometric titration of poly(acrylic acid and hydroquinone-functionalized poly(acrylic acid was conducted in the presence of copper (II. The effects of hydroquinone functionalizing and copper (II complexing on the potentiometric titration of poly(acrylic acid were studied in an ionic environment and in its absence. Henderson-Hasselbalch equation was applied to assess its validity for this titration. Coordination number and the stability constants of the copper- (II-complexed polymers were determined, and results showed the formation of mostly monodentate and bidentate copper- (II-polymer complexes.

  16. Group I mGlu receptors potentiate synaptosomal [{sup 3}H]glutamate release independently of exogenously applied arachidonic acid

    Energy Technology Data Exchange (ETDEWEB)

    Reid, M.E.; Toms, N.J.; Bedingfield, J.S.; Roberts, P.J. [Department of Pharmacology, School of Medical Sciences, University of Bristol, University Walk, Bristol, BS8 1TD (United Kingdom)

    1999-04-01

    In the current study, we have characterized group I metabotropic glutamate (mGlu) receptor enhancement of 4-aminopyridine (4AP)-evoked [{sup 3}H]glutamate release from rat cerebrocortical synaptosomes. The broad spectrum mGlu receptor agonist (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid ((1S,3R)-ACPD, 10 {mu}M) increased 4AP-evoked [{sup 3}H]glutamate release (143.32{+-}2.73% control) only in the presence of exogenously applied arachidonic acid; an effect reversed by the inclusion of bovine serum albumin (BSA, fatty acid free). In contrast, the selective group I mGlu receptor agonist (S)-3,5-dihydroxyphenylglycine (DHPG) potentiated (EC{sub 50}=1.60{+-}0.25 {mu}M; E{sub max}=147.61{+-}10.96% control) 4AP-evoked [{sup 3}H]glutamate release, in the absence of arachidonic acid. This potentiation could be abolished by either the selective mGlu{sub 1} receptor antagonist (R,S)-1-aminoindan-1,5-dicarboxylic acid (AIDA, 1 mM) or the selective PKC inhibitor (Ro 31-8220, 10 {mu}M) and was BSA-insensitive. The selective mGlu{sub 5} receptor agonist (R,S)-2-chloro-5-hydroxyphenylglycine (CHPG, 300{mu}M) was without effect. DHPG (100 {mu}M) also potentiated both 30 mM and 50 mM K{sup +}-evoked [{sup 3}H]glutamate release (121.60{+-}12.77% and 121.50{+-}4.45% control, respectively). DHPG (100 {mu}M) failed to influence both 4AP-stimulated {sup 45}Ca{sup 2+} influx and 50 mM K{sup +}-induced changes in synaptosomal membrane potential. Possible group I mGlu receptor suppression of tonic adenosine A{sub 1} receptor, group II/III mGlu receptors or GABA{sub B} receptor activity is unlikely since 4AP-evoked [{sup 3}H]glutamate release was insensitive to the selective inhibitory receptor antagonists 8-cyclopentyl-1,3-dimethylxanthine, (R,S)-{alpha}-cyclopropyl-4-phosphonophenylglycine or CGP55845A, respectively. These data suggest an 'mGlu{sub 1} receptor-like' receptor potentiates [{sup 3}H]glutamate release from cerebrocortical synaptosomes in the absence of

  17. Phase structure evolution during mixing and processing of poly(lactic acid)/polycaprolactone (PLA/PCL) blends

    Czech Academy of Sciences Publication Activity Database

    Fortelný, Ivan; Ostafinska, Aleksandra; Michálková, Danuše; Jůza, Josef; Mikešová, Jana; Šlouf, Miroslav

    2015-01-01

    Roč. 72, č. 11 (2015), s. 2931-2947 ISSN 0170-0839 R&D Projects: GA ČR(CZ) GA14-17921S; GA ČR GAP106/11/1069 Institutional support: RVO:61389013 Keywords : polymer blends * morphology evolution * poly( lactic acid ) Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.371, year: 2015

  18. Optimization of Preparation Techniques for Poly(Lactic Acid-Co-Glycolic Acid) Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Birnbaum, Duane T.; Kosmala, Jacqueline D.; Brannon-Peppas, Lisa [Biogel Technology, Inc. (United States)], E-mail: lisabp@biogeltech.com

    2000-06-15

    Microparticles and nanoparticles of poly(lactic acid-co-glycolic acid) (PLAGA) are excellent candidates for the controlled release of many pharmaceutical compounds because of their biodegradable nature. The preparation of submicron PLAGA particles poses serious challenges that are not necessarily present when preparing microparticles. We have evaluated several combinations of organic solvents and surfactants used in the formulation of PLAGA nanoparticles. Critical factors such as the ability to separate the nanoparticles from the surfactant, the ability to re-suspend the nanoparticles after freeze-drying, formulation yield and nanoparticle size were studied. The smallest particles were obtained using the surfactant/solvent combination of sodium dodecyl sulfate and ethyl acetate (65 nm) and the largest particles were obtained using poly(vinyl alcohol) and dichloromethane (466 nm). However, the optimal nanoparticles were produced using either acetone or ethyl acetate as the organic solvent and poly(vinyl alcohol) or human serum albumin as the surfactant. This is because the most critical measure of performance of these nanoparticles proved to be their ability to re-suspend after freeze-drying.

  19. Optimization of Preparation Techniques for Poly(Lactic Acid-Co-Glycolic Acid) Nanoparticles

    International Nuclear Information System (INIS)

    Birnbaum, Duane T.; Kosmala, Jacqueline D.; Brannon-Peppas, Lisa

    2000-01-01

    Microparticles and nanoparticles of poly(lactic acid-co-glycolic acid) (PLAGA) are excellent candidates for the controlled release of many pharmaceutical compounds because of their biodegradable nature. The preparation of submicron PLAGA particles poses serious challenges that are not necessarily present when preparing microparticles. We have evaluated several combinations of organic solvents and surfactants used in the formulation of PLAGA nanoparticles. Critical factors such as the ability to separate the nanoparticles from the surfactant, the ability to re-suspend the nanoparticles after freeze-drying, formulation yield and nanoparticle size were studied. The smallest particles were obtained using the surfactant/solvent combination of sodium dodecyl sulfate and ethyl acetate (65 nm) and the largest particles were obtained using poly(vinyl alcohol) and dichloromethane (466 nm). However, the optimal nanoparticles were produced using either acetone or ethyl acetate as the organic solvent and poly(vinyl alcohol) or human serum albumin as the surfactant. This is because the most critical measure of performance of these nanoparticles proved to be their ability to re-suspend after freeze-drying

  20. Optimization of Preparation Techniques for Poly(Lactic Acid-Co-Glycolic Acid) Nanoparticles

    Science.gov (United States)

    Birnbaum, Duane T.; Kosmala, Jacqueline D.; Brannon-Peppas, Lisa

    2000-06-01

    Microparticles and nanoparticles of poly(lactic acid-co-glycolic acid) (PLAGA) are excellent candidates for the controlled release of many pharmaceutical compounds because of their biodegradable nature. The preparation of submicron PLAGA particles poses serious challenges that are not necessarily present when preparing microparticles. We have evaluated several combinations of organic solvents and surfactants used in the formulation of PLAGA nanoparticles. Critical factors such as the ability to separate the nanoparticles from the surfactant, the ability to re-suspend the nanoparticles after freeze-drying, formulation yield and nanoparticle size were studied. The smallest particles were obtained using the surfactant/solvent combination of sodium dodecyl sulfate and ethyl acetate (65 nm) and the largest particles were obtained using poly(vinyl alcohol) and dichloromethane (466 nm). However, the optimal nanoparticles were produced using either acetone or ethyl acetate as the organic solvent and poly(vinyl alcohol) or human serum albumin as the surfactant. This is because the most critical measure of performance of these nanoparticles proved to be their ability to re-suspend after freeze-drying.

  1. Ester Sensing with Poly (Aniline-co-m-aminobenzoic Acid Deposited on Poly (Vinyl Alcohol

    Directory of Open Access Journals (Sweden)

    S. ADHIKARI

    2011-02-01

    Full Text Available Poly (aniline-co-m-aminobenzoic acid was deposited on poly (vinyl alcohol film by in situ oxidative polymerization of the monomers aniline and m-aminobenzoic acid. Sensing experiments were performed on the composite film with the injection of various concentrations of hexenyl acetate and hexenyl butyrate at room temperature. The sensor responded rapidly and reversibly in the presence of hexenyl acetate and hexenyl butyrate vapors which was detected by resistance change of the composite film upon exposure to the vapor. Selectivity tests revealed that the sensor selectively responded to hexenyl butyrate compared to hexenyl acetate. The sensing response has been explained on the basis of FT-IR spectroscopic analysis of the polymer film before and after exposure to the ester vapor.

  2. De-coupling of blood flow and metabolism in the rat brain induced by glutamate

    International Nuclear Information System (INIS)

    Hirose, Shinichiro; Momosaki, Sotaro; Sasaki, Kazunari; Hosoi, Rie; Abe, Kohji; Inoue, Osamu; Gee, A.

    2009-01-01

    Glutamate plays an essential role in neuronal cell death in many neurological disorders. In this study, we examined both glucose metabolism and cerebral blood flow in the same rat following infusion of glutamate or ibotenic acid using the dual-tracer technique. The effects of MK-801, an N-methyl-D-aspartate (NMDA) receptor antagonist, and 1,2,3,4-tetrahydro-6-nitro-2,3-dioxo-benzo[f]quinoxaline-7-sulfonamide (NBQX), an α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-kainate receptor antagonist, on the changes in the glucose metabolism and cerebral blood flow induced by glutamate were also examined. The rats were microinjected with glutamate (1 μmol/μl, 2 μl) or ibotenic acid (10 μg/μl, 1 μl) into the right striatum, and dual-tracer autoradiograms of [ 18 F]fluorodeoxyglucose (FDG) and [ 14 C]iofetamine (IMP) were obtained. MK-801 and NBQX were injected intravenously about 45 and 30 min, respectively, after the infusion of glutamate. De-coupling of blood flow and metabolism was noted in the glutamate-infused hemisphere (as assessed by no alteration of [ 18 F]FDG uptake and significant decrease of [ 14 C]IMP uptake). Pretreatments with MK-801, NBQX, or combined use of MK-801 and NBQX did not affect the de-coupling of the blood flow and metabolism induced by glutamate. A histochemical study revealed that about 20% neuronal cell death had occurred in the striatum at 105 min after the infusion of glutamate. In addition, a significant increase of the [ 18 F]FDG uptake and decrease of [ 14 C]IMP uptake were also seen in the rat brain infused with ibotenic acid. These results indicate that glutamate and ibotenic acid caused a significant de-coupling of blood flow and glucose metabolism in the intact rat brain during the early phase of neurodegeneration. It is necessary to evaluate the relation between metabotropic glutamate receptors and de-coupling of blood flow and metabolism. (author)

  3. Evidence that glutamate mediates axon-to-Schwann cell signaling in the squid.

    Science.gov (United States)

    Lieberman, E M; Abbott, N J; Hassan, S

    1989-01-01

    High-frequency stimulation (100 Hz) of isolated giant axons of the small squid Alloteuthis subulata and the large squid Loligo forbesi caused the periaxonal Schwann cell resting potential (Em = -40 mV) to hyperpolarize up to 11 mV in direct proportion to train duration and action potential amplitude. In both species, the Schwann cell also hyperpolarized up to 17 mV with the application of L-glutamate (10(-9) to 10(-6) M), in a dose-dependent manner. By contrast, in the presence of 10(-8) M d-tubocurarine (d-TC) to block the cholinergic component of the Schwann cell response, Schwann cells depolarized 8-9 mV during electrical stimulation of the axon or application of L-glutamate. In the presence of 10(-5) M 2-amino-4-phosphonobutyrate (2-APB), the hyperpolarization to glutamate and to axon stimulation was blocked, whereas the cholinergic (carbachol-induced) hyperpolarization was unaffected. In experiments with Alloteuthis, L-aspartate (10(-7) M) also caused a Schwann cell hyperpolarization, but this was not blocked by 2-APB. In tests with glutamate receptor agonists and antagonists, quisqualate (10(-5) M) produced a hyperpolarization blocked by 10(-4) M L-glutamic acid diethylester (GDEE), which also blocked the response to axonal stimulation. Kainic acid (10(-4) M) also caused a hyperpolarization, but n-methyl-D-aspartate (NMDA; 10(-4) M), ibotenate (10(-5) M), alpha-amino-3-hydroxy-5-methyl-isoxazole proprionate (AMPA; (10(-4) M), and isethionate (10(-5) M) had no effect.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Antibodies to a recombinant glutamate-rich Plasmodium falciparum protein

    DEFF Research Database (Denmark)

    Hogh, B; Petersen, E; Dziegiel, Morten Hanefeld

    1992-01-01

    A Plasmodium falciparum antigen gene coding for a 220-kD glutamate-rich protein (GLURP) has been cloned, and the 783 C-terminal amino acids of this protein (GLURP489-1271) have been expressed as a beta-galactosidase fusion protein in Escherichia coli. The encoded 783 amino acid residues contain two...... areas of repeated amino acid sequences. Antibodies against recombinant GLURP489-1271, as well as against a synthetic peptide corresponding to GLURP899-916, and against a synthetic peptide representing the major glutamate rich repeat sequence from the P. falciparum ring erythrocyte surface antigen (Pf155...... between the anti-GLURP489-1271 and anti-(EENV)6 antibody responses. The data provide indirect evidence for a protective role of antibodies reacting with recombinant GLURP489-1271 as well as with the synthetic peptide (EENV)6 from the Pf155/RESA....

  5. Microencapsulation of a fatty acid with Poly(melamine–urea–formaldehyde)

    International Nuclear Information System (INIS)

    Konuklu, Yeliz; Paksoy, Halime O.; Unal, Murat; Konuklu, Suleyman

    2014-01-01

    Highlights: • Decanoic(capric) acid microcapsules were prepared with different capsule wall materials. • The one-step in situ polymerization technique was used. • Leakage-free, thermally stable microPCMs was prepared with Poly(MUF). • Influence of different surfactants on encapsulation and thermal properties reported. - Abstract: The main purpose of this study is to obtain leakage-free, thermally stable decanoic acid microcapsules (microPCMs) for thermal energy storage applications. Decanoic acid (capric acid) is an environmentally friendly fatty acid since it is obtained from vegetable and animal oils. MicroPCMs were prepared with different capsule wall materials via a one-step in situ polymerization technique. The properties of microencapsulated PCMs have been analyzed by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermal gravimetric analyzer (TGA), Fourier transform infrared (FTIR) spectra analysis and particle size analyzer. The microPCMs prepared using Poly(urea–formaldehyde) (PUF) exhibit higher heat capacities and the microPCMs prepared using Poly(melamine–formaldehyde) (PMF) exhibit higher thermal stabilities. In order to obtain microPCMs with better properties such as suitable latent heat and better heat resistance at high temperatures, we microencapsulated decanoic acid with Poly (melamine–urea–formaldehyde) (PMUF). Furthermore, the effects of surfactants on microPCMs with PMUF were investigated by SEM, a particle size analyzer, DSC, and TGA. The results show that the binary surfactant system was a suitable emulsifier for this process. We determined that the melting temperature was close to 33 °C, the latent heat storage capacity was about 88 J/g, and the mean particle diameter was 0.28 μm for microPCMs with PMUF. We recommend decanoic acid microencapsulated with PMUF for thermally stable and leakage-free applications above 95 °C

  6. Molecular Interaction between Lipoteichoic Acids and Lactobacillus delbrueckii Phages Depends on d-Alanyl and α-Glucose Substitution of Poly(Glycerophosphate) Backbones▿

    Science.gov (United States)

    Räisänen, Liisa; Draing, Christian; Pfitzenmaier, Markus; Schubert, Karin; Jaakonsaari, Tiina; von Aulock, Sonja; Hartung, Thomas; Alatossava, Tapani

    2007-01-01

    Lipoteichoic acids (LTAs) have been shown to act as bacterial counterparts to the receptor binding proteins of LL-H, LL-H host range mutant LL-H-a21, and JCL1032. Here we have used LTAs purified by hydrophobic interaction chromatography from different phage-resistant and -sensitive strains of Lactobacillus delbrueckii subsp. lactis. Nuclear magnetic resonance analyses revealed variation in the degree of α-glucosyl and d-alanyl substitution of the 1,3-linked poly(glycerophosphate) LTAs between the phage-sensitive and phage-resistant strains. Inactivation of phages was less effective if there was a high level of d-alanine residues in the LTA backbones. Prior incubation of the LTAs with α-glucose-specific lectin inhibited the LL-H phage inactivation. The overall level of decoration or the specific spatial combination of α-glucosyl-substituted, d-alanyl-substituted, and nonsubstituted glycerol residues may also affect phage adsorption. PMID:17416656

  7. Strontium D-Glutamate Hexahydrate and Strontium Di(hydrogen L-glutamate) Pentahydrate

    DEFF Research Database (Denmark)

    Christgau, Stephan; Odderhede, Jette; Stahl, Kenny

    2005-01-01

    Sr(C5H7NO4)] center dot 6H(2)O, ( I), and [Sr(C5H8NO4)(2)] center dot 5H(2)O, (II), both crystallize with similar strontium - glutamate - water layers. In ( I), the neutral layers are connected through hydrogen bonds by water molecules, while in ( II), the positively charged layers are connected...... through hydrogen bonds and electrostatic interactions by interleaving layers of hydrogen glutamate anions and water molecules....

  8. Neurological disorders associated with glutamic acid decarboxylase antibodies: a Brazilian series

    Directory of Open Access Journals (Sweden)

    Maurício Fernandes

    2012-09-01

    Full Text Available Neurological disorders associated with glutamic acid decarboxylase (GAD antibodies are rare pleomorphic diseases of uncertain cause, of which stiff-person syndrome (SPS is the best-known. Here, we described nine consecutive cases of neurological disorders associated with anti-GAD, including nine patients with SPS and three cases with cerebellar ataxia. Additionally, four had hypothyroidism, three epilepsy, two diabetes mellitus and two axial myoclonus.

  9. (S)-homo-AMPA, a specific agonist at the mGlu6 subtype of metabotropic glutamic acid receptors

    DEFF Research Database (Denmark)

    Ahmadian, H; Nielsen, B; Bräuner-Osborne, Hans

    1997-01-01

    of the spectroscopic configurational assignments. The activities of 6 and 7 at ionotropic EAA (iGlu) receptors and at mGlu1-7 were studied. (S)-Homo-AMPA (6) was shown to be a specific agonist at mGlu6 (EC50 = 58 +/- 11 microM) comparable in potency with the endogenous mGlu agonist (S)-glutamic acid (EC50 = 20 +/- 3......Our previous publication (J. Med. Chem. 1996, 39, 3188-3194) described (RS)-2-amino-4-(3-hydroxy-5-methylisoxazol-4-yl)butyric acid (Homo-AMPA) as a highly selective agonist at the mGlu6 subtype of metabotropic excitatory amino acid (EAA) receptors. Homo-AMPA has already become a standard agonist...... microM). Although Homo-AMPA did not show significant effects at iGlu receptors, (R)-Homo-AMPA (7), which was inactive at mGlu1-7, turned out to be a weak N-methyl-D-aspartic acid (NMDA) receptor antagonist (IC50 = 131 +/- 18 microM)....

  10. Detection of Elevated Signaling Amino Acids in Human Diabetic Vitreous by Rapid Capillary Electrophoresis

    Directory of Open Access Journals (Sweden)

    Miao-Jen Lu

    2007-01-01

    Full Text Available Elevated glutamate is implicated in the pathology of PDR. The ability to rapidly assess the glutamate and amino acid content of vitreous provides a more complete picture of the chemical changes occurring at the diabetic retina and may lead to a better understanding of the pathology of PDR. Vitreous humor was collected following vitrectomies of patients with PDR and control conditions of macular hole or epiretinal membrane. A capillary electrophoresis method was developed to quantify glutamate and arginine. The analysis is relatively fast (<6 minutes and utilizes a poly(ethyleneoxide and sodium dodecylsulfate run buffer. Both amino acid levels show significant increases in PDR patients versus controls and are comparable to other reports. The levels of vitreal glutamate vary inversely with the degree of observed hemorrhage. The results demonstrate a rapid method for assessment of a number of amino acids to characterize the chemical changes at the diabetic retina to better understand tissue changes and potentially identify new treatments.

  11. Cognitive decline in a patient with anti-glutamic acid decarboxylase autoimmunity; case report

    OpenAIRE

    Takagi, Masahito; Yamasaki, Hiroshi; Endo, Keiko; Yamada, Tetsuya; Kaneko, Keizo; Oka, Yoshitomo; Mori, Etsuro

    2011-01-01

    Abstract Background Glutamic acid decarboxylase (GAD) is the rate-limiting enzyme for producing γ-aminobutyric acid, and it has been suggested that antibodies against GAD play a role in neurological conditions and type 1 diabetes. However, it is not known whether dementia appears as the sole neurological manifestation associated with anti-GAD antibodies in the central nervous system. Case presentation We describe the clinical, neuropsychological, and neuroradiological findings of a 73-year-ol...

  12. Bioceramic/Poly (glycolic-poly (lactic acid composite induces mineralized barrier after direct capping of rat tooth pulp tissue

    Directory of Open Access Journals (Sweden)

    Alfonso Gala-Garcia

    2010-03-01

    Full Text Available The aim of this study was to observe the histopathological pulp response following direct pulp capping of mechanically exposed teeth in rats with a composite of beta-tricalcium phosphate-hydroxyapatite bioceramic (BC and poly (glycolic-poly (lactic acid (PLGA material or a calcium hydroxide [Ca(OH2] material, compared to BC alone and a negative control of water. Pulp of the maxillary molars was exposed, followed by capping with the experimental material. The pulpal tissue response was assessed post-operatively at 1, 7, 14 and 30 d, followed by histological analysis. The Ca(OH2 group exhibited severe acute inflammatory cell infiltration at day 14. However after 30 d, a new hard tissue with macro porous obliteration of the pulp chamber and a characteristic necrotic area had appeared. BC and Ca(OH2 capping were associated with moderate inflammation and dentinal bridge similar. Meanwhile, in the BC/PLGA composite group, there was moderate inflammatory infiltrate and formation of a dense and complete dentinal bridge. In conclusion, the BC/PLGA composite material showed a large zone of tertiary dentin, and effectively reorganized the dentin-pulp complex.

  13. A density functional and quantum Monte Carlo study of glutamic acid in vacuo and in a dielectric continuum medium

    NARCIS (Netherlands)

    Floris, F.; Filippi, Claudia; Amovilli, C.

    2012-01-01

    We present density functional theory (DFT) and quantum Monte Carlo (QMC) calculations of the glutamic acid and glutamate ion in vacuo and in various dielectric continuum media within the polarizable continuum model (PCM). In DFT, we employ the integral equation formalism variant of PCM while, in

  14. Analysis of Poly(Lactic-co-Glycolic Acid/Poly(Isoprene Polymeric Blend for application as biomaterial

    Directory of Open Access Journals (Sweden)

    Douglas Ramos Marques

    2013-01-01

    Full Text Available The application of renewable raw materials encourages research in the biopolymers area. The Poly(Lactic-co-Glycolic Acid/Poly(Isoprene (PLGA/IR blend combines biocompatibility for application in the health field with excellent mechanical properties. The blend was obtained by solubilization of polymers in organic solvents. To investigate the polymer thermochemical properties, FTIR and DSC were applied. To investigate the composition's influence over polymer mechanical properties, tensile and hardness test were applied. To analyze the blends response in the cell environment, a stent was produced by injection molding process, and Cell Viability Test and Previous Implantability were used. The Infrared spectra show that chemical composition is related only with polymers proportion in the blend. The calorimetry shows a partial miscibility in the blend. The tensile test shows that adding Poly(Isoprene to Poly(Lactic-co-Glycolic Acid induced a relevant reduction in the Young modulus, tensile stress and tenacity of the material, which was altered from the fragile raw PLGA to a ductile material. The composition did not affect the blend hardness. The cell viability test shows that the blend has potential application as biomaterial, while the first results of implantability indicate that the polymeric stent kept its original position and caused low fibrosis.

  15. Improving the Performances of Poly(vinylphosphonic acid) by Compositing or Copolymerization with Poly(4-(α-methyl)vinyl-1H-1,2,3-triazole)

    International Nuclear Information System (INIS)

    Han, Shuaiyuan; Yue, Baohua; Yan, Liuming

    2014-01-01

    Graphical abstract: - Highlights: • Poly(4-(α-methyl)vinyl-1H-1,2,3-triazole) is synthesized • PVPA/PMVTri polymeric composite proton conducting membranes are prepared • The proton conductivity of PVPA is improved by compositing with PMVTri • The water resistance of PVPA is improved by compositing with PMVTri • The oxidative stability is greatly improved - Abstract: The poly(vinylphosphonic acid) (PVPA), poly(4-(α-methyl)vinyl-1H-1,2,3-triazole) (PMVTri), and poly(VPA-co-MVTri) were synthesized, and proton exchange membranes were prepared based on the acid-base polymeric composite of PVPA and PMVTri, and acid-base amphoteric copolymer of poly(VPA-co-MVTri). The overall performances of PVPA, proton conductivity, thermal and oxidative stability, and water resistance, are greatly improved by compositing of PMVTri or copolymerization with 4-(α-methyl)vinyl-1H-1,2,3-triazole (MVTri). About four or eight folds improvement in maximum proton conductivity was observed in the polymeric composite of PVPA/PMVTri or acid-base amphoteric copolymer poly(VPA-co-MVTri) because of the redistribution of ions in the heterostructures of PVPA and PMVTri, respectively, compared with the pristine PVPA. At the same time, the oxidative stability and the water resistance of PVPA were also greatly improved attributing to the absent of α-H in the main chain of PMVTri and the acid-base interaction between the phosphonic acid groups and the triazolyl groups, respectively

  16. The glutamate/GABA-glutamine cycle

    DEFF Research Database (Denmark)

    Bak, Lasse K; Schousboe, Arne; Waagepetersen, Helle S

    2006-01-01

    Neurons are metabolically handicapped in the sense that they are not able to perform de novo synthesis of neurotransmitter glutamate and gamma-aminobutyric acid (GABA) from glucose. A metabolite shuttle known as the glutamate/GABA-glutamine cycle describes the release of neurotransmitter glutamate...... or GABA from neurons and subsequent uptake into astrocytes. In return, astrocytes release glutamine to be taken up into neurons for use as neurotransmitter precursor. In this review, the basic properties of the glutamate/GABA-glutamine cycle will be discussed, including aspects of transport and metabolism...... of intercellular transfer of ammonia produced in neurons (when glutamine is deamidated to glutamate) and utilized in astrocytes (for amidation of glutamate) when the glutamate/GABA-glutamine cycle is operating. A main objective of this review is to endorse the view that the glutamate/GABA-glutamine cycle must...

  17. Activation of the Glutamic Acid-Dependent Acid Resistance System in Escherichia coli BL21(DE3) Leads to Increase of the Fatty Acid Biotransformation Activity.

    Science.gov (United States)

    Woo, Ji-Min; Kim, Ji-Won; Song, Ji-Won; Blank, Lars M; Park, Jin-Byung

    The biosynthesis of carboxylic acids including fatty acids from biomass is central in envisaged biorefinery concepts. The productivities are often, however, low due to product toxicity that hamper whole-cell biocatalyst performance. Here, we have investigated factors that influence the tolerance of Escherichia coli to medium chain carboxylic acid (i.e., n-heptanoic acid)-induced stress. The metabolic and genomic responses of E. coli BL21(DE3) and MG1655 grown in the presence of n-heptanoic acid indicated that the GadA/B-based glutamic acid-dependent acid resistance (GDAR) system might be critical for cellular tolerance. The GDAR system, which is responsible for scavenging intracellular protons by catalyzing decarboxylation of glutamic acid, was inactive in E. coli BL21(DE3). Activation of the GDAR system in this strain by overexpressing the rcsB and dsrA genes, of which the gene products are involved in the activation of GadE and RpoS, respectively, resulted in acid tolerance not only to HCl but also to n-heptanoic acid. Furthermore, activation of the GDAR system allowed the recombinant E. coli BL21(DE3) expressing the alcohol dehydrogenase of Micrococcus luteus and the Baeyer-Villiger monooxygenase of Pseudomonas putida to reach 60% greater product concentration in the biotransformation of ricinoleic acid (i.e., 12-hydroxyoctadec-9-enoic acid (1)) into n-heptanoic acid (5) and 11-hydroxyundec-9-enoic acid (4). This study may contribute to engineering E. coli-based biocatalysts for the production of carboxylic acids from renewable biomass.

  18. Activation of the Glutamic Acid-Dependent Acid Resistance System in Escherichia coli BL21(DE3 Leads to Increase of the Fatty Acid Biotransformation Activity.

    Directory of Open Access Journals (Sweden)

    Ji-Min Woo

    Full Text Available The biosynthesis of carboxylic acids including fatty acids from biomass is central in envisaged biorefinery concepts. The productivities are often, however, low due to product toxicity that hamper whole-cell biocatalyst performance. Here, we have investigated factors that influence the tolerance of Escherichia coli to medium chain carboxylic acid (i.e., n-heptanoic acid-induced stress. The metabolic and genomic responses of E. coli BL21(DE3 and MG1655 grown in the presence of n-heptanoic acid indicated that the GadA/B-based glutamic acid-dependent acid resistance (GDAR system might be critical for cellular tolerance. The GDAR system, which is responsible for scavenging intracellular protons by catalyzing decarboxylation of glutamic acid, was inactive in E. coli BL21(DE3. Activation of the GDAR system in this strain by overexpressing the rcsB and dsrA genes, of which the gene products are involved in the activation of GadE and RpoS, respectively, resulted in acid tolerance not only to HCl but also to n-heptanoic acid. Furthermore, activation of the GDAR system allowed the recombinant E. coli BL21(DE3 expressing the alcohol dehydrogenase of Micrococcus luteus and the Baeyer-Villiger monooxygenase of Pseudomonas putida to reach 60% greater product concentration in the biotransformation of ricinoleic acid (i.e., 12-hydroxyoctadec-9-enoic acid (1 into n-heptanoic acid (5 and 11-hydroxyundec-9-enoic acid (4. This study may contribute to engineering E. coli-based biocatalysts for the production of carboxylic acids from renewable biomass.

  19. Neuroprotective Properties of Compounds Extracted from Dianthus superbus L. against Glutamate-induced Cell Death in HT22 Cells.

    Science.gov (United States)

    Yun, Bo-Ra; Yang, Hye Jin; Weon, Jin Bae; Lee, Jiwoo; Eom, Min Rye; Ma, Choong Je

    2016-01-01

    Dianthus superbus L. has been used in Chinese herbal medicine as a diuretic and anti-inflammatory agent. In this study, we isolated ten bioactive compounds from D. superbus and evaluated their neuroprotective activity against glutamate-induced cell death in the hippocampal neuronal HT22 cells. New compound, (E)-methyl-4-hydroxy-4-(8a-methyl-3-oxodecahydronaphthalen-4a-yl) (1) and, nine known compounds, diosmetin-7-O (2'',6''-di-O-α-L-rhamnopyranosyl)-β-D-glucopyranoside (2), 4-hydroxy-3-methoxy-pentyl ester benzenepropanoic acid (3), vanillic acid (4), 4-hydroxy-benzeneacetic acid (5), 4-methoxybenzeneacetic acid (6), (E)-4-methoxycinnamic acid (7), 3-methoxy-4-hydroxyphenylethanol (8), hydroferulic acid (9), and methyl hydroferulate (10), were isolated by bioactivity-guided separation. Structures of the isolated compounds were identified on the basis of (1)H nuclear magnetic resonance (NMR), (13)C NMR, and two-dimensional NMR spectra, while their neuroprotective properties were evaluated by performing the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. D. superbus extract had a neuroprotective effect and isolated 10 compounds. Among the compounds, compounds 5 and 6 effectively protected HT22 cells against glutamate toxicity. In conclusion, the extract of D. superbus and compounds isolated from it exhibited neuroprotective properties, suggesting therapeutic potential for applications in neurotoxic diseases. D. superbus extract significantly protected on glutamate-induced cell death in HT22 cellsNew compound, (E)-methyl-4-hydroxy-4-(8a-methyl-3-oxodecahydronaphthalen-4a-yl) (1) and, nine known compounds, diosmetin-7-O(2'',6''-di-O-α-L-rhamnopyranosyl)-β-D-glucopyranoside (2), 4-hydroxy-3-methoxy-pentyl ester benzenepropanoic acid (3), vanillic acid (4), 4-hydroxy-benzeneacetic acid (5), 4-methoxybenzeneacetic acid (6), (E)-4-methoxycinnamic acid (7), 3-methoxy-4-hydroxyphenylethanol (8), hydroferulic acid (9), and methyl hydroferulate (10

  20. Lactic acid production by irradiated Bacillus NF17 and poly-L-lactate biopolymer formation

    International Nuclear Information System (INIS)

    Tongpim, Saowanit; Poonsawat, Choosak; Khansawai, Paveena; Piadaeng, Nattaya

    2006-09-01

    This study was conducted to manipulate the thermo tolerant, lactic acid-producing bacteria, Bacillus coagulans strain NF 1 7, in the production of L-lactic acid and a bio polymer: poly-L-lactate. The bacterial isolate NF 1 7 kept in the culture collection of Khon Kaen University and could tolerate high temperature and produce lactic acid, was employed in this research work. Cell suspension of isolate NF 1 7 was exposed to gamma irradiation at various doses (1-5 KGy). The irradiated survivors were screened on the basis of forming larger colonies and clear zones than the parent strain NF 1 7 when grown on Glucose-Yeast extract-Peptone (GYP) containing CaCO 3 . We obtained 55 effective isolates which the isolate L5I2-14(5), designated as K 1 4, was chosen together with the parent strain NF 1 7 for fermentation experiments. Each bacterial strain was inoculated into GYP broth and incubated statically at 50 o C with daily pH neutralization. After 5 days of incubation, the isolate K 1 4 and NF 1 7 produced 9.71 g/l and 7.42 g/l of L-lactic acid, respectively with a small amount of D-lactic acid. Lactic acid production from sugar cane molasses by batch fermentation of Bacillus Sp. K 1 4 was carried out in a 7 l jar fermentor containing 5 l of fermentation medium. It was found that 20% molasses with the agitation speed of 100 rpm gave the highest yield of lactic acid. Poly-L-lactic acid was chemically polymerized by bulk polymerization process at 140 o C under 40 mmHg conditions. We could obtain the off-white polymer in a small amount of powder form. Improvement the yield of poly-L-lactic acid would be achieved by using polyisoprene-g-polyvinyl monomer to separate lactic acid from the fermenting liquid prior to polymerization processes

  1. Preservation of glutamic acid-iron chelate into montmorillonite to efficiently degrade Reactive Blue 19 in a Fenton system under sunlight irradiation at neutral pH

    Science.gov (United States)

    Huang, Zhujian; Wu, Pingxiao; Gong, Beini; Yang, Shanshan; Li, Hailing; Zhu, Ziao; Cui, Lihua

    2016-05-01

    To further enhance the visible light responsive property and the chemical stability of Fe/clay mineral catalysts, glutamic acid-iron chelate intercalated montmorillonite (G-Fe-Mt) was developed. The physiochemical properties of G-Fe-Mt were investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy (DRS), etc. The results showed that glutamic acid-iron chelates were successfully intercalated into the gallery of montmorillonite and the intercalated glutamic acid-iron chelate molecules were well preserved. The product G-Fe-Mt displayed excellent catalytic performance in heterogeneous photo-Fenton reaction under sunlight irradiation at acidic and neutral pH values. The chelation and the visible light responsiveness of glutamic acid produce a synergistic effect leading to greatly enhanced sunlight-Fenton reaction catalyzed by the heterogeneous G-Fe-Mt under neutral pH. G-Fe-Mt is a promising catalyst for advanced oxidation processes.

  2. Renal targeting potential of a polymeric drug carrier, poly-L-glutamic acid, in normal and diabetic rats

    Directory of Open Access Journals (Sweden)

    Chai HJ

    2017-01-01

    Full Text Available Hann-Juang Chai,1 Lik-Voon Kiew,1 Yunni Chin,1 Anwar Norazit,2 Suzita Mohd Noor,2 Yoke-Lin Lo,3,4 Chung-Yeng Looi,1 Yeh-Siang Lau,1 Tuck-Meng Lim,5 Won-Fen Wong,6 Nor Azizan Abdullah,1 Munavvar Zubaid Abdul Sattar,7 Edward J Johns,8 Zamri Chik,1 Lip-Yong Chung3 1Department of Pharmacology, 2Department of Biomedical Science, 3Department of Pharmacy, Faculty of Medicine, University of Malaya, 4School of Pharmacy, International Medical University, Kuala Lumpur, 5Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar, 6Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, 7School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Malaysia; 8Department of Physiology, University College Cork, Cork, Republic of Ireland Background and purpose: Poly-L-glutamic acid (PG has been used widely as a carrier to deliver anticancer chemotherapeutics. This study evaluates PG as a selective renal drug carrier.Experimental approach: 3H-deoxycytidine-labeled PGs (17 or 41 kDa and 3H-deoxycytidine were administered intravenously to normal rats and streptozotocin-induced diabetic rats. The biodistribution of these compounds was determined over 24 h. Accumulation of PG in normal kidneys was also tracked using 5-(aminoacetamido fluorescein (fluoresceinyl glycine amide-labeled PG (PG-AF. To evaluate the potential of PGs in ferrying renal protective anti-oxidative stress compounds, the model drug 4-(2-aminoethylbenzenesulfonyl fluoride hydrochloride (AEBSF was conjugated to 41 kDa PG to form PG-AEBSF. PG-AEBSF was then characterized and evaluated for intracellular anti-oxidative stress efficacy (relative to free AEBSF.Results: In the normal rat kidneys, 17 kDa radiolabeled PG (PG-Tr presents a 7-fold higher, while 41 kDa PG-Tr shows a 15-fold higher renal accumulation than the free radiolabel after 24 h post injection. The accumulation of PG-AF was primarily found in the renal tubular

  3. Comparison of the performance of polymerase chain reaction and pp65 antigenemia for the detection of human cytomegalovirus in immunosuppressed patients

    Directory of Open Access Journals (Sweden)

    Patrícia Borba Martiny

    2011-06-01

    Full Text Available INTRODUCTION: Human cytomegalovirus (HCMV is often reactive in latently infected immunosuppressed patients. Accordingly, HCMV remains one of the most common infections following solid organ and hemopoietic stem cell transplantations, resulting in significant morbidity, graft loss and occasional mortality. The early diagnosis of HCMV disease is important in immunosuppressed patients, since in these individuals, preemptive treatment is useful. The objective of this study was to compare the performance of the in-house qualitative polymerase chain reaction (PCR and pp65 antigenemia to HCMV infection in immunosuppressed patients in the Hospital de Clínicas of Porto Alegre (HCPA. METHODS: A total of 216 blood samples collected between August 2006 and January 2007 were investigated. RESULTS: Among the samples analyzed, 81 (37.5% were HCMV-positive by PCR, while 48 (22.2% were positive for antigenemia. Considering antigenemia as the gold standard, sensitivity, specificity, positive predictive values and negative predictive values for PCR were 87.5%, 76.8%, 51.8% and 95.5% respectively. CONCLUSIONS: These results demonstrated that qualitative PCR has high sensitivity and negative predictive value (NPV. Consequently PCR is especially indicated for the initial diagnosis of HCMV infection. In the case of preemptive treatment strategy, identification of patients at high-risk for HCMV disease is fundamental and PCR can be useful tool.

  4. Glutamate receptor agonists

    DEFF Research Database (Denmark)

    Vogensen, Stine Byskov; Greenwood, Jeremy R; Bunch, Lennart

    2011-01-01

    The neurotransmitter (S)-glutamate [(S)-Glu] is responsible for most of the excitatory neurotransmission in the central nervous system. The effect of (S)-Glu is mediated by both ionotropic and metabotropic receptors. Glutamate receptor agonists are generally a-amino acids with one or more...... stereogenic centers due to strict requirements in the agonist binding pocket of the activated state of the receptor. By contrast, there are many examples of achiral competitive antagonists. The present review addresses how stereochemistry affects the activity of glutamate receptor ligands. The review focuses...... mainly on agonists and discusses stereochemical and conformational considerations as well as biostructural knowledge of the agonist binding pockets, which is useful in the design of glutamate receptor agonists. Examples are chosen to demonstrate how stereochemistry not only determines how the agonist...

  5. 4,4-Dimethyl- and diastereomeric 4-hydroxy-4-methyl-(2S)-glutamate analogues display distinct pharmacological profiles at ionotropic glutamate receptors and excitatory amino acid transporters

    DEFF Research Database (Denmark)

    Bunch, Lennart; Pickering, Darryl S; Gefflaut, Thierry

    2009-01-01

    this approach has provided important insight into the structure-activity relationships (SAR) for ionotropic and metabotropic glutamate receptors (iGluRs and mGluRs), as well as the excitatory amino acid transporters (EAATs). In this work, three 4,4-disubstituted Glu analogues 1-3, which are hybrid structures......Subtype-selective ligands are of great interest to the scientific community, as they provide a tool for investigating the function of one receptor or transporter subtype when functioning in its native environment. Several 4-substituted (S)-glutamate (Glu) analogues were synthesized, and altogether...

  6. Rapid synthesis and metabolism of glutamate in N2-fixing bacteroids

    International Nuclear Information System (INIS)

    Salminen, S.O.; Streeter, J.G.

    1987-01-01

    Symbiotic nodule bacteroids are thought to support N 2 fixation mainly by metabolizing dicarboxylic acids to CO 2 , generating reductant and ATP required by nitrogenase. Bradyrhizobium japonicum bacteroids were isolated anaerobically and incubated at 2% O 2 with 14 C-labeled succinate, malate, glutamate, or aspartate. 14 CO 2 was collected, and the bacteroid contents separated into neutral, organic acid, and amino acid fractions. The respiration of substrates, relative to their uptake, was malate > glutamate > succinate > aspartate. Analysis of the fractions revealed that will all substrates the radioactivity was found mostly in the amino acid fraction. The labeling of the neutral fraction was negligible and only a small amount of label was found in the organic acid fraction indicating a small pool size. TLC of the amino acid fraction showed the label to be principally in glutamate. Glutamate contained 67, 80, 97, and 88% of the 14 C in the amino acid fraction in bacteroids fed with succinate, malate, glutamate and aspartate, respectively. The data suggest that glutamate may play an important role in the bacteroid function

  7. Dynamically formed hydrous zirconium (IV) oxide-polyelectrolyte membranes. III: Poly(acrylic acid) and substituted poly(acrylic acid) homo, co and terpolymer membranes

    International Nuclear Information System (INIS)

    Van Reenen, A.J.; Sanderson, R.D.

    1989-01-01

    A series of acrylic acid and substituted acrylic acid homo, co and terpolymers was synthesised. These polymers were used as polyelectrolytes in dynamically formed hydrous zirconium (iv) oxide-polyelectrolyte membranes. Substitution of the acrylic acid α-hydrogen was done to increase the number of carboxylic acid groups per monomer unit and to change the acid strength of acrylic acid carboxylic acid group. None of these changes improved the salt rejection of these membranes over that of commercially used poly(acrylic acid). Improvement in rejection was found when a hydrophobic comonomer, vinyl acetate, was used in conjunction with acrylic acid in a copolymer dynamic membrane. 16 refs., 6 figs., 1 tab

  8. Task-specific enhancement of short-term, but not long-term, memory by class I metabotropic glutamate receptor antagonist 1-aminoindan-1,5-dicarboxylic acid in rats

    DEFF Research Database (Denmark)

    Christoffersen, G.R.J.; Christensen, Lone H.; Harrington, Nicholas R.

    1999-01-01

    Metabotropic glutamate receptors; Class I antagonist; 1-aminoindan-1,5-dicarboxylic acid; spatial learning; contextual conditioning; rats......Metabotropic glutamate receptors; Class I antagonist; 1-aminoindan-1,5-dicarboxylic acid; spatial learning; contextual conditioning; rats...

  9. Tailoring the morphology and properties of poly(lactic acid)/poly(ethylene-co-vinyl acetate)/starch blends via reactive compatibilization

    NARCIS (Netherlands)

    Ma, P.; Hristova - Bogaerds, D.G.; Schmit, P.; Goossens, J.G.P.; Lemstra, P.J.

    2012-01-01

    Poly(lactic acid)/poly(ethylene-co-vinyl acetate)/starch (PLA/EVA/starch) ternary blends were prepared by multi-step melt processing (reactive extrusion) in the presence of maleic anhydride (MA), benzoyl peroxide and glycerol. The effects of MA and glycerol concentration on the morphology and

  10. Poly(Lactic Acid) Based Flexible Films

    OpenAIRE

    Fathilah binti Ali; Jamarosliza Jamaluddin; Arun Kumar Upadhyay

    2014-01-01

    Poly(lactic acid) (PLA) is a biodegradable polymer which has good mechanical properties, however, its brittleness limits its usage especially in packaging materials. Therefore, in this work, PLA based polyurethane films were prepared by synthesizing with different types of isocyanates; methylene diisocyanate (MDI) and hexamethylene diisocyanates (HDI). For this purpose, PLA based polyurethane must have good strength and flexibility. Therefore, polycaprolactone which has b...

  11. Interpolymer complexes based on the core/shell micelles. Interaction of polystyrene-block-poly(methacrylic acid) micelles with linear poly(2-vinylpyridine) in 1,4-dioxane water mixtures and in aqueous media

    Czech Academy of Sciences Publication Activity Database

    Matějíček, P.; Uchman, M.; Lokajová, J.; Štěpánek, M.; Procházka, K.; Špírková, Milena

    2007-01-01

    Roč. 111, č. 29 (2007), s. 8394-8401 ISSN 1520-6106. [International Symposium on Polyelectrolytes /6./. Dresden, 04.09.2006-08.09.2006] R&D Projects: GA ČR GA203/04/0490; GA AV ČR IAA400500505 Institutional research plan: CEZ:AV0Z40500505 Keywords : polystyrene-block-poly(methacrylic acid) * poly(2-vinylpyridine) * core/shell micelles * light scattering * atomic force microscopy Subject RIV: CD - Macromolecular Chemistry Impact factor: 4.086, year: 2007

  12. Synergy by secretory phospholipase A2 and glutamate on inducing cell death and sustained arachidonic acid metabolic changes in primary cortical neuronal cultures

    DEFF Research Database (Denmark)

    Kolko, M; DeCoster, M A; de Turco, E B

    1996-01-01

    glutamate and sPLA2 from bee venom. sPLA2, at concentrations eliciting low neurotoxicity (acid into triacylglycerols. Free [3H]arachidonic acid accumulated at higher enzyme concentrations......, from Taipan snake venom. The NMDA receptor antagonist MK-801 blocked glutamate effects and partially inhibited sPLA2 OS2 but not sPLA2 from bee venom-induced arachidonic acid release. Thus, the synergy with glutamate and very low concentrations of exogenously added sPLA2 suggests a potential role......Secretory and cytosolic phospholipases A2 (sPLA2 and cPLA2) may contribute to the release of arachidonic acid and other bioactive lipids, which are modulators of synaptic function. In primary cortical neuron cultures, neurotoxic cell death and [3H]arachidonate metabolism was studied after adding...

  13. Glutamate receptor ligands

    DEFF Research Database (Denmark)

    Guldbrandt, Mette; Johansen, Tommy N; Frydenvang, Karla Andrea

    2002-01-01

    Homologation and substitution on the carbon backbone of (S)-glutamic acid [(S)-Glu, 1], as well as absolute stereochemistry, are structural parameters of key importance for the pharmacological profile of (S)-Glu receptor ligands. We describe a series of methyl-substituted 2-aminoadipic acid (AA...

  14. Micelle-templated, poly(lactic-co-glycolic acid nanoparticles for hydrophobic drug delivery

    Directory of Open Access Journals (Sweden)

    Nabar GM

    2018-01-01

    Full Text Available Gauri M Nabar,1 Kalpesh D Mahajan,1 Mark A Calhoun,2 Anthony D Duong,1 Matthew S Souva,1 Jihong Xu,3,4 Catherine Czeisler,5 Vinay K Puduvalli,3,4 José Javier Otero,5 Barbara E Wyslouzil,1,6 Jessica O Winter1,2 1William G Lowrie Department of Chemical and Biomolecular Engineering, 2Department of Biomedical Engineering, 3Division of Neuro-oncology, College of Medicine, The Ohio State University Comprehensive Cancer Center, 4Dardinger Laboratory for Neuro-oncology and Neurosciences, Department of Neurosurgery, College of Medicine, The Ohio State University Comprehensive Cancer Center, 5Department of Pathology and the Neurological Research Institute, College of Medicine, 6Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA Purpose: Poly(lactic-co-glycolic acid (PLGA is widely used for drug delivery because of its biocompatibility, ability to solubilize a wide variety of drugs, and tunable degradation. However, achieving sub-100 nm nanoparticles (NPs, as might be desired for delivery via the enhanced permeability and retention effect, is extremely difficult via typical top-down emulsion approaches.Methods: Here, we present a bottom-up synthesis method yielding PLGA/block copolymer hybrids (ie, “PolyDots”, consisting of hydrophobic PLGA chains entrapped within self-assembling poly(styrene-b-ethylene oxide (PS-b-PEO micelles.Results: PolyDots exhibit average diameters <50 nm and lower polydispersity than conventional PLGA NPs. Drug encapsulation efficiencies of PolyDots match conventional PLGA NPs (ie, ~30% and are greater than those obtained from PS-b-PEO micelles (ie, ~7%. Increasing the PLGA:PS-b-PEO weight ratio alters the drug release mechanism from chain relaxation to erosion controlled. PolyDots are taken up by model glioma cells via endocytotic mechanisms within 24 hours, providing a potential means for delivery to cytoplasm. PolyDots can be lyophilized with minimal change in morphology and encapsulant

  15. PYROLYTIC PRODUCTS FROM TRYPTOPHAN AND GLUTAMIC-ACID ARE POSITIVE IN THE MAMMALIAN SPOT-TEST

    DEFF Research Database (Denmark)

    Jensen, Niels Juul

    1983-01-01

    Pyrolysates of tryptophan (Trp-P-2) and glutamic acid (Glu-P-1) are known mutagens in in vitro short term mutagenicity tests, and have also shown carcinogenic effects in long term animal studies. The present study demonstrates that they also produce mutations in somatic cells. This result...

  16. Synthesis of Poly(hydroxamic Acid-Poly(amidoxime Chelating Ligands for Removal of Metals from Industrial Wastewater

    Directory of Open Access Journals (Sweden)

    M. R. Lutfor

    2011-01-01

    Full Text Available Synthesis of poly(hydroxamic acid-poly(amidoxime chelating ligands were carried out from poly(methyl acrylate-co-acrylonitrile grafted sago starch and hydroxylamine in alkaline medium. The binding property of metal ions was performed and maximum sorption capacity of the copper was 3.20 mmol/ g and the rate of exchange of some metals was faster, i.e. t½ ≈ 7 min (average. Two types of wastewater containing chromium, zinc, nickel, copper and iron, etc. were used and the heavy metal recovery was found to be highly efficient, about 99% of the metals could be removed from the metal plating wastewater.

  17. Biogenic glutamic acid-based resin: Its synthesis and application in the removal of cobalt(II)

    International Nuclear Information System (INIS)

    Jamiu, Zakariyah A.; Saleh, Tawfik A.; Ali, Shaikh A.

    2017-01-01

    Highlights: • A novel resin embedded with metal chelating glutamic acid was synthesized. • The biogenic amino acid residues imparted remarkable efficacy to remove Co(II). • The resin showed excellent ability to remove various metals from wastewater. - Abstract: Inexpensive biogenic glutamic acid has been utilized to synthesize a cross-linked dianionic polyelectrolyte (CDAP) containing metal chelating ligands. Cycloterpolymerization, using azoisobutyronitrile as an initiator, of N,N-diallylglutamic acid hydrochloride, sulfur dioxide and a cross-linker afforded a pH-responsive cross-linked polyzwitterionic acid (CPZA) which upon basification with NaOH was converted into CDAP. The new resin, characterized by a multitude of spectroscopic techniques as well as Scanning Electron Microscopy (SEM) and Brunauer–Emmett–Teller (BET) analyses, was evaluated for the removal of Co(II) as a model case under different conditions. The adsorption capacity of 137 mg g"−"1 does indeed make the resin as one of the most effective sorbents in recent times. The resin leverages its cheap natural source and ease of regeneration in combination with its high and fast uptake capacities to offer a great promise for wastewater treatment. The resin has demonstrated remarkable efficiency in removing toxic metal ions including arsenic from a wastewater sample.

  18. Biogenic glutamic acid-based resin: Its synthesis and application in the removal of cobalt(II)

    Energy Technology Data Exchange (ETDEWEB)

    Jamiu, Zakariyah A.; Saleh, Tawfik A.; Ali, Shaikh A., E-mail: shaikh@kfupm.edu.sa

    2017-04-05

    Highlights: • A novel resin embedded with metal chelating glutamic acid was synthesized. • The biogenic amino acid residues imparted remarkable efficacy to remove Co(II). • The resin showed excellent ability to remove various metals from wastewater. - Abstract: Inexpensive biogenic glutamic acid has been utilized to synthesize a cross-linked dianionic polyelectrolyte (CDAP) containing metal chelating ligands. Cycloterpolymerization, using azoisobutyronitrile as an initiator, of N,N-diallylglutamic acid hydrochloride, sulfur dioxide and a cross-linker afforded a pH-responsive cross-linked polyzwitterionic acid (CPZA) which upon basification with NaOH was converted into CDAP. The new resin, characterized by a multitude of spectroscopic techniques as well as Scanning Electron Microscopy (SEM) and Brunauer–Emmett–Teller (BET) analyses, was evaluated for the removal of Co(II) as a model case under different conditions. The adsorption capacity of 137 mg g{sup −1} does indeed make the resin as one of the most effective sorbents in recent times. The resin leverages its cheap natural source and ease of regeneration in combination with its high and fast uptake capacities to offer a great promise for wastewater treatment. The resin has demonstrated remarkable efficiency in removing toxic metal ions including arsenic from a wastewater sample.

  19. Contribution of the net charge to the regulatory effects of amino acids and epsilon-poly(L-lysine) on the gelatinization behavior of potato starch granules.

    Science.gov (United States)

    Ito, Azusa; Hattori, Makoto; Yoshida, Tadashi; Takahashi, Koji

    2006-01-01

    The effects of lysine (Lys), monosodium glutamate (GluNa), glycine, alanine and epsilon-poly(L-lysine) (PL) with different degrees of polymerization on the gelatinization behavior of potato starch granules were investigated by DSC, viscosity and swelling measurements, microscopic observation, and measurement of the retained amino acid amount to clarify the contribution of the net charge to their regulatory effects on the gelatinization behavior. The amino acids and PL each contributed to an increase in the gelatinization temperature, and a decrease in the peak viscosity and swelling. These effects strongly depended on the absolute value of their net charge. The disappearance of a negative or positive net charge by adjusting the pH value weakened the contribution. The swelling index and size of the potato starch granules changed according to replacement of the swelling medium. The amino acids and PL were easily retained by the swollen potato starch granules according to replacement of the outer solution of the starch granules.

  20. The glutamate transport inhibitor DL-Threo-β-Benzyloxyaspartic acid (DL-TBOA) differentially affects SN38- and oxaliplatin-induced death of drug-resistant colorectal cancer cells

    DEFF Research Database (Denmark)

    Cuesta, Elena Pedraz; Christensen, Sandra; Jensen, Anders A.

    2015-01-01

    affinity glutamate transporters Solute Carrier (SLC)-1A1 and -1A3 (EAAT3, EAAT1) is associated with the resistant phenotypes. Analyses included real-time quantitative PCR, immunoblotting and immunofluorescence analyses, radioactive tracer flux measurements, and biochemical analyses of cell viability...... was undetectable. The changes in SLC1A1 expression were accompanied by parallel changes in DL-Threo-β-Benzyloxyaspartic acid (TBOA)-sensitive, UCPH101-insensitive [(3)H]-D-Aspartate uptake, consistent with increased activity of SLC1A1 (or other family members), yet not of SLC1A3. DL-TBOA co-treatment concentration...... and glutamate transporter activity are altered in SN38-resistant CRC cells. Importantly, the non-selective glutamate transporter inhibitor DL-TBOA reduces chemotherapy-induced p53 induction and augments CRC cell death induced by SN38, while attenuating that induced by oxaliplatin. These findings may point...

  1. Glutamic Acid Signal Synchronizes Protein Synthesis Kinetics in Hepatocytes from Old Rats for the Following Several Days. Cell Metabolism Memory.

    Science.gov (United States)

    Brodsky, V Y; Malchenko, L A; Lazarev, D S; Butorina, N N; Dubovaya, T K; Zvezdina, N D

    2018-03-01

    The kinetics of protein synthesis was investigated in primary cultures of hepatocytes from old rats in serum-free medium. The rats were fed mixed fodder supplemented with glutamic acid and then transferred to a regular mixed fodder. The amplitude of protein synthesis rhythm in hepatocytes isolated from these rats increased on average 2-fold in comparison with the rats not receiving glutamic acid supplement. Based on this indicator reflecting the degree of cell-cell interactions, the cells from old rats were not different from those of young rats. The effect was preserved for 3-4 days. These results are discussed in connection with our previous data on preservation of the effect of single administration of gangliosides, noradrenaline, serotonin, and other synchronizers on various cell populations. In contrast to the other investigated factors, glutamic acid is capable of penetrating the blood-brain barrier, which makes its effect possible not only in the case of hepatocytes and other non-brain cells, but also in neurons.

  2. Poly(ester-anhydride):poly(beta-amino ester) micro- and nanospheres: DNA encapsulation and cellular transfection.

    Science.gov (United States)

    Pfeifer, Blaine A; Burdick, Jason A; Little, Steve R; Langer, Robert

    2005-11-04

    Poly(ester-anhydride) delivery devices allow flexibility regarding carrier dimensions (micro- versus nanospheres), degradation rate (anhydride versus ester hydrolysis), and surface labeling (through the anhydride functional unit), and were therefore tested for DNA encapsulation and transfection of a macrophage P388D1 cell line. Poly(l-lactic acid-co-sebacic anhydride) and poly(l-lactic acid-co-adipic anhydride) were synthesized through melt condensation, mixed with 25 wt.% poly(beta-amino ester), and formulated with plasmid DNA (encoding firefly luciferase) into micro- and nanospheres using a double emulsion/solvent evaporation technique. The micro- and nanospheres were then characterized (size, morphology, zeta potential, DNA release) and assayed for DNA encapsulation and cellular transfection over a range of poly(ester-anhydride) copolymer ratios. Poly(ester-anhydride):poly(beta-amino ester) composite microspheres (6-12 microm) and nanospheres (449-1031 nm), generated with copolymers containing between 0 and 25% total polyanhydride content, encapsulated plasmid DNA (>or=20% encapsulation efficiency). Within this polyanhydride range, poly(adipic anhydride) copolymers provided DNA encapsulation at an increased anhydride content (10%, microspheres; 10-25%, nanospheres) compared to poly(sebacic anhydride) copolymers (1%, microspheres and nanospheres) with cellular transfection correlating with the observed DNA encapsulation.

  3. Composition dependence of the synergistic effect of nucleating agent and plasticizer in poly(lactic acid: A Mixture Design study

    Directory of Open Access Journals (Sweden)

    M. K. Fehri

    2016-04-01

    Full Text Available Blends consisting of commercial poly(lactic acid (PLA, poly(lactic acid oligomer (OLA8 as plasticizer and a sulfonic salt of a phthalic ester and poly(D-lactic acid as nucleating agents were prepared by melt extrusion, following a Mixture Design approach, in order to systematically study mechanical and thermal properties as a function of composition. The full investigation was carried out by differential scanning calorimetry (DSC, dynamic mechanical thermal analysis (DMTA and tensile tests. The crystallization half-time was also studied at 105 °C as a function of the blends composition. A range of compositions in which the plasticizer and the nucleation agent minimized the crystallization half-time in a synergistic way was clearly identified thanks to the application of the Mixture Design approach. The results allowed also the identification of a composition range to maximize the crystallinity developed during the rapid cooling below glass transition temperature in injection moulding, thus allowing an easier processing of PLA based materials. Moreover the mechanical properties were discussed by correlating them to the chemical structural features and thermal behaviour of blends.

  4. Synthesis, physicochemical and biological properties of poly-α-amino acids - the simplest of protein models

    International Nuclear Information System (INIS)

    Katchalski-Katzir, Ephraim

    1996-01-01

    During the 1950s, linear and multichain poly-α-amino acids were synthesized by polymerization of the corresponding N-carboxy-amino acid anhydrides in solution in the presence of suitable catalysts. The resulting homo- and heteropolymers have since been widely employed as simple protein models. Under appropriate conditions, poly-α-amino acids, in the solid state and in solution, were found to acquire conformations of an α-helix and β-parallel and antiparallel pleased sheets, or to exist as random coils. Their use in experimental and theoretical investigations of helix-coil transitions helped to shed new light on the mechanisms involved in protein denaturation. Poly-α-amino acids played an important role in the deciphering of the genetic code. In addition, analysis of the antigenicity of poly-α-amino acids led to the clucidation of the factors determining the antigenicity of proteins and peptides. Interest in the biological and physicochemical characteristics of poly-α-amino acids was recently renewed because of the reported novel finding that some copolymers of amino acids are effective as drugs in multiple sclerosis, and that glutamine repeats and reiteration of other amino acids occur in inherited neurodegenerative diseases. The presence of repeating sequences of amino acids in proteins, and of nucleotides in DNA, raises many interesting questions about their respective roles in determining protein structure and function, and gene performance and regulation. (author). 35 refs, 3 figs, 2 tabs

  5. Gold Nanoparticles Protected with Thiol-Derivatized Amphiphilic Poly(epsilon-caprolactone)-b-poly(acrylic acid)

    DEFF Research Database (Denmark)

    Javakhishvili, Irakli; Hvilsted, Søren

    2009-01-01

    ) of tent-butyl acrylate (tBA) in a controlled fashion by use of NiBr2(PPh3)(2) catalyst to produce Prot-PCL-b-PtBA with narrow polydispersities (1.17-1.39). Subsequent mild deprotection protocols provided HS-PCL-b-PAA. Reduction of a gold salt in the presence of this macroligand under thiol......Amphiphilic poly(epsilon-caprolactone)-b-poly(acrylic acid) (HS-PCL-b-PAA) with a thiol functionality in the PCL terminal has been prepared in a novel synthetic cascade. Initially, living anionic ring-opening polymerization (ROP) of epsilon-caprolactone (epsilon-CL) employing the difunctional...

  6. Kinetics of reactions of aquacobalamin with aspartic and glutamic acids and their amides in water solutions

    Science.gov (United States)

    Bui, T. T. T.; Sal'nikov, D. S.; Dereven'kov, I. A.; Makarov, S. V.

    2017-04-01

    The kinetics of aquacobalamin reaction with aspartic and glutamic acids, and with their amides in water solutions, is studied via spectrophotometry. The kinetic and activation parameters of the process are determined. It is shown that the reaction product is cobalamin-amino acid complex. The data are compared to results on the reaction between aquacobalamin and primary amines.

  7. Poly(amino acid)-based fibrous scaffolds modified with surface-pendant peptides for cartilage tissue engineering

    Czech Academy of Sciences Publication Activity Database

    Svobodová, Jana; Proks, Vladimír; Karabiyik, Ö.; Calikoglu Koyuncu, A. C.; Köse, G. T.; Rypáček, František; Studenovská, Hana

    2017-01-01

    Roč. 11, č. 3 (2017), s. 831-842 ISSN 1932-6254 R&D Projects: GA ČR GAP108/12/1629; GA ČR GAP108/12/1538 Grant - others:AV ČR, TUBITAK(CZ) 111M031 Institutional support: RVO:61389013 Keywords : poly(amino acid) * fibrous scaffolds * adhesion peptide Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 3.989, year: 2016

  8. Glutamine and glutamic acid supplementation enhances performance of broiler chickens under the hot and humid tropical condition

    Directory of Open Access Journals (Sweden)

    Joshua O. Olubodun

    2015-02-01

    Full Text Available Day-old (day 1 commercial broiler chickens were fed i basal diet (control, ii basal diet +0.5% AminoGut (AG, or iii basal diet +1% AG from 1 to 42 d of age under the hot and humid tropical environment. AminoGut is a commercial dietary supplement containing a mixture of L-glutamine (Gln and L-glutamic (Glu acid. Weight gain and feed conversion ratio during the starter (1 to 21 d and overall (1 to 42 d periods improved linearly and quadratically with AG supplementation when compared to control. Supplementing birds with AG significantly reduced overall mortality rate. At 21 and 42 d of age, intestinal (duodenum and ileum villi height and crypt depth showed both linear and quadratic positive responses to AG supplementation. Intestinal amylase activity increased linearly and quadratically on d 21, and linearly only on d 42. In conclusion, Gln and Glu supplementation was beneficial in improving the growth performance and survivability of broiler chickens under the hot and humid tropical environment.

  9. Thermal properties of poly (lactic acid)/milkweed composites

    Science.gov (United States)

    Currently, most polymer composites utilize petroleum-based materials that are non-degradable and difficult to recycle or incur substantial cost for disposal. Green composites can be used in nondurable limited applications. In order to determine the degree of compatibility between Poly (lactic Acid...

  10. Electrospinnability of poly lactic-co-glycolic acid (PLGA)

    DEFF Research Database (Denmark)

    Liu, Xiaoli; Baldursdottir, Stefania G.; Aho, Johanna

    2017-01-01

    PURPOSE: In this study, the electrospinnability of poly(lactic-co-glycolic acid) (PLGA) solutions was investigated, with a focus on understanding the influence of molecular weight of PLGA, solvent type and solvent composition on the physical properties of electrospun nanofibers. METHOD: Various s...

  11. A 13C{31P} REDOR NMR Investigation of the Role of Glutamic Acid Residues in Statherin-Hydroxyapatite Recognition

    Science.gov (United States)

    Ndao, Moise; Ash, Jason T.; Breen, Nicholas F.; Goobes, Gil; Stayton, Patrick S.; Drobny, Gary P.

    2011-01-01

    The side chain carboxyl groups of acidic proteins found in the extra-cellular matrix (ECM) of mineralized tissues play a key role in promoting or inhibiting the growth of minerals such as hydroxyapatite (HAP), the principal mineral component of bone and teeth. Among the acidic proteins found in the saliva is statherin, a 43-residue tyrosine-rich peptide that is a potent lubricant in the salivary pellicle and an inhibitor of both HAP crystal nucleation and growth. Three acidic amino acidsD1, E4, and E5 – are located in the N-terminal 15 amino acid segment, with a fourth amino acid, E26, located outside the N-terminus. We have utilized 13C{31P} REDOR NMR to analyze the role played by acidic amino acids in the binding mechanism of statherin to the HAP surface by measuring the distance between the δ-carboxyl 13C spins of the three glutamic acid side chains of statherin (residues E4, E5, E26) and 31P spins of the phosphate groups at the HAP surface. 13C{31P} REDOR studies of glutamic-5-13C acid incorporated at positions E4 and E26 indicate a 13C–31P distance of more than 6.5 Å between the side chain carboxyl 13C spin of E4 and the closest 31P in the HAP surface. In contrast, the carboxyl 13C spin at E5 has a much shorter 13C–31P internuclear distance of 4.25±0.09 Å, indicating that the carboxyl group of this side chain interacts directly with the surface. 13C T1ρ and slow-spinning MAS studies indicate that the motions of the side chains of E4 and E5 are more restricted than that of E26. Together, these results provide further insight into the molecular interactions of statherin with HAP surfaces. PMID:19678690

  12. Effect of homopolymer poly(vinyl acetate on compatibility and mechanical properties of poly(propylene carbonate/poly(lactic acid blends

    Directory of Open Access Journals (Sweden)

    J. Gao

    2012-11-01

    Full Text Available A small amount of homopolymer poly(vinyl acetate (PVAc is used to compatibilize the biodegradable blends of poly(propylene carbonate (PPC and poly(lactic acid (PLA. Scanning electron microscopy (SEM and differential scanning calorimetry (DSC results show that PVAc is selectively localized in the PLA phase and at the interface between PPC and PLA phases. As a result, these interface-localized PVAc layers act as not only a compatibilizer to improve the phase dispersion significantly but also a bridge to increase the interfacial adhesion between PPC and PLA phases dramatically. Both of them are believed to be responsible for the enhancement in mechanical properties. This work provides a simple avenue to fabricate eco-friendly PPC/PLA blends with high performance, and in some cases, reducing the demand for petroleumbased plastics such as polypropylene.

  13. In vitro evaluation of the genotoxicity of a family of novel MeO-PEG-poly(D,L-lactic-co-glycolic acid)-PEG-OMe triblock copolymer and PLGA nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    He Lili; Yang Likai; Zhang Zhirong; Gong Tao; Deng Li; Sun Xun [Key Laboratory of Drug Targeting and Novel Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041 (China); Gu Zhongwei, E-mail: xunsun22@gmail.co [National Engineering Research Center for Biomaterials, Engineering Research Center of Biomaterials, Sichuan University, Chengdu 610064 (China)

    2009-11-11

    Despite the booming development of nanoparticle materials for pharmaceutical applications, studies on their genotoxicity are few. In our previous efforts to develop an intravenous nanoparticle material, a family of novel monomethoxy(polyethylene glycol)-poly(D,L-lactic-co-glycolic acid)-monomethoxy (PELGE) polymers was synthesized. The cytotoxicity and genotoxicity of nine kinds of selected blank PELGE and PLGA (poly(D,L-lactic and glycolic acid)) nanoparticles were evaluated using methyl thiazolyl tetrazolium (MTT), micronucleus (MN) and sister chromatid exchange (SCE) assays with or without the addition of a metabolic activation system (S9 mix), using Chinese hamster ovary (CHO) cells. The cytotoxicity of nanoparticles exhibited a dose-dependent response, with a concentration of 5 mg ml{sup -1} being the turning point. The frequencies of MN observed in samples treated with various nanoparticles were not statistically different from those seen in the negative controls in the presence or absence of the S9 mix. Also, no cell cycle delay was observed. The numbers of SCE per cell observed in samples treated with five kinds of PELGE nanoparticles were significantly greater than those found in the negative controls with or without the S9 mix. The discrepancies found in the two assays suggest that the five kinds of nanoparticles may produce only a weakly clastogenic response.

  14. Catalytic Cracking of Lactide and Poly(Lactic Acid) to Acrylic Acid at Low Temperatures.

    Science.gov (United States)

    Terrade, Frédéric G; van Krieken, Jan; Verkuijl, Bastiaan J V; Bouwman, Elisabeth

    2017-05-09

    Despite being a simple dehydration reaction, the industrially relevant conversion of lactic acid to acrylic acid is particularly challenging. For the first time, the catalytic cracking of lactide and poly(lactic acid) to acrylic acid under mild conditions is reported with up to 58 % yield. This transformation is catalyzed by strong acids in the presence of bromide or chloride salts and proceeds through simple S N 2 and elimination reactions. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  15. Effect of l-lysine-assisted surface grafting for nano-hydroxyapatite on mechanical properties and in vitro bioactivity of poly(lactic acid-co-glycolic acid).

    Science.gov (United States)

    Liuyun, Jiang; Lixin, Jiang; Chengdong, Xiong; Lijuan, Xu; Ye, Li

    2016-01-01

    It is promising and challenging to study surface modification for nano-hydroxyapatite to improve the dispersion and enhance the mechanical properties and bioactivity of poly(lactic acid-co-glycolic acid). In this paper, we designed an effective new surface grafting with the assist of l-lysine for nano-hydroxyapatite, and the nano-hydroxyapatite surface grafted with the assist of l-lysine (g-nano-hydroxyapatite) was incorporated into poly(lactic acid-co-glycolic acid) to develop a series of g-nano-hydroxyapatite/poly(lactic acid-co-glycolic acid) nano-composites. The surface modification reaction for nano-hydroxyapatite, the mechanical properties, and in vitro human osteoblast-like cell (MG-63) response were characterized and investigated by Fourier transformation infrared, thermal gravimetric analysis, dispersion test, electromechanical universal tester, differential scanning calorimeter measurements, and in vitro cells culture experiment. The results showed that the grafting amount on the surface of nano-hydroxyapatite was enhanced with the increase of l-lysine, and the dispersion of nano-hydroxyapatite was improved more, so that it brought about better promotion crystallization and more excellent mechanical enhancement effect for poly(lactic acid-co-glycolic acid), comparing with the unmodified nano-hydroxyapatite. Moreover, the cells' attachment and proliferation results confirmed that the incorporation of the g-nano-hydroxyapatite into poly(lactic acid-co-glycolic acid) exhibited better biocompatibility than poly(lactic acid-co-glycolic acid). The above results indicated that the new surface grafting with the assist of l-lysine for nano-hydroxyapatite was an ideal novel surface modification method, which brought about better mechanical enhancement effect and in vitro bioactivity for poly(lactic acid-co-glycolic acid) with adding higher g-nano-hydroxyapatite content, suggesting it had a great potential to be used as bone fracture internal fixation materials

  16. Biodegradation of poly(lactic acid, poly(hydroxybutyrate-co-hydroxyvalerate, poly(butylene succinate and poly(butylene adipate-co-terephthalate under anaerobic and oxygen limited thermophilic conditions

    Directory of Open Access Journals (Sweden)

    Jutakan Boonmee

    2016-01-01

    Full Text Available In order to study the biodegradation behavior of biodegradable plastics in landfill conditions, four types of biodegradable plastics including poly(lactic acid (PLA, poly(hydroxybutyrate-co-hydroxyvalerate (PHBV, poly(butylene succinate (PBS, and poly(butylene adipate-co-terephthalate (PBAT were tested by burying in sludge mixed soil medium under anaerobic and oxygen limited conditions. The experiments were operated at 52 ± 2ºC in dark conditions according to ISO15985. The degree of biodegradation after 75 days was investigated by weight loss determination, visual examination, and surface appearance by scanning electronic microscopy (SEM. Under both anaerobic and oxygen limited conditions, the complete degradation (100% weight loss was found only in PHBV after 75 days. The plastic degradations were ranked in the order of PHBV> PLA> PBS> PBAT. The percentage of weight losses were significantly different at p ≤ 0.05. However, for all studied plastics, the degradation under anaerobic and oxygen limited conditions did not significantly different at 95% confidence.

  17. Charge transport properties of poly(dA)-poly(dT) DNA in variation of backbone disorder and amplitude of base-pair twisting motion

    Energy Technology Data Exchange (ETDEWEB)

    Rahmi, Kinanti Aldilla, E-mail: kinanti.aldilla@ui.ac.id; Yudiarsah, Efta [Physics Department, FMIPA, Universitas Indonesia, Kampus UI Depok (Indonesia)

    2016-04-19

    By using tight binding Hamiltonian model, charge transport properties of poly(dA)-poly(dT) DNA in variation of backbone disorder and amplitude of base-pair twisting motion is studied. The DNA chain used is 32 base pairs long poly(dA)-poly(dT) molecule. The molecule is contacted to electrode at both ends. The influence of environment on charge transport in DNA is modeled as variation of backbone disorder. The twisting motion amplitude is taking into account by assuming that the twisting angle distributes following Gaussian distribution function with zero average and standard deviation proportional to square root of temperature and inversely proportional to the twisting motion frequency. The base-pair twisting motion influences both the onsite energy of the bases and electron hopping constant between bases. The charge transport properties are studied by calculating current using Landauer-Buttiker formula from transmission probabilities which is calculated by transfer matrix methods. The result shows that as the backbone disorder increases, the maximum current decreases. By decreasing the twisting motion frequency, the current increases rapidly at low voltage, but the current increases slower at higher voltage. The threshold voltage can increase or decrease with increasing backbone disorder and increasing twisting frequency.

  18. MDMA Decreases Gluatamic Acid Decarboxylase (GAD) 67-Immunoreactive Neurons in the Hippocampus and Increases Seizure Susceptibility: Role for Glutamate

    Science.gov (United States)

    Huff, Courtney L.; Morano, Rachel L.; Herman, James P.; Yamamoto, Bryan K.; Gudelsky, Gary A.

    2016-01-01

    3,4-Methylenedioxy-methamphetamine (MDMA) is a unique psychostimulant that continues to be a popular drug of abuse. It has been well documented that MDMA reduces markers of 5-HT axon terminals in rodents, as well as humans. A loss of parvalbumin-immunoreactive (IR) interneurons in the hippocampus following MDMA treatment has only been documented recently. In the present study, we tested the hypothesis that MDMA reduces glutamic acid decarboxylase (GAD) 67-IR, another biochemical marker of GABA neurons, in the hippocampus and that this reduction in GAD67-IR neurons and an accompanying increase in seizure susceptibility involve glutamate receptor activation. Repeated exposure to MDMA (3×10mg/kg, ip) resulted in a reduction of 37–58% of GAD67-IR cells in the dentate gyrus (DG), CA1, and CA3 regions, as well as an increased susceptibility to kainic acid-induced seizures, both of which persisted for at least 30 days following MDMA treatment. Administration of the NMDA antagonist MK-801 or the glutamate transporter type 1 (GLT-1) inducer ceftriaxone prevented both the MDMA-induced loss of GAD67-IR neurons and the increased vulnerability to kainic acid-induced seizures. The MDMA-induced increase in the extracellular concentration of glutamate in the hippocampus was significantly diminished in rats treated with ceftriaxone, thereby implicating a glutamatergic mechanism in the neuroprotective effects of ceftriaxone. In summary, the present findings support a role for increased extracellular glutamate and NMDA receptor activation in the MDMA-induced loss of hippocampal GAD67-IR neurons and the subsequent increased susceptibility to evoked seizures. PMID:27773601

  19. A new technique for measuring protein turnover in the gut, liver and kidneys of lean and obese mice with [3H] glutamic acid

    International Nuclear Information System (INIS)

    Miller, B.G.; Grimble, R.F.; Taylor, T.G.

    1978-01-01

    Measurements have been made of the incorporation of an intraperitoneal injection of [ 3 H]glutamate into the protein of the gut, liver and kidney of lean and obese siblings of the genetically obese mouse. Recycling of the 3 H was minimized by using glutamate labelled at the C-2 position. Loss of label from the amino acid pool by transamination and deamination was rapid, with a half-life of 4 h. In tissue protein the amino acid showing the highest 3 H radioactivity was glutamate. The half-lives for protein synthesis and catabolism were calculated from the decay curves of both specific and total radioactivity of [ 3 H] glutamate in tissue protein. No significant differences were found between kidney, liver and gut in lean and obese mice. (author)

  20. Chemical protection against radiation effects on Serum transaminase and the levels of glutamic and pyruvic acids following gamma irradiation of rats

    International Nuclear Information System (INIS)

    Mahdy, A.M.; EL-Kashef, H.S.

    1988-01-01

    The present study been carried out to evaluate the radioprotective efficiency of urea and vitamin E for protecting certain enzymatic systems from deleterious radiation effects. The activities of serum transaminase; aspartate aminotransferase (A S T) and alanine aminotransferase (A L T); as well as their relative substrates; glutamic and pyruvic acid levels; were selected for this study. The results indicated that whole body gamma irradiation at the dose of 7 Gy caused an evident elevation in the activities of both A S T and A L T and in the level of pyruvic acid at the experiment period (first,third,seventh and tenth days post irradiation). On the other hand the free glutamic acid level decreased at all post irradiation days. The variation in both enzymatic activities, pyruvic and glutamic acid levels became less pronounced in rats treated with either urea or vitamin E as chemical radioprotectors before whole body gamma irradiation. The results showed that the two agents are good radioprotectors, with respect to these parameters under investigation

  1. Development of anti-scale poly(aspartic acid-citric acid) dual polymer systems for water treatment.

    Science.gov (United States)

    Nayunigari, Mithil Kumar; Gupta, Sanjay Kumar; Kokkarachedu, Varaprasad; Kanny, K; Bux, F

    2014-01-01

    The formation of calcium sulphate and calcium carbonate scale poses major problems in heat exchangers and water cooling systems, thereby affecting the performance of these types of equipment. In order to inhibit these scale formations, new types of biodegradable water soluble single polymer and dual poly(aspartic acid-citric acid) polymers were developed and tested. The effectiveness of single polymer and four different compositions of poly aspartic acid and citric acid dual polymer systems as scale inhibitors were evaluated. Details of the synthesis, thermal stability, scale inhibition and the morphological characterization of single and dual polymers are presented in this scientific paper. It was found that the calcium sulphate scale inhibition rate was in the range 76.06-91.45%, while the calcium carbonate scale inhibition rate observed was in the range 23.37-30.0% at 65-70 °C. The finding suggests that the water soluble dual polymers are very effective in sulphate scale inhibition in comparison of calcium carbonate scale inhibition.

  2. Preparation and characterization of poly(acrylic acid)-hydroxyethyl cellulose graft copolymer.

    Science.gov (United States)

    Abdel-Halim, E S

    2012-10-01

    Poly(acrylic acid) hydroxyethyl cellulose [poly(AA)-HEC] graft copolymer was prepared by polymerizing acrylic acid (AA) with hydroxyethyl cellulose (HEC) using potassium bromate/thiourea dioxide (KBrO(3)/TUD) as redox initiation system. The polymerization reaction was carried out under a variety of conditions including concentrations of AA, KBrO(3) and TUD, material to liquor ratio and polymerization temperature. The polymerization reaction was monitored by withdrawing samples from the reaction medium and measuring the total conversion. The rheological properties of the poly(AA)-HEC graft copolymer were investigated. The total conversion and rheological properties of the graft copolymer depended on the ratio of KBrO(3) to TUD and on acrylic acid concentration as well as temperature and material to liquor ratio. Optimum conditions of the graft copolymer preparation were 30 mmol KBrO(3) and 30 mmol TUD/100g HEC, 100% AA (based on weight of HEC), duration 2h at temperature 50 °C using a material to liquor ratio of 1:10. Copyright © 2012. Published by Elsevier Ltd.

  3. Synthesis and characterization of poly aniline/wood and poly aniline/carbon composites

    International Nuclear Information System (INIS)

    Kanwal, F.; Siddiqi, S.A.; Tasleem, S.

    2009-01-01

    Conducting polymers have shown many applications in the field of nano science, nano technology and nuclear science. Poly aniline (PAN I) is the most studied conducting polymer due to its environmental stability, easy availability of its raw materials, and simple synthesis. We have synthesized poly aniline and two of its conducting composites i.e., poly aniline-carbon and poly aniline-wood in acidic medium (HCI) using K/sub 2/Cr/sub 2/O/sub 7/ as oxidizing agent. All samples were characterized by FTIR and four-probe d.c. conductivity methods The synthesis was carried out at two different temperatures (0 degree C and -5 degree C) and it was found that the yield and conductivity were maximum at lower temperature (-5 degree C). The poly aniline-carbon composites showed enhanced conductivity whereas poly aniline-wood composites showed reduced conductivity when compared with the conductivity of pure poly aniline. (author)

  4. Excitatory amino acid neurotoxicity and modulation of glutamate receptor expression in organotypic brain slice cultures

    DEFF Research Database (Denmark)

    Zimmer, J; Kristensen, Bjarne Winther; Jakobsen, B

    2000-01-01

    Using organotypic slice cultures of hippocampus and cortex-striatum from newborn to 7 day old rats, we are currently studying the excitotoxic effects of kainic acid (KA), AMPA and NMDA and the neuroprotective effects of glutamate receptor blockers, like NBQX. For detection and quantitation...

  5. Morphology and In Vitro Behavior of Electrospun Fibrous Poly(D,L-lactic acid for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Toshihiro Inami

    2013-01-01

    Full Text Available This work describes the fabrication, optimization, and characterization of electrospun fibrous poly(D,L-lactic acid (PDLLA for biomedical applications. The influences of the polymer concentration of the electrospinning solution (5, 10, or 15 wt% and the solution flow rate (0.1, 0.5, 1.0, or 2.0 mL/h on the morphology of the obtained fibrous PDLLA were evaluated. The in vitro biocompatibility of two types of PDLLA, ester terminated PDLLA (PDLLA-R and carboxyl terminated PDLLA (PDLLA-COOH, was evaluated by monitoring apatite formation on samples immersed in Hanks’ balanced salt (HBS solution. 15 wt% polymer solution was the most beneficial for preparing a fibrous PDLLA structure. Meanwhile, no differences in morphology were observed for PDLLA prepared at various flow rates. Apatite precipitate is formed on both types of PDLLA only 1 day after immersion in HBS solution. After 7 days of immersion, PDLLA-COOH showed greater apatite formation ability compared with that of PDLLA-R, as measured by thin-film X-ray diffraction. The results indicated that the carboxyl group is effective for apatite precipitation in the body environment.

  6. Poly(methacrylic) Acid and g-methacryloxypropyltrimethoxy Silane/Clay Nanocomposites Prepared by In-Situ Polymerization

    OpenAIRE

    GÜLTEK, Ahmet; SEÇKİN, Turgay

    2002-01-01

    Poly(methacrylic acid) and poly(acrylic acid) nanocomposites were prepared by in-situ polymerization of g-methacryloxypropyltrimethoxysilane (A174)/clay nanocomposites in which the macromonomer was generated by grafting A-174 onto activated clay samples via hydroxyl groups or via intercalation. In- situ polymerization was carried out in the presence of an initiator. It was found that the structural affinity between the methacrylic or acrylic acid monomers and the amount of clay playe...

  7. Designing Novel Nanoformulations Targeting Glutamate Transporter Excitatory Amino Acid Transporter 2: Implications in Treating Drug Addiction.

    Science.gov (United States)

    Rao, Pss; Yallapu, Murali M; Sari, Youssef; Fisher, Paul B; Kumar, Santosh

    Chronic drug abuse is associated with elevated extracellular glutamate concentration in the brain reward regions. Deficit of glutamate clearance has been identified as a contributing factor that leads to enhanced glutamate concentration following extended drug abuse. Importantly, normalization of glutamate level through induction of glutamate transporter 1 (GLT1)/ excitatory amino acid transporter 2 (EAAT2) expression has been described in several in vivo studies. GLT1 upregulators including ceftriaxone, a beta-lactam antibiotic, have been effective in attenuating drug-seeking and drug-consumption behavior in rodent models. However, potential obstacles toward clinical translation of GLT1 (EAAT2) upregulators as treatment for drug addiction might include poor gastrointestinal absorption, serious peripheral adverse effects, and/or suboptimal CNS concentrations. Given the growing success of nanotechnology in targeting CNS ailments, nanoformulating known GLT1 (EAAT2) upregulators for selective uptake across the blood brain barrier presents an ideal therapeutic approach for treating drug addiction. In this review, we summarize the results obtained with promising GLT1 (EAAT2) inducing compounds in animal models recapitulating drug addiction. Additionally, the various nanoformulations that can be employed for selectively increasing the CNS bioavailability of GLT1 (EAAT2) upregulators are discussed. Finally, the applicability of GLT1 (EAAT2) induction via central delivery of drug-loaded nanoformulations is described.

  8. Amphiphilic glycosylated block copolypeptides as macromolecular surfactants in the emulsion polymerization of styrene

    NARCIS (Netherlands)

    Jacobs, Jaco; Gathergood, N.; Heuts, J.P.A.; Heise, A.

    2015-01-01

    Diblock copolymers consisting of poly(L-phenyl alanine) and poly(benzyl-L-glutamate) or poly(CBZ-L-lysine), respectively, were synthesized via sequential NCA polymerization. After deprotection, subsequent partial glycosylation of the glutamic acid and lysine units with galactosamine hydrochloride or

  9. Selective Advantage of a Spirillum sp. in a Carbon-limited Environment. Accumulation of Poly-β-hydroxybutyric Acid and Its Role in Starvation

    NARCIS (Netherlands)

    Matin, A.; Veldhuis, C.; Stegeman, V.; Veenhuis, M.

    1979-01-01

    A freshwater Spirillum sp., which apparently belongs to a niche of low nutritional status, accumulated poly-β-hydroxybutyric acid (PHB) during lactate-limited growth in continuous culture. The PHB content varied in a complex manner with the dilution rate (D), but was greatest at the lowest D value

  10. Characterization of Active Packaging Films Made from Poly(Lactic Acid)/Poly(Trimethylene Carbonate) Incorporated with Oregano Essential Oil

    OpenAIRE

    Dong Liu; Hongli Li; Lin Jiang; Yongming Chuan; Minglong Yuan; Haiyun Chen

    2016-01-01

    Antimicromial and antioxidant bioactive films based on poly(lactic acid)/poly(trimenthylene carbonate) films incorporated with different concentrations of oregano essential oil (OEO) were prepared by solvent casting. The antimicrobial, antioxidant, physical, thermal, microstructural, and mechanical properties of the resulting films were examined. Scanning electron microscopy analysis revealed that the cross-section of films became rougher when OEO was incorporated into PLA/PTMC blends. Differ...

  11. Structure of chlorinated poly(vinyl chloride). III. Preparation of poly(vinyl chloride)-β,β-d2 as a model for the study of the mechanism of chlorination and of the chlorinated poly(vinyl chloride) structure

    International Nuclear Information System (INIS)

    Lukas, R.; Kolinsky, M.

    1976-01-01

    A method for the preparation of poly(vinyl chloride)-β,β-d 2 (PVC-β,β-d 2 ) as a model for the investigation of the mechanism of chlorination and of the CPVC structure has been suggested. The conditions of preparation of deuterated intermediates of a multistage synthesis of vinyl chloride-β,β-d 2 and of suspension-polymerized PVC-β,β-d 2 have been described including the mass balance. Malonic acid was used as the starting compound. Tacticity values of a sample of PVC-β,β-d 2 and its infrared and nuclear magnetic resonance (NMR) spectra are presented and compared with the data already published

  12. Studies of the radioprotective properties of nicotinyl compounds, aspartic acid, glutamic acid and methionine

    International Nuclear Information System (INIS)

    Itzel-Kietzmann, V.M.

    1986-01-01

    Radioprotective properties of sodium salts of nicotinyl aspartic acid, nicotinyl methionyl aspartic acid and nicotinyl glutamic acid were tested in mice (NMRI). Experimental animals were irradiated by rayage (9,5 Gy). Parameters were: survival rate, peritoneal fluid cell count, weight and DNA concentration of spleen, hepatic DNA polymerase activity and rate of protein synthesis, lactate dehydrogenase activity in serum, maltase, sucrase and leucine aminopeptidase activitiy in duodenum and jejunum. Following results were obtained: 1. There was no significant difference in survival rate of treated and untreated animals. In treated animals only a short prolongation of survival time was observed. 2. After irradiation a quick reduction of splenic weight and DNA concentration was measured. 3. A reduction of DNA polymerase activity in liver was observed in treated and untreated mice. The rate of hepatic protein synthesis was similar in all animals. A final decrease was observed. 4. Variable activities of maltase, sucrase and leucine aminopeptidase activity in duodenum and jejunum indicated no radioprotective effect of tested substances. In conclusion of these results the tested substances show no significant radioprotective properties. (orig.) [de

  13. Relationship between structure, conformational flexibility, and biological activity of agonists and antagonists at the N-methyl-D-aspartic acid subtype of excitatory amino acid receptors

    DEFF Research Database (Denmark)

    Madsen, U; Brehm, L; Schaumburg, Kjeld

    1990-01-01

    The relationship between conformational flexibility and agonist or antagonist actions at the N-Methyl-D-aspartic acid (NMDA) subtype of central L-glutamic acid (GLU) receptors of a series of racemic piperidinedicarboxylic acids (PDAs) was studied. The conformational analyses were based on 1H NMR...... receptors. Each of the three cyclic acidic amino acids showing NMDA agonist activities was found to exist as an equilibrium mixture of two conformers in aqueous solution. In contrast, the NMDA antagonists cis-2,3-PDA and cis-2,4-PDA as well as the inactive compounds trans-2,5-PDA and cis-2,6-PDA were shown...

  14. Preservation of glutamic acid-iron chelate into montmorillonite to efficiently degrade Reactive Blue 19 in a Fenton system under sunlight irradiation at neutral pH

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhujian [College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642 (China); Wu, Pingxiao, E-mail: pppxwu@scut.edu.cn [School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006 (China); The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006 (China); Gong, Beini; Yang, Shanshan; Li, Hailing [School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006 (China); Zhu, Ziao; Cui, Lihua [College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642 (China)

    2016-05-01

    Graphical abstract: - Highlights: • G–Fe chelate molecules were well preserved into montmorillonite. • The product shows an excellent catalytic activity under sunlight at neutral pH value. • G–Fe–Mt is a promising catalyst for advanced oxidation processes. - Abstract: To further enhance the visible light responsive property and the chemical stability of Fe/clay mineral catalysts, glutamic acid-iron chelate intercalated montmorillonite (G–Fe–Mt) was developed. The physiochemical properties of G–Fe–Mt were investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV–vis diffuse reflectance spectroscopy (DRS), etc. The results showed that glutamic acid-iron chelates were successfully intercalated into the gallery of montmorillonite and the intercalated glutamic acid-iron chelate molecules were well preserved. The product G–Fe–Mt displayed excellent catalytic performance in heterogeneous photo-Fenton reaction under sunlight irradiation at acidic and neutral pH values. The chelation and the visible light responsiveness of glutamic acid produce a synergistic effect leading to greatly enhanced sunlight-Fenton reaction catalyzed by the heterogeneous G–Fe–Mt under neutral pH. G–Fe–Mt is a promising catalyst for advanced oxidation processes.

  15. Double-brush Langmuir-Blodgett monolayers of alpha-helical diblock copolypeptides

    NARCIS (Netherlands)

    Nguyen, Le-Thu T.; Vorenkamp, Eltjo J.; Daumont, Christophe J. M.; ten Brinke, Gerrit; Schouten, Arend J.; Vukovic, Ivana; Loos, Katja

    2010-01-01

    The synthesis of amphiphilic diblock copolypeptides consisting of poly(alpha-L-glutamic acid) (PLGA) and poly(gamma-methyl-L-glutamate-ran-gamma-stearyl-L-glutamate) with 30 mol % of stearyl substituents (PMLGSLG) and their monolayer behavior at the air-water interface have been studied.

  16. A multi-center field study of two point-of-care tests for circulating Wuchereria bancrofti antigenemia in Africa.

    Directory of Open Access Journals (Sweden)

    Cédric B Chesnais

    2017-09-01

    Full Text Available The Global Programme to Eliminate Lymphatic Filariasis uses point-of-care tests for circulating filarial antigenemia (CFA to map endemic areas and for monitoring and evaluating the success of mass drug administration (MDA programs. We compared the performance of the reference BinaxNOW Filariasis card test (ICT, introduced in 1997 with the Alere Filariasis Test Strip (FTS, introduced in 2013 in 5 endemic study sites in Africa.The tests were compared prior to MDA in two study sites (Congo and Côte d'Ivoire and in three sites that had received MDA (DRC and 2 sites in Liberia. Data were analyzed with regard to % positivity, % agreement, and heterogeneity. Models evaluated potential effects of age, gender, and blood microfilaria (Mf counts in individuals and effects of endemicity and history of MDA at the village level as potential factors linked to higher sensitivity of the FTS. Lastly, we assessed relationships between CFA scores and Mf in pre- and post-MDA settings.Paired test results were available for 3,682 individuals. Antigenemia rates were 8% and 22% higher by FTS than by ICT in pre-MDA and in post-MDA sites, respectively. FTS/ICT ratios were higher in areas with low infection rates. The probability of having microfilaremia was much higher in persons with CFA scores >1 in untreated areas. However, this was not true in post-MDA settings.This study has provided extensive new information on the performance of the FTS compared to ICT in Africa and it has confirmed the increased sensitivity of FTS reported in prior studies. Variability in FTS/ICT was related in part to endemicity level, history of MDA, and perhaps to the medications used for MDA. These results suggest that FTS should be superior to ICT for mapping, for transmission assessment surveys, and for post-MDA surveillance.

  17. EPR, optical and superposition model study of Mn2+ doped L+ glutamic acid

    Science.gov (United States)

    Kripal, Ram; Singh, Manju

    2015-12-01

    Electron paramagnetic resonance (EPR) study of Mn2+ doped L+ glutamic acid single crystal is done at room temperature. Four interstitial sites are observed and the spin Hamiltonian parameters are calculated with the help of large number of resonant lines for various angular positions of external magnetic field. The optical absorption study is also done at room temperature. The energy values for different orbital levels are calculated, and observed bands are assigned as transitions from 6A1g(s) ground state to various excited states. With the help of these assigned bands, Racah inter-electronic repulsion parameters B = 869 cm-1, C = 2080 cm-1 and cubic crystal field splitting parameter Dq = 730 cm-1 are calculated. Zero field splitting (ZFS) parameters D and E are calculated by the perturbation formulae and crystal field parameters obtained using superposition model. The calculated values of ZFS parameters are in good agreement with the experimental values obtained by EPR.

  18. Disruption of pknG enhances production of gamma-aminobutyric acid by Corynebacterium glutamicum expressing glutamate decarboxylase.

    Science.gov (United States)

    Okai, Naoko; Takahashi, Chihiro; Hatada, Kazuki; Ogino, Chiaki; Kondo, Akihiko

    2014-01-01

    Gamma-aminobutyric acid (GABA), a building block of the biodegradable plastic polyamide 4, is synthesized from glucose by Corynebacterium glutamicum that expresses Escherichia coli glutamate decarboxylase (GAD) B encoded by gadB. This strain was engineered to produce GABA more efficiently from biomass-derived sugars. To enhance GABA production further by increasing the intracellular concentration of its precursor glutamate, we focused on engineering pknG (encoding serine/threonine protein kinase G), which controls the activity of 2-oxoglutarate dehydrogenase (Odh) in the tricarboxylic acid cycle branch point leading to glutamate synthesis. We succeeded in expressing GadB in a C. glutamicum strain harboring a deletion of pknG. C. glutamicum strains GAD and GAD ∆pknG were cultured in GP2 medium containing 100 g L(-1) glucose and 0.1 mM pyridoxal 5'-phosphate. Strain GAD∆pknG produced 31.1 ± 0.41 g L(-1) (0.259 g L(-1) h(-1)) of GABA in 120 hours, representing a 2.29-fold higher level compared with GAD. The production yield of GABA from glucose by GAD∆pknG reached 0.893 mol mol(-1).

  19. Styrene-Assisted Maleic Anhydride Grafted Poly(lactic acid as an Effective Compatibilizer for Wood Flour/Poly(lactic acid Bio-Composites

    Directory of Open Access Journals (Sweden)

    Jun Du

    2017-11-01

    Full Text Available This study aimed to evaluate the effect of styrene-assisted maleic anhydride-grafted poly(lactic acid (PLA-g-St/MAH on the interfacial properties of wood flour/poly(lactic acid (PLA bio-composites. PLA-g-St/MAH was synthesized by free-radical melt grafting using styrene as a comonomer and dicumyl peroxide as an initiator. The structure of PLA-g-St/MAH was characterized by Fourier transform infrared spectroscopy. Wood flour/PLA composites were prepared by compression molding using PLA-g-St/MAH as a compatibilizer. The effects of PLA-g-St/MAH on the rheological and mechanical properties, as well as on the fractured surface morphology of the composites were investigated. Results indicated that storage modulus, complex viscosity, equilibrium torque, and shear heat were significantly increased. The mechanical properties of the wood flour/PLA composites were also significantly increased after the addition of PLA-g-St/MAH. The maximum values were achieved at the loading rate of 3 wt % because of the improved interfacial adhesion between the wood flour and the PLA matrix.

  20. The Effect of MSG (Monosodium Glutamate Addition on The Quality of Yoghurt Frozen Culture Starter Viewed Viability, pH Value and Acidity

    Directory of Open Access Journals (Sweden)

    Aris Sri Widati

    2012-02-01

    Full Text Available The objective of this study was to investigate wether the effect of percentage monosodium glutamat addition on the quality of yoghurt frozen culture starter viewed viability, pH value and acidity.The experimental design used in this study was Randomised Complete Design and the treatment were four levels of monosodium glutamate concentration respectively 0% (without monosodium glutamat 10%, 15% and 20% from medium. Each treatment were three times replicated. The research result showed that the difference of monosodium glutamate concentration  did not gave a significant effect (P>0.05 on viability of yoghurt frozen culture starter and acidity of yoghurt made by frozen culture starter but it gave a significant effect (P<0.05 on pH value. It can be concluded that different monosodium glutamate concentration had a different quality on frozen culture starter yoghurt. The addition of monosodium glutamate up to 20% necessarily indicate increase on quality of yoghurt frozen culture starter. Keywords: culture starter yoghurt, freezing, cryoprotectant

  1. In vitro evaluation of chitosan/poly(lactic acid-glycolic acid) sintered microsphere scaffolds for bone tissue engineering.

    Science.gov (United States)

    Jiang, Tao; Abdel-Fattah, Wafa I; Laurencin, Cato T

    2006-10-01

    A three-dimensional (3-D) scaffold is one of the major components in many tissue engineering approaches. We developed novel 3-D chitosan/poly(lactic acid-glycolic acid) (PLAGA) composite porous scaffolds by sintering together composite chitosan/PLAGA microspheres for bone tissue engineering applications. Pore sizes, pore volume, and mechanical properties of the scaffolds can be manipulated by controlling fabrication parameters, including sintering temperature and sintering time. The sintered microsphere scaffolds had a total pore volume between 28% and 37% with median pore size in the range 170-200microm. The compressive modulus and compressive strength of the scaffolds are in the range of trabecular bone making them suitable as scaffolds for load-bearing bone tissue engineering. In addition, MC3T3-E1 osteoblast-like cells proliferated well on the composite scaffolds as compared to PLAGA scaffolds. It was also shown that the presence of chitosan on microsphere surfaces increased the alkaline phosphatase activity of the cells cultured on the composite scaffolds and up-regulated gene expression of alkaline phosphatase, osteopontin, and bone sialoprotein.

  2. Glutamate Efflux at the Blood-Brain Barrier

    DEFF Research Database (Denmark)

    Cederberg-Helms, Hans Christian; Uhd-Nielsen, Carsten; Brodin, Birger

    2014-01-01

    is well known, however endothelial cells may also play an important role through mediating brain-to-blood L-glutamate efflux. Expression of excitatory amino acid transporters has been demonstrated in brain endothelial cells of bovine, human, murine, rat and porcine origin. These can account for high...... affinity concentrative uptake of L-glutamate from the brain interstitial fluid into the capillary endothelial cells. The mechanisms in between L-glutamate uptake in the endothelial cells and L-glutamate appearing in the blood are still unclear and may involve a luminal transporter for L......-glutamate, metabolism of L-glutamate and transport of metabolites or a combination of the two. However, both in vitro and in vivo studies have demonstrated blood-to-brain transport of L-glutamate, at least during pathological events. This review summarizes the current knowledge on the brain-to-blood L-glutamate efflux...

  3. Glutamine and glutamate as vital metabolites

    Directory of Open Access Journals (Sweden)

    Newsholme P.

    2003-01-01

    Full Text Available Glucose is widely accepted as the primary nutrient for the maintenance and promotion of cell function. This metabolite leads to production of ATP, NADPH and precursors for the synthesis of macromolecules such as nucleic acids and phospholipids. We propose that, in addition to glucose, the 5-carbon amino acids glutamine and glutamate should be considered to be equally important for maintenance and promotion of cell function. The functions of glutamine/glutamate are many, i.e., they are substrates for protein synthesis, anabolic precursors for muscle growth, they regulate acid-base balance in the kidney, they are substrates for ureagenesis in the liver and for hepatic and renal gluconeogenesis, they act as an oxidative fuel for the intestine and cells of the immune system, provide inter-organ nitrogen transport, and act as precursors of neurotransmitter synthesis, of nucleotide and nucleic acid synthesis and of glutathione production. Many of these functions are interrelated with glucose metabolism. The specialized aspects of glutamine/glutamate metabolism of different glutamine-utilizing cells are discussed in the context of glucose requirements and cell function.

  4. Dual patterning of a poly(acrylic acid) layer by electron-beam and block copolymer lithographies.

    Science.gov (United States)

    Pearson, Anthony C; Linford, Matthew R; Harb, John N; Davis, Robert C

    2013-06-18

    We show the controllable patterning of palladium nanoparticles in both one and two dimensions using electron-beam lithography and reactive ion etching of a thin film of poly(acrylic acid) (PAA). After the initial patterning of the PAA, a monolayer of polystyrene-b-poly-2-vinylpyridine micelles is spun cast onto the surface. A short reactive ion etch is then used to transfer the micelle pattern into the patterned poly(acrylic acid). Finally, PdCl2 is loaded from solution into the patterned poly(acrylic acid) features, and a reactive-ion etching process is used to remove the remaining polymer and form Pd nanoparticles. This method yields location-controlled patches of nanoparticles, including single- and double-file lines and nanoparticle pairs. A locational accuracy of 9 nm or less in one direction was achieved by optimizing the size of the PAA features.

  5. Biomimetic L-aspartic acid-derived functional poly(ester amide)s for vascular tissue engineering.

    Science.gov (United States)

    Knight, Darryl K; Gillies, Elizabeth R; Mequanint, Kibret

    2014-08-01

    Functionalization of polymeric biomaterials permits the conjugation of cell signaling molecules capable of directing cell function. In this study, l-phenylalanine and l-aspartic acid were used to synthesize poly(ester amide)s (PEAs) with pendant carboxylic acid groups through an interfacial polycondensation approach. Human coronary artery smooth muscle cell (HCASMC) attachment, spreading and proliferation was observed on all PEA films. Vinculin expression at the cell periphery suggested that HCASMCs formed focal adhesions on the functional PEAs, while the absence of smooth muscle α-actin (SMαA) expression implied the cells adopted a proliferative phenotype. The PEAs were also electrospun to yield nanoscale three-dimensional (3-D) scaffolds with average fiber diameters ranging from 130 to 294nm. Immunoblotting studies suggested a potential increase in SMαA and calponin expression from HCASMCs cultured on 3-D fibrous scaffolds when compared to 2-D films. X-ray photoelectron spectroscopy and immunofluorescence demonstrated the conjugation of transforming growth factor-β1 to the surface of the functional PEA through the pendant carboxylic acid groups. Taken together, this study demonstrates that PEAs containing aspartic acid are viable biomaterials for further investigation in vascular tissue engineering. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  6. Expression of the human isoform of glutamate dehydrogenase, hGDH2, augments TCA cycle capacity and oxidative metabolism of glutamate during glucose deprivation in astrocytes

    DEFF Research Database (Denmark)

    Nissen, Jakob D; Lykke, Kasper; Bryk, Jaroslaw

    2017-01-01

    A key enzyme in brain glutamate homeostasis is glutamate dehydrogenase (GDH) which links carbohydrate and amino acid metabolism mediating glutamate degradation to CO2 and expanding tricarboxylic acid (TCA) cycle capacity with intermediates, i.e. anaplerosis. Humans express two GDH isoforms, GDH1...... and 2, whereas most other mammals express only GDH1. hGDH1 is widely expressed in human brain while hGDH2 is confined to astrocytes. The two isoforms display different enzymatic properties and the nature of these supports that hGDH2 expression in astrocytes potentially increases glutamate oxidation...

  7. Raman study of magnesium induced conversion of polyU·polyA duplexes to polyU·polyA·polyU triplexes

    OpenAIRE

    Herrera, S. J. Espinoza; Štepánek, J.

    2010-01-01

    Raman titration experiment with magnesium salt added gradually to aqueous solution of duplexes formed by RNA homopolynucleotides polyU and polyA was performed to reveal its effect on homopolynucleotide complexes. Statistical analysis of obtained spectral set has confirmed the effect already found by less structurally sensitive methods [Nucleic Acids Res. 31(17) (2003), 5101–5107] that at sufficiently high concentrations magnesium causes transformation of polyU·polyA duplexes to polyU·polyA·po...

  8. L-Aspartic and l-glutamic acid ester-based ProTides of anticancer nucleosides: Synthesis and antitumoral evaluation.

    Science.gov (United States)

    Gao, Ling-Jie; De Jonghe, Steven; Daelemans, Dirk; Herdewijn, Piet

    2016-05-01

    A series of novel aryloxyphosphoramidate nucleoside prodrugs based on l-aspartic acid and l-glutamic acid as amino acid motif has been synthesized and evaluated for antitumoral activity. Depending on the cancer cell line studied and on the nature of the parent nucleoside compound (gemcitabine, 5-iodo-2'-deoxy-uridine, floxuridine or brivudin), the corresponding ProTides are endowed with an improved or decreased cytotoxic activity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Glutamate signalling and secretory phospholipase A2 modulate the release of arachidonic acid from neuronal membranes

    DEFF Research Database (Denmark)

    Rodriguez De Turco, Elena B; Jackson, Fannie R; DeCoster, Mark A

    2002-01-01

    The lipid mediators generated by phospholipases A(2) (PLA(2)), free arachidonic acid (AA), eicosanoids, and platelet-activating factor, modulate neuronal activity; when overproduced, some of them become potent neurotoxins. We have shown, using primary cortical neuron cultures, that glutamate...... and secretory PLA(2) (sPLA(2)) from bee venom (bv sPLA(2)) and Taipan snake venom (OS2) elicit synergy in inducing neuronal cell death. Low concentrations of sPLA(2) are selective ligands of cell-surface sPLA(2) receptors. We investigated which neuronal arachidonoyl phospholipids are targeted by glutamate......) and in minor changes in other phospholipids. A similar profile, although of greater magnitude, was observed 20 hr posttreatment. Glutamate (80 microM) induced much less mobilization of (3)H-AA than did sPLA(2) and resulted in a threefold greater degradation of (3)H-AA PE than of (3)H-AA PC by 20 hr...

  10. Introduction to the Glutamate-Glutamine Cycle

    DEFF Research Database (Denmark)

    Sonnewald, Ursula; Schousboe, Arne

    2016-01-01

    . This is metabolically impossible unless it is assumed that at least two distinct pools of these amino acids exist. This combined with the finding that the enzyme synthesizing glutamine from glutamate was expressed in astrocytes but not in neurons formed the basis of the notion that a cycle must exist in which glutamate......The term 'glutamate-glutamine cycle' was coined several decades ago based on the observation that using certain (14)C-labeled precursors for studies of brain metabolism the specific radioactivity of glutamine generated from glutamate was higher than that of glutamate, its immediate precursor...... released from neurons is transported into astrocytes, converted to glutamine which is subsequently returned to neurons and converted to glutamate by an enzyme the activity of which is much higher in neurons than in astrocytes. Originally this cycle was supposed to function in a stoichiometric fashion...

  11. Introduction to the Glutamate-Glutamine Cycle

    DEFF Research Database (Denmark)

    Sonnewald, Ursula; Schousboe, Arne

    2016-01-01

    released from neurons is transported into astrocytes, converted to glutamine which is subsequently returned to neurons and converted to glutamate by an enzyme the activity of which is much higher in neurons than in astrocytes. Originally this cycle was supposed to function in a stoichiometric fashion......The term 'glutamate-glutamine cycle' was coined several decades ago based on the observation that using certain (14)C-labeled precursors for studies of brain metabolism the specific radioactivity of glutamine generated from glutamate was higher than that of glutamate, its immediate precursor....... This is metabolically impossible unless it is assumed that at least two distinct pools of these amino acids exist. This combined with the finding that the enzyme synthesizing glutamine from glutamate was expressed in astrocytes but not in neurons formed the basis of the notion that a cycle must exist in which glutamate...

  12. Cocaine modulates allosteric D2-σ1 receptor-receptor interactions on dopamine and glutamate nerve terminals from rat striatum.

    Science.gov (United States)

    Beggiato, Sarah; Borelli, Andrea Celeste; Borroto-Escuela, Dasiel; Corbucci, Ilaria; Tomasini, Maria Cristina; Marti, Matteo; Antonelli, Tiziana; Tanganelli, Sergio; Fuxe, Kjell; Ferraro, Luca

    2017-12-01

    The effects of nanomolar cocaine concentrations, possibly not blocking the dopamine transporter activity, on striatal D 2 -σ 1 heteroreceptor complexes and their inhibitory signaling over Gi/o, have been tested in rat striatal synaptosomes and HEK293T cells. Furthermore, the possible role of σ 1 receptors (σ 1 Rs) in the cocaine-provoked amplification of D 2 receptor (D 2 R)-induced reduction of K + -evoked [ 3 H]-DA and glutamate release from rat striatal synaptosomes, has also been investigated. The dopamine D 2 -likeR agonist quinpirole (10nM-1μM), concentration-dependently reduced K + -evoked [ 3 H]-DA and glutamate release from rat striatal synaptosomes. The σ 1 R antagonist BD1063 (100nM), amplified the effects of quinpirole (10 and 100nM) on K + -evoked [ 3 H]-DA, but not glutamate, release. Nanomolar cocaine concentrations significantly enhanced the quinpirole (100nM)-induced decrease of K + -evoked [ 3 H]-DA and glutamate release from rat striatal synaptosomes. In the presence of BD1063 (10nM), cocaine failed to amplify the quinpirole (100nM)-induced effects. In cotransfected σ 1 R and D 2L R HEK293T cells, quinpirole had a reduced potency to inhibit the CREB signal versus D 2L R singly transfected cells. In the presence of cocaine (100nM), the potency of quinpirole to inhibit the CREB signal was restored. In D 2L singly transfected cells cocaine (100nM and 10μM) exerted no modulatory effects on the inhibitory potency of quinpirole to bring down the CREB signal. These results led us to hypothesize the existence of functional D 2 -σ 1 R complexes on the rat striatal DA and glutamate nerve terminals and functional D 2 -σ 1 R-DA transporter complexes on the striatal DA terminals. Nanomolar cocaine concentrations appear to alter the allosteric receptor-receptor interactions in such complexes leading to enhancement of Gi/o mediated D 2 R signaling. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Glutamate as a neurotransmitter in the brain: review of physiology and pathology.

    Science.gov (United States)

    Meldrum, B S

    2000-04-01

    Glutamate is the principal excitatory neurotransmitter in brain. Our knowledge of the glutamatergic synapse has advanced enormously in the last 10 years, primarily through application of molecular biological techniques to the study of glutamate receptors and transporters. There are three families of ionotropic receptors with intrinsic cation permeable channels [N-methyl-D-aspartate (NMDA), alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and kainate]. There are three groups of metabotropic, G protein-coupled glutamate receptors (mGluR) that modify neuronal and glial excitability through G protein subunits acting on membrane ion channels and second messengers such as diacylglycerol and cAMP. There are also two glial glutamate transporters and three neuronal transporters in the brain. Glutamate is the most abundant amino acid in the diet. There is no evidence for brain damage in humans resulting from dietary glutamate. A kainate analog, domoate, is sometimes ingested accidentally in blue mussels; this potent toxin causes limbic seizures, which can lead to hippocampal and related pathology and amnesia. Endogenous glutamate, by activating NMDA, AMPA or mGluR1 receptors, may contribute to the brain damage occurring acutely after status epilepticus, cerebral ischemia or traumatic brain injury. It may also contribute to chronic neurodegeneration in such disorders as amyotrophic lateral sclerosis and Huntington's chorea. In animal models of cerebral ischemia and traumatic brain injury, NMDA and AMPA receptor antagonists protect against acute brain damage and delayed behavioral deficits. Such compounds are undergoing testing in humans, but therapeutic efficacy has yet to be established. Other clinical conditions that may respond to drugs acting on glutamatergic transmission include epilepsy, amnesia, anxiety, hyperalgesia and psychosis.

  14. GAS PERMEATION PROPERTIES OF POLY(LACTIC ACID). (R826733)

    Science.gov (United States)

    AbstractThe need for the development of polymeric materials based on renewable resources has led to the development of poly(lactic acid) (PLA) which is being produced from a feedstock of corn rather than petroleum. The present study examines the permeation of nitrogen...

  15. Composite particles formed by complexation of poly(methacrylic acid) - stabilized magnetic fluid with chitosan: Magnetic material for bioapplications

    Czech Academy of Sciences Publication Activity Database

    Šafařík, Ivo; Štěpánek, M.; Uchman, M.; Šlouf, Miroslav; Baldíková, E.; Nýdlová, L.; Pospíšková, K.; Šafaříková, Miroslava

    2016-01-01

    Roč. 67, October (2016), s. 486-492 ISSN 0928-4931 R&D Projects: GA TA ČR(CZ) TE01020118; GA MŠk(CZ) LO1507 Institutional support: RVO:60077344 ; RVO:61389013 Keywords : chitosan * immobilization * lipase * magnetic fluid * poly(methacrylic acid) Subject RIV: CD - Macromolecular Chemistry; CD - Macromolecular Chemistry (UMCH-V) Impact factor: 4.164, year: 2016

  16. In SilicoModel-driven Assessment of the Effects of Brain-derived Neurotrophic Factor Deficiency on Glutamate and Gamma-Aminobutyric Acid: Implications for Understanding Schizophrenia Pathophysiology.

    Science.gov (United States)

    Agrawal, Rimjhim; Kalmady, Sunil Vasu; Venkatasubramanian, Ganesan

    2017-05-31

    Deficient brain-derived neurotrophic factor (BDNF) is one of the important mechanisms underlying the neuroplasticity abnormalities in schizophrenia. Aberration in BDNF signaling pathways directly or circuitously influences neurotransmitters like glutamate and gamma-aminobutyric acid (GABA). For the first time, this study attempts to construct and simulate the BDNF-neurotransmitter network in order to assess the effects of BDNF deficiency on glutamate and GABA. Using CellDesigner, we modeled BDNF interactions with calcium influx via N-methyl-D-aspartate receptor (NMDAR)- Calmodulin activation; synthesis of GABA via cell cycle regulators protein kinase B, glycogen synthase kinase and β-catenin; transportation of glutamate and GABA. Steady state stability, perturbation time-course simulation and sensitivity analysis were performed in COPASI after assigning the kinetic functions, optimizing the unknown parameters using random search and genetic algorithm. Study observations suggest that increased glutamate in hippocampus, similar to that seen in schizophrenia, could potentially be contributed by indirect pathway originated from BDNF. Deficient BDNF could suppress Glutamate decarboxylase 67-mediated GABA synthesis. Further, deficient BDNF corresponded to impaired transport via vesicular glutamate transporter, thereby further increasing the intracellular glutamate in GABAergic and glutamatergic cells. BDNF also altered calcium dependent neuroplasticity via NMDAR modulation. Sensitivity analysis showed that Calmodulin, cAMP response element-binding protein (CREB) and CREB regulated transcription coactivator-1 played significant role in this network. The study presents in silico quantitative model of biochemical network constituting the key signaling molecules implicated in schizophrenia pathogenesis. It provides mechanistic insights into putative contribution of deficient BNDF towards alterations in neurotransmitters and neuroplasticity that are consistent with current

  17. Influence of the addition of bentonite clay in poli (butylene adipate co-terephthalic) / poly(lactic acid) membranes

    International Nuclear Information System (INIS)

    Morais, D.D.S.; Medeiros, K.M.; Araujo, E.M.; Melo, T.J.A.; Barbosa, R.

    2014-01-01

    The processes of membrane separation have been used in many different sectors of industrial activity, ranging from the chemical industry, food, pharmaceutical, medical and biotech. In this paper, a bentonite clay was added by melt intercalation in a poly(butylene adipate-co-terephthalic acid)/poly(lactic acid) blend at levels 1 and 3 wt% of clay. After that, membranes were produced by solvent evaporation technique. From the XRD results, it was verified the possible formation of exfoliated/partially exfoliated structures in the membranes. By DSC, it was observed that the addition of clay did not promote alterations in glass transition temperature and crystalline melting of the PBAT/PLA matrix. The morphology of the membranes were observed by SEM and it was verified the clay formation of porous membranes. (author)

  18. The development of quantitative determination method of organic acids in complex poly herbal extraction

    Directory of Open Access Journals (Sweden)

    I. L. Dyachok

    2016-08-01

    Full Text Available Aim. The development of sensible, economical and expressive method of quantitative determination of organic acids in complex poly herbal extraction counted on izovaleric acid with the use of digital technologies. Materials and methods. Model complex poly herbal extraction of sedative action was chosen as a research object. Extraction is composed of these medical plants: Valeriana officinalis L., Crataégus, Melissa officinalis L., Hypericum, Mentha piperita L., Húmulus lúpulus, Viburnum. Based on chemical composition of plant components, we consider that main pharmacologically active compounds, which can be found in complex poly herbal extraction are: polyphenolic substances (flavonoids, which are contained in Crataégus, Viburnum, Hypericum, Mentha piperita L., Húmulus lúpulus; also organic acids, including izovaleric acid, which are contained in Valeriana officinalis L., Mentha piperita L., Melissa officinalis L., Viburnum; the aminoacid are contained in Valeriana officinalis L. For the determination of organic acids content in low concentration we applied instrumental method of analysis, namely conductometry titration which consisted in the dependences of water solution conductivity of complex poly herbal extraction on composition of organic acids. Result. The got analytical dependences, which describes tangent lines to the conductometry curve before and after the point of equivalence, allow to determine the volume of solution expended on titration and carry out procedure of quantitative determination of organic acids in the digital mode. Conclusion. The proposed method enables to determine the point of equivalence and carry out quantitative determination of organic acids counted on izovaleric acid with the use of digital technologies, that allows to computerize the method on the whole.

  19. Effect of supersaturation on L-glutamic acid polymorphs under droplet-based microchannels

    Science.gov (United States)

    Jiang, Nan; Wang, Zhanzhong; Dang, Leping; Wei, Hongyuan

    2016-07-01

    Supersaturation is an important controlling factor for crystallization process and polymorphism. Droplet-based microchannels and conventional crystallization were used to investigate polymorphs of L-gluatamic acid in this work. The results illustrate that it is easy to realize the accurate and rapid control of the crystallization temperature in the droplets, which is especially beneficial to heat and mass transfer during crystallization. It is also noted that higher degree of supersaturation favors the nucleation of α crystal form, while lower degree of supersaturation favors the nucleation of β crystal form under droplet-based microchannels for L-gluatamic acid. In addition, there is a different nucleation behavior to be found under droplet-based microchannels both for the β form and α form of L-glutamic acid. This new finding can provide important insight into the development and design of investigation meanings for drug polymorph.

  20. Electrochemical synthesis of polyaniline in the presence of poly(amidosulfonic acid)s with different rigidity of polymer backbone and characterization of the films obtained

    International Nuclear Information System (INIS)

    Nekrasov, A.A.; Gribkova, O.L.; Eremina, T.V.; Isakova, A.A.; Ivanov, V.F.; Tverskoj, V.A.; Vannikov, A.V.

    2008-01-01

    We have studied electrochemical matrix polymerization of aniline in the presence of poly(amidosulfonic acid)s of different nature: poly(2-acrylamido-2-methyl-1-propanosulfonic acid) (PAMPSA, flexible backbone); poly(p,p'-(2,2'-disulfoacid)-diphenylene-iso-phthalamid) (i-PASA, semi-rigid backbone); poly(p,p'-(2,2'-disulfoacid)-diphelylene-tere-phthalamid) (t-PASA, rigid backbone). Also, we have investigated spectral and electrochemical properties of the films obtained, as well as their surface morphology. The matrix polymerization results in the formation of interpolymer complexes of polyaniline (PANI) and the above-cited polyacids. The acceleration of aniline electropolymerization in the presence of poly(amidosulfonic acid)s was observed due to association of aniline molecules to sulfonic groups of the polyacid and higher local concentration of protons near the polyacid backbone. The rigid-chain polyacids interfere with the normal course of the electropolymerization, which manifests itself in the changes of the shape of time dependences of absorbance and charge. Cyclic voltammetry and spectroelectrochemical experiments showed that the formation of interpolymer complex with rigid-chain polyacids distorts spectroelectrochemical characteristics of PANI. This evidently results from steric hindrances in the formation of quinoid units

  1. Danish children born with glutamic acid decarboxylase-65 and islet antigen-2 autoantibodies at birth had an increased risk to develop type 1 diabetes

    DEFF Research Database (Denmark)

    Eising, Stefanie; Nilsson, Anita; Carstensen, Bendix

    2011-01-01

    A large, population-based case-control cohort was used to test the hypothesis that glutamic acid decarboxylase-65 (GAD65) and islet antigen-2 autoantibodies (IA-2A) at birth predict type 1 diabetes.......A large, population-based case-control cohort was used to test the hypothesis that glutamic acid decarboxylase-65 (GAD65) and islet antigen-2 autoantibodies (IA-2A) at birth predict type 1 diabetes....

  2. 4-Alkylated homoibotenic acid (HIBO) analogues: versatile pharmacological agents with diverse selectivity profiles towards metabotropic and ionotropic glutamate receptor subtypes

    DEFF Research Database (Denmark)

    Madsen, Ulf; Pickering, Darryl S; Nielsen, Birgitte

    2005-01-01

    4-Alkylated analogues of homoibotenic acid (HIBO) have previously shown high potency and selectivity at ionotropic and metabotropic glutamic acid receptor (iGluR and mGluR) subtypes. Compounds with different selectivity profiles are valuable pharmacological tools for neuropharmacological studies...

  3. Limbic encephalitis with antibodies to glutamic acid decarboxylase presenting with brainstem symptoms

    Directory of Open Access Journals (Sweden)

    Faruk Incecik

    2015-01-01

    Full Text Available Limbic encephalitis (LE is a neurological syndrome that may present in association with cancer, infection, or as an isolate clinical condition often accompanying autoimmune disorders. LE associated with glutamic acid decarboxylase antibodies (anti-GAD is rare in children. Here, we characterized the clinical and laboratory features of a patient presenting with brainstem involvement with non-paraneoplastic LE associated with anti-GAD antibodies. In our patient, after plasma exchange, we determined a dramatic improvement of the neurological deficits.

  4. Inhibitory effect of glutamic acid on the scale formation process using electrochemical methods.

    Science.gov (United States)

    Karar, A; Naamoune, F; Kahoul, A; Belattar, N

    2016-08-01

    The formation of calcium carbonate CaCO3 in water has some important implications in geoscience researches, ocean chemistry studies, CO2 emission issues and biology. In industry, the scaling phenomenon may cause technical problems, such as reduction in heat transfer efficiency in cooling systems and obstruction of pipes. This paper focuses on the study of the glutamic acid (GA) for reducing CaCO3 scale formation on metallic surfaces in the water of Bir Aissa region. The anti-scaling properties of glutamic acid (GA), used as a complexing agent of Ca(2+) ions, have been evaluated by the chronoamperometry and electrochemical impedance spectroscopy methods in conjunction with a microscopic examination. Chemical and electrochemical study of this water shows a high calcium concentration. The characterization using X-ray diffraction reveals that while the CaCO3 scale formed chemically is a mixture of calcite, aragonite and vaterite, the one deposited electrochemically is a pure calcite. The effect of temperature on the efficiency of the inhibitor was investigated. At 30 and 40°C, a complete scaling inhibition was obtained at a GA concentration of 18 mg/L with 90.2% efficiency rate. However, the efficiency of GA decreased at 50 and 60°C.

  5. Histological evaluation of osteogenesis of 3D-printed poly-lactic-co-glycolic acid (PLGA) scaffolds in a rabbit model

    Energy Technology Data Exchange (ETDEWEB)

    Ge Zigang; Tian Xianfeng; Heng, Boon Chin; Fan, Victor; Yeo Jinfei; Cao Tong, E-mail: omscaot@nus.edu.s [Stem Cell Laboratory, Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, National University of Singapore, 5 Lower Kent Ridge Road, Singapore 119074 (Singapore)

    2009-04-15

    Utilizing a suitable combination of lactide and glycolide in a copolymer would optimize the degradation rate of a scaffold upon implantation in situ. Moreover, 3D printing technology enables customizing the shape of the scaffold to biometric data from CT and MRI scans. A previous in vitro study has shown that novel 3D-printed poly-lactic-co-glycolic acid (PLGA) scaffolds had good biocompatibility and mechanical properties comparable with human cancellous bone, while they could support proliferation and osteogenic differentiation of osteoblasts. Based on the previous study, this study evaluated PLGA scaffolds for bone regeneration within a rabbit model. The scaffolds were implanted at two sites on the same animal, within the periosteum and within bi-cortical bone defects on the iliac crest. Subsequently, the efficacy of bone regeneration within the implanted scaffolds was evaluated at 4, 12 and 24 weeks post-surgery through histological analysis. In both the intra-periosteum and iliac bone defect models, the implanted scaffolds facilitated new bone tissue formation and maturation over the time course of 24 weeks, even though there was initially observed to be little tissue ingrowth within the scaffolds at 4 weeks post-surgery. Hence, the 3D-printed porous PLGA scaffolds investigated in this study displayed good biocompatibility and are osteoconductive in both the intra-periosteum and iliac bone defect models. (communication)

  6. Histological evaluation of osteogenesis of 3D-printed poly-lactic-co-glycolic acid (PLGA) scaffolds in a rabbit model

    International Nuclear Information System (INIS)

    Ge Zigang; Tian Xianfeng; Heng, Boon Chin; Fan, Victor; Yeo Jinfei; Cao Tong

    2009-01-01

    Utilizing a suitable combination of lactide and glycolide in a copolymer would optimize the degradation rate of a scaffold upon implantation in situ. Moreover, 3D printing technology enables customizing the shape of the scaffold to biometric data from CT and MRI scans. A previous in vitro study has shown that novel 3D-printed poly-lactic-co-glycolic acid (PLGA) scaffolds had good biocompatibility and mechanical properties comparable with human cancellous bone, while they could support proliferation and osteogenic differentiation of osteoblasts. Based on the previous study, this study evaluated PLGA scaffolds for bone regeneration within a rabbit model. The scaffolds were implanted at two sites on the same animal, within the periosteum and within bi-cortical bone defects on the iliac crest. Subsequently, the efficacy of bone regeneration within the implanted scaffolds was evaluated at 4, 12 and 24 weeks post-surgery through histological analysis. In both the intra-periosteum and iliac bone defect models, the implanted scaffolds facilitated new bone tissue formation and maturation over the time course of 24 weeks, even though there was initially observed to be little tissue ingrowth within the scaffolds at 4 weeks post-surgery. Hence, the 3D-printed porous PLGA scaffolds investigated in this study displayed good biocompatibility and are osteoconductive in both the intra-periosteum and iliac bone defect models. (communication)

  7. Separation of water and oil by poly (acrylic acid)-coated stainless steel mesh prepared by radiation crosslinking

    Energy Technology Data Exchange (ETDEWEB)

    Nho, Young Chang; Shin, Jung Woong; Park, Jong Seok; Lim, Young Mook; Jeun, Joon Pyo; Kang, Phil Hyun [Research Division for Industry and Environment, Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2015-05-15

    The stainless steel mesh coated with poly(acrylic acid) hydrogel was fabricated and applied for the separation of water and oil. The stainless steel mesh was immersed in aqueous poly (acrylic acid) solution, and then irradiated by radiation to introduce poly(acrylic acid) hydrogel on the surface of mesh by crosslinking. It was possible to separate oil and water from mixtures of oil/water effectively using the hydrogel-coated mesh. The effect of irradiation dose, coating thickness, size of mesh on the separation efficiency was examined.

  8. Proton conductance at elevated temperature:Formulation and investigation of poly(4-styrenesulfonic acid / 4-aminobenzylamine / phosphoric acid membranes

    Directory of Open Access Journals (Sweden)

    Jalal eJalili

    2014-07-01

    Full Text Available 4-aminobenzylamine and phosphoric acid were blended in various proportions with poly (4-styrenesulfonic acid to form a new group of membranes exhibiting proton conductance under water-free conditions. The 4-aminobenzylamine molecule, possessing an aniline-like and benzylamine-like functional group, can interact both with the phosphoric acid and the poly(4-styrenesulfonic acid via nucleophilic interaction, thereby allowing proton jumping in the structure. Physico-chemical and thermal characteristics of the prepared solid membranes were investigated by IR spectroscopy and thermo-gravimetric analysis, respectively. Electrochemical impedance spectroscopy was employed to investigate their proton-conductance properties. Transparent composite membranes were prepared. However, the membranes are opaque for relatively high content of phosphoric acid. These membranes are thermally stable up to 300°C. The proton conductivity increases with temperature and also with content of phosphoric acid. Values as high as 1.8×10–3 S cm–1 were measured at 190°C in fully anhydrous condition.

  9. Glutamic acid decarboxylase 67 expression by a distinct population of mouse vestibular supporting cells.

    Science.gov (United States)

    Tavazzani, Elisa; Tritto, Simona; Spaiardi, Paolo; Botta, Laura; Manca, Marco; Prigioni, Ivo; Masetto, Sergio; Russo, Giancarlo

    2014-01-01

    The function of the enzyme glutamate decarboxylase (GAD) is to convert glutamate in γ-aminobutyric acid (GABA). Glutamate decarboxylase exists as two major isoforms, termed GAD65 and GAD67, that are usually expressed in GABA-containing neurons in the central nervous system. GAD65 has been proposed to be associated with GABA exocytosis whereas GAD67 with GABA metabolism. In the present immunofluorescence study, we have investigated the presence of the two GAD isoforms in the semicircular canal cristae of wild type and GAD67-GFP knock-in mice. While no evidence for GAD65 expression was found, GAD67 was detected in a distinct population of peripherally-located supporting cells, but not in hair cells or in centrally-located supporting cells. GABA, on the other hand, was found in all supporting cells. The present result indicate that only a discrete population of supporting cells use GAD67 to synthesize GABA. This is the first report of a marker that allows to distinguish two populations of supporting cells in the vestibular epithelium. On the other hand, the lack of GABA and GAD enzymes in hair cells excludes its involvement in afferent transmission.

  10. Diverse Cd(II) compounds based on N-benzoyl-L-glutamic acid and N-donor ligands: Structures and photoluminescent properties

    International Nuclear Information System (INIS)

    Ma, Ning; Guo, Wei-Ying; Song, Hui-Hua; Yu, Hai-Tao

    2016-01-01

    Five new Cd(II) coordination polymers with N-benzoyl-L-glutamic acid (H_2bzgluO) and different N-donor ligands, [Cd(bzgluO)(2,2′-bipy)(H_2O)]_n (1), [Cd(bzgluO)(2,4′-bipy)_2(H_2O)·3H_2O]_n (2), [Cd(bzgluO)(phen)·H_2O]_n (3), [Cd(bzgluO)(4,4′-bipy)(H_2O)]_n (4), [Cd(bzgluO)(bpp)(H_2O)·2H_2O]_n (5) were synthesized (2,2′-bipy=2,2′-bipyridine, 2,4′-bipy=2,4′-bipyridine, phen=1,10-phenanthroline, 4,4′-bipy=4,4′-bipyridine, bpp=1,3-di(4-pyridyl)propane). Compounds 1–2 exhibit a 1D single-chain structure. Compound 1 generates a 2D supramolecular structure via π–π stacking and hydrogen bonding, 3D architecture of compound 2 is formed by hydrogen bonding. Compound 3 features a 1D double-chain structure, which are linked by π–π interactions into a 2D supramolecular layer. Compounds 4-5 display a 2D network structure. Neighboring layers of 4 are extended into a 3D supramolecular architecture through hydrogen bonding. The structural diversity of these compounds is attributed to the effect of ancillary N-donor ligands and coordination modes of H_2bzgluO. Luminescent properties of 1–5 were studied at room temperature. Circular dichroism of compounds 1, 2 and 5 were investigated. - Graphical abstract: Five new Cd(II) metal coordination compounds with H_2bzgluO and different N-donor ligands were synthesized and characterized. Compounds 1, 2 and 3 present 1D structures, compounds 4 and 5 display 2D networks. Results indicate that auxiliary ligands and coordination modes of H_2bzgluO play an important role in governing the formation of final frameworks, and the hydrogen-bonding and π–π stacking interactions contribute the formation of the diverse supramolecular architectures. Furthermore, the different crystal structures influence the emission spectra significantly. - Highlights: • It is rarely reported that complexes prepared with N-benzoyl-L-glutamic acid. • Each complex displays diverse structures and different supramolecular

  11. Synthesis of poly(N-isopropylacrylamide-co-acrylic acid) model compounds for filtration experiments

    DEFF Research Database (Denmark)

    Hinge, Mogens; Christensen, Morten Lykkegaard; Scales, Peter

    2005-01-01

    rheometry indicates that the blocks of poly(acrylic acid) are placed on the surface of the microgels. The combination of these three results reveal that the microgels have a core mainly consisting of poly(N-isopropylacrylamide) and a diffuse/cloudy surface consisting mainly of poly(acrylic acid).   The core/shell......  Theoretical development within solid/liquid separation in colloidal systems is largely based on inorganic, low charged and incompressible particles. These do not reflect the properties in biosolid/organic systems. There is therefore a need for a development of colloidal and particles which mimic...

  12. Expression of glutamic acid decarboxylase and identification of GABAergic cells in the ischemic rat dentate gyrus

    DEFF Research Database (Denmark)

    Müller, Georg Johannes; Dogonowski, Anne-Marie; Finsen, Bente

    2006-01-01

    We have investigated the glutamic acid dexcarboxylase (GAD) mRNA and protein isoforms as markers for ischemic loss of GABAergic neurons in the dentate hilus. Stereological counts of these neurons were performed in rats surviving 8 days after 10 min of transient forebrain ischemia, and in control...

  13. Glutamate decarboxylase-dependent acid resistance in Brucella spp.: distribution and contribution to fitness under extremely acidic conditions.

    Science.gov (United States)

    Damiano, Maria Alessandra; Bastianelli, Daniela; Al Dahouk, Sascha; Köhler, Stephan; Cloeckaert, Axel; De Biase, Daniela; Occhialini, Alessandra

    2015-01-01

    Brucella is an expanding genus of major zoonotic pathogens, including at least 10 genetically very close species occupying a wide range of niches from soil to wildlife, livestock, and humans. Recently, we have shown that in the new species Brucella microti, the glutamate decarboxylase (Gad)-dependent system (GAD system) contributes to survival at a pH of 2.5 and also to infection in mice by the oral route. In order to study the functionality of the GAD system in the genus Brucella, 47 isolates, representative of all known species and strains of this genus, and 16 strains of the closest neighbor genus, Ochrobactrum, were studied using microbiological, biochemical, and genetic approaches. In agreement with the genome sequences, the GAD system of classical species was not functional, unlike that of most strains of Brucella ceti, Brucella pinnipedialis, and newly described species (B. microti, Brucella inopinata BO1, B. inopinata-like BO2, and Brucella sp. isolated from bullfrogs). In the presence of glutamate, these species were more acid resistant in vitro than classical terrestrial brucellae. Expression in trans of the gad locus from representative Brucella species in the Escherichia coli MG1655 mutant strain lacking the GAD system restored the acid-resistant phenotype. The highly conserved GAD system of the newly described or atypical Brucella species may play an important role in their adaptation to acidic external and host environments. Furthermore, the GAD phenotype was shown to be a useful diagnostic tool to distinguish these latter Brucella strains from Ochrobactrum and from classical terrestrial pathogenic Brucella species, which are GAD negative. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  14. Two-step modification of poly(D, L-lactic acid) by ethylenediamine-maleic anhydride

    International Nuclear Information System (INIS)

    Cao Chengbo; Zhu Fanglian; Yu Xueli; Wang Qin; Wang Chuandong; Li Baolu; Lv Ronghui; Li Musen

    2008-01-01

    Poly(lactic acid) (PLA) was modified by maleic anhydride (MAH), then the resultant MAH modified PLA (MPLA) was acylated with ethylenediamine (EDA), so EDA-MAH modified PLA (EMPLA) was prepared. The results of DSC, FT-IR and NMR testified that MAH and EAD were successfully introduced into the original polymer. The hydrophilicity of EMPLA was considerably increased compared with that of PLA. The degradation experiment showed that the introduction of EDA into the original polymer could neutralize the carboxyl end groups of the degradation products. The results of SEM and MTT of rat osteoblasts cultured in vitro showed that the cytocompatibility and cell adhesion of the modified materials were significantly increased compared with the original polymer, especially EMPLA; the number of cells were obviously increased and cells attached firmly to the material; these were ascribed to the EDA neutralizing the carboxyl end groups of the degradation products

  15. pH-responsive poly(aspartic acid) hydrogel-coated magnetite nanoparticles for biomedical applications.

    Science.gov (United States)

    Vega-Chacón, Jaime; Arbeláez, María Isabel Amaya; Jorge, Janaina Habib; Marques, Rodrigo Fernando C; Jafelicci, Miguel

    2017-08-01

    A novel multifunctional nanosystem formed by magnetite nanoparticles coated with pH-responsive poly(aspartic acid) hydrogel was developed. Magnetite nanoparticles (Fe 3 O 4 ) have been intensively investigated for biomedical applications due to their magnetic properties and dimensions similar to the biostructures. Poly(aspartic acid) is a water-soluble, biodegradable and biocompatible polymer, which features makes it a potential candidate for biomedical applications. The nanoparticles surface modification was carried out by crosslinking polysuccinimide on the magnetite nanoparticles surface and hydrolyzing the succinimide units in mild alkaline medium to obtain the magnetic poly(aspartic acid) hydrogel. The surface modification in each step was confirmed by DRIFTS, TEM and zeta potential measurements. The hydrodynamic diameter of the nanosystems decreases as the pH value decreases. The nanosystems showed high colloidal stability in water and no cytotoxicity was detected, which make these nanosystems suitable for biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Prolonged local anesthetic action through slow release from poly (lactic acid co castor oil).

    Science.gov (United States)

    Sokolsky-Papkov, Marina; Golovanevski, Ludmila; Domb, Abraham J; Weiniger, Carolyn F

    2009-01-01

    To evaluate a new formulation of bupivacaine loaded in an injectable fatty acid based biodegradable polymer poly(lactic acid co castor oil) in prolonging motor and sensory block when injected locally. The polyesters were synthesized from DL: -lactic acid and castor oil with feed ratio of 4:6 and 3:7 w/w. Bupivacaine was dispersed in poly(fatty ester) liquid and tested for drug release in vitro. The polymer p(DLLA:CO) 3:7 loaded with 10% bupivacaine was injected through a 22G needle close to the sciatic nerve of ICR mice and the duration of sensory and motor nerve blockade was measured. The DL: -lactic acid co castor oil p(DLLA:CO) 3:7 released 65% of the incorporated bupivacaine during 1 week in vitro. Single injection of 10% bupivacaine loaded into this polymer caused motor block that lasted 24 h and sensory block that lasted 48 h. Previously we developed a ricinoleic acid based polymer with incorporated bupivacaine which prolonged anesthesia to 30 h. The new polymer poly(lactic acid co castor oil) 3:7 provides slow release of effective doses of the incorporated local anesthetic agent and prolongs anesthesia to 48 h.

  17. Enhanced Stability of Gold Magnetic Nanoparticles with Poly(4-styrenesulfonic acid-co-maleic acid): Tailored Optical Properties for Protein Detection

    Science.gov (United States)

    Zhang, Xiaomei; Zhang, Qinlu; Ma, Ting; Liu, Qian; Wu, Songdi; Hua, Kai; Zhang, Chao; Chen, Mingwei; Cui, Yali

    2017-09-01

    Gold magnetic nanoparticles (GoldMag) have attracted great attention due to their unique physical and chemical performances combining those of individual Fe3O4 and Au nanoparticles. Coating GoldMag with polymers not only increases the stability of the composite particles suspended in buffer but also plays a key role for establishing point-of-care optical tests for clinically relevant biomolecules. In the present paper, poly(4-styrenesulfonic acid-co-maleic acid) (PSS-MA), a negatively charged polyelectrolyte with both sulfonate and carboxylate anionic groups, was used to coat the positively charged GoldMag (30 nm) surface. The PSS-MA-coated GoldMag complex has a stable plasmon resonance adsorption peak at 544 nm. A pair of anti-D-dimer antibodies has been coupled on this GoldMag composite nanoparticle surface, and a target protein, D-dimer was detected, in the range of 0.3-6 μg/mL. The shift of the characteristic peak, caused by the assembly of GoldMag due to the formation of D-dimer-antibody sandwich bridges, allowed the detection.

  18. Structure-Activity Relationship Study of Ionotropic Glutamate Receptor Antagonist (2S,3R)-3-(3-Carboxyphenyl)pyrrolidine-2-carboxylic Acid

    DEFF Research Database (Denmark)

    Krogsgaard-Larsen, Niels; Storgaard, Morten; Møller, Charlotte

    2015-01-01

    Herein we describe the first structure-activity relationship study of the broad-range iGluR antagonist (2S,3R)-3-(3-carboxyphenyl)pyrrolidine-2-carboxylic acid (1) by exploring the pharmacological effect of substituents in the 4, 4', or 5' positions and the bioisosteric substitution of the distal...... carboxylic acid for a phosphonic acid moiety. Of particular interest is a hydroxyl group in the 4' position 2a which induced a preference in binding affinity for homomeric GluK3 over GluK1 (Ki = 0.87 and 4.8 μM, respectively). Two X-ray structures of ligand binding domains were obtained: 2e in GluA2-LBD...... and 2f in GluK1-LBD, both at 1.9 Å resolution. Compound 2e induces a D1-D2 domain opening in GluA2-LBD of 17.3-18.8° and 2f a domain opening in GluK1-LBD of 17.0-17.5° relative to the structures with glutamate. The pyrrolidine-2-carboxylate moiety of 2e and 2f shows a similar binding mode as kainate...

  19. Synthesis, structure and stability of a chiral imine-based Schiff-based ligand derived from L-glutamic acid and its [Cu4] complex

    Science.gov (United States)

    Muche, Simon; Levacheva, Irina; Samsonova, Olga; Biernasiuk, Anna; Malm, Anna; Lonsdale, Richard; Popiołek, Łukasz; Bakowsky, Udo; Hołyńska, Małgorzata

    2017-01-01

    Studies of the stability of a ligand derived from L-glutamic acid and ortho-vanillin and its new [Cu4] complex are presented. The [Cu4] complex contains a heterocubane [CuII4O4] core and pendant carboxylic groups increasing its solubility in water, also under basic conditions. The stability of the complex in different solvents is confirmed with ESI-MS studies and such experiments as successful recrystallization. The complex is stable also under physiological conditions whereas the ligand is partly decomposed to L-glutamic acid and ortho-vanillin.

  20. Chemically imaging the effects of the addition of nanofibrillated cellulose on the distribution of poly(acrylic acid) in poly(vinyl alcohol)

    Science.gov (United States)

    Craig Clemons; Julia Sedlmair; Barbara Illman; Rebecca Ibach; Carol Hirschmugl

    2013-01-01

    The distribution of poly(acrylic acid) (PAA) in model laminates of nanocellulose and poly(vinyl alcohol) (PVOH) was investigated by FTIR chemical imaging. The method was effective in spatially discerning the three components of the composite. PAA can potentially improve the performance of nanocellulose reinforced PVOH by not only crosslinking the PVOH matrix but also...